
KAIST Research Series

Chan-Hyun Youn
Min Chen
Patrizio Dazzi

Cloud Broker
and Cloudlet
for Workflow
Scheduling

KAIST Research Series

Series editors

I.S. Choi, Daejeon, Republic of Korea
J.S. Jeong, Daejeon, Republic of Korea
S.O. Kim, Daejeon, Republic of Korea
C. Kyung, Daejeon, Republic of Korea
B. Min, Daejeon, Republic of Korea

More information about this series at http://www.springer.com/series/11753

Chan-Hyun Youn • Min Chen
Patrizio Dazzi

Cloud Broker and Cloudlet
for Workflow Scheduling

123

Chan-Hyun Youn
School of Electrical Engineering
KAIST
Daejeon
Korea (Republic of)

Min Chen
Embedded and Pervasive Computing (EPIC)
Lab

Huazhong University of Science and
Technology

Wuhan, Hubei
China

Patrizio Dazzi
Area della Ricerca di Pisa
ISTI-CNR
Pisa
Italy

ISSN 2214-2541 ISSN 2214-255X (electronic)
KAIST Research Series
ISBN 978-981-10-5070-1 ISBN 978-981-10-5071-8 (eBook)
DOI 10.1007/978-981-10-5071-8

Library of Congress Control Number: 2017943825

© Springer Nature Singapore Pte Ltd. 2017
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part
of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations,
recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission
or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar
methodology now known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this
publication does not imply, even in the absence of a specific statement, that such names are exempt from
the relevant protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this
book are believed to be true and accurate at the date of publication. Neither the publisher nor the
authors or the editors give a warranty, express or implied, with respect to the material contained herein or
for any errors or omissions that may have been made. The publisher remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

Printed on acid-free paper

This Springer imprint is published by Springer Nature
The registered company is Springer Nature Singapore Pte Ltd.
The registered company address is: 152 Beach Road, #21-01/04 Gateway East, Singapore 189721, Singapore

Contents

1 Integrated Cloud Broker System and Its Experimental
Evaluation . 1
1.1 Cloud Broker System Overview . 1

1.1.1 Service Provider and User Perspectives. 2
1.1.2 Cloud Resource Broker Perspectives 3
1.1.3 Bipartite SLAs Between Stakeholders 4

1.2 VM Resource Management Schemes in Cloud Brokers 6
1.2.1 Resource Management System in Heterogeneous

Cloud Environment . 6
1.2.2 Technical Requirement of Brokers for Heterogeneous

Cloud Resource Management . 8
1.2.3 Application Characteristics and Requirements

for Application Aware Resource Management Scheme
in Heterogeneous Cloud Environment 10

1.2.4 Architecture of Brokers for Heterogeneous Cloud
Resource Management . 12

1.3 Adaptive Resource Collaboration Framework [13] 14
1.3.1 The Architecture of ARCF [13] . 16
1.3.2 Resource Monitoring. 18

1.4 Science Gateway Overview . 20
1.5 Scientific Workflow Applications . 21

1.5.1 Programming Models for Scientific Applications [26]. 22
1.5.2 Next Generation Sequencing for Genome Analysis. 23

1.6 Conventional Service Broker for Scientific Application
in Cloud . 24
1.6.1 Service Broker for Computational Chemistry Tool 25
1.6.2 A Distributed Bio-workflow Broker on Clouds 27

v

1.7 Cost Adaptive Resource Management in Science Gateway 29
1.7.1 Pricing Model for Scientific Computing 29
1.7.2 Cost Adaptive Resource Allocation in Science

Gateway . 31
1.8 Workflow Scheduling Scheme with Division Policy. 32
1.9 Test Environments for Performance Evaluation on Resource

Management Schemes of the Science Gateway 36
1.10 Performance Evaluation on Resource Management Schemes

of Science Gateway . 39
References. 43

2 VM Placement via Resource Brokers in a Cloud Datacenter. 47
2.1 Introduction . 47
2.2 Computing-Aware Initial VM Placement . 49

2.2.1 Overview . 49
2.2.2 Computing-Aware Initial VM Placement Algorithm 49

2.3 VM Reallocation Based on Resource Utilization-Aware VM
Consolidation and Dispersion . 52
2.3.1 Overview . 52
2.3.2 System Architecture . 52
2.3.3 Cost Optimization Model of TP-ARM in Clouds 54
2.3.4 Heuristic Algorithms for the Proposed TP-ARM

Scheme . 58
2.3.5 Evaluation . 61
2.3.6 Conclusion . 72

References. 72

3 Cost Adaptive Workflow Resource Broker in Cloud 75
3.1 Introduction . 75
3.2 Background and Related Works . 76

3.2.1 Workflow Control Schemes . 76
3.3 Objectives. 78

3.3.1 Guaranteeing SLA. 78
3.4 Proposed System Model for Cost-Adaptive Resource

Management Scheme . 79
3.4.1 Assumption . 79
3.4.2 Requirement Descriptions . 79
3.4.3 A Layered Cloud Workflow System (LCW) 80

3.5 Proposed Cost Adaptive Workflow Scheduling Scheme 83
3.5.1 Workflow Resource Allocation Optimization

Problem. 84
3.5.2 Obtaining Expected Throughput Based on Estimated

Completion Time . 84

vi Contents

3.6 Proposed Marginal Cost Based Resource Provisioning
Scheme . 86
3.6.1 VM Resource Allocation Procedure 87
3.6.2 Marginal Cost Based Adaptive Resource Reservation

Scheme . 90
3.6.3 Adaptive Resource Allocation Heuristics 91

3.7 Experiment and Results . 95
3.7.1 Evaluation Environments. 95
3.7.2 Evaluation of the Proposed ARRS 98
3.7.3 Evaluation of the Proposed A3R Policies 100

3.8 Conclusions . 101
References. 102

4 A Cloud Broker System for Connected Car Services
with an Integrated Simulation Framework . 105
4.1 Introduction . 105
4.2 A Cloud Broker System for V2C Connected Car Service

Offloading. 106
4.2.1 V2C Connected Car Service . 106
4.2.2 An Architecture of the Cloud Broker System

with Service Offloading Strategies. 109
4.3 An Integrated Road Traffic-Network-Cloud Simulation

Framework for V2C Connected Car Services Using a Cloud
Broker System . 112
4.3.1 An Overview. 112
4.3.2 An Architecture of the Integrated Simulation

Framework . 113
4.3.3 The Extension of the Integrated Simulation

Based on the Inverse Simulation Technique 123
4.3.4 A Proof-of-Concept Study of the Service Execution

with the Cloud Broker System . 128
4.4 Conclusion . 131
References. 131

5 Mobile Device as Cloud Broker for Computation Offloading
at Cloudlets . 135
5.1 Introduction . 135

5.1.1 Overview of the Cloud Category . 135
5.1.2 Computation Offloading from Remote Cloud

to Mobile Cloudlet . 135
5.1.3 Cloud Broker from Cloud to Mobile Device. 138

5.2 New Architecture of Computation Offloading at Cloudlet 139

Contents vii

5.3 A Study on the OCS Mode . 141
5.3.1 Computation Allocation . 141
5.3.2 Computation Classification . 142

5.4 Allocation Problem in Mobile Device Broker. 143
References. 146

6 Opportunistic Task Scheduling Over Co-located Clouds 147
6.1 Introduction . 147
6.2 Background and Related Works . 148

6.2.1 Task Offloading Based on Remote Cloud 149
6.2.2 Task Offloading Based on Mobile Cloudlets 150

6.3 Opportunistic Task Scheduling Over Co-located Clouds
Mode . 150
6.3.1 Motivation. 150
6.3.2 OSCC Mode . 151

6.4 OSCC Mode. 153
6.4.1 Task Duration . 155
6.4.2 Energy Cost . 157

6.5 Analysis and Optimization for OSCC Mode. 158
6.5.1 Analysis for Task Duration in OSCC Mode 158
6.5.2 Analysis for Energy Cost in Remote Cloud Mode,

Mobile Cloudlets Mode and OSCC Mode 160
6.5.3 Optimization Framework. 163

6.6 Performance Evaluation . 163
6.6.1 Task Duration . 163
6.6.2 Energy Cost in Remote Cloud Mode,

Mobile Cloudlets Mode and OSCC Mode 167
6.6.3 Optimization Framework. 168

References. 170

7 Mobility-Aware Resource Scheduling Cloudlets in Mobile
Environment . 173
7.1 Introduction . 173

7.1.1 Mobile Environment of Heterogeneous Network. 173
7.1.2 Resource Scheduling in Cloudlet . 174

7.2 Resource Scheduling Based on Mobility-Aware Caching 175
7.2.1 Caching Model in SBS and User Device 175
7.2.2 Mobility-Aware and SBS Density Caching

(MS-Caching) . 176
7.2.3 Simulation Results and Discussions 178

7.3 Resource Scheduling Based on Mobility-Aware Computation
Offloading. 181
7.3.1 Edge Cloud Computing. 181
7.3.2 Caching Vs. Computation Offloading 182

viii Contents

7.3.3 Hybrid Computation Offloading . 182
7.3.4 Simulation Results and Discussions 184

7.4 Incentive Design for Caching and Computation Offloading 186
References. 187

8 Machine-Learning Based Approaches for Cloud Brokering 191
8.1 Introduction . 191
8.2 Different Ways to Achieve Machine Learning 192
8.3 Different Methodologies for Machine Learning 193
8.4 Machine Learning and Cloud Brokering. 196
8.5 The Current Landscape of Machine-Learning Enabled Cloud

Brokering Approaches . 196
8.5.1 Machine-Learning Based Application Placement

in Cloud Federation . 197
8.5.2 Machine-Learning Solutions to Deal with Uncertainty 202
8.5.3 Genetic-Based Solutions for Application Placement 206

8.6 Conclusion . 210
References. 211

Contents ix

Chapter 1
Integrated Cloud Broker System
and Its Experimental Evaluation

1.1 Cloud Broker System Overview

In distributed computing environment, there are a large number of similar or
equivalent resources provided by different service providers. These resources may
provide the same functionality, but optimize different Quality of Service
(QoS) metrics. These computing resources are managed and sold by many different
service providers [1]. Service providers offer necessary information about their
services such as the service capability, and the utility measuring methods and
charging policies, which will be later referred to as the “resource policy” in this
book. Each resource policy bears a tuple of two components, such as (capability,
price). For capability, we model the resource capability as a set of QoS metrics
which include the CPU type, the memory size, and the storage/hard disk size.
Figure 1.1 is an example of the various resources types and their charging policies
provided by Amazon EC2. Pricing is per instance-hour consumed for each instance,
from the time an instance is launched until it is terminated [2].

Users can outsource their local applications or directly access some web-service
to leverage the remote computing resources in the cloud and buy their preferred
services from the service provider. However, usually there are many different
service types to choose from and the user probably will not make an optimized
decision based on their limited knowledge. Moreover, this may cause an inefficient
execution of their application with longer elapsed time and more monetary cost than
that it actually needs. In addition, different users or applications may have different
expectations and requirements.

It is necessary to develop a broker as an intermediate negotiator between the user
and the service provider, which orchestrates the application policy on the user’s
side and the resource policy on the service provider’s side. The broker functions to
bridge the user with the service provider while hiding many workflow mapping
details so that the user can utilize the vast resource pool within the internet in a
transparent and easy way. Moreover, the broker can offer different service levels

© Springer Nature Singapore Pte Ltd. 2017
C.-H. Youn et al., Cloud Broker and Cloudlet for Workflow Scheduling,
KAIST Research Series, DOI 10.1007/978-981-10-5071-8_1

1

according to different users’ requirements and provide corresponding QoS guar-
antees respectively. The broker has both the functionalities of task management and
resource management. For each application execution, there are three tightly
interactive roles–users, broker, and service provider [3]. An application is submitted
to the cloud by users, scheduled by the task scheduling scheme based on the
interaction between the broker and the resource providers, and finally executed by
the providers. There is no particular interaction between the users and the service
providers, which are decoupled by the broker as represented in Table 1.1.

1.1.1 Service Provider and User Perspectives

Service providers mean every entity which enables cloud processing procedures,
and include the followings: Resource providers which provide IaaS such as
Terremark, Savvis, GoGrid, Amazon, and Rackspace; PaaS and SaaS resource
providers; Management service providers which provides backups, fault-tolerance,

Fig. 1.1 An example of the various resources types and their charging policies [2]

2 1 Integrated Cloud Broker System and Its Experimental Evaluation

and monitoring. The cost for providing resource can be classified as server cost
(computation, storage, software), infrastructure cost (power supply and cooling),
electric cost, network cost (link, transmission, equipment), and the cost for con-
suming services include everything which is served. Currently, many companies
adopt cloud computing, and cloud computing is also attractive to universities,
research institutes which needs resource for high performance computing.

1.1.2 Cloud Resource Broker Perspectives

Brokers connect service providers and consumers, and control cloud services to
guarantee QoS, improve application service performance in terms of …, etc.
Because there is no service provider which can satisfy every requirement of dif-
ferent consumers, the role of selecting proper service providers to serve consumers’
requests is extremely important. In addition, general consumers may have difficulty
in selecting the optimal resource for executing their applications, and brokers can
help consumers to solve this problem. Figure 1.2 shows an example of functions of
cloud brokers in inter-cloud environment. As shown in the figure, the broker is
required to select the most appropriate providers by comparing providers’ Service

Table 1.1 Cloud resource management matters in diverse perspective

Location – Physical resources location

Cloud service provider Service cost – Computation cost
– Storage cost
– Software cost
– Network cost

Infrastructure cost – Power supply
– Cooling system
– Electric cost

Cloud resource broker Workflow engine – Workflow scheduler
– Policy adapter
– Resource allocation service

Resource manager – VM allocation service
– Resource monitoring
– Leasing manager
– Capacity optimizer

Data scheduling – Load balancer
– Data provisioning service

Cloud service user Load balancing – VM assignment
– Load balancing policy

QoS – Service availability
– Performance
– Security

Application scaling policy – Scale up/out
– Service monitoring, SLA

1.1 Cloud Broker System Overview 3

Level Agreement (SLA) and consumers’ QoS for consumer’s requests. For this
purpose, the consumers provide the information of QoS in the figure, and the broker
provides the provider list which satisfies the constraints. Therefore, the consumers
can use the most appropriate resource.

1.1.3 Bipartite SLAs Between Stakeholders

The three roles, say user, broker, and cloud service provider, need to express their
requirements and facilitate scheduling decision to further achieve their objectives
[4]. We therefore utilize SLA that is usually defined in the community as a business
agreement between each two of them to create the common under-standing about
services, responsibilities, and others [5]. There will be two bipartite SLAs that are
represented by the SLA type I relation (SLA1) which is established between users
and the broker, as well as the SLA type II relation (SLA2) which is established
between the broker and providers. Figure 1.3 represents SLA1 and SLA2 between
users, broker, and service providers.

Fig. 1.3 Bipartite SLAs among users, the broker, and service providers

Fig. 1.2 Functional example of cloud resource broker in inter-cloud

4 1 Integrated Cloud Broker System and Its Experimental Evaluation

Users and jobs. When a user wants to use the computational resources to
execute a workflow application, the user first submits the workflow with SLA1 to
the broker. There are many potential QoS requirements specified in the SLA1 for
the user. Current existing systems are mostly restricted to best-effort optimizations
for time-based criteria, such as reducing overall execution time or maximizing
bandwidth; while in our proposed system, we plan to impose the QoS guarantee
mechanism. The QoS parameters declared in the SLA1 include the time constraint
and the budget constraint for executing the whole workflow application.
Specifically, for each sub-task within the workflow application, we identify the
SLA1 between the user and the broker and the corresponding QoS parameters. This
SLA1 is mapped by the broker to SLA2 and the SLA2 then will be used to make a
resource provisioning schedule by the broker.

Broker and scheduling scheme. The broker is the middleware between the user
and the resource provider by providing resource allocation service to satisfy users’
requirements. In order to make scheduling decisions to satisfy SLA1, the broker
interacts with resource providers to lease resources by using the SLA2 between the
broker and the service providers which is defined as a 3-tuple with three resource
parameters—CPU type, memory size, and storage/hard disk size.

Providers and resources. From the scheduling point of view, each resource can
be modeled with two parameters: capability and job queue. The capability is the
computational speed for reconfiguring resources, which has a unit of million
instructions per second, and can be considered to be closely related to three
parameters—CPU type, memory size, and storage/hard disk size. The job queue of
a resource keeps an ordered set of jobs scheduled but not yet executed.

In this book, the technical part of the SLA is decoupled into two bipartite SLAs
that are represented by the SLA type I relation (SLA1) which is established between
users and the broker, as well as the SLA type II relation (SLA2) which is estab-
lished between the broker and providers. The two bipartite SLAs’ values together
define the QoS offered to a user. The broker incorporates a QoS–enabled workflow
management module and an adaptive resource provision module. The workflow
management module will perform a mapping function from the SLA1 to a corre-
sponding SLA2. from a resource provision module’s perspective, QoS constraints
declared in SLA1 from user’s perspective will be mapped to resource parameters
declared in SLA2. Resource provision module will then use the SLA2 to allocate
suitable resources to execute the current sub-task in the workflow.

Therefore, users must be able to specify their requirements, either completion
time or cost, for the whole workflow at design level. Then, the actions conducted by
the broker must be chosen accordingly. Moreover, because different users or
applications may have different expectations and requirements, the scheduling
scheme must be dynamically chosen according to the QoS requirements. Therefore,
a policy-based adaptive broker is proposed which has not only functions for inte-
grated workflow management with resource management, but also multiple
scheduling schemes for supporting different users’ preferences.

Existing policy-based resource management systems [6, 7] manage the resources
by considering the system and network status parameters like the CPU speed,

1.1 Cloud Broker System Overview 5

memory size, storage capacity, I/O devices, band-width, delay and jitter. According
to the dynamic change of resource status, the resource management system gen-
erates different optimized resource list based on the policy. However, from the
user’s point of view, other QoS factors like time, cost, fidelity, reliability, and
security should be considered to be defined in the SLA. In other words, the existing
work cannot directly satisfy user’s most caring factors like time and cost. This
requires an integrated management scheme to orchestrate the workflow manage-
ment and the resource management. Another existing workflow management sys-
tem [8] handles the SLA issues by allowing users to designate their wanted
comparatively weight on cost and time. However, the system does not tackle the
real SLA issue such as completion time or execution cost.

Therefore, the objective of the integrated model proposed in this book is to
provide QoS guaranteed service for user submitted workflow by satisfying the
user’s SLA specification which includes direct and easy metrics such as time and/or
budget constraint. The model should be aware of the dynamic change of resource
status and adaptive to satisfy different requirements from users. We expect that our
proposed policy-based adaptive broker can analyze the QoS parameters from SLA
specification, and provision appropriate resources to sub-tasks based on such
information.

1.2 VM Resource Management Schemes in Cloud Brokers

1.2.1 Resource Management System in Heterogeneous
Cloud Environment

In current cloud computing ecosystem, there are many heterogeneous cloud envi-
ronments. Therefore, the problems such as inter-compatibility and security can arise
because of difficulty of interlock between various cloud platforms. Therefore, for
appropriate use of content which is shared in huge organization by many users,
methods to effectively manage resources in heterogeneous cloud datacenters are
necessary and essential.

(1) Resource management issue in heterogeneous cloud computing
environment

The resource management in cloud computing environment is the process to
allocate appropriate computing, network, storage, and energy resource to the
application. There are three roles in this environment: Cloud Service Provide,
Cloud User, and End User. The cloud service provider operates a datacenter and
provide the cloud resource in IaaS to the cloud user with a charge. The cloud user
acts as a kind of broker to process the application to be executed by the end user
with appropriate cloud resources. The end user requests the application execution to
the cloud user. QoS which must be guaranteed at least are determined as a SLA

6 1 Integrated Cloud Broker System and Its Experimental Evaluation

between each other, as shown in Fig. 1.3. In this case, each role should apply the
cloud resource management in order to guarantee the SLA and maximize its profit.

For example, the cloud service provider can guarantee the QoS such as Service
availability, Performance, Security, and Data access as a SLA to the cloud user. On
the other hand, the cloud user can guarantee the QoS such as Deadline, Fault
tolerance as a SLA to the end user. The cloud service provider should minimize its
cost such as the power consumption of a data-center and maximize its profit while
guaranteeing the SLA required by end users. All schemes related to this object are
called as cloud resource management scheme. The cloud resource management
schemes are comprised of resource scheduling, virtual machine placement, resource
profiling, resource usage prediction, and task management.

Because the available resource is limited in a single cloud system, cloud service
providers are required to adopt inter-cloud. Therefore, resource management
schemes between clouds should be developed. Practically, it is needed to provide
convenient interface for interaction and guarantee QoS factors such as performance
and availability, etc. (Fig. 1.4).

(2) Heterogeneous resource service and interface

Cloud computing enables high performance computing, massive data process-
ing, and resource sharing by connecting network among various computing
resource. Therefore, cloud computing can be a good solution to integrate distributed
computing resource and provide resource/service collaboration. A cloud resource
service interacts with other services with feedback loops. Figure 1.5 shows the
example of cloud resource services. In Fig. 1.5a, cloud resource services are pro-
vided by the feedback loop (policing, alerting, negotiations, provision, transfer).

Fig. 1.4 Architecture of inter cloud resource Manager

1.2 VM Resource Management Schemes in Cloud Brokers 7

Cloud brokers can activate the services, and the services are processed with service
factors such as data rate, total data volume, data flow, etc.

1.2.2 Technical Requirement of Brokers for Heterogeneous
Cloud Resource Management

Cloud providers should satisfy each consumer’s service requirement to guarantee
certain level of QoS. The QoS factors can be defined and differentiated by each kind
of services (Table 1.2).

• Guarantee performance

Guaranteeing performance means consistently maintaining service performance in a
certain level by distributing load to cloud systems to meet consumer’s SLA even if
several cloud systems are impossible to guarantee performance because of
overload.

• Guarantee availability

Guaranteeing availability means consistently maintaining service provision even if
there are faults in the cloud systems. To achieve it, it is necessary to recover service
by migrating the services to cloud systems operated well. If recovery of every
service is impossible, services may be recovered by the corresponding priorities.
For example, cloud providers can recover services with high priority to guarantee
required QoS of the services or change this part.

• Enhance convenience by service cooperation

Enhancing convenience by service cooperation means all services cooperating as if
every related service is processed in the same place in the form of a one-stop
service.

Fig. 1.5 Procedure of cloud resource provisioning service a enable block, b action among
function blocks

8 1 Integrated Cloud Broker System and Its Experimental Evaluation

• SLA of cloud service providers

– It requires dynamic cloud collaboration management systems which include
optimal resource provisioning and load balancing methods to both satisfy
QoS and reduce the resource usage cost in heterogeneous cloud collaboration
environment.

– It requires multi-cloud resource brokers which manage allocated virtual
clusters or virtual machine instances.

– It requires cloud node adaptors which provide resource provision by access
to distributed heterogeneous cloud resource.

– It requires job workflow managers which divide applications into sub jobs,
allocate the jobs to distributed cloud servers using resource in cloud col-
laboration environment.

– It requires monitoring interfaces which monitor cloud resource status.
– It requires resource description parsers which parse client’s requests as the

certain format.
– It requires ACCP cloud manager interfaces which profile services and

allocate virtual machine instances.
– It requires resource provisioning managers which operate effective resource

provisioning to provide optimal resource to clients and prepare resource in
reasonable cost, and provide load balancing to distribute load.

Table 1.2 SLA factors

SLA item

Availability Service availability,
availability

Probability that service is available
(scheduled service time—service delay)/
scheduled service time

Average recovery time Average time while recovering faults

Service suspension time Recovery time for expected faults

Time of data recovery point Time when data is recovered

Performance Online response time Response for online processing

Online response time
compliance ratio

Online transaction ration completed within
deadline (%)

Batch processing time Response time for batch processing

Batch processing time
compliance ratio

Batch processing ration completed within
deadline (%)

Maximum number of
processing tasks per unit
time

Maximum number of processing tasks per
unit time

Compliance ratio of
maximum processing tasks
per unit time

Compliance ratio of maximum processing
tasks per unit time (%)

1.2 VM Resource Management Schemes in Cloud Brokers 9

1.2.3 Application Characteristics and Requirements
for Application Aware Resource Management
Scheme in Heterogeneous Cloud Environment

Application profiling is a technique used to describe the use of computing resources
by an application and its expected behaviors. It should be used by cloud providers
to better understand and manage applications and resources. Considering the
growth of cloud computing and direct resource utilization impacts to costs, to
perform application profiling is essential with these three main reasons.

Application management—environments in which applications share resources
have to predict needs for resources properly. In this way, it can be allocated with the
amount needed for each workload to perform its job as expected by its end users.
Therefore, in order to estimate the amount of resources that should be allocated, an
accurate tool is needed to predict applications’ need, so as to prevent service
degradation generated by resource contention that occurs when applications com-
pete for resources.

Resource management—in order to optimize resource utilization, a model is
essential to predict the amount of resources that best suits each workload. Enabling
cloud providers to consolidate workloads while maintaining SLAs.

Cost management—in a cloud environment the costs are directly bound to the
amount of resource used to provide an application/service. Therefore, using accu-
rate models is possible to consolidate workloads and thus cause little or no impact
on application performance while reducing the costs with management and
provisioning.

• Application characteristics

The workflow applications executed in cloud environment are classified as
data-intensive application, compute-intensive application and instance-intensive
application. Especially, the workflow applications for science field are classified as
data-intensive applications and compute-intensive applications. The data-intensive
applications require the data file capacity from Giga-Byte to Peta-Byte which is
higher than the computation workload. The compute-intensive applications require
more computation workloads than data workloads. Computation to Communication
Ratio (CCR) is used to distinguish between data-intensive application and
compute-intensive application. If CCR is lower, the application is closed to the
data-intensive application. The instance-intensive applications require many
instances in parallel but not high capacity on each instance. Most of applications are
compute-intensive applications and have the workflow type which has the order and
dependency between tasks.

• Profiling characteristics

The creation of an application profiling involves collection, processing and
analysis of different data sets. These sets can be traces of resource usage, such as
CPU, memory, network bandwidth or metrics related to provide applications/

10 1 Integrated Cloud Broker System and Its Experimental Evaluation

services such as number of requests that is being served, the application’s archi-
tecture, etc. A model that represents the state of the art of cloud application profiling,
forecasting and management should have the following characteristics:

– Accuracy—when traces of resource usage is collected to create a historic
database, the tool/model used to collect the data should be accurate, not just to
count the amount of resources that is being used directly by an application, but
also the amount of resources used to manage the application itself. That extra
resource should be taken into consideration by a profile, management and
forecasting model. Hence, physical nodes that may be elected to host the
workload need to have the amount of resources needed by the application plus
the amount required to manage it.

– Application design—today, most of applications are developed to bind different
components together, such as database server, application server and front-end
server. When the application is deployed in a cloud, each component is normally
configured into distinct virtual machines. This way, if we scale up the amount of
resources available for one of those components to avoid service degradation
due to a sudden increase on requests, it is also needed to scale up the amount of
resources proportionally on the interdependent layers. Otherwise, we solve a
problem in one of the layers pushing it to a dependent one.

– Background workload—it is necessary to monitor the background workload that
the physical host has, in order to identify interferences that one application can
have on another. Thus, enabling the identification of incompatible applications,
which cannot share the same physical server, may lead to competition for the
same resource among them.

– Historic data—it is essential to collect and store resource usage traces. Every
single resource that could affect the application behavior should be monitored
and stored. These traces can be used to detect patterns of workloads that may
arrive over the time.

– Migration—monitoring future resource needs is vital. Because it is possible to
check whether a physical host is running out of resources in time to activate the
migration process before the server gets flooded and the application suffers from
service degradation. The migration process has high computing costs, therefore,
it should be triggered before the server gets flooded, otherwise applications may
suffer from resource contention caused not just by applications competing for
resource, but also by resource contention generated by the migration process
itself.

– Networking affinity—workloads deployed in different hosts communicate with
each other using physical networking structures. Therefore, workloads with
frequent communicate should be placed into the same physical node or in the
nearest one, in order to avoid networking hops. Hence, applications may suffer
service degradation due to flooded network. Moreover, multi-tier applications
could benefit from this characteristic, speeding up the communication between
layers, hence their packages will be exchanged in memory.

1.2 VM Resource Management Schemes in Cloud Brokers 11

– Overhead—the application profiling models need to constantly monitor a variety
of application characteristics and physical servers. It also needs to process and
analyze those data in a real time manner to support the cloud management
processes. Hence, those models should be aware of the overhead that is caused
by them, and try to minimize the impact that it has on services provided by the
Cloud.

– Request types—it is related to the collection and classification of request types
that the application is serving to future correlation and analysis with traces of
computing usage. In this way, we can identify different request groups ranging
from most sensitive ones that need priority to the ones that can suffer some time
delay that servers are loaded.

– SLA—by constantly monitoring the SLA, providers have means to tune up the
amount of resources allocated to workloads. SLAs are the guidelines to be
followed toward QoS assurance. Moreover, there is quality of experience
(QoE) which is the behavior perceived by end users. Therefore, providers
should carefully manage SLAs.

1.2.4 Architecture of Brokers for Heterogeneous Cloud
Resource Management

According to Gartner, cloud service brokers (CSBs as shown in Fig. 1.6) are one of
the top 10 strategic technology trends in 2014 [10]. There are many companies to

Fig. 1.6 A conceptual reference model of cloud service brokers in NIST [17]

12 1 Integrated Cloud Broker System and Its Experimental Evaluation

serve CSBs and their roles are mainly selecting the best services of multiple clouds,
adding monitoring services and managing metadata services, and providing
Software-as-a-Service (SaaS). Liu et al. [11] classified these services as three forms:
service intermediation to improve services by adding new value-added features,
service aggregation to combine and integrate services into new services, and service
arbitrage to arbitrage and aggregate service with not fixed services. In addition,
there are many variations of those.

A reservation-based cloud service broker (R-CSB) [12] executes applications on
behalf of CSCs (Cloud Service Customer) or provides SaaS using VMs leased from
CSPs (Cloud Service Provider). A profit of the R-CSB is made by an arbitrage
between CSCs and CSPs, and service fees from CSCs. To increase the profit, the
VM leasing cost of the R-CSB should decrease and we solve it via cost-effective
VM reservation and allocation. The VM reservation is based on the following facts.
The resources provided by CSPs is generally divided by OVMs (On-demand
Virtual Machine) and RVMs (Reserved Virtual Machine). The OVMs and the
RVMs refers to VMs which are leased in comparatively short BTUs (Billing Time
Units, e.g. an hour) and long BTUs (e.g. a month, a year), respectively. Prices of
RVMs per unit time is set to be cheaper than those of OVMs and the VM reser-
vation can reduce the VM leasing cost. However, because BTUs of RVMs are
much longer than those of OVMs, the VM leasing cost can rather increase if
utilizations of the RVMs are low. Therefore, the R-CSB should lease an appropriate
number of RVMs. Moreover, the VM allocation decreases the VM leasing cost via
increasing average VM utilization. Generally, demands vary by time. If the number
of leased RVMs is greater than or equal to the current demand, it is sufficient to
allocate applications to them and the OVM leasing cost is not imposed. Otherwise,
an additional OVM should be leased to allocate the application. Therefore,
increasing average VM utilization decreases the number of OVMs and results in
decrease of the VM leasing cost.

A VM reservation module is to determine the number of RVMs to be leased by
time. The VM reservation strategizing in the VM reservation module is designed to
perform based on demand monitoring and prediction. RVMs leased by the VM
reservation module and OVMs additionally leased are managed in a VM pool
management module and used to allocate applications. We divide the VM pool into
two kinds: VM pools which contains VMs whose status are idle (an idle VM pool)
and VMs on which the applications are executed (an active VM pool). For appli-
cation execution requests of CSCs via a user interface, the R-CSB parses the
application execution requests and profiles the applications if the profiling isn’t
done before. The applications are scheduled and allocated to appropriate VMs in
the idle VM pool and VM scaling is performed if it is empty. Then, the application
execution module starts to execute the applications via a cloud interface.

1.2 VM Resource Management Schemes in Cloud Brokers 13

1.3 Adaptive Resource Collaboration Framework [13]

In Cloud computing, multiple CSPs provide their own services with various per-
formance and cost. Cloud service user should integrate a number of services from
different CSPs and utilize proper services considering cost, performance, and target
application’s characteristics. Also, active cloud collaboration is needed. Therefore,
integration technique for integrating cloud-based resources and cloud collaboration
technique is essential.

We consider cloud broker platform prior to development such techniques. Cloud
broker plays a role as a middleware between multiple heterogeneous cloud envi-
ronment and cloud service user. It determines and provides proper cloud services
which ensures user SLA and minimize the cost instead of cloud user.

However, cloud broker for federated cloud which have heterogeneous OS,
heterogeneous cloud platform, and various cloud service resources only performs
integration of multiple CSPs and requests VM instance. Recent cloud broker also
provides only the function of VM instance specification and resource find operation
(Fig. 1.7).

In cloud collaboration environment (Fig. 1.8), VMs with the same flavor type
may have different performance because of heterogeneity of physical nodes and
VM interference. However, traditional cloud broker cannot cope with that situation
so that SLA cannot be ensured.

Also, in the case of guaranteeing network performance between VM instances
are important, traditional cloud broker do not consider this situation so that they
can’t assure SLA. Also, traditional cloud broker only considers to provide
on-demand VM instances so that they do not consider cost reduction using reserved
VM instance.

A cloud broker platform named Cloud Collaboration Platform(CCP) presented
in Fig. 1.9 [13] considers computing, network performance using cloud resource
profiling function. Also, CCP reduces VM management cost by adapting reserved
VM instances and VM provisioning operation so that it dynamically provides
optimized service while meeting user SLA and QoS with minimized cost.

Fig. 1.7 Traditional cloud broker models

14 1 Integrated Cloud Broker System and Its Experimental Evaluation

Fig. 1.9 Cloud collaboration framework [13]

Fig. 1.8 Cloud collaboration environment [13]

1.3 Adaptive Resource Collaboration Framework … 15

Moreover, in cloud environment, many requests are in a form of running scientific
applications or workflows. Therefore, CCP provides workflow scheduling function
to optimized use of resources. For contents management, CCP manages
multi-tenant and provides interface which is suitable for active collaboration.

The entire framework for CCP is divided into Active Contents Collaboration
Platform (ACCP) and Adaptive Resource Collaboration Framework (ARCF) [13].

ARCP manages heterogeneous multi-clouds in an integrated form and provides
proper cloud resource in cost adaptive way while meeting user QoS. ARCF pro-
vides policy based resource management mechanism considering multiple cloud
services’ performance and cost. Moreover, ARCP provides application service for
various scientific applications such as genetic analytics, scientific experiments.

ACCP provides collaboration environment for sharing services and contents in a
virtual workspace based on cloud. Also, it automatically performs active work
according to the event occurred by contents. ACCP provides scalable service
through interconnection to cloud infrastructure, and development environment for
collaborative works. Also, ACCP provides virtual workspace named content space
so that users can rapidly and easily collaborate with co-workers with it.

It provides Content Space, which operates as the interface for task flow pro-
cessing service to offer a convenient environment for various collaborative works.

Cloud collaboration technique provides contents collaboration environments
required for next-generation mobile services such as business and social media.
Also, it integrates different services from diverse cloud vendors then provides a
unified interface so that users can easily develop and quickly utilize an application.
In this document, we concentrate upon taking care of Adaptive Resource
Collaboration Framework.

1.3.1 The Architecture of ARCF [13]

Cloud resource management architecture consists of user, Multi-cloud Resource
Broker (MCRB), Cloud Node Adaptor (CNA) and Workflow Manager(WM).
A user can submit service requests regardless of geographical location. MCRB
serves a role of interface between cloud service provider and user. WM and MCRB
decides whether to accept the submitted request. If it is accepted, then they choose
proper resource to allocate the request then schedule and execute it.

We define ARCF (Fig. 1.10) and list the modules which are the parts of the
framework as following:

– Multi Cloud Service and Resource Broker (MCSRB): It analyzes resource
request and finds the most proper resource to satisfy SLA.

– ARCF Adaptor: External user can utilize VM instances through this interface.
Also, it is possible for a user to see collected VM instance monitoring
information.

16 1 Integrated Cloud Broker System and Its Experimental Evaluation

– Virtual resource allocation manager: It predicts future client request based on
client request history information collected by request log manager. Request log
manager collects client profile information, SLA information and requirement
information.

– Resource profiling and monitoring manager: It is composed of VM manager and
service manager. It assigns proper VM instance to the request according to the
request analysis. After assigning VM instances, it monitors additional informa-
tion such as task completion time. Also, it evaluates SLA for submitted requests.
After evaluation, requests are given priority depending on SLA. According to the
priorities, requests are matched with proper resources and processed.

– Resource Provisioning Manager (RPM): It utilizes resource provisioning and
balancing scheme to process user request efficiently. Also, it allocates the
request onto the chosen resource by CloudNode Adaptor which handle
heterogeneous cloud resources. Also, it employs the most decent policy among
defined resource provisioning policy to process the request economically.

– CloudNode Adaptor: It delivers heterogeneous cloud services which are pro-
vided by different cloud vendors. Also, it integrates cloud resources with
heterogeneous OS and heterogeneous cloud platform environment with Cloud
Resource Bridge module. Cloud Resource Connector module, which is a part of
CloudNode Adaptor, receives messages from cloud service providers.

– Job Workflow Manager (JWM): It helps executing high performance computing
application (e.g. Next-generation sequencing application).

First essential functionality of ARCF takes care of VM placement problem. It
equips with VM placement technique with two QoS constraints that client cannot

Fig. 1.10 ARCF architecture [13]

1.3 Adaptive Resource Collaboration Framework … 17

handle. One of them is guaranteeing network performance among multiple VM
instance. We provide network-aware VM placement scheme to overcome data
transmission delay. The other is computing aware VM placement scheme. It
enables for a client to use VMs of same computing power with cheaper price by
performing resource profiling.

Second functionality is resource monitoring. It periodically monitors
ARCF-governed VM instances to collect resource-related information such as task
execution time.

Third functionality is resource provisioning. We considered reserved VM to
reduce resource leasing cost. We achieve this goal by employing two techniques;
One of them is Adaptive Resource Reservation Scheme (ARRS). It decides opti-
mized number of newly leasing reserved VM by leveraging the concept of marginal
cost. The other is Adaptive Resource Allocation scheme. It consists of recycling
reusable on-demand VM (OVM), replacing targeted VM type, and repositioning the
task in execution from OVM to RVM.

Fourth functionality is workflow scheduling. It is about processing active works
while satisfying user SLA (e.g. deadline). When multiple workflow processing
request is given, we partition each workflow request into fragment based on its
unique critical path and schedule each fragment. Also, as cloud resource perfor-
mance is not static, we suggest a scheduling scheme which divides a task into
multiple subtasks then process them in parallel manner to overcome the unforeseen
performance degradation.

1.3.2 Resource Monitoring

Resource monitoring basically collects and maintains the periodic performance
information and the status of created cloud resources in VM pool or resource policy
provided by CSPs. The scalability of monitoring technique should be guaranteed
not to exceed the threshold of the performance degradation overhead even when the
number of cloud resource monitored is increased.

Resource monitoring provides two types of monitoring. The first type provides
the real time monitoring for performance evaluation of resource policies using
benchmark program. The second type provides the real time monitoring for
checking the status of the created cloud resources in VM pool using daemon
process.

(1) Monitoring using benchmark program

To evaluate the performance of resource policies provided by CSPs, resource
monitor provides the periodic monitoring using benchmark program from bench-
mark repository. Figure 1.11 shows the monitoring process using benchmark
program in resource monitoring.

The administrator of integrated broker registers various benchmark programs to
benchmark repository in advance and the benchmark repository provides the VM

18 1 Integrated Cloud Broker System and Its Experimental Evaluation

images of each CSP installing benchmark programs. Resource monitor broadcasts
the request to create VM on available resource policies such as small type, medium
type or large type which provide CPSs with this VM image. After completing to
create the requested VMs, resource monitor broadcasts the request to execute each
benchmark program on the requested VMs. After finishing the execution of the
benchmark program on the requested VMs, the result in terms of the execution time
of the benchmark program is returned and monitoring database is updated. Based
on this procedure shown in Fig. 1.12, resource monitoring can evaluate the per-
formance of resource policies provided by CSPs with various benchmark programs.
This monitoring data will be used by resource profiles.

Fig. 1.11 The monitoring process using benchmark program [13]

1.3 Adaptive Resource Collaboration Framework … 19

1.4 Science Gateway Overview

Many computational science field (i.e. Computational Physics, Computational
Chemistry, Bioinformatics and etc.) related to big-data domain [14, 15] require the
massive computation resources to solve their problems with methods of simulation,
modeling and numerical analysis.

As a substitute for traditional expensive supercomputing, the cloud computing
which can deliver cost efficient and scalable computing services which are provided

Fig. 1.12 The procedure of resource monitor [13]

20 1 Integrated Cloud Broker System and Its Experimental Evaluation

to cloud users on-demand is becoming an alternative computing paradigm for
scientific application processing. Cloud users are able to share computing resources
such as computing components (i.e. CPU, memory and network), software utilities,
databases, etc. for scientific application processing cost-effectively by leasing vir-
tual machine (VM) instances on a pay as you go basis. Despite its many advantages,
there are several obstacles which prevent the cloud computing from achieving
successful deployment for scientific application processing.

Advanced scientific applications have generally diversified computing require-
ments such as CPU intensive, memory intensive and network intensive computation
and so on [16, 17]. Therefore, it is difficult to derive a resource scheduling scheme
which is a panacea for all kind of scientific applications. Moreover, we may observe
that there is a conflict among the scheduling objectives such as application com-
pletion time and resource cost [18, 19]. The improvement of one objective might
bring down the performance of other objective. In addition, the professionals
engaged in computational science might suffer from the complexity of distributed
computing system (e.g. heterogeneous resource management, pipeline flow control,
service deployment, intermediate data control, and etc.) in cloud for solving their
problems. To overcome above issues in order to achieve the performance and cost
efficient resource scheduling for scientific application processing on cloud, the
concept of science gateway is proposed.

A science gateway is an automatic execution environment that can be generally
applied for different types of science applications in common interface to do task
scheduling, task execution and visualization, building highly tuned computation
farm over the geographically distributed resources [20]. The science gateway cloud
supports the generalized common interface which is available regardless of the kind
of requested scientific application. Even cloud users who are not familiar with the
traditional cloud scientific systems can optimize the scientific application pro-
cessing performance simply without in-depth understanding of cloud platform. All
they need is just to provide the description on a set of tasks with precedence
constraints including in their scientific applications. The important issue of the
science gateway is to orchestrate tasks over a distributed set of resources in the
minimized cost while guaranteeing SLA which is the contract on QoS constraints
with a user.

1.5 Scientific Workflow Applications

Advanced computing application involves the simulation and modeling program to
solve the problem in many computational science fields such as computational
physics, computational chemistry, bioinformatics, etc. These applications related to
the big-data computing [14, 15] require massive computation resources to solve
various problems with methods of simulation, modeling and numerical analysis.
While generating massive streams of data continuously, enormous parallel or dis-
tributed supercomputing could be required in proportion to their computational

1.4 Science Gateway Overview 21

complexity [16, 17, 21]. Advanced computing applications are
computing-intensive, data-intensive and time-consuming and hence, advanced
computing applications need a huge size of computing and storage resource [16,
22–25]. In this section, we focus on the scientific applications among advanced
computing application service such as computational chemistry tool and
bio-computing tool.

1.5.1 Programming Models for Scientific Applications [26]

Scientific applications involve the construction of simulation and modeling tech-
niques to solve scientific or engineering problems. Such the applications practically
need a huge size of computing resources and storage space to perform a large set of
experimental parameters or to analyze a huge size of dataset. In addition, the
different services or applications have the different requirement on resource. For
executing the scientific applications, there are various programming models such as
Thread Model, MapReduce Model, MPI Model, and Workflow. Table 1.3 shows a
feature comparison of these programming models on the applications, scenarios,
execution unit, and execution services for supporting the scientific computing. In
this book, we adopt the workflow as the programming model to execute the sci-
entific applications so, assume that these scientific applications are represented as
workflow which is directed acyclic graph (DAG) composing of the set of node and
the set of edge (called scientific workflow).

Table 1.3 Programming Models for Scientific Applications [26]

Name Scenario Applications Execution
unit

Execution service

Thread
model

Multi-threaded
applications

A collection of
threads executed
concurrently

Any
instance,
any
method

Thread scheduling
service and thread
execution service

MapReduce
model

Data-intensive
applications

A map and a
reduce functions
and a large
collection of
data

Map and
Reduce
Tasks

MapReduce
scheduling and
execution services,
MapReduce storage
service

Workflow Workflow
applications

A collection of
interrelated tasks
composing a
DAG

Task
instance

Built on top of the
task model with
additional
requirements

MPI Message
passing
applications

A collection of
MPI processes
that exchange
messages

MPI
processes

MPI scheduling
service, MPI
execution service

22 1 Integrated Cloud Broker System and Its Experimental Evaluation

To execute these scientific workflows on the cloud environment with following
features shown in Table 1.4, the science gateway which is the policy based
workflow management integrated cloud resource broker system is proposed in [27].

1.5.2 Next Generation Sequencing for Genome Analysis

In biological research and applications to understand biological phenomena and
relation between genotype and phenotype, it is essential to determine the order of
the nucleotide bases in DNA molecules and analyze the resulting sequences.
Next-generation sequencing (NGS) technologies is used to sequence DNA in an
automated and high-throughput process [28, 29]. DNA molecules are fragmented
into pieces of 100 to 800 bps, and digital versions of DNA fragments are generated
accordingly. These fragments, called reads, originate from random positions of
DNA molecules. To know the genome sequence of individuals, the aligning or
mapping operation is necessary to determine with which location of reference
genome reads generated from DNA of individual can match.

Aligning NGS reads to genomes is computationally intensive. Li et al. gave an
overview of algorithms and tools currently in use [30]. To align reads containing
SNPs which is polymorphism of a single base pairs and is recognized as the main
cause of human genetic variability, probabilistic algorithms are required, since
finding an exact match between reads and given reference are not sufficient because
of polymorphisms and sequencing errors. Most of these algorithms are based on a
basic pattern called seed and extend, where small matching regions between reads
and the reference genome are identified first (seeding), and then further extended.
Additionally, to be able to identify seeds that contain SNPs, a dedicated algorithm

Table 1.4 Requirement for Executing Scientific Application on the Cloud Environment [27]

Requirement Description

SLA based in-time workflow
scheduling mechanism

Owing to the dynamic characteristic of distributed
resources, an in-time scheduling mechanism for workflow
management guaranteeing the SLA required by users is
needed

Policy decision mechanism To manage the policies for different users’ intention, a
decision scheme is needed to choose the suitable policy for
the workflow scheduling based on the modeled SLA

Application profile mechanism Since the finish time factor is included in SLA, we should
have a mechanism to predict the future runtime of a task in
our system. The time prediction will be realized through
analysis of historical execution data

Cloud resource management
mechanism

To allocate the tasks of workflow to the dynamic and
heterogeneous cloud environment, a resource management
function is required

1.5 Scientific Workflow Applications 23

that allows for a certain difference during seeding is required. Unfortunately, this
adaptation further increases the computational complexity.

BWA [24] and SAMtools [31] are the typical bio scientific applications for
aligning or mapping low-divergent sequences against a large reference genome,
such as the human genome. BWA consists of the services such as bwa index, bwa
aln and bwa sampe. Bwa index provides indexing the reference DNA. Bwa aln
provides mapping pair between reference-data and sample data. Bwa sampe merges
the pair. SAMtools consists of the services such as samtools view, samtools sort,
samtools index and samtools mpileup. Samtools view, samtools sort and samtools
index provides reformatting. Samtools mpileup extracts the gene variations. These
services can be provided by the type of workflow for genome sequencing and
Fig. 1.13 show the example of workflow for identifying SNP variations.

Sequencing throughput increases faster and so do the computational power and
storage size. As a result, although NGS machines are becoming cheaper, using
dedicated compute clusters for read alignment is still a significant investment.
Fortunately, even small labs can do the alignment by using cloud resources.

1.6 Conventional Service Broker for Scientific Application
in Cloud

There are many distributed solutions to execute these scientific applications
[32, 33]. Especially, about large-scale scientific application, recent solutions make
use of remote computing farm such as federated clusters or cloud with the objective
of reducing the cost by on-demand way instead of maintaining a local computing
farm. For example, CloudBLAST [25] shown in Fig. 1.14 provides BLAST service
which is a bioinformatics tool to find regions with local similarity between

Fig. 1.13 Typical genome sequencing workflow for SNP identification [22]

24 1 Integrated Cloud Broker System and Its Experimental Evaluation

nucleotide or protein sequences with parallelization process in Apache Hadoop in
cloud environment, so as to control the total execution time.

In the case of these solutions which make use of remote computing farm, the
total cost is determined by QoS level such as the processing speed of scientific
application services [1]. High QoS can be provided by parallelizing jobs which
require many resources; while low QoS can be provided by leasing relative small
resources. Therefore, the scheduling and resource management function to paral-
lelize jobs and allocate jobs to distributed resources efficiently is needed in order to
reduce the total execution time or cost.

1.6.1 Service Broker for Computational Chemistry Tool

Advanced scientific applications generally have diverse computing requirements,
such as CPU intensive, memory intensive, and network intensive computation, and
so on [18, 21]. Therefore, it is difficult to derive a resource scheduling scheme which
is a panacea for all kind of scientific applications. Moreover, we may observe that
there are conflicts among scheduling objectives, such as application completion time
and resource cost [19, 20]. The improvement of one objective might bring down the
performance of other objectives. In addition, the professionals engaged in compu-
tational science might suffer from the complexity of distributed computing system
(e.g. heterogeneous resource management, pipeline flow control, service deploy-
ment, intermediate data control, and etc.) in the cloud for solving their problems. To
overcome the above issues to achieve the optimal performance and cost efficient
resource scheduling for scientific application processing on the cloud, the concept of
the science gateway is proposed. A science gateway is an automatic execution
environment that can be generally applied for different types of science applications
in a common interface to do task scheduling, task execution and visualization,
building a highly tuned computation farm over geographically distributed resources
[34]. The important issue of the science gateway is to orchestrate tasks over a

Fig. 1.14 The processing in BLAST service [25]

1.6 Conventional Service Broker for Scientific Application in Cloud 25

distributed set of resources with minimized costs while guaranteeing SLAs.
However, several previous studies on the science gateway have not considered this
issue or could not resolve this issue sufficiently. In addition, they focused on a
specific scientific application, so they are not suitable for various scientific appli-
cations generally.

Particularly, Science Gateway has the following capabilities and properties:

• Have a repository for scientific applications.
• Be interactive with users through interfaces to accept user-composed workflows

and SLA specifications
• Be interactive with the service providers through resource management to

provision a resource to each workflow sub-task and handle the resource request
fluctuation by maintaining a low resource provisioning cost as much as possible

• Can produce the optimal schedule plan for executing the workflow while sat-
isfying SLA, dispatch each task to the selected resource, gather execution results
through workflow management

• Have a task execution history repository to store the historical workflow exe-
cution information

• Have task monitoring and workflow monitoring to check the status of execution
online.

Figure 1.15 shows the layered architecture of Science Gateway.

Fig. 1.15 Layered architecture of science gateway [27]

26 1 Integrated Cloud Broker System and Its Experimental Evaluation

This architecture consists of four layers—chemical service layer, workflow
management layer, resource management layer, and cloud resource layer. The brief
explanations for the functional blocks and procedure in Science Gateway are as
Follows. Users compose their chemistry workflow and submit it with QoS
requirements (SLA1) such as the total execution time and the total budget through
web-based unified workflow interface. And workflow manager arranges the QoS
parameter (SLA2) such as cores, memory size and storage size of virtual machine for
each sub-task within the workflow based on SLA1 required by user, according to a
chosen policy and historical execution information, and then executes each sub-task
of workflow with resource manager. Resource manager then allocates appropriate
resources to each sub-task based on scheduling from workflow manager with Cloud
Node Adaptor. Auto-scaling scheme is to prepare an appropriate amount of virtual
resources in advance in order to reduce virtual resource initiation time delay.

1.6.2 A Distributed Bio-workflow Broker on Clouds

For workflows to cooperate in a real-time manner, Kim in [35] proposed a con-
ceptual idea of the integrated workflow system as shown in Fig. 1.16.

Fig. 1.16 System architecture for integrated genome analysis and cardiovascular simulation
workflow [35]

1.6 Conventional Service Broker for Scientific Application in Cloud 27

The middle layer includes functions which manage the interactions among dif-
ferent bio-workflow services, such as the pressure wave monitoring, the cardio-
vascular model simulation, and the genome sequence alignment services
implemented in workflow model. The system could automate the simulation data
and experiment workflow management. Such large-scale data analysis workflow
model needs a huge size of computing and storage infrastructure for performing the
overall workflow tasks in-house method. However, it is expensive to prepare
enough resources and on the other hand, even though it is possible to provide
enough resources, the efficiency of the resource utilization is relatively low since all
tasks do not require the same computing capacity. On the hybrid cloud model, it is
possible to outsource the entire or a part of the workflow tasks into cloud model for
workflow computing model which has a distributed workflow services combined by
cloud service model.

As shown in Fig. 1.17, a distributed Bio-workflow Broker (DBB) system is
located in the middle layer between the end user and the cloud service. The DBB
functions as a bridge between the bio services and the cloud data. It stores the bio
services such as SNP analysis for DNA or metabolic disease identification system
with both of genome database and cell metabolism measurement with unified
interface.

To control the workflow execution flow, a task monitoring function is built to
identify the task status including submission, execution and publish. However, the
solutions focus on static resource provisioning with batch processing scheme in
local computing farm and data storage. Since all dataset should be located in the
local site before the processing starts, the transfer time of huge dataset as well as the
unbalanced execution time of different problem size increase the total completion
time. Therefore, an adaptive resource provisioning scheme for both data preparation
process as well as data processing process is proposed in [35].

Fig. 1.17 Distributed bio-workflow model combined by cloud service [35]

28 1 Integrated Cloud Broker System and Its Experimental Evaluation

1.7 Cost Adaptive Resource Management in Science
Gateway

For scientific application processing, it is important to reduce the resource leasing
cost while guaranteeing the SLA of user’s request. In perspective of the science
gateway, the one of efficient ways to reduce the resource leasing cost (i.e., maxi-
mizing profit) is considering the payment plans of cloud resource providers:
reserved VM (RVM) and on-demand VM (OVM) plans.

1.7.1 Pricing Model for Scientific Computing

In the science gateway, there are three entities: the science gateway cloud, cloud
service users, and the cloud resource providers. The users submit their scientific
applications and data to the science gateway; the science gateway buys or releases
cloud resources from/to the cloud resource provider when as needed; and then the
science gateway will pick an appropriate VM instance from its own VM pool to
execute each task of the scientific applications. The cloud service users pay the
science gateway cloud for their application processing requests. The science
gateway cloud makes a profit while satisfying user’s requirements as a wholesaler
between cloud service users and cloud resource providers. Generally, scientific
applications have precedence constraints. Therefore, each task is allocated to their
suitable VM instances and executed in order of their starting time based on
precedence constraints. Obviously, each task has different performance on different
types of VM instances. Scientific applications may have different levels of
importance and urgency; therefore, users can specify different deadlines for their
applications. Since the profit of the science gateway is largely dependent on the
arrival density and the structure of scientific application requests, the adaptive
pricing model for requests is important to maximize the profit (Table 1.5).

Table 1.5 Variables for science gateway cloud [27]

Notations Descriptions

ti A ith task of scientific application S
i 2 1; 2; . . .;Nf g;N ¼ number of tasks in S

VTi ith VM instance type VT 2 1; 2; . . .;Kf g
Ri sð Þ The number of i-type available RVM instances in VM pool at time s

Ai sð Þ The number of i-type allocated RVM instances in VM pool at time s

Ni sð Þ The number of i-type leased RVM instances in VM pool from cloud resource
provider at time t

Ri;j The jth RVM instance of i-type,
P
j
Ri;j sð Þ ¼ Ni sð Þ

Cmax
i The maximum price of i-type VMs to users

Cmin
i The minimum price of i-type VMs to users

C Ri;j sð Þ� �
The current price of the jth RVM instance of i-type at time s

1.7 Cost Adaptive Resource Management in Science Gateway 29

Definition 1.1 (SLA constrained scientific application) From the users’ perspec-
tive, they hope the scientific application they submitted can be finished within some
specified deadline or budget. For example, if users will specify deadline constraint
D, that is to say, the user want to run his or her scientific application no later than a
specified deadline. Meanwhile, the user hopes that the scientific application should
be finished with the least possible cost. In such a case, the scientific application can
be described as a tuple S c;U;Dð Þ where c is the finite set of tasks
ti i 2 1; 2; . . .;Nf gð Þ and U is the set of directed edges of the form ti;tj

� �
.

For an arbitrary precedence constrained scientific application S c;U;Dð Þ, we
assume that we are able to know the estimated completion time of each task of S,
then we can obtain the optimized resource management policy of the science
gateway for scientific application processing which satisfies following objective
function.

Maximize P½q� ¼
X
i2I

csal qð Þ � �r Si c;U;Dð Þð Þ � dð Þ � cexp
X
i2I

r Si c;U;Dð Þð Þ

Subject to ECT Si½ � ¼ max8ti;j2Si ft ti;j
� �� �

; 8i
ECT Si½ � �Di; 8i

ð1:1Þ

where P q½ � is a profit function of the science gateway with input parameter q which
is a policy for determining a price of service sales to user, csal. cexp csal � cexp

� �
is an

expenditure for processing scientific application. d is a coefficient and csal � d means
a preference degradation level of service purchasing from the science gateway. �r is
an expected resource requirement in view of cloud service user for scientific
application request S c;U;Dð Þ and r is an actual resource requirement in view of
science gateway cloud based on its VM pool. ECT is an estimated completion time
of scientific application and ft is an estimated finishing time of individual task. ti;j is
a jth task of application Si. Equality constraint of Eq. (1.1) means the finishing time
of last task is the completion time of application.

The cloud resources are categorized into several types, such as small, medium,
large, xlarge. Each type of VM instance offers different processing capacity and
they are charged for usage in Billing Time Unit (BTU) in proportion to their
capacity. Partial-BTU consumption is rounded up to one BTU.

Definition 1.2 (Cloud VM resource type) A VM type VTi can be modeled with four
parameters which are time-invariant and continuously capable of being guaranteed
by cloud service providers: number of compute units (can be transferred into MIPS)
VTci , CPU clock rate (Hz) VThzi , memory size (GBs) VTmi , storage space
(GBs) VTsi , and bandwidth (bit rate, bit/sec) VTni . The tuple that represent a VM
instance: VTi ¼ VTci ;VThzi ;VTmi ;VTsi ;VTnif g.

In general, the cloud providers have two VM instance payment plans such as
reserved VM (RVM) and on-demand VM (OVM) plans [36, 37]. For RVM plan,
VM instance is leased for long BTU (e.g., monthly or yearly) with low price per

30 1 Integrated Cloud Broker System and Its Experimental Evaluation

allocation time unit. On the contrary, for OVM plan, VM instance is allocated for
short BTU (e.g., hourly or daily) with high price per allocation time unit. The science
gateway maintains the certain number of RVMs in its own VM pool and adjusts the
number of them when the amount of requests is drastically changed. Obviously it is
reasonable to prefer RVM to allocate task when we can find available RVMs in VM
pool since the cost for OVM is more expensive than the one for RVM.

In order to decide the proper cost of service sales csal in Eq. (1.1) to maximize
the profit of the science gateway, we propose three cost function models: simple,
linear and exponential cost function model. The cost for i-type VM instance is
between the maximum cost Cmax

i and Cmin
i and determined according to the number

of available RVMs at each period.
Simple cost function [17] The current price is not changed when available VMs

exist as the minimum cost. However, when all the VMs are allocated, the price
jumps to the maximum cost as follows,

C Ri sð Þð Þsimple ¼
Cmin
i Ri sð Þ[0

Cmax
i otherwise

�
ð1:2Þ

Linear cost function [17] The current price is increased linearly when the
number of available RVMs is decreased until the price reaches to the maximum cost
as follows,

C Ri tð Þð Þlinear ¼
Cmin
i Ri sð Þ ¼ Ni sð Þ

Cmin
i þRi tð Þ C

max
i �Cmin

i
Ni sð Þ 0\Ri sð Þ\Ni

Cmax
i Ri sð Þ ¼ 0

8><
>: sð Þ ð1:3Þ

Exponential cost function [17] The current price is increased exponentially
when the number of available RVMs is decreased until the price reaches to the
maximum cost as follows,

C Ri sð Þð Þexp ¼
Cmin
i Ri sð Þ ¼ Ni sð Þ

Cmin
i � exp 1

Ni sð Þ ln
Cmax
i

Cmin
i

n o
Ri sð Þ

n o
0\Ri sð Þ\Ni

Cmax
i Ri sð Þ ¼ 0

8><
>: ð1:4Þ

Consequently, the science gateway is able to optimize its profit by using the
proper cost function.

1.7.2 Cost Adaptive Resource Allocation in Science Gateway

The VM pool manager (VMPM) and its policies can be described in terms of
reducing the resource leasing cost. Especially, the VMPM determines the proper
amount of leasing RVMs from the cloud resource provider to optimize the cost

1.7 Cost Adaptive Resource Management in Science Gateway 31

efficiency. The amount of running RVMs is dependent on the arrival request density
of scientific applications and each usage duration.

Algorithm 2 shows VMPM resource allocation policy to reduce the cost by
using RVM leasing. The historical data including all the executed tasks and their
allocated VM instance types during the previous time interval T 0 is the input data
for Algorithm 1. We assume that the request pattern in the current time interval T
will be same to the one of historical data in T

0
. By using Algorithm 1, we can derive

the proper amount of RVM, Ni for T .
From line 01–04 in Algorithm 2, we first do clustering each task in S according

to their allocated VM instance type VT . Consequently, all the tasks in S are clas-
sified into several clusters ClsVT according to VT . From line 06–13, we make
groups in which have batch of non-overlapped tasks. That is, from the arbitrary
ClsVT , the first task is picked if its start time st is later than the finish time ft of last
task in the group gn, and then it is inserted into gn. This procedure is repeated until
we cannot find the available t in ClsVT more. From line 14 to 20, by using group
completion time of gn, gct gnð Þ and allocated VM instance type of gn, VT gnð Þ, we
make a RVM description RVMVT gnð Þ;gct gnð Þ having the BTU which has the unit size
closest to the gct gnð Þ. We check the following condition to choose whether to lease
RVMVT gnð Þ;gct gnð Þ from cloud resource provider or not

C RVMVT gnð Þ;gct gnð Þ
� �

P
8t2gn et tð Þ � C OVMVT tð Þ

� �\1 ð1:5Þ

The denominator of Eq. (1.5) represents the total cost for execution time et the
tasks in gn on OVMs. The numerator of Eq. (1.5) represents the cost of RVM for
gn. If Eq. (1.5) is satisfied, it means that the leasing of RVM is more cost efficient
than the leasing of OVMs for gn. As the equation value in Eq. (1.5) is decreased,
the cost efficiency by using RVM is increased (Fig. 1.18).

1.8 Workflow Scheduling Scheme with Division Policy

A SLA constrained scientific application to be executed within user-specified
deadline D is defined as workflow scheduling problem with deadline constraint.
That is, deciding assigned computing resources-to-be set R ¼ fR1;R2; . . .;Rng and
assigned time set s ¼ fs1; s2; . . .; sng according to Petrinet model with inter-task
dependencies determines performance of Science Gateway.

It is hard to find a schedule for satisfying user-specified tight deadline due to the
finite set of resource types in cloud computing. Unlike workflow scheduling with
CPU time competition on cluster computing, the on-demand resource provisioning
is operated on cloud workflow scheduling. Therefore, the coarse grained resource
allocation with finite set of resource types make scheduling schemes to be more
sophisticated for better resource utilization. Also, when the deadline is shorter than

32 1 Integrated Cloud Broker System and Its Experimental Evaluation

the earliest possible execution time of a workflow instance or the unexpected
processing delays are occurred above certain level, we can’t guarantee the deadline
in order to the limitation on expressible quantity measure.

A SLA constrained scientific application in Definition 1.1. S � ;U;Dð Þ is trans-
formed with the Petrinet workflow model SðW P; T;Að Þ;DÞ where P is place, T is
transition and A is arc [28], for better status expression and execution control with
mathematical tools.

A task ti in scientific application, which can be partitioned as they do not have any
precedence relations and all sub-tasks are identical, is defined as divisible task [38].
The divisible degree (dd) on divisible task is defined as the maximum number of
possible sub-tasks. Then, sub-tasks on divisible task ti can be illustrated as set
ti;1; ti;2; . . .; ti;n

� �
. From the task parallelization, the processing time can be reduced

through allocating distributed resources on sub-tasks. Though task division strategy
provides time reduction on workflow scheduling, the division is not always carried
out as it is not appropriate to reduce required cost and processing time, namely, the
goal of workflow scheduling problem in order to the availability of over-provisioning
and burdensome management cost. The composition of partial sub-task on task type
ttk with amount r is defined as sub-task type ttk;frg whose ddðttk; rf gÞ ¼ r. Additional
application profiling for all kinds of task bunches is required to measure execution
time of each subtask type ttk;frg on different resource type VTi.

When token forward and backward matrix is already extracted by analysis of
workflow topology, the SLA constraints scientific application in Petrinet scheme

Fig. 1.18 An algorithm of virtual machine pool management [27]

1.8 Workflow Scheduling Scheme with Division Policy 33

SðW P; T ;Að Þ;DÞ can be controllable by moving the token with multiplication of
token status vector and token forward/backward matrix. Whole algorithm is
described in Fig. 1.19.

[Phase I] Calculate the load rate r(p) for each placement

Initial marking of token vector is set for first phase as m ¼ ½0. . .01�. Then the token
moves through backward matrix along the Petrinet topology path reversely while
investigating each task’s the load rate. The load rate rðpÞ on a place p is the rate of
the following transition’s relative load compared to relative load of its critical path.

r pð Þ ¼ rl pð Þ
cpl pð Þ ð1:6Þ

Also, relative load is defined as average execution time for a task on VM types:

rl pð Þ ¼ avrj stype p�ð Þ
VTj

	

¼ 1

m
�
X
j

stype p�ð Þ
VTj ð1:7Þ

Fig. 1.19 An algorithm of task division policy in workflow scheduler [27]

34 1 Integrated Cloud Broker System and Its Experimental Evaluation

In addition, Critical path on a task is defined as set of following tasks which is
composed of biggest relative load [21]. Then, critical path load is defined as:

cpl pð Þ ¼ f xð Þ ¼ max
p��

cpl p��ð Þþ rlðpÞ; if p��exist
rlðpÞ; otherwise

(
ð1:8Þ

[Phase II] Allocate the most cost efficient resource with properly assigned
sub-deadline

Initial marking of token vector is set for second phase as m ¼ ½10. . .0�. Then the
token moves through forward matrix along the Petrinet topology path while allo-
cating cheapest VM which can guarantee estimated sub-deadline. To achieve
successful scheduling with guarantee of the entire deadline, properly assigned
sub-deadline for each task should be observed. Therefore, we allocate sub-deadline
(sd) rationally based on remaining time and load rate when T mð Þ is execution
timestamp of with token status m.

sd p�ð Þ ¼ rl pð Þ � D� T mð Þð Þ ð1:9Þ

When the leasing cost per unit time for arbitrary VM type VTi is illustrated as
CVTi and there are known estimated time for task execution time on each VM type

Ttype p�ð Þ
VMi

, the most efficient resource with guaranteeing sub-deadline for j-th task can
be determined through leasing VM with type of
VT

ijTtype p�ð Þ
VMi

\sd p�ð Þ;min CVTi �T
type p�ð Þ
VMi

	
n o.
In case of no available resource types to guarantee sub-deadline, it may cause

deadline violation for entire workflow.

[Phase III] Task division with profit calculation

To compare evaluation of solutions on constrained problem only in objective
domain, the service level violation penalty on SLA constraint can be considered.
Profit cost model can be defined to maximize profit while proceeding task division:

Pf ¼ B� Cl � Cp ð1:10Þ

In the formula above, Pf indicates Profit. B is budget which is supplied by user.
Cl is total cost for leasing VM from cloud service providers, Cl ¼

P
i Ri � si.

Penalty cost Cp, which is caused by SLA violation SV, is represented as follows:

Cp ¼ aþ b � SV ; if SV [0
0; otherwise

�
ð1:11Þ

1.8 Workflow Scheduling Scheme with Division Policy 35

SV ¼ ECT � D; if ECT � D[0
0; otherwise

�
ð1:12Þ

In Eqs. (1.11) and (1.12), variable SV indicates the degree of SLA violation.
There are many models of violation penalty cost, but in this book we use linear
violation penalty model in Eq. (1.11) [39]. As shown in Eq. (1.12), SV can be
described as subtraction deadline D from estimated completion time ECT.

By estimating SLA violation SV over non-division case and SV’ over division
case in a deterministic way, the profit for making decision of division can be
considered. The penalty cost can be calculated by setting SV Estimation Token me

which is clone of current token status m. Initially, the location of me is replicated
from current execution token m. Also, each token save temporal execution times-
tamp Tt með Þ which is replicated from current execution time TðmÞ. By forwarding
SV estimation token with allocation of temporal VM over the
estimated-sub-deadline, we can cumulate the Tt með Þ for each transition with the
scheme described in phase II until token reach the final place. Then the estimated
execution time ECT from timestamp Tt með Þ can be obtained in heuristic way. With
the comparison of profit between the non-division case and division case (half
division), cost efficient decision can be available.

If Pf\Pf 0, apply the half division and return to phase II. If division case not yet
guarantees the deadline, division can be occurred recursively until task is no further
divisible (divisible degree equals 1). Otherwise, allocate biggest VM to transition
and return to phase II for forwarding token to next place P**.

1.9 Test Environments for Performance Evaluation
on Resource Management Schemes of the Science
Gateway

To evaluate the performance of the science gateway, the test environment with
heterogeneous cloud platforms was built as Fig. 1.20 and specification on test
environment is shown in Table 1.6. The two cloud platforms were coordinated
using 5 computing nodes for the OpenStack and 4 computing nodes for the
CloudStack respectively [40, 41]. These platforms provide the VM Lifecycle
management (i.e. create, terminate, pause, reboot, snapshot) through the network
service, volume service, scheduling service, image service and virtualization. To
implement the heterogeneity in the multiple cloud services (e.g. Amazon EC2,
GoGrid, Windows Azure), different hardware and software for each platform is
considered. The OpenStack platform is coordinated with Intel(R) Xeon(R) CPU
E5620 @ 2.40 GHz, Core 16, MEM 16G and the software with KVM hypervisor,
Ubuntu 14.04 OS. On the other hands, the CloudStack platform is coordinated with
Intel(R) Core(TM) i7-3770 CPU @ 3.40 GHz, Core 8 with hyper threading, MEM
16G, HDD 1T and the software with XEN hypervisor, CentOS 6.0. The available

36 1 Integrated Cloud Broker System and Its Experimental Evaluation

VM types in these cloud platforms are small type (1 CPU, 2 GB MEM, 80 GB
Disk), medium type (2 CPU, 2 GB MEM, 80 GB Disk), large type (4 CPU, 4 GB
MEM, 80 GB Disk), MEM intensive type (1 CPU, 4 GB MEM, 80 GB Disk), CPU
intensive type (4 CPU, 1 GB MEM, 80 GB Disk).

To evaluate the cost efficiency, relative cost that does not have monetary
meaning in reality but the cost has theoretical meaning for comparison between
algorithms or models is defined. The relative cost is defined as a unit for the
numeric value of cost. To determine the metric on relative cost, we consider the unit
time cost. The unit time cost is amount of payment on specific time period for
imposing price on service that is agreed on the contract. Then, the definition of
relative cost in the ith contract is described as multiplying unit time cost on the ith

Fig. 1.20 Experimental testbed of the science gateway [27]

Table 1.6 Specific configurations on testbed environment [27]

OpenStack platform CloudStack platform

Hypervisor KVM XEN

H/W spec Intel Xeon E5620 2.40 GHz, Core
16, MEM 16G, HDD 1T, 5 Node

Intel Core i7-3770 CPU 3.40 GHz,
Core 8, MEM 16G, HDD 1T, 4 Node

S/W spec OS: Ubuntu 14.04 OS: CentOS 6.0

VM
types

small Spec: 1 VCPU, 2 GB MEM, 80 GB Disk, Unit Time Cost: 2 RC per second

medium Spec: 2 VCPU, 4 GB MEM, 80 GB Disk, Unit Time Cost: 4 RC per second

large Spec: 4 VCPU, 8 GB MEM, 80 GB Disk, Unit Time Cost: 8 RC per second

c4.small Spec: 4 VCPU, 1 GB MEM, 80 GB Disk, Unit Time Cost: 4 RC per second

m8.small Spec: 1 VCPU, 8 GB MEM, 80 GB Disk, Unit Time Cost: 4 RC per second

1.9 Test Environments for Performance Evaluation on Resource … 37

contract ciu by unit time consumption on the ith contract tiu and addition of constant
value a, where i is the sequence number of resource contract for the execution of
specific workflow.

RCi ¼ ciu � tiu þ a ð1:13Þ

The contracts can be made from each resource contract on the workflow
scheduling, also from the imposing penalty on service level violation and even from
the long-term VM reservation. Unlike the billing contract with hourly policy on real
cloud service domain, we assign unit time as a second for the minute examination
on the schemes. When the specification of resource can be simplified as a tuple
½ric; rim� of ith resource contract (where ric is the number of CPU cores and rim is the
numeric value of RAM size in GB) and the weight vector ~w ¼ ½wc;wm� to apply the
effectiveness of each element on tuple is presented, the unit time cost on resource
contract, ciur is calculated as follows.

ciur ¼ wc � ric þwm � rim ð1:14Þ

In case the weight vector is assigned as [0, 0.5], the unit costs for each of VM
instance types (i.e. small, medium, large, c4.small and m8.small) are 2, 4, 8, 4 and 4
per second respectively. Then, relative cost on resource contract can be represented
as Eq. (1.15), where sir is unit time consumption on ith resource contract.

cir ¼ ciur � sir ð1:15Þ

In addition, the relative cost on jth service level violation is defined as following
Eq. (1.16) by using the penalty cost model in Eq. (1.12) where j is the sequence
number of the workflow, c jsv is unit time cost on service level violation, s jsv is degree
of service level violation and a is constant relative cost imposed per violation.

c jsv ¼ c jusv � s js � s jsl
� �þ a; s js � s jsl [0

0; otherwise

�
ð1:16Þ

In this experiment, Next Generation Sequencing (NGS) with Burrows-Wheeler
Aligner (BWA) was orchestrated as a scientific workflow. The NGS is used for the
determination of the order on the nucleotide bases in DNA molecules. In addition, it
is also used for the analysis of the resulting sequences to understand biological
phenomena and relation between genotype and phenotype. Especially, BWA is
pipelined set of tasks for analyzing genome by using burrows-wheeler transform
compression techniques. Similar to typical scientific application, BWA is also
computing/data intensive, time consuming and divisible in some degree [42]. From
the application profiling on BWA applications, data collected on each service show
performance diversity over the distribute cloud resources with the heterogeneity on
both hardware and software. Also, the application profiling on divisible tasks with

38 1 Integrated Cloud Broker System and Its Experimental Evaluation

the task parallelization are conducted for implementation of workflow scheduling
scheme with division policy.

1.10 Performance Evaluation on Resource Management
Schemes of Science Gateway

To evaluate the performance of workflow scheduling scheme with the division
policy over the cost effectiveness on RVM management for scientific application in
heterogeneous cloud environment, 5 different experiments was performed as
described in Table 1.7. The experiment 1, 2, 3 are designed to figure out the
properties of workflow scheduling scheme with the division policy over the vari-
ation of multiple parameters which effect on system performance. In addition, the
experiment 4, 5 are designed to figure out the effectiveness of cost adaptive resource
management scheme with long-term VM reservation. In the experiments, multiple
users make contracts of workflow execution with reservation of SLA (deadline) and
determination of parameters on the penalty cost function. To identify the conditions
on experiments, each deadline and penalty cost function are configured as equiv-
alent distribution over the entire contracts.

Table 1.7 A parameter sets and performance metrics for the experiments [27]

Parameters Exp 1 Exp 2 Exp 3 Exp 4 Exp 5

Average interarrival
(Exp(1/k), (s))

[200, 300,
…, 900]

[200, 300,…,
900]

[200, 300,
…, 900]

100 [100, 150,
…, 500]

Service level
(deadline, (s))

[500, 700,
900, 1100]

800 800 700 700

Penalty function b = 5, a = 0 b = [1, 3, 5,
7], a = 0

b = 5,
a = 0

b = 5,
a = 0

b = 5,
a = 0

Artificial delay factor
c

1.0 1.0 [1.0, 1.2,
1.4,1.6]

1.0 1.0

Number of initial
RVM

0 0 0 [4, 6,
…, 22]

10

Performance metric

Resource contract cost (relative cost) cr ¼
P

i c
i
ur � sir þ nrvm � curvm � stotal

Service level violation (penalty) cost
(relative cost)

csv ¼
X

jjs js�s jsl [0
c jusv � s js � s jsl

� �þ a
� �

¼
X

jjt jsv [0

b � s jsv þ a
� �

Average service level violation (s) avrðs jsvÞ
Total cost (relative cost) ct ¼ cr þ csv
Cost improvement rate cost improvement rate ¼ Relative Cost with RVM

Relative Cost without RVM

1.9 Test Environments for Performance Evaluation on Resource … 39

Through the experiments, Petrinet based dynamic workflow scheduling scheme
with division policy is evaluated against Petrinet based dynamic workflow
scheduling scheme [43] while overcoming the drawbacks on previous solution,
especially the ability to react on the expectable service level violation and the
unexpected failures.

In experiment 1, with different average interarrival time of contract on workflow
execution in exponential distribution from 200 to 900 s, relative cost on service
level violation is measured according to the difference SLA requirement on both
‘without division policy’ in Fig. 1.21a and ‘with division policy’ in Fig. 1.21b.
Because there are no dependencies between the workflow scheduling by avoiding
competition on resource due to the provision of abundance resource from the
multiple cloud services over the worldwide providers, it can obviously be figured
out that the decline of relative cost over the longer interarrival time according to the
little workload when experiment times are same. When we compare Fig. 1.21a, b,
scheduling with division policy shows lower cost demand for same workload and
we can figure out about 85% decrement of service level violation cost in average by
overcoming the tight deadline through the enhancement of performance with task
parallelization, although the result might be workload dependent.

In experiment 2, with different average interarrival time of contract on workflow
execution in exponential distribution from 200 to 900 s, relative cost on service
level violation was measured according to the difference parameters on the penalty
cost function onto the both ‘without division policy’ in Fig. 1.22a and ‘with
division policy’ in Fig. 1.22b. When user impose excessive penalty cost on service
level violation, the division policy might try to avoid the violation from intensive
rate of division although there might be more leasing cost on leasing resource. On
the other hand, when insignificant penalty cost function are imposed, the division
policy might not divide the task from the comparison of penalty cost and leasing
cost in profit model described in Eq. (1.10). The beta value indicates the imposing
relative cost per second for service level violation. Unlike increment of the violation
cost in proportion to beta in Fig. 1.22a, the division policy in Fig. 1.22b select best

Fig. 1.21 Experiment 1—relative cost on service level violation w.r.t. different service level
requirements as 500, 700, 900, 1100 s (i.e. deadlines are set as 500, 700, 900, 1100 s by user
respectively): a without division policy b with division policy [27]

40 1 Integrated Cloud Broker System and Its Experimental Evaluation

solution of division with the profit cost model. In addition, experiment shows
extreme case of no service level violation when beta is 7 due to radical division
derived from the excessive penalty. Also result shows about 50% improvement of
cost efficiency on service level violation in average compared to workflow
scheduling without division.

In experiment 3, with different average interarrival time of contract on workflow
execution in exponential distribution from 200 to 900 s, average service level
violation is measured according to the difference artificial delay factor c on each
task for both ‘without division policy’ in Fig. 1.23a and ‘with division policy’ in
Fig. 1.23b. To figure out the influence of unexpected failures or delays in dis-
tributed cloud computing, artificial delay is simulated with imposing arbitrary delay
on workflow by multiplying artificial delay factor c on execution time of each task
in the workflow instance. Then, it can be figured out that the case without division
can’t handle the additional burden from delay and show result of excessive service
level violation. On the other hand, the scheme shows its capability to handle
unexpected failures in some degree.

Fig. 1.22 Experiment 2—relative cost on service level violation w.r.t. different parameters on the
penalty cost function as b = 1, 3, 5, 7 (refer to Eq. (1.12)) a without division policy b with
Division Policy [27]

Fig. 1.23 Experiment 3—average service level violation w.r.t. added artificial delay factor c as 1,
1.2, 1.4, 1.6 (i.e. workflow with artificial delay is obtained by multiplying c on execution time of
each task in workflow instance) a without division policy b with division policy [27]

1.10 Performance Evaluation on Resource Management Schemes of Science Gateway 41

In experiment 4 (Fig. 1.24), with different number of leased RVM in resource
pool from 4 to 22, cost improvement rate (refer to Table 1.7) is measured according
to the different scheduling policies when unit cost of RVM is half on same type of
On-demand VM. From the cost efficiency on RVM with long term leasing contract,
we can operate cost adaptive resource management system with the RVM man-
agement. However, the reason why RVM can’t be operated with On-demand
manner, it can waste utilization of resource when there is idle, waiting VM exist.
The experimental result shows the case of over-provisioning on RVM when initial
number of RVM is 22 and policy without division, while exceeding the threshold of
cost-benefit ratio, 1.0. In addition, the result also show that division case gains less
efficiency then the case without division. From the detail analysis on raw data, we
can figure out that burst request from the division affect negative influence on
resource management although there are same workloads from either case. Also we
can figure out from the result that there are optimal solutions which are in convex
shaped function and can be variable as workload changed.

In experiment 5 (Fig. 1.25), with different average interarrival time of contract
on workflow execution in exponential distribution from 100 to 500 s, cost on
resource contract is measured according to the different policies, to figure out the
effect on RVM management over various policies. Obviously, we can figure out the
different influence of cost adaptive resource management on division policies over
the various interarrival times. Generally, policy without division shows better
synergy then the other, and also there are different threshold of cost-benefit similar
to experiment 4. However, when we consider the total cost calculated by addition of
resource contract cost and service level violation cost, division policy always shows
better cost efficiency then the other.

Through the experiment, the cost efficiency and deadline guaranteeing of
workflow scheduling with division policy was figured out. Besides, from experi-
ment 2, we can assure that if there are more excessive penalties on service level

Fig. 1.24 Experiment 4—cost improvement rate with RVM management according to the
number of leased RVM [27]

42 1 Integrated Cloud Broker System and Its Experimental Evaluation

violation, the scheme more extremely divides the tasks for guaranteeing SLA
reasonably. In addition, we can figure out the relationship of workload and cost
adaptive RVM management in VMPM with convex optimal. In the experiments,
division policy always shows about 20% better efficiency in average on the
experimental environment.

References

1. J. Yu, R. Buyya, C.C.K. Tham, Cost-based scheduling of scientific workflow applications on
utility grids. e-Science Grid Comput. 2005, 1–8 (2005)

2. Amazon EC2 Pricing. [Online]. Available: http://aws.amazon.com/ec2/pricing/
3. Y. Han, A Study on Adaptive Resource Management System based on Active Workflow

Control Scheme in Distributed Computing (KAIST, Daejeon, South Korea, 2011)
4. C. Kenyon, G. Cheliotis, Architecture Requirements for Commercializing Grid Resources.

Proceedings of 11th IEEE International Symposium on High Performance Distributed
Computing (2002)

5. Document for web services agreement specification. [Online]. Available: http://www.ogf.org
6. D.-S. Nam, C.-H. Youn, B.-H. Lee, G. Clifford, J. Healey, QoS-constrained resource

allocation for a grid-based multiple source electrocardiogram application. Lect Notes Comput
Sci 3043, 352–359 (2004)

7. C.-H. Youn, B. Kim, D. S. Nam, B.-H. Lee, E.B. Shim, G. Clifford, J. Healey, Resource
reconfiguration scheme based on temporal quorum status estimation in computational grids.
International Conference on Information Networking, 699–707 (2004)

8. S. Deng, A Study on Policy Adjuster Integrated Grid Workflow Management System
(Information and Communication University, Daejeon, Republic of Korea, 2008)

9. H. AlHakami, H. Aldabbas, T. Alwada’n, Comparison between cloud and grid computing:
review paper, Int. J. Cloud Comput. Serv. Archit., 2(4), 1–21, 2012

10. Top 10 Strategic technology trends for 2014, (2014) [Online]. Available: http://www.gartner.
com

Fig. 1.25 Experiment 5—relative cost on resource contract with different scheduling policies (i.e.
with/without division policy, with/without RVM management) [27]

1.10 Performance Evaluation on Resource Management Schemes of Science Gateway 43

http://aws.amazon.com/ec2/pricing/
http://www.ogf.org
http://www.gartner.com
http://www.gartner.com

11. F. Liu, J. Tong, J. Mao, R. Bohn, J. Messina, L. Badger, D. Leaf, NIST cloud computing
reference architecture recommendations of the National Institute of Standards. Nist. Spec.
Publ. 292(9), 35 (2011)

12. H. Kim, Y. Ha, Y. Kim, K. Joo, C.-H. Youn, A VM Reservation-Based Cloud Service Broker
and Its Performance Evaluation, in Cloud Computing: 5th International Conference,
CloudComp 2014, Guilin, China, 19-21 Oct 2014, Revised Selected Papers, ed. by V.C.M.
Leung, R.X. Lai, M. Chen, J. Wan (Springer International Publishing, Cham, 2015),
pp. 43–52

13. W.-J. Kim, An Integrated Broker System for Policy-based Application Service Management
in Mobile Cloud (KAIST, Daejeon, 2014)

14. M. Chen, S. Mao, Y. Zhang, V. C. M. Leung, Big Data: Related Technologies, Challenges
And Future Prospects. Springer, Berlin (2014)

15. M. Chen, S. Mao, Y. Liu, Big data: a survey. Mob. Netw. Appl. 19(2), 171–209 (2014)
16. Y. Ren, A Cloud Collaboration System with Active Application Control Scheme and Its

Experimental Performance Analysis (Korea Advanced Institute of Science and Technology,
Daejeon, 2012)

17. B. Kim, A Study on Cost Adaptive Cloud Resource Broker System for Bioworkflow
Computing (Korea Advanced Institute of Science and Technology, Daejeon, 2013)

18. M. Mao, M. Humphrey, Scaling and Scheduling to Maximize Application Performance
Within Budget Constraints in Cloud Workflows. In Proceedings of IEEE 27th International
Parallel and Distributed Processing Symposium, IPDPS 2013, pp. 67–78 (2013)

19. M. Mao, M. Humphrey, Auto-scaling to Minimize Cost and Meet Application Deadlines in
Cloud Workflows. In 2011 International Conference for High Performance Computing
Networking Storage and Analysis SC, pp. 1–12 (2011)

20. Science Gateway. [Online]. Available: http://www.sciencegateway.org
21. S.F. Altschul, W. Gish, W. Miller, E.W. Myers, D.J. Lipman, Basic local alignment search

tool. J. Mol. Biol. 215(3), 403–410 (1990)
22. K. Byungsang, A study on cost adaptive cloud resource broker system for bioworkflow

computing (Korea Advanced Institute of Science and Technology, Daejeon, 2013)
23. BLAST. [Online]. Available: http://blast.ncbi.nlm.nih.gov
24. BWA. [Online]. Available: http://bio-bwa.sourceforge.net
25. A. Matsunaga, M. Tsugawa, J. Fortes, CloudBLAST: combining MapReduce and virtual-

ization on distributed resources for bioinformatics applications, In Proceedings of 4th IEEE
International Conference on eScience, eScience 2008, pp. 222–229 (2008)

26. C. Vecchiola, S. Pandey, R. Buyya, High-Performance Cloud Computing: A View of
Scientific Applications. In I-SPAN 2009—The 10th International Symposium on Pervasive
Systems, Algorithms, and Networks, pp. 4–16 (2009)

27. S.-H. Kim, D.-K. Kang, W.-J. Kim, M. Chen, C.-H. Youn, A science gateway cloud with
cost-adaptive VM management for computational science and applications. IEEE Syst. J. 11
(1), 1–13 (2016)

28. Z. Su, B. Ning, H. Fang, H. Hong, R. Perkins, W. Tong, L. Shi, Next-generation sequencing
and its applications in molecular diagnostics. Expert Rev. Mol. Diagn. 11(3), 333–343 (2011)

29. 종필최, “차세대 염기서열 정렬 도구 소개,” 질병관리본부 유전체센터 바이오과학
정보과. [Online]. Available: http://www.cdc.go.kr/CDC/cms/content/30/12630_view.html

30. H. Li, N. Homer, A survey of sequence alignment algorithms for next-generation sequencing.
Brief. Bioinform. 11(5), 473–483 (2010)

31. SAMtools. [Online]. Available: http://sourceforge.net/mailarchive/forum.php?thread_name_
2F0E69A8-A2DD-4D6E-9EDE-2A9C0506DA0F%2540sanger.ac.uk&forum_name=sam
tools-devel

32. D. Sulakhe, M. D’Souza, M. Syed, A. Rodriguez, Y. Zhang, E.M. Glass, M.F. Romine, N.
Maltsev, GNARE—a grid-based server for the analysis of user submitted genomes. NAR
00335 (2007)

44 1 Integrated Cloud Broker System and Its Experimental Evaluation

http://www.sciencegateway.org
http://blast.ncbi.nlm.nih.gov
http://bio-bwa.sourceforge.net
http://www.cdc.go.kr/CDC/cms/content/30/12630_view.html
http://sourceforge.net/mailarchive/forum.php%3fthread_name_2F0E69A8-A2DD-4D6E-9EDE-2A9C0506DA0F%252540sanger.ac.uk%26forum_name%3dsamtools-devel
http://sourceforge.net/mailarchive/forum.php%3fthread_name_2F0E69A8-A2DD-4D6E-9EDE-2A9C0506DA0F%252540sanger.ac.uk%26forum_name%3dsamtools-devel
http://sourceforge.net/mailarchive/forum.php%3fthread_name_2F0E69A8-A2DD-4D6E-9EDE-2A9C0506DA0F%252540sanger.ac.uk%26forum_name%3dsamtools-devel

33. N. Maltsev, E. Glass, D. Sulakhe, A. Rodriguez, M.H. Syed, T. Bompada, Y. Zhang,
M. D’Souza, PUMA2–grid-based high-throughput analysis of genomes and metabolic
pathways. Nucleic Acids Res. 34, D369–D372 (2006) (Database issue)

34. J. Zhang, J. Yao, S. Chen, D. Levy, Facilitating biodefense research with mobile-cloud
computing. Int. J. Syst. Serv.-Oriented Eng., 2(3), 18–31 (2011)

35. B. Kim, C.-H. Youn, An Adaptive Resource Provisioning Scheme for Distributed
Bio-workflow Broker with Stream-Based NGS in Cloud. In the 6th International
Conference on Ubiquitous Information Technologies and Applications (2011)

36. S. Chaisiri, S. Member, B. Lee, D. Niyato, Optimization of resource provisioning cost in
cloud computing. Computer (Long. Beach. Calif)., 5(2), 1–32 (2012)

37. B. Jennings, R. Stadler, Resource Management in clouds: survey and research challenges.
J. Netw. Syst. Manag. 23(3), 567–619 (2014)

38. Z. Xiao, Z. Ming, A method of workflow scheduling based on colored Petri nets. Data Knowl.
Eng. 70(2), 230–247 (2011)

39. N.J. Malawki M., Juve G., Deelman E, Cost and deadline-constrained provisioning for
scientific workflow ensembles in IaaS clouds. IEEE Int. Conf. High Perform. Comput.
Networking, Storage Anal. 48, 1–11 (2012)

40. OpenStack. [Online]. Available: http://www.openstack.org/
41. Cloudstack. [Online]. Available: http://cloudstack.apache.org
42. Z. Su, B. Ning, H. Fang, H. Hong, R. Perkins, W. Tong, L. Shi, Next-generation sequencing

and its applications in molecular diagnostics. Expert Rev. Mol. Diagn. 11(3), 333–343 (2011)
43. D.-S. Kim, Adaptive Workflow Scheduling Scheme Based on the Colored Petri-net Model in

Cloud (KAIST, Daejeon, 2014)

References 45

http://www.openstack.org/
http://cloudstack.apache.org

Chapter 2
VM Placement via Resource Brokers
in a Cloud Datacenter

2.1 Introduction

Resource management in cloud datacenters is one of the most important issues for
cloud service providers because it directly affects their profit. Energy and perfor-
mance guarantee are two major concern of it. In energy aspect, the total estimated
energy bill of datacenters is $11.5 billion and their energy bills double every five
years [1, 2]. Also, in performance guarantee aspect, many researches insist that
performance metrics such as throughput and response time should be considered as
well as availability in IaaS SLA [3, 4]. If the IaaS SLA with the performance
metrics are applied in public CSPs, performance management should be much more
delicate to avoid the SLA penalty cost. Especially in VM placement in the cloud, an
application quality of service (QoS)-based approach to allocate workload fairly in
physical machines (PMs) and a power-based approach to consolidate VMs maxi-
mally are two basic goals respectively [5]. To reduce energy consumption in a
cloud datacenter, dynamic right sizing (DRS) is a promising technology to
dynamically adjust the number of active servers (i.e., servers whose power is
switched on) in proportion to the measured user demands [6]. In DRS, energy
saving can be achieved by enabling idle compute nodes that do not have any
running VM instances to go into low-power mode (i.e., sleep or shut down). In
order to maximize the energy efficiency via DRS, one of the primary adaptive
resource management strategies is VM consolidation in which running VM
instances can be dynamically integrated into the minimal number of compute nodes
based on their resource utilization collected by a hypervisor monitoring module [7].
However, it is difficult to efficiently manage cloud resources because cloud users
often have heterogeneous resource demands underlying multiple service applica-
tions which experience highly variable workloads. Therefore, inconsiderate VM
consolidation might lead to undesirable performance degradation due to workload
overloading. Although A virtualization technology allows CSPs to get many ben-
efits such as getting high PM resource utilization via server consolidation and

© Springer Nature Singapore Pte Ltd. 2017
C.-H. Youn et al., Cloud Broker and Cloudlet for Workflow Scheduling,
KAIST Research Series, DOI 10.1007/978-981-10-5071-8_2

47

elasticity in their resource usage. In virtualized environments, to guarantee per-
formance in VMs sharing a PM, a hypervisor should provide isolation between
VMs. However, while security isolation, fault isolation, and environment isolation
are well guaranteed, the current virtualization technology does not provide effective
performance isolation. Therefore, the VMs make an effect with each other and it
causes performance degradation in the VMs. The phenomenon is called as per-
formance interference [8].

Therefore, addressing the conflict between VM consolidation and dispersion is
essential for effective cloud resource management. To achieve it, Patal and Shah [9]
argued the need of cost modeling of a datacenter, and constructed the cost model. In
the model, the total cost in a cloud datacenter includes the space, the power and the
cooling recurring, and other cost. The other cost consists of maintenance and
amortization of power and cooling system, personnel, software licenses, compute
equipment depreciation, and so on.

In addition, we consider IaaS service level agreement (SLA) cost to the model.
Although almost all cloud service providers only consider availability of VMs as
IaaS SLA today, necessity of considering performance in IaaS SLA is raising as in
[3, 4]. To achieve it, we define the SLA penalty cost (PC) of compute node j, PCj tð Þ
as depicted in Eq. (2.1) where UPC is the unit PC, vj tð Þ is resource usage of VMs in
timeslot t, and dj tð Þ is the average performance degradation in timeslot t.

PCj tð Þ ¼ UPC � vj tð Þ � dj tð Þ: ð2:1Þ

Finally, we describe the partially total cost (PTC) which is composed of costs
only depending on VM placement in the total cost as depicted in Eq. (2.5). We note
that the OC is an abbreviation of the PM operating cost including the power and the
cooling recurring cost. In Eq. (2.2), J is the set of PMs in a cloud datacenter, UOC
is the unit OC, Vj(t) is a vector of vj(t), and pj(Vj(t)) is power consumption of node
j when resource usage in timeslot t is Vj(t).

PTC tð Þ ¼
X
j2J

OCj tð ÞþPCj tð Þ

¼
X
j2J

UOC � pj Vj tð Þ
� �þUPC � vj tð Þ � dj tð Þ:

ð2:2Þ

Based on the cost model, we formulate an optimization problem as depicted in
Eqs. (2.3) and (2.4). The objective is to minimize the PM operating cost while
keeping performance degradation less than the threshold.

minimize lim sup
t!1

1
t

X
t

X
j2J

OCj tð Þ ð2:3Þ

subject to lim sup
t!1

1
t

X
t

X
j2J

PCj tð Þ\d: ð2:4Þ

48 2 VM Placement via Resource Brokers …

In this chapter, we handle VM placement schemes to solve the optimization
problem. First, we present schemes for computing-aware initial VM placement. The
computing-aware initial VM placement is operated to select the appropriate com-
pute nodes to build VMs for executing applications. The placement algorithm is
based on execution time prediction of target applications, and the prediction is
achieved using methods for application and computing resource profiling and
similarity analysis (Sect. 2.2). Second, we present schemes for VM reallocation
based on resource utilization-aware two interactive actions: VM consolidation and
dispersion. In the schemes, resource utilization of each compute node is carefully
predicted by self-adjusting workload prediction. Based on the prediction, the
actions are operated to balance VM consolidation and dispersion (Sect. 2.3).

2.2 Computing-Aware Initial VM Placement

2.2.1 Overview

In this chapter, we handle VM placement schemes to solve the optimization
problem. First, we present a computing-aware initial VM placement algorithm. In
the algorithm, each computing resource is ranked in order of execution performance
of each application using profiled information, and the ranking is used for the
selection of the appropriate compute nodes to build VMs for executing the appli-
cations. We note that that some part of this section is composed based on [10].

2.2.2 Computing-Aware Initial VM Placement Algorithm

Computing-aware initial VM placement is operated in four steps: (1) application
profiling, (2) computing resource profiling, (3) similarity analysis, (4) initial VM
placement. Given applications and computing resources, application profiling
extracts each application’s characteristics, and computing resource profiling records
execution results of numerous benchmarks. Measuring similarity between each
application and the numerous benchmarks, we can estimate execution performance
of each application in each computing resource. Finally, initial VM placement is
operated based on the estimated performance information.

Application profiling. Application profiling is achieved by extract micro-
architecture independent characteristics (MICs) of each application. The MICs
provide hardware-independent information of applications and distinguishes each
application across various microarchitectures [11]. In Ref. [11], the authors seven
categories of MICs as follows.

2.1 Introduction 49

itypes: represent the percentage of load instruction, store instruction, branch
arithmetic operation instruction.
Reg: characterize the register. Measure the utilization of all operation to write to or
read from register and register dependency distance.
PPM: measure the accuracy of branch prediction on theoretical prediction-by-
partial-matching (PPM).
ILP: represent the rate of the operation which is applicable to simultaneous pro-
cessing inherent in application.
Memreusedist: represent the cache behavior of application and measure the
re-usage distribution on memory.
memfootprint: measure the instruction and working set size of data stream.
Stride: measure the difference of memory access interval when successive memory
access occurs (Fig. 2.1).
Computing resource profiling. Computing resource profiling is achieved by
numerous executions of benchmarks for each compute node. The execution results
are normalized by dividing the execution times into the number of instructions
(Fig. 2.2).
Similarity analysis. Figure 2.3 shows a procedure of program similarity-based
execution time prediction. In the figure, execution time of each application is pre-
dicted by measuring similarity between the application and the benchmark sets used
for computing resource profiling. Similarity St;bi is defined as the reciprocal of
Euclidean distance betweenMIC vectors of the target application t and benchmark bi.
The MIC vectors are defined as MICa ¼ Ca

1 ;C
a
2 ; . . .;C

a
n

� �
for application a where

Fig. 2.1 MICs extraction

Fig. 2.2 Computing resource profiling example of memcoder [12] in Eucalyptus [13]

50 2 VM Placement via Resource Brokers …

each element is the categories of MICs. After measuring the similarities, the resource
profiler selects the three benchmarks bx; by; . . .; bz

� �
which have the highest simi-

larity values, and predicts the execution time of the target application t in computing
resource rj using the measured similarity. Equation (2.5) shows the predicted exe-
cution time of the target application t in computing resource ri where Ta;rj is the
execution time of application a in computing resource ri, insta is the number of
instructions of application a. The formula is based on [14]

T̂t;ri ¼
instt

St;bx þ St;by þ St;bz
� St;bx � Tbx

instbx
þ St;by � Tby

instby
þ St;bz � Tbz

instbz

� �
ð2:5Þ

Computing-aware VM placement. Algorithm 1 shows computing-aware place-
ment algorithm. In the algorithm, available compute nodes are sorted based on the
rank of estimation time prediction results of the target application t in computing
resource rj in ascending order. Then, the algorithm selects an available compute
node who has the highest rank.

Fig. 2.3 A procedure of program similarity-based execution time prediction

2.2 Computing-Aware Initial VM Placement 51

Algorithm 1. Computing-aware VM placement [10]

Input t, ri (t: the target application, ri: computing resource type)

1:
get the sorted compute node list based on execute time prediction results of the target application t in
each computing resource rj

2: for each compute node pi
3: if compute node pi is available for computing resource type ri
4: createVM=createNewVM(pi,ri)
5: Return createVM
6: end if
7: end for

2.3 VM Reallocation Based on Resource
Utilization-Aware VM Consolidation and Dispersion

2.3.1 Overview

In this section, we propose a Two Phase based Adaptive Resource Management
(TP-ARM) scheme to address the above challenges for cloud datacenters. The
energy consumption model based on TP-ARM was formulated with a performance
cost (reputation loss) caused by an increased delay from downsizing active servers,
by an energy costfrom keeping particular servers active, and by a cost incurred from
switching off servers on. Subsequently, we designed an automated cloud resource
management system called the Adaptive Cloud Resource Broker (ACRB) system
with the TP-ARM scheme. Moreover, we introduced our novel prediction method
called Self-Adjusting Workload Prediction (SAWP) to increase the prediction
accuracy of users’ future demands even under unstatic and irregular workload
patterns. The proposed SAWP method adaptively scales the history window size up
or down according to the extracted workload’s autocorrelations and sample
entropies which measure the periodicity and burstiness of the workloads [15]. To
investigate the performance characteristics of the proposed approaches, we con-
ducted various experiments to evaluate energy consumption, resource utilization
and completion time delay by live migration and DRS execution on a real testbed
based on Openstack which is a well-known cloud platform using KVM hypervisor
[16]. Through meaningful experimental results, we found that our proposed
TP-ARM scheme and SAWP method provide significant energy savings while
guaranteeing acceptable performance required by users in practice. We note that
that some part of this section is composed based on [17].

2.3.2 System Architecture

In this subsection, we discuss the architecture of the automated ACRB system. Our
considered cloud environment including ACRB, which supports deploying a

52 2 VM Placement via Resource Brokers …

resource management scheme in order to migrate VM requests and adjusts the
number of active servers according to the workload level, is depicted in Fig. 2.4.
There are m physical hosts and n VM requests in the cloud datacenter. In the cloud
datacenter, the information on resource utilization is collected through KVM
hypervisor based monitoring modules into the Resource Monitoring DB module,
and reported to the ACRB which is responsible for solving the migration of allo-
cated VM requests and sizing the datacenter. The ACRB has two modules: the
TP-ARM module and the SAWP Manager. The TP-ARM module includes the VM
Migration Manager and the DRS Manager. In the first phase, the VM Migration
Manager is responsible for selecting the appropriate VM requests to be migrated
based on the measured resource utilization level. We describe the metrics for
determining the VM request migration in detail in Sect. 2.2. In the second phase,
the DRS Manager is responsible for finding the optimal number of active servers in
the cloud datacenter. The DRS plan derived by the DRS Manager based on the
amount of submitted VM requests and the measured resource utilization from each
VM request is delivered to the Datacenter Manager, and the determined percentage
of idle servers are powered off. The SAWP Manager is responsible for adjusting the
window size of historical data adaptively in order to predict the future demand of
VM requests. The SAWP Manager is able to achieve the exact prediction of future
demands even under varied workload levels by considering the periodicity and the

Fig. 2.4 Adaptive Cloud Resource Brokering (ACRB) system including TP-ARM module and
SAWP manager for green cloud datacenters [17]

2.3 VM Reallocation Based on Resource Utilization-Aware … 53

fluctuation of the historical data. The owner of the cloud datacenter has to minimize
the costs for resource operations while boosting the benefits which can increase
based on the good reputation of the observed QoS of the cloud services. In this
paper, our ACRB tries to find a resource management solution to minimize the total
cost of resource operations including two sub cost models: the energy consumption
cost and the performance reputation cost.

From the perspective of the energy consumption cost, the VM Migration
Manager tries to maximize the resource utilization of each physical host by con-
solidating running VM requests based on the whole offered load measured through
the Libvirt VM Monitor module attached to each host. The Libvirt VM Monitor
module gauges the utilization of resources such as CPU, memory, and I/O band-
width in order to check whether whole hosts are overloaded [18, 19]. VM requests
on overloaded hosts are preferably migrated to other hosts which have enough extra
resource capacity to accommodate newly allocated VM requests. The DRS Manager
sends the shutdown messages to servers which have to be powered off, while it sends
magic packets to the ones which have to be powered on again. Obviously, the
transition of servers from sleeping mode to active mode (aWake transition) requires
additional energy consumption (note that the transition overhead from active to sleep
(aSleep transition) can be negligible because it requires only a short time to be
carried out compared to the aWake transition). Therefore, it is clear that frequent
aWake transitions have to be discouraged in order to minimize unnecessary energy
consumption. To simplify our model, we assume that the aSleep transition causes no
additional energy consumption (in fact, it requires non-zero energy consumption). In
terms of the performance reputation cost, the VM Migration Manager tries to
decentralize running VM requests over multiple physical hosts in order to avoid QoS
deterioration caused by VM interference. In cloud datacenters, the VM co-location
interference is the key factor that makes servers undergo severe performance
degradation [20, 21]. VM co-location interference is caused by resource contention
which is reflected mainly by the number of co-located VM instances and the resource
utilization of them. Briefly, VM co-location interference becomes larger as more VM
instances are co-located on a common server, and subsequently, higher resource
utilization occurs. Therefore, VM requests have to be scattered in order to avoid
performance degradation by VM co-location interference as best as possible.
Because of the complexity of the optimization for resource management in
large-scale cloud datacenters, our TP-ARM scheme adopts a metaheuristic based on
GA to obtain a near optimal solution for VM migration to achieve energy savings
and QoS assurance in a cloud datacenter.

2.3.3 Cost Optimization Model of TP-ARM in Clouds

In this subsection, we introduce an energy cost model and performance reputation
cost model based on our proposed TP-ARM scheme including VM live migration
and DRS execution in the ACRM.

54 2 VM Placement via Resource Brokers …

Workload cost model for phase 1: VM migration.
In general, VM requests have heterogeneous workloads in cloud datacenters. There
are three types of VM request workloads: CPU, block I/O, and network I/O
intensive workloads. The CPU intensive workloads such as scientific applications,
high-definition video compression or big data analysis should be processed within
an acceptable completion time determined by the cloud service users. The block I/O
intensive workloads such as huge engineering simulations for critical areas include
astrophysics, climate, and high energy physics which are highly data intensive [22].
These applications contain a large number of I/O accesses where large amounts of
data are stored to and retrieved from disks. Network I/O intensive workloads such
as Internet web services and multimedia streaming services have to be processed
within a desirable response time according to their application type [18, 23].
Each VM request requires different resource utilizations according to their running
applications. We categorized the resource utilization of running VM requests on a
physical host in a cloud datacenter into two parts in this paper, the Flavor
Utilization (FU) and the Virtual Utilization (VU). FU represents the ratio of the
resource flavor (i.e., the specification of the resource requirement) of a VM request
to the resource capacity of the physical host. VU represents the resource utilization
of an assigned virtual resource. The Flavor Utilization FUk

j;i of a VM request i on a

physical host j in the resource component k and the Virtual Utilization VUk
j;i of the

VM request i on the physical host j in the resource component k are given by

FUk
j;i ¼

flvki
rcpkj

ð2:6Þ

RUk
j;i ¼ FUk

j;i � VUk
j;i ð2:7Þ

where flvki is the flavor of the VM request i in the resource component k; rcpkj is the

resource capacity of the physical host j in the resource component k, and RUk
j;i is the

actual resource utilization of the VM request i on the physical host j in the resource
component k; therefore, it describes the practical workload in the resource com-
ponent k. Note that the FU of the VM request can be determined through its
attached service description to the ACRM in advance, while the VU can only be
measured by the internal monitoring module in the cloud server during the running
duration of the VM request. In the period t, the VM migration plan is designed
according to the FU of the submitted VM requests at period t and the measured RU
of each host in the past history t � 1. The VM migration plan should satisfy the
following constraints:

flvki � Stk ið Þ; 8i; k; t ð2:8Þ

flvki � 0; 8i; k ð2:9Þ

2.3 VM Reallocation Based on Resource Utilization-Aware … 55

Ststate ið Þ ¼ 1; 8i; t ð2:10Þ

where Stk ið Þ denotes the remain capacity of resource k in the physical server S which
is assigned to the VM request i at time period t, and Ststate ið Þ represents the state of
the physical server S which is assigned to the VM request i at time period t. If the
server S is in the sleep mode, then Ststate ið Þ ¼ 0, otherwise, Ststate ið Þ ¼ 1 (i.e., it is in
the active mode). Equation (2.8) represents that the total requirements of the
resource capacity of the newly allocated VM requests and migrated VM requests at
time period t cannot exceed the resource capacity provided by their assigned
physical server S. Next, we consider a VM performance reputation which is
determined based on the RU of each physical server. The VM co-location inter-
ference implies that the virtualization of the cloud supports resource isolation
explicitly when multiple VM requests are running simultaneously on a common
PM however, it does not mean the assurance of performance isolation between VM
requests internally. There is a strong relationship between VM co-location inter-
ference and both of the number of co-located VMs and their resource utilization in
the PM. As the number of co-located VM requests increase and the RU of the VM
requests becomes larger, VM co-location interference becomes more severe.
The VM Migration Manager selects server candidates to be migrated based on the
amount of RU for each physical server. To achieve this, the RU size of each server
is measured through an internal monitoring module, and the VM Migration
Manager checks whether they exceed the predetermined RU threshold value RUthr.
In servers which have an RU size over the RUthr, they are considered as candidates
for migration servers during the next period. After the migration servers are chosen,
the VM requests to be migrated and their destination servers are determined based
on the performance reputation cost model. We propose the objective function of the
performance reputation cost Ct

repu at time Ct
repu given by

Ct
repu ¼ qintf

X
8j

X
8k

xk PMt
j

��� ��� �
P PMt

jj j
i¼1 RUk

idxtj;i

RUk
thr

� 1

0
B@

1
CA

þ

þ qmigTmig
X

8j PMt�1
j

��� ���� PMt
j

��� ������ ���
ð2:11Þ

where xð Þþ¼ max x; 0ð Þ; and qintf and qmig are the price constants of the VM

interference cost and VM migration cost, respectively. We use Tmig to denote the
processing time for the VM migration. The first term in the right hand of Eq. (2.11)
represents the following: as the number of concurrent running VM requests on a
physical server increases, the number of users experiencing undesirable performance
degradation also increases. The second term represents the following: as the number

56 2 VM Placement via Resource Brokers …

of migrated VM requests increases, the migration overhead is also increases.
Therefore, a migration plan needs to be found that satisfies both avoiding unnec-
essary migration overhead and minimizing performance reputation degradation.

Energy Consumption Cost Model for Phase 2: DRS Procedure.
To achieve a power-proportional cloud datacenter which consumes power only in
proportion to the workload, we considered a DRS procedure which adjusts the
number of active servers by turning them on or off dynamically [6]. Obviously,
there is no need to turn all the servers in a cloud datacenter on when the total
workload is low. In the DRS procedure, the state of servers which have no running
applications can be transited to the power saving mode (e.g., sleep or hibernation)
in order to avoid wasting energy. At each time t, the number of active servers in the
cloud datacenter is determined by a DRS procedure plan according to the workload
of the allocated VM requests. In order to successfully deploy the DRS procedure
onto our system, we considered the switching overhead for adjusting the number of
active servers (i.e., for turning servers in sleep mode on again). The switching
overhead includes the following: (1) additional energy consumption from the
transition from a sleep to active state (i.e., awaken transition); (2) wear-and-tear cost
of the server; (3) fault occurrence by turning servers in sleep mode [6]. We con-
sidered the energy consumption as the overhead from DRS execution. Therefore,
we define the constant PaWake to denote the amount of energy consumption for the
aWake transition of the servers. Then, the total energy consumption Ct

energy of the
cloud datacenter at time t is given by

Ct
energy ¼ qpPactive

X
8j PMt

j

��� ���� ��
þ qpPaWakeTswitch

X
8j PMt

j

��� ���� ��
�
X

8j PMt
j

��� ���� ��� �þ

ð2:12Þ

where xð Þ� ¼ min x; 1ð Þ. We use qp to denote the constant of the power con-

sumption price, and Pactive and PaWake are the amount of power consumption for the
active mode and the aWake transition of the server, respectively. Tswitch is the time
requirement for the aWake transition. The first term on the right side of Eq. (2.12)
represents the energy consumption for using servers to serve VM requests allocated
to all the physical servers in the cloud datacenter at time t, and the second term
represents the energy consumption for the awaken transition of sleeping servers.
Especially, the second term implies that a frequent change in the number of active
servers could increase an undesirable waste of energy. Note that the overhead by
the transition from the active to the sleep state (i.e., asleep transition) is ignored in
our model because the time required for the asleep transition is relatively short
compared to the one for the awaken transition.

2.3 VM Reallocation Based on Resource Utilization-Aware … 57

Algorithm 2. Phase 1: VM migration in TP-ARM

Input : the VM requests allocation of each server
Output : the VM migration plan
00: for each

01: for each

02: for each resource component

03: measure resource utilization of the VM request with

04: end for
05: end for
06: end for

07: calculate the average resource utilization at all resource components

08: if then

09: derive the VM migration plan based on Eq.(8) through Algorithm 3.

10: else if then

11: go to Algorithm 2.
12: end if

The purpose of our algorithm is to achieve a desirable VM migration and DRS
procedure plan that are energy efficient as well as a QoS aware resource manage-
ment at each period iteratively. At period t − 1, the proposed TP-ARM approach
aims to minimize the cost function in Eq. (2.8) by finding the solution PMt as
follows,

minimizePMt Ct
total ¼ Ct

repu þCt
energy ð2:13Þ

Subject to Eqs. (2.8–2.10)

To solve the objective cost function in Eq. (2.13), we prefer a well-known
evolutionary metaheuristic called the Genetic Algorithm in order to approximate the
optimal plan PMt at each period because Eqs. (2.11) and (2.12) have non-linear
characteristics. In next section, our proposed TP-ARM with the VM migration and
DRS procedure is introduced in detail.

2.3.4 Heuristic Algorithms for the Proposed TP-ARM
Scheme

In this subsection, we describe heuristic algorithms for the proposed TP-ARM
scheme discussed in Algorithms 2, 3, and 4. First, the process of VM migration in
the TP-ARM approach includes the following four steps: (1) monitor and collect the
resource utilization data on VM requests for each physical server through the
attached Libvirt based monitoring tools; (2) go step 3 if the average utilization of all
the active servers are significantly low (i.e., below the predefined threshold),
otherwise go to step 4; (3) choose active servers which are supposed to be turned

58 2 VM Placement via Resource Brokers …

off, migrate all the VM instances on them to other servers and trigger DRS exe-
cution; (4) determine the number of sleeping servers which are supposed to be
turned on and send magic packets to them for wake-up if the average utilization of
all the active servers are significantly high (i.e., above the predefined threshold),
otherwise maintain the current number of active servers. Algorithm 2 shows the
procedure for Phase 1:VM migration in the TP-ARM scheme. From line 00 to 06,
the resource utilization RU of all the VM requests on the physical servers in the
cloud datacenter is measured by the Libvirt API monitoring module. The average

resource utilization RUk at all resource components k is calculated in line 07. If the

RUk is below the predetermined RUk
thrlow at all the resource components, then the

optimal VM migration plan PMt is derived, and the algorithm is finished.

Otherwise, if the RUk exceeds the predetermined RUk
thrhigh , then Algorithm 2 for the

DRS procedure is triggered.

Algorithm 3. Phase 2: DRS procedure in TP-ARM

Input : the average resource utilization
the VM requests allocation of each server

the historical data of resource utilization
Output : the set of powered-off servers to be turned on at time .

00: determine the boundary size of the history window, through Algorithm 4.
01: estimate the sign and angle of an slope of the historical resource utilization curve from − 1 to

02: if 0 then
03: =

04: end if
05: if < 0 then
06: =
07: end if
08: determine the number of sleeping servers supposed to be turned on according

to

09: derive the set of powered-off servers to be turned on at time

Algorithm 3 shows the procedure for Phase 2: DRS in the TP-ARM scheme. In
line 00, the history window size -0 is determined by the ACRM through Algorithm
4: the SAWP scheme that is described in next section. In line 02, we calculate the
sign u and the angle n of the slope of the historical resource utilization curve from
the current time t − 1 to the time t� -0. If u� 0 (i.e., the resource utilization is
increased), and then, we get the coefficient a based on alarge � n alarge [asmall

� �
to

adaptively react to the large workload level in the cloud datacenter. Otherwise, if
u\0 (i.e., the resource utilization is decreased), then we get a based on asmall � n to
maximize the energy saving of the cloud datacenter. In line 08, we determine the
number of servers to be in active mode in the next period.

Algorithm 4 describes the GA for the TP-ARM scheme in detail. poph is a
population with size P (even number) at the hth generation. hmax is the maximum of

2.3 VM Reallocation Based on Resource Utilization-Aware … 59

the GA iteration count. In line 03, f �ð Þ is a fitness function of the total cost with two
parameters, candidate solution PMh;i and the previous solution PMt�1 at time
t� 1. From line 04 to 06, the two candidate solutions are iteratively chosen ran-
domly from pop to generate offsprings by crossover until there are no remaining
unselected solutions in pop. From line 07 to 08, the fitness function values of each
offspring are calculated similar to line 03. In line 09, all the parent solutions in pop
and generated offsprings are sorted in ascending order for their corresponding
fitness function values. In line 10, the next population including only P solutions
that achieve good performance from the union of the original pop and derived
offsprings is generated to improve the quality of the final solution. From line 11 to
12, to reduce the time complexity of the GA procedures, when we encounter the
first solution that has a fitness function value below the predetermined fitness
threshold value fvthr, it counts as a final solution for the next period, and the
algorithm is finished. In line 14, if we cannot find a solution that satisfies fvthr when
the iteration count reaches hmax, then we select a solution that has a minimum
fitness function value in the population which satisfies the conditions in Eqs. (2.8–
2.10) as a final solution for the next period. If there are no solutions to satisfy all the
constraints, then we just preserve the current resource allocation vector shown from
line 15 to 16. In the population of a GA, mutations are often applied in order to
include new characteristics from the offsprings that are not inherited traits from the
parents [24]. We did not consider mutations in our GA in this paper; however, it can
be used to improve the quality of the GA for the TP-DRM in future work.

Algorithm 4. GA for searching VM migration plan in TP-ARM

60 2 VM Placement via Resource Brokers …

Self-Adjusting Workload Prediction Scheme. Algorithm 5 describes the
procedure of the proposed SAWP algorithm in ACRB. The irregularity function
g e; dð Þ represents a level of unpredictability for future resource utilization where e is
its fluctuation value (i.e., levels of instability and aperiodicity), and d is its
burstiness value (i.e., levels of sudden surge and decline), and both values are
calculated based on [15]. According to the predetermined threshold values ghighthr and
glowthr with g e; dð Þ, the history window size -0 is adaptively updated at each pre-
diction process. A relatively long history window size is not suitable to react to
recent changes in the workload but is tolerant to varied workload patterns over a
short time while a short history window size is favorable to efficiently respond to
the latest workload patterns but is not good for widely varying workloads.
Consequently, the SAWP algorithm generally outperforms traditional prediction
schemes during drastic utilization changes from various cloud applications because
it is able to cope with temporary resource utilizations (i.e., does not reflect overall
trends) by adjusting the history window size -0.

Algorithm 5. Self-Adjusting Workload Prediction scheme

2.3.5 Evaluation

In our experiments, we measured various metrics which affect the parameter
decision for our proposed algorithms. To this end, we established five cluster
servers as a cloud platform, one server for ACRB with a Mysql DB system, a power
measuring device from Yocto-Watt [25] and a laptop machine called the
VirtualHub for collecting and reporting information on the measured power con-
sumption shown in Fig. 2.5. The hardware specification of each server for the cloud
compute host is as follows: an Intel i7-3770 (8-cores, 3.4 Ghz), 16 GB RAM
memory, and two 1 Gbps NICs (Network Interface Cards). In order to measure
efficiently the power consumption of the cloud cluster server, we used a power
measuring device model called YWATTMK1 by Yocto-Watt. This model has a
measurement unit of 0.2 W for AC power with an error ratio of 3% and 0.002 W
for the DC power with an error ratio of 1.5%. The VirtualHub collects information

2.3 VM Reallocation Based on Resource Utilization-Aware … 61

on power consumption from YWATTMK1 through the Yocto-Watt Java API and
reports it to the power monitoring table of the Mysql DB system in the ACRB
periodically.

The dynamic resource utilizations by each VM instance are measured via our
developed VM monitoring modules based on the Libvirt API and are sent to the
resource monitoring table of the Mysql DB system periodically. In addition, a
SATA 3 TB hard disk called the G-drive was deployed as a NFS server in our
testbed for live migration [26]. We adopted Openstack kilo version which is a
well-known open source solution based on KVM Hypervisor as a cloud platform in
our testbed. Finally, we used PowerWake package [27] to turn remotely off servers
on via Wake on Lan (WOL) technology for DRS execution.

In Table 2.1, we show the average power consumption and resource utilization
of two running applications: Montage m106-1.7 projection and ftp transfer.
Montage project is an open source based scientific application, and it has been
invoked by NASA/IPAC Infrared Science Archive as a toolkit for assembling
Flexible Image Transport System (FITS) images into custom mosaics [10, 28]. The
m106-1.7 projection in Montage is a CPU-intensive application while the ftp
transfer is a network-intensive one. Therefore, the running of m106-1.7 causes a
power consumption of about 75 Wh and a CPU utilization of about 15% whereas
the power consumption by ftp transfer for a 1.5 GB test.avi file is about 60 Wh, and
the network bandwidth usage is about 3.7 Mbps. That is, the CPU usage is the main
part that affects the power consumption of server. In terms of DRS execution, the
power consumption by an off server is about 2.5 Wh (note that this value is not zero
because the NIC and some its peripheral components are still powered on to
maintain the standby mode to receive the magic packets from the Powerwake

Fig. 2.5 Experimental environment

62 2 VM Placement via Resource Brokers …

controller) while the asleep and awaken transition procedures, which cause the
switching overhead for DRS, require power consumption of about 80 Wh to turn
the active servers off or to turn off servers on, respectively. The asleep transition
procedure is trivial because it requires a short time (i.e., 5–7 s) to complete even
though its power consumption is considerable whereas the awaken transition pro-
cedure requires a relatively long execution time (i.e., more than 1 min) and should
be considered carefully. The overhead for the awaken transition would be a more
serious problem in practice because its required execution time is generally far
longer (i.e., above 10 min) for multiple servers of racks in a datacenter. Therefore,
it is essential to consider the switching overhead for awaken transition to reduce
efficiently the resource usage cost of the datacenter.

Figure 2.6 shows the additional energy consumption overhead of a single
physical server from the DRS execution with respect to the asleep transition (i.e.,
from the active mode to the sleep mode) and the awaken transition (i.e., from the
sleep mode to the active mode). Note that the asleep transition requires a relatively
short processing time of about 7 or 8 s and causes an additional energy con-
sumption of about 20% compared to the idle state of the server, while the awaken
transition needs 60 or 90 s to be carried out. Although not included in this paper,
we also verified that some of the HP physical servers in our laboratory required
more than 10 min to be turned on. We expect that physical servers in a real cloud
datacenter require tens of minutes or hundreds of minutes to get back from the sleep
mode to the active mode. Moreover, the aWake transition causes an additional
energy consumption of about 40% on average compared to the idle state of a server.
These results imply that the frequent DRS execution might cause the degradation of
the energy saving performance in a cloud datacenter. Our proposed TP-ARM
scheme is able to avoid the unnecessary energy consumption overhead by the

Table 2.1 The average power consumption and resource utilization of two running applications:
Montage m106-1.7 projection and ftp transfer

Host state Power
consumption
(Wh)

CPU
utilization

Mem
utilization

Net
bandwidth

Idle 55 Wh 1.5% 3% 20 Kbps
(bytes)

Active Montage m 106-1.7
(projection)

75 Wh 15% 3.7% 20 Kbps
(bytes)

test.avi downloading
(ftp, 1.5 GB)

60 Wh 2% 3.7% 3.7 Mbps
(bytes)

aSleep (to Power Off) 70–80 Wh
(5–7 s)

l.8%
(5–7 s)

3%
(5–7 s)

20 Kbps
(bytes)

Power off (hibernating) 2.5 Wh

aWake (from power off) 78 Wh
(50 s–1 min)

2.3 VM Reallocation Based on Resource Utilization-Aware … 63

awaken transition through the cost model by considering the DRS transition
overhead shown in Eq. (2.12).

Figure 2.7 shows the resource utilization and the power consumption measured
by the Libvirt API monitoring module and Yocto-Watt power measuring device.
VM request instance-10 runs m101-1.0 mProj, instance-0f runs m108-1.7, and
instance-0c runs the streaming server with the 180 MB movie file. Figure 2.7a–c
shows that their resource utilization is consistent with the resource intensive
characteristic of their running workload. Figure 2.7d shows the different energy
consumptions according to each workload type. The energy consumption of the
physical server is 60 Wh in the idle state; it is about 82 Wh when running m101-1.0
and 95 Wh when running both m101-1.0 and m108-1.7, while the streaming server
just causes an additional energy consumption of about 2 Wh. As mentioned in
Sect. 2.3.3, the main part of the resource components affecting the power con-
sumption in a physical server is the CPU resource, and the effects of other com-
ponents such as the memory, storage, and network interface cards are negligible in
general. These results are consistent with the ones in Table 2.1. Therefore, these
results imply that the energy consumption can be different according to which
resource component has high utilization. Our proposed workload cost model of the
TP-ARM scheme considers different weight values for each resource component in
order to derive the practical cost of the resource management.

Figure 2.8 shows the performance of the CPU utilization for the VM live
migration between the source machine (kdkCluster2) and the destination machine
(kdkCluster1). There are VM request instances, such as running instance-33 and 34,
which execute the compression of video files 5 and 4 GB in size, respectively.

Instance-33 executed the process of m101-1.6mProj at 12:40:14 local time and
started migration to the kdkCluster1 at 12:44:00 local time. The migration of
instance-33 was completed by 13:24:30 local time, and its execution of m101-1.6
mProj ended at 13:47:16. Namely, the completion time of m101-1.6 mProj at
instance-33 was 67 min in total, and its migration times were over 30 min. If we

Fig. 2.6 Power consumption overhead from DRS execution of the test server with respect to the
aSleep and aWake transition

64 2 VM Placement via Resource Brokers …

consider the time to complete m101-1.6 mProj in the case of no VM live migration,
it is forecasted to be around 10 min. We can see that there exist quite big overheads
in VM live migration.

CPU utilization of VM instance 0000000c (Streaming server), VM instance 0000000f (Montage

(a)

m108-1.7) and VM instance 00000010 (Montage m101-1.0)

Network transmission bytes of VM instance 0000000c (Streaming server), VM instance 0000000f
(Montage m108-1.7) and VM instance 00000010 (Montage m101-1.0)

(b)

Fig. 2.7 Libvirt API monitoring module shows the results of resource utilization of running VM
requests in the kdkCluster1 in CPU utilization (a) network transmission bytes (b)

2.3 VM Reallocation Based on Resource Utilization-Aware … 65

Disk block read bytes of VM instance 0000000c (Streaming server), VM instance 0000000f

(c)

(d)

(Montage m108-1.7) and VM instance 00000010 (Montage m101-1.0)

Power consumption of VM instance 0000000c (Streaming server), VM instance 0000000f
(Montage m108-1.7) and VM instance 00000010 (Montage m101-1.0)

Fig. 2.7 (continued). Libvirt API monitoring module shows the results of resource utilization of
running VM requests in the kdkCluster1 in Disk block read bytes (c) and Yocto-Watt module [8]
was used to measure the power consumption of the kdkCluster1 as shown in (d)

66 2 VM Placement via Resource Brokers …

In addition, VM migration shows some problems in power consumption. We
considered cost models to identify an efficient migration scheme which was defined
in Eq. (2.11). Figure 2.9 shows the test environments and the operation of the VM
migration when the proposed TP-ARM schemes are applied to the test cloud sys-
tems with heterogeneous applications and test programsincluding m108-1.7,
pbzip2, and netperf. From the experiments, we obtained interesting results in the
comparison of the utilization performance, which examined the CPU utilization
monitoring results and the measured power consumption, respectively, shown in
Fig. 2.10. From the results, we found rapidly changing instants of utilization when
the cloud brokering system considered the power consumptions for each running

Fig. 2.8 Results of CPU utilization of the migrated VM request from a a source server:
kdkCluster2 to b a destination server:kdkCluster1

2.3 VM Reallocation Based on Resource Utilization-Aware … 67

(a) The schedule of the use case

(b) The illustration of the use case

Fig. 2.9 Test environments and operation of the VM migration when the proposed TP-ARM
schemes are applied for test cloud servers (e.g. kdkCluster1–5 in lab test environments) with
heterogeneous applications and test programs, such as m108-1.7, pbzip2, and netperf. a An
example of test schedule under cloud testbed environments. b Illustration of the VM migration
using two-phase power consumption cost models

68 2 VM Placement via Resource Brokers …

CPU utilization of kdkCluster1 with VM instance-37 (m108-1.7) and VM instance-36 (pbzip2)

(a)

(b)

 CPU utilization of kdkCluster2 with VM instance-35 (netperf, kdkCluster4 -> 2), VM instance-34
(m108-1.7, kdkCluster3 -> 2), VM instance-33 (pbzip2) and VM instance-32 (m108-1.7)

Fig. 2.10 Performance comparison of CPU utilization using 4 test systems in lab environments.
a and b show the results of the measured utilization during the VM live migration in test use case
as shown in Fig. 2.9.

2.3 VM Reallocation Based on Resource Utilization-Aware … 69

CPU utilization of kdkCluster3 with VM instance-34 (m108-1.7, kdkCluster3 -> 2)

(c)

(d)

CPU utilization of kdkCluster4 with VM instance-35 (netperf, kdkCluster4 -> 2)

Fig. 2.10 (continued). Performance comparison of CPU utilization using 4 test systems in lab
environments. c and d show the results of the measured utilization during the VM live migration in
test use case as shown in Fig. 2.9

70 2 VM Placement via Resource Brokers …

application under cloud data center environments. Additionally, the test set ‘net-
perf’, a network intensive workload of a test cloud system (e.g., kdkCluster4 with
instance-35) in Fig. 2.10d, showed very low performance in CPU utilization. It was
enough to satisfy the threshold value to run the VM migration efficiently. And then,
the proposed TP-ARM algorithm adjusts the VM migration procedure to reduce the
power consumption sufficiently. Basically, the TP-ARM is triggered to migrate
instance-35 to another system kdkCluster2; thereafter, it changes the kdkCluster’s
sleeping mode in advance.

Next, because instance-34 of the kdkCluster system was running netperf, which
generated a very low performance of utilization, the TP-ARM also did a migration
of the instance-34 to the kdkCluster2 and transited to the sleeping mode as well.
Therefore, we could expect efficient power consumption through the change in the
sleeping mode of kdkCluster3 and kdkCluster4, respectively, as well as keeping
active modes for both kdkCluster1 and kdkCluster2. Figure 2.10 shows the per-
formance comparison of the power consumption for the VM migration and DRS
process based on the TP-ARM algorithm, e.g., seen in Fig. 2.9. We can see a
performance improvement of 60 Wh each in power consumption after the change in
the sleeping mode in the case of the VM migration requests. Through the experi-
ments, we verified that the proposed TP-ARM scheme, which carries out adaptive
migration and asleep transition through real-time monitoring of resource utilization,
has good performance in reducing the power consumption effectively. This study
provides good results for achieving an energy efficient cloud service for users by
not increasing QoS degradation as much.

(e)

Fig. 2.10 (continued). Performance comparison of CPU utilization using 4 test systems in lab
environments. e Measured power consumption of test cloud systems (e.g. kdkCluster1–4) in lab
cloud test environments

2.3 VM Reallocation Based on Resource Utilization-Aware … 71

2.3.6 Conclusion

In this paper, we introduced ACRB with Two Phases based the TP-ARM scheme
for energy efficient resource management by real time based VM monitoring in a
cloud data center. Our proposed approach is able to reduce efficiently the energy
consumption of the servers without a significant performance degradation by live
migration and DRS execution through a considerate model that considers switching
overheads. The various experimental results based on the Openstack platform
suggest that our proposed algorithms can be deployed to prevalent cloud data
centers. The novel prediction method called SAWP is proposed in order to improve
the accuracy of forecasting future demands even under drastic workload changes.

Especially, we evaluated the performance of our proposed TP-ARM scheme
through various applications such as Montage, pbzip2, netperf, and the streaming
server which have heterogeneous workload demands. Our TP-ARM scheme could
maximize the energy saving performance of the DRS procedure by Phase 1: VM
migration achieves consolidated resource allocation under a low workload level.
Moreover, it could ensure the QoS of cloud service users by Phase 2: the DRS
procedure increases adaptively the number of active servers under a high workload
level. Through experiments based on a practical use case, our proposed scheme is
not only feasible from a theoretical point of view but also practical in a real cloud
environment. In future work, we will demonstrate that our proposed algorithm
outperforms existing approaches for energy efficient resource management through
various experiments based on the implemented system in practice.

References

1. Prediction. Available: http://searchstorage.techtarget.com.au/articles/28102-Predictions-2-9-
Symantec-s-Craig-Scroggie

2. R. Buyya, A. Beloglazov, J. Abawajy, Energy-efficient management of data center resources
for cloud computing: a vision, architectural elements, and open challenges (2010)

3. S.A. Baset, Cloud SLAs: present and future. SIGOPS Oper. Syst. Rev. 46(2), 57–66 (2012)
4. J. M. Myerson, Best Practices to Develop Slas for Cloud Computing. (IBM Corporation, New

York, 2013) p. 9
5. A. Shankar U. Bellur, Virtual Machine Placement in Computing Clouds CoRR,

abs/1011.5064 (2010)
6. M. Lin, A. Wierman, L.L.H. Andrew, E. Thereska, Dynamic right-sizing for

power-proportional data centers. IEEE/ACM Trans. Netw. 21(5), 1378–1391 (2013)
7. Z. Xiao, W. Song, Q. Chen, Dynamic resource allocation using virtual machines for cloud

computing environment. IEEE Trans. Parallel Distrib. Syst. 24(6), 1107–1117 (2013)
8. Y. Koh, R. Knauerhase, P. Brett, M. Bowman, Z. Wen, C. Pu, An analysis of performance

interference effects in virtual environments. IEEE Int. Symp. Perform Anal. Syst. Softw. 200–
209 (2007)

9. C.D. Patel, A.J. Shah, Cost model for planning, development and operation of a data center.
Development 107, 1–36 (2005)

72 2 VM Placement via Resource Brokers …

http://searchstorage.techtarget.com.au/articles/28102-Predictions-2-9-Symantec-s-Craig-Scroggie
http://searchstorage.techtarget.com.au/articles/28102-Predictions-2-9-Symantec-s-Craig-Scroggie

10. W.-J. Kim, D.-K. Kang, S.-H. Kim, C.-H. Youn, Cost adaptive vm management for scientific
workflow application in mobile cloud. Mob. Netw. Appl. 20(3), 328–336 (2015)

11. K. Hoste, A. Phansalkar, L. Eeckhout, A. Georges, L. K. John, K. De Bosschere,
Performance prediction based on inherent program similarity PACT, vol 9 (Seattle,
washinton 2006), p. 114

12. Memcoder. Available: https://linux.die.net/man/1/mencoder
13. Eucalyptus. Available: http://www.eucalyptus.com
14. K. Hoste, L. Eeckhout, Microarchitecture-independent workload characterization. IEEE

Micro 27(3), 63–72 (2007)
15. A. Ali-Eldin, J. Tordsson, E. Elmroth, M. Kihl, Workload Classification for Efficient

Auto-Scaling of Cloud Resources. (2005)
16. OpenStack. Available: http://www.openstack.org/
17. D.-K. Kang, F. Al-Hazemi, S.-H. Kim, M. Chen, L. Peng, C.-H. Youn, Adaptive VM

management with two phase power consumption cost models in cloud datacenter. Mob. Netw.
Appl. 21(5), 793–805 (2016)

18. M. Chen, Y. Zhang, L. Hu, T. Taleb, Z. Sheng, Cloud-based wireless network: virtualized,
reconfigurable, smart wireless network to enable 5G technologies. Mob. Netw. Appl. 20(6),
704–712 (2015)

19. M. Chen, H. Jin, Y. Wen, V. Leung, Enabling technologies for future data center networking:
a primer. IEEE Netw. 27(4), 8–15 (2013)

20. F. Xu, F. Liu, L. Liu, H. Jin, B.B. Li, B.B. Li, iAware: making live migration of virtual
machines interference-aware in the cloud. IEEE Trans. Comput. 63(12), 3012–3025 (2014)

21. D. Gupta, L. Cherkasova, R. Gardner, A. Vahdat, Enforcing performance isolation across
virtual machines in xen, Proceedings 7th ACM/IFIP/USENIX international conference
middleware, pp. 342–362, (2006)

22. A. Nisar, W.K. Liao, A. Choudhary, Scaling parallel I/O performance through I/O delegate
and caching system, 2008 SC—International conference for high performance computing
(Storage and Analysis, SC, Networking, 2008)

23. M. Chen, Y. Zhang, Y. Li, S. Mao, V.C.M. Leung, EMC: Emotion-aware mobile cloud
computing in 5G. IEEE Netw. 29(2), 32–38 (2015)

24. K. Deb, A. Pratap, S. Agarwal, T. Meyarivan, A fast and elitist multiobjective genetic
algorithm: NSGA-II. IEEE Trans. Evol. Comput. 6(2), 182–197 (2002)

25. YOCTO-WATT. Available: http://www.yoctopuce.com/EN/products/usb-electrical-sensors/
yocto-watt

26. G-Technology. Available: http://www.g-technology.com/products/g-drive
27. PowerWake.Available: http://manpages.ubuntu.com/manpages/utopic/man1/powerwake.1.html
28. Montage. Available: http://montage.ipac.caltech.edu/

References 73

https://linux.die.net/man/1/mencoder
http://www.eucalyptus.com
http://www.openstack.org/
http://www.yoctopuce.com/EN/products/usb-electrical-sensors/yocto-watt
http://www.yoctopuce.com/EN/products/usb-electrical-sensors/yocto-watt
http://www.g-technology.com/products/g-drive
http://manpages.ubuntu.com/manpages/utopic/man1/powerwake.1.html
http://montage.ipac.caltech.edu/

Chapter 3
Cost Adaptive Workflow Resource Broker
in Cloud

3.1 Introduction

As scientific applications become more complex, the management of resources that
perform the workflow jobs has become one of the challenging issues [1, 2]
Workflow scheduling is one of the key issues in the management of workflow
executions. Scheduling is a process that maps and manages executions of
inter-dependent tasks on distributed resources. It includes allocating suitable
resources to workflow tasks so that the execution can be completed to satisfy
objective functions specified by users. An appropriate scheduling can have sig-
nificant impact on the performance of the system. In general, the problem of
mapping tasks on distributed resources belongs to a class of problems known as
NP-hard problems [3]. Even though the workflow scheduling problem can be
solved by using exhaustive search methods, the time taken for generating such
solution is very high. Since resource status is changing rapidly due to the com-
petition among users, scheduling decisions must be made in the shortest time
possible in Cloud environments. A number of best effort scheduling heuristics such
as Min-Min [4] and HEFT [5] (Heterogeneous Earliest Finish Time) have been
applied to schedule Cloud workflows. These best-effort scheduling algorithms
attempt to complete execution within the shortest time possible. They neither have
any provision for users to specify their Quality-of-Service (QoS) requirements nor
any specific support to meet them. However, many workflow applications in both
scientific and business domains require some certain assurance of QoS. For these
applications, the workflow scheduling applied should be able to analyze users’ QoS
requirements and map workflow tasks onto suitable resources such that the work-
flow execution can be completed to satisfy their requirements. In addition, in order
to satisfy QoS requirements due to the dynamic nature and uncertainty of Cloud, it
is required for a workflow management system to provide management functions
for managing workflow execution and resource management functions. Even
though there are many efforts to execute workflow applications with QoS guarantee,

© Springer Nature Singapore Pte Ltd. 2017
C.-H. Youn et al., Cloud Broker and Cloudlet for Workflow Scheduling,
KAIST Research Series, DOI 10.1007/978-981-10-5071-8_3

75

they provide workflow management functionality without consideration of user
requirements or Service-Level Agreement (SLA), such as performance, reliability,
and others. Workflow management systems in Cloud are becoming widespread for
scientific applications to solve sophisticated problem such as drug discovery and
high energy physics. Even though various research efforts are being made, con-
sideration of QoS requirements is still the challenging issue.

3.2 Background and Related Works

3.2.1 Workflow Control Schemes

There were many workflow control scheme for using computing resources in
efficient manner. Because workflow scheduling problem is NP-complete without
some constraint [6] we need simple algorithm to adapt schemes in real system. In
[5], they proposed new heuristic algorithm named HEFT for scheduling workflow
tasks in heterogeneous computing environment for high performance and low cost.
In this book, they calculate the downward rank which is time distance with exit
node. High rank means that node is important in reducing the processing time of
whole workflow, so priority is set in descent order of rank. After making the
decision of priority, each node is allocated to node that needs least time consuming.
This algorithm shows the good performance but it only considers the bounded
number of heterogeneous processors and because of finite of resource quantity and
budget, we need workflow scheduling scheme with budget constraint. In [7], they
proposed new algorithm to satisfy the budget constraint by finding the best
affordable assignment possible using HEFT algorithm. In some limit of budget,
they schedule the workflow processing to achieve minimum execution time. They
reassign resources to tasks with two approaches LOSS and GAIN until all possible
reassignments would exceed the budget. There was book also about workflow
model fragmentation for distributed execution [8]. For executing workflow in
distributed environment, they proposed dynamic model fragmentation method
include the enhanced scalability by outsourcing and the increased flexibility by
designating execution site on-the-fly. These algorithms might well works in grid
environment, but they not consider the feature of cloud computing’s full hour
billing model and unbounded amount of resources, so their algorithm is not com-
patible with cloud computing environment. There are also workflow scheduling
schemes for cloud environment [9], but for solving complex problems in heuristic
way, they use complex approaches. And also they do not consider the data trans-
mission cost in depth. Because of data intensiveness of scientific workflow envi-
ronment, algorithm needs more modification. So in this book, we simplify the
scheduling problems to not consider full hour billing model so resource utilization
problem is displace to resource management schemes. And we also consider the
data transmission cost detail in this book.

76 3 Cost Adaptive Workflow Resource Broker in Cloud

Data-driven scientific workflows maximize the total completion time by par-
altlelizing or pipelining on each task under assumptions that the input data can be
divided by the sub-tasks or each stage of the task can be executed by incremental
data processing methods.

The relationship between data parallel scientific workflows, two broad categories
are described.

A. Task parallelism approaches

Single Program Multiple Data (SPMD) is a parallel processing technique where the
same program (or task, in workflow terminology) is applied to many independent
data items. All data items are processed in parallel and independently. Since they
have no dependencies, the data parallelism pattern is applied to reduce the total
completion time under parallel computing paradigm. The pattern can be classified
by the methodologies of partitioning the total dataset as in [10].

• Static parallelism—The number of partitions is known in advance at design-time
and it is fixed for all workflow executions.

• Dynamic parallelism—The number of partitions can only be determined at
run-time to provide the portable workflow definition across multiple execution
environments. In addition, the degree of partitioning an input dataset for a task is
another issue to optimize.

• Adaptive parallelism—The number of partitions are automatically estimated
during the execution of the workflow itself. The model indicates that the total
execution time of a workflow that uses data parallelism to speed up processing
of a fixed-size input dataset, is highly sensitive to the number of data partitions
with respect to the amount of available resources.

B. Pipelined execution approaches

Since using the task parallelism pattern can reduce the execution time of one or
more tasks applied in parallel to a vector of input data elements, the pipelined
execution pattern, which interleaves a sequence of more than one task, is applied
sequentially to a vector of input data elements. The applied approaches are intro-
duced in [10].

• Best effort pipelines—no guarantees are provided and data is simply dropped in
case of pipeline collisions.

• Blocking pipelines—a task can only be (re)started if the predecessor has com-
pleted and if its successor is idle. It guarantees the data produced by a task will
not be overwritten, as the downstream tasks will be ready to process it.

• Buffered pipelines—providing buffering semantics to store the results and
accumulating all intermediate results produced by a task in case the one fol-
lowing it in the pipeline is not yet ready to process a new input data element.

• SuperScalar Pipelines—dynamically creating additional task instances when-
ever they are needed to avoid collisions. It can speed up the total throughput of
the workflow pipeline by adjusting the average expected throughput of each task
on the workflow.

3.2 Background and Related Works 77

3.3 Objectives

Many research work reported various workflow tools to build simulation envi-
ronments that support distributed execution. We address some problems in
bio-computing using scientific workflow system, e.g. bio-computing for genome
analysis, drug-finding simulation, virtual cell modeling and others. First, the
existing workflow systems seldom focused on the end-to-end development life
cycle of workflows, for example, design frameworks for identifying the experiment
data that are ever used for computing are not provided in a real-time manner.
Second, the conventional workflow systems do not support the cost-minimized VM
management in Cloud. The cost-minimized VM management model in here
includes cloud brokering for executing high performance tasks under cloud envi-
ronments. Therefore, we have to consider a new workflow scheduling model for
cloud resource management. This approach requires cost-adaptive workflow control
and components to build cloud broker system. In addition, the conventional systems
did not provide dynamic workflow scheduling algorithm for the resource allocation
on component remote execution for performance issues. This leads to difficulty of
guarantee the required QoS according to bio-computing applications, which is a
mandatory prerequisite for the clouds.

Most of scientific applications fall into the interdependent task model which is
called workflow application. The problems are described in the cloud resource
broker for managing such workflow applications. Let assume a cloud resource
broker G, represented by a three-tuple G ¼ ðT;U;RÞ; to execute scientific work-
flow applications. The G, consists of a set of k consumers (individual scientists,
science communities) U ¼ fU1;U2; . . .;Ukg, a set of m resource providers
R ¼ fR1;R2; . . .;Rmg, where the resource provider could be an in-house cluster
center, private cloud, or public cloud providers. A set of n tasks T ¼
fT1;T2; . . .;Tng are submitted to the broker by consumer or their applications,
scheduled by the workflow scheduling scheme S based on the interaction between
the broker and the resource providers, and finally executed by the providers. Hence,
the complexity of scientific applications is mainly from migrating cloud services.
Currently, cloud providers and third party cloud services offer schedule-based and
rule-based mechanisms to help users automatically.

3.3.1 Guaranteeing SLA

A workflow application is submitted to the cloud by users, scheduled by the
workflow scheduling scheme based on the interaction between the broker and the
resource providers, and finally executed by the providers. So, there is no particular
interaction between the users and the service providers, which are decoupled by the
broker. The three roles need to express their requirements and facilitate scheduling

78 3 Cost Adaptive Workflow Resource Broker in Cloud

decision to further achieve their objectives. We therefore utilize SLA that is usually
defined in the community as a business agreement between two of them to create
the common understanding about services, responsibilities, and others.

3.4 Proposed System Model for Cost-Adaptive Resource
Management Scheme

In this section, we discuss cost-adaptive resource broker integrated workflow
management system in terms of its features, architecture and functional description.

3.4.1 Assumption

We assume that a cloud broker is designed for Biocomputing application. In LCW
system, there are many services/applications and different services/ applications
have different resource requirements. The resources in LCW system are in the same
sub-network, virtual machine (VM) in cloud environments. Different resources
have different capabilities.

3.4.2 Requirement Descriptions

We raised the problems of existing workflow management systems and proposed
solutions to improve the policy-adjuster-integrated workflow management system
based on cloud broker system. To solve the problems we mentioned above, our
proposing system should have following features:

• In-time workflow scheduling mechanism. Owing to the dynamic characteristic
of distributed resources, an in-time scheduling mechanism for workflow man-
agement is needed.

• A SLA modeler. To guarantee the SLA for the workflow execution, SLA
requirements from users should be received and handled in our system.

• Policy selection mechanism. To manage the policies for different users’ inten-
tion, a decision scheme is needed to choose the suitable policy for the workflow
scheduling based on the modeled SLA.

• Runtime prediction mechanism. Since the deadline time factor is included in
SLA, we should have a mechanism to predict the future runtime of a task in our
system. The time prediction will be realized through analysis of historical
execution data.

3.3 Objectives 79

• Resource monitoring. To allocate the sub-jobs of workflow to the dynamic and
heterogeneous Grid resources, a resource monitoring function is required. This
function is provided through cloud broker system.

• Task monitoring. To control the workflow execution sequence, a task moni-
toring function should be built to get the task status including submitting,
waiting, executing, and done.

3.4.3 A Layered Cloud Workflow System (LCW)

Although the available resources can guarantee user’s service level in the current
status, however, we cannot keep the promise we made earlier all the time, since the
later job executions may affect the earlier job’s performance. Also the ways we
guarantee current user’s service level may bring a significant cost to the system.
In LCW, we bring information from application layer and cloud together into the
workflow system to improve the performance. Before user submits a job, we will
login to our system, in which we have user policy to classify the user into groups.
When the user chooses the service from the cloud service lists provided by LCW
system, we can divide the jobs into different work process according to their types.
The work process information and user service level information are formed in the
application layer. In the cloud, the resource broker will decide how to distribute
jobs into sub-jobs and how many pieces should we divide a whole job to also how
many resources should the sub-jobs occupy. We do not consider the detailed
sub-job dependences because they are highly related to specific applications. When
all sub-jobs are processed, the cloud gather the results and present them to the user.
Figure 3.1 shows the detailed module of cloud resource broker in workflow policy
integrated to LCW middleware: Resource management in clouds consists of
resource discovery and selection, job scheduling on the selected resource, and job
monitoring and migration to replicas.

To improve QoS and guarantee reliable resource management in clouds, we
propose LCW as shown in Fig. 3.2. First, more information is taken into consid-
eration to increase the accuracy. We can improve performance through managing
resources efficiently. Second, we can expect efficient distribution of the sub-jobs.
Third, we can expect more efficient resource management by integrating workflow
management with LCW resource management scheme. In this architecture, work-
flow module delegates a policy adjustor and checker to manage job processing
through clouds.

The platform service specialized on bio workflow computing on top of various
computing environment and core service stacks for encapsulating applications on
cloud. To negotiate among workflows in a real-time manner, we describes a con-
ceptual idea of the integrated workflow system. The middle layer includes functions
which manage the interaction among different bio-workflow services, such as the
next generation genome sequencing (NGS), MapChem Broker, and RVR-based

80 3 Cost Adaptive Workflow Resource Broker in Cloud

BioMap Systems implemented in workflow model. The system could automate the
simulation data and experiment workflow management. Such large scale data
analysis workflow model needs huge size of computing and storage infrastructure
for performing overall workflow tasks in an in-house method. However, it is
expensive to prepare enough resources and the efficiency of resources is relatively
low since all tasks do not require the same computing capacity. On the hybrid cloud
model, it is possible to outsource the entire or a part of the workflow tasks into the

Fig. 3.1 Workflow job scheduling scheme integrated in cloud computing environment

Fig. 3.2 Proposing cloud Resource broker system

3.4 Proposed System Model for Cost-Adaptive Resource Management Scheme 81

public cloud. In this case, on-demand resource provisioning is possible whenever it
is needed. To control the workflow execution flow, a task monitoring function is
built to identify the task status including submission, execution, and publish.

Workflow scheduling engine Workflow scheduling manager provides a graphic
user interface (GUI) for a legacy application service of an arbitrary user. We focus
on job processing applications such as bag of tasks (BoT) [11] or scientific
workflow applications [12] which are a kind of embarrassingly parallel job pro-
cessing based on a global job queue. The applications are deployed by an admin-
istrator with additional QoS related components, especially, enabling automatically
providing the required number of the resources (virtual machine (VM) typed
compute servers) through workload sensing and threshold based trigger mechanism.
Because the proposed system is also possible to process simple and independent
task based applications, Biocomputing applications are easily expressed by a set of
inter-dependent jobs—workflow.

Workflow scheduling manager is responsible for managing and executing
these workflows. From the GUI tools, users compose the workflow specification
with a set of available services that is provided by the broker. After parsing the
user’s submitted job specification, the workflow scheduler partition the entire
workflow into simple tasks with its dependency map. The dependency map
determines the start time of the tasks. When a kind of SLA requirements, such as
deadline or budget limit, comes from policy adapter, the scheduler should consider
and apply requirement on the scheduling scheme. Finally, the result of the work-
flow scheduling are expressed by the task to resource mapping table and it is stored
in the task queue. So the resource allocator is responsible for allocation each task
with resources at run-time.

VM resource manager The resource provisioning manager, which manages the
logical resource, is the core of our cloud broker. We define a virtual machine pool
(VMP) as a logical container which stores a set of resources with different types.
The resources in the VMP represent the prepaid resources that is physically
deployed in the underlying IaaS providers. So, the provisioning manager allocates
or deallocates the resources in VMP by sharing among various applications.
Especially, the allocation manager accepts the requests from the resource allocator
in the workflow scheduling manager. The VMPM seeks the optimal VMP size by
combining different VM leasing policies to minimize the cost.

Policy enactment manager Since the workflow management domain and
resource provisioning domain consider different aspects, there are some conflicts
between two different management systems, such as service type of each node,
execution environment, user requirements, etc. In cloud, the complexity and cost of
resource management for QoS guarantee significantly increases as the scale of the
cloud increases. For the reliable management of leasing resources, there have been
some approaches with attemptation to solve this problem. One of the most
promising resource management schemes is the policy-based resource management
system that is suitable for complex management environments (Fig. 3.3).

82 3 Cost Adaptive Workflow Resource Broker in Cloud

3.5 Proposed Cost Adaptive Workflow Scheduling Scheme

In our broker system, we assume there are three roles: the cloud resource broker,
users’ workflow applications, and the cloud resource providers. The users submit
their applications/workflows/data to the cloud resource broker; the broker will buy
or release resources from/to the cloud when needed; and then the broker will
allocate an appropriate VM instance to execute each task of the workflows.

Users’ applications are in users’ computers. The application and relative data
need to be firstly transferred to the cloud resources before execution. A workflow
consists of applications with constrained precedence. Each application is a task of
the workflow and each task will be mapped to some cloud resources for execution.
Each task has different performance on different types of VM instances. Workflows
may have different levels of importance and urgency; therefore users can specify
different deadlines for workflows. Users can submit workflows at any time and the
cloud resource broker has no knowledge about the incoming workload in advance.

The Cloud resources can be categorized into several types according to their
sizes, such as small, medium, large, and xlarge. Each type of VM will offer different
processing power. VM instances are charged in terms of per-hour usage.
Less-than-one-hour consumption is rounded up to one hour.

Fig. 3.3 Workflow computing integrated cloud resource broker

3.5 Proposed Cost Adaptive Workflow Scheduling Scheme 83

3.5.1 Workflow Resource Allocation Optimization Problem

In order to obtain the optimal resource allocation state for a given workflow, we
should determine the ratio of the resource allocation for each task to minimize the
completion time of the overall workflow. The following conditions should be
satisfied.

• For a replicated task Sk, there exists an optimal ratio of the resource allocation of
the replicated tasks, which minimizes the completion time in the tasks. Also, for
a parallelized task Sk, there exists an optimal ratio of the resource allocation of
the parallelized tasks, which minimizes the completion time in the tasks.

• For an arbitrary pipelined and constrained workflow, say W (Y, U, D), where Y,
…, there exists an optimal ratio of the resource allocation which has both
parallelization and replication, and minimizes the total completion time.

Since the pipeline workflow can be divided by the each tasks and can allocate the
deadline of each task, on the condition that the estimated completion time is known,
we can obtain the optimal solution of the each task. The following equations should
be ordered, mentioned and explained.

minimize T w½ �
subject to T w½ � ¼ maxl2L;m2M T wl;m tð Þ� �� �

T w½ � � Tdeadline
ð3:1Þ

3.5.2 Obtaining Expected Throughput Based on Estimated
Completion Time

We obtain the expected throughput (ETH) for each resource type i ðETHiÞ based on
estimated completion time. The completion time of each task is different from the
input parameters of the task. So, we estimate it based on historical information of
each task with the reference instance.

We exploit the completion time estimation for different schemes under the
assumption that new task does not has any historical information, and the execution
coefficient based on historical information.

A. Completion time estimation of new task

For each submitted workflow, the broker will complete the workflow within users’
specified deadlines. First it assigns a suitable type of VM to each task; then, the
broker assigns a suitable instance of the selected VM type to the task. In short, the
broker needs to make a mapping relationship between each task and some VM

84 3 Cost Adaptive Workflow Resource Broker in Cloud

instance. For this mapping decision, the broker will adopt different policies that are
implemented with different algorithms within the broker. Assume the cloud
workflow broker can always estimate the task processing times on different types of
VMs. The cloud workflow broker maintains the appropriate volume of its VM pool
by auto-scaling, so that it can save the monetary cost of buying cloud resources.

We apply workflow scheduling mechanism and resource auto-scaling scheme to
finish all users’ requests within users’ specified deadlines in order to minimize the
total cost for purchasing the processing resources in the cloud. The workflow
scheduling mechanism instructs the broker to firstly map each task to be executed to
some appropriate VM type, and then schedule the task to a VM instance of that type
at the particular time slot. The resource auto-scaling scheme enables the broker to
keep a certain number of VM instances of each type in the resource pool, which
have right enough processing power to meet the dynamically changing workload
from users and also can avoid the broker’s unnecessary purchase for abundant VM
instance.

At some time t, the workload for a VM type Ri in the broker’s current VM pool
are the tasks that are being executed and waiting to be executed on this specific VM
type; it is denoted as Wlit. The broker needs to maintain a proper number of
instances of each VM type in the VM pool. The number of all the instances of type
Ri in the VM pool at time t is denoted as NRi

t . An exact performance estimation for
each task on each VM type is critical in the later scheduling decisions. The broker
can estimate the performance of a task on different types of VM, by using the
following performance estimation technique.

Also, we can estimate each tasks’ execution time. The estimated execution time
of a task on a VM consists of two parts of time, i.e., the data transfer time and the
application running time. For running task Sk on VM type Ri, the estimated exe-
cution time Tee Sk;Rið Þ can be obtained by Eq. (3.2).

3.5 Proposed Cost Adaptive Workflow Scheduling Scheme 85

9i; Tee Sk;Rið Þ ¼ Ttransfer þ Texecution ¼ R
Ini
rni

þ xi

rci
ð3:2Þ

B. Completion time estimation of new task

For an arbitrary task, Sk, we define a parameter set P ¼ pk;0; pk;1; . . .; pk;q; . . .;
�

pk;Qg where the parameter pk;q is a factor that affects the execution time of the task
selected by the workflow manager. Now, we define the execution coefficient for an
arbitrary parameter pk;q as ak;q.

ak;q ¼
~Tee Skð Þ � Tee Skð Þ

~pk;q � pk;q
¼ DTee Skð Þ

Dpk;q
ð3:3Þ

We assume that the execution parameter coefficient is obtained by historical
information. So, we can calculate the estimated completion time of the task D with
an arbitrary parameter set P as Eq. (3.4).

9i; Tee Sk;Rið Þ ¼
Y

l2Q ak;q � pk;q
� �

~Tee Sk;Rið Þ ð3:4Þ

The detailed procedure of the completion time estimation is shown in Algorithm 1.
Finally, based on Eq. (3.3) and Eq. (3.4), we obtain the expected throughput for
each VM type for the task as

9i;ETH Sk;Rið Þ ¼ Tee Sk;Rið Þ
Unit Time

ð3:5Þ

where Unit Time represents the time duration in terms of sec, min, and hour, or the
deadline which is enforced by user’s SLA. Since the VM cost is calculated per
hour, The expected cost during the time interval T, EC Ri; Tð Þ is shown in Eq. (3.6).

EC Ri tð Þ; Tð Þ ¼ C Ri tð Þð Þ T
Thour

� 	
ð3:6Þ

3.6 Proposed Marginal Cost Based Resource Provisioning
Scheme

In this section, we describe the functionalities of the VM provisioning manager
(VMPM) and its policies in terms of reducing the resource leasing cost. Before
further describing those, we first define the fundamental terminologies used in this

86 3 Cost Adaptive Workflow Resource Broker in Cloud

chapter. A vector A ¼ A1;A2; . . .;Aa; . . .;AAf g denotes a set of cloud application
services (ASs) deployed in the broker. Each CASE has an individual application
logic with the service platform. The CASE adds the computing resources by
requesting to the VMPM and removes the resources when they are useless any
more. The arrival density of the resource requests and the usage duration is per-
fectly dependent on each CASE. So, the VMPM cannot control those parameters.

A vector R ¼ R1;R2; . . .;Rr; . . .;RRf g denotes a set of resource capacity types
which are available in the broker. In the broker, since such the resources are
provided by the underlying IaaS cloud providers, they can be indexed by the logical
resource pool. We use only ready-made types of the VMs such as small, medium,
large, xlarge. So the application services request the resources by specifying such
the resource-type.

A vector L ¼ Lh Rð Þ; Ld Rð Þ; Lm Rð Þ; L6m Rð Þ; Ly Rð Þ� �
; where h, d, m, 6m, y refer

to the payment plans such as a hour, a day, a month, 6-month, and a year
respectively. We assume that the unit price is cheaper when the duration is longer
e.g., Lh Vð Þ� Ld Vð Þ� Lm Vð Þ� L6m Vð Þ� Ly Vð Þ. Without loss of generality, we
simplify the leasing types as two types - on-demand VM as OVM Lh Vð Þð Þ, hourly
paid and reserved VM as RVM ðLmÞ, monthly paid since most of the public cloud
providers adapts those leasing policies. So, in the broker level, the resource allo-
cation state is expressed by such three entities. On the following section, we
describe the operation procedure for resource allocation on the VMPM in detail.

3.6.1 VM Resource Allocation Procedure

When deploying each application services, it has the VM configuration policy that
denote the minimum and maximum size of each set of Vj as Amin

a;r and Amax
a;r . So, the

initial number of the VMP is

8r;Nrð0Þ ¼
X
a2A

Amin
a;r ð3:7Þ

and the following capacity constraints should be satisfied in the VMP:

8r;
X
a2A

Amin
a;r �NrðtÞ�

X
a2A

Amax
a;r ð3:8Þ

In addition, the NrðtÞ is divided by two set of payment plans such as.

8r;Nr tð Þ ¼ N mð Þ
r tð ÞþN hð Þ

r tð Þ ð3:9Þ

3.6 Proposed Marginal Cost Based Resource Provisioning Scheme 87

where N mð Þ
r tð Þ and N hð Þ

r tð Þ refer to the number of reserved VMs (RVMs) on-demand
VMs (OVMs), respectively.

On the view of the VMPM, it has set of incoming events and outgoing events as
follows,

• aReq a; rð Þ is a request event for resource type r from the application service a.
The response of the event is aReqs a; r; indexð Þ, where the index is the global
identification of the allocated resource.

• dReq req a; r; indexð Þ is a remove event for the indexed resource from the
application service a. The response of the event is dRes trueð Þ, where true is the
success of the remove.

• lReq rð Þ is a resource leasing request event for resource type r to the resource
provider. The response of the event is lRes r; indexð Þ, where the index is the
identification of the leasing resource.

• rReq r; indexð Þ is a release request event for indexed resource to the resource
provider. The response of the event is rRes trueð Þ.

The incoming events are the requests to allocate or deallocate the VMs to/from an
arbitrary application service. On the other hand, the outgoing events are the requests
process to lease or release the VMs from/to the cloud resource provider. Those
operations are responsible for the Allocation Manager (AM) and Leasing Manager
(LM) in the VMPM. We index each VM as index ¼ id; state;R;A½ � where the R,
A are the resource type, and index of application service respectively and the state
refers to the ‘allocated’ or ‘available’ (deallocation) of the resource (on the view of
general instance states, the allocation state is the ‘running’ and the available state
means the ‘pending’ state of the instance. Also, the index is created when the VM is
leased and deleted when the VM is released.

Overall operation procedure of the VMPM is described in Algorithm 2. Let the
reservation capacity (number of RVMs) for the resource type r be i�r . Usually, the
size will be the sum of the minimum number of resources for all applications. Prior
to starting the service, the VMPM determines the i�r for all resource types. After
determining the reservation capacity, the VMPM leases a set of RVMs as much as
minimum required VMs e.g.,

P
i2I A

min
i;j .

When an allocation request comes, VMPM allocate the longest available (latest
leasing (RVM to request. If there is no available RVM exist and if we can
affordable to lease the RVM (current number of RVMs are less than reservation
capacity), then, VMPM lease a RVM from resource provider and allocate the
resource to the request.

88 3 Cost Adaptive Workflow Resource Broker in Cloud

However, if the capacity is full, then, VMPM lease a OVM from resource
provider and allocate the resource to the request. Once, the resource is allocated, the
status of the resource should be set to the ‘allocated’. On the other hand, if the
deallocation event comes and the resource is RVM, the status of the resource set to
the ‘available’. Meanwhile, if the resource is OVM, the VMPM release the resource
and delete the index.

As shown in the operation procedure, it is the simplest and naive procedure of
the VMPM. Especially, adjustment of the capacity of the RVM does not apply since
it needs more complicated optimization process. In the following section, we
describe the cost-minimized capacity control policy based on Markov Decision
Process.

3.6 Proposed Marginal Cost Based Resource Provisioning Scheme 89

3.6.2 Marginal Cost Based Adaptive Resource Reservation
Scheme

We propose the adaptive resource reservation scheme (ARRS) which is based on
marginal cost (MC). At first, we obtain the total cost which is the summation of the
costs for the RVMs and the OVMs during 0; Tð Þ. Supposing Nr tð Þ is the number of
r-type resource which is leased from providers at time t, the total cost is expressed
by

Cr tð Þ ¼ C mð Þ
r tð ÞþC hð Þ

r tð Þ ¼ T
n mð Þ
r � E N mð Þ

j

 �

T mð Þ
r

þ n hð Þ
r � E N rð Þ

r

� �
T hð Þ
r

2
4

3
5 ð3:10Þ

where T mð Þ
r and T hð Þ

r are the unit pricing time and n mð Þ
r and n hð Þ

r are the pricing time
and unit price of RVM and OVM types, respectively. Also, E(•)s represent the
average terms of the inner values. On the other hand, the marginal cost of the k-type
VMs, MCk tð Þ during 0; Tð Þ is defined by

MCk tð Þ ¼ DC hð Þ
r

DC mð Þ
r

¼ C hð Þ
r

� �
t¼t� C hð Þ

r

� �
t¼t�T

C mð Þ
r

 �
t¼t

� C mð Þ
r

 �
t¼t�T

ð3:11Þ

90 3 Cost Adaptive Workflow Resource Broker in Cloud

where the period for calculating the marginal cost is generally smaller than the
period of the RVM, e.g., T\Tm. On the Algorithm 3, the ARRS is working within
Tm and adjust the number of RVMs by leasing or releasing those based on the value
of the marginal cost.

3.6.3 Adaptive Resource Allocation Heuristics

In this section, we propose the novel approaches called Adaptive Recycle,
Replacement, and Reduce (A3R) algorithms for an efficient management of VM
instances in the resource pool in order to solve the dissipation caused by unnec-
essary occupation of resources in the previous researches. We demonstrate that the
saving of resource operation cost is achieved efficiently by using our simple
methods.

A. Resource recycling policy

The procedure of Recycle scheme for an efficient VM allocation is shown in
Fig. 3.4. Several cloud service providers such as Amazon and Google propose the
several resource allocation policies to cloud service users. In particular, the VM
instance is allocated to the cloud service users based on the fixed unit time basis for
usage of resources. In other words, VM instances are provided to cloud service
users based on a coarse-grained unit usage time of resources. For example, the
usage unit time of VM instance is 1 h, then users should pay VM instances by the
hour (1 h, 2 h, …, etc.) and the users occupy the VM instances until the end of
the usage unit time in regardless of the completion of the requests. If the required
job in the request from the user needs low computing capacity and short processing
time, then the dissipation of unnecessary resource occupation can be occurred.

Fig. 3.4 The procedure of recycle scheme for VM instances

3.6 Proposed Marginal Cost Based Resource Provisioning Scheme 91

However, in traditional studies about virtual resource management, the VM
instance allocation scheme is only considered as a mapping function of single
user’s request to single VM instance. Hence in proposed Recycle scheme, the
remaining time of VM instance can be used for processing of requests from other
users in contrast to previous VM management schemes in which the one certain
VM instance is dedicated to only one user. Thus, in previous traditional schemes, in
order to support n requests from user, n VM instances are required. That is, in
regardless of the total size of requests, the same amount of virtualized resources are
needed according to the number of requests. This is a quite unreasonable dissipa-
tion. In our proposed scheme, we can reduce the number of excessive allocation of
VM instances by making the best use of the pre-allocated VM instances very
simply.

Newly the inserted job can be processed on the pre-owned VM instances which
have enough remaining time to complete the inserted job until their next end of the
usage unit time. Therefore, our proposed scheme is effective when the size of
requests tends to be small piece. If the group of existing resources has the same
resource type with the required resource type of request, then the request can be
allocated to that resource of the group. The remaining time of the certain VM
instance is as follows,

tn;kremain ¼ tnuunit � tproc Job; vmnð Þ=tnuunit þ tngen

 �

ð3:12Þ

where tnuunit is the unit time for usage of VM instance n, tproc Job; vmnð Þ is the
processing time to complete the inserted job on the VM instance n, and tngen is
generation time for VM instance n. As the data size of job in the request from user
is decreased, the remaining time. tn;kremain of k-th VM instance in the resource type n,
is increased, then the level of the dissipation is also increased. In addition, this
means that the availability of the additional job processing is also increased. The
usage time of VM instance n is as follows,

tn;kusage ¼ tproc Job; vmnð Þþ tproc Job; vmnð Þmod tnuunit

 �
ð3:13Þ

Therefore, the dissipation time by unnecessary VM occupation is drawn from the
difference between the processing time of job and the unit basis time for usage of
resource. In Recycle scheme, since the dissipation time of resource occupation can
be used to process other requests, we can not only avoid the waste of resource but
also decrease the number of required VM instances efficiently and simply. In
addition, we can reduce the generation delay of new VM instances for processing
the inserted job by using our scheme. The processing time of the request is cal-
culated as follows,

92 3 Cost Adaptive Workflow Resource Broker in Cloud

tn;kgen delay ¼ tn;kalloc � tngen ð3:14Þ

tproc REQSi2I ; vm
n
k

� � ¼ X
i2I tproc REQi; vm

n
k

� � ð3:15Þ

tproc REQSi2I ; vm
n
ik

 �
¼

X
i2I tproc REQi; vm

n
ik

 �
þN Ið Þtngen delay ð3:16Þ

Equation (3.15) represents the total processing time of the set I of requests in the
kth VM instance of resource type n and Eq. (3.16) represents the total processing
time of the set I of requests in multiple VM instances of resource type n. By above
formulas, we show that our proposed scheme can reduce the generation delay of the
traditional schemes.

B. Resource replacement policy

Figure 3.5 shows the procedure of our proposed scheme called Replacement for
coping with the excessive requests in multiple resource type temporarily. As shown
the figure, we assume that there are three prepared resource types such as RT1, RT2,
RT3 in order to provide suitable resources to users according to their request types
ðRT1\RT2\RT3Þ. If the average number of usage of RT1, RT2, RT3 is 5, 4, and 6,
so the number of reserved VM is also defined 5, 4, and 6, respectively. But at the
certain epoch, for example, if the transient usage of RT1, RT2, RT3 is 6, 5, and 2,
then in the cases of RT1, RT2, there is 1 excessive request, respectively. That is, the
two idle VM instances of type RT3 can be supported to their requests instead of
RT1, RT2 resource types.

To enable this, we should know the expected number of arrived requests during
from the epoch of VM instance insourcing to returning. If the number of arrival
during that period will be more than the remaining capacity, then the VM instances
can’t be aided for other resource groups. Otherwise, we can provide the remaining
VM instances to other resource groups to support newly inserted requests without
additional on-demand VM instance generation. If we use our Replacement scheme,
then we can increase the utilization of the idle VM instances in certain resource type
and avoid the cost caused by the additional resource allocation. The cost for
additional VM instance allocation is calculated as follows,

Xn

i¼1
maxa Nvmi

required tð Þ � Nvmi

remain tð Þ; 0
h i

cost vmi
� � ð3:17Þ

In order to enable providing the remaining VM instances in the certain resource
type to other resource groups, we have to know the expected number of arrival
during the period of lease. To predict the arrival number of requests during the
certain period, we adopt the logistic regression model that is suitable for the filed in
which the linear regression model is not reasonable.

3.6 Proposed Marginal Cost Based Resource Provisioning Scheme 93

C. Resource reducing policy

Figure 3.6 represents the procedure of the Reconfiguration scheme. There are two
kinds of VM instance in our environment; on-demand VM and reserved VM. Our
objective is minimizing the number of on-demand VM but maximizing the uti-
lization of the reserved VMs with acceptable QoS assurance. In Reconfiguration
scheme, the ongoing processing of request from user in the on-demand VM
instance can be migrated to the reserved VM if the status of the reserved VM is idle.
We assume that the request consists of several tasks and they are processed in
sequential order. As mentioned above, the VM allocation is provided to users based
on the fixed unit time for usage of resource. Therefore, in Reconfiguration scheme,
we migrate the ongoing request from the on-demand VM to reserved VM before at
the end of the period for usage of resource. In addition, if the completed portion of
ongoing task is significantly large, and the amount of remaining tasks is small, then

Fig. 3.5 The procedure of replacement scheme for VM instances

94 3 Cost Adaptive Workflow Resource Broker in Cloud

we rather complete the processing of request on the on-demand VM continuously
than on the reserved VM. Moreover, we should consider the migration overhead
between the on-demand VM and reserved VM. The migration overhead might not
only cause the undesirable additional delay to the processing of the request but also
increase the cost.

tproc taskm1;hð Þ; vm
n
k

 �
Con vmn

k

� �
[tmg taskmhþ 1;jð Þ; vm

n
k

 �
Con vmn

k

� �
þ tmg taskmhþ 1;jð Þ; vm

n
l

 �
þ tproc taskmhþ 1;jð Þ; vm

n
l

 �
 �
Crv vmn

l

� � ð3:18Þ

That is, if the cost of the processing on on-demand VM is more expensive than
the cost of sum of processing on reserved VM and the migration from the
on-demand to reserved VM, then the Reconfiguration is suitable for the resource
operation cost saving. In addition, we should consider the reprocessing of the
interrupted ongoing task by VM migration.

3.7 Experiment and Results

3.7.1 Evaluation Environments

In this section, we shall describe our experiment platform and scenarios. We
evaluate the proposed schemes both simulation tool simjava package [13] and
experimental cloud testbed which has two different availability zones. In addition,
we choose the ChemApp service [14] which is an integrated Internet-based
application for collaborative pharmaceutical research. The services provided by
ChemApp can be used individually, or be composed into various complex work-
flows in according with user’s various needs. The computing intensive workload of
such workflows is time-consuming. The Chem service is a perspective environment

Fig. 3.6 The procedure of reactivation scheme for VM instances

3.6 Proposed Marginal Cost Based Resource Provisioning Scheme 95

for QSAR (Quantitative Structure Activity Relationship). The perspectives it pro-
vides include drawing chemical compounds, QSAR prediction, and plotting 2D,
3D. On the testbed, the users submit the workflow jobs to the cloud resource broker
with workflow XML description. We use total 32 VMs on each availability zone.

Figure 3.7 shows an example overall chemical service process. Information of
customized chemical compounds is inserted into ChemApp Service System. The
system can load QSAR values from Chemical DB and show the list to the user. It
can also calculate 60 discriptors and predict QSAR results by using regression
model; the whole process is divided into sub-tasks by the workflow service.
The VM instances are generated from the Cloud infrastructure and each sub-task
will be assigned to each VM instance. Finally, the results are reported to the user.

All service in ChemApp application are located in Service repository, so we can
instantly reference or using the services. All services are managed by workflow for
processing the jobs in regular sequence. Above figure is workflow scenario of Map
service to Chem service. Local data or data from database is supplied to map
service. Map service generates and find out the related chemical map and list for
drug repositioning. From list user can select chemical for working in Chem Service
which provide QSAR analysis and regression service. QSAR analysis needs many
computing resource for calculating molecule characteristic descriptors. So it might
need scheduling algorithm and distribution computing for better SLA. So we use
cloud workflow for guarantee the SLA in processing environment with scheduling
(load balancing), resource broker and distribution computing. After QSAR analysis,
we can get the table of descriptors to molecule and its values. From value regression
service generate equation of relationship between descriptors. There is three method
of regression. From plotted the data and equation we can see the similarity between
data and equation. These services sequences are preset by user with no program-
ming knowledge and automatically progress with workflow manager.

Figure 3.8 describes the whole experimental testbed architecture and working
procedures of the MCCS. Firstly, users submit their requests to the Flex based

Fig. 3.7 Overall chemical service process

96 3 Cost Adaptive Workflow Resource Broker in Cloud

workflow designer interface. After then the workflow management module transfers
the submitted workflow model as a XML description to the below web service
module. The web service module using RESTFUL-based structure generates
sub-xml files (that is the sub-tasks) from the whole XML description. The infor-
mation of each sub-task specification is stored in the connected database system. If
the web service module receives a new task that has not appeared before, then it
inserts the new sub-task information into the database system. By using the
policy-based adaptive workflow scheduling scheme, the whole workflow are
divided into sub-tasks and then all the tasks are inserted into the job queue. Since
the job queue aggregates sub-tasks from the above web service module it will then
adapts the resource provisioning and auto-scaling scheme we proposed to optimize
the assignment of cloud infrastructure resources and also enhance the performance
of our proposed scheme.

To establish the OpenStack environment, we use five Cloud server nodes (one
node as the Cloud Controller node, four nodes as the Nova computing nodes) as
shown Fig. 3.9. The detailed specifications of OpenStack environment in our lab-
oratory are as follows, Cloud controller node includes Nova module to manage the
network, volume service, scheduling algorithm, image service and VM instances. In
general, the role of cloud controller node is just managing the operations between
Nova computing nodes, so it is not necessary to require the machine, which has
good performance compared to Nova computing node.

Fig. 3.8 Experimental testbed configuration

3.7 Experiment and Results 97

Actual works are processed on Nova computing nodes and their results are
reported to the Nova controller node.

3.7.2 Evaluation of the Proposed ARRS

At first, we evaluate the characteristics of the proposed ARRS. We use the billing
periods and the cost of the RVM and the OVM as the GoGrid public cloud provider
[15] as shown in Table refexp1-param. Also, we set the average VM demand arrival
and the average VM allocation duration as Exp(5 min) and Exp(120)min, respec-
tively, the ARRS interval as one week, and the initial RVM as 3. In addition, the
performance metrics are defined as follows:

• The number of RVMs and OVMs—The number of RVMs and OVMs which
are leased from the cloud providers during the ARRS interval T.

• RVM, OVM, and Total Cost—The cost of VMs which is calculated during the
ARRS interval.

• Average utilization of the RVM and OVM—Average utilization is defined by
the ratio of the allocation time of the VM during the total VM leasing time.

Figure 3.10a, b show the number of the RVMs and OVMs for each period of the
ARRS interval. When increasing the RVMs more than 20, the number of OVMs are
decreased to average 300.

In the 5 weeks after, the number of the VMs are stable compare to the initial
stats. On the stable point, the total cost of the VMs are adaptively minimized around
the cost 1000$ from the initially 1500$ as shown in Fig. 3.10c. On the other hand,
the average utilization of the RVM is stable on the around 0.85 as shown in
Fig. 3.10d. However, the average utilization of the OVM is not affected by the

Fig. 3.9 VM configuration for experimental testbed system

98 3 Cost Adaptive Workflow Resource Broker in Cloud

change of the number of OVMs. It cause the characteristics of the full our billing
model of the OVM. Because the OVM is disposable VM, the utilization is only
affect the duration of the allocation.

Secondly, we evaluate the comparison of the proposed ARRS with the OVMP
algorithm which aforementioned optimal VM provisioning scheme [16]. We use the
same parameters de- scribed in Table refexp1-param except different average VM
demand arrivals as Exp(5,10,15,20,25,30) min, respectively.

Figure 3.11a, b show the number of the RVMs and OVMs for each period of the
ARRS interval. When increasing the RVMs more than 20, the number of OVMs are
decreased to average 300. In the 5 weeks after, the number of the VMs are stable
compare to the initial stats. On the stable point, the total cost of the VMs are
adaptively minimized around the cost 1000$ from the initially 1500$ as shown in
Fig. 3.11c. On the other hand, the average utilization of the RVM is stable on the
around 0.85 as shown in Fig. 3.11d. However, the average utilization of the OVM
is not affected by the change of the number of OVMs. It cause the characteristics of
the full our billing model of the OVM. Because the OVM is disposable VM, the
utilization is only affect the duration of the allocation.

Fig. 3.10 The performance results of the ARRS

3.7 Experiment and Results 99

3.7.3 Evaluation of the Proposed A3R Policies

We choose the ChemApp service [14] which is a kinds of high computing
bio-calculation program as an application service in order to evaluate the perfor-
mance of our proposed A3R schemes compared to the conventional scheme which
does not apply those heuristics. In addition, we also evaluate the average com-
pletion time and the average waiting time of the application.

Firstly, Fig. 3.12a shows the resource allocation cost of with A3R and without
A3R. As shown in figure, the cost without A3R is higher than the case with A3R on
all range of the VM request arrival interval. Especially, the demand rate is larger,
the accumulated cost without A3R is increase rapidly. However, when the case with
A3R, the total cost is maintained around the 20 30 regardless of the input rate. On
the Fig. 3.12b, it shows the utilization of the both cases. In case with A3R, the
utilization of the VMs are always higher than the case without A3R. It means that
the A3R increase the utilization of both RVM and OVM.

On the other hand, the Fig. 3.12c shows the average completion time of the
application. As shown in the plot, the completion time with A3R is a little smaller
than the case without A3R. It causes the start-up time of the VMs, e.g., in the case
with A3R, the VMs are often reused, so, the start-up time is eliminated. As the same

Fig. 3.11 Comparison of ARRS and OVMP algorithms

100 3 Cost Adaptive Workflow Resource Broker in Cloud

result is shown in Fig. 3.12d. The average waiting time of the application is dra-
matically reduced by applying the A3R policies.

3.8 Conclusions

As scientific applications become more complex, realizing workflows management
for Cloud computing requires a number of challenges to be overcome. They include
workflows application modeling, workflows scheduling, resource discovery,
information services, data management and others. However, from the QoS per-
spective, two important barriers that need to be overcome are: (i) the integration of
the workflows management system with resource management system and (ii) their
scheduling on heterogeneous and distributed resources to meet user QoS demands.

In order to overcome the challenges in managing and scheduling workflows
applications in Cloud, this chapter provides an efficient and flexible workflows
scheduling mechanism which includes (i) functionalities for integrating workflows
management with resource management system for QoS guarantee and (ii) various
scheduling schemes for supporting different workflows applications, which have
different QoS demands. We propose a cloud workflow scheduling mechanism

Fig. 3.12 Comparison of the performance metrics with A3R and without A3R

3.7 Experiment and Results 101

incorporating with adaptive resource provisioning and the fine grained VM sprawl
management heuristics for minimizing resource leasing cost. Uncertainty of future
demands and prices of resources are taken into account to optimally adjust the
tradeoff between on-demand and reserved instance costs. Especially, an adaptive
resource reservation scheme (ARRS) reduces the total cost for leasing the VMs
based on temporal marginal cost variation. Comparing to the optimal reservation
capacity algorithm, it provides more exile and adaptive resource provisioning
mechanism that easily adjusts the reserved VM within the payment duration of the
reserved VM. On the other hand, we exploit three kind of effective resource sharing
heuristics, which also decrease the total cost by increasing the utilization of the
reserved VMs as well as already leased on-demand VMs.

The experimental results show, firstly, the proposed ARRS provides adaptivity
of the resource reservation without the exact demand estimation. The comparison
result from the optimal VM provisioning algorithm, the proposed ARRS is stable in
the close to the optimal poinsts when time goes. On the other hand, the experi-
mental results of A3R is performed on the real bio-chemical application. The results
give us the feasibility of the A3R heuristics. By applying the A3R in the ChemApp
application, we can reduce the total cost to maximum 80%. Moreover, the appli-
cation completion is reduced upto 600 s.

References

1. E. Deelman, J. Blythe, Y. Gil, C. Kesselman, G. Mehta, K. Blackburn, A. Lazzarini, A.
Arbree, R. Cavanaugh, S. Koranda, Mapping abstract complex workflows onto grid
environments, (2003)

2. D. Hollingsworth, WFMC: Workow reference model, Online PDF, Workow Management
Coalition, Speci_cation, 1995, tC00-1003. [Online]. Available: http: //www.wfmc.org/
standards/docs/tc003v11.pdf

3. D. Fernandez-Baca, Allocating modules to processors in a distributed system. IEEE Trans.
Softw. Eng. 15, 1427–1436 (1989)

4. M. Wieczorek, R. Prodan, T. Fahringer, Scheduling of scienti_c workows in the askalon grid
environment. SIGMOD Rec. 34, 56–62 (2005)

5. H. Topcuouglu, S. Hariri, M.-Y. Wu, Performance-e_ective and low-complexity task
scheduling for heterogeneous computing. IEEE Trans. Parallel Distrib. Syst. 13, 260–274
(2002)

6. M.R. Garey, D.S. Johnson, Computers and intractability: a guide to the theory of
NP-completeness (W. H. Freeman & Co., New York, NY, USA, 1979)

7. R. Sakellariou, H. Zhao, E. Tsiakkouri, M.D. Dikaiakos, Scheduling workows with budget
constraints, in Integrated Research in Grid Computing, ed. by S. Gorlatch, M. Danelutto
(Springer-Verlag, CoreGrid series, 2007)

8. W. Tan, Y. Fan, Dynamic workow model fragmentation for distributed execution. Comput.
Ind. 58(5), 381–391, (2007). [Online]. Available: http://dx.doi.org/10.1016/j.compind.2006.
07.004

9. M. Mao, M. Humphrey, Auto-scaling to minimize cost and meet application deadlines in
cloud workows, in Proceedings of 2011 International Conference for High Performance
Computing, Networking, Storage and Analysis, ser. SC ‘11. (ACM, New York, NY, USA),
pp. 49:1–49:12. [Online]. Available: http://doi.acm.org/10.1145/2063384.2063449

102 3 Cost Adaptive Workflow Resource Broker in Cloud

http://www.wfmc.org/standards/docs/tc003v11.pdf
http://www.wfmc.org/standards/docs/tc003v11.pdf
http://dx.doi.org/10.1016/j.compind.2006.07.004
http://dx.doi.org/10.1016/j.compind.2006.07.004
http://doi.acm.org/10.1145/2063384.2063449

10. A. Benoit, Y. Robert, Complexity results for throughput and latency optimization of
replicated and data-parallel workows, Algorithmica, 57, 689–724 (2010). [Online]. Available:
http://dx.doi.org/10.1007/s00453-008-9229-4

11. A. Sulistio, R. Buyya, A time optimization algorithm for scheduling bag-of-task applications
in auction-based proportional share systems, in SBAC-PAD, pp. 235–242 (2005)

12. J. Yu, R. Buyya, A taxonomy of scientific workow systems for grid computing. SIGMOD
Rec. 34, 44–49 (2005)

13. F. Howell, R. Mcnab, Simjava: a discrete event simulation library for java, 51–56 (1998)
14. Equis, zaru inc, http://www.equispharm.com/html/html/main.html. [Online]. Available: http://

www.equispharm.com/html/html/main.html
15. Gogrid, http://www.gogrid.com/. [Online]. Available: http://www.gogrid.com//
16. S. Chaisiri, B.-S. Lee, D. Niyato, Optimal virtual machine placement across multiple cloud

providers, in Services Computing Conference, 2009. APSCC 2009. IEEE Asia-Pacific,
(2009), pp. 103–110

References 103

http://dx.doi.org/10.1007/s00453-008-9229-4
http://www.equispharm.com/html/html/main.html
http://www.equispharm.com/html/html/main.html
http://www.equispharm.com/html/html/main.html
http://www.gogrid.com/
http://www.gogrid.com/

Chapter 4
A Cloud Broker System for Connected
Car Services with an Integrated
Simulation Framework

4.1 Introduction

At present, the mobile market accounts for the largest portion in IT industry, and its
proportion is increasing rapidly. With the rapid increase, mobile services are also
becoming bigger and more complex. Therefore, with the development of network
technology such as 5G, there exist on-going research on mobile services that fol-
lows client-server models capable of overcoming the limitations of computational
performance and storage in mobile devices.

Currently, the A connected car is the most emerging technology now in the
mobile industry. The connected car refers to a vehicle provided with network
connectivity. By 2025, SBD forecasts that 68% of new car sells will be correspond
to [1]. At present, many automotive and IT vendors are developing the related
services actively. Said services are classified into vehicle-to-vehicle (V2V) and
vehicle-to-cloud (V2C). The V2V services are mainly based on the communication
among vehicles while the V2C services consider the transactions between vehicles
and a cloud. Both approaches enable each vehicle to overcome the hardware lim-
itation and provide services that are difficult to handle in a single vehicle’s onboard
computer.

In this chapter, we focus on the V2C connected car services and means to handle
a cloud broker system for their computation offloading. We start our discussion by
classifying the V2C services into three categories: LDM, infotainment, and driving
assistance. The detail description of each service type is handled with various
examples and an analysis of their offloadability. We then describe the execution
environment of the V2C services and an architecture of a cloud broker system to
support the service execution. In the architecture, we mainly focus on the com-
ponents related to the computational offloading, and several simple offloading
approaches are introduced. To provide reliable evaluation of the service offloading,
a simulation framework is presented for an integrated road traffic-network-cloud
simulation. The framework supports end-to-end service simulation between

© Springer Nature Singapore Pte Ltd. 2017
C.-H. Youn et al., Cloud Broker and Cloudlet for Workflow Scheduling,
KAIST Research Series, DOI 10.1007/978-981-10-5071-8_4

105

vehicles and a cloud. To achieve it, each road traffic, network, and cloud simula-
tions closely collaborate with each other. In addition, to address the difficulty of
intuitively setting part of the simulation parameters, we also discuss a way to
estimate the unknown parameters using the inverse simulation technique. It gives
more reliability by increasing the accuracy of the integrated simulation. Finally, we
present a proof-of-concept study to identify whether the cloud broker system
enables proper execution the V2C services in terms of performance and cost.

4.2 A Cloud Broker System for V2C Connected Car
Service Offloading

4.2.1 V2C Connected Car Service

Recent breakthroughs in communication technology have led to the emergence of
connected cars. Providing network connectivity to vehicles, the concept of con-
nected cars gives an opportunity to handle advantageously the vehicles as IT
devices. As a result, connected cars are gaining great interest in the automotive
industry, and many vendors are now developing innovative connected car services.
We categorize of V2C connected car services as LDM [2–6], infotainment, and
driving assistance, as shown in Fig. 4.1.

Fig. 4.1 The classification of V2C connected car services: LDM, infortainment, and driving
assistance

106 4 A Cloud Broker System for Connected Car Services …

Firstly, the LDM refers to the conceptual database based on interactive infor-
mation management between vehicle sensor data and map data for road safety and
traffic efficiency-related services [2]. The information consists of permanent static
data, transient static data, transient dynamic data, and highly dynamic data as
shown in Fig. 4.2. Since the sensor data in multiple vehicles should be aggregated
and combined with map information in the cloud, the service offloading to a cloud
is mandatory. An example of the LDMs is CARASSO [3]. As shown in Fig. 4.3,
the CARASSO collects sensor data from BMW 7 series vehicles, and provides
drivers dynamic map information using Amazon EC2. Drivenet Maps [5] also
provide real-time dynamic maps for self-driving from 3D Lidar point clouds.

Secondly, the infotainment is the service that provide combination of enter-
tainment and information for the driver. Vehicle maintenance, vision and voice
based intelligent personal assistance and media streaming are examples of the
infotainment services. In infotainment services, it is not necessary to communicate
with the cloud, but it is possible to provide extensive functionality and processed
information by using the information of the cloud as well as the vehicle’s local
information together. For example, you can only watch the movies that are stored in
the local storage if the media service is not connected with the cloud, but you can
watch any movies you want through media streaming service that connects with the
cloud. At present, many automotive and IT vendors provide various systems such
as Blue Link [7], iDrive [8], Uconnect [9], Android Auto [10], CarPlay [11], and so
on. In addition, fundamental studies of an intelligent assistant as next-generation
information systems have been proceeding vigorously [12, 13]. In case of Sirius
[13], it provides an open end-to-end query and response applications for voice and
vision-based intelligent personal assistance (IPA) (Fig. 4.4).

Finally, the driving assistance helps the driver to achieve safety and better
driving. Services such as detecting abnormal operation in driving, predicting
driving behavior, and emergency handling can be implemented as part of the
driving assistance. Although driving assistance service such as hazard warnings can

Fig. 4.2 A layered structure of LDMs [2]

4.2 A Cloud Broker System for V2C Connected Car Service Offloading 107

be implemented only using vehicle’s local information such as sensor data or front
view camera image, it can be more accurate and provide more various extensive
services by using the information of the cloud such as aggregated big data. There
have been a number of works for driving assistance systems such as [14–17]. The
purposes of the driving assistance systems is divided into (1) detecting abnormal
operation in vehicle driving and (2) predicting driver’s behaviors based on sensing
data. As an example of the first issue, Kumar et al. [14] and Ashok et al. [15]
presented a framework for computation offloading of vehicular applications. In
[14], the authors proposed a cloud-assisted system for autonomous driving to
provide computation offloading of sensor data analytics. The system enables
vehicles to avoid obstacles, pedestrians and other vehicles as well as properly
handle emergencies. In [15], the authors proposed a novel architecture to adaptively
manage computation offloading and evaluated its prototype using computer vision
applications like motion hand gesture recognition and traffic light and sign recog-
nition. For the second issue, Pivotal [16] and Blind Motion [17] provides deep

Fig. 4.3 Functional operations of CARASSO [3]

Fig. 4.4 Functional operations of Sirius [13]

108 4 A Cloud Broker System for Connected Car Services …

learning systems to respectively predict destinations of drivers and detect maneu-
vers of vehicles (Fig. 4.5).

4.2.2 An Architecture of the Cloud Broker System
with Service Offloading Strategies

As shown in Fig. 4.6, we consider the V2C service environment consisting of
vehicles, base stations, a cloud broker and a cloud. In the figure, the vehicles are
supposed as end-users of V2C services. Even though the vehicles are equipped with
internal processors, it can be more efficient to offload the services to more com-
putationally rich resource by the following reasons. First, it allows overcoming

Fig. 4.5 Dashboards for the deep learning systems to a predict destinations of drivers [16] and
b detect maneuvers of vehicles [17]

Fig. 4.6 An example of a V2C service environment

4.2 A Cloud Broker System for V2C Connected Car Service Offloading 109

computing and storage limitations of vehicles. Second, it can achieve cost saving by
relaxing the needs to maximize the resource capacity in vehicles. Third, it allows
reducing the battery consumption of in-vehicle computations. Fourth, it enables
cloud-centric services that are not possible in a single vehicle. Thus, we consider
the computation offloading to the cloud in the service environment. The cloud
broker determines whether to offload the vehicle requested services or not. If the
remote execution is decided, the services are executed in the cloud instead of the
vehicles.

Figure 4.7 shows the architecture of cloud broker systems to effectively offload
V2C connected car services. Even though more functionality should be included to
support the whole service operations, the figure illustrates functions related to the
computation offloading. The cloud broker, as the linkage between the vehicles and
the cloud, manages the whole execution of the services. An advantageous
offloading strategy can vary depending on each service. Therefore, the cloud broker
systems consider five offloading strategies by the characteristics of the services as
follows.

• No offloading

No offloading refers to a method of conducting service executions only in vehicles
without using the cloud. Here, the service completion time is equal to in-vehicle
computation time. Non-offloadable services should adopt this strategy mandatorily.
In addition, the strategy is advantageous for services where in-vehicle execution is
more efficient than the service offloading.

• All offloading [18–23]

All Offloading refers to a method of offload every available service execution to the
cloud. Here, the service completion time is the same as the sum of cloud compu-
tation time and data transmission/reception time. This strategy is mandatory for the
cloud-centric services. Also, it is advantageous to adopt the strategy for complex
services in which in-vehicle execution is highly burdensome.

• Network-adaptive offloading [24–28]

Network-adaptive offloading refers to a method for determining whether to offload
services adaptively to real-time network performance. If bTtx; þ bT cloud

comp þ bTrx\bT veh
comp

where bTtx, bT cloud
comp , bTrx, and bT veh

comp are respectively the estimated data transmission
time, cloud computation time, data reception time, and in-vehicle computation time,
the service offloading is executed because the service completion time with the
computation offloading is shorter than in-vehicle computation time. Otherwise, in
case of bTtx; þ bT cloud

comp þ bTrx � bT veh
comp, the service offloading does not occur because

the service completion time with the computation offloading is longer than
in-vehicle computation time.

110 4 A Cloud Broker System for Connected Car Services …

Fig. 4.7 An architecture of the cloud broker system for V2C connected car service offloading

4.2 A Cloud Broker System for V2C Connected Car Service Offloading 111

• Deadline-based offloading [29–32]

Deadline-based offloading refers to a method to determine the service offloading
depending on deadline satisfaction. At first, every service is offloaded to the cloud.
If the service execution in the cloud satisfies the deadline, the service is provided
with the cloud continuously. Otherwise, the next service execution is conducted in
vehicles. Likewise, if the service execution in the vehicles does not meet the
deadline, the next service trial is processed in the cloud.

• Cost-effective deadline-based offloading [33–39]

Cost-effective deadline-based offloading is an extension of deadline-based
offloading. In this method, whether to execute is determined to minimize cost
while guaranteeing to meet the deadline as described in the following optimization
problem:

minCcloud
comp þCcloud

net ð4:1Þ

s:t: T̂tx þ T̂cloud
comp þ T̂rx � deadline or

T̂veh
comp � deadline:

ð4:2Þ

4.3 An Integrated Road Traffic-Network-Cloud
Simulation Framework for V2C Connected Car
Services Using a Cloud Broker System

4.3.1 An Overview

Figure 4.8 shows an overview of the integrated road traffic-network-cloud simu-
lation framework. In the framework, given V2C applications, the network and the
cloud simulations operate tightly coupled based on a vehicular trace obtained by
road traffic simulation. When the simulation begins, the V2C environment is cre-
ated based on the simulation setup, and vehicles start to move along the trace. For
each vehicle, the task execution for every application is requested at the corre-
sponding request interval. Whether to offload the execution is determined by the
offloading policy of said application. If it is determined not to offload, the appli-
cations are executed in the vehicle itself. Otherwise, the applications are offloaded
to clouds for their execution. After the execution, the results are returned to each
vehicle. The simulation framework mimics the entire end-to-end transactions of the
applications and estimates the cost and performance during each step. We note that
the integrated simulation framework is description based on a part of [40].

112 4 A Cloud Broker System for Connected Car Services …

4.3.2 An Architecture of the Integrated Simulation
Framework

Figure 4.9 shows an overall architecture of the simulation framework. In the
framework, the simulation gateway is responsible for managing the overall oper-
ations of the simulation. The overall operations are composed of the following five
steps as shown in Table 4.1.

– Simulation setup: In this step, the simulation users enable to select the region
that would be simulated and manipulate the simulation parameters.

– Task execution emulation: Given the user-specified cloud resource configura-
tion, the simulation gateway carries out cloud resource and task assignment in a
cloud datacenter. Based on the assignment result, the emulation of task exe-
cution is conducted to mimic the computational behaviors of the applications to
be evaluated.

– Main simulation parameter setting: Based on the first and the second step, the
simulation gateway determines the final parameters for the main simulation.

– Main simulation: Requested by the simulation gateway, the main simulation is
conducted by the simulation controller to evaluate the end-to-end performance
and cost of the applications.

– Result analysis: After the main simulation, the simulation gateway provides the
simulation results to the users in a graph form. The simulation results include
service completion time, service costs, and various network performance.

Fig. 4.8 An overview of the integrated road traffic-network-cloud simulation

4.3 An Integrated Road Traffic-Network-Cloud Simulation Framework … 113

• Simulation setup

As the first step, the simulation gateway enables the simulation users to specify the
V2C environment and its region. The users can select the region using
OpenStreetMap [41] with its longitude and latitude. After the selection, a vehicle
mobility scenario is created using SUMO [42]. In addition, the simulation frame-
work provides the users with various parameters to manipulate as shown in

Fig. 4.9 An overall architecture of the simulation framework

Table 4.1 Simulation steps

Request step URI format Step description

Simulation
setup

{Simulation gateway address}:
{port}/sim_setup/{JSON text for
the simulation setup}

Select the region to be simulated and
manipulate the simulation parameters

Task
execution
emulation

{Simulation gateway address}:
{port}/sim_emulation

Emulate the task execution according
to the resulted cloud resource and task
assignment in a cloud datacenter

Main
Simulation
parameter
setting

{Simulation gateway address}:
{port}/sim_preprocessing

Determine the final parameters for the
main simulation based on the
simulation configuration and task
execution emulation

Main
simulation

{Simulation gateway address}:
{port}/sim_start

Run the main simulation

Result
analysis

{Simulation gateway address}:
{port}/sim_results

Provide the graphical summarization
of the simulation results

114 4 A Cloud Broker System for Connected Car Services …

Table 4.2. The parameters are related to the entire simulation, vehicles, other LTE
users, base stations, Internet, a cloud datacenter, applications, and cloud resource
configurations of each application.

• Cloud resource configuration

The simulation framework allows the simulation users to configure VM placement
and task-VM mapping in a cloud datacenter. The VM placement and the task-VM
mapping determine how to locate VMs to each PM and how to assign tasks to each
VM respectively. In the simulation framework, the cloud datacenter is supposed to
consist of clusters with homogeneous PMs for each application only. In addition,
we consider VMs of the same flavor in the simulation.

– VM placement

At present, we implemented three placement strategies as shown in Table 4.3.
VMP-CON is a strategy that maximally consolidates VMs. VMP-MAN is a strat-
egy in which the simulation users can configure the number of the co-located VMs
in a PM. VMP-FAIR, as opposed to VMP-CON, is a strategy that locates a fair
number of VMs in a PM. Under the VMP-CON, we can achieve the reduction of
power consumption by minimizing the number of active PMs. However, this
strategy can increase the possibility of performance degradation caused by per-
formance interference. The VMP-FAIR, on the other hand, can minimize perfor-
mance interference by maximally dispersing VMs, but the corresponding power
consumption increases.

– Task-VM mapping

At present, VMM-FAIR has been implemented in the simulation framework. The
strategy allocates equal number of tasks to VMs for each application.

• Mimicking the task execution

In the simulation framework, the task execution is mimicked based on careful
emulation using real cloud testbed. For the emulation, a single compute node in the
testbed is utilized, and it operates by actually executing the applications to be
evaluated. Figure 4.10 shows the emulation procedure of each application. Given
the results of the VM placement, the emulation module creates the determined
number of VM instances in the compute node. Then, the number of tasks deter-
mined from the task-VM mapping is executed in each VM instance via the emu-
lation agent. After the emulation is finished, the execution results are returned to the
emulation module. The task execution time is given by N eVM � l; e2VM � r2� �

and
N eVEH � l; e2VEH � r2� �

, for clouds and vehicles respectively. l and r denote the
mean and the standard deviation of the aggregated results.

• Main simulation

The main simulation works through an online integration link of road traffic, net-
work, and cloud simulation. As a preliminary stage of the main simulation, the V2C

4.3 An Integrated Road Traffic-Network-Cloud Simulation Framework … 115

Table 4.2 Simulation parameters

Parameter Description

simDuration Simulation duration (s)

v2cModel.vehicle.number Number of vehicles

v2cModel.vehicle.txPower Transmission power of vehicles (dBm)

v2cModel.vehicle.noiseFigure Noise figure of vehicles (dB)

v2cModel.vehicle.maxMobility Maximum speed of vehicles (m/s)

v2cModel.vehicle.
executionPerformanceConstant
ðeVEHÞ

Relative performance constant of vehicles

v2cModel.otherLTEuser.number Number of other LTE users

v2cModel.
otherLTEuser.mobility

Speed of other LTE users (m/s)

v2cModel.otherLTEuser.
inptDataSize

Input data size of other LTE users (byte)

v2cModel.otherLTEuser.
outputDataSize

Output data size of other LTE users (byte)

v2cModel.otherLTEuser.
requestInterval

Request interval of other LTE users (s)

v2cModel.baseStation.number Number of base stations

v2cModel.baseStation.scheduler LTE Mac scheduler

v2cModel.
baseStation.pathLossModel

Path loss model

v2cModel.baseStation.
UlBandwidth

Uplink bandwidth of base stations (MHz)

v2cModel.baseStation.
DlBandwidth

Downlink bandwidth of base stations (MHz)

v2cModel.baseStation.UlEarfcn Uplink Earfcn of base stations (MHz)

v2cModel.baseStation.DlEarfcn Downlink Earfcn of base stations (MHz)

v2cModel.baseStation.txPower Transmission power of base stations (dBm)

v2cModel.baseStation.
noiseFigure

Noise figure of base stations (dB)

v2cModel.baseStation.
handoverAlgorithm

Handover algorithm

v2cModel.internet.dataRate Data rate of Internet (Gb/s)

v2cModel.internet.MTU MTU of Internet

v2cModel.internet.delay Delay of Internet (s)

cloudModel.datacenter.
serverCount

Number of compute nodes

cloudModel.datacenter.
wattsPerServer

Provisioned power in compute nodes (W)

cloudModel.datacenter.PUE PUE

cloudModel.datacenter.
powerCost

Hourly electiricity price ($)

cloudModel.costPolicy Cost policy for VM instances
(continued)

116 4 A Cloud Broker System for Connected Car Services …

Table 4.2 (continued)

Parameter Description

cloudModel.vm.
executionPerformanceConstant
ðeVMÞ

Relative performance constant of VMs

app.{app}.useOrNot Whether or not to use {app} in the simulation

app.{app}.offloadingStrategy.
strategy

Service offloading strategy of {app}

app.{app}.inputDataSize Input data size of {app} (byte)

app.{app}.outputDataSize Output data size of {app} (byte)

app.custom.workloadSize Workload size of Custom if it is determined to use

app.{app}.requestInterval Request interval of {app} (s)

app.{app}.deadline Deadline of {app} (s)

app.{app}.vmNumber Number VMs in the cluster for {app}

app.{app}.vmFlavor Flavor of VM instances for {app}

app.{app}.vmpStrategy.strategy Cloud resource placement strategy for {app}

app.{app}.
vmpStrategy.maxVMinPM

Maximum number of co-located VMs in a compute node
for {app}

app.{app}.
vmpStrategy.manVMinPM

Number of co-located VMs in a compute node for {app}
if the cloud resource placement strategy is Man

app.{app}.vmmStrategy Task-VM mapping strategy for {app}

Table 4.3 VM placement strategies for VM placement module

Scheme Description Pros

VMP-CON Maximize VM Consolidation Power efficient

VMP-MAN Configure the number of VMs located in
each PM according to the simulation setup

Balance the advantages of the
VMP-CON and the
VMP-FAIR

VMP-FAIR Maximize VM dispersion Less performance interference

Fig. 4.10 The emulation procedure of each application

4.3 An Integrated Road Traffic-Network-Cloud Simulation Framework … 117

environment is firstly configured by creating the V2C components (UEs—vehicles
and other LTE users, base stations, EPC, and VMs) and establishing the connection
among them. The vehicular trace is also generated from the vehicle mobility sce-
nario using SUMO [42]. The main simulation is managed by the simulation con-
troller according to each simulation instance as shown in Fig. 4.11. The simulation
instance refers to the service path of each application for each vehicle and other
LTE users. Based on the simulation instance, an end-to-end simulation is carried
out to handle the entire process of applications including the service request,
execution, and response. The whole network mechanisms of the simulation
framework is based on ns-3 [43] and Lena [44]. At present, network transactions
such as data transfer in each simulation instance, have been implemented to con-
sider the LTE model. In addition, as stated above, the task execution in each
simulation instance is mimicked using an emulation based on the user-specified
cloud resource configuration. Note that we assume that only data transfer occurs
without the task execution in the case of other LTE users.

• Result analysis

In the simulation framework, simulation results are summarized as service com-
pletion time, service costs, and various network performance indicators.
Figure 4.12 shows an example of the selected simulation results.

Figure 4.12a, b, c consider service completion time (s). The service completion
time includes data transmission time, data receiving time, and task computation
time. The task computation can be either in clouds or in vehicles. Figure 4.12a, b, c
respectively show the average application processing time with respect to vehicle
IDs, application processing time of a selected vehicle with respect to application
processing trials, and Gantt chart which describes application processing status of
each vehicle with respect to time.

Figure 4.12d shows an analysis of cloud provider’s monthly profit, and it is
calculated as the monthly total cloud service cost of all vehicles—the monthly total
SLA penalty cost—the monthly PM power cost. The figure describes the simulation
results assuming that vehicles are provided with services 6 h a day. The cloud
service cost refers to cloud consumers’ (service providers) service charge to cloud
providers. The cloud service cost includes both computing and network resource
usage cost. The simulation framework utilizes cost policies of public cloud providers
such as Amazon EC2 [45]. The SLA penalty cost refers to the penalty charge if the
cloud provider violates the SLA. In the figure, the SLA penalty costs are shown

Fig. 4.11 Simulation instances

118 4 A Cloud Broker System for Connected Car Services …

Fig. 4.12 An example of the selected simulation results. a Average service completion time (for
all vehicles). b Service completion time (for each vehicle). c Service completion time (Gantt chart).
d Monthly profit analysis of the cloud provider. e Handover count. f Average RLC downlink
throughput. g Average RLC uplink throughput. h Average downlink SINR. i Average uplink
SINR. j PDRC downlink throughput. k PDRC uplink throughput. l Transmitted packet number.
m Received packet number. n Transmitted byte size. o received byte size. p Packet loss ratio

4.3 An Integrated Road Traffic-Network-Cloud Simulation Framework … 119

Fig. 4.12 (continued)

120 4 A Cloud Broker System for Connected Car Services …

Fig. 4.12 (continued)

4.3 An Integrated Road Traffic-Network-Cloud Simulation Framework … 121

Fig. 4.12 (continued)

122 4 A Cloud Broker System for Connected Car Services …

under the following cases: (degradation-proportional, on-demand), (degradation-
proportional, reserved), (Amazon EC2 [45], on-demand), (Amazon EC2, reserved),
(Google Compute Engine [46], on-demand), (Google Compute Engine, reserved),
(Microsoft Azure [47], on-demand), (Microsoft Azure, reserved). We note that the
elements in the 2-tuple refers a SLA penalty cost strategy and a VM pricing type
respectively. As for VM pricing types, we consider both on-demand and reserved
types. On-demand and reserved types of VMs have relatively short billing time unit
(BTU) (e.g., an hour) and long BTU (e.g., a month, an year) respectively. Therefore,
service charges of reserved types of VMs are cheaper than that of on-demand types
in the same period. The PM power cost refers to the operating cost of PMs in a cloud
datacenter, and it is based on Hamilton’s model [48].

Figure 4.12e, f, g, h, i, j, k handle network performance with respect to vehicle
IDs. Figure 4.12e shows the handover count. The handover refers to connecting a
UE to a closer and more signal-strong base station if the signal strength between
them gets weaker. Figure 4.12f, g show the average downlink and uplink
throughput (Kbps) of LTE radio link control (RLC) protocols respectively.
Figure 4.12h, i show the average downlink and uplink SINR (dB) respectively.
Figure 4.12j, k show the average downlink and uplink throughput (Kbps) of LTE
packet data convergence protocol (PDCP). The PDCP refers to a protocol to pro-
vide header compression and decompression of IP data streams, transfer of user
data, and maintenance of PDCP sequence numbers for radio bearers [49].
Figure 4.12l, m, n, o, p handle network performance with respect to flow IDs. The
figures handle the number and size of transmitted and received packets, and packet
loss ratio respectively.

4.3.3 The Extension of the Integrated Simulation Based
on the Inverse Simulation Technique

Even though the integrated simulation framework provides an effective way to
evaluate the V2C connected car services, the simulation users could encounter
difficulties when specifying some simulation parameters intuitively due to lack of
expertise or familiarity with the options. To address this issue, we present a way to
improve the accuracy of the simulation integration (see Fig. 4.13). The first step is
to identify the unknown parameters, which mainly include the environmental
variables. Based on the available real-world measurement of the simulation outputs
in the region, the values of the unknown variables are then estimated using the
inverse simulation technique. Inverse simulation refers to an inverse process of
direct simulation, and it enable to identify the simulation inputs that are difficult to
be determined with the given simulation outputs. At present, the inverse simulation
is widely used in various research areas, and there also have been a lot of recent
works for automotive technology such as [50–54]. The measurement ensures

4.3 An Integrated Road Traffic-Network-Cloud Simulation Framework … 123

accuracy in the estimation due to its results can be considered as the most accurate
simulation results. Finally, the estimated values are utilized in the simulation setup
with the remaining user-specified simulation parameters.

• The estimation of the unknown simulation parameters and its validation
Assuming performance of the backbone network is almost constant, we consider
data rate and delay of Internet as the unknown inputs among the simulation
parameters described in Table 4.2. So far, we describe the detail procedure of
estimate the unknown inputs from the measured service performance.
For the measurement, we built a service prototype of the Blind Motion [17] as
shown in Fig. 4.14. The application detects various driving maneuvers such as
lane changes, obstacle avoidances, overtakes, direction changes, U-turns by
utilizing the sensor data generated by smartphones in the vehicle.

Fig. 4.13 A procedure for the identification of the unknown simulation parameters

Fig. 4.14 A service prototype

124 4 A Cloud Broker System for Connected Car Services …

For the detection, the application needs to learn the relationship between the
sensor data that actcs as the input data and the driving maneuvers that corre-
spond to the output data, using the deep neural network with three hidden layers
in advance. Before training the model using sensor data, the raw sensor data is
preprocessed. Firstly, the raw sensor data is normalized. After the normalization,
in the modifier module, each the normalized data element is multiplied with the
predefined weight to smoothen the data. In the preparation module, several data
sets in csv file format are generated from the smooth data and event json file of
various vehicles. The training and validation data set in both csv and mat file
formats are generated in the post preparation module by aggregating several data
sets generated in the preparation module. After the training data set is generated,
the deep neural network model is trained using the training data set and then
trained model is generated in mat file format.
When the service is started, vehicles (i.e. the end-users), transmit the sensor data
to the cloud at given interval. After receiving the data from each vehicle, the
application server detects the driving maneuvers in the following steps. First of
all, the application server generates chunks of sensor data from the received
data. Secondly, the application server converts chunks of sensor data in csv file
format to the file in mat file format. Third, the application server predicts events
using the chunks of sensor data in mat file format and the trained model. Finally,
the predicted events in csv file format are converted to the json format file. After
the detecting the driving maneuvers in the application server is completed, the
application server transmits the final predicted event data to each corresponding
vehicle. In the prototype, input data is set to about 8 KB, and the corresponding
output data size is set to 0.1 KB.
Table 4.4 shows the hardware specifications of the service prototype. In the
prototype, a smartphone have been utilized as the client device, and the client
part was implemented in it. For the application servers, we have utilized VMs,
and they are built in the OpenStack [55] compute node that has eight cores of
Intel® Xeon® CPU E5-2650 v2 @ 2.60 GHz model and 16 GB RAM.
After installing the prototype on the smartphone, by driving the vehicle
equipped with it, we have measured the network performance to estimate the
unknown parameters. For the region of interest (ROI), we selected two routes
nearby Gapcheon stream as illustrated in Fig. 4.15. For each driving route, the
average driving speed was set to 60 km/h (=16.67 m/s) and 80 km/h

Table 4.4 Hardware specifications of the service prototype

Role Product Specification

Client
device

LG G4 Smart Phone • Hardward: Qualcomm Snapdragon 808, 3 GB
LPDDR3 RAM, 32 GB eMMC

• Telecommunication: 3Band LTE-A
• Operating System: Android 6.0

Cloud
platform

Openstack [55]
Compute Node

• Hardware: Intel Xeon E5620 2.40 GHz (2 Cores),
2 GB RAM, 100 GB HDD

• Operating System: Ubuntu 14.04

4.3 An Integrated Road Traffic-Network-Cloud Simulation Framework … 125

(=22.22 m/s) respectively. While driving, the execution requests were generated
and measured every five second.
Figure 4.16 shows the comparison between measured data transmission time
and its simulated value obtained from the parameter estimation. The yellow line
denotes the measured data transmission time, and its values are 114.145 and

(a) The riverside (b) The expressway

Fig. 4.15 Driving routes illustrated by OpenStreetMap [41] and NAVER Maps API [56]

(a) The riverside

(b) The expressway

Fig. 4.16 The comparison between measured data transmission time and its simulated value
obtained from the parameter estimation using the PIS technique

126 4 A Cloud Broker System for Connected Car Services …

1357.107 ms for the riverside and the expressway respectively. The light blue
bars denote the simulated values, and they have been derived via multiple
simulation trials with various settings of the unknown parameters. For the rest of
the simulation parameters, the simulation setup was conducted using the values
described in Tables 4.5 and 4.6 supposing that the number of vehicles is 40. As
shown in the figure, the simulated values with the estimated unknown param-
eters are quite close to the measured values for both the riverside and the
expressway. We can see that 82.5 and 97.5% of the vehicles show almost the
same valueto that of the measurements.

Table 4.5 The selected simulation parameters and their values

Description Value

Simulation duration 60

Vehicle Number [40, 60, 80]

Maximum speed (m/s) –

eVEH 1

Other LTE user Number 100

Speed (m/s) 1

Input/Output data size (byte) 512/512

Request interval (s) Exp(0.1)

Base station Number 20

Handover algorithm A2-A4-RSRQ

Internet Data rate (Gb/s) 116

MTU 30,000

Delay (s) 0.095

Service (Blind
Motion)

Offloading strategy Deadline-based
offloading

Input/Output data size (byte) 8187/116

Request interval (s) Exp(0.2)

Deadline (s) 4.981

Number of VMs in the cluster 40

Flavor of VM instances t2.small

Maximum number of co-located VMs in a
compute node

10

Number of co-located VMs in a compute node 4

Cloud datacenter eVM 1

Table 4.6 The estimated
task execution time

Number of vehicles

40 60 80

VMs Avg. 2.832 3.006 3.154

Std. 0.259 0.516 0.617

Vehicles Avg. 3.0

Std. 0.5

4.3 An Integrated Road Traffic-Network-Cloud Simulation Framework … 127

4.3.4 A Proof-of-Concept Study of the Service Execution
with the Cloud Broker System

In this subsection, we present a proof-of-concept study of the service execution with
the cloud broker system. To achieve this, we carried out an example of the simulation
using the integrated simulation framework. The simulations have been conducted for
the Blind Motion in three cases where the number of vehicles were 40, 60, and 80
respectively. We utilized the same area with the previous subsection for the simu-
lation region. Figure 4.17 shows the simulation region illustrated by SUMO [42].

• Simulation setup

Table 4.5 shows the selected simulation parameters and their values for the
simulation. We note that the internet data rate and delay have been determined
by the parameter estimation, and the parameters specifying each vehicle and
base station were set based on the default values in ns-3 [43] and Lena [44].
Table 4.6 shows the estimated task execution time based on the results of the
task execution emulation of the Blind Motion. For the emulation, we utilized the
same compute node described in Table 4.4.

• Simulation result

Figure 4.18 illustrates the average completion time. In the figure, we can see
that the number of vehicles whose completion time is longer than the SLA
deadline increases with respect to their total number. The results show that the
average SLA satisfaction ratios throughout the simulation duration are 94.9,
61.8, and 48.6% for the cases of 40, 60, and 80 vehicles respectively. The main
rationale is that when the number of vehicles increases, the more vehicles utilize
the limited cloud resources, and thus the presence of performance interference
among VMs. In this case, to increase the SLA satisfaction ratio, more cloud
resources should be provided while the corresponding cost would be increased.

Fig. 4.17 The simulation
region illustrated by SUMO
[42]

128 4 A Cloud Broker System for Connected Car Services …

Figure 4.19 shows a monthly profit analysis of the cloud provider assuming the
service is executed during 6 h every day. As shown in the figure, the monthly
SLA penalty cost increases with the growth of the number of vehicles. It is
because the average SLA satisfaction ratio is inversely proportional to the
number of vehicles as shown in Fig. 4.18. However, the monthly cloud usage
cost does not vary with the number of vehicles because the number of VMs and
usage time is equivalent. Moreover, the monthly operating cost of compute node
tends to increase with respect to the vehicle amount. The reason for this is that
VM utilization increases as the number of vehicles increases, and causes greater

Fig. 4.18 The average completion time by manipulating the number of vehicles as a 40, b 60, and
c 80

4.3 An Integrated Road Traffic-Network-Cloud Simulation Framework … 129

power consumption. However, we can see that the operating cost in Fig. 4.19b
is smaller than that in Fig. 4.19a. The main rationale is that more service exe-
cution failure occurs in the former case, and it cause smaller VM utilization.

Fig. 4.19 The monthly profit analysis of cloud provider by manipulating the number of vehicles
as a 40, b 60, and c 80

130 4 A Cloud Broker System for Connected Car Services …

4.4 Conclusion

In this chapter, we handled the cloud broker system for V2C connected car services
with an integrated simulation framework. The whole discussion was described in
view of service offloading to a cloud. The service offloading enables to overcome
the limitation of the service execution in a single vehicle and gives the four possible
advantages: providing massive computing power and storage in the cloud, cost
saving by reducing the computation in the vehicle, reducing power consumption by
in-vehicle execution, and enabling to provide cloud-centric services. We firstly
classified the V2C services into three categories: LDM, infotainment, and driving
assistance. We not only introduced the examples of the V2C services belonging to
each category, but also analyzed their offloadability. We then presented the exe-
cution environment for the V2C services and discussed the architecture of the cloud
broker system to offload the V2C services with various offloading strategies. In the
discussion, strategies like network-adaptive offloading, deadline-based offloading,
and cost-effective deadline-based offloading were considered. For the evaluation of
the service offloading, we introduced the integrated road traffic-network-cloud
simulation framework. The framework enables the simulation users to evaluate the
end-to-end performance and cost in the user-specified V2C environment. We also a
way to improve the accuracy of the integration simulation via the estimation of the
unknown simulation parameters. We finally showed a proof-of-concept study of the
service execution with the cloud broker system using the simulation framework,
and the service feasibility was analyzed in terms of performance and cost.

References

1. SBD, Connected Car Global Forecast 2015 (2015)
2. H. Shimada, A. Yamaguchi, H. Takada, K. Sato, Implementation and Evaluation of Local

Dynamic Map in Safety Driving Systems. J. Transp. Technol. 5 (2015)
3. CARASSO (Online), https://aws.amazon.com/solutions/case-studies/bmw
4. Compass4D (Online), http://www.compass4d.eu
5. Drivenet (Online), http://drivenet.pilotlab.co
6. SAFESPOT (Online), www.safespot-eu.org
7. Blue Link (Online), http://bluelink.hyundai.com
8. iDrive (Online), http://www.bmw.com/com/en/insights/technology/technology_guide/

articles/idrive.html
9. Uconnect (Online), http://www.driveuconnect.com

10. Android Auto (Online), https://www.android.com/auto
11. CarPlay (Online), http://www.apple.com/ios/carplay
12. Dragon Drive (Online), http://www.nuance.com/for-business/mobile-solutions/dragon-drive/

index.htm
13. Sirius (Online), http://sirius.clarity-lab.org/
14. S. Kumar, S. Gollakota, D. Katabi, A cloud-assisted design for autonomous driving, in

Proceedings of MCC’12

4.4 Conclusion 131

https://aws.amazon.com/solutions/case-studies/bmw
http://www.compass4d.eu
http://drivenet.pilotlab.co
http://www.safespot-eu.org
http://bluelink.hyundai.com
http://www.bmw.com/com/en/insights/technology/technology_guide/articles/idrive.html
http://www.bmw.com/com/en/insights/technology/technology_guide/articles/idrive.html
http://www.driveuconnect.com
https://www.android.com/auto
http://www.apple.com/ios/carplay
http://www.nuance.com/for-business/mobile-solutions/dragon-drive/index.htm
http://www.nuance.com/for-business/mobile-solutions/dragon-drive/index.htm
http://sirius.clarity-lab.org/

15. A. Ashok, P. Steenkiste, F. Bai, Enabling vehicular applications using cloud services through
adaptive computation offloading, in Proceedings of MCS’12

16. Pivotal (Online), https://pivotal.io
17. Blind Motion (Online), https://blindmotion.github.io/2015/04/11/ml-in-navigation
18. K. Kumar, Y.H. Lu, Cloud computing for mobile users: can offloading computation save

energy? Computer 43(4) (2010)
19. E. Lagerspetz, S. Tarkoma, Mobile search and the cloud: the benefits of offloading, in

Proceedings of PERCOM Workship (2011)
20. S. Kosta, A. Aucinas, P. Hui, R. Mortier, X. Zhang, ThinkAir: dynamic resource allocation

and parallel execution in the cloud for mobile code offloading, in Proceedings of
INFOCOM’12

21. A. Saarinen, M. Siekkinen, Y. Xiao, J.K. Nurminen, M. Kemppainen, P. Hui, SmartDiet:
offloading popular apps to save energy, in Proceedings of SIGCOMM’12

22. S. Simanta, G.A. Lewis, E. Morris, K. Ha, M. Satyanarayanan, A reference architecture for
mobile code offload in hostile environments, in Proceedings of WICSA’12

23. M.V. Barbera, S. Kosta, A. Mei, J. Stefa, To offload or not to offload? The bandwidth and
energy costs of mobile cloud computing, in Proceedings of INFOCOM’13

24. Y. Nimmagadda, K. Kumar, Y.H. Lu, C.S.G. Lee, Real-time moving object recognition and
tracking using computation offloading, in Proceedings of IROS’10

25. M.Y. Ra, A. Sheth, L. Mummert, P. Pillai, D. Wetherall, R. Govindan, Odessa: enabling
interactive perception applications on mobile devices, in Proceedings of MobiSys’11

26. Y. Zhang, H. Liu, L. Jiao, X. Fu, To offload or not to offload: an efficient code partition
algorithm for mobile cloud computing, in Proceedings of ClOUDNET’12

27. H. Flores, S. Srirama, Adaptive code offloading for mobile cloud applications: exploiting
fuzzy sets and evidence-based learning, in Proceedings of MCS’13

28. F. Xia, F. Ding, J. Li, X. Kong, L.T. Yang, J. Ma, Phone2Cloud: Exploiting computation
offloading for energy saving on smartphones in mobile cloud computing. Inf. Syst. Front. 16
(1) (2014)

29. P. Cooper, U. Dolinsky, A.F. Donaldson, A. Richards, C. Riley, G. Russell, Offload—
automating code migration to heterogeneous multicore systems, in Proceedings of
HiPEAC’10

30. H.Y. Chen, Y.H. Lin, C.M. Cheng, COCA: computation offload to clouds using AOP, in
Proceedings of CCGrid’12

31. M.S. Gordon, D.A. Jamshidi, S. Mahlke, Z. M. Mao, X. Chen, COMET: Code Offload by
Migrating Execution Transparently, in Proceedings of OSDI’12

32. D. Huang, P. Wang, D. Niyato, A dynamic offloading algorithm for mobile computing. IEEE
Trans. Wireless Commun. 11(6) (2012)

33. E. Cuervo, A. Balasubramanian, D.K. Cho, A. Wolman, S. Saroiu, R. Chandra, P. Bahl,
MAUI: making smartphones last longer with code offload, in Proceedings of MobiSys’10

34. B.G. Chun, S. Ihm, P. Maniatis, M. Naik, A. Patti, Clonecloud: elastic execution between
mobile device and cloud, in Proceedings of EuroSys’11

35. D. Kovachev, T. Yu, R. Klamma, Adaptive computation offloading from mobile devices into
the cloud, in Proceedings of ISPA’12

36. Y. Zhang, G. Huang, X. Liu, W. Zhang, H. Mei, S. Yang, Refactoring android java code for
on-demand computation offloading, in Proceedings of OOPSLA’12

37. H. Wu, Q. Wang, K. Wolter, Tradeoff between performance improvement and energy saving
in mobile cloud offloading systems, in Proceedings of ICC’13

38. C. Shi, K. Habak, P. Pandurangan, M. Ammar, M. Naik, E. Zegura, COSMOS: computation
offloading as a service for mobile devices, in Proceedings of MobiHoc’14

39. B. Zhou et al., A context sensitive offloading scheme for mobile cloud computing service, in
Proceedings of CLOUD’15

40. H. Kim, J. Han, S.-H. Kim, J. Choi, D. Yoon, M. Jeon, E. Yang, N. Pham, S. Woo, D. Kim,
C.-H. Youn, IsV2C: an integrated road traffic-network-cloud simulator for V2C connected car
services, submitted to SCC’17

132 4 A Cloud Broker System for Connected Car Services …

https://pivotal.io
https://blindmotion.github.io/2015/04/11/ml-in-navigation

41. OpenStreetMap (Online), http://www.openstreetmap.org/
42. SUMO (Online), http://www.sumo.dlr.de/
43. ns-3 (Online), http://www.nsnam.org/
44. Lena (Online), http://networks.cttc.es/mobile-networks/software-tools/lena/
45. Amazon EC2 (Online), htttp://aws.amazon.com/ec2
46. Google Compute Engine (Online), http://cloud.google.com
47. Microsoft Azure (Online), http://azure.microsoft.com
48. J. Hamilton, Cost of power in large-scale data centers, Keynote, at ACM SIGMETRICS 2009

(Online), http://perspectives.mvdirona.com/2008/11/cost-of-power-in-large-scale-data-centers
49. Universal Mobile Telecommunications System (UMTS); Packet Data Convergence Protocol

(PDCP) specification, Technical Specification, ETSI TS 125 323 V5.0.0 (2002)
50. X. Zhang, Z. Hu, X. Du, Probabilistic inverse simulation and its application in vehicle

accident reconstruction. J. Mech. Des. 135(12) (2013)
51. T. Flessa, E. McGookin, D. Thomson, Numerical stability of inverse simulation algorithms

applied to planetary rover navigation, in Proceedings of MED’16
52. Y. Liu, J. Jiang, Inverse dynamics of vehicle minimum time manoeuvre for collision

avoidance problem. Int. J. Vehicle Saf. 9(2) (2016)
53. S.I. You, J.Y.J. Chow, S.G. Ritchie, Inverse vehicle routing for activity-based urban freight

forecast modeling and city logistics. Transp. A Transport Sci. 12(7) (2016)
54. L. Zha, D. Lord, Y. Zou, The Poisson inverse Gaussian (PIG) generalized linear regression

model for analyzing motor vehicle crash data. J. Transp. Saf. Secur. 8(1) (2016)
55. OpenStack (Online), http://www.openstack.org/
56. Naver MAPS API (Online), http://navermaps.github.io/maps.js/
57. Cisco, Cisco visual networking index: forecast and methodology (2015) (Online), http://

www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-networking-index-vni/
complete-white-paper-c11-481360.html

58. C. Jennings, A. Narayanan, D. Burnett, A. Bergkvist, WebRTC 1.0: Real-time communi-
cation between browsers, W3C, W3C Ed. Draft. Aug, no. May, 2014

59. M. Baugher, D. McGrew, M. Naslund, E. Carrara, and K. Norrman, The Secure Real-time
Transport Protocol (SRTP). Internet Soc. RFC 3711 1, 1–56 (2004)

60. F. Wang, J. Liu, M. Chen, CALMS: Cloud-assisted live media streaming for globalized
demands with time/region diversities, in Proceedings of INFOCOM’12

61. A. Amirante, T. Castaldi, L. Miniero, S.P. Romano, Janus: a general purpose WebRTC
gateway, in Proceedings of the Conference on Principles, Systems and Applications of IP
Telecommunications, (2014), pp. 7:1–7:8

62. W.-J. Kim, H. Jang, G.-B. Choi, I.-S. Hwang, C.-H. Youn, A WebRTC based live streaming
service platform with dynamic resource provisioning in cloud, in Proceedings of TENCON’16

63. Docker (Online), https://www.docker.com
64. RabbitMQ (Online), https://www.rabbitmq.com
65. Docker-Swarm (Online), https://www.docker.com/products/docker-swarm
66. cAdvisor (Online), https://github.com/google/cadvisor
67. influxDB (Online), https://influxdata.com/
68. E. Diaconescu, The use of NARX neural networks to predict chaotic time series. WSEAS

Trans. Comput. Res. 3(3), 182–191 (2008)
69. S. Dutta, T. Taleb, A. Ksentini, QoE-aware elasticity support in cloud-native 5G systems, in

Proceedings of ICC’16
70. Amazon EC2, https://aws.amazon.com/ko/directconnect
71. R. Wang, M. Xue, K. Chen, Z. Li, T. Dong, Y. Sun, BMA: Bandwidth allocation

management for distributed systems under cloud gaming, in ICCSN (2015)
72. X. Qi, Q. Yang, D. Nguyen, G. Zhou, G. Peng, LBVC: towards low-bandwidth video chat on

smartphones, in MMSys (2015)
73. H. Madhyastha, T. Anderson, A. Krishnamurthy, N. Spring, A. Venkataramani, A structural

approach to latency prediction, in SIGCOMM (2006)

References 133

http://www.openstreetmap.org/
http://www.sumo.dlr.de/
http://www.nsnam.org/
http://networks.cttc.es/mobile-networks/software-tools/lena/
http://cloud.google.com
http://azure.microsoft.com
http://perspectives.mvdirona.com/2008/11/cost-of-power-in-large-scale-data-centers
http://www.openstack.org/
http://navermaps.github.io/maps.js/
http://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-networking-index-vni/complete-white-paper-c11-481360.html
http://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-networking-index-vni/complete-white-paper-c11-481360.html
http://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-networking-index-vni/complete-white-paper-c11-481360.html
https://www.docker.com
https://www.rabbitmq.com
https://www.docker.com/products/docker-swarm
https://github.com/google/cadvisor
https://influxdata.com/
https://aws.amazon.com/ko/directconnect

74. Y. Wu, B. Li, L. Zhang, Z. Li, F.C.M. Lau, Scaling social media applications into
geo-distributed clouds. IEEE/ACM Trans. Networking 23(3) (2015)

75. H. Kim, J. Han, S.-H. Kim, J. Choi, D. Yoon, M. Jeon, E. Yang, N. Pham, S. Woo, D. Kim,
C.-H. Youn, IsV2C: an integrated road traffic-network-cloud simulator for V2C connected car
services, in submitted to SCC’17

76. H. Shimada, A. Yamaguchi, H. Takada, Implementation and evaluation of local dynamic map
in safety driving systems. J. Transp. Technol. 5, 102–112 (2015). (April)

77. J. Hauswald, L. Tang, J. Mars, M.A. Laurenzano, Y. Zhang, C. Li, A. Rovinski, A. Khurana,
R.G.G. Dreslinski, T. Mudge, V. Petrucci, Sirius: an open end-to-end voice and vision
personal assistant and its implications for future warehouse scale computers, in Proceedings
of ASPLOS’15

134 4 A Cloud Broker System for Connected Car Services …

Chapter 5
Mobile Device as Cloud Broker
for Computation Offloading at Cloudlets

5.1 Introduction

5.1.1 Overview of the Cloud Category

With the development of cloud computing and the evergrowing number of mobile
devices, many applications require higher user’s quality of experience (QoE).
Those applications include computation-intensive tasks for processing, while
offloading the tasks to cloud incurs high communication cost and large latency. In
order to speed up the task execution of latency-sensitive tasks, there proposed a
kind of edge cloud. The edge clouds are also called as fog clouds, cloudlets, mobile
clouds and mobile cloudlets. Cloudlet can be deemed as a very small data center
consisting of network terminals, while mobile cloudlet is constituted through
connection of mobile device to D2D. Edge cloud supports resource-intensive and
interactive mobile applications by providing powerful computing resources to
mobile devices with lower latency. Hence, there constitutes the framework of cloud,
that is, mobile device-edge cloud-remote cloud. The composition of system
infrastructure is shown in the Fig. 5.1.

5.1.2 Computation Offloading from Remote Cloud to Mobile
Cloudlet

With an ever-increasing number of mobile devices and the resulting explosive
mobile traffic, 5G networks call for various technology advances to transmit the
traffic more effectively while changing the world by interconnecting tremendous
amount of mobile devices [1]. However, mobile devices have limited communica-
tion and computation capabilities in terms of computation power, memory, storage,
and energy. In addition to the broadband bandwidth support from 5G, cloud com-
puting needs to be utilized to enable mobile devices to obtain virtually unlimited

© Springer Nature Singapore Pte Ltd. 2017
C.-H. Youn et al., Cloud Broker and Cloudlet for Workflow Scheduling,
KAIST Research Series, DOI 10.1007/978-981-10-5071-8_5

135

dynamic resources for computation, storage and service provision that will overcome
the constraints in the smart mobile devices. Thus, the combination of 5G and cloud
computing technology are paving the way for giving rise to more attractive appli-
cations, which involve compute-intensive task execution at “small” device carried by
mobile use who enjoys “large” capabilities enabled through the new technologies.

With the support of mobile cloud computing (MCC) [2], a mobile user basically
has one more option to execute the computation of its application, i.e., offloading
the computation to the cloud [3]. Thus, one principal problem is that, under what
conditions a mobile user should offload its computation to the cloud [4]? An
illustrative scenario of computation offloading at remote cloud is shown in
Fig. 5.2a, where a user is covered by WiFi. Since the terminal device at user end
has limited resources, i.e., hardware, energy, bandwidth, etc., the cellphone itself is
infeasible to finish some compute-intensive task. Instead, the data related to the
computation task can be offloaded to the remote cloud via WiFi which is free of
charge. After the execution of the computation task in the remote cloud, the
computation result will be sent back to the user’s cellphone. We call this compu-
tation offloading mode as “remote cloud service” (RCS), as shown in Fig. 5.2.
Typically, WiFi is used in RCS and user mobility is seriously limited within areas
covered by WiFi. In the case that a mobile user moves into an outdoor environment
without WiFi coverage, the computation task must be offloaded to the remote cloud
via cellular network, which results in high communication cost. Compared with
traffic offloading [5, 6], applications involving computation offloading usually are
more delay-sensitive. Thus, how to design a cost-effective computation offloading
service mode while achieving good Quality of Experience (QoE) becomes an
important problem to be solved in this work.

With the development of mobile devices in terms of increased memory and
computational capability, a novel peer-to-peer communication model for MCC is
proposed to interconnect nearby mobile devices through various short range radio
communication technologies (e.g., WiFi, Bluetooth, etc.) to form mobile cloudlets,
where a mobile device can work as either a computational service provider or a
client of service requester [7]. In recent years, direct short range communications
between cellular devices known as device-to-device communications (D2D) have

Fig. 5.1 Illustration of the category of cloud: mobile device, cloudlet, remote cloud

136 5 Mobile Device as Cloud Broker for Computation Offloading …

been widely studied, where a comprehensive discussion of related usage cases and
business models are given in [8]. In [9], a fundamental question while utilizing
cloudlet is proposed as follows: whether and under what conditions mobile cloudlet
is feasible for providing mobile application services. To answer the question,
cloudlet size, cloudlet node’s lifetime and reachable time are defined. However, the
computation offloading is limited only when a computation node (i.e., cloudlet
service requester) keeps contact with a service node (i.e., cloudlet service provider)
[9]. We denote the previous computation offloading mode for cloudlet assisted
service as “connected ad hoc cloudlet service” (CCS). Under CCS mode, the
computation task is offloaded to another local cloudlet node when there are
available D2D connectivities during the whole procedure including computation
offloading, computation execution, and computation feedback. Though local D2D
connectivity might be unavailable due to network dynamic, one advantage of
employing CCS is the lower communication cost and short transmission delay
compared to the case when the computation task is offloaded to remote cloud. We
articulate the features of RCS and CCS mode as follows:

• RCS mode: with the support of stable 3G/4G, computation nodes offload their
computation tasks to remote cloud at any time. The advantages of remote cloud
mode include high reliability and the provisioning of on-demand service. The
disadvantage is the higher cost by using cellular network resource.

• CCS mode: once available D2D connectivity is built up between computation
node and service node, the energy cost is economical since local wireless (e.g.,
WiFi) can be utilized for content delivery and whatever communications
involved to lead the completion of the offloaded computational task. The

Fig. 5.2 Illustration of computation offloading through remote cloud service mode

5.1 Introduction 137

limitation of CCS mode is the strict requirement on the contact duration between
a computation node and a service node to guarantee enough processing time for
the offloaded computational task. Once a computation node and a service node
are disconnected due to mobility or other network dynamics while the offloaded
computational task is not finished, the computation execution is failed.

5.1.3 Cloud Broker from Cloud to Mobile Device

According to discussions in previous sections, cloud broker used by remote cloud is
capable of arranging cloud resources and user tasks overall and dispatching work
flows and virtual machines, so as to reduce the latency and energy consumption to
the maximum extent. In case of computation offloading from remote cloud to
mobile cloudlet, our cloud broker also is transferred from the remote to mobile
device. That is to say, in case of the utilization of mobile cloudlet, cloud broker of
the moment becomes the mobile device with tasks, and it is capable of perceiving
user tasks and surrounding resources, and knows how to dispatch those tasks and
resources reasonably, so as to attain the minimum latency and energy consumption
of task processing. Here, we call mobile device with the functions of cloud broker
as computation node. And mobile cloudlet composed of mobile device and pro-
cessing tasks is called service node. Computation task requiring for processing is
called computation task.

• A computation task can be divided into multiple sub-tasks.
• Depending on specific applications, the sub-tasks are different with each other or

identical.
• The content delivery for a sub-task can be finished during a short contact period

between computation node and service node, while the computation execution
incurs relatively longer delay.

• Each service node only can be utilized for one sub-task.
• We don’t consider packet loss and the communication cost is decided by the

amount of data transferred in the network.

Table 5.1 shows the detailed terminologies.

Table 5.1 Definition of Terminologies

Terminology Definition

Computation
task

Data associated with a computation

Computation
node

A node which has a computation task to be executed, it can also be called
Task node

Service node A node which is available to provide service for computation node to handle
a sub-task

Sub-task Multiple sub-tasks consist of a computation task

Sub-task result The execution result of a sub-task by service node

138 5 Mobile Device as Cloud Broker for Computation Offloading …

5.2 New Architecture of Computation Offloading
at Cloudlet

The major focus of previous work is to minimize the cost by finding an optimal
tradeoff between CCS mode and RCS mode. We propose a novel service mode for
cloudlet-assisted computing by considering the following realistic scenario. The
typical contact duration might be too short to guarantee a valid computation
offloading, execution and result feedback under CCS mode. However, it is rea-
sonable to presume that the contact duration is enough to transmit the content
associated with the computation to the service node via D2D connectivity. After the
connection between the computation node and the service node is over, the com-
putation is still processed in the service node for a certain amount of time until the
sub-task execution is finished. We call this new service mode as “opportunistic ad
hoc cloudlet service” (OCS). The basis idea of OCS is the utilization of the
opportunistic contacts among computation node and service nodes while not lim-
iting the mobility of the user. It is assumed that each computation task has a certain
deadline, by the end of which the computation result should be sent back from
service nodes to computation node, and the locations of the service nodes have
three possibilities: (i) meeting computation node again; (ii) losing D2D connectivity
with computation node while seeking help from 3G/4G; (iii) losing connectivity
with computation node while WiFi is available. Based on the above three scenarios,
we divide OCS service modes into three categories as follows:

• OCS (back & forth): In [10], Li et al. proposed a mobility-assisted computation
offloading scheme, which calculates the probability of meeting twice between a
pair of computation node and service node. To calculate the probability, the
statistics of node mobility are used. Before the computation task deadline, once
service node meets computation node again while the execution of the allocated
sub-task is finished, the sub-task result can be successfully sent to the compu-
tation node. We call this computation offloading service mode via ad hoc
cloudlet as “back-and-forth service in cloudlet”. However, the user mobility
under this mode is typically limited within a certain area, in order to guarantee
the second meeting between the computation node and the service node. The
mobility support of OCS (back&forth) mode should be higher than that of CCS
and RCS (WiFi). Thus, the rank of mobility support is marked as “medium” in
Table 5.2.

• OCS (one way-3G/4G): It’s challenging to achieve cost-effective computation
offloading without sacrificing the mobility support and the mobile nodes’
freedom, i.e., a service node might roam to another cell. For sake of generality,
let’s consider the scenario without WiFi coverage, where service node needs to
upload the sub-task result to cloud via 3G/4G. Typically, the data size of
sub-task result ðSresultsub�tkÞ is smaller than the size of the original sub-task that
service node receives (i.e., Srecvsub�tk). Let r denote the ratio of Sresultsub�tk and Srecvsub�tk.
The lower r is, the better performance of OCS (one way-3G/4G) mode will be.

5.2 New Architecture of Computation Offloading at Cloudlet 139

• OCS (one way-WiFi): In case that the service node roams to a different cell
which is covered by WiFi, e.g., the mobile user goes back to home, the sub-task
result can be uploaded to the cloud via WiFi. For most practical values of r, the
communication cost under this service mode is between RCS (WiFi) and RCS
(3G/4G).

Table 5.2 compares the features of various computation offloading service
modes in terms of different performance metrics, such as cost, scalability, mobility
support, freedom of service node, and computation duration.

Figure 5.3 shows illustrative examples to explain the above three OCS service
modes. Rachel gets a compute-intensive task, which is infeasible to be executed

Table 5.2 A comparison of service modes for task offloading

Structure Service
Mode

Cost Scalability Mobility
Support

Freedom of
Service Node

Computation
Duration

Remote
Cloud

RCS
(3G/4G)

High Coarse High N/A Medium

RCS (WiFi) Low Coarse Low N/A Medium

Ad Hoc
Cloudlet

CCS Low Coarse Low Low Low

OCS (back
\&forth)

Low Medium Medium Medium High

OCS (one
way-3G/4G)

Medium Fine High High High

OCS (one
way-WiFi)

Low Fine High High High

Fig. 5.3 Illustration of the computation offloading at Ad Hoc Cloudlet

140 5 Mobile Device as Cloud Broker for Computation Offloading …

timely by her own mobile phone. Within the range of D2D connectivity, Rachel has
four friends named Bob, Eva, Cindy and Suri whose mobile phones are in idle
status. Thus, Rachel divides the computation task into four sub-tasks, and forwards
the corresponding contents to their four mobile phones via D2D links, respectively.
Cindy does not move much, and keeps connectivity with Rachel. After execution,
Cindy’s sub-task result is sent to Rachel directly under either CCS or OCS
(back&forth) service mode. In comparison, Bob and Suri moves to another cell
before the end of sub-task execution. Thus, they use OCS (one way- 3G/4G) service
node to upload sub-task result to the cloud. As for Eva, let’s assume she comes back
to her home with the WiFi support, and thus utilizing OCS (one way-WiFi) service
mode.

Since OCS does not require that both computation node and service nodes
should keep contact or locate in a certain area, it has higher scalability. In fact, OCS
is especially useful in some applications where the size of data content associated
with a task is large while the size of result data is relatively small. Given application
of image segmentation as example, the size of pictures generated by an image
sensor of the mobile device can be large. Thus transmitting the whole picture to the
cloud via 3G/4G link consumes much valuable bandwidth and energy. Under OCS
(one way-3G/4G) mode, computation node first delivers the whole picture along
with image segmentation code to a service node via D2D links. After performing
the segmentation code for the whole picture, only a certain region of interest
(ROI) in the picture is obtained as the computation result. Uploading the small size
of ROI to the cloud via 3G/4G links leads to cost saving compared to RCS mode,
while OCS offers more freedom for computation node and service node without the
requirement of a strict contact duration compared to CCS mode. Moreover, in some
hostile environments, for example military operations and disaster recovery, RCS
mode is usually not viable in such emergent situations. By comparison, OCS mode
is more flexible to overcome this problem. Therefore, OCS mode can be considered
as a novel compromised mode between CCS mode and RCS mode, and thus
yielding more flexibility and cost effectiveness to enable a more energy-efficient
and intelligent strategy for computation offloading by the use of cloudlet.

5.3 A Study on the OCS Mode

5.3.1 Computation Allocation

Before offloading the computation task to the ad hoc cloudlet, the principal problem
for the computation node is how to divide the computation task into a certain
number of sub-tasks. This problem is related to the number of service nodes ðNsnÞ,
as well as their processing capability. Intuitively, the larger Nsn is, the higher
accumulated capacity of computation that the service nodes possess, and the

5.2 New Architecture of Computation Offloading at Cloudlet 141

computation duration will be shorter. However, it is critical to decide an optimal
number of sub-tasks, and the following strategies can be considered:

• If we assume that the number of nodes within the same cell is stable everyday,
the node number can be estimated by the number counted in the last day. The
number of sub-tasks can be the same as the number of service nodes.

• Based on social network, the relationships among users can be extracted.
Usually, the service nodes who have strong connections with the computation
node are more likely to accept the sub-task assignments.

Once we know the number of sub-tasks, the left problem is to decide how to
divide the computation tasks. There are several ways to divide the computation
tasks:

Static Allocation: For general case, the computation node does not know the
computational capability of the service nodes. Thus, for the sake of simplicity, we
assume the capability of all the service nodes is similar. The computation node
assigns sub-tasks equally among service nodes. However, the weak point of this
strategy is that the computation duration is calculated based on the worst delay for a
sub-task execution.

Dynamic Allocation: More realistically, the capability of the service nodes should
be different. When the information of service nodes in terms of processing capa-
bility can be obtained, we can achieve the assignment of sub-tasks with more
intelligence. Typically, if the capability is higher, sub-task with heavier computa-
tion load will be allocated.

5.3.2 Computation Classification

For computation classification, we further divide the sub-task into two situations,
i.e., (i) the sub-tasks are different from each other; (ii) the sub-tasks can be cloned to
each other:

• Opportunistic ad hoc cloudlet service without computation task clone: Given
an example scenario as shown in Fig. 5.4a, Rachel has 10 pictures, each of
which contains special region of interest (ROI). If the dynamic method is used,
the computation node (corresponding to Rachel) can divide the computation
task (i.e., handling the 10 pictures) into four various sub-tasks which are
assigned to Cindy, Bob, Suri and Eva, respectively. Each person has specific
computational capability. As an example, Cindy and Bob get three and two
pictures, while Suri and Eva are allocated 1 and 4 pictures, respectively.
Obviously, the four sub-tasks are different at two aspects. First, the number of
pictures that each sub-task contains is different. Second, each picture is different.
After ROIs are segmented, the result will be sent back to the computation node.

142 5 Mobile Device as Cloud Broker for Computation Offloading …

• Opportunistic ad hoc cloudlet service with computation task clone: In some
application, a computation task can be divided into numerical equivalent
sub-tasks. For this case, after a service node receives a sub-task, the sub-task
content can be cloned and offloaded to another service node, which is similar
with epidemic model. As shown in Fig. 5.4b, the sub-task containing the same
content is duplicated to nearby service nodes, in order to accelerate the exe-
cution of the computation task. Regarding energy consumption aspect, the cost
will be decreased since D2D is utilized during the flooding of the sub-tasks.
There are two important parameters for building the model in this situation:
(1) the initial number of task nodes; (2) the current number of service nodes that
have the sub-tasks.

5.4 Allocation Problem in Mobile Device Broker

As shown in Table 5.2, different service modes have both advantages and disad-
vantages. Trade-offs are arising when we need to provide users with high QoE,
while saving the communication cost and maintaining a degree of scalability for
enabling a wide range of intelligent applications.

In this section, cost under these different service modes will be analyzed. Let us
consider the scenario where M nodes exist in the cell and WiFi is not available by
default (if the situation has WiFi, we use WiFi first). For the sake of simplicity,
assume there is only one computation node, which has a computation task with a
total size of computation load Q. The task can be divided into n sub-tasks. Assume
each service node can process xi in dynamic allocation, then

Pn
i¼1 xi ¼ Q. Energy

cost includes three parts, i.e., computation offloading, computation execution and
computation feedback.

Fig. 5.4 Illustration of sub-task offloading in opportunistic ad hoc cloudlet service: a without
computation task clone; b with computation task clone

5.3 A Study on the OCS Mode 143

• RCS: let Ecell
n!c denote the per unit communication cost from computation node

to cloud; let Ecell
c!n denote the per unit communication cost for cloud-based result

feedback; let Ecloud
proc denote the per unit energy cost for computation tasks pro-

cessed in cloud. Then, the total cost at cloud can be calculated as:

CRCS ¼
Xn

i¼1

ðEcell
n!cxi þEcloud

proc xi þ rEcell
c!nxiÞ

¼ QðEcell
n!c þEcloud

proc þ rEcell
c!nÞ

ð5:1Þ

• CCS: The major energy consumption is caused by D2D communications and
energy of periodically probing the surrounding nodes. Let ED2D denote the per
unit communication cost from computation node to service node; let Enode

proc

denote the per unit energy cost for service node to process a sub-task locally; let
q denote the probing cost per time unit; let t� denote the task duration for a
successful computation offloading. This is related to the average meeting rate of
two nodes in the cell, we denote it as k. Then,

CCCS ¼
Xn

i¼1

ðED2Dxi þEnode
proc xi þ rED2DxiÞþMqt�

¼ QðED2D þEnode
proc þ rED2DÞþMqt�

ð5:2Þ

• OCS: If we consider a typical scenario where WiFi is not available when a
service node roams to another cell, OCS will include two cases, i.e., OCS
(back&forth) and OCS (one-way-3G/4G). In case of OCS (back&forth), we
need to consider the probability (P, 0�P� 1) of service node meeting com-
putation node twice, where D2D is utilized to deliver the sub-task result.
Otherwise, cellular network is the only way for communications due to the
intrinsic feature of OCS (one-way-3G/4G). We use the same symbols as above,
Then,

COCS ¼ QðED2D þEnode
proc Þþ rPQED2D þ rð1� PÞ

QðEcell
n!c þEcell

c!nÞþMqt�
ð5:3Þ

Typically, the cost for a service node to offload computation task to the cloud or
for the cloud to sent back the computation result to the computation node via 3G/4G
are larger than D2D cost, i.e., Ecell

n!c;E
cell
c!n [ED2D; the processing cost in the cloud

is large than in service node, i.e., Ecloud
proc [Enode

proc . Thus, considering energy and
delay under various scenarios, it is expected that flexible trade-offs should be
achieved according to specific application requirements. Figure 5.5a shows the

144 5 Mobile Device as Cloud Broker for Computation Offloading …

comparison of cost in terms of RCS and OCS mode. The cost of RCS is represented
by the solid blue curve, while the other lines represent the cost of offloading by the
use of OCS mode with various r. As Ecell

n!c;E
cell
c!n [ED2D, so when r is less than 1,

OCS mode with low ED2D always has lower cost than RCS. However, when r is
larger than 1, the cost of OCS increases with the increase of r and growth speed is
larger than the growth rate of RCS. Furthermore, When ED2D increases, the cost of
OCS becomes larger. In summary, OCS outperforms RCS in following three cases:
(1) ED2D ¼ 0:5, r\2; (2) ED2D ¼ 1, r\1:15; (3) ED2D ¼ 1:5, r\0:5, as shown in
Fig. 4a.

In Fig. 5.5b, the cost of CCS and OCS is compared. Among the three schemes,
OCS with computation clone exhibits the lowest cost and always outperforms than
the other schemes. This is because OCS with clone yields the fastest speed to
complete the task. When 0:00002� k� 0:00014, CCS outperforms OCS without
computation clone in terms of energy cost, since OCS without computation clone
needs to upload sub-task results to the cloud while CCS saves this cost. When k
increases, the contact duration becomes smaller which may cause the failure of
sub-task’s execution in CCS. Thus, when k is larger than 0.00014$, OCS without
computation clone has better performance than CCS.

Figure 5.5c shows the comparison of computation duration in terms of OCS and
CCS modes. Given a fixed k, computation duration of OCS is shorter than that of
CCS. With the increase of k, OCS yields better delay performance. It is because the
frequency of computation node meeting with service nodes increases with a larger
k. For CCS, computation duration gradually decreases from a small k (e.g.,
0.00002–0.0001). However, with the continuous increase of k, the computation
duration of CCS starts to increase again. It is because the contact duration (meeting
time) becomes smaller, which causes the insufficient contact time to enable a
successful sub-task offloading, execution and feedback. As discussed above, we can
draw the conclusion that:

• RCS mode: If the computation node is highly sensitive to delay, i.e., the user
can afford higher cost to achieve good QoE, 3G/4G can be used to enable
computation execution at RCS.

Fig. 5.5 Comparison of energy cost between RCS and OCS with various r

5.4 Allocation Problem in Mobile Device Broker 145

• CCS mode: If the computation node has major concern in terms of cost while
the movement of service node is limited, CCS is a good choice.

• OCS mode: If the size of the computation result is much smaller than the size of
computation task, i.e., r is lower, OCS is more cost-effective while enabling
maximum freedom for computation node and service nodes.

References

1. V. Leung, T. Taleb, M. Chen, T. Magedanz, L. Wang, R. Tafazolli, Unveiling 5G wireless
networks: emerging research advances, prospects, and challenges. IEEE Network 28(6), 3–5
(2014)

2. T. Taleb, A. Ksentini, Follow me cloud: interworking federated clouds and distributed mobile
networks. IEEE Network 27(5), 12–19 (2013)

3. H. Flores, S. Srirama, Mobile Code Offloading: Should It Be A Local Decision Or Global
Inference? in Proceeding of ACM MobiSys, (2013)

4. M. V. Barbera, S. Kosta, A. Mei, J. Stefa, To Offload or Not to offload? The Bandwidth and
Energy Costs for Mobile Cloud Computing, in Proceedings of IEEE INFOCOM, (2013)

5. B. Han, P. Hui, V.S.A. Kumar, M.V. Marathe, J. Shao, A. Srinivasan, Mobile data offloading
through opportunistic communications and social participation. IEEE Trans. Mob. Comput.
11(5), 821–834 (2012)

6. X. Wang, M. Chen, Z. Han, et al., TOSS: Traffic Offloading By Social Network
Service-Based Opportunistic Sharing In Mobile Social Networks, in Proceedings of IEEE
INFOCOM, (2014)

7. H. T. Dinh, C. Lee, D. Niyato, P. Wang, A survey of mobile cloud computing: architecture,
applications, and approaches. Wireless Commun. Mob. Comput. (2011)

8. L. Lei, Z. Zhong, C. Lin, S. Shen, Operator controlled device-to-device communications in
LTE-advanced networks. IEEE Wireless Commun. 19(3), 96–104 (2012)

9. Y. Li, W. Wang, Can Mobile Cloudlets Support Mobile Applications? in Proceedings of
IEEE INFOCOM, (2014)

10. C. Wang, Y. Li, D. Jin, Mobility-Assisted Opportunistic Computation Offloading. IEEE
Commun. Lett. 18(10), 2014

146 5 Mobile Device as Cloud Broker for Computation Offloading …

Chapter 6
Opportunistic Task Scheduling Over
Co-located Clouds

6.1 Introduction

Nowadays, due to the explosive increase of mobile devices and data traffic, various
innovative technologies have been developed to transfer data more efficiently by the
use of large quantities of mobile devices connected with each other. However, as
mobile devices have limitations in terms of computing power, memory, storage,
communications and battery capacity, the computation-intensive tasks are hard to
be handled locally. Fortunately, the paradigm of mobile cloud computing
(MCC) enables mobile devices to obtain extra resources for computing, storage and
service supply, and may overcome above limitations [1]. Typically, computation-
intensive tasks can be uploaded to the remote cloud [2] through cellular network or
WiFi. Though WiFi is energy efficient with high data rate, its connections are
intermittent in mobile environments. In contrast to WiFi, cellular network provides
stable and ubiquitous connections with high cost.

In recent years, as a direct short-range communication mode between devices in
the same district, device-to-device communication (D2D) has been well studied in
terms of its techniques, application cases, and business models [3–5]. With the
enormous increase of mobile devices with high memory and computing power, a
new type peer-to-peer communication mode for MCC, called ad hoc cloudlet or
mobile cloudlets, has been introduced [6]. In a mobile cloudlet, a mobile device can
be either a service node or a computing service requester (referred to as task node).
When the connection of D2D is available in the mobile cloudlets, task node can
offload the computing task to the cloudlet. The use of mobile cloudlets leads to low
communication costs and short transmission delay, however, the intermittent D2D
connections may quickly become invalid due to network dynamics.

In mobile environment, remote cloud and mobile cloudlets both have advantages
and disadvantages for task offloading. The keypoint of our work in this chapter is to
find the compromised service mode by the use of remote cloud and mobile
cloudlets to minimize the cost and still ensure good-enough quality of experience

© Springer Nature Singapore Pte Ltd. 2017
C.-H. Youn et al., Cloud Broker and Cloudlet for Workflow Scheduling,
KAIST Research Series, DOI 10.1007/978-981-10-5071-8_6

147

(QoE) [7]. As shown in Table 6.1, remote cloud based service mode has short-
coming of high cost, while the efficiency of mobile cloudlets oriented service mode
is closely related with user’s mobility. To solve the problem, in this chapter, we
proposes a new task offloading mode named “Opportunistic task Scheduling over
Co-located Clouds’’ (OSCC) which divides into three categories including OSCC
(back\&forth), OSCC (one way-WiFi) and OSCC (one way-Cellular Network). We
analyze the performance of the OSCC mode extensively in terms of task duration
and energy cost under different application scenarios. In this chapter, the energy
cost mainly includes communication cost and processing cost. The communication
cost is consumed for task offloading, computation result feedback. The communi-
cations can be achieved by either D2D link or cellular network. The processing cost
consists of processing energy cost in either clouds or local nodes. The optimal
solution of task allocation is given to achieve minimum energy cost. Basically, it’s
more energy efficient to allocate more workloads to the service nodes with higher
mobility and larger computing capacities. Furthermore, we introduce two different
kinds of task allocation schemes, i.e., dynamic allocation and static allocation.
Under both mobile cloudlets mode and OSCC mode, dynamic allocation exhibits
lower cost than static allocation. We provide some insights based on the perfor-
mance evaluation, and the following question is answered: given a computation
task, what is the optimal task partitioning strategy, i.e., how many sub-tasks should
be divided to optimize the integrated performance in terms of task duration and
energy cost. In conclusion, the OSCC mode outperforms remote cloud mode and
mobile cloudlets mode due to a better tradeoff between cost and mobility support.

6.2 Background and Related Works

We introduce the existing methods for task offloading, which are classified into two
categories: (1) based on the remote cloud, (2) with the help of mobile cloudlets.

Table 6.1 A comparison of service modes for task offloading

Structure Communication
style

Cost Scalability Mobility
support

Freedom of
service node

Computation
duration

Remote
cloud

Cellular network High Coarse High N/A Medium

WiFi Low Coarse Low N/A Medium

Mobile
cloudlets

D2D Low Coarse Low Low Low

Co-located
clouds

D2D Low Medium Medium Medium High

D2D and
cellular network

Medium Fine High High High

D2D and WiFi Low Fine High High High

148 6 Opportunistic Task Scheduling Over Co-located Clouds

6.2.1 Task Offloading Based on Remote Cloud

Along with the development of MCC, mobile users can upload their computing
tasks [8, 9] to the cloud and the cloud will return the result to them after the
completion of the computing tasks [10, 11]. This is traditional task offloading mode
as shown in Fig. 6.1. Mobile devices can offload computing related tasks to the
cloud in two ways. One is through WiFi for cost saving as shown in Fig. 6.1a while
the other is through expensive cellular network (e.g. 3G/4G/5G) as shown in
Fig. 6.1b in case WiFi is unavailable. Therefore, a major question is: under what
situation should the mobile users offload the computing tasks to the cloud [12]?
Previous work introduced various offloading strategies. Clonecloud [13] has pro-
posed cloud-augmented execution by using cloned virtual image as a powerful
virtual unit. Kosta et al. [14] has proposed a dynamic resource allocation and the
framework of parallel execution named ThinkAir. As for the parallel task [15]
allocation on the mobile devices, Jia et al. [16] designed a kind of heuristic
offloading scheme. Different from the existed research work, Lei et al. [17] first
considers the interactions between the offloading decision function of MCC and the
radio resource management function of wireless heterogeneous network (HetNet),
and the offloading decision is made considering both the offloading gain and the
cost of using the HetNet when a Service Level Agreement (SLA) is established with
it. Under this framework, the mobile users may enjoy the cloud services with good
QoE regardless of spectrum scarcity. However, these researches mainly takes what,
when and how to offload the task from the mobile to cloud. In Flores et al. [18], the
main consideration is how to offload the tasks to the cloud in real situation.
Provided with stable support from the cellular network, smartphone can offload the
computing task to the remote cloud at any time and any places. The advantage of
this mode is high reliability in the service supply while the disadvantage is the high
cost and delay of the cellular network [19].

Fig. 6.1 Illustration of task
offloading through remote
cloud service mode: a remote
cloud service mode via WiFi;
b remote cloud service mode
via cellular networks

6.2 Background and Related Works 149

6.2.2 Task Offloading Based on Mobile Cloudlets

The concept of cloudlet was presented in Satyanarayanan et al. [20] and then
discussed in Miettinen et al. [21]. These cloudlets are described as “data center in a
box”. Nowadays, discussions on cloudlets focus on the definition of the cloudlet
size, lifetime of cloudlets node life and available time to solve a basic problem of
the cloudlets: under what condition is it feasible for the mobile cloudlets to provide
mobile application service [6]. Moreover, Wang et al. [22] has proposed a kind of
opportunistic cloudlet offloading mechanism based on mobile cloudlets and
Truong-Huu et al. [23] has proposed a kind of stochastic workload distribution
approach based on mobile cloudlets. However, only when task node is connected
with service node, can the task offloading be allowed. After the D2D connection is
built up between the task node and service node, the energy cost is economic since
the content delivery are carried out through the local wireless network (i.e. WiFi
and bluetooth). Zhou et al. [24, 25] firstly propose a distributed information-sharing
strategy with low complexity and high efficiency. The limitation of mobile cloudlets
lies in the strict requirement on time because the task node and service node shall
have enough time to offload the computing tasks and treat the feedback. Once the
task node and service node disconnect due to high user mobility and other factors of
network dynamics while task offloading is not completed, the computing will fail.

6.3 Opportunistic Task Scheduling Over Co-located
Clouds Mode

6.3.1 Motivation

Along with the rapid development of wireless communication and sensor tech-
nology, the mobile devices are equipped with more and more sensors, as well as
powerful computing and perception abilities. Under such background, the crowd-
sourcing application emerges as a new type of mobile computing: a large number of
users utilize mobile devices as basic sensing units to achieve distributed data,
collection and utilization of the perception tasks and data through mobile Internet to
complete even larger and more complicated social perception tasks. The partici-
pants who complete the complicated perception tasks with crowdsourcing do not
need professional skills. The crowdsourcing has succeeded in the applications of
positioning, navigation, urban traffic perception, market forecasting, opinion min-
ing, etc. which are labor-intensive and time-consuming. Based on the vast quantity
of common users, it distributes tasks in a free and voluntary manner to common
users and let them complete the tasks that they can never complete independently.
The idea of crowdsourcing also has broad applications for task offloading [18, 26].

In this chapter, the task offloading is realized by remote cloud and mobile
cloudlets. We consider that either traditional remote cloud or mobile cloudlets

150 6 Opportunistic Task Scheduling Over Co-located Clouds

exhibits a certain limitation during task offloading, especially under limited band-
width. Given the application of image segmentation as a typical scenario (see
Sect. 6.4.1 for details), the size of the picture taken by a mobile device is generally
large. However, the user only care some specific region of interest (ROI). For
example, the interest of some users towards a whole picture is only the face image
appearing in the picture. Compared to the size of the picture, the size of such ROI is
much smaller. In order to achieving energy saving, it’s beneficial to finish the task
of image segmentation locally. However, the transmission of the whole picture to
the cloud is a must using remote cloud service mode. In comparison, the energy
cost for offloading the task to the cloud through the cellular network can be
eliminated in either mobile cloudlets service mode or OSCC mode. However, the
use of mobile cloudlets service mode incurs the limit on user’s mobility. Thus, how
to design an optimal solution to minimizing energy cost while guaranteeing high
user’s QoE is a challenging issue.

6.3.2 OSCC Mode

In mobile cloudlets, user mobility or network dynamics make contacting time of
two users short, which decreases the probability of task completion. However, we
assume that the contacting time via D2D link is enough for a task node to transmit
content associated with computation to a service node. When the task node and the
service node disconnect, the computing of the service node will still carry on until
the sub-tasks complete. We call the new service mode as OSCC. A basic feature of
OSCC is that the contact between the task node and the service node can be either
short or long instead of limiting users’ mobility to guarantee the contact time for
task completion in conventional cloudlet based service mode. We assume each
computing task has a deadline, before which the computing result should be
returned from the service node to the task node. Based on the location of the service
node upon the sub-task completion, there are three situations: (i) move close to the
task node again within D2D communication range, (ii) cannot to connect with the
task node directly by D2D communications, but WiFi can still work, (iii) in no way
to connect the task node by neither D2D links nor WiFi, but the cellular network
can still work.

Considering three situations above, the OSCC service mode was classified into
the following three categories.

• OSCC (back\forth): Wang et al. [22] have proposed a task offloading method
with the help of cloudlet, used the statistical law of the node movement and
calculated the probability of the meeting of the task node and service node for
twice at least. In that way, before the completion of the required computing
tasks, once the service node meets the task node again and the sub-tasks of the
service node have finished, the result of the sub-tasks can be transmitted to the
task node successfully. We call the task offloading service mode by mobile

6.3 Opportunistic Task Scheduling Over Co-located Clouds Mode 151

cloudlets as “back-and-forth service in cloudlet’’. However, in this mode, user
mobility is always limited to ensure the second meeting between the task node
and the service node. Even though, the mobility support of OSCC (back&forth)
mode is higher than remote cloud mode through WiFi. Therefore, we mark the
mobility support level of OSCC (back&forth) as the mobility support should be
leveled as “Medium’’ in Table 6.1.

• OSCC (one way-WiFi): Considering that the service node may move another
cell, where WiFi is available, for example, the owner of the service node comes
back to his/her home, the sub-task result can be uploaded to the cloud through
WiFi. Generally, the data size of sub-task result Sresultsub�tk

� �
is smaller than the

original size of the data associated with the sub-task Srecvsub�tk

� �
. Let r denote the

rate of Sresultsub�tk over Srecvsub�tk. With the decrease of r, OSCC (one way-WiFi)
outperforms remote cloud service mode more.

• OSCC (one way-Cellular Network): In this mode, the economic way for com-
puting task result feedback is not available. That is, the service node moves to a
place without WiFi, it needs to upload the sub-task result to the cloud through
cellular network. As for the r value, the small the r is, the better the effect of
OSCC mode is.

A typical example is presented to explain the above mentioned three kinds of
OSCC service modes, as shown in Fig. 6.2. David has a computation-intensive task
which cannot be carried out only by his mobile phone. Within his D2D commu-
nication range, the phones of David’s three friends, Smith, Alex and Bob are all in
idle state. So, David divides the computing task into 3 sub-tasks and transmits them

Fig. 6.2 Illustration of the task offloading at OSCC mode: a Smith send sub-task result to David
via D2D connection; b Bob send sub-task result to cloud via 3G; c Alex send sub-task result to
cloud via WiFi

152 6 Opportunistic Task Scheduling Over Co-located Clouds

to the three phones via D2D links. Smith is good friend of David and moves
together with David, so he always keeps contact with David. After the completion
of the task, the result of his sub-task computation will be transmitted to David
directly through D2D connection. We assume Alex goes back to home with
available WiFi link, so OSCC (one way-WiFi) service mode is used. Let’s assume
that Bob has moved to another cell before the completion of the sub-task, so he
uploads the sub-task result to the task node through OSCC (one way-Cellular
Network) service mode.

OSCC is quite efficient in some applications, for example, the data size asso-
ciated with computing task is huge but the result data is relatively small. We
consider the example of image segmentation mentioned in Sect. 6.3.1. Compared
with remote cloud service mode, OSCC mode can transmit the whole picture
through D2D which needs less bandwidth and energy. Compared with mobile
cloudlets service mode, OSCC mode features a higher expand ability, as it does not
require the task node keep contact with service nodes through D2D communica-
tions all the time or within a region, so it provides high freedom for the task node
and service node. Therefore, OSCC mode which can be taken as the compromised
mode between remote cloud and mobile cloudlets, achieving more flexibility and
cost-effectiveness. In order to understand how to use this new task offloading mode
better, we establish a mathematical model and provide solutions to some opti-
mization problems. As for the OSCC mode, here we give the hypothesis as follows:
(i) The computing tasks can be divided into multiple sub-tasks. According to dif-
ferent applications and the properties of the task, we classify the division of the task
into two categories, i.e., cloned task and non-cloned task. (ii) Each service node will
not accept the same cloned task more than once. (iii) Packet loss is not considered
during the transmission of network data.

6.4 OSCC Mode

Assume that there are M mobile nodes in the mobile cloud computing network. Let
N denote the total number of task nodes and n denote the amount of sub-tasks for a
task node. Task node can communicate with service node only when they are
within the transmission radius R. That is, task node cni and service node snj can
communicate if LiðtÞ � LjðtÞ

�� ��\R, Li and Lj are the positions of the two nodes at
time t. The node mobility is i.i.d. Typically, the inter-contact duration of any two
nodes follows exponential distribution with parameter k [27, 28]. Thus, k reflects
the average meeting rate of two nodes. The probability without contact within Dt
time can be calculated as P t[Dtf g ¼ e�kDt.

6.3 Opportunistic Task Scheduling Over Co-located Clouds Mode 153

The task node have a total amount of computation task Q which can be divided
into n sub-tasks. Q can be denoted as:

Q ¼
Xn
i¼1

xi ð6:1Þ

where xi is the workload assigned to node i. Let’s assume that service node sni have
a per unit process speed mi and this service node can process sub-task xi. Table 6.2

Table 6.2 Variables and notation of OSCC mode

Variable Default
value

Explanation

M 500 Number of nodes in the cell

cni N/A A task node with index i and have computation task to be executed

snk N/A A service node with index k, which serves as available resource for
computation offloading

N The total number of task nodes in the cell

n The amount of sub-tasks for a task node

K Number of total sub-tasks in the cell

XðtÞ. N/A The number of service nodes at time t

Si tð Þ N/A The function of number of sub-tasks assigned for a task node cni at
time t

k 0.0001 Average meeting rate of two nodes in the cell

rt;tþDtðiÞ 1/0 Whether sni assigns sub-task successfully within Dt

hit;tþDtðkÞ 1/0 Whether service node snk gets assignment of sub-task for cni

t� N/A The average time to complete the computation of a whole task

t�s N/A t* under computation clone mode

Q 200 Size of total computation task

xi N/A Size of sub-ask the serve node sni have

r 0.5 The ratio of Sresultsub�tk and Srecvsub�tk

Ecell
n!c 2 The per unit communication cost from task node to cloud via

cellular network

Ecell
c!n 2 The per unit communication cost from cloud to task node via

cellular network

Ecloud
proc 0.1 The per unit energy cost for computation tasks processed in cloud

ED2D 1 The per unit communication cost from task node to service node

Enode
proc ðkÞ 0.2 The per unit energy cost for service node snk to process a sub-task

locally

q 0.001 The probing cost per time unit

td 4000 Deadline for computation task completion time

mi N/A Per unit process speed of service node sni
CCloud N/A The total energy cost for computation task executed in remote cloud

Ccloudlet N/A The total energy cost for computation task executed in CCS mode

COSCC N/A The total energy cost for computation task executed in OCS mode

x 0.5 A weight factor which indicates the emphasis

154 6 Opportunistic Task Scheduling Over Co-located Clouds

describes the notations and default values used in this chapter. In the following
section, task duration and energy cost of OSCC mode will be analyzed.

6.4.1 Task Duration

The task duration consists of time consumed by two procedures, i.e. (i) the delivery
of task contents, and (ii) task result feedback. For the sake of simplicity, we assume
task node knows the capabilities of service nodes. Let t� denote the task duration.
Considering the situation where a task is computation-intensive and WiFi is
unavailable, the delay of local processing (denoted by Q=v, where v is processing
speed of the task node) is typically larger than t�.

A task mainly consists of three components, i.e., processing code, data and
parameter(s). For a non-cloned task, a task node divides the task into a certain
number of sub-tasks. Each sub-task includes a specific combination of processing
code, data and parameter(s). Typically, the data contents and parameters between
two sub-tasks are different while processing codes probably are identical. For a
cloned task, it can be copied during task dissemination. It has intrinsic feature of
random parameter-oriented computation. To illustrate the difference between a
cloned task and a non-cloned task, the characteristics of a cloned task are detailed as
follows:

• When a service node receives a cloned task, it can further duplicate the cloned
task and disseminate it to other service nodes. However, a service node will not
accept the same cloned task more than once.

• A cloned task typically includes processing code without data and pre-assigned
parameters. When a service node receives the cloned task, it executes the pro-
cessing code with a stochastic parameter generated by the local machine (i.e.,
the service node).

• The computation complexity of executing a processing code with various
stochastic parameters for a bunch of times is the major purpose for a task node
to allocate cloned tasks to numerous service nodes.

• Though there exists high redundancy among various cloned tasks in terms of
processing code, the computation activities are different in those service nodes
handling the cloned tasks.

We further give examples about non-cloned task and cloned task in detail.
Given an example as shown in Fig. 6.3a about non-cloned task, David is the task

user (corresponding to task node) and has 20 pictures, which have different images
and contain unique ROI in each picture. There are Bob, Alex, Smith and Suri, four
users who can reach David through D2D communications. As each person has a
different smart phone and specific computing power, the computing task shall be
divided into four sub-tasks through “dynamic allocation’’ which means the four
assigned sub-tasks are different from each other. For example, Bob and Alex are

6.4 OSCC Mode 155

allocated 6 and 7 images respectively while Smith and Suri are assigned 3 pictures
and 4 pictures. When the picture is segmented, the ROI (i.e., computation result)
will be sent to task node, which is owned by David. In this example, all of the
benefits are obtained by David while Bob, Alex, Smith and Suri provide “free
services’’. Practically, the intrinsic selfish feature of mobile users constitutes the
biggest obstacle for task offloading. For example, most users intend to assign tasks
to other users while avoiding accepting the sub-tasks allocated to them. This fact
may result in failure of OSCC scenario, where most users like to count on others to
help them to execute the tasks while reluctant to share computing capacity to others.
In order to solve the problem, an incentive mechanism can be designed. For
example, Bob contributes computing capacity of his mobile phone to execute
David’s sub-task. A certain amount of incentive is sent to him. Likewise, Alex, Suri
and Smith get more or less rewards from David according to their workload. Later,
their incentives can be used to obtain favors of speeding up their own computing
tasks. However, the design of an incentive mechanism to encourage various users

Fig. 6.3 Illustration of task
offloading in opportunistic
co-located clouds service:
a non-cloned task; b cloned
task

156 6 Opportunistic Task Scheduling Over Co-located Clouds

for collaborations on task offloading is not the focus of this chapter. We will address
this issue in future work.

In the scenario shown in Fig. 6.3b about cloned task, the task can be cloned for
required times. For example, David has a cloned task to be processed for 20 times
while only Bob and Alex are within his D2D communication scope. Thus, David
assigns Bob and Alex to process the cloned task for 9 times and 11 times,
respectively. When Bob receives the assignment, he handles the cloned task for 6
times by himself while seeking the help from Smith to process the cloned task for
the left 3 times. Likewise, Alex can reach Suri via D2D link, and allocates 4 times
of cloned task executions to Suri. In summary, the 20 times of cloned task exe-
cutions are allocated to Bob, Alex, Smith and Suri for 6, 7, 3 and 4 times,
respectively. In this example, when the service node receives a cloned task, the
cloned task can be copied and distributed to other service nodes, which is similar
with the epidemic model in online social network. Regarding the energy cost
caused by the flooding of cloned task, task clone enables less energy cost since
more D2D opportunities are available during cloned task distribution than the case
of non-cloned task offloading.

6.4.2 Energy Cost

The energy cost is mainly consists of communication cost and processing cost. The
communication cost includes two parts, the first one is consumed for offloading task
result to cloud (denoted by Ecell

n!c), the other part is for cloud to feedback compu-
tation result to task node (denoted by Ecell

c!n). ED2D denotes the energy cost via D2D
link. The processing cost includes processing energy cost in cloud Ecloud

proc and in

node Enode
proc . Considering the heterogeneous capability of service nodes in terms

computing power, we give two methods to distribute the nodes of sub-tasks:

• As the task node usually has no knowledge about the processing capacity of the
service node, we assume that the task node does not differentiate the computing
capability of all the service nodes, that is, they have the same processing speed
vi and the same amount of workload xi ¼ Q=n. The task node will distribute the
sub-tasks to the service nodes evenly. However, the shortcoming of such
assumption is that the service node with largest delay to submit computation
result will cause the increase of the task duration.

• Practically, in order to achieve higher delay performance, the task node should
not ignore the heterogenous capabilities of service nodes. This motivates us to
propose “dynamic allocation’’ strategy. With the information of the computing
capability of various service nodes, we can distribute the sub-tasks in a more
intellectual way. For example, if the service node has stronger computing
power, it will receive a sub-task with a larger workload.

6.4 OSCC Mode 157

6.5 Analysis and Optimization for OSCC Mode

Different service modes have both advantages and disadvantages and we hope to
achieve flexible tradeoff among various modes to decrease energy cost and delay
while meeting the requirements of user’s QoE. In the following section, the delay
and energy performance will be analyzed, then the optimization framework will be
given.

6.5.1 Analysis for Task Duration in OSCC Mode

(1) Task duration in OSCC mode with non-cloned task

First, let’s analyze the task duration in the case that the tasks cannot be cloned. The
task duration consists of time consumptions from two main parts, i.e., sub-task
distribution, and computation execution. Sub-task distribution phase is the phase
when the task node assigns sub-tasks to service nodes, including transmitting the
contents associated with sub-tasks to the service nodes. Typically, computation
delay is much smaller than sub-task distribution delay. For the sake of simplicity,
only sub-task distribution delay is considered. Let Dt denote a very small time
interval, within which there is only one contact at most. As shown in Table 6.2, if
rt;tþDtðiÞ is 1, it means that a task node mi successfully meets a service node and
assigns a sub-task within Dt, vice versa. Thus, rt;tþDtðiÞ can be defined as follows:

rt;tþDtðiÞ ¼ 1 mi assigns sub-task successfully withinDt;
0 otherwise:

�
ð6:2Þ

Since the inter-contact duration of any two nodes follows exponential distribu-
tion, the probability that mi assigns a sub-task successfully can be expressed as
follows:

P rt;tþDtðiÞ ¼ 1
� � ¼ 1� e�kDt

� �XðtÞ ð6:3Þ

where XðtÞ is the number of service node to the time t. Its expectation can be

calculated as: E rt;tþDtðiÞ
� � ¼ 1� e�kDt

� �XðtÞ
, so the number of service nodes which

have no sub-task assignments can be computed as:

X tþDtð Þ ¼ XðtÞ �
XN
i¼1

rt;tþDtðiÞ ð6:4Þ

158 6 Opportunistic Task Scheduling Over Co-located Clouds

We can obtain the expectation about Eq. (6.4):

EðXðtþDtÞ ¼ EðXðtÞÞ � NEðrt;tþDtðiÞÞ ð6:5Þ

Letting Dt be close to 0, using the theory of limit, we can obtain the derivation of
EðXðtÞÞ as follows

E0ðXðtÞÞ ¼ lim
Dt!0

EðXðtþDtÞ � EðXðtÞÞ
Dt

¼ �NkEðXðtÞÞ ð6:6Þ

By solving the ordinary differential equation (ODE) (6.6), we can finally get the
function EðXðtÞÞ as:

EðXðtÞÞ ¼ EðXð0ÞÞe�Nkt ð6:7Þ

By solving the inverse function of Eq. (6.8), we can obtain the average time of
task duration (denoted by t�) as follows:

t� ¼
ln M�N

EðXðt�ÞÞ
Nk

ð6:8Þ

Correspondingly, EðXðt�ÞÞ ¼ M � Nn. Aforementioned analysis is for the case
that all of the computations are considered.

(2) Task duration in OSCC mode with cloned task

Now we analysis for the OSCC mode with cloned task. At beginning of our
analysis, for the sake of simplicity, let us just consider only one task node. Let SðtÞ
denote the number of service nodes which have sub-tasks at time t. Let dt;tþDtðmkÞ
denote whether mk gets sub-task assignment within Dt. We can obtain:

EðSðtÞÞ ¼ Sð0ÞMeMkt

M � Sð0Þ � Sð0ÞeMkt
ð6:9Þ

where Sð0Þ ¼ 1. Then, the task duration t can be calculated as follows:

t ¼
ln SðtÞðM�Sð0ÞÞ

Sð0ÞðM�SðtÞÞ
� 	

Mk
ð6:10Þ

Furthermore, let’s assume that there are N task node, and each sub-task can be
cloned.

6.5 Analysis and Optimization for OSCC Mode 159

Let SiðtÞ denote the number of service nodes which have sub-task assignments of
task node mi to the time t, then we can calculate SiðtþDtÞ as follows:

SiðtþDtÞ ¼ SiðtÞþ
XM�NSiðtÞ

k¼1

hit;tþDtðkÞ ð6:11Þ

where hit;tþDtðkÞ denoted whether service node mk gets assignment of sub-task for
mi. As for Eq. (6.11), utilizing the methods similar to Eqs. (6.5, 6.6), we can obtain:

E0ðSiðtÞÞ ¼ ðM � NEðSiðtÞÞÞkEðSiðtÞÞ ð6:12Þ

Then, by solving ODE (6.12), we can compute EðSiðtÞÞ as:

EðSiðtÞÞ ¼ ekMtM
M � Nþ ekMtN

ð6:13Þ

Finally, by solving the inverse function of Eq. (6.13), we obtain the average time
of the task duration for a single task (denoted by t�s) as follows:

t�s ¼
ln EðSiðt�s ÞÞðM�NÞ

M�NEðSiðt�s ÞÞ
� 	

Mk
ð6:14Þ

Correspondingly, EðSiðt�s ÞÞ ¼ n.

6.5.2 Analysis for Energy Cost in Remote Cloud Mode,
Mobile Cloudlets Mode and OSCC Mode

In this section, we analyze the energy cost performance for various service mode.
Let’s consider a worst case where WiFi is not available. For simplicity, it is sup-
posed that there is only one task node and its total computing quantity is Q which
can be divided into n sub-tasks. Since static allocation can be deemed as the
extreme case of dynamic allocation, let’s focus on the case of dynamic allocation.
We divide the whole energy cost chain into three phases, i.e., task associated
contents offloading, execution of sub-tasks, and computation result feedback. Then,
the total cost of remote cloud based service mode can be calculated as:

Ccloud ¼
Xn
i¼1

Ecell
n!cxi þEcloud

proc xi þ rEcell
c!nxi

� 	
;

¼ Q Ecell
n!c þEcloud

proc þ rEcell
c!n

� 	 ð6:15Þ

160 6 Opportunistic Task Scheduling Over Co-located Clouds

In mobile cloudlets service mode, the major energy cost comes from the use of
D2D communications and periodical detection of the surrounding nodes. Then, the
total cost at mobile cloudlets mode can be calculated as:

Ccloudlet ¼
Xn
i¼1

ðED2Dxi þEnode
proc ðiÞxi þ rED2DxiÞþMqt�;

¼ Qð1þ rÞED2D þ
Xn
i¼1

Enode
proc ðiÞxi þMqt�:

ð6:16Þ

Let ~X ¼ x1; x2; . . .; xnf g denote the solution of task allocation, thus minimizing
the cost can be specified as the following optimization problem:

minimize
~X

Ccloudlets

subject to
Pn
i¼1

xi ¼ Q

xi � 0 i ¼ 1; 2; . . .; n:

ð6:17Þ

The optimization problem is a linear programming problem and can be solved by
using a conventional solver, i.e., Matlab.

Considering the mobility of a service node, it may move to some region without
WiFi. In this case, the computation result feedback can be classified into two
situations: (1) the service node moves back to the proximity of task node and D2D
connection is available. Under this situation, D2D link can be used to deliver the
result of sub-tasks, which is the case of OSCC (back\&forth). (2) otherwise, the
cellular network is the only choice to transmit the result of sub-tasks, which is the
case of OSCC (one way-Cellular Network).

We first give the probability Pi, which denotes the chance that service node sni
meets task node twice. Let ti;1 denote the time interval when task node meets
service node sni for the first time. Let ti;2 denote the time interval between the first
meeting and the second meeting for task node and service node. Since the time
interval follows exponential distribution and i.i.d., Let ti denote td � xi=mi.
According to total probability theorem,

Pðti;1 þ ti;2 � tdÞ ¼
Zti

0

Pðti;1 þ ti;2 � tdjti;1 ¼ xÞke�kxdx ð6:18Þ

where Pðti;1 þ ti;2 � tdjti;1 ¼ xÞ ¼ Pðti;2 � td � xÞ ¼ 1� e�kðtd�xÞ Therefore, the
Pi ¼ Pðti;1 þ ti;2 � tdÞ can be calculated as:

Pðti;1 þ ti;2 � tdÞ ¼
Zti

0

ð1� e�kðtd�xÞÞke�kxdx;

¼ 1� e�kti � ktie
�kti

ð6:19Þ

6.5 Analysis and Optimization for OSCC Mode 161

Then, the cost can be calculated as

COSCC ¼
Xn
i¼1

ðxiED2D þEnode
proc ðiÞxi þ rxiPiED2D

þ rxið1� PiÞðEcell
n!c þEcell

c!nÞÞþMqt�:

ð6:20Þ

Thus, the minimum cost can be computed as:

minimize
~X

COSCC

subject to
Pn
i¼1

xi ¼ Q

xi � 0 i ¼ 1; 2; . . .; n:

ð6:21Þ

The optimization problem is hard to solve, we divide this problem in two stages.
First we maximize P, second we minimize the cost in OCS mode.

Generally, the cost for the service node to offload the computing task to the cloud
or the cloud feedbacks the result to the task node through cellular network is more
than the cost of D2D. Therefore, considering the energy cost and delay in different
situations, a compromising method is desired according to the special applications.

• Remote Cloud: If the computing task is highly sensitive to delay and users can
afford high cost to reach a higher QoE, using remote cloud (cellular network) is
not a bad choice.

• Mobile Cloudlets: If the task node is very sensitive to the communication cost
and the service node moves in a small range, then the use of mobile cloudlets is
recommended.

• OSCC: If r is very small, and the service nodes require maximum node freedom,
choosing OSCC is a best solution.

Now, we give the algorithm 1 about how to chose remote cloud, mobile
cloudlets and OSCC.

Algorithm C choosing algorithm
begin
notation

r denotes the ratio of
result
sub tkS − and

recv
sub tkS − ;

λ denotes average meeting rate ;
C is remote cloud or mobile cloudlets or OSCC;

initialization
if situation have stable WiFi then

use remote cloud through WiFi;
end if
if 1r > and delay sensitive then

use remote cloud through cellular network;
end if
if λ is small and cost sensitive then

use mobile cloudlets;
end if
if 1r < , λ is large and maximum node freedom then

use OSCC;
end if

Return C;

162 6 Opportunistic Task Scheduling Over Co-located Clouds

6.5.3 Optimization Framework

Now, we will give the joint optimization for time delay and energy cost. Due to the
different impact of time and energy cost, we introduce a weight factor, denoted as
x, which indicates the emphasis on either time or energy cost. Thus minimizing the
time and energy cost of a single task node can be specified as the following
problem:

minimize
~X

t� þx � COSCC

subject to
Pn
i¼1

xi ¼ Q

xi � 0 i ¼ 1; 2; . . .; n:

ð6:22Þ

We use genetic algorithms to solve above problem. A genetic algorithm is a
heuristic algorithm based on the evolutionary theory of genetics and natural
selection and can solve this problem. The genetic algorithm is mainly to use the
heuristic method to search for the optimal xi.

6.6 Performance Evaluation

In this section, the proposed OSCC mode will be evaluated. We set the meeting rate
k is 0.00004–0.00032 per second, M is within the range from 300 to 3000, and q is
set to be 0.001 per second by default based on the previous work [29].

We considers two aspects for the experiment: (1) What kind of impact do task
allocation strategies pose on task duration and energy cost? According to the feature
of a task, we classify it into non-cloned task and cloned task. The task allocation
strategies can be static and dynamic allocation. (2) In order to evaluate our methods,
we compare our methods with closely related work. In Chun et al. [13], remote
cloud service mode is the major concern. In Li and Wang [6], mobile cloudlets was
introduced in detail.

6.6.1 Task Duration

(1) The time consumed by allocating all the sub-tasks with non-cloned task

Because of the relationship among XðtÞ, N, M, k and n, we need to evaluate the
impact of each parameter on the model. In Fig. 6.4a, we fix M to 500; let n be 10,
and set k to 0.0001, while varying N with various values, including 30, 35, 40
and 45. As shown in Fig. 6.4a, task duration increases when N becomes larger.

6.5 Analysis and Optimization for OSCC Mode 163

Note that, here, the task duration is the time when all of the users with task achieve
their goal of distributing all of the sub-tasks to those mobile users who have no task
assignments. From Fig. 6.4a, we also can observe that Xð0Þ is smaller than M. It is
because N users already have tasks, thus Xð0Þ is equal to M � N.

In Fig. 6.4b, we fix N to 45; n to 10; and k to 0.00001, while varying M with
500, 750, 1000, and 1250, respectively. As shown in Fig. 6.4b, when M ¼ 1250,
the task completion time is minimum among all of the scenarios compared. It is
because there are more chances for task users to meet a service node to offload task
to the node in a shorter period. In comparison, when M ¼ 500, M � N service
nodes are not enough for consequent task offloading process, and thus causing a
larger task duration.

In Fig. 6.4c, we fix M to 500; N to 45; n to 10, while varying k with 0.00004,
0.00008, 0.00016, 0.00032, respectively, in order to obtain the impact of k on t and
XðtÞ. As shown in Fig. 6.4c, bigger k represents larger probability for a mobile user
to meet with a task node, facilitating the set of sub-tasks to be distributed faster.
With the decrease of k, the task duration increases.

In Fig. 6.4d, we fix M to 500; k to 0.0001; and K to 450, while varying n with 5,
7, 9, 11, so the N is K=n. As shown in Fig. 6.4d, task duration increases when n

Fig. 6.4 Evaluation on XðtÞ. a The impact of N on XðtÞ; b The impact ofM on XðtÞ; c The impact
of k on XðtÞ; d The impact of n on XðtÞ

164 6 Opportunistic Task Scheduling Over Co-located Clouds

becomes larger. It is because when n increases with a fix number of total sub-tasks
N is decreased. This indicates that, under the fixed M and k, the smaller n and the
bigger N promote the task completion time. From Fig. 6.4d, we also can observe
that Xð0Þ is not equal with each other. It is because when n changes, the N also
changes. Similar with Fig. 6.4d, Xð0Þ is equal to M � N.

In Fig. 6.5a, we fix M to 500; let K to 450; while varying k with various values,
including 0.00004, 0.00008, 0.00016 and 0.00032. As shown in Fig. 6.5a, as total
sub-tasks is fixed, task completion time decreases when N becomes larger.
However when N reach 40, this benefit is not distinctive. We also can see that the
benefit of increasing N is not significant when the k is high.

In Fig. 6.5b, we fix k to 0.0001; let K set to 450; while varying M with various
values, including 500, 750, 1000 and 1250. As shown in Fig. 6.5b, like Fig. 6.5a,
as total sub-tasks is fixed, task duration decreases when N becomes larger. From
Fig. 6.5b, We also can see that the benefit of increasing N is not significant whenM
reaches 1000.

(2) The time consumed by allocating all the sub-tasks with cloned task

In Fig. 6.6a, we fix M to 500; let n be 10, and set k to 0.0001, while varying N with
various values, including 30, 35, 40 and 45. As shown in Fig. 6.6a, the impact of N
on SiðtÞ is not distinctive. In Fig. 6.6b, we fix N to 45; n to 10; and k to 0.0001,
while varying M with 500, 750, 1000, and 1250, respectively. As shown in
Fig. 6.6b, bigger M represents more chances for a mobile user to meet with a task
node. Thus, when M is equal to 1250, SiðtÞ increases fastest to reach its maximum
of 10. In Fig. 6.6c, we fixM to 500; N to 45; n to 10, while varying k with 0.00004,
0.00008, 0,00016, 0.00032, respectively. As shown in Fig. 6.6c, bigger k represents
larger probability for a mobile user to meet with a task node. Thus, when k is equal
to 0.00032, SiðtÞ increases fastest to reach its maximum of 10.

In Fig. 6.7a, we fix M to 500; let K be equal to 450; we vary k with different
values, including 0.00004, 0.00008, 0.00016 and 0.00032. In Fig. 6.7b, we fix k to
0.0001; let K be equal to 450; We vary M with different values, including 500, 750,

Fig. 6.5 Evaluation on XðtÞ and t�. a t�-different k with varying N; b t�-different M with
varying N

6.6 Performance Evaluation 165

1000 and 1250. As shown in Fig. 6.7, compared with Fig. 6.5, the task duration t�s
of Fig. 6.7 is far smaller than the task duration t� of Fig. 6.5 under the condition of
same N and k or same N andM. It is because task clone is allowed. When task node
meet an service node, the service node becomes task node. In other words, the
number of task node becomes larger. However, if the task clone is not allowed, the
number of task node stay the same.

(3) Task duration in mobile cloudlet mode and OSCC mode

Figure 6.8a has compared the task duration of OSCC mode and mobile cloudlets.
From the picture, in the situation that the OSCC can be cloned with a fixed k, the
task duration is the shortest and the task duration of OSCC is shorter than mobile
cloudlets. Along with the increase of k, OSCC presents a better delay performance,
because the increase of k, the task node meets the service node more frequently. As
for mobile cloudlets, the task duration decreases gradually from a small k (for
example, from 0.00002 to 0.0001). However, as k continues to grow, mobile
cloudlets task duration starts to increase because of shortened contacting time which

Fig. 6.6 Evaluation on SiðtÞ. a The impact of N on SiðtÞ; b The impact of M on SiðtÞ; c The
impact of k on SiðtÞ

166 6 Opportunistic Task Scheduling Over Co-located Clouds

leads to inadequate contacting time for the offloading, implementation and feedback
of sub-tasks. As shown in Fig. 6.8b, when k is larger than 0.0003, the performance
of OSCC starts to not be distinctive. It is because the contact duration is too short to
guarantee a successful sub-task offloading.

6.6.2 Energy Cost in Remote Cloud Mode, Mobile Cloudlets
Mode and OSCC Mode

Figure 6.9a has compared the energy cost in the mode of remote cloud and OSCC.
Four curves means the energy cost in the mode of remote cloud and the energy
costs in the mode of OSCC with different r. As Ecell

n!c;E
cell
c!n [ED2D, when r\1,

OSCC is smaller than remote cloud under normal circumstances. However, when
r[1, as r increases, The memory consumption in OSCC mode also increases and

Fig. 6.7 Evaluation on SiðtÞ and t�s . a t�s -different kwith varying N; b t�s -differentM with varying N

Fig. 6.8 Evaluation on task duration. a Compared the task completion time of mobile cloudlets
and OSCC mode; b OSCC mode task duration-different n with varying k

6.6 Performance Evaluation 167

its increasing speed is faster than remote cloud increasing speed. Moreover, when
ED2D increases, the cost of OSCC becomes large.

In Fig. 6.9b, the costs of mobile cloudlets and OSCC are compared with each
other. In these three methods, OSCC has appeared smaller energy cost than the
other methods under the situation that the computing task can be cloned (i.e., cloned
task) when the k value is fixed, because OSCC can complete the sub-tasks more
quickly when it can be cloned. When 0:00002� k� 0:00014, the cost of mobile
cloudlets is less than OSCC when it cannot be cloned (i.e., non-cloned task),
because OSCC may needs to upload sub-task results to the cloud when the com-
puting task cannot be cloned but mobile cloudlets saves energy accordingly. When
k increases, the contacting time gets shorter, possibly leading to the failure of
implementing sub-tasks with mobile device. Therefore, OSCC is better than mobile
cloudlets in case of non-cloned task when k� 0:00014.

6.6.3 Optimization Framework

In this subsection, we consider the impact of static and dynamic allocation on the
experimental results. The performance of non-cloned task and clone task is also
evaluated. Genetic algorithm is used to solve the optimization problem in terms of
energy cost and task duration. In our experiments, The weight factor x about task
duration and energy cost is set to be 0.5.

In Fig. 6.10a shows the comparison of cost in term of mobile cloudlets with
static allocation and dynamic allocation. As shown in the Fig. 6.10a, the dynamic
allocation is almost smaller than static allocation, this is because the task node
knows each service node processing cost, so task node send large task to the service
node which have lower processing cost. when k\0:00005 and k[0:00017, the
benefit of dynamic allocation is not significant.

Fig. 6.9 Evaluation on energy cost. a Compared the cost between remote cloud and OSCC mode;
b Compared the cost between mobile cloudlets and OSCC

168 6 Opportunistic Task Scheduling Over Co-located Clouds

In Fig. 6.10b shows the impact of Enode
proc on energy cost in terms of static allo-

cation and dynamic allocation. In order to verify the effect of dynamic allocation,
random value is applied. The circle represents the energy performance of static
allocation where Enode

proc is fixed to 0.1, which represents the same processing
capability of service nodes. while the values of data points at X-axis mean the value
span where practical value is generated. For example, 0.2 in X-axis means the
practical value of Enode

proc is obtai.ned between 0.01 and 0.19 in a random fashion;
0.01 in X-axis means the practical value varies from 0.09$ to 0.11. As shown in
Fig. 6.10b, the larger is the interval, the better performance of dynamic allocation
can be obtained.

In Fig. 6.10c shows the comparison of cost in tern of OSCC mode with static
allocation and dynamic allocation under non-cloned task and cloned task. We can
see that dynamic allocation with cloned task is the smallest energy cost. With the
increase of k, energy cost of all of the compared schemes decreased. In the scheme
of dynamic with non-cloned task, the energy cost is decreased with fastest speed. It
is because the value of k have more effect on non-cloned task than cloned task.

Fig. 6.10 Evaluation on the optimization framework. a Compared the cost between static
allocation and dynamic allocation in mobile cloudlets; b The impact of Enode

proc on energy cost in
OSCC mode; c Compared the cost between static allocation and dynamic allocation in OSCC
mode; d Conjunctive minimization of time and energy cost

6.6 Performance Evaluation 169

When k reaches 0.00018, the impact of duplicating task becomes smaller. It is
because the meeting times increase in unit time slot, and thus speeding up the
distribution of sub-tasks.

In Fig. 6.10d shows the conjunctive minimization of task duration and energy
cost. we set x ¼ 0:5. In the embedded figure in Fig. 6.10d, with the increase of
sub-task number n and when n\35, the cost decreases. It is because the amount of
sub-task allocated to service nodes becomes smaller when total task Q is fixed and
more sub-task communication with D2D. However, since the number of sub-tasks
is increase, it need more time to deliver the task content and the periodically
probing, so the task duration increase. Even more, when n[35, the cost increase
since the periodically probing excessive cost due to the task duration. So there
exists a trade-off, we try to decrease time and energy cost by obtaining the solution
to the optimal function. As shown from Fig. 6.10d, using genetic algorithms, when
n is equal to 26, the optimized performance is achieved.

References

1. V. Leung, T. Taleb, M. Chen, T. Magedanz, L.-C. Wang, R. Tafazolli, Unveiling 5G wireless
networks: emerging research advances, prospects, and challenges [guest editorial]. IEEE
Network 28(6), 3–5 (2014)

2. N. Fernando, S.W. Loke, W. Rahayu, Mobile cloud computing: a survey. Future Gener.
Comput. Syst. 29(1), 84–106 (2013)

3. L. Lei, Y. Zhang, X. Shen, C. Lin, Z. Zhong, Performance analysis of device-to-device
communications with dynamic interference using stochastic petri nets. IEEE Trans. Wireless
Commun. 12(12), 6121–6141 (2013)

4. B. Han, P. Hui, V.A. Kumar, M.V. Marathe, J. Shao, A. Srinivasan, Mobile data offloading
through opportunistic communications and social participation. IEEE Trans. Mob. Comput.
11(5), 821–834 (2012)

5. X. Wang, M. Chen, Z. Han, D.O. Wu, T.T. Kwon, TOSS: Traffic offloading by social network
service-based opportunistic sharing in mobile social networks, in INFOCOM, 2014
Proceedings IEEE (IEEE, 2014), pp. 2346–2354

6. Y. Li, W. Wang, Can mobile cloudlets support mobile applications? in INFOCOM, 2014
Proceedings IEEE (IEEE, 2014), pp. 1060–1068

7. K. Zheng, X. Zhang, Q. Zheng, W. Xiang, L. Hanzo, Qualityof-experience assessment and its
application to video services in LTE networks. IEEE Wirel. Commun. 22(1), 70–78 (2015)

8. D. Candeia, R. Araujo, R. Lopes, F. Brasileiro, Investigating business-driven cloudburst
schedulers for e-science bag-of-tasks applications, in IEEE Second International Conference
on Cloud Computing Technology and Science (CloudCom) (2010), pp. 343–350

9. W. Cirne, D. Paranhos, L. Costa, E. Santos-Neto, F. Brasileiro, J. Sauve, F.A. Silva, C.O.
Barros, C. Silveira, Running bag-of-tasks applications on computational grids: the mygrid
approach, in IEEE International Conference on Parallel Processing (ICPP) (2003),
pp. 407–416

10. T. Taleb, A. Ksentini, Follow me cloud: interworking federated clouds and distributed mobile
networks. IEEE Network 27(5), 12–19 (2013)

11. H. Flores, S. Srirama, Mobile code offloading: should it be a local decision or global
inference? in Proceeding of the 11th Annual International Conference on Mobile Systems,
Applications, and Services (ACM, 2013), pp. 539–540

170 6 Opportunistic Task Scheduling Over Co-located Clouds

12. M. Barbera, S. Kosta, A. Mei, J. Stefa, To offload or not to offload? the bandwidth and energy
costs of mobile cloud computing, in INFOCOM, 2013 Proceedings IEEE (IEEE, 2013),
pp. 1285–1293

13. B.-G. Chun, S. Ihm, P. Maniatis, M. Naik, A. Patti, Clonecloud: elastic execution between
mobile device and cloud, in Proceedings of the Sixth Conference on Computer systems
(ACM, 2011), pp. 301–314

14. S. Kosta, A. Aucinas, P. Hui, R. Mortier, X. Zhang, Thinkair: dynamic resource allocation
and parallel execution in the cloud for mobile code offloading, in INFOCOM, 2012
Proceedings IEEE (IEEE, 2012), pp. 945–953

15. W. Cirne, F. Brasileiro, L. Costa, D. Paranhos, E. Santos-Neto, N. Andrade, C.D. Rose,
T. Ferreto, M. Mowbray, R. Scheer et al., Scheduling in bag-of-task grids: the paua case, in
IEEE Symposium on Computer Architecture and High Performance Computing (SBAC-PAD)
(2004), pp. 124–131

16. M. Jia, J. Cao, L. Yang, Heuristic offloading of concurrent tasks for computation-intensive
applications in mobile cloud computing, in 2014 IEEE Conference on Computer
Communications Workshops (INFOCOM WKSHPS) (IEEE, 2014), pp. 352–357

17. L. Lei, Z. Zhong, K. Zheng, J. Chen, H. Meng, Challenges on wireless heterogeneous
networks for mobile cloud computing. IEEE Wirel. Commun. 20(3), 34–44 (2013)

18. H. Flores, P. Hui, S. Tarkoma, Y. Li, S. Srirama, R. Buyya, Mobile code offloading: from
concept to practice and beyond. IEEE Commun. Mag. 53(3), 80–88 (2015)

19. M. Chen, Y. Hao, Y. Li, C.-F. Lai, D. Wu, On the computation offloading at ad hoc cloudlet:
architecture and service modes. IEEE Commun. Mag. 53(6), 18–24 (2015)

20. M. Satyanarayanan, P. Bahl, R. Caceres, N. Davies, The case for vm-based cloudlets in
mobile computing. IEEE Pervasive Comput. 8(4), 14–23 (2009)

21. A.P. Miettinen, J.K. Nurminen, Energy efficiency of mobile clients in cloud computing, in
Proceedings of the 2nd USENIX Conference on Hot Topics in Cloud Computing (USENIX
Association, 2010), p. 4

22. C. Wang, Y. Li, D. Jin, Mobility-assisted opportunistic computation offloading. IEEE
Commun. Lett. 18(10), 1779–1782 (2014)

23. T. Truong-Huu, C.-K. Tham, D. Niyato, A stochastic workload distribution approach for an
ad hoc mobile cloud, in 2014 IEEE 6th International Conference on Cloud Computing
Technology and Science (CloudCom) (IEEE, 2014), pp. 174–181

24. L. Zhou, Specific-versus diverse-computing in media cloud. IEEE Trans. Circuits Syst. Video
Technol. 25(12), 1888–1899 (2015)

25. L. Zhou, Z. Yang, H. Wang, M. Guizani, Impact of execution time on adaptive wireless video
scheduling. IEEE J. Sel. Areas Commun. 32(4), 760–772 (2014)

26. Q. Li, P. Yang, Y. Yan, Y. Tao, Your friends are more powerful than you: efficient task
offloading through social contacts, in 2014 IEEE International Conference on
Communications (ICC) (IEEE, 2014), pp. 88–93

27. Y. Li, Y. Jiang, D. Jin, L. Su, L. Zeng, D. Wu, Energy-efficient optimal opportunistic
forwarding for delay-tolerant networks. IEEE Trans. Veh. Technol. 59(9), 4500–4512 (2010)

28. W. Gao, G. Cao, User-centric data dissemination in disruption tolerant networks, in
INFOCOM, 2011 Proceedings IEEE. (IEEE, 2011), pp. 3119–3127

29. X. Wang, M. Chen, Z. Han, T.T. Kwon, Y. Choi, Content dissemination by pushing and
sharing in mobile cellular networks: an analytical study, in 2012 IEEE 9th International
Conference on Mobile Adhoc and Sensor Systems (MASS) (IEEE, 2012), pp. 353–361

References 171

Chapter 7
Mobility-Aware Resource Scheduling
Cloudlets in Mobile Environment

Abstract The ever-growing number of smart phones is producing explosive
amounts of traffic in order to support a wide plethora of multimedia services.
A recent Cisco report estimates that global mobile traffic will exceed 24.3 exabytes
monthly in 2019.

7.1 Introduction

7.1.1 Mobile Environment of Heterogeneous Network

The ever-growing number of smart phones is producing explosive amounts of
traffic in order to support a wide plethora of multimedia services. A recent Cisco
report estimates that global mobile traffic will exceed 24.3 exabytes monthly in
2019 [1, 2]. However, due to the centralized nature of mobile network architectures,
it is challenging to cope with the rapidly growing mobile traffic along with the
limited capacity of the backhaul link. In order to overcome this issue, paradigms
called “content-centric networking” (CCN), “named data networking” (NDN) and
“content delivery networks” (CDN) [3, 4] have been proposed to handle
content-dominated Internet traffic for the radio access networks (front-haul) and the
core networks (back-haul).

Furthermore, alongside the use of diverse network resources [5, 6] in terms of
communications, caching and computing are becoming the emerging techniques to
meet the increasing demand of user QoE (Quality of Experience) in the next
generation 5G networks [7–11], especially for the Internet of Things [12, 13] and
healthcare systems [14]. In this chapter, we consider a heterogeneous [15] cellular
network, which consists of a Macrocell Base Station (MBS), Small cell Base
Stations (SBS) (also called small cell BS; also called as pico, pico- or femto-cells as
per the size of the cell) and user device. The caching and computing capabilities of
SBSs and user terminals will facilitate content sharing and computation offloading.

To illustrate, viral on-line videos are the kind of content that mobile user
repeatedly access, which leads us to an assumption that this content could be cached

© Springer Nature Singapore Pte Ltd. 2017
C.-H. Youn et al., Cloud Broker and Cloudlet for Workflow Scheduling,
KAIST Research Series, DOI 10.1007/978-981-10-5071-8_7

173

and shared at the edge of the network [16–18]. Typically, content caching at the
edge of the network can be classified into two categories, i.e., SBS caching (or
femto-caching) [19] through femto-cell access points and Device-to-Device (D2D)
caching assisted by user terminals [20]. The SBS can be used for content caching,
since it is characterized by a high storage capacity and transmission range, and
SBS-assisted cache placement has been discussed in previous studies [21]. In
addition, by using D2D links, user terminals in the proximity can share cached
content without communicating through the MBS in order to reduce communica-
tion cost and delay [22]. With the increase of the hardware performance of mobile
devices, mobile devices potentially have the storage and computing capacity
required for this type of content sharing [23, 24]. Various studies discuss cache
placement on mobile devices in the D2D networks [25, 26].

7.1.2 Resource Scheduling in Cloudlet

For applications of mobile device, we could divide applications into pull-based use
case and push-based used case. For pull-based use case, it mainly serves the user
drive, and taking the unload of user task as the example, we have mainly introduced
the computation offloading problems of user under mobile cloudlets in Chaps. 5
and 6. For push-based use case, it mainly serves the network drive, for example,
caching popular videos into SBS or mobile device to reduce network load. In this
chapter, we have mainly introduced the dispatch of cache contents and the dispatch
of computation tasks under cloudlet, which is connected to MBS and SBS, and
which is functionally equivalent to cloud broker, as it not only could perceive the
mobility, capacity request and storage resource of mobile device, but also could
perceive the resources of MBS and SBS, and then dispatch MBS, SBS and mobile
device uniformly. For cache, it could maximize the probability of user’s acquisition
of request contents. For computation, it could reduce the overall energy con-
sumption of system.

The problem of caching placement to maximize the probability that the user
can access content in a wireless system where both SBSs [19] and user terminals
[27, 28] have caching capability has been studied. However, most existing studies
of caching networks ignore user mobility. Instead, it has been commonly assumed
that mobile users are always at a fixed location [29].

In this chapter, we investigate the impact of the user mobility on the performance
of caching and computation offloading in mobile environment. Then, we propose a
joint mobility-aware and SBS density caching placement scheme (MS-caching),
taking into account the impact of user mobility and SBS distribution on the caching
placement. Moreover, we addressed the SBS and mobile devices’ computing
power. We discuss the differences and relationships between caching and compu-
tation offloading and present a hybrid computation offloading based on MBS
computation offloading, SBS computation offloading and D2D computation
offloading. Finally, considering the selfishness of mobile users, we discuss an

174 7 Mobility-Aware Resource Scheduling Cloudlets …

incentive mechanism to encourage content sharing and computation offloading
based on network dynamics, differentiated user’s QoE, and the heterogeneity of
user terminals in terms of caching and computing.

7.2 Resource Scheduling Based on Mobility-Aware
Caching

7.2.1 Caching Model in SBS and User Device

In this chapter, we present the strategy of caching placement by considering the user
mobility and SBS density. We assume that each user will randomly request files
from one content library containing l files F ¼ fF1;F2; . . .;Flg, and the files are
sorted according to popularity, i.e., ranking from the most popular F1ð Þ to the least
popular Fmð Þ. Let jFf j denote the size of Ff In addition, it is assumed that the
popularity of a content requested by a user follows a Zipf distribution with
parameter c i.e.

qf ¼ f�c

Pm
i¼1 f

�c
; f ¼ 1; 2; . . .; l: ð7:1Þ

where c stands for the uneven distribution of popularity in these content. As shown
in Fig. 7.1, the user can obtain the requested content mainly via four ways listed as
follows:

• Local caching: When the user requests content, he or she will firstly examine
whether or not such content is cached locally. Once such content is confirmed in
the local storage, the user will get access to it without any delay.

• D2D caching: If the content requested by the user is not cached locally, the user
will seek such content among the devices within the range of D2D

Fig. 7.1 Illustration of the protocol for content access

7.1 Introduction 175

communications. If there exists one user caching such content, the content will
be transmitted to the target user via D2D communications.

• SBS caching: Besides D2D caching, if the required content is cached by one
SBS, it will be transmitted to the user by the SBS.

• MBS caching: If the content requested by the user cannot be accessed in the
aforementioned ways, such a request will be forwarded to the MBS, and the
content will be delivered to the user by cellular network connection.

7.2.2 Mobility-Aware and SBS Density Caching
(MS-Caching)

Given the example in Fig. 7.1, Rachel obtains the requested content by one of the
means mentioned above when she moves to different locations starting from time
T1 to T3. Due to user mobility, the D2D caching is limited by its short distance
range, which presents us with the challenge of how to prepare an optimal cache
placement strategy, i.e., content caching at the SBS and the user terminal, and how
to maximize the chance to access such content.

Now, let us look at the SBS cache placement. Let R denote the transmission
radius of the SBS; CH denotes the cache capacity of each SBS, i.e., the maximum
number of files it can store. Following the model in Refs. [30, 31], the SBS spatial
distribution is in accordance with Poisson Point Processes (PPPs), and its density is
q. In terms of cache placement on the SBS, we can describe it as follows: set xi as
the probability of caching a file Fi in the SBSs. Since the SBSs follow PPPs, the
probability of at least one SBS caching the content Fi can be calculated as follows:

PS
i ¼ 1� e�qxipR2 ð7:2Þ

Thus, the total probability that a user can get the content from the SBS becomes:

PS ¼
Xl

i¼1

qiP
S
i ð7:3Þ

If we maximize the probability that the user obtains the content requested under
the condition of the storage capacity of SBS, the SBS density-aware caching
placement can be obtained as follows:

maximize
xi

PS

subject to
Pl
i¼1

xi Fij j �CH

0�xi � 1; i 2 f1; . . .; lg

ð7:4Þ

176 7 Mobility-Aware Resource Scheduling Cloudlets …

For user terminals, we assume that there are Nu mobile devices in this network.
Additionally, D ¼ fD1;D2; . . .;DNug represents the set of mobile devices.
Communication can only be conducted when the shortest distance between any two
mobile devices of users is RD2D. Define the inter-contact time Ti;j between any two
users Di and Dj as follows:

Ti;j ¼ minfðt � t0Þ : Lt
i � Lt

j

���
���\RD2D; t[t0g ð7:5Þ

where t0 stands for the moment when the user device Di just the left communication
range RD2D of the user device Dj for the last time. Lt

i and Lt
j stand for the locations

when the users Di and Dj are in the moment t. Following the model in Ref. [32], the
inter-contact time between any two users Di and Dj complies with an exponential
distribution with a parameter of ki;j, which is named as the contact rate of the
mobile device i and the mobile device j. Let CU denote the cache capacity of each
user. Let xj;f denote whether the user j caches content Ff . Let Tf denote the deadline
to feedback requested content. Thus, within Tf , the probability that the user i
obtains the content f via D2D can be calculated as follows:

PM
i;f ¼ 1� ð1� xi;f Þexp �

X
j2DnfDig

xj;f Tf ki;j

0
@

1
A ð7:6Þ

Thus, the total probability for the user to get the content through D2D com-
munication becomes:

PM ¼ 1
Nu

XNu

i¼1

Xl

i¼1

qf P
U
i;f ð7:7Þ

If we maximize the probability that the user obtains the content requested under
the condition of the storage capacity of mobile devices, the optimal mobility-aware
caching placement can be obtained as follows:

maximize
xj;f

PM

subject to
Pl
f¼1

xj;f Ff

�� ���CU

xj;f 2 f0; 1g

ð7:8Þ

Through joint optimization of PM and PS, the MS caching strategies can be
obtained.

7.2 Resource Scheduling Based on Mobility-Aware Caching 177

7.2.3 Simulation Results and Discussions

We evaluate the probability that users can get contents via simulation results. We
compare MS caching with two different caching strategies: popular caching [33]
and random caching [20].

• Popular caching: The popular caching strategies on SBSs and on mobile devices
of users are as follows: (1) caching strategy on SBSs: most popular content
should be stored on each SBS; (2) caching strategy on mobile devices: most
popular content should be cached on each mobile device.

• Random caching: The random caching strategies on SBSs and on mobile
devices of users are as follows: (1) caching strategy on SBSs: content should be
stored at random on each SBS; (2) caching strategy on mobile devices: content
should be cached at random on each mobile device.

As for the simulation settings, for simplicity, assume the content size is the same
and the value is |F|. The size of content library l ¼ 30, and the Zipf distribution
parameter c ¼ 0:8. The deadline Tf ¼ 60 s. The density and transmission range of
SBSs are q ¼ 50=p5002 and R ¼ 50 m, respectively [34]. The system comprises
Nu ¼ 60 mobile device, and the contact rate ki;j between user Di and user Dj

complies with Gamma distribution Cð4:43; 1=1088Þ [35]. The caching capacity of
SBS and the user terminal is CH ¼ 8 and CU ¼ 2, respectively. For the optimiza-
tion problem, we utilize the optimization toolkit CPLEX and CVX to solve it. The
result is as follows:

• SBS density-aware caching placement: We have provided the relationship
between the SBS density and the probability that the user can obtain the
requested content. The SBS density-aware caching placement is compared to the
popular caching strategy and the random caching strategy, as shown in
Fig. 7.2a. When only the SBS is considered, the SBS-assisted cache placement
exhibits higher offloading probability than the popular caching and the random
caching.

• Mobility-aware caching placement: The user’s mobility is closely related to the
probability for the user to access the content. The k is the average contact rate of
user devices. Similarly, with the analysis of SBS-assisted caching placement,
Fig. 7.2b compares the mobility-aware caching with the popular caching and the
random caching. As shown in Fig. 7.2b, the mobility-aware cache placement
strategy demonstrates better performance than the random caching placement
and the popular caching placement.

• MS caching placement: If we take into account the user mobility and the SBS
density, a more advanced cache strategy named MS caching placement can be
designed as demonstrated. In Fig. 7.2a, b, we compare the performance of the
proposed MS caching placement with other strategies. Since both the SBS
density and the user mobility are considered, the MS caching placement obtains
the highest probability that users can obtain the contents.

178 7 Mobility-Aware Resource Scheduling Cloudlets …

F
ig
.
7.
2

Il
lu
st
ra
tio

n
of

th
e
re
su
lt
of

ca
ch
in
g
pl
ac
em

en
t.
a
T
he

im
pa
ct

of
q
on

th
e
pr
ob

ab
ili
ty

th
at

us
er
s
ca
n
ge
tc
on

te
nt
;b

th
e
im

pa
ct

of
k
on

th
e
pr
ob

ab
ili
ty

th
at

us
er
s
ca
n
ge
t
co
nt
en
t

7.2 Resource Scheduling Based on Mobility-Aware Caching 179

In Fig. 7.2a, based on the comparison of MS caching, popular caching and
random caching, we can obtain the following: (i) as for the density of the SBSs, we
cache popular content in a low density region of the SBS, while relatively
unpopular content is cached in a high density region to achieve both caching
efficiency and a balanced distribution of content; (ii) as for user mobility, the user
appears in more locations when his/her mobility is very high, which provides more
chances for other users to retrieve the cached content. Thus, a user with high
mobility is suggested to cache diverse content, or vice versa, a low mobility user
caches popular content.

Based on the above discussions, here, we provide an example of content caching
when user’s mobility and SBS density are considered. As shown in Fig. 7.3, we
differentiate the user mobility in low mobility and high mobility cases. In Fig. 7.3,
Rachel sends a request to a file K deadline Tf since D2D-caching and SBS caching
are not available. We assume that the MBS knows the users’ mobility trajectory in

Fig. 7.3 Illustration of the content caching placement. a Case of low user mobility; b case of high
user mobility

180 7 Mobility-Aware Resource Scheduling Cloudlets …

the network. If the user mobility is quite low at that moment, the MBS considers the
probability for Rachel to meet another user (e.g., Tommy in Fig. 7.3a carrying the
file within Tf

�
is low. Then, The MBS transmits the file K to the SBS closest to

Rachel through a back-haul link, and SBS delivers the cached file to Rachel.
Figure 7.3b shows the scenario of high mobility, where the MBS predicts that at
least one user will likely come into the vicinity of Rachel within Tf according to the
mobility status in the network. In response to Rachel’s request for the file K, she
would wait for the D2D opportunity in order to avoid using a more expensive
communication channel (e.g., through femtocell caching). After a short while,
Tommy moves to the D2D communication range and sends the file K to Rachel. In
the opposite case that Rachel still fails to obtain the requested content while the
deadline is soon to expire, the MBS will still utilize the traditional SBS caching.

In future work, we will consider the social relationship of the user terminal in the
D2D communication. It can be concluded from the users’ social relationship that
those with social connections tend to have the same request for content; for
example, one region may be divided into different groups, such as an industrial
group, a tourism group, a residential group, etc. Different contents will be cached in
different regions, and in the same region, the interchange of content may be better
achieved.

7.3 Resource Scheduling Based on Mobility-Aware
Computation Offloading

7.3.1 Edge Cloud Computing

Mobile cloud computing has been widely studied. Traditional mobile cloud
architecture is based on a centralized cloud. For example, in Ref. [36] a cloud-
assisted drug recommender system is proposed to provide online medical recom-
mendation based on a centralized cloud. However, with the densification of SBSs to
cope with ever-growing data traffic, the weakness of this structure is exposed with
higher load and more backhaul delay [37]. As one more consequence, communi-
cation cost is also increased to offload computing-intensive tasks to the cloud and
return the processed result [38]. To solve the problem, previous work also con-
sidered the computing capability of the user terminals and the SBSs [32]. In Ref.
[37, 39–41], offloading of the computation task to a mobile-edge cloud is investi-
gated with the consideration of delay and energy cost. By comparison, we address
the computation offloading issue by means of using the SBS and the user terminal
in the heterogeneous networks while the user’s mobility is considered.

7.2 Resource Scheduling Based on Mobility-Aware Caching 181

7.3.2 Caching Vs. Computation Offloading

We discuss the essential similarities and differences between caching and compu-
tation offloading. Content caching is generally provided by the server where the
requested content originates from; content is cached during non-peak periods at the
MBS, the SBS or the user terminal in order to save the bandwidth in critical time.
During “rush hour”, corresponding contents are preferred to deliver to the user via
SBS or other user terminal. Furthermore caching and computation offloading are
correlative; for example, when the user requests for popular videos, the user ter-
minal or SBS will transmit such content to the user, but the content is found not
satisfactory in terms of video quality or the format specially required by the user.
The user needs to transcode the original format to the one that satisfies the user.
Thus, the task will be offloaded to SBS and/or other user terminals to speedup the
computation. Table 7.1 provides the main differences between caching and com-
putation offloading.

7.3.3 Hybrid Computation Offloading

We have summarized the methods of mobile-edge computing offloading assisted by
MBS, SBS and the user device [37–39]. The edge cloud is called the MBS cloud,
when it consists of the computing resources deployed in MBS. Similarly, the edge
cloud powered by SBS’s computation resources is called the SBS cloud. By
comparison, the edge cloud via D2D links is called the mobile cloud.

• MBS computation offloading [39]: A user can offload the computation task to an
MBS through a cellular network link. In the research area of mobile cloud
computing, when the computation is performed in a cloud environment, the
results will be fed back to the user from the cloud via the MBS.

• SBS computation offloading [37]: The computation task is offloaded to an SBS.
After SBS completes the computing, the results will be fed back to the user.

• D2D computation offloading [38]: A user terminal can offload the computation
task via a D2D link to other mobile devices within the D2D range. Upon the
task completion, the results can be transmitted back to the user terminal, if the
mobile devices are still within the D2D communication range.

Table 7.1 Caching versus computation offloading

Caching Computation offloading

No feedback, one-way cache and
fetch

Need the feedback of the computation result

The popularity of the cached
content is typically high

The popularity of cached computation result can be
understood as 0, since it usually only serves one particular
user

The size of shared storage is
relatively large

The shared space to store the computation result is
relatively small

182 7 Mobility-Aware Resource Scheduling Cloudlets …

There are some advantages and disadvantages to the above methods. The MBS
computation offloading brings the highest communication cost, but provides the
largest coverage [38]. The D2D computation offloading has the lowest cost, but it is
difficult to ensure the completion of tasks by taking into account the user mobility.
The SBS computation offloading falls somewhere in between. Taking into account
the advantages and disadvantages of the above three methods, we have proposed a
hybrid computation offloading. In the context of the computation offloading, we
name the user terminal that has been assigned the computation task as a compu-
tation node and the user terminal processing the computation task as a service node.
When the computation node and the service node are within range of the D2D
communication, the computation node offloads the computational task to the service
node. After a period of time, the service node finishes the assigned task; at this
moment, the computation node and service node are possibly out of the range of
D2D communication because of user mobility. Thus, in some cases, the service
node might be required to cache the computing results for a long time until it again
comes into the vicinity of the computation node. On the other hand, if a higher
storage capacity and a larger transmission radius of the SBS are available, the
computing results can be returned back to the computation node in three manners
after the computational task is processed at the service node:

• D2D computing result feedback: After the computational task is processed at the
service node, the computing results will be returned directly back to the com-
putation node if the service node and the computation node are still within the
range of the D2D communication.

• SBS computing result feedback: After the computational task is completed at the
service node, the service node will offload the computing results onto the SBS if
the computation node is out of the range of the D2D communication. Then, the
SBS will transmit the results to the user if it is within the communication range
with the computation node.

• MBS computing result feedback: When the result of the computing task has not
been transferred to the user before the deadline, namely when the user and the
SBS are still not within the communication range, the SBS will upload the
results to the MBS, and then, the final results will be passed back to the user.

As shown in Fig. 7.4, Rachel (i.e., the computation node) first divides the
computation task into three sub-tasks. Within her D2D communication range, there
are three users that can work as service nodes, i.e., Tommy, Eva and Suri. Then,
Rachel offloads the three sub-tasks to them via D2D links. When a service node
(e.g., Eva) finishes the computation sub-task, it possibly loses D2D connections
with Rachel due to the user mobility. Figure 7.4 gives three modes for the com-
putation result feedback, i.e., the D2D computing result feedback, the SBS com-
puting result feedback and the MBS computing result feedback. After the Tommy’
sub-task completion, Tommy is still within Rachel’s D2D communication range,
and the D2D computing result feedback is used. When Eva’s sub-task is completed,
Eva cannot connect with Rachel via the D2D link; however, an SBS between Eva

7.3 Resource Scheduling Based on Mobility-Aware Computation Offloading 183

and Rachel is available. Then, the SBS computing result feedback is used. The
worst case is the MBS computation result feedback. Given Suri as an example, he
moves far away, and the cellular network link is the only way to feed back the
computation result. Based on the above discussion, we can see that the hybrid
computation offloading achieves a flexible tradeoff among D2D computation
offloading, SBS computation offloading and MBS computation offloading.

7.3.4 Simulation Results and Discussions

We consider four kinds of energy consumptions corresponding to four operations
during mobile edge computation, i.e., local computing, mobile offloading, edge
cloud computing and downloading of computation results from the edge cloud to
mobiles. Here, we mainly consider the energy consumption for the mobile terminal.
For the four kinds of computation offloading, they have the same local energy
consumption. Additionally, edge cloud computing and downloading of computation
results do not consume user terminal’s energy. Thus, the major energy consumption
of the task is up to mobile offloading. We consider that a user has computation task
Q, which can be decomposited into n sub-tasks. That is:Q ¼ Pn

i¼1 xi. Next, we build
up the model to calculate the energy cost of the mobile device. Let PM

t ðrÞ;PS
t ðrÞ and

PD
t ðrÞ denote the transmission power for the user terminal in terms of the commu-

nication via MBS, SBS and D2D, respectively. Let h denote the channel gain and r20
denote the variable of complex white Gaussian noise. Then, the channel capacity of

the user terminal and MBS can be obtained CM ¼ B log 1þ PM
t ðrÞh
r2

� �
, where B is the

channel bandwidth. Likewise, the channel capacity of the user terminal, SBS and

Fig. 7.4 Illustration of the hybrid computation offloading: a Device-to-Device (D2D) computing
result feedback; b small cell Base Station (SBS) computing result feedback; c macrocell Base
Station (MBS) computing result feedback

184 7 Mobility-Aware Resource Scheduling Cloudlets …

D2D can be obtained CS ¼ B log 1þ PS
t ðrÞh
r2

� �
;CD ¼ B log 1þ PD

t ðrÞh
r2

� �
. Thus, when

obtaining the distance (denoted by r) between the user and MBS, the mobile energy

cost for task offloading to the MBS edge cloud is EM ¼ Pn
i¼1

xi
CM ð1gPM

t ðrÞþPcÞ
h i

,

where Pc represents the circuit power consumed at the use terminal. Similarly, with
the distance between SBS and the user, the mobile energy cost for task offloading to

the SBS edge cloud can be calculated as: ES ¼
Pn

i¼1
xi
CS ð1gPS

t ðrÞþPcÞ
h i

. With

higher small cell density, the user has more chance to offload the task onto a small
cell with a closer distance and less energy cost. For the case of D2D, if the distance
between two adjacent users is known, the D2D energy cost for the task offloading is

ED ¼ Pn
i¼1

xi
CD ð1gPD

t ðrÞþPcÞ
h i

. With the increasing of user mobility, the user ter-

minal with a shorter distance will be found for task offloading, which decreases the
energy cost. In order to produce optimal performance, the location of task offloading
is strategically selected in the hybrid cloud, which exhibits the lowest energy cost.
According to [19, 37], we set the total task amount Q ¼ 10 Mbytes and n ¼ 10. Let
B ¼ 1 MHz, r2 ¼ 10�9 W, h ¼ 10�5. Set the maximum transmit power of the user
terminal Pmax ¼ 1 W, and the circuit power Pc ¼ 115:9 mW. The result as shown in
Fig. 7.5.

In Fig. 7.5, we evaluate the performance of the MBS computation offloading, the
SBS computation offloading, the D2D computation offloading and the hybrid
computation offloading in terms of communication cost. With the increase of SBS
density, the cost of the SBS computation offloading and the hybrid computation
offloading decrease since higher SBS density facilitates the computation result
offloading to the SBS, as shown in Fig. 7.5a. Figure 7.5b shows the impact of the
user mobility on the energy cost. With the increase of the user mobility, both the
D2D computation offloading and the hybrid computation offloading exhibit lower

Fig. 7.5 Illustration of the computation offloading energy cost. a Comparing the energy cost of
MBS, SBS and hybrid computation offloading; b comparing the energy cost of MBS, D2D and
hybrid computation offloading

7.3 Resource Scheduling Based on Mobility-Aware Computation Offloading 185

energy cost. This is because the probability of the D2D connections increases. The
performance of the D2D computation offloading achieves optimization when k is
equal to 0.00011. However, the energy cost increases again when the mobility is
too high. This is because the contact time of the D2D connection is too short, which
easily causes the failure of the computation result feedback. In comparison, the
hybrid computing offloading combines the advantages of the other three compu-
tation offloading schemes and produces the lowest energy cost.

7.4 Incentive Design for Caching and Computation
Offloading

As already mentioned, the main target of caching and computation offloading in 5G
ultra-dense cellular networks is to reduce traffic load and encourages the D2D
communications among users. However, the intrinsic selfish feature of user ter-
minals constitutes the biggest obstacle for content caching and computation
offloading in practical situations. For example, most users intend to store their
favorite files, which at the same time might be also cached by many other users.
This fact could result in replicated caching and insufficient use of the accumulative
storage space of the network nodes cumulatively. As for computing, most users like
to count on others to help them to execute the computation tasks while being
reluctant to share computing capacity with others.

In order to solve the problem, this chapter designs an incentive mechanism based
on the following three kinds of heterogeneities: (1) the heterogeneity of the user
devices, namely each user terminal’s storage and computing capabilities are dif-
ferent, which makes some users willing to cache contents and earn incentives
through content sharing, while other users prefer to provide computing service to
others, and the earned incentive can be used to request cached contents; (2) the
heterogeneity of user requirements in terms of user’ QoE, namely each user’s
demand for computing and caching and his/her preference for content are different;
(3) the heterogeneity of network conditions, namely the user mobility within the
region and the density of the SBSs are different.

Similar to the incentive mechanism for crowdsourcing, more incentives lead to a
higher user’s QoE. There are two main methods to earn the incentive: cache content
and computing tasks for others. Moreover, the two can be transformed into each
other; for example, user Bob’s mobile phone has large storage capacity to cache
more popular content, but its computing capacity is relatively weak; whereas, user
Suri’s mobile phone has great computing capacity, but weaker storage capacity.
When both are within the range of the D2D communication, user Bob may offload
some content as requested by user Suri and then get some incentive when the
content is sent to Suri. Thereby, user Bob may offload computational tasks to be
processed onto user Suri, and user Suri can get some incentive, which can pay for
the “debt” for getting the content. Therefore, an incentive balance of content is

186 7 Mobility-Aware Resource Scheduling Cloudlets …

achieved and replaced by computation. We introduce an incentive mechanism to
encourage various users with heterogeneous mobile devices to exchange favors of
content sharing and computation offloading.

Specifically, we can divide this incentive into two levels:

• Caching incentive: When the user B obtain content from the user A, the user B
needs to pay an incentive (e.g., virtual money), this incentive includes the cost
of D2D communication between B and A, the cost of storing content at the
expense of the content value from the perspective of the user A. Meanwhile, the
user A can get these incentive. From the above, we can see that the popularity of
the content of the caching incentive, downloading times of users and caching
time are all related to these three aspects.

• Computing incentive: When the user A offloads computing tasks and transfers
them to the user B and then the user B helps the user A to proceed with the
calculation, the user A will pay the user B an incentive for the communication
cost and the computing cost. At the same time, the user B will obtain these
incentives. The costs are relatively high due to the fact that the result of com-
putation is equivalent to the content, whose popularity is zero.

References

1. Y. Zhang, M. Chen, S. Mao, L. Hu, V.C. Leung, CAP: Crowd activity prediction based on big
data analysis. IEEE Netw. 28, 52–57 (2014)

2. L. Peng, C.H. Youn, W. Tang, C. Qiao, A Novel approach to optical switching for
intra-datacenter networking. J. Lightwave Technol. 30, 252–266 (2012)

3. G. Fortino, W. Russo, M. Vaccaro, An works. J. Netw. Comput. Appl. 37, 127–145 (2014)
4. G. Fortino, W. Russo, Using P2P, GRID and agent technologies for the development of

content distribution networks. Future Gener. Comp. Syst. 24, 180–190 (2008)
5. J. Li, M. Qiu, Z. Ming, G. Quan, X. Qin, Z. Gu, Online optimization for scheduling

preemptable tasks on IaaS cloud systems. J. Parallel Distrib. Comput. 72, 666–677 (2012)
6. J. Li, Z. Ming, M. Qiu, G. Quan, X. Qin, T. Chen, Resource allocation robustness in

multi-core embedded systems with inaccurate information. J. Syst. Archit. 57, 840–849
(2011)

7. X. Ge, S. Tu, G. Mao, C.X. Wang, T. Han, 5G ultra-dense cellular networks. IEEE Wirel.
Commun. 23, 72–79 (2016)

8. M. Volk, J. Sterle, U. Sedlar, A. Kos, An approach to modeling and control of QoE in next
generation networks. IEEE Commun. Mag. 48, 126–135 (2010)

9. K. Lin, W. Wang, X. Wang, W. Ji, J. Wan, QoE-Driven spectrum assignment for 5G Wireless
networks using SDR. IEEE Wirel. Commun. 22, 48–55 (2015)

10. M.S. Hossain, G. Muhammad, M.F. Alhamid, B. Song, K. Almutib, Audio-visual emotion
recognition using big data towards 5G. Mob. Netw. Appl. 1–11 (2016). doi:10.1007/s11036-
016-0685-9

11. K. Zheng, X. Zhang, Q. Zheng, W. Xiang, L. Hanzo, Quality-of-experience assessment and
its application to video services in LTE networks. IEEE Wirel. Commun. 1, 70–78 (2015)

12. J. Sterle, U. Sedlar, M. Rugelj, A. Kos, M. Volk, Application-driven OAM framework for
heterogeneous IoT environments. Int. J. Distrib. Sens. Netw. 2016 (2016). doi:10.1155/2016/
5649291

7.4 Incentive Design for Caching and Computation Offloading 187

http://dx.doi.org/10.1007/s11036-016-0685-9
http://dx.doi.org/10.1007/s11036-016-0685-9
http://dx.doi.org/10.1155/2016/5649291
http://dx.doi.org/10.1155/2016/5649291

13. U. Sedlar,M. Rugelj, M. Volk, J. Sterle, Deploying and managing a network of autonomous
internet measurement probes: Lessons learned. Int. J. Distrib. Sens. Netw. 2015 (2015).
doi:10.1155/2015/852349

14. Y. Zhang, M. Qiu, C. Tsai, M. M. Hassan, A. Alamri, Health-CPS: healthcare cyber-physical
system assisted by cloud and big data. IEEE Syst. J. 1–8 (2015). doi:10.1109/JSYST.2015.
2460747

15. M. Qiu, E.H.-M. Sha, Cost minimization while satisfying hard/soft timing constraints for
heterogeneous embedded systems. ACM Trans. Des. Autom. Electron. Syst. 14, 2009.
doi:10.1145/1497561.1497568

16. X. Wang, M. Chen, T. Taleb, A. Ksentini, V.C.M. Leung, Cache in the air: exploiting content
caching and delivery techniques for 5G systems. IEEE Commun. Mag. 52, 131–139 (2014)

17. K. Zheng, L. Hou, H. Meng, Q. Zheng, N. Lu, L. Lei, Soft-defined heterogeneous vehicular
network: architecture and challenges. IEEE Netw. (2015). arXiv:1510.06579

18. K. Lin, T. Xu, J. Song, Y. Qian, Y. Sun, Node scheduling for all-directional intrusion
detection in SDR-based 3D WSNs. IEEE Sens. J. (2016). doi:10.1109/JSEN.2016.2558043

19. K. Shanmugam, N. Golrezaei, A. Dimakis, A. Molisch, G. Caire, Femtocaching: wireless
content delivery through distributed caching helpers. IEEE Trans. Inf. Theory 59, 8402–8413
(2013)

20. N. Golrezaei, P. Mansourifard, A.F. Molisch, A.G. Dimakis, Base-station assisted
device-to-device communications for high-throughput wireless video networks. IEEE
Trans. Wirel. Commun. 13, 3665–3676 (2014)

21. J. Song, H. Song, W. Choi, Optimal caching placement of caching system with helpers, in
Proceedings of of the 2015 IEEE International Conference on Communications (ICC),
London, 8–12 June 2015

22. L. Lei, Y. Kuang, N. Cheng, X. Shen, Z. Zhong, C. Lin, Delay-optimal dynamic mode
selection and resource allocation in device-to-device communications. IEEE Trans. Veh.
Technol. 65, 3474–3490 (2015)

23. K. Zheng, H. Meng, P. Chatzimisios, L. Lei, X. Shen, An SMDP-based resource allocation in
vehicular cloud computing systems. IEEE Trans. Ind. Electron. 12, 7920–7928 (2015)

24. K. Lin, M. Chen, J. Deng, M. Hassan, G. Fortino, Enhanced fingerprinting and trajectory
prediction for iot localization in smart buildings. IEEE Trans. Autom. Sci. Eng. 1–14 (2016).
doi:10.1109/TASE.2016.2543242

25. M. Ji, G. Caire, A.F. Molisch, Wireless device-to-device caching networks: basic priciples
and system performance. IEEE J. Sel. Areas Commun. 34, 176–189 (2016)

26. K. Lin, J. Song, J. Luo, W. Ji, M. Hossain, A. Ghoneim, GVT: green video transmission in the
mobile cloud networks. IEEE Trans. Circuits Syst. Video Technol. (2016). doi:10.1109/
TCSVT.2016.2539618

27. D. Malak, M. Al-Shalash, Optimal caching for device-to-device content distribution in 5G
networks, in Proceedings of the 2014 IEEE Globecom Workshops (GC Wkshps), Austin, 8–12
Dec 2014, pp. 863–868

28. M. Ji, G. Caire, A. Molisch, The throughput-outage tradeoff of wireless one-hop caching
networks. IEEE Trans. Inf. Theory 61, 6833–6859 (2015)

29. X. Ge, J. Ye, Y. Yang, Q. Li, User mobility evaluation for 5g small cell networks based on
individual mobility model. IEEE J. Sel. Areas Commun. 34, 528–541 (2016)

30. S.H. Chae, J.Y. Ryu, T.Q.S. Quek, W. Choi, Cooperative transmission via caching helpers, in
Proceedings of the 2015 IEEE Global Communications Conference (GLOBECOM), San
Diego, 6–10 Dec 2015

31. X. Ge, B. Yang, J. Ye, G. Mao, C.-X. Wang, T. Han, Spatial spectrum and energy efficiency
of random cellular networks. IEEE Trans. Commun. 63, 1019–1030 (2015)

32. Y. Li, W. Wang, Can mobile cloudletss support mobile applications? in Proceedings of the
33rd Annual IEEE International Conference on Computer Communications (INFOCOM’14),
Toronto, 27 Apr–2 May 2014, pp. 1060–1068

33. H. Ahlehagh, S. Dey, Video-aware scheduling and caching in the radio access network.
IEEE/ACM Trans. Netw. 22, 1444–1462 (2014)

188 7 Mobility-Aware Resource Scheduling Cloudlets …

http://dx.doi.org/10.1155/2015/852349
http://dx.doi.org/10.1109/JSYST.2015.2460747
http://dx.doi.org/10.1109/JSYST.2015.2460747
http://dx.doi.org/10.1145/1497561.1497568
http://dx.doi.org/10.1109/JSEN.2016.2558043
http://dx.doi.org/10.1109/TASE.2016.2543242
http://dx.doi.org/10.1109/TCSVT.2016.2539618
http://dx.doi.org/10.1109/TCSVT.2016.2539618

34. X. Ge, S. Tu, T. Han, Q. Li, G. Mao, Energy efficiency of small cell backhaul networks based
on gauss-markov mobile models. IET Netw. 4, 158–167 (2015)

35. A. Passarella, M. Conti, Analysis of individual pair and aggregate inter contact times in
heterogeneous opportunistic networks. IEEE Trans. Mob. Comput. 12, 2483–2495 (2013)

36. Y. Zhang, D. Zhang, M.M. Hassan, A. Alamri, L. Peng, CADRE: cloud-assisted drug
recommendation service for online pharmacies. ACM/Springer Mob. Netw. Appl. 20,
348–355 (2015)

37. X. Chen, L. Jiao, W. Li, X. Fu, Efficient multi-user computation offloading for mobile-edge
cloud computing. IEEE Trans. Netw. (2015). doi:10.1109/TNET.2015.2487344

38. M. Chen, Y. Hao, Y. Li, C. Lai, D. Wu, On the computation offloading at ad hoc cloudlet:
architecture and service models. IEEE Commun. 53, 18–24 (2015)

39. L. Tong, Y. Li, W.A. Gao, Hierarchical edge cloud architecture for mobile computing, in
Proceedings of the IEEE INFOCOM 2016—The 35th Annual IEEE International Conference
on Computer Communications, San Francisco, 10–15 Apr 2016

40. Q. Liu, Y. Ma, M. Alhussein, Y. Zhang, L. Peng, Green data center with iot sensing and
cloud-assisted smart temperature controlling system. Comput. Netw. 101, 104–112 (2016)

41. X. Ge, X. Huang, Y. Wang, M. Chen, Q. Li, T. Han, C.-X. Wang, Energy efficiency
optimization for mimo-ofdm mobile multimedia communication systems with QoS
constraints. IEEE Trans. Veh. Technol. 63, 2127–2138 (2014)

References 189

http://dx.doi.org/10.1109/TNET.2015.2487344

Chapter 8
Machine-Learning Based Approaches
for Cloud Brokering

8.1 Introduction

Machine learning is a field of computer science specifically aimed at a challenging
goal, quite clearly illustrated by Samuel in 1959, stating that machine learning is
that discipline that “gives computers the ability to learn without being explicitly
programmed” [1]. Along the years this concept has been sensibly evolved, from the
research on pattern recognition to the highly ambitious goal of providing computers
with an artificial intelligence.

Nowadays, according to its most diffused interpretation, Machine learning is
considered the scientific discipline aimed at dealing with the conception and defi-
nition of algorithms and approaches that can learn from, as well as do predictions,
leveraging data.

By means of machine-learning based approaches, algorithms are no longer
deemed as mere lists of statically defined program instructions derived from a
pre-defined, developer-defined, data model. Instead, algorithms become computa-
tional entities, able to make data-driven predictions or decisions, through building a
model from sample inputs.

Across the years, machine learning has been employed in a wide-range of
computer-aided activities, especially the ones in which the explicit design and
development of data-agnostic algorithms is unfeasible; classical kinds of applica-
tions that have been empowered by machine-learning techniques include spam
filtering, optical character recognition, diagnostics [2] and computer vision.

In more recent time, the set of applications making use of machine-learning
based approaches significantly increased. This is mainly due to the rise of new
technologic paradigms, ranging from physical ones (e.g., mobile devices, IoT,
clouds and cloudlets) to software ones (e.g., social networks and media, search
engines, media sharing platforms) leading to an unprecedented production of
user-generated data, that makes difficult the definition of a pre-defined data model
able to make predictions.

© Springer Nature Singapore Pte Ltd. 2017
C.-H. Youn et al., Cloud Broker and Cloudlet for Workflow Scheduling,
KAIST Research Series, DOI 10.1007/978-981-10-5071-8_8

191

Even more recent approaches are working to the embodiment of
machine-learning solutions for supporting the selection and brokering of resources
in large computing installment, such as computational clouds and cloud federation.

8.2 Different Ways to Achieve Machine Learning

As a scientific discipline, machine learning is strictly related to computational
statistics. Both are focused on conducting deep computing analysis to achieve
high-quality predictions. Machine learning has also strong links to mathematical
optimization, which actually delivers methodological approaches and theories the
field. Machine learning is sometimes combined with data mining to achieve more
advanced results [3].

In a nutshell, machine learning can be described, within the field of data ana-
lytics, as an advanced method leveraged to develop complex models and algorithms
that lend themselves to prediction.

The analytical models defined under the umbrella of machine learning allow data
scientists, engineers, and analysts to achieve “reliable, repeatable decisions and
results” and unfold “hidden insights” by means of learning from relationships and
trends present in the data.

As reported in Table 8.1—Different flavors of machine learning, machine
learning approaches are used to be classified into three main categories [4], differing
by the nature of the approach available to a learning system to actually learn what to
do, depending the available information and data.

Table 8.1 Different flavors of machine learning

Supervised learning Unsupervised learning Reinforcement learning

With Supervised learning the
machine is fed with sample
inputs and the outputs
wanted, given by a “teacher”
(or supervisor). The
objective of the approach is
to learn a general rule able to
effectively associate inputs
to outputs

Unsupervised learning
assumes that no labels are
provided to the learning
system, that is fully in
charge to find a certain
structure within the input
provided. The exploitation
of unsupervised learning to
achieve a machine-learning
based solution is twofold. It
can be either the ultimate
objective of the process
(recognition of hidden
patterns) or a
methodological tool to
achieve a different end
(feature learning)

Reinforcement learning is a
further approach to machine
learning assuming that a
computer program would
interact with a target
environment in which it is
expected to achieve a
certain, pre-defined goal,
without a teacher explicitly
telling it whether it has come
close to its goal. A pretty
typical example of
reinforcement learning is to
learn to play a game by
playing against an opponent.
By means of the “expertise”
achieved during the different
matches, the system learn
how to win the game

192 8 Machine-Learning Based Approaches for Cloud Brokering

8.3 Different Methodologies for Machine Learning

Besides three main different “flavours” in which machine learning can be provided,
as reported in the previous section, there exist many different technologies,
methodologies and strategies to actually achieve, from an operative viewpoint,
machine learning solutions. In the following of this section are briefly reported the
most diffused approaches.

Association rule learning
This way to conduct machine-learning, consists of a method for discovering rela-
tions between large sets of entities [5, 6]. This approach is exploited to identify
association rules existing in data by using some measures of attractiveness.
Traditionally, such information has been used as the basis for decisions about
marketing and placement activities in large grocery stores or supermarkets.
Nowadays, association rules are employed for a broader range of tasks in different
application areas, such as web-mining.

Artificial neural networks
An artificial neural network [7] machine learning solution is a learning algorithm
which main structure is, somehow, inspired by the structure of “real” biological
neural networks. Neural-networks based computations are structured as a set of
interconnected artificial neurons, aimed at processing information by means of a
connectionist approach to computation.

Neural networks are nowadays usually used to model particularly complex
relationships between input and output data, to understand the statistical structure
characterising an unknown joint probability distribution between variables.

Bayesian networks
A Bayesian network [8] is a probabilistic model symbolised by means of a direct
acyclic graph (DAG), representing a collection of random variables and their
conditional. In fact, from a formal perspective, Bayesian networks are DAGs in
which the nodes represent random variables. Each edge, instead, represents a
conditional dependency: not connected nodes represent conditionally independent
variables. The typical example used to illustrate a Bayesian network is the proba-
bilistic relationships between users and applications. For a set of given applications,
the Bayesian network can be used to compute the probabilities of the presence of
actual users.

Clustering
Cluster analysis [9] consists in the association of a set of items into clusters. All the
items within the same cluster are close, one each other, according to a predefined
measure, whereas if items differ, will be located into different clusters. There exist
many different techniques for clustering, each focused on different assumptions on
the structure and nature of the data. Such characterisation is usually given by means

8.3 Different Methodologies for Machine Learning 193

of some closeness measure and evaluated taking into account the internal com-
pactness and separation between different clusters. Clustering is one of the most
diffused methods for conducting unsupervised learning.

Decision tree learning
This approach [10] implements a predictive model by means of a decision tree
mapping the observations related to a specific item to conclusions about the item
final value, respectively represented by branches and leaves. These models repre-
sent either classification or regression trees. The former type includes the ones in
which the target variable can take a limited set of values, the latter ones represent
trees where the target variable can take continuous.

Deep Learning
Deep-learning [11–13] based approaches focus on attempting to model high-level
abstractions existing in data by means of a “deep” graph structured on several
different processing layers. Deep learning belongs to a set of learning solutions
based on feature learning over data. A very key potential of deep learning is to
replace human/manually expressed features with efficient algorithms for unsuper-
vised or semi-supervised feature learning. In fact, research in this area is aimed at
providing better representations and create models to learn such representations
starting from large-scale uncharacterized data. As it happens with artificial neural
networks, some of the representations used in the deep learning field, have been
inspired by advances in neuro-sciences and are somehow based on patterns for the
information interpretation and communication as happens in a nervous system.

Inductive logic programming
Inductive logic programming [14] is an approach to “rule learning” that makes use
of logic programming as a way to give uniform representation for input samples.
Once an encoding able to represent both the background knowledge and a set of
facts is given, an Inductive Logic Programming system is able to derive a
hypothesized program that satisfies all positive examples and, at the same time, no
negative examples.

This approach is exploited also with non-logic programming paradigm, and in
that case, is simply referred as Inductive programming; the most diffused,
non-logic, approaches to such field.

Representation learning
In unsupervised learning, it raises quite often the necessity of dealing with notable
amount of sparse and complex data. In this perspective, one of the key activities to
be conducted is on giving good representations to the input data provided during
training. Representation learning [15] algorithms are aimed at to preserve the
input information but transforming it to ease their exploitation, usually as a
pre-processing step before performing the actual analysis, allowing to rearrange
input data that follows a distribution that is not known a priori.

194 8 Machine-Learning Based Approaches for Cloud Brokering

Similarity and metric learning
Similarity and metric learning [16] is an approach to machine learning aimed at
determining if elements are similar “enough”. According to the classical problem
definition, the learning machine is provided with pairs of sample data that are
considered similar, and pairs of less similar objects. The machine then needs to
learn a similarity function able to predict if new objects received in input are
similar. One of the most diffused applications is on recommender systems, to
identify items to suggest depending on the past “browsing” history of users. In this
set of solutions falls the learning-to-rank approach for the definition of ranking
models for information retrieval systems.

Support vector machines
Support vector machines [17] are a set of related supervised learning methods used
for data classification and regression. Given a set of input training examples, each
one marked as strictly belonging to one of two categories, a support-vector-machine
based training algorithm works by building a model able to predict whether a new
input example belongs to one category or the other.

Genetic algorithms
A genetic algorithm [18] is a heuristic for searching suitable solutions. This
approach works by simulating the process of natural selection, leveraging mecha-
nisms such as “crossover” and “mutation” to create new genotypes for finding
high-quality solutions to an input problem. Genetic algorithms are exploited in
machine learning, since the nineties. However, in recent times, a cross-fertilization
activity took place between the two research fields that leaded machine-learning
based techniques to be used to improve the performance of genetic and evolutionary
algorithms.

Rule-based machine learning
Rule-based machine learning [19] refers to a broad sector that includes several
machine learning methods that achieve an “intelligent” behaviour by identifying,
learning, or updating “rules” driving activities aimed at storing, manipulating or
applying, knowledge. The key aspect of a rule-based machine-learning based
system consists in the identification and exploitation of a collection of relational
rules aimed at collectively representing the knowledge base built. Some of the most
known rule-based machine learning approaches include learning classifier systems
and association rule learning.

Learning Classifier Systems
In the broader area of rule-based machine learning systems, is included the family
of learning classifier systems [20], namely, algorithms that put together a detection
component and a learning component. Such modules are aimed at identifying a
collection of context-dependent rules that collectively store and apply knowledge in
a piecewise manner (i.e. by defining specific rules, each devoted to a certain specific
range of data) in order to make predictions.

8.3 Different Methodologies for Machine Learning 195

8.4 Machine Learning and Cloud Brokering

As we outlined in the introduction of this chapter, in recent years, machine learning
is getting momentum, and its exploitation is becoming of paramount importance
also in fields in which it was not exploited before. In the context of application
placement and resource brokering, ML-based classification is going to be exploited
to assign virtual machines to data centres by ranking each datacentre in accordance
with its ability to satisfy a given QoS.

The ranking problem in ML is usually referred to as learning to rank (L2R),
falling in the family of the similarity metrics learning systems. Learning to rank
solutions provide a ranking of data items according to defined objectives.
A learning-to-rank based function works by ranking a set of candidate objects
according to their relevance to a given query.

The advantages deriving from the exploitation of machine-learning based
solutions is the ability of learning “how-to-rank” from a ground-truth composed of
many training examples, instead of relying on user- or developer-provided models.

In fact, once learned, the scoring function provided by the learning-to-rank
algorithm is able to approximate the ideal ranking from the examples belonging to
the training set. This is a particularly interesting feature/building block to realise
brokering solutions, especially in dynamic and complex environment. In fact, by
means of a machine-learning approach it is possible to achieve.

8.5 The Current Landscape of Machine-Learning
Enabled Cloud Brokering Approaches

In the area of application and resource brokering, across the years, there have been
many proposals for making brokering systems “more intelligent” or “smarter”.
From this perspective, intelligence means the ability of adapting the peculiar
choices usually conducted by brokers to find the best resources, when the space of
solutions changes depending on mutating conditions affecting both resources and
applications.

Beforehand, we presented the most used approaches for conducting machine
learning. Only a few of them have been proposed so far in the specific area of
application and resource brokering, and even fewer in the area of Cloud Brokering.
In the remaining of this chapter are reported the most relevant solutions existing so
far in the scientific literature. In order to exemplify the exposition, we focused more
on clearness than on completeness, i.e., goal is to give to the reader a clear per-
spective on the existing solutions instead of aiming at providing a fully compre-
hensive report of all the existing solutions.

196 8 Machine-Learning Based Approaches for Cloud Brokering

8.5.1 Machine-Learning Based Application Placement
in Cloud Federation

Cloud infrastructures and technologies are getting their momentum and their dif-
fusion and exploitation is widening. Nowadays, they are used in many different
sectors and areas, following different deployments and needs. Such widely differ-
entiated set of shapes in which clouds are provided to final users and companies led
to new challenges and the definition of new requirements. In turn, such needs
generated new kind of infrastructures and technologies. Among them is of partic-
ular interest the idea of cloud federation [21–23].

Cloud federation are characterised by the ability of federating multiple cloud
installations to be able to provide wide area coverage of services, where a single
installation is not enough. Federation can be either composed by clouds owned by
different providers or by a single one, as happens with the different availability
zones of Amazon.

From this perspective, the brokering activity performs a pretty different goal, in
fact it is no longer focusing on the actual allocation of VMs to physical machines,
instead it is aimed at detecting the best cloud installation for a given VM, depending
on a wide set of features, including the location of the requests. A notable result in
this field has been proposed by Unuvar et al. [24], in their work the authors focus on
the selection of the best availability zone for hosting a VM by exploiting machine
learning techniques to maximise user satisfaction.

From a bird-eye-view perspective, the system they propose has a very straight-
forward structure; its architecture is depicted in Fig. 8.1. As can be observed, it holds
the assumption that in the availability zones there are monitoring tools deployed
within it aimed at providing the necessary measurements for evaluating the satis-
faction level of each requirement specified in the request. Such monitoring support

Fig. 8.1 System diagram of the approach proposed by Unuvar et al. [24]

8.5 The Current Landscape of Machine-Learning … 197

gathers a wide range of information about the architectural features of a node, such
as failure and recovery notifications, runtime performances such as throughput of
various resources, etc. To this end it can be either exploited an existing monitoring
service, provided by the cloud provider, or deploy an ad hoc, proprietary tool, to
monitor the deployment and runtime characteristics of provisioned instances.

As depicted in Fig. 8.1, the monitoring agent that collects measurements and
evaluates if and how much the requirements specified in a request are satisfied. The
results of this evaluation are eventually transferred to the cloud manager, a com-
ponent aimed both at the management of the clouds and at the brokering within the
federation. Such information is essential for the cloud manager to be able to build
prediction models on the basis of satisfaction of user’s requirements. In fact, the
degree of satisfaction is the sole input, coming from the monitoring subsystem,
exploited by the system to drive its choices. The satisfaction of the users is then
paired with the input of user requirement and their associated weights, cloud
manager makes a decision on the availability zone that meets the user requirement
most. From a more formal perspective, the system is built around two main pillars:
Request attributes and Availability Zone Model.

Request attributes
A user request, for VM placement, is represented by a requirement vector. Let
the ith user request be represented by the vector, ri ¼ ri1; ri2; . . .; riJ where rij;
j ¼ 1; . . .; J; specifies the jth requirement of user i that is expected to be satisfied by
the selected availability zone. User requirements may include:

• resources, as the resource amounts required by the user (e.g., CPU, memory,
etc.);

• QoS criteria, as quality of service objective that a user wants to achieve (e.g.,
highest reliability, minimum latency, etc.);

• constraints, as restrictions on possible service provisioning (e.g., locality,
throughput, etc.);

• user instance types, as the type of instance the user wants to run;
• user machine types, as the type of machine that the user requires the availability

zone to provide.

Availability Zone Model
Availability zones differ in features depending on their actual composition of
resources. Attributes such as availability zone size, hardware mix, or management
stack (including instance placement policies) result in different levels of reliability
and performance. Attribute values that influence the QoS offered by an availability
zone for a particular instance type are not known. Generally, QoS data for any
particular instance type in a given availability zone are not known a priori. It is,
however, possible to measure the QoS parameters after an instance has been
deployed. Such measurements may be evaluated against the requirements specified
in the request. Unuvar and the other authors of this approach refer to such an
evaluation as requirement satisfaction level.

198 8 Machine-Learning Based Approaches for Cloud Brokering

Let cij 2 0; 1½ � denote the satisfaction level of requirement rij. If the requirement
rij is fully satisfied, then cij ¼ 1, otherwise 0\cij\1. Given such an evaluation,
that can be performed using any method able to produce the vector of satisfaction
levels, CTi ¼ ½ci1; ci2; . . .; ciJ �, for each incoming request ri, deployed to an avail-
ability zone. The input CT

i is the only input needed from the monitoring agent.

Predictions
After the definition of attributes, availability zones and satisfaction, it is possible to
define the process required to build a prediction model [24]. It can be achieved by
learning the behaviour of each availability zone based on the historical data of past
requests. The prediction model maps the requirement vector of a request,
ri ¼ ri1; ri2; . . .; riJ, to a measure describing customer satisfaction, defined by a
utility function, f rið Þ 2 0; 1½ �. The utility function reaches its maximum value
(i.e., 1) when there is complete user satisfaction. The value of f rið Þ depends on
how much the requirements of an incoming request is satisfied by the availabil-
ity zone where the request is addressed. The vector of satisfaction levels, CT

i ¼
½ci1; ci2; . . .; ciJ �, for each incoming request ri, is observed after the request is
deployed. The satisfaction of some requirements may be more crucial than others,
therefore the satisfaction level of each requirement may have different significance.
The weight vector WT

i ¼ ½wi1;wi2; . . .;wiJ � denotes the significance levels for
requirement attributes for request ri. The more the value of wij, the stronger the
significance of jth requirement is. One possible way of defining the utility function
f rið Þ is to take a linear combination of the satisfaction level for each incoming
request Ci and the associated weightsWTi multiplied by an indicator function /ðriÞ.
The indicator function is used to set the satisfaction level to zero when the request is
rejected. Hence, we define the utility function as,

f rið Þ ¼ / rið Þ
XJ
j¼1

wijcij ¼ / rið ÞWT
i Ci; ð8:1Þ

where

/ rið Þ ¼
0; if the request is rejectedP

j wij

� ��1
; otherwise

8<
: ð8:2Þ

Note that the selection of / rið Þ ¼ P
j wij

� ��1
, in the case of no rejection,

normalizes the weight vector and limits the maximum possible value of f ðriÞ to 1.
To clarify the approach here follows an example, let ri ¼ ½rS; rL; rI; rA; rMh� be

the requirement vector of an incoming request. The request contains requirements
related to the size, supported instance type, infrastructure type, and reliability of an
availability zone. The description of the requirement attributes is listed below.

8.5 The Current Landscape of Machine-Learning … 199

• rS: Requested CPU and RAM resources where rS 2 {micro, small, medium,
large, xlarge}

• rL: Level of reliability where rL 2 {low, medium, high}
• rI: Tolerance to interruption where rI 2 [0, 1] rA: Requested instance type

where rA 2 {compute intensive, storage, memory intense Instance}
• rMh: Requested machine type where rM 2 {Intel Xeon-series, AMD Opteron-

series}.

The measured satisfaction for each requirement is captured by vector CT
i . Let’s

assume that for an incoming request with a requirement vector r, such that it
holds ri ¼ ½large;medium; 1; compute intensive; Intel Xeon�, the satisfaction vector
is observed as; CT

i ¼ ½0; 1; 0; 1; 1�, meaning that the size and tolerance to inter-
ruption requirements of the incoming request, rS ¼ flargeg and rI ¼ f1g, are not
satisfied while other requirements are fully satisfied. If the associated weight vector
is WT

i ¼ ½0:2; 0:3; 0:3; 0:1; 0:1� then the utility function for ri is computed as,

f rið Þ ¼ / rið ÞWT
i Ci ¼ 0:5 if request is placed
0 if request is rejected

�
ð8:3Þ

where / rið Þ ¼ 1 if the request is placed and 0 otherwise. Note that due to the
weights associated with each requirement, the satisfaction level did not exceed 0.5
when more than half of the requirements are satisfied.

When different availability zones are able to provide the same services, the
availability zone which returns the maximum utility value f ðriÞ for the incoming
request is likely to be able to satisfy the requirements most. As matter of fact, the
exact value of the utility function can be computed only after deployment.
However, it can be predicted exploiting available information on past utility values
of deployed requests. This predicted value drives the selection of availability zones.

To this end, the assignment process works as follow: the incoming requests are
placed into the availability zones by using a random selector, leading to a uniform
distribution of the requests to the availability zones. Then, satisfaction level vectors
are computed and stored in a properly defined history log. For each incoming
request r, a training table is built, for every zone, based on its weight vector W and
the history of satisfaction vectors of random arrivals to each availability zone from
the history log. Once the training tables are built for each zone, the associated
prediction models are generated by using classical machine learning techniques for
the incoming request.

In short, prediction models are built based on the history log and the weight
vector of an incoming request for every zone at the time of arrival. If Pn denotes the
prediction model for the satisfaction level of an incoming request placed in an
availability zone n, Pn is trained by sample records or instances characterized by the
tuple (ri; fnðriÞð Þ : i 2 ½1; . . .; I�, where I is the size of the training set. fnðriÞ is the
empirical value of the utility function in the availability zone n, associated with
the requirement vector ri in the history log and new coming request r’s weight
vector WT , hence prior requests’ satisfaction levels are combined with requests’

200 8 Machine-Learning Based Approaches for Cloud Brokering

weights inside the training table. Classification models assume that utility values are
discrete. In the case that the utility value is continuous, regression models should be
used for prediction.

The training dataset used by Pn to learn the behaviour of availability zone n,
composed by I entries, defines for each item a set of J attributes and a target fnðriÞ.
After the training phase, Pn learns how to predict the user satisfaction level for the
requirement vector r as given by, Pn rð Þ ¼ f �n ðrÞ where f �n ðrÞ is the predicted
satisfaction level for zone n. The estimated mean square prediction error is given by

e Pnð Þ ¼ 1
Iþm

XIþm

l¼1

fn rlð Þ � f �n rlð Þ� �2 ð8:4Þ

where m is the number of requests that are deployed to a zone after prediction. In
order to find an unbiased estimate of the predicted error, the trained model is
validated by testing it against a set of requirement vectors that are not part of the
training set. Once each prediction models Pn is generated for each zone, then it is
employed to select the availability zone that maximizes the satisfaction of an
incoming request.

If the value of the utility function was completely known before deployment, the
selection of an availability zone that satisfies the customer requirements would be
an obvious choice. However, the utility values, strongly depend on unpublished
zone properties and they are not publicly available. Regardless, it is possible to
predict them by exploiting machine learning techniques and the historical data as
aforementioned and use predicted utility values for availability zone selection.

One possible selection policy uses the maximum predicted utility value to select
the availability zone. Hence, if there are n availability zones, the zone that satisfies
the requirement vector of the incoming request r most is represented with the Eq. 5.

PS rð Þ ¼ max
n

Pn rð Þ
� �8n�N ð8:5Þ

Here the utility function is maximized when n ¼ S, meaning the predicted satis-
faction indicates all the user requirements satisfied. Therefore, the zone selector (the
cloud broker) assigns zone S as the optimal zone for the incoming request r if that
zone S has enough capacity. If the best zone that maximizes the utility function
cannot accommodate the request because of resource shortage in zone capacity,
then the second-best zone is selected. This procedure repeats until the request is
actually placed (or rejected).

Due to the dynamic nature of the cloud environment (i.e. availability, load, time
etc.), the accuracy of the prediction models may (and actually does) decrease over
time. Clearly, prediction accuracy gets worst when the availability zone features
change significantly. These changes may not be publicized or become available to
the placement policy. Therefore, as the zone features change, the prediction models
need to be retrained to learn the new zone behaviour. To mitigate the impact of
this issue, after each placement, the training data set in the history log can be

8.5 The Current Landscape of Machine-Learning … 201

updated. Thus, the prediction models are retrained when the average prediction
error increases above a pre-defined threshold. New training samples are collected
dynamically to retrain the prediction models when the prediction error exceeds the
threshold value.

8.5.2 Machine-Learning Solutions to Deal with Uncertainty

Brokers are aimed at will most likely choose providers that offers advanced and
tailored Quality of Service (QoS) guarantees at affordable prices. Thus, providers
need to satisfy QoS requirements coming from users and at the same time hold
down provisioning cost for keeping their prices competitive. For this purpose,
providers should embody resource allocation techniques that consider heterogeneity
and dynamicity, key aspects for characterising multi-purpose cloud infrastructures
[25]. Heterogeneity refers to the ecosystem of Cloud applications, that are very
different in nature and requirements, ranging from embarrassingly-parallel scientific
tasks to interactive web applications. Clustering and classification methods can be
exploited for addressing such heterogeneity, in order to find similarities in appli-
cation requirements for a tailored resource allocation. Also, the work of Sharma
et al. [26] employs clustering methods for characterising tasks and machines
(k-means clustering and simple clustering respectively) by referring to Google data
specifically collected for that work. Dynamicity mainly refers to the Cloud con-
sidered as a system, whose evolution is difficult to predict because of the best-effort
communication model of Internet, the high variability of pattern activation, the
faults of infrastructures and so on.

Self-adaptive and self-organising methods can be really effective solutions for
addressing such dynamicity. This consideration assumes more relevance when
dealing with QoS-aware resource allocations because it often requires optimisation
techniques taking into account different goals, which may even be in contrast, one
each other (e.g., minimising provisioning costs while maximising application per-
formances). In this context, a promising approach relies on the exploitation of
cognitive-based heuristics [27] for choosing, among the available criteria, the
optimisation criterion that is more suitable in a particular time instant, without
requiring a deep, compete, knowledge on applications as well as on the computing
infrastructures. In this way, the system can self-adapt to variation in the underline
infrastructure and/or request spikes for a particular class of applications. The
concept of cognitive heuristics comes from the adaptive and behavioural psy-
chology science field. Cognitive heuristics are defined as simple and adaptive rules
that help the human brain to take decisions in contexts where the selection criterion
is unclear, information is partial, time and computational capabilities are limited
resources. By exploiting their mathematical description given by cognitive scien-
tists, it is possible to exploit these rules for the definition of efficient algorithms,
dealing with decision-making issues. Cognitive heuristics can be exploited in the
context of cloud and application brokering for two purposes. Firstly, they allow a

202 8 Machine-Learning Based Approaches for Cloud Brokering

cloud resource manager to autonomously and adaptively estimate the risk associ-
ated to each selection criteria. Secondly, using the risk estimation, they make
possible to combine the costs and risks of the selection options in order to find the
best possible resource allocation.

In this context, an interest contribution has been proposed by Anastasi et al. [28]
In their work the authors couples cognitive-based models with the Cross-Entropy
(CE)-based algorithm [29]. More in detail, the resource allocations, and the linked
costs for the system, used as input for the cognitive-based heuristic are selected
through the cross-entropy approach. These kinds of algorithms are useful to address
any kind of stochastic optimisation problems, as we modelled the resource allo-
cation performed by the Resource Manager presented in this work.

Cross-entropy is exploited to compute resource-application allocations by means
of a properly designed and implemented a allocator that enforces the requirements
of each application and put a significant effort in optimising the allocations w.r.t. a
set of objective functions.

Then, the Cognitive Heuristics is exploited for choosing among different allo-
cations. The allocations computed by the Cross-Entropy based allocator are all valid,
meaning both that all of them can be adopted and all respect the requirements of the
applications. Each allocation is optimised w.r.t. a specific objective function. The
Cognitive Heuristics helps to trade-off between different optimisation directions.

To drive the allocation process, the Resource Manager exploits a set of three
objective functions, each one devoted to a specific aim. The three aims shot for by
the objective functions are:

Resource Usage Minimisation
This objective function aims at minimising the total amount of resources used for
executing the input tasks still satisfying the requirements of the tasks allocated. In
other words, we minimise the number of machines of machines used for executing
tasks. The idea behind this function is to favour the resource-tasks allocations that
minimise the amount of resources that need to be used by a Cloud provider.

Threshold-Balanced Resource Usage
The goal of this objective function is to allocate tasks to machines in a way such
that the usage rate of each resource (CPU, RAM, etc.), for each machine exploited
in the Cloud, is around a certain value. This means that we minimise the variance of
resource amounts dedicated to execute tasks allocated on top of each machine. This
objective function aims to guarantee a certain amount of free resources in each
machine, which is a simple and handy way to guarantee to applications a certain
degree of elasticity without requiring any migration. The elasticity is the ability
provided to Cloud applications to exploit additional resources in an on-demand
fashion. It is a particularly relevant aspect in the Cloud computing scenario.

Allocation by Task Duration
This function pushes the Resource Manager to allocate tasks in a way such that
all the tasks mapped on a certain machine have, more or less, the same duration.

8.5 The Current Landscape of Machine-Learning … 203

This means that we minimise the variance of time spent by each machine to execute
tasks allocated on top of it. The surrounding idea is that if all the tasks associated to
a machine spend the same amount of time to be completed, a Cloud provider can
easily compute good estimations on the resources availability at a certain time. This
objective is particularly relevant in our simplified scenario in which the allocation
of resources is performed when a certain number of machines becomes free.

System Architecture
The Architecture of our Resources Allocator is sketched in the (Fig. 8.2). As can be
observed, it is composed of three main entities: Cloud Resources, Job Queue and a
Resource Manager. According to this model the Resource Manager is activated
every time a certain amount of computing resources, among the ones composing the
Cloud, became free. The Resource Manager extracts a certain number of tasks from
the Queue and tries to allocate them according to a set of objective functions
defined by the Cloud Provider.

In the (Fig. 8.3) is shown the zoom-in on the Resource Manager. As can be
observed, it is composed of two main subsystems: Cognitive Heuristic module and
Cross-Entropy resource allocator. The cognitive heuristic model receives infor-
mation about available resources and input tasks. By leveraging this information,
it performs a number of different invocations of the Cross-Entropy allocator,
each with a different objective functions, each returning a different allocation plan.

Fig. 8.2 Architectural
overview of the system
proposed by Anastasi
et al. [28]

Fig. 8.3 High-level structure
of the Resource Manager
(Anastasi et al. [28])

204 8 Machine-Learning Based Approaches for Cloud Brokering

The Cognitive Heuristic choose the most promising plan among the proposed ones
and enforces it on the Cloud Resources.

An in-depth presentation and discussion of the Cross-entropy technique is
beyond the scope and aim of this chapter, so it will not be treated here. Interested
reader can refer to the original paper in which it has been proposed, mentioned
earlier in this chapter.

In fact, the focus on this section is on the cognitive heuristics, adopted for
driving the choice among the different possible solutions identified by means of the
cross-entropy solutions. As matter of fact, the Cross-Entropy method allows the
Resource Manager to determine a valid solution, meaning an allocation satisfying
the resource constraints for each of the objective functions available. The Resource
Manager is requested to face the problem of determining the configuration to be
chosen, among the proposed ones. In order to make a systematic evaluation among
all the potential choices, the Resource Manager proceeds in two steps. Given a
configuration computed using a certain objective function, the risk associated to that
configuration reflects the degree with which a choice based on the associated
objective function could lead to a not optimal configuration. Therefore, at this stage,
the problem resolves to be the evaluation between a series of configurations, each
characterised by a cost and a measure of how the function generating that con-
figuration could lead to not optimal solutions.

The decision-making strategies adopted comes from the cognitive science field.
Cognitive-based strategies allow the decision maker to solve complex problems by
answering simpler questions. In particular, the Resource Manager needs to auton-
omously fulfil two tasks. (i) It determines the risks associated with each of the
objective functions used to generate configurations, then (ii) it chooses an optimal
configuration by taking into account costs and risks.

The relevance of each objective function is estimated in the following way.
Resource Manager maintains a memory about previous usages of each objective
functions. This memory is modelled according to the ACT-R memory model
coming from the cognitive science field [30]. Specifically, for each objective
function, the Resource Manager maintains a record where it reports the timestamps
of the moments when such function was used to select the best allocation between
the ones determined by the Cross-Entropy strategy. Using notions coming from the
cognitive sciences, when a new choice has to be taken at a time t, previous usages
of a certain objective function are exploited to compute its memory activation.

The memory activation value measures the strength with which a given objective
function is stored into the Resource Manager memory. In the cognitive sciences,
this value can be used in various decision-making processes. In particular, cognitive
researchers highlight the fact that the activation of a record in memory corresponds
to the log odds of needing that record to achieve a processing goal.

As reported above, in order to make a choice between all the potential alter-
natives, the Resource Manager has to first evaluate which the risk associated with
each of the options. Since the Manager is able to compute, from the memory
activation, the probability of needing a given function, we can take, as the risk

8.5 The Current Landscape of Machine-Learning … 205

associated to the same objective function, at time t, the probability of not needing
that very same function.

With the definitions given so far, we have now to specify how a Resource
Manager is able to make the final choice among the proposed allocations, knowing
the risks and costs associated to each objective function. In order to achieve this
goal, it is leveraged another cognitive-based decision-making strategy, called pri-
ority heuristic [31, 32]. Namely, a cognitive model describing the process followed
by people to make risky choices. The priority heuristic is a simple decision-making
strategy that allows the human brain to deal with situations where choices are
characterised by a gain (or, equivalently, a loss or a cost) and a probability to
achieve it. From the combination of these attributes, it is not ease to determine
which alternative dominate the others. The priority heuristic is a lexicographic
heuristic, in the sense that it uses the attributes in a specific order, and each attribute
is used only if the previous one was not sufficient to determine the final outcome.

The priority heuristic is used to prune the (potentially large) space of possible
choices. At each step, a smaller subset of all the available choices is created, where
only the most relevant data is kept, which contains what will be the final result of
the evaluation process. Each set created in this way is termed in the cognitive
science as a consideration set [33, 34].

Given the set of possible allocations and the sets of the associated costs and
risks, the algorithm proceeds to the creation of the first consideration set. This set
contains all the allocations whose associated cost is lower than a certain cost
threshold. With only one allocation in the consideration set, the priority heuristic
algorithm terminates by returning such allocation. Otherwise, the algorithm pro-
ceeds by pruning the other allocations.

The second step of the priority heuristic creates a subset of the original con-
sideration containing the allocation associated with the minimum risk value. Other
allocations are included in a different consideration set, their associated risks differ
quite shortly from the minimum. Again, in case there is only one allocation in the
subset, this allocation is considered to be the best choice, and the algorithm
terminates.

In case none of the previous two steps was sufficient to choose the best allo-
cation, the last step is used. This step simply selects, as the best option, the allo-
cation associated to the minimum cost, among the ones contained in the second
consideration set.

8.5.3 Genetic-Based Solutions for Application Placement

Application placement in clouds often requires the ability to deal with large search
spaces, as a consequence of the vast number of requirements and features char-
acterising applications and resources. Genetic Algorithm (GA) is a well-known
heuristic approach that permits to iteratively find near-optimal solutions in large

206 8 Machine-Learning Based Approaches for Cloud Brokering

search spaces. GA approach it is flexible enough to support multiple constraints and
the injection of additional constraints with minimal interventions on the algorithm.
This is a crucial feature supporting software reuse in the context of Cloud
Computing, where QoS models are continuously enriched as providers constantly
extend their systems to support QoS guarantees previously not addressed, such as
soft real-time guarantees for virtualised services [35].

In spite of the large amount of benefits that genetic algorithms can brings to
cloud brokering and resource management, only a little set of research works
focusing on application placement and brokering in cloud are based on such
approach.

Essentially, there are three main works proposing the adoption of such paradigm
that have been proposed in the scientific literature. From a chronological viewpoint,
the first remarkable contribution in this field has been proposed by Zheng et al. [36]
who addresses the problem of resource scheduling in Infrastructure as a Service
(IaaS) Cloud. They focus on parallel genetic algorithm for speeding the resource
allocation process and improving the utilisation of system resources. Even if this is
not exactly a broker, it provides a fundamental contribution that is worth to consider
in realising efficient brokers targeting large cloud installation.

Another relevant work in the field has been given by Pop et al. [37]. Such
approach focuses on the scheduling of independent tasks based on the reputation of
resources. Although such is not completely a brokering model, their insight into
genetic operators could be leveraged in our work for boosting performances in
terms of evolutionary steps for population convergence.

The third work, the last in chronological order, is the one that more closely relate
to the core aspects of cloud brokering. In this section, we will mainly focus on this
work to show how genetic based solutions can efficiently support cloud brokering.
This work is named QBROKAGE, and has been proposed by Anastasi et al. [38].

The brokering algorithm proposed in that work follows the canonical GA and
uses a pretty straightforward way to represent applications and resources. In fact, in
QBROKAGE, each application is represented by an undirected graph hGN;EMi,
where G represents the set of N vertexes and E represents the set of M edges
connecting the vertexes. Each vertex gi 2 G embodies a VM, each one potentially
providing a specialised service, e.g. one VM provides a firewall and another one
provides a back-end database. Each edge e i; jð Þ 2 E represents an undirected
communication path connecting vertexes gi and gj.

Each provider is modelled as a datacentre pi composed by a set of hosts, that can
run one or more VMs depending on their resource availability. The resources
belonging to each datacentre are interconnected by a network characterized by a
specific set of features, such as bandwidth, latency and security capabilities.
Depending on its performance capabilities each datacentre can run a different
number of applications, i.e. set of VMs. Each datacentre is characterized by a set of
resources and exposes its limits, i.e. the maximum amount of resources that can be
assigned to a VM in order to be run on that provider.

8.5 The Current Landscape of Machine-Learning … 207

To catch the heterogeneity of current pricing models adopted by cloud providers,
QBROKAGE considers both providers adopting a per-resource cost model and
providers adopting a per-VM cost model. In the per-VM case, cloud providers are
modelled as capable of running predefined type of VM provided by customers and
charging them for the whole VM used over time. In the per-resource case, we model
cloud providers as capable of running each type of VM provided by customers (up
to the datacentre limits) and charging them per unit of used resources over time.

QoS attributes are also considered and represented in vectors Q ¼ fq1; . . .; qSg.
In this case the approach followed in QBROKAGE is a quite diffused one, in which
attributes are classified in three categories, as defined in the work of Ye et al. [39]:

• asceding QoS attributes, in which higher values are better than lower ones;
• desceding QoS attributes, in which lower values are better than higher ones;
• equal QoS attributes, in which only equality or inequality is meaningful.

When these attributes are used for characterizing the application, they turn into
constraint values to be respected by the infrastructure. Thus, for each attribute is
indicated as c ji the constraint value related to VM gi for the QoS attribute qj.
Instead, is denoted as b j

i the actual value considered for the cloud provider pi and
related to the same attribute qj.

For checking the adherence of constraint values coming from the application to
actual values coming from the infrastructure, a set of inequality constraints QC ¼
fQC1; . . .;QCSg is built, whose cardinality is the same of set Q. In particular, there
are three possible cases:

• QC j ¼ c j � b j � 0 in case of ascending attributes
• QC j ¼ b j � c j � 0 in case of descending attributes
• QC j ¼ c j � b j

		 		� 2 � 0 in case of nearly equivalent attributes.

When QC j � 0 the constraint is respected, otherwise it is not respected.
Moreover, by design, it holds �1�QC j � 1 as b j and c j are normalized values

with respect to the maximum value for q j (computed among the set of all
providers).

Also, a weight x j is associated to each attribute q j for modelling a search guided
by user preferences on particular policies for some attributes. In fact, customers can
specify an input vector V ¼ ðv1; . . .; vSÞ of relative values and each x j is calculated
by equation x j ¼ v j

jV j where|V| is the unitary norm of vector V .

In QBROKAGE, each solution (chromosome) c is a vector of length N, repre-
senting the allocation mapping of each appliance, i.e. a single VM, to a cloud
provider. In other words, if c ið Þ ¼ j then the appliance gi will be allocated on
provider j. As an example, consider the following (Fig. 8.4), where is shown a
chromosome representation where VM g2 is allocated on provider P1 and thus
c 2ð Þ ¼ 1.

208 8 Machine-Learning Based Approaches for Cloud Brokering

Algorithm 1: The QBROKAGE approach

1. creating_initial_population();
2. while (!termination_condition){

a. population_evaluation();
b. selection_for_mating();
c. one-point_crossover();
d. random_mutation();
e. elitism_selection_for_new_generation();
f. termination_condition_eval();

}

The initial population of SP individuals (i.e., the potential associations
VM-provider) is randomly generated and each individual is evaluated by consid-
ering better individuals with those having higher fitness values. The population
selected for mating, is randomly chosen with a rate Rcross among the total and the
crossover strategy is the random one-point crossover. Thus, a number of SP � Rcross

crossover operations are performed for each generation and each operation pro-
duces 2 individuals. Then, mutation is applied with a probability of Pmut to each
gene in each individual. After applying mutation, an elitist selector is used to select
the top 90% of the population size, whilst the remaining is obtained by cloning the
best selected up to reach the population size. Clearly, this is just the illustration of

Fig. 8.4 Chromosome
driving the brokering process

8.5 The Current Landscape of Machine-Learning … 209

the principle, without dealing with numeric values, which can be found in the
original paper, along with a complete discussion of the achievement of the actual
contribute.

When evaluating a solution, the algorithm of Anastasi et al., here reported, first

considers each gene g by defining a column vector Dg ¼ d1g; . . .; d
S
g

� �
as the dis-

tance of an allele from constraint satisfaction. For each QoS constraint in the set
q1; . . .; qS

� �
such a distance dg is computed by using inequalities aforementioned.

According to the problem formulation, we consider values �1�QC j
g\0 as

those satisfying the constraint j for gene g, with better solutions in minimising the
gradient direction. We recall that each QoS attribute j has associated a weight xj.

It is quite common to model fitness functions as maximisation problems, the
very same happens in QBROKAGE, where the authors define the fitness of a gene
g as l gð Þ ¼ ADg.

where A is the square matrix A ¼
a1;1 � � � 0

..

. . .
. ..

.

0 � � � as;s

0
B@

1
CA

with each element in the diagonal defined as aj;j ¼ �x j if QC j\0
0 if QC j [0

�

Then, the fitness function of each chromosome c is defined as F cð Þ ¼ PN
i¼1

l gið Þ � K with N being equal to the number of genes of c and K being equal to a
constant defined for awarding those chromosomes with a high number of genes that
correspond to allocations respecting constraints.

8.6 Conclusion

This chapter present a bird-eye-view on the current status of works in the literature
dealing with cloud brokering and machine learning and intelligent systems from a
broader viewpoint. The chapter shortly introduce the aims of machine learning and
give to the reader a briefly summarisation of the existing approaches to machine
learning.

The chapter then discusses the connection between machine learning and cloud
brokering, introducing the current landscape of the existing approaches.

The presentation is given by focusing on the most relevant solutions existing in
the scientific literature, grouped on three main sub-topics: machine learning for
application placement in cloud federation, machine learning in the brokering of
application characterised by high degrees of uncertainty and machine based models
exploiting evolutionary computing to achieve better performances.

210 8 Machine-Learning Based Approaches for Cloud Brokering

References

1. S. Phil, Too Big to Ignore: The Business Case for Big Data (Wiley, 2013), p. 89.
ISBN 978-1-118-63817-0

2. M.N. Wernick, Y. Yang, J.G. Brankov, G. Yourganov, S.C. Strother, Machine Learning in
Medical Imaging, IEEE Sig. Process. Mag. 27(4), 25–38 (2010)

3. H. Mannila, Data Mining: Machine Learning, Statistics, And Databases. International
Conference. Scientific and Statistical Database Management IEEE Computer Society 1996

4. S. Russell, P. Norvig, Artificial Intelligence: A Modern Approach, 2nd edn. (Prentice Hall,
New Jersey, 1995). ISBN 978-0137903955 (2003)

5. G. Piatetsky-Shapiro, Discovery, analysis, and presentation of strong rules, in Knowledge
Discovery in Databases, ed. by Gregory Piatetsky-Shapiro, William J. Frawley (AAAI/MIT
Press, Cambridge, 1991)

6. R. Agrawal, T. Imieliński, A. Swami, Mining association rules between sets of items in large
databases, in Proceedings of the 1993 ACM SIGMOD international conference on
Management of data—SIGMOD’93 (1993), p. 207

7. S. Haykin, Neural Networks: A Comprehensive Foundation (Prentice Hall, 1999). ISBN
0-13-273350-1

8. W. Buntine, Theory refinement on Bayesian networks, eds. by B.D.D’ Ambrosio, P. Smets,
P.P. Bonissone, in Proceedings of the Seventh Annual Conference on Uncertainty Artificial
Intelligence, (Morgan Kaufmann, San Francisco, 1991), pp. 52–60

9. B. Everitt, Cluster Analysis, (Wiley, Chichester). ISBN 9780470749913
10. J.R. Quinlan, Induction of decision trees. Mach. Learn. 1, pp. 81–106 (Kluwer Academic

Publishers, Dordrecht, 1986)
11. G. Ian, B. Yoshua, C. Aaron, Deep Learning (MIT Press, Cambridge, 2016)
12. Y. Bengio, Learning deep architectures for AI (pdf). Found. Trends. Mach. Learn 2(1), 1–127

(2009)
13. Y. Bengio, Y. LeCun, G. Hinton, Deep Learning. Nature 521, 436–444 (2015)
14. L. De Raedt, A Perspective on Inductive Logic Programming. The Workshop on Current and

Future Trends in Logic Programming (Springer LNCS, Shakertown, 1999)
15. Y. Bengio, A. Courville, P. Vincent, Representation learning: a review and new perspectives.

IEEE Trans. PAMI, Spec. Issue. Learn. Deep. Archit. 35, 1798–1828 (2013)
16. B. Kulis, Metric learning: a survey. Found. Trends. Mach. Learn. (2012)
17. W.H. Press, S.A. Teukolsky, W.T. Vetterling, B.P. Flannery, Section 16.5. Support Vector

Machines. Numerical Recipes: The Art of Scientific Computing, 3rd edn. (Cambridge
University Press, New York, 2007). ISBN 978-0-521-88068-8

18. M. Melanie, An Introduction to Genetic Algorithms (MIT Press, 1996). ISBN
9780262133166

19. S. M. Weiss, N. Indurkhya, Rule-based machine learning methods for functional prediction.
J. Artif. Intell. Res. 3 (1995)

20. R. J. Urbanowicz,J. H. Moore, Learning classifier systems: a complete introduction, review,
and roadmap. J. Artif. Evol. Appl. 1–25 (2009)

21. A. Celesti, F. Tusa, M. Villari, A. Puliafito, in How to enhance cloud architectures to enable
cross-federation. IEEE 3rd International Conference on Cloud Computing, (Miami, 2010),
pp. 337–345. doi:10.1109/CLOUD.2010.46

22. E. Carlini, M. Coppola, P. Dazzi, L. Ricci, G. Righetti Cloud federations in contrail, in
Proceedings of Euro-Par 2011: Parallel Processing Workshops, 7155, ed. by Alexander Mea
(Springer, Heidelberg, 2012), pp. 159–168

23. B. Rochwerger, D. Breitgand, A. Epstein, D. Hadas, I. Loy, K. Nagin, J. Tordsson, C. Ragusa,
M. Villari, S. Clayman, E. Levy, A. Maraschini, P. Massonet, H. Muñoz, G. Toffetti,
Reservoir - When one cloud is not enough. Computer 44(3), 44–51 (2011)

24. L. Breiman, J.H. Friedman, R.A. Olshen, C.J. Stone, Classification and Regression Trees
(CRC Press, New York, 1999)

References 211

http://dx.doi.org/10.1109/CLOUD.2010.46

25. C. Reiss, A. Tumanov, G.R. Ganger, R.H. Katz, M.A. Kozuch, Heterogeneity and dynamicity
of clouds at scale: Google trace analysis, in ACM Symposium on Cloud Computing (SoCC)
(CA, USA, San Jose, 2012)

26. B. Sharma, V. Chudnovsky, J. L. Hellerstein, R. Rifaat, C. R. Das, Modeling and synthesizing
task placement constraints in google compute clusters, in Proceedings of the 2nd ACM
Symposium on Cloud Computing. ACM, 2011, p. 3

27. E. Brandstatter, G. Gigerenzer, R. Hertwig, The priority heuristic: making choices without
trade-offs. Psychol. Rev. 113(2), 409 (2006)

28. G. F. Anastasi, P. Cassarà, P. Dazzi, A. Gotta, M. Mordacchini and A. Passarella, A Hybrid
Cross-Entropy Cognitive-Based Algorithm for Resource Allocation in Cloud Environments,
2014 IEEE Eighth International Conference on Self-Adaptive and Self-Organizing Systems,
(London, 2014), pp. 11–20. doi:10.1109/SASO.2014.13

29. R.Y. Rubinstein, D.P. Kroese, The Cross-Entropy Method: A Unified Approach To
Combinatorial Optimization, Monte–Carlo Simulation And Machine Learning (Springer,
Berlin, 2004)

30. J.R. Anderson, C. Lebiere, The Atomic Components Of Thought (Lawrence Erlbaum Inc.,
Publisher, 1998)

31. M. Drechsler, K. Katsikopoulos, G. Gigerenzer, Axiomatizing bounded rationality: the
priority heuristic, Theor. Decis. 1–14 (2011)

32. E. Brandstatter, M. Gussmack, The cognitive processes underlying risky choice. Journal of
Behavioral Decision Making 26(2), 185–197 (2013)

33. M. Conti, M. Mordacchini, A. Passarella, Design and performance evaluation of data
dissemination systems for opportunistic networks based on cognitive heuristics, ACM Trans.
Auton. Adapt. Syst. 8(3), 12:1–12:32 (2013)

34. J.N. Marewski, W. Gaissmaier, L.J. Schooler, D.G. Goldstein, G. Gigerenzer, From
recognition to decisions: extending and testing recognition-based models for multialternative
inference. Psychon. Bull. Rev. 17(3), 287–309 (2010)

35. T. Cucinotta, G. Anastasi, L. Abeni, Respecting Temporal Constraints in Virtualised Services,
in Computer Software and Applications Conference. COMPSAC’09. 33rd Annual IEEE
International, vol. 2, pp. 73–78 2009

36. Z. Zheng, R. Wang, H. Zhong, X. Zhang, An approach for cloud resource scheduling based
on Parallel Genetic Algorithm, in 2011 3rd International Conference on Computer Research
and Development (ICCRD), vol. 2, pp. 444–447 2011

37. F. Pop, V. Cristea, N. Bessis, and S. Sotiriadis, Reputation guided genetic scheduling
algorithm for independent tasks in inter-clouds environments, in Proceedings of the 2013 27th
International Conference on Advanced Information Networking and Applications Workshops,
ser. WAINA’13., (IEEE Computer Society, Washington, 2013), pp. 772–776

38. G. F. Anastasi, E. Carlini, M. Coppola and P. Dazzi, QBROKAGE: A Genetic Approach for
QoS Cloud Brokering, 2014 IEEE 7th International Conference on Cloud Computing,
Anchorage, AK, 2014, pp. 304–311. doi:10.1109/CLOUD.2014.49

39. Z. Ye, X. Zhou, A. Bouguettaya, Genetic Algorithm Based QoS-Aware Service Compositions
in Cloud Computing, eds by J. Yu, M. Kim, R. Unland In Database Systems for Advanced
Applications, ser. Lecture Notes in Computer Science, Vol 6588 (Springer, Heidelberg, 2011)
pp. 321–334

212 8 Machine-Learning Based Approaches for Cloud Brokering

http://dx.doi.org/10.1109/SASO.2014.13
http://dx.doi.org/10.1109/CLOUD.2014.49

	Contents
	1 Integrated Cloud Broker System and Its Experimental Evaluation
	1.1 Cloud Broker System Overview
	1.1.1 Service Provider and User Perspectives
	1.1.2 Cloud Resource Broker Perspectives
	1.1.3 Bipartite SLAs Between Stakeholders

	1.2 VM Resource Management Schemes in Cloud Brokers
	1.2.1 Resource Management System in Heterogeneous Cloud Environment
	1.2.2 Technical Requirement of Brokers for Heterogeneous Cloud Resource Management
	1.2.3 Application Characteristics and Requirements for Application Aware Resource Management Scheme in Heterogeneous Cloud Environment
	1.2.4 Architecture of Brokers for Heterogeneous Cloud Resource Management

	1.3 Adaptive Resource Collaboration Framework [13]
	1.3.1 The Architecture of ARCF [13]
	1.3.2 Resource Monitoring

	1.4 Science Gateway Overview
	1.5 Scientific Workflow Applications
	1.5.1 Programming Models for Scientific Applications [26]
	1.5.2 Next Generation Sequencing for Genome Analysis

	1.6 Conventional Service Broker for Scientific Application in Cloud
	1.6.1 Service Broker for Computational Chemistry Tool
	1.6.2 A Distributed Bio-workflow Broker on Clouds

	1.7 Cost Adaptive Resource Management in Science Gateway
	1.7.1 Pricing Model for Scientific Computing
	1.7.2 Cost Adaptive Resource Allocation in Science Gateway

	1.8 Workflow Scheduling Scheme with Division Policy
	1.9 Test Environments for Performance Evaluation on Resource Management Schemes of the Science Gateway
	1.10 Performance Evaluation on Resource Management Schemes of Science Gateway
	References

	2 VM Placement via Resource Brokers in a Cloud Datacenter
	2.1 Introduction
	2.2 Computing-Aware Initial VM Placement
	2.2.1 Overview
	2.2.2 Computing-Aware Initial VM Placement Algorithm

	2.3 VM Reallocation Based on Resource Utilization-Aware VM Consolidation and Dispersion
	2.3.1 Overview
	2.3.2 System Architecture
	2.3.3 Cost Optimization Model of TP-ARM in Clouds
	2.3.4 Heuristic Algorithms for the Proposed TP-ARM Scheme
	2.3.5 Evaluation
	2.3.6 Conclusion

	References

	3 Cost Adaptive Workflow Resource Broker in Cloud
	3.1 Introduction
	3.2 Background and Related Works
	3.2.1 Workflow Control Schemes

	3.3 Objectives
	3.3.1 Guaranteeing SLA

	3.4 Proposed System Model for Cost-Adaptive Resource Management Scheme
	3.4.1 Assumption
	3.4.2 Requirement Descriptions
	3.4.3 A Layered Cloud Workflow System (LCW)

	3.5 Proposed Cost Adaptive Workflow Scheduling Scheme
	3.5.1 Workflow Resource Allocation Optimization Problem
	3.5.2 Obtaining Expected Throughput Based on Estimated Completion Time

	3.6 Proposed Marginal Cost Based Resource Provisioning Scheme
	3.6.1 VM Resource Allocation Procedure
	3.6.2 Marginal Cost Based Adaptive Resource Reservation Scheme
	3.6.3 Adaptive Resource Allocation Heuristics

	3.7 Experiment and Results
	3.7.1 Evaluation Environments
	3.7.2 Evaluation of the Proposed ARRS
	3.7.3 Evaluation of the Proposed A3R Policies

	3.8 Conclusions
	References

	4 A Cloud Broker System for Connected Car Services with an Integrated Simulation Framework
	4.1 Introduction
	4.2 A Cloud Broker System for V2C Connected Car Service Offloading
	4.2.1 V2C Connected Car Service
	4.2.2 An Architecture of the Cloud Broker System with Service Offloading Strategies

	4.3 An Integrated Road Traffic-Network-Cloud Simulation Framework for V2C Connected Car Services Using a Cloud Broker System
	4.3.1 An Overview
	4.3.2 An Architecture of the Integrated Simulation Framework
	4.3.3 The Extension of the Integrated Simulation Based on the Inverse Simulation Technique
	4.3.4 A Proof-of-Concept Study of the Service Execution with the Cloud Broker System

	4.4 Conclusion
	References

	5 Mobile Device as Cloud Broker for Computation Offloading at Cloudlets
	5.1 Introduction
	5.1.1 Overview of the Cloud Category
	5.1.2 Computation Offloading from Remote Cloud to Mobile Cloudlet
	5.1.3 Cloud Broker from Cloud to Mobile Device

	5.2 New Architecture of Computation Offloading at Cloudlet
	5.3 A Study on the OCS Mode
	5.3.1 Computation Allocation
	5.3.2 Computation Classification

	5.4 Allocation Problem in Mobile Device Broker
	References

	6 Opportunistic Task Scheduling Over Co-located Clouds
	6.1 Introduction
	6.2 Background and Related Works
	6.2.1 Task Offloading Based on Remote Cloud
	6.2.2 Task Offloading Based on Mobile Cloudlets

	6.3 Opportunistic Task Scheduling Over Co-located Clouds Mode
	6.3.1 Motivation
	6.3.2 OSCC Mode

	6.4 OSCC Mode
	6.4.1 Task Duration
	6.4.2 Energy Cost

	6.5 Analysis and Optimization for OSCC Mode
	6.5.1 Analysis for Task Duration in OSCC Mode
	6.5.2 Analysis for Energy Cost in Remote Cloud Mode, Mobile Cloudlets Mode and OSCC Mode
	6.5.3 Optimization Framework

	6.6 Performance Evaluation
	6.6.1 Task Duration
	6.6.2 Energy Cost in Remote Cloud Mode, Mobile Cloudlets Mode and OSCC Mode
	6.6.3 Optimization Framework

	References

	7 Mobility-Aware Resource Scheduling Cloudlets in Mobile Environment
	Abstract
	7.1 Introduction
	7.1.1 Mobile Environment of Heterogeneous Network
	7.1.2 Resource Scheduling in Cloudlet

	7.2 Resource Scheduling Based on Mobility-Aware Caching
	7.2.1 Caching Model in SBS and User Device
	7.2.2 Mobility-Aware and SBS Density Caching (MS-Caching)
	7.2.3 Simulation Results and Discussions

	7.3 Resource Scheduling Based on Mobility-Aware Computation Offloading
	7.3.1 Edge Cloud Computing
	7.3.2 Caching Vs. Computation Offloading
	7.3.3 Hybrid Computation Offloading
	7.3.4 Simulation Results and Discussions

	7.4 Incentive Design for Caching and Computation Offloading
	References

	8 Machine-Learning Based Approaches for Cloud Brokering
	8.1 Introduction
	8.2 Different Ways to Achieve Machine Learning
	8.3 Different Methodologies for Machine Learning
	8.4 Machine Learning and Cloud Brokering
	8.5 The Current Landscape of Machine-Learning Enabled Cloud Brokering Approaches
	8.5.1 Machine-Learning Based Application Placement in Cloud Federation
	8.5.2 Machine-Learning Solutions to Deal with Uncertainty
	8.5.3 Genetic-Based Solutions for Application Placement

	8.6 Conclusion
	References

