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Preface

…[T]he psychological actions of drivers make traffic differ-
ent from any other flow (Orosz et al. 2010).

The asymptotic limit theorems of control and information theories make it possible
to explore the dynamics of collapse likely to afflict systems of autonomous ground
vehicles that communicate with each other and with an embedding intelligent
roadway. A vehicle/road system is inherently unstable in the control theory sense as
a consequence of the basic irregularities of the traffic stream, the road network, and
their interactions, placing it in the realm of the data rate theorem that mandates a
minimum necessary rate of control information for stability. It appears that such
V2V/V2I systems will experience large-scale failures analogous to the vast prop-
agating fronts of power network blackouts, and possibly less benign, but more
subtle patterns of individual, platoon, and mesoscale dysfunction.

An atomistic perspective on autonomous ground vehicles—seeing them as
having only local dynamics in an embedding traffic stream—embodies a profound
failure of insight. Traffic light strategies, road quality, the inevitably rapid-shifting
“road map space”, the dynamic composition of the traffic stream, communication
and machine sensory system bandwidth limits, and so on, create the synergistic
context in which single vehicles operate. It is necessary to understand the dynamics
of that full system, not simply the behavior of an individual vehicle atom within it.
The properties of that system will be both overtly and subtly emergent—subject to
sudden “phase transitions” into both massively and locally unstable modes—as will
the responses of individual cognitive vehicles enmeshed in context, whether con-
trolled by humans or computers. The triggering of adverse events at various scales
and levels of organization by unfriendly external agents will likely become routine.

In sum, while clever V2V/V2I management strategies might keep traffic streams
temporarily in a “supercooled” high-flow mode beyond well-understood critical
vehicle densities, such a state is notoriously unstable, subject to both random and
deliberately caused “condensation” into large-scale frozen zones. More subtle
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patterns of individual vehicle and mesoscale “psychopathology” characterizing
autonomous systems may be even less benign (Wallace 2017).

Despite marketing hype and other forms of wishful thinking, the safe operation
of large-scale V2V/V2I autonomous vehicle systems may be exceedingly arduous
at best, and, at worst, simply not possible, particularly in the US context of rapid
social and infrastructure deterioration.

It has been said that “The language of business is the language of dreams”.
Business dreams, as we are now seeing, do not serve as a sound foundation for the
design and implementation of public policies affecting the well-being of large
populations.

New York, USA Rodrick Wallace
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Chapter 1
Central Problems

Current marketing hype surrounding autonomous vehicles runs something like this:

Since more than 90% of highway deaths are related to driver error, automating out the driver
will reduce loss of life by more than 90%.

Individual vehicles, however, are nested and enmeshed within larger milieus,
creating a multi-scale, multi-level synergism determining crash and fatality rates.
Individual vehicles are only one part of that system, not the system itself. Assert-
ing that part of a thing is the whole thing is the infamous mereological fallacy, an
important tool for the construction of political lies and other forms of advertising.

One is reminded of another—if different—logical fallacy:

If a woman can gestate a child in nine months, nine women should be able to do it in a month.

Given the inherently complicated nature of transport system safety, assertions
regarding the effects of autonomous vehicles on traffic fatalities are entirely specu-
lative and cannot be used as a sound basis for policy development.

Here, we ask a more fundamental question: are large-scale autonomous vehicle
systems actually practical, particularly in the context of a rapidly deteriorating social
and physical infrastructure? To do this, we examine an ‘end stage’ limit in which
many different kinds of vehicles communicate with each other (V2V), and with
an intelligent roadway infrastructure (V2I), both embedded in a highly stochastic
environment.

In effect, we use a variety of mathematical models to explore the dynamics of a
rapid-acting, inherently unstable command, communication and control system (C3)
that is cognitive in the sense that it must, in an appropriate ‘real time’, evaluate a large
number possible actions and choose a small subset for implementation. Such choice
decreases uncertainty, in a formal manner, and reduction in uncertainty implies the
existence of an information source (Wallace 2012, 2015a).

We particularly study autonomous V2V/V2I systems through the prism of the
Data Rate Theorem (Nair et al. 2007), extending the argument to more general phase

© The Author(s) 2018
R. Wallace, Canonical Instabilities of Autonomous Vehicle Systems,
SpringerBriefs in Computational Intelligence,
https://doi.org/10.1007/978-3-319-69935-6_1
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2 1 Central Problems

transition analogs, and developing statistical tools useful at different scales and levels
of organization.

As Box and Draper (1987) put it, ‘all mathematical models are wrong, but some
are useful’. Here, we necessarily employ a variety of mathematical tools to explore
alternate perspectives on complex dynamic structures that are cognitive at micro,
meso, and macro scales and levels of organization. In a more limited way, even phys-
ical phenomena require different models at different scales—quantum mechanics
for atoms, classical mechanics for bridges. The understanding, control, and remedi-
ation of multi-scale cognitive phenomena in biology, the social sciences, or institu-
tional ecology simply cannot be done using some analog to Maxwell’s equations for
electrodynamics or Einstein’s equations for gravity, and large autonomous vehicle
systems fall under similar constraint. This is particularly so in view of the essential
unsolved—and perhaps conventionally unsolvable—nature of the underlying traffic
and hydrodynamic flow conundrums (Birkoff 1960; Ruelle 1983).

V2V/V2I autonomous systems operate along geodesics in a densely convoluted
‘map quotient space’ that is in contrast to the much more straightforward problem
of air traffic control, where locally stable vehicle paths are seen as thick braid geo-
desics in a simpler Euclidean quotient space (Hu et al. 2001). Such geodesics are
generalizations of the streamline characteristics of hydrodynamic flow (Landau and
Lifshitz 1987).

Hu et al. (2001) show that, in the context of air traffic control, finding collision-free
maneuvers formultiple agents on a Euclidean plane surface R2 is the same as finding
the shortest geodesic in a particular manifold with nonsmooth boundary. Given n
vehicles, the Hu geodesic is calculated for the topological quotient space R2n/W (r),
where W (r) is defined by the requirement that no vehicles are closer together than
some critical Euclidean distance r . For autonomous ground vehicles, R2 must be
replaced by a far more topologically complex roadmap space M 2 subject to traffic
jams and other ‘snowflake’ condensation geometries in real time. Geodesics for n
vehicles are then in a highly irregular quotient space M 2n/W (r) whose dynamics
are subject to phase transitions in vehicle density ρ (Kerner and Klenov 2009; Kerner
et al. 2015; Jin et al. 2013) that, wewill show, represent cognitive groupoid symmetry
breaking. See the Mathematical Appendix for a brief description of groupoids.

In first order, given the factoring out of most of the topological structure by the
construction of geodesics in the quotient space M 2n/W (r), the only independent
systemparameter is the density of vehicles per unit length,whichwe callρ. Figure1.1
shows, for streets in Rome, Japan, and Flanders the number of vehicles per unit time
as a function of, respectively, vehicles permile, per kilometer, and percent occupancy:
the ‘fundamental diagram’ of traffic flow. There is a clear ‘phase transition’ at about
40 vehicles/mile for the former two examples, and at about 10% occupancy for the
latter.

We shall extend a simple vehicle density measure to a more complicated unsym-
metric density matrix that includes multimodal vehicle indices, an inverse measure
of roadway quality, and can be expanded to measures of information channel con-
gestion.
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Fig. 1.1 a Vehicles per hour
as a function of vehicle
density per mile for a street
in Rome (Blandin et al.
2011). Both streamline
geodesic flow and the phase
transition to ‘crystallized’
turbulent flow at critical
traffic density are evident at
about 40 v/mi. Some of the
states may be ‘supercooled’,
i.e., delayed ‘crystallization’
in spite of high traffic
density. ‘Fine structure’ can
be expected within both
geodesic and turbulent
modes. b One month of data
at a single point on a
Japanese freeway, flow per
five minutes versus vehicles
per kilometer. The critical
value is about 25
v/km=39.1 v/mi (Sugiyama
et al. 2008). c 49 Mondays
on a Flanders freeway. The
ellipses contain 97.5% of
data points for the free flow
and congested regimes
(Maerivoet and Moor 2006).
Breakdown begins just shy
of 10% occupancy
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Kerner et al. (2015) explicitly apply insights from statistical physics to traffic flow,
writing

In many equilibrium... and dissipative metastable systems of natural science... there can be
a spontaneous phase transition from one metastable phase to another metastable phase of a
system. Such spontaneous phase transition occurs when a nucleus for the transition appears
randomly in an initial metastable phase of the system: The growth of the nucleus leads to
the phase transition. The nucleus can be a fluctuation within the initial system phase whose
amplitude is equal or larger than an amplitude of a critical nucleus required for spontaneous
phase transition. Nuclei for such spontaneous phase transitions can be observed in empirical
and experimental studies of many equilibrium and dissipative metastable systems... There
can also be another source for the occurrence of a nucleus, rather than fluctuations: A nucleus
can be induced by an external disturbance applied to the initial phase. In this case, the phase
transition is called an induced phase transition...

A Data Rate Theorem (DRT) approach to stability and flow of autonomous
vehicle/traffic control systems, via spontaneous symmetry breaking in cognitive
groupoids, generalizes and extends these insights, implying a far more complex
picture of control requirements for inherently unstable systems than is suggested
by the Theorem itself, or by ‘physics’ models of phase transition. That is, ‘higher
order’ instabilities can appear. Such systems can require inordinate levels of control
information.

More specifically, complicated cognitive systems may remain formally ‘stable’
in the strict sense of the DRT, but can collapse into a ground state analogous to
certain psychopathologies, or even to far more exotic conditions. In biological cir-
cumstances, such failures can be associated with the onset of senescence (Wallace
2014, 2015b). Apparently, rapidly responding, and hence almost certainly inherently
unstable, command, communications and control systems can display recognizable
analogs to senility under fog-of-war demands.

Using these ideas, it becomes possible to explore the interaction of cognitive
ground state collapse in autonomous vehicle/intelligent road systems with critical
transitions in traffic flow.

Defining ‘stability’ as the ability to return, after perturbation, to the streamline
geodesic trajectory of the embedding, topologically complex, road network, it is clear
that individual autonomous vehicles are inherently unstable and require a constant
flow of control information for safe operation, unlike aircraft that can, in fact, be
made inherently stable by placing the center of pressure well behind the center of
gravity. There is no such configuration possible for ground-based vehicles following
sinuous road geometries in heavy, shifting, traffic.

Recall Fig. 1.1 Again, the vertical axis shows the number of vehicles per hour,
the horizontal, the density of vehicles per mile. The streamline geodesic flow, and
deviations from it at critical vehicle density, are evident. Some of the phases may
be ‘supercooled’—fast-flowing ‘liquid’ at higher-than-critical densities. Additional
‘fine structure’ should be expected within both geodesic and turbulent modes.

Classic traffic flow models based on extensions of hydrodynamic perspectives
involving hyperbolic partial differential equations (HPDE’s) can be analogously
factored using the methods of characteristic curves and Riemann invariants—
streamlines (Landau and Lifshitz 1987). Along characteristic curves, HPDE’s are
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projected down to ordinary differential equations (ODE’s) that are usually far easier
to solve. The ODE solution or solutions can then be projected upward as solutions
to the HPDE’s. Here, we will show, reduction involves expressing complex dynam-
ics in terms of relatively simple stochastic differential equations and their stability
properties. Those stability properties, marking the onset of ‘turbulence’, will be of
central interest.

Taking a somewhat more comprehensive view, cognitive phase transitions in
V2V/V2I systems, particularly ground state collapse to some equivalent of ‘all pos-
sible targets are enemies’, should become synergistic with more familiar traffic flow
phase transitions to produce truly monumental traffic jams.

A heuristic argument is as follows.
Consider a random network of roads between nodal points—intersections. Taking

any two start/destination nodes, in the absence of jamming there will be many possi-
ble routes between them, constituting an equivalence class. Moving over all possible
start/destination pairs generates a large set of equivalence classes defining a large
groupoid, an extension of the idea of a group in which products are not necessarily
defined between all possible object pairs (Weinstein 1996). If the average probability
of passage falls below a critical value, the Erdos/Renyi ‘giant component’ that con-
nects across the full network breaks into a set of disjoint connected subcomponents,
with ‘bottlenecks’ at which traffic jams occur marking corridors between them. The
large, unjammed, equivalence class groupoid thus undergoes a ‘symmetry breaking’
phase transition.

Li et al. (2015), in fact, explicitly apply a percolation model to explain this effect
for road congestion in a district of Beijing. The underlying road network is shown
in Figs. 1.2 and 1.3, a cross section taken during rush hour showing disjoint sections
when regions with average velocity below 40% of observed maximum for the road
link have been removed. We will later return to giant component models for traffic
flow.

But there is more going on here for V2V/V2I systems than simple traffic flow.
Below, we will define the cognitive groupoid to be associated with a C3 structure,
here a system of autonomous vehicles linked together in a V2V ‘swarm intelligence’
embedded in the larger vehicle to infrastructure V2I traffic management system.
Individual vehicle spacings, speed, acceleration, lane-change, and so on are deter-
mined by this encompassing distributed cognitive machine that attempts to optimize
traffic flow and safety. The associated individual groupoids are the basic transitive
groupoids that build a larger composite groupoid of the cognitive system (Wal-
lace 2015a, 2017). Thus, under declining probability of passage, related to traffic
congestion and viewed as a temperature analog, this larger ‘vehicle/road’ groupoid
undergoes a symmetry-breaking transition into a combined cognitive ground state
collapse and traffic jam mode—essentially a transition from ‘laminar’ geodesic to
‘turbulent’ or ‘crystallized’ flow. Autonomous vehicle systems that become senile
under fog-of-war demands will likely trigger traffic jams that are far different from
those associated with human-controlled vehicles. There is no reason to believe that
such differences will be benign.
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Fig. 1.2 Adapted from Li et al. (2015). The full road network near central Beijing

Fig. 1.3 Adapted from Li et al. (2015). Disconnected subcomponents of the Beijing central road
network at rush hour. Sections with average vehicle velocity less than 40% of maximum observed
have been removed

We begin the formal development leading to this result with a restatement of
the Data Rate Theorem that characterizes the minimum rate of control information
needed to ensure stability for an inherently unstable system.



Chapter 2
Dynamics of Service Collapse

2.1 Introduction

To reiterate a central point, unlike aircraft, that can be constructed to be inherently
stable in linear flight by placing the aerodynamic center of pressure sufficiently
behind the mechanical center of gravity, the complex nature of road geometry and
the local dynamics of vehicular traffic ensure thatV2V/V2I systemswill be inherently
unstable, requiring constant input of control information to prevent crashes, traffic
jams, and other tie-ups.

The Data Rate Theorem (Nair et al. 2007) establishes the minimum rate at which
externally-supplied control information must be provided for an inherently unstable
system tomaintain stability. Given the linear expansion near a nonequilibrium steady
state, an n-dimensional vector of system parameters at time t , xt , determines the state
at time t + 1 according to the model of Fig. 2.1, so that

xt+1 = Axt + But + Wt (2.1)

where A,B are fixed n × n matrices, ut is the vector of control information, and
Wt is an n-dimensional vector of white noise. The Data Rate Theorem (DRT) under
such conditions states that the minimum control information rate H is determined
by the relation

H > log[| det[Am |] ≡ a0 (2.2)

where, for m ≤ n, Am is the subcomponent of A having eigenvalues ≥ 1. The
right hand side of Eq. (2.2) is interpreted as the rate at which the system generates
‘topological information’. The proof of Eq. (2.2) is not particularly straightforward
(Nair et al. 2007), and theMathematical Appendix uses the Rate Distortion Theorem
(RDT) to derive a more general version of the DRT.

© The Author(s) 2018
R. Wallace, Canonical Instabilities of Autonomous Vehicle Systems,
SpringerBriefs in Computational Intelligence,
https://doi.org/10.1007/978-3-319-69935-6_2
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8 2 Dynamics of Service Collapse

Fig. 2.1 A linear expansion near a nonequilibrium steady state of an inherently unstable control
system, for which xt+1 = Axt + But + Wt . A,B are square matrices, xt the vector of system
parameters at time t , ut the control vector at time t , and Wt a white noise vector. The Data Rate
Theorem states that the minimum rate at which control information must be provided for system
stability is H > log[| det[Am |], where Am is the subcomponent of A having eigenvalues ≥ 1

For a simple traffic flow system on a fixed highway network, the source of ‘topo-
logical information’ is the linear vehicle density ρ. The ‘fundamental diagram’ of
traffic flow studies relates the total vehicle flow to the linear vehicle density, shown
in Fig. 1.1. A similar pattern can be expected from ‘macroscopic fundamental dia-
grams’ that examine multimodal travel networks (Geroliminis et al. 2014; Chiabaut
2015).

Given ρ as the critical traffic density parameter, we can extend Eq. (2.2) as

H (ρ) > f (ρ)a0 (2.3)

where a0 is a road network constant and f (ρ) is a positive, monotonically increasing
function. The Mathematical Appendix uses a Black-Scholes model to approximate
the ‘cost’ ofH as a function of the ‘investment’ ρ. The first approximation is linear,
so that H ≈ κ1ρ + κ2. Expanding f (ρ) to similar order,

f (ρ) ≈ κ3ρ + κ4 (2.4)

the limit condition for stability becomes

http://dx.doi.org/10.1007/978-3-319-69935-6_1


2.1 Introduction 9

Fig. 2.2 The horizontal line represents the critical limit a0. If κ2/κ4 � κ1/κ3, at some intermediate
value of linear traffic density ρ, the temperature analog T ≡ (κ1ρ + κ2)/(κ3ρ + κ4) falls below
that limit, traffic flow becomes ‘supercooled’, and traffic jams become increasingly probable

T ≡ κ1ρ + κ2

κ3ρ + κ4
> a0 (2.5)

For ρ = 0, the stability condition is κ2/κ4 > a0. At large ρ this becomes κ1/κ3 >

a0. If κ2/κ4 � κ1/κ3, the stability condition may be violated at high traffic densities,
and instability becomes manifest, as at the higher ranges of Fig. 1.1. See Fig. 2.2.

2.2 Multimodal Traffic on Bad Roads

For vehicles embedded in a larger traffic stream there are many other possible critical
densities that must interact: different kinds of vehicles per linear mile, V2V/V2I
communications bandwidth crowding, and an inverse index of roadway quality that
one might call ‘potholes per mile’, and so on. There is not, then, a simple ‘density’

http://dx.doi.org/10.1007/978-3-319-69935-6_1
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index, but rather a possibly large non-symmetric density matrix ρ̂ having interacting
components with ρi, j �= ρ j,i .

Can there still be some scalar ‘ρ’ under such complex circumstances so that
the conditions of Fig. 2.2 apply? An n × n matrix ρ̂ has n invariants ri , i = 1...n,
that remain fixed when ‘principal component analysis’ transformations are applied
to data, and these can be used to construct an invariant scalar measure, using the
polynomial relation

p(λ) = det(ρ̂ − λI ) = λn + r1λ
n−1 + ... + rn−1λ + rn (2.6)

det is the determinant, λ is a parameter and I the n × n identity matrix. The
invariants are the coefficients of λ in p(λ), normalized so that the coefficient of λn

is 1. Typically, the first invariant will be the matrix trace and the last ± the matrix
determinant.

For an n × n matrix it then becomes possible to define a composite scalar index
Γ as a monotonic increasing function of these invariants

Γ = f (r1, ..., rn) (2.7)

The simplest example, for a 2 × 2 matrix, would be

Γ = m1Tr [ρ̂] + m2| det[ρ̂]|

for positive mi . Recall that, for n = 2, Tr[ρ̂] = ρ11 + ρ22 and det[ρ̂] = ρ11ρ22 −
ρ12ρ21. In terms of the two possible eigenvalues α1, α2, Tr[ρ̂] = α1 + α2, det[ρ̂] =
α1α2.

Again, an n × n matrix will have n such invariants from which a scalar index Γ

can be constructed.
In Eq. (2.5) defining T , ρ is then replaced by the composite density index Γ ,

T = κ1Γ + κ2

κ3Γ + κ4
(2.8)

The method is a variant of the ‘Rate Distortion Manifold’ of Glazebrook and
Wallace (2009) or the ‘GeneralizedRetina’ ofWallace andWallace (2013, Sect. 10.1)
in which high dimensional data flows can be projected down onto lower dimensional,
shifting, tunable ‘tangent spaces’ with minimal loss of essential information.

2.3 The Dynamic Model

We next examine the dynamics of T (Γ ) itself under stochastic circumstances. We
begin by asking how a control signal ut in Fig. 2.1 is expressed in the system response
xt+1. We suppose it possible to deterministically retranslate an observed sequence
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of system outputs Xi = xi1, x
i
2, ... into a sequence of possible control signals Û i =

ûi0, û
i
1, ... and to compare that sequence with the original control sequence Ui =

ui0, u
i
1, ..., with the difference between them having a particular value under some

chosen distortion measure and hence having an average distortion

< d >=
∑

i

p(Ui )d(Ui , Û i ) (2.9)

where p(Ui ) is the probability of the sequence Ui and d(Ui , Û i ) is the distortion
betweenUi and the sequence of control signals that has been deterministically recon-
structed from the system output.

We can then apply a classic Rate Distortion argument. According to the Rate
Distortion Theorem, there exists a Rate Distortion Function, R(D), that determines
the minimum channel capacity necessary to keep the average distortion below some
fixed limit D (Cover and Thomas 2006). Based on Feynman’s (2000) interpretation
of information as a form of free energy, it becomes possible to construct a Boltzmann-
like pseudoprobability in the ‘temperature’ T as

dP(R,T ) = exp[−R/T ]dR∫ ∞
0 exp[−R/T ]dR (2.10)

since higher T must necessarily be associated with greater channel capacity.
The denominator can be interpreted as a statistical mechanical partition function,

and it becomes possible to define a ‘free energy’ Morse Function (Pettini 2007) F
as

exp[−F/T ] ≡
∫ ∞

0
exp[−R/T ]dR = T (2.11)

so that F (T ) = −T log[T ].
See the Mathematical Appendix for a brief introduction to Morse Theory.
Then an ‘entropy’ can also be defined as the Legendre transform ofF ,

S ≡ F (T ) − T dF/dT = T (2.12)

The Onsager treatment of nonequilibrium thermodynamics (de Groot and Mazur
1984), can now be invoked, based on the gradient of S in T , so that a stochastic
Onsager equation can be written as

dTt = (μdS /dT )dt + βTt dWt =
μdt + βTt dWt (2.13)

whereμ is a diffusion coefficient and β is themagnitude of the impingingwhite noise
dWt . Although at first sight the mean for T would appear to increase at the rate μ,
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simulations at high noise show this is simply not true. The stochastic self-stabilization
theorem (e.g., Mao 1996, 2007) indicates that unstable differential equations of
the form dx(t)/dt = f (x(t), t)—for which x(t) ‘explodes’ as t → ∞—can be
stabilized in a stochastic differential equation model dxt = f (xt , t)dt + σ xtdWt if
σ is sufficiently large and | f (x, t)| ≤ |x |ω for some ω > 0. Then

lim sup
t→∞

1

t
log[x(t)] ≤ −σ 2

2
+ ω (2.14)

As a consequence, if σ 2/2 > ω, then x(t) → 0, according to this model.
Indeed, there is a far more general result for multidimensional systems whose

implications we will explore below (Appleby et al. 2008).
Something akin to the Doleans-Dade exponential (Protter 1990) of the Mathe-

matical Appendix emerges by applying the Ito chain rule to log(T ) in Eq. (2.13)
(Protter 1990). Via Jensen’s inequality for a concave function, the nonequilibrium
steady state (nss) expectation of T then has the lower limit

E(Tt ) ≥ μ

β2/2
(2.15)

In theV2V/V2I context,μ represents attempts by the system to keep trafficflowing
well by raisingT , andβ is themagnitude of a traffic flow/roadway state ‘white noise’
dWt contrary to those attempts.

Recall that, in the multimodal extension of the model, the condition for stability
is

T ≈ κ1Γ + κ2

κ3Γ + κ4
> a0 (2.16)

The inference is that sufficient system noise, β, can driveT below critical values
in Fig. 2.2, triggering a system collapse analogous to a large, propagating traffic
jam. Under real world conditions, adequate service will simultaneously raise μ and
lower β. Nonetheless, Eq. (2.15) is an expectation, and there will always be some
probability that T < a0, i.e., that the condition for stability is violated. The system
then becomes ‘supercooled’ and subject to a raised likelihood of sudden, rapidly
propagating, traffic jam-like condensations in the sense of Kerner et al. (2015).

It is of some significance that, if the second term in Eq. (2.13) has the plausible
form

β

√
T 2

t + α2dWt , α > 0 (2.17)

so there is intrinsic volatility independent of T , then, applying the Ito expansion to
log[T ], there are two nonequilibrium steady state lower limits:

E(Tt ) ≥ μ ± √
μ2 − α2β4

β2
(2.18)
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suggesting, first, the onset of systemic instability if αβ2 ≥ μ, where μ incorporates
the ability of the system to meet demand. This condition would seem to be indepen-
dent of, and in addition to, the DRT stability requirement that T > a0. But further
study shows only the larger value solution is actually stable. The lower level either
rises to the higher or crashes out to zero in a total system collapse: gridlock. This
is probably an observable effect to which we will return below in a section on the
‘macroscopic fundamental diagram’ describing traffic flow on a network rather than
a single road segment.

2.4 Multiple Phases of Dysfunction

The DRT argument implies a raised probability of a transition between stable and
unstable behavior if the temperature analogT (Γ ) falls below a critical value. Kerner
et al. (2015), however, argue that traffic flow can be subject to more than two phases.
We can recover something similar via a ‘cognitive paradigm’ like that used by Atlan
and Cohen (1998) in their study of the immune system. They view a system as
cognitive if it must compare incoming signals with a learned or inherited picture of
the world, then actively choosing a response from a larger set of those possible to it.
V2V/V2I systems are clearly cognitive in that sense. Such choice, however, implies
the existence of an information source, since it reduces uncertainty in a formal way.
See Wallace (2012, 2015a, b) for details of the argument.

Given the ‘dual’ information source associated with the inherently unstable cog-
nitive V2V/V2I system, an equivalence class algebra can be constructed by choosing
different system origin states and defining the equivalence of subsequent states at a
later time by the existence of a high probability path connecting them to the same
origin state. Disjoint partition by equivalence class, analogous to orbit equivalence
classes in dynamical systems, defines a symmetry groupoid associated with the cog-
nitive process (Wallace 2012). Again, groupoids are generalizations of group sym-
metries in which there is not necessarily a product defined for each possible element
pair (Weinstein 1996), for example in the disjoint union of different groups.

The equivalence classes across possible origin states define a set of information
sources dual to different cognitive states available to the inherently unstableV2V/V2I
system. These create a large groupoid, with each orbit corresponding to a transitive
groupoid whose disjoint union is the full groupoid. Each subgroupoid is associated
with its own dual information source, and larger groupoids must have richer dual
information sources than smaller.

Let XGi be the system’s dual information source associated with groupoid ele-
ment Gi . Given the argument leading to Eqs. (2.5–2.7), we construct another Morse
Function (Pettini 2007) as follows.

Let H(XGi ) ≡ HGi be the Shannon uncertainty of the information source asso-
ciated with the groupoid element Gi . We define another pseudoprobability as
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P[HGi ] ≡ exp[−HGi /T ]∑
j exp[−HG j /T ] (2.19)

where the sum is over the different possible cognitive modes of the full system.
Another, more complicated, ‘free energy’ Morse Function F can then be defined

as
exp[−F/T ] ≡

∑

j

exp[−HG j /T ] (2.20)

or, more explicitly,
F = −T log[

∑

j

exp[−HG j /T ]] (2.21)

As a consequence of the groupoid structures associated with complicated cogni-
tion, as opposed to a ‘simple’ stable-unstable control system, we can now apply an
extension of Landau’s version of phase transition (Pettini 2007). Landau saw spon-
taneous symmetry breaking as representing phase change in physical systems, with
the higher energies available at higher temperatures being more symmetric. The shift
between symmetries is highly punctuated in the temperature index, here the ‘tem-
perature’ analog of Eq. (2.5), in terms of the scalar construct Γ , but in the context of
groupoid rather than group symmetries. Usually, for physical systems, there are only
a few phases possible. Kerner et al. (2015) recognize three phases in ordinary traffic
flow, but V2V/V2I systems may have relatively complex stages of dysfunction, with
highly punctuated transitions between them as various density indicies change and
interact.

Later we will explore sufficient conditions for the pathological ground state to
‘lock-in’ and become highly resistant to managerial intervention, that is, for a highly
persistent large-scale traffic jam. Such ‘lock-in’ may help explain often-observed
hysteresis effects in traffic flow, and the general intractability of the Macroscopic
Fundamental Diagram for certain road networks.

In this context, Birkhoff’s (1960, p.146) perspective on the central role of groups
in fluid mechanics is of considerable interest:

[Group symmetry] underlies the entire theories of dimensional analysis and modeling. In
the form of ‘inspectional analysis’ it greatly generalizes these theories... [R]ecognition of
groups... often makes possible reductions in the number of independent variables involved in
partial differential equations... [E]ven after the number of independent variables is reduced
to one... the resulting system of ordinary differential equations can often be integrated most
easily by the use of group-theoretic considerations.

We argue here that, for ‘cognitive fluids’ like vehicle traffic flows, groupoid gen-
eralizations of group theory become central.

Decline in the richness of control information, or in the ability of that information
to influence the system as measured by the ‘temperature’ index T (Γ ), can lead to
punctuated decline in the complexity of cognitive process possible within the C3

system, driving it into a ground state collapse that may not be actual ‘instability’
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but rather a kind of dead zone in which, using the armed drone example, ‘all possi-
ble targets are enemies’. This condition represents a dysfunctionally simple cogni-
tive groupoid structure roughly akin to certain individual human psychopathologies
(Wallace 2015a).

It appears that, for large-scale autonomous vehicle/intelligent infrastructure sys-
tems, the ground state dead zone involves massive, propagating tie-ups that far more
resemble power network blackouts than traditional traffic jams. Again, the essential
feature is the role of composite system ‘temperature’T (Γ ). Most of the topology of
the inherently unstable vehicles/roads system will be ‘factored out’ via the construc-
tion of geodesics in a topological quotient space, so thatT (Γ ) inversely indexes the
rate of topological information generation for an extended DRT.

Lowering the ‘temperature’T forces the system to pass fromhigh symmetry ‘free
flow’ to different forms of ‘crystalline’ structure—broken symmetries representing
platoons, shock fronts, traffic jams, and more complicated system-wide patterns of
breakdown such as hysteresis.

In the next chapter the underlyingdynamics are treated infiner detail fromdifferent
perspectives, viewing the initial phase transition as a transition from free flow to
‘flock’ structures like those studied in ‘active matter’ physics. Indeed, the traffic
engineering perspective is quite precisely the inverse of mainstream active matter
studies, which Ramaswamy (2010) describes as follows:

It is natural for a condensed matter physicist to regard a coherently moving flock of birds,
beasts, or bacteria as an orientationally ordered phase of living matter. ...[M]odels showed a
nonequilibrium phase transition from a disordered state to a flock with long-range order... in
the particle velocities as the noise strength was decreased or the concentration of particles
was raised.

In traffic engineering, the appearance of such ‘long range order’ is the first stage of
a traffic jam (Kerner andKlenov 2009; Kerner et al. 2015), a relationmade explicit by
Helbing (2001, Sect. 6) in his comprehensive review of traffic and related self-driven
many-particle systems.

While flocking and schooling have obvious survival value against predation for
animals in three-dimensional venues, long-range order—aggregation—among blood
cells flowing along arteries is a blood clot and can be rapidly fatal.



Chapter 3
The ‘Macroscopic Fundamental Diagram’

3.1 Introduction

A long line of work summarized by Cassidy et al. (2011) attempts to extend the idea
of a fundamental diagram for a single road to a full transport network. As they put it,

Macroscopic fundamental diagrams (MFDs)... relate the total time spent to the total distance
traveled... It is proposed that these macrolevel relations should be observed if the data come
from periods when all lanes on all links throughout the network are in either the congested
or the uncontested regime...

Some evidence exists for the MFD under specific circumstances. Figure3.1, from
Geroliminis and Daganzo (2008) shows the average traffic flow versus occupancy
for downtown Yokohama, where major intersections are centrally controlled by mul-
tiphase traffic signals with a cycle time that responds to traffic conditions, 110–120s
at night, 130–140s during the day.

However, Fig. 1.3 suggests why MFDs cannot be constructed in general: Con-
gested and free flowing sections of traffic networks will often, and perhaps usu-
ally, coexist in an essentially random manner depending on local traffic densities.
Figure3.2, adapted from Geroliminis and Sun (2011a), further demonstrates the
limitations of the MFD approach. It examines the flow, in vehicles/5min intervals,
versus percent occupancy over a three day period for the Minnesota Twin Cities
freeway network that connects St. Paul and Minneapolis. See Fig. 1 of their paper
for details of the road and sensor spacing. Evidently, while the unconstrained region
of occupancy permits characterization of a geodesic mode, both strong hysteresis
and phase transition effects are evident after about 8% occupancy, analogous to the
‘nucleation’ dynamics of Fig. 1.1 at high traffic density. Again, as in Fig. 1.1 ‘fine
structure’ should be expected within both geodesic and turbulent modes, depending
on local parameters.

Daganzo et al. (2010) further find that MFD flow, when it can be characterized at
all, will become unstable if the average network traffic density is sufficiently high.
They find that, for certain network configurations, the stable congested state
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Fig. 3.1 Adapted from Geroliminis and Daganzo (2008). Average traffic flow versus occupancy
(v/km) for a set of detectors in downtownYokohama over two days.Major intersections are centrally
controlled bymultiphase traffic signals that respond to traffic conditions. The stability of traffic flow
on the road network is thus critically dependent on the stability of the embedding control network

Fig. 3.2 Adapted from Geroliminis and Sun (2011a). Breakdown of the macroscopic fundamental
diagram for the freeway network connecting St. Paul and Minneapolis at high vehicle densities.
Both nucleation and hysteresis effects are evident, showing the fine structure within the turbulent
mode. As in Fig. 1.1c, breakdown begins near 8–10% occupancy. Unlike Fig. 3.1, here there is no
network of active control signals

http://dx.doi.org/10.1007/978-3-319-69935-6_1
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...is one of complete gridlock with zero flow. It is therefore important to ensure that in real-
world applications that a network’s [traffic] density never be allowed to approach this critical
value.

Geroliminis and Sun (2011b) caution that

...[F]reeway networks do not have well-defined MFDs between network flow and density,
as these networks have topological or control characteristics that are different from arterial
networks... [R]esearch is needed in different types of networks to understand how variations
in the topology/structure of the networks can affect the shape, the scatter and the existence
of an MFD... MFD’s should not be universally expected... a careful analysis is necessary
before... control strategies/policies are introduced based onmonitoring aggregated variables.

Daqing et al. (2014) examine the dynamic spread of traffic congestion on the
Beijing central road network. They characterize the failure of a road segment to
be a traffic velocity less than 20km/hr and use observational data to define a spatial
correlation length in terms of the Euclidean distances between failed nodes. Adapting
their results, Fig. 3.3 shows the daily pattern of the correlation length of cascading
traffic jams over a 9day period. The two commutingmaxima are evident, and greatest
correlation lengths reach the diameter of the main part of the city. Even at rush hour,

Fig. 3.3 Adapted from Daqing et al. (2014). Daily cycle of traffic jam correlation length over
a 9day period in central Beijing. The maxima cover most of the central city. For rush hour, no
macroscopic fundamental diagram can be defined since the region is characterized by a patchwork
of free and congested parts, as shown in Fig. 1.3

http://dx.doi.org/10.1007/978-3-319-69935-6_1
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Fig. 3.4 Adapted from Fig. 6.4 of Rand (1979). Relation between fire company travel time and
response distance for the full Trenton, NJ road network, 1975. The Rand Fire Project collapsed
evident large-scale traffic turbulence into a simple ‘square root-linear’ model used to design fire
service deployment policies in high fire incidence, high population density neighborhoods of many
US cities, including the infamous South Bronx. The impacts were literally devastating (Wallace and
Wallace 1998)

no MFD can be defined, as, according to Fig. 1.3, the network will be a dynamic
patchwork of free and congested components.

Figure3.4, adapted from Rand (1979, Fig. 6.4), provides a disturbing counterex-
ample to these careful empirical and theoretical results on network traffic flow, one
with unfortunate results. Summarizing observations carried out by the Rand Fire
Project, it represents a repeated sampling of ‘travel time versus distance’ for the full
Trenton NJ road network in 1975 under varying conditions of time-of-day, day-of-
week, weather, and so on, by fire companies responding to calls for service. This was
an attempt to create a Macroscopic Fundamental Diagram in the sense used above,
but without any reference at all to traffic density.

http://dx.doi.org/10.1007/978-3-319-69935-6_1
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Indeed, fire service responses are a traffic flow ‘best case’ as fire units are permitted
to bypass one-way restrictions, traffic lights, and so on, and usually able to surmount
even theworst weather conditions. In spite of best-case circumstances, the scatterplot
evidently samples whole-network turbulent flow, not unlike that to the right of the
local geodesic in Figs. 1.1 and 3.2, part of a single street and a highway network,
respectively, and consistent with the assertions of Cassidy et al. (2011) that MFD
relations can only be defined under very restrictive conditions, i.e., either complete
free flow or full network congestion.

The Rand Fire Project, when confronted with intractable whole-network traffic
turbulence, simply collapsed the data onto a ‘square root-linear’ relation, as indicated
on the figure. The computer models resulting from this gross oversimplification
were used to determine fire service deployment strategies for high fire incidence,
overcrowded neighborhoods in a number of US cities, with literally devastating
results and consequent massive impacts on public health and public order. Wallace
andWallace (1998), produced under an InvestigatorAward inHealth PolicyResearch
from the Robert Wood Johnson Foundation, documents the New York City case
history. The Rand models are still in use by the New York City Fire Department, for
political purposes outlined in that analysis.

3.2 Intractability of the MFD

Why is the macroscopic fundamental diagram so apparently intractable in one case,
but not in another? Some insight is gained by recognizing that road networks are
inherently two dimensional in their populations as well as their geometries. That is,
a road network, as opposed to a road segment, can be viewed as having distinct pop-
ulations of network nodes and vehicles. This is different frommacroscopic electrical
systems in which the electrons are not, and cannot be, counted. We can, at least to
first order, study a traffic jam in terms of interacting populations as follows.

Let X be the proportion of road network nodes suffering a jam, and Y be the pro-
portion of vehicles in a jam. These populations, of course, interact, and the simplest
model is one of cross-influence:

dX/dt = μ1Y (1 − X) − γ1X

dY/dt = μ2X (1 − Y ) − γ2Y (3.1)

where γ1 is the average rate at which a node is cleared, and γ2 the average rate at
which a vehicle clears a jam. The μi represent ‘contagion’ effects.

The essential point, again, is that, for road networks, and unlike electrical
and hydrodynamic networks, individual vehicles and individual nodes can interact
strongly.

http://dx.doi.org/10.1007/978-3-319-69935-6_1
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At nonequilibrium steady state

X = μ1μ2 − γ1γ2

μ2(μ1 + γ1)

Y = μ1μ2 − γ1γ2

μ1(μ2 + γ2)
(3.2)

If μ1μ2 < γ1γ2, then X,Y → 0, and no jam can propagate.
We can bring closure to the model by assuming that the μi are monotonic increas-

ing, and the γi monotonic decreasing, in the traffic density index ρ, the multimodal
composite � from Eq. (2.7), or the ‘percent occupancy’ from Fig. 3.2. The nss values
of X and Y then take an inverted J form, rising above zero at threshold and asymp-
totically approaching 1. Almost exactly similar functional forms for ‘packet delay’
versus ‘average transmission rate’ can be found in the computer network studies
of Sole and Valverde (2001, Fig. 2a), and Ohira and Sawatari (1998, Figs. 1 and 2).
Figure3.5 shows the form of the relation for μi = ρ, γi = 1/ρ. This is a qualitative
form characteristic of network loading across a variety of models.

Fig. 3.5 Equilibrium proportion of jammed vehicles, taking μi = ρ, γi = 1/ρ. The relation is then
X = 0 if ρ ≤ 1, X = (ρ2 − 1/ρ2)/(ρ(ρ + 1/ρ)) if X > 1. This ‘inverted J’ form will repeat across
different models of network congestion

http://dx.doi.org/10.1007/978-3-319-69935-6_2
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Fig. 3.6 Thirty simulations of Eq. (3.3) using a cross-influence noise ±0.01. The time dependence
is just that of the deterministic model plus some minor diffusion. Red = X, blue = Y

But there is more going on here, and the subtleties help explain the difference
between Figs. 3.1 and 3.2.

Taking μi = 1, γ1 = 1, γ2 = 0.9, the nss values of X and Y are, respectively,
0.050, 0.0526.... We perturb this system with white noise, using the ItoProcess func-
tion available in the computer algebra programMaple, performing 30 simulations of
the SDE system

dXt = [Yt (1 − Xt ) − Xt ]dt − 0.01YtdW
1
t

dYt = [Xt (1 − Yt ) − 0.9Yt ]dt + 0.01XtdW
2
t (3.3)

as shown in Fig. 3.6.
The result is simply the approach to the nss, with some diffusional fuzzing.
Next, we add a significant amount of noise:

dXt = [Yt (1 − Xt ) − Xt ]dt − 0.4YtdW
1
t

dYt = [Xt (1 − Yt ) − 0.9Yt ]dt + 0.4XtdW
2
t (3.4)
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Fig. 3.7 The same as Fig. 3.6, but with cross-noise ±0.4, forty times as strong. The system now
increasingly diverges from the endemic level of approximately 5%

Figure3.7 shows the outcome. For sufficient added cross-noise of different sign,
the system does not converge on the nss of about 5%, but undergoes repeated, and
indeed progressively rising, excursions. While the underlying parameters that define
the low ‘endemic’ level in the deterministic model remain the same, the added noise
is now seriously destabilizing.

It seems obvious that onset of such instability will occur at progressively lower
noise levels as such traffic load indices as ρ, � or ‘percent occupancy’ increase.

The mechanisms for this dynamic have only recently become clear and greatly
extend the results of Eq. (2.14).

A function f is said to be locally Lipshitz if, for f from S ⊂ Rn → Rm , there is a
constant C such that || f (y) − f (x)|| ≤ C ||y − x || for all y ∈ S that are sufficiently
near to x . Then Appleby et al. (2008) show that, for any such function f , a function
g can always be found so that the perturbed SDE

dXt = f (Xt )dt + g(Xt)dWt (3.5)

either stabilizes an unstable equilibrium of f , or, for dimension ≥2, destabilizes a
stable equilibrium. In one dimension, equations remain only stabilizable by noise.

http://dx.doi.org/10.1007/978-3-319-69935-6_2
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Vehicles on roads, unlike molecules in pipes, can be represented in terms of
two or more macroscopic, interacting populations. Arterial and freeway networks
have fundamental structural differences. For freeway networks, chaos almost surely
follows at sufficiently highvehicle densities, rendering the ‘macroscopic fundamental
diagram’ a concept useful only at very low traffic loadings. Arterial networks can
actively direct traffic flow perturbations—‘noise’—differently, and will sometimes
jam at high densities without chaos, giving a well-defined ‘inverted U’ MFD.

A second way of viewing the failure of traffic flow on a road network is, concep-
tually, somewhat similar to describing the propagation of a signal via the Markov
‘network dynamics’ formalismofWallace (2016a) orGould andWallace (1994). This
is an approach that might be used to empirically identify geodesic eigenmodes of real
road network systems under different conditions, as opposed to individual vehicle
dynamics or flow on a single road. Zhang (2015), in fact, uses a similar Markov
method to examine taxicab GPS data for transit within and between 12 empirically-
identified ‘hot zones’ in Shanghai, determining the network probability-of-contact
matrix (POCM) and its equilibrium distribution.

Following Gould and Wallace (1994), the spread of a ‘signal’ on a particular
network of interacting sites—between and within—is described at nonequilibrium
steady state in terms of an equilibrium distribution εi ‘per unit area’ Ai of a Markov
process,where A scaleswith the different ‘size’ of each node, taken as distinguishable
by a scale variable A (for example number of entering streets or average total traffic
flow) as well as by its ‘position’ i or the associated POCM. The POCM is then
normalized to a stochastic matrixQ having unit row sums, and the vector ε calculated
as ε = εQ

There is a vector set of dimensionless network flows X i
t , i = 1, ..., n at time t .

These are each determined by some relation

X i
t = g(t, εi/Ai ) (3.6)

Here, i is the index of the node of interest, X i
t is the corresponding dimen-

sionless scaled i-th signal, t the time, and g an appropriate function. Again, εi is
defined by the relation ε = εQ for a stochastic matrix Q, calculated as the net-
work probability-of-contact matrix between regions, normalized to unit row sums.
UsingQ, we have broken out the underlying network topology, a fixed between-and-
within travel configuration weighted by usage that is assumed to change relatively
slowly on the timescale of observation compared to the time needed to approach the
nonequilibrium steady state distribution.

Since theX are expressed in dimensionless form, g, t , and Amust be rewritten as
dimensionless as well giving, for the monotonic increasing (or threshold-triggered)
function F

X i
τ = G[τ ,

εi

Ai
× Aτ ] (3.7)
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where Aτ is the value of a ‘characteristic area’ variate that represents the spread of
the perturbation signal—evolving into a traffic jam under worst-case conditions—at
(dimensionless) characteristic time τ = t/T0.

G may be quite complicated, including dimensionless ‘structural’ variates for
each individual geographic node i . The idea is that the characteristic ‘area’ Aτ

grows according to a stochastic process, even though G may be a deterministic
mixmaster driven by systematic local probability-of-contact or flow patterns. Then
the appropriate model for Aτ in a spreading traffic jam resembles Eq. (2.15), with
x replaced by A and t by τ . But, for the network, Aτ must have a vehicle density
threshold condition like Eq. (3.2) for large-scale propagation of a traffic jam across
the full network—something that would look very similar to the spread of a power
blackout.

A simple example.
A characteristic area cannot grow indefinitely, andwe invoke a ‘carrying capacity’

for a jam on the network under study, say K > 0. An appropriate SDE is then

dAτ = [μρAτ (1 − Aτ/K )]dτ + σAτdWτ (3.8)

where we take ‘ρ’ as representing vehicle density, percent occupancy, or the com-
posite multimodal traffic/street quality index �.

Using the Ito chain rule on log(A ), as a consequence of the added Ito correction
factor and the Jensen inequality for a concave function,

E(A ) → 0, μρ < σ2/2

E(A ) ≥ K (1 − σ2

2μρ
), μρ ≥ σ2/2 (3.9)

Figure3.8 shows the form of this relation, which is similar to what would be
expected from introducing density dependence intoEq. (3.2), e.g.,μi ∝ ρ, γi ∝ 1/ρ.

Equation (3.9) differs in an important aspect fromEq. (3.2). It represents the lower
limit of an expectation that can vary greatly and unpredictably above the threshold
traffic density. As a consequence, determination of aMacroscopic Fundamental Dia-
gram becomes highly problematic, according to thismodel. Indeed, a nonequilibrium
steady state calculation finds the variance ofA growing at a rate greater than σ4. This
is done using the Ito Chain Rule to calculate dA 2 from Eq. (3.8), remembering that
the variance is simply E(A 2)− E(A )2, and imposing the condition that d/dt → 0.

A third approach to the MFD problem is via classic network theory, adapting
the percolation theory example of Li et al. (2015). We first view a road net as a
random graph made up of nodes at which roads intersect and the ‘edges’ which
connect them. Edges are identified as ‘Open’ if they are in free flow, and ‘Closed’
if congested. Suppose the road net graph has M vertices and m = (1/2)aM closed
edges chosen at random. Corless et al. (1996) show that, for a > 1, the road net
graph almost surely has a giant connected component having approximately g(a)M
vertices with

http://dx.doi.org/10.1007/978-3-319-69935-6_2
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Fig. 3.8 Lower limit of the expectation for the characteristic area of a traffic jam as a function of
a traffic density measure. The expected value will be larger than this, and can vary unpredictably,
making the estimation of a Macroscopic Fundamental Diagram impossible above the threshold
density

g(a) = 1 + W (−a exp[−a])/a (3.10)

where W is the Lambert-W function defined implicitly by the relation

W (x) exp[W (x)] = x (3.11)

See Fig. 3.9, which should be compared with Fig. 3.8.
Real networks, however, deviate from random graphs. Typically, the degree dis-

tribution, the probability of k linkages between vertices, often follows some power
law P(k) ≈ k−γ rather than the Poisson distribution of random networks, i.e.,
P(k) = ak exp[−a]/k!, k ≥ 0. Molloy and Reed (1995, 1998) show that, for a
random graph with degree distribution P(k), an infinite cluster—here a traffic jam—
emerges almost surely when

Q ≡
∑

k≥1

k(k − 2)P(k) > 0 (3.12)
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Fig. 3.9 Relative size of the largest connected component of jammed roads for a random graph.
Compare with Fig. 3.8. The traffic jam grows very sharply in extent after criticality is reached

It is possible to extend the Erdos/Renyi threshold results to ‘semirandom’ graphs.
Luczak (1990) shows that almost all random graphs with a fixed degree smaller than
two have a unique giant cluster.

The essential point is that, as Newman et al. (2001) show, giant components
are ubiquitous, even for nonrandom networks, with the main influence being on the
location of the threshold for ‘explosion’ and the magnitude of the ‘topping out’ limit.

Coming, in a sense, full circle, Bottcher et al. (2017) examine critical behaviors
in network contagion dynamics, finding something similar to what was explored in
Sect. 3.2, and a three-component phase diagram analogous to the Kerner model of
traffic flow (Kerner et al. 2015; Kerner and Klenov 2009). It might be argued that
such ‘graph theory’ networks are inherently at least two dimensional, characterized
by interacting populations of ‘nodes’ and ‘edges’, and thus necessarily subject to
the kind of stabilization/destabilization described under the Stochastic Stabilization
Theorem (Appleby et al. 2008), depending most specifically on the details of the
interactionmechanism. Figure2 of Bottcher et al. seems to present dynamics roughly
consonant with those of Figs. 3.6 and 3.7 here.
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3.3 Hysteresis Lock-In of a Pathological Mode

Sufficient conditions for the stability of the hypercondensed pathological ‘ground
state’ cognitive phase discussed above, providing another model of hysteresis in
traffic flow like that shown in Figs. 3.2 and 3.4, can be explored using the methods
of Wallace (2016a). Given a vector of parameters characteristic of, and driving, that
phase, say J, measuring deviations from a nonequilibrium steady state, the ‘free
energy’ analog F in Eq. (2.21) can be used to define a new ‘entropy’ scalar as the
Legendre transform

S ≡ F(J) − J · ∇JF (3.13)

Then a first-order dynamic equation follows using a stochastic version of the
Onsager formalism from nonequilibrium thermodynamics (de Groot and Mazur
1984)

d J it = (
∑

k

μi,k∂S /∂ J k
t )dt +

∑

k

σk
i J

i
t d B

k
t (3.14)

where μi,k defines a diffusion matrix, the σi are parameters, and the dBk
t represent

noise that may be colored, i.e., not the usual Brownian motion under undifferentiated
white noise.

We suppose it possible to factor out J i so that Eq. (3.14) can be expressed as

d J it = J it dY
i
t (3.15)

where Y i
t is now a stochastic process.

Equation (3.15) can then be solved for the expectation of J in terms of theDoleans-
Dade exponential (Protter 1990) as

E(J it ) ∝ exp(Y i
t − 1/2[Y i

t ,Y
i
t ]) (3.16)

where [Y i
t ,Y

i
t ] is the quadratic variation of the stochastic process Y i

t (Protter 1990).
Heuristically, by the Mean Value Theorem, if

1/2d[Y i
t ,Y

i
t ]/dt > dY i

t /dt (3.17)

then the pathological ground state is stable in expectation: deviations from nonequi-
librium steady state measured by E(J it ) converges to 0. That is, sufficient ongoing
‘fog-of-war’ noise—determining the quadratic variation terms in Eqs. (3.16) and
(3.17)—can systematically lock-in system failure with high probability, in spite of
managerial interventions to the contrary: hysteresis.

http://dx.doi.org/10.1007/978-3-319-69935-6_2
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3.4 Groupoid Synergism Redux

Reiterating and sharpening a previous argument, it is possible to invoke something
very similar to the symmetry breaking phase transition of Sect. 2.4, but in the context
of the inherently cognitive nature of V2V/V2I systems. Traffic flow can be rephrased
in terms of ‘directed homotopy’—dihomotopy—groupoids on an underlying road
network, again parameterized by the ‘temperature’ index T . Classical homotopy
characterizes topological structures in terms of the number of ways a loop within
the object can be continuously reduced to a base point (Hatcher 2001). For a sphere,
all loops can be reduced. For a toroid—a donut shape—there is a hole so that two
classes of loops cannot be reduced to a point. One then composes loops to create the
‘fundamental group’ of the topological object. The construction is standard. Vehicles
on a road network, however, are generally traveling from some initial point So to a
final destination S1, and directed paths, not loops are the ‘natural’ objects, at least
over a short time period, as in commuting.

Given some ‘hole’ in the road network, there will usually be more than one way to
reach S1 from So. An equivalence class of directed paths is defined by paths that can
be deformed into one another without crossing barrier zones (Fajstrup et al. 2016;
Grandis 2009). At high values of the composite index T , many different sets of
paths will be possible allowing unobstructed travel from one given point to another,
defining equivalence classes creating a large groupoid. As T declines, roadways
and junctions become increasingly jammed, eliminating entire equivalence classes
of open pathways, and lowering the groupoid symmetry: phase transitions via classic
symmetry breaking on a network. The ‘order parameter’ that disappears at high T
is then simply the number of jammed roadways.

These results extend to higher dihomotopy groupoids via introduction of cylin-
drical paths rather than one-dimensional lines, producing a more general version of
the quotient space geodesic method of Hu et al. (2001).

Most fundamentally, however, and as outlined earlier, the traffic flowgroupoid and
the groupoid associated with cognition across the V2V/V2I system will inevitably
be intimately intertwined, synergistically compounding symmetry breaking traffic
jams as-we-know-them with symmetry breaking cognitive collapse of the control
system automata, creating conditions of monumental chaos.

http://dx.doi.org/10.1007/978-3-319-69935-6_2
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Ruelle (1983), in his elegant keynote address on turbulent dynamics, raises a red flag
for any traffic flow studies:

...[A] deductive theory of developed turbulence does not exist, and a mathematical basis
for the important theoretical literature on the subject is still lacking... A purely deductive
analysis starting with the Navier-Stokes equation... does not appear feasible... and might be
inappropriate because of the approximate nature of the... equation.

Or, as the mathematician Garrett Birkoff (1960, p.5) put it,

...[V]ery few of the deductions of rational hydrodynamics can be established rigorously.

Similar problems afflict the exactly solvable but highly approximate Black-
Scholes models of financial engineering, and institutions that rely heavily on them
have gone bankrupt in the face of market turbulence (Wallace 2015c).

Turbulence in traffic flow does not represent simple drift from steady linear or
even parallel travel trajectories. Traffic turbulence involves the exponential amplifi-
cation of small perturbations into large-scale deviations from complicated streamline
geodesics in a topologically complex map quotient space. This is the mechanism of
groupoid ‘symmetry breaking’ by which the system undergoes a phase transition
from ‘liquid’ geodesic flow to ‘crystalline’ phases of shock fronts, platoons, and
outright jams.

Under such circumstances, cognitive system initiative serves as a mechanism for
returning to geodesic flows. Inhibition of cognitive initiative occurs when the com-
posite density index Γ exceeds a critical limit, triggering complex dynamic conden-
sation patterns and, for autonomous vehicle systems, perhaps even more disruptive
behaviors.

It is, then, not enough to envision atomistic autonomous ground vehicles as having
only local dynamics in an embedding traffic stream, as seems the current American
and European practice. Traffic light strategies, road quality, the usually rapid-shifting
roadmap space, the dynamic composition of the traffic stream, bandwidth limits, and

© The Author(s) 2018
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so on, create the synergistic context in which single vehicles operate and which con-
stitutes the individual ‘driving experience’. It is necessary to understand the dynamics
of that full system, not simply the behavior of a vehicle atom within it. The proper-
ties of that system will be both overtly and subtly emergent, as will, we assert, the
responses of cognitive vehicles enmeshed in context, whether controlled by humans
or computers.

One inference from this analysis is that failure modes afflicting large-scale
V2V/V2I systems are likely to be more akin to power blackouts than to traffic jams
as we know them, and the description by Kinney et al. (2005) is of interest:

Today theNorthAmerican power grid is one of themost complex and interconnected systems
of our time, and about one half of all domestic generation is sold over ever-increasing
distances on the wholesale market before it is delivered to customers... Unfortunately the
same capabilities that allow power to be transferred over hundreds of miles also enable
the propagation of local failures into grid-wide events... It is increasingly recognized that
understanding the complex emergent behaviors of the power grid can only be understood
from a systems perspective, taking advantage of the recent advances in complex network
theory...

Dobson (2007) puts it as follows:

[P]robabalistic models of cascading failure and power system simulations suggest that there
is a critical loading at which expected blackout size sharply increases and there is a power
law in the distribution of blackout size... There are two attributes of the critical loading: 1.
A sharp change in gradient of some quantity such as expected blackout size as one passes
through the critical loading. 2. A power law region in probability distribution of blackout size
at the critical loading. We use the terminology ‘critical’ because this behavior is analogous
to a critical phase transition in statistical physics.

Daqing et al. (2014), in fact, explicitly link traffic jams and power failures:

Cascading failures have become major threats to network robustness due to their potential
catastrophic consequences, where local perturbations can induce global propagation of fail-
ures... [that] propagate through collective interactions among system components.... [W]e
find by analyzing our collected data that jams in city traffic and faults in power grid are
spatially long-range correlated with correlations decaying slowly with distance. Moreover,
we find in the daily traffic, that the correlation length increases dramatically and reaches
maximum, when morning or evening rush hour is approaching...

While clever V2V/V2Imanagement strategiesmight keep traffic streams in super-
cooled high-flowmode beyond critical densities, such a state is notoriously unstable,
subject to both randomand deliberately caused ‘condensation’ into large-scale frozen
zones. More subtle patterns of autonomous vehicle ‘psychopathology’ may be even
less benign, as studied in detail elsewhere (Wallace 2017).

‘Blackout’ considerations focus on macroscale phenomena. An example at an
intermediate mesoscale involves ‘platoon instabilities’.

To paraphrase di Bernado et al. (2015), ‘platooning’ describes the coordinated
motion of groups of vehicles cooperating with each other to reach the same desti-
nation with a common velocity, usually envisioned as a close linear array so as to
minimize overall air resistance, resulting in significantly improved fuel efficiency.
Typical strategies focus on pairwise interactions based on local measurements by
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onboard sensors: each vehicle only uses proximity information from its preceding
agent in the platoon. The essential question for such a strategy involves ‘string sta-
bility’ in which perturbations affecting the leading vehicle are not amplified on down
the line. The image is of the cracking of a whip. However, it has long been under-
stood that simple pairwise interactions between vehicles can actually make long
strings sensitive to such perturbations (e.g., Middleton and Braslavsly 2010). As di
Bernardo et al. put it,

Hence, there is a need to explore the use of more generic communication structures among
vehicles... achieved throughwireless [V2V] and [V2I] communication. The reference behav-
ior is dispatched to all vehicles in the network by a leader vehicle belonging to the platoon
(typically the first vehicle in the group). New challenges arise due to uncertainties and time-
varying communication delays.

Such systems are characterized as operating under ‘cooperative adaptive cruise
control’—CACC.

CACCvehicle platooning thus comes verymuchunder the draconian constrictions
of the Data Rate Theorem: simple pairwise data exchange is inherently unstable and
must be expanded to include information from each vehicle in the platoon, according
to a complex topological protocol in which ‘nodes’ are vehicles characterized by
their own dynamics, ‘edges’ model communication links between vehicles, and the
structure of intervehicle communication is encoded in network topology. Ensuring
string stability for such topologies is not trivial, and clearly must involve massive
increase in available bandwidth over simple pairwise data exchange.

Interference with data exchange—bandwidth availability—or a rising need for
bandwidth consequent on increasing ρ or the composite Γ of Sects. 2.1 and 2.2—
will cause sudden, unexpected, and highly punctuated failure of coordinated pla-
toon topology, with likely catastrophic outcomes for dangerous or valuable cargoes.
Indeed, analogous problems have been studied by Amoozadeh et al. (2015), who
examine security attacks on the communication channel as well as sensor tampering
of a connected vehicle stream equipped to achieve CACC, finding that an insider
attack can cause significant instability. Our results, however, suggest that the sudden
onset of instabilities will likely be triggered by far more mundane factors such as
bandwidth constrictions caused by signal overcrowding or high levels of random
noise, perhaps as simple as nearby lightning strikes or sudden solar storm fluctua-
tions.

For optical systems—LIDAR and cameras—fog, dust, rain or snow, sun glare,
bright lights, a puff of exhaust or other smoke, will provide ‘bandwidth’ constraints
contributing to an increase in Γ and hence decline in the critical fog-of-war ‘tem-
perature’ parameter T .

Zhao et al. (2014) adapt the information theoretic methods ofMartins et al. (2007)
to study disturbance propagation in leader-follower systems with limited leader
information—a specific form of CACC. Their ‘Lemma 3’, a key step in proving
their central results is, as they note, closely reminiscent of the Data Rate Theorem.

Almost in passing, however, they comment

http://dx.doi.org/10.1007/978-3-319-69935-6_2
http://dx.doi.org/10.1007/978-3-319-69935-6_2
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As the literature on networked control systems demonstrates, even centralized control when
information available to the controller is transmitted across communication channels displays
a rich and non-obvious behavior. Although there has been some recent work on stabilizability
of distributed systems... performance guarantees in distributed systems remain hard to obtain.

Rich and non-obvious behavior.
Performance guarantees in distributed systems remain hard to obtain.
It is difficult to escape the inference that, despite massive marketing hype and

other wishful thinking, V2V/V2I autonomous vehicle systems may not be generally
practical, particularly in a context of coupled social and infrastructure deterioration.

It has been said that ‘The language of business is the language of dreams’. ‘Busi-
ness dreams’, however, as we are now painfully learning at the national level, do not
necessarily serve as a sound foundation for the design and implementation of public
policies affecting the well-being of large populations.
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Mathematical Appendix

5.1 An RDT Approach to the DRT

The RDT asks how much a signal can be compressed and have average distortion,
according to an appropriate measure, less than some predetermined limit D. The
result is an expression for the minimum necessary channel capacity, R, as a function
of D. See Cover and Thomas (2006) for details. Different channels have different
expressions. For the Gaussian channel under the squared distortion measure,

R(D) = 1

2
log[σ

2

D
] D < σ 2

R(D) = 0 D ≥ σ 2 (5.1)

where σ 2 is the variance of channel noise having zero mean.
As above, we ask how a control signal ut is expressed in the system response

xt+1. We suppose it possible to deterministically retranslate an observed sequence
of system outputs x1, x2, x3, ... into a sequence of possible control signals û0, û1, ...
and to compare that sequence with the original control sequence u0, u1, ..., with
the difference between them having a particular value under the chosen distortion
measure, and hence an observed average distortion.

The correspondence expansion is as follows.
Feynman (2000), expanding on ideas of Bennett, identifies information as a form

of free energy. Thus R(D), the minimum channel capacity necessary for average
distortion D, is also a free energy measure, and we may define an entropy S as

S ≡ R(D) − DdR/dD (5.2)

For a Gaussian channel under the squared distortion measure,

S = 1/2 log[σ 2/D] + 1/2 (5.3)

Other channels will have different expressions.

© The Author(s) 2018
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The simplest dynamics of such a system are given by a nonequilibrium Onsager
equation in the gradient of S, (de Groot and Mazur 1984) so that

dD/dt = −μdS/dD = μ

2D
(5.4)

By inspection,
D(t) = √

μt (5.5)

which is the classic outcome of the diffusion equation. For the ‘natural’ channel
having R(D) ∝ 1/D, D(t) ∝ the cube root of t .

This correspondence reduction allows an expansion tomore complicated systems,
in particular, to the control system of Fig. 2.1.

LetH be the rate at which control information is fed into an inherently unstable
control system, in the presence of a further source of control system noise β, in
addition to the channel noise defined by σ 2. The simplest generalization of Eq. (5.4),
for a Gaussian channel, is the stochastic differential equation

dDt = [ μ

2Dt
− G(H )]dt + βDtdWt (5.6)

where dWt represents white noise and G(H ) ≥ 0 is a monotonically increasing
function.

This equation has the nonequilibrium steady state expectation

Dnss = μ

2G(H )
(5.7)

measuring the average distortion between what the control system wants and what it
gets. In a sense, this is a kind of converse to the famous radar equation which states
that a returned signal will be proportional to the inverse fourth power of the distance
between the transmitter and the target. But there is an even deeper result to be found.

Applying the Ito chain rule to Eq. (5.6) (Protter 1990; Khashminskii 2012), it is
possible to calculate the expected variance in the distortion as E(D2

t ) − (E(Dt ))
2.

But application of the Ito rule to D2
t shows that no real number solution for its

expectation is possible unless the discriminant of the resulting quadratic equation is
≥ 0, so that a necessary condition for stability is

G(H ) ≥ β
√

μ

H ≥ G−1(β
√

μ) (5.8)

where the second expression follows from the monotonicity of G.
As a consequence of the correspondence reduction leading to Eq. (5.5), we have

generalized the DRT of Eq. (2.2). Different ‘control channels’, with different forms
of R(D), will give different detailed expressions for the rate of generation of ‘topo-
logical information’ by an inherently unstable system.

http://dx.doi.org/10.1007/978-3-319-69935-6_2
http://dx.doi.org/10.1007/978-3-319-69935-6_2
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5.2 A Black-Scholes Model

Take H (ρ) as the control information rate ‘cost’ of stability at the level of crowd-
ing ρ. What is the mathematical form of H (ρ) under conditions of volatility i.e.,
variability in ρ proportional to it? Let

dρt = g(t, ρt)dt + bρt dWt (5.9)

where dWt is taken as white noise and the function g(t, ρ) will ‘fall out’ of the
calculation on the assumption of certain regularities.

LetH (ρt , t) be the minimum needed incoming rate of control information under
the Data Rate Theorem, and expand in ρ using the Ito chain rule (Protter 1990)

dHt = [∂H /∂t + g(ρt , t)∂H /∂ρ + 1

2
b2ρ2

t ∂
2H /∂ρ2]dt

+[bρt∂H /∂ρ]dWt (5.10)

Define a quantity L as a Legendre transform of the rateH by convention having
the form

L = −H + ρ∂H /∂ρ (5.11)

Since H is an information index, it is a kind of free energy in the sense of
Feynman (2000) and L is a classic entropy measure.

Heuristically, replacing dX withΔX in these expressions and applying Eq. (5.10),

ΔL = (−∂H /∂t − 1

2
b2ρ2∂2H /∂ρ2)Δt (5.12)

As in the classical Black-Scholes model (Black and Scholes 1973), the terms
in g and dWt ‘cancel out’, and the effects of noise are subsumed into the Ito cor-
rection factor, a regularity assumption making this an exactly solvable but highly
approximate model.

The conventional Black-Scholes calculation takes ΔL/ΔT ∝ L . Here, at non-
equilibrium steady state, we assume ΔL/Δt = ∂H /∂t = 0, so that

− 1

2
b2ρ2∂2H /∂ρ2 = 0 (5.13)

By inspection,
H = κ1ρ + κ2 (5.14)

where the κi are nonnegative constants.
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5.3 Groupoids

Given a pairing, for example connection by a meaningful path to the same basepoint,
it is possible to define ‘natural’ end-point maps α(g) = a j , β(g) = ak from the
set of morphisms G into A, and a formally associative product in the groupoid
g1g2 provided α(g1g2) = α(g1), β(g1g2) = β(g2), and β(g1) = α(g2). Then the
product is defined, and associative, i.e., (g1g2)g3 = g1(g2g3), with inverse defined
by g = (a j , ak), g−1 ≡ (ak, a j ).

In addition there are natural left and right identity elements λg, ρg such that
λgg = g = gρg .

An orbit of the groupoidG over A is an equivalence class for the relation a j ∼ Gak
if and only if there is a groupoid element gwith α(g) = a j and β(g) = ak . Following
Cannas Da Silva and Weinstein (1999), a groupoid is called transitive if it has just
one orbit. The transitive groupoids are the building blocks of groupoids in that there
is a natural decomposition of the base space of a general groupoid into orbits. Over
each orbit there is a transitive groupoid, and the disjoint union of these transitive
groupoids is the original groupoid. Conversely, the disjoint union of groupoids is
itself a groupoid.

The isotropy group of a ∈ X consists of those g in G with α(g) = a = β(g).
These groups prove fundamental to classifying groupoids.

If G is any groupoid over A, the map (α, β) : G → A × A is a morphism from
G to the pair groupoid of A. The image of (α, β) is the orbit equivalence relation
∼ G, and the functional kernel is the union of the isotropy groups. If f : X → Y
is a function, then the kernel of f , ker( f ) = [(x1, x2) ∈ X × X : f (x1) = f (x2)]
defines an equivalence relation.

Groupoids may have additional structure. As Weinstein (1996) explains, a
groupoid G is a topological groupoid over a base space X if G and X are topologi-
cal spaces and α, β and multiplication are continuous maps. A criticism sometimes
applied to groupoid theory is that their classification up to isomorphism is nothing
other than the classification of equivalence relations via the orbit equivalence rela-
tion and groups via the isotropy groups. The imposition of a compatible topological
structure produces a nontrivial interaction between the two structures. Belowwe will
introduce a metric structure on manifolds of related information sources, producing
such interaction.

In essence a groupoid is a category in which all morphisms have an inverse, here
defined in terms of connection by a meaningful path of an information source dual
to a cognitive process.

As Weinstein (1996) points out, the morphism (α, β) suggests another way of
looking at groupoids. A groupoid over A identifies not only which elements of A
are equivalent to one another (isomorphic), but it also parameterizes the different
ways (isomorphisms) in which two elements can be equivalent, i.e., all possible
information sources dual to some cognitive process. Given the information theoretic
characterization of cognition presented above, this produces a full modular cognitive
network in a highly natural manner.
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Brown (1987) describes the basic structure as follows:

A groupoid should be thought of as a group with many objects, or with many identities... A
groupoid with one object is essentially just a group. So the notion of groupoid is an extension
of that of groups. It gives an additional convenience, flexibility and range of applications...

EXAMPLE 1. A disjoint union [of groups] G = ∪λGλ, λ ∈ Λ, is a groupoid: the product
ab is defined if and only if a, b belong to the same Gλ, and ab is then just the product in the
group Gλ. There is an identity 1λ for each λ ∈ Λ. The maps α, β coincide and map Gλ to
λ, λ ∈ Λ.

EXAMPLE 2. An equivalence relation R on [a set] X becomes a groupoid with α,

β : R → X the two projections, and product (x, y)(y, z) = (x, z) whenever (x, y), (y, z) ∈
R. There is an identity, namely (x, x), for each x ∈ X ...

Weinstein (1996) makes the following fundamental point:

Almost every interesting equivalence relation on a space B arises in a natural way as the
orbit equivalence relation of some groupoid G over B. Instead of dealing directly with the
orbit space B/G as an object in the category Smap of sets and mappings, one should consider
instead the groupoid G itself as an object in the category Ghtp of groupoids and homotopy
classes of morphisms.

It is possible to explore homotopy in paths generated by information sources.
Global and local groupoids
The argument next follows Weinstein (1996) fairly closely, using his example of

a finite tiling.
Consider a tiling of the euclidean plane R2 by identical 2 by 1 rectangles, specified

by the set X (one dimensional) where the grout between tiles is X = H ∪ V , having
H = R × Z and V = 2Z × R, where R is the set of real numbers and Z the
integers. Call each connected component of R2\X , i.e. the complement of the two
dimensional real plane intersecting X , a tile.

Let Γ be the group of those rigid motions of R2 which leave X invariant, i.e., the
normal subgroup of translations by elements of the lattice Λ = H ∩ V = 2Z × Z
(corresponding to corner points of the tiles), together with reflections through each
of the points 1/2Λ = Z ×1/2Z , and across the horizontal and vertical lines through
those points. As noted in Weinstein (1996), much is lost in this coarse-graining, in
particular the same symmetry group would arise if we replaced X entirely by the
lattice Λ of corner points. Γ retains no information about the local structure of the
tiled plane. In the case of a real tiling, restricted to the finite set B = [0, 2m] ×
[0, n] the symmetry group shrinks drastically: The subgroup leaving X ∩ B invariant
contains just four elements even though a repetitive pattern is clearly visible. A
two-stage groupoid approach recovers the lost structure.

We define the transformation groupoid of the action of Γ on R2 to be the set

G(Γ, R2) = {(x, γ, y|x ∈ R2, y ∈ R2, γ ∈ Γ, x = γ y}

with the partially defined binary operation

(x, γ, y)(y, ν, z) = (x, γ ν, z).
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Here α(x, γ, y) = x , and β(x, γ, y) = y, and the inverses are natural.
We can form the restriction of G to B (or any other subset of R2) by defining

G(Γ, R2)|B = {g ∈ G(Γ, R2)|α(g), β(g) ∈ B}

1. An orbit of the groupoid G over B is an equivalence class for the relation
x ∼G y if and only if there is a groupoid element g with α(g) = x and β(g) = y.
Two points are in the same orbit if they are similarly placed within their tiles or
within the grout pattern.

2. The isotropy group of x ∈ B consists of those g in G with α(g) = x = β(g). It
is trivial for every point except those in 1/2Λ ∩ B, for which it is Z2 × Z2, i.e.
the direct product of integers modulo two with itself.

By contrast, embedding the tiled structure within a larger context permits defini-
tion of a much richer structure, i.e. the identification of local symmetries.

We construct a second groupoid as follows:Consider the plane R2 as being decom-
posed as the disjoint union of P1 = B ∩ X (the grout), P2 = B\P1 (the complement
of P1 in B, i.e. the tiles), and P3 = R2\B (the exterior of the tiled room). Let E
be the group of all euclidean motions of the plane, and define the local symmetry
groupoid Gloc as the set of triples (x, γ, y) in B × E × B for which x = γ y, and
for which y has a neighborhood U in R2 such that γ (U ∩ Pi ) ⊆ Pi for i = 1, 2, 3.
The composition is given by the same formula as for G(Γ, R2).

For this groupoid-in-context there are only a finite number of orbits:

O1 = interior points of the tiles.
O2 = interior edges of the tiles.
O3 = interior crossing points of the grout.
O4 = exterior boundary edge points of the tile grout.
O5 = boundary ‘T’ points.
O6 = boundary corner points.
The isotropy group structure is, however, now very rich indeed:
The isotropy group of a point in O1 is now isomorphic to the entire rotation

group O2.
It is Z2 × Z2 for O2.
For O3 it is the eight-element dihedral group D4.
For O4,O5 and O6 it is simply Z2.
These are the ‘local symmetries’ of the tile-in-context.

5.4 Morse Theory

Morse theory examines relations between analytic behavior of a function—the loca-
tion and character of its critical points—and the underlying topology of the manifold
on which the function is defined. We are interested in a number of such functions,
for example information source uncertainty on a parameter space and ‘second order’
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iterations involving parameter manifolds determining critical behavior, for example
sudden onset of a giant component in a network model. We follow Pettini (2007).

The central argument of Morse theory is to examine an n-dimensional manifold
M as decomposed into level sets of some function f : M → R where R is the set
of real numbers. The a-level set of f is defined as

f −1(a) = {x ∈ M : f (x) = a},

the set of all points in M with f (x) = a. If M is compact, then the whole manifold
can be decomposed into such slices in a canonical fashion between two limits, defined
by the minimum and maximum of f on M . Let the part of M below a be defined as

Ma = f −1(−∞, a] = {x ∈ M : f (x) ≤ a}.

These sets describe the whole manifold as a varies between the minimum and
maximum of f .

Morse functions are defined as a particular set of smooth functions f : M → R as
follows. Suppose a function f has a critical point xc, so that the derivative d f (xc) =
0, with critical value f (xc). Then f is a Morse function if its critical points are
nondegenerate in the sense that the Hessian matrix J of second derivatives at xc,
whose elements, in terms of local coordinates are

Ji, j = ∂2 f/∂xi∂x j ,

has rank n, which means that it has only nonzero eigenvalues, so that there are no
lines or surfaces of critical points and, ultimately, critical points are isolated.

The index of the critical point is the number of negative eigenvalues ofJ at xc.
A level set f −1(a) of f is called a critical level if a is a critical value of f , that

is, if there is at least one critical point xc ∈ f −1(a).
Again followingPettini (2007), the essential results ofMorse theory are as follows:

1. If an interval [a, b] contains no critical values of f , then the topology of f −1[a, v] does
not change for any v ∈ (a, b]. Importantly, the result is valid even if f is not a Morse
function, but only a smooth function.

2. If the interval [a, b] contains critical values, the topology of f −1[a, v] changes in a
manner determined by the properties of the matrix J at the critical points.

3. If f : M → R is a Morse function, the set of all the critical points of f is a discrete
subset of M , i.e., critical points are isolated. This is Sard’s Theorem.

4. If f : M → R is aMorse function, withM compact, then on a finite interval [a, b] ⊂ R,
there is only a finite number of critical points p of f such that f (p) ∈ [a, b]. The set
of critical values of f is a discrete set of R.

5. For any differentiable manifold M , the set of Morse functions on M is an open dense
set in the set of real functions of M of differentiability class r for 0 ≤ r ≤ ∞.

6. Some topological invariants of M , that is, quantities that are the same for all the
manifolds that have the same topology as M , can be estimated and sometimes com-
puted exactly once all the critical points of f are known: let the Morse numbers
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μi (i = 0, ...,m) of a function f on M be the number of critical points of f of index i ,
(the number of negative eigenvalues of H ). The Euler characteristic of the complicated
manifoldM can be expressed as the alternating sum of theMorse numbers of anyMorse
function on M ,

χ =
m∑

i=1

(−1)iμi .

The Euler characteristic reduces, in the case of a simple polyhedron, to

χ = V − E + F

where V, E , and F are the numbers of vertices, edges, and faces in the polyhedron.

7. Another important theorem states that, if the interval [a, b] contains a critical value of
f with a single critical point xc, then the topology of the set Mb defined above differs
from that of Ma in a way which is determined by the index, i , of the critical point. Then
Mb is homeomorphic to the manifold obtained from attaching to Ma an i-handle, i.e.,
the direct product of an i-disk and an (m−i)-disk.

Matsumoto (2002) and Pettini (2007) provide details and further references.
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