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Preface

This book is a compendium of the articles presented at the Third International
Conference on Cable-Driven Parallel Robots, also known by its diminutive
CableCon2017, held at Université Laval, Quebec City, Canada. The first two
conferences of this series were both held in Germany, respectively, in Stuttgart, in
2012, and in Duisburg, in 2014. It is therefore the first time that the conference
leaves the European continent, which we hope will be an occasion to foster new
links with researchers from the Americas.

Some readers may be left wondering as to the nature of the cable-driven parallel
robots mentioned in the conference title. In general, these parallel robots are made
of a rigid mobile platform attached to a fixed frame by several cables acting in
parallel, their lengths being controlled by servo-actuated winches. These robots and
their variants are the topic of CableCon2017. In the past decade, cable-driven
parallel robots have attracted a renewed interest from the research community and
from industry. This may be seen from the number of researchers who took part in
the first editions of CableCon, but also from scientific literature and from the
various industrial projects that were undertaken during these years. This interest
stems from several advantages that are widely recognised to favour cable-driven
parallel robots over others: large workspace, low cost, good dynamic properties,
reconfigurability, portability, and compatibility with vision systems.

Yet, as much as these advantages are enticing, several issues have hindered the
development of effective cable-driven parallel robots. Some of these issues have
been the subject of significant progress, e.g. workspace determination, cable tension
resolution, and winch design. Others still pose important challenges to researchers,
despite remarkable efforts to solve them, e.g. forward displacement analysis,
vibration control, accuracy, interferences. Moreover, cable-driven parallel robots
remain unknown or have only been partially tested in several applications where
they promise great leaps in efficiency.

In this context, we believe that CableCon2017 can provide a stimulating forum
for the exchange of ideas, of potential applications, and of key challenges that
remain to be addressed, just as were the first two editions of the conference. We
deem the articles included in this book to be of excellent quality, which allows us to
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foresee fruitful presentations and discussions. The articles are distributed into four
themes: modelling; displacement and workspace analysis; trajectory planning and
control; design and applications. Under these themes, one should find all the main
engineering challenges that need to be resolved to allow cable-driven parallel robots
to reach their full potential. We hope that this conference can be useful in taking
one more step towards this goal.

Finally, we would like to express our gratitude to all the authors for their
valuable contributions and to all the reviewers and scientific committee members
for their expertise and selfless efforts in maintaining the standards of the conference.

May 2017 Tobias Bruckmann
Philippe Cardou

Clément Gosselin
Andreas Pott
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Modelling of Flexible Cable-Driven Parallel
Robots Using a Rayleigh-Ritz Approach

Harsh Atul Godbole1(B), Ryan James Caverly2, and James Richard Forbes1

1 Department of Mechanical Engineering, McGill University,
817 Sherbrooke Street West, Montreal, QC H3A 0C3, Canada

harsh.godbole@mail.mcgill.ca
2 Department of Aerospace Engineering, University of Michigan,

1320 Beal Avenue, Ann Arbor, MI 48109, USA
james.richard.forbes@mcgill.ca

Abstract. This paper investigates the use of the Rayleigh-Ritz method
to model single degree-of-freedom flexible cable-driven parallel robots
(CDPRs) using a set of time-dependent basis functions to discretize
cables of varying length. An energy-based model simplification is pro-
posed to further facilitate reduction in the computational load when
performing numerical simulations involving the proposed model. Open-
loop system responses are used to compare the effect of the energy-based
model simplification. Frequency responses are used to compare the influ-
ence of the number of basis functions used and to provide a comparison
to a lumped-mass model.

1 Introduction

Accurate models representing the dynamics of flexible cable-driven parallel
robots (CDPRs) are useful for developing accurate simulations, designing high-
performance closed-loop controllers, and analyzing the closed-loop stability prop-
erties of these systems. All models are approximations, and the amount of detail
put into a given CDPR model is highly dependent on the intended applica-
tion. Rigid cable models are sufficient when cables are short and cable elasticity
and mass may be neglected. For longer cables, the dynamics of the cable itself
and cable sag play a significant role in the dynamics of the system, and should
therefore be modelled. High-tension flexible CDPRs with long cables feature sig-
nificant longitudinal cable vibrations, which can significantly affect the ability
to accurately track a desired CDPR payload pose. For example, the CableR-
obot Simulator at the Max Planck Institute for Biological Cybernetics oper-
ates with high-tension cables that transmit forces to a payload with a human
passenger [11]. High-frequency longitudinal cable vibrations must not be
detected by the passenger and, therefore, must be be suppressed in some way [11].
This paper considers high-tensioned CDPRs that are similar in nature to the
CableRobot Simulator, in the sense that the high-frequency longitudinal vibra-
tions cannot be neglected.

c© Springer International Publishing AG 2018
C. Gosselin et al. (eds.), Cable-Driven Parallel Robots,
Mechanisms and Machine Science 53, DOI 10.1007/978-3-319-61431-1 1



4 H.A. Godbole et al.

The work of [8] models flexible CDPRs using a lumped-mass model in a
three dimensional setting. Alternatively, [2,3] uses a similar lumped-mass model
incorporating actuator dynamics and cable wrap around the winch to ensure
conservation of energy and establish a passive input-output map. Significant
limitations of these models include the fact that they can only operate in a
reduced workspace, where the lumped masses may not come into contact with
the winches, and they require many lumped masses to accurately reproduce the
true natural frequencies of the cable. The work of [7] shows that accurate repre-
sentation of cable vibrations is possible using finite elemental analysis. However,
repeated mesh generations and calculations for different orientations of the pay-
load cause a massive computational overhead, and are not practical for dynamic
simulation purposes. Static stiffness of long cables exhibiting properties such as
cable sag and its dependencies on cable tension is studied in [10]. Also, the effect
of cable sag on the stiffness of CDPRs and its minimization is investigated by
[1]. However, this paper focuses on high-tension cables that exhibit negligible
cable sag and dynamically varying stiffness due to their varying lengths. The
Rayleigh-Ritz model presented in this paper is inspired by the work of [13,15];
however, this paper differs from [13,15] by rigorously analyzing of selection of
Ritz basis functions and their nonlinear time dependencies, as well as comparing
differences between Rayleigh-Ritz and lumped-mass cable models.

The novel contributions of this paper are (1) the derivation of a nonlinear
dynamic model of a flexible CDPR using a Rayleigh-Ritz discretization of the
flexible cables, (2) an approximate model that simplifies the nonlinear dynamic
model without comprising accuracy, and (3) a comparison of Rayleigh-Ritz
and lumped-mass models of a CDPR. Although six degree-of-freedom flexible
CDPRs, such as the CableRobot Simulator, are of great interest in practice, a
single degree-of-freedom flexible CDPR is investigated in this paper. This simpli-
fies the derivations and analyses, which will then be used as building blocks for
more complicated and physically relevant CDPRs in future work. The remainder
of the paper proceeds as follows. In Sect. 2, a Rayleigh-Ritz model of a flexible
CDPR is derived and an approximate model is proposed. Open-loop numeri-
cal simulations of both models are presented in Sect. 3 that demonstrate the
accuracy and numerical efficiency of the approximate model. A comparison of
the linear frequency responses of Rayleigh-Ritz and lumped-mass models is per-
formed in Sect. 4. Section 5 provides concluding remarks.

2 Flexible CDPR Modelling Using Rayleigh-Ritz
Discretization

This section presents a rigorous and systematic approach to modelling a single
degree-of-freedom flexible CDPR using a Rayleigh-Ritz discretization.

2.1 Time-Dependent and Spatial Variables

Consider a cable wrapped around a winch as shown in Fig. 1(a). The inertial
reference frame Fi is defined by basis vectors i−→1, i−→2, i−→3. The reference frame
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Fig. 1. A single degree-of-freedom unconstrained CDPR (referred to as a half-system).

Fc describes the orientation of the cable relative to Fi, and is defined by basis
vectors c−→1, c−→2, c−→3, where c−→2 is aligned with the cable; and the reference frame
Fw describes the orientation of the winch, and is defined by the basis vectors
w−→1, w−→2, w−→3. The length of the portion of cable between the point of contact
on the winch and the payload is given by �i, as shown in Fig. 1(b). The cable is
defined by a nominal initial length L, and the point C, which corresponds to the
initial point of contact between the cable and the winch. The winch rotation is
described by the angle θ. The length of cable wrapped around the winch is given
by rθ and the length of cable between the payload and the point of contact on
the winch is given by �i = L − rθ.

A time-independent spatial coordinate x is used to represent the position of
each constituent mass element of the cable along its length relative to the point
C on the cable. The angle β is a spatial variable used to define the angular
position of a mass element on the winch, as shown in Fig. 1(b). The coordinate
xp is the position of the payload relative to the centre of the winch in the i−→1

direction.
The elongation of the cable at any point between the winch and the payload

is given by w(x, t) = Ψ(x, �i(t))qe(t). The time-dependent elastic coordinates of
the cable are qe(t) ∈ R

n. The matrix Ψ(x, �i(t)) ∈ R
1×n contains the Ritz basis

functions, also referred to simply as basis functions, which will be written as
Ψ(x, �i) for the remainder of this paper. The selection of these basis functions is
arbitrary, provided they satisfy the boundary conditions of the problem at hand,
and are conventionally taken to be time-independent coordinates. However, in
the interest of selecting computationally-efficient basis functions based on the
exact eigenfunctions used to describe the axial vibration of cables, the basis
functions are selected as [15]

Ψoe (x, �i) =
[
sin

(
π(x−L+�i)

2�i

)
sin

(
2π(x−L+�i)

2�i

)
sin

(
3π(x−L+�i)

2�i

)
· · ·

]
. (1)

The basis functions in Eq. (1) are time-dependent due to the presence of
�i, which is justified in Sect. 3. The unconstrained generalized coordinates for a
single winch, cable and payload system are qT =

[
θ qTe xp

]
.
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2.2 Dynamic Model of Half-System

A model of the half-system is derived in this section using Lagrange’s Equation.
In the inertial frame, the position of an elemental mass, dm, of the portion of the
cable attached to the winch is given by rdm i

i =
[−r sin β r cos β 0

]T. The velocity

of this element is expressed in Fi as vdm i/i
i =

[−r(cos β)θ̇ −r(sin β)θ̇ 0
]T

. The
kinetic energy of the length of the cable wrapped around the winch, Cw, is
given by

1
2

∫

Cw

( v−→
dm i/i) · ( v−→

dm i/i)dm =
1
2

∫ rθ

0

(vdmi/i
i )T(vdm i/i

i )ρAdx =
1
2
q̇TMcwq̇,

where Mcw = diag{r3ρAθ, 0} ∈ R
(n+2)×(n+2) and 0 is a matrix filled with zeros

of compatible dimensions. Note that this mass matrix is not positive definite
as expected because Mcw only represents a part of the entire mass matrix of
the half-system. In a similar manner, the kinetic energy of the winch and pay-
load can be shown to be Tw = 1

2 q̇
TMwq̇, and Tp = 1

2 q̇
TMpq̇, respectively where

Mw = diag{Jw, 0} ∈ R
(n+2)×(n+2), Mp = diag{0,mp} ∈ R

(n+2)×(n+2), Jw is the
inertia of the winch, and mp is the mass of the payload. As seen in Fig. 1(b),
the position of any elemental mass dm in the portion of the cable between
the payload and the winch relative to the winch centre, expressed in Fi is
rdm i
i =

[
x − rθ + Ψqe r 0

]T. The corresponding velocity of every mass element

relative to the centre of the winch is given by vdm i/i
i =

[−rθ̇ + Ψq̇e + Ψ̇qe 0 0
]T

.

From Eq. (1), the time derivative of Ψ is Ψ̇ =
(
−rθ̇

)
∂Ψ
∂�i

, where ∂Ψ
∂�i

=[
− πx

2�2i
cos

(
πx
2�i

)
− 2πx

2�2i
cos

(
2πx
2�i

)
− 3πx

2�2i
cos

(
3πx
2�i

)]
. The kinetic energy of the

unwrapped cable is

1
2

∫

C�i

( v−→
dm i/i) · ( v−→

dm i/i)dm =
∫

C�i

(−rθ̇1
∂Ψ
∂�i

qe + Ψq̇e − rθ̇1)2dm.

The kinetic energy of the cable can be rewritten as a quadratic function of the
generalized coordinate rates, Tc = 1

2 q̇
TMceq̇, where

Mce =

∫ L

L−�i

ρA

⎡
⎢⎢⎣

r2
(

1 + 2 ∂Ψ
∂�i

qe + qT
e

(
∂Ψ
∂�i

)T
∂Ψ
∂�i

qe

)
−r

(
1 + qT

e

(
∂Ψ
∂�i

)T)
Ψ 0

∗ ΨTΨ 0
∗ ∗ 0

⎤
⎥⎥⎦dx.

(2)

The basis functions selected in Eq. (1) satisfy the boundary conditions of a cable
fixed at one and and free at the other end. The integrals can be simplified using
the coordinate transformation z = x − L + �i. Furthermore, the evaluation of
the integrals in Eq. (2) are carried out at a given instant of time, which results
in dz = dx. This coordinate transformation transforms the nth term of the
Ψoe row matrix to

∫ L

L−�i
sin

(
nπ(x−L+�i)

2�i

)
dx =

∫ �i

0
sin

(
nπz
2�i

)
dz. Applying this
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coordinate transformation to Eq. (2) and defining constant matrices Λi and Λii,
i = 1, 2 yields

Mce = ρA

⎡
⎢⎣

r2
(
�i + 2Λ1qe + 1

�i
qTe Λ11qe

)
−r

(
�iΛ2 + qTe Λ12

)
0

∗ �iΛ22 0
∗ ∗ 0

⎤
⎥⎦ .

where Λ1 =
∫ �i

0
∂Ψ
∂�i

dz, Λ11 = �i

∫ �i

0

(
∂Ψ
∂�i

)T
∂Ψ
∂�i

dz, Λ12 =
∫ �i

0

(
∂Ψ
∂�i

)T

Ψdz, Λ2 =
1
�i

∫ �i

0
Ψdz, Λ22 = 1

�i

∫ �i

0
ΨTΨdz. The integrals above lead to simplified mass

matrix expressions due to the somewhat unconventional choice of basis functions
in Eq. (1). The computational load during simulation is reduced significantly
as compared to the often used polynomial basis functions, due to improved
conditioning of the mass matrix, especially in case of long cables. The potential
energy of the system is stored in the cable in the form of strain energy. The
energy stored in the elongated cable between the winch and the payload is given
by

1
2

∫ L

L−�i

EA

(
∂(Ψqe)

∂x

)2

dx =
1
2
qTe

∫ �i

0

EA

(
∂Ψ
∂x

)T (
∂Ψ
∂x

)
dz qe =

1
2
qTKq,

where K = diag{0, EAΛ33/�i, 0} and Λ33 = �i

∫ �i

0

(
∂Ψ
∂x

)T (
∂Ψ
∂x

)
dz. To model the

natural damping of the cable, the Rayleigh dissipation function of the system is
chosen to be R = 1

2q
TDq, where D = diag{0, c1, c2, . . . cn, 0} and ci, i = 1, . . . , n

are the damping coefficients of each of the flexible modes of the cable. The
equations of motion for the half-system derived using Lagrange’s Method are

Meq̈ + Dq̇ + Kq = b̂τ + fnon, (3)

where Me = Mw+Mp+Mcw+Mce, b̂T =
[
1 0

]
, fnon = −Ṁeq̇+ 1

2

(
∂̃
∂̃q
q̇TMeq̇

)T

−

1
2

(
∂̃
∂̃q
qTKq

)T

, Ṁe = Ṁcw + Ṁce, Ṁcw = diag{r3ρAθ̇, 0}, and

Ṁce = ρA

⎡
⎢⎣

r2
(
2Λ1q̇e + rθ̇

�2i
qTe Λ11qe + 2

�i
qTe Λ11q̇e − rθ̇

) (
r2θ̇Λ2 − rq̇Te Λ12

)
0

∗ −rθ̇Λ22 0
∗ ∗ 0

⎤
⎥⎦ .

The partial derivative terms in fnon are calculated while keeping the quadratic
terms of the generalized coordinate rates constant. These terms simplify to,

1
2

(
∂̃

∂̃q
q̇TMq̇

)T

=
1
2

⎡
⎣ q̇T

(
∂Mcw

∂θ + ∂Mce

∂θ

)T
q̇

∂̃(q̇TMceq̇)T

∂̃qe

⎤
⎦ ,

∂Mcw

∂θ
= diag{r3ρA, 0},
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∂Mce

∂θ
= ρA

⎡
⎢⎣

r2
(

r
�2i
qTe Λ11qe − r

) (
r2Λ2

)
0

∗ −rΛ22 0
∗ ∗ 0

⎤
⎥⎦ ,

∂̃
(
q̇TMceq̇

)

∂̃qe

= ρA

((
rθ̇

)2
(

2Λ1 +
2
�i
qTe Λ11

)
− 2rθ̇

(
q̇Te Λ12

))
,

1
2

(
∂̃

∂̃q
qTKq

)T

=
1
2

⎡
⎣qT

(
∂K
∂θ

)
q

0

⎤
⎦ ,

∂K
∂θ

= diag{0, EArΛ33/�2i , 0}.

Equation (3), along with its constituent matrices, are referred throughout
this article as ‘exact’ equations of motion. Note that the payload is not yet
constrained to the end of the cable and the appropriate constraints are added in
Sect. 2.4.

2.3 Energy-Based Model Simplification

Although the cable model of the half-system developed in Sect. 2.2 with the
Rayleigh-Ritz method maintains a high-degree of fidelity, it can be computation-
ally inefficient in simulation. The approximate model presented in this section
simplifies the model, while maintaining its high-fidelity nature.

The kinetic energy of the portion of the cable between the winch and the

payload is given by Tce = 1
2

∫ L

L−�i

(
−rθ̇ + Ψq̇e + Ψ̇qe

)2

ρAdx. In numerical sim-

ulations, it is found that the term Ψ̇qe is much smaller than Ψq̇e (on the order
of 10−2 smaller). Hence, the proposed approximate model neglects this term in
the kinetic energy expression and in effect, the matrices Λ1, Λ11 and Λ12 may
be neglected. The approximation reduces the equations of motion in Eq. (3) to

Maq̈ + Dq̇ + Kq = b̂τ + fnon, (4)

where Ma = Mw +Mp +Mcw +Mca, Ṁa = Ṁcw + Ṁca, Ṁcw = diag{r3ρAθ̇, 0},

fnon = −Ṁaq̇ + 1
2

(
∂̃
∂̃q
q̇TMaq̇

)T

− 1
2

(
∂̃
∂̃q
qTKq

)T

, and

Mca = ρA�i

⎡
⎣

r2 −rΛ2 0
∗ Λ22 0
∗ ∗ 0

⎤
⎦ , Ṁca = −ρArθ̇

⎡
⎣

r2 −rΛ2 0
∗ Λ22 0
∗ ∗ 0

⎤
⎦ .

The nonlinear terms reduce to

1
2

(
∂̃

∂̃q
q̇TMaq̇

)T

=
1
2

[
q̇T

(
∂Mcw

∂θ + ∂Mca

∂θ

)T
q̇

0

]
,

∂Mca

∂θ
= −ρAr

⎡
⎣

r2 −rΛ2 0
∗ Λ22 0
∗ ∗ 0

⎤
⎦ ,

∂Mcw

∂θ = diag{ρAr3, 0}. All terms related to the stiffness matrix remain the
same. The equations of motion in Eq. (4) are similar to those of a lumped-
mass model [3], where the 1i and 1Ti 1i are replaced by Λ2 and Λ22 respectively,
in the mass matrix.
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2.4 Constraint Equations and the Null Space Method

In this section, two half-systems are constrained using the null space method
[9]. Subscripts ‘1’ and ‘2’ refer to the constituent elements of Eqs. (3) or (4)
that describe either the first or second half-system, as shown in Fig. 2. The
unconstrained generalized coordinates of the system are qT =

[
qT1 qT2

]
=[

θ1 qTe1
xp1 θ2 qTe2

xp2

]
. In order to constrain the system, each cable is attached

to its respective payload and both payloads are constrained together. The veloc-
ity of the free end of the cable is ρ̇1 = Jθ1 θ̇1 + Je1 q̇e1 , and ρ̇2 = Jθ2 θ̇2 + Je2 q̇e2 ,
respectively for cables ‘1’ and ‘2’, where Jθ1 = r and Jθ2 = −r are rigid
Jacobians, and Je1 = Ψ(�i, �i) and Je2 = −Ψ(�i, �i) are elastic Jacobians. Note
that Je1 and Je2 are constant due to the chosen basis functions in Ψoe. The
constraints are summarized in the matrix Ξ as

Ξq̇ = Ξ
[
q̇1
q̇2

]
= 0, Ξ =

⎡
⎣

Jθ1 Je2 −1 0 0 0
0 0 0 Jθ2 Je2 −1
0 0 −1 0 0 1

⎤
⎦ .

The first row of Ξ constrains the velocity of the first half-system payload to be
ẋp1 = ρ̇1. The second row of Ξ does the same for the second half-system. The
third row constrains ρ̇1 = ρ̇2. The equations of motion for the constrained full
system are

Mq̈ + Dq̇ + Kq = b̂τ + fnon + ΞTλ, (5)

where M = diag{M1,M2}, K = diag{K1,K2}, D = diag{D1,D2}, b̂ =
diag{b̂1, b̂2}, τT =

[
τ1 τ2

]
, and λT =

[
λ1 λ2 λ3

]
are Lagrange multipliers. The

independent constrained generalized coordinates of the full system are defined
as zT =

[
θ1 qTe1

qTe2

]
. A reduction matrix R can be defined such that q = Rz,

q̇ = Rż and ΞR = 0 by

RT =

⎡
⎣

1 0 Jθ1 J−1
θ2

Jθ1 0 Jθ1

0 1 Je1 J−1
θ2

Je1 0 Je1

0 0 0 −J−1
θ2

Je2 1 0

⎤
⎦ .

Premultiplying Eq. (5) by RT and noting that q = Rz, q̇ = Rż, and ΞR = 0
yields

Mzz z̈ + Dzz ż + Kzzz = b̂zzτ + RTfnon,zz, (6)

where the subscript ‘zz’ is used to represent the equivalent mass, stiffness
and damping matrices along with expressions for nonlinear forces and actuator
torques.

Fig. 2. The fully constrained single degree-of-freedom CDPR.
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3 Nonlinear System Analysis

In this section, the constrained system is numerically simulated with mass matrix
Mce (Case 1) or Mca (Case 2). The effect of the term Ψ̇qe in the energy
expression is investigated through open-loop simulations. The simulations use
parameters of a payload mass of 1 kg (mp = 0.5 kg), winch radius r = 4 cm,
winch inertia Jw = 1.39 × 10−5 kg · m2 and nominal cable length L = 0.5 m.
The cable has a cross-sectional area of A = 17.95 × 10−6 m2, a density of
ρ = (0.0385 kg/m)/(17.95 × 10−6 m2) = 2200 kg/m3, and a modulus of elas-
ticity of E = 500 MPa. The simulation is carried out for 5 seconds using an
Runge-Kutta integrator of order 4, in C++ with a time step of 10μs. The open
source matrix library Armadillo [12] is used to optimize matrix calculations in
C++. Both systems (Case 1 and Case 2) are given an initial payload veloc-
ity of 2 m/s. Figures 3(a) and (b) show system responses with no natural cable
damping. Figures 3(c) and (d) show system responses when cable damping con-
stants ci = 1 × 10−5 N · s/m, i = 1, . . . , n, are applied. Observing the open-loop
response, it can be concluded that in the case of the undamped systems, the
difference in the response of Case 1 and Case 2 is significant. However, with a
nominal increase in the amount of natural damping the error in the open-loop

Fig. 3. Comparison of open-loop system undamped (a),(b) and damped (c),(d)
responses with Case 1 and Case 2. The plots of (a) and (c) include payload posi-
tion, ρe (Case 1) and ρa (Case 2), versus time. The plots of (b) and (d) compare Ψ̇qe

and Ψq̇e versus time.
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system response reduces significantly. Simulations with the approximate model
were completed in roughly 70–90% of the time it took to simulate the exact
model, which highlights the numerical efficiency of the approximate model. Fig-
ures 3(b) and (c) also present a comparison of the magnitudes of the terms Ψq̇e

and Ψ̇qe, when simulating Case 1. The term
∣∣∣Ψ̇qe

∣∣∣ ≈ 10−2 |Ψq̇e| in both damped
and undamped cases, further validating the accuracy of the approximate model.

4 Linearized System Analysis

In this section, the constrained system is linearized at the equilibrium point
z = ż = 0 and analyzed in the frequency domain. Similar to rigid robotic manip-
ulators with closed loops, load-sharing parameters C1 and C2 are used [4–6]. The
mapping τ =

[
C1Jθ1 C2Jθ2

]T
τc = Uθτc converts Eq. (6) to

Mzz z̈ + Dzz ż + Kzzz = b̂zzUθτc + RTfnon,zz. (7)

Load-sharing parameters allow the two input torques to be driven by a single input
torque, which is useful in the following analysis. The input to this system is the
generalized input torque τc, and the output is chosen to be the μ-tip velocity ρ̇μ =
μρ̇+(1−μ)UT

θ θ̇ [6,14], where θ̇T =
[
θ̇1 θ̇2

]
. To analyze the frequency response of

linearized system, Bode plots of the linearized systems are investigated. The μ-tip
velocity is chosen as the system’s output, since it has been previously shown for
lumped-mass models that the input-output map from τc to ρ̇μ is passive, which
has advantages when designing a robust controller for the system. The phase of

Fig. 4. Bode plot of τc �→ ρ̇μ using Mce.
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linear time-invariant passive systems is bounded by ±90◦, which can be verified
in the proposed Rayleigh-Ritz model. To perform the linearization, the nonlinear
equations of Eq. (7) are rearranged in state-space form as

ẋ = f (x, τc) =

[
ż

M−1
zz

(
b̂zzUθτc + RTfnon,zz − Dzz ż − Kzzz

)
]

,

ρ̇μ = g (x) = μρ̇ + (1 − μ)UT
θ θ̇ =

[
Jθ1 (μ + C2(1 − μ)) Je1 −C2(1 − μ)Je2

]
ż,

where xT =
[
zT żT

]
. The linearized equations are written as ẋ = Ax + Bτc, and

ρ̇μ = Cx, where the Jacobian matrices are A = ∂f
∂x

∣∣
x=0, B = ∂f

∂τc

∣∣∣
x=0

, C = ∂g
∂x

∣∣∣
x=0

.
In this section, the convergence of the system’s natural frequencies with

increasing number of basis functions is analyzed for the proposed Rayleigh-
Ritz model. In Fig. 4, the frequency response appears to converge towards
the natural frequencies of the model on increasing the number of basis func-
tions. Notice that even with a small number of basis functions (i.e., n = 2
or n = 3), the lower natural frequencies are accurately represented. It is
shown in the frequency response plot of Fig. 5, that for the linearized lumped-
mass method [3], the lowest natural mode of vibration is in agreement with
the Rayleigh-Ritz method with a large number of lumped masses. However,
the higher order natural frequencies are not in agreement even with a large
number of lumped masses. They appear to converge towards the natural fre-
quencies plotted by using the Rayleigh-Ritz method, although very slowly.

Fig. 5. Bode plot of τc �→ ρ̇μ for the full system modelled using the lumped-mass
(L.M.) method and Rayleigh-Ritz (R.R.) method with Mce.
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Fig. 6. Bode plot of τc �→ ρ̇μ for the Rayleigh-Ritz method, with (Mca) and without
(Mce) the energy-based model simplification.

It should also be noted that the higher natural frequencies of the lumped-
mass model are significantly lower than those predicted by the Rayleigh-Ritz
method. Figure 6 shows the effect of the model approximation on the natural
frequencies of the linearized system. Six basis functions are used in each case.
There is a strong agreement between the natural frequencies as predicted with
and without the energy-based model simplification, which reinforces the accu-
racy of the energy-based model simplification.

5 Conclusion

The objective of this paper was to develop a cable model that accurately models
the longitudinal cable vibrations of a flexible CDPR in a manner that is numer-
ically efficient in simulation and useful for controller design. The Rayleigh-Ritz
method developed uses time-dependent basis functions inspired from the exact
solutions of axially vibrating cables and the work of [13,15]. The basis functions
were selected such that the dependency of the mass matrix on �i is minimized.
Furthermore, an approximate model was proposed in order to improve com-
putational efficiency in numerical simulation, which was shown to behave very
similarly to the exact model in open-loop simulations when a small amount of
natural damping was present in the cable. It was shown through linear frequency
responses that the Rayleigh-Ritz model more accurately represents the natural
frequencies of the system compared to the lumped-mass method, when using
a small number of basis functions or lumped masses. This highlights a major
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advantage of using the Rayleigh-Ritz method to model flexible CDPMs, rather
than lumped-mass methods. Future work includes extending this Rayleigh-Ritz
cable model to three dimensions, in a similar manner to the lumped-mass model
in [2].
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Abstract. This paper presents an original method for deriving models
of flexible cable robots including cable sagging based on assumed mode
assumption. This method allows to derive low-order models that specially
suit for control applications. The case of a winder and a planar cable
without elongation but with sagging in the plane of movement is first
considered. Then, the model of a planar robot with a punctual platform
with three cables is presented. The model is written in the Lagrange
framework for constrained systems. Simulation results for a three-cable
robots are presented and discussed.

1 Introduction

Cable-driven parallel robots (CDPR) are a special class of parallel manipulators
in which the end-effector is connected to the base through cables, the movement
being provided by the winding and unwinding of cables. Compared to conven-
tional serial or parallel manipulators, CDPR have interesting features: a large
workspace capability, low inertia of moving components and reduced obstruction
of the workspace. Their main drawback is common to all flexible manipulators
in which the deflections and elongation of the links limit the precision when
determining the position of the end-effector from the measurements of the joint
positions.

A number of approaches considers straight inextensible cables [3,5]. Straight
massless extensible cables are also often considered. In a simplistic case, the
cable is modeled as the association of a rigid link with a spring which stiff-
ness is inversely proportional to the cable length [8,13]. Models from continuum
mechanics are also available in the literature that provide more accurate models
of elastic cables [11]. When the mass of the cable is not negligible anymore, the
sagging effect must be accounted for. In statics, this effect results in the catenary
equation and is well documented [7,14]. Finite-element models are available for
but they have the drawback of resulting in high order models [4]. More recently,
Arsenault [2] and Yuan et al. [15] have considered elastic cables with sagging.
c© Springer International Publishing AG 2018
C. Gosselin et al. (eds.), Cable-Driven Parallel Robots,
Mechanisms and Machine Science 53, DOI 10.1007/978-3-319-61431-1 2
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Following the dynamic stiffness matrix method [1], the stiffness matrix is first
determined in statics and then introduced in the dynamic model.

The key idea of the original approach proposed herein is to consider cables
as particular cases of flexible segments. When considering the control of sys-
tems composed of deformable segments modeled as Euler-Bernoulli beams, the
assumed-mode approach is certainly the most standard and has been intensively
used for serial robots [9,10]. The segment deformations are first written as sums
of contributions of a given base. Then, the geometry can be written as a function
of a generalized position vector that includes deformation variables. The dynamic
model, given by the Lagrange equation of motion in a standard way, accounts for
the kinetic energy of the cable displacements. In this contribution, this approach
is considered in which deformable segments are replaced by perfectly flexible and
inextensible cables. As an illustrative example, the case of a planar robot with a
punctual platform, actuated by three or more cables, is considered. Cables are
assumed to be affected by sagging in the plane of movement.

In Sect. 2, the model of a single cable and its winder, undergoing transverse
deformation in a plane is considered. Based on Lagrange approach, a dynamic
model is derived. In Sect. 3, the model of a planar robot with three or more
cables is considered. The DAE model is developed and then reduced. In Sect. 4,
some simulation results are presented and discussed. The model derived with
Maple and the simulation with Matlab-Simulink are available online1.

2 Single Cable Modeling

In this section, we focus on the an elementary constitutive element of the pla-
nar robot depicted in Fig. 2, namely, one single cable winded at one side and
submitted at the other side to an external force.

2.1 Single Cable Modeling

Up to four deformation fields can be considered when modeling a deformable
beam under Euler-Bernoulli assumption [12]. Herein, the cable subjected to sag-
ging is considered as a perfectly flexible and inextensible 1-dimensional body. In
the current study, the only deformation field of interest is the transverse defor-
mation in the plane of motion. The final geometry of the cable will be given as
the composition of three steps: unwinding, shaping and rotation.

Let us consider a single cable #k operated by a winder #k. The cable is tan-
gent to the winder at point Wk and has an end-point denoted Pk. The unwinded
portion of the cable is the planar curve between Wk and Pk of length lk. Let
Fb = (Ob,xb,yb) and Fk = (Wk,xk,yk) denote respectively the fixed global
reference frame and the local reference frame attached to the winder #k. The
position of Wk and the orientation of the cable at Wk are defined by (xWk

, yWk
)

and ϕk respectively as indicated in Fig. 1.
1 http://icube-avr.unistra.fr/fr/index.php/Planar cable robot with non straight

cables.

http://icube-avr.unistra.fr/fr/index.php/Planar_cable_robot_with_non_straight_cables
http://icube-avr.unistra.fr/fr/index.php/Planar_cable_robot_with_non_straight_cables
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Fig. 1. General configuration of a single cable.

From an initial configuration where the cable is straight along the xk direc-
tion, let us now consider a small displacement of the cable that alters the cable
shape but preserves its point of tangency Wk on the winder. In this elementary
displacement, a point of coordinates (x, 0) with x ∈ [0, lk] is moved to the point
Mk of coordinates (xMk

= x+δxMk
, yMk

= δyMk
) in the local frame Fk. Finally,

the coordinates (xk, yk) of the point Mk expressed in the global frame Fb can
be obtained using an homogeneous transformation as

⎡
⎣

xk

yk

1

⎤
⎦ =

⎡
⎣

cos ϕk − sin ϕk xWk

sin ϕk cos ϕk yWk

0 0 1

⎤
⎦

⎡
⎣

xMk

yMk

1

⎤
⎦ . (1)

Notice that if the cable is inextensible, the small displacement variables are
linked by (

∂δxMk

∂x
+ 1

)2

+
(

∂δyMk

∂x

)2

= 1 (2)

and assuming that
∣∣∣∂δyMk

∂x

∣∣∣ � 1, Eq. (2) yields

δxMk
(x, t) = −1

2

∫ x

0

(
∂δyMk

(u, t)
∂u

)2

du. (3)

The small displacement δyMk
along the yk direction is assumed to be the

sum of a number of contributions that can be written, with a given basis Φk(x)
truncated at the order N , as

δyMk
(x, t) =

N∑
j=1

Φj(x)Vjk(t) (4)

where Vjk is the generalized coordinate for mode Φj . In the sequel, we choose to
work with a polynomial basis of the form Φj(x) = xj+1. In this assumed mode
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approach, other basis could have been used, as for example the set of modal
deformations described in [9].

Upon substitution of the coordinates (xMk
, yMk

) into Eq. (1), the position of a
point Mk in the global reference frame can be readily calculated as analytic func-
tions, namely, xk(q̃k) and yk(q̃k) with q̃k =

[
x V1k . . . VNk ϕk

]T . At this point,
when x is set to the unwinded length of cable lk, the model of the single cable can
be parameterized by the generalized coordinate vector qk =

[
lk V1k . . . VNk ϕk

]T

containing N + 2 independent parameters qki
.

2.2 Cable Dynamic Model

Based on the parameterization presented in the previous subsection, a dynamic
model of a single cable is now introduced as a basic example of the approach.
The details of the three-cable robot are not given in the paper but are available
online (see the link given at the first page).

The cable is winded at one side with a fixed winder actuated by a torque
τk and is subject to the gravitational acceleration −gyb. The other end Pk is
submitted to an arbitrary force Fk which coordinates in Fb are (Fxk

, Fyk
). The

cylindric winder is of radius R and inertia J0. The cable has a linear density
ρ and a total length lt. Accounting for the wounded portion of the cable, the
actual inertia is Jk = J0+ρ(lt − lk)R2. Furthermore, the winder angular position
θk is related to the unwinded length of cable lk by lk = −Rθk. The gravitational
potential energy of the single cable writes

Vk =
∫ lk

0

ρ g yk(q̃k) dx. (5)

The kinetic energy of the single cable and its rotating winder writes

Tk =
1
2

Jk

R2
l̇2k +

1
2

∫ lk

0

ρ
(
ẋk(q̃k)2 + ẏk(q̃k)2

)
dx (6)

in which the velocity terms ẋk(qk) and ẏk(qk) can be calculated as
N+2∑
i=1

∂xk

∂qki

q̇ki

and
N+2∑
i=1

∂yk

∂qki

q̇ki
. The kinetic energy can then be written under its quadratic

form Tk = 1
2 q̇Tk Mk(qk) q̇k where Mk(qk) refers to the kinetic energy matrix. The

Lagrange’s equations of motion can be written as

d
dt

∂Tk

∂q̇k
− ∂Tk

∂qk
= Γk Qk − ∂Vk

∂qk
(7)

where Γk =
[
Fxk

Fyk
τk

]
corresponds to the actions applied on the system and

Qk a matrix of partial velocity terms, relative to the generalized coordinates and
determined from the virtual-work principle as:
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Qk =

⎡
⎢⎢⎣

∂xPk

∂qk1

∂xPk

∂qk2
. . .

∂yPk

∂qkN+2
∂yPk

∂qk1

∂yPk

∂qk2
. . .

∂xPk

∂qkN+2

− 1
R 0 . . . 0

⎤
⎥⎥⎦ (8)

where xPk
and yPk

denote the position functions of the point Pk at which the
effort Fk is applied. The entries of the 1× (N +2) line matrix Γk Qk correspond
to the generalized forces acting on the cable.

Denoting pk =
∂Tk

∂q̇k
= q̇Tk Mk, the line matrix of generalized momentum, the

model can be rewritten under the following state-space representation:

ṗk = Ck + Γk Qk − Gk (9)

q̇k = M−1
k pTk (10)

where

Ck =
∂Tk

∂qk
=

[
1
2 q̇Tk

∂Mk

∂qk1
q̇k . . . 1

2 q̇Tk
∂Mk

∂qkN+2
q̇k

]
(11)

Gk =
∂Vk

∂qk
=

[
∂Vk

∂qk1
. . . ∂Vk

∂qkN+2

]
(12)

3 Planar Robot with n cables

A planar cable robot operated by several cables is now considered as presented
in Fig. 2. Its platform is considered as a punctual mass m located at point P
of coordinates (xP , yP ) in the global reference frame. The number of cables in
this example is three but the presented method is applicable to any number of
cables.

3.1 Dynamic Model

The generalized coordinate vector q for the system includes the two parameters
of the mobile platform and the n sets of parameters relative to each cable. The
column vector q can be written symbolically as

q =
[
xP yP qT1 . . . qTn

]T (13)

which corresponds to n(N + 2) + 2 non independent parameters.
The total kinetic energy is calculated as the sum of contributions of each

cable plus the platform of mass m, yielding to T = 1
2 q̇TM q̇ with M =

diag(M0,M1, . . . ,Mn) where M0 = diag(m,m) is the kinetic inertia matrix of
the platform and Mk, k = 1, ..., n denotes the kinetic inertia matrix for cable #k.

With the selected generalized coordinate vector q and gathering the terms
ΓkQk corresponding to each cable, the generalized force vector acting on the
system writes

ΓQ =
[
FxP

FyP
Γ1Q1 . . . ΓnQn

]
(14)
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Fig. 2. Schematics of a planar cable robot with 3 cables.

where FxP
and FyP

are the components, in the global reference frame, of an
effort FP acting on the moving platform at point P . The gravitational potential
energy for the whole system can be calculated as V =

∑n
k=1 Vk − mgyP . In the

sequel, we assume that FP = 0.
The coincidence of the positions of the platform with the cable ends provide

h = 2n geometric (holonomic) constraints of the form hr(q) = 0, r = 1, . . . , h:

h2k−1 = xPk
(qk) − xP (15)

h2k = yPk
(qk) − yP (16)

with k = 1, . . . , n.
As the n(N+2)+2 parameters are related by the h geometric constraints (15)

and (16), the dynamic behavior of the system can be obtained using Lagrange’s
equations with h multipliers [6]. Upon differentiation with respect to time, the
constraint relations can be written A(q) q̇ = 0 where A is the Jacobian of the
constraints with respect to the generalized coordinate vector q whose entries
write Ark(q) = ∂hr(q)

∂qk
.

Using λ =
[
λ1 . . . λh

]T as the column vector of the Lagrange multipliers, the
Lagrange’s equations can be written as:

d
dt

∂T

∂q̇
− ∂T

∂q
= Γ Q − G + λTA (17)

with G = ∂V
∂q . Given that the generalized momentum matrix p =

∂T

∂q̇
= q̇T M

and after differentiation of the geometric constraints, the differential-algebraic
equations of the system can be obtained as
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[
M −AT

A 0

] [
q̈
λ

]
=

[
CT + (ΓQ)T − GT − Ṁ q̇

−Ȧq̇

]
. (18)

Since the equations set (18) is linear with respect to q̈ and λ, solving for q̈ can

be done directly by inversion of the matrix
[
M −AT

A 0

]
either online, numerically

or offline, using a computer algebra system.

4 Simulation Results

A system composed of three cables and three winders evenly distributed on a
circle with a 10 m diameter has been tested with the following set of parameters:
lt = 5 m, ρ = 0.2 kg/m, R = 0.1 m, J0 = 2.5 · 10−3 kg·m2 and m = 1 kg. The
cable models have been set with one mode (N = 1).

A controller has been implemented in order to have the platform follow a
desired trajectory (x∗, y∗). A number of approaches are available in the literature
for cable robot control [3,8,13]. Herein, a simplistic approach is used, assuming
that both position and speed of the platform are available.

The controller has been established on the kinetic model θ̇ = J(q0) q̇0 that
connects the vector of the angular velocities θ̇ to the velocity of the platform q̇0
through the Jacobian matrix J(q0), assuming straight cables. The control signals
(i.e. the motor torques) are computed as

u = u0

⎡
⎣

1
1
1

⎤
⎦ + JT†(qr)

[
ux

uy

]
(19)

where u0 ensures a positive tension in the cables; JT† is the pseudo-inverse of the
transpose of J ; ux and uy are the control actions in the (x, y) plane, computed
with a proportional-derivative (PD) control law given in the Laplace domain:

ux(s) = K(s) (x∗(s) − x(s)) (20)
uy(s) = K(s) (y∗(s) − y(s)) (21)

where s denote the Laplace variable and ux(s) is the signal ux in the Laplace
domain. The same PD controllers with filtering are used for both x and y
directions:

K(s) = Kp + Kd
ωf s

ωf + s
(22)

where the coefficients have been chosen as following: the proportional gain is
Kp = 400 N; the derivative gain is Kd = 100 N.s; the filtering frequency is
ωf = 100 rad/s.

The robot being initialized at the center of the workspace without sagging,
the reference remains at the center during 2 s before moving by 1 m along the xb

direction, then following a square of 2 m side length centered in the workspace
at a constant speed of 1 m/s and finally coming back to the origin. The reference
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signals and the actual trajectory can be seen in Fig. 3. The reference trajectory is
tracked with some oscillations. One can check in Fig. 4 that the tensions remain
positive during operation. In Fig. 5, the actual trajectory is presented in the
(xb,yb) plane and the geometry of the cables is plotted for three positions
in order to see how sagging evolves dynamically at a fast pace. The modal
coordinates V11, V12 and V13 are presented in Fig. 6. One can see how they vary
in term of amplitude and frequency. Notice that the sagging at rest observed at
t = 2 s is reduced compared to the variations observed during dynamic operation.

Fig. 3. Trajectory of the effector with respect to time: reference and actual position.

Fig. 4. Evolution of the cable tensions Tk and of the control signals uk.
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Fig. 5. Trajectory of the effector in the x-y plan and geometry of the cables at t = 2 s;
9.1 s and 9.45 s.

Fig. 6. Evolution of the deformation variables V1k with respect to time.

In order to highlight the effect of the cable dynamics on the trajectories,
the trajectories obtained for two different values of the linear density of the
cables are given in Fig. 7. For a low linear density (ρ = 0.02 kg/m), the reference
is quite well tracked whereas the dynamic behavior of the cables observed for
ρ = 0.2 kg/m significantly degrades the system behavior.
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Fig. 7. Trajectories of the effector in the x-y plane for different values of ρ.

5 Conclusion

In this paper, an original approach has been proposed to account for the cable
movements for very dynamic operations of CDPR. Using the assumed defor-
mation method, a dynamic model is derived using the Lagrange’s equations of
motion for constrained systems. The method has been implemented in the case
of a planar CDPR with three cables. Simulation results have shown the effect of
the cable movements on the system behavior.

The next steps to further assess the method’s efficiency will include com-
parisons of the obtained simulation results with experimental data as well as
with other available approaches. Another perspective will consist in extending
the model to account for the cable elongation in the planar case but also in the
more challenging case of 3D setups.
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Abstract. Analytical formulation for positive cable tension is presented when
the variations in parameters/data of parallel robot manipulators result in the
interval form of the Jacobian matrix and external wrench. Solutions for cable
tension vector, including the minimum 2-norm non-negative solution, and the
pertinent deflection of manipulator due to cable stiffness and change in geo-
metric parameters, are discussed. Example manipulators are simulated to
examine the methods.

1 Introduction

In cable/wire-driven parallel manipulators, the motion of platform is controlled by
cables/wires. Cable parallel manipulators have been used as robotic cranes, cable
supported moving aerial cameras, and so on. Two example cable parallel robots are
depicted in Fig. 1. Cables can pull but not push, i.e., their inputs are unidirectional and
irreversible. Hence, for fully constrained cable robots, the number of cables/actuators
are larger than the degrees of freedom (DOF) of manipulator. This results in many
solutions for the cable tension vector for a given platform wrench. The minimum
2-norm tension vector is one of these solutions and is obtained using the generalized
inverse (GI) of the transposed Jacobian matrix, which could result in negative tension
for cables even if the platform is within the wrench closure workspace.

The workspace of cable parallel manipulators, with no variations in parameters/data,
has been investigated extensively, e.g., [1–3]. A methodology for realizing a
closed-form, minimum norm and continuous non-negative cable tension, in the presence
of uncertainty and error, was presented in [4]. When the bounded range of variations in
parameters/data are given, the relation between the cable tension and platform wrench
becomes an interval expression. Solution set of an interval linear system generally is not
an interval vector. The interval vector formed using the bounds of solution set (smallest
“box” that includes the solution) is the “interval hull”, e.g., [5, 6].

The solution set of general interval linear systems could be identified considering
each orthant of the solution space, e.g., [5, 7]. For non-negative tension, solution lies in
the first orthant. Because in each orthant the solution of interval linear systems is

© Springer International Publishing AG 2018
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convex [8], the solution for non-negative tension is a convex set. In this article, ana-
lytical methods for identifying the boundary of solution set for positive tension and the
pertinent manipulator stiffness and deflection are discussed. Results are verified by a
discrete method.

2 Formulation of Wrench and Stiffness

For cable-driven robot manipulators, the m� n transposed Jacobian matrix JT linearly
relates the n� 1 vector of cable forces s ¼ s1 � � � sn½ �T to the m� 1 (m� 6) vector
of platform wrench F ¼ ½fT ;mT �T as

F ¼ JTs ¼ JT1 JT2 � � � JTi � � � JTn�1 J
T
n

� �
s ¼

Xn
j¼1

JTj sj ð1Þ

The platform deflection dp can be formulated in terms of its stiffness matrix K and
wrench F, using dF ¼ K dp, by differentiating Eq. (1)

dF ¼ dJTsþ JTds ¼ ðKp þKcÞdp ð2Þ

The first term on the right-hand side of Eq. (2), dJTs ¼ Pn
j¼1

dJTj sj, depends on the

layout and kinematic parameters of manipulators. This term results in stiffness matrix
Kp, which is due to change in the geometric (kinematic) parameters of manipulator
because of actuator forces/torques (for non-negative sj).

With a simple linear spring model for cable stiffness ds ¼ Kqdl, the differential
form of twist is related to the differential change in cable lengths dl = [dl1… dln]

T by
the Jacobian matrix as d l ¼ Jdp. Then, JT ds ¼ JTKqJdp and the manipulator
stiffness due to cable stiffness is Kc ¼ JTKq J , with Kc being dominant compared to
Kp. The diagonal matrix Kq is in terms of the stiffness of cable j, kj, which is a function
of cable length loj þ lj, kj ¼ ðEjAcjÞ=ðloj þ ljÞ, where Ej and Acj are respectively the

(a) (b)

Cable 1
Cable 3

Mobile     
Platform

Cable 6 Cable 4

Cable 2

Cable 5

Cable 1 Cable 2

Cable 3Mobile     
Platform

Fig. 1. Parallel manipulators (a) 2 DOF, three cables; (b) 3 DOF, six cables.
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equivalent modulus of elasticity and cross-sectional area of cable j. For a non-zero
cable offset loj, a finite value for cable stiffness kj is guaranteed when a cable attachment
point on platform approaches its anchor, i.e., for lj � 0.

Representing the variations in parameters/data as intervals, the Jacobian J and
stiffness K become interval matrices. For example, interval K ¼ ½K; K� is in terms of
real (point) lower and upper bound matrices K; K, and is regular if it does not include a
singular matrix.

2.1 Solution Sets for Cable Tension and Platform Deflection

The non-negative solution set of interval system F ¼ JTs is the union of all

non-negative solutions of the real Ĵ
T
ŝ ¼ F̂ for any real matrix Ĵ

T 2 JT ¼ ½JT ; JT � and
real wrench F̂ 2 F ¼ ½F; F�, i.e., the set of real ŝ

s : ŝ j ŝ � 0 ; Ĵ
T
ŝ ¼ F̂; Ĵ

T 2 JT ; F̂ 2 F
n o

ð3Þ

where ŝ � 0 specifies that each entry of ŝ is non-negative. There is at least one

non-negative solution for JTs ¼ F if the two linear inequalities JT ŝ�F and � J
T
ŝ� �

F have a non-negative solution for ŝ [9]. If each Ĵ
T
ŝ ¼ F̂ has a nonnegative solution

JTs ¼ F is strongly nonnegative solvable.
When the pose is in the wrench closure work space it is possible to maintain

positive tension. However, the particular (minimum 2-norm) solution s ¼ J#TF(using
the Moore-Penrose GI of JT ) may result in negative tension for k cables. Then, the
non-negative solution set for s could be identified utilizing the following closed-form
method. The reduced Jacobian matrix JTr is formed by removing the columns of JT

corresponding to cables with negative tension in the particular solution. The negative
tension sp of these k cables are set to non-negative values sc (real or interval values;
calculated or assigned as discussed in [4]). Then, the overall solution stot r for the cables
with positive tension in particular solution is identified using

JTr stot r ¼ F� Fsbal ¼ F�
X
k

JTj scj ð4Þ

which results in the minimum 2-norm non-negative solution.
Because of the convexity of solution set (and its subsets) in each orthant, the

solution is formulated using the intersection of the corresponding closed half-spaces.
The solution set for non-negative cable tension lies in the first orthant (sj 	 0 for
j ¼ 1; � � � ; n), with the pertinent closed half-spaces formulated using the bounds of the
entries of the interval linear system [7] as

JTi1ŝ1 þ � � � þ JTinŝn � �Fi ; �JTi1ŝ1 þ � � � þ �JTinŝn 	Fi ð5Þ
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for i ¼ 1; � � � ;m. For n-dimensional solution space, the solution is formulated as the
intersection of 2m þ n half-spaces, including n closed half-spaces that signify the first
orthant. For example, for m ¼ 2 and n ¼ 3, the intersections of seven closed
half-spaces characterize the solution.

The solution set for platform deflection (and its subsets), utilizing the minimum
2-norm non-negative tension vector and applying dF ¼ K dp, could span over all
orthants. Thus, using a similar procedure, in each orthant, the intersection of pertinent
closed half-spaces is formulated, refer to [10]. The union of intersections is the solution
set for platform deflection.

2.2 Subsets of Non-negative Solution

The subsets of solution set include tolerance stol, control scon and algebraic solutions.
The tolerance solution set of F ¼ JTs includes all non-negative real vectors ŝ for real

Ĵ
T 2 JT for which the wrench remains within the required lower and upper bounds,

Ĵ
T
ŝ ¼ F̂ 2 F ¼ ½F; F�, i.e.,JT ŝ
F. The control set includes all non-negative ŝ for

which a Ĵ
T 2 JT exists such that Ĵ

T
ŝ ¼ F̂ 2 F, i.e., F
JT ŝ. The algebraic set is the

intersection of tolerance and control solutions, i.e., the set of ŝ that results in equality
JT ŝ ¼ F. For deflection, dptol and dpcon satisfy K dp
dF and dF
K dp, respectively.

The tolerance and control solution sets for non-negative cable tension are also
formulated as the intersection of 2m þ n closed half-spaces. In the first orthant, to
characterize stol, the closed half-spaces are

�JTi1ŝ1 þ � � � þ �JTinŝn
� �

� �Fi ; � JTi1ŝ1 þ � � � þ JTinŝn
� �� � Fi ð6Þ

for i ¼ 1; � � � ;m. For real F, F ¼ F and the inequalities reduce to
�JTi1ŝ1 þ � � � þ �JTinŝn

� �
¼ JTi1ŝ1 þ � � � þ JTinŝn

� � ¼ Fi, i.e., JTc ŝ ¼ F and DJT jŝj ¼ 0

[10].
The control solution set scon is characterized by

�JTi1ŝ1 þ � � � þ �JTinŝn
� �

	 �Fi ; � JTi1ŝ1 þ � � � þ JTinŝn
� �	 � Fi ð7Þ

for i ¼ 1; � � � ;m; and for real F by JTi1ŝ1 þ � � � þ �JTinŝn
� �

�Fi � �JTi1ŝ1 þ � � � þ JTinŝn
� �

.

The algebraic solution set is formulated using

�JTi1ŝ1 þ � � � þ �JTinŝn
� �

¼ �Fi ; � JTi1ŝ1 þ � � � þ JTinŝn
� � ¼ �Fi ð8Þ

which could be rearranged as JTc ŝ ¼ Fc and DJT jŝj ¼ DF. Thus, for real F, a
non-trivial solution ŝ for the algebraic (and tolerance) solution exist if jŝj ¼ J#T

c F
�� �� is

in the null space of DJT .
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3 Case Study

A planar parallel manipulator with three cables and point mass platform is examined.
Plane of motion is the x-y plane. The platform pose in terms of the coordinates of the
cable base attachments Aj, vector a, and cable orientations aj is p ¼ ½ aj x þ lj cos aj
aj y þ lj sin aj�T for j ¼ 1; � � � ; 3. Then,

JT ¼ ½JT1 JT2 JT3 � ¼
cos a1 cos a2
sin a1 sin a2

cos a3
sin a3

	 

ð9Þ

The first term on the right-hand side of Eq. (2) is a function of d a

dJTs ¼
Xn¼3

j¼1

dJTj sj ¼
Xn¼3

j¼1

ð@J
T
j

@aj
dajÞsj ð10Þ

and d a is linearly related to dp. Thus,

dJTj ¼ 0
0

� � �
� � �

� sin aj
cos aj

� � �
� � �

0
0

	 
 sin a1
l1

� cos a1
l1

..

. ..
.

sin a3
l3

� cos a3
l3

2
664

3
775 dpx

dpy

	 

ð11Þ

The 2� 2 stiffness matrix K ¼ Kp þKc of manipulator becomes a symmetric
matrix as the formulation of the Jacobian and stiffness matrices are with respect to a
reference frame that has its origin at the operation point p (point of application of
external force) and the same orientation as that of the fixed frame. Thus, the entries of
K are:

k11 ¼
X
3

sj sin2 aj
lj

þ
X
3

EjAcj cos2 aj
loj þ lj

k12 ¼ k21 ¼ �
X
3

sj cos aj sin aj
lj

þ
X
3

EjAcj cos aj sin aj
loj þ lj

k22 ¼
X
3

sj cos2 aj
lj

þ
X
3

EjAcj sin2 aj
loj þ lj

ð12Þ

Nominal coordinates of cable attachments Aj are (–1, –1), (1, –1), (0, 1);with
1.5 mm wire rope diameter and E = 57.3 GPa, (7 � 7 AISI 316 Stainless Steel).

3.1 Example 1 - Positive Particular Solution

The interval JT for the 2 DOF manipulator of Fig. 1(a), with three cables, is
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JT ¼ ½�0:6075; �0:5926� ½ 0:2362; 0:2489� ½�1:0409; �0:9605�
½�0:8086; �0:7915� ½�0:9808; �0:9596� ½�0:0205; 0:0205�

	 

ð13Þ

which corresponds to the platform pose of p = [0.5 1]T meters in the wrench closure
workspace, and an interval radius of 5 mm for the coordinates of cable base
attachments.

For wrench F = [[−46.6919, −42.8121] [−46.4096, −43.8042]]T Newtons, sp ¼
½½32:4646; 39:2004�½13:4608; 20:4276�½23:6549; 31:0288��T is the enclosure for the
minimum 2-norm (particular) solution using the INTLAB [11]. The problem is also
studied for real F = [−44.7239 −45.1043]T with enclosure sp ¼ ½½33:8193; 37:8240�
½14:9810; 18:9198�½25:2946; 29:3490��T . Thus, particular solution lies in the first octant
for both interval and real F.

The solution sets for interval and real F, using the intersections of half-spaces
shown as rays, are depicted in Figs. 2(a) and 3(a) respectively. The pertinent enclosure
vectors are used for the span of axes in the plots of this section, unless otherwise noted.
The results are verified by the discrete method, with each ŝp color-coded for its norm.
Entries of the calculated enclosure vector sp are discretized within their bounds. Each
generated real ŝp belongs to the solution set when the calculated interval wrench
Fcheck ¼ JT ŝp and the given wrench F have non-empty intersection, i.e.,
Fcheck \F 6¼∅. The minimum 2-norm least-square solution sets for all combinations of
the lower and upper bounds of the interval entries of JT and F, referred to as “minimum
norm solution”, are shown in Figs. 2(b) and 3(b).

The nonempty tolerance and control solutions (stol for JT ŝ
F; scon for F
JT ŝ) for
interval and real F are depicted in Figs. 4(a) and (b) respectively. For interval (real) F, the
control (tolerance) and algebraic solutions are empty sets (for real F, DJT J#T

c F
�� �� 6¼ 0

here) within the corresponding enclosure bounds; scon(stol)is nonempty beyond the
enclosure bounds for interval (real) F.

Fig. 2. Solution set for interval F (a) using rays; (b) minimum norm solution.
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Fig. 3. Solution set for real F (a) using rays; (b) minimum norm solution.

Fig. 4. (a) Tolerance solution for interval F; (b) control solution for real F.

Fig. 5. Solution set for 0� sj � 40 (a) interval F; (b) real F.
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In Figs. 5(a) and (b), the solution sets for interval and real F are displayed for the
tension range of smin ¼ 0� sj � smax ¼ 40 N, respectively. As illustrated (and verified
by discrete method), investigating intersections of the seven closed half-spaces in the
first octant, tension values are bounded. That is, for the upper limit of 40 N, the lowest
value of tension is for cable 2; about 11.5 N for interval F (12.5 N for real F). For s2
equal to (over) 40 N, the lower bound (both bounds) of s1 becomes negative.

The stiffness matrix for interval F, in kN/m, is

K ¼ Kp þKc ¼ ½172:5256; 176:4375� ½5:1088; 11:1663�
½ 5:1088; 11:1663� ½70:8496; 72:8206�

	 

ð14Þ

with 1=j ¼ ½0:3763; 0:4383�T �ð Dpk k= pk kÞ=ð DFk k= Fk kÞ� ½2:2814; 2:6571�T ¼ j
as the bounds of the ratio of input and output relative change (in terms of the 2-norm
condition number j of K). The solution set for platform deflection, with bounds of
dp ¼ ½½�0:2555;�0:2013�½�0:6429;�0:5612��T in mm, and the lines of the pertinent
empty tolerance and control solution sets are depicted in Fig. 6. Thus, within the
enclosure, there is no dptol to satisfy K dp
dF, and no dpcon to meet dF
K dp. For
s2 ¼ 39 N, the pertinent plots are similar to Fig. 6 with dp ¼ ½½�0:2555;�0:2013�
½�0:6426;�0:5607��T . For this example, Kc is four orders of magnitude larger than Kp.

3.2 Example 2 - Negative Particular Solution

For real F = [0 −10]T Newtons at p = [0.5 −0.5]T meters and

JT ¼ ½�0:9628;�0:9348� ½0:6793; 0:7360� ½�0:3252;�0:3074�
½�0:3252;�0:3074� ½�0:7360;�0:6793� ½0:9348; 0:9628�

	 

ð15Þ

sp ¼ ½½4:3253; 5:1630�½3:1195; 3:9507�½�6:6958;�5:9472��T verified enclosure
includes negative value for the tension of cable 3.

Fig. 6. Manipulator deflection (a) solution set; (b) lines of tolerance solution set; (c) rays of
control solution set.
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Using the intersection of closed half-spaces in the first octant for the allowable
range of tension smin ¼ 0� sj � smax ¼ 30 N for j ¼ 1; � � � ; 3, the solution set for real
F is displayed in Fig. 7. The plots indicate that by setting the tension of cable 3 to zero
or a positive threshold the platform pose could be fully controlled.

Next, the minimum norm non-negative solution set is calculated. Matrix JTr is formed
by removing the third column of JT (JT3 , related to negative tension of cable 3), and the
tension of cable 3 is set to s3 ¼ sc3 ¼ 1 N. Then, using JTr stot r ¼ F� Fsbal , the overall
solution set is identified for cables 1 and 2, where Fsbal ¼ JT ½½0; 0� ½0; 0� sc3�T ¼ JT3 sc3.
The result is verified by discretizing the enclosure for stot. Each vector ŝtot belongs to the
solution set when Fcheck ¼ JT ŝtot and F have non-empty intersection.

The overall tensions of cables 1 and 2 are depicted in Fig. 8(a) and verified in
Fig. 8(b) in green using the discrete method, along with the rays of empty tolerance
solution set. The vertices, which are the minimum norm solutions for all combinations
of the bounds of interval entries, are marked as well. As depicted in Fig. 8(b), some
rays for stol form the boundary of solution set for s in the first orthant. The bounds of
the overall tension vector is

s ¼ ½½7:7355; 9:1240�½11:1315; 12:3464�½1:0000; 1:0000��T ð16Þ

Fig. 7. Solution set using discrete method for 0� sj � 30.

Fig. 8. Tension adjustment for real F (a) overall solution s; (b) rays of tolerance solution;
(c) control solution set. (Color figure online)
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The control solution, displayed in Fig. 8(c), is obtained using the reduced Jacobian
matrix JTr and wrench F� Fsbal . As demonstrated, for real F, the non-negative solution
scon is almost the solution set.

At this pose, with real F and the pertinent stiffness matrix in kN/m

K ¼ ½118:1253; 126:3293� ½�65:2153;�55:8640�
½�65:2153;�55:8640� ½118:2406; 126:4468�

	 

ð17Þ

½0:2764; 0:4053�T �ð Dpk k= pk kÞ=ð DFk k= Fk kÞ� ½2:4679; 3:6174�T . The bounds of
solution set for platform deflection is dp ¼ ½½�0:0672;�0:0401�½�0:1217;�0:0949��T
mm. The solution and pertinent tolerance (empty) and control ( dpcon to meet dF
K dp)
sets are shown in Fig. 9. It is noteworthy that for F = [0 −10]T and sc3 ¼ 1000 N,Kc is
two orders of magnitude larger than Kp(compared to five orders of magnitude for
original sc3 ¼ 1) with pertinent plots similar to Fig. 9 and dp ¼ ½½�0:0639;�0:0380�
½�0:1184;�0:0928��T mm.

4 Conclusions

The effect of variations in parameters/data of cable-driven robots on the cable tension
and platform stiffness was examined. The solution set for non-negative cable tension
was investigated using the closed half-spaces in the first orthant, as well as for the
minimum 2-norm, and was utilized to formulate the platform deflection analytically. It
was presented that for fully constrained cable robots, the solution set for cable tension
may be bounded for a given pose and wrench, and much smaller than the maximum
allowable tension limit. In addition, it was demonstrated that the stiffness produced due
to change in geometric parameters, because of wire/actuator forces/torques, has minor
effect on the manipulator deflection as compared to the stiffness of cables. The results
were verified by the discrete method for the cases with bounded and unbounded
solution sets.

Fig. 9. Tension adjustment for real F (a) platform deflection; (b) lines of tolerance solution;
(c) control solution set.
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Abstract. This paper deals with the sensitivity analysis of the elasto-
geometrical model of Cable-Driven Parallel Robots (CDPRs) to their
geometric and mechanical uncertainties. This sensitivity analysis is
crucial in order to come up with a robust model-based control of
CDPRs. Here, 62 geometrical and mechanical error sources are consid-
ered to investigate their effect onto the static deflection of the moving-
platform (MP) under an external load. A reconfigurable CDPR, named
“CAROCA”, is analyzed as a case of study to highlight the main uncer-
tainties affecting the static deflection of its MP.

1 Introduction

In recent years, there has been an increasing number of research works on the
subject of Cable-Driven Parallel Robots (CDPRs). The latter are very promis-
ing for engineering applications due to peculiar characteristics such as large
workspace, simple structure and large payload capacity. For instance, CDPRs
have been used in many applications like rehabilitation [1], pick-and-place [2],
sandblasting and painting [3,4] operations.

Many spatial prototypes are equipped with eight cables for six Degrees of
Freedom (DOF) such as the CAROCA prototype, which is the subject of this
paper.

To customize CDPRs to their applications and enhance their performances,
it is necessary to model, identify and compensate all the sources of errors that
affect their accuracy.

Improving accuracy is still possible once the robot is operational through a
suitable control scheme. Numerous control schemes were proposed to enhance
the CDPRs precision on static tasks or on trajectory tracking [5–7]. The control
can be either off-line through external sensing in the feedback signal [2], or on-
line control based on a reference model [8].

This paper focuses on the sensitivity analysis of the CDPR MP static deflec-
tion to uncertain geometrical and mechanical parameters. As an illustrative
example, a suspended configuration of the reconfigurable CAROCA prototype,
c© Springer International Publishing AG 2018
C. Gosselin et al. (eds.), Cable-Driven Parallel Robots,
Mechanisms and Machine Science 53, DOI 10.1007/978-3-319-61431-1 4
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Fig. 1. CAROCA prototype: a reconfigurable CDPR (Courtesy of IRT Jules Verne,
Nantes)

shown in Fig. 1, is studied. First, the manipulator under study is described.
Then, its elasto-geometrical model is written while considering cable mass and
elasticity in order to express the static deflection of the MP subjected to an
external load. An exhaustive list of geometrical and mechanical uncertainties is
given. Finally, the sensitivity of the MP static deflection to these uncertainties
is analyzed.

2 Parametrization of the CAROCA Prototype

The reconfigurable CAROCA prototype illustrated in Fig. 1 was developed at
IRT Jules Verne for industrial operations in cluttered environment such as paint-
ing and sandblasting large structures [3,4]. This prototype is reconfigurable
because its pulleys can be displaced in a discrete manner on its frame. The
size of the latter is 7 m long, 4 m wide and 3 m high. The rotation-resistant steel
cables Carl Stahl Technocables Ref 1692 of the CAROCA prototype are 4 mm
diameter. Each cable consists of 18 strands twisted around a steel core. Each
strand is made up of 7 steel wires. The cable breaking force is 10.29 kN.

As shown in Fig. 2, the Cartesian coordinate vectors of anchor points
Ai and exit points Bi are denoted ai and bi. Vector p represents the
Cartesian coordinates of the MP geometric center, P , expressed in Fb =
{O, xb, yb, zb}. The Cartesian coordinates of Ai (Bi, resp.) expressed in the MP
frame Fp = {P, xp, yp, zp} (in the base frame Fb, resp.) are given in Table 1.
The cable frame Fi = {Bi, xi, yi, zi} is associated to the ith cable, where axes
zi and zb are parallel.
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Fig. 2. The ith closed-loop of a CDPR

Table 1. Cartesian coordinates of anchor points Ai (exit points Bi, resp.) expressed
in Fp (in Fb, resp.)

x (m) y (m) z (m) x (m) y (m) z (m)

B1 −3.5 2 3.5 A1 0.2 0.15 0.125

B2 3.5 2 3.5 A2 −0.2 0.15 −0.125

B3 −3.5 2 3.5 A3 −0.2 −0.15 −0.125

B4 3.5 2 3.5 A4 0.2 −0.15 0.125

B5 −3.5 −2 3.5 A5 −0.2 0.15 0.125

B6 3.5 −2 3.5 A6 0.2 0.15 −0.125

B7 −3.5 −2 3.5 A7 0.2 −0.15 −0.125

B8 3.5 −2 3.5 A8 −0.2 −0.15 0.125

3 Elasto-Geometric Modeling

In this section, both sag-introduced and axial stiffness of cables are considered in
the elasto-geometrical modeling of CDPR. The inverse elasto-geometrical model
and the direct elasto-geometrical model of CDPR are presented. Then, the varia-
tions in static deflection due to external loading is defined as a sensitivity index.

3.1 Inverse Elasto-Geometric Modeling (IEGM)

The IEGM of a CDPR aims at calculating the unstrained cable length for a
given pose of its MP. If both cable mass and elasticity are considered, the inverse
kinematics of the CDPR and its static equilibrium equations should be solved
simultaneously. The IEGM is based on geometric closed loop equations, cable
sagging relationships and static equilibrium equations.

The geometric closed-loop equations take the form:

bp = bbi + bli − bRp
pai, (1)

where bRp is the rotation matrix from Fb to Fp and li is the cable length vector.
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The cable sagging relationships between the forces ifi = [ifxi, 0,i fzi] applied
at the end point Ai of the ith cable and the coordinates vector iai = [ixAi, 0,i zAi]
of the same point resulting from the sagging cable model [9] are expressed in Fi

as follows:

ixAi =
ifxiLusi

ES
+

|ifxi|
ρg

[sinh−1(
ifzi

fCi
xi

) − sinh−1(
ifzi − ρgLusi

ifxi
)], (2a)

izAi =
ifxiLusi

ES
−ρgL2

usi

2ES
+

1
ρg

[
√

ifxi
2 + ifzi

2−
√

ifxi
2 + (ifzi − ρgLusi)2], (2b)

where Lusi is the unstrained length of ith cable, g is the acceleration due to
gravity, S is the cable cross sectional area, ρ denotes the cable linear mass and
E the cable modulus of elasticity.

The static equilibrium equations of the MP are expressed as:

Wt + wex = 0, (3)

where W is the wrench matrix, wex is the external wrench vector and t is the
8-dimensional cable tension vector. Those tensions are computed based on the
tension distribution algorithm described in [10].

3.2 Direct Elasto-Geometrical Model (DEGM)

The direct elasto-geometrical model (DEGM) aims to determine the pose of the
mobile platform for a given set of unstrained cable lengths. The constraints of
the DEGM are the same as the IEGM, i.e., Eqs. (1) to (3). If the effect of cable
weight on the static cable profile is non-negligible, the direct kinematic model
of CDPRs will be coupled with the static equilibrium of the MP. For a 6 DOFs
CDPR with 8 driving cables, there are 22 equations and 22 unknowns. In this
paper, the non-linear Matlab function “lsqnonlin” is used to solve the DEGM.

3.3 Static Deflection

If the compliant displacement of the MP under the external load is small, the
static deflection of the MP can be calculated by its static Cartesian stiffness
matrix [11]. However, once the cable mass is considered, the sag-introduced
stiffness should be taken into account. Here, the small compliant displace-
ment assumption is no longer valid, mainly for heavy or/and long cables with
light mobile platform. Consequently, the static deflection can not be calculated
through the Cartesian stiffness matrix. In this paper, the IEGM and DEGM are
used to define and calculate the static deflection of the MP under an external
load. The CDPR stiffness is characterized by the static deflection of the MP.
Note that only the positioning static deflection of the MP is considered in order
to avoid the homogenization problem [12].

As this paper deals with the sensitivity of the CDPR accuracy to all geomet-
rical and mechanical errors, the elastic deformations of the CDPR is involved.



CDPR Sensitivity Analysis 41

This problem is solved by deriving the static deflection of the CDPR obtained
by the subtraction of the poses calculated with and without an external pay-
load. For a desired pose of the MP, the IEGM gives a set of unstrained cable
lengths Lus. This set is used by the DEGM to calculate first, the pose of the MP
under its own weight. Then, the pose of the MP is calculated when an external
load (mass addition) is applied. Therefore, the static deflection of the MP is
expressed as:

dpj,k = pj,k − pj,1, (4)

where pj,1 is the pose of the MP considering only its own weight for the jth pose
configuration and pj,k is the pose of the MP for the set of the jth pose and kth

load configuration.

4 Error Modeling

This section aims to define the error model of the elasto-geometrical CDPR
model. Two types of errors are considered: geometrical errors and mechanical
errors.

4.1 Geometrical Errors

The geometrical errors of the CDPR are described by δbi, the variation in vector
bi, δai, the variation in vector ai, and δg, the uncertainty vector of the gravity
center position; So, 51 uncertainties. The geometric errors can be divided into
base frame geometrical errors and MP geometrical errors and mainly due to
manufacturing errors.

4.1.1 Base Frame Geometrical Errors
The base frame geometrical errors are described by vectors δbi, (i = 1..8). As the
point Bi is considered as part of its correspondent pulley, it is influenced by the
elasticity of the pulley mounting and its assembly tolerance. bi is particularly
influenced by pulleys tolerances and reconfigurability impact.

4.1.2 Moving-Platform Geometrical Errors
The MP geometrical errors are described by vectors δai, (i = 1..8), and δg.
The gravity center of the MP is often supposed to coincide with its geometrical
center P . This hypothesis means that the moments generated by an inaccu-
rate knowledge of the gravity center position or by its potential displacement
are neglected. The Cartesian coordinate vector of the geometric center G does
not change in frame Fp, but strongly depends on the real coordinates of exit
points Ai that are related to uncertainties in mechanical welding of the hooks
and in MP assembly.
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4.2 Mechanical Errors

The mechanical errors of the CDPR are described by the uncertainty in the MP
mass (δm) and the uncertainty on the cables mechanical parameters (δρ and
δE). Besides, uncertainties in the cables tension δt affect the error model. As a
result, 11 mechanical error sources are taken into account.

4.2.1 End-Effector Mass
As the MP is a mechanically welded structure, there may be some differences
between the MP mass and inertia matrix given by the CAD software and the
real ones. The MP mass and inertia may also vary in operation In this paper,
MP mass uncertainty δm is about ±10% the nominal mass.

4.2.2 Cables Parameters
Linear mass: The linear mass ρ of CAROCA cables is equal to 0.1015 kg/m. The
uncertainty of this parameter can be calculated from the measurement procedure

as: δρ =
mc δL + Lδmc

L2
, where mc is the measured cable mass for a cable length

L. δL and δmc are respectively the measurement errors of the cable length and
mass.

Modulus of elasticity: This paper uses experimental hysteresis loop to discuss
the modulus of elasticity uncertainty. Figure 3 shows the measured hysteresis
loop of the 4 mm cable where the unloading path does not correspond to the
loading path. The area in the center of the hysteresis loop is the energy dissipated
due to internal friction in the cable. It depicts a non-linear correlation in the lower
area between load and elongation.

Based on experimental data presented in Fig. 3, Table 2 presents the modulus
of elasticity of a steel wire cable for different operating margins, when the cable
is in loading or unloading phase. This modulus is calculated as follows:

Ep−q = Lc
Fq% − Fp%

S(xq − xp)
, (5)

Fig. 3. Load-elongation diagram of a steel wire cable measured in steady state condi-
tions at the rate of 0.05 mm/s
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where S is the metallic cross-sectional area, i.e. the value obtained from the sum
of the metallic cross-sectional areas of the individual wires in the rope based on
their nominal diameters. xp and xq are the elongations at forces equivalent to
p% and q% (Fp% and Fq%), respectively, of the nominal breaking force of the
cable measured during the loading path (Fig. 3). Lc is the measured initial cable
length.

Table 2. Modulus of elasticity while loading or unloading phase

Modulus of elasticity (GPa) E1−5 E5−10 E5−20 E5−30 E10−15 E10−20 E10−30 E20−30

Loading 72.5 83.2 92.7 97.2 94.8 98.3 102.2 104.9

Unloading 59.1 82.3 96.2 106.5 100.1 105.1 115 126.8

For a given range of loads (Table 2), the uncertainty on the modulus of elastic-
ity depends only on the corresponding elongations and tensions measurements.
In this case, the absolute uncertainty associated with applied force and resulting
elongation measurements from the test bench outputs is estimated to be ±1 N
and ±0.03 mm, respectively; so, an uncertainty of ±2 GPa can be applied to the
calculation of the modulus of elasticity.

According to the International Standard ISO 12076, the modulus of elasticity
of a steel wire cable is E10−30. However, the CDPR cables do not work always
between F10% and F30% in real life and the cables can be in loading or unloading
phase. The mechanical behavior of cables depends on MP dynamics, which affects
the variations in cable elongations and tensions. From Table 2, it is apparent that
the elasticity moduli of cables change with the operating point changes. For the
same applied force, the modulus of elasticity for loaded and unloaded cables are
not the same. While the range of the MP loading is unknown, a large range of
uncertainties on the modulus of elasticity should be defined as a function of the
cable tensions.

4.2.3 Tension Distribution
Two cases of uncertainties of force determination can be defined depending on
the control scheme:

The first case is when the control scheme gives a tension set-point to the
actuators resulting from the force distribution algorithm. If there is no feed-
back about the tensions measures, the range of uncertainty is relatively high.
Generally, the effort of compensation does not consider dry and viscous friction
in cable drum and pulleys. This non-compensation leads to static errors and
delay [13] that degrade the CDPR control performance. That leads to a large
range of uncertainties in tensions. As the benefit of tension distribution algo-
rithm used is less important in case of a suspended configuration of CDPR than
the fully-constrained one [14], a range of ±15 N is defined.

The second case is when the tensions are measured. If measurement signals
are very noisy, amplitude peaks of the correction signal may lead to a failure of
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the force distribution. Such a failure may also occur due to variations in the MP
and pulleys parameters. Here, the deviation is defined based on the measurement
tool precision. However, it remains lower than the deviation of the first case by
at least 50%.

5 Sensitivity Analysis

Due to the non-linearities of the elasto-geometrical model, explicit sensitivity
matrix and coefficients [15,16] cannot be computed. Therefore, the sensitivity
of the elasto-geometrical model of the CDPR to geometrical and mechanical
errors is evaluated statistically. Here, MATLAB has been coupled with mode-
FRONTIER, a process integration and optimization software platform [17] for
the analysis.

The RMS (Root Mean Square) of the static deflection of CAROCA MP is
studied. The nominal mass of the MP and the additional mass are equal to 180 kg
and 50 kg, respectively.

5.1 Influence of Mechanical Errors

In this section, all the uncertain parameters of the elasto-geometrical CAROCA
model are defined with uniformly distributed deviations. The uncertainty range
and discretization step are given in Table 3. In this basis, 2000 SOBOL quasi-
random observations are created.

Table 3. Uncertainties and steps used to design the error model

Parameter m (kg) ρ (kg/m) E (GPa) ai (m) bi (m) δti (N)

Uncertainty range ±18 ±0.01015 ±18 ±0.015 ±0.03 ±15

Step 0.05 3*10−5 0.05 0.0006 0.0012 0.1

In this configuration, the operating point of the MP is supposed to be
unknown. A large variation range of the modulus of elasticity is considered.
The additional mass corresponds to a variation in cable tensions from 574 N to
730 N, which corresponds to a modulus of elasticity of 84.64 GPa. Thus, while
the operating point of the MP is unknown, an uncertainty of ±18 GPa is defined
with regard to the measured modulus of elasticity E = 102 GPa.

Figure 4a displays the distribution fitting of the static deflection RMS. It
shows that the RMS distribution follows a quasi-uniform law whose mean μ1

is equal to 1.34 mm. The RMS of the static deflection of the MP is bounded
between a minimum value RMSmin equal to 1.12 mm and a maximum value
RMSmax equal to 1.63 mm; a variation of 0.51 mm under all uncertainties, which
presents 38% of the nominal value of the static deflection.
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Fig. 4. (a) Distribution of the RMS of the MP static deflection (b) Evolution of the
RMS under a simultaneous variations of E and ρ (c) Evolution of the RMS under a
simultaneous variations of m and ρ

Figure 4b depicts the RMS of the MP static deflection as a function of varia-
tions in E and ρ simultaneously, whose values vary respectively from 0.09135 to
0.11165 kg/m and from 84.2 to 120.2 GPa. The static deflection is very sensitive
to cables mechanical behavior. The RMS varies from 0.42 mm to 0.67 mm due to
the uncertainties of these two parameters only. As a matter of fact, the higher
the cable modulus of elasticity, the smaller the RMS of the MP static deflection.
Conversely, the smaller the linear mass of the cable, the smaller the RMS of
the MP static deflection. Accordingly, the higher the sag-introduced stiffness,
the higher the MP static deflection. Besides, the higher the axial stiffness of the
cable, the lower the MP static deflection.

Figure 4c illustrates the RMS of the MP static deflection as a function of
variations in ρ and m, whose value varies from 162 kg to 198 kg. The RMS varies
from 0.52 mm to 0.53 mm due to the uncertainties of these two parameters only.
The MP mass affects the mechanical behavior of cables: the heavier the MP, the
larger the axial stiffness, the smaller the MP static deflection. Therefore, a fine
identification of m and ρ is very important to establish a good CDPR model.
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Comparing to the results plotted in Fig. 4b, it is clear that E affects the RMS
of the MP static deflection more than m and ρ. As a conclusion, the integration
of cables hysteresis effects on the error model is necessary and improves force
algorithms and the identification of the robot geometrical parameters [16].

5.2 Influence of Geometrical Errors

In this section, the cable tension set-points during MP operation are supposed to
be known; so, the modulus of elasticity can be calculated around the operating
point and the confidence interval is reduced to ±2 GPa. The uncertainty range
and the discretization step are provided in Table 4.

Table 4. Uncertainties and steps used to design the error model

Parameter m (kg) ρ (kg/m) E (GPa) ai (m) bi (m) δti (N)

Uncertainty range ±18 ±0.01015 ±2 ±0.015 ±0.03 ±15

Step 0.05 3*10−5 0.05 0.0006 0.0012 0.1

Figure 5a displays the distribution fitting of the MP static deflection RMS.
It shows that the RMS distribution follows a normal law whose mean μ2 is equal
to 1.32 mm and its standard deviation σ2 is equal to 0.01 mm. This deviation is
relatively small, which allows to say that the calibration through static deflection
is not obvious. The RMS of the static deflection of the MP is bounded between
a minimum value RMSmin equal to 1.28 mm and a maximum value RMSmax

equal to 1.39 mm; a variation of 0.11 mm under all uncertainties. The modulus
of elasticity affects the static compliant of the MP, which imposes to always
consider E error while designing a CDPR model.

The bar charts plotted in Fig. 5b and c present, respectively, the effects of
the uncertainties in ai and bi, (i = 1..8), to the static deflection of the CAROCA
for symmetric (0 m, 0 m, 1.75 m) and non-symmetric (3.2 m, 1.7 m, 3 m) robot
configurations. These effects are determined based on t-student index of each
uncertain parameter. This index is a statistical tool that can estimate the rela-
tionships between outputs and uncertain inputs. The t-Student test compares
the difference between the means of two samples of designs taken randomly in
the design space:

• M+ is the mean of the n+ values for an objective S in the upper part of
domain of the input variable,

• M− is the mean of the n− values for an objective S in the lower part of
domain of the input variable.

The t-Student is defined as t =
|M− − M+|√

V 2
g

n−
+

V 2
g

n+

, where Vg is the general

variance [18].
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Fig. 5. (a) Distribution of the RMS of the MP static deflection (b) Effect of uncertain-
ties in ai (c) Effect of uncertainties in bi

When the MP is in a symmetric configuration, all attachment points have nearly
the same effect size. However, when it is located close to points B2 and B4, the
effect size of their uncertainties becomes high. Moreover, the effect of the cor-
responding mobile points (A2 and A4) increases. It means that the closer the
MP to a given point, the higher the effect of the variations in the Cartesian
coordinates of the corresponding exit point of the MP onto its static deflection.
That can be explained by the fact that when some cables are longer than others
and become slack for a non-symmetric position, the sag effect increases. Con-
sequently, a good identification of geometrical parameters is highly required. In
order to minimize these uncertainties, a good calibration leads to a better error
model.

6 Conclusion

This paper dealt with the sensitivity analysis of the elasto-geometrical model
of CDPRs to mechanical and geometrical uncertainties. The CAROCA proto-
type was used as a case of study. The validity and identifiability of the proposed
model are verified for the purpose of CDPR model-based control. That revealed
the importance of integrating cables hysteresis effect into the error modeling to
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enhance the knowledge about cables mechanical behavior, especially when there
is no feedback about tension measurement. It appears that the effect of geomet-
rical errors onto the static deflection of the moving-platform is significant too.
Some calibration [19,20] and self-calibration [21,22] approaches were proposed
to enhance the CDPR performances. More efficient strategies for CDPR cali-
bration will be performed while considering more sources of errors in a future
work.
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Abstract. In this paper, the software platform CASPR-ROS is intro-
duced to extend the author’s recently developed simulation platform
CASPR. To the authors’ knowledge, no single software framework exists
to implement different types of analyses onto different hardware plat-
forms. This new platform therefore takes the advantages of CASPR,
including its generalised CDPR model and library of different analysis
tools, and combines them with the modular and flexible hardware inter-
facing of ROS. Using CASPR-ROS, hardware based experiments can be
performed on arbitrarily CDPR types and structures, for a wide range of
analyses, including kinematics, dynamics and control. The case studies
demonstrate the potential to perform experiments on CDPRs, directly
compare algorithms and conveniently add new models and analyses. Two
robots are considered, a spatial cable robot actuated by PoCaBot units
and an anthropomorphic arm actuated by MYO-muscle units.

1 Introduction

Cable-driven parallel robots (CDPRs) are a class of mechanisms in which actu-
ation is transmitted through cables in place of rigid links. CDPRs possess a
range applications including payload manipulation [1–3], motion simulation [4],
exoskeletons [5] and musculoskeletal robots [6–9]. An important feature of cable
actuation is that cables can only transmit forces in tension. This creates many
unique challenges in CDPR modelling [6], design [10], inverse dynamics [11–13],
forward kinematics [14–16] and motion control [17,18].

Most CDPR algorithms can be applied onto different classes of CDPR.
However, CDPR research typically either validates algorithms in simulation or
through implementation only on the research group’s robots. This inhibits CDPR
development and research in a number of ways: (1) The evaluation of new tech-
niques often neglects the effect of CDPR structures such that the impact of
varying attachments/degrees of freedom/cables may be unknown. (2) There are
no benchmarking algorithms for performance comparison. (3) There is a sig-
nificant cost in implementing new results on hardware, where researchers often
re-implement existing models and algorithms.
c© Springer International Publishing AG 2018
C. Gosselin et al. (eds.), Cable-Driven Parallel Robots,
Mechanisms and Machine Science 53, DOI 10.1007/978-3-319-61431-1 5
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To address these concerns, different software platforms have been developed
for the study of CDPRs. In [19], a MATLAB/Simulink control simulation soft-
ware interfaced to the dynamics simulator XDE was presented. This platform
was developed for single link CDPRs, where the addition of other CDPRs is not
simple. For planar and spatial CDPRs, the ARACHNIS [20] and WireCenter
[3] software platforms were developed. These platforms were not designed for
algorithm benchmarking and additional algorithms cannot be added. Recently,
CASPR [21], a MATLAB based simulation platform for the study of CDPRs, was
developed. This platform addresses the previous issues by allowing the analysis
of arbitrary CDPRs with the possibility to accommodate different algorithms.

CASPR is primarily a simulation platform and does not favour online hard-
ware control and analysis due to its object oriented MATLAB implementation.
The extension of CASPR for hardware implementation would allow the oper-
ation of arbitrary CDPR hardware to benefit from the flexibility, robustness
and extendibility of CASPR. ROS represents one existing means of interfacing
robotics hardware which provides a modular and well supported interface for
extension and integration [22].

In this paper, CASPR-ROS is introduced as a software platform for CDPR
hardware implementation. This platform implements the generalised and object-
oriented principles of CASPR into ROS to take advantage of ROS’s flexible
and modular hardware interfacing capabilities. Through the addition of a new
extendible hardware interfacing layer, it is shown that hardware implementa-
tions can be performed onto arbitrary CDPRs using arbitrary hardware units.
The convenience and efficiency of benchmarking and online implementation in
CASPR-ROS is then demonstrated through experimental results obtained on
different hardware platforms.

2 Background

2.1 System Model

Consider the general single (SCDR) and multi-link (MCDR) CDPRs depicted in
Fig. 1. The n degree of freedom robot configuration (joint space) is represented
by the pose vector q ∈ R

n. The m cable actuation can be described by the cable
length and force (cable space) vectors l = [l1 . . . lm] ∈ R

m and f = [f1 . . . fm] ∈
R

m, respectively, where li, fi ≥ 0 denote the length and force of cable i.
The kinodynamic equations for the CDPRs depicted in Fig. 1 are given by

l̇ = L(q)q̇ (1)
M(q)q̈ + C(q̇,q) + G(q) + we = −LT (q)f

0 ≤ fmin(q) ≤ f ≤ fmax(q), (2)

where L ∈ R
n×m is the cable Jacobian matrix, M ∈ R

n×n is inertia matrix and
C, G, we ∈ R

n are the Coriolis/centrifugal vector, the gravitational vector and
the external wrench, respectively. The vectors fmin, fmax ∈ R

m are the minimum
and maximum cable force bounds. They are constant for ideal cables and pose
dependent for spring, variable stiffness [10,23] and muscle inspired cables [24,25].
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Fig. 1. General single-link and multi-link CDPRS

2.2 Models in CASPR

CASPR is a software platform for the simulation and analysis of CDPRs [21].
CASPR models CDPRs with fundamental Eqs. (1) and (2) using the cable rout-
ing matrix based model [6]. This model can represent SCDRs and MCDRs pro-
vided that it is given the inertia and joint properties of each link as well as the
actuation and attachment specifications of each cable. These specifications are
provided in an easily reconfigurable manner through the use of XML scripts1.

The model representation used by CASPR provides a generic form from
which any new CDPR can be added. As such, CASPR-ROS makes use of this
same representation allowing for new models to be easily added in addition to
the existing CASPR supported models including: NIST RoboCrane [1], CoGiRo
[2], IPAnema family [3], the MyoArm [9], and CAREX [5]. To use these models
on hardware it is necessary that the algorithms are made suitably computa-
tionally efficient and that interfaces are provided to connect the computational
component of CASPR with the hardware.

2.3 Analysis in CASPR

CASPR supports CDPR analysis using an inheritance based object oriented
approach. For each analysis problem, an abstract based class is created to rep-
resent the problem. New algorithms are then generated by inheriting the base
class and implementing abstract methods which map the input to the appropri-
ate outputs. Using this approach, different algorithms for a range of problems
including inverse dynamics, forward kinematics, control and workspace analysis
are supported in CASPR [21].

In hardware implementation, the resolution of joint space wrench into cable
forces, conversion of cable lengths into joint space pose and the tracking of
reference trajectories must be considered. CASPR-ROS therefore uses the gen-
eralised inheritance based paradigm of CASPR [21] for the inverse dynamics,
1 A detailed explanation of CASPR models and the use of XML scripts is provided

in [21].



CASPR-ROS: A Generalised Cable Robot Software in ROS for Hardware 53

forward kinematics and control problems. CASPR-ROS currently contains the
following algorithms:

• Inverse Dynamics - The computationally efficient closed form method [11]
and the quadratic programming method using the qpOASES solver [26].

• Forward Kinematics - The Jacobian pseudo-inverse method [14] and the non-
linear least squares method [15].

• Control - The computed torque [17] and Lyapunov based static [18]
controllers.

3 Interfacing Hardware in CASPR-ROS

3.1 Integrating CASPR with ROS

Using the reconfigurable model representation and inheritance based object ori-
ented paradigm discussed in Sect. 2, CASPR-ROS users can apply a range of
CDPR analysis techniques onto different CDPR models. To connect this generic
CASPR-ROS computational module to hardware it is necessary for the module
to be interfaced with hardware specific sensors and actuators. ROS is chosen for
this connection due to its widespread usage, existing hardware support capabil-
ities and open source nature. ROS messaging is then used to translate between
the cable space variables and the actuator and sensor information.

Figure 2 shows two different ROS-based hardware communication schemes
supported in CASPR-ROS: the centralised method and the distributed method.
It can be seen that the centralised method (Fig. 2(a)) connects hardware to
CASPR-ROS through a single experiment node. This node facilitates all possi-
ble CASPR-ROS operations including forward kinematics, trajectory generation,
control and inverse dynamics. In addition, the node is also responsible for trans-
lating the generic cable space information into hardware specific feedback and
setpoint ROS messages. As a result, the centralised method allows for a more
direct process of porting CASPR code into ROS. However, the method prevents
common operations, such as forward kinematics, from being continuously oper-
ated while the hardware is active and limits algorithm changes to only occur in
between experiments. This approach is therefore best used for single experiments
that are not repeated such as calibration.

In contrast, the distributed method (Fig. 2(b)) distributes the common
CASPR-ROS operations across a number of ROS nodes thereby allowing for
the nodes to be run independently if desired. As a result, this method can allow
for nodes and analysis algorithms to be changed within single experiments and is
best used for repetitive operation of experiments. In addition to having ROS pub-
lishers and subscribers associated with the feedback and setpoint messages, the
distributed method also requires CASPR-ROS messages to be defined for com-
munication between CASPR-ROS nodes. The following messages are provided:

• joint kinematics - Contains the kinematic vectors q, q̇ and q̈.
• master command - Contains the current operation and timing information.
• model update command - Provides the command variables qcmd, q̇cmd, q̈cmd

and wcmd for updating the equation of motion (2).
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(a) Centralised Communication Scheme (b) Distributed Communication Scheme

Fig. 2. ROS based hardware communication methods used in CASPR-ROS

3.2 Hardware Interfaces

Common to all CASPR-ROS communication is the need to translate between
generic cable space variables and hardware specific ROS messages. CASPR-ROS
does this by providing an abstract hardware interfacing class. This class therefore
contains all of the basic ROS messaging publisher and subscriber objects in
addition to providing the rules for cable space-hardware translation. In this
manner, the CASPR-ROS computational core remains generic and need not
consider hardware specific requirements such as filtering and relative/absolute
data conversion.

The abstract class HardwareInterfaceBase therefore sits between the hard-
ware and the CASPR-ROS computational core. Implementations of this class
are responsible for translating the hardware specific contents of the feedback
message into the associated cable space variables and in writing the actua-
tor specific commands given knowledge of the command cable space variables.
This is achieved by implementing the abstract methods updateFeedback(..),
publishForceSetpoint(..), publishLengthSetpoint(..) and publish
VelocitySetpoint(..). To show CASPR-ROS’s use of hardware interfaces, the
FlexrayInterface and PoCaBotInterface classes have been constructed for
MYO-muscle modules [27] and PoCaBot units2.

4 Experiments in CASPR-ROS

4.1 Adding New Experiments

Experiments in CASPR-ROS represent executables which define the operation
of a CDPR using the analysis techniques and hardware interfaces discussed in
Sects. 2 and 3. New experiments can be added into CASPR-ROS through the
addition of new master ROS nodes. A single master node is therefore responsible
for generating a reference in addition to possibly specifying the CDPR model,
hardware interface and analysis algorithm when the centralised scheme is used.
2 PoCaBot unit specifications can be found at https://github.com/darwinlau/CASPR/

wiki.

https://github.com/darwinlau/CASPR/wiki
https://github.com/darwinlau/CASPR/wiki
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Like the modelling and hardware interface classes described in [21] and
Sect. 3, respectively, CASPR-ROS master nodes use an inheritance based object
oriented design principle. The abstract classes ScriptBase and MasterNodeBase
are classes which comprise of a single mainLoop function which is to be imple-
mented by all new centralised and distributed experiments, respectively. Code
Sample 1 illustrates the mainLoop function used in CASPR-ROS.

Code Sample 1. mainLoop function used in ScriptBase class.

// Var iab le I n i t i a l i s a t i o n
bool i s i n i t i a l i s e d = 0 , f i r s t t i m e = 1 ;
// General Operation
while ( ( ro s : : ok ( ) ) && ( ! t e rm ina t i ng cond i t i on ( t ) ) ) {

// Only proceed once the hardware i s ready
i f ( ha rdwar e in t e r f a c e . hardwareReady ( ) ) {

// Check the i n i t i a l i s a t i o n s t a tu s o f the experiment
i f ( ! i s i n i t i a l i s e d ) {

// Run the i n i t i a l i s a t i o n procedure
i s i n i t i a l i s e d = i n i t i a l i s i n g f u n c t i o n ( f i r s t t i m e ) ;
i f ( f i r s t t i m e ) { f i r s t t i m e = fa l se ; }

} else {
// Run the main procedure
main funct ion ( t ) ; t += SYSTEM PERIOD;

}
}
// ROS management
ros : : spinOnce ( ) ; loopRate . s l e e p ( ) ;

}
// Terminate the s c r i p t
t e rm ina t i ng func t i on ( ) ;

It can be seen that the mainLoop function represents a single function that
defines the behaviour of the robot throughout operation. This behaviour is
defined for each particular experiment through the implementations of four
abstract methods: terminating condition(..) which defines the terminat-
ing condition for the main function, initialising function(..) which ini-
tialises the hardware, main function(..) which defines the desired general
CDPR behaviour and terminating function(..) which safely terminates the
experiment.

4.2 Operating Procedure

To run experiments in CASPR-ROS the following procedure is required: (1) Con-
figure the model parameters and trajectories using CASPR XML scripting.
(2) Configure the experiment settings using the roslaunch files associated with
the desired experiments. (3) Run the relevant ROS nodes using the appropriate
ROS launch files.
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5 Experimental Results

Two case studies are presented using the CDPRs depicted in Fig. 3. These stud-
ies show the application of CASPR-ROS on arbitrary CDPRs and CASPR-
ROS’s potential application for benchmarking different analysis algorithms on
hardware3.

(a) Spatial PoCaBot
CDPR

(b) 2 Link BioMuscular-Arm

Fig. 3. Case study CDPRs

5.1 Case Study: Spatial Cable Robots Using PoCaBot Units

This case study shows the use of CASPR-ROS in the online length control of
the spatial CDPR driven by PoCaBot units (depicted in Fig. 3(a)) with the
units attached on the corners of a 84 × 54 × 80 cm frame. Figure 4 depicts the
performance of the system for each of the trajectories depicted in Fig. 5, where[
q1 q2 q3 q4 q5 q6

]T =
[
x y z α β γ

]T and the orientation
[
α β γ

]T is represented
by the XYZ Euler angle convention. It can be seen from Fig. 4 that the robot
tracks the desired lengths with only a small lag and tracking error. In addition it
can be seen from Fig. 4 that the obtained length feedback is provided within the
PoCaBot operating frequency of 20 Hz (for 8 motors) indicating the capability
of CASPR-ROS to be configured for this online constraint.

From this case study it can be seen that online kinematic length control
can be achieved using CASPR-ROS. Furthermore, by using XML scripts and
modular ROS nodes, the resulting code is flexible to changes in the experimental
set-up, such as different experimental trajectories, without the need for separate
experiment scripts.

5.2 Case Study: BioMuscular Arm Using MYO-muscles

This case study illustrates the use of CASPR-ROS in benchmarking two differ-
ent inverse dynamics algorithms over a range of cable sets. The experiment is
3 The case study specifications can be found in the folder data/model config/models

at the repository https://github.com/darwinlau/CASPR. Case Studies 1 and 2 are
contained in the folders PoCaBot spatial and BM arm, respectively.

https://github.com/darwinlau/CASPR
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Fig. 4. Cable length command (Dashed) and feedback (Solid)
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Fig. 5. Reference joint space trajectory

performed using the 2 link BioMuscular Arm (BM-Arm) with Myomuscle units,
depicted in Fig. 3(a). The performance of the closed form [11] and minimum force
norm quadratic program (QP) based inverse dynamics algorithms are compared
by tracking the reference joint space trajectories (shown with dashed lines) in
Fig. 6 with the cable sets CS1 and CS2, where

[
q1 q2 q3 q4

]T =
[
α β γ θ

]T . To
ensure accurate tracking, a computed torque controller is also implemented.
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0 10 20 30

time (s)

-0.4

-0.2

0

0.2

0.4

po
se

 (
ra

d)

(b) QP Method

Fig. 6. Joint space command (dashed) and forward kinematics (solid) - CS1

Figure 7 shows the cable force solutions for each algorithm using cable set
CS1. It can be seen that the QP solver (due to its solving objectives) requires
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typically lower forces and that in both cases the closed loop control has resulted
in oscillating cable forces. The resulting tracking performance (obtained using
the pseudo-inverse forward kinematics method) of each inverse dynamics solver
is shown in Fig. 6. In this case, the closed form solver results in a slightly larger
lag and steady state error particularly in the twist axis β and revolute θ axes.
This is likely the result of the discretised MYO-muscle sensor resolution, where
the resolution is larger over smaller force values.
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Fig. 7. Closed loop inverse dynamics solutions for CS1

Figures 8 and 9 depict the cable forces and tracking performance for cable set
CS2, respectively. It can be seen that the resulting solutions for both methods are
different to that observed using cable set CS1, however the tracking performance
is quite similar. The relative performance of the two solvers is however similar in
which the use of lower cable forces leads to more reliable tracking performance.
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Fig. 8. Closed loop inverse dynamics solutions for CS2

Table 1 shows the computational time used in solving the inverse dynamics,
forward kinematics and control for each experiment. It can be seen that the
closed form method is on average slightly faster and possesses a lower maximum
time. It is also noted that the period of operation was less than that required by
the 150 Hz frequency of the BM-Arm in all cases for both algorithms.
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Fig. 9. Joint space command (dashed) and forward kinematics (solid) - CS2

Table 1. Computational time specifications

Closed form - CS1 QP - CS1 Closed form - CS2 QP - CS2

Maximum time (ms) 5.20 4.79 2.12 5.14

Average time (ms) 1.33 1.41 1.27 1.38

From this case study the use of CASPR-ROS in comparing different analy-
sis techniques can be observed. This case study also displays the flexibility of
CASPR-ROS to consider arbitrary cables sets without the need for system model
derivation.

6 Conclusion

CASPR-ROS was presented as a tool for the hardware implementation of algo-
rithms onto arbitrary CDPRs. The platform aims to address the lack of a com-
prehensive CDPR hardware implementation software by integrating the hard-
ware connectivity of ROS with the generic and flexible qualities of CASPR. The
modular design of CASPR-ROS makes it convenient to develop new models,
analysis algorithms, hardware interfaces and executable scripts. The presented
case studies illustrate the flexibility of using CASPR-ROS on different hard-
ware platforms. Future work for CASPR-ROS will look to increase the types of
analyses provided and to broaden the cable models considered to include sagging
cables and other actuator dynamics.
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Abstract. A polymer cable driven parallel robot can be an effective system in
many fields due to its fast dynamics, high payload capability and large work-
space. However, creep behavior of polymer cables may yield a posture control
problem, especially in high payload pick and place application. The aim of this
paper is to predict creep behavior of polymer cables by using different mathe-
matical models for loading and unloading motion. In this paper, we propose a
five-element model of the polymer cable that is made with series combination of
a linear spring and two Voigt models, to portray experimental creep in simu-
lation. Ultimately, the cable creep can be represented by payloads and cable
length estimated according to the changes of actual payloads and cable lengths
in static condition.

Keywords: Cable suspended parallel robot � Polymer cable � Creep �
Parameter identification

1 Introduction

A cable-driven parallel robot (CDPR) is a parallel robot whose end-effector is con-
trolled by winding and unwinding flexible cables. Unlike a robotic system with rigid
body links, the use of flexible light cable or rope as actuator scan significantly reduce
actuator weight, thus CDPR has the advantages in the application of heavy materials
handling and larger workspace with low cost [1–4]. Although the CDPR as a modified
version of robotic cranes has a potential of effective applications, viscoelastic property
of cable yields accuracy problems while position or tracking control.

The cable modeling has been motivated by several researchers to develop cable
models to overcome issues in using the flexible cable as an actuator of robotic system.
Kraus et al. use a computationally efficient and real-time applicable model to identify
payload, estimate the end-effector position and compensate position error. Their stiff-
ness model can reduce position errors came by cable elasticity [5]. Also hysteresis
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behavior of cable driven system has been studied by Miermeister et al. who developed
an improved cable model including the hysteresis effect during cable force computation.
In order to avoid a complex distributed parameter model, they used a black box model to
represent the cable [6]. M. Miyasaka et al. developed the hysteresis model for longi-
tudinally loaded cables based on the Bouc-Wen hysteresis model. Also, the model is
capable of emulating thin and thick stainless steels used for the RAVEN II system and
its parameters were optimized using the genetic algorithm [7]. In addition, the elasticity
and uncertainties of a CDPR can be neutralized by robust control. M.H. Korayem
compensated the flexibility and uncertainties of cable suspended robot using sliding
mode control [8]. Those approaches has improved tracking performance of CDPR
obviously. However, there is considerable cable creeping behavior in specific applica-
tions, such as high precision part assembly and high payload pick and place application.
Thus, using a creep model can improve performance of CDPR. In this paper, we propose
a five-element model to properly describe significant experimental creep.

This paper is organized as follow. First, the development of a high payload cable
robot is briefly described. Second, a five-element model is introduced for describing
experimental creep. Third, experimental results for showing creep behavior are dis-
cussed for building a creep model. Fourth, via surface fitting process, the parameters
estimation results for the suggested model based on the experimental data by different
payloads and cable lengths will be shown. Finally, conclusion and future work will be
discussed.

2 CNU Cable Robot System and Creep Experiments

2.1 CNU Cable Robot System

The high payload CDPR, shown in Fig. 1, is developed for the purpose of heavy part
assembly and pick and place application. The size of base frame is 4m� 4m� 4m
and eight pulleys are fixed near the corners of top frame. Configurations of cable
connection were designed for a wider workspace [9]. Maximum payload that the robot
can manipulate is 65 kg and the goal of this robot is to have capability of handling
more than 200 kg.

As a light flexible actuator of the high payload cable robot system, polyethylene
Dyneema® cable, LIROS D-Pro 01505-0600, are used. The weight of cable is
1 kg/100 m with a diameter of 6 mm. Polyethylene cable has an advantage of
light-weight compared to steel cable in industrial application. However, it may cause a
concern of viscoelastic behavior such as creep in loading and unloading motion.

2.2 Cable Creep Experiment

When a polymer cable is subjected to load and unload a heavy object, it exhibits time
dependent elongation characteristic called creep behavior. There are several factors
influencing creep behavior of a polymer cable, such as type of material property,
weight of load, length of cable and temperature. Although temperature is one of the
important factors that can accelerate cable creep behavior, we only consider the load
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weight and cable length in our experiment by assuming that our system is operated in a
room temperature. In order to measure cable creep behavior in experiments, creep tests
for the actual CDPR cable are conducted. There are various kinds of creep testing
equipment that are most commonly used in experiments to create a creep curve [10].
However, it is difficult to realize different loading and unloading behavior happened
while heavy load handling for the actual cable driven robot system. Tensile testing
machine can express strain-stress curve of materials [11], but it is also not easy to test
long length of cables due to the hardware limitations. Then, we used actual
winch-cable-pulley system and a crane for loading and unloading weight blocks to
measure cable creeping behavior because it can handle high weight and long cable
lengths.

The experimental setup for the creep test is shown in Fig. 2. We employed two
different experiments for different loads and lengths shown in Figs. 2 and 3 respec-
tively. For a fixed cable length, different payloads are applied one by one and repeated
for other length cable with the same payload conditions, and all the measurements are
acquired simultaneously.

As shown in Fig. 2, the cable starts from the fixed winch and pass through the
pulleys to the hook in the testing mass. For loading, the crane moves down and for
unloading, the crane moves up to the initial position. The displacement sensor, an
optical tracking system (OTS) from NDI with a root mean square (RMS) of 0.3 mm
resolution is used and its sensor tool with four ball markers are fixed at the cable.

In Fig. 2, we have nine weight blocks and the total sum of loads can be more than
100 kg including middle bar. And shown in Fig. 3, we have conducted cable length
tests for three different cable lengths, 5.4 m, 7.4 m and 8.4 m, considering our current
system configuration and operating ranges.

Fig. 1. High payload CDPR
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3 Creeping Modeling and Parameters Estimation

3.1 Cable Creep Modeling

A well-known very simple model that can describe creep behavior is a Voigt model. It
consists of a Hookean spring and a Newtonian dashpot, but it does not fully explain
complex experimental creep behavior in real system. In general, Burgers model can be
used for describing complicated creep behavior [12]. This model is the serial combi-
nation of a Maxwell model and a Voigt model. However, by using Burgers model, it is
also difficult to express long term creep behavior of polymer cable during unloading
period.

Fig. 2. Experimental setup with nine weight blocks

Fig. 3. Experimental setup with three different cable lengths
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In order to properly emulate long term creep behavior, we propose a five-element
model based on Burgers model whose time-response can emulate three different time
dependent behavior of a polymer cable. The model is the serial combination of a linear
spring and two Voigt models, as shown in Fig. 4. According to the superposition
principle the creep of cable is the sum of instantaneous elastic response, transient creep
and long term creep [13]. Also, the creep behavior of loading and unloading can be
different and therefore we use different model parameters indicated by subscripts Li and
ULi. From loading t = 0 to unloading t = tr creeping behavior can be modeled as

eðtÞ ¼ r
EL1

þ r
EL2

ð1� e�
EL2 t
gL2 Þþ r

EL3
ð1� e�

EL3 t
gL3 Þ ; t ¼ 0 to tr ð1Þ

where r is the applied stress and e is the strain of the cable. The model has five
parameters in steady creep which are elastic modulus E1, E2, and E3 for elastic
property, transient creep, model and long-term creep effect, respectively and viscosity
g2 and g3 for transient creep and long-term creep phenomena.

If the stress r is removed when unloading the payload at t = tr, �r can be added to
(1). In the beginning of unloading, the negative stress applied to the cable increases up
to �r0 until unloading completes (tr � t < t2) and remains as constant value �r0
(t2 � t). Thus, strain recovery can be mathematically modeled as

eðtÞ ¼ r0
EUL1

þ r0
EUL2

ð1� e�
EUL2 t
gUL2 Þþ r0

EUL3
ð1� e�

EUL3 t
gUL2 Þ

þ r
EUL1

þ r
EUL2

ð1� e�
EUL2ðt�tr Þ

gUL2 Þþ r
EUL3

ð1� e�
EUL3ðt�tr Þ

gUL2 Þ
� �

;
t ¼ tr to t2;

r ¼ 0 to � r0

ð2Þ

eðtÞ ¼ r0
EUL2

ðe
EUL2 tr
gUL2 � 1Þe�

EUL2 t
gUL2 þ r0

EUL3
ðe

EUL3 tr
gUL3 � 1Þe�

EUL3 t
gUL3 ; t ¼ t2 to ending time ð3Þ

Fig. 4. A five-element model for cable creeping.
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3.2 Individual Model Parameters Estimation: Polynomial Fitting

Figures 5 and 6 show the experimental creep responses and the predictions of the five
element model under a series of payloads and cable lengths, respectively. Experimental
results show that creep behavior becomes more obvious with higher payload and longer
cable length. Experiments also show that the creep behavior of loading and unloading
is different. The creep behavior of unloading period is more obvious than that of
loading period. In order to portray experimental creep, the five element model is used
and the parameters of creep model are estimated by minimizing root mean square error
(RMSE) between experimental data and model’s output via brutal model parameter
searching. Estimated parameters show that five parameters are changing in terms of
different payloads and different cable lengths. Also, parameters are different with
loading and unloading periods. In order to minimize the complexity of the model, we
fixed less changed parameters when fitting experimental data and estimated the rest of
parameters again as shown in Tables 1 and 2. Figures 5 and 6 show that the predictions
of our model match with experiment data which the creeping behavior is different with
different loads and cable lengths, also different when loading and unloading. These
differences can be caused by nonlinear property of polymer cable. Also, loading weight
has an influence on the cross sectional area of cable and changes the cable properties
which can be illustrated using (4)

E ¼ F=L0
A0DL

ð4Þ

where E is elastic modulus, F is the force exerted on the cable, A0 is the actual
cross-sectional area through which the force is applied, DL is the amount by which the
length of the cable changes and L0 is the original length of cable.

Fig. 5. Experimental creep responses and the predictions of the five element model under a
series of payloads
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3.3 Dual Model Parameters Estimation: Surface Fitting

According to the experiments and estimated parameter, model parameters are influ-
enced by loads and cable lengths. Thus, model parameters can be expressed as a
function of mass (m) and cable length (l). Mass and length are utilized for the function
instead of stress and strain because mass and cable length can be directly measured
using force sensor and encoder equipped in our CDPR.

Table 1 and 2 show different parameters under loading and unloading respectively.
The loading parameters EL2, EL3, gL2, gL3 have constant values and EL1 is a function of
mass (m) and cable length (l). The unloading parameter EUL2, gUL2 are constant values
and EUL1, EUL3, gUL3 are also a function of mass (m) and cable length (l).

Fig. 6. Experimental creep responses and their predictions under a series of cable lengths

Table 1. Loading parameters

Parameters Values

Elastic modulus (N/m2) EL1 EL1ðm; lÞ
EL2 9:5� 109

EL3 5:0� 1010

Viscosity (N � s=m2) gL2 1:0� 1010

gL3 1:0� 1013

Table 2. Unloading parameters

Parameters Values

Elastic modulus (N/m2) EUL1 EUL1ðm; lÞ
EUL2 3:5� 1010ðN=m2Þ
EUL3 EUL3ðm; lÞ

Viscosity (N � s=m2) gUL2 1:1� 1011ðN � s=m2Þ
gUL3 gUL3ðm; lÞ
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Table 3. Polynomial model parameters

EL1 EUL1 EUL3 gUL3
p00 �5:036� 1010 �1:342� 109 �8:301� 1010 2:803� 1012

p10 3:07� 109 5:933� 108 �1:293� 109 �1:993� 1011

p01 1:81� 1010 2:052� 109 2:799� 1010 �7:127� 1011

p20 2:519� 107 1:897� 104 �9:385� 106 2:543� 109

p11 �9:892� 108 �1:438� 108 8:516� 108 5:164� 1010

p02 �1:404� 109 �1:841� 108 �2:206� 109 8:817� 1010

p30 �3:985� 104 �8:251� 103 �2:668� 104 �2:286� 107

p21 �2:358� 106 8:45� 104 4:106� 105 5:996� 107

p12 7:51� 107 9:708� 106 �6:894� 107 �4:337� 109

Fig. 7. Surface fitting for EL1 with loading condition

Fig. 8. Surface fitting for EUL1 with unloading condition
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The change of parameters can be described using polynomial function with two
variables, mass and cable length, as in (5).

Pðl;mÞ ¼ p00 þ p10mþ p01lþ p20m
2 þ p11ml

þ . . .p02l
2 þ p30m

3 þ p21m
2lþ p12ml

2
ð5Þ

where Pðl;mÞ ¼ EL1; EUL1;EUL3; gUL3 and all values are listed in Table 3.
In order to examine the trend of dual parameters variation, i.e., mass and cable

length, surface fitting is established by using (5). Figure 7 shows the loading elastic
modulus EL1 which increases with high payload and short cable length. Figures 8, 9
and 10 shows the unloading elastic modulus EUL1, EUL3 and viscosity gUL3. In Figs. 8
and 10, EUL1 and gUL3 have the similar trend with EL1. Although experimentally

Fig. 9. Surface fitting for EUL3 with unloading condition

Fig. 10. Surface fitting for gUL3 with unloading condition
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estimated EUL3 increases with high payload and short cable length, its polynomial
function does not properly represent the trend of EUL3 in Fig. 9. It is expected that more
experimental data will improve the function of the surface fitting.

4 Conclusion and Future Works

In this paper, a data based five-element model is proposed for describing creep
behavior of polymer cables when loading and unloading. Model parameters are esti-
mated by searching a minimum RMSE of a measured signal and an estimated model
comparison. It is found that the parameters are considerably different during loading
and unloading period with different payloads and different cable lengths due to the
nonlinear properties of polymer cable. Polynomial functions for model parameters are
built for fitting the experimental data in a function of mass and cable length. The
comparison results between model and experiments in time domain shows reasonable
good possibilities of the suggested parametric model utilization. Surface model
including both mass and cable length parameters shows that the elastic modulus EL1,
EUL1 and viscosity gUL3 increase with high payload and short cable length. However,
the estimation EUL3 is needed to be improved by using more experimental data.

In the future, our model will be expanded to cover a wide range of excitations and
other factors will be considered as well as the effect of temperature. In addition to the
model expansion, the effectiveness of a parameter estimation by minimizing RMSE
between our model and experimental data will be quantitatively evaluated by accom-
panying other simple fitting functions. Also, a model based position control will be
implemented for our 8 cable-driven parallel robot system and the expanded cable
model will be included as part of dynamic model of our CDPR to compensate errors
induced by cable creeping.
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Abstract. Modern fiber ropes have several distinctive properties which
predestine them amongst others for high dynamic applications in robot-
ics. Beside their great breaking load due to their high tensile streghth,
the extremely low density and weight are the most important advantages
over steel wire ropes. For steel wire ropes, it is generally known that their
lifetime drops when raising the dynamic stress on running or static ropes.
The long-time behavior of high-dynamically stressed fiber ropes is totally
unexplored up to now. This lack impedes the breakthrough of fiber ropes
and causes a safety gap, which has to be closed. This paper describes the
research on modern fiber ropes regarding their lifetime in normal and
high dynamic applications. The derived results are interpretered with
respect to application in robotics.

Keywords: Cable-driven parallel robots · Cable wear · Experimental
testing · Lifetime

1 Introduction

Ropes are used in many different applications. In the field of mechanical han-
dling, they are used for elevators, cranes, and hoisting devices. A comparably
new field of application are cable robots. Interestingly, in the field of mechan-
ical handling, the transmission elements are called ropes where in the field of
robotics they are referred to as cables. In this paper, we stick to the term rope
as we approach the subject from the perspective of rope technology. However,
all results relate to the transmission element of cable-driven robots. Also in this
paper, the terms wire for steel ropes and fiber for synthetic ropes relate to the
smallest subelements of which the rope is made of.

Safety, availability, and economy of rope applications are mainly influenced
by the lifetime of the applied ropes [20]. In contrast to other components, ropes
have a great axial stiffness, which results from the stiffness of the single wires or

c© Springer International Publishing AG 2018
C. Gosselin et al. (eds.), Cable-Driven Parallel Robots,
Mechanisms and Machine Science 53, DOI 10.1007/978-3-319-61431-1 7



74 M. Wehr et al.

fibers [6]. A rope is called running if it is guided over sheaves (pulleys) and coiled
onto drums. Ropes in running applications are not fatigue endurable but have
a limited lifetime [23] which is measured in the number of bending cycles. The
parallel arrangement of the single elements results in a redundant structure which
prevents the complete system from a sudden failure. The number of broken wires
or fibers on a defined reference length characterizes the condition of the used rope
and offers the possibility to rate the degree of wear using inspection methods.

Running ropes, how they are used for example in cable robots, are character-
ized by their axial movement pattern. On this occasion, they run over sheaves
and are winded on drums which leads beside the tensile stress to a bending stress
in the ropes. These alternating stresses in combination with wear processes on
the surface and in the ropes lead to a limited lifetime of the single wires or fibers
and thus of the rope as a whole.

In this context of cable-driven parallel robots, running ropes have to be
regarded as wear parts like other machine elements, for example V-belts, brake
blocks, or bearings. For safety reasons, the ropes of a robot must not break in
operation to prevent excessive damage. Thus, the rope as wear part has to be
exchanged in time before reaching a critical situation. Therefore, the condition of
the rope has to be monitored and classified using a non-destructive test method
or the average lifetime of the rope in the specific application has to be well-
known. Additionally, the rope drive and the rope itself have to be designed in
the way that the lifetime of the rope reaches a manageable maximum.

Many research institutes and companies around the world work on different
ways in order to develop a non-destructive test method for fiber ropes. Today,
there is no established method to measure the condition of fiber ropes and to
predict the remaining lifetime. Some simple methods are based on the outer
appearance of the rope [14], but these methods are very subjective and do not
give an exactly result. Additionally, the inner condition of the rope stays uncon-
sidered, which is a huge lack, especially for mantled ropes. Other approaches
are based on resistive strings, measuring of geometrical parameters, or magnetic
stray field methods [8]. Steel wire ropes can be examined completely using the
magnetizability of the steel wires in combination with stray field measurements
(Magnetic Rope Testing – MRT) [4].

Existing high dynamic rope drives, for example the roller coaster Space
Mountain in Euro Disney Land Paris reach a number of 120,000 operations only
by shifting the wire rope on the drum. As a consequence of a cycle time of 36 s,
the used high performance steel wire rope has to be assessed by non-destructive
testing in short terms and has to be changed on average every three months [1].

These days, there is only a small number of applications in which established
steel wire ropes could be replaced by modern fiber ropes. One example is an
aramid rope for elevators, which was invented and applied by the Swiss eleva-
tor manufacturer Schindler AG [17,22]. In 2016, the Teufelberger Seil GmbH
presented their new High-Modulus-High-Tensity-fiber rope soLITE, which was
invented in cooperation with the crane manufacturer Liebherr especially for
mobile cranes [19]. Since 2014, the American Manitowoc Crane Group operates
Grove RT770E mobile cranes with KTM100 fiber ropes produced by Samson
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rope [15]. All these single examples show that different parties try to bring fiber
ropes into established steel wire rope markets. Up to now, this goal could only
be reached in a few specific applications and not global.

In the field of cable-driven parallel robots, different types of fiber ropes have
been applied in a number of demonstrator systems [2,10,13]. Qualitative obser-
vations indicate an acceptable lifetime if the cables are guided over pulleys.
However, no quantities measures or experimentally grounded data are available
in the literature.

In this paper, an attempt is made to present latest findings in the field of fiber
rope testing to the application in cable robots by providing data in performance
numbers that can be applied in cable robot design and analysis.

2 State of the Art in Rope Testing

Ropes are not fatigue endurable and can be operated safely only in a limited
period of time [23]. Due to a huge number of local contact points between wires or
fibers, the combination of wear, notches, and frictional heat result in a complex
damage behavior, which limits the lifetime of ropes [12,16,21]. Because of this
complex damage behavior the lifetime of ropes cannot be estimated analytically
until now. The number of bending cycles over sheaves under defined parameters
still has to be determined experimentally [6].

In this experimental research, cycling bending-over-sheaves-tests (BOS) on
bending-over-sheaves-machines performed by the author at the University of
Stuttgart are established. In the following section, the machine type Stuttgart is
mentioned. A test rope is wrapped over a bigger drive sheave in the upper part
of the machine and over a smaller test sheave in the lower part. This relation
between the sheave diameters ensures that the rope will break on the smaller
test sheave. The test sheave is mounted vertically moveable and connected to a
weight-cage, filled with a defined number of steel plates. The constant rotational
movement of the AC engine gets transferred into an oscillating by a thrust rod
(Fig. 1, [7]). Figure 1 shows the resulting movement profile of the test sheave in
standard BOS machines.

The important parameters for BOS-tests are:

• D/d-ratio of the diameter of the sheave D and the diameter of the rope d,
• diameter-related tension force S/d2

• geometry of the test sheave and
• bending length l.

The D/d-ratio describes the ratio between the diameter of the test sheave
D and the nominal rope diameter d. It is well-known that the lifetime of ropes
depends largely on D/d where longer lifetime is achieved for larger D/d-ratio. For
steel wire ropes, D/d = 25 can be regarded as a minimum while the D/d-ratio
can go down to 10 or even less when using fiber ropes. In technical applications,
the actual D/d-ratio is a compromise between technical or economic feasibility
and acceptable lifetime of the ropes.



76 M. Wehr et al.

Fig. 1. Movement profile of standard BOS machines

Due to scaling reasons, the tension force of the rope gets related to the square
of the nominal rope diameter. This resulting diameter-related tension force S/d
carries the unit [N/mm2] which characterizes a normalized tension in the rope.
This force or tension has to be regarded in reference to the nominal breaking
load of the rope. Building the quotient between nominal breaking load and the
present load leads to the so-called safety factor. The lifetime of running ropes
increases dramatically when high diameter-related forces or high safety factors
can be realized.

The bending length l is the length of the part of the rope which gets bent over
sheaves during a bending test. Its influence on the lifetime is statistically. The
possibility of defects in a part of a rope grows with longer bending lengths but
approximates to threshold value with increasing length. Feyrer used these factors
to predict the lifetime N of running steel wire ropes under ideal conditions [7].
The equations read
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fl =
1.54

2.54 −
(

l
d
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57.5

)−0.14 (3)

where the factors ai, i = 0, . . . , 3 of this Feyrer-formula [7] have to be determined
for every type of rope within BOS-tests. Not ideal conditions, for example high
dynamic stress, can be taken into account using correction factors fNi. The
factor R0 describes the nominal strength of the used wires.

Until now, there is no comparable formula for fiber ropes. Beside the new field
of research in HM-HT fiber ropes, a reason for that is the big number of different
fiber materials, rope constructions, coatings, and manufacturers on the market.
Slight changes in the manufacturing process can influence the properties of the
final product significantly. Additionally, there is no standardized procedure and
documentation method for BOS tests on fiber ropes which makes it difficult to
compare independent research results. In this paper, three materials being used
for cables in the recent years are considered

• High-modulus Polyethylene (HMPE)
• Aromatic Polyamide (Aramid)
• High-modulus Polyester (TLCP).

The most famous representative of the group of Polyethylene is the brand
Dyneema, which can be counted to the Ultra-High-Molecular-Weight Poly-
ethylene (UHMW-PE). It has a huge mechanical strength of up to 4000 N/mm2

and an extremely low density of 0.97 g/cm, which makes it lighter than water
and therewith floatable. The surface is very smooth which leads to a friction
coefficient μ between 0.08 and 0.1. Aramids are mainly known under the brands
Kevlar (DuPont) and Technora (Teijin). Beside a high mechanical strength, this
fiber has a negative coefficient of thermal expansion. TLCPs are liquid crys-
tal polymers. Most famous representative is Vectran from Kuraray Co. Ltd,
Japan. Figure 2 shows the most important properties of the three fiber materi-
als Dyneema, Technora, and Vectran in comparison to steel wire ropes which
illustrates the huge opportunities of modern fiber ropes.

3 Rope Testing Under High Dynamic Parameters

When moving a mass in a cable-driven parallel robot under high dynamic para-
meters, two different effects relating to the ropes appear:

• High-dynamic bending over sheaves
• Pulsating tension load due to acceleration of inertial masses (tension-tension

stress)

In order to find and identify relevant influence parameters, it is necessary to
separate different influence parameters and vary them independently.
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Fig. 2. Comparison of main properties of fiber ropes and steel wire ropes.

3.1 Tension-Tension Tests

In this setting, pulsating tension load can be tested in pulsating tension-tension-
tests. Therefore, different tension-tension-test-machines are available at the Insti-
tute of Mechanical Handling and Logistics (IFT) of the University of Stuttgart.
All machines satisfy the highest requirement class according ISO 7500-1 [9]. For
testing, the sample rope has to be mounted in the test machine. Therefore, con-
ical Epoxy resin socketing in the style of DIN EN 13411-4 [5] is favorable. DIN
EN ISO 2307 recommends to mount the ropes using friction clamps [3], which
can be used for break-load-tests but not for tension-tension tests. Oscillating
tension forces S(t) are applied in the form of a sinusoidal wave with periodic
time T

S(t) = Sm + (Sa sin(2π/T ) + δ), (4)

where Sm is the mean stress, Sa is the amplitude of the pulsating stress, and δ
is the delay angle. Here, the two parameters load and frequency shall be varied
within the present work. The finite life fatigue strength is self-defined to 0.5 ·106

cycles. Tension-tension tests were performed with five different test ropes, two
different loads (15–30% and 30–50% of nominal breaking load) and two different
frequencies (2 Hz and 4 Hz). After performing all tests, no single break of a rope
could be detected within 0.5 ·106 load cycles. Because of this, all test items were
tested in following load tests. Figure 3 shows the result of these tests exemplary
for the test rope D2 made from Dyneema.

This figure shows that preceding tension-tension stress did not drop the
residual strength. On the contrary, tension-tension stress could raise the resid-
ual strength. This can be explained with extension processes of the long-chain
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Fig. 3. Residual strength of the test rope D2

Dyneema fibers. A qualitative analogical result can mostly be seen for all test
ropes.

3.2 High-Dynamic Bending Tests

Standard bending machines generate an oscillating speed of vmax = 0.2 m/s. In
cable-driven parallel robots, rope speeds of up to 10 m/s and more are realized.
Additionally, accelerations up to 100 m/s2 and more are implemented. In order
to reproduce these high-dynamic demands, a new and unique test machine was
designed, engineered, constructed, built and brought into service in the IFT
laboratory. With this new test machine, it is possible to test fiber ropes up to
diameter d = 6 mm on four independent test stations. The movement profile
(speed and acceleration) can be set completely unrestrained up to v = 10 m/s
and a = 100 m/s. Figure 4 show a drawing of the new high dynamic test machine
and the movement profile.

The new high-dynamic test machine covers a base area of 2 m × 3.20 m,
has a height of 6.50 m and enables a free rope length of approx. 4700 mm. Four
IPAnema 3.2 winches [13] in combination with asynchronous servo motors are
used to drive and buffer the test rope. The use of cable robot for the fatigue tests
ensures that the operation conditions match the targeted application. Compact
winches minimize the polar moment of inertia and offer the possibility to gen-
erate high dynamic motion. Similar to established bending machines, the drive
units are installed in the upper part of the machine frame while the test sheaves
and tension weights are situated in the lower part. A compensation for diagonal-
pull moves the test sheave synchronously to the mobile run-on and run-off points
of the rope on the winch and prevents the rope from lifetime reduction by diag-
onal pull [11,18]. In order to identify the influence of high-dynamic stress on the
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Fig. 4. Movement profile used on the high-dynamic test machine (left) and CAD ren-
dering of the test machine (right)

lifetime of running fiber ropes, conventional low-dynamic bending tests were per-
formed. Overall six different fiber ropes made from three different fiber materials
in two different constructions and two diameters were examined.

Additionally, one steel wire rope was tested in order to get a relationship
between the different materials. The results of these conventional bending tests
are shown in Fig. 5.

For performing high-dynamic bending tests, a constant test frequency, load,
length of constant speed, and test sheave were applied. Figure 6 shows the result
of high-dynamic bending tests with varied speed and acceleration for a 12-fold
braided 2 mm Dyneema fiber rope D2. The lifetime N is related to the corre-
sponding lifetime of conventional, low-dynamic bending tests Nref .

It appears that the lifetime drops off with increasing speed. At the same
time, the lifetime tends to a global limit at approx. 30% of the reference lifetime
of standard BOS-tests. This means that 70% of the lifetime gets lost by raising
the dynamic of cycling BOS-tests. Due to the immunity of HM-HT-fiber ropes
against tension-tension stress under dynamic load change discovered before, the
reason for the decrease of lifetime in high-dynamic BOS-tests has to be found in
the bending stress itself. Slippage measurements show that there is slip between
the rope and the sheave which can be responsible for outer wear on the fiber
rope. The appearance of the broken ropes was investigated microscopically. Here
it could be found out that outer wear dominates the appearance of the ropes.
Completely different properties can be found for other test ropes; for example
the covered rope M6, see Fig. 7.
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Fig. 5. Lifetime of test ropes in conventional BOS tests

Fig. 6. Relative lifetime of the test rope D6 in high-dynamic BOS tests

The covered rope M6 shows only a marginally small decrease in lifetime of
maximum 10% when raising the dynamic parameters speed and acceleration.
Based on the knowledge of the outer wear process in high-dynamic BOS-tests,
the cover of the rope M6 acts like a shelter for the inner, load-bearing HM-HT-
fibers. Consequently, the leading fibers do not get damaged by outer wear, which
leads to the significantly better performance in high-dynamic BOS-tests.
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Fig. 7. Relative lifetime of the test rope M6 in high-dynamic BOS tests

4 Application in Cable Robot Design

The multiplicity of conducted experiments result in an extensive database, which
can be used directly in real applications like cable robots in order to increase
the lifetime of the wear part rope by proper usage. In this case, the lifetime-
limiting parameters are determined within the design process of the cable robot.
Due to the fact that the lifetime of ropes is directly proportional to the number
of bending cycles, the number of bending cycles should be as small as possible
for each specific rope section. Thereby, the D/d-ratio between sheave-diameter
D and rope-diameter d has to be a compromise between a big bending radius
D/2 and a low polar moment of inertia J . To accommodate this conflicting
requirement, lightweight constructions with smooth-running bearings should be
preferred. The surface of the sheaves, especially on the bottom of the grooves,
should have a good quality in order to avoid damage from sensitive surface of
the fiber ropes. To stabilize the flexible fibre rope structure, the radius of the
bottom of the groove r should fit as tight as possible to the real rope diameter
dr without squeezing the rope.

During the application, the rope and the rope drive have to be maintained
regularly and carefully by a competent person. The inspection intervals can
be stated by performing defined bending tests in combination with the reduc-
tion factors for high-dynamic applications, factors for considering the statistical
spread of BOS tests and chosen safety factors. The work aids to classify the rope
condition and discard criteria for fiber ropes have begun and are anticipated
for the next years. Additionally, the wear resistance of newer fiber ropes will
improve although the arrival of fatigue endurable fiber cannot be expected.
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5 Conclusion

In this paper, experimental research are presented on the lifetime of high-dy-
namical-ly stressed fiber ropes. Major criteria for a limited lifetime of running
fiber ropes are presented and possibilities to improve the lifetime are presented
by modifying construction parameters. Furthermore, the necessity of periodical
inspections of the wear part rope for long-term applications is highlighted.

It is shown that the lifetime of ropes has to be determined experimentally
what requires special bending machines. Especially for high-dynamic bending
tests, a completely new test machine was designed and built at the IFT labo-
ratory which enables bending tests with dynamic parameters correlating to the
requirements of modern cable robots. Bending tests identified for the very first
time the material-depending, lifetime reducing influence of high dynamic stress
on modern fiber ropes.
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und die Seilkrümmung veränderlichen Biegesteifigkeit. Dissertation, Eidgenössische
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22. Wehking, K.-H.: Lebensdauer und Ablegereife von Aramidfaserseilen in Treib-
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Abstract. In most practical applications for cable-driven parallel
robots, cable lifetime is an important issue. While there is extensive
knowledge of steel cables in traditional applications such as elevators or
cranes, it cannot be easily applied to cable robots. Especially new poly-
mer based materials behave substantially different, but also the condi-
tions for the cable change dramatically. Cable robots have more bending
points and a higher variability in cable force and speed than traditional
applications. This paper presents a form of bending cycle analysis which
can be applied to assess cable wear. This algorithm counts the number
of bends per trajectory in each cable segment. The sum gives an indi-
cation how much wear a cable receives. Experiments are conducted on
a cable robot using different kinds of polymer fibers. The results show
that this method is successful in predicting the point at which a cable
finally breaks.

1 Introduction

A very important element of cable-driven parallel robots are the cables them-
selves. The properties of cables, being able to transmit a force over a long distance
while remaining flexible, give rise to many of the advantages and disadvantages
of cable-driven parallel robots. As a mechanical component, cables (or ropes)
have a long history, with the first being made exclusively from biological mate-
rials by civilizations several thousand years ago. Today, steel is the dominant
material for making cables for a variety of industries. Polymer fibers are finding
more applications in recent times, as some show a superior strength to weight
ratio and higher flexibility [4]. It is expected that their market share increases in
the upcoming years, as manufacturers of lifts, cranes, and other hoisting devices
make use of these advantages. In all applications, estimating the lifetime of the
cables is notoriously difficult and poses a challenge for the adoption of poly-
mer cables. From previous works with steel cables, we know that the lifetime
related to several key factors such as bending radius, cable force, and whether
it is moving continuously or not. These are summarized in the Freyer Formula
which bundles the criteria and vast amounts of historical data to estimate cable
lifetimes. But even this knowledge is not easily applicable for cable robots as
c© Springer International Publishing AG 2018
C. Gosselin et al. (eds.), Cable-Driven Parallel Robots,
Mechanisms and Machine Science 53, DOI 10.1007/978-3-319-61431-1 8
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higher speeds and more complex wear profiles make the application unique.
Some recent investigations are looking into these factors such as the abrasive
wear [7] or cable fretting [11]. The equivalent does not exist for polymer fibers
[10]. There are some recent bending cycle experiments [9], but the amount of
data is much less than that for steel cables.

Interestingly, some investigations have been made for deep sea applications [1,
2]. Here, polymer fibers are used extensively in very large mooring applications.
As such, wear is investigated extensively including factors such as tension and
torsion fatigue [6]. The associated risks and high costs of failure have spurred a
lot of research in this application [2].

Even in the case of steel cables, cable-driven parallel robots pose very different
stresses and strains on the cables than previous applications. Generally, the
number of pulleys is greater, loads are more varying, and directional changes
more frequent. This means conventional methods of predicting cable lifetimes
(such as the Freyer Formula) have yet to be validated through experiments [10].

In previous works, it is attempted to use bending cycle experiments in order
to obtain an estimate for the behavior of polymer fiber ropes. These showed that
the lifetime is highly dependent on the cable force, somewhat dependent on the
bending diameters, and to some extent also on the cable speed [9]. An expan-
sion on this is to investigate the behavior of polymer fiber ropes in the actual
cable robot itself. This includes assessing the bending cycles for a trajectory and
monitoring cable lifetime.

This paper tries to give a brief overview of possible polymer fiber materials
and their properties, presents a method of analyzing bending cycles for cable
robot trajectories, and gives some experimental results to show possible ways of
dealing with the cable lifetime issue in the application of cable-driven parallel
robots. Breaking strength is still a clear indicator of cable lifetime (when ignoring
susceptibility of degradation by ultraviolet light). The breaking strength of the
cable provides a basis for sizing cables. Currently, high safety factors (>10) are
taken for granted as the lifetime is hard to predict. The experimental results show
that the bending cycles are significant in determining cable lifetime. Additionally,
monitoring the elastic properties of cables continuously may help in predicting
cable rupture. The polymer creep curve can perhaps be monitored to identify a
cable near breaking due to its elastic properties [8].

2 Overview of Cables and Cable Robot Properties

In order to explain the motivation and notation conventions used, some prelim-
inaries are introduced here.

A cable-driven parallel robot with four or eight cables indexed by i is pri-
marily defined through vectors which indicate cable attachment points on the
moving platform bi and the stationary frame ai. The pose of the platform is
defined through a position vector r and a rotation matrix R. This gives rise to
the inverse kinematics where the cable length l of cable i, is determined as

li = ‖ai − (r + biR) ‖2. (1)
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Static analysis using this relation is sufficient to determine the necessary control
properties. For pulley kinematics, the point ai is defined by the cable point
entering the last pulley not in the direction of the platform (as this changes with
position), but the one in the direction of the winch.

The cable material is not the only property significant to the cables. Major
factors of wear include material dependent ones such as UV-radiation and tem-
perature. Further production parameters are also relevant such as the meshing
of individual strands, and coating materials. Others factors influenced by the
cable robot include the bending cycles and forces applied to the cables. These
cause abrasion within the cable as individual strands rub against one another to
cause friction. In common bending cycle experiments, the number of successful
bending cycles is used as a measure for the lifetime of the cable. Thus, it seems
prudent to use a similar approach for cable lifetime within cable-driven parallel
robots. To the author’s knowledge, there has been no algorithm so far to give
the number of bending cycles per rope segment for a given trajectory. Thus, this
is presented in the following section. As it is known that cable force is also an
important contributing factor, the presented method also provides the ability to
take the cable force into account, if it is known.

3 Algorithm for Counting Bending Cycles

As mentioned, bending cycles are an important factor in cable lifetime. However,
for cable-driven parallel robots, it is not trivial to assess the bending cycles, as
these are not consistent. Other applications such as hoists or cranes have simple
one to one relationships between usage cycles and bending cycles.

A single bending cycle is defined by the cable going from a straight position
into a bending position or vice versa. Thus, a single pulley actually has two
positions where a bending cycle occurs. The first when the rope enters the pulley
and is bent around at the pulley radius, and the second when the rope exits
the pulley in the other direction. The number of these bends which a cable is
subjected to, over a usage period, is a measure of wear. When using a cable
robot, not all sections of a cable receive to the same amount of bending cycles.
An algorithm (Algorithm1), can be constructed to count these bending positions
over a trajectory.

End-Connector

Platform

Pulley(s)

Winch
0 m

Cable

Fig. 1. Cable parameterization
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P9

Fig. 2. Bending positions for IPAnema 3 cable-driven parallel robot

First a parameterization needs to be chosen. In this case, the attachment
point bi of the cable on the platform is chosen as zero, as is shown in Fig. 1. The
reason for this is that it is consistent for a given robot geometry. When consid-
ering a cable robot under external force, it is at least theoretically conceivable
that it moves to an infinite position. This means no definite fixed end can be
defined on the winch. In this algorithm, cable wear is abstracted into a value
representing the number of bending cycles for finite cable segments. The result
is a one-dimensional array vi in N

n for each cable i of size

Algorithm 1. Algorithm for counting the bending cycles during a trajectory
1: Inputs:

vi: to store wear characteristics for cable i
ls,le: determined by the inverse kinematics
bpos: bending positions
ly: segment size of a single segment
ff : optional force factor

2: Begin:
3: for every bpos in bpos do
4: if ls < le then
5: istart ← −bpos+ls

ly

6: iend ← −bpos+le
ly

7: else
8: istart ← −bpos+le

ly

9: iend ← −bpos+ls
ly

10: for v in v [istart, iend] do
11: v + + or v ← v + ff
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Fig. 3. Bending cycles for an example trajectory on the IPAnema 3

n =
la
ly
, (2)

where la is the absolute cable length of the entire cable and ly is the desired
segment size to be investigated.

Now we define the bending positions of the cable robot geometry. These are
presumed to be static with respect to the ai points and the winches which are
not expected to move with respect to the robot frame. When the pose of the
robot (r,R) is known, the bending positions can easily be transferred into the
cable parameterization. Bending positions are defined by the point ai, (in the
case of pulley kinematics in itself a bending position) in a one-dimensional para-
meter which refers to cable length. The bending positions are stored in another
one-dimensional array bpos in R

m where m is the number of bending positions
defined. Figure 2 shows these bending positions for the IPAnema configuration.

In order to determine a correct conversion between the cable parameteriza-
tion and the bending positions a reference needs to be defined. From this position
the length to the first bending position close to ai can be determined. For this,
a zero or reference position is chosen which is part of many controllers anyway.

For a given trajectory, we can use the inverse kinematics to calculate cable
lengths at different points in the trajectory. It is assumed that the points on the
trajectory are sufficiently close to one another that the starting length ls changes
linearly to ending length le. For each cable, the algorithm then determines which
segment has moved across the bending position during this cycle and increments
this accordingly. This is shown in Algorithm1.

Essentially, each of the segments in vi which have moved over any of the
bending positions in bpos are incremented regardless of which direction the cable
has moved in. It is possible to incorporate other factors such as force, by using
a factor ff proportional to a measured or estimated force. This would turn vi
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into a vector in R
n, but this is an almost trivial change. This was not done in

the initial analysis.
The result of this algorithm is shown in Fig. 3. Here we can see the cable as

it is parameterized with zero length at the platform and the associated bending
with each segment. Segments with the most wear are those were the number of
bending cycles is high.

4 Experimental Setup

In order to test the influence of bending cycles, some experiments were per-
formed on a cable robot using polymer fiber cables. The robot in question is the
IPAnema 3 cable robot which is part of the IPAnema family of robots developed
by the Fraunhofer IPA [5].

The investigations are part of a larger test where materials and other prop-
erties are also investigated. The aim was to continuously actuate the cable robot
until cable rupture. This gives an insight into the bending cycle analysis. The
robot had dimensions of 16.25 × 11.30 × 3.79 m and a cable force range of 10 N
to 3 kN. In this experiment, several cables with diameter 2.5 mm were used. The
cable materials used in this experiment are outlined in Table 1.

Table 1. Cable materials used in the experimental evaluation

Material Shorthand (Brand) Weight [g/100m] Breaking
Strength [N]

Ultra High Molecular
Weight Polyethylene

Dyneema SK78 R© 336 4070

Aramid (Tejin) Twaron R© 355 3090

Aramid (DuPont) Kevlar R© 309 3150

Aramid (Tejin) Technora R© 304 3400

Thermotropic Liquid
Crystalline Polymer

Vectran R© 302 3220

Polybenzobisoxazole Zylon R© 318 5450

It can be seen that the cable breaking strength is very close to the maximum
of the robot capabilities. Usually a much higher factor (often around 10) is used
to ensure that the cables do not rupture. In this case, the cable force was chosen
to be particularly high in order to ensure that the cables rupture quickly to
shorten the overall experiment time. Even with this specification, the trials were
conducted over a period of several weeks.

In an endless loop, the cable robot drove the specified trajectory shown in
Fig. 4. The trajectory was chosen to have the similar wear in all cables. Unfor-
tunately, the cable force is highly dependent on the pose of the platform and
cannot be maintained in the same manner. However, force levels were ensured
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Fig. 4. Test trajectory (red) for polymer cables (blue) in IPAnema 3 geometry (black
wireframe) (Color figure online)

to be consistent using a cable force control algorithm [3]. Once a cable breaks,
the breaking point is recorded and compared with the theoretical rupture zone.

The experiment was divided into three tests, the first and third at a trajectory
speed of 10.000 mm/min while the second was conducted at a trajectory speed
of 20.000 mm/min. The distribution of cables is shown in Table 2. The cable
numbers indicate in which experiment and which winch position each cable has
on the frame as it is shown in Fig. 4. As the force was considerably different
between four cables attached at the top frame (1 to 4), and the four cables
arranged at the bottom of the frame (5 to 8), these are also given in the table.
While the cable forces vary around ten percent for each cable, the force along
the entire trajectory is very consistent at each repetition and have an almost
identical force profile.

Table 2. Test distribution per winch for three tests

Test One Test Two Test Three

C-Nr. Material Force C-Nr. Material Force C-Nr. Material Force

1.1 Dyneema R© approx. 2.1 Kevlar R© approx. 3.1 Dyneema R© approx.

1.2 Technora R© 270 N 2.2 Twaron R© 270 N 3.2 Technora R© 400 N

1.3 Dyneema R© 2.3 Technora R© 3.3 Dyneema R©
1.4 Technora R© 2.4 Zylon R© 3.4 Technora R©
1.5 Vectran R© approx. 2.5 Kevlar R© approx. 3.5 Vectran R© approx.

1.6 Zylon R© 500 N 2.6 Twaron R© 500 N 3.6 Zylon R© 600 N

1.7 Vectran R© 2.7 Technora R© 3.7 Vectran R©
1.8 Zylon R© 2.8 Zylon R© 3.8 Zylon R©
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Using force sensors in the winch, a cable rupture can be detected by the
sudden loss in cable force. The robot then can be paused and the ruptured cable
replaced.

5 Experimental Results

The results of the experiment discussed in the previous section show that the
bending cycle analysis closely predicts the rupture point of the cable. Table 3
shows the sixteen ruptures experienced across the three tests. The cables lasted
around 500 to almost 2000 trajectory cycles, which equates to about 50,000 and
200,000 bending cycles.

Many of the ruptures occurred very close to the theoretically predicted rup-
ture zone. The theoretical rupture zone is sometimes a range and sometimes
a specific point because the bending cycle analysis indicated a defined peak of
maximum wear, and sometime a wider range of segments with maximum but
equally exposed to wear. This is independent of the cable material speed or
force applied. There are some four outliers were the rupture position is far away
(>10%) from the theoretical rupture zone. Generally, this means that the cable
bending is a predominant factor even for polymer fibers.

Breaking Zone

to platform to winch

measured breaking point

Fig. 5. Determining the breaking position on a cable

There is an inherent difficulty when measuring the rupture position. Figure 5
shows a typical cable broken under continuous bending cycles. The breaking zone
is defined as the zone where the rupture cable is loosing width on either side, as
several individual strands are broken. The measurement of the rupture position
was done as indicated with distance from the winch. Since polymer fibre cables
have more elasticity, the breaking zone is probably more pronounced than for a
steel cable. The breaking zone due to bending fatigue is expected to be smaller
for steel cables.

For two of the four aforementioned outliers, the cable breaking zone was very
large as several very thin strands extended, both on the cable portion leading to
the winch and the portion leading to the platform.

Two other conclusions can be drawn from the experiences of driving the cable
robot up until cable failure. Firstly, as the cable rupture occurs on the most bent
segments of the rope, it will usually occur within or near the winch. This is true
for the IPAnema winch, which has five bending positions (as seen in Fig. 2). For
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Table 3. Cable rupture position

Rupture Nr. Cable Nr. Rupture Pos. [m] Theoretical
Rupture Zone [m]

Deviation [%] Bending
Cycles

1 1.5 4.40 4.67–4.68 5.8 130

2 1.4 6.87 7.85–7.90 12.5 573

3 1.4 6.12 7.85–7.90 22.0 1009

4 2.6 3.88 4.36 11.0 2098

5 2.5 4.20 4.67–4.68 10.1 2149

6 2.2 7.27 8.03 9.5 2183

7 3.6 9.54 9.58 0.42 138

8 3.6 9.86 9.58 2.92 420

9 3.7 10.30 10.45–10.47 1.53 181

10 3.7 9.64 10.45–10.47 7.84 443

11 3.3 14.16 14.99 5.54 573

12 3.6 9.42 9.58 1.67 163

13 3.8 10.49 10.68–10.70 1.87 565

14 3.7 10.28 10.45–10.47 1.63 97

15 3.6 9.88 9.58 3.13 1185

16 3.7 10.48 10.45–10.47 0.19 1178

the operation of cable-driven parallel robots, this is positive because a cable does
rarely shoot out and becomes a potential harm as it whips across the workspace.
Most of the time, the cable remained stuck somewhere in the chain of pulleys.
This means that it is harder to replace once ruptured. Secondly, the redundancy
in cables in the eight cable robot ensured that the platform remained fairly close
to the pose where the cable ruptured along the trajectory. The platform will
move to a configuration within the seven actuators robot that remain when one
cable is ruptured. At no point during the experimentation did the platform fall to
the ground or deviate by more than a couple of centimeters from the trajectory.
This also have positive implications on the safety of operation. Of course, it
should be noted that the trajectory remained at the center of the workspace.

6 Conclusion

The lifetime of polymer fiber cables in the use of cable robots is still a very open
issue. It was shown that previous knowledge on the significant factors gives an
indication of how long a typical cable may last. However, many more investigations
need to be done to complete this knowledge. Part of the difficulty is the amount
of variation in polymer fiber cables. There are not only very many materials, but
the material properties show large variations, even for a single material.

A bending cycle analysis was introduced in this paper. This is easy to imple-
ment and can be applied to any cable robot in the current form. It can even
be applied to a controller and additionally monitoring cable forces. This should
give a very accurate indication of which segment of the rope has endured the
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most wear. It is expected that this analysis can be applied for steel cables, but
a smaller bending zone is expected due to less elasticity.

Experimental results show that the rupture zone in an example cable robot
coincides closely with that predicted by the bending cycle analysis. The impli-
cation is that bending during use is one of the major contributors to cable wear
during the operation in cable robots.
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Abstract. The direct kinematic problem of n−n (n = 2, 3, 4, 5) under-
constrained cable manipulators has been solved previously by exploiting
the line geometric equilibrium condition and using optimization tech-
niques, heavy algebraic or numeric algebraic computation. In this paper
another solution method is proposed. It uses kinematic mapping, dis-
tance constraint equations and a local plane constraint. This method
can be used for all cases of underconstrained cable manipulators and it
is also applicable to the case of n− i equilibria of n−cable manipulators.
Univariate polynomials are computed in examples for the 3−3 and 5−5
cases as well as for n− 1 equilibria of the 5 − 5 case.

1 Introduction

The direct kinematic problem of underconstrained n−cable robots has been
addressed and solved in several papers. In all cases (n = 2, 3, 4, 5) the maxi-
mal number of solutions was obtained. The data according to the number of
cables are obtained in these publications (see [1,5,6] and the references herein)
are: (Table 1).

Adressing the problems of the above mentioned approaches that try to obtain
the solutions via a univariate polynomial of the system of equations the paper
[2] solves the n − n underconstrained cable problem using interval analysis.

The kinematics of underconstrained cable robots is determined by two sets
of equations. The first set consists of the cable length equations and in the
second set are the force-moment equilibrium equations. In the case of the direct
geometrico-static problem (DGP) the cable lengths are given. The equilibrium
conditions are packed in the Jacobian matrix J whose columns consist of the
Plücker coordinates of the lines that coincide with the cables and the line of
action of the gravity force. J is therefore an 6 × (n + 1) matrix. Both systems
contain the pose variables and it is easy to see that equilibrium is only possible
when the rank(J) ≤ n. The set of equilibrium conditions is established in [6] as

c© Springer International Publishing AG 2018
C. Gosselin et al. (eds.), Cable-Driven Parallel Robots,
Mechanisms and Machine Science 53, DOI 10.1007/978-3-319-61431-1 9
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Table 1. .

Number of cables 2 3 4 5

Number of solutions over C 24 156 216 140

[L1, . . .Ln,Le, ]

⎡
⎢⎢⎢⎣

τ1
ρ1
...

τ1
ρ1

üQ

⎤
⎥⎥⎥⎦ = 0, (1)

where Li denote the Plücker coordinates of the leg lines and Le the line of action
of the gravity force. τi represent the cable tension forces, Q, the gravity and ρi

the cable lengths. Now, equilibrium is computed via the observation that “at
equilibrium, the variation of the total potential energy of the platform due to a
virtual displacement must be zero” [6]. In [4] for the 3 − 3 case the minors of J
are exploited and the solutions of the corresponding set of nonlinear equations in
the sought displacement parameters are found with Groebner base algorithms,
elimination techniques and numerical continuation.

In [8] a different approach was taken to obtain the solution of the DGP for the
planar 2-2 case. Essentially, the workspace of the center of gravity is computed
via the coupler curve of the corresponding coupler motion and the local minima
of the curve are determined, which of course correspond to the minima of the
constrained optimization problem cited above. Some interesting cases arise when
the coupler curve has cusps.

In this paper a different algorithm is proposed to find the solutions of the
DGP of all n−n underconstrained cable robots. It exploits the cable length con-
straint varieties in the kinematic image space. But the corresponding polynomial
equations are not enough to determine all pose parameters of the end effector in
equilibrium. An additional observation is necessary: a local plane constraint is
introduced and the linear dependency of the tangent spaces to this constraint and
the distance constraints is used to obtain a set of equations that allow to solve
the DGP of all types efficiently. The proposed algorithm also works to determine
the poses where an n − n underconstrained cable robot is in equilibrium with
less than n cables.

The paper is organized as follows: In Sect. 2 a brief introduction to the
kinematic image space is given. Section 3 contains the manipulator description,
Sect. 4 derives the constraint equations and in Sect. 5 the solution algorithm is
derived. In Sect. 6 the algorithm is exemplified for a 3−3 cable robot. The paper
finishes with a conclusion.

2 Kinematic Mapping

Euclidean rigid body displacements are often described by homogeneous 4 × 4
matrices M, that act on a point x located in a moving frame according to
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x′ = Mx. x′ is the image point in a base frame, the lower right 3×3 sub matrix
of M is a proper orthogonal matrix encoding the orientation of the moving fame
with respect to the base frame and the first column of M contains the vector
connecting the origins of both frames therefore representing the translational
part of the transformation. Using Study’s kinematic mapping κ (see [7,13]), the
displacement given by M is mapped to a point d = [x0, x1, x2, x3, y0, y1, y2, y3]T

in a seven dimensional projective space P 7. These point coordinates are called
the Study parameters of the displacement. They fulfill the quadratic condition

x0y0 + x1y1 + x2y2 + x3y3 = 0, (2)

which is called Study condition. Its zero set is the Study quadric S2
6 ⊂ P 7.

In the inverse kinematic mapping a point on S2
6 minus the exceptional three

space E : x0 = x1 = x2 = x3 = 0 yields the matrix

M := κ−1(d) =
1
Δ

⎡
⎢⎢⎣

1 0 0 0
t1 x2

0 + x2
1 − x2

3 − x2
2 −2x0x3 + 2x2x1 2x3x1 + 2x0x2

t2 2x2x1 + 2x0x3 x2
0 + x2

2 − x2
1 − x2

3 −2x0x1 + 2x3x2

t3 −2x0x2 + 2x3x1 2x3x2 + 2x0x1 x2
0 + x2

3 − x2
2 − x2

1

⎤
⎥⎥⎦

(3)
where Δ = x2

0 + x2
1 + x2

2 + x2
3 and

t1 = 2x0y1 − 2y0x1 − 2y2x3 + 2y3x2,

t2 = 2x0y2 − 2y0x2 − 2y3x1 + 2y1x3,

t3 = 2x0y3 − 2y0x3 − 2y1x2 + 2y2x1.

(4)

However, as shown in [10], the Study condition (2) is not necessary for M to
describe a rigid body displacement in image space. Thus, the range of κ−1 may
be extended to P 7 \E. Injectivity is lost, but the non-linear Study condition can
be neglected. This fact is interesting, opens up a lot of possibilities in motion
interpolation, but will not be exploited in the following.

Kinematic properties of serial chains are described with respect to (arbitrarily
chosen) coordinate frames in its base and the end-effector. Possible locations
of the end-effector with respect to the base correspond to algebraic varieties
described by sets of polynomial equations in P

7. Coordinate transformations in
the base and the end-effector frame induce linear mappings T in P

7 that preserve
several interesting geometric objects:

1. the Study quadric S2
6 ,

2. the Null cone defined by N : x2
0 + x2

1 + x2
2 + x2

3 = 0, which is quadric in
P
7, that has only complex points with exception of its 3-dimensional vertex

space E : x0 = x1 = x2 = x3 = 0 . E is entirely contained in S2
6 and is called

exceptional generator space,
3. the exceptional quadric Y : y2

0 + y2
1 + y2

2 + y2
3 = 0 ⊂ E ,

4. all quadrics Q = λS2
6 + μN , λ, μ ∈ R in the pencil spanned by the Study

quadric and the Null cone.
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A detailed derivation and proofs for these statements and some interesting
examples can be found in [12]. The invariant objects essentially govern the kine-
matics of 3D-Euclidean displacements1.

3 Manipulator Description

Figure 1 shows the model of an underconstrained 3−3 cable robot. With respect
to this figure the attachment points of the cables in the base frame are denoted
with Ai, those in the moving frame are Bi. W.l.o.g. one can assume that the
center of gravity in the endeffector is located in the origin of the moving frame.
p, q, r are the connecting cables. In the DGP the cable lengths are assigned and
the equilibrium pose of the end effector system is sought.

The coordinates of the attachment points are denoted by Ai(a1i, a2i, a3i)
resp. Bi(b1i, b2i, b3i). In the following we assume that there is no sagging in the
cables and furthermore that all aji, bji ∈ Q.

Fig. 1. 3-3 cable manipulator

1 The kinematic images of planar and spherical displacements subordinate completely
to this description because both cases are obtained by three dimensional sub-spaces
of P7. The corresponding geometry of their image spaces and the algorithms to derive
these geometries can be found in [3] p.393ff. resp. [11] p.60ff.
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4 Constraint Equations

In most of the previous papers the rank deficiency of the matrix J in Eq. 1 is
exploited whereas in this paper the constraint varieties corresponding to the
assigned distances will be used. The distance constraint varieties were derived
in [9] to solve the direct kinematics of Stewart-Gough platforms. The constraint
equation for the first cable p may be written in image space coordinates

(w − 2( a11 b11 + a21 b21 + a31 b31))x
2
0 + (w + 2( a21 b21 + a31 b31 − a11 b11)x1

2

+(2 (a11 b11 − a21 b21 + a31 b31) + w)x2
2 + (2( a11 b11 + a21 b21 − a31 b31) + w)x3

2

+4 [(a21 b31 − a31 b21)x0 x1 + (−a11 b31 + a31 b11)x0 x2 + (a11 b21 − a21 b11)x0 x3

+ (−a11 b21 − a21 b11)x1 x2 + (−a11 b31 − a31 b11)x1 x3 + (−a21 b31 − a31 b21)x2 x3

+ (a11 − b11)x0 y1 + (a21 − b21)x0 y2 + (a31 − b31)x0 y3 + (−a11 + b11)x1 y0

+ (a31 + b31)x1 y2 + (−a21 − b21)x1 y3 + (−a21 + b21)x2 y0 + (−a31 − b31)x2 y1

+ (a11 + b11)x2 y3 + (−a31 + b31)x3 y0 + (a21 + b21)x3 y1 + (−a11 − b11)x3 y2

+ (y0
2 + y1

2 + y2
2 + y3

2)
]

= 0, (5)

where w := a2
11+a2

21+a2
31+b211+b221+b231−r21. This is the most general form of the

distance constraint equation, which simplifies considerably when the coordinate
systems are adapted to the robot. In an n − n cable robot n ≤ 5 at most 5
distance constraint equations will exist (hi, i = 1, . . . 5). Furthermore the Study
condition Eq. 2 and a normalization condition (e.g. hn := x2

0+x2
1+x2

2+x2
3 = 1 or

x0 = 1) are available. These, at most n+2 conditions, are obviously not enough to
determine the eight Study parameters. 6−n additional conditions are necessary.
These conditions must replace the equilibrium rank conditions of the Jacobian
matrix J. They are established by the observation that the center of gravity of
the end effector must locally fulfill a plane condition and the plane has to be
normal to the direction of the gravity force, therefore it can be written z = Rz.
The unknown constant Rz determines the position of the constraint plane. As
the center of gravity is the origin of the moving frame z has to be replaced with
the last entry of the first column of the matrix M (Eq. 3) to obtain its equation
in the fixed frame

hp := 2(−x0y3 − x1y2 + x2y1 + x3y0) − Rz(x2
0 + x2

1 + x2
2 + x2

3) = 0. (6)

The constraint equations (hi, hp), the normalization condition (hn) and the
Study condition Eq. 2 (hs) are assembled to the system of polynomial equations

sys := [hi, hp, hs, hn], i = 3, 4, 5 (7)

In practical computations it has turned out that hn : x0 = 1 has advantages
concerning computation time, therefore it is used in the following. But one has to
be aware that this assumption needs to test if x0 = 0 allows a solution. This can
be done by imposing this condition and the run the solution algorithm. Because



102 M. Husty et al.

of the condition the system becomes much simpler and a possible solution can
be found fast.

Before going into the solution algorithm a further observation will simplify
the system of equations. The last line in Eq. 5 shows that the coefficients of all
y2

i , i = 0, . . . 3 are free of design parameters akl, bst. Therefore differences of these
equations are void of these squares. One can use n−1 such difference equations.

5 Solution Algorithm

The additionally needed equations are found by the observation that the Jaco-
bian Jsys of the system sys has to be rank deficient. Jsys is obtained by dif-
ferentiating with respect to the Study parameters xi, yi. Because all constraint
equations are quadratic in the Study parameters the entries of Jsys are linear in
these parameters. The following three cases exist

1. n = 5 → Jsys is 8 × 8 and detJsys yields one more equation.
2. n = 4 → Jsys is 8 × 7 and 7 × 7 minors yield additional equations.
3. n = 3 → Jsys is 8 × 6 and 6 × 6 minors yield additional equations.

Case 1
detJsys is added to the system sys. This system consists now of nine equations
and nine unknowns (xi, yi, Rz). This system is now at first inter-reduced and
then immediately a Grbner basis is computed using total degree ordering. From
this basis a basis with lexicographic term order providing a univariate polynomial
is computed using the FGLM algorithm. As expected the univariate is of degree
140.

In this case elimination also leads to a solution: One can solve from
three difference equations, hp, the Study condition and hn the unknowns
x0, y0, y1, y2, y3, Rz linearly and only three unknowns (x1, x2, x3) remain. Sub-
stitution of the solutions for x0, y0, y1, y2, y3 into the three remaining equations
(two from sys and detJsys) yields after two elimination steps the univariate of
degree 140.

Case 3
In this case sys consists only of six equations. Seven out of 28 determinants of
the 6 × 6 minors of Jsys vanish, so one can extract 21 equations. In a next step
these 21 equations are added to the the system sys. One could argue that that
only three out of the 21 equations should result in a zero dimensional ideal. But
it was already mentioned in [6] that an abundance of equations simplifies the
computation of the Gröbner basis. Actually, there is another reason to keep all
available information: in kinematics the solution set is in many cases smaller
than the variety obtained by a minimal set of generators of the variety.

Inter-reduction of the 27 equations yields a relatively simple system of 26
equations out of which six are either linear or bilinear in the unknowns. A total
degree Gröbner basis of this system is computed in less than 1 min. The basis
consists of 195 polynomials. 10 polynomials of this basis are either linear or
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bilinear in the unknowns the remaining ones are at most of degree 4. The trans-
formation of this basis into a lexicographic order needs much more time but
Maple comes up with a polynomial of degree 156, as expected. The ordering of
the unknowns plays an important role for the computation time of the basis. In
the computed examples the ordering plex(y0, y1, y2, y3, x1, x2, x3, Rz) was used.
Because of this ordering the univariate polynomial is in Rz. Referring to Fig. 1
a necessary (but not sufficient!) condition for a feasible equilibrium is a negative
value of Rz. For these values of Rz stable equilibrium must be tested according
to the methods provided e.g. in [6].

The remaining case 2 was not computed explicitly at the time of writing this
paper, but it should be straight forward.

6 Example

In this section an example for the 3−3 cable case is shown. The design parameters
are:

a11 = 0, a21 = 0, a31 = 0, a12 = 7, a22 = 0, a32 = 0, a13 = 5, a23 = 7, a33 = 0,

b11 = −6, b21 = 0, b31 = 0, b12 = −3, b22 = 5, b32 = 0, b13 = −3, b23 = 4, b33 = 5,

r1 = 7, r2 = 11, r3 = 13

After running the algorithm derived in the last section one obtains the following
solutions. (Only the negative Rz solutions are listed).

Rz1 = −12.99999341, Rz2 = −11.84761041, Rz3 = −9.93666435,
Rz4 = −9.21554122, Rz5 = −3.39366902, Rz6 = −2.53790343,
Rz7 = −1.46030247, Rz8 = −0.99393093, Rz9 = −0.24655762,

In Fig. 2 the second solution is displayed. It was shown that the four lines
containing the four blue line segments, representing the three cables and the line
of action of the gravity force are contained in a hyperboloid.

7 4-Cable Equilibria of 5-Cable Robots

In Sect. 3 the 5-cable equilibria of a 5− 5 cable robot were computed. The ques-
tion arises if those poses of the end effector can be computed where only 4 cables
in tension provide an equilibrium pose, therefore one cable being slack. Compu-
tationally this means that the determinants of all 7 × 7 minors of Jsys have to
vanish. This yields 64 polynomials and one would think that there is no chance to
compute the corresponding variety. Nevertheless, in several computed examples
it turned out that the system consisting of these 64 polynomials and the starting
system sys has two degrees of freedom, meaning that two of the unknowns can
be chosen arbitrarily and then the variety belonging to the remaining system
becomes zero dimensional. After assigning values to two unknowns the system
of 64 polynomials becomes relatively simple with only 54 polynomials remaining.
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z
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x

B3

Fig. 2. Equilibrium pose of 3-3 cable system

Adding these 54 polynomials to sys a total degree Gröbner basis can be com-
puted. This basis contains 58 polynomials. The FGLM algorithm converts this
basis into a lexicographic basis having a univariate polynomial of degree 80 with
only even powers. Back substitution and solving for the remaining unknowns
showed that in the corresponding pose of the end-effector indeed only four out
of the five cables provided equilibrium.

These properties could only be shown in examples, which is of course no
mathematical proof. Therefore we are only able to formulate

Conjecture 1. In a 5 − 5 underconstrained cable system exists a two parameter
set of poses in which only four cables provide equilibrium.

8 Conclusion

In this paper a new approach for solving the DGP of underconstrained cable
robots was presented. Polynomial constraint equations, comprising distance
equations and a local plane equation provided enough information to compute
the DGP of this type of cable manipulator. In examples to was shown that this
description also allows to compute the n− i equilibria of n−n underconstrained
cable manipulators. It has to be admitted that several statements have been
made by observation of examples, which is of course no mathematical proof.
Nevertheless solution algorithms have been developed. Future research will have
to proof the general validity of the presented algorithms.
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Determination of the Cable Span and Cable
Deflection of Cable-Driven Parallel Robots
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Abstract. In this paper, a method is proposed to compute the so-called
cable span, i.e. the space occupied by the cables when the robot is moving
within its workspace. As the cables are attached to a mostly fixed point
on the robot frame, the shape of the cable span is a generalized cone.
We present an efficient method polar sorting to compute the surface of
this cone. Furthermore, the found geometry of the cone is employed in
the design of the cable anchor points in order to dimension its deflection
capabilities and to compute a suitable orientation for the installation of
the mechanical unit.

Keywords: Cable-driven parallel robots · Cable span · Collision ·
Deflection angles · Design · Workspace

1 Introduction

Cable-driven parallel robots possess a number of advantages such as light-weight
design, huge workspace, and excellent dynamic capabilities. These features come
at some costs in terms of difficult geometric design for complex tasks. For a cable
robot, a number of collision problems need to be addressed. Firstly, the problem
of cable-cable collision can significantly reduce the usable workspace and was
extendedly studied (e.g. in [3,6,7,9]). A couple of robot design with so-called
cross-over configurations are proposed that offer a large collision-free workspace
[5,8,13]. Another problem arising from the application of cable robots is related
to the possible collisions of the cables with the environment. Furthermore, the
mechanical design of the cable deflection units with large deflection angles is
involved and applies both to the distal end of the cable at the mobile platform
and to the proximal guiding on the machine frame. The cable-environment inter-
ference as well as the design of the cable guiding are related and discussed within
this paper. To the best of the authors knowledge, no model of the space occu-
pied by the cables has been proposed in the literature beside the pose-dependent
assessment of collisions mentioned in the papers above.

In order to deal with this problem, the cable span is introduced in this paper.
The cable span for one cable is the space occupied by this cable while the plat-
form travels through the robot’s workspace. As shown in the remainder of this
c© Springer International Publishing AG 2018
C. Gosselin et al. (eds.), Cable-Driven Parallel Robots,
Mechanisms and Machine Science 53, DOI 10.1007/978-3-319-61431-1 10
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paper, the cable span is a spatial geometrical object that can be described by a
generalized cone. Clearly, this region must be free of obstacles to avoid a colli-
sion with the cable. Furthermore, the cable span allows to derive the deflection
requirements of the guiding pulleys in the design of the robot.

The rest of the paper is organized as follows. Sect. 2 recalls the basic kine-
matic and workspace issues used in this paper. In Sect. 3, some data structures
for workspace computation are discussed that are essential for the computa-
tion of the cable span. Using the proposed cable span, two applications of the
cable span for robot analysis and design are proposed in Sect. 4. Conclusions are
closing the paper.

2 Background

The kinematic background for the cable robots is briefly reviewed for the sake
of completeness. The kinematic scheme of a cable-driven parallel robot with m
proximal anchor points ai and distal anchor points bi is depicted in Fig. 1. The
vector li represents the cable and it is oriented to start at the platform and point
towards the robot frame. The pose of the platform is represented by the posi-
tion vector r and the rotation matrix R which transforms platform coordinates
from the platform frame KP to world coordinates K0. The considerations in this
paper do not assume a particular parameterization of the rotation matrix, so

ai

bili

fP

τP

r,R

Ai

Bi

K0

KP

Fig. 1. Definition of the geometry and kinematics of a general cable robot
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an arbitrary parameterization can be used. The applied wrench wP = [fTP , τT
P ]T

is composed from the applied force fP and the applied torque τP. Thus, the
kinematic closure equation reads

li = ai − r − Rbi , i = 1, . . . ,m . (1)

As the cable span discussed in this paper is closely related to the workspace
of the cable robot, a criterium needs to be considered to decide if a given pose
(r,R) belongs to the workspace. A couple of criteria are known to account for
properties such as wrench-closure [2,4], wrench feasibility [2,15], generation of a
given wrench set [1], or absence of cable-cable interference [9]. For the procedure
discussed in this paper, the kind and number of criteria is irrelevant. In the case
study, we employ a simple wrench-feasibility test [12]

fMin � 1
2
(fMin + fMax) − A(r,R)+T

(
wP + A(r,R)T

1
2
(fMin + fMax)

)
� fMax , (2)

where fMax, fMax are the vectors of minimum and maximum admissible cable
forces and AT is the pose-dependent structure matrix [14]. The Moore-Penrose
pseudo inverse matrix of AT is denoted given by A+T = A(ATA)−1. Based
on the definitions above, a pose-depended evaluation of the workspace can be
made.

3 Determination of the Cable Span

A well-known disadvantage of parallel robots and especially of cable robots is
that the installation space of the robot is large compared to the workspace. One
reason for this drawback is that the cables occupy a huge volume if the workspace
of the robot is large. This volume that is at least temporarily taken be the cables

workspace

platform

winchs j

KA,i

bi

x y

Fig. 2. Definition of the cable span based on the hull
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is called cable span (Fig. 2). The cable span is a volumetric object for all spatial
robots and a flat area like a fan for a planar robot. Based on the assumption of
the standard cable model that the proximal anchor point is a pose-independent
point in space, it is clear that the cable span for the i-th cable has some kind of
apex at the point Ai.

3.1 Generation of Relevant Poses

In this paper, we assume the workspace that is assessed for the cable span is
determined through discretization. In particular, we assume that the workspace
is either computed by sampling a grid of positions for the translational workspace
or by computing the boundary of the workspace with the hull algorithm [10].

For efficiency reasons, the workspace hull is used in the numerical study to
compute the boundary of the workspace as the boundary is characteristic for
the maximum cable deflections. As the surface of the workspace represents the
extremal region of the workspace, the vertices of the hull include the relevant
points. However, not every point on the workspace boundary is relevant for the
cable span determination.

One can employ the constant orientation workspace or the total orientation
workspace as basis for the determination of the cable span. For the sake of
simplicity, we restrict the following considerations to the constant orientation
workspace with a fixed orientation R0 of the platform and varying position r.
Thus, we assume the workspace W to be given as a set of positions r

W =
{
r ∈ IR3 | g(r) > 0

}
, (3)

where g(r) is a function that evaluates to a positive number if the position r
belongs to the workspace. In this paper, Eq. (2) is used but any other workspace
test can be employed instead. Respectively, one can also vary the orientation
to caption the orientation workspace or the total orientation workspace. As the
follow consideration is purely based on efficiently sorting a set of cable vectors li,
it is straight-forward to extend the algorithm to a discretization of the orientation
workspace.

Using Eq. (1), one receives for each cable i and for the k-th position r in the
set W the respective line l(k)i vectors with k = 1, . . . , N where N is the number
of positions in the set W . Geometrically speaking, this set of curves consists
of line segments starting at the proximal anchor point ai and pointing towards
the workspace. This set basically contains all required information about the
space occupied by the cables. However, as one usually employs many points for
sampling the workspace, an estimate for a volumetrical object is sought that can
be handle more efficiently than all the lines.

In the following we omit the index of the line (i) for the sake of readability
and abbreviate the set of lines vk = −l(k)i which shall represent the common
starting point at ai. Thus, a set of N points V = {v1, . . . ,vN} is the input from
workspace determination and the cable span shall be computed.
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3.2 Sorting the Line Segments

Once the relevant lines from the proximal anchor point ai to the respective world
coordinates of the distal anchor points bi(r,R) are determined, the structure of
this bunch of lines has to be determined.

In this paper, an algorithm called polar sorting is proposed to extract the
relevant structure from the lines. The main steps are the following

1. Determine an estimate of the cone axis
2. Construct a coordinate system located at ai with its z-axis aligned with the

cone axis
3. Transform all lines vi in V into this coordinate frame
4. Compute polar coordinates for the lines V
5. Sort the vertices in V by the azimuth angle ϕ
6. Cluster the vertices in nS equal classes by intervals of the azimuth angle and

approximate the enclosing cone by extracting the largest deflection angle in
that interval

7. Return the surface of the generalized cone consisting of the apex at ai and
the nS characteristic vertices on its mantle of the cone

After this procedure, one has a simple triangulation with nS triangles of the cable
span that can be used in a number of applications.

3.3 Computing the Cable Span

From the structure of the workspace hull, we have an estimate used as projection
center m or can compute the barycenter of the workspace W . If the center is
unknown or a grid computation was employed, the mean value of the positions

m =
1
N

N∑
j=1

ri (4)

is used instead. Now, the central line from ai to m is employed as axis of the
cone and the polar decomposition aims at sorting all the lines in the span around
this central line.

Then, a coordinate frame KA,i is constructed at point Ai which z-axis is
aligned with the (estimated) cone axis eZ = m−ai. The x-axis represented by the
vector eX is perpendicular to the z-axis but has an additional degree of freedom
that can be chosen arbitrarily. If a panning pulley is used for guiding the cable,
it is beneficial to define the x-axis orthogonal to the first axis of the panning
pulley e.g. orthogonal to the axis the pulley is panned about. The remaining y-
axis is computed from the cross product eY = eZ×eX. The transformation matrix
is then derived from the normalized vectors (eX, eY, eZ). This transformation is
represented in terms of the transformation matrix A,iR0 that maps vectors in
world frame K0 to the local frame KA,i.

Based on the considerations of the workspace boundary, one can eas-
ily compute the cable span for the constant orientation workspace. The set
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W = (r1, . . . , rN ) contains the N position of the workspace as introduced above.
Then, one receives the world coordinates for all possible locations for the point
Bi from

v′
j = R0bi + rj for j = 1, . . . , N (5)

which is simply a translation of the hull by bi. The cable span is approximated
from connecting the point Ai with each of the vectors v′

j . The resulting geomet-
rical object is a generalized cone with a noncircular cross-section where most of
the lines defined above are lying inside the cone. To normalize the representa-
tion and also to reduce the amount of data, a polar decomposition of the lines is
proposed and described below.

The N lines of the span are distributed in nS polar segments (Fig. 3) in the
frame KA,i. Firstly, each line is transformed into the local frame KA,i by

A,isj =A,i R(v′
j − ai) . (6)

Then, the spherical coordinates s(C)j are computed from

s(C)j =

⎡
⎣ r

θ
ϕ

⎤
⎦

j

=

⎡
⎢⎢⎢⎣

√
s2X + s2Y + s2Z

arccos sZ√
s2X + s2Y + s2Z

arctan 2(sY, sX)

⎤
⎥⎥⎥⎦

j

with A,isj = [sX, sY, sZ]T . (7)

These spherical coordinates s(C)j allow for a simple extraction of the cable span.
The N line vectors are sorted in ascending order of their ϕ-value (Fig. 3). This
sorting may effortlessly be done by storing the data in an associative container

θ

ϕ

1 1

1

2

3
4

5

6

7

8

9
10

12

Fig. 3. Polar decomposition of the cable vector to compute the cone of the cable span
for nS = 12 segments
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offered by most programming languages1. Then, nS segments of equal size are
chosen for the angle ϕ that represent the ranges

Si =
[
i 2π

nS

,
(i + 1)2π

nS

]
i

i = 0, . . . , (nS − 1) . (8)

Finally, one loops through the sorted list s(C)j of cylinder coordinates and extracts
for each range Si the matching element with

s(C)j

∣∣∣
ϕ∈Si

(9)

and stores the largest angle θ for all line vectors that belong to the respective
segment. After this procedure, one has a sorted list of nS characteristic vectors
of the surface of the cable span. Connecting two neighboring vectors with the
apex at KA,i gives a triangulation of the surface of the cable span. Exporting
this triangulation to STL or VRML is straight forward and allows to use results
within CAD systems. The list of the angles over the polar coordinate is basically
a look-up table to check if a vector is inside the cone.

4 Application

In this section, a case study for determination of the cable span is presented.
The case study is based on the IPAnema 1 robot geometry as given in Table 1.
For the case studies, the translational workspace with a constant orientation of
R0 = I is considered.

4.1 Geometric Cable Span

In Fig. 4 the cable span is visualized in polar coordinates. The points in the plot
indicate the unfiltered data (258 vertices) received from the workspace evalua-
tion. The circumferential red line is drawn from the 36 vertices received from
polar sorting.

In order to assess the computational performance, the same computation was
executed with a higher number of vertices. The computation time for the cable
span of all eight cables for 16 386 vertices on the workspace hull was determined
to be 51 ms (on Intel Core i5-5200U at 2.2 GHz) while the workspace determina-
tion consumed some 1050 ms of CPU time. Thus, the determination of the cable
span is cheap in terms of computation efforts.

1 The effort for this kind of sorting is log(N) for each element and it is internally done
when using associative containers such as dict in Python or map in C++.
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Table 1. Nominal geometric parameters in terms of base vectors ai and platform
vectors bi for the IPAnema 1 robot.

Cable i Base vector ai Platform vector bi

1 [−2.0, 1.5, 2.0]T [−0.06, 0.06, 0.0]T

2 [2.0, 1.5, 2.0]T [0.06, 0.06, 0.0]T

3 [2.0,−1.5, 2.0]T [0.06,−0.06, 0.0]T

4 [−2.0,−1.5, 2.0]T [−0.06,−0.06, 0.0]T

5 [−2.0, 1.5, 0.0]T [−0.06, 0.06, 0.0]T

6 [2.0, 1.5, 0.0]T [0.06, 0.06, 0.0]T

7 [2.0,−1.5, 0.0]T [0.06,−0.06, 0.0]T

8 [−2.0,−1.5, 0.0]T [−0.06,−0.06, 0.0]T

Fig. 4. Plot of the cable span in polar coordinates of frame KA,1 (Color figure online)

4.2 Deflection Angles for Anchor Points

Another application of the cable span lies in the dimensioning of the panning
pulley unit on the machine frame of the robot. This supports the mechanical
design of the cable robot when the initial position of the cable guiding system
needs to be defined. Using the computation of the cable span, one maps the
extremal values with the pulley kinematics function [11].

Figures 5 and 6 show the actually occurring deflection angles βR,1 and γR,1 in
the pulley mechanism for the IPAnema 1 robot. The sample poses are chosen
from the hull of the workspace thus covering the extremal positions of the pulley.
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γR

βR

Fig. 5. Deflection angles βR and γR for the first winches of the IPAnema 1 robot
throughout the workspace.

Fig. 6. Actual proximal anchor points C1 where the cable leaves the pulley in the local
frame KA,1

One can see that the panning angle γR of the pulley is in the range [−π
2 ; 0] thus

pointing to the inside of the machine frame. The considered winch i = 1 is an
upper winch located at the top of the robot frame. Thus, the wrapping angle is
βR,1 ∈ [Π

2 ;π] where the cable always wraps at least a quarter of the pulley. Only
a small part of the toroidal surface is actually used. The region where the point
Ci may be located is notably smaller than the torus.
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A similar consideration is applied to the platform. If we consider only the trans-
lational workspace, the deflection angles on the platform are essentially the same
as for the proximal anchor point but with inverted sign (see Fig. 2). For the distal
anchor point Bi, two mechanical constructions are widespread, the use of univer-
sal/spherical joints at the end of the cable and swivel bolts (see Fig. 7). Their main
difference lies in the admissible deflection of the cable with respect to the instal-
lation orientation. For universal and spherical joints, the preferred attack angle is
within a cone where an attack angle of 0◦ is optimal. This installation orientation of
the joint shall thus be alignedwith the central axis of the cable span for proper oper-
ation and the deflection angles shall lie inside the cable span. In contrast, swivel
bolts allow for very large deflection angles which can even exceed 90◦. However,
the swivel bolt has a singular configuration when the direction of the cable and the
first axis of the swivel bolt is aligned. Therefore, a sufficient diagonal pull on the
swivel bolt must be guaranteed (see Fig. 7). In this setting, the generalized cone
computed from the cable span must be placed within the range of γMin and γMax.

KP

li

ui

γmax

Bi

biezB,i KP

li

ui

γmax

γmin

Bi

bi
ezB,i

spherical joints swivel bolt

Fig. 7. Feasible deflection angles (gray area left of the platform) for the cable on the
platform for spherical joints and swivel bolts

5 Conclusion

In this paper, the concept cable span is introduced and an efficient algorithm
for the determination of the region occupied by the cables is presented. As the
geometric structure of the cable span is a generalized cone, it can be represented
as a triangulation of its shell surface. This object can be used in CAD planning
to study interference with other equipment. Furthermore, the cable span is a
useful concept to design the cable guiding system in order to choose feasible
orientation value for the axis of the pulleys.
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Abstract. Cable-Driven Parallel Robots (CDPRs) are a type of par-
allel robots that have the particularity of using cables as legs. CDPRs
have several advantages such as large workspaces, high acceleration and
high payload capacity. However, CDPRs present also some drawbacks
such as the possible collisions between their cables and environment.
Therefore, this paper is about the geometric determination of the cable-
cylinder interference regions in the workspace of a CDPR. The cables
are considered massless and straight. Then, the boundaries of the inter-
ference regions onto the cylinder form a closed loop composed of arcs
and straight line segments that can be expressed symbolically. Those
geometric entities generate truncated cones and planes corresponding to
the boundaries of the volume of interferences. Finally, a methodology is
described to trace the cable-cylinder interference free constant orienta-
tion workspace of CDPRs.

1 Introduction

Cable-driven parallel robots (CDPRs) have received increasing attention from
researchers during the last 20 years, in part because of their large workspace and
low mass in motion. CDPR workspaces such as the Wrench Closure Workspace
[1,2] or the Wrench Feasible Workspace [3] have been widely studied. These
workspaces allow the visualisation of the volume over which the moving-platform
can sustain certain external wrenches. The Twist Feasible Workspace [4] and
the Dynamic Feasible Workspace [5] have also been defined in the literature
in order to evaluate the capability of a CDPR to perform required twists and
accelerations.

One of the main drawbacks of CDPRs is the potential risk of collisions (also
called interferences) between their cables and their environment. Although such
collisions may occur in many industrial operations, there have been few papers
c© Springer International Publishing AG 2018
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Mechanisms and Machine Science 53, DOI 10.1007/978-3-319-61431-1 11
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in the literature dealing with this issue. Moreover interferences usually reduce
the size of the CDPR workspace [6]. For instance, for industrial operations over
a large workspace and in a cluttered environment such as that shown in Fig. 1,
the workspace of the CDPR is dramatically reduced because of the possible
collisions between the cables and the tubes of the large truss [7]. Another relevant
application is detailed in reference [8], where two CDPRs are working side by
side, and collisions between cables can occur. In [9], four types of interferences
are defined:

1. Collisions between two cables.
2. Collisions between a cable and the platform.
3. Collisions between a cable and the environment.
4. Collisions between the platform and the environment.

The first two types of collisions were studied in [9,10] for a moving-platform
described by a set of triangles. A geometric method to compute the interference-
free constant-orientation workspace of CDPRs was introduced in [11] while con-
sidering the cable-cable and cable-platform interferences. This method has been
used to develop the ARACHNIS interface [12], which aims to help robot design-
ers trace CDPR workspaces and find optimal dimensions for their good under
design. In the foregoing works, cables have been considered massless and straight.
A recent paper from Wang et al. [13] describes an algorithm to trace the Col-
lisions Free Force Closure Workspace of a CDPR working in a cluttered envi-
ronment. This algorithm, which uses the convex hull approach, turns out to be
time consuming, mainly when the cluttered environment is known beforehand.

This paper deals with the geometric determination of cable-cylinder inter-
ference regions in the CDPR workspace. A mathematical description of the

Fig. 1. CAROCA prototype: a reconfigurable cable-driven parallel robot working in a
cluttered environment (Courtesy of IRT Jules Verne and STX France)
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boundaries of those regions is obtained for a constant orientation of the moving-
platform. The paper is organized as follows. Section 2 deals with the determina-
tion of interference region between one cable and a cylinder. Section 3 describes
the method proposed to find the interference-free constant-orientation workspace
of a cable-driven parallel robot while considering the collisions between its cables
and a cylinder. Finally, the determination of the interference regions between the
cables of the CAROCA prototype [7] and a cylinder highlights the contributions
of this paper.

2 Interference Region Between a Cable and a Cylinder

Due to their large workspaces, CDPRs can be used to perform maintenance
operations on large structures such as bridges. For instance, Fig. 1 shows a CPDR
working inside a tubular truss. In those cases, interferences between the CDPR
cables and the cylinders forming the structure are the main limitation on the
workspace.

2.1 Parametrisation

As shown in Fig. 2, the ith cable of a CDPR is attached to the moving-platform
at anchor point Bi. Its length is controlled by an actuated reel whose exit point
Ai is fixed to the base. The base frame is denoted Fb = (O,xb,yb, zb). Frame
Fp = (P,xp,yp, zp) is attached to the moving-platform. The cylinder C with
base point C, radius rc, length lc and axis AC is located inside the working area
of a CDPR, fixed to its base.

This section aims at determining for a given orientation of the moving-
platform, the positions of P that lead to collisions between cable Ci and cylinder
C . Here, the cable is assumed to be straight, with a negligible cross-section. The
interference point between cable Ci and cylinder C is named I. pc,i denotes the
Cartesian coordinate vector of point I expressed in the base frame Fb.

The proposed strategy for determining and tracing the region of interfer-
ence between Ci and C consists in moving point P while maintaining contact I
between the line segment and the cylinder. In doing so, point P sweeps a conical
surface in space, while point I makes a closed loop on the surface of C . Interfer-
ences between Ci and C can occur in two ways: either the interference point I
lies on the cylindrical surface of C , either it lies on one of its two circular edges.

2.2 Boundaries of the Cable-Cylinder Interference Region

The type of closed-loop trajectory followed by I through this sweeping motion
depends on the location of Ai with respect to C . One finds five zones for the
location of Ai, which correspond to three types of closed loop trajectories of I
over the surface of C . Figure 3 represents a section of the top half of the cylinder
with the five zones in question. Its bottom half is the mirror image of the top
one with respect to axis AC .
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It is noteworthy that the types of point I trajectories when exit point Ai

belongs to zones Z
′
2 and Z

′
3 are the same as when exit point Ai belongs to

zones Z2 and Z3, respectively. For zones Z1 and Z2, the interference regions
between the ith cable Ci and the cylindrical part of C are considered. Then, the
interference regions between Ci and the endcaps of C are obtained. For zone Z3,
only this second part is needed.

2.2.1 Interferences Between Cable Ci and the Cylindrical Part of C

The boundaries of the interference region between cable Ci and the cylindrical
part of cylinder C describe the points where a straight line coming from exit
point Ai is tangent to the cylinder C . As the interference point I belongs to the
cylinder C , we can write:

pc,i = pc + αcac + Q(ac, θc)rc (1)
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where pc is the Cartesian coordinate vector of point C, depicted in Fig. 2, αc is
a scalar bounded between 0 and 1 and represents the location of point I along
the cylinder axis AC . rc is a vector normal to axis AC . Therefore, the following
equation holds:

aTc rc = 0 (2)

Q(ac, θc) is the rotation matrix of vector rc about AC by an angle θc.

Accordingly, the tangency condition between the ith cable Ci and the cylin-
drical part of cylinder C is expressed as:

(pc,i − ai)T (Q(ac, θc)rc) = 0 (3)

From Eqs. (2) and (3), angle θc can take two values, namely,{
Q(ac, θ+c )rc = ηcac × (pc,i − ai),

Q(ac, θ−
c )rc = −ηcac × (pc,i − ai).

(4)

where ηc =
rc

‖ac × (pc,i − ai)‖2 . For the sake of conciseness, Q(ac, θ+c )rc and

Q(ac, θ−
c )rc are denoted as r+c and r−

c , respectively. Therefore θ+c and θ−
c take

the form: ⎧⎪⎪⎪⎨
⎪⎪⎪⎩

θ+c = arccos
(

rcT r+c
||rc|| · ||r+c ||

)
,

θ−
c = arccos

(
rcT r−

c

||rc|| · ||r−
c ||

)
.

(5)

Upon introducing the position vector of point I of Eq. (1) into Eq. (4), we
obtain: {

r+c = ηcAc(pc,i + αcac + r+c − ai),

r−
c = −ηcAc(pc,i + αcac + r−

c − ai).
(6)

Ac being the cross-product matrix1 of vector ac. By solving Eq. (6), r+c and
r−
c take the form: ⎧⎪⎨

⎪⎩
r+c =

ηc
1 + l2c

(rcA2
c + Ac)(pc,i − ai),

r−
c =

ηc
1 + l2c

(rcA2
c − Ac)(pc,i − ai).

(7)

As a result, the boundaries of the interference region between cable Ci and
the cylindrical part of C can be expressed as:{

p+
c,i = pc + αcac + r+c

p−
c,i = pc + αcac + r−

c

(8)

with αc being a scalar lying between 0 and 1. The edges of the corresponding
line segments are named I+n and I−

n for αc = 0, and I+f and I−
f for αc = 1 as

illustrated in Fig. 4.
1 The cross-product matrix Y of y is defined as δ(y × x) \ δx for any x,y ∈ R

3
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2.2.2 Interferences with the Endcaps

For the second point, the interferences with the endcaps of the cylinder are
studied. The question is to find how to connect I+n to I−

n and I+f to I−
f . Those

connections change depending on the zone to which Ai belongs to. In Z1, the
curve linking I+n to I−

n is an arc starting from I−
n and going to I+n . The result is

the same for I+f and I−
f . We obtain the equations:

{
pn
c,i = pc + Q(ac, θc)r−

c ,

pf
c,i = pc + ac + Q(ac, θc)r−

c .
(9)

with θc lying in the interval [0, θ+c − θ−
c ]. The result is shown in Fig. 5(a).

For Z2, the behavior is different for the nearest endcap. This time, the arc
to take into account starts from I+n and goes to I−

n . The equations become:{
pn
c,i = pc + Q(ac, θc)r+c θc ∈[0, 2π − (θ+c − θ−

c )]

pf
c,i = pc + ac + Q(ac, θc)r−

c θc ∈[0, θ+c − θ−
c ]

(10)

C

Ai

I−n
I+n

I−f
I+f

Fig. 4. Boundaries of the interference region between cable Ci and the cylindrical
part of C

C

Ai

C

Ai

(a) (b)

Fig. 5. Boundaries in (a) Z1 and (b) Z2
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The result is shown in Fig. 5(b).
When Ai is in Z3, the tangency condition of Eq. (3) is no longer satisfied.

In that case, the boundaries of the interference volume for the entire cylinder
is the same as the one with the nearest endcap alone. The result is the circle
defined by:

pn
c,i = pc + Q(ac, θc)rc, θc ∈ [0, 2π] (11)

In each case, the boundaries are either straight lines or arcs. The interference
volume obtained from those geometric forms are detailed in the following section.

2.3 Interferences with Straight Line Segments and Arcs

As seen above, from point Ai,the closed-loop trajectory followed by I is com-
posed of straight line and arc segments. Since a cable is considered straight
without deformation, a line coming from Ai and following this shape will draw
the external boundary of the interference volume.

In the case of the straight line between I+n and I+f (I−
n and I−

f respectively),
the boundary is the infinite triangle originating from Ai and passing by those
two points. Since the extremity Bi of the cable needs to be after the cylinder for
having a possible collision, this triangle is truncated by the segment [I+n I+f ].

For the arc between I+n and I−
n (I+f and I−

f respectively), the result will be
an oblique cone, truncated twice:

• Once by the plane defined by points Ai, I+n and I−
n .

• Once by the plane defined by points C, I+n and I−
n .

Finally, the part of the cylinder closest to Ai and inside the lines detailed
above need to be taken into account, to close the surface delimiting the inter-
ference volume. This part of the cylinder is easily obtained from the results of
Sect. 2.2. Two examples are shown in Fig. 6 when the exit point of the winch is
in zone Z1, and in zone Z2.

C

Ai

C

Ai

(a) (b)

Fig. 6. Interference regions when Ai is in (a) Z1 and (b) Z2
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3 Interferences Between the Cables of a CDPR
and a Cylinder

In this section, the geometric model of a CDPR is detailed in Sect. 3.1. The
interference volume between one cable and a cylinder obtained in Sect. 2 can then
be coupled with this model to obtain in Sect. 3.2 the positions of the platform
for which at least one cable is in collision with the cylinder.

3.1 Geometric Modeling

In Fig. 2, one can see the platform of a CDPR with cable Ci attached to it at
point Bi. The exit point of the winch controlling its length is Ai. From this,
by considering the cable as a straight line, a loop-closure equation gives the
following geometric model:

ci = ai − p − Rbi (12)

where R refers to the rotation matrix that transforms the global frame Fb to
the frame attached to the mobile platform Fp.

3.2 Interferences

Since the interference point between cable Ci and the cylinder belongs to both
objects, its position can be expressed either by Eq. (1) or by:

pc,i = p + Rbi + γici (13)

where γi is an scalar bounded between 0 and 1 defining the position of the
interference point. 0 means that the collision occurs at point Bi, 1 in means that
it happens at point Ai. The combination of Eqs. (1) and (13) leads the following
equation:

p + Rbi + γici = pc + αcac + Q(ac, θc)rc (14)

Upon substituting the expression of ci defined in Eq. (12) into Eq. (14), we
obtain:

p = ai − Rbi +
1

1 − γi
(pc − ai) +

1
1 − γi

(αcac + Q(ac, θc)rc). (15)

This equation is valid for γi �= 1. It is the case when the collision happens
at the exit point of the winch, which can easily be avoided at the design phase
since this point is not moving. By changing the values of αc and θc according to
Sect. 2, we obtain the volume in which the position p of the platform generates
an interference with cable Ci. This method needs to be applied for each cable-
cylinder combination to obtain the interference region of the entire CDPR.
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3.3 CAROCA Prototype-Cylinder Interference Region

Gagliardini et al. [7] introduced a method to manage the discrete reconfigurations
of a CDPR, in order to use the latter for sandblasting and painting the outer
part and the inner part of a large tubular structure with a minimal number of
reconfigurations. This is a typical cluttered environment for which the method
presented in this paper should help simplify the reconfiguration planning of the
CDPR.

Fig. 7 represents a CDPR with one of the configurations obtained in [7]. The
tubular structure is replaced with a single cylinder, to simplify the analysis of the

Fig. 7. One configuration of the reconfigurable CAROCA prototype and a cylinder in
its working are

Fig. 8. Locations of the geometric center of the CAROCA mobile platform leading to
some cable-cylinder interferences
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interference regions. The results are shown in Fig. 8. For the cylinder included
into the working area of the CDPR, eight interferences regions, namely one for
each cable, are obtained. It is noteworthy that those regions are valid for a
constant orientation of the mobile-platform.

4 Conclusion

The paper dealt with the geometric determination of the cable-cylinder interfer-
ence regions in the workspace of a CDPR. First, a methodology was described
to determine in a closed-form the boundaries of the interference region between
a cable and a cylinder. The latter is first split into three parts, its two endcaps
and the rest of the cylinder. By considering the cable tangent to the cylinder
on the boundaries of the interference region, four points are obtained. Those
points are connected by a straight segment along the cylinder, and two arcs
along its endcaps depending on the position of the cable exit point with respect
to the cylinder. Five zones for this position are defined, each one corresponds to
a different arc segment to be taken into account to draw the boundaries of the
interference region. Those line and arc segments generate truncated planes and
oblique cones shapes, forming the boundaries of the interference volume with a
part of the cylinder. Then, the cable-cylinder interference free constant orienta-
tion workspace of a cable-driven parallel robot can be traced while considering
one or several cylinder(s) within the working area. As an illustrative example,
the cable-cylinder interference free constant orientation workspace of the recon-
figurable CAROCA prototype has been traced while considering a cylinder in
its environment. An add-on feature to trace the cable-cylinder interference free
constant orientation workspace of any cable-driven parallel robot will be imple-
mented in ARACHNIS software [12] in future work. Finally, the contributions
of this paper should ease the design of new cable-driven parallel robots working
in a cluttered environment.

Acknowledgements. The financial support of the RFI ATLANSTIC 2020 CRE-
ATOR project is greatly acknowledged.

References

1. Gouttefarde, M., Gosselin, C.: On the properties and the determination of the
wrench-closure workspace of planar parallel cable-driven mechanisms. In: ASME
2004 International Design Engineering Technical Conferences and Computers and
Information in Engineering Conference, pp. 337–346. American Society of Mechan-
ical Engineers (2004)

2. Stump, E., Kumar, V.: Workspaces of cable-actuated parallel manipulators. J.
Mech. Des. 128(1), 159 (2006)

3. Gouttefarde, M., Merlet, J.-P., Daney, D.: Wrench-feasible workspace of parallel
cable-driven mechanisms. In: 2007 IEEE International Conference on Robotics and
Automation, pp. 1492–1497. IEEE (2007)



Cable-Cylinder Interference Regions in CDPR Workspace 127

4. Gagliardini, L., Caro, S., Gouttefarde, M.: Dimensioning of cable-driven parallel
robot actuators, gearboxes and winches according to the twist feasible workspace.
In: 2015 IEEE International Conference on Automation Science and Engineering
(CASE), pp. 99–105. IEEE (2015)

5. Barrette, G., Gosselin, C.M.: Determination of the dynamic workspace of cable-
driven planar parallel mechanisms. J. Mech. Des. 127(2), 242 (2005)

6. Williams, R.L., Gallina, P.: Planar cable-direct-driven robots, part i: Kinematics
and statics. In: Proceedings of the 2001 ASME Design Technical Conference, 27th
Design Automation Conference, pp. 178–186 (2001)

7. Gagliardini, L., Caro, S., Gouttefarde, M., Girin, A.: Discrete reconfiguration plan-
ning for cable-driven parallel robots. Mech. Mach. Theory 100, 313–337 (2016)

8. Otis, M.J.-D., Perreault, S., Nguyen-Dang, T.-L., Lambert, P., Gouttefarde, M.,
Laurendeau, D., Gosselin, C.: Determination and management of cable interfer-
ences between two 6-DOF foot platforms in a cable-driven locomotion interface.
IEEE Trans. Syst. Man Cybern. Part A Syst. Hum. 39(3), 528–544 (2009)

9. Nguyen, D.Q., Gouttefarde, M.: On the improvement of cable collision detec-
tion algorithms. In: Pott, A., Bruckmann, T. (eds.) Cable-Driven Parallel Robots.
Mechanisms and Machine Science, vol. 32, pp. 29–40. Springer, Heidelberg (2015).
doi:10.1007/978-3-319-09489-2 3

10. Merlet, J.-P.: Analysis of the influence of wires interference on the workspace of
wire robots. In: On Advances in Robot Kinematics, pp. 211–218. Springer (2004)

11. Perreault, S., Cardou, P., Gosselin, C.M., Otis, M.J.-D.: Geometric determina-
tion of the interference-free constant-orientation workspace of parallel cable-driven
mechanisms. J. Mech. Robot. 2(3), 031016 (2010)

12. Ruiz, A.L.C., Caro, S., Cardou, P., Guay, F.: ARACHNIS: Analysis of robots actu-
ated by cables with handy and neat interface software. In: Cable-Driven Parallel
Robots, pp. 293–305. Springer (2015)

13. Wang, B., Zi, B., Qian, S., Zhang, D.: Collision free force closure workspace deter-
mination of reconfigurable planar cable driven parallel robot. In: 2016 Asia-Pacific
Conference on Intelligent Robot Systems (ACIRS), pp. 26–30, July 2016
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and Philippe Cardou4
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Abstract. Although several papers addressed the wrench capabilities
of cable-driven parallel robots (CDPRs), few have tackled the dual ques-
tion of their twist capabilities. In this paper, these twist capabilities are
evaluated by means of the more specific concept of twist feasibility, which
was defined by Gagliardini et al. in a previous work. A CDPR posture is
called twist-feasible if all the twists (point-velocity and angular-velocity
combinations), within a given set, can be produced at the CDPR mobile
platform, within given actuator speed limits. Two problems are solved
in this paper: (1) determining the set of required cable winding speeds
at the CDPR winches being given a prescribed set of required mobile
platform twists; and (2) determining the set of available twists at the
CDPR mobile platform from the available cable winding speeds at its
winches. The solutions to both problems can be used to determine the
twist feasibility of n-degree-of-freedom (DOF) CDPRs driven by m ≥ n
cables. An example is presented, where the twist-feasible workspace of a
simple CDPR with n = 2 DOF and driven by m = 3 cables is computed
to illustrate the proposed method.

1 Introduction

A cable-driven parallel robot (CDPR) consists of a base frame, a mobile platform,
and a set of cables connecting in parallel the mobile platform to the base frame.
The cable lengths or tensions can be adjusted by means of winches and a number
of pulleys may be used to route the cables from the winches to the mobile
platform. Among other advantages, CDPRs with very large workspaces, e.g.
c© Springer International Publishing AG 2018
C. Gosselin et al. (eds.), Cable-Driven Parallel Robots,
Mechanisms and Machine Science 53, DOI 10.1007/978-3-319-61431-1 12
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[12,17], heavy payloads capabilities [1], or reconfiguration capabilities, e.g. [8,21]
can be designed. Moreover, the moving parts of CDPRs being relatively light
weight, fast motions of the mobile platform can be obtained, e.g. [15].

The cables of a CDPR can only pull and not push on the mobile plat-
form and their tension shall not become larger than some maximum admissible
value. Hence, for a given mobile platform pose, the determination of the feasible
wrenches at the platform is a fundamental issue, which has been the subject of
several previous works, e.g. [3,13]. A relevant issue is then to determine the set
of wrench feasible poses, i.e., the so-called Wrench-Feasible Workspace (WFW)
[2,19], since the shape and size of the latter highly depends on the cable ten-
sion bounds and on the CDPR geometry [22]. Another issue which may strongly
restrict the usable workspace of a CDPR or, divide it into several disjoint parts,
are cable interferences. Therefore, software tools allowing the determination of
the interference-free workspace and of the WFW have been proposed, e.g. [4,18].
Besides, recently, a study on acceleration capabilities was proposed in [5,9].

As noted in [7] and as well known, in addition to wrench feasibility, the
design of the winches of a CDPR also requires the consideration of cable and
mobile platform velocities since the selection of the winch characteristics (motors,
gearboxes, and drums) has to deal with a trade-off between torque and speed.
Twist feasibility is then the study of the relationship between the feasible mobile
platform twists (linear and angular velocities) and the admissible cable coil-
ing/uncoiling speeds. In the following, the cable coiling/uncoiling speeds are
loosely referred to as cable velocities. The main purpose of this paper is to clar-
ify the analysis of twist feasibility and of the related twist-feasible workspace
proposed in [7]. Contrary to [7], the twist feasibility analysis proposed here is
based on the usual CDPR differential kinematics where the Jacobian matrix
maps the mobile platform twist into the cable velocities. This approach is most
important for redundantly actuated CDPRs, whose Jacobian matrix is rectan-
gular.

A number of concepts in this paper are known, notably from manipulability
ellipsoids of serial robots, e.g. [23], and from studies on the velocity performance
of parallel robots, e.g. [16]. A review of these works is however out of the scope of
the present paper whose contribution boils down to a synthetic twist feasibility
analysis of n-degrees-of-freedom (DOF) CDPRs driven by m cables, with m ≥ n.
The CDPR can be fully constrained or not, and the cable mass and elasticity
are neglected.

The paper is organized as follows. The usual CDPR wrench and Jacobian
matrices are defined in Sect. 2. Section 3 presents the twist feasibility analysis,
which consists in solving two problems. The first one is the determination of the
set of cable velocities corresponding to a given set of required mobile platform
twists (Sect. 3.1). The second problem is the opposite since it is defined as the
calculation of the set of mobile platform twists corresponding to a given set of
cable velocities (Sect. 3.2). The twist and cable velocity sets considered in this
paper are convex polytopes. In Sect. 4, a 2-DOF point-mass CDPR driven by 3
cables is considered to illustrate the twist feasibility analysis. Section 5 concludes
the paper.
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Fig. 1. Geometric description of a fully constrained CDPR

2 Wrench and Jacobian Matrices

In this section, the well-known wrench matrix and Jacobian matrix of n-DOF
m-cable CDPRs are defined. The wrench matrix maps the cable tensions into
the wrench applied by the cables on the CDPR mobile platform. The Jacobian
matrix relates the time derivatives of the cable lengths to the twist of the mobile
platform. These two matrices are essentially the same since one is minus the
transpose of the other.

Some notations and definitions are first introduced. As illustrated in Fig. 1,
let us consider a fixed reference frame, Fb, of origin Ob and axes xb, yb and
zb. The coordinate vectors bai, i = 1, . . . ,m define the positions of the exit
points, Ai, i = 1, . . . ,m, with respect to frame Fb. Ai is the point where the
cable exits the base frame and extends toward the mobile platform. In this
paper, the exit points Ai are assumed to be fixed, i.e., the motion of the output
pulleys is neglected. A frame Fp, of origin Op and axes xp, yp and zp, is attached
to the mobile platform. The vectors pbi, i = 1, . . . ,m are the position vectors of
the points Bi in Fp. The cables are attached to the mobile platform at points
Bi.

The vector bli from Bi to Ai is given by

bli = bai − p − R pbi, i = 1, . . . , m (1)

where R is the rotation matrix defining the orientation of the mobile platform,
i.e., the orientation of Fp in Fb, and p is the position vector of Fp in Fb.
The length of the straight line segment AiBi is li = ||bli||2 where || · ||2 is
the Euclidean norm. Neglecting the cable mass, li corresponds to the length of
the cable segment from point Ai to point Bi. Moreover, neglecting the cable
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elasticity, li is the “active” length of the cable that should be unwound from the
winch drum. The unit vectors along the cable segment AiBi is given by

bdi = bli/li , i = 1, . . . ,m (2)

Since the cable mass is neglected in this paper, the force applied by the
cable on the platform is equal to τi

bdi, τi being the cable tension. The static
equilibrium of the CDPR platform can then be written [14,20]

Wτ + we = 0 (3)

where we is the external wrench acting on the platform, τ = [τ1, . . . , τm]T is the
vector of cable tensions, and W is the wrench matrix. The latter is an n × m
matrix defined as

W =
[

bd1
bd2 . . . bdm

Rpb1 × bd1 Rpb2 × bd2 . . . Rpbm × bdm

]
(4)

The differential kinematics of the CDPR establishes the relationship between
the twist t of the mobile platform and the time derivatives of the cable lengths l̇

Jt = l̇ (5)

where J is the m×n Jacobian matrix and l̇ =
[
l̇1, . . . , l̇m

]T
. The twist t = [ṗ,ω]T

is composed of the velocity ṗ of the origin of frame Fp with respect to Fb and
of the angular velocity ω of the mobile platform with respect to Fb. Moreover,
the well-known kineto-statics duality leads to

J = −WT (6)

In the remainder of this paper, l̇ is loosely referred to as cable velocities. The
wrench and Jacobian matrices depend on the geometric parameters ai and bi of
the CDPR and on the mobile platform pose, namely on R and p.

3 Twist Feasibility Analysis

This section contains the contribution of the paper, namely, a twist feasibility
analysis which consists in solving the following two problems.

1. For a given pose of the mobile platform of a CDPR and being given a set
[t]r of required mobile platform twists, determine the corresponding set of
cable velocities l̇. The set of cable velocities to be determined is called the
Required Cable Velocity Set (RCVS) and is denoted

[
l̇
]
r
. The set [t]r is called

the Required Twist Set (RTS).
2. For a given pose of the mobile platform of a CDPR and being given a set

[
l̇
]
a

of available (admissible) cable velocities, determine the corresponding set of
mobile platform twists t. The former set,

[
l̇
]
a
, is called the Available Cable

Velocity Set (ACVS) while the latter is denoted [t]a and called the Available
Twist Set (ATS).
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In this paper, the discussion is limited to the cases where both the RTS [t]r
and the ACVS

[
l̇
]
a

are convex polytopes.
Solving the first problem provides the RCVS from which the maximum values

of the cable velocities required to produce the given RTS [t]r can be directly
deduced. If the winch characteristics are to be determined, the RCVS allows to
determine the required speeds of the CDPR winches. If the winch characteristics
are already known, the RCVS allows to test whether or not the given RTS is
feasible.

Solving the second problem provides the ATS which is the set of twists that
can be produced at the mobile platform. It is thus useful either to determine
the velocity capabilities of a CDPR or to check whether or not a given RTS is
feasible.

Note that the feasibility of a given RTS can be tested either in the cable
velocity space, by solving the first problem, or in the space of platform twists, by
solving the second problem. Besides, note also that the twist feasibility analysis
described above does not account for the dynamics of the CDPR.

3.1 Problem 1: Required Cable Velocity Set (RCVS)

The relationship between the mobile platform twist t and the cable velocities
l̇ is the differential kinematics in (5). According to this equation, the RCVS[
l̇
]
r

is defined as the image of the convex polytope [t]r under the linear map J.

Consequently,
[
l̇
]
r

is also a convex polytope [24].

Moreover, if [t]r is a box, the RCVS
[
l̇
]
r

is a particular type of polytope
called a zonotope. Such a transformation of a box into a zonotope has previously
been studied in CDPR wrench feasibility analysis [3,10,11]. Indeed, a box of
admissible cable tensions is mapped by the wrench matrix W into a zonotope in
the space of platform wrenches. However, a difference lies in the dimensions of
the matrices J and W, J being of dimensions m×n while W is an n×m matrix,
where n ≤ m. When n < m, on the one hand, W maps the m-dimensional box
of admissible cable tensions into the n-dimensional space of platform wrenches.
On the other hand, J maps n-dimensional twists into its range space which is
a linear subspace of the m-dimensional space of cable velocities l̇. Hence, when
J is not singular, the n-dimensional box [t]r is mapped into the zonotope

[
l̇
]
r

which lies into the n-dimensional range space of J, as illustrated in Fig. 3. When
J is singular and has rank r, r < n, the n-dimensional box [t]r is mapped into
a zonotope of dimension r.

When an ACVS
[
l̇
]
a

is given, a pose of the mobile platform of a CDPR is
twist feasible if [

l̇
]
r

⊆
[
l̇
]
a

(7)
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Since
[
l̇
]
a

is a convex polytope, (7) is verified whenever all the vertices of
[
l̇
]
r

are included in
[
l̇
]
a
. Moreover, it is not difficult to prove that

[
l̇
]
r

is the convex

hull of the images under J of the vertices of [t]r. Hence, a simple method to
verify if a CDPR pose is twist feasible consists in verifying whether the images
of the vertices of [t]r are all included into

[
l̇
]
a
.

3.2 Problem 2: Available Twist Set (ATS)

The problem is to determine the ATS [t]a corresponding to a given ACVS
[
l̇
]
a
.

In the most general case considered in this paper,
[
l̇
]
a

is a convex polytope.
By the Minkowski-Weyl’s Theorem, a polytope can be represented as the solution
set of a finite set of linear inequalities, the so-called (halfspace) H-representation
of the polytope [6,24], i.e.

[
l̇
]
a

= { l̇ | Cl̇ ≤ d } (8)

where matrix C and vector d are assumed to be known.
According to (5), the ATS is defined as

[t]a = { t | Jt ∈
[
l̇
]
a

} (9)

which, using (8), implies that

[t]a = { t | CJt ≤ d } (10)

The latter equation provides an H-representation of the ATS [t]a.
In practice, when the characteristics of the winches of a CDPR are known,

the motor maximum speeds limit the set of possible cable velocities as follows

l̇i,min ≤ l̇i ≤ l̇i,max (11)

where l̇i,min and l̇i,max are the minimum and maximum cable velocities. Note
that, usually, l̇i,min = −l̇i,max, l̇1,min = l̇2,min = . . . = l̇m,min, and l̇1,max =
l̇2,max = . . . = l̇m,max. In other words, C and d in (8) are defined as

C =
[

1
−1

]
and d =

[
l̇1,max, . . . , l̇m,max, −l̇1,min, . . . , −l̇m,min

]T
(12)

where 1 is the m × m identity matrix. Equation (10) can then be written as
follows

[t]a = { t | l̇min ≤ Jt ≤ l̇max } (13)

where l̇min =
[

l̇1,min, . . . , l̇m,min

]T
and l̇max =

[
l̇1,max, . . . , l̇m,max

]T
.
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When a RTS [t]r is given, a pose of the mobile platform of a CDPR is twist
feasible if

[t]r ⊆ [t]a (14)

In this paper, [t]r is assumed to be a convex polytope. Hence, (14) is verified
whenever all the vertices of [t]r are included in [t]a. With the H-representation
of [t]a in (10) (or in (13)), testing if a pose is twist feasible amounts to verifying
if all the vertices of [t]r satisfy the inequality system in (10) (or in (13)). Testing
twist feasibility thereby becomes a simple task as soon as the vertices of [t]r are
known.

Finally, let the twist feasible workspace (TFW) of a CDPR be the set of twist
feasible poses of its mobile platform. It is worth noting that the boundaries of
the TFW are directly available in closed form from (10) or (13). If the vertices
of the (convex) RTS are denoted tj , j = 1, . . . , k, and the rows of the Jacobian
matrix are −wT

i , according to (13), the TFW is defined by l̇i,min ≤ −wT
i tj and

−wT
i tj ≤ l̇i,max, for all possible combinations of i and j. Since wi contains the

only variables in these inequalities that depend on the mobile platform pose, and
because the closed-form expression of wi as a function of the pose is known, the
expressions of the boundaries of the TFW are directly obtained.

4 Case Study

This section deals with the twist feasibility analysis of the two-DOF point-mass
planar CDPR driven by three cables shown in Fig. 2. The robot is 3.5 m long
and 2.5 m high. The three exit points of the robot are named A1, A2 are A3,
respectively. The point-mass is denoted P . bd1, bd2 and bd3 are the unit vectors,
expressed in frame Fb, of the vectors pointing from point-mass P to cable exit
points A1, A2 are A3, respectively. The 3 × 2 Jacobian matrix J of this planar
CDPR takes the form:

J = − [
bd1

bd2
bd3

]T (15)

Figure 3 is obtained by solving the Problem 1 formulated in Sect. 3. For the
robot configuration depicted in Fig. 3a and the given RTS of the point-mass P
represented in Fig. 3b, the RCVS for the three cables of the planar CDPR are
illustrated in Figs. 3c and d. Note that the RTS is defined as:

− 1 m.s−1 ≤ ẋP ≤ 1 m.s−1 (16)
−1 m.s−1 ≤ ẏP ≤ 1 m.s−1 (17)

where [ẋP , ẏP ]T is the velocity of P in the fixed reference frame Fb.
Figure 4 depicts the isocontours of the Maximum Required Cable Veloc-

ity (MRCV) over the Cartesian space (a) for cable 1 and (b) for all cables com-
bined, for the required twist set shown in Fig. 3b. Those results are obtained
by solving Problem 1 for all positions of point P . It is apparent that P RTS is
satisfied through the Cartesian space as long as the maximum velocity of each
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Fig. 2. A two-DOF point-mass planar cable-driven parallel robot driven by three cables

Fig. 3. Required Twist Set (RTS) of the point-mass P and corresponding required
cable velocity set for the three cables of the CDPR in a given robot configuration
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Fig. 4. Maximum Required Cable Velocity (MRCV) (a) of cable 1 alone and (b) of
cables 1, 2 and 3 combined over the cartesian space for the required twist set of Fig. 3b

Fig. 5. A feasible twist pose and an infeasible twist pose of the CDPR
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cable is higher than
√

2 m.s−1, namely, l̇1,max = l̇2,max = l̇3,max =
√

2 m.s−1

with l̇i,min = −l̇i,max, i = 1, 2, 3.
For the Available Cable Velocity Set (ACVS) defined by inequalities (11)

with
l̇i,max = 1.3 m.s−1, i = 1, 2, 3 (18)

Figure 5 is obtained by solving the Problem 2 formulated in Sect. 3.
For the two robot configurations illustrated in Fig. 5a and c, the Available

Twist Set (ATS) associated to the foregoing ACVS is determined from Eq. (13).
It is noteworthy that the ATS in each configuration in delimited by three pairs
of lines normal to three cables, respectively. It turns out that the first robot
configuration is twist feasible for the RTS defined by Eqs. (16) and (17) because
the latter is included into the ATS as shown Fig. 5b. Conversely, the second
robot configuration is not twist feasible as the RTS is partially outside the ATS
as shown Fig. 5d.

Fig. 6. TFW of the planar CDPR for two maximum cable velocities and for the RTS
shown in Fig. 3b

Finally, Fig. 6 shows the TFW of the planar CDPR for two maximum cable
velocities and for the RTS shown in Fig. 3b. All robot poses turned out to be
twist feasible when the maximum cable velocities were set to values higher than√

2 m.s−1 for the three cables.

5 Conclusion

In summary, this paper presents two methods of determining the twist-feasibility
of a CDPR. The first method uses a set of required mobile platform twists to
compute the corresponding required cable velocities, the latter corresponding
to cable winding speeds at the winches. The second method takes the opposite
route, i.e., it uses the available cable velocities to compute the corresponding set
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of available mobile platform twists. The second method can be applied to com-
pute the twist-feasible workspace, i.e., to determine the set of mobile platform
poses where a prescribed polyhedral required twist set is contained within the
available twist set. This method can thus be used to analyze the CDPR speed
capabilities over its workspace, which should prove useful in high-speed CDPR
applications.

The proposed method can be seen as a dual to the one used to compute the
wrench-feasible workspace of a CDPR, just as the velocity equations may be seen
as dual to static equations. From a mathematical standpoint, however, the prob-
lem is much simpler in the case of the twist-feasible workspace, as the feasibility
conditions can be obtained explicitly. Nevertheless, the authors believe that the
present paper complements nicely the previous works on wrench feasibility.

Finally, we should point out that the proposed method does not deal with the
issue of guaranteeing the magnitudes of the mobile platform point-velocity or
angular velocity. In such a case, the required twist set becomes a ball or an ellip-
soid, and thus is no longer polyhedral. This ellipsoid could be approximated by
a polytope in order to apply the method proposed in this paper. However, since
the accuracy of the approximation would come at the expense of the number of
conditions to be numerically verified, part of our future work will be dedicated to
the problem of determining the twist-feasibility of CDPRs for ellipsoidal required
twist sets.
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Abstract. Feedback of cable lengths is commonly used in the determi-
nation of the robot pose for cable-driven parallel robots (CDPRs). As
such, accurate information on the absolute cable length is important.
However, for most CDPRs equipped with relative encoders, the absolute
cable lengths depend on the system’s initial lengths. The initial cable
length, and hence the robot’s initial pose, is typically unknown. In this
paper, a forward kinematics based method to determine (calibrate) for
the initial cable lengths and robot pose is proposed. The calibration
problem is solved as a non-linear least squares optimisation problem,
where only the relative lengths of cables over any random trajectory are
required and measured. The proposed method is generic in the sense that
it can be applied to any type of CDPR. The simulation and experimen-
tal results for various robots show that the method can effectively and
efficiently determine the initial cable lengths and pose of the cable robot.
This is useful in order to obtain more accurate cable length data to be
used for forward kinematics to determine the robot’s pose.

1 Introduction

Cable-driven Parallel Robots (CDPRs) are a class of parallel manipulators where
the rigid links are replaced by cables. The advantages of CDPRs include: high
payload to weight ratio, large operational distances, ease of reconfigurability,
ease of transportability and naturally bio-inspired. An important characteristic
of CDPRs is that the cables can only apply forces in tension (positive cable force).
This constraint results in the need of actuation redundancy for a CDPR to be
fully constrained, creating challenges in the modelling and analysis of CDPRs.

For CDPRs, the forward kinematics (FK ) problem refers to the determina-
tion of the robot pose when provided with the cable lengths and is fundamentally
important in the study of CDPRs. As a parallel manipulator, the FK problem is
challenging as there is no closed form analytical solution in general. Furthermore,
even when solving the problem numerically there may be either no valid solu-
tions or the existence of multiple solutions. For an n degrees-of-freedom (DoFs)
CDPR actuated by m cables, the FK problem requires the determination of n
unknowns (the number of DoFs) from the m equations that relate the length of

c© Springer International Publishing AG 2018
C. Gosselin et al. (eds.), Cable-Driven Parallel Robots,
Mechanisms and Machine Science 53, DOI 10.1007/978-3-319-61431-1 13
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cables and the system pose. As such, for fully constrained CDPRs (m ≥ n + 1)
there will be more equations than unknowns for the FK problem.

The two primary types of approaches to solve the FK of CDPRs are ana-
lytical or numerical techniques. Analytical techniques are difficult to apply due
to the nonlinearity and complexity of the kinematic equations, and have only
been used for simpler CDPR systems [1,2]. Numerical methods consider the FK
relationship generically and can be used for any type of CDPR. The most com-
mon numerical approach is to solve the FK as a non-linear least squares problem
[3,4]. Other numerical techniques include using neural networks [5] and interval
analysis [6].

In addition to using the forward kinematics to determine the robot pose,
FK has also been used in the calibration of kinematic parameters of CDPRs.
Calibration is used in CDPRs to correct for any kinematic or dynamic modelling
uncertainties or errors. In [7–11], the attachment locations of the cables were
calibrated using the cable length feedback and FK. Some studies also considered
dynamic parameters such as mass and cable stiffness [12,13].

Previous studies have focused on the calibration of static system parameters,
such as the cable attachment locations and cable elasticity, which do not change
significantly over time. Such parameters are slow changing and hence only need
to be calibrated infrequently. However, some parameters, such as the initial robot
pose and cable lengths, may be different each time the system is turned on. A
majority of CDPRs use motors that equipped with encoders to obtain feedback
of the cable lengths at each instance in time. While some use multi-turn absolute
encoders [3], most possess only relative encoders. As a result, the initial cable
lengths and robot pose are typically not known and is different each time.

One simple approach that has been used to know the initial cable lengths is
to place the robot in a known pose, referred to as the initial pose, before enabling
the robot. However, in some applications it may be difficult to set up the robot
consistently and accurately in this way. Another approach is to employ exter-
nal sensors such as camera tracking systems (external calibration). However, it
is normally preferred to perform internal calibration using the CDPR’s inter-
nal sensors. In [2], the initial cable lengths calibration for a 2-DoF point mass
planar CDPR actuated by 4 cables is performed. The method is based on a “jit-
ter” approach where the lengths of two cables are perturbed and the measured
lengths of the remaining two cables provide information to solve the initial pose
of the system. Although effective, the approach requires the closed-form analyt-
ical solution to the forward kinematics. As such, the method would only work
for simple systems, such as the 2-DoF CDPR [2].

Accurate knowledge of the initial lengths is important for two purposes. First,
the initial length can provide knowledge of the initial position of the robot end-
effector. Second, for CDPRs equipped with relative encoders, the initial length
must be used to compute the absolute cable lengths. This absolute cable length is
then used to determine the pose of the robot through FK. As such, inaccuracies
in the initial length would result in error in the forward kinematics, and hence
robot pose, which cannot be eliminated. In summary, the determination of the
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initial cable lengths in a generic manner for any type of CDPR without requiring
the system to begin at a known position has not been studied thus far.

In this paper, a generic method to calibrate for the initial cable lengths for a
CDPR with relative encoders using a forward kinematics approach is proposed.
Without assuming any initial robot pose, the CDPR is commanded to perform
any random motion in a way that excites all of the system’s degrees-of-freedom.
The resulting relative changes in cable lengths are captured and then used to
calibrate for the initial cable lengths and initial pose. This method assumes that
the attachment locations of the cables are known beforehand. The proposed
approach is validated both in simulation and hardware experiments for different
CDPRs to show its effectiveness and ability to be generically used on different
systems. Furthermore, the proposed algorithm is implemented in the open-source
cable-robot software CASPR [14] and the source-code is publicly available1.

2 Numerical Forward Kinematics Formulations

It was shown in [15] that the kinematics of any generalised CDPR models (n
DoF actuated by m cables), as shown in Fig. 1, could be expressed as

l = f(q) (1)

where l = [l1 · · · lm]T ∈ R
m and q = [q1 · · · qn]T ∈ R

n are the vector of cable
lengths and pose of the system, respectively.

End-effector 

Cables 1 1l
2l

3l
4l

5l

6l
7l

8l

(a) Single link cable-driven robot

1l

2l

3l

4l

ml

(b) Multilink cable-driven robot

Fig. 1. CDPR models and the cable lengths

Taking the time derivative of (1) results in the well established relationship

l̇ = L(q)q̇ (2)

where L ∈ R
m×n is the Jacobian matrix relating the pose and cable length

derivatives.

1 CASPR and the presented work can be accessed at https://www.github.com/
darwinlau/CASPR.

https://www.github.com/darwinlau/CASPR
https://www.github.com/darwinlau/CASPR


Initial Length and Pose Calibration for CDPRs 143

The inverse kinematics problem, the determination of cable lengths l for a
given pose q, is a trivial problem using (1). However, the forward kinematics
(FK ) problem is much more challenging as the inverse of the kinematic relation-
ship q = f−1(l) does not have an analytical closed-form solution in general. One
common way to solve the FK problem is to formulate the optimisation problem:

q∗ = arg min
q

‖l − f(q)‖2 . (3)

In general, the problem in (3) is a non-linear least squares problem that can
be solved using techniques such as the Levenberg-Marquardt Algorithm. The
poses which result in a zero objective function value are solutions to the FK
problem since ‖l − f(q)‖2 = 0 ⇔ l = f(q). However, it is difficult to achieve
a zero objective function value in real systems due to the presence of sensor
noise. As such, in practice the solution (minimum) of (3) with a small objective
function value is taken as the solution to the FK problem since ‖l − f(q)‖2 ≈
0 ⇔ l ≈ f(q). Note again that the FK problem, from (1), has m equations and
n unknown variables. For fully constrained systems m ≥ n + 1, resulting in an
overdetermined problem.

3 Least Squares Problems for Initial Lengths

In the FK problem presented in (3), it is assumed that the absolute length of the
cables l(t) is known at all times. However, for CDPRs with relative encoders,
only the relative length of the cables lr(t) since t = 0 is known. The relationship
between the absolute and relative cable lengths at any instance in time t can be
described as

l(t) = l0 + lr(t) = f(q(t)) (4)

where l0 = l(0) is the vector of initial cable lengths of the CDPR since lr(0) = 0.
It can be observed that (4) contains n+m unknowns (q and l0) but only with m
equations. As such, there are not enough equations to uniquely determine both
the initial cable length and pose. One important property that can be taken
advantage of is that after the system is turned on, l0 is time invariant until the
system is restarted.

As such, initial length calibration and FK problem can be simultaneously
solved by considering the problem in (4) over a set of different time instances,
or samples, for a trajectory. Assuming that p different instances in time t ∈
{t1, t2, · · · , tp} are selected to solve for the initial length and FK problem, the
following non-linear system of equations can be expressed as

l0 + lr(ti) = f(q(ti)), i = 1, · · · , p (5)

The equations in (5) possess a total of m + n × p unknowns (the initial
length l0 and the poses q(t) at each time instance t ∈ {t1, t2, · · · , tp}) and
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m × p equations. The vector of unknown variables for (5) can be denoted as
x = [lT0 qT (t1) qT (t2) · · · qT (tp)]T .

In a similar manner to (3), the initial length calibration problem can be
solved through the non-linear least squares (NLLS ) optimisation problem

x∗ = {l∗0, q∗
1, · · · , q∗

p} = arg min
{l0, q1,··· , qp}

p∑

i=1

‖lr(ti) + l0 − f(qi)‖2 (6)

where qi := q(ti). Since the problem (6) is an NLLS problem, numerical methods
such as the Levenberg-Marquardt algorithm can be employed. For such problems
and approaches, the initial guess of the solution and the Jacobian value of the
NLLS objective function would significantly increase the computational time and
accuracy of the non-linear optimisation problem. Expressing (6) in the standard
form

x∗ = arg min
x

‖g(x)‖2 (7)

the non-linear vector function can be equivalently expressed from (6) as

g(x) =

⎡

⎢⎣
l0 + lr(t1) − f(q1)

...
l0 + lr(tp) − f(qp)

⎤

⎥⎦ . (8)

From (8), the problem Jacobian ∂g
∂x can be expressed analytically as

∂g
∂x

=

⎡

⎢⎢⎢⎣

Im×m −L(q1) 0m×n · · · 0m×n

Im×m 0m×n −L(q2) · · · 0m×n

...
...

...
. . .

...
Im×m 0m×n 0m×n · · · −L(qp)

⎤

⎥⎥⎥⎦ . (9)

It will be shown in the results of Sect. 4 that the use of the Jacobian matrix
(9) significantly reduces the required optimisation time to perform the initial
length calibration and also is more robust to inaccurate initial guesses of x.

In order to solve (6), a sufficient number of points p in the random motion
should be sampled such that the number of equations mp is equal to or greater
than the number of unknowns m + np, that is, mp ≥ m + np. As such, the
minimum number of trajectory points p ∈ Z that should be selected should be
p ≥ m/(m−n). As will be shown in Sect. 4, the selection of the number of sample
trajectory points p for the initial length calibration has a significant effect on the
computational speed and effectiveness. Moreover, it is important to note that the
sampled motion points of the random motion must excite the different degrees-
of-freedom such that the NLLS optimisation of (6) have sufficient measurements
to recover x.

In summary, the proposed method uses the fact that the lengths of differ-
ent cables for a trajectory must be related (kinematically consistent) due to
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the CDPR cable attachments. As such, the calibration problem is equivalent to
determining the set of initial lengths that produce kinematically consistent cable
lengths.

4 Simulation Results

The two simulation examples, performed through CASPR [14], aim to show:
(1) the ability to calibrate for uncertain initial poses; (2) the effectiveness and
efficiency for different number of samples; and (3) the short calibration time
required.

4.1 Planar Robot Example

Figure 2(a) shows the 3-DoF planar robot model actuated by 4 cables, where
q = [x y θ]T represent translations (x and y) and orientation θ of the robot,
respectively.

(a) Planar CDPR (b) CoGiRo

Fig. 2. CDPR models used in the simulation examples

To demonstrate the initial length calibration, the reference trajectory as
shown in Fig. 3(a), with initial pose q(t = 0) = [0.3 0.6 0.1]T and final
pose q(t = 4) = [0.2 0.3 0.2]T , will be used. At pose the initial pose
q(t = 0), the cable lengths can be determined using inverse kinematics as
l0 = [0.578 0.8176 0.6946 0.4099]T . Using l0 and the cable length trajec-
tory l(t) obtained from computing the inverse kinematics q(t) (Fig. 3(a)), the
relative cable lengths lr(t) (emulating the cable length feedback from relative
encoders) can be determined using (4).

Since the initial length is unknown, without loss of generality it will be
assumed for this example that l̄0 = [0.5 0.5 0.5 0.5]T . Using this, the absolute
cable lengths trajectory with the erroneous initial length l̄(t) can be determined
as l̄(t) = l̄0 + lr(t). Using l̄(t), the resulting joint space trajectory q̄(t), shown in
Fig. 3(b), was determined using the NLLS FK method from (3). As expected, it
can be clearly observed that the resulting trajectory q̄(t) is significantly different
to that of q(t), demonstrating the impact in FK feedback when the initial lengths
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Fig. 3. Joint space trajectory results q(t) for planar CDPR simulation

Fig. 4. Error profile in FK using different initial cable lengths for planar robot

and pose are unknown. Figure 4(a) shows the error value of the FK optimisation
result ē(t) =

∥∥̄l(t) − f(q̄(t))
∥∥, confirming the error observed in the trajectory

of q̄(t).
Using the calibration method presented in Sect. 3, the initial cable lengths

l∗0 is determined using only the relative cable length lr(t) as the input to
the NLLS problem (6). The relative length profile lr(t) consists of a total
of p = 401 time samples (from t = 0 s to t = 4 s at Δt = 0.01 s). With
this sample size, the problem (6) will have 1207 unknowns. To solution x∗

to calibration problem resulted in the initial cable lengths solution of l∗0 =
[0.578 0.8176 0.6946 0.4099]T , with an error norm compared with the nominal
solution l0 of ‖l0 − l∗0‖ = 4.7868×10−9. Using this solution and FK, the absolute
cable length l∗(t) = l∗0 + lr(t) produced the joint space trajectory of the cali-
bration motion q∗(t) and the resulting FK error norm e∗(t) = ‖l∗(t) − f(q∗(t))‖
shown in Figs. 3(c) and 4(b), respectively. These results show that the proposed
method is able to determine the initial cable lengths, initial robot pose and also
the calibration trajectory motion without prior knowledge of the initial state or
the calibration motion to be performed.

In the results of Figs. 3 and 4, every point on the calibration motion p =
401 was used in the calibration optimisation. However, it is also possible to
take a subset sample of lr(t) to use within the calibration. Table 1 shows the
properties of the calibration method for different sample frequency (every N of
the trajectory points are taken). The comparison results show that if not enough
samples are taken, such as p = 5 and 9 for N = 100 and 50, respectively, the
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initial cable lengths cannot be correctly determined. It can also be observed
that for larger samples the computational time is higher, although no significant
increase in accuracy is achieved. However, it is worth noting that the calibration
time of p = 401 over a 4 s motion is only 5.28 s, making this method very practical
in use within real applications.

Table 1. Initial length calibration for different sample frequencies

Sample frequency N

1 5 20 30 50 100

No. of samples (p) 401 81 21 11 9 5

Dimension of x 1207 247 67 37 31 19

Calibration time (s) 5.28 1.38 0.60 0.20 0.40 0.10

Initial length error 4.8 × 10−9 2.58 × 10−9 3.2 × 10−9 2.84 × 10−8 0.18 0.20

FK error
∑

t e
∗(t) 1.04 × 10−5 1.04 × 10−5 1.04 × 10−5 1.04 × 10−5 0.01 0.01

As discussed above, the effectiveness and efficiency of the NLLS optimisation
problem can be improved by providing an initial guess xguess and the Jacobian
matrix (9). In the above simulations, the initial cable lengths were simply always
set as a constant value of l̄0 = [0.5 0.5 0.5 0.5]T regardless of the calibration
motion. For the initial guess of the trajectory, the erroneous trajectory q̄(t)
determined from l̄0 and FK (Fig. 3(b)). This shows that no trajectory specific
information about the initial cable lengths or pose are required for the calibration
method.

4.2 Spatial Robot Example

As no assumptions on the robot type are required, the proposed approach can
be used for any CDPR. In this example, the initial length calibration of the 6-
DoF spatial cable robot CoGiRo [16] actuated by 8 cables, as shown in Fig. 2(b),
is demonstrated. The generalised coordinates of the robot can be described by
q = [x y z α β γ]T , where x, y, z are the translational DoFs and α, β, γ are
the xyz-Euler angles that represent the system orientation. The initial length
calibration for the CoGiRo robot is demonstrated for three different trajectories
beginning at different poses q0 with different initial cable lengths l0, as observed
in Fig. 5.

In a similar manner as Sect. 4.1, the calibration using the relative lengths
of the trajectories in Fig. 5 was performed. For the calibration of the CoGiRo,
a sample frequency of N = 10 was used, such that each calibration trajectory
motion has p = 41 sample points. The results for all three trajectories are sum-
marised in Table 2 and Fig. 6, and it can be observed that the calibration method
successfully determined the initial cable lengths l0 for different robots and cali-
bration trajectories.
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Fig. 5. Different joint space trajectories q(t) for CoGiRo simulations

Table 2. Result of calibration for CoGiRo robot on different trajectories

Comp. time (s) l0 error FK error
∑

t e
∗(t)

Trajectory 1 (Fig. 5(a)) 2.2 1.19 × 10−8 6.33 × 10−6

Trajectory 2 (Fig. 5(b)) 1.27 3.65 × 10−10 3.19 × 10−6

Trajectory 3 (Fig. 5(c)) 1.16 5.29 × 10−10 2.80 × 10−6
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Fig. 6. Error profile in FK using different initial cable lengths for CoGiRo simulation

5 Experimental Results

This section illustrates the proposed approach on a real CDPR, the 2-link 4-
DoF 6-cable BioMuscular Arm (BM-Arm), as shown in Fig. 7(a), actuated by
the MYO-muscle actuators [17]. The robot consists of two links, connected by
a spherical joint and a revolute joint. Hence the generalised coordinates of the
BM-Arm can be expressed as q = [α β γ θ]T , representing the xyz-Euler
angles of the spherical joint and the angle of the revolute joint, respectively.

For the BM-Arm experiment, the robot was set into force control mode with
a low constant force value in each cable in order to maintain the robot in equi-
librium or a slow moving state. The position of the robot, and hence cable
lengths, was unknown initially. The BM-Arm was then manipulated physically
in a random motion, while the relative cable lengths lr(t) were measured using a
relative encoder by the MYO-muscles. This procedure was performed for differ-
ent robot poses and different random trajectories (of approximately 30 s each).
This calibration procedure would be very similar to how the proposed method is
envisioned to be used to quickly calibrate a real CDPR every time it is turned on.
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(a) BM-Arm robot with motion capture mark-
ers

(b) Model in CASPR

Fig. 7. BM-Arm robot

To validate the calibration approach, an OptiTrack motion capture system
with four cameras was installed onto the BM-Arm to capture the orientation
(q = [α β γ]T , the xyz-Euler angles) of the link 1 (markers are shown in
Fig. 7(a)) during the manual motion (as the calibration trajectory). Table 3 shows
the comparison results of four different trajectories where the CDPR begins in
various poses.

Table 3. Comparison results between motion capture and calibration algorithm for
BM-Arm experiments (link 1 only). Value d is the norm of the differences between l0
from the motion capture system (lc0) and the calibration algorithm (l∗0)

Trajectory Motion capture Calibration d =
∥
∥lc0 − l∗0

∥
∥

1 q0 = [0.04 − 0.02 − 0.001]T q0 = [0.02 − 0.01 − 0.07]T 0.014

l0 = [0.224 0.232 0.224 0.233]T l0 = [0.229 0.241 0.216 0.228]T

2 q0 = [−0.18 0.07 − 0.40]T q0 = [−0.18 0.04 − 0.48]T 0.014

l0 = [0.240 0.288 0.162 0.220]T l0 = [0.247 0.294 0.157 0.212]T

3 q0 = [−0.19 − 0.01 0.36]T q0 = [−0.16− 0.03 0.33]T 0.008

l0 = [0.167 0.222 0.237 0.285]T l0 = [0.174 0.224 0.238 0.282]T

From the results, it can be observed that the initial length calibration method
is able to resolve for l0 even when starting pose is unknown. Although the method
is able to clearly able to solve for the initial cable lengths and pose, it should be
noted that some errors still existed. Such errors may exist due to various reasons,
including: (1) errors in the cable length feedback measurement lr(t); (2) errors
in the calibration of the motion capture system and noise due to reflections and
disturbances; and (3) wrapping and slack in the cables. Moreover, it is important
to note that adequate calibration motion in all of the CDPR’s DoFs, in order to
obtain sufficient data for the NLLS optimisation, must be performed.

The joint space trajectories for trajectory 2 in Table 3 for both the motion
capture system and FK using the calibrated initial cable lengths are shown in
Fig. 8 and shows that indeed the calibration method is capable of determining
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Fig. 8. Joint space trajectory q(t) (link 1 only) for BM-Arm hardware experiment

correct initial lengths by only using internal sensors (motor encoders) of the
CDPR system.

6 Conclusion

In this paper, a novel FK-based calibration method for the initial cable lengths
of arbitrary CDPRs is proposed. For systems with relative feedback, the initial
cable lengths is required to determine the absolute lengths to be used in the
FK analysis. The simulation and experiment examples show that the proposed
method is effective in determining the initial cable lengths and requiring only a
short random calibration motion. Furthermore, the computational time required
for the calibration is short (less than 5 s), making it practical in real-life use.
Future work will focus on the analysis on the requirements of suitable calibration
trajectories.
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Abstract. A cable-driven parallel manipulator has been chosen to suspend and
navigate instruments over a phenotyping research facility at the University of
Nebraska. This paper addresses the static analysis and dimensional optimization
of this system. Analysis of the system was performed with catenary simplifi-
cation to create force equilibrium equations and define a mathematical model.
The model incorporates flexibility due to catenary sag of the cables. Cable axial
stiffness was not included because stiffness is dominated by catenary flexibility
for the expected cable tensions. The model was used to optimize system
dimensions, and a twelfth-scale system was constructed to verify the model as
well as enable dynamic and control system experimentation during full-scale
system construction. Miniature end-effectors were used to obtain end-effector
orientation and cable tension measurements which were comparable to model
predictions. The mathematical model was thereby shown to be accurate for the
purpose of system static analysis.

Keywords: Parallel machines � Robot kinematics � Modeling � Manipulator
motion-planning

1 Introduction

1.1 Motivation

Agricultural productivity is dependent on the development of crops which can meet
certain requirements such as resilience in the face of environmental or pest stressors, or a
level of productivity (yield) despite restrictions in nutrients or water. Breeding such crops
is an iterative process where the result of crossing the genes of sets of plants causes
measureable changes in successive generations. These changes are determined by mea-
suring the plants phenotypes – observable characteristics. Phenotyping in a greenhouse
can now be done rapidly using automated equipment. Greenhouse plants, however, are
different fromplants grown in afield environment. Light conditions are different. Soils are
less uniform. And wind does not encourage the growth of support structure within the
plants. Assuring that measurements in a greenhouse are trustworthy predictions of field
performance is the holy grail of phenotyping. To this end, a field rapid phenotyping
system is being developed at the University of Nebraska-Lincoln’s Agricultural Research
and Development Center. The system described in this paper is designed to position
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instruments precisely over research plots in order to rapidly and repeatedly make phe-
notypic measurements of sets of plant varieties and experimental treatments.

1.2 Cable-Driven Parallel Robots

A cable-driven parallel robot (CDPR) is a robotic manipulator designed to control the
position and/or orientation of its end-effector within the system’s workspace by use of
actuated cables. CDPRs provide several benefits over traditional rigid-leg serial and
rigid-leg parallel manipulators in the study of crop phenotyping. CDPRs offer minimal
interference with the crops compared to rigid-support systems. Traditional serial or
parallel manipulators interfere with plant growth because they are composed of large
supports and machinery which reflect and obstruct light and air flow. In addition,
CDPRs are generally lighter and therefore capable of greater accelerations while
maintaining high energy efficiency compared to rigid-linkage robots [1]. However,
CDPRs have several design challenges. Cables can only perform while in tension,
which puts limitations on end-effector position and greatly influences positional
accuracy and system vibrations [2, 3].

CDPRs can be broken into three basic categories based on the number of cables and
the mobility of the system: fully constrained, under constrained, and over constrained.
A fully constrained parallel robot requires at least one more cable than the degrees of
freedom of the end effector. In the case of three-dimensional translational motion, as is the
focus of this paper, a fully constrained system requires four cables for full control of
position. The number of cables can be reduced if a constant external force, such as gravity,
is applied to the end-effector. This force acts as an additional cable on the end-effector,
reducing the number of physical cables needed to fully constrain the system [1].

This paper focuses on the suspended four-cable parallel robot. In these systems, the
end-effector is supported by four cables with gravity delivering a downward force on
the end-effector, behaving as a fifth cable. The four-cable configuration is beneficial
over three-cable systems as the same system footprint has an expanded available
workspace and the cable load is reduced by distributing the load to an additional cable.
However, using four cables creates a redundancy in the support system and complicates
the system modeling and control as no unique cable configuration exists for an arbitrary
location in the workspace [1].

Further modeling and design considerations come from the scale of the CDPR. In
many CDPRs, cables can be assumed to have negligible mass, greatly simplifying
system modeling and control. However, in the case of large-scale systems, cable weight
can induce catenary sag in the cables which strongly influences positional accuracy as
well as system dynamics and vibration.

Significant work has been accomplished in the area of CDPRs, including kinematic
design [1, 2, 15, 16] and dynamic analysis [3–7]. Additionally, a large amount of
research has been conducted in the area of cable mechanics [6, 8–10]. However, limited
research exists in the field of large-scale suspended CPDRs where cable sag can play a
major role in system dynamics and control. One of the few examples of research into
the area of cable sag in cable-driven manipulators is the FAST telescope, a newly
constructed five hundred meter CDPR in China [11].
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1.3 Objective

Substantial research has been performed by the FAST project on vibrations and sta-
bilization of large scale CDPRs. However, the high speed requirements of the phe-
notyping system and the proportionally lower weight end-effector and cables results in
significantly different system requirements and dynamics for a phenotyping system
with four cables. The objective of this research is to develop a CDPR design and
control scheme that can autonomously and rapidly move between crop plots. This
system must be functional during harsh weather conditions, pass through the crop
canopy with minimal crop interference, and provide stability for the phenotyping
sensors mounted on the end-effector. The purpose of this paper is to present a static
model of the system as a first step to aid future system design optimization and
dynamic modeling of a CDPR for crop phenotyping. In addition, a scaled-down system
is built to gather experimental results and confirm the validity of the theoretical models
developed.

This paper focuses on computing the inverse kinematics and verifying these results
experimentally. The solution begins with an analysis of a single cable to obtain the
cable profile and tension. This solution then determines the force equilibrium equations
for the four-cable system supporting a point-mass end-effector. The resulting force
vectors are then applied to the end-effector model using the moment equilibrium
equations to determine the orientation of the end-effector. In order to simplify calcu-
lations, cables are assumed to be inextensible due to low tension values predicted in the
cables compared to their elastic modulus and the predicted dominance of cable sag on
cable flexibility [9].

Until construction of the full-scale system is complete, drive and control systems
tests are performed using a scaled system. Vibrations and stability of the scaled system
are not thoroughly investigated due to scaling incompatibilities between the test plat-
form and the full-scale system. Because of the difficulties associated with scaling cable
properties, the dynamic experimentation is assumed to not scale to the full-scale sys-
tem. As such, controls tests and system properties including system stiffness and
vibration predictions are not discussed in this paper.

2 Simulation

2.1 Geometric Analysis

In flexible cables with significant mass, the weight of the cable provides varying
vertical load along the length of the cable which generates a curve as defined by (1) and
is illustrated by Fig. 1 [12].

y ¼ A � cosh x
A

� �
ð1Þ
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Where A is the relationship between the constant horizontal tension seen in the
cable (Th) and the linear weight of the cable (w) (Fig. 2).

A ¼ Th
w

ð2Þ

Cable length (S) can then be calculated based on the arc length formula, integrating
from cable end points, (x1,y1) and (x2,y2).

S ¼ Zx2
x1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ dy

dx

� �2
s

dx ¼ A � sinh x2
A

� �
� A � sinh x1

A

� �
ð3Þ

The cable angle at any point along the cable (W) can also be solved geometrically
as,

tan Wð Þ ¼ dy
dx

¼ sinh
x
A

� �
ð4Þ

Provided that a cable can only experience axial load, at any point along the cable,
tension (T) must be tangent to the cable curvature. Furthermore, the only horizontal
forces acting on the cable are located at the end points of the cable. Therefore, Th is
constant along the length of the cable. Cable tension can then be determined for any
point along the cable,

T ¼ Th sec Wð Þ ð5Þ

Fig. 1. Conceptual model of phenotyping system.
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Solving (4) for W, and substituting into (5),

T ¼ Th � cosh x
A

� �
¼ A � w � cosh x

A

� �
ð6Þ

For any given point in the field, the horizontal and vertical distances between the
end-effector and the cable anchor point, h and v respectively, are known.

h ¼ x2 � x1 ð7Þ

v ¼ y2 � y1 ¼ A � cosh x1 þ h
A

� �
� A � cosh x1

A

� �
ð8Þ

Reducing the system of equations produces three equations with four unknowns, A,
S, T1, and x1.

v ¼ A � cosh x1 þ h
A

� �
� A � cosh x1

A

� �
ð9Þ

S ¼ A � sinh x1 þ h
A

� �
� A � sinh x1

A

� �
ð10Þ

T1 ¼ A � w � cosh x1
A

� �
ð11Þ

2.2 Inverse Kinematics

Solving the inverse kinematics for CDPRs involves solving static equilibrium equa-
tions of the system. In the four-cable CDPR with a point-mass end-effector, there are

Fig. 2. Catenary curve profile
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three translational degrees of freedom. The system is therefore defined by the equations
for static equilibrium,

X
F ¼ 0 ¼

X4

i¼1
Ti � Ri
� ��W ð12Þ

Where Ti is the tension value of the ith cable, Ri is the unit vector in the direction of
force Ti, and W is the weight vector of the end-effector.

As indicated in the previous section, each cable is defined by a system of three
equations that, given the current known geometric variables, depend on four
unknowns. In the three-cable CDPR, adding the equations for three cables to the three
static equilibrium equations produces a balanced system of equations that can be
solved. Except in special circumstances, numerical methods must be used to solve the
system as no explicit solution exists for this system of equations.

In the four-cable CDPR, there is one more unknown value than equilibrium
equations available. The use of four cables in a three degree of freedom CDPR results
in a redundant cable which generally suggests no unique solution exists for any given
point in the system workspace. To solve this system of equations, a constrained
optimization condition must be included with the problem. In this study, it was chosen
to optimize the distribution of load on the cables by increasing the load on the lowest
tension cable until the ratio between the highest and lowest tension is minimized. To
achieve this, the model initially selects the position in the workspace to be considered.
The length of the cable anchored the furthest away from the end-effector is then set to a
predefined value greater than the straight-line distance between the anchor point and
the end-effector. With one cable fully defined, the system of equations and unknowns
are balanced, and can be solved iteratively. By increasing the tension on the prescribed
cable, its tension gradually approaches that of the next lowest cable tension, more
evenly distributing load between the cables until the system is considered optimized,
and the resulting tensions, cable lengths, and cable profile are recorded.

2.3 Orientation Prediction

Thus far, the system end-effector has been assumed to be a point-mass. However, a
potentially important parameter of CDPR design is the predicted orientation of the
end-effector in different regions of the workspace. In the phenotyping system,
end-effector orientation impacts the use of sensors intended to be downward facing as
well as the range of motion of the end-effector gimbal.

Orientation is predicted by utilizing the force equilibrium results, applying them to
a rigid body end-effector, and solving moment equilibrium equations,

X
M ¼ 0 ¼

X4

i¼1
Ri � Fi ð13Þ
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where Fi is the force vector generated by the tension in the ith cable and Ri is the
position vector from the center-of-mass of the end-effector to the attachment point of
the ith cable. Ri is obtained by taking the position vector of the cable attachment point
according to the end-effector frame of reference, R�

i , and passing it through three
rotation matrixes representing the rotation about the system x, y, and z axis.

R½ �x¼
1 0 0
0 cos að Þ � sin að Þ
0 sin að Þ cos að Þ

2
4

3
5 ð14Þ

R½ �y¼
cos bð Þ 0 sin bð Þ

0 1 0
� sin bð Þ 0 cos bð Þ

2
4

3
5 ð15Þ

R½ �z¼
cos cð Þ � sin cð Þ 0

0 sin cð Þ cos cð Þ
0 0 1

2
4

3
5 ð16Þ

Ri ¼ R½ �z00 � R½ �y0 � R½ �x �R�
i ð17Þ

The three moment equilibrium equations can be solved numerically for the three
angles. With an orientation of the end-effector predicted, the force equilibrium1 and
moment equilibrium equations can be iteratively solved until the orientation prediction
converges.

3 Theoretical Results

3.1 Simulator Outputs

The outputs of this model can be used to predict tension along the cables, cable lengths,
cable profiles, and end-effector orientation. To accelerate simulation, it is assumed that
system behavior is symmetrical across the geometric symmetry planes of the system.
Thus, the same tension values are predicted in each quadrant of the field, but are
associated with the mirrored cables.

Based on this assumption, cable tensions are solved across one quadrant of the
workspace, and the behavior of the system in each other quadrant are then extrapolated.
Figure 3a displays tension for a single cable as a function of end-effector position in the
field at a fixed height.2 Figure 3b illustrates the amount that the end-effector is pre-
dicted to tilt as a function of end-effector position in the field at a fixed height.

1 After the first iteration of solving the force and moment equilibrium equations is performed, the
end-effector is changed from a point-mass to a rigid body, oriented based on the prediction created by
the results of the first iteration of moment equations.

2 Data given for 68 kg end-effector, 3 m above ground.
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3.2 Dimensional Optimization

Modeling CDPRs requires knowledge of seven system parameters (Fig. 4):

• Field width, WF

• Field depth, DF

• End-effector mass, M
• Cable density, q
• Width between cable feed points, WP

• Depth between cable feed points, DP

• Height of cable feed points, H

Field dimensions and end-effector operational height were predetermined by the design
of the phenotyping facility and are presented in Table 1. During system design, it was
chosen to use a custom Kevlar cable with a fiber optic core for sensor data transmis-
sion. Use of the selected cable defines the cable density and adds an additional con-
straint by limiting tension in the cables.

Fig. 3. (a) Theoretical cable tension. (b) Theoretical end-effector tilt

Fig. 4. System parameters of a four-cable CDPR system
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The primary objective of this analysis is to determine the most appropriate location
for the poles supporting the cable system and to determine the maximum required
height for the cable-feed pulleys. The end-effector design is currently incomplete;
therefore, studies investigating multiple end-effector weights are analyzed alongside of
pole layout and height.

To optimize pole location and height as well as end-effector weight, three mea-
surements must be analyzed:

• Maximum cable tension in consideration of cable strength
• Tension distribution in consideration of system stabilization
• End-effector orientation in consideration of end-effector reorientation capabilities

Many simulations were generated with different permutations of pole height, pole
distancing, and end-effector mass. Selected results from these simulations are presented
in Figs. 5 and 6. Figure 5 shows the influence of all three variables on the predicted
maximum tensions for the system within the operational workspace.

The even distribution of load between cables has a substantial impact on cable
control and system vibrations [2]. The distribution of load between the cables can be
parameterized by the variable g as follows:

gxyz ¼
Tmax x; y; zð Þ
Tmin x; y; zð Þ ð18Þ

Table 1. System parameters

Defined parameters Variable parameters

Field width 67 m End-effector mass 45–90 kg
Field depth 60 m Pole width 75–100 m
Maximum end-effector height 10 m Pole height 15–26 m
Cable density 10 g/m
Pole aspect ratio 10:9
Maximum tension 1500 N

Fig. 5. Theoretical maximum tension in field
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Where Tmax and Tmin are the highest and lowest cable tensions, respectively, for the
given orientation. gmax is then the highest predicted gxyz in the workspace for the given
system configuration. Load distribution, and therefore cable performance, is expected
to improve as gmax approaches one. Figure 6b shows the impact of pole location and
height on gmax.

3

As the end-effector moves radially from the center of the workspace, the uneven
distribution of load on the cables causes the vertical axis of the end-effector to tilt
towards the center of the field, away from the vertical axis of the workspace (Fig. 3b).
This behavior can be parameterized by measuring the angle between the vertical axis of
the end-effector and the vertical axis of the workspace. For a gimbaled end-effector,
which is what is being used in this project, the maximum predicted angle is required to
determine the required range of motion of the gimbal. In an end-effector without a
gimbal, extreme angles can limit the use of sensors and equipment that are required to
maintain a certain orientation. Figure 6a shows the impact of pole location and height
on the end-effector inclination angle.4

According to preliminary designs, the end-effector with the maximum weighted
sensor package will be between 45 and 68 kg. Based on the data presented in Figs. 5
and 6, the minimal system configuration that will safely support a 68 kg end-effector
utilizes 19.8 m (65 ft) poles. A pole shorter than this would require placement too close
to the workspace and cable performance would likely cause the system to be

Fig. 6. (a) Theoretical end-effector tilt (b) Theoretical tension distribution

3 End-effector weight was found to have no impact on gmax.
4 End-effector weight was found to have no impact on end-effector inclination angle.
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uncontrollable. Taller poles reduce the load on the cables, which allow the poles to be
placed further from the workspace, improving cable performance and reducing
end-effector tilt. However, this introduces further design challenges. Moving the poles
outwards expands the space requirements of the system by adding a large perimeter of
empty space between the workspace and poles. Also, taller poles are more expensive
and require larger footings for support.

With 19.8 m poles selected, the maximum allowable width between poles for the
specified end-effector weight and cable strength is 99 m (325 ft). Positioning the poles
this far from the workspace increases system footprint by 53% and generates an 18%
increase in maximum tension compared to a system with similar poles placed 80 m
apart. However, it also reduces g and end-effector inclination by 54% and 49%
respectively, enhancing system performance. Positioning the poles any further out,
however, increases cable tension, reducing the safety factor for the cables. The final
recommended configuration for this system is outlined in Table 2.

4 Experimental System

4.1 Design

A twelfth-scale model of the field phenotyping system was designed to confirm the
simulator results and to test control system design, system dynamics, and end-effector
stabilization hardware and controls. Scaling factors are calculated using the Bucking-
ham Pi theory following the procedures used by Yao, et al. [2]. Dimensional Param-
eters are listed in Table 3 (Fig. 7).

An appropriate cable was not utilized in the twelfth-scale system due to the chal-
lenges of scaling cable properties of density, construction, and stiffness. Dyneema
fishing line with a diameter of 1 mm was instead used. Due to this change, cable sag
and stiffness are not similar between the twelfth-scale and full-scale systems. Thus,

Table 2. Optimized system dimensions

Parameter Optimized dimension

Pole distance 99 � 89 m (325 � 293 ft)
Pole height 19.8 m (65 ft)
End-effector mass limit 68 kg (150 lb)

Table 3. Scaled system parameters

Parameter Similarity scale Full size dimension Model dimension

Field width 1:12 67 m 5.60 m
Field depth 1:12 60.35 m 5.03 m
Pole height 1:12 25.91 m 2.16 m
Cable density 1:55* 10.8 g/m 0.197 g/m
End-effector weight 1:144 77 kg 0.535 kg
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full-scale system dynamics cannot be predicated on twelfth-scale experimentation. As a
result, the twelfth-scale system is used in studying general CDPR behavior in the
testing of stabilization and control systems. While these tests may be briefly mentioned,
their results are not discussed in this paper.

The twelfth-scale system was designed to test, not only the determined optimal
configuration, but an array of system configurations. As such, poles used to support the
cable system were designed as collapsible tripods to allow for easy alteration to pole
layouts and system scales. Cable-feed pulleys with adjustable height were mounted on
the poles to experiment with multiple cable systems heights. Attached to the poles were
custom winches to actuate cable feed. Each winch wirelessly communicated with the
system navigational controller to drive the system with motor-mounted-encoder feed-
back to track cable length and approximate end-effector position.

An end-effector mounted with an inertial measurement unit (IMU) was created to
measure end-effector orientation when navigated through the workspace. It was also
used to observe the response to impulse disturbances on the end-effector as well as the
impact of end-effector acceleration during travel on system vibration. Additionally, a
gimballed end-effector equipped with load cells at the cable connection points was used
to perform experiments to measure cable tensions during travel as well as to confirm
tension predictions from the simulator.

4.2 Experimental Static Results

One task of the twelfth-scale system was to determine the accuracy of the mathematical
model. Two primary criteria for confirming the validity of the simulator results were
cable tension and end-effector orientation. Two tests were performed to determine the
accuracy of the theoretical predictions. One test involved navigating the load-cell

Fig. 7. Twelfth-scale system
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end-effector through a series of points (Fig. 8a).5 At each point, load cell readings were
taken and were compared to theoretical values predicted by the simulator, as displayed
in Fig. 9.6 The second test involved navigating the IMU end-effector through a series of
points (Fig. 8b) to measure end-effector orientation, which in turn was compared to
simulator results, as displayed in Fig. 10. Due to the symmetry of the system, all tests
are performed in one quadrant of the workspace, and the results are assumed to mirror
across the symmetry planes.

Results from the first test show that the simulator predicted cable tensions to within
an error of 0.7 N with a standard deviation of 0.5 N for an end-effector of weight
18.35 N. Results from the second test were then shown to predicted end-effector tilt to
within 2.0° with a standard deviation of 1.3°. These results indicate that the designed
simulator accurately predicts cable performance for the purpose of static analysis.

Fig. 8. (a) Tension experiment tested locations (b) Orientation experiment tested locations

Fig. 9. Theoretical vs. experimental values of the cable tension. The bars indicate the theoretical
values and the circles are the means of the measured values from the 12th-scale model. Error bars
are one standard deviation of the mean.

5 For tension testing, points are located at heights of 0.25 m (lowest feasible elevation for given
end-effector) and 1.14 m (maximum safe operating height for given weight).

6 Rather than using a 0.535 kg end-effector for the tension tests, a 1.9 kg end-effector was used. This
was done to increase cable tensions to a level more appropriate for the utilized load cells.
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Based on these experiments, agreement between the simulator and physical model
is adequate to justify the use of the simulator results in predicting the static behavior of
the full-scale phenotyping system.

5 Conclusions

This paper addressed the rationale for use of a cable-driven parallel robot (CDPR)
system for control of an outdoor phenotyping site. It addressed the derivation and
solution of the inverse kinematics and used this model to optimize system dimensions.
These simulations were compared against experimental results of a twelfth-scale sys-
tem to determine the accuracy of the calculations. This research can be extended to aid
in modeling of the dynamic system to predict system vibrations and to determine
stabilization requirements during system control. This research can readily be adapted
for other four-cable CDPR systems to predict static properties.
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Abstract. This paper presents a sensor fusion method that aims at
improving the accuracy of cable-driven planar parallel mechanisms
(CDPMs) and simplifying the kinematic resolution. While the end-
effector pose of the CDPM is usually obtained with the cable lengths, the
proposed method combines the cable length measurement with the cable
angle by using a data fusion algorithm. This allows for a resolution based
on the loop closure equations and a weighted least squares method. The
paper first presents the resolution of the forward kinematics for planar
parallel mechanisms using cable angle only. Then, the proposed sensor
fusion scheme is detailed. Finally, an experiment comparing the different
procedures for obtaining the pose of the CDPM is carried out, in order
to demonstrate the efficiency of the proposed fusion method.

Keywords: Cable-driven robot · Wire-driven robot · Planar parallel
mechanism · Sensor fusion · Angular position sensor · Cable angle sen-
sor · Measurement redundancy

1 Introduction

Cable-driven parallel mechanisms (CDPMs) have a proven track record in many
different fields. Their architecture, allowing for large workspaces and relatively
simple designs, has attracted much attention in the past two decades within
academia and industry. This interest has resulted in multiple applications of
CDPMs being developped, ranging from cable-driven cameras [4] to very large
radio-telescopes [18], medical applications [17] and haptic devices [14]. Several
researchers have also solved some of the computational problems associated with
CDPMs. Related to the topic of this article, the problem of solving the direct
kinematics of spatial fully constrained cable-driven parallel robots from six cable-
length measurements alone has already been solved [9]. Indeed, it is equivalent
to the problem of the direct kinematics of the Gough-Stewart platform. More
recently, the problem of the forward displacement analysis of under-constrained
c© Springer International Publishing AG 2018
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CDPMs was also tackled [3]. The nature of this problem is not purely kinematic,
however, as it also involves equilibrium conditions. To the knowledge of the
authors, no workable, general, real-time solution has ever been reported to this
problem.

In this paper, we propose to improve the accuracy of CDPMs by the addition
of cable angular sensors. Already, assessing the accuracy of these mechanisms has
been the scope of some research [5,16]. Other researchers have proposed the use
of additional length sensors for calibration purposes [15]. The strategic placement
of angular sensors has also been discussed in [13], in order to solve the forward
kinematics of CDPMs in closed-form. Previous studies on the implementation of
cable angle sensors with the aim of improving accuracy have proposed a specific
sensor design and a sensor fusion algorithm based on Kalman filtering [6].

The purpose of relying on additional angular sensor data for solving the for-
ward kinematics is to increase the accuracy of the estimated CDPM pose, while
also discriminating between different solutions. To do so, this paper proposes
the use of the cable angle sensor first presented in [2,12], and shown in Fig. 1.
The advantages of using this particular sensor architecture are discussed in [6].
It should be pointed out, however, that the accuracy of such a device is in the
order of 1◦. The main source of error is the two slots that allow the cable to
freely change direction. These slots must be somewhat wider than the cable
diameter to avoid impeding its motion, which results in small backlash. Notice
also that past experience has shown that the semi-circular arms of a cable angle
sensor can preserve the rectilinear shape of the cable, provided that it is under
sufficient tension [6]. Indeed, the semi-circular arms, which are already light, are
balanced about their respective rotation axes, so that their weight has no effect
on the cable they guide. They are also mounted on ball bearings to minimise
friction. Their effect on the shape of the cable can thus be made negligible, for
most practical intents.

Fig. 1. Proposed angular sensor.

The structure of this paper is as follows. First, the geometric model of a
generic planar CDPM is presented. Then, the forward kinematics with cable
length measurement are briefly discussed, followed by the detailed resolution of
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the forward kinematics using cable angle measurement only. The proposed fusion
method, using both cable length and angular position sensors, is then presented.
Finally, an experiment is reported to compare the accuracy of the three different
methods.

2 Geometric Model of a Planar Cable-Driven Parallel
Robot

A cable-driven parallel robot consists of a mobile platform connected to reels
on a fixed base by means of n cables acting in parallel. In the present case,
a generic planar cable-driven parallel mechanism is considered. The geometric
model of this mechanism is shown in Fig. 2. The position of the ith anchor point
Bi is defined by vector bi in the fixed reference frame, originating from O. The
angle of the ith cable with respect to the X axis in the fixed reference frame is
defined by θi. The origin O′ of the moving reference frame, which corresponds
to the position of the end effector, is defined by vector t = [x, y]T in the fixed
reference frame. The orientation φ of the end effector is defined by the rotation
matrix Q. The point P ′

i where the ith cable is attached to the end effector, in
the moving reference frame, is defined by vector p′

i originating from O′. Finally,
it must be noted that the effects of cable mass and elasticity are not considered
in this model.

Fig. 2. The geometric model of a generic planar cable-driven parallel mechanism

3 Forward Kinematics with Cable-Length Measurements

The classical approach to solving the forward kinematics for planar parallel
mechanisms relies on the measurement of the cable lengths. The length of the
ith cable is given by the Euclidean norm of ρi, the vector connecting Bi and P ′

i ,
which yields
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||ρi||2 = ||t + Qp′
i − bi||2, i = 1, 2, . . . , n. (1)

Computing (1) for each cable results in a nonlinear system of equations which
must be solved to find the pose of the end effector. The analytical solution to
this problem is known and results in a sixth order univariate polynomial [7,8],
where each real root of the polynomial corresponds to a different assembly mode
of the mechanism.

4 Forward Kinematics with Cable Angle Measurements

Another approach to solving the forward kinematics of planar parallel mecha-
nisms involves using cable angle measurements. In order to obtain such a mea-
surement, a cable angle sensor capable of measuring the cable angles about two
orthogonal axes has been proposed in [2,12]. This section presents the forward
kinematics solution by using the cable angles only, i.e., without any information
on cable lengths. The loop closure equation for each cable is:

bi + ρi − Qp′
i − ti = 0, i = 1, 2, . . . , n, (2)

where ρi = [ρi cos θi, ρi sin θi]T. Let us introduce a new rotation matrix:

Q̂i =
[
cos(−θi) − sin(−θi)
sin(−θi) cos(−θi)

]
, i = 1, 2, . . . , n. (3)

We then multiply both sides of (2) by Q̂i. Geometrically speaking, this trans-
formation results in vector ρi being parallel to the X axis of the fixed reference
frame. Thus, the new equation can be written as a set of two scalar equations:

(−P ′
i,x cos φ + P ′

i,y sin φ − x + Bi,x) cos θi

+ (−P ′
i,x sin φ − P ′

i,y cos φ − y + Bi,y) sin θi + ρi = 0,
(4a)

(Bi,y − P ′
i,x sin φ − P ′

i,y cos φ−y) cos θi

+ (−Bi,x + P ′
i,x cos φ − P ′

i,y sin φ + x) sin θi = 0, (4b)

where ρi is absent from (4b). Consequently, we discard (4a) and obtain a new
system of n equations where we can write the unknowns as a vector x = [x, y, φ]T.
When the robot uses more than three cables, the system of equations is overde-
termined, since the number of unknowns is always three. In the present case, the
proposed method for solving this system is the least squares method, which is a
typical approach in this regard. Let us write the problem as

minimize
1
2
fTf ,

over x, (5)
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where f , the vector of residuals, is defined using Eq. (4b) as follows:

f(x) =

⎡
⎢⎢⎢⎢⎢⎣

(B1,y − P ′
1,x sinφ − P ′

1,y cos φ − y) cos(θ1)
+(−B1,x + P ′

1x cos φ − P ′
1,y sin φ + x) sin(θ1)

...
(Bn,y − P ′

n,x sin φ − P ′
n,y cos φ − y) cos θn

+(−Bnx + P ′
n,x cos φ − P ′

n,y sin φ + x) sin θn

⎤
⎥⎥⎥⎥⎥⎦

. (6)

The condition for an extremum of 1
2 f

Tf is met when

∂ 1
2 f

Tf
∂x

= 0. (7)

Equation (7) represents a set of three equations in three unknowns: x, y and
φ. These three equations being linear in x and y, a resultant equation containing
only φ can easily be obtained using a procedure such as the one used in [8]. The
univariate resultant equation is then made algebraic by performing the tangent
half-angle substitution: sinφ = 2t/(1+ t2) and cos φ = (1− t2)/(1+ t2). Clearing
the denominators and any factor (1 + t2) in the remaining expression leads to a
polynomial of degree five in t. This polynomial is easily solved, and its only real
root corresponds to the minimum sought. The optimum values of φ, x and y are
obtained by back-substitution.

5 Sensor Fusion

In the previous sections, the forward kinematic problem was solved by using
either cable lengths or cable angles. In this section, sensor fusion algorithms are
proposed to extract the most accurate estimates from all the available informa-
tion.

5.1 Three Loop-Closure-Equation Components

Having information on cable angles allows the use of the loop closure equations
for solving the forward kinematics, instead of using the equations described in
Sect. 3. Thus, the most straightforward method to solve the forward kinematic
problem with both cable length and cable angle measurements consists in using
the X and Y components of Eq. (2) for one cable, along with either the X or
Y component of Eq. (2) for any other cable. This results in a system of three
equations and three unknowns, which can be solved symbolically. However, while
being fast and simple, this solution does not use the full potential of every
sensor in the mechanism, which may result in non-negligible inaccuracies in the
estimation of the pose of the effector.
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5.2 Weighted Fusion by Propagation of Variance

Another method for solving the forward kinematics problem consists in solving
the the loop closure equations in Eq. (2) for all n cables, all at once. This can
be done via a simple least square approach, which even yields a symbolic solu-
tion. With this approach, however, the same weight is used for all sensors, even
though their accuracies may differ, which is a significant drawback. Indeed, it
is important to adjust the weight of each sensor measurement in the equations
according to its rated accuracy. Therefore, this section presents the symbolic
solution to the sensor fusion problem, where weights are introduced to better
reflect the relative uncertainty between the two types of measurements.

Let us rewrite the loop-closure equations defined in Eq. (2), in scalar form:

Bi,x + ρi cos θi − cos φP ′
i,x + sin φP ′

i,y − x = 0, i = 1, 2, . . . , n (8a)

Bi,y + ρi sin θi − sin φP ′
i,x − cos φP ′

i,y − y = 0, i = 1, 2, . . . , n. (8b)

We then express sin φ and cos φ in terms of the half-angle tangent T = tan(φ/2),
φ = 2arctan(T ), that is,

sin(φ) =
2T

1 + T 2
, cos(φ) =

1 − T 2

1 + T 2
. (9)

Substituting (9) into (8a) and (8b) yields two quadratic polynomials in T :

Bi,x + ρi cos θi − P ′
i,x − x + 2P ′

i,yT + (Bi,x + ρi cos θi + P ′
i,x − x)T 2 = 0, (10a)

Bi,y + ρi sin θi − P ′
i,y − y + 2P ′

i,xT + (Bi,y + ρi sin θi + P ′
i,y − y)T 2 = 0.

(10b)

We can then use (10a) and (10b) to define the residuals vector

f =

⎡
⎢⎢⎢⎢⎢⎣

Bi,x + ρi cos θi − P ′
i,x − x + 2P ′

i,yT + (Bi,x + ρi cos θi + P ′
i,x − x)T 2

Bi,y + ρi sin θi − P ′
i,y − y + 2P ′

i,xT + (Bi,y + ρi sin θi + P ′
i,y − y)T 2

...
Bn,x + ρn cos θn − P ′

n,x − x + 2P ′
n,yT + (Bn,x + ρn cos θn + P ′

n,x − x)T 2

Bn,y + ρn sin θn − P ′
n,y − y + 2P ′

n,xT + (Bn,y + ρn sin θn + P ′
n,y − y)T 2

⎤
⎥⎥⎥⎥⎥⎦

(11)

of a weighted least squares method

minimize K = (1/2)fTΣ−1
f f ,

over x. (12)

According to the Gauss-Markov theorem [11], the weight matrix value leading
to the best linear unbiased estimator (BLUE) of x is the inverse Σ−1

f of the
variance-covariance matrix of f . In order to compute Σf , we apply the principle
of the propagation of uncertainties. First, let z be a vector containing the sensor
values at any given time:
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z = [θ1, . . . , θn, ρ1, . . . , ρn]T. (13)

Let us then express a linear approximation of f at point z, using estimate ẑ, as:

f(z) ≈ f(ẑ) +
∂f
∂z

∣∣∣∣
ẑ

(z − ẑ). (14)

Therefore, we can express Σf , the covariance matrix of f , as

Σf = E[(f − E[f ])(f − E[f ])T],

Σf = E
[

∂f
∂z

∣∣∣∣
ẑ

(z − E[z])(z − E[z])T
( ∂f

∂z

∣∣∣∣
ẑ

)T]
,

Σf =
∂f
∂z

∣∣∣∣
ẑ

Σz

( ∂f
∂z

∣∣∣∣
ẑ

)T
,

where Σz is the diagonal covariance matrix of z, and an upright E denotes
the statistical expectation. The values of Σz are determined from theory or
from previous experience and must reflect the expected accuracy of each sensor.
Tuning these parameters has an impact on the final solution, since it gives more
or less weight to each corresponding sensor. Notice also that this expression of
Σf requires an estimate of the current pose of the effector. This rough estimate
can simply be obtained with the method presented in Sect. 5.1 or with a non-
weighted least squares method.

Computing the inverse of Σf yields a symmetric block-diagonal matrix,
namely,

Σ−1
f =

⎡
⎢⎢⎢⎣
M1 0 · · · 0
0 M2 · · · 0
...

...
. . .

...
0 0 · · · Mn

⎤
⎥⎥⎥⎦ , Mi ∈ R

2×2. (15)

Thus, with the weight matrix derived, the objective function of (12) is now fully
defined. The condition for an extremum of this function is met when

∂K

∂x
= 0. (16)

Since the residual vector f is post-multiplied by its transpose, and Σ−1
f is the

inverse of a covariance matrix, which is positive semi-definite, the problem (12)
is convex [1]. Consequently, any local minimum is also a global minimum, which
means that only one real solution exists for this problem.

K being scalar and x = [x, y, T ]T being the vector of unknowns, this results
in a system of three equations and three unknowns. Computing Eq. (16), we see
that the derivatives with respect to x and y can be written in compact form as
a linear system of two equations:
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(1 + T 2)
[
α1,1 α2,1

α2,1 α2,2

] [
x
y

]
=

[
β1,1 β1,2 β1,3

β2,1 β2,2 β2,3

]⎡
⎣ 1

T
T 2

⎤
⎦. (17)

We can then solve this system for x and y, that is

[
x
y

]
=

1
1 + T 2

[
α1,1 α2,1

α2,1 α2,2

]−1 [
β1,1 β1,2 β1,3

β2,1 β2,2 β2,3

] ⎡
⎣ 1

T
T 2

⎤
⎦ (18)

where the α and β coefficients are constants. Substituting (18) in the remaining
derivative in T yields, after simplification, a fifth order univariate polynomial
in T :

5∑
i=0

γiT
i = 0 (19)

where the γi coefficients are functions of the sensor inputs, the weight matrix and
the geometric parameters of the robot. Finally, finding the real root of Eq. (19)
gives the value of T , which can then be substituted into Eqs. (18) and (9). Thus,
the pose of the effector is fully defined.

Notice that the proposed algorithm is not iterative, except for the solution
of Eq. (19), which is done using a standard eigenvalue algorithm. Although it
is iterative, the computation of the eigenvalues of the 6 × 6 companion matrix
resulting from Eq. (19) can be done reliably in microseconds using currently
available algorithms and computers. Let us also point out that the rest of the
algorithm is performed in a predetermined number of operations, although it
requires an initial guess of the pose, which is only used to estimate the covariance
matrix Σ−1

f .
The implementation of the algorithm in Matlab runs in 6 ms on a laptop com-

puter equipped with an Intel Core i7-2640M running 2.8 GHz and with 8 GB
of RAM. These computation times could be reduced even more by implementing
the algorithm in a lower-level programming language such as C.

6 Simulated Example

In this section, a simulation is performed to validate the effectiveness of the prop-
agation of variance fusion method. The robot geometry used for this simulation
is presented in Fig. 3. For simplicity, a three-cable configuration was chosen, even
though the methods presented in this paper can be applied to n cables.

The simulation consists in comparing three sets of data corresponding to
the end-effector pose, for given input parameters θi and ρi. The first data
set is obtained by the forward kinematics solution using cable-length measure-
ments only; The second data set is obtained from the forward kinematics using
cable-angle measurements only; The third is obtained using a combination of
both measurements through the sensor fusion algorithm described in Sect. 5.2.



Improving Cable-Driven Parallel Robot Accuracy Through Angular Position 175

Fig. 3. Robot configuration used for the experiment.

The exact values of the parameters are first obtained by specifying the desired
arbitrary poses of the effector and computing the inverse kinematics of the robot.
Random noise from a normal distribution of zero mean and arbitrary variance
is then added to θi and ρi. In the present case, the variance corresponds to an
uncertainty on cable-length measurements of the order of one centimetre, and of
the order of one degree for angular measurement. Finally, the pose of the effector
is obtained using these values.

0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4
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]

Using cable lengths only Using cable angles only Fusion

Fig. 4. Estimated position t of the effector for given ρ and θ parameters with added
noise. True position marked with a black cross. True orientation (not shown in this
figure) is 0◦. For the sensor fusion method, equal weights are given to ρ and θ parame-
ters. The number of samples per position is 150 per method.
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Fig. 5. Estimated orientation φ of the effector for given ρ and θ parameters with
uncertainties of ±1.5 cm and ±1.15◦ on cable length and angles respectively. True
orientation is 0◦ from vertical. The bounding sectors represent the maximum deviations
in orientation for each position. For easier comparison, the error on the X,Y position is
not shown. For the sensor fusion method, equal weights are given to ρ and θ parameters.

Figure 4 presents the resulting distribution of effector position for each
method. While the data points from these methods are generally distributed
in different directions, the fusion results in a distribution that is tightly centred
on the true position. This is particularly true near the edges of the workspace,
where the estimates computed from a single type of measurement exhibit larger
errors. This presents a clear advantage over, for example, computing a simple
average of the cable length solution and the angular position solution, as the
resulting data would spread away from the true position between the two distri-
butions. Therefore, the results in Fig. 4 indicate that the pose obtained through
sensor fusion is more accurate in terms of position than the other two methods.

Figure 5 presents the maximum deviation in effector orientation for differ-
ent points in the workspace, with uncertainties of ±1.5 cm and ±1.15◦ on cable
length and angle respectively. Similar conclusions can be drawn from this figure.
We observe that the bounding sector is consistently more narrow for the data
obtained through sensor fusion. In other words, the maximum deviation in effec-
tor orientation is always smaller with this method. Moreover, while the maxi-
mum deviation values vary greatly with position for the cable length solution
and angular solution, they are generally constant when using sensor fusion.
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Table 1 summarizes the data from Fig. 4. According to these results, when
computing the position of the effector with the sensor fusion method, a 62%
reduction in average RMS error is observed. In addition, the maximum error is
even more significantly impacted, at 75% reduction versus using cable angle only
and 68% reduction versus using cable length only.

Table 1. Error between calculated and true effector X,Y position. RMS value is first
computed for each position, then averaged over the number of positions.

Average RMS error [cm] Max error [cm]

Cable length only 2.73 11.58

Angular sensor only 2.75 13.86

Fusion 1.05 3.67

Table 2 presents the end effector orientation error. While Fig. 5 demonstrates
that the maximum deviations are smaller with the sensor fusion method, we can
conclude from this table that the average RMS error is also significantly lower.
The data show a 61% reduction versus the cable length solution, and a 57%
reduction versus the cable angle solution.

Table 2. Error between calculated and true effector orientation. RMS value is first
computed for each position, then averaged over the number of positions.

Average RMS error [◦] Max error [◦]

Cable length only 5.30 19.43

Angular sensor only 4.89 29.88

Fusion 2.09 7.82

7 Conclusion

In this paper, angular sensors are combined with cable-length measurements in
order to improve the accuracy of planar CDPMs. A method for solving the for-
ward kinematics of such a mechanism only from cable angles was first presented.
The proposed sensor fusion algorithm, based on the loop-closure equations and
a weighted least squares method, was then detailed. A simulation was finally
performed to show the effectiveness of this algorithm.

The results indicate an improved accuracy in terms of end-effector position
and orientation. Moreover, the precision of the proposed method is generally
constant throughout the workspace. The method also presents the advantage of
yielding a single solution, discriminating between multiple forward kinematics
solutions, which is not the case with classical methods based on a single type of
sensors.
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Further work will consist in generalizing the proposed data fusion algorithm
to CDPMs with six degrees of freedom. The robustness of the proposed method
to the choice of the a priori estimate ẑ could also be tested more extensively,
since its effect on the final estimate of z was not investigated.
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Abstract. Direct kinematics (DK) of cable-driven parallel robots
(CDPR) based only on cable lengths measurements is a complex issue
even with ideal cables and consequently even harder for more realistic
cable models. A natural way to simplify the DK solving is to add sensors.
We consider here sensors that give a partial or complete measurement
of the cable direction at the anchor points and spatial CDPR with 2/3
cables and we assume that these measurements are exact. We provide
a solving procedure and maximal number of DK solutions for an exten-
sive combination of sensors while considering two different cables models:
ideal and linearly elastic without deformation.

1 Introduction

We consider cable-driven parallel robot (CDPR) with 3 cables whose output
point on the base is Ai and anchor point Bi on the platform. The known distance
between Bi, Bj will be denoted dij and length of cable i will be denoted ρi.
Solving the direct kinematics (DK) problem with only as input the ρ’s is clearly
an issue in parallel robotics. Although relatively well mastered for parallel robots
with rigid legs, it is still an open issue for CDPR. Even if we assume ideal cable
(with no elasticity and no deformation of the cable due to its own mass) the DK
problem leads to a larger number of equations than in the rigid leg case [8] and
consequently to solving problems [1,2,6,9–11,19], although finding all solutions
is possible at the expense of a rather large computation time [5]. If we assume
linearly elastic cables similar solving problem arise [15]. All the proposed DK
algorithms exhibit a large computation time that prohibits their use in a real-
time context. In this case fast and safe algorithms have been proposed [15,19]:
still several DK solutions may exist even in a small neighborhood around the
previous pose so that the proposed algorithms will fail.

An intuitive approach to avoid the non-unicity problem and to speed up the
solving time of the DK is to add sensors that provide additional information
on the cable beside the cable lengths, as already proposed for classical parallel
robots [7,12,14,18]. A natural candidate will be to measure the cable tensions

c© Springer International Publishing AG 2018
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Mechanisms and Machine Science 53, DOI 10.1007/978-3-319-61431-1 16
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as they play an important role in the solving. Unfortunately force measurements
are usually noisy and measuring these tensions on a moving platform submitted
to various mechanical noises appears to be difficult [13,16]. Although several
attempts have been made of integrating force sensing in CDPR, none of them
have presented clear result about the reliability of the measurement.

In this paper we are considering another measurement possibility which con-
sists in getting complete or partial information on the cable direction at the
anchor points A. These measurement are, Fig. 1:

• the angle θV between the x axis and the vertical plane that includes the cable.
• the angle θH between the horizontal direction of the cable plane and the cable.

A

B

H

V

x

y

z

cable plane

cable

Fig. 1. Orientation sensors may provide the value of θV and/or θH

Realizing such measurement has already been considered: for example our
CDPR MARIONET-Assist uses a simple rotating guide at A whose rotation is
measured by a potentiometer in order to obtain the measurement of θV while
our CDPR MARIONET-VR is instrumented with a more sophisticated cable
guiding system which allows for the measurement of both θV and θH (Fig. 2).
For measuring theses angles we may also consider a vision system as proposed
in [4]. If ρ, θV , θH are known, then the location of B is fixed. If only ρ, θV are
known, then B lies on a circle CV centered at A which belong to the vertical
cable plane. If only ρ, θH are known, then B lies on a horizontal circle CH whose
center U and radius can easily be calculated as function of ρ, θH . To characterize
the sensor arrangement we will use the following notation:

• θjV θjH indicates that the cable j has both θV , θH sensors.
• θV (H)j indicates that the cable j has only θV (H) sensor.

We will also use nθV θH to indicate that n cables have all both θV , θH sensors.
Whenever needed xbi, ybi, zbi will denote the coordinates of Bi while xai, yai, zai

are the coordinates of Ai. In some cases and angle αi will appear and we define
Ti as tan(αi/2). We may have also to use the mechanical equilibrium equations:

F = J−Tτ (1)
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Fig. 2. On the left the rotation guide of MARIONET-Assist which allows for the mea-
surement of θV . On the right the system used on MARIONET-VR for the measurement
of both θV and θH

where F is the external wrench applied on the platform, assumed here to be only
the force applied by the gravity, J−T is the transpose of the inverse kinematic
Jacobian and τ the vector of the 3 tensions in the cable. Equations (1) are a set
of 6 constraint equations. Furthermore if G denotes the center of mass of the
platform there are constants li, ki such that

OG = l1B1B2 + l2B1B3 + l3B1B2 × B1B3 (2)
OB3 = k1B1B2 + k2B1G + k3B1B2 × B1G (3)

Our objective is to consider an exhaustive set of sensor arrangements and
number of sensors and for each of them to determine the computational effort
that is required to solve the DK, together with an upper bound on the maximal
number m of solutions that may be obtained. As we have redundant information
we will consider in each case only one square system leading to a closed-form
solution (thereby faster than the DK algorithm based only on cable lengths) and
whenever possible one leading to a minimal number of solutions. The closed-form
solution will be obtained through an elimination process leading to a univariate
polynomial. Elimination may lead to a polynomial whose degree is higher than
the minimal one: in this work we have tried to provide solution with the lowest
degree but we cannot claim for minimality. For this preliminary, but exhaustive,
work we will consider a spatial CDPR with only 2 and 3 cables. Furthermore we
will assume that all measurements are exact, including the cable lengths. Clearly
this assumption is not realistic but our purpose is to pave the way to a more
complete analysis.

2 Ideal Cable

For an ideal cable the shape of the cable is the straight line between A and B
and cable tension does not affect the length of the cable.
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2.1 The 3 Ideal Cables Case

• case 3θV θH , 6 extra sensors: this case is trivial as the measurements provide
directly the coordinates of all three B and therefore a single solution of the
DK.

• case θ1V θ1H − θ2V θ2H − θV (H)3, 5 extra sensors: in that case the locations of
B1, B2 are known. Consequently B3 must lie on a circle C3 lying in a plane
that is perpendicular to B1B2 and whose center is located on the line B1B2,
while B3 is also located on the circle C 3

V Hence B3 is located at the intersection
of two circles, this leading to one of two solutions whose calculation involves
solving a univariate quadratic polynomial. Note that the case θ1V θ1H −θ2V θ2H −
θ3H is similar if we substitute C 3

V by C 3
H .

• case θ1V θ1H − θ2V θ2H , 4 extra sensors: as in the previous case B3 lies on the
circle C3 and is also located on a sphere centered at A3 with radius ρ3. The
intersection of this sphere with C3 leads usually to 2 intersection points and
involves solving a univariate quadratic polynomial. Hence the DK may have
at most 2 solutions.

• case θ1V θ1H − θ2V − θ3V , 4 extra sensors: B2 lies on a circle C2 that is in a
plane perpendicular to A2B1, whose center lies on the line A2B1 and whose
radius may easily be calculated being given B1, ρ2, d12. It lies also on the circle
C 2
V . Consequently there are two possible locations for B2 that are obtained

by solving a univariate quadratic polynomial. In the same manner B3 lies on
a circle that is perpendicular to B1A3 and whose center is located on this line
while B3 also belongs to C 3

V , thereby leading to two possible locations for this
point that are obtained by solving a univariate quadratic polynomial. Hence
there may be at most 4 possible poses for the platform. Note that changing
θV to θH for any of the cables 2 and 3 will lead to the same result.

• case θ1V θ1H − θ2V , 3 extra sensors: in that case B1 is fixed and B2 lies on
the circle C 2

V . At the same time B2 lies on the sphere centered at B1 with
radius d12. Consequently there are two possible locations for B2 whose calcu-
lation amounts to solving a univariate quadratic polynomial. For each of these
locations as seen in the previous sections there are up to 2 possible location
for B3. In summary there are up to four DK solutions that are obtained by
solving two univariate quadratic polynomial. Note that the case θ1V θ1H − θ2H
is similar.

• case 3−θV , 3 extra sensors: in that case each of the three Bi is constrained
to lie on a known circle C i

V . The CDPR is therefore equivalent to a 3 − RS
whose DK may lead to 16 solutions that are obtained by solving a 16th order
univariate polynomial. The case 3 − θH will be similar.

• case θ1V θ1H , 2 extra sensors: in that case B1 has a fixed position while for
j = 2, 3 Bj lies on a circle perpendicular to the the line B1Aj whose center Mj

lies on this line with a radius rj than can easily be calculated. Hence OBj may
be written as OMj + rj cos αjuj + rj sin αjvj where uj,vj are two arbitrary
unit vectors perpendicular to B1Aj and perpendicular to each other while
αj is an unknown angle that parametrizes the location of Bj on its circle. A
constraint is that ||B2B3|| = d23 but this provides only one constraint for the
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2 unknowns α2, α3. We have therefore to look at the mechanical equilibrium
equations that involve the 3 unknown tensions in the cable τj . Using the 3 first
equations of the equilibrium (1) allows one to determine τ1, τ2, τ3 as functions
of α2, α3. Reporting this result in the last equation of the equilibrium enables
us to obtain a second constraint on α2, α3. The 2 constraint equations are
transformed into algebraic equations by using the Weierstrass substitution
and calculating the resultant of these two equations leads to a univariate
polynomial of degree 8, leading to up to 8 solutions for the DK.

• case θ1H − θ2H , 2 extra sensors: in that case B1, B2 are moving on the hori-
zontal circles C 1

H ,C 2
H . Hence we have OBj = OUj + rj cos αjx + r sin αjy

for j = 1, 2. Then we have the constraint equations ||B1B2||2 = d212,
||B1B3||2 = d213, ||B2B3||2 = d223, ||A3B3||2 = ρ23 which is a set of 4 equa-
tions in the 5 unknowns α1, α2, xb3, yb3, zb3. Hence the geometrical condition
are not sufficient to determine the DK solution(s). The mechanical equilib-
rium equations (1) introduces three new unknowns τ1, τ2, τ3 and 6 constraints.
The 3 first equations of the mechanical equilibrium are linear in τ1, τ2, τ3:
solving this system leads to the 6th equation of the mechanical equilibrium,
||B2B3||2−d223−||A3B3||2+ρ23 and ||B1B3||2−d213−||A3B3||2+ρ23 being linear
in xb3, yb3, zb3. Consequently we have 3 linear equations in xb3, yb3, zb3 that
may be solved in these unknowns. It remain the equations ||B1B2||2 = d212(A)
and the 4th and 5th equations of the mechanical equilibrium. These two later
equations may be factored and have a common factor (B) whose cancellation
will ensure that these 2 equations are satisfied. Then equations (A) and (B)
are functions of the sine and cosine of α1, α2: using the Weierstrass substitu-
tion allows one to obtain 2 algebraic equations in T1, T2 whose resultant in T2

is a univariate polynomial in T1 of degree 12.
• case θ1H , 1 extra sensors: this case is somewhat similar to the previous one:

we have now as unknown α1, xb3, yb3, zb3 and xb2, yb2, zb2. with the additional
constraint ||A2B2||2 = ρ22. As previously we solve the mechanical equilibrium
equation to get τ1, τ2, τ3 and the other constraints to obtain xb3, yb3, zb3.
We end up with a system of 4 equations ||B1B2||2 = d212, ||A2B2||2 = ρ22,
||A3B3||2 = ρ23 and the 4th equation of the mechanical equilibrium in the 4
unknowns α1, xb2, yb2, zb2. The difference of the two first equations is linear in
xb2 and the last equation is linear in zb2. Therefore 2 equations remain in the
unknowns α1, yb2: the resultant in yb2 leads to a polynomial in T1 = tan(α1/2)
which factors out in polynomials of degree 6, 8, 16 and 24.

Table 1 summarizes the previous results for the 3-cables case (the complexity
indicates the degree of the polynomials that have to be solved). It must be noted
that even a single sensor allows one to drastically reduce the computational effort
to get all the DK solutions.

2.2 The 2 Ideal Cables Case

We should not forget that although the CDPR has 3 cables it may end up in
a pose where only 2 cables are under tension, the remaining one being slack.
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Table 1. For ideal cable: sensors arrangement, total number of sensors, complexity of
the solving and maximal number of DK solution(s)

Case Number of sensors Complexity Number of solution

3θV θH 6 1 1

θ1
V θ1

H − θ2
V θ2

H − θV (H)3 5 2 2

θ1
V θ1

H − θ2
V θ2

H 4 2 2

θ1
V θ1

H − θV (H)2 − θV (H)3 4 2,2 4

θ1
V θ1

H − θV (H)2 3 2,2 4

3 − θV (H) 3 16 16

θ1
V θ1

H 2 8 8

θH(V )1 − θH(V )1 2 12 12

θH(V )1 1 6,8,16,24 54

Without losing generality we may assume that cable 1 and 2 are under tension
and cable 3 is slack. A direct consequence is that the platform fully lies in the
vertical plane that includes A1, A2, B1, B2 and G.

• case θ1V θ1H − θ2V θ2H , 4 sensors: a necessary condition to have the platform in
the vertical plane including A1, A2 is

(ya2 − ya1)/(xa2 − xa1) = tan(θ1V ) = − tan(θ2V ) (4)

If this condition is fulfilled then the locations of B1, B2 are fixed. There are
then 2 possible locations for G: one below B1B2 (which is stable) and one
above B1B2 (unstable). By choosing an appropriate frame both locations may
be determined by solving a linear equation. Using Eq. (3) we may determine
the location of B3 and check if ρ3 > ||A3B3|| for confirming the slackness of
cable 3.

• case θ1V θ1H −θ2V , 3 sensors: we use Eq. (4) to check if A1, A2, B1, B2 may be in
the same vertical plane (and this is the only use of θ2V ). If this is so, then B1

is in a fixed location, while B2 belongs to a circle centered in B1 with radius
d12 and to a circle centered in A2 with radius ρ2. Hence there are two possible
locations for B2 that are obtained by solving a quadratic polynomial. The two
possible location of B3 for each location of B2 are obtained using the same
method as in the previous item for checking the slackness of cable 3.

• case θ1V θ1H , 2 sensors: here we cannot check if A1, A2, B1, B2 are in the same
vertical plane but we still may use the same method than in the previous item
and we may obtain up to 4 solutions for the DK, two of them being unstable.

• case θ1V − θ2V , 2 sensors: if condition (4) holds, then the CDPR becomes a
planar CDPR with 2 cables and it is known that to obtain the DK solutions
we will have to solve two univariate polynomials of degree 12 [10].

• case θ1H − θ2H , 2 sensors: here we will assume that A1, A2, B1, B2 are in the
same vertical plane. Being given the sensor measurements we are able to
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get the location of B1, B2 in this plane, which will to check if the condition
||B1B2|| = d12 holds. If this is the case we may solve the DK by using the
procedure described for the θ1V θ1H − θ2V θ2H case.

• case θ1H , 1 sensor: here again we will proceed under the assumption that
A1, A2, B1, B2 are in the same vertical plane and use the procedure for the
θ1V θ1H − θ2V case to obtain up to 4 DK solutions.

• case θ1V , 1 sensor: the sensor measurement allows to check if A1, A2, B1 lie in
the same vertical plane. If this is so we resort to the procedure for solving the
planar 2-cable DK problem, i.e. solving two univariate polynomials of degree
12 [10].

3 Elastic Cable

The shape of the cable is still the straight line between A and B but the cable
length and its length at rest ρr (which is the variable that is controlled and
estimated from the winch motion) are related to the cable tension τ by:

τ = k(ρ − ρr) if ρ ≥ ρr, 0 otherwise (5)

where k is the known stiffness of the cable. There is no deformation of the
cable whose shape is the straight line between A and B. The same measurement
system as for the ideal cable may be implemented and we use the same notation
for describing the sensor arrangement. The difference with the ideal case is that
the measurement of both θV , θH is no more sufficient to determine the location
of the B as the cable length is no more known (and so is the radius of the circles
CV ,CH).

• case 3θV θH , 6 extra sensors:
the 2 sensors on a given cable j provide the cable direction unit vector uj and
the three first equations of the mechanical equilibrium may be written as

j=3∑

j=1

uj
xk(ρj − ρjr) = 0

j=3∑

j=1

uj
yk(ρj − ρjr) = 0

j=3∑

j=1

uj
zk(ρj − ρjr) = mg

These 3 equations constitute a linear system in the ρj that can be solved
to obtain these variables. We have then OBj = OAj + ρjuj that allow to
determine the unique pose of the platform.

• case 2 − θV θH − θ3V , 5 extra sensors:
the ρ may be determined using the same method than in the previous case but
they are now function of α3, the angle used to define B3 on its vertical circle
C 3
V . The constraint ||B1B2||2 = d212 factors out in a polynomial of degree 2

and a polynomial of degree 4, leading to 6 possible DK solutions.
• case θ1V θ1H − θ2V θ2H ,4 extra sensors:

the unknowns are the 3 ρ and the three coordinates of B3. The ρ can be deter-
mined by solving the first three equations of (1). We consider the 6th equation
of the mechanical equilibrium (1) and the two constraints ||B1B2||2 = d212,
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||A3B3||2 = ρ23. We compute in sequence the resultant with respect to xb3, yb3
of these 3 constraints to get a univariate polynomial in zb3. This polynomial
factors out in 3 polynomials of degree 4. Hence there are at most 12 DK
solutions.

• case θ1V θ1H − θV (H)2 − θV (H)3, 4 extra sensors:
The ρ can be determined by solving the first three equations of (1) which
are functions of α2, α3, the two angles that allow to determine the location of
B2, B3 on the C 2

V ,C 3
V circles. The 6th equation of the mechanical equilibrium

(1) factors out in 4 polynomials of degree (2,2) in T2, T3 and one polynomial
of degree (4,4) in T2, T3, while ||B1B2||2 = d212 is a polynomial P of degree
(4,8) in T2, T3. Taking all resultants in T3 of all factors of the 6th equation of
the mechanical equilibrium with P leads to 5 polynomials of degree 6, 6, 6,
12 and 12 in T2.

• case θV (H)1 − θV (H)2 − θV (H)3, 3 extra sensors:
the unknowns here are the 3 angles αi that define the location of the Bi on the
vertical circle CV and the ρ’s which may be obtained by solving the first three
equations of (1). The constraint ||B1B2||2 = d212, ||B1B3||2 = d213 and the 6th
equation of the mechanical equilibrium are functions of T1, T2, T3. Successive
resultants in T1, T2 leads to a univariate polynomial in T3 which factors out in
6 polynomials of degree 72, one polynomial of degree 12, one of degree 24, 2 of
degree 8 and two of degree 4. So an upper bound on the number of solutions
is 492, a number which is most probably overestimated.

• case θ1V θ1H − θV (H)2, 3 extra sensors:
the unknowns are the 3 ρ, the 3 coordinates of B3 and the angle α2 that
allow to define the position of B2 on its vertical circle C 2

V . We use the 3 first
equations of the mechanical equilibrium (1) to determine xb3, yb3, zb3. The 6th
equation of the mechanical equilibrium, which is linear in ρ1, will be used to
calculate this unknown. The resultant R1 of the constraints ||A3B3||2−ρ23 and
||B2B3||2 = d223 in ρ3 is a function of ρ2, α2. The constraint ||B1B2||2 = d212
is only function of α2, ρ2. The resultant of this equation and of R1 in ρ2 is
only a function of α2. Using the Weierstrass substitution this resultant factors
out in 2 polynomials in T2 of degree 12 and 40.

• case θ1V θ1H , 2 extra sensors:
the unknowns are the 3 ρ and the 3 coordinates of B2, B3. The constraint
equations are the 6 equations of the mechanical equilibrium (1), the two
equations ||AjBj||2 − ρ2j for j ∈ [2, 3] and the 3 equations ||BiBj||2 = d2ij
with i, j > i ∈ [1, 3], i �= j. We first use the 3 first equation of the mechanical
equilibrium to determine xb2, yb2, zb2. If we consider the difference between
||B1B3||2 = d213 and ||A3B3||2 − ρ23 and the 6th equation of the mechanical
equilibrium we have a linear system in xb3, yb3. If we report the solution of this
system into the remaining equations, then the 5th equation of the mechanical
equilibrium is linear in zb3. The remaining equations are now functions of
ρ1, ρ2, ρ3. Successive resultants in ρ1, ρ2 leads to a univariate polynomial in
ρ3 which factors out in polynomial of degree 162, 104, 68, 48, 22, 20, 8, 7 and
3, leading to a maximum of 442 solutions, a number which is most probably
overestimated.
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• case θV (H)1 − θV (H)2, 2 extra sensors:
the unknowns are the 3 ρ, the 2 angles α1, α2 that are used to determine the
location of B1, B2 on their vertical circle CV and the 3 coordinates of B3.
The constraint equationss are the 6 equations of the mechanical equilibrium
(1), the equation ||A3B3||2 − ρ23 and the 3 equations ||BiBj||2 = d2ij with
i, j > i ∈ [1, 3], i �= j. We first use the 3 first equation of the mechanical
equilibrium to determine xb3, yb3, zb3. The 6th equation of the mechanical
equilibrium is linear in ρ1. The resultant of ||B2B3||2 = d223 and of the 4th
equation of the mechanical equilibrium with the constraint ||B1B2||2 = d212
allows one to obtain 2 equations free of ρ2. The Weierstrass substitution is
then used to obtain 2 polynomials P1, P2 in T1, T2 which factor out in several
polynomials with P1 =

∏
Ri and P2 =

∏
Sj . When considering the resultant

of all possible combinations of Pi, Qj we get polynomials in T1 only of degree
936, 240, 112, 72, 8, 4, 4 and hence the maximum number of solutions is 1376.
Trials have shown that the polynomials of degree 936, 240 may have real roots.

Table 2 summarizes the result for the 3 elastic cables case.

Table 2. For elastic cable: sensors arrangement, total number of sensors, complexity
of the solving and maximal number of DK solution(s)

Case Number
of sensors

Complexity Max
number of
solutions

3θV θH 6 1 1

θ1
V θ1

H − θ2
V θ2

H − θV (H)3 5 2,4 6

θ1
V θ1

H − θ2
V θ2

H 4 4,4,4 12

θ1
V θ1

H − θV (H)2 − θV (H)3 4 6,6,6,12,12 44

θV (H)1 − θV (H)2 − θV (H)3 3 6 × 72,12,24,2× 8,2× 4 492

θ1
V θ1

H − θV (H)2 3 40, 12 52

θ1
V θ1

H 2 162,104, 68, 48, 22, 20, 8, 7,3 442

θV (H)1 − θV (H)2 2 936, 240, 112, 72, 8, 4, 4 1376

3.1 The 2 Elastic Cables Case

• case θ1H − θ2H , 2 extra sensors: the unknowns are ρ1, ρ2 and the 2 first
equations of the mechanical equilibrium are linear in these variables. The
solution is unique for the planar CDPR but has 2 DK solutions for the spatial
CDPR, see Sect. 2.2.

• case θ1H , 1 extra sensors: the unknowns are ρ1, ρ2 and the 2 coordinates of
B2 in the CDPR plane. The 2 first equations of the mechanical equilibrium are
used to determine these later unknowns. The third equation of the mechanical
equilibrium becomes linear in ρ1. After solving the constraint ||A2B2||2 = ρ22
becomes a polynomial of degree 4 in ρ2.
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4 Analysis and Uncertainty

As seen in Tables 1 and 2 the complexity of the calculation of the DK solution(s)
and their maximal number increases very quickly as soon as the number of
sensors is getting lower than 6 (in which case we get a single solution both for
the ideal and elastic cables). Taking into account measurement uncertainty is
not the purpose of this paper but our first trial with our measurement system
(see Fig. 2) has shown that we cannot expect a high accuracy, especially when
the cable tension is low. Furthermore the accuracy ΔB of the location of B
based on the orientation sensors and assuming an exact measurement of ρ is
ΔB = ρΔθ where Δθ is the sensor error. This implies that for large CDPR where
ρ is much larger than 1 we may expect large error on the coordinates of the B.
However it may be thought that the parallel structure may overall decrease this
influence. To examine this point we have considered a simple planar CDPR with
2 cables connected at the same point. We assume that the ρ, θ are measured
respectively with an accuracy ±Δρ,±Δθ. For a given pose x0, y0 of the CDPR
these uncertainties induce an error on the location of the CDPR and its real
pose lies in a closed region around the nominal pose. To determine the border
of this region we consider the poses x0 + r cos(α), y0 + r sin(α) along a specific
direction defined by the angle α, poses that are at a distance r from the pose
x0, y0 For a given α a simple otimization procedure allows one to determine the
maximum of r, i.e. the maximal positioning error that is compatible with Δρ,Δθ
along the direction defined by α. Starting from α = 0 we increment α by a step
of 5 degrees until we reach 360 degrees, giving us a reasonable approximation
of the border of the region in which the CDPR will lie. The calculation of r at
each α allows us to calculate a good approximation of the minimal, maximal
and mean value for the maximal positioning error. We are thus able to calculate
these variables as a function of Δθ for a fixed value of Δρ. When Δθ is large the

0.001 0.051 0.101 0.151 0.201 0.251 0.281

0.0001

0.0041

0.0081

0.0121

0.0161
Error

maximal

mean

minimal

Fig. 3. Minimal, maximal and mean positioning error for Δρ = 0.01 as a function of
Δθ in degree
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positioning error is just influenced by Δρ but when Δθ decreases their will be
a switching point at which the maximal positioning error will start to decrease
due to the influence of Δθ. Hence this switching point indicates how accurate
should be the measurement in Δθ in order to obtain a better accuracy than
the one based on Δρ only. Figure 3 shows this function for the CDPR with
A1 = (0, 0), A2 = (10, 0), the pose x0 = 5

√
2/2, y0 = −5

√
2/2 and Δρ = 0.01. It

may be seen that the switching point occurs around 0.1 degrees. Therefore the
orientation measurement must be highly accurate to provide a better accuracy
than the one obtained by using only the cable lengths.

5 Conclusion

As solving the DK of CDPR based only on the cable lengths is a complex task
it is worth investigating how additional sensors may help this solving. Note
that these additional sensor(s) may also be used for other tasks such as auto-
calibration [3], identification [17] or workspace limit detection and consequently
may be worth the limited additional cost. In this paper we have investigated
sensors that provide partial or complete information on the cable orientation
and have examined the effect of sensor number and arrangement on the DK
solving for CDPR with 2 or 3 cables, ideal or elastic. This is a necessary work
but also preliminary: it should be extended to CDPR with more than 3 cables.
Furthermore we have assumed perfect sensor measurements which is an unreal-
istic hypothesis, and consequently the influence of the uncertainties on the DK
solving has to be studied. We have shown on a 2dof planar CDPR that the
uncertainty on the orientation sensor measurement must be very low to have an
influence on the accuracy of the estimation of the DK solutions but this influ-
ence has to be studied in detail in more general cases. However cable orientation
measurement, even with an uncertainty interval, may provide useful information
for a numerical method solving the DK with the cable lengths only, allowing to
safely eliminate possible DK solutions. Indeed some of these solutions may lead
to angles that lie outside their measurement intervals and thus can be elimi-
nated. Finally the use of extra orientation sensors has also to be investigated to
manage redundantly actuated CDPR, singularity and sagging cables.
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Abstract. This paper proposes the use of a randomized kinodynamic
planning technique to synthesize dynamic motions for cable-suspended
parallel robots. Given two mechanical states of the robot, both with a
prescribed position and velocity, the method attempts to connect them
by a collision-free trajectory that respects the joint and force limits of
the actuators, keeps the cables in tension, and takes the robot dynamics
into account. The method is based on the construction of a bidirec-
tional rapidly-exploring random tree over the state space. Remarkably,
the technique can be used to cross forward singularities of the robot in a
predictable manner, which extends the motion capabilities beyond those
demonstrated in previous work. The paper describes experiments that
show the performance of the method in point-to-point operations with
specific cable-driven robots, but the overall strategy remains applicable
to other mechanism designs.

1 Introduction

Cable-suspended parallel robots consist of a moving load hanging from a fixed
base by means of cables. The load configuration can be changed by varying the
cable lengths or anchor point locations, and gravity is typically used to main-
tain the cables under tension. As opposed to fully-constrained parallel cable-
driven robots, cable-suspended robots are not redundantly actuated, and gen-
erally employ as many actuators as the number of degrees of freedom to be
governed.

A fundamental issue in such robots is to guarantee that the cable tensions
remain positive at all times. In this way, cable slackness is avoided, which allows
the control of the load using proper tension adjustments. Traditionally, these
robots have been used as robotic cranes, setting them to operate in static or
quasi-static conditions, in which gravity is the sole source of cable tension [1,5].
While this simplifies the planning and control of the motions, it also confines
them to the static workspace, which is a region limited by the footprint of
the robot. More recently, inertia has also been proposed as another source
of tension [11], extending the movement capacity to the dynamic workspace,
i.e., the region that can be attained when load accelerations are allowed [3].
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Using pendulum-like motions, for example, pick-and-place tasks between points
well beyond the robot footprint can be planned [10,14].

In this new context, there is a strong need for an efficient planning tech-
nique that determines the force inputs required to move the robot between two
mechanical states (both with a prescribed position and velocity). Such plan-
ner must avoid collisions of the robot with itself or with the environment while
obeying the physical laws imposed by the motion equations, and the force and
joint limits of the actuators. This problem, known as kinodynamic planning in
the literature [16], is gaining attention in cable-driven robotics [9]. Early work
in this regard includes planning methods for a remarkable mechanism like the
Winch-bot, which can follow prescribed paths on a vertical plane with just a
single actuator [8], or evolved architectures with additional manipulation abil-
ities [18,22,23]. Because of their underactuation, however, these robots cannot
control their pose exactly along the motion, which motivated the development of
newer methods for fully-actuated designs. For instance, in [11] cyclic trajectories
leaving the static workspace were given, and the approach was later extended
to synthesize point-to-point trajectories for pick-and-place tasks [10,14]. Opti-
mal control methods for Robocrane-type platforms were also provided in [2].
While such methods are remarkable, none of them were designed to avoid col-
lisions. The methods in [10,14], moreover, rely on predefined trajectories, and
they need some guidance to define intermediate waypoints when the start and
goal configurations fail to be connected by such trajectories.

Particular solutions for specific robots are valuable, but it is the authors’
belief that existing randomized techniques can solve the kinodynamic planning
problem with great generality in cable-driven robots. The purpose of this paper
is, precisely, to show that a recent method of this kind [7] can successfully cope
with the kinematic, collision, and positive-tension constraints arising in such
robots. The method is based on deploying an exploration tree over the state
space and it is probabilistically complete, i.e., it finds a connecting trajectory
whenever one exists and enough computing time is available. Remarkably, we
show that the method can also be used to cross forward singularities in a pre-
dictable manner, which further extends the motion capabilities beyond those
envisaged in earlier work [10,14]. The method is a generalization of a classic
planning method [17]. Whereas the approach in [17] was suitable for mecha-
nisms described by means of independent generalized coordinates, the one in [7]
can also handle dependent coordinates coupled by kinematic constraints, which
often arise in parallel mechanisms. After reviewing the contributions of [7,17]
(Sect. 2), we show how the resulting technique can be applied to cable-driven
robots (Sect. 3), and illustrate its performance on challenging problems (Sect. 4).
We finally summarize the main strengths of the approach, and points deserving
further attention (Sect. 5).

2 A Kinodynamic Motion Planner

The planning of dynamic motions typically takes place in the state space of the
robot, i.e., the set X of kinematically-valid states x = (q, q̇), where q is a vector
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of nq generalized coordinates describing the configuration of the robot, and q̇
is the time derivative of q, which describes its velocity. The coordinates in q
may be independent or not. In the former case, any pair x = (q, q̇) ∈ R

2nq is
kinematically valid, and X becomes parametrically defined. The latter case is
more complex. The configuration space (C-space) of the robot is the set C of
points q that satisfy a system of ne nonlinear equations

Φ(q) = 0 (1)

encoding, e.g., loop-closure constraints, or geometric constraints due to nonmin-
imal representations of SO(3). As a result, the valid values of q̇ are those that
fulfill

Φq q̇ = 0, (2)

where Φq = ∂Φ/∂q. Then, X becomes a nonlinear manifold of dimension dX =
2(nq − ne) generically, defined implicitly by Eqs. (1) and (2).

Irrespective of the form of X , the motions must always be confined to a
feasibility region Xfeas ⊆ X of collision-free states respecting joint and con-
straint force limits (such as tension positivities in cable-driven robots). Finally,
the motions must also obey the dynamic equations of the robot, which can be
written in the form

ẋ = g(x,u). (3)

In this equation, g(x,u) is an appropriate differentiable function, and u is a d-
vector of actuator forces subject to lie in a bounded subset U ⊂ R

d. Then, given
start and goal states, xs and xg, the kinodynamic planning problem consists in
finding a time function u(t) such that the system trajectory x(t) determined
by Eqs. (1)–(3) for x(0) = xs , fulfills x(tf ) = xg for some time tf > 0, and
u(t) ∈ U , x(t) ∈ Xfeas for all t ∈ [0, tf ].

The solution proposed in [17] assumes that the q coordinates are indepen-
dent, so that Eqs. (1) and (2) need not be considered. The resulting planner
looks for a solution by constructing a rapidly-exploring random tree (RRT) over
X . The RRT is rooted at xs and it is grown incrementally towards xg while
staying inside Xfeas. Every tree node stores a feasible state x ∈ Xfeas, and every
edge stores the action u ∈ U needed to move between the connected states.
This action is assumed to be constant during the move. The expansion of the
RRT proceeds by applying three steps repeatedly (Fig. 1, top-left). First, a state
xrand ∈ X is randomly selected; then, the RRT state xnear that is closest to
xrand is computed according to some metric; finally, a movement from xnear

towards xrand is performed by applying an action u ∈ U during a fixed time
Δt. The movement from xnear towards xrand is simulated by integrating Eq. (3)
numerically, which yields a new state xnew that may or may not be in Xfeas.
In the former case xnew is added to the RRT, and in the latter it is discarded.
To test whether xnew ∈ Xfeas, xnew is checked for collisions by using standard
algorithms [15], and the joint positions and constraint forces are computed to
check whether they stay within bounds. The action u applied is typically chosen
as the one from U that brings the robot closer to xrand. One can either try all
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Fig. 1. Left-Top: Extension process of an RRT. Left-Bottom: A kinodynamic planning
problem is often solved faster with a bidirectional RRT. Right: Construction of an RRT
on an implicitly-defined state space manifold.

possible values in U (if it is a discrete set) or only those of ns random points on
U (if it is continuous). To force the RRT to extend towards xg, xrand is set to
xg once in a while, stopping the whole process when a RRT leaf is close enough
to xg. Usually, however, a solution trajectory can be found more rapidly if two
RRTs respectively rooted at xs and xg are grown simultaneously towards each
other (Fig. 1, left-bottom). The expansion of the tree rooted at xg is based on
the integration of Eq. (3) backward in time.

The previous strategy has proved to be effective in many situations, but in
parallel robots the coordinates in q are often dependent. This fact complicates
the generation of RRTs over X , because there is no straightforward way to
randomly select points x = (q, q̇) satisfying Eqs. (1) and (2), and the numerical
integration of Eq. (3) easily drifts away from X when standard methods for
ordinary differential equations are used. These two issues have been recently
circumvented in [7] by constructing an atlas of X in parallel to the RRT.

An atlas is a collection of charts mapping X entirely, where each chart is a
local diffeomorphism ψ from an open set P ⊆ R

dX of parameters to an open
set V ⊂ X (Fig. 1, right). The V sets can be thought of as partially-overlapping
tiles covering X , in such a way that every x ∈ X lies in at least one set V .
Assuming that an atlas is available, the problem of sampling X boils down
to generating random values y in the P sets, since these values can always be
projected to X using x = ψ(y). Also, the atlas allows the conversion of the



Collision-Free Kinodynamic Planning for Cable-Suspended Parallel Robots 199

vector field defined on X by Eq. (3) into one in the coordinate spaces P , which
permits the integration of Eq. (3) using local coordinates [21]. As a result, the
RRT motions satisfy Eqs. (1) and (2) by construction, eliminating any drift from
X to machine precision.

As explained in [7], the construction of the atlas is incremental. The atlas is
initialized with two charts covering xs and xg, respectively (Fig. 1, right). Then,
these charts are used to pull the expansion of the RRT, which in turn adds new
charts to the atlas as needed, until xs and xg become connected. To be able
to construct the charts, the method requires X to be smooth, which implies
that the robot cannot exhibit C-space singularities, i.e., points q for which Φq

is rank deficient [4,6]. In practice, the exclusion of such singularities can be
achieved by choosing appropriate mechanism dimensions, since generically Φq

will be full rank. Another choice is to set joint limits excluding the presence of
such singularities.

3 Application to a Cable-Suspended Robot

To apply the previous method to a specific cable-suspended robot we need to
obtain Eqs. (1)–(3) and verify that Φq is full rank over the C-space. Moreover,
to determine whether a given x belongs to Xfeas, note that the joint limits can
be trivially checked, and we can use the methods in [15] to detect the collisions.
Thus, we only need to provide a means to compute the cable tensions for each
x ∈ X . We next illustrate these points in the particular robot of Fig. 2.
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Fig. 2. A spatial 3-DOF cable-driven robot.
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3.1 Kinematic Model

Consider a point mass suspended from three cables of fixed length ρi, i = 1, 2, 3.
Each cable is connected to an actuated slider that can move along a guide line
defined by a point Ai, with position vector ai, and a unit vector wi, both given in
a fixed frame Oxyz (Fig. 2). Although the guides are horizontal and parallel in this
figure, they could take any direction in general. By changing the displacements
d = [d1, d2, d3]T of the sliders, the robot can control the position P of the point
mass, with position vector p = [x, y, z]T in the mentioned frame. In this robot, it
is natural to choose q = [x, y, z, d1, d2, d3]T so that Eq. (1) becomes the system
formed by

ρ2i − ci
Tci = 0, (4)

for i = 1, 2, 3, where ci = (ai + diwi) − p is the vector from P to the ith slider
position. By taking the partial derivatives of Eq. (4) with respect to p and d we
obtain

Φq =

⎡
⎣

︸ ︷︷ ︸
Φp

2c1
T

2c2
T

2c3
T

︸ ︷︷ ︸
Φd

−2c1
Tw1 0 0

0 −2c2
Tw2 0

0 0 −2c3
Tw3

⎤
⎦ , (5)

which readily provides Eq. (2).
By inspection of the previous Jacobian, it is easy to see that a configuration q

is a C-space singularity if, and only if, the three cables lie on a plane π orthogonal
to the three guides. Certainly, if for a given q all cables lie on such a plane
π, the subjacobian Φd is null, and the subjacobian Φp is rank deficient. This
implies that all 3×3 minors of Φq will vanish, so that q is a C-space singularity.
Conversely, if not all cables lie on such a plane π, but they are still on a plane
not orthogonal to the guides, Φp is rank deficient but Φd will be full rank. If the
cables are not coplanar, Φp is full rank. In any of the two situations, therefore,
Φq will be full rank.

In what follows, we shall assume that our robot does not exhibit C-space
singularities. To ensure so, note that it suffices to choose cable lengths for which
it is impossible to assemble the mechanism with all of its cables stretched and
lying on the plane π just described.

The configurations in which Φp is rank deficient are the so-called forward
singularities of the mechanism [6]. In these singularities, the velocities of the
actuators do not determine the velocity of the end effector if only Eq. (2) is
considered. However, in the next section we shall see that, dynamically, the
evolution of the mechanism is perfectly predictable across such singularities.

3.2 Dynamic Model

To formulate Eq. (3), we use the Euler-Lagrange equations with multipliers [12]
which lead to a compact treatment of dynamics and are easily applicable to
other cable-driven architectures. These equations take the form

d

dt

∂K

∂q̇
− ∂K

∂q
+

∂U

∂q
+ Φq

Tλ = τ , (6)
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where K and U are the expressions of the kinetic and potential energies of the
robot, λ is a vector of ne Lagrange multipliers, and τ is the generalized force
corresponding to the non-conservative forces applied on the system.

In the robot of Fig. 2, we assume that the cables have negligible mass, and
let ml and ms refer to the mass of the moving load and the mass of each slider,
respectively. By defining Ml = mlI3 and Ms = msI3, where I3 is the 3 × 3
identity matrix, the kinetic energy of the robot is given by

K =
1
2

[
ṗT ḋT

] [
Ml 0
0 Ms

] [
ṗ

ḋ

]
=

1
2
q̇TMq̇, (7)

where M is the so-called mass matrix, which is always symmetric and positive
definite. The potential energy of the robot, on the other hand, is given by

U = mlgz, (8)

where g is the gravitational acceleration. By substituting Eq. (7) into Eq. (6),
the Euler-Lagrange equations of our robot reduce to

Mq̈ + Uq + Φq
Tλ = τ . (9)

where the term Uq is given by the partial derivatives of Eq. (8), i.e.,

Uq = [0, 0,mlg, 0, 0, 0]T. (10)

Also, assuming for simplicity that all contacts are frictionless, and letting ui

denote the force exerted by the ith actuator, we have

τ = [0, 0, 0, u1, u2, u3]T. (11)

Since Eq. (9) is a system of nq equations in nq + ne unknowns (the values
of q̈ and λ), we need extra equations to be able to solve for q̈. These can be
obtained by differentiating Eq. (2), which yields

Φqq̈ − ξ = 0, (12)

where ξ = −(Φqqq̇)q̇. Equations (9) and (12) can then be written as
[
M(q) Φ�

q

Φq 0

] [
q̈
λ

]
=

[
τ − Uq

ξ

]
. (13)

Clearly, if Φq is full rank, i.e. there are no C-space singularities, the matrix on
the left-hand side of Eq. (13) is invertible, even at forward singularities, and thus
we can write

q̈ = f(q, q̇,u) =
[
Inq

0
] [

M(q) Φ�
q

Φq 0

]−1 [
τ − Uq

ξ

]
. (14)

To finally obtain Eq. (3), we transform Eq. (14) into a first-order ordinary dif-
ferential equation using the change of variables q̇ = v, yielding

ẋ =
[
q̇
v̇

]
=

[
v

f(q,v,u)

]
= g(x,u). (15)
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3.3 Tension Computation

Let Fi denote the force applied by the ith cable on the moving load (Fig. 2). Such
a force can be written as Fi = ciFi/ρi, where Fi is the tension of the ith cable.
We next see that the tensions Fi can be obtained from the Lagrange multipliers
λ. Note that Eq. (9) can be decomposed into

Ml p̈ = [0, 0,−mlg]T − Φp
Tλ, (16)

Ms d̈ = [u1, u2, u3]T − Φd
Tλ, (17)

which correspond, respectively, to Newton’s 2nd law applied to the load and the
sliders. Using Eq. (16), for instance, we see that the term −Φp

Tλ must be the
resultant force applied by the cables Fc = F1 + F2 + F3, because the other two
terms are the weight of the load and the time derivative of its linear momentum.
Thus we can say that Fc = −Φp

Tλ, or, using the value of Φp in Eq. (5),

Fc = 2c1λ1 + 2c2λ2 + 2c3λ3. (18)

On the other hand, Fc can also be written as

Fc =
c1
ρ1

F1 +
c2
ρ2

F2 +
c3
ρ3

F3, (19)

and comparing Eqs. (18) and (19) we obtain Fi = 2ρiλi. We note this expres-
sion for Fi could also have been obtained by departing from Eq. (17) instead.
Moreover, since the robot is assumed to be free from C-space singularities, the
λ values are always determined by Eq. (13), implying that the tensions Fi will
be determined too, even at forward singularities.

4 Experiments

The planner has been implemented in C, and it has been integrated into the
CUIK Suite [20]. To illustrate its performance, we next show three experiments
of increasing complexity. The first two experiments involve a planar version of
the robot of Fig. 2, whereas the last experiment is three-dimensional. In all cases
the mass of the load is 1 [kg], the mass of each slider is 0.1 [kg], and the force
applied by the sliders is limited to the range [−8, 8] [N], so that U = [−8, 8]d,
with d ∈ {2, 3}. A bidirectional RRT is always constructed, and each time it is
extended, ns = 25 actions are randomly sampled from U . Each of these actions
is applied during Δt = 0.5 [s].

For each experiment, Table 1 summarizes the values of nq, ne, and dX , as
well as the performance statistics on an iMac with an Intel i7 processor with 8
CPU cores running at 2.93 Ghz. The statistics include the number of samples
and charts generated, and the planning time in seconds, all averaged over ten
runs. The planner successfully connected the start and goal states in all runs.
Finally, the table also indicates the execution time, tf , for the trajectories of
Fig. 3.
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Fig. 3. Three planning problems on planar and spatial versions of the robot.
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Table 1. Problem dimensions and performance statistics for the shown experiments.

Experiment nq ne dX No. of samples No. of charts Planning time [s] tf [s]

1 4 2 4 1928 283 12.6 10.1

2 4 2 4 20946 2622 140 7.1

3 6 3 6 24398 2244 234 8.4

Experiment 1: Moving in the dynamic workspace

In this example, the load is suspended from two cables, and the sliders move
along vertical guides [Fig. 3(a)]. The cables and the sliders move on different
planes and, thus, their collisions need not be checked. The distance between
the two guides is 2 [m], and the cables’ length is 8 [m]. The goal here is to
move the load from a low position to a higher position, both in rest and outside
the static workspace. The load has to oscillate along the trajectory in order to
gain momentum and finally reach the goal. The smaller the allowable force on
the motors, the larger the number of oscillations and the harder the planning
problem. The bidirectional RRT created encompasses two trees rooted at the
start and goal states, shown in red and green respectively. Note that although the
robot has a limited static workspace (the region between the guides), including
dynamics in the planning has increased the usable workspace substantially.

Experiment 2: Singularity crossing

We now consider the robot of Fig. 3(b), in which the load is suspended from
two horizontal guides separated 1 [m] from each other. The lengths of the cables
have been set to 6.6 and 8 [m], which allows them to align at 45◦ relative to
the guides. The planning problem consists in finding a trajectory to move the
load between the left and rightmost positions in the figure, assuming that the
cables cannot collide with the guides nor with themselves. Note that the triangle
1–2–3 has a different orientation at the start and goal positions, so that the
robot will have to cross a forward singularity to connect them. Although the
inverse static problem is indeterminate in such a singularity, we have shown how
both the tensions and the evolution of the robot remain dynamically determined
(Sects. 3.2 and 3.3). The planner, as a result, has no trouble in computing the
shown trajectory, which certainly crosses the singularity somewhere between the
two configurations depicted on the right.

Experiment 3: Obstacle avoidance

Finally, a 3D cable-driven robot with three horizontal guides is used to demon-
strate how obstacles are avoided. The distance between two consecutive guides
is 3 [m], and the cables’ length is 8 [m]. The robot moves from a rest position
inside the static workspace to another position outside of it. Both positions are
separated by a wall in the middle of the workspace, which has to be avoided
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during the move. The robot is able to overpass the obstacle and manages to
reach the goal as seen in Fig. 3(c).

5 Conclusions

This paper has shown how a recent randomized kinodynamic planning technique
can be applied to generate dynamic trajectories for cable-suspended parallel
robots. Taking into account the system dynamics enlarges the robot workspace
substantially, allowing to reach points further apart from the footprint of the sup-
porting structure. Moreover, the joint consideration of obstacle avoidance, force
and joint limits, positive tension constraints, and singularity crossings makes
the planner applicable to challenging scenarios. The approach has been vali-
dated with experiments on particular architectures, but it remains applicable to
other robot designs.

The trajectory directly returned by the planner is smooth in position, but
not in velocity and acceleration. A point deserving further attention, thus, is the
application of local optimization techniques to obtain twice-differentiable tra-
jectories. Also, global optimization methods should be developed to obtain tra-
jectories involving minimum-time or energy consumption [13,19]. Finally, efforts
should be devoted to enhance the metric used to measure the distance between
states, which is known to be a challenging task in all sampling-based kinody-
namic planners.
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15. Jiménez, P., Thomas, F., Torras, C.: 3D collision detection: a survey. Comput.
Graph. 25(2), 269–285 (2001). doi:10.1016/S0097-8493(00)00130--8

16. LaValle, S.M.: Planning Algorithms. Cambridge University Press, New York
(2006). http://planning.cs.uiuc.edu/

17. LaValle, S.M., Kuffner, J.J.: Randomized kinodynamic planning. Int. J. Rob. Res.
20(5), 378–400 (2001). http://doi.org/10.1177/02783640122067453

18. Lefrançois, S., Gosselin, C.: Point-to-point motion control of a pendulum-like 3-
DOF underactuated cable-driven robot. In: IEEE International Conference on
Robotics and Automation, pp. 5187–5193 (2010). http://doi.org/10.1109/ROBOT.
2010.5509656

19. Li, Y., Littlefield, Z., Bekris, K.E.: Asymptotically optimal sampling-based kinody-
namic planning. Int. J. Rob. Res. 35(5), 528–564 (2016). http://doi.org/10.1177/
0278364915614386

20. Porta, J.M., Ros, L., Bohigas, O., Manubens, M., Rosales, C., Jaillet, L.: The cuik
suite: analyzing the motion of closed-chain multibody systems. IEEE Rob. Autom.
Mag. 21(3), 105–114 (2014). http://doi.org/10.1109/MRA.2013.2287462

21. Potra, F.A., Yen, J.: Implicit numerical integration for Euler-Lagrange equations
via tangent space parametrization. J. Struct. Mech. 19(1), 77–98 (1991). http://
doi.org/10.1080/08905459108905138

22. Zanotto, D., Rosati, G., Agrawal, S.K.: Modeling and control of a 3-DOF
pendulum-like manipulator. In: IEEE International Conference on Robotics and
Automation, pp. 3964–3969 (2011). http://doi.org/10.1109/ICRA.2011.5980198

23. Zoso, N., Gosselin, C.: Point-to-point motion planning of a parallel 3-DOF underac-
tuated cable-suspended robot. In: IEEE International Conference on Robotics and
Automation, pp. 2325–2330 (2012). http://doi.org/10.1109/ICRA.2012.6224598

http://doi.org/10.1299/mer.2014dsm0004
http://doi.org/10.1109/TRO.2013.2292451
http://doi.org/10.1109/ICRA.2012.6224683
http://doi.org/10.1017/CBO9780511800207
http://doi.org/10.1109/TRO.2016.2602363
http://doi.org/10.1109/TRO.2016.2602363
http://doi.org/10.1109/TRO.2016.2597315
http://dx.doi.org/10.1016/S0097-8493(00)00130--8
http://planning.cs.uiuc.edu/
http://doi.org/10.1177/02783640122067453
http://doi.org/10.1109/ROBOT.2010.5509656
http://doi.org/10.1109/ROBOT.2010.5509656
http://doi.org/10.1177/0278364915614386
http://doi.org/10.1177/0278364915614386
http://doi.org/10.1109/MRA.2013.2287462
http://doi.org/10.1080/08905459108905138
http://doi.org/10.1080/08905459108905138
http://doi.org/10.1109/ICRA.2011.5980198
http://doi.org/10.1109/ICRA.2012.6224598


Rest-to-Rest Trajectory Planning for Planar
Underactuated Cable-Driven Parallel Robots
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Abstract. This paper studies the trajectory planning of undercon-
strained and underactuated planar cable-driven parallel robots in the
case of rest-to-rest motions. For these manipulators, it is possible to con-
trol only a subset of the generalized coordinates describing the system.
Furthermore, when an arbitrary motion is prescribed for a suitable sub-
set of these coordinates, the lack of constraint on the others leads to
the impossibility of bringing the system at rest in a prescribed time.
As a consequence, the behavior of the system may not be stable, unless
a suitable trajectory is planned. In this paper, a planar 3-DoFs robot
suspended by two cables is studied, and a planning method for the tra-
jectory of a reference point on the moving platform is proposed, so as
to ensure that the assigned path is tracked accurately and the system is
brought to a static condition in a prescribed time.

1 Introduction

Cable-driven parallel robots (CDPRs) employ cables in place of rigid-body exten-
sible legs in order to control the end-effector pose. A CDPR is fully constrained
if the end effector pose can be completely determined when actuators are locked
and, thus, all cable length are assigned. Conversely, a CDPR is underconstrained
if the end-effector preserves some freedoms once actuators are locked. This occurs
either when the end-effector is controlled by a number of cables smaller than the
number of degrees of freedom (DoF) that it possesses with respect to the base
or when some cables become slack in a fully constrained robot [1]. In addition,
if the number of actuators is less than the number of generalized coordinates
needed to completely describe the manipulator, the robot is underactuated and
thus inherently underconstrained as well.

The use of CDPRs with a limited number of cables is justified in several
applications, in which the task to be performed allows for a limited number of
controlled freedoms (only n DoFs may be governed by n cables) or a limitation of
dexterity is acceptable in order to decrease complexity, cost, set-up time, likeli-
hood of cable interference, etc. While a rich literature exists for fully-constrained
CDPRs, little research has been conducted on under-constrained ones [1–7].
c© Springer International Publishing AG 2018
C. Gosselin et al. (eds.), Cable-Driven Parallel Robots,
Mechanisms and Machine Science 53, DOI 10.1007/978-3-319-61431-1 18
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A major challenge in the analysis of these systems is the trajectory plan-
ning of the platform for point-to-point motions. In the case of full or redundant
actuation the system can be shown to be “flat” [8] and the trajectory planning
problem is completely algebraic [6]. When the platform is both underconstrained
and the system underactuated, the flatness property does not necessarily hold
and different techniques must be employed. This fact leads, for example, to the
impossibility of bringing the platform to rest once the transition from the start-
ing point to the ending point is completed.

In [9] a pendulum-like robot was proposed, consisting of a point mass sus-
pended by a single cable. In order for this system to move outside a straight
vertical line and perform point-to-point motions, non zero initial condition must
be provided. In [10] a serial planar cable-driven mechanism was proposed whose
mechanical architecture is such that the dynamic equations can be decoupled
and the burden of trajectory planning is reduced. A planar 3 DoF CDPR sus-
pended by 2 cables was proposed in [11], and the authors were able to gener-
ate point-to-point motions for the platform, even outside the static workspace,
exploiting harmonic motion laws for the cable lengths; however, they were not
able to impose constraints on the path to follow or on the transition time. An
input-shaping filtering technique was then proposed in [12] for a planar CDPR
and in [13] for a spatial model. Generic trajectories were proposed for which
the platform oscillations were significantly reduced, but not eliminated, even in
a simulation environment, mainly because of the approximation of the robot
natural frequency used in the input shaper. In addition, the nature of the input
shaping filter does not allow precise tracking of geometrical paths in point-to-
point motions, since the nominal path is modified by the filter.

In this paper, an underactuated and underconstrained planar CDPR, whose
mechanical model is identical to the one described in [11,12], is proposed. Our
objective is to develop a trajectory-planning method suitable for a stationary
setpoint transition when the transition path is assigned. A stationary setpoint
transition refers to a point-to-point motion of the platform that is performed
in a finite, precomputed time, between two static equilibrium poses. First, the
dynamic model is developed. Then, a robust trajectory planning method is pro-
posed which is based on the solution of a Boundary Value Problem (BVP) arising
from the dynamics of the platform. Finally, the results of computer simulation
and experimental tests on a prototype are briefly presented and discussed.

2 Kinematic Model

A planar 3-DoF underactuated CDPR consists of a mobile platform linked to
the base by two cables, as shown in Fig. 1. The i-th cable connects point Ai

on the base to point Bi on the platform. Each cable is actuated by a motor-
ized winch. Since the platform is constrained by only two cables, it is under-
constrained. Oxy is an inertial frame, whereas Gx′y′ is a coordinate system
attached to the platform center of mass. The mutual orientation between the two
frames is described by angle θ. Cables are considered nonextensible and massless.
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Fig. 1. Geometric Model of a general CDPR with two cables

This assumption does not introduce noticeable errors, if cables are light and have
high Young modulus.

The coordinates of a generic point P on the platform, as well as of B1 and
B2, are described by vectors p′, b′

1 and b′
2 in the moving frame. p, b1 and

b2 denote, instead, the coordinates of the same points in the base frame. The
position vectors of points A1 and A2 in the base frame are a1 and a2. The i-th
cable length is ci, with its length being |ci| = ρi (i = 1, 2). The array ρ = [ρ1, ρ2]T

contains the actuated variables of the system. The mass of the platform is m and
its mass moment of inertia with respect to G is IG. Finally, the configuration of
the robot is described by q = [xG, yG, θ]T ,where pG = [xG, yG]T .

The geometrical constraints that the cables impose on the platform are:

cTi ci − ρ2i = 0, i = 1, 2 (1)

where the vector ci connecting the attachment points of the i-th cable is:

ci = bi − ai = pG + R(θ)b′
i − ai, R(θ) =

[
cos(θ) − sin(θ)
sin(θ) cos(θ)

]
(2)

Differentiating Eqs. (1) and (2) with respect to time yields:

cTi ċi − ρiρ̇i = 0, i = 1, 2 (3)

ċi = ṗG + ERb′
iθ̇ (4)

The antisymmetric matrix E is defined in the planar case by:

Ṙ(θ) = ER(θ)θ̇, E =
[
0 −1
1 0

]
(5)

The Jacobian matrix is found by expressing Eqs. (3)–(4) expressed in compact
form as:

Jq̇ − ν = 0 (6)

with:

J =
[
cT1 cT1 ERb′

1

cT2 cT2 ERb′
2

]
, ν(t) =

[
ρ1ρ̇1
ρ2ρ̇2

]
(7)
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3 Dynamic Model

Due to the underactuated nature of the system, there is no way to predict
the evolution of the system without taking into account the dynamics of the
platform. If gravity is considered as the only external force acting on the platform
and the tension in each cable is denoted by Ti, the dynamic equilibrium can be
formulated as:

Mq̈ + JT τ − f = 0 (8)

where:

M =

⎡
⎣m 0 0

0 m 0
0 0 IG

⎤
⎦ , τ =

[
T1/ρ1
T2/ρ2

]
, f =

⎡
⎣ 0

mg
0

⎤
⎦

In the case of an underactuated system, the generalized coordinates can be
partitioned in actuated and unactuated, depending on the task that the platform
is required to perform. As an example, we may consider the task of positioning
the end-effector center of mass, whose coordinates are thus the actuated ones.
In this case, Eq. (8) can be rewritten as:

Map̈G + JT
a τ − fa =0 (9)

IGθ̈ + JT
uT =0 (10)

where:

Ma =
[
m 0
0 m

]
, Ja =

[
cT1
cT2

]
, fa =

[
0

mg

]
, Ju =

[
cT1 ERb′

1

cT2 ERb′
2

]

Equation (9) can then be solved for vector τ , thus yielding:

τ = −J−T
a Ma(p̈G − g) (11)

where g is the gravitational acceleration. Substituting (11) in (10) results in a
differential equation of second order in the unactuated coordinate θ:

IGθ̈ − JT
uJ

−T
a Ma(p̈G − g) = 0 (12)

This differential equation is sometimes referred to as the second-order nonholo-
nomic constraint [14] arising from the underconstrained nature of the system.
The platform generalized coordinates must fulfill this differential equation at any
time, in the same way they must satisfy the geometrical constraints in Eq. (1).

4 Rest-to-Rest Trajectory Planning

The problem of rest-to-rest trajectory planning for an underactuated mechani-
cal system is referred to as a transition problem between stationary setpoints in
system theory [15]. The aforementioned transition has been proven to be possi-
ble, in most cases, if a pre-actuation or post-actuation phase is considered for
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the system at end [16]. This essentially leads to a theoretical impossibility to
bring the system at rest in a finite time T and provides no prediction on the
uncontrolled coordinates behavior, which can lead to the system instability (i.e.
oscillatory behavior), thus strongly limiting practical applications.

In [17], a new methodology was proposed for the trajectory design of Sin-
gle Input Single Output (SISO) systems and in [18] the same methodology was
extended to Multi Input Multi Output (MIMO) systems. The result of bringing
the system to a stationary position in the prescribed time T is accomplished
thanks to a substantial modification of a nominal trajectory that the actuated
coordinates are supposed to track. This is often not desirable (when not danger-
ous) in industrial applications involving robots, because of possible interference
with obstacles.

In this section, a novel method is proposed that avoids geometric modification
of the path to track, focusing instead on a specific design of the motion law that
describes how the platform moves along the path itself. The design of such a
motion law relies on the solution of a Boundary Value Problem (BVP), which is
formulated as the problem of finding a solution to the differential Eq. (12), with
constraints on position, velocity and acceleration at start and end positions.

4.1 Formulation of the Problem

When we refer to the trajectory planning of a generic manipulator, the goal is to
define both the geometric path of a reference point on the end-effector and the
orientation of the latter. In the case of an underactuated planar CDPR supported
by two cables, however, it is not possible to assign both the geometric path and
the orientation of the platform, due to the underactuated nature of the system.
For the sake of simplicity, in the following we will consider the case in which the
geometric path of the platform center of mass G is prescribed. It is convenient to
consider a parametric representation of the path to track, such as pG = pG(u).
The parameter u is referred to as the motion law, which describes how the curve
is tracked by G and it is usually a function of time u = u(t), with initial and
final conditions u(0) = 0 and u(T ) = 1. The composition (pG ◦ u) = pG(u(t)) is
what we refer to as the trajectory, that is, the time function which describes the
evolution of vector pG(t).

The design criteria for the motion law are various and application specific.
However, when the manipulator is completely or redundantly actuated, the prob-
lem of a stationary point change always leads to the solution of a system of linear
equations emerging from the fulfillment of some boundary conditions and the
necessity of a continuous and differentiable function. A polynomial motion law is
often sufficient to satisfy continuity and differentiability up to a predetermined
order in the start and end points. An easy way to devise such polynomials is to
use the so-called transition polynomials [19] of degree 2r + 1:

u(t) =
2r+1∑
i=r+1

ai

(
t

T

)i

t ∈ [0, T ] (13)
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where the coefficients ai’s do not depend on the task at hand and are given by:

ai =
(−1)i−r−1(2r + 1)!

i · r!(i − r − 1)!(2r + 1 − i)!
(14)

The index r stands for the maximum order of derivation up to which the con-
tinuity of the polynomial is required. In the case of an underactuated system,
though, this approach is generally not sufficient to bring the platform to rest in
the end position. This is due to the fact that the time evolution of the uncon-
trolled coordinate is the result of the evolution of the system, which is subject to
the inertial effect due to the geometric path and the chosen motion law. In order
to achieve the desired result, the nonholonomic constraint (12) must be consid-
ered in the planning phase. The stationary constraints that the platform has to
meet in the start and end points are then considered as boundary conditions
(BCs) for the differential equation, thus leading to a BVP. This problem has no
solution if the complete trajectory of the actuated coordinates is assigned. On
the other hand, if modifications are allowed on the path or the motion law, the
problem may admit a solution.

In order to numerically solve the differential Eq. (12), we first express it in
(first-order) state-space representation:

ẋ = f(x,pG, p̈G) (15)

x =
[
θ

θ̇

]
, f(x,pG, p̈G) =

[
θ̇

JT
uJ

−T
a Ma(p̈G − g)/IG

]
(16)

For a rest-to-rest trajectory planning, the BCs can be expressed as:

x(0) =
[
θ0(pG(0))

0

]
, x(T ) =

[
θT (pG(T ))

0

]
(17)

where [pG(0), θ0(pG(0))]T and [pG(T ), θT (pG(T ))]T are stable equilibrium con-
figurations of the system, obtained as in [1].

Equation (15) has dimension 2 and can only match 2 out of the 4 BCs
considered in (17). One way to provide a solution to the problem is to consider a
number of additional scalar parameters k1, . . . , kh (called free parameters) equal
to the difference between the number of boundary conditions and the dimension
of the differential problem, so that pG = pG(k, t). In the case at hand, h = 2
and k = [k1, k2]T . The free parameters k1 and k2 are calculated so as conditions
(17) are satisfied.

4.2 Modification of the Motion Law

If we do not wish to modify the geometric path of the trajectory, the only allowed
modification concerns the motion law, that is, pG = pG(u(k, t)) [20]. One way
to design such a modified motion law u, so that the actuated coordinates can
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meet the start and end conditions prescribed by the task, is to consider the
composition u(k, t) = (ũ ◦ γ)(k, t), where the analytical expression of ũ(γ) is:

ũ(γ) =
2r+1∑
i=r+1

ai γ
i(k, t) γ(k, t) ∈ R (18)

where ai is still expressed as in (14) and the function γ(k, t) is arbitrary, as long
as it satisfies the requirements:

γ(k, 0) = 0, γ(k, T ) = 1 ∀k (19)

In the case under examination, r = 3 is also chosen, so that continuity of jerk
can be imposed in the start and end positions. This way, any discontinuity in
the cable tensions τ is avoided, thus eliminating a different potential source of
residual oscillation. As an example, γ(k, t) may be designed as a polynomial of
order 3:

γ(k, t) = αt + k1t
2 + k2t

3, α =
1 − k1T

2 − k2T
3

T
(20)

Accordingly, the velocity of point G can be expressed as:

ṗG =
∂pG

∂u

∂u

∂γ

∂γ

∂t
= p′

Gu∗γ̇ (21)

where (·)′ denotes the partial derivative with respect to u and (·)∗ the partial
derivative with respect to γ. The acceleration vector is consequently:

p̈G = p′′
G(u∗γ̇)2 + p′

G(u∗γ̈ + u∗∗γ̇2) (22)

4.3 Solution of the BVP with Free Parameters

In order to determine the vector of free parameters k, the BVP expressed by
Eq. (15) with BC (17) must be numerically solved. A number of algorithms
are proposed in the literature and even implemented in commercial softwares,
such as the bvp4c and bvp5c routines available in any MATLAB distribution
[21]. These algorithms are finite-difference codes that implement a collocation
formula [22] and, thus, require a suitable set-up in order to work efficiently and
find a solution within a reasonable tolerance. However, even in this case, there
is still no guarantee of success.

Alternatively, the problem can be formulated as a combination of an Initial
Value Problem (IVP) followed by the solution of a system of nonlinear equations.
Provided an initial guess for the unknown parameter vector k, which can be as
easy as the zero vector, the system of nonlinear equations is formulated as:

x̃i(ki, T ) − x(T ) = 0, x(T ) =
[
θT (pG(T ))

0

]
(23)
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where the vector x̃i(ki, T ) is evaluated at every iteration as the end point of the
IVP defined by:

ẋ = f
(
x,pG(ki, t), p̈G(ki, t)

)
, x(0) =

[
θ0(pG(0))

0

]
(24)

Once a solution (k,x(t)) is found, the trajectory pG(k, t) can be computed. By
considering the calculated x(t), the cable’s length is found according to (1) as:

ρi =
√

cTi ci, i = 1, 2 (25)

It should be noted that no explicit constraints on cable tensions or motor torques
are considered in this work other than cable positive tension, which is taken into
account during the integration of Eq. (24).

5 Simulation and Experimental Results

The presented trajectory-planning method has been implemented in a MATLAB
code in order to determine the trajectory of the actuated coordinates and to
compute the cable lengths that are used as position setpoints in a open-loop
control scheme. The geometrical and inertial parameters of the planar robot
are chosen according to the architecture of the prototype that is used for the
experimentation:

b′
1 =

[−0.177
0.271

]
m b′

2 =
[
0.177
0.271

]
m

a1 =
[−1.150

1.930

]
m a2 =

[
1.150
1.930

]
m

m = 7.510Kg IG = 0.357 Kg · m2 g = 9.807m/s2

As an example, a horizontal line path will be considered for the transition of the
center of mass pG between 4 stationary points, which will be executed one after
the other, with a pause of 1 s between each one of them. The effects of residual
oscillations of the platform, caused by non-equilibrium final conditions, are thus
amplified and easily detectable. The stationary points are evaluated according
to the geometrico-static analysis as:

q0 =

⎡
⎣ 0

0.495
0

⎤
⎦ q1 =

⎡
⎣ 0.4

0.495
0.153

⎤
⎦ q2 =

⎡
⎣ −0.4

0.495
−0.153

⎤
⎦ q3 =

⎡
⎣ 0

0.495
0

⎤
⎦

and the time of the transitions are set to:

T1 = 1s T2 = 2s T3 = 1s

In the case of a line, the parametrization of the s-th path spG may be simply
set as:

spG(u) = pG,i + (pG,i+1 − pG,i)u (26)
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The solution of theBVPgives the value of theunknownconstantparameters sk:

1k =
[−1.4496

0.9847

]
2k =

[−0.0603
0.0201

]
3k =

[−1.4496
0.9847

]

as well as a prediction of the orientation of the platform (Fig. 2a). Consequently,
it is possible to evaluate the cable lengths at every time step (Fig. 2b).
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(a) Predicted orientation.
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(b) Calculated cable lenghts.

Fig. 2. Planning results

5.1 Simulation

In order to test the proposed trajectory planning method, a simulation was first
performed by way of the commercial software MSC ADAMS, which makes it
possible to model cable-driven mechanisms by employing the Cable-Toolbox.
The test of a planar system consistent with the mathematical model considered
in this paper and with the available prototype was possible by considering a 4
cable actuation, in which two pairs of cables are parallel to each other and whose
actuation laws are coincident. In addition, we introduced a flexible body model
for cables to test the robustness of our trajectory planing in a more realistic
scenario. In the MSC ADAMS Cable-Toolbox the cables elastic behavior can be
modeled based on Hooke’s law for springs. Our prototype is equipped with 6mm
diameter Dyneema Pro cables, whose Young Modulus is E = 115GPa.

Simulation results show that oscillations in the stationary positions are elim-
inated even without any feedback control loop on the pose of the end-effector, as
it is shown in Fig. 3, where the proposed planning method for u(t) is compared
to the one expressed by Eq. (13).

5.2 Experimental Results

The proposed trajectory was tested on a prototype consistent with the ADAMS’
model. In order to prove the effectiveness of the method, an open loop control
scheme was employed, so that only the computed lengths of the cables are fed
to the actuators. The experimentation showed a remarkable reduction of oscil-
lations in each stationary point in comparison to a movement whose motion
law was planned according to Eq. (13). The result, along with other geometrical
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(b) yG time evolution.
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(c) time evolution.
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(d) Geometric path.

Fig. 3. Simulation results showing a comparison between a trajectory planned accord-
ing to (18) and a non-planned trajectory resulting from (13)

trajectories (such as circular and parabolic arcs), can be observed in a video-
clip available at [23]. The residual oscillations of the platform, which can not
be damped because of the open loop control scheme, are mainly caused by the
pulley system. In fact, the model implemented for the trajectory planning takes
into account neither pulley friction nor the cable sliding into the pulley grooves.
Numerical details about the experimental results are omitted due to space limi-
tations and will be provided in a future enhanced version of this contribution.

6 Conclusions

This paper presented the rest-to-rest trajectory planning of planar underactu-
ated CDPRs. The problem was formulated as a boundary value problem (BVP)
with free parameters. A novel technique was proposed, which introduces no geo-
metric modification of the path that a reference point on the platform has to
follow. The methodology was first implemented in MATLAB and the resulting
trajectories were tested both on a commercial simulation environment, MSC
ADAMS, and experimentally on a prototype. Experimental results are satisfac-
tory. Even without a feedback control loop on the platform pose, the platform
shows a very limited oscillatory behavior, which is easily damped by the system
internal friction. In the near future the same planning method will be applied to
a spatial CDPR with a refined geometric model that takes into account pulley
geometry.
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Abstract. A cable suspended robot can be moved beyond its static workspace
while keeping all cables in tension, by relying on end-effector inertia forces.
This allows the robot capabilities to be extended by choosing suitable dynamical
trajectories. In this paper, we study 3D elliptical motions, which are the most
general case of spatial sinusoidal oscillations, for a robot with a point-mass
end-effector and an arbitrary base architecture. We find algebraic conditions that
define the range of admissible frequencies for feasible trajectories; furthermore,
we show that, under certain conditions, a special frequency exists, which allows
arbitrarily large oscillations to be reached. We also study transition trajectories
that displace the robot from an initial state of rest (within the static workspace)
to the elliptical trajectory, and vice versa.

1 Introduction

Cable-suspended parallel robots (CSPRs) are fully constrained if they are supported by
a number of taut cables greater than or equal to the degrees of freedom (DOF) of the
moving platform; they are underconstrained otherwise. This paper focuses on the
former, so that all platform freedoms can be controlled. CSPRs are often assumed to
work in quasi-static conditions: in such cases, the Static Equilibrium Workspace
(SEW), where the robot can be brought to static equilibrium, coincides with the robot
footprint [1]. Recently, the dynamic workspace of fully constrained CSPRs was
investigated. The dynamic workspace is the set of poses that can be reached in a
controlled way, while maintaining positive tensions in cables, by exploiting inertial
effects [2].

The first work in this direction concerned a 2-DOF robot controlled by two cables
[3]. Here, parametric periodic trajectories were introduced and, for each trajectory, a
range of motion frequencies that ensure global feasibility was found; in this case the
feasibility of a trajectory can be verified ex ante, without solving the inverse dynamic
problem. A special motion frequency was also found, akin to the natural frequency of a
simple pendulum, which always belongs to the aforementioned range. Such results
were extended to 3-DOF spatial robots with a point-mass end-effector [4] and 3-DOF
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planar robots [5], for periodic trajectories and point-to-point motions [6, 7]. These
studies expand the applicability of CSPRs, allowing them to move beyond the SEW.

In this paper, we study generic elliptical dynamic trajectories, for a spatial 3-DOF
robot with a point-mass platform (Sect. 2). We find a special frequency that allows
arbitrarily large periodic motions to be realized (Sect. 3), together with a range of
trajectory frequencies that guarantees positive cable tensions (Sect. 4). In our study,
cable exit points on the base are arbitrarily placed, while [4, 7] consider them on a
horizontal equilateral triangle; more recent papers (see [8, 9]) consider cable exit
points lying on a generic horizontal triangle. Reference [9] deals with general circular
trajectories in 3D space, finding a smaller range of admissible frequencies compared to
the range emerging from our study: for a horizontal circle (the case studied in [8]), the
two ranges coincide and the frequency bounds in [9] are strict. Trajectories such as
those in [4, 8, 9] can be found as special cases of the ones presented here.

We also study transition motions (Sect. 5) from a dynamic condition to a state of
rest (or vice versa). These can be used to recover a CSPR after a cable failure (see [10]
for an application) by bringing it back in the SEW and slowing it down.

2 Dynamic Model

A general periodic spatial sinusoidal trajectory C is defined by three sinusoidal func-
tions along the three coordinate axes of a fixed reference frame:

p ¼
x
y
z

2
4

3
5 ¼ pc þ pd ¼ pc þ

xA sinðxtþuxÞ
yA sinðxtþuyÞ
zA sinðxtþuzÞ

2
4

3
5 ð1Þ

where:

• pC ¼ xc; yc; zc½ �T is the position of center C and pd is the displacement from C;
• xA; yA; zA are the amplitudes of oscillation;
• ux;uy;uz are the phase angles;
• xt defines the position of P along C, with x being the motion frequency;

It may be proven that the trajectory thus described is always an ellipse. Note that
such a trajectory includes, as special cases, circles and line segments, either horizontal,
vertical or oblique: such special cases were dealt with in [4, 8, 9].

We consider a spatial CSPR, whose end-effector is a point-mass P with position
p ¼ x; y; z½ �T with respect to the fixed frame. The position vectors of the cable exit
points Ai on the frame are denoted as ai ¼ xai; yai; zai½ �T , for i ¼ 1; 2; 3 (Fig. 1). In
Fig. 1, for the sake of simplicity O � A1. For future convenience, we define

vci ¼ ½xCai; yCai; zCai�T ¼ ai � pc ði 2 f1; 2; 3gÞ ð2Þ

vjk ¼ ½xajk; yajk; zajk�T ¼ ak � pj ði 2 f1; 2; 3gÞ ð3Þ
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ki ¼ ½kxi; kyi; kzi�T ¼ vCj � vCk ð4Þ

In Eq. (4), the indexes are as follows:

i ¼ 1 ! j ¼ 3; k ¼ 2
i ¼ 2 ! j ¼ 1; k ¼ 3
i ¼ 3 ! j ¼ 2; k ¼ 1

8<
: ð5Þ

We also define the cable length qi ¼ p� aik k and the unit vector ei ¼ p� aið Þ=qi,
for i ¼ 1; 2; 3.

The forces on the end-effector are the cable tensions siei, the inertia force �m€p and
gravity mg (with g ¼ 0; 0; g½ �T , directed along the positive z axis). Cable mass and
elasticity are neglected. The dynamic model of the robot is then given by

�
X3

i¼1
siei þmg� m€p ¼ 0 ð6Þ

By defining the matrix M ¼ e1; e2; e3½ �, Eq. (6) may be rewritten as

mðg� €pÞ ¼ M½s1; s2; s3�T ð7Þ

If the base anchor points are numbered clockwise (looking along the z axis) and P is
below the plane P passing through A1, A2 and A3, it can be shown that det Mð Þ\0; in
such a case, tensions si are positive if and only if ([4], Eqs. (17)–(19))

l1 :¼ p� a2 � a3ð Þþ a2 � a3½ �T €p� gð Þ[ 0
l2 :¼ p� a3 � a1ð Þþ a3 � a1½ �T €p� gð Þ[ 0
l3 :¼ p� a1 � a2ð Þþ a1 � a2½ �T €p� gð Þ[ 0

8<
: ð8Þ

Fig. 1. A3-DOF spatial CSPR following a spatial elliptical trajectory.
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The plane P has equation

a � xþ b � yþ c � zþ d ¼ 0 ð9Þ

where coefficients a; b; c; d can be derived from coordinates xai; yai; zai as

a ¼
1 ya1 za1
1 ya2 za2
1 ya3 za3

������

������ b ¼
xa1 1 za1
xa2 1 za2
xa3 1 za3

������

������

c ¼
xa1 ya1 1
xa2 ya2 1
xa3 ya3 1

������

������ d ¼ �
xa1 ya1 za1
xa2 ya2 za2
xa3 ya3 za3

������

������

ð10Þ

Here, c is twice the signed area of triangle Txy, formed by points xai; yaið Þ. With the
anchor points numbered clockwise, the signed area is \0, so that c is \0 too.

If P has to remain below P, no intersection can occur between C and P. We then
substitute Eq. (1) in Eq. (9), thus obtaining (after some simplifications)

PþQ sin xtð ÞþR cos xtð Þ ¼ 0 ð11Þ

where:

P ¼ axC þ byC þ czC þ d
Q ¼ axA cosux þ byA cosuy þ czA cosuz
R ¼ axA sinux þ byA sinuy þ czA sinuz

8<
: ð12Þ

By introducing tn ¼ tan xt=2ð Þ and using the tangent half-angle formulae, Eq. (11)
becomes a quadratic equation in tn. For no intersections to occur between C and P, this
equation must have no solutions and thus a negative discriminant, namely

4 Q2 þR2 � P2
� �

\0 ð13Þ

This condition has to be checked ex ante for trajectory C to be feasible.

3 Natural Frequency

In [3, 4] a special frequency was determined that allows arbitrarily large periodic
motions with positive cable tensions to be realized. This “special” frequency is
expressed as xn ¼

ffiffiffiffiffiffiffiffiffi
g=z0

p
, where z0 ¼ zC is the vertical coordinate of the trajectory

center. We show that a similar frequency also exists for the system studied here.
In analogy to [7], we set tension si in Eq. (6) to be proportional to cable length qi;

this can be achieved by a suitable actuator control. The dynamic equations become

�
X3

i¼1
ki p� aið Þþmg ¼ m€p ð14Þ
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where ki are virtual cable stiffnesses. We conveniently express Eq. (1) as

p ¼ pC þ c cosðxtÞþ s sinðxtÞ ¼ pC þ pd ð15Þ

This elliptical trajectory is a general case of the harmonic motion introduced in
Eqs. (11) and (12) of [7]. Substituting Eq. (15) in (14) we obtain

m gþx2 p� pCð Þ� � ¼ X3

i¼1
ki p� aið Þ ð16Þ

This equation becomes simpler if the terms containing p cancel out. This means
choosing x ¼ xn such that mx2

n ¼ k1 þ k2 þ k3 ¼ K, so that Eq. (16) becomes:

mg� KpC ¼ �
X3

i¼1
kiai ð17Þ

and xn is the natural frequency of the second order ODE in (14). If ki [ 0 and(17) is
satisfied, the cable tensions are positive, since si ¼ kiqi (where clearly qi � 0).

Trajectory C may then be realized with si ¼ kiqi only if (17) holds. Equation (17)
gives a linear system of three equations in the unknowns ki, whose solution is

k1 k2 k3½ � ¼ �mg
axC þ byC þ czC þ d

kz1 kz1 kz1½ � ð18Þ

The natural frequency xn is thus:

x2
n ¼

K
m

¼ � g kz1 þ kz2 þ kz3ð Þ
axC þ byC þ czC þ d

¼ gc
axC þ byC þ czC þ d

ð19Þ

Since x2
n must be positive and c is negative (cf. Sect. 2), it must be

axC þ byC þ czC þ d\0. It follows from Eq. (18) that ki [ 0 infers kzi [ 0. This
requires that the projection of point C on the x� y plane must lie within the triangle Txy
defined in Sect. 2. Point C must then lie inside the SEW (which is the convex hull of
the fixed attachment points, plus all points below this region [1]).

These results generalize those reported in [4, 8, 9], where the authors assumed
points Ai to lie on a horizontal plane and C to be a circular trajectory.

4 Generic frequency

Periodic motions may also be realized along C with frequencies x that are distinct from
xn. By substituting Eq. (1) in Eq. (8), each li can be expressed as a sum of sines and
cosines, plus a constant term:

li ¼ Ci cos xtð ÞþDi sin xtð ÞþEi; i 2 1; 2; 3f g ð20Þ
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With

Ci ¼ Ci;vx2 þCi;c

Di ¼ Di;vx2 þDi;c

Ei ¼ gkzi
ð21Þ

Ci;v ¼ xAkxi sin uxð Þþ yAkyi sin uy

� �þ zAkzi sin uz

� �
Di;v ¼ xAkxi cos uxð Þþ yAkyi cos uy

� �þ zAkzi cos uz

� �
Ci;c ¼ g xAyakj sin uxð Þ � yAxakj sin uy

� �� �
Di;c ¼ g xAyakj cos uxð Þ � yAxakj cos uy

� �� �
ð22Þ

where j; k depend on i as per Eq. (5). Coefficients Ci, Di and Ei are constant for a given
trajectory: Ci and Di are linear functions of x2, while Ei only depends on g and the
position of C. Equation (20) is akin to the ones obtained in [4], for the special cases of
circular trajectories on vertical or horizontal planes.

The extreme values for each li are

li;1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C2
i þD2

i

q
þEi; li;2 ¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C2
i þD2

i

q
þEi ð23Þ

Having li [ 0 is equivalent to having extrema that are all positive. Notice that, if
Ei ¼ kzig� 0, then li;2 is bound to be less than zero and there can be no values of x
satisfying the constraint that li must be positive at all times. This implies kzi [ 0
(which is the same condition found in Sect. 3).

Since li;2\li;1, it suffices to check that li;2 is [ 0, namely Ei [
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C2
i þD2

i

p
. Since

both sides of this inequality are nonnegative, we may square them and obtain

E2
i [C2

i þD2
i ) Ci;vx

2 þCi;c
� �2 þ Di;vx

2 þDi;c
� �2�g2k2zi\0 ð24Þ

We finally obtain three biquadratic inequalities, namely

aix
4 þ 2bix

2 þ ci\0 ð25Þ

The expressions for ai; bi; ci are found by expanding Eq. (24):

ai ¼ C2
i;v þD2

i;v
bi ¼ Ci;cCi;v þDi;cDi;v

ci ¼ C2
i;c þD2

i;c � g2k2zi

ð26Þ

In refs. [4, 8, 9], for circular trajectories and points Ai located at the same height, it
was found that there is a range of values of x for which the trajectory is feasible. We
expect the same to happen here, provided that there is at least one value of x that
satisfies the constraint in (25): this is in fact the case, as seen in Sect. 3.
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The biquadratic inequality (25) can be solved by setting x2 ¼ w. As a sum of
squares, ai is always nonnegative, so the parabola defined by aiw2 þ 2biwþ ci ¼ f in
the wf plane is convex (the degenerate case ai ¼ 0 will be dealt with later on).

Depending on the sign of Di ¼ b2i � aici, we have two cases:

• Di � 0: inequality (25) has no solutions;
• Di [ 0: there are wi;min;wi;max such that, if w 2 wi;min;wi;max

� �
, then (25) holds.

These two values are generally different for the three cables.

If the conditions in Sect. 3 are fulfilled (i.e. C is in the SEW and the trajectory is
below plane P), we know that (25) admits at least one solution, x ¼ xn; therefore, all
Di’s must be positive. When Di is positive, wi;min and wi;max are given by:

wi;min ¼ �bi �
ffiffiffiffiffi
Di

p� 	
=ai; wi;max ¼ �bi þ

ffiffiffiffiffi
Di

p� 	
=ai ð27Þ

Since x2 ¼ w, we can have three cases:

1. If both wi;min and wi;max are [ 0, we simply require x 2 ffiffiffiffiffiffiffiffiffiffiffi
wi;min

p
;

ffiffiffiffiffiffiffiffiffiffiffi
wi;max

p� �
.

2. If wi;min � 0 and wi;max [ 0, then we require x 2 0;
ffiffiffiffiffiffiffiffiffiffiffi
wi;max

p� �
. This means that, as x

approaches zero, the end-effector moves quasi-statically. In this case the inertial
force is negligible and the trajectory is entirely in the SEW.

3. If wi;min and wi;max are � 0, no values of x allow trajectory C to be realized.

We exclude x ¼ 0 as a solution, since in this case the end-effector does not move.
Finally, we end up with 3 constraints on x (one for each cable), each one of which

is of type x 2 ffiffiffiffiffiffiffiffiffiffiffi
wi;min

p
;

ffiffiffiffiffiffiffiffiffiffiffi
wi;max

p� �
or x 2 0;

ffiffiffiffiffiffiffiffiffiffiffi
wi;max

p� �
, depending on whether wi;min is

[ 0 or not. To ensure positive cable tensions, we must choose x such that all three
constraints are satisfied, namely

xmin ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
max max wi;min


 �
; 0


 �q
; xmax ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
min wi;max


 �q
ð28Þ

where wi;min and wi;max are known from Eq. (27). Note that these quantities can be
determined from explicit algebraic formulae.

If the conditions set in Sect. 3 hold (namely, C is in the SEW and C lies below
plane P) and xmin\x\xmax, the trajectory C is feasible.

It is worth emphasizing that the conditions presented here are strict: if x ¼ xmin or
x ¼ xmax, at least one cable tension reaches zero during a period (while still remaining
nonnegative). The conditions found in [9], instead, are sufficient, but not strictly
necessary: the range for x given in [9] is, therefore, smaller.

We have yet to address the special case where one of the ai’s is zero. Since each ai
is the sum of two squares, it can be zero if and only if both squared terms are zero,
namely Ci;v ¼ Di;v ¼ 0. This is a linear homogeneous system of two equations in three
unknowns xA; yA; zA, whose solutions are
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xA
yA
zA

2
4

3
5 ¼ f1 �

kyikzi sin uyz

� �
kzikxi sin uzx

� �
kxikyi sin uxy

� �
2
4

3
5 ð29Þ

where f1 2 0; þ1� ½ is an arbitrary scalar. From the definitions (26), it is clear that
Ci;v ¼ Di;v ¼ 0 implies bi ¼ 0. Equation (25) then requires ci\0: this is the only
condition to check and it does not depend on x. It can be proved that, in this case, C
lies on the plane connecting the center C with points j and k (with i 6¼ j; i 6¼ k).

Another special case to consider is when points Ai are at the same height:
za;1 ¼ za;2 ¼ za;3 ¼ za. In this case, one finds from (10) that a ¼ b ¼ 0 and d ¼ �cza,
so the special frequency becomes xn ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g= zC � zað Þp

. Substituting these values in
Eqs. (20–22) we find, after simplification, li ¼ kzi gþ zAx2

n sin xntþuz

� �� �
. li is then

automatically [ 0, provided that the maximum acceleration along z, max €zj jf g ¼ zAx2
n,

is not greater than g, as one would expect [10].

5 Transition Trajectories

Along the harmonic trajectories defined by Eq. (1), the velocity _p and acceleration €p
are always nonzero, so the robot cannot be in a state of rest. To actually implement
such trajectories we need to bring the robot, initially at rest, in a dynamic state;
similarly, we also need to stop the robot by bringing it back to rest.

For such a purpose, we developed transition trajectories defined by

p ¼ pC þU nð Þ
xA sin xtþuxð Þ
yA sin xtþuy

� �
zA sin xtþuz

� �
2
4

3
5 ð30Þ

where U nð Þ is a function of class C2.
Here, U is defined in terms of the a dimensional variable n ¼ t=T , with T being the

total time required for the transition motion. Notice that Eq. (30) corresponds to Eq. (1)
where the amplitudes of oscillation are no longer kept constant.

Having defined the derivatives of U as V nð Þ ¼ dU=dn;W nð Þ ¼ d2U=dn2, we
impose the boundary conditions: U 0ð Þ ¼ 0, U 1ð Þ ¼ 1 and V 0ð Þ ¼ V 1ð Þ ¼ W 0ð Þ ¼
W 1ð Þ ¼ 0. In this way, the robot starts at t ¼ n ¼ 0 in p ¼ pC with _p ¼ €p ¼ 0 and then
moves with growing amplitudes along the three axes; when the transition is complete,
the trajectory can blend into the final ellipse C. We also require V nð Þ� 0 for all
n 2 0; 1½ �, so that U nð Þ is monotonically increasing.

With different boundary conditions, Eq. (30) can also define a transition trajectory
that slows down the robot after it has been moving along an ellipse C, so that it finally
stops in the center of C. By taking U 0ð Þ ¼ U0, U 1ð Þ ¼ U1, the trajectory in (30) can
also be used to connect two ellipses C0, C1 having the same center and phase angles but
different amplitudes (so that C1 is C0 scaled by a factor U1=U0). Here, we will only
consider the first case (with U 0ð Þ ¼ 0 and U 1ð Þ ¼ 1), as the other two can be studied in
the same way. Substituting Eq. (30) into (8) we find
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li ¼ qi;W
W nð Þ
T2 þ qi;V

V nð Þ
T

þ qi;UV
U nð ÞV nð Þ

T
þ qi;UU nð ÞþEi|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}

li;0

ð31Þ

where the coefficients qi are defined as follows:

qi;W ¼ �ki � pd ; qi;V ¼ �2ki � _pd
qi;UV ¼ 2x xakjyAzA sinuyz þ xAyakjzA sinuzx þ xAyAzakj sinuxy

� �
qi;U ¼ Ci cos xtð ÞþDi sin xtð Þ

ð32Þ

with Ci and Di defined as in Eq. (21).
The minimum value of qi;U is qi;U;min ¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C2
i þD2

i

p
. For n going from 0 to 1, U

monotonically increases from 0 to 1 (since we assumed V nð Þ� 0) so that its maximum
value is Umax ¼ 1. From Eq. (31), if T ! 1, li ! qi;UU nð ÞþEi ¼: li;0.

Clearly, a lower bound for the minimum value of li;0 is

li;0;LB ¼ qi;U;minUmax þEi ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C2
i þD2

i

p
þEi ¼ li;2; this was already shown to be

� 0 in Sect. 4, as long as C is feasible. All this shows that, by taking a sufficiently
large, T; li 	 li;0 [ li;0;LB [ 0, so that the cable tensions are positive throughout the
transition.

It would be interesting to find the minimum value of T that guarantees a feasible
movement. For this we should differentiate Eq. (31) with respect to t and set the result
to 0 to find the extrema li;max; li;min of li, then find the minimum values of T (for
i ¼ 1; 2; 3) such that li;min is positive. This leads to complex equations, whose
numerical solution seems unsuitable for real-time applications.

An alternative is to set a lower bound for the minimum value that li can take. This
requires to find the extreme values of qi;W and qi;V , which depend on t. It can be proved
that such extrema are qi;W ;e ¼ max qi;W

�� ��
 � ¼ Uk k and qi;V ;e ¼ max qi;V
�� ��
 � ¼ 2x Uk k,

where the magnitude of U is given by

Uk k ¼ xAkxi sinux þ yAkyi sinuy þ zAkzi sinuz

� �2h

þ xAkxi cosux þ yAkyi cosuy þ zAkzi cosuz

� �2i1=2 ð33Þ

We also define the extreme values Ve ¼ max V nð Þj jf g, We ¼ max W nð Þj jf g and
UVð Þe¼ max U nð Þ � V nð Þj jf g for n 2 0; 1½ �, which depend on the choice of U nð Þ.

The minimum possible value of Eq. (31) is then

li;LB ¼ �qi;W ;e
We

T2 � qi;V ;e
Ve

T
þ qi;UV

UVð Þe
T

þ li;0;LB ð34Þ
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if qi;UV\0, and

li;LB ¼ �qi;W ;e
We

T2 � qi;V ;e
Ve

T
þ li;0;LB ð35Þ

otherwise. If li;LB from Eq. (34) or (35) is positive, then li is always positive.
Multiplying the right hand sides (RHS’s) of Eqs. (34 and 35) by T2, they can be

both expressed as Mi Tð Þ ¼ li;cnst þ li;TT þ li;T2T2 [ 0, where li;cnst ¼ �qi;W ;eWe,
li;T2 ¼ li;0;LB and the linear coefficient is either li;T ¼ �qi;V ;eVe or li;T ¼
qi;UV UVð Þe�qi;V ;eVe depending on the sign of qi;UV .

We have already shown that li;T2 ¼ li;0;LB ¼ li;2 [ 0 (if C is feasible); it then
follows that, if there are solutions Ti;min, Ti;max to Mi Tð Þ ¼ 0, then Mi Tð Þ\0 for
T 2 Ti;min; Ti;max

� �
, and Mi Tð Þ[ 0 otherwise. By definition, li;cnst\0, so that

Mi 0ð Þ\0; this means Ti;min\0\Ti;max. Then, in order to have positive li along the
trajectory, we have simply to ensure that

T [ Ti;max ¼
�li;T þ

ffiffiffiffiffiffiffiffi
Di;l

p
2li;T2

ð36Þ

with Di;l ¼ l2i;T � 4li;T2li;cnst. Finally, we find a sufficient (albeit not necessary) con-
dition on T that ensures the feasibility of the transition trajectory, by taking

T [max T1;max; T2;max; T3;max

 � ð37Þ

One potential drawback of the transition trajectory described above appears when x
is equal to one of the limits xmin, xmax of the admissible range, as defined in Eq. (28).
In this case, x2 is either equal to wi;min or wi;max (for one i 2 1; 2; 3f g) and the mini-
mum value li;2 of the corresponding li becomes zero, so that one of the cable tensions
si reaches zero at one position (while still remaining positive elsewhere). If
li;0;LB ¼ li;2 ¼ 0, there are no values of T for which the RHS’s of Eqs. (34 and 35) are
[ 0, since all terms except li;0;LB are negative: this corresponds to one of the Ti;max
from Eq. (36) tending to þ1 when x ! xmin or x ! xmax.

One exception occurs when xmin ¼ 0; this happens when one wi;min is negative.
xmin then is not given by the requirement of positive cable tensions, but by the con-
dition x[ 0 (see again Eq. (28)). In this case all Ti;max from Eq. (36) remain bounded
even as x ! xmin. This however happens only if C is entirely in the SEW (see
Sect. 4), a case for which transition trajectories have less practical interest.

The conditions found above are not strictly necessary, so that the T given by (37) is
actually overestimated:numerical experimentation shows that T is reasonably close to
the actual minimum required for feasibility when x is safely in the middle of the
admissible range and progressively less so when moving close to its limits.
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6 Simulations

Several simulations were performed, to test the results shown in this paper. In some
simulations, we used a rigid body model with massless cables having infinite stiffness,
thus reproducing exactly the model presented here. An example is shown in Fig. 2,
where we compared the range of admissible frequencies obtained from the method in
[9] with the range given in Eq. (28).

The frequencies obtained with the method in [9] are xmin ¼ 1:548;xmax ¼ 2:55,
while our method gives x0

min ¼ 1:387;x0
max ¼ 2:75: the first range is strictly contained

in the second. The cable tensions (divided by the mass of the end-effector) are shown in
Fig. 2b: the continuous lines correspond to x ¼ xmax, the dashed ones to x ¼ x0

max (in
which case one tension reaches zero).

In other simulations, we introduced a flexible body model, to test the robustness of
the obtained results. Cable elasticity was introduced with a model based on Hooke’s
law for springs [10]: si ¼ max ks=qi;l

� � � qi � qi;l
� �

; 0

 �

. Here, qi;l is the free length of
the i-th cable (which depends on the rotation of the i-th motorized winch), ks ¼ ES is
the axial rigidity, E is Young’s modulus and S is the cross-sectional area of the cable.

Such simulations were developed by solving the direct dynamic problem for the
robot under consideration. The results of these simulations are not shown here due to
space constraints. However, they all confirmed that the theoretical results obtained in
the paper may hold for a real robot.

7 Conclusions and Future Work

We found a general class of spatial dynamical trajectories that allow a cable-suspended
parallel robot (CSPR) to move beyond its static workspace while keeping all cables in
tension. We also found transition trajectories that allow the robot to move from the

a)

0 0.5 1 1.5 2 2.5
t

0

5

10

F
/m

Cable 1
Cable 2
Cable 3

b) 

Fig. 2. The trajectory C is defined by pC ¼ �1; 1;�2½ �T , a1 ¼ 2; 1; 0½ �T , a2 ¼ �3;�2; 0½ �T ,
a3 ¼ �1; 3; 0½ �T , with cable exit points being at the same height. C lies on a plane normal to
n ¼ 1; 2; 3½ �T , is circular and has radius R ¼ 1:2 (length units are arbitrary).
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aforementioned trajectories to rest, and vice versa. The conditions that ensure the
trajectory feasibility can be verified in a few milliseconds and, thus, are compatible
with real-time applications.

The elliptical trajectories studied in this paper expand and generalize the results
previously obtained in [4, 9]. Such trajectories provide more design freedoms and
appear to be more flexible for practical applications. We plan to expand this work by
combining these spatial trajectories into piecewise movements, thus generalizing pre-
vious work on point-to-point motions for CSPRs [6, 7].

Acknowledgments. The authors wish to express their gratitude to Ms. Xiaoling Jiang for her
relevant comments on the paper.

References

1. Riechel, A.T., Ebert-Uphoff, I.: Force-feasible workspace analysis for underconstrained
point-mass cable robots. In: Proceedings of the IEEE International Conference on Robotics
and Automation, pp. 4956–4962 (2004)

2. Barrette, G., Gosselin, C.: Determination of the dynamic workspace of cable-driven planar
parallel mechanisms. ASME J. Mech. Des. 127(2), 242–248 (2005)

3. Gosselin, C., Ren, P., Foucault, S.: Dynamic trajectory planning of a two-DOF
cable-suspended parallel robot. In: Proceedings of the IEEE International Conference on
Robotics and Automation, pp. 1476–1481 (2012)

4. Gosselin C.: Global planning of dynamically feasible trajectories for three-DOF spatial
cable-suspended parallel robots. In: Proceedings of the 1st International Conference on
Cable-Driven Parallel Robots, pp. 3–22 (2012)

5. Jiang, X., Gosselin, C.: Dynamically feasible trajectories for three-DOF planar
cable-suspended parallel robots. In: Proceedings of the ASME IDETC (2014)

6. Gosselin, C., Foucault, S.: Dynamic point-to-point trajectory planning of a two-DOF
cable-suspended parallel robot. IEEE Trans. Robot. 30(3), 728–736 (2014)

7. Jiang, X., Gosselin, C.: Dynamic point-to-point trajectory planning of a three-DOF
cable-suspended parallel robot. IEEE Trans. Robot. 32(6), 1550–1557 (2016)

8. Zhang, N., Shang, W.: Dynamic trajectory planning of a 3-DOF under-constrained
cable-driven parallel robot. Mech. Mach. Theory 98, 21–35 (2016)

9. Zhang, N., Shang, W., Cong, S.: Geometry-based trajectory planning of a 3-3
cable-suspended parallel robot. IEEE Trans. Robot. 33(2), 484–491 (2016)

10. Berti, A., Gouttefarde, M., Carricato, M.: Dynamic recovery of cable-suspended parallel
robots after a cable failure. In: Proceedings of the ARK, pp. 337–344 (2016)

230 G. Mottola et al.



Dynamic Transition Trajectory Planning
of Three-DOF Cable-Suspended Parallel Robots

Xiaoling Jiang(B) and Clément Gosselin
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Abstract. This paper proposes a dynamic transition trajectory plan-
ning technique for three-degree-of-freedom (three-DOF) cable-suspended
parallel robots (CSPRs). This trajectory is designed to connect multiple
target trajectories beyond the static workspace in sequence with differ-
ent starting points, as well as having the ability of starting from/ending
with a resting position, while ensuring continuity up to the acceleration
level. Two consecutive target trajectories are involved in the transition
trajectory by using proper time functions, such that a goal trajectory
is gradually reached by approaching the amplitude parameters and fre-
quencies from those of a source trajectory. Additionally, each transition
is based on the optimization of THE departure point from its source
trajectory and a minimum time for the transition to its goal trajectory.
An example is provided to demonstrate the novel trajectory-planning
technique. The robot is requested to start from the state of rest, merge
into two consecutive ellipses, a straight line and a circle in sequence and
then go back to the state of rest.

1 Introduction

Cable-driven parallel robots (CDPRs) possess some desirable features and have
therefore attracted the interest of researchers. For this type of robots, dynamic
constraints must be taken into account in trajectory planning in most cases, due
to the fact that cables can only pull but cannot push on the end-effector [1–3].

More recently, dynamic trajectories for point-mass cable-suspended parallel
robots (CSPRs, a class of CDPRs) that can extend beyond the static workspace
were generated in [4,5]. A series of periodic trajectories were defined paramet-
rically as analytic functions of time, which produces the algebraic inequalities of
cable tensions based on the dynamic equations. As a result, global constraints
that can guarantee positive cable tensions were obtained and there is no need to
verify or impose tension constraints locally along the trajectory.

In [6], a family of periodic trajectories were directly obtained from the inte-
gration of the dynamic equations, with no restriction on the amplitude of oscilla-
tions. Linear, circular, and elliptical trajectories were produced by oscillations in
different directions. The results obtained there generalized the harmonic trajec-
tories obtained in [4,5]. A three-DOF CSPR was modelled as a linear system of

c© Springer International Publishing AG 2018
C. Gosselin et al. (eds.), Cable-Driven Parallel Robots,
Mechanisms and Machine Science 53, DOI 10.1007/978-3-319-61431-1 20
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three mass-springs, with the ratio between cable force and length being the equiv-
alent spring stiffness. The integrated periodic trajectories are responses/motions
of the linear system, which are always feasible since the spring forces of the linear
mass-spring system are positive at all times. In [7], such periodic trajectories for
the translational component of three-DOF planar CSPRs were also obtained,
with constant positive cable force-length ratios. The trajectory planning scheme
proposed in [6,7] simplifies the cable tension calculation and more importantly,
it reveals the fundamental properties of CSPRs. Since these dynamic trajectories
can extend beyond the static workspace of the robot, they can potentially be
used for many new CSPR applications.

Researches on planning periodic trajectories for three-DOF point-mass
CSPRs that can go beyond the static workspace can also be found in some other
work. In [8], a user friendly control method was proposed to extend and control
the trajectories designed in [4,5]. In [9], a geometry-based approach was intro-
duced, with linear and circular trajectories designed in the position-acceleration
phase plane.

Although specific trajectories can be generated separately, in a real appli-
cation the robot is required to move from one trajectory to the next in order
to automatically chain multiple pre-generated trajectories with different start-
ing points. Therefore, the goal of this work is to plan such feasible transition
trajectories with positive cable tensions at all times. In particular, the transi-
tion trajectory is designed to connect any two or multiple periodic trajectories,
obtained in [6], in sequence. Since these target trajectories can extend beyond
the static workspace of the robot and do not include points representing the
state of rest, the transition trajectories must be capable of extending beyond
the static workspace, as well as having the ability to start from/end with a
resting position. In the proposed scheme, the source and goal trajectories are
blended with a transition trajectory that increasingly adapts the parameters to
those of the goal trajectory, as illustrated in Fig. 1. The transition trajectory
begins as the robot leaves the source trajectory at point start and ends as the
robot merges into the goal trajectory at point arrival.

The rest of the paper is arranged as follows. In Sect. 2, the kinematic and
dynamic models of the mechanism are presented. Section 3 introduces the novel
transition trajectory planning technique. Section 4 provides example trajectories
and results.

2 Kinematic and Dynamic Modelling

A spatial three-DOF CSPR with three cables and a point mass end-effector
is considered here. All cables are assumed to be massless and inelastic and to
extend as straight lines from the supporting pulleys to the end-effector.

A fixed reference frame FO with origin O is defined on the base of the
robot, as illustrated in Fig. 2. The z axis of the fixed reference frame points
upwards, opposite to the direction of gravity. Point Bj , with j = 1, 2, 3, is fixed
and corresponds to the location where cable j exits its pulley or eyelet. Below,
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goal trajectory
transition trajectory
source trajectory

start
arrival

Fig. 1. Blending source and goal trajectories with a transition trajectory that increas-
ingly adapts the parameters to those of the goal trajectory.

indices j should be assumed to go from 1 to 3 and a plural form of an item hj

is denoted {hj}31, unless specified otherwise. The vector bj connects origin O to
point Bj .

The inverse kinematic equations can be written as

ρj =
√

(p − bj)T (p − bj), (1)

where ρj is the length of the jth cable and p = [x, y, z]T is the position vector
of the end-effector. Also, ej is defined as a unit vector in the direction of the jth
cable and oriented from the pulley to the end-effector. One has

ej =
1
ρj

(p − bj). (2)

actuator 2
x

y
z

O

FO

g

B1

B2

B3

ρ2
e2

p

p

b2

Fig. 2. A spatial three-DOF CSPR with point-mass.
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The dynamic model is built by considering the force balance on the point
mass end-effector, which yields

3∑
j=1

(−fjej) + mg = mp̈, (3)

where fj is the tension in the jth cable, m is the mass of the end-effector, p̈ is its
acceleration, and g = [0, 0,−g]T is the vector of gravitational acceleration. The
dynamic Eq. (3) can be considered as a system of three linear equations in three
unknowns (tensions fj): one can explicitly solve for fj , according to a specific
architecture.

3 Transition Trajectory Planning

Transition trajectories that can automatically chain multiple feasible target tra-
jectories in sequence with different starting points are developed. This trajec-
tory is generated by combining two consecutive target trajectories, considered
as source and goal trajectories for each transition, with a proper time function.
As a result, the goal trajectory is gradually reached by changing parameters
from that of the source trajectory. As illustrated in Fig. 3, the robot follows a
source trajectory since its arrival and until the departure for a goal trajectory
while starting the transition at a proper starting point. It is obvious that the
preparation stage for transition is guaranteed to be feasible, since the robot is
following the source trajectory during which cable tensions remain positive at
all times.

preparation goal trajectory
transition trajectory
source trajectory

start
arrival

Fig. 3. Transition trajectory planning with preparation stage.

Mathematically, such a procedure for the preparation stage is given as

p(t) = pi(t), 0 ≤ t ≤ δi, (4)

and for the transition given as

p(t) = pi(t) + U(τ)si(t), δi ≤ t ≤ Ti + δi, 0 ≤ τ ≤ 1, (5)
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where pi(t) represents trajectory i, si(t) = pi+1(t − δi) − pi(t), U(τ) ∈ [0, 1],
with

U(0) = 0, U(1) = 1, (6)

is an increasingly monotonous time function with τ = (t − δi)/Ti whereas δi, a
time offset, is the departure time, Ti is the total transitioning time from pi(t)
to pi+1(t), and there is no time offset for pi+1(t). Therefore, the transition
trajectory depends only on two parameters, the departure time (δi) from the
source trajectory and the total transition time (Ti) until arrival at the goal
trajectory. The values of the two parameters can be adjusted to obtain optimal
transition trajectories.

Taking the first three derivatives of the transition trajectory (5) with respect
to time, yields

ṗ(t) = V (τ)si(t) + ṗi(t) + U(τ)ṡi(t),
p̈(t) = W (τ)si(t) + 2V (τ)ṡi(t) + p̈i(t) + U(τ)s̈i(t),
...
p(t) = J(τ)si(t) + 3W (τ)ṡi(t) + 3V (τ)s̈i(t) +

...
p i(t) + U(τ)

...
s i(t).

(7)

where V (τ), W (τ), J(τ) are the first three derivatives of U(τ) with respect to
time. Thus, the continuity of p(t) can be preserved up to the acceleration level
with (6) and the following constraints on V (τ) and W (τ), namely

V (0) = V (1) = 0, W (0) = W (1) = 0. (8)

Indeed, according to (6) and (8), the first two rows of (7) become

ṗ(δi) = ṗi(δi), ṗ(Ti + δi) = ṗi+1(Ti),
p̈(δi) = p̈i(δi), p̈(Ti + δi) = p̈i+1(Ti).

Additionally, in some cases where the continuity of the jerk is required to yield
smooth accelerations/cable forces of the robot, i.e.,

...
p(δi) =

...
p i(δi),

...
p(Ti + δi) =

...
p i+1(Ti), (9)

the corresponding constraints can also be found. Substituting (6) and (8) into the
last row of (7) yields the value of the jerk at both ends of a transition trajectory,
which is ...

p(δi) = J(0)si(δi) +
...
p i(δi),

...
p(Ti + δi) = J(1)si(Ti + δi) +

...
p i+1(Ti).

(10)

Thus, according to (10), the requirement for respecting (9) can be readily
obtained, namely

J(0) = J(1) = 0. (11)

In summary, transition trajectories with continuity up to the acceleration
level can be obtained according to (5), with proper time function U(τ) while
respecting (6) and (8). Moreover, for preserving the continuity of the jerk, an
additional requirement (11) should also be respected.
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4 Example

An example is given to demonstrate the transition trajectory technique proposed
above. In this example, the robot transitions between the feasible periodic tra-
jectories that were generalized in [6]. Two elementary time functions U(τ) are
applied to generate the transition trajectory defined in (5), including the stan-
dard 5-th degree polynomial function and the 7-th degree polynomial function.
Then, an optimal combination of the parameters δi and Ti are obtained, such
that the cable tensions remain positive along the trajectory, and the execution
time is as small as possible.

4.1 Specific Architecture

In order to provide physical insight, the specific robot architecture used in [6]
is briefly recalled. In this architecture, the cable attachment points {bj}31 form
an equilateral triangle with circumradius R and are located at the same height,
i.e., in a horizontal plane. One then has

bj = R [cos βj , sin βj , 0]T , βj =
2π(j − 1)

3
. (12)

Substituting the above geometric parameters into (3), one can explicitly solve
for fj yielding

fj = −mρj

3Rz
f ′

j > 0, (13)

where z < 0 and

f ′
1 = (2x + R)(g + z̈) − 2zẍ > 0,

f ′
2 = (−x +

√
3y + R)(g + z̈) + z(ẍ +

√
3ÿ) > 0,

f ′
3 = (−x −

√
3y + R)(g + z̈) + z(ẍ −

√
3ÿ) > 0.

(14)

The above inequalities represent the constraints to be satisfied in order to
ensure that the cables remain under tension. Since the first factor −mρj

3Rz of (13)
is always positive under the assumption that the platform remains suspended,
i.e., z < 0, inequalities (13) are automatically satisfied when inequalities (14) are
satisfied. Therefore, if inequalities (14) are satisfied at all points of a given trajec-
tory, it can be guaranteed that the cables will remain under tension throughout
the trajectory. These conditions are necessary and sufficient.

4.2 Time Function U(τ )

Two elementary time functions U(τ) based on polynomials are applied to gener-
ate the transition trajectory defined in (5). The standard 5-th degree polynomial
trajectory which can ensure the continuity up to the acceleration level, proposed
in [10], is first introduced. This time function and its first three derivatives are
recalled, namely
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U(τ) = 6τ5 − 15τ4 + 10τ3, V (τ) = (30τ4 − 60τ3 + 30τ2)/Ti,

W (τ) = (120τ3 − 180τ2 + 60τ)/T 2
i , J(τ) = (360τ2 − 360τ + 60)/T 3

i ,
(15)

which meets the constraints given in (6) and (8). However, there exists discon-
tinuities of the jerk at both ends of the trajectory since

J(0) = J(1) = 60/T 3
i , (16)

which implies that the minimization of the trajectory time Ti increases the jerk.
Then, the 7-th degree polynomial trajectory with third derivative continuity,

proposed in [10], is applied as an alternative. This time function and its first
three derivatives are recalled, namely

U(τ) = −20τ7 + 70τ6 − 84τ5 + 35τ4,

V (τ) = (−140τ6 + 420τ5 − 420τ4 + 140τ3)/Ti,

W (τ) = (−840τ5 + 2100τ4 − 1680τ3 + 420τ2)/T 2
i ,

J(τ) = (−4200τ4 + 8400τ3 − 5040τ2 + 840τ)/T 3
i ,

(17)

which satisfies the constraints given in (6) and (8). It can be readily seen from
the latter time function that the jerk is smooth at both ends of the trajectory
since (11) is respected.

4.3 Transition Between Periodic Trajectories

Based on (4) and (5), transition with its preparation stage between a sequence
of periodic trajectories is demonstrated. Periodic trajectories obtained in [6]
are briefly recalled. The CSPR is equivalent to a passive mechanical system,
obtained by replacing the actuator-cable units with linear constant-stiffness
springs. Applying (2), its dynamic Eq. (3) is written as

mp̈ +
3∑

j=1

kjp − w − mg = 0, (18)

where kj = fj/ρj , a constant, is the stiffness of the jth equivalent spring, and

w =
3∑

j=1

kjbj = m[v1, v2, 0]T .

Periodic trajectories are then directly integrated from (18), namely

p = pd + ps (19)

with

ps = [xs, ys, zs]T = [− v1
ω2

n

,− v2
ω2

n

,− g

ω2
n

]T , ω2
n =

3∑
j=1

kj/m,
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and pd = c cos ωnt + s sin ωnt, with constant c = [μxc, μyc, μzc]T and s =
[μxs, μys, μzs]T . Geometrically speaking, ps represents the central static equilib-
rium position, and the unbounded c and s are design parameters that determine
the shape of the motion, implying that these trajectories can extend beyond the
static workspace. When trajectories of the real robot are designed as in (19)
with parameters ps located in the static workspace, it can be guaranteed that
the tensions in the cables will remain positive.

In the example, the robot is requested to start from the state of rest, merge
into two consecutive ellipses, a straight line and a circle in sequence and then go
back to the state of rest. All these target trajectories can be represented by (19)
by selecting proper parameters ps, c, and s. For each transition, the robot moves
along a source trajectory for one turn since its arrival, continues following this
trajectory while preparing for the next transition within the first phase, then
starts the transition to reach a goal trajectory at a proper departure point. The
transition with its preparation stage is designed in (5) and (4).

Optimal values of the phase δstart = ωnδi that corresponds to the moment
when the robot leaves trajectory i (the source trajectory) and the minimum time
Ti for the transition from trajectory i to i + 1 are fixed by sweeping the (δstart,
Ti) plane, as shown in Fig. 4. Points marked by a small circle represent the
optimal values of δstart and Tmin for each transition. The strategy is as follows.
For a given value of Ti and δstart, the constraint of positive cable tensions during
a transition trajectory is numerically verified through a discretization of time.
Each point on the curves in Fig. 4 represents a feasible minimum Ti for each
δstart. Then, the global minimum value of Tmin for all the values of δstart in one
period can be readily obtained.
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Fig. 4. Optimized Tmin and δstart.

Applying the optimized δstart and Tmin, the example trajectory guarantees
continuous and positive cable tensions, as is confirmed in Fig. 5. In this figure, a
small triangle represents the moment at which the end-effector starts a transition
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Fig. 6. Velocities and accelerations of the trajectory using the 5th degree polynomial.

while a small circle indicates the moment when the end-effector arrives and
merges into the steady-state target trajectory. Additionally, the transition is able
to start from/end with a resting position, as shown in Fig. 6. The advantage of
using the 5-th degree polynomial is that the transition time is smaller than when
using the 7-th degree polynomial.

The complete trajectory, using the 5-th degree polynomial for its transitions,
is illustrated in Fig. 7. The transition trajectories using the 7-th degree polyno-
mial are similar and thus the corresponding trajectory is not presented due to
space limitations. As demonstrated in Fig. 7, transition trajectories gradually go
beyond the static workspace to join target trajectories which are located beyond
the static workspace. Points marked by small triangles represent points at which
the end-effector starts the transition and leaves the source trajectory while points
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marked by small circles represent the points at which the end-effector arrives at
and merges into the steady-state target trajectory.

5 Conclusion

The contribution of this paper lies in the definition of transition trajectories
that can be used to chain multiple dynamic trajectories beyond a robot’s static
workspace in sequence, with continuity up to the acceleration level. The approach
is relatively simple but effective: a target trajectory is gradually reached by
approaching the amplitude and frequency of its parameters from that of its
preceding trajectory, using proper time functions. Transition trajectories are
obtained by optimizing the time offset of a source trajectory, corresponding to
the departure time for a goal trajectory, and minimum execution time, as long
as the cable tensions remain positive.

An example trajectory is performed by applying the novel technique to a
specific mechanism. Periodic trajectories obtained in the literature are chosen as
target trajectories. Using the transition trajectory proposed, the robot is able
to smoothly start from the state of rest, merge into two consecutive ellipses, a
straight line and a circle in sequence and then go back to the state of rest. In
future work, time offsets will be added to both the source and goal trajectories
such that optimal points at which the robot leaves for and lands on the goal
trajectory can be obtained based on the minimization of the transitioning time
or other criteria.
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Abstract. This paper presents an analysis of the possibility of using
cables to eliminate out-of-plane vibrations in planar cable-driven parallel
robotic manipulators. A new control strategy is presented with a complete
stability analysis. The results show it is theoretically possible to stabilize
planar cable-driven systems in non-planar directions using cables alone.
The developed controller is shown to be effective both in simulation and
experimentally at attenuating transverse platform vibrations.

1 Introduction

Cable-driven parallel robots (CDPR) consist of a rigid platform suspended by a
number of elastic cables [1]. This design has a number of considerable advantages
over traditional robotic manipulators, which consist of solely rigid links. Cables
are relatively lightweight and inexpensive and the reduced inertial load enables
CDPRs to command very high accelerations [2]. While a well-known drawback
of parallel manipulators is their limited work space, CDPRs are able to span
distances upwards of 500m [3].

The numerous benefits of CDPRs create a significant potential for use in
large-scale industrial applications, such as high-speed automated warehousing.
However, a number of technical challenges exist that complicate manipulator
design configurations and control strategies. The most significant of these chal-
lenges is the fact that cables are only able to transmit force while under tension.
This uniaxial force condition requires CDPRs to be redundantly actuated in
order to be fully constrained by the use of internal antagonistic cable forces [4].
A second major issue is that the stiffness of the cables is much lower than a
comparable rigid mechanism. As a result, end effector vibrations are a poten-
tial hazard that require active compensation during highly dynamic motions to
ensure manipulator safety and accuracy.

An interesting and particularly challenging class of CDPRs are those limited
to motion within a plane. In the planar case, most, if not all, of the cable internal
forces lie within the motion plane. As a result, the translational stiffness in the
planar normal direction is very low and creates a potential for large displacements
that are uncontrollable using traditional continuous control methods [5]. While
the use of redundant cables and design optimization can help maximize the
overall manipulator stiffness, the potential for displacements in the planar normal
direction remains problematic [6].
c© Springer International Publishing AG 2018
C. Gosselin et al. (eds.), Cable-Driven Parallel Robots,
Mechanisms and Machine Science 53, DOI 10.1007/978-3-319-61431-1 21
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To the best of the authors’ knowledge at the time of writing this paper,
with two exceptions, all previous studies on the control of planar CDPRs have
completely neglected to consider the dynamics in non-planar directions [7–9]. In
[10,11], it was shown that persistent out-of-plane vibrations in a planar CDPR
can effectively be eliminated by adding additional actuators to the mobile plat-
form. The purpose of this study is to investigate the possibility of using cables
alone for eliminating out-of-plane disturbances and whether there is any practi-
cal benefit to using such an approach.

2 Physical Model

A cable-driven parallel robot (CDPR) consists of a rigid platform suspended
and actuated using a number of elastic cables. Consider the two-cable CDPR
presented in Fig. 1. For the sake of simplifying the proceeding analysis, platform
rotations have been ignored.

r

x

y

w

τ1 τ2

Fig. 1. 2-cable parallel robotic manipulator

For each cable, define a vector ci as:

ci = ai − bi (1)

where ai and bi are respectively the platform and frame mount points for the
ith cable. The length of each cable can then be found by taking the magnitude
of ci:

li = ‖ci‖ (2)

Additionally, a unit vector pointing along each cable can be obtained as

ĉi =
ci

li
(3)

Each cable can be modeled as a linear spring with some stiffness ki for the
ith cable. Using such a model, the tension in each cable can be determined as

τi = −ki (li − δli) (4)
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where δli is the unstretched cable length and considered as an input to the
system. Combined with the cable direction vector defined in (3), the force applied
on the platform by each cable is found to be

Fc,i = ĉi · τi (5)

The x and y accelerations can then be calculated by summing the individual
forces produced by the n cables:

mp

[
ẍ
ÿ

]
=

n∑
i=1

Fc,i (6)

where mp is represents the mass of the platform and, in this particular case,
n = 2. Assuming there are no additional external forces, the dynamics of the
platform are fully described by (6).

In [12], Behzadipour and Khajepour present an analysis of the platform and
cable stiffness and show that the stiffness of each cable in the transverse direc-
tion is a function of the cable tension. Additionally, they show that increasing
the cable tensions always leads to an increase in the platform stiffness in all
directions. With that in mind, one can consider only the transverse platform
dynamics (y direction) as

mpÿ = −kyy (7)

where ky is the combined stiffness of the two cables projected along the y axes.

3 Controller Design

Using the model for the out-of-plane dynamics of the platform as defined in (7),
the goal is to design a controller that is able to dissipate any induced vibrations
in the y direction and maintain a constant position within the equilibrium plane
(where y = 0). A major difficulty in designing such a controller is the fact
that cables are only able to transmit force uniaxially. As a result, cable forces
projected along the y-axis always point toward the equilibrium plane.

One potential control strategy to eliminate vibrations using only the effect
of the cables is to increase cable tensions when the platform is moving away
from its equilibrium plane and decrease the cable tensions when the platform is
moving toward its equilibrium plane. This task can be achieved by the following
switching controller:

δli = δli,eq − sign(y) sign(ẏ)Ksw (8)

where δli,eq corresponds to the unstretched cable length of the ith cable when
the platform is resting within the plane and Ksw is a gain term that can be used
to adjust the rate of convergence. In order to analyze the stability of this new
closed-loop system, let us first construct a candidate Lyapunov function based
on the energy of the system:
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V =
1
2
mpẏ

2 +
1
2
kyy2 (9)

By the law of conservation of energy, it is known that V is constant, assuming
that there is no change in ky or mp. Since V is constant, V̇ = 0. Therefore, for
a given ky, the continuous dynamics of the system are marginally stable. It
still remains, however, to examine the effect of the discrete switching terms and
the effect of the discontinuity in the continuous dynamics on the overall system
stability.

If for all possible switching events, occurring at some time tsw, V (tsw)+ ≤
V (tsw)−, then it can be concluded that the closed-loop system is globally asymp-
totically stable. Recall that ky is a function of cable tensions and that ky increases
when cable tensions are similarly increased. The maximum value for ky is there-
fore obtained when cable tensions are at a maximum, or in other words, when
cable unstretched lengths are at a minimum. Conversely, the minimum value of
ky is obtained when cable unstretched lengths are at a maximum.

Discontinuities occur when either y or ẏ changes sign, in other words, when
the system is either in a state of purely kinetic or potential energy. Consider the
value of V immediately before and after y changes sign, when the system is in a
state of purely kinetic energy:

V (tsw,y)− =
1
2
mp ẏ2 +

1
2
ky,min 02

V (tsw,y)+ =
1
2
mp ẏ2 +

1
2
ky,max 02

(10)

It is obvious from (10) that V (tsw,y)+ = V (tsw,y)− for all possible instances
of tsw,y. Consider now the case where ẏ changes sign and the system is in a state
of purely potential energy:

V (tsw,ẏ)− =
1
2
mp 02 +

1
2
ky,max y2

V (tsw,ẏ)+ =
1
2
mp 02 +

1
2
ky,min y2

(11)

So long as ky,max ≥ ky,min, it is always the case that V (tsw,ẏ)+ ≤ V (tsw,ẏ)−.
It is therefore shown that for all possible switching events generated by using
the switching controller presented in (8), V (tsw)+ ≤ V (tsw)−. Thus, it can be
concluded that the closed-loop system is globally asymptotically stable and can
be used for eliminating out-of-plane translational displacements.

4 Results

The controller presented in Sect. 3 was implemented and tested in simulation and
on an experimental test setup to verify and study its effectiveness and potential
for real applications. The procedure used for evaluating the controller perfor-
mance in both the simulated and experimental cases was to start the platform
from some arbitrary nonzero initial condition and allow the controller to attempt



Transverse Vibration Control in Planar Cable-Driven Robotic Manipulators 247

to drive y back to the origin. The test would be repeated with the controller both
active and inactive in order to compare the rate of convergence and observe what,
if any, effect the controller has on the transverse platform dynamics.

The preceding subsections summarize the results obtained in simulation and
experiment respectively.

4.1 Simulation

The simulation study was performed using Simulink and the nonlinear 2-cable
robot model described in Sect. 2. The specific model parameters that were used
for the simulation are presented in Table 1, where mp represents the mass of the
platform and k corresponds to the cable stiffness constants. w and r are two
additional parameters that define the geometry of the robot, as shown in Fig. 1.

Table 1. Simulated cable robot model parameters

Parameter Value

mp 1 kg

k 1000N/m

w 1m

r 0.1 m

The control inputs to the system as described in the model of Sect. 2 are the
unstretched lengths of the two cables. As such, the feedback controller developed
in Sect. 3 is applied directly. At the start of simulation, the platform is given an
initial position of x = 0, y = 50mm. The equilibrium cable unstretched lengths
used were δleq = 0.38m for both cables. The simulation was repeated under
identical conditions for various values of the controller switching gain, Ksw. The
simulation results are summarized in Fig. 2.

From Fig. 2 it can be seen that when the switching controller is inactive
(Ksw = 0) and the cable unstretched lengths are held constant, the platform
oscillates perpetually. This is the expected result as there is no inherent damping
considered in the model. With the controller enabled (Ksw = 0.1) the oscilla-
tions in y are swiftly attenuated, eventually bringing the platform to rest at its
equilibrium plane.

4.2 Experimental

The procedure used for evaluating the controller of Sect. 3 in simulation was
repeated on the experimental test setup shown in Fig. 3. The setup is a highly-
stiff 12 cable planar cable-driven parallel robot, driven by 4 motors. The inter-
ested reader may refer to [13,14] for a detailed discussion of the mechanism and
its operating principles.
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Fig. 2. Simulation of a 2-cable robot with switching controller

Fig. 3. Experimental setup
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In contrast to the model developed in Sect. 2 for a generic 2-cable robot, the
low-level control system for the experimental setup has been organized such that
the bottom cables are operated in force control mode. As such, the switching
controller of Sect. 3 has been rearranged to be in terms of cable tensions rather
than cable unstretched lengths. The top cables are operated in position control
mode, however, only the bottom cables have been used for vibration control in
this particular experiment in order to simplify the implementation.

In an attempt to soften the shocks imposed on the system by the disconti-
nuities in the control signal, the sign function was replaced with the following
approximation: sign(x) ≈ x

|x|+ε , where ε � 1. The resulting form of the trans-
verse vibration controller, after having been modified to fit the requirements of
the experimental test setup, is then found to be
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Fig. 4. Experimental performance of switching controller at damping transverse vibra-
tions
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Fig. 5. Comparison of various positive values for the controller switching gain, Ksw

τi = τi,eq − y

|y| + εy

ẏ

|ẏ| + εẏ
Ksw (12)

The controller parameters used for this specific implementation were εy = εẏ =
10−5 and τeq = 80N for both the bottom cables. Various values of Ksw were
considered, as will be seen below. Within the plane, the platform was held at
the centre of it’s workspace.

At the start of the tests, the platform was released from an initial position
of y = 18mm. The observed performance of the controller is summarised in
Fig. 4. The estimations for y and ẏ were obtained by the use of an accelerome-
ter, mounted on the mobile platform, and a Kalman filter based on previously
obtained system identification data.

As can be seen in Fig. 4, the switching controller does indeed offer an improve-
ment over the natural system damping at attenuating out-of-plane vibrations.
The tests were repeated multiple times with various values of Ksw. The results
are presented in Fig. 5. As predicted by the analysis in Sect. 3, increasing the
value of Ksw is shown to improve the rate of convergence. The maximum value
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Fig. 6. Comparison of various negative values for the controller switching gain, Ksw

of Ksw used was limited to 7N because it was feared that beyond that, the
impulsive loading on the cable drive system may damage the test setup.

In order to verify that the observed increase in the rate of convergence of
y is caused by the switching controller working correctly, and not some other
phenomenon, the tests were repeated using various negative values of Ksw. From
the analysis in Sect. 3, if negative values of Ksw are used, a decrease in the rate
of convergence of y should be observed. In Fig. 6 it can be seen that this is indeed
the case.

Taken together, the results of Figs. 5 and 6 give strong evidence that the
controller behaves the way it has been predicted and that such a control strat-
egy can indeed influence the transverse dynamics for real planar cable-driven
systems.

5 Conclusion

Transverse vibrations are a real problem for planar cable-driven systems. While
it is possible to improve manipulator stiffness within the motion plane with the
use of internal antagonistic cable forces, the effect is minor in the planar normal
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direction and large undesired displacements remain a possibility. Such transverse
vibrations are linearly uncontrollable; however, the results of this study demon-
strate that it is possible to stabilize the system by using a nonlinear switching
controller. With the developed controller, the closed-loop system is shown to be
asymptotically stable using Lyapunov’s stability theorem. The performance of
the controller was then investigated and demonstrated in simulation and exper-
imentally to be effective at eliminating out-of-plane translational vibrations.

For highly-stiff systems with high natural frequencies, such a control strategy
may not be feasible due to the heavy impact on the cable drive system by
the required high-frequency discontinuous switching control signal. Therefore,
in order to effectively eliminate out-of-plane vibrations in systems with high-
stiffness, it may be necessary to add an additional set of actuators to improve
the controllability of the system in directions which are linearly uncontrollable.
However, In systems that are less stiff, such that the cable drive system is able
to keep up with the demands of the switching control signal, this may very well
be an effective solution for eliminating out-of-plane platform vibrations.
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Abstract. In this paper we present preliminary, experimental results of
an Adaptive Super-Twisting Sliding-Mode Controller with time-varying
gains for redundant Cable-Driven Parallel Robots. The sliding-mode con-
troller is paired with a feed-forward action based on dynamics inversion.
An exact sliding-mode differentiator is implemented to retrieve the veloc-
ity of the end-effector using only encoder measurements with the prop-
erties of finite-time convergence, robustness against perturbations and
noise filtering. The platform used to validate the controller is a robot
with eight cables and six degrees of freedom powered by 940 W compact
servo drives. The proposed experiment demonstrates the performance of
the controller, finite-time convergence and robustness in tracking a tra-
jectory while subject to external disturbances up to approximately 400%
the mass of the end-effector.

1 Introduction

Cable-Driven Parallel Robots (CDPR) are systems that use elastic cables to
guide the so called end-effector through space. Each cable is connected on one
side at the end-effector and guided by several pulleys to ground mounted motors
on the other side. These motors coil and uncoil the cables, apply a wrench at
the platform and by doing this, change the position and orientation of the end-
effector. Compared to other manipulators such as Steward Platforms or serial
manipulators, CDPR have some outstanding advantages such as large workspace,
modularity, mobility and scalability. Furthermore, because of their parallel struc-
ture and light-weight construction, CDPR have the ability to exert high accel-
erations. Thanks to these properties, the potential applications of CDPR are
numerous and diverse and include pick and place tasks [4], rehabilitation [19],
entertainment [2], simulation of motion [11] and telescopes [3]. Regardless of
the application, it is of paramount importance to ensure stability and adequate
performance (according to some suitable metric) in spite of possible unmod-
elled effects, external disturbances (e.g. wind gusts for a radio telescope) and
uncertain or varying parameters (e.g. varying mass in pick and place tasks).
c© Springer International Publishing AG 2018
C. Gosselin et al. (eds.), Cable-Driven Parallel Robots,
Mechanisms and Machine Science 53, DOI 10.1007/978-3-319-61431-1 22
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Several strategies have been proposed in the literature of CDPR to deal with
perturbations, and they are often based on the adaptation of kinematic/dynamic
parameters ([1,4,6]). However, this approach only considers parametric uncer-
tainties and assumes the knowledge of an upper bound of the perturbations to
choose the control gains. Unfortunately, in practice such an upper bound is typi-
cally unknown and one must resort to overly conservative estimates of the pertur-
bations, which means unnecessarily high control actions and noise amplification.
Another approach to deal with perturbations is to use control laws that are
implicitly robust, such as sliding mode controllers [4], yet the problem of tuning
the gains according to a worst case scenario persists. Additionally, sliding-mode
controllers suffer from chattering effects [17] which can reduce the performance
of the system and even damage its components. To overcome these limitations
we proposed a robust sliding-mode controller with adaptive gains (ASTC ) [14],
based on [18], that does not require the knowledge of an upper bound of the
perturbations. In [14] the controller was successfully validated in a numerical
simulation, demonstrating the capability of tracking desired trajectories in oper-
ational space (i.e. pose of the end-effector) in presence of parameter uncertainties
and external disturbances. Moreover, the positive effect of the adaptive control
gains was remarked by a comparison with a continuous sliding mode controller
with fixed gains [4] showing that, for comparable tracking error, the adaptive
strategy in the ASTC effectively reduces chattering.

In this paper we present the first tests of the ASTC with a real CDPR. Our
goal is to assess whether the performance of the ASTC that was obtained in
simulation still holds in practice and, if not, to get a better understanding of
the limiting factors. Indeed, the results of this paper show that the resilience of
the controller to perturbations and the property of finite time convergence are
preserved but with worse performance in terms of tracking error. In comparison
to [14], another novelty of this paper is the introduction of an adaptive sliding
mode differentiator [17] to indirectly derive the velocity of the end-effector using
only encoders at the winches and the Forward Kinematics (FK ) model [12,
16], that is the barest minimum sensor information usually available in CDPR.
The results demonstrate also the robustness and finite time convergence of the
differentiator.

This paper is structured as follows: in Sect. 2 we present the model, in Sect. 3
we discuss the control strategy as well as a robust sliding-mode differentiator.
Section 4 describes the experimental setup and the evaluation of the results.

2 Modeling

The control algorithm and the kinematic relations of the system considered in
this paper are based on a simplified model of a redundant CDPR with n = 6
degrees of freedom (dof ) and m = 8 massless and inextensible cables. The choice
of neglecting the dynamics of the cables is an obvious abstraction of reality that
is quite common in literature since this is an open topic of research. Additionally,
we assume that each cable leaves the corresponding winch from a fixed point,
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i.e. the rotation of the winches is considered negligible. With this simplifica-
tions the generic i-th cable forms a straight line [15] that connects a point
Bi on the end-effector (onboard connection) to the fixed point Ai (offboard
connection) on the winch (Fig. 1). For the derivation of the main kinematic
and dynamic relations of the system we define two frames of reference: a
frame FE = {OE ,XE ,Y E ,ZE}, fixed on the geometrical center of the end-
effector and an inertial world frame FW = {OW ,XW ,Y W ,ZW }. With this
setting the pose of the end-effector w.r.t FW will be denoted by the vec-
tor xν = [pT νT ]T ∈ SE(3) where p = [x y z]T ∈ R

3 is the position and
ν = [φ θ ψ]T ∈ SO(3) is the orientation expressed as Euler angles1.

2.1 Kinematics

The kinematics of CDPR describe the relation between the pose xν of the end-
effector and the vector ρ = [ρ1, ρ2, . . . , ρn]T ∈ R

n×1 of lengths of the cables. In
particular the forward kinematics (FK ) describes the mapping from ρ to xν ,
whereas the inverse kinematics (IK ) describes the inverse mapping. Both the
IK and FK are relevant for the implementation of the controller and are briefly
discussed in the following.

Inverse Kinematics

Thanks to the simplifying assumptions made so far, the IK of a fully constrained
CDPR has a closed form solution. Formally, the mapping from xν to the length
ρi of each cable i can be written in the form of a polygonal constraint (see
Fig. 1), i.e.

FW

p

ρi

ai

Bi

bi

xW

yW
zW

OW

FE

Ai

Fig. 1. Sketch of the cable robot.

1 In the experiments we use the ZYX (roll-pitch-yaw) sequence.
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‖W li‖ = ‖ρi
W ni‖ = ρi = ‖W ai − p − W RE

Ebi‖, (1)

where W ni is the support unit vector of the cable, ai ∈ R
3 is the position vector

of Ai w.r.t. FW , W RE
Ebi = W bi ∈ R

3 is the vector
−−−→
OEBi expressed in FW

and W RE is the rotation matrix that expresses the orientation of FE w.r.t.
FW . Differentiating (1) with respect to time leads to the well-known differential
equation

ρ̇ =

⎡
⎢⎣

−W nT
1 −(W RE

Ebi × W ni)T

...
...

−W nT
n −(W RE

Ebn × W nn)T

⎤
⎥⎦

︸ ︷︷ ︸
J

ẋ . (2)

with the vector ẋ = [pT , W ωT ]T describing the velocity of the rigid body end-
effector by using angular velocities2 and the Jacobian matrix J . It will be shown
in Sect. 2.2 that the Jacobian J also plays a role in mapping forces exerted by
the cables (cable tension) to wrenches applied to the end-effector.

Forward Kinematics

When considering the problem of tracking a trajectory of the end-effector using
only the measurements given by the encoders at the winches (i.e. measurements
of the lengths of the cables) we need to solve the FK problem to indirectly retrieve
the current pose of the end-effector. Since the FK for a fully constrained CDPR
in general does not have a unique solution [7] we address it as an optimization
problem, i.e.

x�
FF = min

p�,ν�
ΨFF (l,p,ν) = min

p�,ν�

n∑
i=1

{(ρi − ρ̂i(p,ν))} (3)

in which the cost function ΨFF (l,p,ν) is the error between the measured cable
lengths and the cable lengths from the kinematic relation (1), and (•)� denotes
the optimal solution. It has been shown in [8,9] that problem 3 can be solved
efficiently by using the method from levenberg-marquardt (lm), an iterative algo-
rithm that updates the solution of the optimization problem with the following
rule

xlm,k+1 = xlm,k + hlm,k, (4)

where hlm,k is the update computed at the step k. The update step hlm,k in (4)
is determined by solving the equation

(
J(xlm,k)T J(xlm,k) + λlmIn

)
hlm,k = J(xlm,k)T (ρ − ρ̂(xk)). (5)

Note that in (5) the term λlm is a damping factor that modifies the singular
values of the matrix

(
J(xlm,k)T J(xlm,k) + In

)
to make it better conditioned

close to singularities of J . The algorithm stops when the update step becomes
small enough, i.e. when ‖xlm,k+1 − xlm,k‖ < εlm with a predefined threshold

2 Note that ẋ �= d
dt

xν since Wω �= ν̇.
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εlm ∈ R. In practice we found that an acceptable solution would be usually
found in less than 20 iterations by using the previous solution as initial guess for
the optimization [12].

2.2 Dynamics

The dynamics of the CDPR provide a relation between the tensions of the cables
and their effect onto the motion of the end-effector. Given a nominal mass m ∈ R,
a nominal inertia IE ∈ R

3×3 w.r.t. FE and the position of the center of mass
W c = [cx, cy, cz]T in FW and using either the Newton-Euler or Euler-Lagrange
approach, the dynamics of the system are expressed by a second order ordinary
differential equation

B(xν)ẍ + C(xν , ẋ)ẋ − g(xν) = u = −JT t (6)

B(xν) =
[

mI3 m W c×T

m W c× H

]
, (7)

C(xν , ẋ)ẋ =
[
m W ω× W ω× W c

W ω×H W ω

]
, (8)

g(xν) =
[
0 0 −mg −mcyg mcxg 0

]T (9)

H = W RE
EIE

ERW + m W c× W c×T
. (10)

where t ∈ R
8×1 is the vector of cable tensions, u ∈ R

6×1 is the wrench applied
to the end-effector and (•)× is the well-known cross-product operator.

To formulate the control we need to rewrite the model (6) to (10) in regular
form. For this purpose, let us first denote the full state of the system as the 12×1
vector x̄ = [xT

ν ẋT ]T = [pT νT ṗT W ωT ]T and the output as xν = [pT νT ]. Now
we define the diffeomorphism Ω that brings the system in regular form as

z =
[
z1

z2

]
= Ω(x̄) =

⎡
⎢⎢⎢⎣

I6 06×6

06×6

[
I3 03×3

03×3
νEω

]

︸ ︷︷ ︸
A(xν)

⎤
⎥⎥⎥⎦ x̄. (11)

Finally, applying (11) and using the new state vector x̄ on (6) we obtain the
regular form {

ż1 = z2

ż2 = f(x̄) + h(x̄)u
(12)

with

f(x̄) = −A(xν)B−1(xν) [C(xν , ẋ)ẋ − g(xν)] (13)
+Ȧ(xν , ẋ)ẋ

h(x̄) = A(xν)B−1(xν) (14)
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Remark 1. To ensure that νEω is not singular and h(x̃) has rank m, we limit
the pitch angle θ to

(−π
2 , π

2

)
.

As mentioned earlier, this model is a simplified representation of reality and
it may contain unmodelled effects such as slip-stick effects, breakaway torque,
etc. The model (12) can be extended to incorporate model uncertainties and
external wrench disturbances ζ as follows

⎧
⎪⎨
⎪⎩

ż1 = z2

ż2 = fn(x̄) + Δf(x̄) + hn(x̄) · (
u + ζ

)
+ Δh(x̄) · (

u + ζ
)

= fn(x̄) + hn(x̄)u + ξ

(15)

where

• fn and hn indicate the nominal model of the robot;
• Δ(•) contains the unmodelled effects and parameter uncertainties;
• ξ = hn(x̄) ζ +Δf(x̄)+Δh(x̄) · (u+ζ) is the vector of lumped perturbations.

As mentioned in Sect. 1, in nominal working conditions the lumped perturbations
of a physical system reasonably have an upper bound but this upper bound is
not known. Thus, we make the following assumption

Assumption 1. ξ is bounded by an unknown upper bound ξmax such that 0 ≤
|ξ|2 ≤ ξmax.

3 Control and State Differentiation

Using the model developed in Sect. 2, we can now design the control input u in
(15) to let the end-effector track a desired trajectory z1,d = [pT

d νT
d ]T ∈ SE(3)

that is provided with its derivatives z2,d = [ṗT
d ν̇T

d ]T and ż2,d = [p̈T
d ν̈T

d ]T ,
assuming also the presence of perturbations. The solution that we propose com-
bines a feed-forward control action uFF based on the inversion of the nominal
dynamic model, and a term based on a robust sliding-mode controller. The full
control input then becomes:

u = uSM + uFF . (16)

where uFF is a feed-forward input and uSM is the control action of the sliding-
mode controller.

Before venturing in the details of the terms forming the control wrench
u we must point out that not all wrenches are feasible, due to the possible
presence of singularities in the Jacobian J and to the fact that the tensions t
that can be exerted by the cables are limited within a non-negative range3, i.e.
0 ≤ tmin ≤ t ≤ tmax. Hereinafter we will simply assume that u is within the

3 The cables can only pull the end-effector, not push it. Hence the tension in a cable
can never be negative.
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admissible range of wrenches that defines the wrench-feasible-workspace of the
robot. Nevertheless, in the next section it will be shown that the sliding-mode
control uSM embeds a saturation that can be tuned according to the feasible
range of wrenches. Due to lack of space, we will not perform an analysis of the
range of feasible wrenches for our robot, however the experiment presented in
Sect. 4 will demonstrate that with suitable tuning of the controller and a rea-
sonable desired trajectory the control wrench u is always feasible. Lastly, the
cable tensions that need to be commanded by the motors to implement u can
be safely obtained using one of the many tension distribution algorithms that
are available in literature (e.g. [6,10,13]).

3.1 Control Design

ASTC: To steer the tracking error e = z1,d − z1 and its derivative ė = z2,d −
z2 to zero we choose as sliding variable σ = ė + Λe where Λ is a positive
definite matrix of proper size. To achieve σ = σ̇ = 0 with σ we implement uSM

as a super-twisting controller [17]. Moreover, to overcome the disadvantages of
constant high chosen gains, we use the adaptation law proposed by Shtessel in
[18]. The full expression of uSM is given by:

uSM = −α |σ|
1
2 sign (σ) + v (17)

v̇ =

{
−uSM if |uSM | > u

−βsign (σ) if |uSM | ≤ u
(18)

α̇ =

⎧
⎨
⎩

ωα

√
γ

2
sign (|σ| − μ) , if α > αm

η, if α ≤ αm

(19)

β = 2 εα (20)
μ(t) = 4α(t)Te , (21)

where

• u,u are the upper and lower bound for uSM ;
• α, β are positive definite diagonal matrices of gains;
• ωα,γ,η,αm are positive constants that determine the update rate of the

gains (we refer the reader to [18] for more details;
• Te is the sampling period for the controller.

Feedforward: One important characteristic of the ASTC is that the input uSM

is continuous, since the discontinuity in (18) is passed through an integrator.
While this helps to reduce numerical chattering, this effect is not completely
removed. The feedforward input uFF in (16) is meant to reduce the control
effort of the ASTC and thus also reduce chattering and noise amplification.
The term uFF is based on dynamic inversion of the nominal model, using the
reference trajectory xνd, ẋd and ẍd. Formally, inverting the dynamics presented
in Sect. 2.2 yields

uFF = u = B(xν,d)ẍd + C(xν,d, ẋd)ẋd − g(xν,d) (22)
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3.2 Sliding-Mode Differentiator

In order to implement the control input uSM we need to measure both z1 and z2

or, equivalently, the pose xν and velocity ẋ of the end-effector and use (11). For
the the pose xν , as explained in Sect. 2.1, we can retrieve it from the encoders
measurements by solving the FK problem. However, to obtain the velocity ẋ
from the positional encoders we must resort to a numerical differentiator. Hence,
using the same principles of the ASTC, we implemented a first order sliding
mode differentiator [17]. The advantage of this family of differentiators is that
it achieves finite time convergence and exact stabilization, besides having the
robustness properties of a sliding mode algorithm. For detailed information on
sliding mode differentiators and their properties we refer the reader to [17]. Here
we just show the final equation of the differentiator, i.e.

˙̃x0 = −λ1L
1
4 ‖x̃0 − xν‖ 1

2 sign (x̃0 − xν) + x̃1

˙̃x1 = −λ0Lsign (x̃0 − xν)
(23)

where

• x̃0 and x̃1 are the estimates of xν and ẋν , respectively4.
• λ1 and λ2 are the gains of the differentiator. As suggested in [17], we tuned

these gains as λ1 = 1.1 and λ2 = 1.3.
• L is the Lipschitz constant of the last derivative estimated by the differentia-

tor, in this case ẋν . In practice this value determines the cutoff frequency of
the differentiator. We used the value L = 15.

4 Experimental Validation

The robot used to validate the proposed control algorithm is a redundant
CDPR with 6 dof that was custom built at the Max Planck Institute for Bio-
logical Cybernetics (see Fig. 2). The end-effector of the robot is an icosahe-
dron platform made of aluminium. The nominal mass of the end-effector is
m = 2.6 kg and its nominal inertia tensor with respect to the principal axes is
EIE = diag {[0.04613, 0.04613, 0.04873]} Nm2. The system is powered by eight
940W compact servo drives of type Beckhoff AM8033-0E21 with a drum diam-
eter of 39.15mm, that are located under the metal base of the frame. These
actuators allow to exert a maximum cable force of 878N.

On the software side, we used an off-the-shelves Beckhoff TwinCAT soft-
ware (Windows Control and Automation Technology) to control the robot and
interface with the sensors. TwinCAT offers the possibility to run simultaneously
multiple Programmable Logic Controllers (PLC ) in real-time and it provides
both a runtime environment for real time NC-axis control and a programming
environment for code development. Moreover, this software allows to implement

4 Note that the differentiator estimates ẋν , however the transformation from ẋν to ẋ
is straightforward.
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Fig. 2. Mini CableRobot simulator.

the low-level control of the drives both giving a target cable length (position
control) or a target torque (torque control). In our experiment we used this sec-
ond mode of operation because the control input from our ASTC algorithm is
the applied wrench, i.e. the tension of the cables.

Visible in Fig. 2 is also a set of near-infrared cameras (we have four in total)
from VICON5 with a sampling frequency of 250Hz that can be used to track
the pose of the platform with a precision of 0.5mm thanks to a set of reflective
markers mounted on the top of the end-effector. We want to stress that the
VICON tracking system was not used in the experiments, during which we only
used encoder measurements. This is due to the fact that an external vision
based tracking system like the one from VICON is rarely used with large size
CDPR like our CableMotion Simulator [11]. The VICON tracking system has
only been used before the experiment to calibrate the kinematic parameters ai

and bi in (1). To perform the calibration the end-effector was moved throught the
operational workspace, taking care to excite as much as possible the full range of
translations and rotations, meanwhile recording both the length measurements
ρ from the encoders and the pose meaurement xν from the visual tracker. With
these measurements the kinematic parameters ai and bi for the generic i-th
cable are calibrated by solving a quadratic minimization problem over all N
measurement samples, i.e.

[
a�

i

b�
i

]
= min

ai,bi

⎧
⎨
⎩

N∑
j=1

ρi,j − ‖W ai − p − W RE
Ebi‖2

⎫
⎬
⎭ s.t. ai ∈ [a, a], bi ∈ [b, b]

(24)
where a, a and b, b are the boundaries of the search region. The results are
reported in Table 1.

5 http://vicon.com/.

http://vicon.com/
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Table 1. Kinematic parameters

4.1 Results

To validate the proposed ASTC algorithm we performed an experiment in
which the end-effector is tasked to follow the predefined trajectory pd = [0.15+
0.15cos(ω · t − π

2 ),-0.145 + 0.15 + 0.15sin(ω · t − π
2 ), 0.85]m, νd = [0, 0, 0] ◦ with

ω = 0.5. The parameters of the control algorithm (17) to (19) and (21) were set
to ε = 0.3, γ = 1, ωα = 21.213.

In order to use the ASTC control law we first need to retrieve the measure-
ment of the state of the system, i.e. the pose xν and velocity ẋ of the end-
effector. Recalling our previous discussion, the pose can be reconstructed from
the encoder measurements ρ by solving the FK problem whereas the velocity,
not being directly available, is obtained from the Sliding-Mode Differentiator
(SMD) (23). The finite-time convergence of the differentiator is confirmed by
Figs. 3a and b where it is visible that the pose from the SMD rapidly converges
to the pose from the FK. For the velocity, lacking a measurement of ẋ to com-
pare the output of the SMD with, we computed the numerical derivative of the
encoder measurement ρ and then used the differential kinematics (2) to get ẋ.
Using this as a comparison, Figs. 3c and d show that, for our choice of parame-
ters in Sect. 3.2, the velocity estimate from the SMD follows the mean of the
numerical derivative but filters noise.

Having assessed the correct operation of the SMD we can now look at the
performance of the ASTC, its robustness in particular. In this regard, the con-
troller has to face three different kinds of perturbations. Firstly, parameter uncer-
tainties, because the nominal physical parameters of the end-effector have been
derived from an approximated CAD model and therefore it is reasonable to
expect deviations from the real values. Secondly, unmodelled dynamics, since in
our model we considered an extremely simplified power-train with ideal cables
and without transients or other effects in the drives. Lastly, external distur-
bances, because to make the task more challenging we applied external wrenches
to the platform while it was moving. More specifically:

1. From 55s to 61s a 5 kg disk (≈ 192% the mass of the end-effector) was
hooked under the platform, approximately equivalent to a disturbance wrench
wd,1 ≈ [0, 0,−50N, 0, 0, 0]T .

2. From 116s to 127s the platform was pulled in approximately the XW direction
with a wrench (measured using a mass sensor) of wd,2 ≈ [−100N, 0, 0, 0, 0, 0]T

(≈ 384% the mass of the end-effector).
3. From 143s to 155s the platform was pulled in approximately the XW direction

with a wrench (measured using a mass sensor) of wd,3 = [100N, 0, 0, 0, 0, 0]T

(≈ 384% the mass of the end-effector).
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With this premise in mind, we can first look at the tracking error shown in
Figs. 3e and f. The first thing worth noting in these plots is that despite the
model uncertainties the end-effector converges extremely quickly (less than half
a second) to the desired trajectory, thus providing a practical proof of the

Fig. 3. Experimental results



Application of a Differentiator-Based Adaptive Super-Twisting Controller 265

finite-time convergence of the ASTC. Additionally, it is remarkable that through-
out the whole experiment the tracking error remains in the same small range,
even when the external disturbances are applied, confirming that the system is
very robust and capable to quickly counteract even significant perturbations.
Such a reactive behaviour is achieved thanks to the adaptation law (19). Indeed,
the graph of the evolution of the controller gains α (Fig. 3g) reveals that in cor-
respondence to the external disturbances the gains along the affected direction
of motion increase very quickly and decrease as quickly once the disturbance is
removed.

Another reason for including the adaptive gains, as explained earlier, was to
reduce the effect of chattering that is common to sliding-mode controllers based
on the sign() function. However, the evolution of the sliding variable σ (see
Fig. 3h) shows that the chattering is still significant. The reason for this might
be partially due to the fact that the parameters of the controller, in particular
the saturation thresholds in the adaptation law, were not well tuned. While we
do not have yet a decisive explanation to this issue, we can speculate that the
dominant cause of the chattering be unmodelled dynamics of the drive train
(e.g. friction, slip-stick effects, hysteresis, creeping, inhomogeneous materials,
elasticity, thermal expansion and flattening of cables) or changes in the cable
configuration [8] that inject vibrations in the system. For example, we think that
static friction had a significant effect because we needed to apply torques much
larger than expected to start moving the robot. In conclusion, this experiment
suggests that further investigation is needed to quantify and understand the
cause of the chattering, i.e. whether it is due to the numerical implementation
of the algorithm or to the aforementioned unmodelled effects.

5 Conclusion

In this paper we presented preliminary experimental validation of a Super-
Twisting sliding mode controller with adaptive gains applied to a redundant
CDPR with eight cables and six degrees of freedom. The experiment showed
promising characteristics of the ASTC, in terms of tracking accuracy and robust-
ness to significant perturbations, particularly a remarkable reactivity to sudden
disturbances. At the same time, the experiment also raised questions about the
presence of chattering. From the preliminary results in this paper we think that
unmodelled dynamics of the power train (e.g. friction [5]) or changes in the cable
configuration ([8]) might be connected to this effect, but further investigation is
required. Additionally, we plan to explore possible improvements of the ASTC
by combining it with interconnection-damping-assignment.
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Abstract. Cable-Driven Parallel Robots (CDPRs) contain numerous
advantages over conventional manipulators mainly due to their large
workspace. Reconfigurable Cable-Driven Parallel Robots (RCDPRs) can
increase the workspace of classical CDPRs by modifying the geomet-
ric architecture based on the task feasibility. This paper introduces a
novel concept of RCDPR, which is a Mobile CDPR (MCDPR) mounted
on multiple mobile bases allowing the system to autonomously reconfig-
ure the CDPR. A MCDPR composed of two mobile bases and a planar
CDPR with four cables and a point mass is studied as an illustrative
example. As the mobile bases containing the exit points of the CDPR
are not fixed to the ground, the static and dynamic equilibrium of the
mobile bases and the moving-platform of the MCDPR are firstly studied.
Then, a real time Tentensions onto the mobilesion Distribution Algo-
rithm (TDA) that computes feasible and continuous cable tension dis-
tribution while guaranteeing the static stability of mobile bases and the
equilibrium of the moving-platform of a n = 2 Degree of Freedom (DoF)
CDPR driven by n+2 cables is presented.

Keywords: Cable-Driven Parallel Robot · Mobile robot · Reconfigura-
bility · Tension Distribution Algorithm · Equilibrium

1 Introduction

A Cable-Driven Parallel Robot (CDPR) is a type of parallel robot whose moving-
platform is connected to the base with cables. The lightweight properties of
the CDPR makes them suitable for multiple applications such as constructions
[1,10], industrial operations [3], rehabilitation [11] and haptic devices [4].
c© Springer International Publishing AG 2018
C. Gosselin et al. (eds.), Cable-Driven Parallel Robots,
Mechanisms and Machine Science 53, DOI 10.1007/978-3-319-61431-1 23
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A general CDPR has a fixed cable layout, i.e. fixed exit points and cable con-
figuration. This fixed geometric structure may limit the workspace size of the
manipulator due to cable collisions and some extrernal wrenches that cannot be
accepted due to the robot configuration. As there can be several configurations
for the robot to perform the prescribed task, an optimized cable layout is required
for each task considering an appropriate criterion. Cable robots with movable
exit and/or anchor points are known as Reconfigurable Cable-Driven Parallel
Robots (RCDPRs). By appropriately modifying the geometric architecture, the
robot performance can be improved e.g. lower cable tensions, larger workspace
and higher stiffness. The recent work on RCDPR [2,3,9,12,15] proposed differ-
ent design strategies and algorithms to compute optimized cable layout for the
required task, while minimizing appropriate criteria such as the robot energy
consumption, the robot workspace size and the robot stiffness. However, for
most existing RCDPRs, the reconfigurability is performed either discrete and
manually or continuously, but with bulky reconfigurable systems.

This paper deals with the concept of Mobile Cable-Driven Parallel Robots
(MCDPRs). The idea for introducing MCDPRs is to overcome the manual and
discrete reconfigurability of RCDPRs such that an autonomous reconfiguration
can be achieved. A MCDPR is composed of a classical CDPR with m cables
and a n degree-of-freedom (DoF) moving-platform mounted on p mobile bases.
Mobile bases are four-wheeled planar robots with two-DoF translational motions
and one-DoF rotational motion. A concept idea of a MCDPR is illustrated in
Fig. 1 with m = 8, n = 6 and p = 4. The goal of such system is to provide
a low cost and versatile robotic solution for logistics using a combination of
mobile bases and CDPR. This system addresses an industrial need for fast pick
and place operations while being easy to install, keeping existing infrastructures
and covering large areas. The exit points for the cable robot is associated with
the position of its respective mobile bases. Each mobile base can navigate in
the environment thus allowing the system to alter the geometry of the CDPR.
Contrary to classical CDPR, equilibrium for both the moving-platform and the
mobile bases should be considered while analyzing the behaviour of the MCDPR.

A Planar Mobile Cable-Driven Parallel Robot with four cables (m = 4), a
point mass (n = 2) and two mobile bases (p = 2), shown in Fig. 2, is considered
throughout this paper as an illustrative example. This paper is organized as fol-
lows. Section 2 presents the static equilibrium conditions for mobile bases using
the free body diagram method. Section 3 introduces a modified real time Tension
Distribution Algorithm (TDA), which takes into account the dynamic equilib-
rium of the moving-platform and the static equilibrium of the mobile bases.
Section 4 presents the comparison between the existing and modified TDA on
the equilibrium of the MCDPR under study. Finally, conclusions are drawn and
future work is presented in Sect. 5.

2 Static Equilibrium of Mobile Bases

This section aims at analyzing the static equilibrium of the mobile bases of
MCDPRs. As both the mobile bases should be in equilibrium during the motion
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Fig. 1. Concept idea for Mobile Cable-Driven Parallel Robot (MCDPR) with eight
cables (m = 8), a six degree-of-freedom moving-platform (n = 6) and four mobile
bases (p = 4)

of the end-effector, we need to compute the reaction forces generated between
the ground and the wheels of the mobile bases. Figure 2 illustrates the free body
diagram for the jth mobile base. uij denotes the unit vector of the ith cable
attached to the jth mobile base, i, j = 1, 2. uij is defined from the point mass P
of the MCDPR to the exit point Aij . Using classical equilibrium conditions for
the jth mobile base pj , we can write:

∑
f = 0 ⇒ mjg + f1j + f2j + fr1j + fr2j = 0 (1)

All the vectors in Eq. (1) are associated with the superscript x and y for respec-
tive horizontal and vertical axes. Gravity vector is denoted as g = [0 − g]T

where g = 9.8 m.s−2, f1j = [fx
1j fy

1j ]
T and f2j = [fx

2j fy
2j ]

T are the reaction forces
due to cable tensions onto the mobile base pj , C1j and C2j are the front and
rear wheels contact points having ground reaction forces fr1j = [fx

r1j fy
r1j ]

T and
fr2j = [fx

r2j fy
r2j ]

T , respectively. In this paper, wheels are assumed to be simple
support points and the friction between those points and the ground is supposed
to be high enough to prevent the mobile bases from sliding. The moment at a
point O about z-axis for the mobile base to be in equilibrium is expressed as:

Mz
O = 0 ⇒ gT

j E
Tmjg+ aT1jE

T f1j + aT2jE
T f2j + cT1jE

T fr1j + cT2jE
T fr2j = 0 (2)

with

E =
[

0 −1
1 0

]
(3)
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Fig. 2. Point mass Mobile Cable-Driven Parallel Robot with p = 2, n = 2 and m = 4
(Color figure online)

a1j = [ax
1j ay

1j ]
T and a2j = [ax

2j ay
2j ]

T denote the Cartesian coordinate vectors
of the exit points A1j and A2j , c1j = [cx1j cy1j ]

T and c2j = [cx2j cy2j ]
T denote the

Cartesian coordinate vectors of the contact points C1j and C2j . gj = [gxj gyj ]T

is the Cartesian coordinate vector for the center of gravity Gj of the mobile
base pj . The previous mentioned vector are all expressed in the base frame FB.
Solving simultaneously Eqs. (1) and (2), the vertical components of the ground
reaction forces take the form:

fy
r1j =

mjg(cx2j − gxj ) + fy
1j(a

x
1j − cx2j) + fy

2j(a
x
2j − cx2j) − fx

1j ay
1j − fx

2j ay
2j

cx2j − cx1j
(4)

fy
r2j = mjg − fy

1j − fy
2j − fy

r1j (5)



272 T. Rasheed et al.

Equations (4) and (5) illustrate the effect of increasing the external forces (cable
tensions) onto the mobile base. Indeed, the external forces exerted onto the
mobile base may push the latter towards frontal tipping. It is apparent that
the higher the cable tensions, the higher the vertical ground reaction force fy

r1j
and the lower the ground reaction force fy

r2j . There exists a combination of cable
tensions such that fy

r2j = 0. At this instant, the rear wheel of the jth mobile base
will lose contact with the ground at point C2j , while generating a moment MC1j

about z-axis at point C1j :

Mz
C1j = (gj − c1j)TETmjg + (a1j − c1j)TET f1j + (a2j − c1j)TET f2j (6)

Similarly for the rear tipping fy
r1j = 0, the jth mobile base will lose the contact

with the ground at C1j and will generate a moment Mc2j about z-axis at point
C2j :

Mz
C2j = (gj − c2j)TETmjg + (a1j − c2j)TET f1j + (a2j − c2j)TET f2j (7)

As a consequence, for the first mobile base p1 to be always stable, the moments
generated by the external forces should be counter clockwise at point C11 while
it should be clockwise at point C21. Therefore, the stability conditions for mobile
base p1 can be expressed as:

Mz
C11 ≥ 0 (8)

Mz
C21 ≤ 0 (9)

Similarly, the stability constraint conditions for the second mobile base p2 are
expressed as:

Mz
C12 ≤ 0 (10)

Mz
C22 ≥ 0 (11)

where Mz
C12 and Mz

C22 are the moments of the mobile base p2 about z-axis at
the contact points C12 and C22, respectively.

3 Real-Time Tension Distribution Algorithm

In this section an existing Tension Distribution Algorithm (TDA) defined for
classical CDPRs is adopted to Mobile Cable-driven Parallel Robots (MCDPRs).
The existing algorithm, known as barycenter/centroid algorithm is presented in
[7,8]. Due to its geometric nature, the algorithm is efficient and appropriate for
real time applications [5]. First, the classical Feasible Cable Tension Domain
(FCTD) is defined for CDPRs based on the cable tension limits. Then, the
stability (static equilibrium) conditions for the mobile bases are considered in
order to define a modified FCTD for MCDPRs. Finally, a new TDA aiming at
obtaining the centroid/barycenter of the modified FCTD is presented.
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3.1 FCTD Based on Cable Tension Limits

The dynamic equilibrium equation of a point mass platform is expressed as:

Wtp + we = 0 =⇒ tp = −W+we (12)

where W = [u11 u21 u12 u22] is n×m wrench matrix mapping the cable tension
space defined in Rm onto the available wrench space defined in R(m−n). we

denotes the external wrench exerted onto the moving-platform. W+ is the Moore
Penrose pseudo inverse of the wrench matrix W. tp = [tp11 tp21 tp12 tp22]T is a
particular solution (Minimum Norm Solution) of Eq. (12). Having redundancy
r = m − n = 2, a homogeneous solution tn can be added to the particular
solution tp such that:

t = tp + tn =⇒ t = −W+we + Nλ (13)

where N is the m×(m−n) null space of the wrench matrix W and λ = [λ1 λ2]T is
a (m−n) dimensional arbitrary vector that moves the particular solution into the
feasible range of cable tensions. Note that the cable tension tij associated with
the ith cable mounted onto the jth mobile base should be bounded between a
minimum tension t and a maximum tension t depending on the motor capacity
and the transmission system at hand. According to [5,7], there exists a 2-D
affine space Σ defined by the solution of Eq. (12) and another m-dimensional
hypercube Ω defined by the feasible cable tensions:

Σ = {t | Wt = we} (14)

Ω = {t | t ≤ t ≤ t} (15)

The intersection between these two spaces amounts to a 2-D convex polygon
also known as feasible polygon. Such a polygon exists if and only if the tension
distribution admits a solution at least that satisfies the cable tension limits as
well as the equilibrium of the moving-platform defined by Eq. (12). Therefore,
the feasible polygon is defined in the λ-space by the following linear inequalities:

t − tp ≤ Nλ ≤ t − tp (16)

The terms of the m × (m − n) null space matrix N are defined as follows:

N =

⎡

⎢⎢⎣

n11

n21

n12

n22

⎤

⎥⎥⎦ (17)

where each component nij of the null space N in Eq. (17) is a (1×2) row vector.
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3.2 FCTD Based on the Stability of the Mobile Bases

This section aims at defining the FCTD while considering the cable tension
limits and the stability conditions of the mobile bases. In order to consider the
stability of the mobile bases, Eqs. (8–11) must be expressed into the λ-space.
The stability constraint at point C11 from Eq. (8) can be expressed as:

0 ≤ (g1 − c11)TETm1g + (a11 − c11)TET f11 + (a21 − c11)TET f21 (18)

fij is the force applied by the ith cable attached onto the jth mobile base. As
fij is opposite to uij (see Fig. 2), from Eq. (13) fij can be expressed as:

fij = −[tpij + nijλ] uij (19)

Substituting Eq. (19) in Eq. (18) yields:

(c11−g1)TETm1g ≤ (c11−a11)TET [tp11+n11λ]u11+(c11−a21)TET [tp21+n21λ]u21 (20)

MC11 ≤ (c11 − a11)TET [n11λ]u11 + (c11 − a21)TET [n21λ]u21 (21)

Term [nijλ]uij is the mapping of homogeneous solution tnij for the ith cable
carried by the jth mobile base into the Cartesian space. MC11 represents the
lower bound for the constraint (8) in the λ-space:

MC11 = (c11 − g1)TETm1g + (a11 − c11)TET tp11 + (a21 − c11)TET tp21 (22)

Simplifying Eq. (21) yields:

MC11 ≤ [
(c11 − a11)TETu11 (c11 − a21)TETu21

] [
n11

n21

] [
λ1

λ2

]
(23)

Equation (23) can be written as:

MC11 ≤ nC11λ (24)

where nC11 is a 1 × 2 row vector. Similarly the stability constraint at point C21

from Eq. (9) can be expressed as:

nC21λ ≤ MC21 (25)

where:

MC21 = (c21 − g1)TETm1g + (a11 − c21)TET tp11 + (a21 − c21)TET tp21 (26)

nC21 =
[
(c21 − a11)TETu11 (c21 − a21)TETu21

] [
n11

n21

]
(27)

Equations (24) and (25) define the stability constraints of the mobile base p1 in
the λ- space for the static equilibrium about frontal and rear wheels. Similarly,
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the above procedure can be repeated to compute the stability constraints in the
λ-space for mobile base p2. Constraint Eqs. (10) and (11) for point C12 and C22

can be expressed in the λ-space as:

nC12λ ≤ MC12 (28)

MC22 ≤ nC22λ (29)

Considering the stability constraints related to each contact point (Eqs. (24),
(25), (28) and (29)) with the cable tension limit constraints (Eq. (16)), the com-
plete system of constraints to calculate the feasible tensions for MCDPR can be
expressed as: [

t − tp
M

]
≤

[
N
Nc

] [
λ1

λ2

]
≤

[
t − tp
M

]
(30)

where:

Nc =

⎡

⎢⎢⎣

nC11

nC21

nC12

nC22

⎤

⎥⎥⎦ , M =

⎡

⎢⎢⎣

MC11

−∞
−∞

MC22

⎤

⎥⎥⎦ , M =

⎡

⎢⎢⎣

∞
MC21

MC12

∞

⎤

⎥⎥⎦ , (31)

The terms −∞ and ∞ are added for the sake of algorithm [5] as the latter
requires bounds from both ends. The upper part of Eq. (30) defines the tension
limit constraints while the lower part represents the stability constraints for both
mobile bases.

3.3 Tracing FCTD into the λ-space

The inequality constraints from Eq. (30) are used to compute the feasible tension
distribution among the cables using the algorithm in [5] for tracing the feasible
polygon PI . Each constraint defines a line in the λ-space where the coefficients
of λ define the slope of the corresponding lines. The intersections between these
lines form a feasible polygon. The algorithm aims to find the feasible combination
for λ1 and λ2 (if it exists), that satisfies all the inequality constraints. The
algorithm can start with the intersection point vij between any two lines Li and
Lj where each intersection point v corresponds to a specific value for λ. After
reaching the intersection point vij , the algorithm leaves the current line Lj and
follows the next line Li in order to find the next intersection point vki between
lines Lk and Li.

The feasible polygon PI is associated with the feasible index set I, which
contains the row indices in Eq. (30). At each intersection point, the feasible index
set is unchanged or modified by adding the corresponding row index of Eq. (30).
It means that for each intersection point, the number of rows from Eq. (30)
satisfied at current intersection point should be greater than or equal to the
number of rows satisfied at previous visited points. Accordingly, the algorithm
makes sure to converge toward the solution. The algorithm keeps track of the
intersection points and updates the first vertex vf of the feasible polygon, which
depends on the update of feasible index set I. If the feasible index set is updated
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Fig. 4. Feasible Polygon considering both tension limit and stability constraints

at intersection point v, the first vertex of the polygon is updated as vf = v.
Let’s consider that the algorithm has reached a point vki by first following line
Lj , then following Li intersecting with line Lk. The feasible index set Iki at vki

should be such that Iij ⊆ Iki. If index k is not available in Iij , then Iki = Iij ∪ k
as the row k is now satisfied. At each update of the feasible index set I, a new
feasible polygon is achieved and the first vertex vf of the polygon is replaced by
the current intersection point. This procedure is repeated until a feasible polygon
(if it exists) is found, which is determined by visiting vf more than once. After
computing the feasible polygon, its centroid, namely the solution furthest away
from all the constraints is calculated. The λ coordinates of the centroid is used
to calculate the feasible tension distribution using Eq. (13).

For the given end-effector position in static equilibrium (see Fig. 2), the fea-
sible polygon PI1 based only on the cable tension limits is illustrated in Fig. 3
while the feasible polygon PI2 based on the cable tension limits and the stability
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of the mobile bases is illustrated in Fig. 4. It can be observed that PI2 is smaller
than PI1 and, as a consequence, their centroids are different.

4 Case Study

The stability of the mobile bases is defined by the position of their Zero Moment
Point (ZMP). This index is commonly used to determine the dynamic stability
of the humanoid and wheeled robots [6,13,14]. It is the point where the moment
of contact forces is reduced to the pivoting moment of friction forces about an
axis normal to the ground. Here the ZMP amounts to the point where the sum
of the moments due to frontal and rear ground reaction forces is null. Once the
feasible cable tensions are computed using the constraints of the modified TDA,
the ZMP dj of the mobile base pj is expressed by the equation:

Mz
dj = M̃z

O − fy
rj dj (32)

where fy
rj is the sum of all the vertical ground reaction forces computed using

Eqs. (4) and (5), Mdj is the moment generated at ZMP for the jth mobile base
such that Mz

dj = 0. M̃O is the moment due to external forces, i.e., weight and
cable tensions, except the ground reaction forces at O given by the Eq. (2). As
a result from Eq. (32), ZMP dj will take the form:

dj =
M̃z

O

fy
rj

=
gT
j E

Tmjg + aT1jE
T f1j + aT2jE

T f2j
fy
rj

(33)

For the mobile base pj to be in static equilibrium, ZMP dj must lie within the
contact points of the wheels, namely,

cx21 ≤ d1 ≤ cx11 (34)

cx12 ≤ d2 ≤ cx22 (35)
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Fig. 5. (a) Evolution of ZMP for mobile base p1 (b) Cable tension profile (Color figure
online)
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Modified Algorithm for MCDPRs is validated through simulation on a rec-
tangular test trajectory (green path in Fig. 2) where each corner of the rectangle
is a zero velocity point. A 8 kg point mass is used. Total trajectory time is 10 s
having 3 s for 1–2 and 3–4 paths while 2 s for 2–3 and 4–1 paths. The size of each
mobile base is 0.75 m × 0.64 m × 0.7 m. The distance between the two mobile
bases is 5 m with exit points A2j located at the height of 3 m. The evolution of
ZMP for mobile base p1 is illustrated in Fig. 5a. ZMP must lie between 0 and 0.75,
which corresponds to the normalized distance between the two contact points of
the wheels, for the first mobile base to be stable. By considering only cable tension
limit constraints in the TDA, the first mobile base will tip over the front wheels
along the path 3–4 as ZMP goes out of the limit (blue in Fig. 5a). While considering
both cable tension limits and stability constraints, the MCDPR will complete the
required trajectory with the ZMP satisfying Eqs. (34) and (35). Figure 5b depicts
positive cable tensions computed using modified FCTD for MCDPRs.

A video showing the evolution of the feasible polygon as a function of time
considering only tension limit constraints and both tension limits and stability
constraints can be downloaded at1. This video also shows the location the mobile
base ZMP as well as some tipping configurations of the mobile cable-driven
parallel robot under study.

5 Conclusion

This paper has introduced a new concept of Mobile Cable-Driven Parallel Robots
(MCDPR). The idea is to autonomously navigate and reconfigure the geometric
architecture of CDPR without any human interaction. A new real time Tension
Distribution algorithm is introduced for MCDPRs that takes into account the
stability of the mobile bases during the computation of feasible cable tensions.
The proposed algorithm ensures the stability of the mobile bases while guar-
anteeing a feasible cable tension distribution. Future work will deal with the
extension of the algorithm to a 6-DoF MCDPR by taking into account frontal
as well as sagittal tipping of the mobile bases and experimental validation thanks
to a MCDPR prototype under construction in the framework of the European
ECHORD++ “FASTKIT” project.

Acknowledgements. This research work is part of the European Project
ECHORD++ “FASTKIT” dealing with the development of collaborative and mobile
cable-driven parallel robots for logistics.
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Abstract. The context of this paper is a research project on a Cable-
Driven Parallel Manipulator uses to reproduce the free flight condition
of aircraft models in wind tunnels (SACSO Project). The force control
of the CDPM enables to simulate the thrust of the aircraft engine, and
to modify the scale model mass and inertia. A very important point
for an efficient force control is an accurate estimation of the cables ten-
sion. In this paper, an original Cable Driving Unit with an integrated
3D force sensor is developped to improve the cable tension observability.
An associated Extended Kalman Filter implementation is then proposed
to estimate the cables tension.

1 Introduction

This study on cable-driven parallel manipulators (CDPMs) takes place within
the SACSO project [3,10]. This project deals with the study of aircraft behavior
and aims to set up an active suspension which would enable free flight simula-
tions in wind tunnels. This suspension sustains a scale model in a wind tunnel.
The device has to reproduce propulsion forces as well as creating virtual mass
and inertia in order to respect the similitude coefficients. The suspension must
have displacement abilities for the scale model installation and for standard
tests purposes. It must also have a high bandwidth force control to simulate the
propulsion effects and to confer an artificial inertia to the scale model. These two
control capabilities have to be ensured along 6 Degrees-Of-Freedom (DOF). Dur-
ing those free flight simulations, damping coefficients and dynamic derivatives of
aircraft models can be identified. The suspension should not disturb the stream-
line flow and must be implemented in existing wind tunnels with the slightest
modifications. Series type robot structures cannot fulfill all theses constraints.
A cable driven suspension manipulator has been retained.

A CDPM is formed by a base, a mobile platform connected to the base
through flexible cables. The motion control of the platform is performed by Cable
Driving Units (CDUs) which modify cables lengths. As cables can be winded over
great lengths, CDPM are very relevant for large workspace application [4,16],
and their light weight allows fast motion [8,14]. A key challenge of the control
c© Springer International Publishing AG 2018
C. Gosselin et al. (eds.), Cable-Driven Parallel Robots,
Mechanisms and Machine Science 53, DOI 10.1007/978-3-319-61431-1 24
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of CDPM is that cables can only apply tensile forces. Cables must be kept in
tension in the whole workspace of the robot to ensure the controllability of the
end-effector. In order to fulfill this requirement, control loop needs sensors and
associated fusion algorithm which guarantee an accurate estimation of cables
tension.

Besides, accurate identification of damping coefficients and dynamic deriv-
atives of the aircraft model depends on the accuracy of the measurements of
the aerodynamic wrench applied to the scale model. A reliable evaluation of the
wrench due to the cables tension is then needed. In the case of fully constrained
CDPMs, which are characterized by more cables than DOF, there is an infin-
ity of solutions for one resultant wrench [5]. Consequently, the resultant wrench
measurement on the end-effector is not sufficient to ensure the observability of
each cable tension. Cable tension Estimation on the joint space is also required.

This paper focuses on the improvement of the cable tension observability
through an original CDU design. First, the mechanical design and associated
sensors chosen during SACSO’s former development will be presented. Although
these solutions could guarantee the force observability required by the wind-
tunnel application, they cause some restrictions on implementation that will also
be detailed. Some modifications of the extant device are suggested here. Then,
a new CDU design with an integrated 3D force sensor is presented. Finally,
the approach based on an Extended Kalman Filter (EKF) is then proposed to
increase the accuracy in the estimation of the cable tension. Preliminary results
obtained on a mono-axial prototype are presented.

2 SACSO

Designed and created within the framework of an ONERA internal research
project, SACSO is a CDPM which has been installed and tested in a low speed
vertical wind tunnel at ONERA-Lille [3]. This set-up allows 6 DOF dynamic
motions.

2.1 Wind Tunnel Application

The functionalities provided by this CDPM allow more complete tests for analy-
sis and modeling of the flight dynamics, such as:

• generating movements according to the 6 DOF: that way, the parameters of
the aerodynamic model can be isolated and identified, which is often impos-
sible to achieve on the existing dynamic setups;

• simulating free, or semi-free, flight (according to chosen DOF), which means
that motions with important aerodynamics couplings (wing-rock on combat
aircraft for example) and time-dependent behavior can be studied.

Limits on the size and the mass of the tested scale models are 1 m long and
5 kg. These scale models are held by a carbon fiber beam from a 6-components
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aerodynamic balance, which is suspended in the flow by 9 cables (Fig. 1b). The
workspace of this fully constrained CDPM is a cube of 1 m side, and the angular
limits are ±15◦ in heading, ±45◦ in roll, and −20◦ to +45◦ in pitch. The max-
imum speeds and accelerations follow the similarity conditions for the motions
of a military aircraft: 3 m.s−1 and 15 m.s−2 vertically and laterally, 80◦.s−1 and
1400◦.s−2 in yaw, 400◦.s−1 and 7000◦.s−2 in pitch and 440◦.s−1 and 8500◦.s−2

in roll.

Fig. 1. SACSO: (a) SACSO layout on wind tunnel (b) Scale Model on SACSO

2.2 Control Design

The control algorithm of this CDPM is a position-force hybrid coordinated con-
trol structure, with two distinct controllers: a task space controller and a joint
space controller. The task space controller calculates tension distribution. A
quadratic programming algorithm is used to ensure that results stay in the oper-
ational range. Three control schemes are implemented:

• To follow 6-DOF trajectories imposed on the scale model: This is a position
control where cable tensions are computed from the end-effector tracking
error;

• To leave the scale model in 6-DOF free flight: This is a force control where
cable tensions are calculated to simulate the thrust of the engines, and to
modify the scale model mass and inertia by generating the corresponding
inertial forces;

• To impose motion along some of the 6 DOF: This is an hybrid position-force
control.

Outputs from the task space controller are used by the joint space controller
to calculate the torque to apply by each winch. These control loops also need
the estimation of tension, length and elongation of each cable. In practice, the
two controllers are synchronous and activated with the same sample frequency
of 2 kHz.
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2.3 Data Processing and Limitation

The states of the CDPM are estimated by fusion of sensors data. The scale
model includes three gyrometers, seven accelerometers and a 6-components aero-
dynamic balance. The length and tension of each driving cable are respectively
measured with an incremental encoder implemented on the winch and a force
sensor fixed on the last pulley of the CDU. An external location device composed
of two cameras provides the 6D-pose of the scale model.

The fitting of the aerodynamic balance inside the scale model is a complex
and an expensive task. Moreover, scale model of aircraft without fuselage, like
rotary wings UAV, can not be equipped with such a sensor. In order to extend
the range of compatible aircraft and to reduce the cost of the scale model, the
aerodynamic balance must be removed. The development of a new CDU design
embedding a force sensor would improve the cable tension observability, and
hence the resultant wrench estimation.

3 Proposed Cable Driving Unit

3.1 Principle

CDU is an essential component of a CDPM. Different design concepts for modify-
ing the length of cables have been proposed in the literature. The MARIONET-
REHAB robot uses a linear actuator with a pulley system which allows to reach
very high speed cable length modification with accuracy [13]. It use remains
limited to low cable tension [12]. Donohoe et al. [2] propose an original winch
system that actuates the cable over a rotatable pulley arm. Winch systems with
a rotary motor that turns a drum remain the most frequent actuation scheme.

The design phase of winch system with drum is guided by two main con-
straints.

The first one is to keep fixed the position of the point at which the cable is
drawn out from the drum. The accurate estimation of the unwound cable length
is essential for an effective position control. In order to fulfill this requirement,
the drum can translate while rotating about a fixed screw shaft [1,7]. The pitch
of the drum and the screw must be equal. Another concept is the winch design
proposed by Pott et al. for the IPANEMA [14]. A pulley translates in parallel
to the axis of the drum and another one at the end of the CDU fixes the output
point of the cable.

The second constraint on the design of the winches is the cable tension mea-
surement. In fact, as mentioned in the previous sections, the cable tension mea-
surement was highlighted as a critical issue for which different solutions have
been applied:

• Cable force sensors are directly integrated on the end-effector [11]. The acces-
sibility and the data dispatch make the practical implementation difficult.

• The cable tension is estimated by using the motor current measurement [2].
The bandwidth is relatively limited and the measurements can be noisy due
to the gear ratio of the transmission and the pulleys.
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• The sensors can also be integrated as measurement units using pulleys [9].
The pulleys disturb the cable force measurement accuracy due to friction.
The modeling of the friction is essential for its compensation.

• The force sensors can be directly integrated in the winch [7,17].

3.2 Proposed Design

The adopted strategy hinges the two previous constraints around which a new
CDU design was devised to improve the cable tension observability (Fig. 2). As
shown in Fig. 2a, the kinematic solution uses a screw/nut joint. The synchro-
nization of the translational and rotational movements allows the cable to be
kept in a fixed vertical position. The CAD cross-sectional view of the actuator
system is given in Fig. 2b. The whole actuator system motor-drum both sits on
a linear guide composed of two slides and the nut of the ball-screw. The motor
shaft is supported at its free end by a ball bearing. The originality of this design
lies in aligning the rotation axis of the pulley block with the cable at the exit of
the drum. The diameter of the pulley is adjusted so that the cable will tangent

(a) (b) (c)

(d) (e) (f)

Fig. 2. CDU concept: (a) Mechanical kinematic scheme (b) CAD cross-sectional view
of Actuator system (c) CAD cross-sectional view of the pulley block (d) Cable Driving
Unit (e) Pulley block and 3D force sensor (f) Winch details
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it to the entry point. The rotational guidance of the pulley block around the
vertical axis is ensured by a ball bearing (Fig. 2c). The pulley also sits on two
ball bearings. This concept allows to integrate under the CDU a 3D force sensor
in the vertical axis of the cable with a high geometric accuracy.

The prototype of the CDU is shown in Figs. 2d, e and f. The winch drum is
powered by a NX310EAP Parvex motor. The motor should run up to 4000 rpm
with a maximal torque of 2 N.m. The cable used is made of Dyneema (diameter:
1.4 mm). The diameter and the pitch of the drum are respectively 60 mm and
1.5 mm. Therefore, the screw has a pitch of 1.5 mm.

3.3 Integrated Force Measurement

Two solutions have been studied to integrate the 3D force sensor (Fig. 3). The
used sensor is a CMC 301 distributed by TME and with a range of 25 daN.

3.3.1 Cable Driving Unit Measured
The first solution is to have the whole of the CDU carried directly by the force
sensor (Fig. 3a). Thus reaction forces exerted by the cable are directly measured
by the 3D force sensor. This solution has been tested. Analyses and evaluations of
the first prototype reveal that the inertia forces inherent to the translation of the
drum are negligible even for high winding or unwinding speed. The measurement
noise due to the rotation of the geared motor remains limited. Nevertheless, in
this configuration, two critical aspects emerged:

• The translation of the drum leads to a shift of the center of gravity of the
CDU which must be compensated in the cable tension estimation.

• The mass of the whole CDU suspended on the stiffness of the force sensor
lowers the first eigenmode of the assembly.

Fig. 3. Integrated force measurement: (a) Cable Driving Unit measured (b) Pulley
block measured
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Fig. 4. Frequency Response Functions obtained from an impact testing

Among these two points, the last one is the most troublesome in the estima-
tion of the cable tension. Impact testing has been done on this CDU configura-
tion for measuring Frequency Response Functions (FRFs). From Fig. 4, the first
eigenmode of the assembly is around 14 Hz, in the CDPM bandwidth.

3.3.2 Pulley Measured
For the second solution, only the pulley block is mounted on the force sensor
(Fig. 3b). The low mass of the pulley block rejects the first eigenmode measured
by sensor outside the CDPM bandwidth. In closed loop, the force control allows
in this configuration to guarantee a bandwidth of 500 Hz. It remains that the
pulley friction may disturb the cable tension estimation from the force measure-
ment. This point can be averted by developing a suitable sensor fusion framework
as described in the following section.

4 Cable Tension Estimation

As mentionned in Sect. 2.2, our application requires an estimation of tension of
cables, with a sample frequency of 2 kHz. Because each sensor measures at its
own frequency (location device at 50 Hz; accelrometers and gyrometers at 400 Hz
and incremental encoders, motor resolvers and force sensor at 2 kHz), an EKF
has to be used to proceed to the sensor data fusion and to provide an accurate
estimation of the device state to the controller. In this section, prediction and
measurement models implemented by this EKF are presented.
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4.1 CDPM Dynamic Model

The dynamic model of a CDPM end-effector is derived from the Newton Euler’s
equations:

mpp̈ = mpg +
m∑

i

ti + fext, (1)

Ipω̇ = −ω × Ipω +
m∑

i

ri × ti + τ ext, (2)

where m is the number of cables. mp and Ip are mass and inertial tensor of the
scale model. g is the gravitational acceleration. p and ω are the position and
angular velocity of the scale model. fext and τ ext are the external forces and
torques (in our case aerodynamic wrench). ri is the relative position of the ith

cable anchor point to the gravity center of the scale model. ti is the cable tension
vector of the ith cable.

4.2 CDU Model

The parametrization of the ith CDU is summarized in Fig. 5. At each CDU a
reference frame �i (oi, xi, yi, zi) is associated. Vectors ai and ci are respectively
the position of the ith cable anchor point Ai, and the center of the pulley axis
Ci. Angles φi, αi and βi are cable angle values relative to the zixi plane, the
xiyi plane, and the vector (ci − ai) respectively.

Fig. 5. CDU modelling

Forces applied by the cable on both the winch and the end-effector are
described by the vectors twi

and ti. The direction iui of the tension vector
ti within the frame �i is a function of angles φi and αi:

iti = ti
iui = ti

[
cos αi cos φi; cos αi sin φi; sinαi

]T
. (3)
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These angle values are deduced from ai, oi and ci coordinates and the pulley
radius rpi

as follows:

φi = arctan
(

(ai−oi)|yi
(ai−oi)|xi

)
; (αi − βi) = arctan

(
(ai−ci)|zi

(ai−ci)|xiyi

)
; βi = arcsin ‖ci−ai‖

rpi

(4)
where |xi

, |yi
, |zi

and |xiyi
are projection operators onto xi, yi, zi axis and the

xiyi plane, respectively. Regarding the cable tension ti, it depends on the cable
elongation εi and the linear stiffness ratio of the cable kc. εi can be deduced to
the end-effector position and the drum angle as follows:

ti =
kc

li
εi =

kc

‖ci − ai‖ (rwi
θi − ‖ci − ai‖) (5)

where rwi
is the drum radius. Under the assumption of perfect joints (ball-screw

and drum), one can derive the dynamic model of the winch:

jwi
θ̈i + rwi

twi
= τi (6)

where jwi
is the inertia driven by the motor. Finally, inertial and friction effects

of the pulley are modelled by a coefficient ηi which sign depends on the cable
velocity:

twi
= (1 + ηi)ti. (7)

More advanced pulley model could be involved as presented in [9]. However, this
new CDU design associated with a location device provides an estimation of ti
insensitive to the pulley model, as it will be demonstrated in Sect. 4.4. Hence,
only a simple pulley description is considered in this paper.

4.3 Prediction Model

The overall system dynamic model can be obtained by combining Eqs. (1) and
(6) and by deriving Eqs. (4), (5) and (7). The state and control of the CDPM
are then described by vectors x and u, respectively:

u = τ ; x =

⎡

⎣
pT ϑT ṗT ωT

︸ ︷︷ ︸
scale model

θT θ̇
T

︸ ︷︷ ︸
winches

tT αT φT

︸ ︷︷ ︸
cables

ηT

︸︷︷︸
pulleys

⎤

⎦
T

(8)

with τ the vector of the motor torques; ϑ the orientation of the scale model
(roll, pitch, yaw Euler angles representation); θ and θ̇ vectors of angles θi and
angular velocities θ̇i of m winches; t the vector of n cable tensions ti; and α and
φ vectors of orientation angles αi and φi of m cables. The prediction model can
be written:

ẋ = f (x,u) + w (9)

where w is a vector of independent, zero mean, Gaussian noise processes of the
covariance matrices Q [15]. The first 6 equations of Eq. (9) are simple integra-
tors, and the following 6 equations related to p̈ and ω̇ are deduced from Eq. (1).
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Associated Q coefficients fit to the expected range of fext and τ ext contributions.
2 m equations related to winches are deduced from Eq. (6). Associated Q coeffi-
cients fit to the perfect joints assumption. 3 m equations of ṫ, α̇ and φ̇ related to
cables dynamics can be expressed by derivation of Eqs. (4) and (5) as a function
of ṗ and θ̇. Last m equations related to the pulleys efficiency variation are set
to 0 and associated Q coefficients fit to the expected range of ηi.

4.4 Measurement Model

States observability related to the scale model and winches is already insure
by extant sensors: accelerometers and gyrometers embedded on the end-effector
provide direct measurements of p̈ and ω, the location device provides an esti-
mation of p and ϑ and incremental encoders and motor resolvers provide θ and
θ̇. Components measured by the force sensor can be modeled by:

fmi
=

[
fmxi

; fmyi
; fmzi

]T =
[
ti cos αi cos φi; ti cos αi sin φi; ti sin αi + twi

]T
.

(10)
From the two first components, new pseudo-measurements can be defined as
follows:

fmxyi
= (

√
f2

mxi
+ f2

myi
) = ti cos αi ; fmyi

fmxi
= tan φi. (11)

From Eq. (11) the estimation of ti can be calculated independently of the pulley
friction by ti = fmyi

/ cos αi. The Jacobian of this relation allows to evaluate the
upper bound of σti , the standard deviation of the estimated ti:

σti =
[

1
cosαi

ti sinαi

cosαi

] [
σfmxyi

σαi

]
(12)

where σfmxyi
, the standard deviation of fmxyi

, is 1% of the sensor range. The
external location device provides an estimation of ai with a standard deviation
σai

equal to 5 mm. The standard deviation of αi can be approximated by σαi
≈

σai
/‖ai‖. Then one can derive the relative standard deviation of fi due to the

αi uncertainty:
σαi

ti = (sin αiσai
) / (cos αi‖ai‖) . (13)

From the σai
value, mean and max values of σαi

ti are equal to 0.2% and 1.3%
of ti, respectively. The operating range considered is α ∈ [0◦; 70◦] and ‖ai‖ ∈
[1 m; 4 m].

In the case of the use of force measurement only, the modeling and compen-
sation of the friction of the unique pulley are necessary to keep an acceptable
accuracy in the cable tension estimation for CDPM force control [6,9].

5 Conclusion

The estimation of cable tensions of fully-constrained CDPMs is the major study
of this paper. The original CDU design presented improves cable tension observ-
ability while being relatively easy to manufacture and suitable to different CDPM
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dynamical requirements. A 3D force sensor is integrated into the CDU which
guides the cable from the drum to a pulley with a fixed direction. A screw/nut
joint is used to synchronize translational and rotational movement of the drum
from the rotation of the geared motor unit. The pulley block is directly mounted
on the axis of the force sensor. An Extended Kalman Filter is derived from the
dynamic model of the new CDU to estimate the cable tension. The method
based on data fusion of force sensor measurement and absolute end-effector pose
estimation coming from external cameras prevents taking into account the effect
of the pulley friction. The new CDU design with the external location device and
its involvement in the different control loops are tested on a mono-axial proto-
type. The experimental validation of the cable tension estimation approach will
be the focus of future research.
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Abstract. Computational efficiency is a critical issue in most real time
applications. In general, non-iterative computational algorithms are less
demanding than iterative ones. This paper proposes a new geometry-
based algorithm to determine the maximum force or moment a cable
driven parallel manipulator can exert in a given direction. A method to
find a feasible set of cable tensions corresponding to the desired maximum
wrench is also presented, and the proposed approach is validated using
three illustrative examples. These algorithms show promise for applica-
tions requiring real-time planning.

1 Introduction

A cable driven parallel robot, or simply cable robot, mainly consists of a moving
platform connected to a fixed base through cables wound around actuated pul-
leys. The length of the cables can be adjusted to control the degrees of freedom
of the moving platform.

The performance of a parallel manipulator can be studied globally, in terms
of workspace volume, or locally, in terms of available wrench set for a given
pose. In particular, the wrench capability of a parallel manipulator is defined as
the maximum force/moment that can be exerted on its moving platform. Such
capability is highly pose-dependent and varies significantly with the direction of
motion. In [14] the authors define the maximum force that an n-DoF manipu-
lator can apply on the moving platform as the boundary of a polytope. Such
polytope describes the available force set in the n-dimensional space. The force
polytope was generated by computing the maximum force in any given direc-
tion with an optimization-based algorithm. Thereafter, many authors proposed
several methods to define the available wrench set (i.e., the wrench polytope)
for parallel manipulators. In [18] Zibil et al. proposed an explicit method based
on scaling-factors to define the wrench polytope with improved accuracy and
efficiency. Other studies that make use of the wrench polytope to describe the
robot capabilities can be found in [8,9].

When dealing with cable robots, an additional constraint has to be consid-
ered: cables can only exert tensile forces and hence the minimum acceptable
c© Springer International Publishing AG 2018
C. Gosselin et al. (eds.), Cable-Driven Parallel Robots,
Mechanisms and Machine Science 53, DOI 10.1007/978-3-319-61431-1 25
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tension in each cable must be strictly positive. Local performance indexes based
on the wrench polytope have been used in [15] in the context of adaptive cable-
driven robots. The proposed method, which was formalized in [16] for a generic
local index and experimentally validated in [17], allows designers to derive the
optimal trajectories of the cable attachment points that guarantee a target level
of the performance index within a given workspace.

In [6] a new method to define the wrench polytope of cable driven parallel
manipulators was presented. Such method takes into account the unilateral force
exertion capability of cables and proposes a non-iterative algorithm to obtain
the H-representation of the polytope. In [7] the authors proposed a new method
to identify vertexes, edges, and faces of the wrench polytope with the aim of
exploring the relationship between the polytope and the cable robot structure.
Moreover, convex analysis is exploited in [12] to perform the force-closure and
workspace analysis of cable driven manipulators.

To investigate the capabilities of a cable driven robot, a new approach for
performance evaluation was presented in [4]. Based on the computation of the
maximum exertable force in a given direction, this approach can be applied to
any redundant cable robot. Following that study, a novel index for cable robots
called WEC (Wrench Exertion Capability) was presented in [5], and extended
to underactuated cable robots. This index describes the maximum wrench that
can be exerted along a given direction d while keeping null all the other wrench
components. Furthermore, as proposed in [3], such index can be exploited to
find the force, and hence acceleration, limits when facing the motion planning
problem.

The objective of this paper is to introduce a new geometry-based algorithm
aimed at finding the Wrench Exertion Capability of a cable driven robot. Com-
pared to iterative algorithms, geometric algorithms can generate the wrench
polytope in a more efficient way. Indeed, optimization-based methods are time
expensive in terms of computation and hard to implement in real-time control
because of their iterative nature [11]. The importance of having efficient algo-
rithms that can be implemented in real-time applications is also underlined in
[2,13].

The new geometry-based algorithm proposed here is more suitable than the
recursive linear programming method proposed initially in [4], enabling the use
of WEC index in real time applications.

This paper is organized as follows: Sect. 2 provides an overview on poly-
topes as representations of the linear transformation between the tension space
and the force/moment space of the moving platform. Section 3 proposes a new
methodology to find the maximum exertable wrench in a given direction, while
a procedure to find the corresponding set of feasible tensions is presented in
Sect. 4. These algorithms are validated in Sect. 5 using illustrative examples and
numerical simulations. Finally, conclusions are stated in Sect. 6.
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2 Definition of the Wrench Polytope

Let us consider a cable driven robot with m cables controlling n degrees of
freedom. Define w = [fT ,mT ]T as the wrench vector consisting of forces f and
moments m exerted by cables on the moving platform. The relation between the
wrench vector w ∈ R

n and the cable tension vector τ ∈ R
m can be described by

the following static equilibrium equation:

w = Sτ (1)

subjected to the constraints

τmin � τ � τmax (2)

The symbol � stands for the componentwise inequality; it means that not
only the cable tensions must be kept under a maximum limit τmax to avoid cable
breakages, but they must also be greater than a lower positive limit τmin, to
avoid slack cables and ensure stiffness to the mechanism. The matrix S ∈ R

n×m

(i.e., the structure matrix) is defined as:

S =
[

u1 u2 · · · um

r1 × u1 r2 × u2 · · · rm × um

]
(3)

where:

– ui is the unit vector directed along the i -th cable (starting from the attach-
ment point of the mobile platform).

– ri is the vector connecting the centre of mass of the moving platform to the
attachment point of the i -th cable to the moving platform.

The first three rows of the structure matrix (Sf ) describe the relation between
the cable tensions and the forces exerted on the moving platform, while the
second three rows (St) refer to the torques.

The wrench w can be rewritten in a more convenient form by defining a
new reference frame having the x -axis aligned with a direction of interest d. A
rotational matrix R can be computed to describe the relation between the fixed
reference frame and the new one. Hence, it is possible to define the wrench wd

by means of the following expressions:

wd =
[
RT 0
0 RT

] [
Sf

St

]
τ = Sdτ (4)

From a geometric point of view, the structure matrix S describes an affine
transformation Γ from the m-dimensional tension space onto the n-dimensional
wrench space. In the m-dimensional space, the bounded region of acceptable
cable tensions can be defined as an orthotope T

T =
{

τ |τ = [τ1 ...τm ]T ∈ R
m s.t. τi ∈ [τmin, τmax]

}
(5)
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It can be noticed that, if τmin and τmax are fixed for all cables, then the
orthotope is actually a hypercube. The hypercube T has 2m vertexes V j , each
corresponding to a particular tension configuration τ j = [τj1 ...τjm ]T , where all
the components τi take either their maximum or their minimum value (i.e.,
τji ∈ {τmin; τmax}).

All the vertexes V j are projected onto the n-dimensional wrench space by
the affine transformation Γ to obtain 2m characteristic points U j such that
U j = Γ (V j). The convex hull defined by the points W h that encloses all the
characteristics points U j is the available wrench set Ω for the given pose:

Ω = {wd ∈ R
n|wd = Sdτ , s.t.τ ∈ T} (6)

It follows that W h are the vertexes of the wrench polytope Ω. If n=m, all
the characteristic points U j are vertexes of Ω; however, in the more general case
n<m, only some U j are vertexes while others lie inside Ω or on its surface [7].
An example is given in Fig. 1 for a simple planar point-mass robot with three
cables controlling two degrees of freedom. The example describes the available
force set in terms of Fd and Fo defined as

[
Fd Fo

]T = Sd

[
τ1 τ2 τ3

]T . Matrix
Sd is defined in Eq. (4) for d= π/6 (depicted with an orange arrow in Fig. 1).
The manipulator layout is depicted on the left: the point-mass end effector is
connected to the fixed frame through three cables attached to the points A(−1,
−1) m, B(0, 1) m and C(1, −1) m. On the right, the cube represents T in the 3-
dimensional tension space (axes τ1, τ2 and τ3); tension limits for this example are
set to τmin = 10 N and τmax = 70 N. The eight vertexes of the cube are projected
onto the 2-dimensional force space (axes Fd and Fo) to form the force polygon Ω.
The projections of two of these vertexes lie inside the polygon. It can be proved
that T and Ω are both convex polytopes [6]. Hence, it is possible to describe
Ω by vertexes (V-representation) or by hyperplanes supporting its faces (H-
representation) [10]. The V-representation requires an iterative algorithm such
as quickhull [1] to identify which characteristic points are actually vertexes. Even
if quickhull is usually fast, a non-iterative algorithm is more desirable for real-
time applications. Hence, in this work we exploit the hyperplane-shifting method
proposed in [6] to get the H-representation of the wrench polytope.

Fig. 1. Tension and wrench polytopes for a m = 3 n = 2 cable robot
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In its H-representation, the available wrench set Ω is defined as a bounded
intersection of closed half-spaces

Ω = {wd ∈ R
n|Nwd � δ} (7)

where:

– N is a matrix having in each row the transpose of a unit vector ni which is
normal to the hyperplane supporting a face, directed away from the polytope
(outer unit normal vector)

– δ is a vector whose element δi can be expressed using a known point wi0

belonging to the hyperplane, such that δi = nT
i wi0.

In [6] it is shown that the wrench set is a zonotope in which every face has
at least one other face parallel to it. Consequently, for each vector ni orthogonal
to one face, there is another vector −ni orthogonal to the corresponding parallel
face.

To identify ni, the hyperplane shifting method [6] consists in taking a set of
n−1 linearly independent unit wrenches si from the matrix Sd. A normal vector
ni is then obtained by the normalization of the generalized cross product among
these n−1 vectors. This step must be repeated for all the feasible permutations
of n−1 unit wrenches. From combinatorics, the total number of permutations
is m!

k!(n−1)! , where k=m-n+1. However, only the permutations involving n−1 lin-
early independent vectors generate hyperplanes. Hence, if np indicates the num-
ber of hyperplanes, this process leads to a total of 2np normal vectors, the first
np are the vectors ni, followed by their opposite −ni.

The matrix N ∈ R
(2np×n) can be written as:

N =
[
n1 n2 · · · nnp

−n1 −n2 · · · −nnp

]T (8)

A detailed description on how to determine the points wi0 can be found in
[6]. The normal vector ni and the corresponding point wi0 define an hyperplane
Πi ∈ R

n−1 supporting a face of the wrench polytope.

3 Determination of the Maximum Exertable Wrench

Once all the hyperplanes have been identified, it is possible to analyse the bound-
aries of the polytope to find the maximum exertable force in the desired direction.

Two characteristics can be exploited to find the extreme wrench wmax (the
same reasoning is valid for wmin).

1. wmax lies in the hull of the wrench polytope, i.e., it belongs to at least one
of its faces. Hence, for at least one of the 2np inequalities Nwd � δ, the
expression nT

j wmax will reach its maximum value, such that nT
j wmax = δj .

In other words, wmax ∈ Πj , where Πj is the hyperplane identified by nj .
2. Since wmax has all null wrench components except for the one in the direction

of interest, it belongs to the straight line defined as r = λe1, where λ ∈ R

and e1 is the first column of the identity matrix In: wmax = λje1.
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For a generic wrench wi ∈ R
n that satisfies the above conditions, it is true

that {
ni1 ∗ λi ≤ δi, ∀i ∈ [1, 2np]
∃j ∈ [1, 2np] s.t. nj1 ∗ λj = δj

(9)

where ni1 is the projection of ni along e1.
Let us consider the set I = {i ∈ [1, 2np]}; such a set can be divided into

three subsets: P = {i ∈ [i, 2np] | ni1 > 0}, Q = {i ∈ [i, 2np] | ni1 < 0} and
S = {i ∈ [i, 2np] | ni1 = 0}.

For the following analysis to be valid, it is necessary to remove from N the
faces whose normal vector is orthogonal to r (that is, those identified by the set
of indexes S); indeed, such faces cannot intersect the straight-line r and hence
can be excluded a priori.

Equation (9) can be therefore rewritten as:

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

λi ≤ δi

ni1

, ∀i ∈ P

λi ≥ δi

ni1

, ∀i ∈ Q

∃j ∈ [1, 2np
] \ S s.t. nj1 ∗ λj = δj

(10)

where the first two inequalities are equivalent to: max
i∈Q

(
δi

ni1

)
≤ λi ≤ min

i∈P

(
δi

ni1

)
.

By adding the third condition, the previous inequalities can be further rewrit-
ten as: max

i∈Q

(
δi

ni1

)
≤ δj

nj1
≤ min

i∈P

(
δi

ni1

)
from which one can infer that

λj1,2 = max
i∈Q

{
δi

ni1

}
, min

i∈P

{
δi

ni1

}
(11)

are two solutions of (10) and therefore must be the two desired intersection points
(i.e., the maximum and minimum exertable wrench in the desired direction).
In other words, R = {wi | wi = λi ∗ e1,∀i ∈ P ∪ Q} is the set of intersection
points wi between the 2np supporting hyperplanes Πi; only two of these points
represent feasible wrenches (i.e., wmax and wmin) while the others are points
outside Ω.

The example in Fig. 2 shows the intersection points wmax and wmin corre-
sponding to the cable robot and the desired direction shown in Fig. 1 referring
to the planar cable robot introduced in Sect. 2. The wrench space is actually
a 2-dimensional force space, and the polytope Ω is a polygon with six edges
corresponding to six straight-lines (dashed-lines). The straight-line r coincides
with the x -axis, and intersects the polygon Ω in the two points wmax and wmin.
The black line between these two points represents the feasible range for a force
directed along d = π

6 . The points wi, i.e., the intersections between the dashed
lines and the x -axis, are depicted with blue circles.

The method can be applied even in presence of external loading such as,
for example, the gravity force. Due to this external wrench, the zonotope is
shifted in the wrench space. The direction of each supporting hyperplane does



298 G. Boschetti et al.

-150 -100 -50 0 50 100 150 200 250 300
Fd [N]

-100

-50

0

50

100

Fo
[N

] wmin
wmax

Fig. 2. Tension and wrench polytopes for a m = 3 n = 2 cable robot

not change, while the point identifying the hyperplane position is shifted such
that w′

i0 = wi0 + we.

4 Determination of the Tension Configuration

In some applications it might be useful to find a feasible set of cable tensions
corresponding to the local WEC, in addition to the WEC index.

Because all the points on the hull of the zonotope are images of points that
belong to the hull of the hypercube, the tension configuration corresponding to
the extreme wrenches wmax and wmin has to be sought in the hull of the tension
hypercube T.

Indeed, each vertex Wh ∈ Ω is the projection of at least one vertex Vj ∈ T.
Each Vj is directly connected to other m vertexes to form m edges. Moving
along one edge of T, the value of one tension force changes linearly from τmin

to τmax. Similarly, the edges of the wrench zonotope are the projections of some
of the edges of the tension hypercube. Hence, the wrenches of one edge are the
result of the same tension configuration, except for one tension value: this value
is τmin in one vertex and τmax in the other. It should be noted that this is not
true when two or more vertexes of the wrench zonotope overlap and hence more
than two Wh belongs to one edge of Ω. Therefore, in the following we exclude
these special cases and assume that each vertex of the wrench polytope is the
image of a single vertex of the tension hypercube.

The pre-images Vj of the vertexes Wh that delimit one face of the wrench
polytope, have m−n+1 common tension values; for all wrenches lying on the
face, these values remain constant while the other n−1 values change.

The normal vector that identifies each supporting hyperplane describes which
tension values are fixed and common to the whole face (i.e., the ones related to
the m−n+1 unit wrenches that define the position of the face, in terms of
distance along ni between such face and the initial parallel hyperplane passing
through the origin). Consequently, the values of the remaining n−1 tensions
corresponding to the desired wrench have to be determined.
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Let us indicate the WEC index value as wmax (i.e., wmax = wmax ∗e1). This
wrench can be obtained following the procedure described in Sect. 3. Moreover,
let nmax be the vector normal to the hyperplane Πmax, i.e., the one supporting
the face to which wmax belongs. The contribution of each unit wrench to wmax

can be highlighted by rewriting (1) as:

wmax = s1τ1 + s2τ2 + · · · + smτm (12)

where si is the i-th column of the structure matrix S. Starting from nmax,
it is possible to trace back which are the unknown tensions that have to be
calculated (i.e., τu ∈ R

n−1) by looking at the specific permutation of n−1
linearly independent unit wrenches si used to generate nmax. The remaining
m−n+1 tensions represent the known vector τ k ∈ R

m−n+1.
Hence, the contributions to the exerted wrench are divided into two parts:

wmax = Skτ k + Suτu (13)

where Sk ∈ R
n×m−n+1 is the matrix obtained from Sd by selecting only the

columns related to τ k, and similarly Su ∈ R
n×n−1 is the matrix obtained by Sd

by selecting only the columns related to τu. The objective is then to find τu,
such that:

Suτu = wmax − Skτ k (14)

Equation (14) represents an overdetermined linear system of n equations
with n−1 unknowns. Such a linear system has a feasible solution because wmax

lies inside the available wrench set. The overdetermined system can be easily
solved by applying numerical methods such as Gaussian Elimination.

5 Simulation and Results

In this section, the proposed methodology is applied to three different cable
robots. The chosen topologies have n ≤ 3 degrees of freedom to allow the visu-
alization of the wrench zonotope. All the examples aim at finding the maximum
and minimum exertable force in the direction of interest d. Such direction is
depicted with an orange arrow in Figs. 3, 5 and 6.

The forces F and torques M exerted on the moving platform are rewritten
in a more suitable reference frame as follows

wd =
[
Fd Fo1 Fo2 Md Mo1 Mo2

]T = RTSdτ (15)

where R, Sd and τ have been defined in Sect. 2.

1. Cable suspended configuration
Figure 3 shows the cable robot configuration on the left and the correspond-
ing wrench zonotope for the given pose on the right.
The three degrees of freedom of the point-mass end effector are controlled
by three cables attached to the points A (−1;1;0)m, B (0;1;0)m and C
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Fig. 3. m = 3 n = 3 robot configuration (left) and available wrench set (right)

Fig. 4. Tension cube
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Fig. 5. m = 4 n = 2 point mass cable robot (Color figure online)

(1;−1;0)m. The direction of interest d is aligned with the z -axis. The green
parallelepiped identifies the available wrench set in the 3-dimensional space.
The dash-dotted line is the straight-line r ; the intersection between r and Ω,
depicted as a black segment, is the feasible range for a force exerted along
d. Hence, it is possible to identify the two points wmax = [16N, 0, 0]T and
wmin = [−12N, 0, 0]T on the surface of Ω.
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As for the tension configurations associated with the extreme wrenches wmin

and wmax, they belong to the tension hypercube hull, and have m−n+1 ten-
sions at their maximum or minimum values, i.e., τ k.
For the cable suspended configuration showed in Fig. 3, τ k is actually a scalar
value. In particular, the tension configuration τmax exerting the wrench wmax

belongs to the face τ1 = τmax, while the tension configuration τmin exerting
the wrench wmin belongs to the face τ2 = τmin.
Figure 4 shows the cube T in the 3-dimensional tension space; in this simula-
tion the tension limits are chosen as: τmin = 5N and τmax = 35N. The points
τmax = [τmax, 13N, 20.5N]T and τmin = [13.5N, τmin, 7.9N]T can be easily
identified on the cube surface.

2. Over-constrained configuration
The second example considers a planar point-mass manipulator controlled by
four cables. Figure 5 shows a schematic representation of the robot layout on
the left and the available wrench set for the given pose on the right.
The four cables are attached to the vertexes of a square with side length of
2m; the origin of the fixed reference frame is located in the centroid of the
square. The available wrench set is computed with reference to a direction

of interest θ =
3
4
π (depicted with an orange arrow). In this case, Ω is the

octagon depicted with a green area in Fig. 5.
Again, the intersection between the x -axis (i.e., the straight line r) and
the green area is a segment whose extreme points are wmax = [61.7N, 0]T

and wmin = [−34.5N, 0]T . Similarly to the example presented in Sect. 4, the
straight-lines supporting the edges of the polygon are depicted with dashed
lines intersecting r in the points wi.
Looking at the corresponding tension configurations, the hypercube T belongs
to the 4-dimensional tension space. For the point-mass cable robot, the
known tensions vector τ k belongs to R

3; specifically, for the given pose
P = [0.5, 0.3]T m, the tension configurations exerting the maximum and
the minimum force in the direction of interest are respectively τmax =
[τmax, τmax, τmin, 37N]T and the τmin = [τmin, 56N, τmax, τmin]T , where
τmin = 20N and τmax = 70N.

3. Fully-constrained configuration
The third example refers to a planar cable robot having a moving platform
controlled by four cables. The cable output points are located at the ver-
texes of a square whose size is the same as in Fig. 5. The moving platform
is rectangular, with height 0.2 m and width 0.35m. The orange arrow indi-
cates the direction of interest (i.e., θ = π/4) along which the platform should
exert the maximum force while keeping constant its orientation. The avail-
able wrench set is a 3-dimensional figure, describing two translational and
one rotational degrees of freedom. It is possible to identify the two intersec-
tion points wmax = [28.8N, 0, 0]T and wmin = [−48.4N, 0, 0]T between the
straight line r and Ω.
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Fig. 6. m = 4 n = 2 point mass cable robot

In this case, the vector of known tensions has m − n + 1 = 2 elements.
Specifically, for the given pose P = [0.3, 0.2]T m, the results are τmax =
[60.9N, τmax, 66.5N, τmin]T and the τmin = [τmin, 27.7N, 14.9N, τmax]T , with
τmin = 10N and τmax = 70N.

6 Conclusion and Future Works

This paper introduced an efficient geometry-based algorithm to determine the
maximum exertable wrench in a given direction. The proposed algorithm takes
advantage of the H-representation of the wrench polytope and is not iterative.
A method to obtain the set of cable tensions yielding the desired maximum
wrench was also presented. Future studies will extend these methods to include
special cases (i.e., poses of the end effector) which were not investigated in this
work. The effectiveness of the proposed algorithms for real-time motion planning
and control of cable-driven robots will then be verified through testing on a real
prototype.
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Abstract. This paper introduces a novel cable-driven planar haptic
device with 4 DOF, six actuators, and two end-effectors, which can be
used to provide planar motion and grasping capabilities. In this design,
the rigid end-effector that is found in regular cable-driven robots is
replaced by a configurable platform, i.e. a closed-loop that possess some
internal DOF, which in the present case is made of cables in tension.
Both the position and the configuration of the platform can be fully
controlled through motors located on the frame of the device, offering
a novel solution to provide grasping capabilities in parallel cable-driven
mechanisms. After establishing the governing kinematics and statics rela-
tions, a workspace analysis of the novel mechanism is presented. Then,
a proof-of-concept prototype has been developed in order to validate the
kinematics. Finally, an optimization of the design parameters for maxi-
mal compactness of the system is presented. This design is expected to
find applications in haptics technology due to its unique gripping mech-
anism and high structural stiffness architecture.

1 Introduction

In order to render realistic force feedbacks in impedance controlled haptic device,
a device must possess a high mechanical bandwidth, such that the high-frequency
content of the forces occurring during contact with stiff environment can be
rendered properly. Parallel mechanisms [1] are often used now a days as haptic
devices since they offer higher stiffness and lower inertia than comparable serial
devices [2]. This is mainly due to the fact that all their motors are generally
located on or near the base.

In some haptic applications, it is interesting to allow the operator to interact
with the remote or virtual environment via multiple contact points, allowing
the user to feel the shape and stiffness of the manipulated object. When grasp-
ing capabilities are needed, a conventional approach is to mount an additional
grasper with a dedicated motor at the top of the parallel manipulator [3]. This
however results in additional inertia and lower mechanical bandwidth, since mass
is added at the point that is the furthest from the base.
c© Springer International Publishing AG 2018
C. Gosselin et al. (eds.), Cable-Driven Parallel Robots,
Mechanisms and Machine Science 53, DOI 10.1007/978-3-319-61431-1 26
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Cable-driven parallel manipulators have also been used as haptic devices [4–6]
because, aside from the advantages of rigid-link parallel manipulators, they can
also offer a practically unlimited translational workspace and even lower inertia.
However, adding an actuated haptic gripper to a cable-driven mechanisms would
be more complicated due to the absence of rigid links to attach the power and
communication wires, and would proportionally have a worst effect on the total
inertia of the system.

In this paper, we propose a new type of cable-driven parallel mechanism,
which offers planar motion and grasping capabilities with force feedback, while
all the motors are located at the base. The innovative structure is based on the
use of a multi end-effectors configurable platform [7], also formed by cables in
tension, for which both the position and configuration can be fully controlled
from the actuator at the base.

After a general presentation of the system in Sect. 2, the notation used and
the geometric, kinematic and static analysis of the system are presented in Sect. 3
and their governing equations are summarized. Section 4 attains to the workspace
definitions and analysis to describe the reach of the robot. Section 5 presents a
demonstrator developed to validate the design and summarizes the obtained
experimental results. Finally, Sect. 6 presents a way to optimize the system for
maximum workspace to robot frame ratio.

2 System Description

This section introduces the novel cable-driven architecture on which the haptic
device is based. The innovation in this architecture is in the use of a configurable
platform made of two cables in tension which allows the interface to interact with
the operator via two end-effectors (EEs), allowing grasping capabilities.

Figure 1 shows the schematic of the 4 DOF (two EEs, each having x and
y translation capabilities) six actuators, cable-robot with the novel grasping
mechanism. The red dots represent the location of the actuators on the robot
frame, with cables connecting to the blue colored EEs and the rings (indicated
as circles). The rings are allowed to slide along the two platform cables in order
for the system to achieve equilibrium. While the cable lengths attached to the
motors can vary with different positions of the EEs, the summarized lengths
of the two cables between the two EEs are kept constant. The cable lengths
between the EEs are based on the desired gripping distances, i.e. the desired
minimum and maximum distance between the EEs. The gripping distances con-
sidered are 0.04 m to 0.10 m for ergonomic purposes. To enable these gripping
distances, the cable lengths between the EEs are considered to be 0.105 m each
which is the minimum requirement for a 0.10 m gripping distance and collisions
avoidance. Although the minimum number of cable needed to fully control a 4
DOF mechanism is 5, an over-redundant design with six cables was preferred
in order to achieve symmetry in the structure and more symmetry in the robot
workspace and performance. Compared to the use of a dedicated grasping motor
on the end-effector, enabling grasping capabilities from the coupled action of the
motors located on the base reduces the inertia of the haptic device, improving
the mechanical bandwidth of the mechanism.
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Fig. 1. Schematic of the 4 DOF, two end-effectors cable mechanism.

3 Geometric, Kinematic and Static Analysis

In this section, the kinematic relations between the end-effectors positions and
the actuated cable lengths will be established based on the geometry of the
architecture. The relations between the tensions in the actuated cables and the
forces created at the end-effectors will also be introduced based on static equi-
librium. We first introduce the notation and analysis of classical cable-driven
robots and show how these concepts can be extended to a cable-driven robot
with a configurable platform.

3.1 Modeling and Notation in Regular Cable-Driven Mechanisms

In case of planar robots, the orientation of each cable can be described with a
unit vector di along the cable i as

di =
[
dix
diy

]
(1)

When tension fi is applied, the cable i exerts a pure force fidi on the end-
effector. As a cable robot can function only when the cables are in tension, fi
always has to be positive. For a mechanism with a point-shaped end-effector, the
total force applied on end-effector must be zero under static equilibrium. These
conditions can be represented with the following system of equations:

AT f + w = 0, fi > 0 (2)

where the structure matrix is represented by AT = [d1 d2 d3 d4 .... dm], the
forces on the cables are summarized in f = [f1 f2 f3 f4 .... fm]T and w rep-
resents other external forces on the EE, like the gravity or other user defined
forces.

The cable lengths (li) at each pose can be calculated by inverse kinemat-
ics. As explained by Tobias et al. in [12], it is possible to get satisfying force
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values, for low velocities with applied low minimum force limits. However, with
increasing velocities and accelerations the gripper starts to wobble due to slack
cables. To avoid this, it is suggested to set appropriate upper (fmax) and lower
(fmin) bounds on the system forces. For our system, forces were bounded by
fmin = 5 N and fmax = 100 N. Since the mechanism exhibits force redundancy,
multiple values of feasible forces for each robot pose are possible. In order to get
at least one dimensional solution set for force distribution for a specific robot
pose, we select the minimum Euclidean norm of vector f as the applied forces.
This optimal force solution set is computed for the desired system by using the
MATLAB inbuilt optimization algorithm fmincon.

3.2 System Realization

Using the cable robot generic system equation as given in Eq. (2), the cable robot
force equilibrium can be modeled.

[
d1x d2x d3x
d1y d2y d3y

] ⎡
⎣f1

f2
f3

⎤
⎦ +

[
0
0

]
=

[
0
0

]
(3)

Equation (3) represents the system equation for a three cables robot shown
in Fig. 2(a). To extend this representation to our mechanism, we consider the
complete architecture of the 4 DOF mechanism, as a collection of regular cable-
driven mechanisms that are sharing some cables. For example, the system shown
in Fig. 2(b) can be considered as two 3-cables mechanisms, sharing a common
cable. This common cable introduces force constraints in the system. Forces f3
and f4 are equal in magnitude and opposite in directions as they represent the
same cable. By concatenating the structure matrices for the two robots and
adding an extra row to model the identical tension magnitudes in cables 3 & 4,
the structure matrix for this arrangement is given by:

⎡
⎣d1 d2 d3 0 0 0

0 0 0 d4 d5 d6

0 0 1 −1 0 0

⎤
⎦

⎡
⎢⎢⎢⎢⎢⎢⎣

f1
f2
f3
f4
f5
f6

⎤
⎥⎥⎥⎥⎥⎥⎦

+

⎡
⎢⎢⎢⎢⎣

0
0
0
0
0

⎤
⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎣

0
0
0
0
0

⎤
⎥⎥⎥⎥⎦ (4)

Following this principle, the 4 DOF mechanism can be modeled as four mech-
anisms (2 nos. each of 3-cables & 4 cables mechanisms) sharing cables, as shown
in Fig. 3(a). Besides the force constraints introduced by the shared cables on the
system, the rings introduce additional constraints. The rings are not fixed enti-
ties like the EEs but are allowed to slide along the platform cables to achieve
equilibrium when the EEs attain a particular configuration. The cables on the
two sides of the rings are indeed the same cable. This results in the force equal-
ities f5 = f7 and f12 = f14. Concatenating the 4 mechanisms and adding these
constraints due to the shared cables, the system equation for a 6 cable robot
with 2 EEs is obtained.
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Fig. 2. Geometric modeling.

Fig. 3. (a) 4 DOF six cable robot with force equality constraints, the shared cables
have equal and opposite forces for respective robots. (b) system configuration with
end-effectors at an angle.

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

d1 d2 d3 d4 0 0 0 0 0 0 0 0 0 0
0 0 0 0 d5 d6 d7 0 0 0 0 0 0 0
0 0 0 0 0 0 0 d8 d9 d10 d11 0 0 0
0 0 0 0 0 0 0 0 0 0 0 d12 d13 d14

0 0 0 1 −1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 −1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 −1 0 0
0 0 1 0 0 0 0 0 0 0 0 0 0 −1
0 0 0 0 1 0 −1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1 0 −1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

f1
f2
f3
f4
f5
f6
f7
f8
f9
f10
f11
f12
f13
f14

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

+

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
0
0
0
0
0
0
0
0
0
0
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
0
0
0
0
0
0
0
0
0
0
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(5)
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Equation (5) represents the system equation of the 6 cable robot. In order
to simulate this system of equations, it is necessary to know the positions of
the rings and end-effectors a priori. The positions of the EEs are the input to
inverse kinematics. If a ring can slide freely on a platfrom cable while keeping
the cable in tension, it will trace the trajectory of an ellipse with the two EEs
at the focii as shown in Fig. 4(a). In order to compute the positions of the rings,
two hypothesis were laid down.

(1) The rings will be positioned on the ellipse at a point which is at shortest
distance from the pulley connected to that ring.

(2) The line joining the pulley and the ring on the ellipse, aligns with the angle
bisector of the angle formed by joining the two focii to the ring as in Fig. 4(b).

The second hypothesis comes from the fact that, at each junction (of
rings/end-effectors), the forces are in equilibrium. Which means force f6 in
Fig. 3(a) is a resultant of the forces f5 and f7. In theory, the resultant should
be equal and opposite to force f6. The second hypothesis in fact validates the
first hypothesis. Simulating the two conditions proved that the angle bisec-
tor described in hypothesis (2) is indeed the shortest distance discussed in
hypothesis (1).

Fig. 4. System description (a) the ellipse concept with EEs at the foci and rings tracing
the ellipse trajectory. (b) the shortest distance and angle bisector hypothesis, F are the
ellipse foci.

4 Workspace Analysis

This section deals with the determination of workspace for the desired system
[8,9,11]. The position of the mechanism is defined as the point at the mid
distance between the two end-effectors. A point is considered a part of the
workspace, if for its defined pose, all the cables have positive forces within the
stated bounds [10]. To determine the workspace of the desired system, each point
in the workspace is scanned to check and Eq. if all the required conditions are
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satisfied. Figure 5(a) and (b) represent the robot workspace with an end-effector
angle of 0◦ & 10◦ respectively. The grasping distance is 0.10 m and the design
parameters as shown in Fig. 3(b) are dp = 0.15 m and L = Wf = 0.30 m.

Fig. 5. Workspace with (a) EEs at 0◦ (b) EEs at 10◦.

This being a haptic device, it is important for the operator that the workspace
is easily conceivable. To deal with this problem, regular shaped workspace within
the actual workspace was determined which involved computing the largest con-
ceivable shape possible in the obtained contour. The new retrieved workspace
will henceforth be referred as Useful Workspace, as shown in Fig. 6(a).

Fig. 6. (a) Useful workspace with EEs at 10◦. (b) intersected Useful workspace area.

A point is a part of the translational workspace if all postures of robot are
possible at that point i.e. at all defined gripper distances (distance between two
EEs, g) and EE angles (represented by α in Fig. 3(b)) within certain ranges.
It is observed that workspace size reduces with decreasing gripper distance and
increasing magnitude of angle between the EEs. For the purpose of this paper,
a gripper distance of 0.04 m to 0.10 m and an angular range for α of ± 10◦ is
considered. By varying geometric and design parameters dp, Wf , L, α (as shown
in Fig. 3(b)) and the gripping distance, different translational workspaces can be
obtained.
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An useful translation workspace for all gripper distances and different EE
angles is computed as the intersection of useful workspaces for each gripping
distance and EE angle values. As expected, this final workspace is much smaller
than the initially computed useful workspace for individual gripping distances
and EE angles. This whole process is depicted in Fig. 6(b).

5 Proof of Concept and Kinematic Validation

In order to validate the kinematic and static model of the novel architecture,
a proof-of-concept demonstrator of the system was built and experiments were
conducted for various tensions in the cables. This section illustrates the technical
design of the robot architecture based on the proposed kinematic model. Task
performance of the system is judged with positioning accuracy. The design is
done keeping in mind haptics interface, which is considered as the final appli-
cation of the system, and attention has been paid to ergonomics. These factors
will govern the values of design parameters of the robot.

Fig. 7. Experimental set up (1) gripper (2) wooden plank, robot frame (3) table frame
(4) weights and sandbags (5) pulley. Also shown: Gripping mechanism with two EEs
and rings.

Figure 7(a) shows the experimental set up. It consists of a metallic table
frame to hold the robot frame. A wooden plank of 0.75 m× 0.75 m served as the
robot frame. Six pulleys mounted on adjustable C-clamps were screwed to the
frame. The distance between the two pulleys on the same edge of the frame was
fixed at 0.19 m each from the center, while the single pulleys were positioned in
the middle of the edge. Nylon wires with low elasticity were used as cables. For
the gripper, two cups and two rings were used as shown in Fig. 7.

The 3D printed gripper cups have a dimension of 1.5× 10−2 m diameter for
a human finger to fit in. Gripper distances can be varied from 0.04 – 0.10 m,
these figures are again ergonomically influenced, considering the minimum and
maximum grasping possible for a human hand. For providing tensions in the
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cables, discrete weights with sand bags for weight flexibility were hanged from
the cables. A grid paper of 1× 10−2 m x 1× 10−2 m grids was stuck on the
wooden plank for measurements.

While carrying out the experiment, it was important to take into account
that the mechanical forces operating at the grippers, must be within a range
that a human can exert. The considered force bounds for the system are 5–100
N which correspond to weights of 0.5 – 10 kg, operators can comfortably exert
forces of any value in this range. Friction and other external forces on the system
have not been accounted for in this design, however considering these forces will
only alter the vector w of the system Eq. (2), which will not be a difficult task.

The main objective for kinematic validation is to test if the proposed designed
kinematic model works in a real set-up. Seven different positions of EEs, with
different angles and gripping distances were given to the MATLAB code as
inputs and the force values were noted. These positions were randomly selected
and are presented in Table 1. Weights equivalent to these forces were hanged from
the cables and the gripper was allowed to attain equilibrium. Once the gripper
achieved stability, the positions of the EEs with angle and gripping distances
were noted and compared with the simulated values. At every test point, the end-
effector positions were marked with a pencil on the grid paper and the required
measurements were taken from these markings after removing the EEs from
the position. This helped in avoiding parallax to some extent. Table 1 shows a
comparison between the simulated positions and the experimental positions, for
the same cable tensions.

Table 1. Simulation & experimental data analysis

Simulated values Experimental values Error

Angle

(α) (deg)

Gripping

dist. (g)

(m)

Position

(x,y) (m)

Angle (α)

(deg)

Gripping

dist.(g)

(m)

Position

(x,y) (m)

� α � g (� x, � y)

−10 0.06 (0.25, 0.26) −11 0.064 (0.253, 0.27) −1 0.4 (0.3, 1)

10 0.08 (0.58, 0.29) 9.2 0.83 (0.587, 0.293) −0.8 0.3 (0.7, 0.3)

−5 0.07 (0.40, 0.40) −5.4 0.072 (0.383, 0.39) −0.4 0.2 (−1.7, −1)

−5 0.06 (0.29, 0.54) −4.6 0.061 (0.292, 0.537) 0.4 0.1 (0.2, −0.3)

0 0.09 (0.20, 0.40) 0 0.096 (0.205, 40.05) 0 0.6 (0.5, 0.5)

5 0.08 (0.34, 0.34) 4.8 0.083 (0.33, 0.344) −0.2 0.3 (−1, 0.4)

0 0.10 (0.47, 0.47) 0 0.095 (0.476, 0.47) 0 −0.5 (0.6, 0)

A number of factors affect the positioning accuracy of a system such as wear
of parts, dimensional drifts, tolerances, assembly errors and limitations, friction,
component manufacturing errors, measurement errors etc. These factors can
explain the small deviations between the actual kinematic parameters and their
nominal/experimentally obtained values.



316 K.S. Jadhao et al.

6 Optimization

The workspace varies with size of the robot frame (length L and width Wf ) and
also with the distance between the two pulleys dp as shown in Fig. 3(b). These
three parameters namely L, Wf and dp formed the design variables used for
optimization of the useful workspace. Since the whole device can be scaled up
or down, the optimization objective is defined as the ratio between area of the
frame and area of the intersected useful workspace.

Ratio =
Area of frame

Area of useful workspace
(6)

Table 2 briefly presents the optimization parameters, their roles and consid-
ered bounds.

Table 2. Optimization parameters

Parameter Role Notation Bounds

Ratio Objective function Ratio NA

Frame width Design variable Wf 10 to 20

Frame length Design variable L 10 to 20

Dist. between pulleys Design variable dp 2.5 to W

Pattern Search and Grid Search optimization algorithms were used for this
purpose and the optimizer was made to compute the workspace for angle values
of −5◦, 5◦ and 0◦ and gripping distances of 0.04 m – 0.08 m. These ranges
are different than those considered for experimentation to aid optimization and
reduce the simulation time. Grid Search algorithm performed a discrete crude
search while a Pattern Search algorithm was used to refine the search. The entire
workspace is scanned for feasible robot positions with a resolution of 0.01 m. The
values for step size and resolution are considered to be discrete for the purpose
of optimization as the complexity of the program and hence the computation
time increases exponentially with increasing parameter and resolution precision.

Table 3. Optimization results for grid & pattern search algorithm

Parameter Non-optimized
value

Optimized value (grid
search)

Optimized value
(pattern search)

dp (m) 0.10 0.14 0.16

L (m) 0.20 0.20 0.197

Wf (m) 0.20 0.20 0.197

Frame area (m2) 0.04 0.04 0.039

Useful workspace (m2) 93.5× 10−4 137.49× 10−4 137.49× 10−4

Ratio 4.28 2.91 2.83
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Fig. 8. Grid search plot.

Table 3 shows the optimization results for both the algorithms. Figure 8 show
the variation of area of useful workspace with d and Wf/L.

Pattern Search algorithm was used to refine the search to cover the data
skipped by Grid Search. However, there is not a significant difference between the
results obtained in both the cases. This step to optimize the structure was done
to get an idea about how the effective useful workspace changes with geometric
parameters. Figure 8 shows how the workspace area varies with the chosen design
parameters.

7 Conclusions

This paper presented a novel cable-driven master device for planar grasping for
haptics interface. The need for a traditional gripper at the robot EE is elim-
inated by the unique gripper design with the two EEs and rings. Fixing the
positions of the two EE, the position of the rings was geometrically computed
for each pose of the robot. The wrench feasibility of the cable robot was inves-
tigated by fmincon algorithm, such that all cables have positive tensions. The
optimum values of cable forces were obtained which were set to fluctuate within
pre-set minimum and maximum values of cable tension. The kinematic theory
was validated through a working demonstrator. A comparative study of the
results obtained experimentally and through simulations was done to support
the design validation. Finally, a design optimization was carried out to maximize
the workspace of the device for a given frame dimension. This design is expected
to find applications in haptics technology due to its unique gripping mechanism
and light and sturdy architecture.
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Abstract. An original design for a cable-suspended mechanism based
on six cables, but actuated with three motors, is proposed in this paper.
Each pair of cables is wound by a single actuator and their attachment
points on the mobile platform and on the fixed base form a parallelogram,
so that the orientation of the mobile platform remains constant while
performing translational movements. First, the paper presents the archi-
tecture of the three-degree-of-freedom (three-DOF) manipulator and its
corresponding kinematic equations. Then, the static workspace of the
mechanism is determined analytically based on the simplification of
the Jacobian matrix for a constant orientation of the mobile platform.
Finally, the static workspaces of several cable arrangements are com-
pared in order to assess the capabilities of the presented mechanism.
In particular, one configuration of the three-DOF system with crossing
cables is studied in more detail.

1 Introduction

Cable-driven parallel mechanisms offer numerous advantages compared to rigid-
link robots, including large workspaces, high dynamic movement capabilities,
effective payload-to-mass ratios, and ease of implementation. However, the inher-
ent drawback of cable-driven robots is that cables cannot push on the mov-
ing platform; they can only exert pulling forces. Fully constrained end-effectors
require (n + 1) cables in order to control n degrees of freedom. However, cable-
suspended parallel robots use gravity in order to maintain cable tension, which
acts similarly to a cable pulling downward. Therefore, the number of physical
cables required to drive the effector is equal to the number of actuated degrees
of freedom, assuming that some limitations on the platform accelerations are
satisfied.

Workspace assessment is a critical step during cable mechanism design. Dif-
ferent approaches have been explored to determine the achievable positions of
the mobile platform for different robot configurations. The static equilibrium
workspace of a point-mass effector [1] gives all the positions for which the ten-
sion of all cables remains positive. Similarly, the constant orientation workspace
c© Springer International Publishing AG 2018
C. Gosselin et al. (eds.), Cable-Driven Parallel Robots,
Mechanisms and Machine Science 53, DOI 10.1007/978-3-319-61431-1 27
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of a mobile platform, which has been studied for the Robocrane [2] and for a
six-DOF cable-suspended robot [3], provides its possible positions for a given
constant orientation, assuming positive cable tensions. The calculation of the
interference-free workspace [4] examines the static workspace of cable robots
while taking into account the possible contacts between the cables. The vol-
ume obtained by setting a maximum and minimum tension in the cables and a
particular wrench load applied at the platform is defined as the wrench-feasible
workspace [5–7] and its shape is a zonotope whose boundaries depend on the
tension limits.

Examples of six-DOF cable mechanisms that control the movement of the
end-effector in both translation and orientation can be found in [2,3,8]. How-
ever, in many tasks for which cable-suspended parallel mechanisms are poten-
tial candidates, only translational motions are required. For example, in [9], a
six-DOF cable-driven robot comprising eight actuators is proposed for pick-and-
place operations and in [10], a six-DOF cable-driven robot that uses six actuators
is proposed for the 3D printing of large objects, an application that only requires
translational motion at constant orientation. In such cases, it is advantageous
to reduce the number of actuators to the number of degrees of freedom required
at the platform. Therefore, similarly to what was done in [11–13], this paper
introduces the design of a three-DOF cable-suspended mechanism for the three
spatial translations with constant orientation of the end-effector. First, the pos-
sible geometric arrangements of the three-DOF mechanism are described. Then,
the general kinematic modelling of a six-DOF cable-suspended mechanism and
the analytical calculation of the equations defining its static workspace for con-
stant platform orientation are derived. This general result is then applied to the
particular architecture of the proposed three-DOF mechanism with the cables
crossing over the platform. Finally, the static equilibrium workspace obtained
with the three-DOF mechanism for a few different configurations is compared
with the workspace of a six-DOF cable-suspended robot used for large-scale 3D
printing [10].

2 Geometry of the Three-DOF Cable-Suspended
Mechanism with Parallelogram Architecture

Six individually actuated cables are generally used to constrain the suspended
mobile platform in the six spatial DOFs. However, as shown in [11–13], if only
translations are needed with a constant orientation, cables can be arranged as
parallelograms and driven using only three independent motors. However, the
geometric arrangement of the parallelograms proposed in [11–13] is based on a
“convergent” design, which significantly limits the static workspace, as it will be
shown in this paper.

The architecture proposed in this paper is based on parallelograms but the
geometry is inspired from that proposed in [8]. The cables are crossing over
the moving platform, thereby increasing the workspace without inducing cable
interferences. It should also be pointed out that cable-driven mechanisms using
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α

Base

Platform

Cables

D

x

y

R

r

ra

Fig. 1. Arrangement of the parallelograms based on the parallelogram width D, the
orientation of the platform attachment points α and the distance to the attachment
points relative to the centre of the moving platform ra. The platform and the base are
parallel horizontal planes at different elevations.

one motor to drive two parallel cables have also been proposed in the literature
[14] in order to constrain planar cable-driven mechanisms to the plane of motion.

2.1 Architecture of the Three-DOF Mechanism

Figure 1 presents the parameters that are used to describe the geometry of the
attachment points, and thus the arrangement of the parallelogram of each pair of
cables driven by the same actuator. The parallelogram width (distance between
two cables in a pair) and orientation are described by parameters D and α,
respectively. Parameter ra is the radius of the circle on the moving platform on
which the midpoint of the line segment joining each pair of attachment points
is placed. The size of the moving platform and the base are directly linked to
the radii r and R respectively, which are primary design parameters that affect
the footprint of the mechanism. Radius R corresponds to the circle on the base
on which the centre of each pair of attachment points is located, while r is the
radius of the smallest disk on the platform that includes all attachment points.

(a) Trivial architecture designed to avoid
interference between cables.

(b) Architecture inspired by the geometry proposed in
[8] for platforms with six actuators and crossing cables.

Fig. 2. Possible architectures of the three-DOF cable-suspended robot based on a par-
allelogram arrangement of the cables.
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2.2 Example Architectures

The geometric parameters defined above strongly influence the achievable
workspace and can be used to describe a broad variety of architectures [15].
Figure 2 shows two examples of possible architectures for a three-DOF cable-
suspended mechanism based on a parallelogram arrangement of the cables, with
the design parameters listed in Table 1. The trivial architecture shown in Fig. 2a
avoids mechanical interference among the cables. This architecture corresponds
to the design proposed in [11–13]. Crossing the cables over the mobile platform
is known to increase the workspace of the mechanism, at the cost of potential
interference among the cables [4,16]. However, by crossing only one cable of each
pair that forms a parallelogram over the mobile platform, the static workspace of
the robot can potentially be increased without generating this undesired interfer-
ence. To maintain the parallelogram architecture, the fixed-frame cable attach-
ment points must also be moved, as shown in Fig. 2b. This architecture, proposed
here and inspired by that disclosed in [8], guarantees that there will be no cable-
cable interference, a claim which can be proven by performing an analysis similar
to that shown in [8] for a six-DOF robot.

Table 1. Parameters for the two architectures shown in Fig. 2. Position vector bi goes
from the centre of the platform to cable attachment point Bi, for the architecture with
crossing cables, as shown in Fig. 3.

ra D α

Trivial
architecture

√
3

2
r r −π

2

Architecture with
crossing cables

0 2r −π

3

b1 b2 b3 b4 b5 b6

r[ 1
2
, −√

3
2

, 0]T r[−1
2

,
√
3
2

, 0]T r[ 1
2
,

√
3
2

, 0]T r[−1
2

, −√
3

2
, 0]T r[−1, 0, 0]T r[1, 0, 0]T

OAi

Bi

p

ai

ρi

bi

x
yz

Fig. 3. Kinematic modelling of the cable platform.
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3 Analytical Determination of the Static Workspace

The static equilibrium workspace corresponds to the set of positions of the mov-
ing platform for which the cables are in tension. Its analytical determination
for constant orientation is based on the analysis of the Jacobian matrix of the
manipulator.

3.1 Kinematic Modelling of a Six-DOF Cable-Suspended Robot

Even though the mechanism is actuated with only three motors, six cables trans-
mit forces to the platform so the equations that describe the motion resemble
those of a six-DOF cable-suspended mechanism. Figure 3 shows the notation
used to establish the kinematic equations of the mechanism. For cable i, posi-
tion vector ai goes from the origin of the base frame to the base attachment
point Ai, while position vector bi goes from the centre of the platform (refer-
ence point) to the platform attachment point Bi. The position of the reference
point of the moving platform with respect to the origin of the base frame is
referred to as p = [x, y, z]T . The vector along cable i, connecting point Ai to
point Bi is denoted ρi. The relationship between vectors ai, bi, and ρi is as
follows

ρi = p + bi − ai. (1)

Since the orientation of the platform remains constant with respect to the
base, the expression of the attachment points ai and bi can be written as
ai = [aix, aiy, 0]T and bi = [bix, biy, 0]T , where aix, aiy, bix and biy are design
parameters related to the radii r and R of the moving platform and the base. The
above equations assume that points Ai lie in one horizontal plane, and points Bi

lie in a lower horizontal plane. Assuming massless straight cables and using the
Newton-Euler approach to determine the static model of the mechanism yields

Mt = g (2)

where M is the Jacobian matrix of the mechanism, whose expression is written as

M =
[

ρ1 ρ2 ρ3 ρ4 ρ5 ρ6

ρ1 × b1 ρ2 × b2 ρ3 × b3 ρ4 × b4 ρ5 × b5 ρ6 × b6

]
. (3)

Parameter t is the vector containing the tensions in the cables per unit cable
length and per unit platform mass and g the load wrench per unit platform
mass, which is the external force applied on the effector. Their expressions are
given as

t = [t1, t2, t3, t4, t5, t6]T , g = [0, 0, g, 0, 0, 0]T (4)

where g is the gravitational acceleration and where it is assumed that the centre
of mass of the platform is located at point p, i.e., the centre of the platform.
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3.2 Determination of the Static Workspace

The static workspace under constant orientation is now determined analytically
based on Eq. 2. The static workspace corresponds to all the positions of the
moving platform for which the tension of the cables are all positive. Moreover,
the Jacobian matrix M can be simplified since the orientation of the platform
is constant. First, the cross product ρi × bi is computed as

ρi × bi = [ −zbiy, zbix, biy (x − aix) − bix (y − aiy) ]T . (5)

Therefore, Eq. (2) can be rewritten as
⎡
⎢⎢⎢⎢⎢⎢⎢⎣

x + b1x − a1x ...

y + b1y − a1y ...

z ...

−zb1y ...

zb1x ...

b1y (x − a1x) − b1x (y − a1y) ...

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

t1
t2
t3
t4
t5
t6

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0
0
g

0
0
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

(I)
(II)
(III)
(IV)
(V)
(VI)

. (6)

Factoring out z in Eqs. (IV) and (V) yields the following expressions

b1yt1 + b2yt2 + b3yt3 + b4yt4 + b5yt5 + b6yt6 = 0 (7)
b1xt1 + b2xt2 + b3xt3 + b4xt4 + b5xt5 + b6xt6 = 0 (8)

which can then be used to simplify Eqs. (I), (II), (VI) since the sums introduced
by Eqs. (7) and (8) appear in these equations. Thus, the system of Eq. (6) can
be rewritten as

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

x − a1x x − a2x x − a3x x − a4x x − a5x x − a6x

y − a1y y − a2y y − a3y y − a4y y − a5y y − a6y

z z z z z z

b1y b2y b3y b4y b5y b6y

b1x b2x b3x b4x b5x b6x

c1 c2 c3 c4 c5 c6

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

t1
t2
t3
t4
t5
t6

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0
0
g

0
0
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

(9)

with

ci = bixaiy − aixbiy, i = 1, . . . , 6 (10)

which corresponds to the last component of the cross product bi × ai. It can
be observed that, as expected, the Jacobian matrix M is singular for z = 0,
which occurs when the position of the reference point of the platform is in the
plane defined by the fixed base. A potential boundary of the static workspace is
found when one of the cable tensions is equal to zero. Setting one tension ti to
zero in Eq. (9) deletes the i-th column of the Jacobian matrix M and the i-th
component of vector t, which are denoted, respectively, matrix Mi with six rows
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and five columns and vector ti, which contains the remaining five tensions. The
resulting system of equations is

Mi [6×5]ti [5×1] = g. (11)

Then, one can define the i-th augmented matrix Ma−i based on matrix Mi and
the wrench load g, namely

Ma−i =
[
Mi | g ]

(12)

which is a six-by-six matrix. For Eq. (11) to have a solution, vector g must be in
the range of matrix Mi, i.e., vector g must not be independent from the columns
of Mi. Therefore, the over-determined system in Eq. (11) yields a solution if the
augmented matrix Ma−i has linearly dependent columns, which occurs when its
determinant is zero, namely

det (Ma−i) = 0. (13)

Equation (13) provides the positions [x, y, z] where the tension of the i-th cable
is zero, which corresponds to a potential limit of the static workspace. By inspec-
tion of Eq. (9), one can notice that expanding the determinant of Eq. (13) using
the pivot placed on the third row and the last column of the augmented matrix
Ma−i factors out variables g and z, which can then be eliminated because the
determinant is set to 0. Thus, the static workspace of the effector for constant
orientation is independent from the z coordinate of the platform and from the
magnitude of the gravitational load. Moreover, subtracting the first column from
columns 2 to 5 of the determinant of matrix Ma−i and expanding the determi-
nant leads to the scalar equation

Gix + Hiy + Ki = 0 (14)

where coefficients Gi, Hi and Ki are functions of the architectural parameters
of the mechanism only, defined by the components of vectors ai and bi. Set-
ting each cable tension to zero yields equations for six lines in the horizontal
plane that define six half-planes when projected perpendicularly to the horizontal
plane. The intersection of these six half-planes constitutes the static equilibrium
workspace.

3.3 Application to a Three-DOF Cable-Suspended Mechanism
with Crossing Cables

The architecture with crossing cables has particular properties that further sim-
plify the system of equations presented in Eq. (9). First, one can define one pair
of cables with vectors a1, a2, b1, b2 as shown in Fig. 4 and assume that the other
two pairs are obtained with rotations of ±2π/3 around the centre of the base,
referred to as the rotation matrices Q1 and Q2. For the particular architecture
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b1

b2

a1

a2

b1

b2
R

x

y

Platform Base

Fig. 4. Details of the architecture with crossing cables. The base lies in the plane z = 0
and the platform lies in a parallel plane at the z-coordinate of position vector p, as
defined in Fig. 3.

with crossing cables, the expressions for vectors a1 and a2 can be simplified as
follows

a1 = R + b1, a2 = R + b2 (15)

where R = [R, 0, 0]T is the position vector from the origin of the base frame to
the midpoint of the line segment joining the attachment points on the base for
the first pair of cables. Thus, the expressions for ρ1, . . . ,ρ6 from Eq. 1 become

ρ1 = ρ2 = p − R, ρ3 = ρ4 = p − Q1R, ρ5 = ρ6 = p − Q2R. (16)

Moreover, the expression of the coefficients ci in Eq. (9) is obtained from the
last component of the cross product bi × ai, whose expression can be written as

[b1 × a1]z = [Q1b1 × Q1a1︸ ︷︷ ︸
b3×a3

]z = [Q2b1 × Q2a1︸ ︷︷ ︸
b5×a5

]z = [b1 × R]z = −Rb1y, (17)

[b2 × a2]z = [Q1b2 × Q1a2︸ ︷︷ ︸
b4×a4

]z = [Q2b2 × Q2a2︸ ︷︷ ︸
b6×a6

]z = [b2 × R]z = −Rb2y. (18)

The results given in Eqs. (17) and (18) are obtained based on the fact that
rotations Q1 and Q2 are performed in the same plane as vectors bi and R and
that the cross product is invariant to rotations performed in the plane defined by
the two vectors to be multiplied. Using parameters bi defined in Table 1 for the
architecture with crossing cables, parameter r can be factored out from Eq. (9),
which can then be further simplified after linear combinations among the last
three rows, to become

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

x − R x − R x + 1
2R x + 1

2R x + 1
2R x + 1

2R

y y y −
√
3
2 R y −

√
3
2 R y +

√
3
2 R y +

√
3
2 R

z z z z z z

1 −1 0 0 0 0
0 0 1 −1 0 0
0 0 0 0 1 −1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

t1

t2

t3

t4

t5

t6

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
0
g

0
0
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (19)
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Expanding the determinant of the six augmented matrices Ma−i yields the three
equations

x − R −
√

3y = 0, x − R +
√

3y = 0, x +
1
2
R = 0. (20)

The equations for each cable in a given pair in Eq. (19) describe the same half
plane, with the three half-planes then enclosing a triangular-prism-shaped vol-
ume. Furthermore, the static workspace of the architecture with crossing cables
depends only on the radius R of the base frame and is independent from the size
of the moving platform r.

4 Workspace Comparison for Cable-Suspended Parallel
Mechanisms with Three Translational DOFs

The determination of the line equations that limit the static workspace for con-
stant orientation is based on the calculation of the determinant of each aug-
mented matrix Ma−i, as shown in Subsect. 3.2. This method is now applied to
different architectures for cable-suspended robots.

4.1 Mechanisms with Three DOFs

The analytical technique presented above is first applied to the two three-DOF
architectures of Fig. 2. The static workspaces for both architectures, which are
depicted with shaded areas, have triangular shapes, which means that the line
equations that define the boundaries of the workspace are identical by pairs. For
the trivial architecture, these equations are

x +
1
2
R −

√
3

4
r −

√
3y = 0, x +

1
2
R −

√
3

4
r +

√
3y = 0, x − 1

4
R +

√
3

8
r = 0.

(21)

Figure 5 shows the static workspace delimited by the line equations of Eqs. (20)
and (21), with unitary base radius R and platform radius r = 1

2R. The static
workspace for the trivial architecture shown in Fig. 5a is much smaller than
that of the crossing-cables architecture shown in Fig. 5b. Indeed, crossing the
cables over the mobile platform significantly increases the static workspace of the
robot. The vertices of the static workspace for the crossing-cables architecture
are located on the base circle of radius R, which represents an area about 12.5
times bigger than the area of the workspace of the trivial architecture.

4.2 Comparison with Six-DOF Architectures

Figure 6 shows the architecture and the workspace of a six-DOF cable mech-
anism actuated with six motors used for large-scale 3D printing [10] and for
appearance modelling of objects [8]. This architecture is used as a reference for
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(a) Static workspace of the trivial architecture.
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(b) Static workspace of the architecture with
crossing cables.

Fig. 5. Static workspace of the centre point of the platform for two architectures of a
three-DOF cable-suspended robot with parallelogram architecture. Distances in x and
y are normalized by R, the radius of the base circle.

assessing the performance of the three-DOF cable-suspended architecture for
translational motions proposed in this paper. The mobile platform for the six-
DOF mechanism possesses three attachment points, with two cables connected
to each, as shown in Fig. 6a. The line equations that define the static workspace
for this mechanism are

x ± R −
√

3y = 0, x ± R +
√

3y = 0, x ± 1
2
R = 0. (22)

The resulting hexagonal-prism-shaped workspace, depicted in Fig. 6b, is
contained inside the static workspace shown in Fig. 5b for the proposed three-
DOF architecture, which is about 1.5 bigger. Thus, the proposed architecture,
shown in Fig. 2b, is more effective at generating a large static workspace. How-
ever, one can notice that upper bounds on the cable tensions were not taken

(a) Architecture of a six-DOF cable-suspended
robot used for large-scale 3D printing [10].
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(b) Corresponding static workspace of the six-
DOF robot, for the centre point of the platform.

Fig. 6. Architecture and static workspace of a six-DOF cable-suspended robot.
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into consideration during the analysis. Indeed, for the proposed architecture,
only three motors support the weight of the effector whereas the wrench load
is distributed among the six actuators for the configuration in Fig. 6a. Also, the
wrench load is assumed to be applied at the centre of mass of the platform,
which might not be the case in a real application.

5 Conclusion

This paper proposes the design of a three-DOF translational cable-suspended
mechanism whose cables are arranged as parallelograms with cables crossing
over the moving platform. The main motivation of the work is to reduce the
number of actuators needed in a translational parallel cable-suspended robot
while ensuring a large workspace. One of the applications of such a mechanism is
large-scale 3D printing, which typically requires positioning an end-effector with
a constant orientation. One particular arrangement of the proposed architecture
was described and its static equilibrium workspace was determined analytically
and compared to that of a six-DOF cable-suspended robot. It was shown that the
proposed architecture produces a larger translational workspace, therefore justi-
fying its potential to replace the system actuated with six motors. Future work
involves the evaluation of the kinematic sensitivity of the three-DOF mechanism
as well as the development of a prototype for experimentally assessing its static
workspace and thus its capabilities for 3D printing and/or other applications.
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Abstract. Stiffness of cable-driven parallel manipulators is dependent on the
cable stiffnesses, cable tensions, and kinematic characteristics of the manipu-
lator. In this paper, a general approach to stiffening this type of robot is put
forward. The approach is based on two main principles: making constructive use
of pulley-based force amplification, and adjusting the geometry of kinematic
constraints. The approach is illustrated with an example.

1 Introduction

In cable-driven parallel manipulators, the cables can only carry tensile loads. These
tensile force constraints inherent in cable-driven robots make their analysis and syn-
thesis somewhat more complicated than for rigid-link robots. For example, this has
bearing on the determination and optimization of feasible workspace [1] and the ability
of the robot to interact meaningfully with its surroundings (apply loads) [2, 3]. It also
requires special treatment of controller design [4]. Furthermore, cable interference with
obstacles in the environment can be an issue, which has led to designs integrating
movable cable anchor points [5].

In this paper the main focus is on robot stiffness. The stiffness behavior in these
robots is known to be anisotropic and pose-dependent, and in addition to designing for
a minimum desired stiffness map, it can also be desirable to optimize against failure of
one or more cables/actuators to maintain a minimal stiffness threshold [6]. Cable mass
is generally not negligible, and dynamic response is another aspect of stiffness behavior
which is worthy of attention [7]. Increasing stiffness through increasing pretension in
cables, though a popular solution, can also be problematic, as in some cases this can
lead to robot instability [8]. Achievement of stiffness behavior which can be adjusted
“on the fly” has also been a topic of interest for certain applications [9].

The remainder of the paper is organized as follows. In Sect. 2, a pulley-based
method is presented for reducing tensile forces in the cables. Then in Sect. 3, this is
enhanced by separating the spool/anchor locations, and the resulting pose dependency
of stiffness behavior based on kinematic constraints is examined. An example is pre-
sented in Sect. 4, and conclusions are presented in Sect. 5.
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2 Increasing Stiffness with Static Forces

One principle that can be brought to bear on the problem of robot stiffness is that higher
cable tension produces higher stiffness of the end effector. Practically speaking, pre-
tension in the cables is limited by the cables’ strength properties. Therefore, one
approach is to increase the number of cables (assuming the cable material and diameter
to be fixed). However, in a general sense, adding cables adds constraints and therefore
changes the mobility of the system; this can also exacerbate issues with cable inter-
ference [5].

In order to increase the effective number of cables and thereby alter the stiffness,
without altering the kinematic characteristics of the system, the layout in Fig. 1 is
proposed. By adding a single pulley, for a given cable tension the effective force on the
end effector is doubled, whereas the kinematic constraint of a circular arc remains
unchanged. Cable stiffness (considered as a lumped parameter in units of force per
distance) can therefore be reduced by a factor of four(a factor of two due to each cable
segment carrying half the load, and another factor of two due to the effective length-
ening of cable being doubled) while retaining the same overall stiffness effect; another
way of thinking of this is that, with lumped stiffness k equal to EA/L, and L effectively
being doubled, either the cable cross-sectional area or the Young’s modulus of the
cable material can be reduced by half. Since motors tend to operate more efficiently at
higher speed and lower torque, this allows overall improvements in robot performance
(increased effective stiffness along with more frequent operation in the most efficient
operating range of the actuator). One potential drawback is the need for larger spools,
since the cable length doubles, but this is also offset by using smaller-diameter cables.

Fig. 1. Typical cable constraint (left); pulley-based cable constraint (right).
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3 Increasing Stiffness by Modifying Geometry of Kinematic
Constraints

Aside from cable tension and stiffness, the other main influence on manipulator stiff-
ness is the geometry of the kinematic constraints. The Jacobian can be thought of as a
way of expressing these constraints as a function of the robot’s pose:

dP ¼ Jdq ð1Þ

and

s ¼ JTF ð2Þ

where q is the vector of joint variables, P is the pose of the robot end effector, and J is
the Jacobian matrix that couples the two; the Jacobian also couples the generalized joint
efforts s and the generalized forces applied at the end effector F. Introducing an elastic
actuator and/or cable,

s ¼ Kdq ð3Þ

results in a stiffness at the end effector involving both the Jacobian J and the matrix of
stiffnesses K:

dP ¼ JK�1JTF ð4Þ

Therefore the system stiffness depends on the component stiffnesses (K) and the
kinematic constraints (described in J).

Without delving into the problem of singularities and directionality of stiffness
properties, we can generalize for a single cable constraint as follows. For a given
infinitesimal perturbation displacement of the end effector, a change in cable length
(stretch) will occur, seen as a change in tensile force. The change in force divided by
the change in length can be thought of as the cable’s contribution to the manipulator
stiffness in the direction of the perturbation displacement. It is apparent that the
effective radius of curvature of the kinematic constraint imposed by the cable has an
influence on the stiffness, particularly when the perturbation displacement is tangent to
the curve of the constraint (see Fig. 2). Smaller radius of curvature leads to stiffer
system behavior. Specifically, with reference to the nomenclature of Fig. 2, the
dimensionless stretch in the cable is

dL=L ¼ L þ dyð Þ2 þ dx2
h i1=2

=L � 1 ð5Þ

and the larger the displacements relative to the unstretched cable length, the larger the
resulting cable tension generated.

Based on this principle, the layout in Fig. 3 is proposed. In this configuration, the
pulley principle of Fig. 1 is enhanced by allowing the radius of curvature to vary based
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on the pose of the end effector. This is done by locating the fixed cable anchor
separately from the actuated cable spool, resulting in an elliptical constraint path as
opposed to a circular one [10]. This can be considered a superior configuration in areas
of the workspace for which the radius of curvature of the elliptical constraint path is
smaller than that of the single-cable constraint (i.e., similar to Fig. 1) that would
otherwise be used to achieve the given pose. For an ellipse with major and minor axes a
and b described by

x2=a2 þ y2=b2 ¼ 1 ð6Þ

or

x ¼ a � cosh; y ¼ b � sinh ð7Þ

and the location of its focus along the x-axis given by

c ¼ a2� b2
� �1=2 ð8Þ

The inverse kinematics are given by converting a position (x, y) or (r, h) in the local
coordinate frame of the ellipse to a cable length L (connecting the two foci to the point
(x, y)) using the above equations given a fixed focal distance c, which results in

Fig. 2. Stiffness effect based on constraint path curvature – larger cable strain for smaller
nominal constraint radius of curvature, for a given displacement.
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r2 ¼ x2 þ y2 ð9Þ

a ¼ ðr2 þ c2sin2hÞ1=2 ð10Þ

and

L ¼ L1 þ L2 ¼ 2a ð11Þ

For an ellipse, it is known that the evolute (locus of centers of curvature) is an
astroid. The local radius of curvature(length of the normal from a point on the ellipse to
the corresponding point on the astroid) can be expressed as

rc ¼ ða2sin2hþ b2cos2hÞ3=2=ab ð12Þ

and the most useful range of h is the solution of these equations such that rc is less than
a characteristic radius of the system. Taking this characteristic radius to be the average
of a and b, we have

ða2sin2hþ b2cos2hÞ3=2=ab \ a þ bð Þ=2 ð13Þ

which gives the limiting value of h in the vicinity of p=4 for a range of ellipse
parameters, as shown in Fig. 4.

Fig. 3. Pulley-based cable constraint with separate anchor and spool locations, producing an
elliptical constraint path.
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Because it may be difficult in practice to allow cables to swing past the pivot
locations (anchor and spool), it is preferable to keep the usable workspace on one side
of the ellipse’s major axis. Therefore, the high-performance portion of the workspace
(from the standpoint of a single cable) is limited to a segment of the ellipse, or range of
angles, as shown in Fig. 4. A cable-actuated robot that leverages these principles on a
system level by overlapping the cable-wise stiff areas of the workspace is shown
qualitatively in Fig. 5.

4 Example

Consider the cable robot shown in Fig. 6. It is obvious from inspection that in this
symmetric position the stiffness in the horizontal direction is inferior to that in the
vertical direction. The stiffness value can be approximated numerically by assuming a
small displacement from the nominal position and calculating the resultant restoring
force. With L = 1 m, dx = 0.01 m, and cable stiffness of K = 100000 N/m, the cable
stretches in the left and right cables are approximately 0.005 m and −0.005 m,
inducing a net horizontal restoring force of approximately 1000 N. Substituting the
cable-pulley arrangement of Fig. 1 (right) results in identical stiffness behavior using a
cable stiffness of only 25000 N/m. The stiffness behavior can be further improved by
adding the modification of Fig. 3 and optimizing the relative orientations a of the
anchor and spool points (the ellipse foci). This was simulated in MATLAB with
anchor/spool configurations symmetric about the line of displacement dx. For
anchor/spool half-spacing c = 0.3 m, stiffness at this pose is optimized for left and right
ellipse orientations of 1.48 and −1.57 rad, respectively, producing a 4% increase in
stiffness compared to the baseline. Increasing the ellipse focal spacing to c = 0.5 m, the
optimal left and right ellipse orientations are 1.40 and −1.57 rad, respectively, pro-
ducing a stiffness improvement of more than 10% relative to the baseline. The stiffness

Fig. 4. High-stiffness portion of workspace for a single cable (fixed anchor and spool locations,
but variable ellipse size, i.e., variable cable payout).
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improvement map as a function of the left and right ellipse orientations for c = 0.5 m is
presented in Fig. 7. The general trend is that stiffness improvements increase with c
(since increasing c decreases the effective radius of curvature of the constraint path), at
the expense of a bulkier robot and possibly smaller usable workspace. It should be
noted that, consistent with the principle illustrated in Fig. 4, there is a distinct “region”
of anchor/spool orientations within which the stiffness behavior is improved, and
outside of which the stiffness decreases with respect to the baseline. Therefore these
orientations should be chosen carefully to correspond to the task requirements.

Fig. 5. Cable-based parallel manipulator configured for high stiffness in a portion of the
workspace (zones of high stiffness shown for the respective pulley locations on the end effector).

Fig. 6. Example of increasing robot stiffness using elliptical cable constraint paths.
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5 Discussion and Conclusions

The example just presented illustrates the optimization of stiffness for a specific pose.
Just as manipulability is a local index of kinematic performance, and its associated
principles have been adapted to develop global performance indices, this approach to
stiffness analysis requires further extension in order to be applied as a global index. In
particular, Eq. (4) can be explored in more detail to elucidate the combined effects of
multiple elliptical kinematic constraints on overall manipulator stiffness. Although the
principles outlined in this paper are illustrated in a planar sense, they are applicable to
spatial cable-driven parallel robots as well. The principle of pulley amplification of
tension is easily extended out of the plane, and the elliptical constraint presented here in
the planar case becomes an ellipsoidal surface in the spatial case. Effectiveness of using
pulleys to generate elliptical constraint paths for cable robots has been demonstrated
through principle and example. Future work includes further analysis of appropriate
stiffness optimization methods to accompany this general approach, development of
more formal analytical approaches for dealing with these systems, and practical
implementation in prototypes. This may also lead to new ways of adjusting stiffness
and feasible workspace “on the fly” in combination with other design approaches
previously mentioned [5, 9].
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Abstract. The booming industrial demand has resulted in high-speed
pick-and-place robots receiving increased attention from industry and acade-
mia. High-speed rigid parallel robots that comprise active pendulums and pas-
sive parallelograms limit high efficiency because of their complex structure and
high cost. The cable-driven parallel robot (CDPR), which comprises parallel
cables and tension branch, offers a promising new method. This study develops
an optimal design of a CDPR with proposed novel transmission indices, which
is normalized finite, dimensionally homogeneous, frame-free, and intuitive. The
optimized result is verified with a numerical simulation. Given the optimized
parameters, the vertical and physical prototypes of the CDPR are provided by
considering the industrial application. The performance indices and optimal
design metrology of this study can be further adopted in the optimal design of
other CDPRs.

Keywords: Cable-driven parallel robot � Kinematic optimization � Mechanical
design

1 Introduction

Robots are extensively used in industry, particularly for sorting and packaging oper-
ations, because of eternal pursuit of speed and efficiency. The serial mechanism with
SCARA (selective compliance assembly robot arm) motion [1] is used as the
pick-and-place manipulator firstly. Serial manipulators possess large workspace, but
bulky serial open-chain configuration and large moving inertia limit high-speed per-
formance. As the complementary to the serial mechanism, parallel manipulators pos-
sess inherent advantages in terms of low inertia of moving components, high speed,
and good dynamic performance with closed kinematic chains. Parallel manipulators
have been successfully adopted in various fields [2, 3], particularly as high-speed
pick-and-place robots. For pick-and-place operations, 3 degrees of freedom (3-DoFs)
translational motion is basically required. The Delta robot [4] is the most popular and

© Springer International Publishing AG 2018
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extensively used one. In addition, high-speed parallel manipulators with SCARA
motion are proposed, such as I4 [5], H4 [6], Par4 [7], and X4 [8], with one additional
rotational DoF about the vertical direction. Above high-speed parallel manipulators
have a common structural feature, that is, each limb comprises an active pendulum and
a passive parallelogram, thereby limiting unnecessary terminal rotations. Lightweight
materials, such as carbon fiber and aluminum alloy, are utilized to reduce the moving
inertia, thereby leading to the complexity of structure and high cost.

When replacing the heavy rigid links of parallel robots with cables, cable-driven
parallel robots (CDPRs) are proposed. Since the cable mass is negligible, the moving
inertia of CDPRs can be reduced to the minimum, and extremely high speed and
acceleration could be achieved with a simple structure and low cost [9, 10]. This
condition makes CDPR a promising high-speed manipulator. Additional forces should
be adopted in CDPRs to maintain all cables in tension because of the unilateral
actuation property of cables. For high-speed CDPRs, the additional force is usually
provided in two ways. Firstly, an additional driven cable is used. The FALCON-7 robot
[11] is a typical example of the first class, which adopts seven cables to implement a
6-DoFs movement, and the maximum acceleration of 43 g can be achieved. The other
approach is proposed by Landsberger [12]. A central extensible branch is employed,
thereby creating a considerably simple structure and improved controllability. Fur-
thermore, parallel cables are utilized to limit the end-effector’s rotation, and a 3-DoFs
translational CDPR was introduced [13] with the concept design. The current study
executes the kinematic optimal design of the high-speed pick-and-place CDPR.
Moreover, virtual and physical prototypes are deduced with detailed mechanical
design, thereby promoting the industrial application of the CDPR.

General concerns toward CDPRs in terms of optimal design lie in “tension ability”
[14] and stiffness [15]; these issues could be solved by the central extensible branch for
our study object. Since transmitting force and motion is the nature of mechanisms, the
kinematic optimal design of the object CDPR is carried out considering transmissi-
bility. Although extensive studies in this field have been conducted, only a few existing
indices can comply with all the requirements, such as simple, intuitive, and universal.
Conditioning indices based on the Jacobian matrix are frame-related [16] and could
cause resolution failure when applied to the translational parallel manipulator [17].
Angle-based transmission indices that are mainly used for planar manipulators, such as
pressure and transmission angles [18], become difficult and complex in spatial analysis
[19]. Another class of indices is deduced using screw theory, which is powerful but
complicated and non-intuitive [20]. Thus, transmission index, which is frame-free,
intuitive, and easy to calculate, is proposed and adopted in the current study for the
CDPR based on matrix orthogonal degree.

The main methodologies for the optimal design can be divided into two categories.
The first one is referred to as the algorithm-based optimum design, which converts the
optimum design issue into a multi-objective optimization problem, and solved using
complex nonlinear algorithms [21]. The second category is the atlas-based optimum
design [22]. Optimum parameters can be determined accurately and intuitively based
on the drawn performance atlases. Both methods are equivalent in deducing the optimal
result. However, the atlas-based optimum design can illustrate the relationship between
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design parameters and manipulator performances, as well as immediately and conve-
niently adapt to the target changes.

This study employs atlas-based optimum design metrology to implement the
kinematic optimal design of the object CDPR with proposed transmission index. The
rest of this paper is organized as follows. Section 2 presents the virtual prototype,
including the mechanical design details, of the CDPR and deduces the kinematic
model. Section 3 focuses on the new transmission index and optimization of the
CDPR. Section 4 analyzes and simulates the kinematic performance of the CDPR.
Lastly, Sect. 5 presents the conclusions and prospects for this study.

2 Virtual Prototype and Kinematics

2.1 Virtual Prototype

The virtual prototype of the high-speed pick-and-place CDPR (see Fig. 1) comprises the
base (1), actuation units (2), guiding pulleys (3), three groups of parallel cables (4), rigid
extensible limb (5), and end effector (6). Partial design details of the virtual prototype are
illustrated in Fig. 2. The actuation unit comprises the servomotor, reducer, coupling, and
winch in series. Six cables are assigned into three groups, and two cables in each group
are adjacent and parallel. Initially, the parallel cables are uniformly distributed cir-
cumferentially. Two cables of each group share the same actuation unit. Two identical
spiral grooves are machined out on the surface of the winch to ensure the synchronized
motion of the parallel cables.

Fig. 1. Virtual prototype of the CDPR
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Several measures are considered to ensure the parallel constraints of each pair of
cables. Guiding pulleys are used to avoid cable wear caused by intense friction under
high-speed motion. The lower pulleys are able to rotate vertically, and the rotation axis
is coaxial with the corresponding cable. In practice, the lengths of the parallel cables
may be dissimilar due to manufacturing and assembly errors, which may introduce
unbalance loads of the cables. A fine-tuning device is attached to each cable in series
near the end effector and utilizes the left-hand and right-hand threads at the ends. The
cable length can be adjusted through the fine-tuning device, making the tension of
parallel cables substantially the same to eliminate unbalanced loads. Given the paral-
lelogram constraints, the unnecessary rotational DoFs are constrained and the purely
translational motions of the end effector are guaranteed.

The rigid extensible limb is another important component of the CDPR. The
extensible limb connects the base and end effector at the geometric centers through
universal joints. The pitch and yaw angles of the limb can reach ±45°. Considering
cost and energy consumption, spring instead of cylinder is employed in the prototype to
apply appropriate pressure to the end effector, thereby maintaining all the cables in
tension. Of course, the use of spring will inevitably bring a series of dynamic problems,
such as effects on load capacity, acceleration capacity as well as vibration. These
problems are left to be discussed later in the dynamic studies, while this article only
focuses on the kinematics problems. Moreover, the limb could be utilized as the
medium to implement terminal measurement and vibration suppression, thereby
improving terminal accuracy and dynamics.

2.2 Inverse Kinematics

Although six cables connect the end effector and the base, the parallel cables of a group
move synchronously and counteract the torque. In the inverse kinematic analysis, a
group of parallel cables can be simplified into a single middle cable. The simplified
kinematic model is shown in Fig. 3.

The upper triangle is the base and labeled as A1, A2 and A3; and the feature size is

Fig. 2. Details of the actuation unit, guiding pulleys and end effector
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A1A2j j ¼ A2A3j j ¼ A3A1j j ¼ R. The lower triangle is the end effector and labeled as
B1, B2 and B3. The size of the end effector is B1B2j j ¼ B2B3j j ¼ B3B1j j ¼ r. P rep-
resents the center of the end effector. The global frame {O-XYZ} is established at the
geometric center of the base. The X-axis is parallel to A1A2, Y-axis points from O to A3,
and Z-axis is perpendicular to the base upward. Vectors ai (vector connecting point
O to point Ai) and bi (vector connecting point P to point Bi) are defined as shown in the
figure in the global frame. The end effector translation vector p connects point O to
point P. ei is the unit vector along the ith cable and the length of the ith cable is li. At
the initial moment, branch OP is vertically downward with the maximum length
h. Inverse kinematics, which is the basis of the optimal design and control, is the
process to deduce the input variables (i.e., length, velocities, and accelerations of the
three cables) with the given terminal trajectory.

The position vector of point P can be deduced with the vector chain as follows (see
Fig. 3):

p ¼ ai � liei � bi; i ¼ 1; 2; 3ð Þ: ð1Þ

In addition, the length of each cable can be written as:

li ¼ lieik k ¼ ai � bi � pk k: ð2Þ

The unit vector along ith cable can be expressed as:

ei ¼ ai � bi � pð Þ=li: ð3Þ

Taking the derivative of Eq. (1) with respect to time yields the velocity mapping
function as follows:

_p ¼ �_liei � li xi � eið Þ; ð4Þ

where xi is the angular velocity of the ithcable. By taking the dot product of Eq. (4)
with unit vector ei at both sides, the cable velocity can be obtained as:

Fig. 3. Simplified kinematic model of the object CDPR
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_li ¼ �ei � _p; ð5Þand

_L ¼ _l1 _l2 _l3
� �T¼� e1 e2 e3½ �T _p ¼ J _p ; ð6Þ

where J ¼ � e1 e2 e3½ �T is the inverse Jacobian matrix of the robot.
Taking the derivative of Eq. (5) with respect to time yields the cable acceleration

expression as follows:

€li ¼ dðei � _pÞ ¼ _pðxi � eiÞ � ei � €p ¼ � _p _pþ _liei
� ��

li � ei � €p: ð7Þ

3 Optimal Design

3.1 Performance Index

Assuming that Xm�n ¼ x1 x2 � � � xn½ � is a real matrix composed of n real column
vectors. The matrix orthogonal degree of Xm�n is defined as follows [23]: If
minð xik kÞ ¼ 0 ði ¼ 1; � � � ; nÞ, the matrix orthogonal degree ortðXÞ is zero. Else:

ort Xð Þ ¼ voln Xð Þ
,Yn

i¼1

xik k ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
det XTX

� �q ,Yn
i¼1

xik k; ð8Þ

where voln Xð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
det XTX

� �q
is the volume of matrix Xm�n in the Euclidean space.

When all the vectors in the matrix are unit-column vectors, the matrix orthogonal
degree represents the volume of the n-dimensional parallel polyhedron with the column
vector as the edge. Evidently, the range of the matrix orthogonal degree is [0, 1]. Only
when column vectors are orthogonal to each other can the maximum value of 1
obtained. On the contrary, when the multi-collinearity of column vectors appears, the
minimum value of 0 can be deduced. Extreme values of matrix orthogonal degree
indicate two important geometric properties, i.e., multicollinearity and orthogonality of
multiple vectors. Matrix orthogonal degree is a promising mathematical tool to study
spatial force/motion vectors of mechanisms.

For the object CDPR, the middle branch ensures that all cables are in tension, and
that cables jointly supply the force output of the end effector. When forces exerted by
driven cables are completely orthogonal, the output performance of the arbitrary force
is the same for the end effector. In addition, the end-effector transmissibility is best with
isotropy. On the contrary, if the driving force vector collinear happens, then the
dimension of the output force space is reduced. The end effector is unable to support
the force in some particular direction; hence, a kinematic singularity occurs.

The preceding analysis indicates that the unit driving force vector of each cable is
along the cable and equals the unit cable vector ei. Thereafter, the Orthogonal
degree-based Local Transmission Index (OLTI) of the CDPR can be defined as:
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COLTI ¼ ort Uð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
UTU
�� ��q

; ð9Þ

where U ¼ e1 e2 e3½ �. According to preceding definitions, the proposed transmis-
sion index is based on vector computation, and is frame-free with evident significance.
The value range is finite and normalized as [0, 1]. Besides, the calculation is simple and
concise.

3.2 Design Space

The theoretical workspace of the object CDPR is a hemispherical space (disregarding
the limb length and swing angle) [11]. However, the swing limit of the extensible limb
is ±45° by considering universal joints, and the scalable range of the extensible limb is
from 0.6 h to h. The reachable workspace of the CDPR is the lower area of a cone (see
Fig. 4). The required regular workspace of the pick-and-place robot is usually a flat
cylinder. The diameter is D and the height is H. Considering the practical application,
the diameter of the cylinder is set to four times of its height, i.e. D = 4H. The equation
of geometric parameters is described as follows:

ð0:6hþHÞ2 þ 4H2 ¼ h2; ð10Þ

and

H ¼
ffiffiffiffiffi
89

p � 3
25

h ¼ 0:25736h: ð11Þ

Thus, the regular workspace is determined by the middle extensible branch.
The configuration of the object CDPR can be expressed by three parameters: size of

the end effector r, size of the base R, and maximum length of the extensible limb h. The
impacts of these parameters on the performance of the CDPR need to be considered

Fig. 4. Reachable workspace and required regular workspace
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together during the optimization. The atlas-based kinematic optimum design method
[24] is adopted because of its accuracy and intuitiveness. To embody all the possible
combinations of these three parameters in a finite area, parameters should be normalized
and physical dimensions must be eliminated. A dimension factor g is defined as:

g ¼ rþRþ hð Þ=3: ð12Þ

Then, the three dimensionless parameters ki i ¼ 1; 2; 3ð Þ can be obtained as follows:

k1 ¼ r=g; k2 ¼ R=g; k3 ¼ h=g: ð13Þ

The proportional relationship between the parameters can be expressed through ki.
To facilitate further analysis, the parameters are illustrated in a two-dimensional plane
(see Fig. 5). The k1-axis is vertical, k2-axis and k3-axis are perpendicular to each other,
and the angle between k1-axis and k2-axis is 3p=4. Theoretically, these three dimen-
sionless parameters can assume any value from 0 to 3. However, the end effector for the
object CDPR should be no larger than the base. Thus, the available design space is
under the line of R = r (marked with red lines in Fig. 5).

3.3 Optimization Process and Results

The Orthogonal degree-based Global Transmission Index (OGTI) can be defined to

evaluate the global behavior in the entire regular workspace with a given configuration.
OGTI can be expressed as follows:

COGTI ¼
Z
W
COLTI dW

	Z
W
dW ; ð14Þ

Fig. 5. Design space and atlas of OGTI within it

Optimal Design of a High-Speed Pick-and-Place 347



where W is the regular workspace of the CDPR. In general, a considerably large OGTI
value presents an improved transmissibility and kinematic performance. Thereafter, the
OGTI atlas for our object robot is obtained (see Fig. 5).

Given the performance atlas, we can clearly see the performance trends and realize
the performance of the CDPR with any combination of r, R, and h. In the design space,
the value of OGTI is substantially large in the middle area and decreases toward two
sides. The candidate region for the optimal design can be deduced with the desired
performance. For the optimization instance of this article, we assume that OGTI value
of the desired CDPR is greater than 0.9. Taking into account the size of the regular
workspace, h(k3) should be as large as possible, andk3 is set not less than 1. In addition,
the minimum value of r(k1) also needs to be limited. If r(k1) is too small, then the
distance between the parallel cables is too small, and it cannot exert an effective limit to
rotations and counteract the torque. In this example, the minimum value of k1 is set to
0.12. Based on the above conditions, the candidate area meeting our requirements can
be determined, as shown in Fig. 6.

A set of non-dimensional optimum parameters can be determined by the most
desired performance within the obtained candidate region. In this case, we want to get a
manipulator with maximum regular workspace, and the maximum value of

k3(h) should be adopted. Thus, k1 ¼ 0:12, k2 ¼ 1:76 and k3 ¼ 1:12.
Lastly, the dimension factor g is determined, thereby converting the

non-dimensional parameters into practical dimensional ones. If the maximum length of
the extensive branch is h = 1.12 m, then the other two optimal parameters can be
yielded as R = 1.76 m and r = 0.12 m. The physical prototype with the optimal
parameters is manufactured and assembled, as shown in Fig. 7.

Fig. 6. Candidate region and the desired optimal point of the optimal design
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4 Simulation

In this section, the performance of the high-speed pick-and-place CDPR is analyzed by
numerical simulation with deduced optimal parameters. The value distribution of OLTI
within the regular workspace is shown in Fig. 8 on the left. In general, the OLTI value
is relatively large in the regular workspace, which indicates that the object CDPR
possesses good transmission performance. Moreover, OLTI value distributions on the
OXZ and OYZ planes are drawn to explore the performance change (see Fig. 8 on the
right). The region where COLTI � 0:9 occupies most areas of the regular workspace.
The OLTI value at the top center of the regular workspace is largest and nearly 1 with
the best transmission performance. The distribution of OLTI values could be fully
utilized to the trajectory planning and control, to give full play to the potential
performance.

Fig. 7. Physical prototype of the high-speed pick-and-place CDPR

Fig. 8. OLTI distribution in the regular workspace of the optimized CDPR
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With the established kinematic model and optimal parameters, the input motion of
each cable could be deduced based on the given terminal trajectory. The center of the
end effector is assumed to move along the X-direction on the horizontal plane of
z ¼ �0:8 m. In addition, the trajectory function of xPðtÞ is described as follows:

xPðtÞ ¼ 0:5� sinð2pt � p
2
Þ; 0� t� 1s: ð15Þ

The time-history graphs of the cable velocities and accelerations of the CDPR are
deduced and illustrated in Fig. 9.

5 Conclusions

This study uses the matrix orthogonal degree as basis to propose new transmissibility
indices of OLTI and OGTI for the high-speed pick-and-place CDPR, which possess
such advantages as being frame-free, clear significance, and concise calculation. The
atlas-based optimum design method is adopted and the optimal dimension parameters
of CDPR are deduced by considering the regular workspace and transmission perfor-
mance in the defined design space. Numerical simulations are developed to verify the
transmission performance of the optimized CDPR and its input variables with the given
trajectory. A practical prototype of the high-speed pick-and-place CDPR is completed
and the detailed mechanical designs of the implement of the prototype are illustrated.
The deduced performance atlas substantially illustrates the effect of the parameters on
performance. Moreover, the proposed indices and optimization metrology can be
further adapted to other CDPRs. The rigid-flexible coupling structure of the CDPR
robot could introduce vibration problem, which will be further studied with the
dynamics.
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Fig. 9. Cable velocities and accelerations with the given terminal trajectory
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Abstract. Generalization of additive manufacturing has led to consider this
technological solution for more and more challenging use cases. Porting this
technology to construction industry is a major step to overcome. Most of the
recent research deal with materials, construction and extrusion techniques.
Positioning of the extruder or material handler is mostly carried out by standard
anthropomorphic robots or large-scale gantries. Cable-driven parallel robots
(CDPR) can be an efficient alternative to these positioning solutions, being
capable of automated motions in six degrees of freedom and easily relocated.
The combination of the Cogiro CDPR (Tecnalia, LIRMM-CNRS, 2010) with

the extruder and material of the Pylos project (IAAC, 2013), open the opportunity
to a 3D printing machine with a workspace of 13.6 � 9.4 � 3.3 m. Two prints,
with different patterns, have been achieved with the Pylos extruder mounted on
Cogiro, drawing a wire of material of 11 m in width and 3 mm in height: the first
spanning 3.5 m in length, the second, reaching a height of 0.86 m.
The motivation of this paper is to give an insight to the necessary technical

implementations on a CDPR for dealing with additive manufacturing process
relevant for construction, in particular acute modelling of the cable and its
extension under load, and to showcase the experimental prints carried out by the
authors.

1 Introduction

The recent developments in Additive Manufacturing (AM) have led to consider ever
more various materials for printing parts. Cement and construction materials such as
clay are some of them. With AM technology, based on CAD design, architects get the
possibility of manufacturing quickly and with precision optimized complex geometries
for parts, offering free shape design for serving specific purposes and refinement in
material distribution. A clear potential have been identified by industries, contractors
and architects to reduce the cost of customized fabrication, and therefore create a
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change of paradigm from the twentieth century standardized architecture of mass
production toward the contemporary digital architecture of mass customization and site
specific adaptation [1].

The optimal material for printing strong parts with total freedom of design and with
a proven printing process is yet to be found, and this is a subject of intensive research.
Typically, printing is carried out through brick laying and joining with cement [2–4],
fused deposit modelling [5–7] or inkjet-like process [8], with in some cases shaping
tools [7]. Positioning of the printing process head is however a much less investigated
area. Some of the processes focus on the printing of individual parts of smaller scale for
architecture in a workshop, to be brought later on at a construction site, and therefore
use anthropomorphic arms for moving the printing head [2–5, 9]. Alternatively, using
gantry robots for carrying the head is fairly common practice [7, 8]. Another disclosed
solution [6] has been to extend the dimensions of a linear delta robot design to reach a
cylindrical workspace with a 6 m diameter and height.

These solutions are typically unfit for printing directly on-site, a mandatory option
as printed parts get larger, up to printing a whole building in AM. Anthropomorphic
robots require a strong base for operation, and have limited workspace of a couple of
meters at maximum, which can however be extended using mobile robots [3, 4];
anthropomorphic architectures with longer reach could be used and can be automa-
tized, as they already have been for brick laying applications for example, but they
require expensive sensors for compensating for their flexibility [2]. Gantry robots [6, 7]
can be installed on site with however important impacts in terms of logistics and price
for large-scale structures.

Use of more novel solutions such as cable-driven parallel robots (CDPR) for AM in
construction have already been investigated [10, 11] but are yet to be proven in this
specific field, which is the purpose of the experiment disclosed in this paper. CDPR
offer the advantage of having its longest elements being cables, which can be reeled in
for minimum storage space; its frame can be limited to a series of posts for the drawing
points, more easily displaceable than the supporting beams and rails of a gantry robot.
Such capability has been shown in foreseen applications for emergency deployable
robots [12]; outdoor operation following autonomously detailed trajectories is a
common operation for aerial cameras [13] and radio telescope receivers [14]. An
example of 3D printing over a workspace spanning almost a meter has also been
achieved [15].

AM for construction is a process that requires the printing machine to be able to
follow trajectories with a tolerance of half the width of the material wire on horizontal
directions, and one third of the thickness of the wire, for the print to be considered
satisfactory for the current experiment, using clay as the manufacturing material. The
objective is to print a part that is sufficiently close to its CAD design. It can be noted
that imprecision within these limits can provide a texture to the material which can be
appreciated in specific situations.

This paper will first focus on the enhancements on the Cogiro CDPR [16] that have
been required to achieve properly AM. The integration of the Pylos extruder [17] using
clay on Cogiro is then discussed. A sample of the test prints is finally disclosed, with a
discussion on the facts witnessed during this printing experiment.
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2 Enhancement of Vertical Precision of Cogiro

Cogiro is a CDPR owned by Tecnalia and CNRS-LIRMM [18]. Its original point of
design resides in the way the cables are connected to the frame, called the configuration
of the CDPR, which makes it a very stable design [16]. With a footprint of 15 � 11 m,
6 m high, it is capable of holding a load up to 500 kg over more than 80% of the
footprint. Several demonstrations of industrial scenarios have already been run using
Cogiro [18, 19] picturing the versatility of a CDPR.

Cogiro winches are capable of pulling the 4 mm diameter cables at up to 4150 N,
or 1/3 of their calculated break strength. These cables are non-rotating cables manu-
factured in steel. They show a weight per length of 68.5 g/m and an EA factor (cal-
culated as per ISO 12076) of 860 kN.

Advances in the control of the robot have allowed to reach repeatability in the
millimeter range and precision in the low centimeter range [20], depending on the
position. Most of the precision loss is today to be accounted on mostly the vertical
direction at the center of the workspace, and progressively horizontal directions as the
platform is brought closer to the sides. Yet higher positions will however show higher
error in precision because of the geometry and the forces in the cables. This impre-
cision will therefore mostly bring an error on the height of the part to be printed. The
position of the platform being reconstructed in the control scheme exclusively through
the use of the angular position of the winches. It therefore appears that this imprecision
would be due to error in the models, being geometric or due to the stiffness of the
structural elements as the cables or the structure. Similar approaches in other CDPR
[21] suggest that the modelling of the drawing points and the yield of the cables under
stress would be the main factors of this imprecision.

Calibration of the robot is carried out using a laser tracker capable of very high
resolution (10 µm) over a large span (50 m). A global frame is reconstructed each time
the laser tracker is powered on, using elements fixed to the floor. The positions of the
fixing points at the platform are measured at the same time as a series of fixed elements
on the platform to reconstruct a platform frame. The points measured for the drawing
points, coined as reference points, are the intersection of the axis of rotation of the
pulley with the plane normal to this axis passing through the center of the pulley,
measured using features of the parts holding the pulleys. Finally, the position of the
platform in the homing position of the CDPR is measured using the laser tracker as
well, allowing for linking drums positions with cables lengths.

2.1 Basic Implementation

In this first implementation, taken as the basis for this study, cables are considered
inextensible and massless. The length of the cables are computed being the straight
distance between the fixing points with the desired position and the reference points for
the pulleys. The desired length of each cable over the wished trajectory is then fed to
the control scheme that computes the input for each winch.
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2.2 Stretching Cables

In order to qualify the extension of the cables under various tensile forces, a stress test
in accordance to norm ISO12076 has been carried out using a stretch test bench over a
cable length of 600 mm for a force spanning from 0 to 5000 N (Fig. 1).

It appears the number of 860 kN for EA factor is misguiding, as this is in fact a
measurement of the slope between two single points, one at 10% of the break strength,
and another at 30% of the break strength as per ISO12076. In reality the cable shows a
faster extension at lower forces (EA factor 339 kN) followed by a stiffer behavior at
higher forces. Best fit between strain e and tensile force F has been found to be an offset
squared logarithmic curve with the shape of e ¼ a: ln2 F � F0ð Þ� �þ b.

In addition to the basic implementation, at each point of the trajectory, a set of
forces in the cables are computed using the inverse of the Jacobian of the system for
balancing the expected weight on the platform. This requires the user to enter by hand
the weight in the control interface. Each force is converted into a stretch, which is
added to the target length for the control at each position.

2.3 Swiveling Pulleys

Another aspect taken into account is the model of the pulleys. Details of the model
implementation has been developed in [20]. With this model, the length taken into
account is the length over the circle of the pulley added to the length of the straight
massless inextensible cable tangent to the pulley to the fixing point.

Fig. 1. Strain � (%) vs Tensile force (N) F measured in the cable used in Cogiro. Crosses show
the measure points for determination of the Young’s modulus as per ISO12076.
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2.4 Test and Results

The test carried out for qualifying the improvement in accuracy is the measurement of
the vertical position of the platform for various targets in position. These measures have
been made at the center of the workspace, which is also the homing position of the
CDPR. Platform actual position is measured every 0.1 m from Z = 1.27 m to
Z = 3.57 m. Platform payload has been measured at 142 kg. The center of gravity of
the platform is expected to be at the center of the cube.

Figure 2 shows the impact on the precision that the extension of the cable on one
hand and the approximations in the cable model on the other had on the precision of the
machine. From an original error of 0.25 m (at a very high position, where the cables are
almost horizontal), the consideration of the real path of the cables and the extension in
the cable, calculating the force in the cables, reduces the error to a few millimeters (max
6 mm, mean error 2.5 mm) in the measured conditions.

3 Combining Cogiro and Pylos

Pylos [17] is the result of a research action at IAAC on AM processes of large scale,
using material with low ecological impact, 100% natural and biodegradable, for
architecture. The material is a soil based mixture with natural additive specially tailored
for AM process with an improved tensile strength and viscosity compared to the
traditional soil used in construction. The extruder developed in order to test this
material is composed of a canister with 15L of capacity for the material, compressed by
a pneumatic cylinder. The extruder measures 0.3 � 0.3 � 2 m, weighing between
65 kg empty and 85 kg full. It prints with a wire between 1 and 7 mm in thickness and
6 to 30 mm in width, at a speed between 0.05 and 1 m/s.

Fig. 2. Error measures in Z, in mm, versus desired height, in mm. Desired height is expressed in
relative to the homing position, situated at Z = 1.07 m.
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3.1 Mounting Pylos on Cogiro

The whole platform together with the extruder filled with clay weighs between 157 kg
empty and 169 kg filled up. It features the standard cubic platform of Cogiro with the
Pylos extruder mounted on it by the means of a connecting plate (Fig. 3). The extruder
is controlled by an output of the controller of the CDPR through the switching on and
off of a pneumatic valve.

The original design of the Pylos extruder has been modified for its use on the
CDPR. Originally, the material chamber was filled directly into the extruder. For this
operation the extruder is placed upside down and the nozzle removed. This operation is
not possible with a CDPR because of cable collisions. It is also unpractical for large
volume prints such as envisioned for such a large machine, with down time between
two prints being too important for an efficient printing.

For these reasons a system of canisters has been developed, through which the
piston pushes the material. It offers the advantage for the team to be able to prepare the
material in masked time, when the printing is being processed. This reduces the amount
of clay that can be printed in a go from 20 kg in the original design to 12 kg.

With this payload, Cogiro is capable of moving the tip of the extruder with the
platform in upright position inside a rectangle measuring 13.5 � 9.4 m, and up to
3.36 m above the floor. Figure 4 shows the volume within which the wrench due to the
weight of the platform and extruder at the center of the cube, added to half of the
weight of deployed cable at each fixing point, accordingly to the simplified cable model
proposed by Irvine, can be balanced by the cables by taking into account their limi-
tations. Coordinates show the position of the tip of the extruder. For balancing this
wrench, when the tip is inside the pictured volume, there exist a set of forces in the
cables, expressed along force lines set by fixing points at the platform and drawing
points at the frame, which are all lower than 4150 N (1/3 of break strength of the cable)
and higher than 20 � the weight of the deployed cable.

Fig. 3. Assembly of Pylos extruder on Cogiro.
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3.2 Trajectory Control of the CDPR

In order for Cogiro to follow precisely the trajectories, a G-Code postprocessor module
has been integrated, based on CNC modules on the B&R software and hardware of the
CDPR, running on Automation Studio 4.

Trajectories are designed using Rhinoceros 3D and Grasshopper 3D, using a cus-
tom script crafted by IAAC. This script computes the optimal path of the CDPR much
like a CAM software. The output of the script is a G-Code file with the position and
feed instructions for following the desired trajectory with a deviation of less than
2 mm. Each canister is able to print 100 m of wire; one file is calculated to correspond
to one canister, and featured with a homing movement at the beginning and the end of
the file, for approaching the printing position at first, and for going back to home
position at last.

The G-Code postprocessor is a specific module integrated into the B&R
Automation Studio suite enabling up to 5 axis of synchronous movement composed of
lines, which are connected by circular portions to manage a continuous trajectory. Once
a trajectory file is processed, it provides a timed output providing the position target
that the CDPR should follow in order to follow the trajectory. This output is linked to
the position target of the control of Cogiro until the end of the trajectory is reached. The
G-Code also controls the output for controlling the starting and stopping of the
extruder, so that the printing process starts and stops adequately.

Curvature has also proven to be a very important feature of the trajectory for
printing with a CDPR. Preliminary tests on Cogiro with a print wire of 11 � 3 mm
have proven that at the desired printing speed (0.15 m/s) the local radius of curvature
should not be lower than 25 mm. Undesired vibrations exceeding the tolerances (5 mm
horizontal, 1 mm vertical) show up when this limit is not respected. When a smaller
radius is required, the printing speed is brought lower in order to limit the acceleration

Fig. 4. Wrench-closure workspace of Cogiro with Pylos extruder mounted. Black triangles
indicate the drawing points.
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from the trajectory. In addition, at the end of each layer, the robot has been pro-
grammed to make a start and stop at both the finishing point of the current layer and the
starting point of the coming layer.

4 Test Prints

Several test prints have been achieved with Pylos and Cogiro. First tests involved the
qualification of the best printing speed for the process, and the achievement of a 0.25 m
high and 1 m long print with a sinusoidal shape (Fig. 5).

The first demonstrating print for showing the CDPR capabilities for 3D printing is
0.2 m wide and 3.5 m long, in an overall straight line (Fig. 6). It features a special
pattern that allows it to deal with the material shrinking under the process of drying,
and improvements in the material composition for improving material strength. The
pattern was repetitive which makes it more practical for the designer to design long
structures. The coordinates for the center of the print were (X = 0, Y = 2.2 m, Z = 0).
The print showed a steady height over its full length.

Fig. 5. Test prints with clay material.
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The pattern used for this first print led to further improvements in the pattern
design, optimizing the crossing of the lines and the dimensions of free lengths of wall.
Parametric design has also been implemented for a shape of the wall changing with the
height, showing the full potential of the 3D printing process. The second printed piece
targeted a 1.5 m height and consisted of two periods of 0.338 m long by 0.415 m wide

Fig. 6. Long wall print.

Fig. 7. Cogiro, Pylos and the high print being processed.
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each, which could be extended endlessly (Fig. 7). All prints have been carried out at
coordinates (X = 0, Y = 2.2, Z = 0).

As the part was getting printed, it appeared that the unloading of the clay from the
CDPR was generating a steady vertical shift of about +5 mm. This made every stack of
layers printed by a single canister 5 mm thicker than it should be. In order to com-
pensate for that effect, after each canister the actual height of the print was measured
and the Z positions in the G-Code file were offset such that the first layer of the new
canister prints right on top of the last printed layer. Alternatively, other solutions were
to modify the weight input of the control of the CDPR in function of time for the
control to compensate for the weight loss; or use adaptive control [22] in order to
compensate automatically such changes in the model.

At higher levels of print, the quality of the level of the layers had also degraded.
The layers were showing oscillations on Z of ±1 mm; they did not show any dilatation
on the width however, because the oscillations were very repeatable from one layer to
the next. This shows that the control of the CDPR needed finer tuning to achieve the
wanted precision of ±1 mm.

5 Discussion on the Results

Both prints are considered good results, and the test campaign discussed proved fruitful
in experience. One of the main outcomes of the demonstration is to show that the
Cogiro CDPR is capable of trajectories with millimeter precision, despite its workspace
spanning meters long. It has been capable of drawing a material wire measuring 11 mm
in width by 3 mm in height over long trajectories without substantial modifications on
the height of the wire. This has been achieved only using the encoders of the motors for
reconstructing the position of the extruder.

The need of acute control design for achieving such a precision has also been
pointed out. Natural stiffness of the CDPRs played a role too: it clearly appears as the
first source of errors for the estimation of the pose of the platform, and had an incidence
on the print itself because of the unloading of the printing material. At this level of
precision, a lot of detail is required on the models and parameters.

Future steps foresee the development of a continuous flow extruder, allowing to
suppress down time from extruder loading, and print large scale elements of the size of
a small building. The use of concrete as building material, requiring pumping of the
material to the platform, will be investigated as well. Further research is also required
on how to achieve high levels of precision with a CDPR in outdoor conditions, towards
the application of on-site robotics for the construction industry.
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Abstract. The construction industry is still dominated by manual
processes. This is both due to conventional planning tools that do not
allow for a complete digital representation of a building and the lim-
itation of the workspace of conventional robots that is far below the
dimensions of most buildings. With the introduction of Building Infor-
mation Modeling (BIM), the first is subject to change. BIM will allow
for a holistic representation of any building and thus allow for digital
workflows that enable efficient automation. Second, the development of
cable-driven parallel robots meanwhile allows to create large manipula-
tors that even cover the volume of a construction site. This allows for
automated construction processes. The paper addresses BIM as a base
for motion planning, investigates workspace aspects and site layout and
introduces an experimental setup for feasibility studies. Initial experi-
mental results are presented and discussed.

1 Introduction

Since the beginning of 1980s, automated robotic systems have been a great
success in most fields of mass production. To both reduce costs and increase
precision in repeated processes, robots have replaced human workers in the pro-
duction of goods in nearly all industrial branches.

While this process is highly established in mass production, the production
of single or individual items is still challenging in most cases. In the field of
mechanical engineering, the introduction of Industry 4.0 is intended to enable
robot systems for made-to-order production.

Contrarily, in the field of civil engineering and construction of buildings,
manual processes are still dominating and the success of robots is limited to rare
special cases. Amongst others, two factors can be identified:

• First, the programming of a robot – at least as long as manual teaching is not
employed – is based on digital data. Usually, in mechanical engineering this
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data is created upon CAD models. As a CAD model is a digital model of the
goods to be produced, modern software tools provide a complete tool chain to
derive the robot programming from most popular CAD environments. In
contrast, in construction conventional 2D planning is still popular for the
detailed planning of most buildings and divisions.

• Second, conventional robots are limited in their range and therefore have a
limited workspace. For sure, the workspace even of large serial robots does not
allow to cover the size of most buildings. Generally, this workspace is extend-
able by additional motion capabilities. Technically, this might be realized e.g.
by a linear rail (which is expensive) or a wheeled mobile platform (which is
challenging regarding accuracy and payload). Therefore, an extension of the
workspace is not trivial.

These two factors are currently dramatically changing.

• First, the construction industry is facing a digital revolution called Building
Information Modeling (BIM). As mentioned, the planning of buildings con-
ventionally is conventionally realized per discipline (e.g. masonry, sanitary,
electrics,...). This might be done in specialized CAD models per subsection,
but as there was no common and parametric description language before the
introduction of BIM, all models were isolated per domain and planned mainly
individually based on 2D drawings. In consequence, there was no complete
model of the building that contained each and every part in a consistent way.
BIM is about to introduce complete and detailed digital models of a building
and thus opens the door for efficient automation. All data required to feed
automated and especially robotic systems can be derived. Section 2 contains
a detailed introduction to BIM.

• Second, the research activities in the field of cable-driven parallel robots (or
simply cable robots) meanwhile has reached a mature status. Especially in
the field of control, in the last years both the implemented methods as well
as the required hardware allow to realize large cable robots that are reliable
and cost-effective. Thus, now for the first time in the history of robots, the
realization of huge manipulators with a workspace covering the volume of a
building is reasonable both under economic and technological aspects.

This contribution focuses on describing the concept of cable robots for con-
struction, based on construction data derived from BIM models. As most steps in
construction currently are manually done, production paradigms as well as site
layout need to be changed. This is detailed in Sect. 2. The mechatronic design
as well as initial experimental results from a feasibility study are presented in
Sect. 4.

2 BIM, Robots and Path Planning

In mechanical production, automated systems like robots have increased pro-
ductivity over the last decades. This is a process driven also by digitalization
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and digital planning tools like CAD, as already introduced. In contrast, accord-
ing to [11], data from the U.S. Department of Commerce and the Bureau of
Labor Statistics indicate that the construction industry nowadays is even less
productive than it was in the 1960s. This might appear unexpected. But con-
struction projects became more complex and subject to extended documentation
regulations. On the other hand, they are still governed by manual steps, printed
construction plans and lack of communication platforms between the designers
and the contractors who realize the buildings [1].

Here, BIM is expected to be a key for future economic and technical improve-
ments. In the early 2000s, the concept of BIM was created, derived from the
concept of CAD. But while CAD basically represents geometric information, the
BIM methodology extends this by parametric properties and attributes for the
planning and realization, but also the operation and maintenance of a build-
ing. BIM standards like Industry Foundation Classes (IFC) provide standards
beyond proprietary formats. Even specific information like e.g. the heating power
of a radiator, the set values for valves, or even maintenance manuals can be inte-
grated. Using open data formats allows to create a single model of a building
that all disciplines can use, edit and harmonize. In countries like the U.S. or The
Netherlands, BIM-based planning is mandatory for all new public buildings. It
becomes even best practice for private buildings. In Germany, the government
has set a roadmap to introduce BIM as a standard [4].

Additionally, BIM is the key for holistic digital site planning. A BIM model
contains the data required to plan all process steps to realize a building. As
this data is digitally available, it can be used to derive a trajectory planning
for automated systems like robots. For many process steps, the usage of robots
may be very efficient to decrease costs. In addition, robots open a totally new
dimension of available precision on site. Even extremely complicated shapes and
structures can be realized, using motion data provided by the BIM model. Still,
the BIM model needs to be processed to derive the trajectories which is subject
to ongoing research [7]. In the context of additive technologies like 3D concrete
printing, this post processing requires the slicing of all printed elements like walls
[3]. As 3D concrete printing for building structures is currently subject to exten-
sive R&D activities, but difficult in terms of legal situation, norms and customer
acceptance in most western countries, conventional materials are focused within
the described concept. In case of traditional processes like bricking, composed
elements like walls need to be disassembled into bricks that can be picked and
placed [7]. Other parts like precast elements need to be integrated. This requires
the following properties to be included by the path planning. Most of them are
subject to future research [2]:

• Completeness: For each single part to be moved, a trajectory must be gener-
ated that provides transportation from its storage or delivery location to its
assembly pose

• Efficiency: To reasonably automate the construction phase, it must become
cheaper than the equivalent conventional process. Up to a certain degree, this
correlates with the reduction of the construction time, i.e. the robot must be
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fast and should move large material elements and parts. Accordingly, the sum
of the generated trajectory times must be subject to minimization, e.g. by
numerical optimization.

• Sequences: The path planning must include the pose of all material elements
and parts at all times of the construction phase. This is required due to two
facts:

– Most material elements are delivered in a stacked manner, e.g. palletized.
Thus, only the top layer of the material is accessible and can be picked
by the robot.

– All stacked structures can only be created bottom-up in layers. Accord-
ingly, a production sequence needs to be created and considered. This
step is a key for efficient building production in the future and may lead
to paradigm changes.

• Collisions: During the construction phase, the building grows and thus intrin-
sically changes its shape and volume occupation. The wire robot and its pay-
load may not collide with storage, delivered parts, the building, other machin-
ery or itself (self-collisions). As most of these obstacles may also change their
size and/or pose during the construction phase, both offline trajectory plan-
ning and online collision prevention are demanding. The latter is also essential
to any human-machine interaction and safety considerations. Still, it is sub-
ject to ongoing investigations whether human workers are involved in specific
processes (semi-automated) or not (fully automated). Clearly, this challenge
must also be addressed by the employed control concepts.

For initial feasibility studies presented here, most of these requirements can be
relaxed and define future activities. However, and as already mentioned, both sim-
ulation and experimental steps require the decomposing of larger structures into
smaller units that can be picked and placed. Obviously, this holds especially for
walls made from bricks. Unfortunately, the IFC standard does not provide rules

Fig. 1. Decomposed wall. Bricks are entitled as “Layer.Sequence”. Image based on
[5,7]
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for the wall decomposing procedure. Currently, proprietary solutions of the build-
ing materials suppliers close this gap. The resulting part list can be used as a base
to create wall layers and identify the parts delivery and installation sequence (see
Fig. 1). For architects and designers, the automated derivation of single brick pose
information opens a new horizon for facade and wall design. As both the pose offset
and the vertical brick alignment can be precisely set by the wire robot, sophisti-
cated structures that are extremely challenging regarding optical quality are not
longer limited by manual measurements which are prone to error.

In the future, close collaboration between construction engineers and
robot researchers is required to develop optimized work processes, including
(semi-)automated approaches and manual steps. This will identify the required
dynamic capabilities of the cable robot, the needed workspace and the associated
optimal site layout. First ideas for the latter are introduced in the next section.

3 Robot Geometry

For initial theoretical investigations of the concept, a certain geometry of a plat-
form and a huge cuboid frame was set, intended to cover the volume of a small
house. The frame needs to be mobile and is erected on site. For high buildings, it
might be advantageous if the frame can climb as the building grows. To avoid col-
lisions between the robot and objects or workers on the site, a suspended design
according to the French CoGiRo layout was chosen [9], see Table 1. To increase the
stiffness of the cable robot, it may be very beneficial to apply movable basepoints
for the pulleyes that can slide along the vertical columns of the frame [10].

Table 1. Geometrical parameters

Winch No Platform connection point
coordinates (w.r.t.
platform center) [m]

Pulleye coordinates (w.r.t.
frame bottom center) [m]

1 [0.125, 0.125, 0.125]T [15,−15, 20]T

2 [0.125,−0.125, 0.125]T [−15,−15, 20]T

3 [−0.125,−0.125,−0.125]T [15,−15, 20]T

4 [−0.125, 0.125,−0.125]T [−15,−15, 20]T

5 [−0.125, 0.125, 0.125]T [15, 15, 20]T

6 [−0.125,−0.125, 0.125]T [−15, 15, 20]T

7 [0.125,−0.125,−0.125]T [15, 15, 20]T

8 [0.125, 0.125,−0.125]T [−15, 15, 20]T

Based upon that, a workspace computation was performed (see Fig. 2). The
total mass of the end effector including payload is 250 kg. The lower wire force
limit was 100 N for the lower force limit to avoid slackness where the maximum
force provided by the winches is 10.000 N.
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Fig. 2. Workspace of cable robot using the parameters in Table 1

Note, that in future investigations also additional parts like precast elements
or ceilings might be installed by a cable robot. Accordingly, the payload needed
would be higher and therefore require additional workspace syntheses.

After defining the robot geometry, the resulting footprint can be used to
realize concepts for site layout and possible material logistics and delivery (see
Fig. 3).
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Fig. 3. Site layout conventionally (left) and automated using a cable robot (right)

The site layout is of special interest for any future research in automated con-
struction. Initial investigations have shown that paradigm changes are likely to
occur, starting with the prefabrication of tailored bricks that are cut to exactly
fitting dimensions. These bricks have to be delivered in the right sequence.
Accordingly, buffers and storage space both accessible for delivery trucks and
the cable robot must be available. Here, lifting storage devices will be needed
to allow for both truck delivery on road level and picking of bricks within the
collision-free part of the cable robot workspace.
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4 Experimental Setup

Based upon an existing cable robot prototype of 12 m length, 6 m height and 2 m
depth, the experimental bricking of a wall was planned to confirm the technical
feasibility of the concept (see Fig. 4). The goal of the study is to investigate the
practical implementation of the brick transportation process, including applica-
bility of distance sensors, influence of oscillations and the reliability of a gripping
device (which was still to be developed).

Fig. 4. Experimental feasibility study

As for any robot, the end effector of the cable robot needs to be adapted for
the described task. The following process steps need to be realized by the end
effector:

1. The bricks are delivered on site, e.g. stacked. The next brick to be moved
must be detected and its pose must be measured with respect to the end
effector.

2. The brick needs to be gripped in a safe and reliable manner.
3. Transportation of the bricks from the place of delivery to their destination

needs to be performed with a certain speed. Collisions with any object must
be avoided during the motion.

4. When approaching the destination, the wall needs to be detected. A pose
measurement relative to the intended dropping location must be performed.

5. The bricks need to be dropped with a certain accuracy.

Under these requirements, an end effector was realized that includes several
mechatronic components (see Fig. 5). It carries a gripper that can pick a brick
by pressing steel plates with spikes against the flanks of a brick. The steel plates
are in parallel with the wall surface and actuated by motors and springs. This
means that two opposite sides of the brick need to be accessible which has to
be considered especially for the delivery of bricks. Rotation of the brick is not
considered for the feasibility study, but subject to extended experiments.

In the horizontal direction and aligned with the wall, a linear rail with a
spring allows for small movements. This enables for a smooth brick alignment.
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Fig. 5. End effector for bricking. Image based on: [8]

Furthermore, four laser distance sensors have been installed. While sensor
A is pivot-mounted to be able to both measure downwards and horizontally
towards the gripped brick, sensors B and C are mounted on a linear actuator to
measure the alignment between end effector and wall plus the air gap between
the contact surfaces of brick and wall. Sensor D measures the distance to the
brick’s top face relative to the end effector.

A programming scheme (see Fig. 6) which includes a state machine has been
implemented (see [6]) to enable the following automated bricking process (states
with dashed lines are not yet implemented). Encircled numbers in the following
description illustrate the state of the state machine (see Fig. 6) and the recorded
measurements (see Figs. 7 and 8) that are fed to the machine. Note, that an
Augmented PD controller is employed. For all positioning tasks, a nominal-
actual value comparison is performed in an iterative scheme. If the calculated
error exceeds a defined tolerance range, an adjustment is executed. As it can be
observed from the measurements (see Fig. 8), the maximum error observed after
the first iteration is typically below 1 mm and therefore acceptable.

• The process starts with the robot at the home base. After the initializing
routine the robot moves to the gripping pose with safety offsets in the hori-
zontal and vertical position to avoid collision in case of inaccuracy. The linear
actuator carrying sensors B and C is retracted. Both sensors B and C mea-
sure horizontal distances (x direction) to the brick side surface to ensure the
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alignment of gripper and brick 2 . Sensor D measures the distance to the
brick’s top face (z direction) relative to the end effector 3 . Sensor A is
aligned to measure horizontally (y direction) towards the front surface of the
brick 4 .

• When the intended gripping pose is reached, the gripper is closed 5 .
• The robot moves to the calculated destination position 6 , along with the

wall and with a small height and horizontal offset with respect to the last
brick layer and the last placed brick, respectively. As the sensors are covered
by the gripped brick, sensors A, B and C are realigned 7 . Sensor A is
rotated downwards to measure the vertical distance to the last brick layer (z
direction). The linear actuator for sensors B and C is extended to monitor
the alignment of wall and end effector (x direction). Sensor D is static and
therefore does not allow repositioning.

• The end effector moves downwards to the last brick layer 8 . When the
intended position is reached, sensors B and C measure the distance (x direc-
tion) to the last brick layer to align the gripped brick and the wall 9 . As
it can be seen from (Fig. 7), the robot must adjust twice in the given run to
fulfill the tolerance criteria. At the current state, the rotation around the z
axis is not yet implemented.

• After reaching the final position in x direction, the robot makes use of the
measurement of sensor A to move downwards 10 . At the final position the
gripper opens 11 to place the brick. In case of the given run from (Fig. 7), the
process has finished. While moving to the home position the linear actuator
retracts and the rotational actuator rotates to get the sensors to a safety
configuration.

Table 2 summarizes a set of experimental results on picking and placing six
bricks. Note, the applied tolerance values were set according to discussion results
with practitioners:

In the first row of Table 2, the remaining positioning errors in x direction are
measured with sensor B during positioning of the bricks on the wall. For this
direction, the requirements derived from the application allow for a tolerance of
2 mm.

The values of the second row are measured with sensor A during the gripping
process and show the accuracy in y direction. Again, a tolerance of 2 mm is
allowed. Note, that a direct measurement during the placing process in this
direction is not possible due to the employed sensor arrangement.

The third row shows the values measured with sensor D in z direction during
the gripping process. Here, required accuracy for the gripping process is set to
1 mm.

Accordingly, the average accuracy in y and z directions is good and absolutely
satisfactory for the intended application. However, the flat design of the
employed prototype led to oscillations in the x direction that led to increased
average errors. Still, the damping of the system, the iterative positioning
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Fig. 6. Simplified state machine

Table 2. Accuracy measurements

Mean error in
positioning

Brick 1 Brick 2 Brick 3 Brick 4 Brick 5 Brick 6 Total
average

Sensor B (x direction)
[mm] 2 mm tolerance

1.746 0.279 1.475 0.362 1.323 0.537 0.954

Sensor A (y direction)
[mm] 2 mm tolerance

0.266 0.277 0.011 0.146 1.011 1.058 0.462

Sensor D (z direction)
[mm] 1 mm tolerance

0.101 0.121 0.102 0.184 0.088 0.070 0.111
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approach and its waiting periods led to satisfactory results. Concluding, the
accuracy requirements for translations in all dimensions are met.

5 Summary and Outlook

The paper discussed multiple aspects on the automation of construction using
cable robots. Based on Building Information Modeling, the digital construction
plan of a building can serve as a base to feed automated processes using robots.
Here, cable-driven robots can serve as universal handling devices that might
enable the automation of many process steps. Currently, bricking has been sub-
ject to initial investigations on workspace, mechatronic design of the end effector
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and an experimental feasibility study. During the experiments it was found out
that the distance measurements using laser devices is reliable and allows for an
acceptable accuracy of the bricking process. Still, the development of a large
spatial cable robot for more complex wall geometries, the rotation of bricks, the
bricking of multiple walls and the application of mortar are open and subject to
extended investigations.
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Abstract. We present in this paper a new structure of cable robot for
rehabilitation of lower limbs. The proposed concept is distinguished by
the ability to synchronize and coordinate the joints of the hip, knee and
foot. It explains a modeling approach to find explicit relations express-
ing the relationship between the desired trajectories in the physiological
limb and the articular variables to be applied to the robot motors. The
proposed robot (KINECAB) can be deployed in two configurations. In
this work, we study a configuration that allows the two lower limbs to
be manipulated to reproduce planar movements helping human walk or
similar exercises. The inverse kinematics developed will be analyzed on
the basis of a kinematic reference model of the physiological members.
Validation tests by simulation and experimentation are also proposed. A
patent application is deposited by ETS, University of Quebec (Applica-
tion Number PCT/CA2016/051376).

1 Introduction

According to the Canadian Institute for Health Information, the client groups
admitted to inpatient rehabilitation are ever on the rise. For cerebrovascular acci-
dents alone, close to 45,741 cases were recorded between 2008 and 2015. These
deficiencies present in patients locomotor and/or major neurological dysfunctions
in patients [1]. Rehabilitation aims to partially or sometimes completely recover,
the motor abilities by coming up with appropriate and adapted exercises.

In this work, we present a new robotic structure to reproduce the movements
useful for the functional rehabilitation of the lower limb. First, we focus on
a first configuration for walking and in another article, we discuss a second
configuration capable of affecting all the joint movements of the legs.

Studies are currently ongoing aimed at optimizing physiotherapy techniques
using a treadmill [2,3], through research aimed at ensuring adequate training of
the joints [4] or by combining several techniques [5]. These techniques aim pri-
marily to: (1) reproduce the correct/healthy joint movement pattern; (2) avoid
c© Springer International Publishing AG 2018
C. Gosselin et al. (eds.), Cable-Driven Parallel Robots,
Mechanisms and Machine Science 53, DOI 10.1007/978-3-319-61431-1 32
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inhibition of mobility caused by the residual use of prostheseis; (3) help syn-
chronize the two legs and coordinate the phases of the walk cycle, and finally,
(4) ensure a large number of repetitions of walk cycles. In this study, we present
a new cable-driven robotic system, which provides interesting advantages when
compared to other currently available robotic devices.

The cable-driven robot presented in this paper is able to perform the physi-
cal exercises necessary for the execution of rehabilitation protocols requiring the
hip, knee and ankle. In order to perform a wide range of exercises, we plan to
have the robot adopt two possible configurations. A configuration in which the
individual is in a standing position targets movements assisting human walking.
A second configuration, in which the person is in a lying position, and likely to
reproduce all movements of which the physiological joints are capable. It is used
on patients, with more severe neurological conditions, who are unable to actively
move their own legs. In this paper, we cover only the standing posture config-
uration. Therefore, the target movements are limited to the flexion/extensions
of the hip, knee and ankle in both legs. The robotic system is composed of a
fixed frame serving as a base for actuators, together with two mobile orthoses
(or platforms for parallel robots) to support the lower limbs. Each orthosis has
a passive rotary joint to accommodate movements of the ankle joints, indepen-
dently of the other articulations. Each platform (or orthosis) is manipulated by
four cables in order to perform movements in the X-Y plane and in a Z-axis
rotation. The total system therefore includes eight cables, arranged such as to
ensure a coordinated and synchronized movement of the two leg orthoses, both
having three degrees of freedom.

Our work focusses on the study of a particular problem. Since each orthosis is
made of two segments interconnected by a passive rotary joint, we need to control
a trajectory composed of two independent motions. We also need to develop
explicit models to facilitate future work: the elaboration of a trajectory generator
and the design of an efficient human-machine interface with the clinician.

The proposed approach aims to explicitly formulate the kinematic models
of the system in order to facilitate the movements to be reproduced based on
the clinicians’ needs. At this stage of the project, the physical system is real-
ized. Experimental and simulation validations of the model have already been
completed.

The rest of the paper is organized as follows: In Sect. 2, a description of the
system is given. This system is composed of the leg segments and the cable robot.
Section 3 covers the kinematic model of both the leg and the robot. Simulation
and experimental results are presented in Sect. 4. Section 5 contains a conclusion
and the interpretation of the results obtained.

2 Description of the System

2.1 Physiological Members

The lower-limb part of the system is modeled as two parallel kinematic chains
linked to a rigid frame. Each of these kinematics chain is composed of three
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links and three joints as shown in Fig. 1A. In this paper, we only consider the
flexion/extension movements of these articulations. The reference frame is placed
at the midpoint between the two joints of the hip. The Z0-axis is oriented in
the same direction as Z3r, as shown in Fig. 1B. The kinematic model uses the
Denavit-Hartenberg convention [7] (see Table 1 for the link parameters).

Fig. 1. A: The referentiel and geometric parameters B: Lower-limb articulation
rotations

Since there is a symmetry between the two kinematic chains (Fig. 1A), we
use subscript k in the equations. This subscript must be replaced by r in the
equations with respect to the right kinematic chain. Similarly, the subscript l
refers to the left kinematic chain. There is only one exception to this notation:
the distance bk is replaced by br for the right side and −bl for the left side.

Figure 1B shows that these three angles move the leg segments only in the
X-Y plane1, while the other physiological angles create movements outside this
plane.

Table 1. Link parameters of the k-th kinematic chain

Joint αk ak dk θk

3 0 0 bk θ3k

4 0 a1k 0 θ4k

7 0 a2k 0 θ7k + π/2

1 The plane can extend to three dimensions in the second configuration of this pro-
posed robot. This configuration, where the patient is in a supine position, is treated
in a second paper which will shortly be submitted.
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2.2 Cable Robot

KINECAB is a parallel cable-robot to be used for lower-limb rehabilitation.
Figure 2A shows the robot in the configuration with the subject standing. There
are two mobile orthoses (one per leg) composed of two parts connected by a
passive joint, one to hold the leg and the other to hold the foot. One end of the
cables is attached to the member support and the other end side is wound around
motor-driven winders. The trajectories executed by the engines will manipulate
the leg supports which will manipulate the members. The patient is held stand-
ing by a harness, the first part of support will hold a leg and a second part will
hold a foot. The cables will be attached after patient positioning. The support
can be adjusted to fit for different morphologies of the subjects. Four cables
are needed to control the trajectory of an orthosis and the corresponding leg.
Thus, the robotic system contains a total of eight cables, since we control the
movements of both legs. The cables are attached to the supports after position-
ing the patient. The position and the orientation of the orthosis segments are
obtained by adjusting the cable length designated by variables ρ1k, ρ2k, ρ3k and
ρ4k. The length ρjk of cable j of the side k is the distance between its attachment

Fig. 2. A: Preliminary design of KINECAB robot — standing configuration B: Built
academic prototype KINECAB
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point Pjk at the fixed structure and the attachment point Vjk on the orthosis.
The attachment points Pjk are defined relative to the reference frame {X0m,
Y0m, Z0m}:

P1k =
[−a4k e4k bk

]T

P2k =
[−a4k e4k + e5k bk

]T

P3k =
[−a4k e4k + e5k + e6k bk

]T

P4k =
[
e8k − a4k −e7k bk

]T

Furthermore, the attachment points Vjk are defined relative to the orthosis
frame {Xc1, Yc1, Zc1}:

V1k =
[−e2k e1k/2 0

]T

V2k =
[
e3k − e2k e1k/2 0

]T

V4k =
[
e3k/2 − e2k −e1k/2 0

]T

except for the attachment point V3k where the frame used is {Xc2, Yc2, Zc2}:

V3k =
[−e9k sin(θ7k) e9k cos(θ7k) 0

]T

e1k, e2k...e9k represent the geometric parameters of the robot shown in Fig. 3.
Each cable is passed through a pulley of radius rjk, where j ∈ {1, 2, 3, 4} and

k indicate the right and left side, respectively.
Each orthosis is divided into two parts, articulated around a passive rotary

joint. In cartesian space, the robot has to realize a movement consisting in the
translation and rotation of the entire orthosis and in the rotation of the second
segment of the orthosis relative to the first.

Fig. 3. Parametrization and placement of frames on the cables mechanism (right hand
side)
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Both parts of the orthosis translate in their X-Y plane and rotate around
their Z-axis. The reference frames {Xc1, Yc1, Zc1} and {Xc2, Yc2, Zc2} of both
parts of the orthosis are located at the rotary joint with their origin at the same
location and the Z axis in the same direction.

Note that Fig. 3 shows only the right-side orthosis, in order to allow a clearer
picture of the system. The left-side orthosis is placed symmetrically at distance
bl from the system reference frame.

The origins of the leg segment frames (one for the left leg and, one for the
right leg) are located exactly at the reference frame {X0m, Y0m, Z0m}.

3 Kinematic Model

In this section, we begin by defining the reference model of the robot. At this
level, the direct and inverse kinematics of the leg segments are calculated. Their
velocities and accelerations are also obtained. Then, we evaluate the inverse and
differential kinematics of the cable mechanism, by using the relationship between
the desired physiological joints angle (θ3k, θ4k, θ7k) and the cable real drum angle
(q1k, q2k, q3k, q4k).

3.1 Physiological Members Kinematic [7]

The direct kinematic of both chains are defined by the following homogeneous
transformation matrix:

0
7kH = 0

3kH
3k
4kH

4k
7kH =

⎡

⎢
⎢
⎣

−s3k+4k+7k −c3k+4k+7k 0 β1

c3k+4k+7k s3k+4k+7k 0 β2

0 0 1 bk
0 0 0 1

⎤

⎥
⎥
⎦ (1)

where s• and c• correspond respectively to sin(•) and cos(•). Recall that k is r
or l — right or left.

Also, β1 = a2kc3k+4k + a1kc3k and β2 = a2ks3k+4k + a1ks3k.
The coordinates of the point Ck (at the ankle) relative to the reference

frame is:

Ck =

⎡

⎣
β1

β2

bk

⎤

⎦ =

⎡

⎣
a1k cos(θ3k) + a2k cos(θ3k + θ4k)
a1k sin(θ3k) + a2k sin(θ3k + θ4k)

bk

⎤

⎦

At the end of the chain, the direct kinematics is given by:

0
FkH = 0

7kH
7k
FkH =

⎡

⎢
⎢
⎣

−s3k+4k+7k −c3k+4k+7k 0 β3

c3k+4k+7k s3k+4k+7k 0 β4

0 0 1 bk
0 0 0 1

⎤

⎥
⎥
⎦ (2)

where β3 = −a3ks3k+4k+7k + a2kc3k+4k + a1kc3k and β4 = a3kc3k+4k+7k +
a2ks3k+4k + a1ks3k.
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Fig. 4. A: Representation of points Cr and Fr (k = r for right side) B: Desired
trajectory used in the simulation

We now analyze the inverse kinematics of both chains.
Since we are interested in obtaining the independent relationships between

the movements of the foot and the movements of the leg, we need to find the
inverse relationship of the points Ck expressed in the reference frame from the
angles (θ3k, θ4k) — see Fig. 4A. Then we determine the inverse relationship of
point Fk, at the end of the foot, relative to the point Ck. The X and Y coordi-
nates of point Ck are given respectively by the following equations:

Cxk = a2k cos(θ3k + θ4k) + a1k cos(θ3k) (3)

Cyk = a2k sin(θ3k + θ4k) + a1k sin(θ3k) (4)

where:
θ4k = atan2(α1, α2) (5)

In the three previous equation, we need to evaluate:

α2 =
C2

xk + C2
yk − a2

2k − a2
1k

2a2ka1k
and α1 = ±

√
1 − α2

2

From (3) and knowing that:

cos(θ3k + θ4k) = cos(θ3k) cos(θ4k) − sin(θ3k) sin(θ4k)

And we find:

θ3k = atan2(Cyk, Cxk) − atan2(a2kα1, a2kα2 + a1k) (6)

and:
θ7k = atan2(Fyk, Fxk) − π

2
(7)
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Finally we conclude this subsection, by analyzing the differential kinematics.
The vector of linear and angular velocities at point Ck (respectively νk ∈ R

3

and ωk ∈ R
3) with respect to the framework referential is given by:

vk =
[

νk

ωk

]
= Jkθ̇k (8)

where Jk ∈ R
3×3 is:

Jk =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

−a2ks3k+4k − a1ks3k −a2ks3k+4k 0
a2kc3k+4k + a1kc3k a2ks3k+4k 0

0 0 0
0 0 0
0 0 0
1 1 1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

(9)

The combined acceleration vector is given by:

v̇k =
[

ν̇k

ω̇k

]
= J̇kθ̇k + Jkθ̈k (10)

From (8) and (10) we obtain the inverse relations as:

θ̇k = J−1
k vk (11)

and:
θ̈k = J−1

k

(
v̇k − J̇kJ−1

k vk

)
(12)

3.2 Cable Robot Kinematics [12–14,17]

The direct kinematics of the robot is expressed (for each side) by:

Cck = ρikv + Pik − QkVik (13)

where i ∈ {1, 2, 3, 4} is the cable number and Qk ∈ R
3×3 is the rotation matrix

for the {XCk, YCk, ZCk} orthosis frame of side k:

Qk =

⎡

⎣
cos(θ3k + θ4k) − sin(θ3k + θ4k) 0
sin(θ3k + θ4k) cos(θ3k + θ4k) 0
0 0 1

⎤

⎦ (14)

From (13) we obtain:

ρikv = Cck + QkVik − Pik =

⎡

⎣
ρikx
ρiky
ρikz

⎤

⎦
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The inverse kinematics of both sides gives the cables length and is defined
by:

ρik = ||Cck + QkVik − Pik|| (15)

At the initial condition shown in Fig. 3, the initial lengths of cables are defined
by those vectors:

ρ10k = (a1k + a4k)2 + (e4k − e1k/2)2

ρ20k = (a1k + a4k + e3k)2 + (e4k + e5k − e1k/2)2

ρ30k = (a1k + a4k + e2k)2 + (e4k + e5k + e6k − e9k)2

ρ40k = (e8k − a1k − a4k − e3k/2)2 + (e7k − e1k/2)2

After a displacement of the cables, their lengths become:

ρk = ρ0k − rkqk

then we can write:
qk = r−1

k (ρ0k − ρk) (16)

where:
qk =

[
q1k q2k q3k q4k

]T

is the vector of the cable reel drum angle and:

rk = diag(r1k, r2k, r3k, r4k)

is the diagonal matrix of the reel radius and rik is the radius of the i-th reel of
side k.

The cable speeds are calculated from the derivative of the cable length with
time. Then, from (15) we find:

ρikρ̇ik = (Cck + QkVik − Pik)
T Ċck + + (QkVik × (Cck − Pik))

T
ωk

which can be rewritten as:
Akρ̇k = Bktk (17)

where Ak ∈ R
4×4 is the following diagonal matrix of cable length:

Ak = diag(ρ1k, ρ2k, ρ3k, ρ4k)

Bk ∈ R
4×6 is:

Bk =
[
bT
1k bT

2k bT
3k bT

4k

]T

and each entry bik ∈ R
6 in Bk is:

bT
ik =

[
(Cck + QkVik − Pik)

T (QkVik × (Cck − Pik))
T

]
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Furthermore, the vector tk ∈ R
6 is:

tk =
[
ĊT

ck ωT
k

]T

Then, we can obtain the derivative of (16):

q̇k = −r−1
k ρ̇k = −r−1

k A−1
k Bktk (18)

We can also obtain the cable accelerations by taking the time derivative
of (17):

Ȧkρ̇ + Akρ̈k = Ḃktk + Bkṫk

and rewriting this equation as:

ρ̈k = A−1
k

(
Ḃktk + Bkṫk − ȦkA−1

k Bktk
)

where:
Ȧk = diag(ρ̇1k, ρ̇2k, ρ̇3k, ρ̇4k)

Ḃk ∈ R
4×6 is:

Ḃk =
[
ḃT
1k ḃT

2k ḃT
3k ḃT

4k

]T

where each entry ḃik ∈ R
6 in Ḃk is:

ḃT
ik =

⎡

⎣

(
Ċck + (ωk × QkVik)

)

(
ωk × QkVik × (Cck − Pik) + QkVik × Ċck

)

⎤

⎦

T

Also, we have ṫk ∈ R
6 defined as:

ṫ =
[
C̈T

ck ω̇T
k

]T

Then, the time derivative of (18) is:

q̈k = −r−1
k ρ̈k (19)

Since the cable lengths are not large and their inertia is low, the cable flexion
problem will not be addressed in this context.

4 Simulations and Experimental Results

The KINECAB robot prototype is presented in Fig. 2B. This preliminary aca-
demic version will help us to validate the kinematic models developed, as well
as the feasibility of the idea. It will allow us to test the different works we will
undertake in future studies.
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To experimentally validate the explanatory model of the robot, we will per-
form two checks: The first consists in applying cable lengths, which are calculated
by the model according to certain angular amplitudes selected by the robot, and
then verifying the angular amplitudes produced by the robot. (Table 2) and
(Fig. 6). Table 2 shows the cable lengths calculated based on the desired angu-
lar configuration (hip, knee, ankle) and angle values obtained by applying the
calculated lengths. Figure 5 shows the desired configurations obtained by simula-
tion and those obtained experimentally on the robot by applying the calculated
lengths. The observed differences are due mainly to the measurement uncertain-
ties. The second check is based on a PID applied to each drive system.

The validity of the kinematic model is evaluated by analyzing the position
and orientation of a reference point of the leg (ankle joint), and a second frame
on the cable point of the orthosis. The kinematic model is considered valid if the
position and orientation of both reference points are identical.

To verify the models developed, we define first a circular trajectory with
a radius Rcd at point C, where θcd goes from 0 to 2π (Fig. 4B). The foot is
oriented at the angle θFd = θ7r + π/2. For the simulation, this movement is
applied simultaneously to both legs.

Table 2. Verification of some angular amplitudes

Desired amplitudes (.0) Cable lengths on robot (m) Measured amplitudes (.0)

θ3 θ4 θ7 ρ1 ρ2 ρ3 ρ4 θ3 θ4 θ7

0 0 0 1.45 1.98 2.05 0.52 0 0 1

45 −45 0 1.16 1.69 1.75 0.86 42 −41 1

90 −90 0 0.82 1.36 1.42 1.1 88 −93 48

45 0 30 1.11 1.39 1.37 1.05 44 2 26

Fig. 5. Verification of some angular amplitudes
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Fig. 6. A: Maximum position errors of the left side B: Maximum error of QV1 noted
on the left side

5 Conclusion and Interpretation

This paper presented a new cable mechanism used for rehabilitation exercises for
the lower limbs. The objective was to conduct a process to express the kinematic
the cable mechanism based on reference models of leg segments. Its novelty
lies in the movements the system introduces with respect to kinesitherapy by
manipulating two parts of a leg-support connected by a rotating joint. This
permits the three independent movements of the physiological joints. It then
allows the manipulation of two effectors that can operate in synchronization.
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The simulation results show the similarities between the trajectories resulting
from the kinematic model of reference and those observed in the kinematic model
of the cable robot. The experiments showed the validity of the models allowing
the performance of rehabilitation exercises based on desired movements. Never-
theless, for the sake of accuracy, purely mechanical improvements are required in
order to optimize the cable spooling mechanism and reduce the minimum gaps
observed as a result of geometric parameter uncertainties. The trajectory track-
ing will be investigated in future studies addressing the question of appropriate
control strategies for this type of structure. Moreover, other concepts associ-
ated with realizing control systems will be studied; particularly, the concept
of continually ensure the positivity of tension cables and the evaluation of the
biomechanical approach to the modeling of physiological member.
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Abstract. This paper presents a novel architecture of cable-driven par-
allel mechanism that yields large orientation capability around one axis.
Design decisions and justifications are presented with the aim of produc-
ing a human-scale haptic interface used for the rehabilitation of patients
in a fully immersive virtual environment. The rehabilitation task to be
reproduced by the haptic interface consists in carrying a crate from a
shelf to a nearby table. This task requires a large rotation of the crate
about the vertical axis, which cannot be achieved by conventional cable-
driven parallel architectures. The novel architecture presented can gener-
ate Schönflies motion which should be useful in other tasks accomplished
by cable-driven parallel robots.

1 Introduction

Cables-driven parallel robots (CDPRs) possess many proven qualities such as
great stiffness, large payload capabilities for a given footprint and low inertia
which results from the use of low mass cables instead of rigid links. These char-
acteristics are highly desirable for a device used as a haptic interface. A com-
mon disadvantage of these parallel mechanisms is their limited range of motion.
While CDPRs are often praised for their large translational workspace, their
orientation workspace is always limited. This is a major obstacle to their use
as a haptic interface, especially as six-degrees-of-freedom (6-DOFs) devices. For
certain tasks, large orientation capabilities are required.

This drawback was of major concern in the realization the haptic interface
used as a rehabilitation device presented in [3,4]. The task to be rendered requires
large orientation capabilities about the vertical axis of rotation in addition to 6-
DOF motion. Specifically, the task to be reproduced by the haptic interface
consists in carrying crates between two surfaces, the crate impedance being
reproduced by the interface. The end-effector in this case is a mockup crate
with which the user interacts with the system. The goal of this task is to eval-
uate a patient on his capability of lifting a weight during a task involving a
c© Springer International Publishing AG 2018
C. Gosselin et al. (eds.), Cable-Driven Parallel Robots,
Mechanisms and Machine Science 53, DOI 10.1007/978-3-319-61431-1 33
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rotation of his trunk. The patient has to move the crate along a circular arc of
at least 90◦ along the vertical axis, as shown in Fig. 1. Furthermore, a capability
of at least 180◦ is desired so that the patient can move the crate to both his
right and left.

A conventional cable-driven architecture such as those of the FALCON [8],
the MARIONET family [13] or the IPAnema family [16] are not suitable. A fully
constrained architecture, as opposed to a suspended mechanism, is required to
maintain proper force capabilities in all directions. Of the existing architecture,
the MACARM [12] comes close to what is desired with its gimbaled end-effector.
The problem is that the gimbal is not actuated and so it does not render the
rotational inertia or torque needed. A similar implementation exists for the mech-
anism used in [2], where the gravity powers the reorientation along the vertical
axis. Few or none of the solutions proposed in the literature are then suitable
for the intended haptic application.

A custom solution is thus needed. The solution presented here stems from
ideas seen previously in the literature. The addition of a serial DOF is one of
the most promising ideas [6]. Reconfigurable architectures [1] are an existing
solution but require additional DOFs at the base, which increase complexity
and cost. Adding kinematic redundancies [5,9] have proven able to increase ori-
entation workspace notably but can also increase complexity. Since large reori-
entation capability along the vertical axis is desired, an architecture capable of
Schönflies-like [14] movements would be adequate. To this end, a serial DOF
could be added to the end-effector. Coupling a serial mechanism with a CDPR
was already reported in the literature. One such example is the coupling of a
passive planar serial arm to a CDPR [18]. Another recently proposed solution
consists in doubling some of the cables allowing the addition and actuation of
DOFs on the end-effector [10]. The endless Z architectures was presented in [15],
which constitutes a promising architecture for large rotations about an axis, but
this solution requires at least nine cables. The architecture presented in this
paper has similar capabilities but uses only eight cables.

90◦

Fig. 1. Schematic of the crate moving task. The patient is asked to move the crate
(blue) to the table at his right (pale blue). (Color figure online)
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2 Design Criteria

From the previously presented task, the architecture should allow cables to pro-
duce forces and torques along the three main axes. It should have large trans-
lational capabilities and large rotational capability along the vertical axis of at
least 180◦. Since the mechanism is used as a haptic interface, its moving iner-
tia should be kept to a minimum to maintain a high transparency. It should
not impede user movements. The use of more than eight cables is discouraged
because of implementation constraints.

3 Initial Concepts

Two concepts have initially been considered, both being based on the addition of
a rotational DOF at the end-effector of a conventional CDPR. They differ by the
way means of actuation of this joint. The first concept uses a rotational electric
motor mounted on the mobile platform, as shown in Fig. 2a. The six DOFs of the
mobile platform, which is of a conventional architecture, is then used to move
and hold the motor, while the motor manages the last DOF which is the large
rotation about the main axis. The mobile platform is then kept at a constant
orientation around the main axis and only has to resist the torque transmitted by
the motor. Since the interface is used to render the weight of a virtual crate, the
added weight of the motor does not impact the usable workspace of the interface.
On the other hand, a major drawback of this concept is the considerable increase
of the mobile inertia due to the motor being on the mobile platform which
would negatively affect haptic rendering by lowering the transparency. Another
drawback is the need to route power to this motor. Electric wires are effectively
needed to bring power to this motor and would add inertia and complexity since
they should not imped motions of the end-effector or of the user. Due to these
drawbacks, an alternative is considered.

Motor

Mobile platform

End effector
(a)

Revolute
joint

(b)

Fig. 2. Initial sketches of (a) a serial DOF actuated by a motor mounted on the end-
effector and (b) a serial DOF actuated by cables.
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While keeping the added serial DOF, it would be interesting to move the
actuation to the base to alleviate the preceding drawbacks. By using two cables,
it should be possible to actuate a pulley driving the last DOF, as shown in
[10]. Letting the cable be wound on the end-effector would allow for a large
reorientation, like presented in [11]. This would then greatly increase usable
workspace. A sketch of the implementation is shown in Fig. 2b.

The implementation as sketched should be feasible, but requires ten cables,
which, for practical purposes, is not desirable. With that in mind, it should still
be feasible with eight cables since only six DOFs are desired, which for a fully
constrained mechanism, requires a minimum of seven cables. Since a passive
revolute joint between the end-effector and the mobile platform exists and the
actuation of the serial DOF comes from the fixed base, no torque should be
transmitted to the mobile platform in the direction of the main axis. A 5-DOFs
arrangement of cables for the mobile platform is then sufficient.

An architecture inspired from the FALCON [8], but composed of six cables,
was then developed for the mobile platform. The six cables are attached at two
points on the mobile platform by groups of three. This mobile platform takes
the form of a rigid rod. As such, two different configurations exist, one making
the rod work under compression (a) and the other under tension (b) as shown in
Fig. 3. Since the height clearance is limited, configuration (a) is preferred because
it maximizes the workspace volume for a given height between anchoring points
on the fixed base. Its drawback is an increased possibility of cable interferences,
but since rotation capabilities around horizontal axes are limited and since there
are only three cables per group instead of four, such interferences should be
easily avoided.

Having made this design decision, the architecture of the anchoring points on
the mobile platform is complete. The mobile platform has therefore five DOFs,
three translations and two rotations (2R3T). The mobile platform can therefore
balance external wrenches in all DOFs except around its main axis. The end-
effector is attached to the mobile platform by a revolute joint so that forces and
torques are transmitted, except for the torque about the main axis. The sixth
DOF of the CDPR is actuated at the end-effector by a pair of cables wound on
a drum so that they are able to balance an external moment around the main
axis. Balancing an external moment around the main axis induces a parasitic
resulting force at the end effector that will need to be balanced by the mobile
platform. To reduce the impact of this resulting force the drum is placed as close
as possible to the mobile platform. This architecture is presented in Fig. 4.

In a real implementation, a small parasitic moment might be transmitted
through the revolute joint. This small moment is easily balanced by the mobile
platform, which can withstand small moments about its main axis due to the
cables not being exactly anchored on the main axis and therefore can keep the
mobile platform at a relatively constant angle.

The drum can be chosen to allow as long a cable as needed to be wound on the
end-effector. There is therefore a potential for many turns about the main axis.
Since there are two actuators on a single cable, their action is coupled. A winding
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Fig. 3. Two possible configurations of
the mobile platform.

Mobile
plate-
form

End effector

Drum

Revolute
joint

A

Fig. 4. Schematic of the architecture
of the mobile platform and the end-
effector.

or unwinding of both winches allows for a translation of the end-effector. If the
winding is opposite, the end-effector will rotate about its main axis. In theory,
this rotation could be unlimited, but in practice it will be limited by the design
of the drum assembly and by the sensor measuring the rotation angle. Indeed,
the winding of the cable must be guided to avoid jamming and uneven winding.
Furthermore, without guides, the effective anchoring points on the end-effector
would be dependent on its pose, on the cable tensions and pre-existing winding.
A guide is then necessary to ensure a proper winding and unwinding and a
precise effective anchoring point. By using an eyelet, as used on most winches,
it becomes simple to determine the pose of the effective anchoring point, and
thence, compute the wrench applied by the cable on the end-effector or solve the
forward kinematics. Figure 5 presents various concepts for the guides. The first
one (a) affixes guides which do at the end-effector, which is a simple solution,
but does not allow complete rotations and is thus discarded. Concept (b), which
affixes the guides on the mobile platform, allows rotations but also transmits
torque along the main axis to the mobile platform, which it can’t resist. Final
solution is then concept (c), where the guides are allowed to rotate with respect
to the end-effector, using revolute joints, which allows rotations and prevent
torque transmission along the main axis.

The effective position of the anchoring points is then only dependent on the
mobile platform pose and is constrained on a plane normal to the main axis A at
a constant distance from the centre of the rod. To be able to compute the wrench
matrix, the position of each anchor point on the end-effector must be known. The
six anchors to the mobile platform are constant in the mobile reference frame
and are obtained through the architecture of the mobile platform. However, the
other two depend on the pose, shown in Fig. 6. By projecting all points of interest
on a plane normal to the axis A , i.e., to the axis of the drum, it is possible to find
the position of those anchoring points referred to as R1 and R2 geometrically.
One way to obtain point R1 is by first finding point S1. This point is located
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(a) (b) (c)

Fig. 5. Three possible choices of the placement of the cable guides.

A1 A2

R2R1

R2

R1 R2

R1

S1 S2
rg
r

P

Drum

Guides

Fig. 6. Top view of different poses (one per colour) of the end-effector and its effect on
the positions of the guides. (Color figure online)

at the intersection of the circle centred at point A1 having a radius equal to
the length of the segment A1P and the circle centred at P having a radius of
r, the radius of the drum. At most two intersections exist, but finding the one
of interest should be simple since it is always on the same side of the segment
A1P . Having found the position of point S1, the right angled triangle PR1S1 is
fully defined, the position of two points are known as well as the length of its
hypotenuse, rg which is the length of the guide arm, and one of its sides, r, which
is the radius of the drum. The position of point R1 can therefore be computed.

4 Drum and Guide Assembly Design

To ensure controlled and predictable winding of the cable on the end-effector,
a proper drum design is crucial. One of the first design choices is the radius
of the drum. This radius mainly affects the torque capability along the main
axis. A rough estimate of the available torque in the most favourable condition
is obtained by computing the moment about the main axis when one of the
cables is under maximal tension and the other is at minimal tension. This is
mathematically written as

η = r(τ − τ), (1)
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where η is the moment around the main axis, r is the radius of the drum and τ
and τ are the maximum and minimum cable tensions respectively. To determine
the actual torque capability, the wrench feasible workspace has to be traced [7].
There are two main downsides of having a large radius, one is that it reduces
rotational speed around the axis, the other is that it results in a bulky end-
effector.

Another important design decision concerns the measure of the angle of rota-
tion between the mobile platform and the end-effector. This angle can be inferred
using the measurement of the lengths of the cables, but the sensitivity of the
angle estimate with respect to the cable-length measurements is high. This means
that a small error on the length of a cable results in a large error in the angle
measurement. This effect has been observed in the early implementations. In our
case, a direct measurement of this angle is thus necessary, since this quantity is
crucial to the haptic interface. It indeed has a great influence on the reading of
the force/torque sensor installed on the end-effector and used in the control of
the interface. A multi-turn potentiometer is used to directly measure this angle.
It is coupled to a small and lightweight plastic gear assembly that increases its
sensitivity by a factor of three. Since the potentiometer has a range of 10 turns,
the range of rotation between the mobile platform and the end-effector is lim-
ited to 3.3 turns, which is sufficient, since the task at hand requires a minimum
of half a turn. To avoid routing electric cables to the end-effector to measure
the output of the potentiometer, a small battery-powered wireless transmitter is
used.

With these considerations in mind, a prototype was assembled. For ease of
fabrication and in order to reduce the weight, 3D printable plastic (ABS) is
used for the drum and guide assembly. Aluminum is used as the material for
the rod in the mobile platform and the end-effector. Two ball bearings are used
to allow rotations along the main axis and to prevent movement in the other
directions. Figure 7 shows a view of the CAD prototype with annotated parts.
To mitigate possible incorrect winding of the cables, a double drum has been
conceived, allowing each cable to wind on its own drum, which connects to the

End-
effector

Mobile
platform

Drum

Guide 1Guide 2

Potentiometer

Fig. 7. Illustration of the revolute joint and drum assembly.
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end-effector rod. Although winding a single cable on the end-effector would allow
it to wind and unwind indefinitely, it is preferred to use two cables, which are
wound a minimum of two times on their respective drums. This simplifies of
the drum assembly, since it ensures that the cables are correctly wound without
overlapping, as a single cable on a single drum. Winding each cable with a
minimum of two turns on its drum ensures that the end-effector can rotate over
the full range of 3.3 turns.

5 Implementation Considerations

With the general architecture in place, only the placement of the winches has
yet to be determined. A smaller prototype of the mechanism was first built as
a proof of concept. Because of its smaller size, interferences with the user were
present, but the prototype worked as expected. For the full size mechanism, the
geometric arrangement of the winches needs to be tailored to the task at hand
and must account for environmental constraints, e.g., the size of the room, possi-
ble anchoring points and obstacles. It is also desired to maximize the workspace.
For the targeted task, which is the carrying of a crate by a user, the user who
is situated in the middle of the workspace is the greatest constraint because
cables should not interfere user movements. To this end, the whole mechanism is
moved above the user as shown in Fig. 8. The end-effector rod is then extended
to reach the user. By elongating this rod, forces at the end-effector generate
larger torques at the mobile platform. To counteract this effect, the length of
the mobile platform rod can also be increased to provide a better lever effect. On
the other hand, this increase has the effect of reducing the height of the usable
workspace. Therefore, a compromise has to be made. The preferred approach
is to find and use the minimum length of the end-effector rod needed to avoid
interference with the user. A model of an average height person is then used to
evaluate this geometrically. Figure 8 shows a representation of the CDPR along
with the user in the reference position. The point in front of the user represents
the bottom of the end-effector where the user interacts with the device. This
visualization is then used to find the minimum length, where the user head is
clear from interferences with the cables even when holding the box in a low
position close to the ground.

As for the anchoring points on the fixed base, they are also placed to keep
the cables away from the user. The three higher anchoring points are placed as
high as the room ceiling allows. The three lower anchoring points are placed
at the lowest point before interference with the user appears. With the use of
ARACHNIS [17], software tool for evaluating the wrench feasible workspace, the
constant orientation workspace is computed and used to assess the usable volume
where the task can be accomplished. Figure 9 presents the constant orientation
workspace of the mechanism for the set of external wrench needed by the task,
15 N along the Z axis, 5 N along the X and Y axes and 0.1 Nm around all three
axes taking into consideration the force of all eight cables.

The final design decision to be made is the position of the anchoring points
on the fixed base for the two winches driving the added serial DOF. Intuitively,
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X Y

Z

Fig. 8. Visualization of the user in
the reference position along with the
CDPR.

Fig. 9. Constant orientation wrench
feasible workspace visualization (green
volume) along with the user and a vir-
tual shelf (black block) from which the
crate is moved. (Color figure online)

these should be placed in a plane normal to the Z axis which corresponds to the
main axis in the reference position. To reduce friction at the eyelet of the guides,
the height of the winches should correspond to the height of the drum during
typical use. This therefore leaves only one parameter to define, i.e., the angular
position about the main axis at the reference position, as shown in Fig. 10.
While three possible configurations are presented in this figure, the choice of the
angle is effectively continuous in the range from 0◦ to 360◦. The volume of the
constant orientation workspace has been evaluated for the configuration with

0◦
180◦

270◦

End-effector

Mobible drum

Fig. 10. Top view of the mechanism in its reference position, where the cable pair of
interest is shown in three different configurations 0◦ in red, 180◦ in blue and 270◦ in
green. (Color figure online)
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Table 1. Geometric parameters of the architecture [m]. B2 and B6 are the attachment
points of the two cables driving the added serial DOF so their position varies with the
end effector pose.

(a) Fixed frame

A1 A2 A3 A4 A5 A6 A7 A8

X 2.09 0.02 0.02 2.08 −0.12 −0.14 −0.14 2.08

Y 0.07 −0.00 −0.00 1.58 1.35 3.22 2.95 2.58

Z 3.07 1.85 1.00 0.98 2.86 1.85 0.98 3.01

(b) End-effector

B1 B2 B3 B4 B5 B6 B7 B8

X 0.00 - 0.00 0.00 0.00 - 0.00 0.00

Y 0.00 - 0.00 0.00 0.00 - 0.00 0.00

Z 0.74 0.64 1.32 1.32 0.74 0.64 1.32 0.74

angles, 0◦, 90◦, 180◦ and 270◦, which corresponds to possible anchoring points
on the fixed frame. From the results obtained, the configuration with the angle
equal to 270◦ was chosen, since it results in the largest workspace volume and
facilitates anchoring. A more detailed investigation of this parameter should be
considered in future work. Final geometric parameters are presented in Table 1.

6 Quantitative Results and Conclusion

With the prototype in place, as shown in Fig. 11, the desired capabilities are
achieved. The end-effector can rotate about its main axis for 3.3 turns which is
more than needed for the task that requires a range of ±90◦ from the reference
position. The usable workspace of the robot covers the parts of a virtual shelf

Fig. 11. The haptic device prototype being used in a fully immersive environment.
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and table, that are needed for the rehabilitation task. The user is therefore able
to pick up a virtual crate from the shelf and place it on a table by his side, which
involves a rotation of his trunk.

The novel architecture presented is a good candidate for tasks needing large
orientation capabilities about one axis. Other possibilities exist for this kind
of architecture of CDPR. With a type of movement related to Schönflies-like
motions, screwing tasks as well as palletization tasks are potential candidates.
Future work on this architecture could investigate the possibility of removing
one cable while achieving a similar workspace. Indeed, only seven cables are
needed to fully constrain a 6-DOF CDPR. Conversely, the addition of cables to
the mobile platform cannot be ruled out as a way to increase the workspace or
wrench capabilities.
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Québec Nature et Technologie (FRQNT) 2015-PR-180481.

References

1. Bande, P., Seibt, M., Uhlmann, E., Saha, S.K., Rao, P.V.M.: Kinematics analyses
of Dodekapod. Mech. Mach. Theory 40(6), 740–756 (2005)
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Abstract. The paper gives an overall introduction about the huge cable-driven
parallel robot of FAST, including its mechanical design, control architecture,
integrate system debugging and performance test. In Nov. of 2015, the cabin
was successfully lifted airborne via robot operations, indicating that the cable
robot is coming into being. As the concerning focus, three kinds of prototype
tests are carried out to check cable tension, dynamics and control errors of the
cable robot. Finally assessment and conclusion are made on the performance of
the cable robot.

1 Introduction

The Five-hundred-meter Aperture Spherical radio Telescope, FAST, has been in
construction since the spring of 2011 in a Karst depression of southwest China, which
is expected to be complete in 2016. The huge radio telescope has a flexible and
adjustable feed support system that distinguishes it obviously from many others [1, 2].
Because of its large size, it is very difficult and inconvenient to build a solid support
structure between the feed and the reflector. A flexible mechanism, so called
cable-driven parallel robot, is then designed to fulfill such functions as supporting and
driving the feed airborne, and even preliminary pose controlling of the feed cabin.
Another advantage is that the design greatly reduces both the size and weight of the
cabin [1, 2].

FAST takes only a part of its active reflector as the illumination area that deforms
from spherical dome to paraboloid to converge radio waves to its transient focus. Both
the effective illumination aperture and the focal ratio are constants, but the position of
illumination area can move continuously anywhere on the reflector dome. The fact
indicates that in observation mode the movement of the feed as well as the cabin is
limited only on a 206 m-aperture focal surface which contains all possible transient
focuses. This may produce a set of requirements on the cable robot. First the great
movement range requires that flexible cable be strong enough to support the 30-ton
cabin anywhere. Second the cable robot should be capable of driving the feed cabin to
track transient focus with enough accuracy. The maximal positioning error is less than
48 mm (or rms value less than 16 mm) and maximal pointing error less than 1°.
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Although feasibility of the conceptual design has been proved via a Sino-Germany
end-to-end simulation in 2007 [3, 4] and demonstrations of a few downscale models
[5], a lot of details are left to be testified on the prototype especially after the detailed
design had been finished in 2013. In the middle of 2015 the construction of the
prototype was nearly complete. In November a model cabin was successfully pulled
airborne by six parallel steel cables. Both its size and weight as well as the mass
distribution are quite similar to the real one. It drifted in the air along designated
trajectory with small vibration due to some disturbances like wind. During the next two
months, performance tests were tentatively done on the measurement of cable tensions,
vibration experiments and analysis, and statistics and evaluation of positioning accu-
racy of the cable robot. Each of the tests aims to verify a set of key design parameters or
to update them according to the real performance.

In the following pages, the author would like to introduce the huge cable robot.
First attention is paid on the preliminary running of the cable robot, including its
composition and functions, the preparatory integrate system debugging, the first lifting
and tentative trajectory-tracking of the cabin. Then relevant instances of performance
tests are given graphically with comparisons between actual and analytical data or
between the prototype and down-scaled models. Finally assessment and conclusion are
made on the performance of the cable robot.

2 Mechanical Design

The main structure of huge cable robot is made of 6 parallel flexible link drives, each of
which includes a long steel cable and a capstan as the drive unit [6], as shown in Fig. 1.
Six cables, each supported by a high-rise steel tower, are reeled coordinately by six
capstans to drive the cabin to track with the desired speed and pose the transient focus.
One end of steel cable is jointed to the cabin, while another end is connected to capstan
drum. Six towers are equally spaced around a 600 m-diameter ring. Each steel cable
carries quite a few trolleys under which electrical cable for power supply or optic fiber
cable for signal transmission is hung up, as shown in Fig. 3. It can automatically adapt
to the length change of steel cable due to movable trolleys. Furthermore each upper
pulley on a tower is installed on an omnidirectional slewing gear to adapt to the change
of cabin position.

Fig. 1. Overall view of the cable robot of
FAST

Fig. 2. Sectional dimension
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Each of 6 capstans with additional electric equipments is installed in a steel house.
The layout guides the cable vertical to the drum axis for reliable coiling and uncoiling
of the cable. Each capstan is composed of servomotor, gearbox, clutch, drum and 2
working brakers and a safety braker. An asynchronous servomotor with integrated
multi-turn incremental encoders is coupled to a multi-stage gearbox. Working brakers
are installed between motor and gearbox for stopping high-speed shaft if necessary.
Safety braker is installed on one end of drum which works to stop drum rotation only
under emergence that high-speed shaft is unexpectedly broken.

Table 1 gives a brief description of the main mechanical parts and a set of technical
requirements or specifications that have to be carefully considered in the detailed
design and simulations.

Fig. 3. Flexible link drive and its suspensions

Table 1. Description and requirement of mechanical parts of the cable robot

Mechanical part Description Technical
requirement/Specification

Cabin
(end-effector)

Carries the secondary tuning
system, powering/wiring system
and the receivers for astronomical
observation

Weight in total: � 30 tons;
Movement range: A calotte, about
38 m high and 206 m in aperture in
working status, which shares with
the same center of the spherical
reflector. It may also
descend/ascend vertically to/from
the bottom harbor for
maintenance/normal running
Maximal tilt: 15°
Maximal speed: 400 mm/s;
Normal speed: 0*24 mm/s inn
working status

(continued)
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3 Control Architecture

The system architecture is decomposed into 3 layered network structures, namely the
topmost software control, intermediate programmable logical control (PLC) and 6
parallel bottommost electric drives. The software control system mainly devotes to the
kernel algorithms, such as astronomical trajectory planning, computation of 6 coor-
dinate drum positions for cable coiling or uncoiling, optimization of cabin pose and
cable tensions, and dynamic stability. It is made up of a few modules including user
interface, intercommunication and database management. The software is implemented
into a PC-based real-time operating system. The intermediate PLC, composed of
AC500-PM590-ETH controller and engineer workstation, works to gather process
parameters, carry out operation commands and complete system maintenance. Each
bottommost electric drive belongs to ACSM1-04AM-580A-4. The control system and
motor drives can command either position, velocity or torque set values for the motors.
The inner level torque and current control loops are embedded in standard motor drives
(Fig. 4).

Table 1. (continued)

Mechanical part Description Technical
requirement/Specification

6 Steel cables 6 cables support and drag the cabin
airborne. They also provide
support of the cable suspensions

Cable length: about 600 m for
each;
Normal tension range: 140*400
KN;
Maximal change of
length: *200 m;
Minimal safety factor in design of
cable force: 3.5;
Sectional diameter: 46 mm;
Broken load: 1900 KN;
Weight of wire suspension: about
2 tons

6 Capstans As the main driving unit, they
wind/unwind the steel cables
coordinately so that the cabin can
follow specially planned track and
speed. Each is made up of motor,
reducer, shaft and drum

Maximal power of motor:
257 KW;
Winding/unwinding
accuracy: � 2 mm;
Transmission ratio of gear box: up
to 345.5;
Dimension of drum: 2.3 m long
and 2.4 m in diameter

Pulleys and
omnidirectional
slewing gears

Include a pair of upper pulley and
lower pulley to guide the steel
cable

Diameter: about 2 m;
The ratio of pulley diameter to
rope: 45
The upper pulley can turn left or
right due to eccentric cable by as
much as 20° in a round
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4 System Debugging

System debugging of the cable robot took up the main working stage after equipment
installment. The integrate system performance can be further confirmed via debugging.
It includes unloaded test and loaded test. During the unloaded test steel cables are
dismounted from capstan drums. Each single link drive is first tested, checking com-
ponent status, circuit connection, PLC commands and logic relations. Then coordi-
nation performance is tested for the six parallel link drives. At the operating station, the
robot controller is also under testing, including its human machine interface (HMI),
control commands, logic function and data communication with both the main con-
troller and the PLC. At this stage system safety and its effective self-protection are
highly concerned under unexpected situations like communication interrupt, power off
or equipment malfunction. Another key task is to verify the feasibility of control
algorithm via a hardware-in-the-loop simulation of trajectory tracking.

The following loaded test of the robot involves lifting the cabin airborne. Before
that test the model cabin is mounted on a ring-shaped harbor located on the bottom of
the telescope depression, as shown in Fig. 5(1). Safety check is still the upmost focus,
such as brakers, mechanical connection, operation procedure, emergent stop and
interference with other equipments. Then the cabin continues to move upward until it
stops at a position 20 m high where the cabin orientation is checked. After that the
cabin returns to the harbor under inverse operations. Figure 5(2) shows the airborne
cabin.

Fig. 4. Network of PLC and bottommost electric drives
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5 Performance Test

At this stage the cable robot can lift the model cabin airborne 140 m high to reach a
calotte-shaped zone that is enclosed by the focal surface and its upper aperture plane.
The related position and dimension of the zone are shown in Fig. 2. A series of tests are
done here to get or verify key robot performances, such as kinematics, dynamics,
control parameters and system braking. Here three kinds of tests are introduced, namely
the control test of astronomical tracking, force measurement and verification of steel
cable, and vibration test and damping identification of the flexible cabin-cable sus-
pension system.

Several kinds of sensors are installed on the model cabin to complete measurement
of such tests, including force sensors, accelerators, targets of laser total station and
anemoclinograph. Their installations are shown in Fig. 6(1). The most important is the
laser total station whose pose feedback is the key information of control test. Three
leica TS30 total stations are set up on measurement bases scattered on the telescope
dish, as shown in the photo of Fig. 6(2). Six targets are installed on the bottom of the
cabin. At least three targets are necessary in measurement during which spatial coor-
dinates are transformed into the cabin pose. Its nominal accuracy under tracking mode
is 1 mm + 1 ppm and 0.5 angular seconds in rms value. Tentative site tests show that
the actual accuracy of spatial coordinates is below 6 mm rms.

Fig. 5. View of the model cabin (in a left-right order): (1) Model cabin and its harbor;
(2) Airborne cabin

Fig. 6. Sensors in the performance test: (1) Sensors on the cabin; (2) Laser total station and its
position (yellow rings). (Color figure online)
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5.1 Tension Verification

Tensions of 6 steel cables are the key performance in the mechanical design of the
cable robot. The end-to-end simulation based on Sino-Germany cooperation in 2007
first gave calculation results of cable tensions [3, 7]. The simulation furthers that
one-to-one mapping exists between cabin pose and 6 cable tensions [8, 9], so the
planning of cabin orientation can be determined via optimization of cable tension once
the cabin path is given.

In the verification test 6 steady state cable tensions are measured near 6 cable-cabin
joints. The maximal measuring range of the force sensor is 50t with the minimal
resolution equal to 0.1t. Its nominal error is 1% of the measuring range but the actual
value may reach about 3% via site test. Movement path of the cabin is predefined
during the test. The cabin first follows a ring on the edge of the focal surface. Then it
goes down along a straight line to the bottom of the surface. Along such a path cable
tension goes through all possible values between the maximum and minimum.

Figure 7 (1) and (2) shows the comparison between theoretical calculation and
measurement for each of 6 cable tensions. The theoretical calculation is based on a
united static equilibrium analysis of both the cabin and 6 sagged cables, as demon-
strated in the references [7, 10]. The 12 curves keep horizontal due to an operational
pause during the period from about 4000 s to 6000 s. Obviously each pair of the
theoretical and measured curves shows a similar shape. As the cabin follows the ring,
they fluctuate periodically with nearly the same phase difference. When the cabin
descends to the bottom, the curves go down and converge to nearly the same value. The
error of each cable tension is relatively small as it varies in the range of about [15t, 30t].
However it goes up fast outside this range and reaches about 4t at the maximal tension.
The authors estimate that the error may come from the modeling of sagged cable
carrying wire suspensions of the cabin. The wire suspensions are not distributed
smoothly and they may vary nonlinearly. Such modeling error is too difficult to include
in the analytical model. Nevertheless the error is allowable compared with the mea-
surement range and the sensor accuracy.
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5.2 Vibration Test and Damping Identification

Cabin-cable suspension system of the robot has structurally weak-stiffness dynamics
with low damping performance, which makes it quite sensitive to disturbance-induced
vibrations. Certain damping can increase the additional energy dissipation of the sys-
tem and therefore suppress such disturbance-induced vibrations. Based on the results of
series of model tests, the end-to-end simulation assumes the damping ratio to be 0.22%
[5]. Nevertheless the key parameter is hardly testified other than prototype test.

The dynamics of cabin-cable suspension system changes as the cabin moves.
Therefore several typical points of the focal surface are selected as the working
positions (WP) in the test. The selections include the bottom point of the surface
(WP1), an edge point nearest to a tower (WP2) and an edge point between two
neighbor towers (WP3). The test results on these points can hold enough information of
the system dynamics.

Artificial impact is made to excite vibration of the flexible suspension system. Let
the cabin run to the working position at the maximal speed (100 mm/s) in x/y/z
direction respectively. Then the six capstan drums are synchronously braked to stop
urgently at the position to induce free decaying vibration. Two highly sensitive
SLJ-100 accelerators on the cabin can record the weak spatial acceleration response of
the cabin with a sampling rate of 200 Hz. Each gives data in three directions. Figure 8
shows an example of vibration measurement at WP1. The vibration is induced when
the cabin goes down vertically to WP1 and is then stopped.

The vibration lasted for several minutes before it completely decayed. First, the
data on the starting stage are discarded because they are by far higher than the normal
vibration level. Similarly the data on the end are also neglected due to lower
signal-noise ratio. Second, the measured data are processed via low-pass filtering to
further delete high-frequency noise. The cut-off frequency is about 0.6 Hz. Finally, the
method of Ibrahim Time Domain (ITD) [11, 12] is applied to identify natural frequency
and relating damping ratio, as shown in Table 2. It is worth noting that damping ratio is
much more sensitive to measurement error than natural frequency. In many occasions
artificial impact may induce multiple frequencies of the system. The author advices that
measured signals be preprocessed via band-pass filtering to separate several frequency
bands for a better identification accuracy.
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Fig. 8. Acceleration of the cabin at WP1: (1) Original data (2) After low-pass filtering

Preliminary Running and Performance Test 409



Obviously the first-order natural frequency falls in an interval of [0.14 Hz,
0.18 Hz], in good accordance with the results of the end-to-end simulation [3, 4].
However the identified damping ratio scatters in a broad range. Generally it is low
according to the first-order frequency. The lowest value is 0.35%, quite satisfying result
compared with the previous assumption in the end-to-end simulation. Higher damping
ratio means more energy dissipation and better control stability of the flexible sus-
pension system.

5.3 Control Test

In the control test the robot drives its cabin to track astronomical trajectories. Tracking
error is always the concerning focus. Taking the reference origin on the rotational
center of the cabin, the technical specification requires that translational error is less
than 48 mm and the orientation error less than 1 angular degree. Meanwhile system
braking and stable control are also tested in regard of safety. So the optimization of
control algorithm and parameters goes all over the test. Figure 9 shows the basic logic
diagram of the control system of cable robot. Here the robot controller has a feed
forward algorithm other than feed backward, so that a smooth control of the flexible
system can be anticipated. The feedback controller receives two kinds of feedbacks:-
cabin pose and cable tensions. So it is necessary to set pose feedback as the pre-
dominant control considering accuracy and compulsory requirement of large
movement of the cabin. It also avoids a potential conflict due to different feedbacks.
Actually for the sake of simplicity we set that 6 tensions are usually under monitoring
and it works only if any of 6 cable tensions deviates significantly from the predeter-
mined tension range between 140 KN and 400 KN.

Six working modes are tested, namely slewing, tracking of single source,
basket-weaving, drift-scan, on-the-fly (OTF) mapping and user-defined mapping.
Accurate positioning is required for most of the working modes except for slewing,
also called observation modes. In the slewing mode the cabin is required to move fast
to the designated starting point of observation path within limit time, normally 10 min.
The path may not be restricted on the focal surface, but a straight line instead. On the

Table 2. Identified natural frequency and damping ratio of the suspension system

Working position Coordinates Natural freq. (Hz) Damping ratio
X(m) Y(m) Z(m)

WP1 0 0 −161.70 0.1711 0.0035
0.4662 0.0125

WP2 72.202 74.767 −123.17 0.1460 0.0058
0.5407 0.0067

WP3 99.912 28.649 −123.17 0.1438 0.0063
0.1803 0.0040
0.5225 0.0035

WP4 38.418 39.783 −151.25 0.1437 0.0046
0.1799 0.0039

410 H. Li et al.



contrary, in observation modes most of trajectories are sectionally continuous arcs on
the focal surface.

An operational scenario of cabin position with constant acceleration and deceler-
ation can be planned for most of the modes, as shown in Fig. 10. The only exception is
the drift-scan mode when the cabin is fixed to a point. During a working mode the
scenario is made of two stages of constant acceleration/deceleration m, t1, and a long
period of constant speed, t2. The maximal speed, V0, may reach 400 mm/s with the
acceleration/deceleration time equal to 20 s in the slewing mode. But in observation
modes the respective maximal values are 24 mm/s, doubling the self-rotation speed of
the earth, and 2 s. When the planned path is quite short, the stage of constant speed
may disappear. Similarly an operational scenario of cabin orientation can also be
planned. The only difference is that orientation planning is not directly determined by
working mode and its parameters, but based on the analysis of optimal tension dis-
tribution of the cable robot [7, 10] along a given cabin path.

Fig. 9. Control loop of cable robot

Fig. 10. Operational scenario of cabin
pose
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Figure 11 shows some testing trajectories. Control errors of some trajectories are
plotted as the time-error curves, as shown in Fig. 12. The blue and red horizontal lines
in each plot are the required spatial and angular limits respectively. Several significant
phenomena can be observed in the figure. First, for all observation modes the control
errors are below the required limit in the most part of period. The errors may further
decrease as the time goes long. At the starting point, however, large initial errors may
exist. The author advices that positioning control should be turned on earlier before the
starting of observation mode so that initial error may be reduced greatly in advance.
Second, spatial error deceases fast than angular error which fluctuates obviously with
very low frequency. It sometimes approaches to or even surpasses the limit. The
possible reason may be relatively larger rotational inertia of the cabin and smaller
stiffness. It may be improved via optimizing the control parameters in the next tests.
Finally, periodical jumping of spatial error can be observed in the mode of on-the-fly
mapping. The jumps appear synchronously with the sharp turns of the trajectory. This
is the problem on how to keep good positioning control at such unsmooth transitions
between two continuous paths. Based on dynamics of the flexible suspension system,
optimization of the control parameters or kinematic planning may be a solution.

During the test, some problems also exist in the measurement of total station, like
sudden jump of data, possibly due to tracking failure of targets. It may cause serious
incorrect operation of the robot. Currently a limit is set so that large jump can be
neglected by robot controller and a previous value is replaced with it.
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6 Summary

The FAST uses the largest cable robot in the world to drive its cabin for astronomical
observation. Now the novel design is coming into being. This paper devotes to an
overall introduction, including its mechanical composition, control architecture, system
debugging and performance test. Actually each of these aspects involves in a lot of
details that are not discussed here due to the limit paper length.

Performance test is always the key concerning focus in that it verifies the facts
whether the cable robot is capable of astronomical tracking with desired positioning
accuracy. The preliminary test results agree well with those of the end-to-end simu-
lation. Some parameters like damping ratio are even better than previous estimation in
simulations. The errors of the control test may not completely satisfy the required limit.
Nevertheless the possible problems are visible, such as initial errors, unsmooth tran-
sition and data jumps of total station. They may be well cracked in the future work.
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