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Preface

Interactions between the mathematical and biological sciences have been in-
creasing rapidly in recent years. Both traditional topics, such as population
and disease modeling, and new ones, such as those in genomics arising from
the accumulation of DNA sequence data, have made biomathematics an ex-
citing field. The best predictions of numerous individuals and committees
have suggested that the area will continue to be one of great growth.

We believe these interactions should be felt at the undergraduate level.
Mathematics students gain from seeing some of the interesting areas open
to them, and biology students benefit from learning how mathematical tools
might help them pursue their own interests. The image of biology as a non-
mathematical science, which persists among many college students, does a
great disservice to those who hold it. This text is an attempt to present some
substantive topics in mathematical biology at the early undergraduate level.
We hope it may motivate some to continue their mathematical studies beyond
the level traditional for biology students.

The students we had in mind while writing it have a strong interest in bi-
ological science and a mathematical background sufficient to study calculus.
We do not assume any training in calculus or beyond; our focus on modeling
through difference equations enables us to keep prerequisites minimal. Math-
ematical topics ordinarily spread through a variety of mathematics courses
are introduced as needed for modeling or the analysis of models.

Despite this organization, we are aware that many students will have had
calculus and perhaps other mathematics courses. We therefore have not hesi-
tated to include comments and problems (all clearly marked) that may benefit
those with additional background. Our own classes using this text have in-
cluded a number of students with extensive mathematical backgrounds, and
they have found plenty to learn. Much of the material is also appealing to
students in other disciplines who are simply curious. We believe the text can
be used productively in many ways, for both classes and independent study,
and at many levels.
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viii Preface

Ourwriting style is intentionally informal.We have not tried to offer defini-
tive coverage of any topic, but rather draw students into an interesting field.
In particular, we often only introduce certain models and leave their analysis
to exercises. Though this would be an inefficient way to give encyclopedic
exposure to topics, we hope it leads to deeper understanding and questioning.

Because computer experimentation with models can be so informative,
we have supplemented the text with a number of MATLAB programs. MAT-
LAB’s simple interface, its widespread availability in both professional and
student versions, and its emphasis on numerical rather than symbolic compu-
tation havemade itwell-suited to our goals.We suggest appropriateMATLAB
commands within problems, so that effort spent teaching its syntax should
be minimal. Although the computer is a tool students should use, it is by no
means a focus of the text.

In addition to many exercises, a variety of projects are included. These
propose a topic of study and suggest ways to investigate it, but they are
all at least partially open-ended. Not only does this allow students to work at
different levels, it also ismore true to the reality ofmathematical and scientific
work.

Throughout the text are questions marked with “�.” These are intended as
gentle prods to prevent passive reading. Answers should be relatively clear
after a little reflection, or the issue will be discussed in the text afterward. If
you find such nagging annoying, please feel free to ignore them.

There is morematerial in the text than could be covered in a semester, offering
instructors many options. The topics of Chapters 1, 2, 3, and 7 are perhaps
the most standard for mathematical biology courses, covering population and
disease models, both linear and nonlinear. Chapters 4 and 5 offer students
an introduction to newer topics of molecular evolution and phylogenetic tree
construction that are both appealing and useful. Chapter 6, on genetics, pro-
vides a glimpse of another area in which mathematics and biology have long
been intertwined. Chapter 8 and the Appendix give a brief introduction to the
basic tools of curve fitting and statistics.

In terms of logical development,mathematical topics are introduced as they
are needed in addressing biological topics. Chapter 1 introduces the concepts
of dynamic modeling through one-variable difference equations, including
the key notions of equilibria, linearization, and stability. Chapter 2 motivates
matrix algebra and eigenvector analysis through two-variable linear models.
These chapters are a basis for all that follows.

An introduction to probability appears in two sections of Chapter 4, in
order to model molecular evolution, and is then extended in Chapter 6 for
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genetics applications. Chapter 5, which has an algorithmic flavor different
from the rest of the text, depends in part on the distance formulas derived
in Chapter 4. Chapter 8’s treatment of infectious disease models naturally
depends on Chapter 3’s introduction to models of interacting populations.

The development of this course began in 1994, with support from a Hughes
Foundation Grant to Bates College. Within a few years, brief versions of
a few chapters written by the second author had evolved. The first author
supplemented these with additional chapters, with support provided by the
American Association of University Women. After many additional joint
revisions, the course notes reached a critical mass where publishing them
for others to use was no longer frightening. A Phillips Grant from Bates
and a professional leave from the University of Southern Maine aided the
completion.

We thankourmanycolleagues, particularly those in the biological sciences,
who aided us over the years. Seri Rudolph, Karen Rasmussen, and Melinda
Harder all helped outline the initial course, and Karen provided additional
consultations until the end. Many students helped, both as assistants and
classroom guinea pigs, testing problems and text and asking many questions.
A few who deserve special mention are Sarah Baxter, Michelle Bradford,
Brad Cranston, Jamie McDowell, Christopher Hallward, and Troy Shurtleff.
We also thank Cheryl McCormick for informal consultations.

Despite our best intentions, errors are sure to have slipped by us. Please let
us know of any you find.

Elizabeth Allman
eallman@maine.edu

Portland, Maine

John Rhodes
jrhodes@bates.edu

Turner, Maine





Note on MATLAB

Many of the exercises and projects refer to the computer package MATLAB.
Learning enough of the basicMATLABcommands to use it as a high-powered
calculator is both simple and worthwhile. When the text requires more ad-
vanced commands for exercises, examples are generally given within the
statements of the problems. In this way, facility with the software can be built
gradually.

MATLAB is in fact a complete programming language with excellent
graphical capabilities. We have taken advantage of these features to provide
a few programs, making investigating the models in this text easier for the
MATLABbeginner. Both exercises and projects refer to some of the programs
(called m-files) or data files (called mat-files) below.

The m-files have been written to minimize necessary background knowl-
edge of MATLAB syntax. To run most of the m-files below, say onepop.m,
be sure it is in your current MATLAB directory or path and type onepop.
Youwill then be asked a series of questions aboutmodels and parameters. The
command help onepop also provides a brief description of the program’s
function. Since m-files are text files, they can be read and modified by anyone
interested.

Some of the m-files define functions, which take arguments. For instance, a
command like compseq(seq1,seq2) runs the program compseq.m to
compare the two DNA sequences seq1 and seq2. Typing help compseq
prints an explanation of the syntax of such a function.

Amat-file contains data thatmay only be accessed fromwithinMATLAB.
To load such a file, say seqdata.mat, type load seqdata. The names
of any new variables this creates can be seen by then typing who, while values
stored in those variables can be seen by typing the variable name.

Some data files have been given in the form of m-files, so that supporting
comments and explanations could be saved with the data. For these, running
the m-file creates variables, just as loading a mat-file would. The comments
can be read with any editor.

xi



xii Note on MATLAB

The MATLAB files made available with the text are:

� aidsdata.m – contains data from theCenters forDiseaseControl and
Prevention on acquired immune deficiency syndrome (AIDS) cases in
the United States

� cobweb.m, cobweb2.m – produce cobweb diagrammovies for iter-
ations of a one-population model; the first program leaves all web lines
that are drawn, and the second program gradually erases them

� compseq.m – compares two DNA sequences, producing a frequency
table of the number of sites with each of the possible base combinations

� distances.m – computes Jukes-Cantor, Kimura 2-parameter, and
log-det (paralinear) distances between all pairs in a collection of DNA
sequences

� distJC.m, distK2.m, distLD.m – compute Jukes-Cantor,
Kimura 2-parameter, or log-det (paralinear) distance for one pair
of sequences described by a frequency array of sites with each base
combination

� flhivdata.m – contains DNA sequences of the envelope gene for
human immunodeficiency virus (HIV) from the “Florida dentist case”

� genemap.m – simulates testcross data for a genetic mapping project,
using either fly or mouse genes

� genesim.m – produces a time plot of allele frequency of a gene in a
population of fixed size; relative fitness values for genotypes can be set
to model natural selection

� informative.m – locates sites in aligned DNA sequences that are
informative for the method of maximum parsimony

� longterm.m – draws a bifurcation diagram for a one-population
model, showing long-term behavior as one parameter value varies

� markovJC.m, markovK2.m – produce a Markov matrix of Jukes-
Cantor or Kimura 2-parameter form with specified parameter values

� mutate.m, mutatef.m – simulate DNA sequence mutation ac-
cording to a Markov model of base substitution; the second program is
a function version of the first

� nj.m – performs the Neighbor Joining algorithm to construct a tree
from a distance array

� onepop.m – displays time plots of iterations of a one-population
model

� primatedata.m – contains mitochondrial DNA sequences from
12 primates, as well as computed distances between them

� seqdata.mat – contains simulated DNA sequence data
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� seqgen.m – generates DNA sequences with specified length and base
distribution

� sir.m – displays iterations of an SIR epidemic model, including time
and phase plane plots

� twopop.m – displays iterations of a two-population model, including
time and phase plane plots

Of the above programs, compseq, distances, distJC, distK2,
distLD, informative, markovJC, markovK2, mutatef, nj,
and seqgen are functions requiring arguments.

All these files can be found on the web site
www.cup.org/titles/0521525861
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Dynamic Modeling with Difference Equations

Whether we investigate the growth and interactions of an entire population,
the evolution of DNA sequences, the inheritance of traits, or the spread of
disease, biological systems are marked by change and adaptation. Even when
they appear to be constant and stable, it is often the result of a balance of
tendencies pushing the systems in different directions. A large number of
interactions and competing tendencies can make it difficult to see the full
picture at once.

How can we understand systems as complicated as those arising in the bio-
logical sciences? How can we test whether our supposed understanding of the
key processes is sufficient to describe how a system behaves? Mathematical
language is designed for precise description, and so describing complicated
systems often requires a mathematical model.

In this text, we look at some ways mathematics is used to model dynamic
processes in biology. Simple formulas relate, for instance, the population of a
species in a certain year to that of the following year. We learn to understand
the consequences an equation might have through mathematical analysis, so
that our formulation can be checked against biological observation. Although
many of the models we examine may at first seem to be gross simplifications,
their very simplicity is a strength. Simplemodels showclearly the implications
of our most basic assumptions.

We begin by focusing on modeling the way populations grow or decline
over time. Since mathematical models should be driven by questions, here
are a few to consider: Why do populations sometimes grow and sometimes
decline? Must populations grow to such a point that they are unsustainably
large and then die out? If not, must a population reach some equilibrium? If an
equilibrium exists, what factors are responsible for it? Is such an equilibrium
so delicate that any disruption might end it?What determines whether a given
population follows one of these courses or another?

1



2 Dynamic Modeling with Difference Equations

Tobegin to address these questions,we startwith the simplestmathematical
model of a changing population.

1.1. The Malthusian Model

Suppose we grow a population of some organism, say flies, in the laboratory.
It seems reasonable that, on any given day, the population will change due to
new births, so that it increases by the addition of a certain multiple f of the
population. At the same time, a fraction d of the population will die.

Even for a humanpopulation, thismodelmight apply. Ifwe assumehumans
live for 70 years, then we would expect that from a large population roughly
1/70 of the population will die each year; so, d = 1/70. If, on the other hand,
we assume there are about four births in a year for every hundred people,
we have f = 4/100. Note that we have chosen years as units of time in this
case.

� Explain why, for any population, d must be between 0 and 1. What
would d < 0 mean? What would d > 1 mean?

� Explain why f must be at least 0, but could be bigger than 1. Can you
name a real organism (and your choice of units for time) for which f
would be bigger than 1?

� Using days as your unit of time, what values of f and d would be in
the right ballpark for elephants? Fish? Insects? Bacteria?

To track the population P of our laboratory organism, we focus on �P ,
the change in population over a single day. So, in our simple conception of
things,

�P = f P − d P = ( f − d)P.

What this means is simply that given a current population P , say P = 500,
and the fecundity and death rates f and d, say f = .1 and d = .03, we
can predict the change in the population �P = (.1− .03)500 = 35 over a
day. Thus, the population at the beginning of the next day is P + �P =
500+ 35 = 535.

Some more notation will make this simpler. Let

Pt = P(t) = the size of the population measured on day t,

so

�P = Pt+1 − Pt
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Table 1.1. Population Growth
According to a Simple Model

Day Population

0 500
1 (1.07)500 = 535
2 (1.07)2500 = 572.45
3 (1.07)3500 ≈ 612.52
4 (1.07)4500 ≈ 655.40
...

...

is the difference or change in population between two consecutive days. (If
you think there should be a subscript t on that �P , because �P might be
different for different values of t , you are right. However, it’s standard practice
to leave it off.)

Now what we ultimately care about is understanding the population Pt ,
not just �P . But

Pt+1 = Pt + �P = Pt + ( f − d)Pt = (1+ f − d)Pt .

Lumping some constants together by letting λ = 1+ f − d, our model of
population growth has become simply

Pt+1 = λPt .

Population ecologists often refer to the constant λ as the finite growth rate
of the population. (The word “finite” is used to distinguish this number from
any sort of instantaneous rate, which would involve a derivative, as you learn
in calculus.)

For the values f = .1, d = .03, and P0 = 500 used previously, our entire
model is now

Pt+1 = 1.07Pt , P0 = 500.

The first equation, relating Pt+1 and Pt , is referred to as a difference equation
and the second, giving P0, is its initial condition. With the two, it is easy to
make a table of values of the population over time, as in Table 1.1.

From Table 1.1, it’s even easy to recognize an explicit formula for Pt ,

Pt = 500(1.07)t .

For this model, we can now easily predict populations at any future times.
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It may seem odd to call Pt+1 = (1+ f − d)Pt a difference equation, when
the difference �P does not appear. However, the equations

Pt+1 = (1+ f − d)Pt

and

�P = ( f − d)P

are mathematically equivalent, so either one is legitimately referred to by the
same phrase.

Example. Suppose that an organism has a very rigid life cycle (which might
be realistic for an insect), in which each female lays 200 eggs, then all the
adults die. After the eggs hatch, only 3% survive to become adult females,
the rest being either dead or males. To write a difference equation for the
females in this population, where we choose to measure t in generations, we
just need to observe that the death rate is d = 1, while the effective fecundity
is f = .03(200) = 6. Therefore,

Pt+1 = (1+ 6− 1)Pt = 6Pt .

� Will this population grow or decline?
� Suppose you don’t know the effective fecundity, but do know that the

population is stable (unchanging) over time. What must the effective
fecundity be? (Hint: What is 1+ f − d if the population is stable?)
If each female lays 200 eggs, what fraction of them must hatch and
become females?

Notice that in this last model we ignored the males. This is actually a
quite common approach to take and simplifies our model. It does mean we
are making some assumptions, however. For this particular insect, the precise
number of males may have little effect on how the population grows. It might
be that males are always found in roughly equal numbers to females so that
we know the total population is simply double the female one. Alternately,
the size of the male population may behave differently from the female one,
but whether there are fewmales or many, there are always enough that female
reproduction occurs in the same way. Thus, the female population is the
important one to track to understand the long-term growth or decline of the
population.

� Can you imagine circumstances in which ignoring the males would be
a bad idea?
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What is a difference equation? Now that you have seen a difference
equation, we can attempt a definition: a difference equation is a formula
expressing values of some quantity Q in terms of previous values of Q. Thus,
if F(x) is any function, then

Qt+1 = F(Qt )

is called a difference equation. In the previous example, F(x) = λx , but often
F will be more complicated.

In studying difference equations and their applications, we will address
two main issues: 1) How do we find an appropriate difference equation to
model a situation? 2) How do we understand the behavior of the difference
equation model once we have found it?

Both of these things can be quite hard to do. You learn to model with dif-
ference equations by looking at ones other people have used and then trying to
create some of your own. To be honest, though, this will not necessarily make
facing a new situation easy. As for understanding the behavior a difference
equation produces, usually we cannot hope to find an explicit formula like we
did for Pt describing the insect population. Instead, we develop techniques
for getting less precise qualitative information from the model.

The particular difference equation discussed in this section is sometimes
called an exponential or geometric model, since the model results in exponen-
tial growth or decay.When applied to populations in particular, it is associated
with the name of Thomas Malthus. Mathematicians, however, tend to focus
on the form of the equation Pt+1 = λPt and say the model is linear. This
terminology can be confusing at first, but it will be important; a linear model
produces exponential growth or decay.

Problems

1.1.1. A population is originally 100 individuals, but because of the com-
bined effects of births and deaths, it triples each hour.
a. Make a table of population size for t = 0 to 5, where t is measured
in hours.

b. Give two equations modeling the population growth by first ex-
pressing Pt+1 in terms of Pt and then expressing �P in terms of
Pt .

c. What, if anything, can you say about the birth and death rates for
this population?



6 Dynamic Modeling with Difference Equations

1.1.2. In the early stages of the development of a frog embryo, cell division
occurs at a fairly regular rate. Suppose you observe that all cells
divide, and hence the number of cells doubles, roughly every half-
hour.
a. Write down an equation modeling this situation. You should spec-
ify how much real-world time is represented by an increment of 1
in t and what the initial number of cells is.

b. Produce a table and graph of the number of cells as a function of
t .

c. Further observation shows that, after 10 hours, the embryo has
around 30,000 cells. Is this roughly consistent with your model?
What biological conclusions and/or questions does this raise?

1.1.3. Using a hand calculator, make a table of population values at times
0 through 6 for the following population models. Then graph the
tabulated values.
a. Pt+1 = 1.3Pt , P0 = 1
b. Nt+1 = .8Nt , N0 = 10
c. �Z = .2Z , Z0 = 10

1.1.4. Redo Problem 1.1.3(a) using MATLAB by entering a command se-
quence like:

p=1

x=p

p=1.3*p

x=[x p]

p=1.3*p (Because this repeats an earlier command, you can save

x=[x p] some typing by hitting the “↑” key twice.)
...

Explain how this works.
Now redo the problem again by a command sequence like:

p=1

x=1

for i=1:10

p=1.3*p (The indentation is not necessary, but helps make

x=[x p] the for-end loop clearer to read.)

end

Explain how this works as well.
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Graph your data with:

plot([0:10],x)

1.1.5. For the model in Problem 1.1.3(a), how much time must pass before
the population exceeds 10, exceeds 100, and exceeds 1,000? (Use
MATLAB to do this experimentally, and then redo it using logarithms
and the fact that Pt = 1.3t .) What do you notice about the difference
between these times? Explain why this pattern holds.

1.1.6. If the data in Table 1.2 on population size were collected in a labora-
tory experiment using insects, would it be consistent with a geometric
model? Would it be consistent with a geometric model for at least
some range of times? Explain.

1.1.7. Complete the following:
a. The models Pt = k Pt−1 and �P = r P represent growing popu-
lations when k is any number in the range and when r is any
number in the range .

b. The models Pt = k Pt−1 and �P = r P represent declining popu-
lations when k is any number in the range and when r is any
number in the range .

c. The models Pt = k Pt−1 and �P = r P represent stable popula-
tions when k is any number in the range and when r is any
number in the range .

1.1.8. Explain why the model�Q = r Q cannot be biologically meaningful
for describing a population when r < −1.

1.1.9. Suppose a population is described by the model Nt+1 = 1.5Nt and
N5 = 7.3. Find Nt for t = 0, 1, 2, 3, and 4.

1.1.10. A model is said to have a steady state or equilibrium point at P∗ if
whenever Pt = P∗, then Pt+1 = P∗ as well.
a. Rephrase this definition as: A model is said to have a steady state
at P∗ if whenever P = P∗, then �P = . . . .

b. Rephrase this definition in more intuitive terms: A model is said
to have a steady state at P∗ if . . . .

c. Can a model described by Pt+1 = (1+ r )Pt have a steady state?
Explain.

Table 1.2. Insect Population Values

t 0 1 2 3 4 5 6 7 8 9 10
Pt .97 1.52 2.31 3.36 4.63 5.94 7.04 7.76 8.13 8.3 8.36
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Table 1.3. U.S. Population Estimates

Year Population (in 1,000s)

1920 106,630
1925 115,829
1930 122,988
1935 127,252
1940 131,684
1945 131,976
1950 151,345
1955 164,301
1960 179,990

1.1.11. Explain why the model �P = r P leads to the formula Pt = (1+
r )t P0.

1.1.12. Suppose the size of a certain population is affected only by birth,
death, immigration, and emigration – each of which occurs in a yearly
amount proportional to the size of a population. That is, if the pop-
ulation is P , within a time period of 1 year, the number of births is
bP , the number of deaths is d P , the number of immigrants is i P ,
and the number of emigrants is eP , for some b, d, i, and e. Show
the population can still be modeled by �P = r P and give a formula
for r .

1.1.13. As limnologists and oceanographers are well aware, the amount of
sunlight that penetrates to various depths of water can greatly affect
the communities that live there. Assuming the water has uniform
turbidity, the amount of light that penetrates through a 1-meter column
of water is proportional to the amount entering the column.
a. Explain why this leads to a model of the form Ld+1 = kLd , where

Ld denotes the amount of light that has penetrated to a depth of d
meters.

b. Inwhat rangemust k be for thismodel to be physicallymeaningful?
c. For k = .25, L0 = 1, plot Ld for d = 0, 1, . . . , 10.
d. Would a similar model apply to light filtering through the canopy

of a forest? Is the “uniform turbidity” assumption likely to apply
there?

1.1.14. The U.S. population data in Table 1.3 is from (Keyfitz and Flieger,
1968).
a. Graph the data. Does this data seem to fit the geometric growth
model? Explain why or why not using graphical and numerical
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evidence. Can you think of factors that might be responsible for
any deviation from a geometric model?

b. Using the data only from years 1920 and 1925 to estimate a growth
rate for a geometric model, see how well the model’s results agree
with the data from subsequent years.

c. Rather than just using 1920 and 1925 data to estimate a growth
parameter for the U.S. population, find a way of using all the data
to get what (presumably) should be a better geometric model. (Be
creative. There are several reasonable approaches.) Does your new
model fit the data better than the model from part (b)?

1.1.15. Suppose a population is modeled by the equation Nt+1 = 2Nt , when
Nt is measured in individuals. If we choose to measure the population
in thousands of individuals, denoting this by Pt , then the equation
modeling the population might change. Explain why the model is
still just Pt+1 = 2Pt . (Hint: Note that Nt = 1000Pt .)

1.1.16. In this problem, we investigate how a model must be changed if we
change the amount of time represented by an increment of 1 in the time
variable t . It is important to note that this is not always a biologically
meaningful thing to do. For organisms like certain insects, gener-
ations do not overlap and reproduction times are regularly spaced,
so using a time increment of less than the span between two con-
secutive birth times would be meaningless. However, for organisms
like humans with overlapping generations and continual reproduc-
tion, there is no natural choice for the time increment. Thus, these
populations are sometimes modeled with an “infinitely small” time
increment (i.e.,with differential equations rather thandifference equa-
tions). This problem illustrates the connection between the two types
of models.

A population is modeled by Nt+1 = 2Nt , N0 = A, where each
increment of t by 1 represents a passage of 1 year.
a. Suppose we want to produce a new model for this population,
where each time increment of t by 1 now represents 0.5 years, and
the population size is now denoted Pt . We want our new model to
produce the same populations as the first model at 1-year intervals
(so P2t = Nt ). Thus, we have Table 1.4. Complete the table for Pt

so that the growth is still geometric. Then give an equation of the
model relating Pt+1 to Pt .

b. Produce a new model that agrees with Nt at 1-year intervals, but
denote the population size by Qt , where each time increment of



10 Dynamic Modeling with Difference Equations

Table 1.4. Changing Time Steps in a Model

t 0 1 2 3
Nt A 2A 4A 8A

t 0 1 2 3 4 5 6
Pt A 2A 4A 8A

t by 1 represents 0.1 years (so, Q10t = Nt ). You should begin by
producing tables similar to those in part (a).

c. Produce a new model that agrees with Nt at 1-year intervals, but
denote the population size by Rt , where each time increment of t
by 1 represents h years (so R 1

h t = Nt ). (h might be either bigger
or smaller than 1; the same formula describes either situation.)

d. Generalize parts (a–c), writing a paragraph to explain why, if our
original model uses a time increment of 1 year and is given by
Nt+1 = k Nt , then a model producing the same populations at 1-
year intervals, but that uses a time increment of h years, is given
by Pt+1 = kh Pt .

e. (Calculus) If we change the name of the time interval h to�t , part
(d) shows that

�P

�t
= kh − 1

h
P.

If �t = h is allowed to become infinitesimally small, this means

d P

dt
= lim

h→0

kh − 1

h
P.

Illustrate that

lim
h→0

kh − 1

h
= ln k

by choosing a few values of k and a very small h and comparing
the values of ln k and kh−1

h .
This result is formally proved by:

lim
h→0

kh − 1

h
= lim

h→0

k0+h − k0

h
= d

dx
kx

∣∣∣∣
x=0

= ln k kx
∣∣
x=0 = ln k.

f. (Calculus) Show the solution to d P
dt = ln k P with initial value

P(0) = P0 is

P(t) = P0e
t ln k = P0k

t .
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How does this compare to the formula for Nt , in terms of N0 and
k, for the difference equation model Nt+1 = k Nt? Ecologists often
refer to the k in either of these formulas as the finite growth rate
of the population, while ln k is referred to as the intrinsic growth
rate.

1.2. Nonlinear Models

The Malthusian model predicts that population growth will be exponential.
However, such a prediction cannot really be accurate for very long. After
all, exponential functions grow quickly and without bound; and, according to
such a model, sooner or later there will be more organisms than the number
of atoms in the universe. The model developed in the last section must be
overlooking some important factor. To be more realistic in our modeling, we
need to reexamine the assumptions that went into that model.

The main flaw is that we have assumed the fecundity and death rates
for our population are the same regardless of the size of the population. In
fact, when a population gets large, it might be more reasonable to expect a
higher death rate and a lower fecundity. Combining these factors, we could
say that, as the population size increases, the finite growth rate should de-
crease. We need to somehow modify our model so that the growth rate de-
pends on the size of the population; that is, the growth rate should be density
dependent.

� What biological factors might be the cause of the density dependence?
Why might a large population have an increased death rate and/or de-
creased birth rate?

Creating anonlinearmodel. Todesign a bettermodel, it’s easiest to focus

on
�P

P
, the change in population per individual, or the per-capita growth rate

over a single time step. Once we have understood the per-capita growth rate
and found a formula to describe it, we will be able to obtain a formula for
�P from that.

For small values of P , the per-capita growth rate should be large, since we
imagine a small population with lots of resources available in its environment
to support further growth. For large values of P , however, per-capita growth
should be much smaller, as individuals compete for both food and space. For
even larger values of P , the per-capita growth rate should be negative, since
that would mean the population will decline. It is reasonable then to assume
�P/P , as a function of P , has a graph something like that in Figure 1.1.
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Figure 1.1. Per-capita growth rate as a function of population size.

Of course we cannot say exactly what a graph of �P/P should look
like without collecting some data. Perhaps the graph should be concave for
instance. However, this is a good first attempt at creating a better model.

� Graph the per-capita growth rate for theMalthusianmodel. How is your
graph different from Figure 1.1?

For the Malthusian model �P/P = r , so that the graph of the per-capita
growth rate is a horizontal line – there is no decrease in�P/P as P increases.

In contrast, the sloping line of Figure 1.1 for an improved model leads to
the formula�P/P = m P + b, for some m < 0 and b > 0. It will ultimately
be clearer to write this as

�P

P
= r

(
1− P

K

)

so that K is the horizontal intercept of the line, and r is the vertical intercept.
Note that both K and r should be positive. With a little algebra, we get

Pt+1 = Pt

(
1+ r

(
1− Pt

K

))

as our difference equation. This model is generally referred to as the discrete
logistic model, though, unfortunately, other models also go by that name as
well.

The parameters K and r in ourmodel have direct biological interpretations.
First, if P < K , then �P/P > 0. With a positive per-capita growth rate, the
population will increase. On the other hand, if P > K , then�P/P < 0.With
a negative per-capita growth rate, the population will decrease. K is therefore
called the carrying capacity of the environment, because it represents the
maximum number of individuals that can be supported over a long period.
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However, when the population is small (i.e., P ismuch smaller than K ), the
factor (1− P/K ) in the per-capita growth rate should be close to 1. Therefore,
for small values of P , our model is approximately

Pt+1 ≈ (1+ r )Pt .

In other words, r plays the role of f − d, the fecundity minus the death
rate, in our earlier linear model. The parameter r simply reflects the way
the population would grow or decline in the absence of density-dependent
effects – when the population is far below the carrying capacity. The standard
terminology for r is that it is the finite intrinsic growth rate. “Intrinsic” refers
to the absence of density-dependent effects, whereas “finite” refers to the fact
that we are using time steps of finite size, rather than the infinitesimal time
steps of a differential equation.

� What are ballpark figures you might expect for r and K , assuming you
want to model your favorite species of fish in a small lake using a time
increment of 1 year?

As you will see in the problems, there are many ways different authors
choose to write the logistic model, depending on whether they look at�P or
Pt+1 and whether they multiply out the different factors. A key point to help
you recognize this model is that both�P and Pt+1 are expressed as quadratic
polynomials in terms of Pt . Furthermore, these polynomials have no constant
term (i.e., no term of degree zero in P). Thus, the logistic model is about the
simplest nonlinear model we could develop.

Iterating the model. As with the linear model, our first step in under-
standing this model is to choose some particular values for the parameters
r and K , and for the initial population P0, and compute future population
values. For example, choosing K and r so that Pt+1 = Pt (1+ .7(1− Pt/10))
and P0 = 0.4346, we get Table 1.5.

� How can it make sense to have populations that are not integers?

Table 1.5. Population Values from a Nonlinear Model

t 0 1 2 3 4 5 6
Pt .4346 .7256 1.1967 1.9341 3.0262 4.5034 6.2362

t 7 8 9 10 11 12 . . .
Pt 7.8792 9.0489 9.6514 9.8869 9.9652 9.9895 . . .
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Figure 1.2. Population values from a nonlinear model.

If we measure population size in units such as thousands, or millions of
individuals, then there is no reason for populations to be integers. For some
species, such as commercially valuable fish, it might even be appropriate to
use units of mass or weight, like tons.

Another reason that noninteger population values are not too worrisome,
even if we use units of individuals, is that we are only attempting to approxi-
mately describe a population’s size. We do not expect our model to give exact
predictions. As long as the numbers are large, we can just ignore fractional
parts without a significant loss.

In the table, we see the population increasing toward the carrying capacity
of 10 as we might have expected. At first this increase seems slow, then it
speeds up and then it slows again. Plotting the population values in Figure 1.2
shows the sigmoid-shaped pattern that often appears in data from carefully
controlled laboratory experiments in which populations increase in a lim-
ited environment. (The plot shows the population values connected by line
segments to make the pattern clearer, even though the discrete time steps of
our model really give populations only at integer times.) Biologically, then,
we have made some progress; we have a more realistic model to describe
population growth.

Mathematically, things are not so nice, though. Unlike with the linear
model, there is no obvious formula for Pt that emerges from our table. In
fact, the only way to get the value of P100 seems to be to create a table with
a hundred entries in it. We have lost the ease with which we could predict
future populations.
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This is something we simply have to learn to live with: Although nonlinear
models are oftenmore realisticmodels to use, we cannot generally get explicit
formulas for solutions to nonlinear difference equations. Instead, wemust rely
more on graphical techniques and numerical experiments to give us insight
into the models’ behaviors.

Cobwebbing. Cobwebbing is the basic graphical technique for under-
standing a model such as the discrete logistic equation. It’s best illustrated by
an example. Consider again the model

P0 = 2.3, Pt+1 = Pt

(
1+ .7

(
1− Pt

10

))
.

Begin by graphing the parabola defined by the equation giving Pt+1 in terms
of Pt , as well as the diagonal line Pt+1 = Pt , as shown in Figure 1.3. Since the
population begins at P0 = 2.3, we mark that on the graph’s horizontal axis.
Now, to find P1, we just move vertically upward to the graph of the parabola
to find the point (P0, P1), as shown in the figure.

We would like to find P2 next, but to do that we need to mark P1 on
the horizontal axis. The easiest way to do that is to move horizontally from
the point (P0, P1) toward the diagonal line. When we hit the diagonal line,
we will be at (P1, P1), since we’ve kept the same second coordinate, but
changed the first coordinate. Now, to find P2, we just move vertically back
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Figure 1.3. Cobweb plot of a nonlinear model.
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Figure 1.4. Cobweb plot of a nonlinear model.

to the parabola to find the point (P1, P2). Now it’s just a matter of repeating
these steps forever: Move vertically to the parabola, then horizontally to the
diagonal line, then vertically to the parabola, then horizontally to the diagonal
line, and so on.

It should be clear from this graph that if the initial population P0 is anything
between 0 and K = 10, then the model with r = .7 and K = 10 will result
in an always increasing population that approaches the carrying capacity.

If we keep the same values of r and K , but let P0 = 18, the cobweb looks
like that in Figure 1.4.

Indeed, it becomes clear that if P0 is any value above K = 10, then we
see an immediate drop in the population. If this drop is to a value below
the carrying capacity, there will then be a gradual increase back toward the
carrying capacity.

� Find the positive population size that corresponds to where the parabola
crosses the horizontal axis for the model Pt+1 = Pt (1+ .7(1− Pt/10))
by setting Pt+1 = 0.

� What happens if P0 is higher than the value you found in the last
question?

If the population becomes negative, then we should interpret that as
extinction.
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At this point, you can learn a lot more from exploring the logistic model
with a calculator or computer than you can by reading this text. The exercises
will guide you in this. In fact, you will find that the logistic model has some
surprises in store that you might not expect.

Problems

1.2.1. With a hand calculator, make a table of population values for t =
0, 1, 2, . . . , 10 with P0 = 1 and�P = 1.3P(1− P/10). Graph your
results.

1.2.2. In the model �P = 1.3P(1− P/10), what values of P will cause
�P to be positive? Negative? Why does this matter biologically?

1.2.3. Repeat problem 1 using MATLAB commands like:

p=1; x=p

for i=1:10; p=p+1.3*p*(1-p/10); x=[x p]; end

plot([0:10], x)

Explain why this works.

1.2.4. Using theMATLAB program onepop and many different values for
P0, investigate the long-term behavior of the model �P = r P(1−
P/10) for r = .2, .8, 1.3, 2.2, 2.5, 2.9, and 3.1. (You may have to
vary the number of time steps that you run the model to study some
of these.)

1.2.5. Four of themany commonways ofwriting the discrete logistic growth
equation are:

�P = r P(1− P/K ), �P = s P(K − P),

�P = t P − u P2, Pt+1 = vPt − wP2
t .

Write each of the following in all four of these forms.
a. Pt+1 = Pt + .2Pt (10− Pt )
b. Pt+1 = 2.5Pt − .2P2

t

1.2.6. For the model �P = .8P(1− P/10)
a. Graph �P as a function of P using MATLAB by entering:

x=[0:.1:12]

y=.8*x.*(1-x/10)

plot(x,y)

b. Graph Pt+1 as a function of Pt by modifying the MATLAB com-
mands in part (a).
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Table 1.6. Insect Population Values

t 0 1 2 3 4 5 6 7 8 9 10
Pt .97 1.52 2.31 3.36 4.63 5.94 7.04 7.76 8.13 8.3 8.36

c. Construct a table of values of Pt for t = 0, 1, 2, 3, 4, 5 startingwith
P0 = 1. Then, on your graph from part (b), construct a cobweb
beginning at P0 = 1. (You can add the y = x line to your graph
by entering the commands hold on, plot(x,y,x,x).) Does
your cobweb match the table of values very accurately?

1.2.7. If the data in Table 1.6 on population size were collected in a labora-
tory experiment using insects, would it be at least roughly consistent
with a logisticmodel? Explain. If it is consistent with a logisticmodel,
can you estimate r and K in �N = r N (1− N/K )?

1.2.8. Suppose a population is modeled by the equation

Nt+1 = Nt + .2Nt (1− Nt/200000)

when Nt is measured in individuals.
a. Find an equation of the same form, describing the same model, but
with the population measured in thousands of individuals. (Hint:
Let Nt = 1000Mt , Nt+1 = 1000Mt+1, and find a formula for Mt+1
in terms of Mt .)

b. Find an equation of the same form, describing the same model, but
with the population measured in units chosen so that the carrying
capacity is 1 in those units. (To get started, determine the carrying
capacity in the original form of the model.)

1.2.9. The technique of cobwebbing to study iterated models is not limited
to just logistic growth. Graphically determine the populations for the
next six time increments in each of the models of Figure 1.5 using
the initial populations shown.

1.2.10. Give a formula for the graph appearing in part (a) of Figure 1.5. What
is the name of this population model?

1.2.11. Some of the same modeling ideas and models used in population
studies appear in very different scientific settings.
a. Often, chemical reactions occur at rates proportional to the amount
of rawmaterials present. Suppose we use a very small time interval
tomodel such a reactionwith a difference equation. Assume a fixed
total amount of chemicals K , and that chemical 1, which initially
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Figure 1.5. Cobweb graphs for problem 1.2.9.

occurs in amount K , is converted to chemical 2, which occurs in
amount Nt at time t . Explain why �N = r (K − N ). What values
of r are reasonable? What is N0? What does a graph of Nt as a
function of t look like?

b. Chemical reactions are said to be autocatalytic if the rate at which
they occur is proportional to both the amount of raw materials and
to the amount of the product (i.e., the product of the reaction is a
catalyst to the reaction).We can again use a very small time interval
tomodel such a reactionwith a difference equation. Assume a fixed
total amount of chemicals K and that chemical 1 is converted
to chemical 2, which occurs in amount Nt . Explain why �N =
r N (K − N ). If N0 is small (but not 0), what will the graph of Nt

as a function of t look like? If N0 = 0, what will the graph of Nt as
a function of t look like? Can you explain the shape of the graph
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intuitively? (Note that r will be very small, because we are using a
small time interval.) The logistic growth model is sometimes also
referred to as the autocatalytic model.

1.3. Analyzing Nonlinear Models

Unlike the simple linear model producing exponential growth, nonlinear
models – such as the discrete logistic one – can produce an assortment of
complicated behaviors. No doubt you noticed this while doing some of the
exercises in the last section.

In this section, we will look at some of the different types of behavior and
develop some simple tools for studying them.

Transients, equilibrium, and stability. It is helpful to distinguish several
aspects of the behavior of a dynamicmodel.We sometimes find that regardless
of our initial value, after many time steps have passed, the model seems to
settle down into a pattern. The first few steps of the iteration, though, may not
really be indicative of what happens over the long term. For example, with the
discrete logistic model Pt+1 = Pt (1+ .7(1− Pt/10)) and most initial values
P0, the first few iterations of the model produce relatively large changes in Pt

as it moves toward 10. This early behavior is thus called transient, because it
is ultimately replaced with a different sort of behavior. However, that does not
mean it is unimportant, since a real-world population may well experience
disruptions that keep sending it back into transient behavior.

Usually, though, what we care about more is the long-term behavior of the
model. The reason for this is we often expect the system we are studying to
have been undisturbed long enough for transients to have died out. Often (but
not always) the long-term behavior is independent of the exact initial pop-
ulation. In the model Pt+1 = Pt (1+ .7(1− Pt/10)), the long-term behavior
for most initial values was for the population to stay very close to K = 10.
Note that if Pt = 10 exactly, then Pt+1 = 10 as well and the population never
changes. Thus, Pt = 10 is an equilibrium (or steady-state or fixed point) of
the model.

Definition. An equilibrium value for a model Pt+1 = F(Pt ) is a value P∗

such that P∗ = F(P∗). Equivalently, for a model �P = G(Pt ), it is a value
P∗ such that G(P∗) = 0.

Finding equilibrium values is simply a matter of solving the equilib-
rium equation. For the model Pt+1 = Pt (1+ .7(1− Pt/10)), we solve P∗ =
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P∗(1+ .7(1− P∗/10)) to see that there are precisely two equilibrium values,
P∗ = 0 or 10.

� Graphically, we can locate equilibria by looking for the intersection of
the Pt+1 = F(Pt ) curve with the diagonal line. Why does this work?

Equilibria can still have different qualitative features, though. In our ex-
ample, P∗ = 0 and 10 are both equilibria, but a population near 0 tends to
move away from 0, whereas one near 10 tends to move toward 10. Thus, 0 is
a unstable or repelling equilibrium, and 10 is a stable or attracting equilib-
rium.

Assuming our model comes close to describing a real population, stable
equilibria are the ones that we would tend to observe in nature. Since any bi-
ological system is likely to experience small perturbations from our idealized
model, even if a population was exactly at an equilibrium, we would expect it
to be bounced at least a little away from it by factors left out of our model. If
it is bounced a small distance from a stable equilibrium, though, it will move
back toward it. On the other hand, if it is bounced away from an unstable
equilibrium, it stays away. Although unstable equilibria are important for un-
derstanding the model as a whole, they are not population values we should
ever really expect to observe for long in the real world.

Linearization. Our next goal is to determine what causes some equilibria
to be stable and others to be unstable.

Stability depends on what happens close to an equilibrium; so, to focus
attention near P∗, we consider a population Pt = P∗ + pt , where pt is a very
small number that tells us how far the population is from equilibrium.We call
pt the perturbation from equilibrium and are interested in how it changes.
Therefore, we compute Pt+1 = P∗ + pt+1 and use it to find pt+1. If pt+1 is
bigger than pt in absolute value, then we know that Pt+1 has moved away
from P∗. If pt+1 is smaller than pt in absolute value, then we know that Pt+1
has moved toward P∗. Provided we can analyze how pt changes for all small
values of pt , we’ll be able to decide if the equilibrium is stable or unstable. A
growing perturbationmeans instability, while a shrinking onemeans stability.
(We are ignoring the sign of the perturbation here by considering its absolute
value. Although the sign is worth understanding eventually, it is irrelevant to
the question of stability.)

Example. Consider again the model Pt+1 = Pt (1+ .7(1− Pt/10)), which
weknowhas equilibria P∗ = 0 and10. First,we’ll investigate P∗ = 10,which
we believe is stable from numerical experiments. Substituting Pt = 10+ pt
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and Pt+1 = 10+ pt+1 into the equation for the model yields:

10+ pt+1 = (10+ pt )(1+ .7(1− (10+ pt )/10))

10+ pt+1 = (10+ pt )(1+ .7(−pt/10))

10+ pt+1 = (10+ pt )(1− .07pt )

10+ pt+1 = 10+ 0.3pt − .07p2t
pt+1 = 0.3pt − .07p2t .

But we are only interested in pt being a very small number; so, p2t is much
smaller and negligible in comparison with pt . Thus,

pt+1 ≈ 0.3pt .

This means that values of Pt close to the equilibrium will have their offset
from the equilibrium compressed by a factor of about 0.3 with each time step.
Small perturbations from the equilibrium therefore shrink, and P∗ = 10 is
indeed stable.

You should think of the number 0.3 as a “stretching factor” that tells how
much perturbations from the equilibrium are increased. Here, because we
stretch by a factor less than 1, we are really compressing.

The process performed in this example is called linearization of the model
at the equilibrium, because we first focus attention near the equilibrium by
our substitution Pt = P∗ + pt , and then ignore the terms of degree greater
than 1 in pt . What remains is just a linear model approximating the original
model. Linear models, as we have seen, are easy to understand, because they
produce either exponential growth or decay.

� Do a similar analysis for this model’s other equilibrium to show it is
unstable. What is the stretching factor by which distances from the
equilibrium grow with each time step?

You should have found that linearization at P∗ = 0 yields pt+1 = 1.7pt .
Therefore, perturbations from this equilibrium grow over time, so P∗ = 0 is
unstable. In general, when the stretching factor is greater than 1 in absolute
value, the equilibrium is unstable. When it’s less than 1 in absolute value, the
equilibrium is stable.

A remark on calculus: If you know calculus, the linearization process might
remind you of approximating the graph of a function by its tangent line. To
develop this idea further, the stretching factor in the previous discussion could
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be expressed as the ratio
pt+1
pt

for small values of pt . But

pt+1
pt

= Pt+1 − P∗

Pt − P∗ = F(Pt )− P∗

Pt − P∗ = F(Pt )− F(P∗)
Pt − P∗ ,

where Pt+1 = F(Pt ) is the equation defining the model. (Note that we used
P∗ = F(P∗) for the last equality.) Because we are interested only in values
of Pt very close to P∗, this last expression is very close to

lim
Pt →P∗

F(Pt )− F(P∗)
Pt − P∗ .

But this limit is, by definition, nothing more than F ′(P∗), the derivative of
the function defining our model. So, we have shown

Theorem. If a model Pt+1 = F(Pt ) has equilibrium P∗, then |F ′(P∗)| > 1
implies P∗ is unstable, while |F ′(P∗)| < 1 implies P∗ is stable. If |F ′(P∗)| =
1, then this information is not enough to determine stability.

Example. Using Pt+1 = Pt (1+ .7(1− Pt/10)) so F(P) = P(1+ .7(1−
P/10)), we compute F ′(P) = (1+ .7(1− P/10))+ P(.7)(−1/10). There-
fore, F ′(10) = 1− .7 = 0.3, and P∗ = 10 is stable.

Note that, in this example, the value we found for F ′(10) was exactly
the same as the value we found for the “stretching factor” in our earlier
noncalculus approach. This had to happen, of course, because what lead us
to the derivative initially was investigating this factor more thoroughly. The
derivative can be interpreted, then, as a measure of how much a function
“stretches out” values plugged into it.

Because we have taken a symbolic approach (i.e., writing down formulas
and equations) in showing the connection between derivatives and stability,
you should be sure to do problems 1.3.1 to 1.3.3 at the end of this section to
see the connection graphically.

Why are both noncalculus and calculus approaches to stability presented
here? The noncalculus one is the most intuitive and makes the essential ideas
clearest, we think. It was even easy to do in the example. The weakness of
it is that it only works for models involving simple algebraic formulas. If
the model equation had exponentials or other complicated functions in it, the
algebra simply would not have worked out. When things get complicated,
calculus is a more powerful tool for analysis.
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When linearizing to determine stability, it is vital that you are focusing
on an equilibrium. Do not attempt to decide if a point is a stable or unstable
equilibrium until after you have made sure it is an equilibrium; the analysis
assumes that the point P∗ satisfies F(P∗) = P∗. For example, if we tried to
linearize F at 11 in the previous example, we could not conclude anything
from the work, because 11 is not an equilibrium.

Finally, it is also important to realize that our analysis of stable and unstable
equilibria has been a local one rather than a global one.What this terminology
means is that we have considered what happens only in very small regions
around an equilibrium. Although a stable equilibriumwill attract values close
to it, this does not mean that values far away must move toward it. Likewise,
even though an equilibrium is unstable, we cannot say that values far away
will not move toward (or even exactly to) it.

Oscillations, bifurcations, and chaos. In Problem 1.2.4 of the last sec-
tion, you investigated the behavior of the logisticmodel�P = r P(1− P/K )
for K = 10 and a variety of values of r . In fact, the parameter K in the model
is not really important; we can choose the units in which we measure the
population so that the carrying capacity becomes 1. For example, if the car-
rying capacity is 10,000 organisms, we could choose to use units of 10,000
organisms, and then K = 1. This observation lets us focus more closely on
how the parameter r affects the behavior of the model.

Setting K = 1, for any value of r the logistic model has two equilibria, 0
and 1, since those are the only values of P that make�P = 0. As you will see
in the problems section later, the “stretching factor” at P∗ = 0 is 1+ r , and
at P∗ = 1 is 1− r . P∗ = 0, then is always an unstable equilibrium for r > 0.

P∗ = 1 is much more interesting. First, when 0 < r ≤ 1, then 0 ≤ 1−
r < 1, so the equilibrium is stable. The formula pt+1 ≈ (1− r )pt shows
that the sign of pt will never change; although the perturbation shrinks, an
initially positive perturbation remains positive and an initially negative one
remains negative. The population simply moves toward equilibrium without
ever overshooting it.

When r is increased so that 1 < r < 2, then −1 < 1− r < 0 and the
equilibrium is still stable. Now, however, we see that because pt+1 ≈ (1−
r )pt , the sign of pt will alternate between positive and negative as t increases.
Thus, we should see oscillatory behavior above and below the equilibrium as
our perturbation from equilibrium alternates in sign. The population therefore
approaches the equilibrium as a damped oscillation.

Think about why this oscillation might happen in terms of a population
being modeled. If r , a measure of the reproduction rate, is sufficiently large,
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a population below the carrying capacity of the environment may in a single
time step grow so much that it exceeds the carrying capacity. Once it exceeds
the carrying capacity, the population dies off rapidly enough that by the next
time step it is again below the carrying capacity. But then it will once again
grow enough to overshoot the carrying capacity. It’s as if the population
overcompensates at each time step.

If the parameter r of the logistic model is even larger than the values just
considered, the population no longer approaches an equilibrium. When r is
increased beyond 2, we find |1− r | exceeds 1 and therefore the stable equi-
librium at P∗ = 1 becomes unstable. Thus, a dramatic qualitative behavior
change occurs as the parameter is increased across the value 2. An interesting
question arises as towhat the possibilities are for amodel that has two unstable
equilibria and no stable ones. What long-term behavior can we expect?

A computer experiment shows that for values of r slightly larger than 2, the
population falls into a 2-cycle, endlessly bouncing back and forth between a
value above 1 and a value below 1. As r is increased further, the values in the
2-cycle change, but the presence of the 2-cycle persists until we hit another
value of r , at which another sudden qualitative change occurs. This time we
see the 2-cycle becoming a 4-cycle. Further increases in r produce an 8-cycle,
then a 16-cycle, and so on.

Already, this model has lead to an interesting biological conclusion: It
is possible for a population to exhibit cycles even though the environment
is completely unchanging. Assuming our modeling assumptions are correct
and a population has a sufficiently high value of r , it may never reach a single
equilibrium value.

A good way of understanding the effect of changing r on this model is
through the bifurcation diagram of Figure 1.6.

Figure 1.6 is produced as follows. For each value of r on the horizontal
axis, choose some value of P0, and iterate the model for many time steps,
so that transient behavior is past. (In practice, this means iterate for as many
times as you can stand and you think might be necessary.) Then continue
iterating for lots of additional steps, but now plot all these values of Pt on the
vertical axis above the particular r used.

To illustrate the process for the discrete logistic model, suppose r = 1.5.
Then, regardless of P0, after the first set of many iterations, Pt will be
very close to the stable equilibrium 1. Thus, when we plot the next set of
many iterations, we just repeatedly plot points that will look like they are at
P = 1.
If we then think of this process for an r slightly bigger than 2, the first set

of iterations sends the population into a 2-cycle, and then when we plot the



26 Dynamic Modeling with Difference Equations

1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3
0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

 "r" value 

A
ttr

ac
tin

g 
P

op
ul

at
io

n 
C

yc
le

next_p = p+r*p*(1- p)

Figure 1.6. Bifurcation diagram for the logistic model.

next set of iterations, we plot points that bounce back and forth between the
two values in the cycle, so that it appears that we have just plotted two points.

From this diagram, we notice several things. First the interval of r values
over which we get a 2n+1-cycle is shorter than that for a 2n-cycle. Thus, once
r is large, small additional increases can have more drastic effects.

Second, if r is increased past a certain point (≈2.692 . . . ), all the bifur-
cations into 2n-cycles have already taken place and a new type of behavior
emerges. It appears as if the model values are changing more or less at ran-
dom. However, the behavior is certainly not random – there is a completely
deterministic formula producing it. The technical terminology for what has
happened is that the model’s behavior has become chaotic. The choice of the
word “chaos” to describe this is perhaps unfortunate, since it calls up images
of randomness and primordial confusion that are really irrelevant.

Chaos actually has a rather precise technical definition that we will not
give. Instead, we merely informally point out two of the requirements mathe-
maticians impose on the use of the word: 1) the model must be deterministic –
that is, there can be no randomness in it; and 2) the predictions of the model
are extremely sensitive to initial conditions.

To see that the discrete logistic model is in fact chaotic for r = 2.75, for
example, we need to look into condition (2) a bit more. The plot in Figure
1.7 shows population values arising from two different, but very close, values
of P0.
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Figure 1.7 Populations resulting from twonearby initial values; logisticmodel r = 2.75.

Note that although the populations change similarly for the first few time
steps, after a while they seem to be changing in completely different ways. For
these initial values, then, we seem to have observed an extreme sensitivity of
the model to the initial conditions. Of course, this is no proof of anything and
it’s conceivable that this behavior was just an artifact of computer round-off
errors. It has been proven, however, that this is genuine chaos.

The possibility of chaotic behavior in as simple a population model as the
discrete logistic one created quite a stir in the 1970s when it was first publi-
cized by May (May, 1978). If such a simple model could produce such com-
plicated behavior, then the natural view that complicated population dynamics
can arise only from complicated interactions and environmental fluctuations
would have to be abandoned.

Further work by May and others on determining appropriate values for
parameters such as r in models of both laboratory and real-world insect pop-
ulations led them to doubt that chaotic behavior was actually seen in real
population dynamics. However, one examination of measles epidemics in
New York City did suggest the possibility of chaos. Mumps and chickenpox,
however, did not seem to behave chaotically. Although work is still being
done, there is little data of high enough quality and long enough duration to
really test the idea. More recent focus has been on population models more
complex than the logistic one. In fact, in 1996, Cushing et al. announced the
first unequivocal discovery of a real population, a laboratory population of
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the flour beetle tribolium, that exhibits chaotic dynamics (see (Cushing et al.,
2001)).

Problems

1.3.1. The equilibrium points of amodel are located where the graph of Pt+1
as a function of Pt crosses the line Pt+1 = Pt . Suppose we focus on a
section of the graph around an equilibrium point and zoom in so that
the graph of Pt+1 as a function of Pt appears to be a straight line. In
each of the models of Figure 1.8, decide whether the equilibrium is
stable or unstable by choosing a P0 close to the steady state and then
cobwebbing.

1.3.2. Reasoning from the preceding problem, in what range must the slope
of the graph of Pt+1 vs. Pt be at an equilibrium point to produce
stability? Instability? (Hint: Youmight want to think about the special
cases where the slope is first −1 and then 1.)

1.3.3. (Calculus) Phrase your answer to the preceding problem by using
derivatives: If P∗ is an equilibrium point of the model Pt+1 = f (Pt ),
then it is stable if . . . .

Pt+1

Pt

Pt+1

Pt

Pt+1

Pt

Pt+1

Pt

a. b.

c. d.

Figure 1.8. Cobweb graphs for problem 1.3.1.
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1.3.4. Mathematically, when dealing with the logistic growth model�N =
r N (1− N/K ), we can always choose the units in which N is mea-
sured so that K = 1. Thus, we need only consider�N = r N (1− N ),
which has only one parameter, r , rather than two. Carefully investi-
gate the long-term behavior of this model for various values of r
starting at .5 and gradually increasing, by using the MATLAB pro-
gram onepop. For what values of r do you see a simple approach
to equilibrium without oscillations? An approach to equilibrium with
oscillations? 2-cycle behavior? 4-cycle behavior?

1.3.5. In the preceding exercise, you discovered that as r is increased past
2, the population will stop tending to K = 1 and instead fall into a
2-cycle.
a. Show that, regardless of the fact that the model falls into a 2-cycle,
the only equilibrium points are still N ∗ = 0 and 1.

b. If Nt falls into a 2-cycle, then Nt+2 ≈ Nt . Therefore, it may be
worthwhile to find a formula for Nt+2 in terms of Nt . Do it for K =
1, r = 2.2. Your answer should be a fourth-degree polynomial.

c. Can you use your work in part (b) to find formulas for the points
in the 2-cycle by setting Nt+2 = Nt? Try it. Things may not work
out nicely, but at least explain the difficulty.

1.3.6. For each of the following, determine the equilibrium points.
a. Pt+1 = 1.3Pt − .02P2

t

b. Pt+1 = 3.2Pt − .05P2
t

c. �P = .2P(1− P/20)
d. �P = a P − bP2

e. Pt+1 = cPt − d P2
t .

1.3.7. For (a–e) of the preceding problem, algebraically linearize the model
first about the steady state 0 and then about the other steady state to
determine their stability.

1.3.8. Compute the equilibrium points of the model Pt+1 = Pt + r Pt (1−
Pt ). Then use only algebra to linearize at each of these points to
determine when they are stable or unstable.

1.3.9. (Calculus) Redo the preceding problem, but use derivatives to deter-
mine the stability of the equilibria of Pt+1 = Pt + r Pt (1− Pt ). You
should, of course, get the same answers.

1.3.10. (Calculus) Here is a slightly different approach to the relationship
between derivatives and stability: Find the tangent line approxima-
tions to f (P) = P + r P(1− P) at the equilibria P∗ = 0 and 1. Then
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replace P + r P(1− P) by these approximations in Pt+1 = Pt +
r Pt (1− Pt ). Use this to determine the stability of the equilibria. Your
answer should agree with the preceding two problems.

1.3.11. Many biological processes involve diffusion. A simple example is
the passage of oxygen from the lung into the bloodstream (and the
passage of carbon dioxide in the opposite direction). A simple model
views the lung as a single compartment with oxygen concentration
L and the bloodstream as an adjoining compartment with oxygen
concentration B. If, for simplicity, we assume the compartments both
have volume 1, then in the time span of a single breath the total oxygen
K = L + B is constant. Ifwe think of a very smallfixed-time interval,
then the increase in B over this time interval will be proportional to
the difference between L and B. That is,

�B = r (L − B).

(This experimental fact is sometimes called Fick’s law.)
a. In what range must the parameter r be for this model to be mean-
ingful?

b. Use the fact that L + B = K to write the model using only two
parameters, r and K , to describe �B in terms of B.

c. For r = .1, K = 1, and a variety of choices of B0, investigate the
model using the MATLAB program onepop. How do things
change if a different value of r is used?

d. Algebraically, find the equilibrium point B∗ (in terms of r and K )
for this model. Does this fit with what you saw in part (c)? Can
you explain the result intuitively?

e. Let b = B − B∗, and rewrite the model in terms of b, the
offset from equilibrium, by substituting in B = B∗ + b and
simplifying.

f. Use part (e) to find a formula for bt and then one for Bt . Make sure
your formula gives the same results as onepop.

g. Can you modify the model to deal with two compartments of un-
equal size?

Projects

1. Suppose we know that, when undisturbed by humans, a commercially
valuable population (e.g., a particular species of fish) has dynamics



1.3. Analyzing Nonlinear Models 31

modeled well by the discrete logistic difference equation

�P = r P(1− P/K ).

Of course, the dynamics of the population will depend on the value of r ,
but by choosing appropriate units, we may assume K = 1.

Investigate the effect of regular harvesting of the population under two
different types of assumptions.
a. �P = r P(1− P/K )− H , where H is some fixed number of indi-
viduals harvested at each time step.

b. �P = r P(1− P/K )− h P , where h is some fixed percentage of the
population harvested at each time step (so, 0 ≤ h ≤ 1).

Suggestions
� Toget a feel for themodels, investigate themnumericallywithonepop
for lots of reasonable choices of the parameters. Make a note of any
unusual behavior and try to explain it.

� Calculate analytically the equilibria (which may be in terms of r and
H or h) and the stability of these equilibria (which may also depend
on r and H or h).

� Explain the equilibria and stability in terms of cobweb diagrams.What
effect does subtracting the harvesting terms H and h P have on the
cobweb diagram of the logistic model?

� Try to find the largest H or h can be so that there is still a stable
equilibrium. If h or H is chosen to be as large as possible so that there
is still a stable equilibrium (which might be economically desirable),
what happens to the unstable equilibrium?

� If you were responsible for managing the population, would you be
comfortable if the stable equilibrium was close to the unstable one?

� Are there values of r for which H can be larger than K ? Does this
make sense biologically?

� If, in the absence of harvesting, a population has no stable equilib-
rium, can imposing harvesting lead to stability? Does this make sense
biologically?

� Use the program longterm to create diagrams showing changes in
long-term behavior as the parameters of the model are varied.

2. For an insect with a generation time significantly shorter than 1 year,
it may be inappropriate to think of the carrying capacity as a constant.
Investigate what happens if the carrying capacity varies sinusoidally. To
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get started, try the MATLAB commands:

t=[0:50]

K=5+sin((2*pi/12)*t)

p=.1; pops=p

for i=1:50 p=p+.2*p*(1-p/K(i)); pops=[pops p]; end

plot(t,K,t,pops)

Suggestions
� Explain why a sinusoidally varying carrying capacity might be biolog-
ically reasonable under some circumstances.

� Investigate this situation for a variety of choices of r and P0. Does Pt

oscillate with K ? Pay particular attention to when the population peaks
and what the average population is in the long run. Do the results fit
your biological intuition?

� What happens if the frequency of oscillation of the carrying capacity
is changed? (Try replacing the “2*pi/12” in the previous command
with “2*pi/N” for different N .)

� As r increases, does this model exhibit bifurcations? Chaos?

3. Investigate what happens if the carrying capacity varies randomly in a
logistic model, and, in particular, the effect of such a carrying capacity on
small populations. You will need to know that the MATLAB command
rand(1) produces a random number between 0 and 1 with a uniform
distribution, and that randn(1) produces a random number from a
normal distribution with mean 0 and standard deviation 1. You might
begin with using onepop with an expression like 10+rand(1) as the
carrying capacity in the logistic model.

Suggestions
� Perhaps 10*rand(1) or 10+2*randn(1) would be a better form
for the carrying capacity. Describe the qualitative differences between
the biological situations these different expressions might describe.

� For your chosen carrying capacity expression, investigate the behavior
of the model for a variety of choices of r and P0. How does Pt behave?
What is the average population in the long run? Do the results fit your
biological intuition?

� As r increases, does this model exhibit bifurcations? Chaos?
� Investigate what happens if we have a small population, that must, of
course, be integer valued. You will need to know that the MATLAB
command floor(p) returns the largest integer less than or equal to
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p. Your model should be something like

Pt+1 = floor(Pt + r Pt (1− Pt/K )),

where K is first a constant and then is made to vary randomly.

1.4. Variations on the Logistic Model

In presenting the discrete logistic model in previous sections, we have tried
to keep the model as simple as possible to focus on developing the main
ideas. Now that the concepts of equilibria and stability and the technique of
cobwebbing have been developed, we can pay more attention to producing a
more realistic model.

In looking at the graph of Pt+1 as a function of Pt in Figure 1.9, for the
model Pt+1 = Pt (1+ r (1− Pt/K )), one immediately obvious feature that is
unrealistic is the fact that the parabola drops below the horizontal axis as we
move off to the right. This means that large populations Pt become negative at
the next time step. Although we can interpret a negative population as extinct,
this may not be the behavior that would actually happen and that we would
like our model to describe.

Perhaps a more reasonable model would have large values of Pt produce
very small (but still positive) values of Pt+1. Thus, a population well over
the carrying capacity might immediately crash to very low levels, but at least
some of the population would survive. Graphically, Pt+1 should depend on
Pt as shown in Figure 1.10.
A function producing such a graph is F(P) = Per (1−P/K ). The exponential

in this formula produces the exponential-like decay as we move horizontally
out on the graph, while the factor of P causes the initial rise in the graph near
the origin.

Pt

Pt+1

Figure 1.9. Model with unrealistic Pt+1 < 0 for large Pt .
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P
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Figure 1.10. New model with Pt+1 > 0.

The model Pt+1 = Per (1−Pt /K ) is sometimes called the discrete logistic
model and is sometimes referred to as the Ricker model, after its first user
(Ricker, 1954). As you can easily compute, the equilibria for this model
are P∗ = 0 and P∗ = K . You can analyze this model by drawing cobweb
diagrams and computing the stability of the equilibria, just as in the last
sections.

You might object to this rabbit-out-of-the-hat approach to modeling; we
have not quite explained where the equation for the Ricker model came from.
Although we will give one explanation shortly, it is important to realize that
what really matters about the formula is that it produces the qualitative graph-
ical features we think are realistic. If a strange formula gives us the kind of
graph we think we need, that is enough justification for using it.

To motivate more fully the Ricker model, let’s return to the graph of the
per-capita population change�P/P as a function of P that firstmotivated our
development of the logistic model. Our sole reason for choosing the formula
�P/P = r (1− P/K ) was to produce the downward trend shown in Figure
1.11.

How can we improve this? First, it is impossible for the per-capita popula-
tion change to be less than−1, because that would mean more than one death
per capita. That means our graph should really look more like Figure 1.12.

Since this looks like an exponential decay curve moved down 1 unit, that
leads us to a formula such as:

�P

P
= ae−bP − 1

for some positive values of a and b. To get the traditional form of the Ricker
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Figure 1.11. Per-capita growth rate for the logistic model.

model, we make some variable substitutions. Letting b = r
K and a = er , in

terms of the new parameters r and K , the model becomes

�P

P
= er e−r P/K − 1 = er (1−P/K ) − 1.

Now straightforward algebra leads to the Ricker formula

Pt+1 = Pt e
r (1−Pt /K ).

In this formula, K should still be interpreted as the carrying capacity, because
if P > K , then �P < 0; and if P < K , then �P > 0. The finite intrinsic
rate of growth, however, is er − 1 rather than just r , although for small r these
quantities are approximately the same.

Of course, the curve for �P/P does not have to be an exponential decay
curve exactly. To model a population accurately, we would need to collect

K

r

-1

P

P/P∆

Figure 1.12. Per-capita growth rate for a new model.
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Figure 1.13. Two models of the form Pt+1 = λPt
(1+a Pt )β

.

data on how the population at time t + 1 depends on the size of the population
at time t . We could then plot these points (Pt , Pt+1) and look for a formula
that fits them well. Because the Ricker model has two parameters, r and K ,
by varying them, we may be able to make the curve fit the data reasonably
well.

Another model often used is

Pt+1 = λPt

(1+ a Pt )β
.

Although the meaning of the numbers λ, a, and β in this model may not be
clear in biological terms, having three parameters simply allowsmore freedom
in the shape of the curve to fit the data.

The graphs in Figure 1.13 show Pt+1 = λPt
(1+a Pt )β

for two different choices
of values of the parameters. These two graphs describe drastically different
population dynamics. The graph on the left that decays toward the horizontal
axis represents a pure scramble competition for resources between individu-
als, where each individual simply gets less of the resources if the population
is large. Thus, all individuals are hurt by having a large population around. A
large value of Pt is thus likely to lead to a much smaller value for Pt+1; and,
the larger Pt is, the smaller Pt+1 will be.

The graph on the right that levels out above the horizontal axis represents
a pure contest competition, in which if the population exceeds the carrying
capacity, some individuals get all the resources, and others get none. Any
large value of Pt is therefore likely to lead to about the same value of Pt+1.
Of course, many populations exhibit behavior combining aspects of both of
these competition types and so might be described by graphs somewhere in
between.
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Problems

1.4.1. For a discrete population model, the relative growth rate is defined as
Pt+1
Pt
.

a. Complete: For a particular value of Pt , if the relative growth rate
is larger than 1, then the population will over the next time
interval, whereas if it is smaller than 1, the population will .

b. Does it make sense for the relative growth rate to be zero? Negative?
c. Give expressions for the relative growth rates for the geometric and
logistic population models, as well as the models of this section.

d. Graph each of the relative growth rates you found in part (c) as
functions of Pt . Youmay have to pick a few values of the parameters
to draw the graphs.

1.4.2. Graphs (b), (c), and (d) of Problem 1.2.9 of Section 1.2 show Pt+1 =
F(Pt ) < Pt when Pt is small. Explain the affect of this feature on pop-
ulation dynamics. Why might this be a biologically important feature?
(The resulting behavior is sometimes known as an Allee effect.)

1.4.3. Construct a simple model showing an Allee effect as follows.
a. Explainwhy for some 0 < L < K , the per-capita growth rate should
be

�P

P
< 0, when 0 < P < L or P > K ,

�P

P
> 0, when L < P < K .

Sketch a possible graph of �P/P vs. P .
b. Explain why �P/P = P(K − P)(P − L) has the qualitative fea-

tures desired.
c. Investigate the resulting model using onepop and cobweb for
some choices of K and L . Is the behavior as expected?

d. What features of this modeling equation are unrealistic? Howmight
the model be improved?

Projects

1. Investigate the Ricker model (Ricker, 1954)

Nt+1 = Nt e
r (1−Nt /K )

more completely.
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Suggestions
� Use a calculator or computer to graph Nt+1 as a function of Nt (for
several choices of r and K ) and compare it with the corresponding
graph for the logistic model. What are the qualitative similarities and
differences between the graphs?

� Find all equilibria of the model.
� Use the MATLAB program onepop to investigate this model’s dy-
namic behavior for K = 1 and a number of different r . Do you find
stable equilibria? 2-cycles? 4-cycles? Chaotic behavior?

� Use the MATLAB program longterm to produce a bifurcation dia-
gram for this model as r varies.

2. Repeat the last project for the model

Xt+1 = λXt (1+ aXt )
−β,

which is frequently used for modeling insect populations. (For varying
parameters, you might first let λ = 6 and a = .3 and vary β through
positive values. Then hold λ and β fixed and vary a, etc.)

3. A famous model of the spruce budworm population proposed in
(Ludwig et al., 1978) (which used a differential equation) involved as-
suming logistic growth for the budworm, but introducing another term
for predation due to birds. The predation term used was g(N ) = β2N 2

α2+N 2 ,
where N denotes the number of budworms and α and β are two param-
eters than can be chosen to vary the graph to fit experimental data.

Suggestions
� Graph g and explain why its shape is reasonable to describe the number
of budworms consumed by birds for various sizes of the budworm
population. In particular, does it rise and level off as you think it should?
How do the values of α and β affect the shape of the graph?

� Investigate the full model

Nt+1 = Nt + r Nt (1− Nt/K )− β2N 2
t

α2 + N 2
t

usingMATLAB for a variety of parameter choices (but keep r small to
avoid cycles or chaos in the logistic part of the model). Find parameter
values that seem to give realistic behavior.

� What can you say about steady states and their stability?
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1.5. Comments on Discrete and Continuous Models

In this chapter, we have discussed models using difference equations, which
are built on discrete, finite (as opposed to infinitesimal) time steps. An al-
ternative is to use differential equations, which assume things change con-
tinuously. Both difference and differential equations are used extensively for
modeling throughout the sciences, and in many ways they have a parallel
theory.

Differential equations are sometimes more amenable to analytic solu-
tion than difference equations. For example, the logistic differential equa-
tion does in fact have an explicit solution (i.e., a formula giving the value
of the population at all times). In the precomputer era, differential equa-
tions were the primary choice of modelers, because more progress could be
made in understanding such models. For certain fields, such as physiology
(modeling such things as blood flow through the heart) and most of physics,
where things really do seem to change continuously, they are still the natural
choice.

Difference equations are more appropriate in situations in which there are
natural discrete time steps. An example would be in modeling insect popula-
tions, which tend to have rather rigid life histories, with well-defined develop-
ment stages and life spans. Now that computers are readily available, differ-
ence equations can be studied through numerical experiments.

In fact, because most complicated differential equation models are not
explicitly solvable, those who use them often resort to using computers to
perform simulations as well. Since computers work discretely, the models
must first be translated into a discrete form. This may mean using an ap-
proach like Euler’s method to approximate the differential equations – thus
essentially pretending the differential equation is a difference equation. In the
end, both difference and differential equations are valuable tools for investi-
gating biological systems. Courses in calculus and differential equations are
necessary for future biological modelers.

Though conceptually simpler than differential equations, difference equa-
tions often exhibit more complicated behavior. For instance, the discrete lo-
gistic model can exhibit cyclic or chaotic behavior, but the continuous logistic
model never does. One explanation of this is that the time lags inherent in
a discrete time step often mean the quantity being modeled cannot “figure
out” by how much it should change quickly enough, so that it overshoots its
“goal.” However, sufficiently complicated differential equation models can
also produce cycles and chaotic behavior.
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Problems

1.5.1. (Calculus) The logistic differential equation is

d N

dt
= r N (1− N/K ).

a. Show that

N (t) = K

1+ Ce−r t
where C = K − N0

N0

is a solution with initial condition N (0) = N0.

b. Graph N (t) for K = 1 and a few choices of r and N0.
c. How does increasing r affect the solution? Explain how this com-
pares with the behavior of the logistic difference equation.
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Linear Models of Structured Populations

In the previous chapter, we first discussed the linear difference equationmodel
Pt+1 = λPt , which results in exponential growth or decay. After criticizing
this model for not being realistic enough, we looked at nonlinear models that
could result in quite complicated dynamics.

However, there is another way our models in the last chapter were simplis-
tic – they treated all individuals in a population identically. In most popula-
tions, there are actually many subgroups whose vital behavior can be quite
different. For instance, in humans, the death rate for infants is often higher
than for older children. Also, children before the age of puberty contribute
nothing to the birth rate. Even among adults, death rates are not constant, but
tend to rise with advancing age.

In nonhuman populations, the differences can be more extreme. Insects go
through a number of distinct life stages, such as egg, larva, pupa, and adult.
Death rates may vary greatly across these different stages, and only adults
are capable of reproducing. Plants also may have various stages they pass
through, such as dormant seed, seedling, nonflowering, and flowering. How
can a mathematical model take into account the subgroup structure that we
would expect to play a large role in determining the overall growth or decline
of such populations?

To create such structured models, we will focus on linear models. Even
without resorting to nonlinear formulas, we can gain insight into how popu-
lations with distinct age groups, or developmental stages, can behave. Ulti-
mately, we see that the behavior of these new linear models is quite similar
to the exponential growth and decay of the linear model in the last chapter,
with some important and interesting twists.

2.1. Linear Models and Matrix Algebra

The main modeling idea we use is simple. Rather than lumping the size of
the entire population we are tracking into one quantity, with no regard for age

41
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or developmental stage, we consider several different quantities, such as the
number of adults and the number of young. However, we limit ourselves to
using very simple equations.

Example. Suppose we consider a hypothetical insect with three life stages:
egg, larva, and adult. Our insect is such that individuals progress from egg to
larva over one time step, and from larva to adult over another. Finally, adults
lay eggs and die in one more time step. To formalize this, let

Et = the number of eggs at time t ,

Lt = the number of larvae at time t ,

At = the number of adults at time t .

Suppose we collect data and find that only 4% of the eggs survive to become
larvae, only 39% of the larvae make it to adulthood, and adults on average
produce 73 eggs each. This can be expressed by the three equations

Et+1 = 73At ,

Lt+1 = .04Et ,

At+1 = .39Lt .

This system of three difference equations is a model of the insect population.
Note that because the equations involve no terms more complicated than
those that appear in the equation of a line, it is justifiable to refer to this
as a linear model. Also note that, if we wish to use this model to predict
future populations, we need three initial values, E0, L0, and A0, one for
each stage class. Because the three equations are coupled (the population of
one developmental stage appears in the formula giving the future population
of a different stage), this system of difference equations is slightly more
complicated than the linear models in the last chapter.

� The above example could actually be studied by the model

At+3 = (.39)(.04)(73)At = 1.1388At ,

where At is the number of adults. Explain why.

Of course, if we realize that At+3 = 1.1388At describes our population,
then we immediately know that the population will grow exponentially, by a
factor of 1.1388 for each three time steps.
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Example. Consider the example above, but suppose that rather than dying,
65% of the adults alive at any time survive for an additional time step. Then
the model becomes

Et+1 = 73At ,

Lt+1 = .04Et ,

At+1 = .39Lt + .65At .

Again, we call this a linear model since all terms are of degree one. Be-
cause of our modification, however, it is no longer clear how to express the
population’s growth in terms of a single equation. It should be intuitively clear
that the change in our model should result in an even more rapidly growing
population than before. The adultswho survive longer can producemore eggs,
producing even more adults that survive longer, and so on. However, the new
growth rate is by no means obvious.

Example. Suppose we are interested in a forest that is composed of two
species of trees, with At and Bt denoting the number of each species in the
forest in year t . When a tree dies, a new tree grows in its place, but the new
tree might be of either species. To be concrete, suppose the species A trees
are relatively long lived, with only 1% dying in any given year. On the other
hand, 5% of the species B trees die. Because they are rapid growers, the B
trees, however, are more likely to succeed in winning a vacant spot left by a
dead tree; 75% of all vacant spots go to species B trees, and only 25% go to
species A trees. All this can be expressed by

At+1 = (.99+ (.25)(.01))At + (.25)(.05)Bt ,

Bt+1 = (.75)(.01)At + (.95+ (.75)(.05))Bt .
(2.1)

� Explain the source of each of the terms in these equations.

After simplifying, the model is a system of two linear difference equations

At+1 = .9925At + .0125Bt ,

Bt+1 = .0075At + .9875Bt .

Unlike in the previous two examples, there is no obvious guess as to how
populations modeled by these equations will behave.

In order to try to get numerical insight, suppose that we begin with a
populations of A0 = 10 and B0 = 990. These initial population values might
describe the forest if most of the A trees were selectively logged in the past.
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Table 2.1. Forest Model
Simulation

Year At Bt

0 10 990
1 22.30 977.70
2 34.35 965.65
3 46.17 953.83
4 57.74 942.26
5 69.09 930.91
...

...
...

10 122.50 877.50
...

...
...

50 401.04 598.96
...

...
...

100 543.44 456.56
...

...
...

500 624.97 375.03
...

...
...

1000 625 375
...

...
...

What will happen to the populations over time? A computer calculation
shows the results in Table 2.1.

This table shows rather interesting behavior; it appears that the forest
approaches an equilibrium, with 625 trees of species A and 375 of species
B. In fact, as you can see in Figure 2.1, if we had started with any other
nonnegative choices of A0 and B0, numerical calculations would have shown
a similar movement toward exactly the same ratio 625

375 = 5
3 of A trees to B

trees. That the forest would even approach a stable distribution of the two
species of trees is not obvious from our equations. It is even less clear why
the stable distribution is in this 5

3 ratio. To begin to understand the behavior of
models such as the one above, we need to develop some more mathematical
tools.

Vectors and matrices. The most convenient mathematical language to
express models of the type above is that of linear algebra. It involves several
types of mathematical objects that may be new to you.
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Figure 2.1. Two forest model simulations.

Definition. A vector in R
n is a list of n real numbers, usually written as a

column.

Example.
(

10
990

)
and

(
625
375

)
are both vectors in R

2;




1
−2
3


 is a vector in

R
3.

Vectors are usually denoted by small boldface letters; so, for instance,

we might use xt =
(

At

Bt

)
to denote the tree distribution in year t in our

last example, so that x3 =
(

46.17
953.83

)
. As you can see, much space is being

wasted on this page by insisting that vectors be written in columns. To remedy
this, we will write things like x3 = (46.17, 953.83) from now on, but we will
always expect you to act as if we had written the numbers in a column.

Definition. An m × n matrix is a two-dimensional rectangular array of real
numbers, with m rows and n columns.

Example.
(

.9925 .0125

.0075 .9875

)
is a 2× 2 matrix and




1 −2 3 −4
5 −6 −7 8

−9 10 −11 12


 is a

3× 4 matrix.

If a matrix has the same number of rows as columns, it is said to be square.
Note that there is not really any important difference between a vector in R

n

and a n × 1 matrix; they are written in an identical manner.
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Matrices (the plural of “matrix”) are usually denoted by capital letters,
such as A, M , or P . For instance, we might say

P =
(

.9925 .0125

.0075 .9875

)

is the projection, or transition, matrix for our forest model above, because the
entries in it are the numbers used to project future tree populations.

We now rewrite the forest model

At+1 = .9925At + .0125Bt

Bt+1 = .0075At + .9875Bt

(2.2)

in matrix notation as
(

At+1
Bt+1

)
=

(
.9925 .0125
.0075 .9875

) (
At

Bt

)
(2.3)

or xt+1 = Pxt . We’ve really gotten a bit ahead of ourselves here in our zeal to
express the model in the simple form xt+1 = Pxt , which looks so much like
the linear models we considered in the last chapter. What we have neglected
to do is to make sure we know what we mean by writing Pxt , a matrix times
a vector.

We will define Pxt to be whatever is necessary, so that Eq. (2.3) means
the same thing as Eq. (2.2). In other words, we need

(
.9925 .0125
.0075 .9875

) (
At

Bt

)
=

(
.9925At + .0125Bt

.0075At + .9875Bt

)
.

This leads us to define multiplication by:

Definition. The product of a 2× 2 matrix and a vector in R
2 is defined by

(
a b
c d

) (
x
y

)
=

(
ax + by
cx + dy

)
.

Rather than try to remember this formula, it is better to remember the
process by which we multiply: Entries in the first row of the matrix are
multiplied by the corresponding entries in the column vector and then all these
products are added. This gives us the top entry in the product. The bottom
entry is obtained the same way but using the bottom row of the matrix.

If we have a larger matrix than a 2× 2, we proceed analogously. Note that
to do this, each row of the matrix must have as many entries as the column
vector. That means that if we have a vector in R

n and we try to multiply it on
the left by a matrix, the matrix must have n entries in each row, and hence
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have n columns. Since we will be dealing primarily with square matrices, we
will generally use n × n matrices to multiple vectors in R

n .

Example.




1 −2 3
−4 5 −6
7 −8 9







1
0

−1


 =




1 · 1− 2 · 0+ 3 · −1
−4 · 1+ 5 · 0− 6 · −1
7 · 1− 8 · 0+ 9 · −1


 =




−2
2

−2


 .

Think again of our forest with the two species of trees. Suppose the de-
scription above of the way the forest composition changes is what happens
only in a wet year, so we rename the projection matrix

W =
(

.9925 .0125

.0075 .9875

)
.

If, in dry years, we suppose species B dies at a greater rate, then a projection
matrix for those years might be

D =
(

.9925 .0975

.0075 .9025

)
.

� What is it about this matrix that suggests B trees have a higher mortality
in dry years than in wet years?

In fact, all we have changed here is that the likelihood of a B tree dying
in a dry year is now .39. All the other parameters are just as they were in
Eq. (2.1).

� Verify that if the probability of a B tree dying is changed to .39, then
the matrix D above results.

Suppose our initial populations are given by x0 = (10, 990) as before.
Then, if the first year is dry,

x1 = Dx0 =
(

.9925 .0975

.0075 .9025

) (
10
990

)

=
(

.9925 · 10+ .0975 · 990

.0075 · 10+ .9025 · 990
)

=
(
106.45
893.55

)
.

Now suppose we have a dry year followed by a wet year; how should the
populations change?Becausewe know x1 = Dx0 and x2 = Wx1, we see x2 =
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W (Dx0), which we could compute relatively easily by matrix multiplication:

x2 =
(

.9925 .0125

.0075 .9875

) (
106.45
893.55

)
≈

(
116.82
883.18

)
.

A more interesting question is can we find a single matrix that will tell us
the cumulative effect on populations of a dry year followed by a wet year?
Although we know x2 = W (Dx0), is there a matrix B so that x2 = Bx0?

What wewould like to do is simplymove some parentheses in the equation
x2 = W (Dx0), writing it as x2 = (W D)x0, and say the matrix that does what
we want is W D. The problem with this is that we do not yet know how we
could multiply the two matrices W and D to get a new matrix W D.

What should this matrix W D look like? Rather than worry about the par-
ticular numbers involved in our concrete example, let

D =
(

a b
c d

)
, W =

(
e f
g h

)
, xt =

(
xt

yt

)
.

So

x1 = ax0 + by0, x2 = ex1 + f y1

y1 = cx0 + dy0, y2 = gx1 + hy1.

By substituting the left two equations into the right ones, we get

x2 = e(ax0 + by0)+ f (cx0 + dy0)

y2 = (ax0 + by0)+ h(cx0 + dy0),

or after rearranging,

x2 = (ea + f c)x0 + (eb + f d)y0

y2 = (ga + hc)x0 + (gb + hd)y0.

In matrix form, this becomes

x2 =
(

ea + f c eb + f d
ga + hc gb + hd

)
x0.

This indicates how we should define the product of two matrices; we want

W D =
(

e f
g h

) (
a b
c d

)
=

(
ea + f c eb + f d
ga + hc gb + hd

)
.

Notice the first column of our product on the right comes frommultiplying
W times the first column of D (treated as a vector), and the second column
of the product comes from multiplying W times the second column of D.
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Definition. The product of two matrices is a new matrix, whose columns are
found by multiplying the matrix on the left times each of the columns of the
matrix on the right.

Thismeans that, in order tomultiply twomatrices, if the one on the right has
n entries in each column, the one on the left must have n entries in each row.

Example.
(

1 3
−1 2

) (
2 1

−2 1
)

=
(

1 · 2+ 3 · −2 1 · 1+ 3 · 1
−1 · 2+ 2 · −2 −1 · 1+ 2 · 1

)
=

(−4 4
−6 1

)
.

An interesting thing happens if we multiply the above two matrices again,
but with them written in the opposite order – we get a different result.

Example.
(

2 1
−2 1

) (
1 3

−1 2
)

=
(

2 · 1+ 1 · −1 2 · 3+ 1 · 2
−2 · 1+ 1 · −1 −2 · 3+ 1 · 2

)
=

(
1 8

−3 −4
)

.

Warning: For most matrices A and B, AB �= B A. Matrix multiplication
is not commutative. The order within a product matters.

� Biologically, would you expect the effect on a forest of a dry year
followed by a wet year to be exactly the same as that of a wet year
followed by a dry year? What does this have to do with the warning?

Example. Note that, although a product like
(

.2 .7
0 .4

) (
3.2
1.1

)
makes sense,

if the vector is placed on the left as
(
3.2
1.1

) (
.2 .7
0 .4

)
, then the product does

not make sense anymore. Because there is only one entry in each row of(
3.2
1.1

)
, and

(
.2 .7
0 .4

)
has two entries in each column, the definition of matrix

multiplication cannot be used. Since we are writing our vectors as columns,
this means we must always put matrices to the left of vectors in products.

The fact that for matrices multiplication is not commutative – that order
matters in a product – is a significant difference from the algebra of ordi-
nary numbers. It is very important to always be aware of this when using
matrices.
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Fortunately, although we will not carefully show it here, matrix multipli-
cation is associative: when multiplying three matrices, it is always true that
(AB)C = A(BC). You can regroup products however you wish, as long as
you do not change the order. [A hint at why this turns out to be true: we
defined the product of two matrices so that A(BC) = (AB)C would hold in
the special case when C is a vector. It only takes a little more thought to see
that the definition then forces the same equality to be true when C is any
matrix.]

Of course, it takes some practice to get comfortable with the algebra of
matrices, but that is what the exercises are for. Most people use computers
for performing matrix calculations, especially when the sizes of the matrices
are large. Once you understand how to perform the work, the whole process
becomes very tedious to do by hand. Nonetheless, you have to be able to
do simple hand calculations to develop the understanding to use a computer
effectively.

There are a few other terms and rules that are used in manipulating vectors
and matrices.

Because we have names (vectors and matrices) for arrays of numbers, it is
convenient to have a name for single numbers as well.

Definition. A scalar is a single number.

Definition. To multiply a vector or a matrix by a scalar, multiply every entry
by that scalar.

Example. 3



1
2
3


 =



3
6
9


 and −.2

(
1 −1
2 1

)
=

(−.2 .2
−.4 −.2

)
.

Definition. To add two vectors together or to add two matrices together, add
corresponding entries. The things being added must be the same size.

Example.
(
1
2

)
+

(−1
4

)
=

(
0
6

)
and

(
1 −1
2 1

)
+

(
0 1

−1 2
)

=
(
1 0
1 3

)
.

Definition. A vector whose entries are all zero is called a zero vector and is
denoted by 0.
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Vectors and matrices also obey several distributive laws of multiplication
over addition such as

A(B + C) = AB + AC, (B + C)A = B A + C A, and

A(x + y) = Ax + Ay.

Finally,wenote that althoughmatrices in products do not usually commute,
it is valid to interchange the order of a matrix and a scalar; for instance,
Acx = cAx.

Problems

2.1.1. Without a computer, find the products

a.
(
2 −3
1 7

) (
3
2

)

b.



1 3 −2
4 −3 1
0 1 −4






3
2
5




c.
(
2 −3
1 7

) (
3 2
2 4

)

d.



1 3 −2
4 −3 1
0 1 −4






3 1 0
2 −1 3
5 0 1




2.1.2. Explain why the product
(
3
2

) (
2 −3
1 7

)
cannot be calculated.

2.1.3. For A =
(

1 2
−1 1

)
, B =

(
3 −1

−2 2

)
, and C =

(−1 1
−3 4

)
, find the fol-

lowing without a computer. Then check your answers with MATLAB.
Matrices are entered as A=[1,2;-1,1].
a. A + B
b. AB
c. B A
d. A2 = AA
e. 2A
f. Show (A + B)C = AC + BC .

2.1.4. For A =



1 0 −1
2 1 0

−1 1 −2


, B =




3 2 −1
−2 0 2
0 −1 1


, and C =




1 0 2
−2 1 1
3 −1 1


,



52 Linear Models of Structured Populations

find the following without a computer. Then check your answers with
MATLAB.
a. A + B
b. AB
c. B A
d. A2 = AA
e. 2A
f. Show C(A + B) = C A + C B.

2.1.5. For A =
(

r s
t u

)
and x =

(
x
y

)
and c a scalar, show A(cx) = c(Ax) by

computing each side.

2.1.6. For the matrix P in the text that models a forest succession, compute
P2, P3, P500.What is the biologicalmeaning of each of thesematrices?
What is significant about the entries you see in P500? (Use MATLAB
for calculations.)

2.1.7. For the matrix P in the text that models a forest succession, produce
a plot of the number of trees of each type over many years assuming
x0 = (10, 990). Use the MATLAB commands

P=[.9925 .0125; .0075 .9875]

x=[10; 990]

pops=[x]

x=P*x

pops=[pops x]

x=P*x

pops=[pops x]

x=P*x

pops=[pops x]
...

plot(pops')

Repeat this process several more times using different initial vectors
with entries adding to 1,000. Do all initial vectors ultimately lead to
the same forest composition?

2.1.8. The first example of this section describes an insect model given by

Et+1 = 73At ,

Lt+1 = .04Et ,

At+1 = .39Lt .
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a. Express this model as xt+1 = Pxt using a 3× 3 matrix P . What is
xt?

b. Compute P2 and P3 without the aid of a computer. What is the
biological meaning of these matrices?

c. Your computation of P3 should remind you of the equation

At+3 = (.39)(.04)(73)At = 1.1388At

in the text. Explain the connection.

2.1.9. The second example of this section describes an insect model given by

Et+1 = 73At ,

Lt+1 = .04Et ,

At+1 = .39Lt + .65At .

a. Express this model using a 3× 3 matrix P .
b. Compute P2 and P3 without the aid of a computer.
c. Beginning with initial populations of (E0, L0, A0) = (10, 10, 10),
produce a plot of the population sizes over time using a computer.
You can modify the commands in Problem 2.1.7 to do this with
MATLAB.

2.2. Projection Matrices for Structured Models

Although linear models have many applications beyond understanding pop-
ulation growth, there are several common applications of them in modeling
populations. In this setting, the projection matrices often have a rather dis-
tinct form, because there are natural ways of breaking the population into
subgroups by age or developmental stage.

The Leslie model. In some species, the amount of reproduction varies
greatlywith the age of individuals. For instance, consider two different human
populations that have the same total size. If one is comprised primarily of those
over 50 in age, while the other has mostly individuals in their 20s, we would
expect quite different population growth from them. Clearly, the age structure
of the population matters.

Humans progress through a relatively long period before puberty when no
reproduction occurs. After puberty, various social factors discourage or en-
courage childbearing at certain ages. Finally, menopause limits reproduction
by older women.



54 Linear Models of Structured Populations

To capture the effects on population growth, we might begin modeling a
human population by creating five age classes with:

x1(t) = no. of individuals age 0 through 14 at time t ,

x2(t) = no. of individuals age 15 through 29 at time t ,

x3(t) = no. of individuals age 30 through 44 at time t ,

x4(t) = no. of individuals age 45 through 59 at time t ,

x5(t) = no. of individuals age 60 through 75 at time t .

Although this formulation makes the unrealistic assumption that no one sur-
vives past age 75, that shortcoming could of course be remedied by creating
additional age classes. Using a time step of 15 years, we can describe the
population through equations like:

x1(t + 1) = f1x1(t) + f2x2(t) + f3x3(t) + f4x4(t) + f5x5(t)

x2(t + 1) = τ1,2x1(t)

x3(t + 1) = τ2,3x2(t)

x4(t + 1) = τ3,4x3(t)

x5(t + 1) = τ4,5x4(t).

Here, fi denotes a birth rate (over a 15-year period) for parents in the i th age
class, and τi,i+1 denotes a survival rate for those in the i th age class passing
into the (i + 1)th. Because a single set of parents may be in different age
groups, we should attribute half of their offspring to each in choosing values
for fi .

In matrix notation, the model is simply xt+1 = Pxt , where

xt = (x1(t), x2(t), x3(t), x4(t), x5(t))

is the column vector of subpopulation sizes at time t and

P =




f1 f2 f3 f4 f5
τ1,2 0 0 0 0
0 τ2,3 0 0 0
0 0 τ3,4 0 0
0 0 0 τ4,5 0




is the projection matrix.
Wemight expect f1 to be smaller than f2, because fewer 0- to 15-year-olds

are likely to give birth than 15- to 30-year-olds. However, remember that, in
the course of a time step, the 0- to 15-year-olds age by 15 years; therefore, the
birth rate to such parents is probably not as small as you might have thought.
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It is also possible that some of the fi are zero; for instance, the very old may
not reproduce.

� If data were collected, which of the numbers fi do you think would be
largest? Which would be smallest? How might this vary depending on
which particular human population was being modeled?

� What might be reasonable values for the τi,i+1? Which are likely to be
largest? Smallest?

Of course we might improve our model by using more age classes of
smaller duration, say 5 years or even 1 year, and adding additional age classes
for those over 75. For humans, age classes of 15 years are too long for much
accuracy. Demographers often use 5-year classes and track individuals to age
85, which results in a 17× 17 matrix.

With an improved model, our matrix would be larger, but it would still
have the same form: The top row would have fecundity information, the
subdiagonalwould have survival information, and the rest of thematrixwould
have entries of 0. A model whose projection matrix has this form is called a
Leslie model.

Example. A Leslie model describing the U.S. population in 1964 was for-
mulated in (Keyfitz andMurphy, 1967). Tracking only females, and hence ig-
noring the births of any males in the computation of birth rates, it used 10 age
groups of 5-year durations and a time step of 5 years. The top row of the
matrix was

(.0000, .0010, .0878, .3487, .4761, .3377, .1833, .0761, .0174, .0010),

while the subdiagonal was

(.9966, .9983, .9979, .9968, .9961, .9947, .9923, .9987, .9831).

� What is themeaning of the fact that the first subdiagonal entry is smaller
than the second? What are possible explanations for this?

� Whymight the seventh subdiagonal entry be smaller than those to either
side of it? What age group of females is this number describing?

� Why might it be reasonable to only include females up to age 50 in this
model?

TheUshermodel. AnUsher model is a slight variation on a Leslie model,
in which there may be nonzero entries on the diagonal. For example, return
to the 5× 5 matrix model of humans above, and continue to use 15-year-long
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age classes, but make the time step only 5 years in duration. Then, while some
of the individuals in a class will move up to the next class after a time step,
many will stay where they are. This results in a matrix of the form




f1 + τ1,1 f2 f3 f4 f5
τ1,2 τ2,2 0 0 0
0 τ2,3 τ3,3 0 0
0 0 τ3,4 τ4,4 0
0 0 0 τ4,5 τ5,5




,

with the parameters τi,i describing the fraction of the i th age class that remains
in that class in passage to the next time step. Note that the values of the entries
τi,i+1 and fi will be different fromwhat they were in the Leslie version above,
because the time step size has been changed.

Perhaps a more natural example of an Usher model is one based on the
developmental stages an organism passes through in its lifetime. For instance
for amammal such as awhale that takes several years to reach sexualmaturity,
and may also live past an age where it breeds, a three-stage model might be
used, with immature, breeding, and postbreeding classes. The Usher matrix




τ1,1 f2 0
τ1,2 τ2,2 0
0 τ2,3 τ3,3




could describe such a population.

� Why is there only one nonzero fi in this matrix?

Other structuredpopulationmodels. AlthoughLeslie andUshermodels
are natural and common ones for describing populations, mathematically
there is little special about the particularmatrix forms they use. If a species can
be better modeled by a different matrix model, then there is no reason not to.

As an example, consider a plant that takes several years to mature to a
flowering stage and that does not flower every year after reaching maturity.
In addition, seeds may lie dormant for several years before germinating.

The life cycle of this plant could be modeled using time steps of a year
and the classes

x1(t) = no. of ungerminated seeds at time t ,

x2(t) = no. of sexually immature plants at time t ,

x3(t) = no. of mature plants flowering at time t ,

x4(t) = no. of mature plants not flowering at time t .
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With x(t) = (x1(t), x2(t), x3(t), x4(t)), the projection matrix for the model
might have the form




τ1,1 0 f3,1 0
τ1,2 τ2,2 f3,2 0
0 τ2,3 τ3,3 τ4,3

0 0 τ3,4 τ4,4


 .

Here, the parameter τ4,3 describes mature plants that did not flower in one
season passing into the flowering class for the next. In addition, there are
two parameters describing fertility – f3,1 describes the production of seeds
that do not germinate immediately, whereas f3,2 describes the production of
seedlings through new seeds that germinate by the next time step.

� Which parameter describes the seeds produced in previous years that
again do not germinate, but may germinate in the future?

Example. For this plant model with the particular parameter choices given
by




.02 0 11.9 0

.05 .12 5.7 0
0 .14 .21 .32
0 0 .43 .11


 , (2.4)

and an initial population vector of x0 = (0, 50, 50, 0), the populations over
the next 12 time steps are shown in Figure 2.2.. We see a clear growth trend
in the sizes of all the classes, with some overlying oscillations for at least the
first few time steps. Moreover, there is a roughly constant ratio between the
sizes of the classes after a few steps.

The behavior exhibited in Figure 2.2. is typical of Leslie and Usher models
as well, regardless of the number of classes involved. Generally, there is a
dominant trend of growth or decay, although smaller scale fluctuations are
often present also. The dominant trend appears similar to the exponential
growth or decay of the Malthusian model. However, the class structure of the
model produces more intricate behavior as well.

The forest model of Section 2.1 is another example of a linear model that
is neither Leslie nor Usher. Because it tracks two types of trees, rather than
an organism going through its life cycle, the projection matrix has a rather
different form. It is an example of a Markov model, which we will develop
further in Chapter 4. We saw, however, in Figure 2.1 that this model also
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Figure 2.2. Simulation of plant model; on the right side of graph, classes are in order 1,
2, 3, and 4 from top.

showed a long-term trend, toward an equilibrium. We will develop a means
of extracting information on the main trends produced by any linear model
in the next section.

Inmodeling real populations’ life stages, the decision to use aLesliemodel,
an Usher model, or a unnamed variant must take into account a number of
factors. An understanding of the life cycle of the organismmaymake a natural
choice of classes clear. However, the difficulty of finding good estimates of
the parameters could also dictate choices, since if more classes are used, then
more parameters appear in the model. Using very small age groups or many
different stages should, in theory, produce amore accurate model. However, it
also requiresmore detailed surveying to obtain reasonably accurate parameter
values.

The identity matrix and matrix inverses. Having looked in more de-
tail at the types of matrices used in linear population models, let’s return to
developing some mathematical tools for understanding them.

Suppose a linear population model uses only two classes, and hence has
a 2× 2 projection matrix P . If the population at time 1 is given by the
vector x1, then computing the populations at the next time step just requires
a multiplication

x2 = Px1.



2.2. Projection Matrices for Structured Models 59

But imagine that we are interested in deducing the populations at the
previous time step. If we know x1 and P , how can we find x0? In other words,
can we project populations backward in time if we only have a matrix P
describing how they change forward in time?

If P were a scalar instead of a matrix, we would know how to do this. We
would simply “divide” each side of the equation x1 = Px0 by P to solve for
x0. Unfortunately, it is not clear what “dividing by a matrix” means.

A slightly better way to think of it is as follows: Can the equation x1 = Px0
bemultiplied on each side by somematrix to remove the P from the right-hand
side? Suppose we try this and pick some 2× 2 matrix Q so that x1 = Px0
becomes Qx1 = Q Px0. If our goal was to get rid of the P , we need Q P to
disappear from the equation. Unfortunately, Q P will be a 2× 2 matrix and
there is no way around that. However, there is a special 2 × 2 matrix that
would be good enough for our purposes.

Definition. The 2×2 identity matrix is

I =
(
1 0
0 1

)
.

The n × n identity matrix is a square matrix whose entries are all 0, except
for 1’s on the main diagonal.

Note that

I

(
x
y

)
=

(
1 0
0 1

) (
x
y

)
=

(
x
y

)
,

so that I behaves like the number 1 in ordinary algebra with scalars. Multi-
plying any vector times I leaves the vector unchanged. You should check that
AI = A and I A = A for any matrix A as well.

Returning to our attempt to project a population backward in time, we had
Qx1 = Q Px0 so that if we can just pick Q so that Q P = I , the equation
becomes

Qx1 = Ix0 = x0.

In other words, we will have managed to solve for x0 by calculating Qx1.

Definition. If P and Q are both n × n square matrices with Q P = I , then
we say that Q is the inverse of P . We then use the notation Q = P−1.
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Although we will not prove it here, it is possible to show that, for square
matrices, if Q P = I , then P Q = I . So, if Q is the inverse of P , then P is
the inverse of Q.

Before we try to calculate the inverse of a matrix, we should ask ourselves
if one really has to exist. For instance

(−2 1
1.5 −.5

) (
1 2
3 4

)
=

(
1 0
0 1

)
,

so
(
1 2
3 4

)−1
=

(−2 1
1.5 −.5

)
.

On the other hand, if A =
(
0 −2
0 −3

)
, then A does not have an inverse. To see

this, think about
(∗ ∗

∗ ∗
) (

0 −2
0 −3

)
=

(
1 0
0 1

)
.

You simply cannot fill in the entries in the top row of the matrix on the left
so that the upper left entry in the product is 1. Because of the column of 0’s
in A, the upper left entry in the product will always be 0.

Although this example has shown that are some matrices without inverses,

trying to find the inverse of a generic 2× 2 matrix
(

a b
c d

)
will give us more

insight into the problem. We will make guesses as to how to fill out the
unknown matrix in the equation

(∗ ∗
∗ ∗

) (
a b
c d

)
=

(
1 0
0 1

)
.

Focusing on the upper right entry in the product first, we can easily get a zero
there by putting d and−b in the top row of the empty matrix. To get a zero in
the bottom left entry of the product, we can put −c and a in the bottom row.
This leaves us with(

d −b
−c a

) (
a b
c d

)
=

(
ad − bc 0

0 ad − bc

)
.

To make sure we get 1’s on the diagonal, we just need to divide every entry
in the matrix on the left by ad − bc, so

(
d

ad−bc
−b

ad−bc−c
ad−bc

a
ad−bc

) (
a b
c d

)
=

(
1 0
0 1

)
.
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The number ad − bc is given a special name:

Definition. The determinant of a 2× 2 matrix A =
(

a b
c d

)
is the scalar

ad − bc. It is denoted by det A or |A|.

Our formula for the inverse of a 2× 2 matrix becomes:

If A =
(

a b
c d

)
, then A−1 = 1

det A

(
d −b

−c a

)
.

Example.
(
3 −1
2 1

)−1
= 1

3 · 1− (−1) · 2
(

1 1
−2 3

)
=

(
.2 .2

−.4 .6

)
.

Because not every matrix has an inverse, we cannot have really found
a formula for the inverse of all 2× 2 matrices. Something must go wrong
occasionally. Looking at the formula, we see that it does not make sense if
det A = 0. In fact, although we will not prove it, if det A = 0 then A has no
inverse. In other words, to find the inverse of a 2 × 2 matrix, we can just try
to use the formula. If the formula does not make sense, then the matrix has
no inverse. We summarize this with

Theorem. A square matrix has an inverse if, and only if, its determinant is
nonzero.

Example.
(

1 −2
−2 4

)
has no inverse, because its determinant is

1 · 4− (−2)(−2) = 0.

For amatrix that is 3× 3 or larger, calculating the determinant or inverse (if
it exists) is harder. Although there are formulas for the determinant and inverse
of any square matrix, they are too complicated to be very useful. Inverses
are usually calculated through a different approach, called the Gauss-Jordan
method, which is taught in linear algebra courses. In this text, for matrices
larger than 2× 2, we rely on software such asMATLAB to do the calculations
for us.

It is important to remember, though, that not every matrix will have an
inverse. If you attempt to calculate one when none exists, MATLAB will let
you know. Fortunately, most square matrices do in fact have inverses, for
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any reasonable interpretation of the word “most.” For this reason, matrices
without inverses are said to be singular.

Let’s return to our original motivation for developing the matrix inverse.

Example. For the forest model of Section 2.1, suppose at time 1 the popula-
tions were x1 = (500, 500). What must they have been at time 0?

To answer this, because x1 = Px0, we multiple by P−1 to find

x0 = P−1x1

=
(

.9925 .0125

.0075 .9875

)−1 (
500
500

)

= 1

(.9925)(.9875)− (.0075)(.0125)

(
.9875 −.0125

−.0075 .9925

) (
500
500

)

= 1

.98

(
487.5
492.5

)
≈

(
497.449
502.551

)
.

Problems

2.2.1. The first section of this chapter began with two examples of insect
population models. Is either of these a Leslie model? Is either of
these an Usher model? Explain why by describing the form of the
projection matrices for them.

2.2.2. In MATLAB, create the Leslie matrix for the 1964 U.S. population
model of (Keyfitz and Murphy, 1967) described in the text with the
commands

sd=[.9966,.9983,.9979,.9968,.9961, . . .

.9947,.9923,.9987,.9831]

P=diag(sd,-1)

P(1,:)=[.0000,.0010,.0878,.3487,.4761, . . .

.3377,.1833,.0761,.0174,.0010]

For several choices of initial populations, produce graphs of the pop-
ulation over the next 10 time steps. Describe your observations.

2.2.3. Without using a computer, find the determinants and inverses of
(
1 2
2 3

)
,

(
2 −1
2 3

)
,

(
.7 .3

−1.4 −.6

)
,

provided they exist. Then check your answers with a computer. (The
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MATLAB commands to find the inverse and determinant of a matrix
A are inv(A) and det(A).)

2.2.4. Use a computer to find the determinants and inverses of the matrices



1 0 −1
2 1 0

−1 1 −2


 ,




3 2 −1
−2 0 2
0 −1 1


 ,




1 0 2
−2 1 1
3 −1 1


 ,

provided they exist. Check to see that the computed inverse times the
original matrix really gives the identity matrix.

2.2.5. A simple Usher model of a certain organism tracks immature and

mature classes, and is given by the matrix P =
(

.2 3

.3 .5

)
.

a. On average, how many births are attributed to each adult in a time
step?

b. What percentage of adults die in each time step?
c. Assuming no immature individuals are able to reproduce in a time
step, what is the meaning of the upper left entry in P?

d. What is the meaning of the lower left entry in P?

2.2.6. For the model of the last problem,
a. Find P−1.
b. If x1 = (1100, 450), find x0 and x2.

2.2.7. Suppose a structured population model has projection matrix A,
which has an inverse.
a. What is the meaning of the matrix A100? If a population vector
is multiplied by it, what is produced? If a population vector is
multiplied by (A100)−1, what is produced?

b. What is the meaning of the matrix (A−1)100? If a population vector
is multiplied by it, what is produced?

c. Based on your answers to parts (a) and (b), explain why (An)−1 =
(A−1)n for any positive integer n. This matrix is often denoted by
A−n .

2.2.8. A model given in (Cullen, 1985), based on data collected in (Nellis
and Keith, 1976), describes a certain coyote population. Three stage
classes – pup, yearling, and adult – are used while the matrix

P =



.11 .15 .15
.3 0 0
0 .6 .6




describes changes over a time step of 1 year. Explain what each entry
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in this matrix is saying about the population. Be careful in trying to
explain the meaning of the .11 in the upper left corner.

2.2.9. a. Show that Ax = Ay does not necessarily mean x = y by calculat-

ing Ax and Ay for A =
(
2 1
6 3

)
, x =

(
5
7

)
, and y =

(
6
5

)
.

b. Explain why if Ax = Ay and A−1 exists, then x = y

2.2.10. Unlike scalars, for matrices usually (AB)−1 �= A−1B−1. Instead, as
long as the inverses exist, (AB)−1 = B−1A−1.

a. For A =
(
2 1
1 1

)
and B =

(
1 2
3 5

)
, without using a computer com-

pute (AB)−1, A−1B−1, and B−1A−1 to verify these statements.
b. Pick any two other invertible 2× 2 matrices C and D and verify

that (C D)−1 = D−1C−1.
c. Pick two invertible 3× 3 matrices E and F and use a computer to
verify that (E F)−1 = F−1E−1.

2.2.11. The formula (AB)−1 = B−1A−1 can be explained several ways.
a. Explain why (B−1A−1)(AB) = I. Why does this show (AB)−1 =

B−1A−1?
b. Suppose, as in the first section of this chapter, that D is a projection

matrix for a forest population in a dry year, and W is a projection
matrix for a wet year. Then, if the first year is dry and the second
wet, x2 = W Dx0. How could you find x1 from x2? How could you
find x0 from x1? Combine these to explain how you could find x0
from x2. How does this show (W D)−1 = D−1W −1?

2.2.12. A forest is composed of two species of trees, A and B. Each year 1
3

of the trees of species A are replaced by trees of species B, while
1
4 of the trees of species B are replaced by trees of species A. The
remaining trees either survive or are replaced by trees of their own
species.
a. Letting At and Bt denote the number of trees of each type in year

t , give equations for At+1 and Bt+1 in terms of At and Bt .
b. Write the equations of part (a) as a single matrix equation.
c. Use part (b) to get a formula for At+2 and Bt+2 in terms of At and

Bt .
d. Use part (b) to get a formula for At−1 and Bt−1 in terms of At and

Bt .
e. Suppose A0 = 100 and B0 = 100. By hand, calculate At and Bt for

t = 1, 2, and 3. Use MATLAB to check your work and extend the
calculation through t = 10.What is happening to the populations?
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f. Choose several different values of A0 and B0 and use MATLAB
to track how the populations change over time. How do your
results compare to those of part (e)?

2.3. Eigenvectors and Eigenvalues

Let’s return to the forest model introduced in Section 2.1 of this chapter.
Recall that we tracked two types of trees in a forest by

xt+1 = Pxt , with P =
(

.9925 .0125

.0075 .9875

)
.

The vector v1 = (625, 375), which gave the population values that the forest
approached in our numerical investigation, has the significant property that
Pv1 = v1. (Make sure you check this.) Using the language of Chapter 1, we
might call v1 an equilibrium vector for our model.

Actually, there is another vector that is almost as well behaved as v1 for
this particular model. If v2 = (1, −1), then Pv2 = .98v2. (Check this, too.)
Although v2 is not an equilibrium, it does exhibit rather simple behavior when
multiplied by P – the effect of multiplying v2 by P is exactly the same as
multiplying it by the scalar .98.

Definition. If A is an n × n matrix, v a nonzero vector in R
n , and λ a scalar

such that Av = λv, thenwe say that v is an eigenvector of Awith eigenvalue λ.

We require that eigenvectors not be the zero vector, because A0 = 0 = λ0
for all real numbers λ. As long as an eigenvector v �= 0, there can be only one
eigenvalue associated to it.

Using this terminology, the matrix P above has eigenvector (625, 375)
with eigenvalue 1, and eigenvector (1, −1) with eigenvalue .98.

Notice, however, that like (625, 375), the vectors (5, 3), (−10, −6), and
(15, 9) are also eigenvectors of P with eigenvalue 1. However, because all
of these vectors are scalar multiples of one another, this may not seem too
surprising. This is explained by:

Theorem. If v is an eigenvector of A with eigenvalue λ, then for any scalar
c, cv is also an eigenvector of A with the same eigenvalue λ.

Proof. If Av = λv, then A(cv) = c(Av) = c(λv) = λ(cv).
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Table 2.2. Linear
Model Simulation

with Eigenvector as
Initial Values

t xt

0 v
1 Av = λv
2 Aλv = λ2v
3 Aλ2v = λ3v
...

...

The practical consequence of this is that although people might speak of
(5, 3) as “the” eigenvector of P with eigenvalue 1, for instance, they do not
really mean there is only one such eigenvector. Any nonzero scalar multiple
of (5, 3) is also an eigenvector.

Understanding eigenvectors is crucial to understanding linear models. As
a first step to seeing why this is so, consider what happens when the ini-
tial values of a linear model are given by an eigenvector. Consider a model
xt+1 = Axt , where we know that Av = λv. Then, if x0 = v, we produce Table
2.2.

The entries in Table 2.2 lead to the formula xt = λtv. This means that,
when the initial vector is an eigenvector, we can give a simple formula for all
future values. Note that this formula involves a scalar exponential, just like the
corresponding formula for the linear model of Chapter 1. The only difference
is that this exponential multiplies the eigenvector of initial population values,
rather then the single initial population value used in Chapter 1.

Example. If the forest model with P =
(

.9925 .0125

.0075 .9875

)
has initial vector

x0 = (1, −1), then xt = .98t (1, −1) = (.98t (1), .98t (−1)). Thus, as time in-
creases, the entries of xt will both decay (rather slowly) to 0.

There are at least two questions that you might be wondering about:
1) Since populations cannot be negative, why is an eigenvector with a neg-
ative entry relevant to understanding this biological model? 2) How was the
eigenvector (1, −1) found? We address the first of these questions next, and
defer the second to the next section.
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The use of eigenvectors. For the forest model P =
(

.9925 .0125

.0075 .9875

)
, we

have the two eigenvector equations

P

(
5
3

)
= 1

(
5
3

)
, P

(
1

−1
)

= .98
(

1
−1

)
.

If we begin with an initial population that is not one of these eigenvectors,
how can we use the eigenvectors to understand what will happen?

The key idea is to try to write our initial population vector in terms of
eigenvectors. Specifically, given an initial population vector x0 = (A0, B0),
we look for two scalars, c1, and c2, with

(
A0

B0

)
= c1

(
5
3

)
+ c2

(
1

−1
)

.

Equivalently, we need to solve
(

A0

B0

)
=

(
5 1
3 −1

) (
c1
c2

)
.

Notice that the matrix appearing in this equation has the eigenvectors of A as
its columns. Now this equation can be solved provided that the matrix has an
inverse. We have shown the 2× 2 version of the following theorem.

Theorem. Suppose A is an n × n matrix with n eigenvectors that form the
columns of a matrix S. If S has an inverse, then any vector can be written as
a sum of eigenvectors.

Example. When we investigated the forest model numerically, we used
the initial population vector x0 = (10, 990). The eigenvector matrix is

S =
(
5 1
3 −1

)
. To solve

(
10
990

)
=

(
5 1
3 −1

) (
c1
c2

)
, we compute S−1 =

1
−8

(−1 −1
−3 5

)
, so

(
c1
c2

)
= 1

−8
(−1 −1

−3 5

) (
10
990

)
=

(
125

−615
)

.

Thus
(

10
990

)
= 125

(
5
3

)
− 615

(
1

−1
)

.
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Technical remark: Not every matrix has eigenvectors that can be used as
columns to form an invertible matrix. However, it is possible to prove that if a
matrix does not have this property, then by changing the entries an “arbitrarily
small” amount, you can get a matrix that does. Moreover, “most” matrices do
have this property – if you pick amatrix at random, it is essentially guaranteed
to have the property. The consequences of these facts for applying the theory
of eigenvectors to biological models is that there is no need to really worry
about not having nice enough eigenvectors.

Now that we understand how to express initial values in terms of eigenvec-
tors, how do we use that expression? Let’s suppose A is n × n, with n eigen-
vectors v1, v2, . . . , vn , whose corresponding eigenvalues are λ1, λ2, . . . , λn .
We express our initial vector x0 as

x0 = c1v1 + c2v2 + · · · + cnvn,

so then

x1 = Ax0 = A(c1v1 + c2v2 + · · · + cnvn)

= Ac1v1 + Ac2v2 + · · · + Acnvn.

But each term in this last expression is simply A applied to an eigenvector,
so we see

x1 = c1λ1v1 + c2λ2v2 + · · · + cnλnvn.

But then

x2 = Ax1 = A(c1λ1v1 + c2λ2v2 + · · · + cnλnvn)

= Ac1λ1v1 + Ac2λ2v2 + · · · + Acnλnvn,

and because each term is again A times an eigenvector,

x2 = c1λ
2
1v1 + c2λ

2
2v2 + · · · + cnλ

2
nvn.

Continuing to apply A, we obtain the formula

xt = c1λ
t
1v1 + c2λ

t
2v2 + · · · + cnλ

t
nvn.

Understanding the eigenvectors has allowed us to find a formula for the values
of xt at any time. Notice the similarity of this formula to the corresponding
one for the Malthusian model of Chapter 1. Although there are a number of
terms added together, each one has a simple exponential form that is already
familiar.
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Example. For the populations used in the numerical investigation of the

forest model, we have already seen x0 =
(

10
990

)
= 125

(
5
3

)
− 615

(
1

−1
)
.

This means

xt = 1t (125)
(
5
3

)
+ .98t (−615)

(
1

−1
)

=
(
1t (125)(5)+ .98t (−615)(1)
1t (125)(3)+ .98t (−615)(−1)

)
=

(
625− (615).98t

375+ (615).98t

)
.

We have thus found a formula giving all the entries in Table 2.1 that were
originally produced by numerical investigation. Try picking a few values of
t and seeing that you get the same values that appear in the table. Note also
that the formulas make clear that the populations will approach (625, 375) as
t grows.

Why does this all work? As far as an eigenvector is concerned, multipli-
cation by the matrix is the same as multiplying by a scalar (the eigenvalue).
Thus, initial values given by eigenvectors will produce fully understandable
behavior (exponential growth or decay). If we decompose any initial vector
into eigenvectors, we can understand the model’s effect on the initial vector
through its effect on the eigenvectors.

Asymptotic behavior. Given a linearmodel xt+1 = Axt with initial vector
x0, we now know how to find an explicit formula for xt : If λ1, λ2, . . . , λn are
eigenvalues of A with v1, v2, . . . , vn the corresponding eigenvectors, then
writing x0 in terms of the eigenvectors

x0 = c1v1 + c2v2 + · · · + cnvn

means

xt = c1λ
t
1v1 + c2λ

t
2v2 + · · · + cnλ

t
nvn. (2.5)

This formula for xt immediately gives us qualitative information on themodel.
Suppose, for example, that all the λi satisfy |λi | < 1; then, as higher powers of
the λi will shrink to 0, the populations xt will also decline to 0 as t increases.
On the other hand, if for at least one i we have λi > 1 (and the corresponding
ci �= 0), then xt should have a component of exponential growth. We also see
that a negative value for λi should produce some form of oscillatory behavior,
because its powers alternate in sign. Viewing the formula this way shows that
the eigenvalues are really the key to the qualitative behavior of the model.
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Definition. An eigenvalue of A that is largest in absolute value is called a
dominant eigenvalue of A. An eigenvector corresponding to it is called a
dominant eigenvector.

Notice that we did not say “the” dominant eigenvalue in the definition,
because several eigenvalues may have the same absolute value. If there is
an eigenvalue whose absolute value is strictly larger than all the others (e.g.,
|λ1| > |λi | for i = 2, 3, . . . , n), we say it is strictly dominant.

Numbering the eigenvalues so that λ1 is a dominant one, then Eq. (2.5)
can be rewritten as

xt = λt
1

(
c1v1 + c2

(
λ2

λ1

)t

v2 + · · · + cn

(
λn

λ1

)t

vn

)
. (2.6)

Assuming λ1 is strictly dominant, then
∣∣∣ λi
λ1

∣∣∣ < 1 for i = 2, 3, . . . , n, so as t in-

creases all the terms in the parentheseswill decay exponentially, except for the
first. Discarding the decaying terms shows the behavior of xt is approximated
by

xt ≈ λt
1c1v1.

Overall, then, the model displays roughly exponential growth or decay, de-
pending on the value of λ1. For example, the model producing Figure 2.2.
must have had a dominant eigenvalue that was larger than 1, because the graph
shows exponential growth.

The dominant eigenvalue describes the main component of the model’s
behavior. For a linear population model, the dominant eigenvalue is often
called the intrinsic growth rate of the population, and it is the single most
important number describing how the population changes over time. It is an
example of a summary statistic, because it extracts the most important feature
from all the entries in the matrix.

Equation (2.6) can tell us more, though. Dividing each side by λt
1, it be-

comes

1

λt
1
xt = c1v1 + c2

(
λ2

λ1

)t

v2 + · · · + cn

(
λn

λ1

)t

vn.

As t → ∞, we see 1
λt
1
xt → c1v1. In words, once we counteract the growth

the model predicts for xt , the vector will simply approach a multiple of the
dominant eigenvector. Therefore, for large t , the entries of xt should be in
roughly the same proportions to one another as the entries of v1. We see this
in Figure 2.2., after the first few time steps have passed.
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For a population model, the dominant eigenvector is hence often referred
to as the stable age distribution or stable stage distribution, because it gives
us the proportions of the population that should appear in each age or stage
class, once we account for the growth trend.

Up to this point, we have avoided commenting on the significance of
the coefficients ci in Eq. (2.5) and (2.6). Recall that they were found by
letting c = (c1, c2, . . . , cn) and solving x0 = Sc, where S is a matrix with the
eigenvectors as its columns. This means that if we change x0, we change the
values of the ci ’s. It is only through the ci ’s that the initial vector x0 enters
into formulas (2.5) and (2.6).

Even though it was not pointed out previously, the discussion of the growth
rate and stable distribution actually required an assumption that c1 �= 0. If we
slough over this point, we reach the rather significant conclusion that themain
features of the qualitative behavior of themodel – the intrinsic growth rate and
the stable age distribution – are independent of the initial vector. The dominant
eigenvector and eigenvalue alone tell us the most important features of the
model. This result is sometimes called the Strong Ergodic Theorem for linear
models, or, in the context of population models, the Fundamental Theorem
of Demography.

Although certain choices of x0 might cause c1 = 0, that happens rarely;
for most choices of x0, we expect c1 �= 0. For many types of models, it can
even be proved c1 �= 0 for all biologically meaningful choices of x0.

Example. Consider an Usher model for a population with two stage classes
given by the matrix

P =
(
0 2
.5 .1

)
.

Because we have only two classes, we can make some reasonable guesses
as to how the population should change. Note each adult produces two off-
spring, but only half of these make it to adulthood. If the lower right-hand
entry were not .1, we might expect a stable population size, but the small
fraction of adults surviving for more than one time step, and therefore re-
producing again, should result in a growing population. Because the fraction
of adults surviving for an additional time step is small, the population will
probably grow slowly.

Now using a computer to calculate eigenvectors and eigenvalues gives us

P

(
.8852
.4653

)
= 1.0512

(
.8852
.4653

)
, P

(
.9031

−.4295

)
= −.9512

(
.9031

−.4295

)
.
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Figure 2.3. Two simulations of a linear model; note similar qualitative features despite
different initial values.

This means that if we write our initial population (which has not been
given here!) as

x0 = c1

(
.8852
.4653

)
+ c2

(
.9031

−.4295

)
,

for some numbers c1 and c2, then future populations are given by

xt = c1(1.0512)
t

(
.8852
.4653

)
+ c2(−.9512)t

(
.9031

−.4295

)
.

The first term here will produce slow growth, while the second term will
decline in size. Note that the sign of the eigenvalue in the second term will
cause the numbers in that term to oscillate between negative and positive val-
ues as they approach zero. This means that if we pick any initial population,
calculate future populations, and graph them, we should expect a slow expo-
nential growth trend, with a decaying oscillation superimposed on it. You can
see this for two choices of initial population vectors in Figure 2.3.

The stable stage distribution for themodel is given by v1 = (.8852, .4653).
Even though the population continues to grow, after enough time has elapsed
we should see the populations in the two classes in proportion approximately
.8852
.4653 = 1.9024. That is, for every adult, there will be about 1.9 immature
individuals.

Many theorems have been proved about the particular types of matrices
appearing in Leslie and Usher models. One of these is:
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Theorem. A Leslie model in which two consecutive age classes are fertile
(i.e., both fi > 0 and fi+1 > 0) will have a positive real strictly dominant
eigenvalue, and hence a stable age distribution.

Although such theorems are useful for making general statements about
the way populations must behave, when it comes to any particular model, it
is always necessary to actually find the eigenvectors and eigenvalues.

Complex numbers. As you will see when you compute eigenvectors and
eigenvalues, the above examples have been a little misleading, since eigen-
vectors and eigenvalues often involve complex numbers. Despite this, the
discussion of asymptotic behavior is still valid, provided we explain how to
measure the size of complex numbers.

Definition. The absolute value of a complex number a + bi is |a + bi | =√
a2 + b2.

Note that if b = 0, then |a + 0i | = √
a2 = |a| is the usual meaning of

absolute value for real numbers. Also, |a + bi | ≥ 0, and |a + bi | = 0 only
when a + bi = 0, as we would like for something that purports to measure
the size of a number. Less obvious properties are:

Theorem. For real numbers a, b, c, d,

a) |(a + bi)(c + di)| = |a + bi ||c + di |
b) |(a + bi)n| = |a + bi |n

c)

∣∣∣∣
a + bi

c + di

∣∣∣∣ = |a + bi |
|c + di | .

Notice that all three of these statements are familiar to you in the special
case when b = 0 and d = 0, when the absolute value simply means the one
you are familiar with for real numbers.

The proof of statement (a) appears as an exercise and just requires multi-
plying out each side. Statement (b) is shown by just applying (a) repeatedly,
since (a + bi)n = (a + bi)n−1(a + bi). Statement (c) also follows from (a),
if you first multiply the equation in (c) through by |c + di | to clear the deno-
minator.

To see how the discussion of the asymptotic behavior of a linear model
is affected by complex eigenvalues, look back at Eq. (2.6). Even if some of
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the eigenvalues λi are complex, if λ1 is strictly dominant so |λ1| > |λi | for
i = 2, 3, . . . , n, then by part (c) of the theorem,

∣∣∣ λi
λ1

∣∣∣ < 1 as before, and so∣∣∣ λi
λ1

∣∣∣
t
approaches 0 as t increases. By part (b) of the theorem, this would mean∣∣∣∣

(
λi
λ1

)t
∣∣∣∣ approaches 0, and so we must have that

(
λi
λ1

)t
approaches 0. Just as

before, we see that all the terms inside the parentheses in Eq.(2.6), except for
the first, vanish as t increases. Our earlier argument is still valid even if some
eigenvalues are complex.

Although the appearance of complex eigenvalues can be confusing at first,
once you understand how tomeasure their sizewith the absolute value, they do
not create any difficulties for analyzing a model. Their presence will usually
result in irregular-looking oscillations as part of the model’s behavior, just
as negative eigenvalues cause oscillations. For population models, a strictly
dominant eigenvalue will always turn out to be real.

Problems

2.3.1. Use MATLAB to investigate the model P =
(
0 2
.5 .1

)
discussed in

the text. Show that, for a variety of choices of initial populations, the
model behaves exactly as one would predict from knowing only the
two eigenvalues.

2.3.2. The MATLAB command [S D]=eig(A) computes the eigenvec-
tors and eigenvalues of a matrix A. The columns of S will be the
eigenvectors and the corresponding diagonal entries of D their eigen-
values.

Use MATLAB to compute the eigenvectors and eigenvalues for
the matrix P in the text for the forest succession model. Are they the
“same” ones given in the text? Explain.

2.3.3. Use MATLAB to compute the eigenvalues of the matrix given in
Eq. (2.4) of Section 2.2 describing a plant model. Explain how the
eigenvalues are related to the graph in Figure 2.2..

2.3.4. Consider the plantmodel of Eq. (2.4) of Section 2.2, aswell as another
plant model obtained by replacing all entries in the first row and
column of that matrix with 0’s.
a. In biological terms, what is the meaning of replacing the specified
entries with 0’s?
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b. Compute the dominant eigenvalue for each model. Is there much
difference in the intrinsic growth rate? Did the intrinsic growth
rate change the way you thought it would? Explain.

c. If the ungerminated seeds have little affect on the intrinsic growth
rate of this plant, whymight they still be biologically advantageous
to the species?

2.3.5. Consider the Leslie model with P =
(

.3 2

.4 0

)
.

a. By thinking about the biological meaning of each entry in this
matrix, do you think it describes a growing or declining popula-
tion? Would you guess the population size would change rapidly
or slowly?

b. Compute eigenvectors and eigenvalues of the model with MAT-
LAB.

c. What is the intrinsic growth rate? the stable stage distribution?
d. Express the initial vector x0 = (5, 5) as a sum of the eigen-

vectors.
e. Use your answer in part (d) to give a formula for the population
vector xt .

2.3.6. Repeat the last problem for the Usher model P =



0 0 73
.04 0 0
0 .39 .65




with x0 = (100, 10, 1).

2.3.7. Find the growth rate and stable stage distribution of the coyote model
whose matrix is

P =



.11 .15 .15
.3 0 0
0 .6 .6


 .

Will the population grow or decline? Quickly or slowly?

2.3.8. Find the intrinsic growth rate and stable age distribution for the U.S.
populationmodel described in the text and inProblem2.2.2.Recalling
that the time step for this model was 5 years, how would you express
the intrinsic growth rate on a yearly basis?

2.3.9. Suppose a simple population is broken up into immature and mature
developmental classes. Only one-sixth of the immature individuals
make it to maturity at each time step (with the rest dying). A typical
mature individual gives birth to five young at each time step. Finally,
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three-quarters of the adults die (after producing young) at each time
step, while the rest survive.
a. Model this situation using a matrix. Is this a Leslie or an Usher
model, or neither?

b. Compute eigenvectors and eigenvalues of the projection matrix
using MATLAB.

c. What is the intrinsic growth rate? The stable stage distribution?

2.3.10. Show that the absolute value for complex numbers satisfies

|(a + bi)(c + di)| = |a + bi ||c + di |.

Projects

1. Consider a specific Leslie model with two age groups. After interpreting
each matrix entry in biological terms, investigate the behavior of your
model numerically using MATLAB for a variety of initial populations,
including the eigenvectors of the matrix. Explain how the eigenvalues
and eigenvectors are reflected in the behaviors you see when you plot the
populations over time. Repeat for several other matrices.

Suggestions
� Begin with the Leslie model

( 1
8 6

1
5 0

)
,

using a MATLAB command sequence like:

P=[1/8 6; 1/5 0]

x=[10; 990]

xhistory=x

x=P*x, xhistory=[xhistory x]

x=P*x, xhistory=[xhistory x]

x=P*x, xhistory=[xhistory x]
...

plot(xhistory')

� For a variety of choices of the initial populations, describe what ap-
pears to be happening to the populations over time. Do the number
of individuals in each group get bigger or smaller? Do they oscillate?
Compute the ratio of immature individuals to adults at various times.
How does this ratio change? Repeat this work with several different
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choices of an initial vector. Qualitatively describe all the behaviors you
see.

� Compute the eigenvectors and eigenvalues of A by entering [S,D]=
eig(A). Use the first eigenvector as your initial vector by letting
x=S(:,1) and repeat the work above, including producing a plot.
Do this again using the second eigenvector with x=(:,2). Describe
the behavior of the model with these choices on initial vectors. How
is the behavior different? How is it the same? How are the eigenvalues
responsible for these behaviors?

� How are the behaviors you see for the eigenvectors reflected in the
behavior you saw for other initial vectors?

� Repeat all of the above for a few other models such as:

(
0 6
1
5

1
4

)
,

(
0 6
1
6 0

)
,

(
0 6
1
7 0

)
,

(
0 6
1
6

1
4

)
,

(
0 6
1
12

1
4

)
.

Explain in biological terms why each of these models produces the
behavior it does. Then explain in terms of the eigenvalues and eigen-
vectors of the matrix why the behavior occurs.

� Characterize the possible behavior of these 2× 2 matrix models in
terms of the sign and size of the eigenvalues.

2. Leslie andUshermodels can be used to help design intervention strategies
to help declining populations recover. A well-known example of this
was the study in (Crouse et al., 1987) on sea turtle populations that
supported the U.S. government-mandated use of turtle exclusion devices
in shrimpers’ nets.
An interventionmight be designed to affect any one of the entries in the

Lesliematrixmodeling a population. Because the dominant eigenvalue of
the matrix determines the overall growth rate, it is necessary to study how
changing eachmatrix entry affects the dominant eigenvalue. Determining
the effect of small changes in each of the entries is sometimes called
a sensitivity analysis. Imagine an endangered population grouped into
immature and mature subpopulations and modeled by the Usher model
with matrix

(
0 1.7
.3 .1

)
.

Analyze the effect of small changes in each of the nonzero entries in the
matrix on the population’s future.
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Suggestions
� What is the dominant eigenvalue of the model? How fast will the
population increase or decline if no changes are made?

� For the matrix (
0 1.7
c .1

)
,

what values of c give a biologically meaningful model? For a variety of
values of c in that range, compute the dominant eigenvalue λ1. Present
the results of your computations in a table and as a graph of c vs. λ1.
Useful MATLAB commands are

lambda1vec=[]

cvec=[0:.1:1]

for c=cvec

A=[ 0 1.7;c .1]

lambda1=max(eig(A))

lambda1vec=[lambda1vec, lambda1]

end

plot(cvec, lambda1vec)

� If you have read ahead to the next section of this text, find a formula for
λ1 as a function of c? Does its graph agree with the one you produced?

� If an intervention strategy attempts to change c in this matrix, describe
in biological terms what its focus might be. What value of c must be
achieved so that the population will recover?

� Repeat the same sort of analysis to understand the affect of changing
the other nonzero entries of the matrix.

� Without regard to the cost of implementing any recovery plan, which
entry do you think would be most effective to try to change?What bio-
logical issues might you need to understand better about the population
to answer this question adequately?

� Why might a plan to change a fertility rate by a small amount have
different costs than a plan to change a survival rate?

� Perform a sensitivity analysis on a Leslie or Usher model described by
a larger matrix of your choice.

2.4. Computing Eigenvectors and Eigenvalues

We first show how eigenvectors and eigenvalues can be computed by hand
for 2× 2 matrices.
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Given a matrix A, the eigenvector equation we wish to solve is Ax = λx,
where both the vector x and the scalar λ are unknown. This equation can be
rewritten as

Ax − λx = 0,

Ax − λIx = 0,

(A − λI )x = 0.

Notice that we had to stick the identity matrix into the middle equation
so that factoring the x out of each term would be valid. Without the identity,
we would have had A − λ, which makes no sense since we never defined
subtraction of a scalar from a matrix.

Now, if x and λ are really an eigenvector and its eigenvalue, this last equa-
tion shows that the matrix (A − λI ) cannot have an inverse. For if it did,
then we could multiply each side of (A − λI )x = 0 by the inverse to get
x = (A − λI )−10. But even without knowing what (A − λI )−1 is explicitly,
we can tell that (A − λI )−10 = 0, and this would mean x = 0. But our defi-
nition of eigenvectors requires that they be nonzero, so we know this cannot
happen.

Now, if (A − λI ) does not have an inverse, then det(A − λI ) must be 0.
We have shown then that if λ is any eigenvalue of a matrix A, it must satisfy
the equation

det(A − λI ) = 0.

Example. For the forest model matrix

P =
(

.9925 .0125

.0075 .9875

)
, P − λI =

(
.9925− λ .0125

.0075 .9875− λ

)
,

and so det(P − λI ) = 0 becomes

(.9925− λ)(.9875− λ)− (.0125)(.0075) = 0

λ2 − 1.98λ + .98 = 0

(λ − 1)(λ − .98) = 0.

This means the only possible eigenvalues for P are the numbers 1 and .98.

The equation det(A − λI ) = 0 is called the characteristic equation of A.
For a 2× 2 matrix, it will always be a quadratic equation, so solving it will
be no harder than factoring or using the quadratic formula to find the roots.
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While our argument above also applies to larger matrices (provided you
learn to compute determinants of larger matrices in some other course), solv-
ing the characteristic equation will be much harder because for an n × n
matrix, it involves an nth degree polynomial. Unless n is quite small, or you
are very lucky, this is simply not practical to do by hand. Nonetheless, we can
see that there can be at most n eigenvalues, since the characteristic equation
can have at most n roots. We also see that complex numbers may enter into
our calculations since the roots of a polynomial may not be real.

In summary, we have:

Theorem. If λ is an eigenvalue for an n × n matrix A, then it satisfies the
nth degree polynomial equation det(A − λI ) = 0. Thus, there are at most n
eigenvalues for A.

Once we have determined possible eigenvalues for a matrix, we need
to find corresponding eigenvectors. We illustrate the process for P =(

.9925 .0125

.0075 .9875

)
and λ = .98. We need to find a vector v such that (P −

.98I )v = 0, so we must solve
(

.9925− .98 .0125
.0075 .9875− .98

) (
x
y

)
=

(
0
0

)

(
.0125 .0125
.0075 .0075

) (
x
y

)
=

(
0
0

)
.

Since we cannot solve this by finding the inverse of the matrix (why not?),
we write out the two equations this represents in nonmatrix form.

.0125x + .0125y = 0,

.0075x + .0075y = 0.

While guessing a nonzero solution is a perfectly validway to proceed, we’ll be
moremethodical in our approach. Because one of these equations is amultiple
of the other, to solve them we just need to solve .0125x + .0125y = 0. With
only one equation in two unknowns, we can take one of the unknowns to
have any value we like, and let that determine the second. For instance, if
we solve for y in terms of x , we find y = −x . Thus, any vector of the form
v = (x, y) = (x, −x) = x(1, −1) is an eigenvectorwith eigenvalue .98. Since
we have freedom to choose x as we wish, we’ll take it to be 1. Thus, we have
found the eigenvector (1, −1) that was used throughout this chapter.
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The eigenvector associated with λ1 = 1 can be found similarly:

P − 1I =
(

.9925− 1 .0125
.0075 .9875− 1

)
=

(−.0075 .0125
.0075 −.0125

)

so we must solve

−.0075x + .0125y = 0

.0075x − .0125y = 0.

Because the equations are multiples of each other, we solve −.0075x +
.0125y = 0 to get y = .0075

.0125 x = 3
5 x , so v = (

x, 3
5 x

) = x
(
1, 3

5

)
. Choosing

x = 5 (since it makes the vector have the simplest form), we find v = (5, 3).
Although this was only one example of calculating an eigenvector for a

particular matrix P , for any 2× 2 matrix the procedure works the same way.
Although we will not prove it here, you will always find one of the equations
is a multiple of the other and then be able to solve for y in terms of x (or x in
terms of y) to find all the eigenvectors.

As with eigenvalues, calculating eigenvectors for 3× 3 or larger matrices
is done analogously to the 2× 2 case, although some additional complications
come in. We’ll leave a discussion of those to a full course in linear algebra
and instead suggest that you let MATLAB do the computations for you.

Computer methods of calculation. Actually, MATLAB and other com-
puter packages do not really calculate eigenvectors and eigenvalues in the
way described previously. Because the computation of these is so important,
not only for biological models but for a host of problems throughout science
and engineering, quite clever and sophisticated methods have been developed
and incorporated into many standard software packages.

Although we will not really explain any methods these packages use, we
will give a hint at one type of approach by discussing the power method.

Given A, pick any initial vector x0 and compute x1 = Ax0. According
to the Strong Ergodic Theorem, if λ1 is the dominant eigenvalue of A with
corresponding eigenvector v1, then we should expect 1

λ1
x1 to be closer to v1

than x0 was. Because we do not yet know what λ1 is, we have to somehow
adjust x1 to account for the growth factor. One way of doing this is to simply
divide each entry of x1 by its largest entry to get a new vector we call x′

1.
This means x′

1 will have one entry that is a 1 and will be “closer” to being an
eigenvector than x0 was.

We can then repeat the process using x′
1 in place of x0 to get an even better

approximate eigenvector. Of course, we should then repeat the process again,
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and again, until we find our approximate eigenvectors are not changing by
much.

Example. Suppose A =
(
1 3
7 5

)
and we choose x0 =

(
1
1

)
. Then

x1 =
(
1 3
7 5

) (
1
1

)
=

(
4
12

)

x′
1 = 1

12

(
4
12

)
≈

(
.33
1.00

)

x2 =
(
1 3
7 5

) (
.33
1.00

)
=

(
3.33
7.33

)

x′
2 = 1

7.33

(
3.33
7.33

)
≈

(
.45
1.00

)

x3 =
(
1 3
7 5

) (
.45
1.00

)
=

(
3.45
8.18

)

x′
3 = 1

8.18

(
3.45
8.18

)
≈

(
.42
1.00

)

x4 =
(
1 3
7 5

) (
.42
1.00

)
=

(
3.42
7.96

)

x′
4 = 1

7.96

(
3.42
7.96

)
≈

(
.43
1.00

)

x5 =
(
1 3
7 5

) (
.43
1.00

)
=

(
3.43
8.01

)

x′
5 = 1

8.01

(
3.43
8.01

)
≈

(
.43
1.00

)
.

Thus, v1 ≈
(

.43
1.00

)
is the dominant eigenvector, at least to within a digit

or so of accuracy. To get the dominant eigenvalue λ1, we just note
(
1 3
7 5

) (
.43
1.00

)
=

(
3.43
8.01

)
= 8.01

(
.43
1.00

)
,

so λ1 ≈ 8.01.

� Compute the eigenvalues and eigenvectors for this matrix exactly and
see if they agree with this result.
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While this technique has only given us the dominant eigenvector and eigen-
value, variations on the idea can find others.

Problems

2.4.1. For A =
(

.9 .3

.1 .7

)
, B =

(
1 4
2 3

)
, and C =

(−1 3
2 0

)
,

a. Find the eigenvalues by solving the characteristic equations.
b. Find an eigenvector for each eigenvalue.

2.4.2. For the matrices in the preceeding problem, use the power method
to find the dominant eigenvectors and eigenvalues. Do your answers
agree with those you found before?

2.4.3. Use the power method to find the dominant eigenvector and eigenvalue
of the Leslie matrix




0 0 73
.04 0 0
0 .39 .65


 .

Check your answer by askingMATLABfor the eigenvectors and eigen-
values.

2.4.4. Actually, things can be more complicated than the text may have led
you to believe:

a. For A =
(
2 0
0 2

)
, find two eigenvalues and two eigenvectors. (They

really do exist.)

b. For B =
(
2 1
0 2

)
, find two eigenvalues and try to find two eigenvec-

tors. What goes wrong?

2.4.5. Explain the connection between the power method and the Strong
Ergodic Theorem for linear models.
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Nonlinear Models of Interactions

Our attention so far has been focused on modeling single populations. Al-
though we have broken a single population into subgroups, such as by age or
developmental stage, we have still treated it as if it is unaffected by the other
species or populations with which it might share an environment. Although
these models have provided valuable insights into how population sizes can
change, we now move our attentions to interactions between species or pop-
ulations.

Most living things interact with many coinhabitants of their environment.
Preying on other species, whether plant or animal, is a common way of taking
in energy; and most organisms are at risk of being preyed on themselves. But
not all important interactions between species are so obvious. Species may
find themselves in competition for limited resources, whether food or space,
so that growth in one population is detrimental to another. Mutualism, where
several species interact in away that benefits both, also occurs in nature. A real
ecosystemmayhavehundredsor thousandsof interactingpopulations,with all
sorts of direct and indirect interactions between them.How canwe understand
the effects of these interactions without being lost in the complexity of it all?

To begin to understand the dynamics of interacting populations in such
systems, we start by focusing on only two populations and a single type of
interaction. The questions that will guide us are modifications of those we
have already asked when modeling a single population. For instance, what
mathematical formulas might model an interaction such as that of a predator
and its prey? What behavior does a computer simulation of such a model
show? Does one species disappear, and if so why? Do the populations reach
some equilibrium, oscillate, or jump wildly? Can such a system of interacting
populations show stability, and if so, under what circumstances?

85
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3.1. A Simple Predator–Prey Model

Imagine two species, one of which, the predator, preys on the other, the prey.
To keep things simple, we imagine that the predator–prey interaction between
these species is the most important one for determining population sizes. An
example of this might be arctic hares and foxes confined to an island. The
hares are the primary food source for the foxes, and the foxes provide the
primary limitation to the unchecked growth of the hare population.

� For what other pairs of species might a predator–prey interaction be the
dominant one in determining population size?

Even for species experiencing many other interactions, the model we de-
velop can be viewed as a first step to understanding one contributing factor
in population dynamics.

Letting Pt denote the size of the prey population and Qt the size of the
predator population at time t , we need to choose equations

�P = F(P, Q)

�Q = G(P, Q)

that might give the changes in each of the populations over one time step in
terms of both of the populations. But what are appropriate expressions for the
right-hand sides?

First, it is helpful to think of how the two populations would change in the
absence of one another. For instance, a reasonable assumption for the prey
is that, if no predators are around, the population would be described by the
discrete logistic model:

�P = r P(1− P/K ) in the absence of predators.

If we assume the predator’s primary source of food is the prey, then we would
expect the population of predators to decline in the absence of prey:

�Q = −uQ in the absence of prey.

Here, u should be a positive constant that is at most 1, since −u gives a
per-capita death rate.

To introduce the interaction between the species, we include terms involv-
ing the product P Q. This product has several qualitative features that make
it a good candidate for describing interactions. If both populations P and Q
are small, so that we would expect little effect from the interaction, then P Q
is small. If both P and Q are large, so that we would expect major effects
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from the interaction, then P Q is large. If one of P and Q is small, and the
other is large, then (at least for some values of P and Q) the product P Q
will be midsize. Most importantly, if either P or Q is increased, so that we
would expect the interaction to be greater, then P Q increases. The product
P Q, then, behaves roughly as we would want to give a good description of
the amount of interaction we might expect between the populations.

We model the two populations by:

�P = r P(1− P/K )− s P Q,

�Q = −uQ + vP Q.

Here, s and v both denote positive constants. The term “−s P Q” describes a
detrimental effect of the predator–prey interaction on the prey, and the term
“vP Q” describes a beneficial effect of the interaction on the predator. There
is no reason to expect that the values of s and v need to be of the same size,
since the predator may well benefit more than the prey is harmed, or the prey
may be harmed more than the predator benefits.

The use of a term such as k P Q to model population interactions is some-
times called a law ofmass action. One way to justify it is to imagine individu-
als in two populations of size P and Q moving around at random and mixing
homogeneously. Then, over a certain time interval, we might expect the num-
ber of chance meetings between individuals in the different populations to be
P Q. A fraction of these meetings will be significant enough to result in k P Q
predation interactions during a time step. Note that a mass action term in a
model means the equations are nonlinear; even though this is a very simple
interaction term, we should perhaps expect complicated dynamics.

Rewriting our simple predator–prey model in terms of populations, rather
than changes in populations, gives:

Pt+1 = Pt (1+ r (1− Pt/K ))− s Pt Qt ,

Qt+1 = (1− u)Qt + vPt Qt .

with r , s, u, v, and K all positive constants, and u < 1.
With any model, getting accurate ideas of parameter values from data

collected on experimental study populations can be quite difficult. The ap-
propriate values of the constants appearing in the species–interaction terms
are perhaps even harder to have an intuitive feel for than the r and K of the
logistic model. For the time being, it’s enough to know that, the larger s and
v are, the stronger the effect of the predator–prey interaction.
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Table 3.1. Predator–Prey Model Population Values

t 0 1 2 3 4 5 6 7 8 9 10
Pt 1.10 0.74 0.68 0.55 0.40 0.31 0.30 0.34 0.44 0.54 0.60
Qt 0.40 0.83 1.22 1.71 2.00 1.89 1.51 1.17 0.99 0.99 1.15

t 11 12 13 14 15 16 17 18 19 20 . . .
Pt 0.57 0.48 0.39 0.34 0.34 0.39 0.46 0.52 0.54 0.50 . . .
Qt 1.44 1.74 1.85 1.70 1.43 1.21 1.12 1.16 1.33 1.56 . . .

The phase plane. To be concrete, consider the parameter values

K = 1, r = 1.3, s = .5, u = .7, and v = 1.6,

so that our model becomes

Pt+1 = Pt (1+ 1.3(1− Pt ))− .5Pt Qt ,

Qt+1 = .3Qt + 1.6Pt Qt .

What are appropriate means for studying the behavior of this basic predator–
prey model?

The first thing to do is to simply pick some initial values (P0, Q0), compute
a long list of future populations, and plot the populations over time. For
instance, with (P0, Q0) = (1.10, 0.40), we produce Table 3.1.

� Look carefully at the population values in Table 3.1. Do they seem
to be approaching any limiting values? Do they oscillate or change
monotonically?

Plotting the populations as functions of time produces Figure 3.1. There,
we see the populations seem to oscillate, but the oscillations also appear to
be decreasing in amplitude.

We could redo this numerical experiment with more time steps and a
variety of different initial population choices and see that most reasonable
choices seem to lead to the populations ultimately settling down to around
(P∗, Q∗) ≈ (.4, 1.5).

Next, we might want to produce some sort of a cobweb diagram, as we did
for single populations in Chapter 1. After all, the cobweb was very helpful
in understanding the simple nonlinear models, such as the discrete logistic
model. It led to direct insight into equilibria and stability. Unfortunately, with
two population values, Pt and Qt , giving us two new population values, Pt+1
and Qt+1, we would need four dimensions to draw such a graph.
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Figure 3.1. Predator–prey model time plot.

Instead, we introduce a new type of plot called a phase plane. Rather than
plot both Pt and Qt as functions of t as in Figure 3.1, we label our axes P and
Q, and put a dot at the point representing (P0, Q0). We then put another dot
at (P1, Q1) and draw a line from our first dot to it. Next, we plot (P2, Q2) and
connect it to its predecessor, and continue on connecting each consecutive
pair of points representing the two population sizes. In the case of the model
data in Table 3.1, this gives Figure 3.2.

The succession of points (P0, Q0), (P1, Q1), (P2, Q2), . . . is called the
population orbit. Although we can only draw a finite number of points in an
orbit, it really continues forever. (It might, however, hit an equilibrium point,
in which case we would need to plot the same point repeatedly.)

Notice there may be some loss of information when we produce a phase
plane plot. For instance, unless we label the points, we no longer know the
value of t that corresponds to each point (Pt , Qt ) we have plotted. Of course,
we could follow the lines connecting the points in an orbit, counting time
steps, to figure out a value for t , but we would still need to know where to
start. It’s a good idea to at least label the point where t = 0, so that you know
the correct direction to follow in the orbit.

� Does the orbit in Figure 3.2 spiral inward or outward? How does know-
ing (P0, Q0) = (1.10, 0.40) let you decide?
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Figure 3.2. Predator–prey model phase plane plot; single orbit.

By drawing many different orbits on the same phase plane, you can get a
good feel for the behavior of the model. For instance, for the model above,
we can produce the phase plane diagram in Figure 3.3.

Most of the orbits in this plot spiral counterclockwise inward toward the
vicinity of (0.45, 1.5). A few orbits, such as one starting around (1.56, 0.66),
fly off the graph. A few others, such as one starting around (1.35, 0.42), take a
step in the clockwise direction before falling into the general pattern of coun-
terclockwise progression. Despite the few exceptions, this plot illustrates a
remarkable qualitative regularity in the behavior of population sizes over time,
regardless of initial values. We would certainly be tempted to say that there
is a stable equilibrium somewhere around (0.45, 1.5), since most population
values seem to be drawn in toward that point.

� What is the biological meaning of the orbit beginning around
(1.56, 0.66) leaving thephase planeplot?Whatmust behappening to the
populations?

The fact that the predator–prey model often shows repeated oscillations
is intriguing. Might it be possible for a predator–prey interaction to lead to
stable oscillations that, unlike those in the figures here, do not “damp out”?
Could two populations in nature endlessly cycle in size?
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Figure 3.3. Predator–prey model phase plane plot; many orbits.

But before getting too drawn into speculation, we should reflect on the
biological situation we are studying to make sure we are not being led astray.
Are there real predator and prey populations that behave in an oscillatory
fashion, even for a short time?

Certainly, there is widespread evidence of a large prey population being
followed by a growth in predators, which then is followed by a decline in
prey, and then a decline in predators. One obvious example is in human hunt-
ing societies over-exploiting their food sources. Bird and insects, as well as
mammal predator–prey pairs, also exhibit such growth and decline. However,
these cycles usually “damp out” to an approximate equilibrium, or lead to the
extermination of one of the populations. There is little unequivocal evidence
from nature of long-term repeated oscillations, although carefully controlled
laboratory experiments have shown oscillations.

Sustained oscillations of constant size would require a very delicate bal-
ance that is unlikely in real populations. Mathematically, we say such sys-
tems are structurally unstable, in that slight changes to the model cause the
oscillations to either shrink or grow. Because of the complexity of biolog-
ical systems, numerous factors left out of our model are likely to prevent
regular, constant-size oscillations to continue for any significant length of
time.
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Problems

3.1.1. In Figure 3.1, you see oscillations of both the predator and the prey
populations.Which population peaks first, andwhich one lags slightly
behind the other? Can you explain why this should happen through
biological intuition?

3.1.2. The oscillations of Pt and Qt in Figure 3.1 lead to the clockwise
pattern of the orbits in Figure 3.2.
a. Graph Pt = cos t and Qt = sin t . Do the peaks on these oscillatory
graphs have the same relative location to one another as those in
Figure 3.1?

b. In a phase plane, plot the points (Pt , Qt ) = (cos t, sin t) for various
t = 0, .1, .2, . . . . As you increase t , how do the points move?

c. What features of the plots in Figure 3.1 are responsible for the
inwardness of the spiral in Figure 3.2?

3.1.3. Use the MATLAB program twopop to investigate how the interac-
tion parameters s and v affect the long-term behavior of the predator–
prey model presented in the text. Holding all other parameters fixed,
vary s and describe how the location of the equilibrium point changes.
Then vary v. Give an intuitive explanation of why these behaviors are
reasonable.

3.1.4. If you begin with the particular parameter values used in the text
for the predator–prey model, and gradually increase s and v, what
qualitative changes do you think you will see in the orbits? Check
your conjecture by experimenting with twopop. Increase s and v

until orbits leave the phase plane plot. How should you interpret this
behavior biologically?

3.1.5. In this section, we have observed that the model

Pt+1 = Pt (1+ 1.3(1− Pt ))− .5Pt Qt ,

Qt+1 = .3Qt + 1.6Pt Qt

appears to have a stable equilibrium that is approached through oscil-
lations. Because the discrete logistic model Pt+1 = Pt (1+ 1.3(1−
Pt )) on which it is based has r = 1.3, we know that it alone would
produce damped oscillations toward the carrying capacity. We might
think, then, that the observed oscillations were due to this value of r .

By using theMATLAB program twopopwith a number of values
of r smaller than 1.3 in the predator–prey model, investigate whether
that is indeed the sole reason for the oscillations that were observed.
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Can you find a value of r that would result in no oscillations in the
one-population discrete logistic model, but still yields oscillations in
the predator–prey model? If you can, the predator–prey interaction
must be contributing the oscillatory behavior.

3.1.6. The one-population discrete logistic model has only unstable equi-
libria for r > 2. By experimenting with MATLAB and twopop,
investigate whether with such an r , the presence of a predator might
produce a stable equilibrium. Starting with the specific parameter val-
ues of the model in the text, try to find a value of r > 2, which gives
the predator–prey model a stable equilibrium. You might also vary
the coefficients of the interaction terms to try to achieve this. What
biological lessons can you draw from this experimentation?

3.1.7. Imagine a predator–prey interaction in which a certain number of the
prey population cannot be eaten because of a refuge in their envi-
ronment that the predator cannot enter. Why might interaction terms
like −s(P − w)Q and v(P − w)Q be reasonable in the modeling
equations? What is the meaning of w? If P < w, is this reasonable?

3.1.8. Investigate the behavior of the model of the last problem with
twopop. Describe your observations.

3.1.9. The mass action term P Q is not the only possibility for describing
interaction between populations. Which of the following have the
same qualitative feature as the mass action term, in that they increase
if either P or Q is increased?

P(1− e−vQ),
P

Q
,

√
P Q, P + Q.

Which of these might be the basis of a reasonable interaction term?
Explain.

3.1.10. Another version of a predator–prey model is

Pt+1 = Pt e
r (1−Pt /K )−s Qt ,

Qt+1 = u(1− e−vQt )Pt ,

where s, u, v > 0 and r, K are as in the logistic model. Explain why
these equations are reasonable. What happens to the prey in the ab-
sence of predators? What happens to the predators in the absence
of prey? What are the effects of e−s Qt and (1− e−vQt ) in the model
equations? [You might want to graph e−x and (1− e−x ) as part of
your explanation.]
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3.1.11. Investigate the model of the last problem using twopop. Does it
behave qualitatively like the model presented in the text? Are there
any important differences you can identify?

3.2. Equilibria of Multipopulation Models

The phase plane is a good tool for exploring how the behavior of a particular
model depends on the initial values used. Often, we observe an orbit jumping
around a bit before settling into some pattern. Just as for single population
models, we call the behavior exhibited in the early steps of an orbit transient.
Often, what we are more interested in are the equilibria of the model.

Definition. For a model of two populations given by Pt+1 = F(Pt , Qt ) and
Qt+1 = G(Pt , Qt ), an equilibrium is a point (P∗, Q∗) with P∗ = F(P∗, Q∗)
and Q∗ = G(P∗, Q∗). For a model given in the form �P = f (P, Q) and
�Q = g(P, Q), it is a point (P∗, Q∗) with f (P∗, Q∗) = 0 and g(P∗, Q∗)
= 0.

Thus, when populations are at an equilibrium, neither population will
change in future time steps.

Solving for equilibria is not much harder for our predator–prey model than
it was for the logistic model alone, although there are now two equations to
solve simultaneously:

P∗ = P∗(1+ 1.3(1− P∗))− .5P∗Q∗,

Q∗ = .3Q∗ + 1.6P∗Q∗,

or

0 = P∗1.3(1− P∗)− .5P∗Q∗ = P∗(1.3− 1.3P∗ − .5Q∗),

0 = −.7Q∗ + 1.6P∗Q∗ = Q∗(−.7+ 1.6P∗).

From the factorization in the second equation, we see

either Q∗ = 0 or P∗ = .7/1.6 = .4375.

If Q∗ = 0, then the first equation says either P∗ = 0 or P∗ = 1, giving us the
two equilibria (0, 0) and (1, 0). If P∗ = .4375, on the other hand, then the first
equation requires that 0 = 1.3− 1.3(.4375)− .5Q∗, so that Q∗ = 1.4625.
This means there is a third equilibrium at (.4375, 1.4625).

The first two equilibria are easily understood: Obviously (0, 0) is an equi-
librium from biological interpretations alone; if both populations are 0, they
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will stay that way. The equilibrium (1, 0) would simply correspond to having
no predators, so the prey remains at the carrying capacity of 1 in the logistic
model. The third equilibrium is perhaps the most interesting and is the one
observed from plotting orbits on the phase plane. Interestingly, the presence
of the predator seems to have depressed the prey population to a size well
below the carrying capacity.

� Why did we not see orbits being drawn to the equilibria (1, 0) and (0, 0)
in the phase plane plot of Figure 3.3? Is this reasonable biologically?

Choosing particular parameter values for themodel has actually limited our
insight. Rather than finding the equilibria for a single choice of the parameters,
it would be more useful to have formulas for the equilibria in terms of the
parameters. To find these, we return to our general predator–prey model (in
units where the carrying capacity K = 1):

Pt+1 = Pt (1+ r (1− Pt ))− s Pt Qt ,

Qt+1 = (1− u)Qt + vPt Qt .

The equilibrium equations are:

0 = P∗(r (1− P∗))− s P∗Q∗ = P∗(r (1− P∗)− s Q∗), (3.1)

0 = −uQ∗ + vP∗Q∗ = Q∗(−u + vP∗).

The factorizations of these equations mean equilibria are determined by at
least one of the conditions

P∗ = 0 or r (1− P∗)− s Q∗ = 0,

and at least one of

Q∗ = 0 or − u + vP∗ = 0.

Therefore, if we graph the four lines

P = 0, Q = r

s
(1− P), Q = 0, P = u

v

in the phase plane, we will find the equilibria at some of their points of
intersection. The four lines plotted in Figure 3.4 are called nullclines of the
model, because they are lines on which either �Q = 0 or �P = 0.

� Explain why only three of the five points of intersection of these four
lines are equilibria. Which points of intersection do not satisfy Eqs.
(3.1)?
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Figure 3.4. Nullclines, �P = 0 and �Q = 0, for the predator–prey model.

A little algebra to find the points of intersection of the nullclines gives us
formulas for the equilibria:

(0, 0), (1, 0), and
(u

v
,

r

s

(
1− u

v

))
.

Althoughwe can use the formula for this last equilibrium to see how it changes
if the parameters are varied, it’smore interesting to investigate this graphically
through Figure 3.4.

If either r or s is changed, the Q-nullcline is unaffected. However, either
increasing r or decreasing s causes r/s to increase, causing the downward
sloping line in the P-nullcline to intersect the Q-axis higher up. Note the
P-nullcline still crosses the P-axis at 1. This means that the equilibrium
(u/v, (r/s)(1− u/v)) will simplymove higher, so that P∗ is unchangedwhile
Q∗ increases.

� From the model equations, increasing r or decreasing s seems to be
likely to benefit the prey population. If the populations are at equilib-
rium, is that how things turn out?

To think through the implications of this, suppose we imagine our model
applies to a certain agricultural crop (the prey) and an insect that eats it (the
predator). To get a higher yield, a new crop variety is introduced with a larger
value of r . The carrying capacity does not change, but we hope to “outgrow”
the predator, so that we end up with a greater crop. But, according to our
model, assuming the system settles into the equilibrium, this will cause P∗

to remain unchanged while Q∗ increases. In other words, the insect predator
actually benefits whereas the crop prey gains nothing.



3.2. Equilibria of Multipopulation Models 97

Although this may seem surprising at first, on further reflection you might
convince yourself it is reasonable. Even if you find it unreasonable, or not
in accord with observation of a real predator–prey interaction, and there-
fore decide to reject our model as not applicable, you have learned some-
thing. By writing our assumptions of the predator–prey interaction mathe-
matically in the form of a model and then analyzing it, we were able to
deduce the consequences of our assumptions. If these consequences are not
in accord with a real population, then we need to rethink our assumptions and
try to see what important features of the real situation our model has over-
looked.

Even if our goals are more theoretical, and we are not interested in pre-
cisely predicting future populations, the mathematical model is a tool both
for expressing our beliefs as to what factors affect population changes, and
for deducing the effects of those factors alone. If the deduced effects do not
fit with observation, we have discovered a gap in our knowledge. Identifying
such a gap could be viewed as progress toward both producing a better model
and understanding the real interspecies interaction.

Of course we can analyze the affect of varying u and v on the equilibrium
also and think through the biological implications similarly. We’ll leave that
as an exercise.

Nullclines and the direction of orbits. The nullclines are actually of
use not only for determining equilibria, but also for understanding better the
dynamics of the model. Consider again the P-nullcline, which consists of a
vertical line and a downward sloping line. This nullcline divides the plane
into several regions. Inside any of these regions,�P must always be positive
or always be negative. This is because if it is positive at one point and negative
at another point, then at some point lying between the two it would have to be
zero. That point would lie on the nullcline, and so the nullcline must separate
the points where �P has different signs. (We have implicitly assumed that
�P is a continuous function of P and Q, so that there are no sudden jumps
in the value of �P .)

To determine whether�P is positive or negative on one of the regions, we
simply pick one point and evaluate. For instance, below the sloping line, pick a
point where P and Q are both quite small, but positive. Then, because�P =
P(r (1− P)− s Q), we can analyze the sign of �P as follows: Because P
is small, 1− P will be near 1, so r (1− P) will be near r . Because Q is
small, s Q will be near 0. Thus, (r (1− P)− s Q) > 0, and because P > 0,
then �P = P(r (1− P)− s Q) > 0.
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If �P is positive on a region in the phase plane, that means that any
population values in that region will produce an increase in P over the next
time step. In other words, the orbit will move to the right (and possibly up or
down as well, depending on the sign of �Q). In Figure 3.4 we have placed
horizontal arrows pointing to the right on the region where we have shown
�P > 0.

� Why do we mark two regions in Figure 3.4 with arrows pointing to the
right, rather than just one?

As an exercise, you can show that �P < 0 above the sloping line of the
P-nullcline. Thus, in that region, each time step will produce a decrease in
the value of P , and so arrows pointing to the left have been drawn there in
Figure 3.4. A similar analysis can be done of the sign of�Q, which gives the
upward and downward pointing arrows in the figure.

Notice that these arrows strongly suggest that orbits will move in a coun-
terclockwise fashion around the interesting equilibrium, as in fact we have
seen in numerical experiments. However, from these arrows, we are unable
to tell if the orbit will spiral in toward the equilibrium or spiral outward, so
we cannot draw conclusions as to the stability of the equilibrium.

We also need to be slightly careful because with a discrete model, the
populations at successive time steps may well jump over the nullclines from
one time step to the next. This can lead tomore erratic behavior, although often
it is transient. In fact, this happened in the orbit beginning near (1.35, 0.42) in
Figure 3.3 that appears to start moving around the equilibrium in a clockwise
direction before falling into the counterclockwise pattern. If you sketch the
nullclines in on Figure 3.3, you will see even this first step is in the general
direction predicted by the arrows of Figure 3.4.

Problems

3.2.1. The nullclines in Figure 3.4 are drawn assuming u/v < 1.What would
they look like If u/v = 1? If u/v > 1? Are there still three equilibria in
these situations? Are all equilibria biologically meaningful? Explain.

3.2.2. What is the effect of varying u and v on the equilibrium of the predator–
preymodel of the text. Explain by describing the effects of these param-
eters on the locations of the nullclines in Figure 3.4. Do these effects
seem reasonable biologically?

3.2.3. For each of the cases u/v = 1 and u/v > 1, draw the correct version
of Figure 3.4 and on it draw arrows indicating where �P and �Q are
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positive and negative. Use your diagrams to predict the behavior of
some orbits, and then check your predictions using twopop.

3.2.4. Using the specified values of r , s, u, and v, sketch the nullclines in on
a copy of Figure 3.3, and mark arrows showing where �P and �Q
are positive and negative.
a. Are all orbit steps in the figure in accord with the arrows you drew?
b. If a point lies exactly on top of the �P nullcline, do the arrows

indicate the correct direction of the orbit over the next time step?
c. If a point lies exactly on top of the �Q nullcline, do the arrows
indicate the correct direction of the orbit over the next time step?

3.2.5. For the predator–preymodel of the text, complete thework of analyzing
the signs of �P and �Q on each region created by the nullclines,
justifying all the arrows shown in Figure 3.4.
a. Show that above the sloped line of the P-nullcline, �P < 0.
b. Show that to the left of the vertical line of the Q-nullcline,�Q < 0.
c. Show that to the right of the vertical line of the Q-nullcline,�Q > 0.

3.2.6. Analyze the predator–prey model given in Problem 3.1.10 of the last
section by doing the following:
a. Plot the nullclines and label regions in the phase plane with arrows
indicating the signs of �P and �Q.

b. Find all equilibria in terms of the parameters of the model, if pos-
sible.

3.2.7. A simple model for a predator–prey interaction where the predator has
a source of food in addition to the prey is:

�P = r P(1− P/K1)− s P Q,

�Q = uQ(1− Q/K2)+ vP Q.

a. Explain why these equations model the described situation.
b. Choosing units so that K1 = K2 = 1, find and plot the nullclines for

this model. Draw arrows on your plot indicating the signs of �P
and �Q.

c. Compute all equilibria for the model.
d. What does your analysis of this model lead you to expect as typical

behavior of orbits? Check your predictions with a computer.

3.3. Linearization and Stability

An intuitive concept of stability of an equilibrium has already been used in our
discussion of the predator–prey model. Because in Figure 3.2 we observed
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population values close to (P∗, Q∗) = (.4375, 1.4625) appear to move closer
to those equilibrium values as we follow their orbit, we said that equilibrium
appeared to be stable. Notice, however, that themovement toward equilibrium
is not simple. Because the inward spiral of the orbit has an oval shape, the orbit
is closer to the equilibrium on the more vertical parts of the spiral than on the
more horizontal parts. The orbit gets closer to the equilibrium, then further
away, then closer, then further away, and so on. The oscillatory overshoot is
even clearer in Figure 3.1. However, the overshoot does damp out, so that
over time populations near the equilibrium do seem to approach it, and never
again move as far away as they were.

As compelling as a computer simulation can be, it is also desirable to be
able to show mathematically the stability of the model. To do this, we use the
same basic approach as developed earlier for one-population models, such as
the logistic model.

To focus attention at the equilibrium, we let

Pt = P∗ + pt ,

Qt = Q∗ + qt ,

where pt and qt represent small perturbations from the equilibrium. We are
interested in seeing how these perturbations change over time. Do they grow
or do they shrink?

For the model

Pt+1 = Pt (1+ 1.3(1− Pt ))− .5Pt Qt ,

Qt+1 = .3Qt + 1.6Pt Qt ,

with equilibrium (P∗, Q∗) = (.4375, 1.4625), substituting in the expressions
for populations in terms of perturbations from equilibria, gives

.4375+ pt+1 = (.4375+ pt )(1+ 1.3(1− (.4375+ pt )))

− .5(.4375+ pt )(1.4625+ qt ),

1.4625+ qt+1 = .3(1.4625+ qt )+ 1.6(.4375+ pt )(1.4625+ qt ).

Some rather messy algebra, which is nonetheless worth checking, gives us

pt+1 = .43125pt − .21875qt − 1.3p2t − .5pt qt ,

qt+1 = 2.34pt + qt + 1.6pt qt .

Now we are imagining population values Pt and Qt that are close to P∗

and Q∗, and so pt and qt are near 0. But then all second-order terms p2t , pt qt ,
and q2

t will be much smaller than the first-order terms pt and qt , because the
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product of two small numbers is much smaller than the original numbers. We
can therefore approximate our model by simply discarding the second-order
terms, since they are of negligible size. This gives

pt+1 ≈ .43125pt − .21875qt ,

qt+1 ≈ 2.34pt + qt .

Of course the accuracy of this approximation increases the closer pt and qt

are to 0. Thus, we have approximated our nonlinear model, at least near the
equilibrium, by a linear one.

Now we can address the question of whether the equilibrium is stable or
not, by using our understanding of linear models. As was shown in Chapter
2, the eigenvalues of a linear model indicate whether the model predicts long-
term growth or decay.

Because
(

pt+1
qt+1

)
≈

(
.43125 − .21875
2.34 1

) (
pt

qt

)
,

we just need to compute the eigenvalues of the matrix. UsingMATLAB to do
this gives the two complex eigenvalues λ = .7156± .6565i . Computing the
absolute value of both eigenvalues yields |λ| = √

.71562 + .65652 = .9711.
Since this number is less than 1, the perturbations from equilibrium must get
smaller over time. Thus, the equilibrium really is stable as suspected.

As when we linearized the logistic model to understand its stability, we
could reinterpret the linearization process in terms of the calculus concept of
derivatives. Here, however, because the model tracks several different vari-
ables, we need partial derivatives, which are usually taught in multivariable
calculus. Therefore, we’ll omit that discussion, although one of the exercises
does move in that direction.

While the particular model and equilibrium we analyzed above turned
out to be stable, how else could the analysis have turned out? What would
instability look like? Are there different types of stability and instability?

As long as we look at a model of only two interacting populations, once
we find an equilibrium and linearize the model near the equilibrium, we
get a model described by a 2× 2 matrix. Therefore, when the eigenvalues
are computed for this matrix, we will find two of them. Denoting the two
eigenvalues by λ1 and λ2, we might see several different types of behavior
around the equilibrium, depending on the sizes of λ1 and λ2.

� If both |λ1| < 1 and |λ2| < 1, as was the case in our example, then
all small perturbations from the equilibrium shrink. In this case, nearby
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populations values get closer to the equilibrium values, and so the equilib-
rium is stable.

� If both |λ1| > 1 and |λ2| > 1, then all small perturbations from the equi-
librium grow, and so the equilibrium is unstable.

� If |λ1| > 1 and |λ2| < 1, or vice versa, then different perturbations behave
qualitatively differently. A perturbation that is an eigenvector with eigen-
value λ1 will grow, whereas one that is an eigenvector with eigenvalue λ2

will shrink. Most perturbations are some combination of these, and so will
exhibit a combined behavior.

An equilibrium that exhibits this last type of behavior is a new sort that is
often referred to as a saddle equilibrium. To understand the name, imagine
a ball placed on a saddle, where a horse rider normally sits. If the ball is
pushed slightly forward or backward, so that it is forced to move in an uphill
direction, it will tend to move back toward the saddle point, as if it is at a
stable equilibrium. On the other hand, if it is pushed to the sides, where the
saddle goes downhill, it will tend to roll away from the saddle point, behaving
as if the equilibrium is unstable. Actually, most directions in which the ball
can be pushed move it in a combination of these directions, and it responds
by a combination of these behaviors. The net effect is that, although it may
move back toward the saddle point for a bit, it typically then heads downhill.
A saddle equilibrium, then, should be thought of as having a special type of
instability.

Schematically, these three cases are represented in Figure 3.5.
Figure 3.5 should be taken rather loosely, since we’ve ignored information

about the sign of the eigenvalues. If an eigenvalue is negative (or complex),
it will produce oscillatory behavior around the equilibrium as populations
move toward or away from the equilibrium. After all, that is what we saw in
studying linear models earlier, and our analysis here is based on analyzing a

|  | < 1λ|λ |,1 2|  | > 1λ|λ |,1 2 |λ | > 1,1 |  | < 1λ2

Figure 3.5. Possible behaviors near equilibrium points.
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linear approximation to ourmodel. In our predator–prey example, the complex
nature of the eigenvalues explains why the approach to the stable equilibrium
involved the oscillations of the predator and prey populations, and hence the
spiral orbit in the phase plane.

Keep in mind that we have ignored the possibility that |λi | = 1, where we
may not be able to draw conclusions as to stability.

Also, it is important to realize that we have only discussed local stability of
a model – that is, what happens in close proximity to an equilibrium. Because
discrete population models can result in large jumps of populations from one
time step to the next, it is much harder to analyze global stability – that is,
whether all initial populations eventually approach an equilibrium or not.

Finally, imaginemodeling n interacting populations. Such amodel is given
by n equations, and on computing equilibria, will have an n × n matrix model
as its linearization at an equilibrium. Thus, there will be n eigenvalues to
consider. Only when all eigenvalues are less than one in absolute value can
we conclude that an equilibrium is stable.

Problems

3.3.1. In the text, the equilibrium (.4375, 1.4625) of the predator–prey model
was investigated for stability by linearizing and computing eigenvalues.
Investigate the stability of its other two equilibria the same way. Are
your results biologically reasonable? Do they agree with numerical
experiments?

3.3.2. For the predator–prey model,

Pt+1 = Pt (1+ .8(1− Pt ))− 4Pt Qt ,

Qt+1 = .9Qt + 2Pt Qt ,

a. Compute the equilibria.
b. UseMATLABandtwopop tomake an informedguess as towhether

the equilibria are stable or unstable.
c. Linearize themodel at eachof the equilibria and compute eigenvalues
to determine stability.

3.3.3. For the predator–prey model,

Pt+1 = Pt (1+ 1.6(1− Pt ))− .1Pt Qt ,

Qt+1 = .3Qt + .6Pt Qt ,
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a. Compute the equilibria. Which ones are biologically meaningful?
b. Use MATLAB and twopop to make an informed guess as to

whether the equilibria are stable or unstable.
c. Linearize the model at each of the equilibria and compute eigenval-
ues to determine stability.

3.3.4. Rolling a ball on a saddle provided a good image for the third type of
equilibrium in Figure 3.5. On what surface would a ball roll to depict
the first type? The second type?

3.3.5. Determining the stability of a model only makes sense at an equi-
librium. If a point (P#, Q#) is not an equilibrium of a model, it is
meaningless to ask whether it is stable or unstable.

Suppose, however, you mistakenly thought (.5, 1.5) was an equilib-
rium of the predator–prey model analyzed in the text. What happens
mathematically if you attempt to determine its stability through lin-
earization? What indications are there that you have made a mistake?

3.3.6. For the predator-prey model of this chapter, the equilibrium (0,0) is
always a saddle, regardless of parameter values.
a. Explain why this is so intuitively, by considering initial populations
of (P0, 0) and (0, Q0), for small P0 and Q0.

b. Show the linearization of the model at (0,0) gives
(
1+ r 0
0 1− u

)
.

What are the eigenvalues of this matrix? Explain why, for biolog-
ically reasonable values of the parameters, this means (0,0) is a
saddle.

3.3.7. (Calculus) Stability of equilibria can be determined through deriva-
tives, as in Chapter 1, provided you understand partial derivatives. The
Jacobian matrix of a model

Pt+1 = F(Pt , Qt ),

Qt+1 = G(Pt , Qt )

is the matrix
( ∂ F

∂ Pt

∂ F
∂ Qt

∂G
∂ Pt

∂G
∂ Qt

)
.

a. For the predator–prey model,

Pt+1 = Pt (1+ 1.3(1− Pt ))− .5Pt Qt ,

Qt+1 = .3Qt + 1.6Pt Qt

compute the Jacobian matrix.
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b. Evaluate the Jacobian matrix at the point (P∗, Q∗) = (.4375,
1.4625). Is it the same matrix obtained in the text by linearizing
algebraically?

3.3.8. (Calculus) Repeat the last problem more generally, without specifying
parameter values.
a. For the predator–prey model,

Pt+1 = Pt (1+ r (1− Pt ))− s Pt Qt ,

Qt+1 = uQt + vPt Qt ,

compute the Jacobian matrix.
b. Evaluate the Jacobian matrix at the three equilibria (P∗, Q∗) =

(0, 0), (1, 0), and ( u
v
, r

s (1− u
v
)) to get linearizations of the model

at those points.

3.4. Positive and Negative Interactions

So far in this chapter, a predator-prey model has been the guiding example for
the development and mathematical analysis of a two-population model. Now
that the tools have been introduced, they can be applied to models of other
interactions as well. By linking the basic elements of the models we have
already developed in new ways, a surprisingly wide range of phenomena
can be modeled. As illustrations, we present three examples. We’ll leave
the complete analysis to you, but give some simple examples of models of
interesting interactions.

Competition. Competition between two species that fill the same niche
in an environment might be modeled by the equations

�P = r P(1− (P + Q)/K ),

�Q = uQ(1− (P + Q)/K ).

As written, these equations show the competition occurring solely through
the struggle for the resources represented by the carrying capacity. Each
population grows according to the logistic model if the other population is
absent. The presence of the second population acts to reduce the growth of
the first, just as the presence of the first reduces the growth of the second.
Note also that the two species may have different intrinsic growth rates.

A natural question about competing species is whether one always “wins,”
or if coexistence is possible. Because the only allowed difference between
the two populations in the model is their intrinsic growth rates r and u, you
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might conjecture that whichever has the larger rate will take over. But, then
again, since the logistic growth declines as the population increases, maybe
the two do reach some constant level where both populations persist. Seeing
what actually happens, and analyzing the model, will be left to the exercises.

One drawback of this model for some realistic situations is that it describes
no negative interactions between the two populations other than the resource
competition. A more general version of a competition model is

�P = r P(1− (P + Q)/K )− s P Q,

�Q = uQ(1− (P + Q)/K )− vP Q,

where the new terms describe how each population has an additional neg-
ative effect on the growth rate of the other, through any mechanism other
than resource competition. Notice that, if s �= v, these interactions may have
differing effects on each species.

� What types of interactions might be described by such a term? Give an
example of species for which these might be important, and an example
where the first version of the model might be fine.

Of course many variations on this model are possible. Any of the many
single population models in Chapter 1 could be used as a basis in place of the
logistic terms. Various negative terms, other than the mass action one, could
also be used to model the competitive interaction.

Immune system vs. infective agent. When an organism is infected with
a disease-causing agent, the immune system and the infecting agent often en-
gage in an interaction that is detrimental to both. Imagine a bacterial infection
in a human. Various infection-fighting cells, such as T cells, are produced to
wipe out the bacteria, but the cells themselves are destroyed in the process.

A first attempt at modeling an immune system fighting a bacterial disease
might proceed as follows. Let P measure the amount of immune response
(T cells, etc., that fight the disease), and let Q measure the level of infection
(the bacteria) in the body.

A simple model might then be given by:

�P = r Q − s P Q,

�Q = uQ − vP Q.

Here, we have a linear term in the formula for �P indicating that new
immune cells are created in response to the infective agent. The mass action
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term in that formula indicates the negative effect on the immune system
through fighting the infection.

The formula for�Q indicates by its linear term that the bacteria reproduce
in proportion to their presence. The mass action term shows the, perhaps
limited, success of the immune system in fighting the infection.

� This model is not built on logistic one-population models, so it does
not model either P or Q experiencing resource-limited growth. Why is
this reasonable for this situation?

Naturally,muchmore elaboratemodels of this sort are necessary for captur-
ing the finer details of an infection’s course. This one has been built using only
the crudest guesses as to how an infection proceeds and cannot be expected
to be particularly helpful for deeply understanding any given disease. Incor-
porating more detailed knowledge of the body’s defenses, and the particulars
of the infective agent, however, can greatly improve the model. The immune
response could be broken down into various actors and much more attention
paid to their mode of interaction with the infective agent. Collaboration with
experimentalists is necessary in model development to ensure that the impor-
tant dynamical features observed in living organisms are captured. Work of
this sort led to quite useful models of human immunodeficiency virus (HIV)
infection, which have played a role in understanding and developing effective
treatment strategies for acquired immune deficiency syndrome (AIDS).

Mutualism. In the competition model, two populations have negative
effects on one another; and, in the predator–prey model, one population
experiences a positive effect and one a negative effect from their interaction.
It is also possible that two populations both experience a positive effect from
an interaction.

Leaf-cutter ants and the fungi they cultivate are a classic example of such a
relationship, but others abound. Some plants produce fruit attractive to birds,
so that the plants seeds are dispersed more effectively while the birds have a
food source. Both benefit from the other’s presence.

To describe such a mutualistic relationship, a simple model one could
propose is:

�P = r P + s P Q,

�Q = uQ + vP Q.

These equations result in exponential growth of each population in the absence
of the other. Moreover, an extra boost in growth occurs if both populations are



108 Nonlinear Models of Interactions

present. The greater the size of either population, the greater the boost. It’s
not too surprising that these equations lead to populations quickly growing
to astronomical size.

With such unrealistic behavior coming from our first attempt at modeling
mutualism, we should look for factors that might prevent real populations
from behaving similarly. Since resource limitations, for one or both species,
provide amechanismpreventinguncheckedgrowth,we reformulate themodel
to include such density-dependent effects.

For instance, if we image that, in the absence of species Q, species P
follows a logistic model, then we might consider:

�P = r P(1− P/K )+ s P Q,

�Q = −uQ + vP Q.

Note we have made another change, on the sign in front of the u, to signify
that the population Q will die out in the absence of its partner. This model
is one that the presence of species P is necessary for species Q’s long-term
persistence, although P is not so dependent on Q.

Of course, until thismodel has been investigated through simulation,math-
ematical analysis, and comparison to real populations, it is just speculation
that it describes mutualism. Using computer experimentation and the mathe-
matical tools developed in this section, we can begin to understand how the
model behaves and why. Then, depending on how well the behavior com-
pares with that observed in a biological system, we will be able to evaluate
whether our model captures the basic interactions we are attempting to de-
scribe. A preliminary modeling failure at least provides a basis for thoughtful
reexamination of our understanding, and that may lead to a better model.

Problems

3.4.1. In creating a mutualism model for certain species, we might suspect
that there is a maximum benefit that each individual in one population
could get from the other. If that is the case, explain why it might be
reasonable to replace the mass action term s P Q used above with a
term such as

s P(1− e−wQ).

Explain why this term has the appropriate qualitative features for this
situation.

3.4.2. Cannibalism is rather common among certain insects and fish. Amodel
studied in (Cushing et al., 2001) for tribolium (flour beetles) uses three
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stages of development (L = larvae, P = pupae, and A = adults), and
the equations

Lt+1 = f At e
−cE L Lt −cE A At ,

Pt+1 = τ1,2Lt ,

At+1 = Pt e
−cP A At + τ3,3At .

(Although the beetles also go through an egg stage before becoming
larvae, the model does not explicitly track eggs.) All parameters are
≥0.
a. If cE L = 0, cE A = 0, and cP A = 0, this becomes an Usher model.
Give the corresponding Usher matrix.

b. Because 0 < e−a < 1 for any positive number a, and e−a decreases
as a increases, the presence of the e−cE L Lt in the first equationmeans
the larger Lt is, the smaller the fraction of the f At eggs that are laid
make it to the larval stage. This is how cannibalism of eggs by larvae
enters the model and so cE L is referred to as the egg-larva canni-
balism coefficient.

Explain the other two cannibalism coefficients in the model.
Which stages prey on which other stages?

3.4.3. Investigate the behavior of the infection model of the text using MAT-
LAB and twopop first for r = .05, s = .01, u = .05, and v = .02,
and then for r = .05, s = .02, u = .05, and v = .01. Does the model
behave as youwould expect? Explain. If this were your immune system
you were modeling, which set of parameters would you prefer?

3.4.4. For the infection model, compute and draw the nullclines, mark the
equilibria, and determine directions of change for each resulting region
in the phase plane. (You will need to consider the cases r

s > u
v
and

r
s < u

v
separately.) Explain your results.

3.4.5. What can you say about the stability of the equilibria of the infec-
tion model? Is “equilibrium” an important concept in this modeling
situation?

Projects

1. Investigate the competitionmodel, for two species that fill the same niche
in an environment, given by the equations

�P = r P(1− (P + Q)/K )− s P Q,

�Q = uQ(1− (P + Q)/K )− vP Q.
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Suggestions
� Explain why these two equations model this situation by explaining
each term in the modeling equations. Why should K be viewed as
the combined carrying capacity for the two species? What sorts of
biologically reasonable interactions might be captured by the s P Q
and vP Q terms?

� Using r = s = u = v = 1 for parameter values, investigate the model
using MATLAB and twopop. What happens when r = u = 1 and
s = v = 0? Vary the parameter values to get a sense of the effect of
each on the model behavior.

� Taking K = 1 for convenience, find formulas for the nullclines for this
model. Then draw them on a phase plane. (To plot them, find formulas
for where the nullclines intercept the axes. You will also need to use
that r

r+s < 1 and u
u+v

< 1, regardless of the positive values of r, s, u,

and v.)
� Give formulas for all equilibria of the model (still with K = 1).
� On the regions created in the phase plane by the nullclines, draw ar-
rows suggesting the directions inwhich population orbits move.Which
equilibria are likely to be stable?

� How does all this work change if s = v = 0?
� Using r = s = u = v = 1 for parameter values, linearize the model at
each of the equilibria. Are each of the equilibria stable or unstable?

� Explainwhy yourwork does or does not support the ecological concept
of competitive exclusion.

2. Investigate mutualism models, beginning with those treated in the text,

�P = r P + s P Q,

�Q = uQ + vP Q,

and

�P = r P(1− p/K )+ s P Q,

�Q = −uQ + vP Q,

and continuing on with your own model in which both populations face
resource limitations.

Suggestions
� For the two models above, find all equilibria.
� Use a computer programsuch astwopop to experimentally investigate
the behavior of the two models. You will have to choose reasonable
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parameter values and may want to consider the resulting location of
equilibria in doing so. Describe the behaviors you see and discuss
whether they might be biologically relevant.

� Draw nullclines and analyze the phase plane for the two models
presented.

� Determine the stability of equilibria.
� Create a model of mutualism in which both populations face resource
limitations in the absence of the other. Explain why you have chosen
your particular equations.

� For your model, draw nullclines and analyze the phase plane.
� Are there parameter values that lead to interesting equilibria in your
model? That do not lead to interesting equilibria?

� If you find equilibria, what type are they?
� Create a newmodel inwhich the benefits each species receives from the
other is limited in size, as in Problem 3.4.1 of this section. Investigate
it fully.

� Discuss whether these models seem adequate to capture the basic dy-
namics of mutualism.





4

Modeling Molecular Evolution

Natural selection is the fundamental mechanism through which evolution oc-
curs, but for selection to be possible theremust be some underlying variability
in geneticmakeupwithin a species. Since selection usually acts to reduce vari-
ability, theremust also be a source of new genetic variation. This is introduced
at the molecular level, in the DNA of individuals, through what are viewed
as random changes as the molecules are copied into new generations.

Depending on the nature of these changes in the DNA, offspring may be
more, less, or equally viable than the parents. Many of the molecular changes
are believed to be selectively neutral, and so are passed on to further de-
scendents and preserved. The DNA within a particular gene may continue to
mutate from generation to generation, gradually accumulating more differ-
ences from its ancestral form. Thus, several species arising from a common
ancestor will have similar, but often not identical, DNA forming a particular
gene. The similarities hint at the common ancestor, while the differences point
to the evolutionary divergence of the descendents.

Since we can now “read” the structure of DNAwith relative ease, a natural
and compelling question arises: Canwe reconstruct evolutionary relationships
between several modern species by comparing the DNA sequences of their
versions of a certain gene?

We, of course, expect that species that havemore similar genetic sequences
are probably more closely related. However, this observation really is not
enough to make clear how to deduce an evolutionary tree relating a large
number of different species, all with varying degrees of similarity in the
chosen gene. In fact, we need to first decide what we might mean by a phrase
like “degree of similarity.”

In this chapter, we develop mathematical models of DNA mutation pro-
cesses, that is, of molecular evolution. Because the language of probability
is needed to describe random mutations, we will present the basics of that
subject along the way. We will then see that probability naturally leads us to
linear models to describe molecular evolution. The concept of a phylogenetic
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distance as a measure of sequence similarity will emerge from these models.
Then, in the next chapter, the material developed here will help address the
issue of deducing evolutionary relationships.

4.1. Background on DNA

Genetic information is encoded by DNA molecules, which are passed from
parent to offspring. For this transfer, the DNA must be copied. Despite rather
elaborate mechanisms to ensure the correctness of the copying process, sec-
tions of the molecule may be altered in various ways. Before modeling the
most important of these mutations, we need to review briefly the basic struc-
ture of DNA.

TheDNAmolecule forms a double helix, a twisted ladder-like structure. At
each of the points where the ladder’s upright poles are joined by a rung, one of
four possible molecular subunits appears. These subunits, called nucleotides
or bases – adenine, guanine, cytosine, and thymine – are denoted by the
letters A, G, C , and T . Because of chemical similarity, adenine and guanine
are called purines, while cytosine and thymine are called pyrimidines.

Each base has a complementary base with which it can form the rung of
the ladder through a hydrogen bond. We always find either A paired with T
or G paired with C . Thus, knowing one side of the ladder structure is enough
to deduce the other. For example, if along one pole of the ladder we have a
sequence of bases

AGCGCGT AT T AG,

then the other would have the complementary sequence

T CGCGC AT AAT C.

Finally, the DNA molecule has a directional sense so that we can make a
distinction between a sequence like AT CG AT and the inverted sequence
T AGCT A. The upshot of all this structure is that we will be able to think of
DNA sequences mathematically simply as sequences composed of the four
letters A, T , C , and G.

Some sections of DNA form genes that encode instructions for the man-
ufacturing of proteins (though the production of the protein is accomplished
through the intermediate production of messenger RNA). In these genes,
triplets of consecutive bases form codons, with each codon specifying a
particular amino acid to be placed in the protein chain according to the
genetic code. For example, the codon T GC always means that the amino acid
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cysteine will occur at that location in the protein. Certain codons also signal
the end of the protein sequence. Since there are 43 = 64 different codons, and
only 20 amino acids and one “stop” command, there is some redundancy in
the genetic code. For instance, in many codons, the third base has no affect
on the particular amino acid the codon specifies.

Although originally it was thought that genes always encoded for proteins
via messenger RNA, we now know that some genes encode for the production
of other types of RNA that are the “final products” of the gene, with no protein
being produced. Finally, not all DNA is organized into the coding sections
referred to as genes. About 97%of humanDNA, for example, is believed to be
noncoding. Some of this is likely to be meaningless raw material (sometimes
called junk DNA), whichmay, of course, becomemeaningful in future genera-
tions through evolution. Other parts of the DNAmolecules may serve regula-
tory purposes. The picture is quite complicated and still not fully understood.

When DNA is copied, the hydrogen bonds forming the rungs of the ladder
are broken, leaving two single strands. Then newdouble strands are formed on
these by assembling the appropriate complementary strands. The biochemical
processes are elaborate, with various safeguards to ensure that few mistakes
are made. Nonetheless, changes of an apparently random nature sometimes
occur.

The most commonmutation that is introduced in the copying of sequences
of DNA is a base substitution. This is simply the replacement of one base
for another at a certain site in the sequence. For instance, if the sequence
AAT CGC in an ancestor becomes AAT GGC in a descendent, then a base
substitution C → G has occurred at the fourth site. A base substitution that
replaces a purine with a purine, or a pyrimidine with a pyrimidine, is called
a transition, whereas an interchange of these classes is called a transversion.
Transitions are often observed to occur more frequently than transversions,
perhaps because the chemical structure of the molecule changes less under a
transition than a transversion.

Other DNA mutations sometimes observed include the deletion of a base
or consecutive bases, the insertion of a base or consecutive bases, and the
inversion (reversal) of a section of the sequence. All these mutations tend to
be seen more rarely in natural populations. Since these types of mutations
usually have a dramatic effect on the protein for which a gene encodes, this
is not too surprising. We will ignore such possibilities to make our modeling
task both clearer and mathematically tractable.

Focusing solely on base substitutions, a basic problem to be addressed is
how to deduce the amount of mutation that must have occurred during the
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evolutionary descent of DNA sequences. For instance, suppose we know that
a descendent species S2 descended from an intermediate species S1, which in
turn descended from an ancestral species S0. Imagine that, for each of these,
a certain gene included the sequences:

S0 : ACCT GCGCT A . . .

S1 : ACGT GCACT A . . .

S2 : ACGT GCGCT A . . . .

Here, boldface marks the two sites among the first 10 sites where changes
have occurred. (We will always assume the sequences have been aligned so
that we can match ancestral and descendent sites. The mathematical methods
by which this can be done could be the subject of another chapter or book.)

Now, if we only saw the sequences for S0 and S2, we would notice only
one base substitution among the first 10 sites, the one appearing in the third
site. It might seem reasonable that the ratio 1

10 of mutations per site would be
a good measure of how much mutation has occurred from S0 to S2.

However, because we have the sequence for S1 as well, we know things
are more complicated. At the seventh site, we notice that we have had the
substitutions G → A → G. The original mutation has been hidden since a
back mutation has occurred, leaving the final base the same as it initially was.
Comparing S0 with S1 and then S1 with S2 has shown three mutations among
the first 10 sites, leading to the much larger measure of 3

10 mutations per site.
It could alsohappen that, at another site, substitutions such as A → T → G

occur. Here, even though there were two consecutive substitutions, we would
notice only one if we only saw the initial and final sequences. Once again, a
mutation has been hidden by a subsequent one.

Thus, a simple ratio of mutations per site obtained from comparing the first
and last sequencesmaywell give too lowanestimate of the amount ofmutation
that actually occurred. Unless we believe that mutations have been quite rare,
so that no hidden mutations occurred, we will need a mathematical model to
be able to reconstruct the number of mutations that are likely to have occurred
from those we see in comparing only the initial and final DNA sequences.

4.2. An Introduction to Probability

Describing the random mutation of DNA mathematically requires a facility
with basic probability. Although we’ll keep our discussion as informal as
possible, we will need to be careful on a few points and that requires some
terminology. Looking at some familiar nonbiological examples, such as coin
flips and die tosses, will help make the ideas clearer.
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Suppose we flip a coin or toss a die. When we refer to the probability of
a certain outcome, such as getting a heads in the coin flip, or a 4 in the die
toss, we mean a number P = P(outcome), with 0 ≤ P ≤ 1, that indicates
the likelihood of that outcome occurring. For instance, if we flip a fair coin,
we would say the probability of the outcome “heads” is

P = 1

2
, or P(heads) = 1

2
,

because we expect to see heads in roughly 1 of every 2 tosses. This does not
mean that if we flip the coin twice we will get one head and one tail, but rather
that if we flipped it a very large number of times, we should find that in about
1
2 of the tosses each outcome occurred. For the die toss, to express the chance
of a 4 turning up, we would say that P(4) = 1

6 , since we expect roughly 1 of
every 6 in a large number of tosses to produce a 4.

We might say that a probability measures the chance of a “random” out-
come occurring. Alternately, we may believe the outcome of a die toss is not
random (it is, after all, governed by the deterministic laws of physics), but
predicting it is too complicated to be practical. With this viewpoint, we are
willing to give up trying to say exactly what will happen with any particular
toss and instead accept a description of how often outcomes are likely to
occur in the long run. More precisely, the probability P of an outcome gives
our expectation of the percentage of trials in which that outcome will occur,
assuming a very large number of trials are performed. The smaller P is, the
less likely we believe an outcome is to occur in any given trial.

Usually, a probability will not indicate exactly what will happen in any
trial. However, there are two exceptions. A probability of P = 1 means an
outcome is sure to happen – it will occur 100% of the time. Likewise, a
probability of P = 0 means the event is sure not to happen.

Do not assume that the probability of a heads in a coin flip is 1
2 just because

there are only two possible outcomes: heads and tails. For a weighted coin,
there are still only twopossible outcomes, but itmight be that,with such a coin,
we expect to get heads in 80% of the flips and so we have P(heads) = .8.
Such a coin is not “fair,” but it is still capable of being described through
probability. Similarly, for a fair die, the probability of any particular outcome
is 1

6 , but for a weighted die, the probabilities of some of the outcomes might
be more than 1

6 , while for others they are less than
1
6 .

Given a weighted coin, how can we determine the probability of it pro-
ducing an outcome of heads? We simply perform many trials by flipping it
repeatedly. After recording how often heads comes up in these trials, we can
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compute the estimate

P(heads) ≈ no. of heads produced

no. of trials
.

For instance, if in 10 trials, we got 4 heads, we would estimate P(heads) ≈
4
10 = .4. Performing 100 trials might turn up 56 heads, leading us to the im-
proved estimateP(heads) ≈ 56

100 = .56. Themore trials we perform, themore
confidence we have in our estimate of the probability. Although we cannot
prove a typical coin gives us heads and tails with probability 1

2 , we can gather
evidence to back up that belief.

Example. To apply this language to a DNA sequence, suppose a 40-base
sequence reads as follows:

AGCT T CCG AT CCGCT AT AAT CGT T AGT T GT T AC ACCT CT G

What is the probability that the next base, in site 41, should be an A?

If we really know nothing about the function of this DNA, then we might
proceed by imagining that the bases have been chosen at random. If each site
is treated as a trial of some random selection process, we have the outcomes
of 40 trials before us. A quick tally shows that there are 8 As, 7 Gs, 11 Cs,
and 14 T s. Thus, we estimate

P(A) ≈ 8

40
= .200, P(G) ≈ 7

40
= .175,

P(C) ≈ 11

40
= .275, P(T ) ≈ 14

40
= .350.

We’ve used the frequency of the occurrence of the various bases to estimate
the probabilities. Just as for the flip of a weighted coin, with a longer sequence
of trials, we would have more confidence in our estimates. Nonetheless, with
the limited number of trials at our disposal, we have done the best we can.
Thus, we estimate the probability of an A in site 41 as .2.

Often, we’ll need to group several outcomes into a set, which we call an
event. For instance, for the coin flip, there are four possible events corre-
sponding to the four ways we can make sets of the outcomes:

Eheads = {heads} Eeither = {heads, tails}
Etails = {tails} Eneither = { }.

We say an event occurs if any of the outcomes in the event is observed.
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Example. In our DNA example, viewing each site as a trial, the possible
basic outcomes are the appearance of the four bases. Events that might be of
interest are “the base is a purine” and “the base is a pyrimidine,” or even “the
base is not A.” In more formal notation,

Epurine = {A, G}, Epyrimidine = {C, T }, Enot A = {G, C, T }.

When we know the probability of the basic outcomes, we can then assign
probabilities to all events. For an event containing only a single outcome, the
probability is simply the probability of that outcome. Thus, for the fair coin,

P(Eheads) = P(heads) = 1

2
and P(Etails) = P(tails) = 1

2
.

Now, the event Eeither means “either heads or tails” happens. Because this is
a sure thing, its probability is 1 and so P(Eeither) = 1. Similarly, the event
Eneither means we get neither a head nor a tail, and this is sure not to occur,
so its probability is 0.

Example. For the DNA sequence example, what should P(Epurine) be?

One way to estimate it is to go back to our data and simply tally the
frequency with which purines occur. For instance, because in our 40-base
sequence there were 8 As and 7 Gs, there were a total of 15 purines of the
40 bases, thus we estimate P(Epurine) ≈ 15

40 = .375.

� Explain why Epyrimidine = .625 and Enot A = .800.

There is another way we could estimate P(Epurine). Notice that

P(Epurine) = P(A)+ P(G)
8+ 7

40
= 8

40
+ 7

40
.

The way fractions are added ensures that the probability of a purine appearing
is the same as the sum of the probabilities of the bases A and G in the class
of purines. In fact, we can generalize this example to the rule:

Addition Rule (Special case): The probability of any event is the sum
of the probabilities of the individual outcomes making up that event.

Consider the toss of a fair die to make this clearer. Our basic one-outcome
events are E1, E2, . . . , E6, where Ei = {“the die shows an i”} = {i}. The
probabilities of getting any of the outcomes 1, 2, 3, 4, 5, or 6 are all 1

6 ,
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because experience shows us that each outcome is equally likely and occurs
in roughly 1 of 6 trials. Because the event E = {1, 2, 3, 4, 5, 6} is a sure thing,
its probability is 1. But now events such as “the die shows an odd number”
can be given probabilities by

Eodd = {1, 3, 5}
so

P(Eodd) = P(1)+ P(3)+ P(5) = 1

6
+ 1

6
+ 1

6
= 1

2
.

� Explain why, for a toss of a fair die, the probability of the event “the
die shows an even number” is 1

2 . What outcomes make up this event?
� What outcomesmake up the event “the die shows a number≤ 2”?What

is the probability of this event for a fair die?

Mutually exclusive events and sums of probabilities. The rule we just
used for assigning probabilities to events is actually an important special
case of a more general rule that lets us use known probabilities of events to
calculate probabilities of more complicated events.

Suppose we have two events, E and F , whose probabilities we know, and
we are interested in knowing the probability that either E or F occurs. This
new event, which is denoted by E ∪ F , is the set of outcomes that appear
in either E or F , or both. This new set is called the union of E and F . For
example, the events “the die shows a number ≤ 4” and “the die shows an
even number” have as their union the event “the die does not show a 5,” as we
see by

E≤4 ∪ Eeven = {1, 2, 3, 4} ∪ {2, 4, 6} = {1, 2, 3, 4, 6} = Enot 5.

We’d like to understand how we can combine probabilities of several events
to get the probability of the union.

This is most easily done when the events to be combined are mutually
exclusive. Informally, two events are mutually exclusive if it is impossible
for them to occur simultaneously; if one occurs, the other does not. If we
have listed the outcomes in the events in sets, then we see they are mutually
exclusive when the sets have no outcomes in common. That is, events are
mutually exclusive when the sets are disjoint.

For instance, for a die toss, consider the three events: “the die shows an
odd number,” “the die shows a number ≤ 3,” and “the die shows a number
> 4.” Writing out the outcomes in each of these events as

Eodd = {1, 3, 5}, E≤3 = {1, 2, 3}, and E>4 = {5, 6},
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we see the first two are not disjoint (both events will occur if the die shows a
1 or a 3), whereas the last two are disjoint (they cannot both occur at once).

For a coin toss, the events Eheads and Etails are mutually exclusive, because
one precludes the other. However, the composite event Eeither and the event
Eheads are not mutually exclusive: Knowing “heads or tails” was produced
does not tell us that “heads” did not occur.

� Explain why in our DNA example, the events Epurine and Epyrimidine are
mutually exclusive, whereas Epyrimidine and Enot A are not.

Now suppose we consider any two events E and F that are mutually
exclusive. Then, their probabilities can be combined according to

Addition Rule: If events E and F are mutually exclusive, then the
probability of the event “E or F,” will be the sum of the probabilities
of the two events:

P(E ∪ F) = P(E)+ P(F), if E and F are disjoint.

Example. Consider a die toss, and the events E≤2 = “the die shows a number
≤ 2” and Emult 3 = “the die shows a multiple of 3.”

� Explain why P(E≤2) = 1
3 by listing the outcomes that make up this

event.
� Explain why P(Emult 3) = 1

3 by listing the outcomes that make up this
event.

� Are these two events mutually exclusive?

Now, the probability of the event E≤2 ∪ Emult 3 = “the die shows either a
number ≤2 or a multiple of 3” can be calculated with ease. Since E≤2 and
Emult 3 are disjoint,

P(E≤2 ∪ Emult 3) = P(E≤2)+ P(Emult 3) = 1

3
+ 1

3
= 2

3
.

Of course, we could also have found this by listing all the outcomes in this
event

E≤2 ∪ Emult 3 = {1, 2, 3, 6},
and so

P(E≤2 ∪ Emult 3) = P(E1)+ P(E2)+ P(E3)+ P(E6)

= 1

6
+ 1

6
+ 1

6
+ 1

6
= 2

3
.
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Example. Note that the events Emult 3 and E<4 are not mutually exclusive;
it is possible for both to occur simultaneously if the outcome of the toss is a
3. Thus, we expect

P(Emult 3 ∪ E<4) �= P(Emult 3)+ P(E<4).

In fact, since

Emult 3 ∪ E<4 = {1, 2, 3, 6} = E1 ∪ E2 ∪ E3 ∪ E6,

we find

P(Emult 3 ∪ E<4) = 2

3
�= 1

3
+ 1

2
= P(Emult 3)+ P(E<4).

There is a more general version of the addition rule that can be used on
events such as these that are not mutually exclusive. You’ll find it in the
exercises.

As a final consequence of the addition rule of probabilities of disjoint
events, we can understand the probability of an event not happening. If E is
any event, let E ′ be the complementary event composed of all those outcomes
not in E . For example, with a die toss

(E≤4)′ = E>4.

For any event E , note that E and E ′ are certainly exclusive (they cannot
both happen at once). Then, by the addition rule

P(E ∪ E ′) = P(E)+ P(E ′).

However, the event E ∪ E ′ is the event that anything at all happens, and
because this is a sure thing, P(E ∪ E ′) = 1. Thus, P(E)+ P(E ′) = 1, or

P(E ′) = 1− P(E).
We now have a rule for calculating probabilities of complementary events.

Example. As an application to DNA, the event Epyrimidine is the same as
E ′
purine. Thus, P(Epyrimidine) = 1− P(Epurine). Of course, this is consistent

with the example above where P(Epurine) = .375 and P(Epyrimidine) = .625.

Independent events and products of probabilities. There is another im-
portant way we can combine events to get more complicated ones. If E and
F are events, then E ∩ F denotes the event that both E and F occur. The set
of outcomes E ∩ F is simply all outcomes appearing in both E and F . This
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is called the intersection of the sets. For instance,

E≤4 ∩ Emult 2 = {1, 2, 3, 4} ∩ {2, 4, 6} = {2, 4}.
Imagine flipping a coin and tossing a die together. Then, there are 12 pos-

sible outcomes: (heads, 1), (tails, 1), (heads, 2), (tails, 2), . . . , (tails, 6).
Assuming both the coin and die are fair, each of these outcomes should be
equally likely. Since their probabilities must add to 1 (because they are dis-
joint, and it is certain that one of them occurs), each must have probability
1
12 .

� Explain why there are 12 possible outcomes.

Consider the event “the die shows a 5” and the event “the coin shows
heads”:

E5 = {(heads, 5), (tails, 5)},
Eheads = {(heads, 1), (heads, 2), (heads, 3), (heads, 4), (heads, 5), (heads, 6)}.
The intersection of these two events is “the die shows a 5 and the coin shows
heads,”

E5 ∩ Eheads = {(heads, 5)} = Eheads,5.

How are the probabilities of these three events related?

� Explain whyP(Eheads) = 1
2 andP(E5) = 1

6 by thinking of each of them
as a union of disjoint events and using the addition rule.

Because P(Eheads,5) = 1
12 , noting that

1

2
· 1
6

= 1

12

shows

P(Eheads) · P(E5) = P(Eheads ∩ E5).

At least in this example, the probability of an intersection of two events was
simply the product of the probabilities of the two events. The reason that these
probabilities behaved this way actually depended on a special feature of the
events: the events E5 and Eheads are independent.

Informally, we say two events are independent if knowledge that one of
the events has occurred tells us absolutely nothing about whether the other
has occurred. In other words, if we were told whether or not the first event
occurred, that would have no effect on our belief about the likelihood of the
second having occurred.
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In this example, knowing whether the die shows a 5 or not, tells us nothing
about the chance of seeing either of the coin outcomes, a head or a tail.

Multiplication Rule: If events E and F are independent, then the prob-
ability of the event “E and F” will be the product of the probabilities
of the two events:

P(E ∩ F) = P(E) · P(F), if E and F are independent.

Example. Suppose we toss two fair dice in order. There are 36 equally likely
outcomes such as (1, 1), (1, 2), etc., each with a probability of 1

36 . (Because
we toss the dice and record what they show in order, the outcome (1, 2) is not
the same as the outcome (2, 1).)

Consider the events

Ed2=3 = “the second die shows a 3,”

Ed1=even = “the first die is even.”

� Explain why P(Ed2=3) = 6
36 = 1

6 by listing the 6 outcomes that make
up the event.

� Explain why P(Ed1=even) = 18
36 = 1

2 by listing the 18 outcomes that
make up the event.

Now, intuitively, the events Ed1=even and Ed2=3 are independent, since one
tells us something about die 1 and the other about die 2. Knowledge about
one die should communicate nothing about the other. Thus, the multiplication
rule tells us

P(Ed1=even ∩ Ed2=3) = 1

2
· 1
6

= 1

12
.

We can confirm this by reasoning a different way. The compound event
Ed1=even ∩ Ed2=3 is the event that the first die is even and the second shows a
3. This means it is composed of the outcomes (2, 3), (4, 3), and (6, 3). Because
each of these outcomes has probability 1

36 , we have

P(Ed1= even ∩ Ed2=3) = 1

36
+ 1

36
+ 1

36
= 1

12
.

Example. Continuing with the toss of two dice in order, consider another
event

Esum=9 = “the sum of the results is 9.”
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� Explain why P(Esum=9) = 4
36 = 1

9 by listing the 4 outcomes that make
up the event.

Now, the events Esum=9 and Ed2=3 are not independent. If we know the
sum is a 9, then we know the outcome must have been one of (6, 3), (5, 4),
(4, 5), or (3, 6). Since these are all equally likely, we see that knowledge that
Esum=9 occurred lets us say there is a 1 in 4 chance that Ed2=3 occurred. This
is different than the 1 in 6 chance we would have without the knowledge that
Esum=9 occurred. Thus, knowledge of one event gave us some information
about the other, so they are dependent.

To verify that the multiplication rule does not hold for this example, we
check

P(Esum=9 ∩ Ed2=3) = P((6, 3)) = 1

36
,

whereas

P(Esum=9) · P(Ed2=3) = 1

9
· 1
6

= 1

54
.

Although the definition of independent events given here has been an
informal one, in the next section, we will be a bit more precise. Still, this
informal way of thinking is often necessary, especially when probability is
being used to model complicated processes.

The multiplication and addition rules are very useful in determining the
probabilities of events. They allow us to calculate probabilities of complicated
events by seeing how they are built from events we already understand by
using thewords “or,” “and,” and “not.”An“or”meanswe add the probabilities,
provided the events being combined are disjoint. An “and”meanswemultiply
the probabilities, provided the events being combined are independent. A
“not” means we compute the probability of the complementary event and
subtract it from 1.

The key properties of probabilities we have discussed so far can be sum-
marized as:

� The probability of any event E is a number P = P(E) with 0 ≤ P ≤ 1.
� If several events E1, E2, . . . , En are mutually exclusive, then the prob-
ability that any of them occur, i.e., the probability of E = E1 ∪
E2 ∪ · · · ∪ En , is P(E) = P(E1)+ P(E2)+ · · · + P(En), the sum of the
individual probabilities.

� If several events E1, E2, . . . , En are independent, then the probability
that they all occur, i.e., the probability of E = E1 ∩ E2 ∩ · · · ∩ En , is
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P(E) = P(E1) · P(E2) · · ·P(En), the product of the individual proba-
bilities.

� If the probability of an event E occurring is P , then the probability that
E does not occur, i.e., the probability of the complementary event E ′, is
P(E ′) = 1− P .
Now let’s apply these rules to a very simple model of DNA mutation.

Suppose we focus on a particular site in a gene sequence, and on whether at
that site a purine or a pyrimidine appears. We only care about these classes,
not on the precise bases.

Suppose we also know that with each generation there is a 1.5% chance
the base at this site undergoes a transversion, which we will call simply a
“change.” Thus, there is a 98.5%chance that there is no change (or a transition,
which is treated as no change in this model). Then, for one generation

P(Echange) = .015, P(Eno change) = .985.

While this probability of a change is much higher than is typically observed,
we are not yet concerned with realism.

Now imagine what happens over two generations. There are four possibil-
ities of interest:

{
change
no change

, followed by
{
change
no change

.

What are their probabilities?
First, we make the important assumption that what happens in passing to

the first generation is independent of what happens in passing to the second.
This is reasonable if we think mutations are caused by errors and accidents,
because the DNA should have nomemory of what had happened before.With
this assumption,we can use themultiplication rule for combining probabilities
of independent events to get

P(Echange,change) = (.015)(.015) = .000225

P(Echange,no change) = (.015)(.985) = .014775

P(Eno change,change) = (.985)(.015) = .014775

P(Eno change,no change) = (.985)(.985) = .970225.

� What is the sum of these four probabilities? Why did it have to be that?

What is the probability of seeing no change from the original base in gen-
eration 0 to the descendent in generation 2? This event is actually composed
of two events: either there was no change in each generation or there was
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a change in each generation producing no net change (i.e., the changes are
hidden). Because these two events are mutually exclusive, we find the desired
probability is

P(Eno change,no change)+ P(Echange,change) = .970225+ .000225 = .97045.

Thus, the probability of observing no change when comparing a base across
two generations is slightly greater than the chance of no change having ac-
tually occurred. Mutations followed by other mutations may result in no net
observable change, yet they do affect the likelihood of what we observe.

Note that to deduce this result, we used both the multiplication rule for
probabilities of independent events, and the addition rule for probabilities of
disjoint events. This sort of analysis will form the basis of all of our modeling
of molecular evolution. We just need to deal with very large numbers of
generations and with all four of the bases.

Problems

4.2.1. Use a coin to conduct an experiment to determine the probability of
it producing heads or tails when flipped.
a. Flip the coin 10 times, recording your results. Use your data to
estimate the probability of heads.

b. Flip the coin 10 more times, for a total of 20 flips. Use your data
to estimate the probability of heads.

c. Flip the coin 20 more times, for a total of 40 flips. Use your data
to estimate the probability of heads.

d. If you believe your coin is fair, then you believe P(heads) = .5.
Do your experiments support this? If your experiments did not
exactly produce .5, should you be doubtful that the coin is fair?
Which experiment produced the result closest to .5? Is that what
you would have expected?

4.2.2. Suppose a fair coin is flipped 10 times (H = heads, T = tails).
a. H T T H T H H H T H is produced in 10 independent trials. What is
the probability of this particular sequence of outcomes?

b. T T T T T T T T T T is produced in 10 independent trials. What is
the probability of this particular sequence of outcomes?

c. Your answers to parts (a) and (b) should be the same. Why might
this be surprising to some people? Are you convinced they are
equally likely?
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4.2.3. Consider the 20-base sequence

AGGG AT AC AT G ACCC AT AC A.

a. Use the first five bases to estimate the four probabilities pA, pG ,
pC , and pT .

b. Repeat part (a) using the first 10 bases.
c. Repeat part (a) using all the bases.
d. Is there a pattern to the way the probabilities you computed in parts

(a–c) changed? If so, what features of the original sequence does
this pattern reflect?

4.2.4. Consider the 20-base sequence

CGGT T CGCCT GCGT AGT GCG

a. Give the best estimates you can for the probability that each base
would appear at site 21.

b. Give the best estimates you can for the probabilities of a purine
and of a pyrimidine at site 21.

c. Which base is most likely to appear at site 21? Is it a purine or a
pyrimidine? Does this make sense in light of your answer to part
(b)? Explain.

4.2.5. A simplemodel for human offspring is that each child is equally likely
to be male or female. With this model, a three-child family can be
thought of as three random determinations of sex, in order.
a. What are the 8 possible outcomes?What is the probability of each?
b. What outcomes make up the event “the oldest child is a daughter”?

What is the event’s probability?
c. What outcomes make up the event “the family has one daughter
and two sons”? What is its probability?

d. What is the complement of the event in part (c)? List the outcomes
in it and describe it in words. What is its probability?

e. What outcomes make up the event “the family has at least one
daughter”? What is its probability?

4.2.6. For a coin toss, there are 2 possible outcomes, but 4 events listed in
the text. More generally, if a trial has n possible outcomes, there will
be 2n events.
a. If one of the bases A, G, C , and T is chosen at random, so there
are 4 possible outcomes, then there are 16 = 24 different events.
List them all.

b. Explain why, if there are n possible outcomes, then there are 2n

possible events.
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4.2.7. Manygenetic traits canbemodeledusingprobability. Imaginepicking
a person at random from the world population. Then we can consider
events such as “the person has brown eyes” or “the person is male.”
For each of the following pairs of events, decide whether the two
events are mutually exclusive, and if it is reasonable to think of them
as independent:
a. “the person is male” and “the person has brown eyes”
b. “the person has black hair” and “the person is an albino”
c. “the person has blue eyes” and “the person has blond hair”

4.2.8. If two events are mutually exclusive, can they also be independent?
Explain.

4.2.9. The definition of “mutually exclusive” events given in the text was in
words. Explain why it could be expressed more concisely as

E and F are mutually exclusive means E ∩ F = { }.

4.2.10. There is a more general version of the addition rule for probabilities
that does not require that events bemutually exclusive: For any events
E and F ,

P(E ∪ F) = P(E)+ P(F)− P(E ∩ F).

a. Explain why, if E and F are disjoint, then this agrees with the
addition rule in the text.

b. Show the general version holds in an example for a die toss using
the events Emult 3 and E<4.

4.2.11. Explain informally why, if events E and F are independent, then the
complementary events E ′ and F ′ must also be independent.

4.2.12. The text presents a model of DNA sequence mutation considering
only the classes of purines and pyrimidines, and computes the proba-
bility of observing “no change” at a site when comparing an ancestral
sequence and a sequence two generations later. Continue that discus-
sion by answering:
a. What is the probability of observing a “change” when comparing
an ancestral sequence and a sequence two generations later?

b. What 4 outcomes (ordered triples of “change”/“no change”) make
up the event “no change” is observed at a site when comparing an
ancestral sequence and a sequence three generations later?

c. What is the probability of the event in part (b)?
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4.3. Conditional Probabilities

When base substitutions occur in the evolution of DNA, the probability of a
particular base appearing at a site in the descendent sequence might depend
on the ancestral base. For example, if the ancestral base is a T , we would
expect the probability of a T in the descendent to be high. If the ancestral
base is a C , we would expect a lower probability of the descendent having a
T , since a transition is less likely than no change. If the ancestral base is an
A or G, we might expect an even lower probability that the descendent has a
T , because transversions might be rarer than transitions.

To formalize this, we need the concept of conditional probability. This is
the probability of one event given that we know another event has occurred.
Letting S0 refer to the ancestor and S1 the descendent, we’ll use notation like
“S0 = C” to mean that the ancestral site has base C , and “S1 = T ” to mean
the descendent site has base T . Then,

P(S1 = T | S0 = C) = .02

will mean that there is a 2% chance that the descendent base is a T given
that the ancestral base is a C . Note that the vertical bar “|” in this conditional
probability notation is read as “given that.” We now have a good way to refer
to the fact the probability of a “final” base appearing depends on the “initial”
base that appeared.

� Taking into account the previous comments on the likelihood of transi-
tions and transversions,whichofP(S1 = A | S0 = C),P(S1 = G | S0 =
C),P(S1 = C | S0 = C), andP(S1 = T | S0 = C) are likely to be small-
est? Which is likely to be biggest?

The properties of probabilities discussed earlier carry over to the setting of
conditional probabilities, as long as we keep in mind we are always assuming
something particular happened – the given condition. For instance,

P(S1 = A | S0 = C) + P(S1 = G | S0 = C)

+ P(S1 = C | S0 = C)+ P(S1 = T | S0 = C) = 1.

After all, given that S0 = C , the four events S1 = A, G, C, and T aremutually
exclusive, yet certainly one of them will occur, and so the probabilities must
add to 1.

Example. The conditional probability P(S1 = T | S0 = C) is not the same
as the probability P(S1 = T and S0 = C). To see this clearly, suppose we
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have aligned sequences

S0 : AGCT T CCG AT CCGCT AT AAT CGT T AGT T GT T AC ACCT CT G
S1 : AGCT T CT G AT ACGCT AT AAT CGT G AGT T GT T AC AT CT CCG.

Then, of the 40 sites shown (which we think of as 40 trials), we find two sites
with a T in S1 and a C in S0. Thus, we would estimate

P(S1 = T and S0 = C) ≈ 2

40
= .05.

However, of the 11 sites that have a C in S0, we find only two of these have
a T in S1; so, we estimate

P(S1 = T | S0 = C) ≈ 2

11
≈ .182.

Pay particular attention to this last calculation. We divided not by the total
number of trials, but only by the number of trials that satisfied the given
criterion S0 = C . The trials in which S0 �= C are irrelevant to the calculation
of this conditional probability.

There is another way to find conditional probabilities, which is convenient
if we have already computed some other probabilities. From this last example,
we know the probability that both S0 = C and S1 = T is

P(S1 = T and S0 = C) ≈ 2

40
= .05.

Moreover, the probability that S0 = C can be found to be

P(S0 = C) ≈ 11

40
= .275.

Then

P(S1 = T and S0 = C)

P(S0 = C)
≈

2
40
11
40

= 2

11
≈ P(S1 = T | S0 = C).

The denominators of 40 canceled one another out, leaving us with the ratio
we found above.

More formally, we can capture what has happened in this approach by the
following general definition.
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Definition of Conditional Probability: If E and F are two events, then
the conditional probability of F given E is defined by

P(F | E) = P(F ∩ E)

P(E) . (4.1)

The concept of conditional probability also clarifies the notion of indepen-
dence of events. Earlier, we informally said that events E and F were in-
dependent if knowledge that one had occurred gave us no information as to
whether the other occurred. This could be expressed as

P(F | E) = P(F) and P(E | F) = P(E). (4.2)

Using the definition of conditional probability, the first of these becomes

P(F ∩ E)

P(E) = P(F),

or

P(F ∩ E) = P(E)P(F).
� Explain why the second equation in (4.2) gives the same result.

This leads us to the formal mathematical definition of independence as

Definition of Independence: Events E and F are said to be indepen-
dent if

P(E ∩ F) = P(E)P(F).

Of course, this is essentially the same as the multiplication rule for in-
dependent events stated earlier. All the new definition really says is that the
word “independent” is simply a concise way of saying the multiplication rule
applies. In practice, to recognize whether events are independent or not, it
is usually better to stick with the more informal definition given in the last
section, which has been formalized in equations (4.2).

Example. Suppose a 40-base ancestral DNA sequence is

S0 : ACT T GT CGG AT G AT C AGCGGT CC AT GC ACCT G AC AACGGT ,

and its descendent aligned sequence is

S1 : AC AT GT T GCT T G ACG AC AGGT CC AT GCGCCT G AG AACGGC .
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Table 4.1. Frequencies of
S1 = i and S0 = j in 40-Site

Sequence Comparison

S1\S0 A G C T

A 7 0 1 1
G 1 9 2 0
C 0 2 7 2
T 1 0 1 6

Thinking of each site as a trial of the same probabilistic process, we can
estimate 16 conditional probabilities describing the likelihood of observing
different types of base substitutions when comparing the sequences of ances-
tor to descendent:

P(S1 = i | S0 = j),

where i, j = A, G, C, T .

To do this, we begin by tallying the number of sites with an occurrence of
each pair S0 = j, S1 = i in the aligned sequences, recording the information
in a frequency array such as Table 4.1.

� What is the sum of the 16 numbers in the table? Why?

If we add the numbers in a column of this table, we obtain the total number
of sites with a particular base in S0. For instance, the number of sites with
S0 = A is 7+ 1+ 0+ 1 = 9. In general, the number of sites with S0 = j is
the sum of the entries in column j .

� What is the meaning of a row sum in the table?

Now, for any bases i, j , we estimate the conditional probabilities P(S1 =
i | S0 = j) by dividing the number of sites with S1 = i and S0 = j by the
number of sites with S0 = j . That means we must divide the entry in row i ,
column j of the table by the sum of the entries in column j . We find all the
conditional probabilities by dividing all table entries by their corresponding
column sums. Rounding the results to 3 digits yields Table 4.2.

� What is the sum of the entries in any column of this new table? Why?
� If instead of dividing by column sums, you divided by row sums, would

you get the same results? What conditional probabilities would you be
calculating?
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Table 4.2. Estimates of Conditional
Probabilities P(S1 = i | S0 = j)

S1\S0 A G C T

A .778 0 .091 .111
G .111 .818 .182 0
C 0 .182 .636 .222
T .111 0 .091 .667

Problems

4.3.1. Assuming births of each sex are equally likely, a two-child family
may have 4 outcomes in the sexes of the children.
a. List the outcomes and give the probability of each.
b. What is the probability that at least one child is a female?
c. What is the probability that the youngest child is a female?
d. What is the conditional probability that the youngest child is a

female, given that at least one child is a female?
e. What is the conditional probability that at least one child is a
female, given that the youngest child is a female?

f. Are the events in parts (b) and (c) independent? Explain.

4.3.2. Consider the toss of a single die.
a. Show the events Eodd and E≤2 are independent by using the formal
definition.

b. Show the events Eodd and E≤3 are not independent by using the
formal definition.

c. Explain as intuitively as possible why the events of part (a) were
independent, but those of part (b) were not.

4.3.3. Medical tests, such as those for diseases, are sometime characterized
by their sensitivity and specificity. The sensitivity of a test is the pro-
bability that a diseased personwill showa positive test result (a correct
positive). The specificity of a test is the probability that a healthy
person will show a negative test result (a correct negative).
a. Both sensitivity and specificity are conditional probabilities.
Which of the following are they:

P(− result | disease), P(− result | no disease),
P(+ result | disease), P(+ result | no disease).

b. The other conditional probabilities listed in (a) can be interpreted
as probabilities of false positives and false negatives. Which is
which?
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Table 4.3. Data from Tuberculosis (TB) Diagnosis Study

Persons without TB Persons with TB

Negative X-ray 1,739 8
Positive X-ray 51 22

c. A study (Yerushalmy et al., 1950) investigated the use of X-ray
readings to diagnose tuberculosis. Diagnosis of 1,820 individuals
produced the data in Table 4.3. Compute both the sensitivity and
specificity for this method of diagnosis.

4.3.4. Ideally, the specificity and sensitivity of medical tests should be high
(close to 1). However, even with a highly specific and sensitive test,
screening a large population for a disease that is rare can produce
surprising results.
a. Suppose the sensitivity and specificity of a test for disease are both
.99. The test is applied to everyone in a population of 100,000
individuals, only 100 of whom have the disease. Compute how
many individuals with/without the disease you would expect to
test positive/negative. Organize your results in a table like that in
the preceeding problem.

b. Use the table you produced in part (a) to compute the conditional
probability that a personwho tests positive actually has the disease.

4.3.5. In the text, data in Table 4.1 are used to compute the conditional pro-
babilities P(S1 = i | S0 = j).
a. Use the same data to compute P(S0 = j | S1 = i). Do you get the
same results as in Table 4.2?

b. Explain intuitively why you would usually not expect P(S1 =
i | S0 = j) and P(S0 = i | S1 = j) to be the same.

4.3.6. In tables, such as Table 4.2, of conditional probabilities describing
realistic DNAbase substitutions between an ancestor and descendent,
there is often a pattern to the sizes of the numbers.
a. Which entries refer to no substitution occurring? Why are these
likely to be the largest entries?

b. Which entries refer to transitions? To transversions? Does Table
4.2 support the claim that transitions tend to be more common than
transversions?

4.3.7. Using the data in Table 4.1:
a. Compute each column sum and divide it by 40. These results can
be interpreted as estimates of probabilities. What probabilities are
being estimated?
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b. Compute the row sums and divide each by 40. What probabilities
are being estimated?

4.3.8. For the two sequences S0 and S1 that are used in producing Table 4.1:
a. Estimate the eight probabilities P(S0 = i) and P(S1 = j) for

i, j = A, G, C, T .
b. For each pair i, j , are the events S0 = i and S1 = j inde-

pendent?
c. Why does the fact that one sequence is descended from another
help explain your answer to part (b)?

4.3.9. Two DNA sequences of the same length are chosen and labeled S0
and S1, but there is no ancestral relationship between the two.
a. Why would you expect that for each pair i, j the events S0 = i and

S1 = j would be independent?
b. If the events S0 = i and S1 = j are independent, what would be

the pattern in the entries in a table like Table 4.2?

4.3.10. Recall from the last section the two-class model of purine and pyrimi-
dine sequencemutation.Modify themodel so that, at each generation,
the probabilities of mutation depend on the current class of the site
according to Table 4.4:
a. Explain intuitively why the formula

P(S2 = pur | S0 = pur )

= P(S2 = pur | S1 = pur ) · P(S1 = pur | S0 = pur )

+P(S2 = pur | S1 = pyr ) · P(S1 = pyr | S0 = pur )

is reasonable.Write similar formulas forP(S2 = pyr | S0 = pur ),
P(S2 = pur | S0 = pyr ), and P(S2 = pyr | S0 = pyr ).

b. Using these formulas, compute numerical values for P(S2 =
j | S0 = i) for the four possible choices with i, j = pur,
pyr .

Table 4.4. Conditional
Probabilities

P(St+1 = i | St = j)

St+1\St pur pyr

pur .98 .01
pyr .02 .99
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c. Using the definition of conditional probability, show that the
formula in part (a) is valid. You will have to use the assump-
tions

P(S2 = pur | S1 = pur and S0 = pur )

= P(S2 = pur | S1 = pur ),

P(S2 = pur | S1 = pyr and S0 = pur )

= P(S2 = pur | S1 = pyr ).

These assumptions state that probabilities of substitutions between
time 1 and time 2 are independent of the base at time 0.

4.3.11. Suppose E1 and E2 are two events, with E ′
2 being the event comple-

mentary to E2. Recall that P(E2)+ P(E ′
2) = 1.

a. Explain using your intuitive understanding of conditional proba-
bilities why P(E2 | E1)+ P(E ′

2 | E1) = 1 should also hold.
b. Show the formula in part (a) holds more formally by using the

definition of conditional probability as a quotient of probabilities.
You will need use that (E2 ∩ E1) ∪ (E ′

2 ∩ E1) = E1.

4.3.12. MATLAB can be used to compare two sequences and produce a fre-
quency array such as Table 4.1. Although the program compseq
automates this, the individual steps are useful to know.
a. Try the following command sequence and explain what each line
does.

S0='AACTGCAGT'

S1='AGCCGCAGA'

S0=='A'

S1=='G'

(S0=='A') & (S1=='G')

sum( (S0=='A') & (S1=='G') )

b. What one-line command would find the number of sites with a C
in S0 and a G in S1?

c. What one-line command would count the number of purines in
S0?

d. What one-line command would give the number of sites with a
purine in S0 and a pyrimidine in S1?

4.3.13. Suppose two sequences S0 and S1 have been compared, and a fre-
quency table such as that in Table 4.1 has been produced and entered
into MATLAB as a matrix F .
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a. Explain why the sequence of commands

colsum=[1,1,1,1]*F, N=colsum*[1; 1; 1; 1], p0=colsum/N

will produce the fraction of sites with each base in S0.
b. Give a sequence of commands to produce the fraction of sites with

each base in S1.
c. Try the MATLAB command D=diag(colsum)to see what it
does. Then explain why if M denotes the matrix of estimated con-
ditional probabilities such as in Table 4.2, that F = M×D. Thus,
M is easily computed by the command

M=F*inv(diag(colsum)).

4.4. Matrix Models of Base Substitution

We now can create a basic model of molecular evolution by making use of
probability and matrix algebra.

We begin by modeling the ancestral sequence probabilistically. Each site
in the sequence is one of the four bases A, G, C , or T , chosen randomly
according to some probabilitiesPA,PG ,PC , andPT . These four probabilities
must satisfy

PA + PG + PC + PT = 1,

since one of the bases is certain to appear. For convenience, we will always
use the order A, G, C, T for the bases (so the purines come first and then the
pyrimidines) and put these four probabilities into a vector as

p0 = (PA,PG,PC ,PT ).

This vector describes the ancestral base distribution, with its entries giving
the fraction of sites we would expect to be occupied by each of the four
bases.

� Towhat extent is the assumption that all bases in the sequence are chosen
“at random” reasonable? Would it matter whether the DNA sequence
was coding or noncoding?

Wemodel themutation process over one time step, assuming that only base
substitutions can occur – no deletions, insertions, or inversions are considered.
We specify the 16 conditional probabilities of observing a base substitution,
P(S1 = i | S0 = j), for i, j = A, G, C , and T . It will be convenient to put
these numbers into a 4× 4 matrix, using the ordering A, G,C , and T . In each
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column of the matrix are entries referring to the same ancestral base, and in
each row are entries referring to the same descendent base. Using abbreviated
notation, such as Pi | j = P(S1 = i | S0 = j), we let

M =




PA|A PA|G PA|C PA|T
PG|A PG|G PG|C PG|T
PC |A PC |G PC |G PC |T
PT |A PT |G PT |C PT |T


 .

� Why must the sum of the entries in any column of this matrix add
to 1?

� How reasonable is it to assume only base substitutions occur? Why
would you imagine that these might be the most common mutations,
especially in coding regions of DNA?

Example. If we have two specific DNA sequences, such as those at the end
of the last section, one the ancestor and the other the descendent after one
time step, then all these probabilities can be estimated from the data. Data in
the frequency array in Table 4.1 lead to

p0 ≈ (.225, .275, .275, .225) and M ≈




.778 0 .091 .111

.111 .818 .182 0
0 .182 .636 .222

.111 0 .091 .667


 . (4.3)

In fact, this estimate of M is just Table 4.2 treated as amatrix, and the estimate
of p0 is just the column sums of Table 4.1 divided by the number of sites in
the sequences.

� Explain why the calculation of p0 described here is the correct one to
perform.

Expressing our model using a vector and matrix is more than just a concise
notation; let’s see what happens when we multiply them as

Mp0 =




PA|A PA|G PA|C PA|T
PG|A PG|G PG|C PG|T
PC |A PC |G PC |C PC |T
PT |A PT |G PT |C PT |T







PA

PG

PC

PT




=




PA|APA + PA|GPG + PA|CPC + PA|TPT

PC |APA + PC |GPG + PC |CPC + PC |TPT

PG|APA + PG|GPG + PG|CPC + PG|TPT

PT |APA + PT |GPG + PT |CPC + PT |TPT


 . (4.4)
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To interpret this result, focus on the bottom entry

PT |APA + PT |GPG + PT |CPC + PT |TPT .

Informally, we expect this to give the probability that a site in S1 has base
T , because we have multiplied the probability of each initial base occurring
by the chance that base mutates to a T and summed over all possible ini-
tial bases. Checking this more formally, the first product appearing on the
left is

PT |APA = P(S1 = T | S0 = A)P(S0 = A).

Using Eq. (4.1), this is the same as P(S1 = T and S0 = A). Applying similar
reasoning to the other three products shows

PT |A PA + PT |GPG + PT |CPC + PT |TPT

= P(S1 = T and S0 = A)+ P(S1 = T and S0 = G)
+ P(S1 = T and S0 = C)+ P(S1 = T and S0 = T ).

Notice this is the sum of four probabilities of mutually exclusive events. By
the addition rule, it gives the probability of the union of the four events, that
is, of the event that S1 = T :

PT |APA + PT |GPG + PT |CPC + PT |TPT = P(S1 = T ).

If similar reasoning is applied to the other entries in the right-hand side of
Eq. (4.4),wefind Mp0 = p1, wherep1 is the vector of probabilities for various
bases occurring in the sequence S1. We can think of M as a transition matrix
that tells us how the probabilities of each base in the ancestral sequence S0 are
transformed into the probabilities of each base in the descendent sequence S1
one time step later.

What would be the meaning of Mp1? For this to make sense biologically,
we must assume the probabilistic mutation process over the first time step
is identical to that over the next time step. Using the same transition matrix
M of conditional probabilities means each type of base substitution has the
same likelihood of occurring as it did before. Furthermore, what happens
during the second time step depends only on what the base was at time t = 1
(the information in p1), and the conditional probabilities (the information in
M). Whether that site experienced a substitution during the first time step is
irrelevant.
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To return to our numerical example with p0 and M coming from the data
in Table 4.1, we can compute

p1 = Mp0 =




.225

.275

.300

.200


 , p2 = Mp1 =




.222

.274

.320

.183


 .

� What is the sum of the entries in p1? In p2? (You may need to neglect
an error due to rounding.) Why must this be the case?

Markov models. The model developed above is an example of a Markov
model. In such a model, we describe a system that must be in one of n dif-
ferent states, but may switch from one state to another with time.

In the DNA substitution model, the system we describe is a site in a DNA
sequence. That site is initially in one of 4 states (A, G, C , or T ), according
to the base that occupies it.

We specify initial probabilities that the system is in each of the states by
giving a vector of these probabilities, p0. The entries of p0 must all be ≥0
(because they are probabilities) and must add to 1 (because we are certain the
system is in one of the states).

We also specify conditional probabilities of the switch from every state to
every state over one time step by giving a n × n transition matrix M . The
entries of M must all be≥0 (because they are probabilities), and each column
must add to one (because the conditional probabilities in column j represent
the probabilities of switching from state j to all states, and we are certain one
of these will occur).

An important assumption is made in any Markov model: What happens to
the system over a given time step depends only on the state the system is in
at the start of that step and the transition probabilities. In particular, there is
no “memory” of what state changes might have occurred during earlier time
steps that has any effect. We say the conditional probabilities are independent
of the past history.

� For a DNA substitution model, is it reasonable to assume this indepen-
dence?

In our DNA model, we are also assuming that each site in the sequence
behaves identically and independently of every other site. We used these
assumptions to find the various probabilities we needed from our sequence
data, by thinking of each site as an independent trial of the same probabilistic
process.
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This assumption is probably not very reasonable for DNA in some genes.
For instance, because the genetic code allows for many changes in the third
site of each codon to have no affect on the product of the gene, one could
argue that substitutions in the third sites might be more likely than in the
first two sites, violating the assumption that each site behaves identically.
Moreover, since genes may lead to the production of proteins that are part
of life’s processes, the likelihood of change at one site may well be tied to
changes at another, violating the assumption of independence.

Nonetheless, wemust make simplifying assumptions to get anywhere with
our model. Further work may find ways around these assumptions, allowing
for different conditional probabilities for various sites. Or, we can be careful
to take the assumptions into account when using the tools we develop on
real data. For instance, we might ignore the third base of each codon in
estimating information from our data, so that it is more reasonable to treat
sites as independent and following identical processes.

A matrix whose entries are all ≥0 and whose columns sum to 1 is called
a Markov matrix. Actually, you have seen an example of one before in the
forest succession model of Chapter 2. That model can be reinterpreted as a
Markov model, by imagining it describing one plot in the forest and tracking
the likelihood of the plot being occupied by one type of tree or another.

There are quite a number of theorems concerning certain Markov models
that are useful to know about, though we will not go into the proofs. Two that
are relevant are:

Theorem. A Markov matrix always has λ1 = 1 as its largest eigenvalue and
has all eigenvalues satisfying |λ| ≤ 1. The eigenvector corresponding to λ1

has all nonnegative entries.

Unfortunately, this does not rule out−1 as an eigenvalue or having several
different eigenvectors with eigenvalue 1. However, there is also:

Theorem. A Markov matrix, all of whose entries are positive (i.e., nonzero),
always has 1 as a strictly dominant eigenvalue. There will be only one eigen-
vector (up to scalar multiplication) associated with λ = 1.

Note that we saw an example of this theorem for the tree model of Chapter
2, where we found the dominant eigenvector was (5, 3), with eigenvalue 1.
This explains why our numerical experiments with the model led to a stable

distribution of (At , Bt ) ≈ (625, 375), because
625

375
= 5

3
.
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There are a few specialMarkovmodels of base substitutions used for DNA
sequences that we can analyze very thoroughly.

The Jukes-Cantor model. The simplest Markov model of base substi-
tution, the Jukes-Cantor model, adds several additional assumptions to the
basic Markov model. First, it assumes all bases occur with equal probability
in the ancestral sequence. Thus,

p0 =
(
1

4
,
1

4
,
1

4
,
1

4

)
.

Second, in the Jukes-Cantormodel, the conditional probabilities describing an
observable base substitution from any base to any other base are all the same.
Thus, all possible substitutions are equally likely; A ↔ T , A ↔ C , A ↔ G,
C ↔ T , C ↔ G, and T ↔ G have exactly the same chance of occurring. If
we let α

3 denote the conditional probability of a base substitution of any type
occurring, so P(S1 = i | S0 = j) = α

3 for all i �= j , then the 12 off-diagonal
entries of the matrix M will all be α

3 .

� Since the entries in any column of M add to 1, what should the entries
on the main diagonal be?

Therefore, for the Jukes-Cantor model, we use the transition matrix

M =




1− α α
3

α
3

α
3

α
3 1− α α

3
α
3

α
3

α
3 1− α α

3
α
3

α
3

α
3 1− α




.

The value of α will of course depend on the time step we use and features of
the particular DNA sequence we are modeling.

� Why can you think of 1− α as the probability that no substitution is
observed over a time step?

Although α is a probability, we can also interpret it as a rate: It is the
rate at which observable base substitutions occur over one time step and is
measured in units of (substitutions per site)/(time step).We emphasize that the
observable mutations are those that we notice when comparing the ancestral
and descendent sequences one time step later; several mutations may actually
occur over the time step, but at most one is observable at any site. If back
mutations occur during a time step, we may not observe a mutation, even
though several occurred.
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Mutation rates such as α for DNA in real organisms are not easily found.
Ultimately, we will see how they can be deduced from data. Various re-
searchers have given estimates of α around 1.1× 10−9 mutations per site per
year for certain sections of chloroplast DNA of maize and barley and around
10−8 mutations per site per year for mitochondrial DNA in mammals. The
mutation rate for the influenza A virus has been estimated to be as high as
.01 mutations per site per year. The rate of mutation is generally found to be
a bit lower in coding regions of nuclear DNA than in noncoding DNA. At
this point in the development of the model, however, we will treat α as an
unknown constant.

In reality, the mutation rate may not be constant; it may change with
time or with location within the DNA. Certainly, over the entire evolution
of humans from primordial slime, it is unreasonable to think that mutation
rates have always been the same. However, for shorter periods of time and
for DNA serving a fixed purpose, the assumption of a constant mutation rate
is sometimes reasonable. When mutation rates are constant, there is said to
be a molecular clock.

To begin to understand the behavior of the Jukes-Cantor model, let’s imag-
ine we have a sequence evolving according to the model and ask ourselves
some basic questions about what we will see happening. Remember, our
initial sequence has equal proportions of each of the 4 bases, so

p0 =
(
1

4
,
1

4
,
1

4
,
1

4

)
,

and for some small value of α, the base substitutions occur according to the
transition matrix M given above.

Example. For the Jukes-Cantor model, in what proportion of the sites will
each base appear after one time step?

To answer this, we merely compute

p1 = Mp0 =




1− α α
3

α
3

α
3

α
3 1− α α

3
α
3

α
3

α
3 1− α α

3
α
3

α
3

α
3 1− α







1
4
1
4
1
4
1
4




=




1
4
1
4
1
4
1
4




.

Thus we find the base composition of the sequence does not change under
the Jukes-Cantor model. In the language of linear algebra, we would say that
the vector

(
1
4 ,

1
4 ,

1
4 ,

1
4

)
is an eigenvector of M with eigenvalue 1. (In fact,
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it is the one promised by the two theorems on Markov matrices.) In this
context, we might say that

(
1
4 ,

1
4 ,

1
4 ,

1
4

)
is an equilibrium base distribution for

sequences under the Jukes-Cantor model. In earlier chapters, we might have
called it a steady state for the model.

Example. What proportion of the sites will have a base A in the ancestral
sequence and a T in the descendent one time step later? In other words, what
is p(S0 = A and S1 = T )?

To answer this, we note

P(S0 = A and S1 = T ) = P(S1 = T | S0 = A)P(S0 = A).

Now the conditional probability P(S1 = T | S0 = A) = α
3 can be found as

the (4,1) entry in M , while P(S0 = A) = 1
4 is an entry in p0. Thus, P(S0 =

A and S1 = T ) = α
12 .

Example. What is the probability that a base A in the ancestral sequence will
have mutated to become a base T in the descendent sequence 100 time steps
later? In other words, what is the conditional probability P(S100 = T | S0 =
A)?
To answer this, we first observe that

p100 = M100p0. (4.5)

Just as the formula p1 = Mp0 holds because the entries of M are conditional
probabilities of various substitutions occurring, the formula in Eq. (4.5) must
mean that the entries of M100 are conditional probabilities of various net
substitutions occuring in the passage from time 0 to time 100. We therefore
need to find a certain entry of M100 – the entry in row 4, column 1 – and then
we can answer the question.

Of course, finding all entries of Mt for all t is of more interest, since that
will give us all the conditional probabilities of base substitutions over various
numbers of time steps.We base our calculation of Mt on the insight of Chapter
2: Eigenvectors provide the best approach to understanding how powers of
matrices behave.

Fortunately, the eigenvectors of the Jukes-Cantor matrix M are easily
found. We have already seen one eigenvector (the equilibrium base distri-
bution), but there are three more that can be found by trial and error or a long
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computation. The full set is

v1 = (1, 1, 1, 1) λ1 = 1

v2 = (1, 1, −1, −1) λ2 = 1− 4

3
α

v3 = (1, −1, 1, −1) λ3 = 1− 4

3
α

v4 = (1, −1, −1, 1) λ4 = 1− 4

3
α

� Check that these are correct by multiplying Mvi for each i .

Notice that the eigenvectors for the Jukes-Cantor model do not depend on
the value of the mutation rate α, though the eigenvalues do.

To find the entries of Mt , we begin by focusing on the first column of Mt .
The first column can be isolated by taking the product

Mt




1
0
0
0


 = first column of Mt .

Now we can express (1, 0, 0, 0) in terms of the eigenvectors as

(1, 0, 0, 0) = 1

4
v1 + 1

4
v2 + 1

4
v3 + 1

4
v4.

Thus,

Mt




1
0
0
0


 = 1

4
Mtv1 + 1

4
Mtv2 + 1

4
Mtv3 + 1

4
Mtv4

= 1

4
1tv1 + 1

4

(
1− 4

3
α

)t

v2 + 1

4

(
1− 4

3
α

)t

v3

+ 1

4

(
1− 4

3
α

)t

v4.

Substituting in the vectors vi , we find

Mt




1
0
0
0


 =




1
4 + 3

4

(
1− 4

3α
)t

1
4 − 1

4

(
1− 4

3α
)t

1
4 − 1

4

(
1− 4

3α
)t

1
4 − 1

4

(
1− 4

3α
)t




.
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The other columns of Mt are found similarly, giving

Mt =


1
4 + 3

4

(
1− 4

3α
)t 1

4 − 1
4

(
1− 4

3α
)t 1

4 − 1
4

(
1− 4

3α
)t 1

4 − 1
4

(
1− 4

3α
)t

1
4 − 1

4

(
1− 4

3α
)t 1

4 + 3
4

(
1− 4

3α
)t 1

4 − 1
4

(
1− 4

3α
)t 1

4 − 1
4

(
1− 4

3α
)t

1
4 − 1

4

(
1− 4

3α
)t 1

4 − 1
4

(
1− 4

3α
)t 1

4 + 3
4

(
1− 4

3α
)t 1

4 − 1
4

(
1− 4

3α
)t

1
4 − 1

4

(
1− 4

3α
)t 1

4 − 1
4

(
1− 4

3α
)t 1

4 − 1
4

(
1− 4

3α
)t 1

4 + 3
4

(
1− 4

3α
)t




.

(4.6)

This formula for Mt is actually quite simple, because it is of the Jukes-
Cantor form itself. The value of the Jukes-Cantor parameter for it is just
3
4 − 3

4

(
1− 4

3α
)t
.

Example. We can now easily answer questions such as: What is the proba-
bility that a site that initially has base A has base T after 100 time steps? This
is the (4,1) entry of M100, which is

1

4
− 1

4

(
1− 4

3
α

)100

.

The Kimura models. The Jukes-Cantor model is a one-parameter model
ofmutation, since it depends on the single parameter α to specify themutation
rate. Other models use several different parameters to specify mutation rates
for several different types of mutations.

A good example of this is the Kimura 2-parameter model, which allows for
different rates of transitions and transversions. Imagine that we havemutation
rates β for transitions and γ for each of the possible transversions. If we
assume these rates are independent of the initial base, then we are saying the
off-diagonal entries of the transition matrix are given by:

M =




∗ β γ γ

β ∗ γ γ

γ γ ∗ β

γ γ β ∗


 .

� Why is it important to use the order A, G, C , T for the bases to get this
matrix?

Because the columns must sum to 1, this means all the diagonal entries
must be 1− β − 2γ . Notice that, if the probabilities of a transition and each
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transversion are equal so β = γ , then this model includes the Jukes-Cantor
one as a special case with α = 3β = 3γ .

An even more general model is the Kimura 3-parameter model, which
assumes a transition matrix of the form

M =




∗ β γ δ

β ∗ δ γ

γ δ ∗ β

δ γ β ∗


 .

By appropriate choice of the parameters, this includes both the Jukes-Cantor
and Kimura 2-parameter models as special cases.

Part of theKimuramodels is the assumption that the initial base distribution
vector is p0 = (

1
4 ,

1
4 ,

1
4 ,

1
4

)
. Because this vector is an eigenvector with eigen-

value 1 for both the Kimura 2- and 3-parameter matrices, sequences evolving
according to these models have this uniform base distribution at all times. As
you will see in the exercises, all the work done above for the Jukes-Cantor
model can be performed for the Kimura 3-parameter model as well.

The generalMarkovmodelmaywell provide themost accurate description
of the base substitutions that actually occur in evolution, because it assumes
nothing special about the entries in theMarkov matrix. It does not require any
particular relationship between the various conditional probabilities. There
are 12 parameters in picking amatrix for this model, since of the 16 entries we
may freely pick 3 in each column, with the fourth determined by the condition
that the columns sum to 1. If we also allow any initial base composition vector
p0, then there are 3 additional parameters.

� Why are there only 3 parameters for p0, even though it has 4 entries?

Unless we have specific parameter values in mind for the general Markov
model, it is hard to derive detailed results for it of the sort we found for the
Jukes-Cantor model. However, as long as all entries of the matrix are positive,
the two theorems stated above do tell us that there must be an equilibrium
base distribution. Furthermore, by applying the Strong Ergodic Theorem of
Chapter 2, we know that, over time, the generalMarkovmodel will result in pt

approaching this equilibrium distribution, even if the initial base distribution
is something else.

Problems

4.4.1. Review the forest successionmodel in the text ofChapter 2 to interpret
it as a Markov model of a single plot in the forest.
a. What are the “states” for this model?
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b. The matrix used in that model was
(

.9925 .0125

.0075 .9875

)
. Explain why

this is a Markov matrix.
c. Explain what conditional probabilities are given by each of the
entries in this matrix.

d. In the text, we considered a forest that initially had 10 trees of
species A and 990 trees of species B. What are the initial proba-
bilities of a plot being in each of the states; that is, what is p0?

4.4.2. Recall the Leslie models of Chapter 2. The matrices used in these
models are typically not Markov matrices. Why not?

4.4.3. Although the Jukes-Cantor model assumes p0 = (.25, .25, .25, .25),
a Jukes-Cantor matrix could describe mutations even with a different
p0. Investigate the behavior of a model using a Jukes-Cantor matrix
as you vary p0 by using a computer. For instance, with α = .03, and
p0 = (.2, .3, .4, .1), you might use the MATLAB commands such as

a=.03, b=a/3

M=[1-a,b,b,b;b,1-a,b,b;b,b,1-a,b;b,b,b,1-a]

p=[.2; .3; .4; .1]

P=p

for i=1:10

p=M*p

P=[P p]

end

plot(P')

a. With the value of M and p0 suggested, do you see pt approach
its equilibrium value? Approximately how many time steps are
necessary for all the pt to be within .05 of the equilibrium? within
.01?

b. Make several other choices of p0 and repeat step (a).
c. Using p0 = (.25, .25, .25, .25), what do you observe? Why?
d. Usingp0 = (0, 1, 0, 0)what doyouobserve?What is the biological

meaning of this p0?

4.4.4. Investigate the effect of varying α on the behavior produced by the
Jukes-Cantor matrix. Let p0 = (.2, .3, .4, .1) and useMATLAB com-
mands such as those in the previous exercise to:
a. Compare the behavior of the model for α = .03 and α = .06. For
which value of α does the model approach the equilibrium fastest?

b. Does your observation in part (a) hold for other initial choices of
p0?
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c. Explain in intuitive terms why larger values of α should result in
a quicker approach to the equilibrium.

4.4.5. The Markov matrices that describe real DNA mutation tend to have
their largest entries along the main diagonal in the (1,1), (2,2), (3,3),
and (4,4) positions. Why should this be the case?

4.4.6. Make up a 4× 4 Markov matrix M with all positive entries and an
initial p0. To be biologically realistic, make sure the diagonal entries
of M are the largest.
a. Use a computer to observe that, after many time steps, pt = Mtp0
appears to approach some equilibrium. Estimate the equilibrium
vector as accurately as you can.

b. Is your estimate in part (a) an eigenvector of M with eigenvalue
1? If not, does it appear to be close to having this property?

c. Use a computer to compute the eigenvectors and eigenvalues of
M , for instance with the MATLAB command [S D]=eig(M).
Is 1 an eigenvalue? Is your estimate of the equilibrium close to its
eigenvector?

d. Are your computations in part (c) consistent with the two theorems
about Markov matrices appearing in the text?

4.4.7. Express the Kimura 2-parameter model using a 4× 4matrix, but with
the bases in the order A, C, G, T . Is this the same as the matrix in the
text? Explain.

4.4.8. Consider the Markov matrix appearing in Eq. (4.3).
a. Use a computer to find its eigenvectors and eigenvalues. Are they
explained by the two theorems of this section?

b. What is the equilibrium base distribution for this model? Be sure
you give a vector whose entries sum to 1.

4.4.9. An ancestral DNA sequence of 40 bases was

CT AGGCT T ACG AT T ACG AGG AT CC AAAT GGC ACC AAT GCT ,

but in a descendent, it had mutated to

CT ACGCT T ACG AC AACG AGG AT CCG AAT GGC ACC AT T GCT .

a. Give an initial base distribution vector and a Markov matrix to
describe the mutation process.

b. These sequences were actually produced by a Jukes-Cantor simu-
lation. Is that surprising? Explain. What value would you choose
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Table 4.5. Frequencies from 400
Site Comparisons for Two Pairs of

Sequences

S1\S0 A G C T

A 92 15 2 2
G 13 84 4 4
C 0 1 77 16
T 4 2 14 70

S′
1\S′

0 A G C T

A 90 3 3 2
G 3 79 8 2
C 2 4 96 5
T 5 1 3 94

for the Jukes-Cantor parameter α to approximate your matrix by a
Jukes-Cantor one?

4.4.10. Data from two comparisons of 400-base ancestral and descendent
sequences are shown in Table 4.5.
a. For one of these pairs of sequences a Jukes-Cantor model is ap-
propriate. Which one and why?

b. What model would be appropriate for the other pair of sequences?
Explain.

4.4.11. In MATLAB, type load seqdata to read in some simulated se-
quence data. The three pairs of sequences,s0 ands1,t0 andt1,u0
and u1, are simulated ancestor and descendent sequences produced
according to three different models. Which one was made accord-
ing to the Jukes-Cantor model? The Kimura 2-parameter model? A
general Markov model? Explain how you can tell. To easily com-
pare sequences by producing a frequency array, use a command like
compseq(s0,s1).

4.4.12. Suppose we wish to model molecular evolution not at the level of
DNA sequences, but rather at the level of the proteins that genes
encode.
a. Create a simple one-parameter mathematical model (similar to
the Jukes-Cantor model) describing the process. You will need to
know that there are 20 different amino acids from which proteins
are constructed in linear chains.

b. In this situation, how many parameters would the general Markov
model have?



152 Modeling Molecular Evolution

Table 4.6. Frequencies of Sβ = i and
Sα = j in 1,000-Site Sequence

Comparison

Sβ\Sα A G C T

A 105 25 35 25
G 15 175 35 25
C 15 25 245 25
T 15 25 35 175

4.4.13. TheMATLABprogrammutate can be used to simulate themutation
of a DNA sequence according to a Markov model. It will allow you
to specify a 4× 4 Markov matrix M and initial base distribution
vector p0, as well as the number of bases you would like in your
sequences.
a. Use the MATLAB program mutate to perform a 10-base
simulation for the Jukes-Cantor model with α = .1 and p0 =
(.25, .25, .25, .25). Now imagine that the results of your simu-
lation were two data sequences. Use them to estimate probabilities
for an initial base distribution vector and a Markov matrix. (The
program compseq will be useful for this.) Are your estimates
close to what you began with?

b. Repeat part (a), but using sequences of length 100 and then of
length 1,000.

c. The difference between a probabilistic model’s description and
what actually happens under that model when only a finite number
of trials are performed is sometimes called stochastic error. What
conclusions canyoudraw fromparts (a) and (b) about the stochastic
error for short sequences as opposed to long ones?

4.4.14. Repeat the last problem, but using your own choice of a 4× 4Markov
model and initial base distribution. Are the results similar?

4.4.15. Suppose you have compared two sequences Sα and Sβ of length 1,000
sites and obtained the data in Table 4.6 for the number of sites with
each pair of bases.
a. Assuming Sα is the ancestral sequence, find an initial base dis-
tribution p0 and a Markov matrix M to describe the data. Is
your matrix M Jukes-Cantor? Is p0 an equilibrium distribution
for M?

b. Assuming Sβ is the ancestral sequence, find an initial base distri-
bution p′

0 and a Markov matrix M ′ to describe the data. Is your
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matrix M ′ Jukes-Cantor? Is p′
0 an equilibrium distribution for M ′?

You should have found that one of your matrices was Jukes-Cantor
and the other was not. This cannot happen if both Sα and Sβ have
base distribution (.25, .25, .25, .25).

4.4.16. The formula for Mt for the Jukes-Cantor model can be used to show
that powers of M approach a certain matrix as t → ∞.
a. For 0 < α ≤ 1, explain why − 1

3 ≤ 1− 4
3α < 1.

b. Use this to explain how
(
1− 4

3α
)t
behaves as t → ∞, and thus

why

Mt →




.25 .25 .25 .25

.25 .25 .25 .25

.25 .25 .25 .25

.25 .25 .25 .25


 .

Note that each of the columns of this matrix is the equilibrium
distribution.

c. Why did we exclude α = 0 from our analysis?

4.4.17. Based on the last problem, one might conjecture that powers of a
Markov matrix all of whose entries are positive approach a matrix
whose columns are the equilibrium distribution. On a computer, in-
vestigate this experimentally by creating aMarkovmatrix, computing
very high powers of it to see if the columns become approximately
the same, and then checking whether this column is an eigenvector
with eigenvalue 1 of the original matrix.

4.4.18. Show the product of two Jukes-Cantor matrices is again a Jukes-
Cantor matrix as follows: Let M(α1) be the Jukes-Cantor matrix with
parameter α1, and M(α2) the Jukes-Cantor matrix with parameter α2.
Compute M(α1)M(α2) to show it has the form M(α3). Give a formula
for α3 in terms of α1 and α2.

4.4.19. Show the product of two Kimura 3-parameter matrices is again a
Kimura 3-parameter matrix.

4.4.20. Show the Kimura 3-parameter matrix has the same eigenvectors as
those given in the text for the Jukes-Cantor matrix. What are the
eigenvalues?

4.4.21. Use the results of the last problem to give formulas for the entries
of the first column of Mt , where M = M(β, γ, δ) is the Kimura 3-
parameter matrix. (The other columns could be handled similarly,
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leading to the result that M(β, γ, δ)t = M(β ′, γ ′, δ′) where

β ′ = 1

4
+ 1

4
(1− 2γ − 2δ)t − 1

4
(1− 2β − 2δ)t − 1

4
(1− 2β − 2γ )t

γ ′ = 1

4
− 1

4
(1− 2γ − 2δ)t + 1

4
(1− 2β − 2δ)t − 1

4
(1− 2β − 2γ )t

β ′ = 1

4
− 1

4
(1− 2γ − 2δ)t − 1

4
(1− 2β − 2δ)t + 1

4
(1− 2β − 2γ )t . )

4.4.22. The Jukes-Cantor model can be presented in a different form as a
2× 2 Markov model. Let qt represent the fraction of sites that agree
between the ancestral sequence and the descendent sequence at time
t , and pt the fraction that differ, so q0 = 1 and p0 = 0. Assume that
over each time step, the probability that a base substitution occurs
is α, and that each of the three possible base substitutions is equally
likely. Then

(
qt+1
pt+1

)
=

(
1− α α

3
α 1− α

3

) (
qt

pt

)
,

(
q0
p0

)
=

(
1
0

)
.

a. Explainwhy each entry in thematrix has the value it does. (Observe
that 1− α

3 = (1− α)+ 2α
3 .)

b. Compute the steady state of the model by finding the eigenvector
with eigenvalue 1.

c. Find the other eigenvalue and eigenvector for the matrix.
d. Use parts (b) and (c), together with the initial conditions (q0, p0) =

(1, 0), to give a formula for qt and pt as functions of time.

4.4.23. This exercise will derive one of the entries in Eq. (4.6) another way,
in the style of Chapter 1. Let qt denote the probability that the base at
a fixed site at time t is the same as it was at time 0, and let α denote the
probability of a substitution in a single time step for the Jukes-Cantor
model.
a. Explain why

qt+1 = (1− α)qt + α

3
(1− qt ).

(You will need to think about two ways the base at time t + 1
might agree with that at time 0: Either it agreed at time t and
did not change, or did not agree at time t and changed back to the
original base.)What value should q0 have? Investigate the behavior
of this model in MATLAB using onepop.
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The equation in part (a) simplifies to

qt+1 = α

3
+

(
1− 4α

3

)
qt .

Note that this model is a little different from those we dealt with
in Chapter 1. If we graphed qt+1 as a function of qt , we would
get a straight line, but because the form of the equation is qt+1 =
s + rqt rather than just qt+1 = rqt , we cannot call it linear. (The
term “linear” in this context requires that there be no constant
term.) Instead, a model of the form qt+1 = s + rqt is called an
affine model. Affine models can be converted to linear models and
analyzed as outlined in the next few steps:

b. Find the equilibrium q∗ of the model by solving q∗ = α
3 +(

1− 4α
3

)
q∗.

c. Let qt = q∗ + εt to focus on the perturbation εt from equilibrium.
Substitute this and a similar expression for qt+1 into the model
equation, and simplify to get an equation expressing εt+1 in terms
of εt . Your result should be linear.

d. What is q0? Use this value to give the value of the initial perturba-
tion ε0.

e. Based on your work in parts (c) and (d), give a formula for εt in
terms of t .

f. From parts (c) and (e), show that

qt = 1

4
+ 3

4

(
1− 4

3
α

)t

.

4.5. Phylogenetic Distances

With a model of DNA mutation in hand, we can better understand how to
relate the amount of mutation that we observe in comparing an ancestral
and descendent sequence to the amount of mutation that must have actually
occurred. We will be able to uncover the amount of hidden mutation that was
obscured by subsequent mutations at the same site.

To frame the issuewewant to addressmore clearly, let’s consider the Jukes-
Cantor example of the last section. There, we imagined modeling sequence
mutation by the Jukes-Cantor matrix

M = M(α) =




1− α α
3

α
3

α
3

α
3 1− α α

3
α
3

α
3

α
3 1− α α

3
α
3

α
3

α
3 1− α




,
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Figure 4.1. The Jukes-Cantor model, α = .01: Fraction of differing sites at time t .

and computed the entries of Mt for t = 0, 1, 2, 3, . . . . The diagonal entries
of Mt turned out to all be

1

4
+ 3

4

(
1− 4

3
α

)t

.

Now, the diagonal entries of Mt give conditional probabilities that the base
at time t is the same as the base at time 0. In other words, they indicate the
probability of observing no change when the site at time 0 is compared with
the site at time t . Because all these diagonal entries are equal, this means that
at time step t we would expect to observe that the fraction of sites that agreed
with their initial base was given by the formula

q(t) = 1

4
+ 3

4

(
1− 4α

3

)t

.

The fraction of sites that are different, then, will be

p(t) = 1− q(t) = 3

4
− 3

4

(
1− 4α

3

)t

.

� Why could you also get the formula for p(t) by adding the three off-
diagonal entries in any column of Mt?

In the graph of p(t) in Figure 4.1, we of course see that p(0) = 0, because
at time t = 0, no substitutions have yet occurred. More interestingly, we see



4.5. Phylogenetic Distances 157

that the fraction of sites that differ from their original base gradually increases
with t , approaching the value 3

4 . This fraction never exceeds
3
4 , however.

� Even if so much mutation has occurred that the two sequences appear
to be completely unrelated, you would expect to find agreement at 14 of
the sites. Why?

The graph also illustrates that, for each time t , p(t) has a different value.
This means that given any value 0 ≤ p ≤ 3/4, we should be able to find
a t with p(t) = p. That is, from the proportion of sites that differ between
two sequences, we should be able to recover the number of elapsed time steps
(assumingwe know α). For real sequence data, p is easily estimated, although
the elapsed time t and the mutation rate α usually are not known. Recovering
them from data is now our goal.

The Jukes-Cantor distance. Suppose we have records of an original
DNA sequence and a mutated version of it from some later time. Suppose
we also believe the Jukes-Cantor model describes the mutation process that
occurred, but we do not know either the mutation rate α or the number of
elapsed time steps t .

From the DNA sequence data, we can estimate p = p(t) by comparing
many sites before and after mutation and using the proportion of sites that
disagree in the two sequences as an estimate. For instance, if the original
sequence were AT T G AC and the final one AT GGCC , we would estimate
p(t) = 2/6 ≈ .333. Of course with real data, it is best to have much longer
DNA sequences so that we have more confidence in our estimate.

With p = p(t) estimated, how do we recover information on the mutation
rate α and the amount of elapsed time t? Since

p = 3

4
− 3

4

(
1− 4

3
α

)t

,

solving for t yields

t = ln
(
1− 4

3 p
)

ln
(
1− 4

3α
) . (4.7)

To go further, we need to realize that our choice of a step size for time in
formulating our model affects both the value of the mutation rate α, and the
number of elapsed time steps between ancestor and descendent. We cannot
really expect to recover both of these. However, the product of the two does
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have a meaning that is more intrinsic to what we are modeling: Let

d = tα

= (no. of time steps)(mutation rate)

= (no. of time steps)(no. of substitutions per site/time step)

= (expected no. of substitutions per site during the elapsed time).

We emphasize that this expected number of substitutions includes even those
we do not observe because they are hidden by subsequent substitutions.

To extract d = tα from Eq. (4.7), we must use an approximation. Now
ln(1+ x) ≈ x when x is near 0 (see the Problems section). Furthermore, we
can be sure − 4

3α is near 0 if we assume that we have chosen a time step that
is very small, so that the mutation rate per time step, α, is also very small.
Thus,

ln
(
1− 4

3
α

)
≈ −4

3
α.

Substituting this into Equation (4.7) gives

t ≈ ln
(
1− 4

3 p
)

− 4
3α

≈ − 3

4α
ln

(
1− 4

3
p

)
,

or

d = tα ≈ −3

4
ln

(
1− 4

3
p

)
.

If our time steps aremade smaller, so themutation rateα is also smaller, the
approximation used for the logarithm is increasingly accurate. We therefore
define the Jukes-Cantor distance between DNA sequences S0 and S1 as

dJC (S0, S1) = −3

4
ln

(
1− 4

3
p

)
,

where p is the fraction of sites that disagree in comparing S0 with S1. Provided
the Jukes-Cantor model accurately describes the evolution of one sequence
into another, it is an estimate of the total number of substitutions per site that
occurred during the evolution.

“Distance” here is an abstract notion of how different the sequences are
because of mutations. Recall that if the mutation rate is constant over an evo-
lutionary history, we say there is a molecular clock. Provided a molecular
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clock hypothesis is valid, the distance computed here is proportional to the
amount of elapsed time, with the constant of proportionality being the muta-
tion rate. Thus, the distance can be thought of as a measure of howmuch time
was required for one sequence to mutate into the other. If the molecular clock
hypothesis does not hold, it is still a reconstruction of the average number
of substitutions that occurred at any one site. The larger it is, the greater the
evolutionary change.

Although we were unable to recover either the mutation rate α or the num-
ber of elapsed time periods t by themselves, we could at least recover the
product of the two from comparing sequences. If there is some other data
(such as a geological record) suggesting the time involved, then the mutation
rate can be found from dJC . This is one way that real DNAmutation rates are
estimated.

Example. Consider the two 40-base sequences at the end of Section 4.3.
From Table 4.1, we find that 11 of the sites have undergone a substitution, so
p = 11/40 = .2750. Thus,

dJC (S0, S1) = −3

4
ln

(
1− 4

3

11

40

)
≈ .3426.

Therefore, while we observed .2750 substitutions per site on average, we
estimate that in the course of evolution .3426 substitutions per site occurred.
Hidden mutations account for the difference.

TheKimura distances. Given anyMarkovmodel of base substitution, we
could hope to imitate the steps above to derive an appropriate formula recon-
structing the amount of mutation that has occurred. For the Kimura models,
you will find an exercise that steps you through the procedure. The final for-
mula for the Kimura 3-parameter model is

dK3 = −1

4
(ln(1− 2β − 2γ )+ ln(1− 2β − 2δ)+ ln(1− 2γ − 2δ)) ,

where β, γ , and δ are estimates of parameters for a Kimura 3-parameter
matrix describing the mutation of the initial sequence to the final.

Of course, if γ = δ, this also gives a distance for the Kimura 2-parameter
model. In that case, β is the probability of a transition, while γ + δ = 2γ
is the probability of a transversion. Thus, if from sequence data we estimate
the probability of a transition p1 by counting all transitions and dividing by
the length of the sequence, and the probability of a transversion p2 similarly,
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we have

dK2 = −1

2
ln(1− 2p1 − p2)− 1

4
ln(1− 2p2).

If sequence data seems to indicate that transitions and each transversion
type did not proceed at equal rates, then the Jukes-Cantor model is a poor
one, and so the Kimura distance formulas are better choices for estimating
the total amount of mutation.

Additive and symmetric distances: Log-det. The distance formulas
given so far assume the data are consistent with either the Jukes-Cantor model
or a Kimura 2- or 3-parameter model. Because these models do not necessar-
ily describe all sequence data well, it is natural to ask for a distance formula
for the general Markov model.

To motivate such a formula, we will not focus on reconstructing the total
number of base substitutions that occurred, but rather on a property shared
by both the Jukes-Cantor and Kimura distances.

This property concerns the behavior of the distance formula when we con-
sider two successive mutation processes. Imagine an ancestral sequence S0
from which has evolved S1, from which in turn has evolved S2, as shown
schematically in Figure 4.2.

Let M0→1 = M(α1) and M1→2 = M(α2) be two Jukes-Cantormatrices de-
scribing the two mutation processes as shown. Then, we can calculate a mu-
tation matrix M0→2 for the full passage from S0 to S2 as the product

M0→2 = M1→2M0→1.

� Why are the matrices multiplied in this order?

A short calculation shows that M0→2 is also a Jukes-Cantor matrix,
M0→2 = M(α3), with

α3 = α1 + α2 − 4

3
α1α2.

As part of the Jukes-Cantor model, suppose the base distribution for each
of S0, S1, and S2 is the equilibrium (1/4, 1/4, 1/4, 1/4). Then, in passing
from one sequence to the next by the Jukes-Cantor matrices M(αi ), we find

S0 S1 S2

M0 1 M1 2→ →

Figure 4.2. Three sequences in evolutionary order.
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the fraction of sites that change is p = αi , and so the Jukes-Cantor distances
are

M(α1) : −3

4
ln

(
1− 4

3
α1

)

M(α2) : −3

4
ln

(
1− 4

3
α2

)

M(α1)M(α2) = M(α3) : −3

4
ln

(
1− 4

3
(α1 + α2 − 4

3
α1α2)

)
.

But a little algebra shows

−3

4
ln

(
1− 4(α1 + α2 − 4

3α1α2)

3

)
=

(
−3

4
ln

(
1− 4α1

3

))

+
(

−3

4
ln

(
1− 4α2

3

))
.

Thismeans thatmultiplying two Jukes-Cantormatrices corresponds to adding
the associated distances.

We can see why this had to be the case if we recall that the Jukes-Cantor
distance is recovering the total number of substitutions per site that must have
occurred, including hidden ones. If we imagine a sequence mutating first
according to one matrix and then the other (i.e., according to the product of
the matrices), then the total number of substitutions per site would be the sum
of those described by each individual matrix.

Returning to the general Markov model, we would like a definition of
distance between sequences that has the additive property that

d(S0, S2) = d(S0, S1)+ d(S1, S2)

in situations described by Figure 4.2.
To define such a distance, suppose F is the 4× 4 frequency array obtained

by comparing sites in sequences S0 and S1. Let f0 and f1 be the frequency
vectors for the bases in S0 and S1, respectively. For instance, F might be
the entries in Table 4.1 with f0 and f1 its column and row sums. Then, one
version of the log-det distance (also called the paralinear distance in this
form) between S0 and S1 is defined by

dL D(S0, S1) = −1

4

(
ln (det(F))− 1

2
ln(g0g1)

)
,

where gi is the product of the 4 entries in fi . Recall from Chapter 2 that
“det” denotes the determinant of a matrix. Because the argument for why this
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distance is additive depends on some knowledge of linear algebra beyond this
text, we leave it to the exercises.

The meaning of the log-det distance is harder to interpret than the other
distances we have discussed. Unlike those, it usually is not just the total
number of mutations per site that must have occurred over the evolutionary
history. Still, you should think of it as somemeasure of the amount ofmutation
that has occurred. In special circumstances, such as when the Jukes-Cantor
or Kimura models apply exactly, it gives the same result as they do, as you
will also see in the exercises.

The key fact that all the phylogenetic distances we have discussed are addi-
tive will be extremely useful in the next chapter, when we turn to constructing
phylogenetic trees relating many species.

Another useful property of all of these distances is symmetry. Although
we thought of having ancestral and descendent sequences in discussing the
various distances, in fact none of the final formulas depend on knowing which
one of the sequences was the ancestral one. For instance, the Jukes-Cantor
distance is calculated from first finding the fraction of sites that differ in the
two sequences. If we had the same sequences, but switched which one we
imagined was ancestral, we would calculate exactly the same distance. This
means

d(S0, S1) = d(S1, S0).

This property will also be very valuable to us, because usually we do not have
an ancestral sequence and a descendent one, but rather two descendents. In
the exercises, you will see how symmetry helps us use a distance formula in
this circumstance.

Problems

4.5.1. Calculate dJC (S0, S1) for the two 40-base sequences

S0 : CT AGGCT T ACG AT T ACG AGG AT CC AAAT GGC ACC AAT GCT

S1 : CT ACGCT T ACG AC AACG AGG AT CCG AAT GGC ACC AT T GCT .

4.5.2. Ancestral and descendent sequences of 400 bases were simulated
according to the Jukes-Cantor model. A comparison of aligned sites
gave the frequency data in Table 4.7.
a. Compute the Jukes-Cantor distance to 10 decimal digits, showing
all steps.
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Table 4.7. Frequencies of S1 = i
and S0 = j in 400-Site Sequence

Comparison

S1\S0 A G C T

A 90 3 3 2
G 3 79 8 2
C 2 4 96 5
T 5 1 3 94

b. Compute the Kimura 2-parameter distance to 10 decimal digits,
showing all steps.

c. Are the answers to parts (a) and (b) identical? Explain.

4.5.3. Ancestral and descendent sequences of 400 bases were simulated
according to the Kimura 2-parameter model with γ = β/5. A com-
parison of aligned sites gave the frequency data in Table 4.8.
a. Compute the Jukes-Cantor distance to 10 decimal digits, showing
all steps.

b. Compute the Kimura 2-parameter distance to 10 decimal digits,
showing all steps.

c. Which of these is likely to be a better estimate of the number of
substitutions per site that actually occurred? Explain.

4.5.4. Compute the Kimura 3-parameter and log-det (paralinear) distance
for the sequences of the last two problems.

4.5.5. Graph dJC as a function of p.
a. Why does dJC = 0 if two sequences are identical?
b. Why does dJC not make sense if two sequences differ in 3/4 or

more of the sites? Should this cause problems when trying to use
the formula on real data?

Table 4.8. Frequencies of S1 = i
and S0 = j in 400-Site Sequence

Comparison

S1\S0 A G C T

A 92 15 2 2
G 13 84 4 4
C 0 1 77 16
T 4 2 14 70
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S0

S1 S2

Figure 4.3. An evolutionary tree.

c. Explain in biological terms why, if two sequences differ in just
under 3/4 of the sites, the value of dJC should be very large.

4.5.6. Complete the gaps in the derivation of the formulas for dJC in the text
by doing all the necessary algebra on the equation

p = 3

4
− 3

4

(
1− 4

3
α

)t

to find the formula in Eq. (4.7) for t in terms of p and α.

4.5.7. The Jukes-Cantor distance formula is sometimes stated as

dJC = −3

4
ln

(
4q − 1

3

)
,

where q is the proportion of bases that are the same in the “before”
and “after” sequences. Derive this formula from the one in the text.

4.5.8. Give numerical evidence that the approximation ln(1 + x) ≈ x is
valid for small x by making a table of values of x and ln(1+ x)
for x close to 0. Give graphical evidence by plotting y = ln(1+ x)
and y = x .

4.5.9. (Calculus) Show the approximation ln(1 + x) ≈ x is valid for x near
0 by using calculus to find the tangent line approximation to y =
ln(1+ x) at the point where x0 = 0.

4.5.10. In practice, when applying a distance formula to real DNA sequence
data, it is uncommon to have sequences for both an ancestor and a
descendent. Instead, we usually have two descendent DNA sequences
S1 and S2 that mutated from a common, yet unknown, ancestral se-
quence S0, as in Figure 4.3. From the data, we can only compute
d(S1, S2). Show that, for an additive, symmetric distance, this is the
same as d(S0, S1)+ d(S0, S2).

4.5.11. When transitions are more frequent than transversions, the Kimura
2-parameter distance often gives a larger value than the Jukes-Cantor
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distance. Explain this informally by explainingwhy hiddenmutations
are more likely under this circumstance.

4.5.12. The Jukes-Cantor distance is an estimate of the number of mutations
that occurred per site over the course of one sequence evolving from
another. A simpler estimate for this number is just p, the proportion
of sites that have changed from the initial to final sequence.
a. Explain why multiple mutations at the same site would cause p to
be less reliable. Does it give an overestimate or underestimate of
the true amount of mutation?

b. Give an intuitive explanation of why, if p is relatively small, so that
the sequences have few differences, this simpler estimate might be
reasonable anyway.

c. Explain why part (b) is consistent with the Jukes-Cantor model.
That is, explain why for small p

−3

4
ln

(
1− 4

3
p

)
≈ p

by using the approximation for ln(1+ x) valid for small x .
d. It has been claimed that, if p is less than .1, it can be used as a

reasonable approximation of the Jukes-Cantor distance. Do you
agree? Illustrate by graphing both d = − 3

4 ln
(
1− 4

3 p
)
and d = p

for 0 ≤ p < 3/4.

4.5.13. Show that the formula for the Jukes-Cantor distance can be recovered
from the formula for the Kimura 3-parameter distance by letting β,
γ , and δ all be α/3.

4.5.14. Use the MATLAB program mutate to simulate a 100-base se-
quence evolving acording to the Jukes-Cantor model for t = 400
time steps, using a matrix with parameter α = .001 for each
time step. Compute a frequency array of base combinations with
F=compseq(Sinit,Sfinal) and then compute the Jukes-
Cantor distancewithdistJC(F). Is the computeddistanceαt = .4?
If not, explain why not.

4.5.15. In MATLAB, type load seqdata to read in some simulated se-
quence data. Type who to see the names of the things you just loaded.
a. Compute all six Jukes-Cantor distances between the sequences

a1, a2, a3, and a4. You can compute a frequency array for base
combinations with F=compseq(a1,a2)and then compute the
distance with distJC(F).



166 Modeling Molecular Evolution

b. Suppose these sequences came fromcurrently living specieswhose
evolutionary relationships we would like to deduce. Draw the evo-
lutionary tree that you believe best describes the relationship. Ex-
plain how you have used the distance data in your reasoning.Note:
This problem is the subject of the next chapter.

4.5.16. a. Show that the formula dK2 = − 1
2 ln(1− 2β − 2γ )− 1

4 ln(1−
4γ ) for the Kimura 2-parameter model can be derived from the
formula for dK3 by setting δ = γ .

b. Supposewehave two aligned sequences S0 and S1. Explainwhy the
proportion p1 of sites that undergo transitions is a good estimate for
β and why the proportion of sites p2 that undergo transversions is
a good estimate for 2γ . Use this to derive the Kimura 2-parameter
distance formula for sequence data that is given in the text.

4.5.17. Derive the formula for the Kimura 3-parameter distance as follows.
Refer to exercise 4.4.21 of the last section, which gives formulas for
the parameters β ′, γ ′, and δ′ in M(β ′, γ ′, δ′) = M(α, β, γ )t .
a. Show that

1− 2β ′ − 2δ′ = (1− 2β − 2δ)t ,

1− 2β ′ − 2γ ′ = (1− 2β − 2γ )t ,

and

1− 2γ ′ − 2δ′ = (1− 2γ − 2δ)t .

b. Use part (a) to show

ln(1− 2β ′ − 2δ′)+ ln(1− 2β ′ − 2γ ′)+ ln(1− 2γ ′ − 2δ′)
= t (ln(1− 2β − 2δ)+ ln(1− 2β − 2γ )+ ln(1− 2γ − 2δ)) .

c. Assuming β, γ , and δ are all small, use the approximation ln(1+
x) ≈ x for x ≈ 0 in the last equation to get

ln(1− 2β ′ − 2δ′)+ ln(1− 2β ′ − 2γ ′)+ ln(1− 2γ ′ − 2δ′)
≈ −4t (β + γ + δ) .

d. Explain why β + γ + δ should be interpreted as the total rate of
base substitution, and thus why it is reasonable to define

dK3 = −1

4

(
ln(1− 2β ′ − 2δ′)+ ln(1− 2β ′ − 2γ ′)

+ ln(1− 2γ ′ − 2δ′)
)
.
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4.5.18. (Linear Algebra) The goal of this problem is to show that the Jukes-
Cantor distance is a special case of the log-det distance. Youwill need
to know the following two facts about determinants of k × k matrices
that are proved in a Linear Algebra course:
i) det(cA) = ck det(A).
ii) det(A) = the product of A’s k eigenvalues.
a. Suppose two sequences, S0 and S1, of length N , were compared and
the frequency table F was found to be exactly described by a Jukes-
Cantormatrix M(α) with base distribution (1/4, 1/4, 1/4, 1/4) for
S0. Show that F = N

4 M(α).
b. Explain why f0 = f1 = (N/4, N/4, N/4, N/4).
c. Use the facts above to show that, in this case, dL D(S0, S1) =

dJC (S0, S1).

4.5.19. (Linear Algebra) Proceeding as in the last problem, show that the
Kimura 3-parameter distance is a special case of the log-det distance.

4.5.20. (Linear Algebra) Show the log-det distance formula is symmetric
and additive through the following steps. You will need to know the
following three facts about determinants of k × k matrices that are
proved in a Linear Algebra course:
i) det(AT ) = det(A), where AT , the transpose of A, is a matrix
whose (i, j) entry is the ( j, i) entry of A.

ii) det(AB) = det(A) det(B).
iii) If the (i, j) entries of D are all zero for i �= j , then

det(D) = D(1, 1) · D(2, 2) · · · D(k, k).

a. Use fact (i) to show the log-det distance is symmetric.
b. For the situation in Figure 4.2, with initial base distribution p0

in S0, explain why p1 = M0→1p0 and p2 = M1→2p1 are the base
distributions in S1 and S2, respectively.

c. For the vector pi = (a, b, c, d), let

Di =




√
a 0 0 0
0

√
b 0 0

0 0
√

c 0
0 0 0

√
d


 .

Then, for each pair i, j with 0 ≤ i < j ≤ 2, define the matrix

Ni→ j = D−1
j Mi→ j Di .
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Show N1→2N0→1 = N0→2, and use fact (ii) to conclude

ln (det(N1→2))+ ln (det(N0→1)) = ln (det(N0→2)) .

d. Show the relative frequency array for comparing Si to Sj isGi→ j =
D j Ni→ j Di , and then use fact (ii) to show

ln(det(Gi→ j )) = ln(det(Ni→ j ))+ ln(det(Di ))+ ln(det(D j )).

e. Combine parts (c) and (d), and fact (iii) to show the log-det distance
is additive.

Projects

1. Investigate how the Jukes-Cantor distance formula performs on simulated
sequence data produced according to the Jukes-Cantor model.

The MATLAB program mutate can be used to simulate DNA mu-
tations according to any specified Markov model of base substitution.
Then, the Jukes-Cantor distance can be computed for the sequences so
produced. However, seldom does the Jukes-Cantor distance exactly re-
cover the value of αt used in the simulation.

Explore the performance of the Jukes-Cantor distance formula for
recovering αt on data that is produced by the Jukes-Cantor model under
varying circumstances.

Suggestions
� So that the derivation of the Jukes-Cantor distance formula is valid,
pick a small value of the mutation rate, such as α = .001, to use in all
your simulations.

� Use compseq to compare sequences and distJC to compute
distances.

� For some fixed value of t , say around 300, perform a number of
simulations for various values of N , and compute the Jukes-Cantor
distances. Compare these to αt . Do you see a pattern in how accuracy
varies with N?

� For some fixed value of N , say around 400, perform a number of
simulations for various values of t , and compute the Jukes-Cantor
distances. Compare these to αt . Do you see a pattern in how accuracy
varies with t?

� In comparing the computed values of dJC to αt , you could consider
either dJC − αt or dJC/(αt). What do each of these mean?
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� For a fixed choice of N and t , do many simulations. Then present
your results by plotting a histogram of the values you find for dJC . Do
they appear to cluster around αt? How spread out is the histogram?
Compute means and standard deviations.

� Repeat the last step, changing N or t to a new value.
� What conclusions can you draw about using the Jukes-Cantor formula
for real data? Does it appear to be most accurate when sequences are
long or short? When the length of elapsed time is large or small? Can
you give an intuitive explanation of why this should be the case?

2. Investigate how the various distance formulas perform on simulated se-
quence data produced according to models different from the one under-
lying the distance formula.

This is an important issue, because real sequence evolution is at best
only approximately described by any of these models.

If, for instance, one sequence evolved from another according to the
Kimura 2-parameter model with β �= γ , then we should not expect the
Jukes-Cantor distance to be a valid reconstruction of the amount of mu-
tation. However, it should be close if β and γ are close to one another.

As in the project above, theMATLAB program mutate can simulate
DNA mutations according to a specified Markov model of base substi-
tution. Then the various distances can be computed for the sequences so
produced, using compseq, distJC, distK2 and distLD.

Suggestions
� Explore the performance of the Jukes-Cantor and Kimura 2-parameter
distance formulas for recovering the total amount of mutation on data
that is produced by various Kimura 2-parameter matrices. You should
keep the parameters β and γ very small, and use a large number of
time steps for mutate. If β/γ = κ , how different can κ be from 1 for
the Jukes-Cantor formula to be close to correct?

� Explore the performance of the Jukes-Cantor distance formula for re-
covering αt on data that is produced by a model using Jukes-Cantor
matrices, but with an initial base distribution other than the Jukes-
Cantor one. (Keep α small and use a large value of t for mutate.)
How different can the initial base distribution be before the distance
seems unreliable?

� Repeat the last item for the Kimura 2-parameter model.
� If data are produced according to some general Markov model, how
close to a Kimura 2-parameter matrix must the model matrix be for the
log-det distance and Kimura 2-parameter distance to be close?



170 Modeling Molecular Evolution

� Even if data are produced according to the Jukes-Cantor model, do the
Kimura distances and log-det distances give the same results as the
Jukes-Cantor distance? Shouldn’t they?

� Explain how you would decide which distance formula to use if you
were given two sequences.



5

Constructing Phylogenetic Trees

Having modeled the evolution of DNA in the last chapter, we are now ready
to use these models to make important deductions from real DNA data. We
will see how a model of molecular evolution, together with some new math-
ematical techniques, can be used to deduce evolutionary history.

Let’s consider a well-studied, yet still compelling question: What is the
relationship of humans to the modern apes? More specifically, which of the
gorilla, chimpanzee, orangutan, and gibbon are our closest evolutionary kin,
or are all these apes more closely related to each other than they are to us?

Early evolutionists viewed the chimpanzee and gorilla as our closest rela-
tives. Humans and these African apes were believed to form one evolutionary
grouping, which had split from other ape lineages in the more distant past. A
bit later, the dominant viewbecame that all themodern apesweremore closely
related to one another than to humans. Two possible diagrams that represent
more detailed versions of these competing views of hominoid evolution are
shown in Figure 5.1.

� Since the chimpanzee and gorilla are African, whereas the orangutan
and gibbon are Asian, what, if anything, would each of these trees
indicate about the likely location of the appearance of the first humans?

How can we choose which of these or the many other possible evolution-
ary trees is the best description of hominoid descent? One approach involves

Human

Chimp

Gibbon

Gorilla

Orangutan

Human

Chimp

Gibbon

Gorilla

Orangutan

Figure 5.1. Two possible hominoid phylogenies.
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first choosing a particular gene that all the apes and humans share, but whose
DNA sequence shows variation from species to species. Assuming this gene is
shared and similar in all the hominoids because it arose from a common ances-
tor (i.e., the sequences are orthologous), then the variations in the sequences
among the species should contain information about their evolutionary
history.

For instance, the 898 base-pair HindIII sequences of mitochondrial DNA
from these hominoids and seven other primates have been reported in
(Hayasaka et al., 1988), which draws on work in (Anderson et al., 1981)
and (Brown et al., 1982). These sequences are in agreement at between 67%
and 97% of the sites, depending on which two are compared. (To see the
sequences for yourself, type primatedata in MATLAB, and then who to
see the names of the variables in which they are stored.)

We would like to infer a phylogenetic tree, such as one of those in Figure
5.1, showing how all the apes evolved from a common ancestor. But how does
the data indicate a “best” tree, or even a good tree, to describe the evolutionary
descent?

Of course scientists have drawn trees showing suspected evolutionary re-
lationships between species since well before the advent of DNA sequencing.
Morphological similarities between species are one source of clues as to
which trees accurately describe the descent. The identification of common
ancestors from fossils is another. Now sequence data provides a new source
of information about evolutionary history, but using it to infer phylogenetic
trees requires the development of new mathematical tools.

5.1. Phylogenetic Trees

Beforewebegin developingmethods to deduce phylogenetic trees, though,we
will need some terminology. Because the sequences we might want to relate
could come from different species, as in the hominoid example, or instead
from different subspecies, populations, or even individuals, we will refer to
each source of the DNA sequence as a taxon (pl. taxa). An equivalent term
in common use is operational taxonomic unit, usually abbreviated as OTU.

We hope to draw a diagram consisting of line segments that represents the
evolutionary history of the taxa. Each of the line segments in the diagram is
referred to as an edge. A diagram such as those above, in which there are no
loops formed by the edges, is called a tree.

� Why is it reasonable to assume evolutionary relationships can be mod-
eled by drawing trees? What would it mean if there were a loop of
edges?
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A

B

C

D
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C

D

A

B

C

D

Figure 5.2. An unrooted tree (L) and two rooted versions (C,R).

Because lateral gene transfer can occur, for instance when viral DNA is
permanently incorporated into that of a host, trees cannot describe all evolu-
tionary relationships. They provide the simplest model, which is nonetheless
fully adequate for most uses.

Themeeting point of several edges is called an interior vertex (pl. vertices),
while the end of an edge at a taxon is called a terminal vertex or a leaf. The
vertex where the common ancestor of all the taxa would be located is referred
to as the root.

A tree is said to be bifurcating if at each interior vertex three edges meet
and at the root two edges meet, as in the trees in Figure 5.1. Although it is
conceivable biologically that a tree other than a bifurcating onemight describe
an evolutionary lineage, it is usual to ignore that possibility.

� What would the evolutionary meaning be of a vertex in a tree where
four edges meet (i.e., where one edge splits into three)? Can you think
of plausible circumstances under which several species might diverge
in this way?

Although ideally every phylogenetic tree would have a root showing the
common ancestor of the taxa, sometimes we have to do without one. Some
methods of phylogenetic tree construction yield unrooted trees. For example,
Figure 5.2 shows an unrooted tree and several of the rooted trees that agree
with it. The two trees on the right could each be bent and stretched to look
like the tree on the left; only the location of the root distinguishes them.

Topological trees. A tree relating a number of taxa can actually specify
several different types of information about their relationships. First, if we
do not specify the lengths of edges, and hence only look at the branching
structure, we are considering only the topology of the tree. We consider two
trees to be topologically the same if we can bend and stretch the edges of
either one to get the other. We are not, however, allowed to cut off an edge
and reattach it elsewhere; doing that may give us a tree that is topologically
distinct from the original one.
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D
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D
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Tree T1

Tree T3 Tree T4

Tree T2

Figure 5.3. Four topological trees; as unrooted trees, all but lower right are identical.

In Figure 5.3, trees T1, T2, and T3 are all topologically the same as unrooted
trees, because if any of these figures weremade of rubber it could be deformed
into the other ones without either cutting or gluing pieces of it together. Tree
T4, on the other hand, is topologically distinct from T1, T2, and T3.

For rooted trees, we use a similar concept. Two rooted trees are topologi-
cally the same if one can be deformed into the other without moving the root.
Edge lengths can be changed, but not the branching structure.

� In Figure 5.3, where can you place a root on T2 so that it is not topo-
logically the same as T1 as a rooted tree? So that it is topologically the
same as T1 as a rooted tree?

A topological tree, even an unrooted one, tells us quite a lot about the
evolutionary history of the taxa it relates. For instance, all the trees in Figure
5.2 indicate that taxa A and B are related by a single split in lineage, as are C
and D. However, several bifurcations of lineage occurred during the course
of A and D evolving from a common ancestor, as two other taxa arose in the
process.

Knowing the location of the root conveys more information and may give
a better sense of the ordering of events in time. For instance, the tree on the far
right in Figure 5.2 clearly indicates the order in which bifurcations occurred:
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The common ancestor gave rise to two taxa, one of which may have evolved
further to become A. The other subsequently gave rise to B and a third taxon.
This third taxon then gave rise to both C and D.

The tree in the middle of Figure 5.2 can be interpreted similarly. The
common ancestor gave rise to two taxa, one of which gave rise to both A
and B, while the other gave rise to C and D. Note, however, that with only a
topological tree, we cannot say which of these last two bifurcations occurred
first: Did the most recent common ancestor of A and B exist more recently
than that of C and D? We have no way to tell from this tree.

The number of different topological trees that might relate several terminal
taxa increases rapidly with the number of taxa. For instance, there is only 1
unrooted topological tree relating 3 taxa, but there are 3 unrooted topologically
distinct trees relating 4 taxa.

� Draw the one unrooted topological tree that might relate terminal taxa
A, B, andC . Draw the three unrooted topological trees that might relate
terminal taxa A, B, C , and D.

For 5 terminal taxa, there are 15 such trees. Thus, ignoring the root location,
there are 13more trees thatmight relate the 5hominoids thanwere presented in
the chapter introduction. For 6 terminal taxa, there are more than 100 possible
unrooted trees. As the number of taxa increases, the number of trees quickly
grows to astronomical size. In the exercises, you will find precise formulas
giving the number of unrooted and rooted trees relating n taxa. You will also
see just how large these numbers are, even for a relatively small number
of taxa. The large number of trees is unfortunate, because it means some
approaches to finding a good tree to relate taxa will be slow. If a method finds
the “best” tree by looking individually at each possible tree, then using it will
be extremely time-intensive if there are more than a handful of taxa involved.

Metric trees. In addition to a topological structure, a tree may have a
metric structure; each edge may be assigned a certain length. This metric
structure might be specified by writing numbers for the lengths next to the
edges (see Figure 5.4 (L)), or it may be merely suggested by drawing the
tree with edges of those lengths, yet not explicitly numbering them. Thus, a
topological tree and an unlabeled metric tree can be hard to tell apart. (For
clarity, in this book, we will always label edges with their lengths when the
tree is intended to be a metric one.)

Generally, the lengths of edges in a phylogenetic tree constructed from
DNA sequence data somehow represent the amount of mutation that occurred
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Figure 5.4. Alternate depictions of the same metric tree.

between splittings of the lineage. The longer an edge is, the more the DNA
sequence mutated in the course of the evolution that edge represents.

If, for instance, the Jukes-Cantor model of base substitution adequately
described the evolution of several taxa, then the edge length in a tree relating
them might be the Jukes-Cantor distance between the sequences at the two
ends of the edge.Aswe saw inChapter 4, this distance is the average number of
base substitutions per site that occurred in the descent. Included in this are the
mutations obscured by othermutations that the distance formulawas designed
to estimate. Because the Jukes-Cantor distance is additive and symmetric,
the total distance between two taxa along a tree should be the Jukes-Cantor
distance between them.

If the molecular clock assumption holds for the evolution of the sequences
being related, then the distances in a tree have a more direct meaning. Recall
that a molecular clock just means that the mutation rate is constant for all
lineages under consideration. If µ denotes the mutation rate, measured in
(base substitutions per site)/year, for instance, and t denotes a time in years,
then the amount of mutation that will occur during this time is

d = µt base substitutions per site.

Thus, a molecular clock means that the amount of mutation along any edge is
proportional to the elapsed time, with the constant of proportionality being the
constant rate of mutation. Under the assumption of a molecular clock, then,
whether we draw edge lengths representing amount of mutation or elapsed
time, we draw exactly the same figure, up to scaling by this constant.

If the molecular clock hypothesis holds for a rooted metric tree, then every
leaf will be located the same total distance from the root. This is because
distances from the root are proportional to the elapsed time since the taxa
began to diverge from the common ancestor. Every taxon has had the same
amount of time to evolve from the root ancestor, so eachwill have accumulated
the same amount of mutation.
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Without a molecular clock, the relationship between the amount of mu-
tation along an edge and the amount of time may be complicated. Suppose
that, along one edge of a phylogenetic tree, the mutation rate was quite small,
and along another, the mutation rate was large. Then, even though both edges
might correspond to the same amount of time, considerably more mutation
would occur along one. Without somehow getting additional information
about the rate of mutation – perhaps by comparisons to the fossil record –
we usually do not have ways of determining elapsed times associated to tree
edges.

Metric trees are sometimes drawn in a “square” manner so that it is easier
to compare distance along various evolutionary paths. As an example, the two
trees in Figure 5.4 both represent the same information. In the tree on the left,
the edges have specified lengths, and in the tree on the right, the horizontal
edges have those same lengths. Thus, the vertical edges on the right-hand tree
are read as contributing nothing to the amount of mutation; they serve solely
to separate the various lineages for increased readability.

Problems

5.1.1. Consider the trees in Figure 5.5.
a. Which of them are the same, as rooted metric trees?
b. Which of them are the same, as unrooted metric trees?

T1 T3T2
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Figure 5.5. Trees for Problem 5.1.1.
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c. Which of them are the same, as rooted topological trees?
d. Which of them are the same, as unrooted topological trees?
e. For which trees does a molecular clock appear to be operating?

5.1.2. a. Draw the single topologically distinct unrooted bifurcating tree that
could describe the relationship between 3 taxa.

b. Draw the three topologically distinct rooted bifurcating trees that
could describe the relationship between 3 taxa.

5.1.3. a. Draw all 3 topologically distinct unrooted bifurcating trees that
could describe the relationship between 4 taxa.

b. Draw all 15 topologically distinct rooted bifurcating trees that could
describe the relationship between 4 taxa.

5.1.4. For n terminal taxa, the number of unrooted bifurcating trees is

1 · 3 · 5 · · · (2n − 5) = (2n − 5)!

2n−3(n − 3)!
.

Make a table of values and graph this function for n ≤ 10.

5.1.5. For n terminal taxa, the number of rooted bifurcating trees is

1 · 3 · 5 · · · (2n − 3) = (2n − 3)!

2n−2(n − 2)!
.

Make a table of values and graph this function for n ≤ 10.

5.1.6. In this problem,wewill step through the reasoning behind the formulas
for the number of topologically distinct trees, rooted and unrooted.
a. Suppose we already know that an unrooted tree with n terminal
vertices is made up of e edges. Explain why an unrooted tree with
n + 1 terminal vertices will have e + 2 edges. (Hint: Think about
how adding one more terminal vertex to an existing tree affects the
number of edges.)

b. Because an unrooted treewith 2 terminal vertices has 1 edge, explain
from part (a) why an unrooted tree with n terminal vertices will have
1+ 2(n − 2) = 2n − 3 edges.

c. Suppose we know there are m unrooted trees with n terminal ver-
tices. Explainwhy therewill be (2n − 3)m unrooted treeswith n + 1
terminal vertices. (Hint: Think about how many different ways you
can add one more terminal vertex to an existing tree.)

d. Because there is only 1 unrooted tree with 2 terminal vertices, ex-
plain from part (c) why there are 1 · 3 · 5 · · · (2n − 5) unrooted trees
with n terminal vertices when n > 2.
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e. Explain why

1 · 3 · 5 · · · (2n − 5) = (2n − 5)!

2n−3(n − 3)!
.

f. Why is the number of rooted trees with n terminal vertices the same
as the number of unrooted trees with n + 1 terminal vertices?

g. Conclude that the formulas of Problems 5.1.4 and 5.1.5 are correct.

5.1.7. Because mitochondrial DNA in humans is inherited solely from the
mother, it can be used to construct a tree relating any number of humans
from different ethnic groups, assuming we all descended from a single
first human female. Depending on the clustering pattern of the ethnic
groups, this might give insight into the physical location of this woman
sometimes called Mitochondrial Eve.

In (Cann et al., 1987), a work that first purported to locate Mito-
chondrial Eve inAfrica, supporting the “out ofAfrica” theory of human
origins, a rooted treewas constructed that was claimed to show the rela-
tionships between 147 individuals. How many topologically different
trees would need to be looked at if every possibility was really exam-
ined? (You may need to use Stirling’s formula: n! ∼

√
2πnn+ 1

2 e−n .
Here, the symbol “∼” can be interpreted as “is approximately.”)

See (Gibbons, 1992) for the fall-out from the difficulty of consid-
ering so many trees.

5.1.8. The phylogeny of four terminal taxa A, B, C , and D are related ac-
cording to a certain metric tree. The total distances between taxa along
the tree have been found to be as in Table 5.1.
a. Using any approach you wish, determine the correct unrooted tree
relating the taxa, as well as all edge lengths. Explain how you rule
out other topological trees.

b. Can you determine the root from this data? Explain why or why not.
Note: Techniques for this sort of problem are the subject of the next

few sections.

Table 5.1. Distances Between Taxa for
Problem 5.1.8

A B C D

A .6 .6 .2
B .4 .6
C .6
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5.2. Tree Construction: Distance Methods – Basics

In constructing a phylogenetic tree, the taxa we wish to relate are usually
ones currently living. We have information, such as DNA sequences, from
the terminal taxa and no information from the ones represented by internal
vertices. Indeed, we do not even know which internal vertices should exist,
because we do not yet know the tree topology.

The first class of methods for constructing phylogenetic trees that we will
discuss are distance methods. These attempt to build a tree using information
that we believe describes the total distances between terminal taxa along the
tree.

To see how we might obtain these distances, imagine trying to find the
evolutionary relationship of four species: S1, S2, S3, and S4. Choosing a
particular orthologous stretch of DNA from their genomes, we obtain and
align sequences from each. If the Jukes-Cantor model of base substitution
discussed inChapter 4 seems appropriate for the data, we then compute Jukes-
Cantor distances between each pair of sequences. These are our estimates of
distances along the tree, which we organize in Table 5.2.

Table 5.2. Distances Between Taxa

S1 S2 S3 S4

S1 .45 .27 .53
S2 .40 .50
S3 .62

Depending on the sequence data, we might instead adopt a different model
of base substitution, leading us to use a different distance formula, such as
the Kimura 2-parameter or the log-det distance. Regardless, the distance we
calculate between sequences is believed to be a measure of the amount of
mutation that has occurred. If these distances were an exact measure of the
amount ofmutation that occurred, theywouldmatchupwith the total distances
between terminal taxa in the metric tree we would to find.

We do not really expect to find a tree that this data fits exactly; after all, the
distances are inferred from sequence data and are not expected to be exactly
correct. Moreover, the method of inferring the distances depended on a model
that involved assumptions that are certainly not met in real organisms. We
hope that however we construct a tree will not be too sensitive to these sorts
of errors in the distances.

UPGMA. The first method we consider is called the average distance
method, or, more formally, the unweighted pair-groupmethodwith arithmetic
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means (UPGMA). This method produces a rooted tree and assumes a mole-
cular clock. The easiest way to understand the algorithm is by following an
example of its use.

With the data table above, we pick the two closest taxa, S1 and S3. Because
they are .27 apart, we draw Figure 5.6 with each edge .27/2 = .135 long.

.135

.135

S1

S3

Figure 5.6. UPGMA; step 1.

We then combine S1 and S3 into a group, and average the distances of S1
and S3 to each different taxon to get the distance from the group to that taxon.
For example, the distance between S1–S3 and S2 is (.45+ .40)/2 = .425,
and the distance between S1–S3 and S4 is (.53+ .62)/2 = .575. Our table
thus collapses to Table 5.3.

Table 5.3. Distances Between
Groups; UPGMA, Step 1

S1–S3 S2 S4

S1–S3 .425 .575
S2 .50

Now, we simply repeat the process, using the distances in the collapsed
table. Because the closest taxa and/or groups in the new table are S1–S3 and
S2, which are .425 apart, we draw Figure 5.7.

S1

S3

S2

.135

.135

.0775

.2125

Figure 5.7. UPGMA; step 2.
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The edge to S2 must have length .425/2 = .2125, while the other new
edge must have length (.425/2)− .135 = .0775, because we already have
the edges of length .135 to account for some of the distance between S2 and
the other taxa.

Again combining taxa, we form a group S1–S2–S3, and compute its dis-
tance from S4 by averaging the original distances from S4 to each of S1,
S2, and S3. This gives us (.53+ .5+ .62)/3 = .55. (Note that this is not the
same as averaging the distance from S4 to S1–S3 and to S2.) Because a new
collapsed distance table would have this as its only entry, there is no need to
give it. We draw Figure 5.8, estimating that S4 is .55/2 = .275 from the root.
The final edge has length .0625, since that places the other taxa .275 from the
root as well.

S1

S3

S2

S4

.135

.135

.0775

.0625

.275

.2125

Figure 5.8. UPGMA; step 3.

As we suspected, the tree we have constructed for the data does not exactly
fit the data. The distance on the tree fromS3 to S4, for instance, is .55, although
according to the original data, it should be .62. Nonetheless, the tree distances
are at least reasonably close to the distances given by the data.

If we had more taxa to relate, we would have to do more steps to complete
the UPGMA process, but there would be no new ideas involved. At each step,
we join the two closest taxa or groups together, always placing them at equal
distances from a common ancestor. We then collapse the joined taxa into a
group, using averaging to compute a distance from that group to the taxa and
groups still to be joined. The one point to be particularly careful about is
that when the distances between two groups are computed, we must average
all the distances from members of one group to another – if one group has
n members and another has m members, we have to average nm distances.
Each step of the algorithm reduces the size of the distance table by one, so
that after enough steps, all of the taxa are joined into a single tree.
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Notice that the molecular clock assumption is implicit in UPGMA. In this
example, when we placed S1 and S3 at the ends of equal length branches, we
assumed that the amount of mutation each underwent from their common an-
cestorwas equal. UPGMAalways places all the taxa at the same distance from
the root, so that the amount ofmutation from the root to any taxon is identical.

Fitch-Margoliash algorithm. Thismethod is a bitmore complicated than
UPGMA, but builds on its basic approach. However, it attempts to drop the
molecular clock assumption of UPGMA.

Before giving the algorithm, we need a few mathematical observations.
First, if we attempt to put 3 taxa on an unrooted tree, then there is only one
topology that needs to be considered. Furthermore, for 3 taxa, we can assign
lengths to the edges to fit the data exactly. To see this, consider the tree in
Figure 5.9. If we have some distance data dAB, dAC , and dBC , then

x + y = dAB,

x + z = dAC ,

y + z = dBC .

These equations can be solved either by writing the system as a matrix equa-
tion and finding an inverse, or by substituting formulas for one variable ob-
tained from one of the equations into the others. Either way leads to the
solution

x = (dAB + dAC − dBC )/2,
y = (dAB + dBC − dAC )/2,
z = (dAC + dBC − dAB)/2.

(5.1)

We will refer to these formulas as the 3-point formulas for fitting taxa to
a tree. Unfortunately, with more than 3 taxa, exactly fitting data to a tree is
usually not possible. The Fitch-Margoliash (cited in tables as FM) algorithm
uses the 3 taxa case, however, to handle more taxa.

Now we explain the operation of the algorithm with an example. We’ll use
the distance data in Table 5.4.

A

B

C
x

y

z

Figure 5.9. The unrooted 3-taxon tree.
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Table 5.4. Distances Between Taxa

S1 S2 S3 S4 S5

S1 .31 1.01 .75 1.03
S2 1.00 .69 .90
S3 .61 .42
S4 .37

We begin by choosing the closest pair of taxa to join, just as we did with
UPGMA. Looking at our distance table, S1 and S2 are the first pair to join. In
order to join them without placing them at an equal distance from a common
ancestor, we temporarily reduce to the 3-taxa case by combining all other
taxa into a group. For our data, we thus introduce the group S3–S4–S5. We
find the distance from each of S1 and S2 to the group by averaging their
distances to each group member. The distance from S1 to S3–S4–S5 is thus
d(S1,S3–S4–S5) = (1.01+ .75+ 1.03)/3 = .93,whereas the distance from
S2 to S3–S4–S5 is d(S2,S3–S4–S5) = (1.00+ .69+ .90)/3 = .863. This
gives us Table 5.5.

Table 5.5. Distances Between
Groups; FM Algorithm, Step 1a

S1 S2 S3–S4–S5

S1 .31 .93
S2 .863

With only three taxa in this table, we can exactly fit the data to the tree
using the 3-point formulas to get Figure 5.10. The key point here is that the
3-point formulas, unlike UPGMA, can produce unequal distances of taxa
from a common ancestor.

.7415
.1885

.1215

S1

S2

S3-S4-S5

Figure 5.10. FM algorithm; step 1.

We now keep only the edges ending at S1 and S2 in Figure 5.10 and
return to our original data. Remember, the group S3–S4–S5 was only needed
temporarily so we could use the 3-point formulas; we did not intend to join
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those taxa together yet. Because we have joined S1 and S2, however, we
combine them into a group for the rest of the algorithm, just as we would
have done with UPGMA. This gives us Table 5.6.

Table 5.6. Distances Between Groups; FM
Algorithm, Step 1b

S1–S2 S3 S4 S5

S1–S2 1.005 .72 .965
S3 .61 .42
S4 .37

We again look for the closest pair (nowS4 andS5) and join them in a similar
manner. We combine everything but S4 and S5 into a single temporary group
S1–S2–S3 and compute d(S4,S1–S2–S3) = (.75+ .69+ .61)/3 = .683 and
d(S5,S1–S2–S3) = (1.03+ .90+ .42)/3 = .783. This gives us Table 5.7.
Applying the 3-point formulas to Table 5.7 produces Figure 5.11.

Table 5.7. Distances Between Groups; FM
Algorithm, Step 2a

S1–S2–S3 S4 S5

S1–S2–S3 .683 .783
S4 .37

S4

S5

S1-S2-S3

.548

.1
35

.235

Figure 5.11. FM algorithm; step 2.

We keep the edges joining S4 and S5 in Figure 5.11, discarding the edge
leading to the temporary group S1–S2–S3. Thus we now have two joined
groups, S1–S2 and S4–S5. To compute a new table containing these two
groups we have found, we average d(S1–S2,S4–S5) = (.75+ 1.03+ .69+
.90)/4 = .8425 and d(S3,S4–S5) = (.61+ .42)/2 = .515. We have already
computed d(S1–S2,S3) so we produce Table 5.8. At this point, we can fit a
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Table 5.8. Distances Between Groups;
FM Algorithm, Step 2b

S1–S2 S3 S4–S5

S1–S2 1.005 .8425
S3 .515

S3

S1-S2

S4-S5

.66625

.33
87

5

.17625

Figure 5.12. FM algorithm; step 3.

tree exactly to the table by a final application of the 3-point formulas, yielding
Figure 5.12.

Nowwe replace the groups in this last diagramwith the branching patterns
we have already found for them. This gives Figure 5.13.

Our final step is to fill in the remaining lengths a and b, using the lengths
in Figure 5.12. Because S1 and S2 are on average (.1885+ .1215)/2 = .155
from the vertex joining them and S4 and S5 are on average (.135+ .235)/2 =
.185 from the vertex joining them, we compute a = .66625− .155 = .51125
and b = .17625− .185 = −.00875 to assign lengths to the remaining sides.

S3

S1

S2

S4

S5

a b

.3
38

75

.1885

.1215

.135

.235

Figure 5.13. FM algorithm; completion.
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Notice that one edge has turned out to have negative length. Because
this cannot really be meaningful, many practitioners would choose to simply
reassign the length as 0. If this happens, however, we should at least check
that the negative length was close to 0 or we would worry about the quality
of the data.

Although it may seem surprising at first, both the Fitch-Margoliash al-
gorithm and UPGMA will produce exactly the same topological tree when
applied to a data set. The reason for this is that, when deciding which taxa or
groups to join at each step, both methods consider exactly the same collapsed
data table and both choose the pair corresponding to the smallest entry in the
table. It is only themetric features of the resulting trees thatwill differ. This un-
dermines a bit the hope that theFitch-Margoliash algorithm ismuchbetter than
UPGMA. Although it may produce a better metric tree, topologically it never
differs.

Fitch andMargoliash (Fitch andMargoliash, 1967) actually proposed their
algorithm not as an end in itself, but rather as a heuristic method for pro-
ducing a tree likely to have a certain optimality property (see the Problems
section). We are viewing it here, like UPGMA, as a step toward the Neigh-
bor Joining algorithm of the next section. Familiarity with UPGMA and the
Fitch-Margoliash algorithm will aid us in understanding that more elaborate
method.

Of course, both UPGMA and the Fitch-Margoliash algorithm are better
done by computer programs than by hand. However, a few hand calcula-
tions are necessary to understand fully how the methods function and what
assumptions go into them.

Rooting a tree. Although the Fitch-Margoliash algorithm has allowed us
to obtain unequal branch lengths in our trees, we have paid a price – the trees
it constructs are unrooted. However, since finding a root is often desirable, a
clever idea can get around this deficiency.

When applying any phylogenetic tree method that produces an unrooted
tree, an additional taxon can be included. This extra taxon is chosen so that it
is known to be more distantly related to each of the taxa of interest than they
are to each other, and is known as an outgroup. For instance, if we are trying
to relate species of ducks to one another, we might include a different type of
bird as the outgroup. Once an unrooted tree is constructed, we locate the root
where the edge to the outgroup joins the rest of the tree. Biological knowledge
that the outgroup must have diverged from the other taxa before they split
from one another gives us the location in the tree of the common ancestor.
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Problems

5.2.1. For the tree in Figure 5.8 constructed by UPGMA, compute a table of
distances between taxa along the tree. How does this compare with
the original data table of distances?

5.2.2. Suppose four sequences S1, S2, S3, and S4 of DNA are separated
by phylogenetic distances as in Table 5.9. Construct a rooted tree
showing the relationships between S1, S2, S3, and S4 by UPGMA.

5.2.3. Perform UPGMA on the distance data in Table 5.4 that was used in
the text in the example of the Fitch-Margoliash (FM) algorithm. Does
UPGMA produce the same tree as the FM algorithm topologically?
Metrically?

5.2.4. The FM algorithm utilizes the fact that distance data relating three
terminal taxa can be exactly fit by the single unrooted tree relating
them.
a. Derive the 3-point formulas of Eq. (5.1).
b. If the distances are dAB = .634, dAC = 1.327, and dBC = .851,

what are the lengths x , y, and z?

5.2.5. Use the FM algorithm to construct an unrooted tree for the data in
Table 5.9 that was also used in Problem 5.2.2. How different is the
result?

5.2.6. Suppose three terminal taxa are related by an unrooted metric tree.
a. If the three edge lengths are .1, .2, and .3, explain why a molecu-
lar clock hypothesis must be invalid, no matter where the root is
located.

b. If the three edge lengths are .1, .1, and .2, explainwhy themolecular
clock hypothesis might be valid. If it is, where would the root be
located?

c. If the three edge lengths are .1, .2, and .2, explain why the molec-
ular clock hypothesis must be invalid, no matter where the root is
located.

Table 5.9. Distance Data for
Problems 5.2.2 and 5.2.5

S1 S2 S3 S4

S1 1.2 .9 1.7
S2 1.1 1.9
S3 1.6
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5.2.7. While distance data for 3 terminal taxa can be exactly fit to an unrooted
tree, if there are 4 (or more) taxa, this is usually not possible.
a. Draw an unrooted tree with terminal taxa A, B, C , and D. Denote
the lengths of the five edges by r , s, t , u, and v.

b. Denoting distances between terminal taxa with notation like dAB ,
write down equations for each of the 6 such distances in terms of
r , s, t , u, and v. Explain why, if you are given numerical distances
between terminal taxa, these equations are not likely to have an
exact solution.

c. Give a concrete example of values of the 6 distances between
terminal taxa so that the equations in part (b) cannot be solved
exactly. Give another example of values where the equations can
be solved.

5.2.8. A number of different measures of goodness of fit between distance
data and metric trees have been proposed. Let di j denote the distance
between taxa i and j obtained from experimental data, and let ei j

denote the distance from i to j along the tree. A few of the measures
that have been proposed are:

sF M =

∑

i, j

(
di j − ei j

di j

)2



1
2

(Fitch and Margoliash, 1967)

sF =
∑
i, j

∣∣di j − ei j

∣∣ (Farris, 1972)

sT N T =

∑

i, j

(di j − ei j )
2




1
2

(Tateno et al., 1982)

In all these measures, the sums include terms for each distinct pair of
taxa, i and j .
a. Compute these measures for the tree constructed in the text using
the FM algorithm, as well as the tree constructed from the same
data using UPGMA in Problem 5.2.3. According to each of these
measures, which of the two trees is a better fit to the data?

b. Explain why these formulas are reasonable ones to use to mea-
sure goodness of fit. Explain how the differences between the
formulas make them more or less sensitive to different types of
errors.
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Note: Fitch and Margoliash proposed choosing the optimal met-
ric tree to fit data as the one that minimized sF M . The FM algo-
rithm was introduced in an attempt to get an approximately optimal
tree.

5.2.9. Read the data file seqdata.mat into MATLAB by typing load
seqdata. Then investigate the performance of UPGMA with the
Jukes-Cantor distance to construct a tree for the sequences a1, a2,
a3, anda4. All the distances between the sequences can be computed
most easily by putting the sequences into rows of an array with the
command a=[a1;a2;a3;a4] and then using the command [DJC
DK2 DLD]=distances(a). Although this command computes
distances using each of the Jukes-Cantor, Kimura 2-parameter, and
log-det formulas, for this problem, use only the Jukes-Cantor dis-
tances.
a. Draw the UPGMA tree for the 4 taxa, labeling each edge with its
length.

b. From your edge lengths, compute the distances between taxa along
the tree. Are these close to the original distances?
Note: This data was simulated according to a Jukes-Cantor model

with a molecular clock.

5.2.10. Repeat the last problem, but use the FM algorithm instead of
UPGMA. Is the tree you produce “better” then the one produced
before? Explain.

5.2.11. Investigate the performance of UPGMA with the Jukes-Cantor dis-
tance to construct a tree for the sequences b1, b2, b3, b4, and b5 in
the data file seqdata.mat. See Problem 5.2.9 for useful MATLAB
commands.
a. Draw the UPGMA tree for the 5 taxa, labeling each edge with its
length.

b. From your edge lengths, compute the distances between taxa along
the tree. Are these close to the original data?
Note: This data was simulated according to a Jukes-Cantor model,

but without a molecular clock.

5.2.12. Repeat the last problem, but use the FM algorithm instead of
UPGMA. Is the tree you produce “better” than the one produced
before? Explain.

5.2.13. Constructing a tree by UPGMA assumes a molecular clock. Sup-
pose the unrooted metric tree in Figure 5.14 correctly describes the
evolution of taxa A, B, C , and D.
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A B

C D

.02 .02
.02

.1 .1

Figure 5.14. Tree for Problem 5.2.13.

a. Explain why, regardless of the location of the root, a molecular
clock could not have operated.

b. Give the array of distances between each pair of the four taxa.
Perform UPGMA on that data.

c. UPGMA did not reconstruct the correct tree. Where did it go
wrong? What was it about this metric tree that led it astray?

d. Explain why the FM algorithmwill also not reconstruct the correct
tree.

5.3. Tree Construction: Distance Methods – Neighbor Joining

In practice, UPGMA and the Fitch-Margoliash algorithm are seldom used
for tree construction, because there is a distance method that tends to per-
form better than either. Nonetheless, the ideas behind them help motivate the
popular Neighbor Joining algorithm that we will focus on next.

To see why UPGMA, or the Fitch-Margoliash algorithm, might be flawed,
consider the metric tree with 4 taxa in Figure 5.15. Here, x and y represent
specific lengths, with x much smaller than y. We say the vertices S1 and S3 in
this tree are neighbors, because the edges leading from them join. Similarly,
S2 and S4 are neighbors, but S1 and S2 are not.

Suppose the metric tree of Figure 5.15 describes the true phylogeny of the
taxa. Then, perfect data would give us the distances in Table 5.10.

S3 S4

S1 S2

x

x

x

y y

Figure 5.15. A 4-taxon metric tree with distant neighbors, x � y.
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Table 5.10. Distances Between Taxa in
Figure 5.15

S1 S2 S3 S4

S1 3x x + y 2x + y
S2 2x + y x + y
S3 x + 2y

But, if y is much bigger than x (in fact, y > 2x is good enough), then
the closest taxa by distance are S1 and S2, which are not neighbors. Thus,
UPGMA or the Fitch-Margoliash algorithm, by choosing the closest taxa,
chooses nonneighbors to join. The very first joining step will be incorrect,
and once we join nonneighbors, we will not recover the true tree. The essence
of the problem is that if no molecular clock is operating, as with the tree in
Figure 5.15, then the closest taxa by distance are not necessarily neighbors
on the tree.

� If x is much less than y, why do you know that no molecular clock
operates in the evolution described by the tree in Figure 5.15?

Choosing the closest taxa to join has misled us; we need a more sophisti-
cated criterion for choosing the taxa to join. To develop one, imagine a tree
in which taxa S1 and S2 are neighbors joined at vertex V , with V somehow
joined to the remaining taxa S3, S4, . . . , SN , as in Figure 5.16.

If our data exactly fit this metric tree then for every i, j = 3, 4, . . . N , our
tree would include a subtree like the one in Figure 5.17. But, in that figure,
we can see that

d(S1,S2)+ d(Si,S j) < d(S1,Si)+ d(S2,S j),

S1

S2
SN

S3 S4
.
.
.
.
.
.
.

V

Figure 5.16. Tree with S1 and S2 neighbors.
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S1

S2

V
Si

Sj

Figure 5.17. Subtree of the tree in Figure 5.16.

since the quantity on the left includes only the lengths of the four edges leading
from the leaves of the tree, whereas the quantity on the right includes all of
those and, in addition, twice the central edge length. This inequality is called
the 4-point condition for neighbors. If S1 and S2 are neighbors, it holds for
any choice of i, j between 3 and N .

The 4-point condition is the basis for Neighbor Joining, but we have more
work to do to get it into an easy-to-use form. For fixed i , there are N − 3
possible choices of j with 3 ≤ j ≤ N and j �= i . If we add up the 4-point
inequalities for these j , we get

(N − 3)d(S1,S2)+
N∑

j=3
j �=i

d(Si,S j) < (N − 3)d(S1,Si)+
N∑

j=3
j �=i

d(S2,S j).

(5.2)

To simplify this, define the total distance from taxon Si to all other taxa as

Ri =
N∑

j=1
d(Si, S j),

where the distance d(Si,Si) in the sum is interpreted as 0, naturally. Then,
adding d(Si,S1)+ d(Si,S2)+ d(S1,S2) to each side of inequality (5.2) al-
lows us to write it in the simpler form

(N − 2)d(S1, S2)+ Ri < (N − 2)d(S1,Si)+ R2.

Subtracting R1 + R2 + Ri from each side of this then gives it the more sym-
metric form

(N − 2)d(S1,S2)− R1 − R2 < (N − 2)d(S1,Si)− R1 − Ri .
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If we apply the same argument to Sn and Sm, rather than S1 and S2, we
are led to define

M(Sn, Sm) = (N − 2)d(Sn,Sm)− Rn − Rm .

Then, if Sn and Sm are neighbors, we have that

M(Sn,Sm) < M(Sn,Sk)

for all k �= m.
This gives us the criterion used for Neighbor Joining: From the distance

data d(Si,S j), compute a new table of values for M(Si,S j). Then, choose
to join the pair of taxa with the smallest value of M(Si,S j). The argument
above shows that if Si and S j are neighbors, their corresponding M value
will be the smallest of the values in the i th row and j th column of the table. A
more complicated argument (see (Studier and Keppler, 1988)) shows that if
data perfectly fit a tree, then the smallest entry in the entire table of M values
will indicate a pair of taxa that are neighbors.

Since the full Neighbor Joining algorithm is fairly complicated, here is an
outline of the method:

Step 1: Given distance data for N taxa, compute a new table of values
of M . Choose the smallest value to determine which taxa to join. (This
valuemay be, and usually is, negative; so, “smallest” means the negative
number with the greatest absolute value.)

Step 2: If Si and S j are to be joined at a new vertex V , temporar-
ily collapse all other taxa into a single group G, and determine the
lengths of the edges from Si and S j to V by using the 3-point for-
mulas of the last section on Si , S j , and G, as in the Fitch-Margoliash
algorithm.

Step 3: Determine distances from each of the taxa Sk in G to V by ap-
plying the 3-point formulas to the distance data for the 3 taxa Si , S j ,
and Sk. Now include V in the table of distance data, and drop Si and
S j .

Step 4: The distance table now includes N − 1 taxa. If there are only
3 taxa, use the 3-point formulas to finish. Otherwise, go back to step 1.

As you can see already, Neighbor Joining is tedious to do by hand. Even
though the steps are relatively straightforward, it is easy to get lost in the pro-
cess with so much arithmetic to do. In the exercises, you will find an example
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partially worked that you should complete to be sure you understand the steps.
After that, we suggest you use a computer program to avoid mistakes.

The accuracy of various tree construction methods – the three outlined so
far in this text andmany others – has been tested primarily through simulating
DNA mutation according to certain specified phylogenetic trees and then
applying the methods to see how often they recover the correct tree. Some
studies have also been done with real taxa related by a known phylogenetic
tree; the trees constructed from DNA sequences using various methods could
then be compared with the tree known to be correct. These tests have lead
researchers to be more confident of the results given by Neighbor Joining
than of the other methods we have discussed so far. Although UPGMA or the
Fitch-Margoliash algorithmmay be reliable in some circumstances, Neighbor
Joining works well on a broader range of data. For instance, if no molecular
clock is operating, Neighbor Joining is superior, because it makes no implicit
assumptions about amolecular clock. Since there is nowmuch data indicating
themolecular clockhypothesis is often violated,Neighbor Joininghas become
the distance method of choice for tree construction.

Problems

5.3.1. Before working through an example of Neighbor Joining, it is helpful
to derive formulas for steps 2 and 3 of the algorithm. Suppose we have
chosen to join Si and S j in step 1.
a. Show that for step 2, the distances of Si and S j to the internal vertex

V can be computed by

d(Si, V ) = d(Si,S j)

2
+ Ri − R j

2(N − 2)

d(S j, V ) = d(Si,S j)

2
+ R j − Ri

2(N − 2)
.

Then show the second of these formulas can be replaced by

d(S j, V ) = d(Si,S j)− d(Si, V ).

b. Show that for step 3, the distances of Sk to V , for k �= i, j , can be
computed by

d(Sk, V ) = d(Si,Sk)+ d(S j,Sk)− d(Si,S j)

2
.
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Table 5.11. Taxon Distances for
Problem 5.3.2

S1 S2 S3 S4

S1 .83 .28 .41
S2 .72 .97
S3 .48

5.3.2. Consider the distance data of Table 5.11. Use the Neighbor Joining
algorithm to construct a tree as follows:
a. Compute R1, R2, R3, and R4, and then a table of values for M for
the taxa S1, S2, S3, and S4. To get you started

R1 = .83+ .28+ .41 = 1.52 and

R2 = .83+ .72+ .97 = 2.52,

so

M(S1,S2) = (4− 2).83− 1.52− 2.52 = −2.38.
b. If you did part (a) correctly, you should have a tie for the smallest

value of M . One of these smallest values is M(S1,S4) = −2.56, so
let’s join S1 and S4 first.

For the new vertex V where S1 and S4 join, compute d(S1, V )
and d(S4, V ) by the formulas in part (a) of the previous problem.

c. Compute d(S2, V ) and d(S3, V ) by the formulas in part (b) of the
previous problem.

Put your answers into the new distance Table 5.12.
d. Because there are only 3 taxa left, use the 3-point formulas to fit V ,

S2, and S3 to a tree.
e. Draw your final tree by attaching S1 and S4 to V with the distances
given in part (b).

Table 5.12. Group Distances for
Problem 5.3.2

V S2 S3

V ? ?
S2 .72
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Table 5.13. Taxon Distances for Problem 5.3.3

S1 S2 S3 S4

S1 .3 .4 .5
S2 .5 .4
S3 .7

5.3.3. Consider the distance data in Table 5.13, which is exactly fit by the
tree of Figure 5.15, with x = .1 and y = .3.
a. Use UPGMA to reconstruct a tree from this data. Is it correct?
b. Use Neighbor Joining to reconstruct a tree from this data. Is it

correct?

5.3.4. Perform the Neighbor Joining algorithm on the distance data used in
the examples in the text of Section 5.2. To use MATLAB to do this for
the first example, enter the distance array as

D=[0 .45 .27 .53; 0 0 .40 .50; 0 0 0 .62; 0 0 0 0]

and taxa names as

Taxa={'S1','S2','S3','S4'}
Then type nj(D,Taxa{:}).
a. Does Neighbor Joining on the 4-taxon example produce the same
tree as UPGMA?

b. Does Neighbor Joining on the 5-taxon example produce the same
tree as the Fitch-Margoliash algorithm?

5.3.5. Use the Jukes-Cantor distance and the Neighbor Joining program
nj to construct trees for the following simulated sequence data in
seqdata.mat. Compare your results with that produced by other
methods in Problems 5.2.9 through 5.2.12 of the last section. How
has whether a molecular clock operated in the simulation affected the
results?
a. a1, a2, a3, and a4 (molecular clock)
b. b1, b2, b3, b4, and b5 (no molecular clock)

5.3.6. The sequences c1, c2, c3, c4, and c5 in seqdata.mat were sim-
ulated using a Kimura 2-parameter model.
a. Even without knowing what model was used, how might compar-
ing some of these sequences suggest that the Kimura 2-parameter
distance was a good choice for these sequences?
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b. Construct the Neighbor Joining tree using the Kimura 2-parameter
distance.

c. Does your tree roughly support a molecular clock hypothesis? Ex-
plain.

5.3.7. The sequences d1, d2, d3, d4, d5, and d6 are in seqdata.mat.
a. Choose a distance formula to use for these sequences and explain
why your choice is reasonable.

b. Construct a Neighbor Joining tree from the data.
c. One of the 6 taxa is an outgroup that was included to provide a
rooted tree for the others. Which one is the outgroup? Draw the
rooted metric tree relating only the other taxa.

5.4. Tree Construction: Maximum Parsimony

One criticism of distance methods for tree construction is that because they
begin by reducing the full DNA sequence data to a collection of pairwise
distances between taxa, they may not use all the information in the original
sequences.

The method of Maximum Parsimony is a rather different approach to
tree construction that uses the entire sequences. Among all possible trees
that might relate the taxa, it looks for the one that would require the fewest
possible mutations to have occurred. To assess the number of mutations, we
never compute distances, but instead consider how mutations occur at each
separate site in the sequences.

The plan is this: For a given tree, somehow count the smallest number of
mutations that would have been required if the sequences had arisen from
a common ancestor according to that tree. We refer to this number as the
parsimony score of the tree. One by one, consider all the trees that might
relate our taxa and compute a parsimony score for each. Then choose the tree
that has the smallest parsimony score. This tree, the most parsimonious one,
is the one the method considers to be optimal for our sequence data.

As a first step to implementing this plan, we need a way of computing
the parsimony score for a specific tree and sequences. For a first example,
suppose we look at a single site in the DNA for each of our taxa and have, for
example,

S1: A, S2: T , S3: T , S4: G, S5: A.

If we imagined these were related by the tree in Figure 5.18, then we can
trace backward up the tree to determine what base might have been at this
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Figure 5.18. Computing the parsimony score for a tree at one site.

site at each interior vertex, assuming the fewest possible mutations occurred.
For instance, above S1 and S2, we could have had either an A or a T , but
not a C or a G, and at least 1 mutation had to have occurred. We label that
vertex with the two possibilities {A, T } and have a mutation count of 1 so
far. However, given what appears at S3, at the vertex joining S3 to S1 and S2,
we should have a T ; no additional mutation is necessary, beyond the one we
already counted. We have now labeled two interior vertices and still have a
mutation count of 1.

We continue to trace backward through the tree, placing a base or set of
possible bases at each vertex. If below the vertex are two different bases (or
sets of bases that do not overlap), we need to increase our mutation count by
1 and combine the two bases (or take the union of the sets) into a single larger
set of possible bases at the higher vertex. If the two lower bases agree (or the
sets have common elements), then we label the higher vertex with that base
(or the intersection of the two sets). In this case, no additional mutation needs
to be counted. When all the vertices of the tree are labeled, the final value of
the mutation count gives the minimum number of mutations needed if that
tree correctly described the evolution of the taxa. Thus, the tree in Figure 5.18
would have a minimum mutation count, or parsimony score, of 3.

Actually, there are several important facts that we have not proved here.
First, it is not really obvious that this method gives the minimum possible
mutations needed for the tree. While it should seem reasonable, and is in fact
true, that you cannot assign bases to internal vertices in a way that requires
fewermutations, wewill not go into the proof. As youwill see in the exercises,
there can be assignments of bases to the internal vertices that are not consistent
with the assignment this method produces, yet that still achieve the same
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Figure 5.19. A more parsimonious tree.

minimum number of mutations. This means you cannot interpret our method
of computing the parsimony score as unambiguously “reconstructing” the
sequences of the taxa’s ancestors.

Second, the parsimony score of a tree does not depend on the location of
the root. If the same tree is used, but the root is moved, our counting method
may lead us to put different bases or sets of bases at each of the vertices.
However, it is possible to prove we still get the same parsimony score. Thus,
while our counting procedure requires temporarily inserting a root, we are
really judging the fitness of an unrooted tree. (We could, however, include an
outgroup as was discussed with distance methods if the location of a root is
desired.)

Finally, because the method does not reliably construct the sequences at
internal vertices, we have no way of knowing along which edges mutations
occurred. Thatmeanswe cannot assign a precise length to an edge by using the
number of mutations occurring along it. Therefore, the method of maximum
parsimony is one that really focuses on using unrooted topological trees to
relate taxa.

Now that we have evaluated the parsimony score of the tree in Figure 5.18,
let us consider another tree, in Figure 5.19, that might relate the same 1-base
sequences. Keep in mind, the tree is drawn with a root only for convenience.
Applying the previous method to produce the labeling at the internal vertices,
we find this tree has a parsimony score of 2; only two mutations are needed.
Thus, the tree in Figure 5.19 is more parsimonious than that of Figure 5.18.

To find the most parsimonious tree for these taxa, we would need to con-
sider all 15 possible topologies of unrooted trees with 5 taxa and compute the
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Figure 5.20. Computing a parsimony score for a tree at three sites.

minimum number ofmutations for each. Rather thanmethodically go through
the 13 remaining trees, let’s try to think about what trees are likely to have
low parsimony scores. If the score is low, S1 and S5 are likely to be near one
another, as are S2 and S3, but S4 might be anywhere.

� For the 5 taxa here, draw a few (unrooted) trees that are topologically
distinct from that of Figure 5.19, but also have a parsimony score of 2.

� Explain why no tree relating these 5 taxa could have a parsimony score
of 1. (Hint: If only one mutation were required for the tree, what would
the bases on the leaves have to look like?)

For this example, there are several trees (five, in fact, have a parsimony
score of 2) that are tied for most parsimonious. When this happens, use of
the parsimony method requires reporting all trees that achieve the minimum
score, because they are all equally good by our selection criterion.

When dealing with real sequence data, we of course need to count the
number of mutations required for a tree among all sites in the sequences.
This can be done in the same manner as previously, just treating each site in
parallel. An example is in Figure 5.20.

Proceeding up the tree beginning with the 2 taxa sequences, AT C and
ACC on the far left, we see we do not need mutations in either the first or
third site, but do in the second. Thus, the mutation count is now 1, and the
ancestor vertex is labeled as shown. At the vertex where the edge from the
third taxa joins, we find the first site needs a mutation, the second does not,
and the third does. This increases the mutation count by 2 to give us 3 so far.
Finally, at the root, we discover we need a mutation only in the second site,
for a final parsimony score of 4.

Although this is not hard to do by hand with only a few sites, as more
sites are considered it quickly becomes too big a job. Even worse, if we have
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more than a few taxa, the number of tree topologies that must be considered
is huge. Thus, the parsimony method is really only practically done on a
computer. In fact, with a large number of taxa, the number of possible trees is
so large that often computer programs only check certain ones to choose the
most parsimonious. Good software, operated by knowledgeable users, can
often find what are likely to be the most parsimonious trees, but there is no
guarantee. (This has caused some embarrassment to researchers publishing
treeswithout understanding the operation of the software they used to produce
those trees.)

We can save some effort in using the parsimony method if we make the
observation that not all sites will affect the number of mutations needed for a
tree. The obvious case is that if all sequences have the same base at a particular
site, then all trees will need 0 mutations for that site. Thus, we can eliminate
that site from our sequences before applying the algorithm. A less obvious
case is when at a site all sequences have the same base (say A), except for
at most one sequence each with the other bases (C , T , and G). In this case,
regardless of the tree topology, if we put an A at every interior vertex, then
we have the minimum possible number of mutations. That means such a site
will not influence what tree we pick as most parsimonious. This leads to:

Definition. An informative site is one at which at least two different bases
occur at least twice each among the sequences being considered.

Before applying the parsimony algorithm, we can eliminate all noninfor-
mative sites from our sequences, because they will not affect the choice of
most parsimonious tree. In the previous examples, you will note only infor-
mative sites have been used.

TheMaximum Parsimony method does not use the Jukes-Cantor model of
molecular evolution, nor any other explicitmodel ofDNAmutation. Instead, it
carries an implicit assumption that mutation is rare, and the best explanation
of evolutionary history is the one that requires the least mutation. There
has been a vigorous, and at times acrimonious, debate between researchers
advocating model-based methods of tree reconstruction and those advocating
parsimony. Rather than join a philosophical argument, we simply point out
thatwhen there are fewmutations obscuring previousmutations, both distance
and parsimony methods seem to work well in practice. The assumptions of
both can be justifiably criticized, and much work is still being done to find
better methods.
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Figure 5.21. Trees for Problem 5.4.1.

Problems

5.4.1. a. Compute the minimum number of base changes needed for the
trees in Figure 5.21.

b. Give at least three trees that tie for most parsimonious for the one-
base sequences used in part (a). (Remember: You can list the taxa
in a different order.)

c. For trees tracing evolution at only one site as in parts (a) and
(b), why can we always find a tree requiring no more than three
substitutions no matter how many taxa are present?

5.4.2. a. Find the parsimony score of the trees in Figure 5.22. (Only infor-
mative sites in the DNA sequences are shown.)

b. Draw the third possible (unrooted) topological tree relating these
sequences and find its parsimony score. Which of the three trees
is most parsimonious?

5.4.3. Consider the following sequences from four taxa.

S1: AAT CGC T GCT C G ACC
S2: AAAT GC T ACT GG ACC
S3: AAACGT T ACT GG AGC
S4: AAT CGT GGCT C G AT C

a. Which sites are informative?

CTCGC

CACCC

ATGGA

AAGCA

CTCGC

ATGGA

AAGCA

CACCC

Figure 5.22. Trees for Problem 5.4.2.
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Figure 5.23. Trees for Problem 5.4.5.

b. Use the informative sites to determine the most parsimonious un-
rooted tree relating the sequences.

c. If S4 is known to be an outgroup, use your answer to part (b) to
give a rooted tree relating S1, S2, and S3.

5.4.4. Although noninformative sites do not affect which tree is judged to be
the most parsimonious, they do affect the parsimony score. Explain
why, if Pall and Pinfo are the parsimony scores for a tree using all sites
and just informative sites, then

Pall = Pinfo + n1 + 2n2 + 3n3,

where, for i = 1, 2, 3, byni wedenote the number of siteswith all taxa
in agreement, except for i taxa that are all different. (Note: Whereas
Pall and Pinfo maybedifferent for different topologies,n1 + 2n2 + 3n3
does not depend on the topology.)

5.4.5. For the first tree in Figure 5.23, calculate the minimum number of
base changes required, labeling the interior vertices according to the
algorithm of the text. Then show that the second tree requires exactly
the same number of base changes, even though it is not consistent
with the way you labeled the interior vertices on the first tree. (The
moral of this problem is that the algorithm we are using for counting
the minimum number of base changes needed for a tree does not
necessarily show all the ways that minimum might be achieved.)

5.4.6. If sequences are given for 3 terminal taxa, there can be no informative
sites. Explain why this is the case, and why it does not matter.

5.4.7. The bases at a particular site in aligned sequences from different taxa
form a pattern. For instance, in comparing n = 5 sequences at a site,
the pattern (AT T G A) means A appears at that site in the first taxon’s
sequence, T in the second’s, T in the third’s, G in the fourth’s, and
A in the fifth’s.
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a. Explain why, in comparing sequences for n taxa, there are 4n pos-
sible patterns that might appear.

b. Some patterns are not informative. Easy examples are the four
patterns showing the same base in all sequences. Explain why
there are (4)(3)n noninformative patterns that have all sequences,
but one in agreement.

c. How many patterns are noninformative because 2 bases each ap-
pear once, and all the others agree?

d. How many patterns are noninformative because 3 bases each ap-
pear once, and all others agree?

e. Combine your answers to calculate the number of informative pat-
terns for n taxa. For large n, are most patterns informative?

5.4.8. A computer program that computes parsimony scores might operate
as follows: First compare sequences and count the number of sites
fpattern for each informative pattern that appears. Then, for a given
tree, calculate the parsimony score ppattern for each of these patterns.
Finally, use this information to compute the parsimony score for the
tree using the entire sequences. What formula is needed to do this
final step? In other words, give the parsimony score of the tree in
terms of the fpattern and ppattern.

5.4.9. Parsimony scores can be calculated even more efficiently by using
the fact that several different patterns always give the same score. For
instance, in relating 4 taxa, the patterns (AT T A) and (C AAC) will
have the same score.
a. Using this observation, for 4 taxa, how many different informative
patterns must be considered to know the parsimony score for all?

b. Repeat part (a) for 5 taxa.

5.4.10. Use the maximum parsimony method to construct an unrooted tree
for the simulated sequences a1, a2, a3, and a4 in the data file
seqdata.mat. First, put the sequences into the rows of an ar-
ray with a=[a1;a2;a3;a4]. Then, find the informative sites with
infosites=informative(a). Finally, extract the informative
sites with ainfo=a(:,infosites).
a. What percentage of the sites are informative?
b. How many different trees must be considered to find the most

parsimonious one relating the four taxa?
c. You may find it too difficult to use all informative sites for a hand
calculation. If so, use at least the first 10 informative sites to pick
the most parsimonious tree.
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d. Does your tree agree topologically with the one produced by
UPGMA and/or Neighbor Joining using the Jukes-Cantor dis-
tance?

5.4.11. In this problem, you will attempt to use the maximum parsimony
method to construct an unrooted tree for the simulated sequences d1,
d2, d3, d4, d5, and d6 in the data file seqdata.mat. Begin by
finding the informative sites as in the last problem.
a. What percentage of the sites are informative?
b. Compute the number of unrooted trees that must be examined if

we really consider all possibilities.
c. Use Neighbor Joining, with the log-det distance computed from
the full sequences, to get a tree that is a good starting point for a
search for the most parsimonious. Compute its parsimony score
using only the first 10 informative sites.

d. Again, using only the first 10 informative sites, compute parsimony
scores of at least 4 other trees that are similar to the one in part (c).
Can you find a more parsimonious one?

e. How confident are you that the most parsimonious tree you found
is actually themost parsimonious?What percentage of the possible
trees did you compute parsimony scores for? What percentage of
the informative sites did you use?

5.5. Other Methods

There are actually many other approaches to phylogenetic tree construction.
The list of proposed methods is quite long and grows longer each year, as
researchers continue to investigate the problem.

In addition to distance methods and parsimony, there is a third major class
of approaches called Maximum Likelihood methods. The basic approach of
maximum likelihood is to first specify a particular model of molecular evo-
lution (such as Jukes-Cantor, Kimura 2- or 3-parameter, or a more elaborate
one). Then, we consider a specific tree that is a candidate for relating our
taxa. Assuming our model of evolution and specific tree are correct, we can
calculate the probability that the DNA sequence in our data could have been
produced. This is called the likelihood of the tree, given our data. We repeat
this process for all other trees, getting a likelihood value for each. Then, we
choose the treewith the greatest likelihood as the treewe feel best fits our data.

To many researchers, maximum likelihood approaches, which follow a
long-established tradition in statistics, offer the best hope for good tree
construction. However, they face several problems. First, they depend on
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choosing a specificmodel of evolution, and if that model does not describe the
real processwell, one could question their validity. Second, aswith parsimony,
they require considering all possible trees, and so they require heavy computa-
tional effort. For each tree topology considered, a time-consuming calculation
is needed to find optimal model parameters consistent with the data. If the
number of taxa is large, it is impossible to search through all possible trees, op-
timizing model parameters for each, and so in practice heuristic shortcuts are
taken. Although these seem to perform well in practice, maximum likelihood
remains more computationally intensive than other approaches.

Another way of thinking of phylogenetic tree construction methods is to
split them into two classes: those that pick a tree based on some optimality cri-
terion, and those that are algorithms that produce a tree. BothMaximumParsi-
mony andMaximum Likelihood are based on optimality criteria, whereas the
distance methods discussed here are algorithmic. Some researchers argue that
optimality criteria methods are inherently superior, because they at least make
explicit on what the tree choice is based. However, since searching through a
large number of trees for an optimal one can be computationally infeasible,
computer implementations of parsimony and likelihood methods sometimes
begin by considering trees produced by an algorithm (such as Neighbor Join-
ing), and variants of it obtained by moving a few branches around.

One of the difficulties of picking a method to use is that you can find good
arguments for and against them all. Nonetheless, the need to construct trees to
investigate biological problems is simply too great not to make use of them.
The cautious approach is to always use a number of different methods on your
data. Rather than trusting a single method to give an accurate tree, look to
see if different methods give roughly the same results. They often do, and if
they do not, it is worth investigating why they don’t. It is simply not enough
to just run a computer program on your data and accept the tree produced.

Even when a tree has been chosen by one method or another, it would be
desirable to quantify how confident we should be of it. A partial answer to this
can be given by the statistical technique of bootstrapping. In the bootstrap
procedure, the true data sequences are used to create a set of new pseudo-
replicate sequences of the same length. The bases at a particular site in the new
sequences are chosen to be the bases appearing in a randomly chosen site in
the original sequences. A tree is constructed for the phylogeny of the pseudo-
replicates and recorded. This procedure is then repeated many times, giving a
large collection of bootstrap trees. If a high percentage of the bootstrap trees
are in agreement with the one produced using the original data, then we may
be more confident of it.
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An important caveat on using boostrapping, however, is that the technique
only helps assess the effects on tree construction of variability within the
sequences. Boostrapping says nothing about the fundamental soundness of
the method by which we choose a tree – it only indicates how variability in
the data affects the outcome of the method.

Computer software is essential for using any of the methods on more than
a few taxa. Two widely used packages that implement a variety of methods
are PAUP* (Swofford, 2002) and PHYLIP (Felsenstein, 1993). If you have
access to either, exploring their capabilities is worthwhile.

5.6. Applications and Further Reading

Let’s return to the question of hominoid phylogeny that introduced this chap-
ter. What tree can be inferred from the mitochondrial DNA data? Although
we could give you an answer, we would rather you found it for yourself.
In the exercises, you will have a chance to apply some of the methods of
this chapter to the data, starting either with the raw sequences or with some
distances already computed from the sequences.

The analysis of the data in (Hayasaka et al., 1988) rests primarily on use
of the Neighbor Joining algorithm, as will the analysis you can easily do with
MATLAB. If you have access to software designed for maximum parsimony,
maximum likelihood, or other methods, we urge you to see if those methods
give similar results.

Also, keep in mind the analysis you do is based on one particular stretch
of DNA. Studies based on other orthologous sequences might give different
results. Furthermore, there are many approaches to phylogenetic inference
that are not sequence-based. The evidence of all should be weighed before
making too strong a statement about the hominoid phylogeny.

As methods of phylogenetic tree construction from DNA sequence data
have developed, they have been used to study a number of interesting ques-
tions. Even a quick survey of a general research journal like Science turns up
a large number of papers in which genetic sequences are used to investigate
the evolution of various species from a common ancestor. Here are just a few
examples of some recent applications.

1. Investigating whether the evolution of several species parallel one an-
other: For instance, the evolution of hosts and parasites can be studied
by constructing separate phylogenetic trees for each. The similarity
of the tree topologies can indicate whether the parasites evolved with
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the host, or if parasites “jumped” from one host species to another
(Hafner et al., 1994). Likewise, trees for two symbiotic species, such
as fungus-growing ants and the fungus they grow, help indicate how
far back in evolutionary history the symbiotic partnership stretches
(Chapela et al., 1994; Hinkle et al., 1994).

2. Determining likely infection sources of human immunodeficiency
virus (HIV) by constructing trees from HIV sequences from a number
of infected individuals: There have been several forensic applications
of this, to the Florida Dentist AIDS cases (Altman, 1994; Ou et al.,
1992) and to the case of a doctor accused of intentionally injecting HIV
into a former lover (Vogel, 1997, 1998).

3. Studying whether genes have entered the genome of a species through
lateral transfer (Andersson et al., 2001; Salzberg et al., 2001): When
a tree is constructed from DNA sequences for a gene, it is really a
“gene tree” showing gene relationships that may or may not be the
same as taxa relationships. Because some human genes are believed to
have been obtained by lateral transfer from bacteria that infected us, for
certain geneswemay appear to bemore closely related to some bacteria
than othermammals. If a gene is suspected to have arisen in a eukaryote
through lateral transfer from bacteria, then a tree can be constructed
usinggene sequences fromboth eukaryotes andbacteria. The clustering
pattern should help indicate whether genes were transferred laterally
or not.

4. Monitoring restrictions on whale hunting: DNA samples from whale
meat sold as food and from whales in the wild were used to construct
a tree, indicating not only the species of whales being sold, but even
the ocean of origin (Baker and Palumbi, 1994).

5. Investigating the “Out of Africa” hypothesis of human origins: The
clustering pattern on a tree constructed from human DNA sequences
from ethnic groups around the world should help indicate how human
populations are related and hence how and from where they spread
(Cann et al., 1987; Gibbons, 1992).

Because sequences used in most published research are readily accessible
via the internet in databases such as GenBank, it is possible to investigate a
dataset from these or other studies on your own.

Sequence-based phylogenetic methods are still being actively researched,
by biologists, statisticians, computer scientists, and mathematicians. There
are many problems, approaches, and techniques that we have not touched
on here. How DNA sequences are identified as good data on which to base
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a phylogeny, how those sequences are aligned, and how we might measure
the confidence we should have in a tree are only three of the topics we have
ignored. Formore comprehensive overviews, good references are (Hillis et al.,
1996) and (Li, 1997).

Problems

Before attempting these problems, type primatedata inMATLAB to gain
access to the sequences and distance arraysmentioned, all ofwhich come from
(Hayasaka et al., 1988). Type who to see the names of the variables this m-file
creates.

5.6.1. The distance array Dist primates is a 12× 12 matrix, with dis-
tances computed from a 6-parameter model of base substitution.
The names of the taxa in the order of the matrix entries are in
Names primates. Perform the neighbor-joining algorithm on this
data with the command

nj(Dist primates,Names primates{:}).

Draw the resulting metric tree.

5.6.2. Use biological knowledge and your answer to the last problem to
draw a rooted topological tree that might describe the evolutionary
history of the five hominoids mentioned in the introduction.

5.6.3. How many possible unrooted topological trees might describe the
evolution of the 12 primates? How many possible rooted topological
trees might describe the evolution of the five hominoids of the chapter
introduction?

5.6.4. The commands

Names hominoids=Names primates(1:5),
Dist hominoids=Dist primates(1:5,1:5)

will extract the names and distances between the first five primates,
the hominoids of the introduction of this chapter. Use the program nj
on the distance data for these five only, drawing the resulting metric
tree. Does the topology agree with that produced in Problem 5.6.1?
Does the metric structure agree? Explain how any discrepancies you
notice might have been produced.

5.6.5. Use the commandSeq hominoids=Seq primates([1:5],:)
to extract the sequences for the hominoids. Some of the sequences
have gaps, indicated by the “–” character. Sites where any sequence
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has a gap should be removed before computing distances. The com-
mands

gaps=(Seq hominoids =='-')
gapsites=find(sum(gaps))
Seq nogaps=Seq hominoids
Seq nogaps(:,gapsites)=[ ]

will find and delete those sites. Using the gapless sequences, compute
the Jukes-Cantor, Kimura 2-parameter, and log-det distances. Recall
that [DJC, DK2, DLD]=distances(Seq nogaps)will do
this easily.
a. How similar are these distances to those in the array

Dist primates?
b. Use eachdistance arrayyouproduce to construct a tree byNeighbor

Joining. Are they all the same topologically? Metrically?

5.6.6. Investigate how reasonable the Jukes-Cantor and Kimura models of
base substitution are for the descent of the hominoids from a com-
mon ancestor. Do this by considering two sequences at a time, us-
ing compseq to calculate a frequency array of bases in the two
sequences. Then, compute base distributions for each sequence and
Markov matrices that would describe the evolution of one into the
other. Are these close to those of a Jukes-Cantor or Kimura model?
Does the choice of a different model in (Hayasaka et al., 1988) seem
necessary? Explain.

5.6.7. Repeat Problem 5.6.5, but use all 12 primate sequences. Which of the
distances do you think is most valid to use? Explain.

5.6.8. From the sequences of the hominoids, isolate the first 10 informative
sites. Use these to compute the parsimony score (by hand) of each
of the trees at the beginning of this chapter, as well as the one with
neighbor pairs (chimpanzee, gorilla) and (orangutan, gibbon). Which
of the three is most parsimonious?

5.6.9. Repeat the last problem, but using 10 informative sites chosen to be
equally spaced among the informative sites. Do you think this choice
of informative sites should be more or less sound than that of the last
problem? Explain. (Obviously using all informative sites would be
preferable, but that cannot be done easily by hand, because there are
90 of them for these 5 taxa.)

5.6.10. If you have access to software that will attempt to find the most
parsimonious tree, use it on the full sequences for the five primates.



212 Constructing Phylogenetic Trees

(Note: these sequences are in a sample data file distributedwith (Swof-
ford, 2002).)

5.6.11. The vectors codingsites and noncodingsites contain the
indices of the coding and noncoding sites in the primate se-
quences. The coding sites can be extracted with the command
Seq coding=Seq primates(:,codingsites).
a. Compute frequency arrays of bases in the coding sequences for the
primates by comparing sequences two at a time. Does the Jukes-
Cantor model or a Kimura model seem reasonable, or do you think
a different model would be needed?

b. Repeat part (a) for the noncoding regions of the sequences. Do
you think the same model might apply to both the coding and
noncoding regions? Explain, referring to the data.

5.6.12. Because the coding and noncoding sitesmight evolve differently, they
might lead to inferring different trees.
a. Using only the coding sites, and the log-det distance, find the
Neighbor Joining tree for the 12 primates. Does it agree topo-
logically with the tree made the same way using all sites?

b. Using only the noncoding sites, and the log-det distance, find the
Neighbor Joining tree for the 12 primates. Does it agree topologi-
cally with the tree made the same way using all sites?

Projects

1. Dental transmission of HIV
In 1990, it was reported in the CDC’s Morbidity and Mortality Weekly
Report that a young woman in Florida had most likely been infected
with HIV by her dentist. This conclusion was based primarily on a lack
of alternative explanations for the infection. The dentist, who was HIV-
positive, then publicly requested that his patients be tested. Altogether,
seven patients were found to be HIV-positive.

Of course, a patientwhowasHIV-positivewas not necessarily infected
by the dentist. A large dental practice might be expected to have some
infected patients whose infection had nothing to do with their dental care.
An epidemiological investigation tried to assess other risk factors for the
patients. For some, nondental infection scenarios seemed likely, while for
others, nondental infection seemed unlikely. Because of the difficulties of
getting accurate answers from patients on high-risk behaviors, however,
the results of such an investigation cannot be considered conclusive.
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Because no other possible dental infection cases had ever been recorded,
some doubt remained concerning the Florida cases.

In 1992, the paper (Ou et al., 1992) appeared in Science. This work
took a completely different approach using DNA evidence to try to es-
tablish the likelihood of a dental infection route for the patients. Because
HIV mutates so quickly into quasi-species, one would expect people re-
cently infected from a common source to havemore similar quasi-species
than those whose common source of infection was more removed. The
researchers therefore decided to sequence the highly variable envelope
gene of HIV from each patient, the dentist, and some other HIV-infected
people living nearby who were not expected to have had any close con-
tact with the cases being studied (i.e., local controls). They then used the
sequences to construct a phylogenetic tree, and by the clustering pattern,
identified which patients they believed had been infected by the dentist.

Some of the DNA sequences in the paper have been downloaded from
GenBank for you to use. In MATLAB, run the m-file flhiv to read the
sequences. This will create sequences with names:

dnt, lc1, lc5, ptb, ptc, ptd.

These refer to the dentist, local control 1, local control 5, patient b, patient
c, and patient d in the Science paper.Although these sequences are already
aligned, they are of differing lengths, so you will have to find the shortest
and cut off the ends of the others to compare them.

Construct phylogenetic trees using these sequences and draw con-
clusions as to which patients were likely to have been infected by the
dentist.

Suggestions
� It is best to try several different tree construction methods.
� In deciding to use UPGMA or Neighbor Joining (or perhaps both),
consider the assumptions these methods make.

� In selecting a distance formula to use, make sure you look at the data to
seewhichmodel seemsmost appropriate. If different distance formulas
give different trees, which one are you most confident of? Why?

� If you use a method that produces an unrooted tree, where should you
place the root?

� Before using the method of maximum parsimony, compute how many
different trees would need to be considered if all were to be examined.

� Because parsimony is not really practical to do by hand for a large
number of trees, you should use as many informative sights as you find
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bearable and compute the parsimony of a handful of different trees.One
of these trees should be the one produced by a distancemethod, and the
others should be trees that you think might also be good candidates.

� Howconfident do you feel about the validity of your results andwhy? If
you dismiss your work constructing trees as not being rigorous enough,
do you feel more confident in just accepting the word of the patients
involved about their HIV risk factors? Give an honest appraisal of how
valuable you think phylogenetic methods are.



6

Genetics

We have all observed that offspring tend to have physical traits in common
with their parents. In humans, similarity in hair color, eye color, height, and
build often quite clearly run in families. That selective breedingmight enhance
traits must have been noticed long ago in our history, as domesticated animals
and crops have strongly developed features that we find useful.

On the other hand, the traits of offspring are generally not completely
predictable from observing those of the parents. A child might have a trait,
such as hemophilia, that neither parent exhibits, though such a trait might
occur more commonly within one family than another. Thus, despite patterns
to inheritance, chance also appears to be involved. Creating a mathematical
model of heredity requires capturing both of these aspects.

The first decisive step was taken by the Augustinian monk Gregor Mendel
in the latter half of the nineteenth century. Experimenting with some carefully
chosen traits in peas, hewas led to proposewhatwenowcall a gene as the basic
unit of inheritance. Though it is perhaps surprising to the modern student, at
that time the gene was an entirely abstract concept, with no proposed physical
basis, such as the DNA sequences we now immediately imagine.

Recognizing the value of quantitative analysis, Mendel created a mathe-
matical model for the transmission of heritable traits, based on the concepts
of probability. His genius was in both identifying simple enough traits to be
able to formulate a good model and then modeling the inheritance of those
traits successfully. Though subsequent work has added many new features to
our models, and we now know much more about the chemical and biological
mechanisms behind genetics, Mendel’s simple model remains the basic core
of our understanding of how many organisms pass on traits to their offspring.

6.1. Mendelian Genetics

In 1865, Mendel presented his findings from breeding experiments with
garden peas (Mendel, 1866) to a small group of scientists in Brünn, in the
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modern-day Czech Republic. Although the world scientific community
largely failed to notice until the turn of the century, Mendel’s genetic the-
ory was a major advance. Let’s consider some of his experiments carefully to
understand how the model describes what he observed.

Mendel isolated seven characteristics of pea plants: stem length, seed
shape, seed color, flower color, pod shape, pod color, and flower position
for study. Each of these characteristics appeared in the peas in one of two
forms we’ll call traits. For instance, stem length might be tall or dwarf, while
seed shape could be round or wrinkled. By selective breeding, he then devel-
oped true-breeding lines of peas for these traits – strains of pea plants that
produced progeny, all of which were identical to the parents. Thus, all the
descendents of a true-breeding line for tall plants would be tall, and all the
descendents of a true-breeding dwarf line would be dwarf.

For each of the characteristics, Mendel cross-bred the two true-breeding
lines. For example, true-breeding tall plants were crossed with true-breeding
dwarf plants, and true-breeding plants with smooth seeds were crossed with
true-breeding plants with wrinkled seeds. Thus, inheritance could be studied
one characteristic at a time, and the influence of pure parental traits on the
progeny observed. Mendel discovered that, in these crosses, the progeny dis-
played only one of the traits of the parental generation: The progeny of tall
and dwarf plants were all tall; the progeny of plants with round seeds and
those with wrinkled seeds all had round seeds. Since the same trait from the
parental generation was exhibited by all the progeny, Mendel called such a
trait dominant and the hidden trait recessive. The dominant traits discovered
by Mendel’s crosses are given in Table 6.1.

Mendel furthered experimented by allowing the offspring of these first
generation crosses, or F1, to self-pollinate and produce a second generation
F2. (The symbols F1 and F2 are the standard notations in genetics for the first
and second filial generations.) Interestingly, the recessive traits, absent in F1,

Table 6.1. Mendel’s F1 Data

Parental Traits Dominant Trait

Tall, dwarf plants Tall
Round, wrinkled seeds Round
Yellow, green seeds Yellow
Purple, white flowers Purple
Inflated, constricted pods Inflated
Green, yellow pods Green
Axial, terminal flowers Axial
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Table 6.2. Mendel’s F2 Data

Cross Producing F1 F2 Ratio

Tall × dwarf plants 787 tall, 277 dwarf 2.84:1
Round × wrinkled seeds 5,474 round, 1,850 wrinkled 2.96:1
Yellow × green seeds 6,022 yellow, 2,001 green 3.01:1
Purple × white flowers 705 purple, 224 white 3.15:1
Inflated × constricted pods 882 inflated, 299 constricted 2.95:1
Green × yellow pods 428 green, 152 yellow 2.82:1
Axial × terminal flowers 651 axial, 207 terminal 3.14:1

reappeared in F2. Mendel’s data for the frequency of each observed trait is
shown in Table 6.2.

The last column of Table 6.2 shows the ratio (number of plants with domi-
nant trait):(number of plants with recessive trait) in the F2 plants. These ratios
are all remarkably close to 3:1 for each of the seven traits under study. (In
fact, they are so close to 3:1 that some believe Mendel may have selectively
reported his data at a time when scientific standards were less developed.)

� Is noticing this 3:1 ratio enough to help you create an entire genetic
theory, as Mendel did?

To explain the 3:1 ratio, Mendel proposed that, for each characteristic,
a pea plant must contain a pair of the hereditary factors now called genes.
Each gene can come in several forms or alleles, corresponding to variations
within a trait. For example, for the stem length trait, there is a dwarf allele,
d, and a tall allele, D. (Usually, we choose a small letter for a gene based on
the recessive allele and use the corresponding capital letter for the dominant
allele.) The true-breeding strains of pea plants contain two identical alleles
and are said to be homozygous. The genotypes of these strains are dd for the
dwarf strain and DD for the tall strain.

Mendel hypothesized that each parent passed along exactly one of its genes
to its progeny. If a parent has genotype Dd, either a tall D allele or a dwarf d
allele is passed on, rather than some sort of mix of the two. This principle of
segregation treats the alleles associated with traits as discrete and indivisible
units. A further consequence of the principle is that progeny will also have
exactly two genes for a characteristic, as did their parents, and thus the number
of genes does not increase in successive generations.

Chance is introduced into the model in determining which of the parental
genes each descendent receives. With equal probability, either of the genes in
the father will be passed to a descendent, and with equal probability, either of
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the genes in the mother will be passed on as well. It’s as if two parental coin
flips determine the outcome in the progeny.

Much more is now known about how genes segregate in the formation
of gametes or reproductive cells. Meiosis is a complicated process in which
gametes (egg and sperm in animals, spores in plants) carrying only one copy of
each gene are formed.Modern understanding is that genes are found arranged
linearly on chromosomes, large molecules residing in the nucleus of cells.
The chromosomes come in pairs, accounting for the two copies of each gene.
Indeed, in gamete formation, it is chromosomes that segregate, not genes as
Mendel proposed. At fertilization, two gametes, each carrying one copy of
each chromosome, join to produce new offspring.

In reality, inheritance of chromosomes is much more complicated than can
be captured by ourMendelian model. The process of crossing over, an impor-
tant source of genetic variability,makes segregation quite involved.Moreover,
not all alleles fit the dominant/recessive framework that the Mendelian model
supposes, and many traits are not determined by a single gene, but rather
by collections of genes. Finally, whereas most familiar organisms do carry
two copies of each gene in most cells, and are thus called diploid, there are
exceptions to this.

However, we are getting ahead of ourselves by bringing up all these com-
plications. The Mendelian model is remarkably good for predicting and un-
derstanding the inheritance of many traits and marks a first step toward un-
derstanding the biology of inheritance. We can bring modifications into the
model later, after we fully understand Mendel’s simpler view. So, for now,
we will continue to assume segregation of parental genes and restrict our
attention to the situation in which a single gene controls a single trait.

WhenMendel crossed the DD true-breeding tall genotypewith thedd true-
breeding dwarf genotype, each descendent inherited an identical set of genes
from the parents: D from the first parent and d from the second.Genotypically,
these progeny are all Dd, and, because they contain two different forms of
the gene, are said to be heterozygous.

Remember that each of the F1 were tall pea plants. Thus, although genet-
ically the progeny were heterozygous, the D allele was dominant over the d
allele, in the sense that all the plants of F1 resembled their tall parent. These
F1 have the same phenotype as their tall parents, that is, they have the same
observable characteristics.

� What are the phenotypes of the genotypes DD, Dd, and dd?
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Table 6.3. Punnett
Square for Dd × Dd

D d

D DD Dd
d Dd dd

� If W denotes the dominant allele for round seeds and w the recessive
allele for wrinkled seeds, what are the phenotypes of W W , Ww, and
ww?

To understand the 3:1 phenotypic ratio in F2, a helpful device is thePunnett
square. Here, we place the possible gametes formed by F1 parents as row and
column headings. The entries, formed by the union of such gametes, are the F2

genotypes. A Punnett square for the stem length gene in the self-fertilization
of a pea in F1 is shown in Table 6.3.

Because each of the gametes is equally likely, according to the model, the
four entries of the square are all equally likely descriptions of the genotypes
of offspring. We should thus find the three genotypes DD, Dd, and dd in a
ratio of 1:2:1 in the F2 plants.

Notice that we can also deduce the expected ratio of the phenotypes of the
F2 progeny. Since the first two of these genotypes produce the tall phenotype,
we should see three tall plants (DD and Dd) for every dwarf plant (dd),
giving a ratio of 3:1. Mendel’s simple genetic model describes the outcome
of his breeding experiments remarkably well.

We can easily extend Mendel’s model to make predictions about the out-
come of more complicated breeding experiments. For example, if W and w

denote the alleles for round and wrinkled seeds, then we may be interested in
predicting the outcome of the cross DdWw × ddWw. To handle such two
gene crosses, we assume, as Mendel did, that genes assort independently.
That is, in gamete formation, the segregation of alleles of one parental gene
occurs independently of the segregation of alleles for the other gene. Using
the language of probability, we would say the segregations of the alleles for
two different genes are independent events.

Example. To predict the outcome of the cross DdWw × ddWw, we can
again use a Punnett square. Because all combinations are equally likely in
gametes, the parental type DdWw creates four types of gametes – DW , Dw,
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Table 6.4. Punnett Square for
DdWw × ddWw

DW Dw dW dw

dW DdW W DdWw ddW W ddWw
dw DdWw Ddww ddWw ddww
dW DdW W DdWw ddW W ddWw
dw DdWw Ddww ddWw ddww

dW , and dw – all with equal probability. Similarly, ddWw creates gametes
dW , dw, dW , and dw with equal probability. The resulting Punnett square
is shown in Table 6.4.

Notice that there are only six different genotypes among the 16 entries in
the square. However, since several of these genotypes produce the same phe-
notype, there are only four different phenotypes represented. Careful counting
shows that, among the F2 plants, we should expect the following fractions of
the population with the given phenotypes: Tall plants with round seeds 6/16,
tall plants with wrinkled seeds 2/16, dwarf plants with round seeds 6/16, and
dwarf plants with wrinkled seeds 2/16.

� Which genotypes in the square produce the phenotype of tall plants
with wrinkled seeds?

� Suppose you wanted to determine the phenotypes and their frequencies
for a cross between DdWwY Y × ddW W Y y, where Y represents the
dominant allele for green pods and y the recessive allele for yellow
pods. How big would your Punnett square be?

The size of a Punnett square grows quickly, in fact exponentially, with
the number of independently assorting genes you are tracking. For n genes,
the square is 2n × 2n . This makes Punnett squares impractical for all but the
simplest of analyses. Ultimately, we will find that the language of probability,
as introduced in Chapter 4, is a better tool for calculating the chances of
different outcomes of a particular cross.

Example. To redo the example above of the cross DdWw × ddWw using
probability, let’s first calculate the likelihood of dwarf progeny with wrinkled
seeds. Because both dwarfness and wrinkled seeds are recessive characteris-
tics, we know that the only genotype producing these traits is ddww. This
means that each parental strain must contribute a d and a w to such progeny.
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In detail,

P(dwarf plants with wrinkled seeds)
= P(ddww)

= P(dw from first parent)P(dw from second parent)

= P(d from first parent)P(w from first parent)

× P(d from second parent)P(w from second parent)

=
(
1

2

) (
1

2

) (
1
) (

1

2

)
=

(
1

8

)
.

Naturally, this answer agrees with our result from the Punnett square.

Let’s pause and examine several of the equal signs above, since they are
derived from important mathematical and biological concepts. Note, for ex-
ample, that the second equality, rewriting P(ddww) as the product of the
probabilities of inheriting alleles from each parent, is only correct if these are
independent events. This assumption of independence is part of the notion
of random union of gametes: The probability of any union of paternal and
maternal gametes is the product of the proportions in which those gametes
occur.

� Why biologically should what is inherited from one parent be indepen-
dent of what is inherited from the other?

In addition, the third equality, writing the probability of inheriting dw

from a parent as the product of the probabilities of inheriting d and w, is a
mathematical restatement of the principle of independent assortment.

Let’s try another, more involved, example.

Example. What is the probability that the progeny of DdWw × ddWw is
dwarf with round seeds?

Because having round seeds is a dominant characteristic, two genotypes
W W and Ww, both give rise to round seeds, and we will need to take both
possibilities into consideration. Now

P(dwarf with round seeds) = P(ddW W or ddWw)

= P(ddW W )+ P(ddWw),
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since ddW W and ddWw are disjoint events. But

P(ddW W ) = P(dW from first parent)P(dW from second parent)

=
(
1

2

) (
1

2

)
(1)

(
1

2

)
=

(
1

8

)
,

and

P(ddWw) = P(dW from first parent)P(dw from second parent)

+P(dw from first parent)P(dW from second parent)

=
(
1

2

) (
1

2

)
(1)

(
1

2

)
+

(
1

2

) (
1

2

)
(1)

(
1

2

)

=
(
1

8

)
+

(
1

8

)
=

(
1

4

)
.

Finally, we add to compute

P(dwarf with round seeds) =
(
1

8

)
+

(
1

4

)
=

(
3

8

)
.

� Justify each step of these computations. Where have we used the fact
that certain events are independent?

The last calculation was complicated enough that it is a good idea to check
it a different way. Let’s do this by thinking of the principal of independent
assortment differently, in more probabilistic terms. When we say that the two
genes assort independently, we mean that the events Ed = {plant is dwarf}
and Er = {plant has round seeds} are independent events. Thus, we can com-
pute probabilities for each of these events, and then use the multiplication
rule for independent probabilities to combine the answers. This focuses our
attention on more manageable problems; instead of looking at the cross
DdWw × ddWw, we can look at the crosses Dd × dd and Ww × Ww

separately.

Example. To find the probability of dwarf progeny with round seeds, we
need only multiply the probabilities:

P(dwarf with round seeds) = P(Ed ∩ Er ) = P(Ed )P(Er ).

For the Dd × dd cross, P(Ed ) = P(dd). This probability is P(dd) = 1
2 ,

which could be found either by using a 2× 2 Punnett square or by arguing
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that

P(dd) = P(d from first parent)P(d from second parent) =
(
1

2

)
(1) = 1

2
.

For the Ww × Ww cross,

P(Er ) = P(W W or Ww) = P(not ww) = 1− P(ww) = 1− 1

4
= 3

4
.

Thus,

P(Ed ∩ Er ) =
(
1

2

) (
3

4

)
= 3

8
,

just as we found before.

Whilewehave seen severalways to calculate the frequencies of phenotypes
in progeny from various crosses, we will use probability most often. It is a
sophisticated tool that allows us to estimate and model genotypic and, more
generally, allelic frequencies in a population. As we move into increasingly
complicated genetic models, simple devices like the Punnett square cannot
be usefully adapted.

Although the basic Mendelian model does not describe all genetic phe-
nomena of interest, it is adequate to model the incidence of certain human
diseases. For example, Tay-Sachs disease, a disease primarily striking chil-
dren of Ashkenazi Jewish descent and usually leading to death before age 5,
is developed by individuals who are homozygous with a recessive allele for
a particular gene. It is estimated that roughly 1 in 31 adults in the Ashkenazi
population in North America are heterozygous for the recessive allele. Reces-
sive alleles may lie hidden for generations if most individuals marrying into
a family are homozygous dominant. Tay-Sachs disease may thus occur un-
expectedly and with devastating impact when two heterozygous individuals
have children. For many years, estimates of the presence of the recessive al-
lele in the population, together with extensive family medical histories when
they were available, were the only means of calculating the risk that a child
would develop Tay-Sachs disease. More recently, prenatal techniques such as
amniocentesis are used to detect the presence of the Tay-Sachs mutation.

Problems

6.1.1. Imagine that, in a certain species, gamete formation does not oc-
cur, and instead of receiving half the genes of each parent, offspring
receive the full set of genes from both parents. If each parent in the
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founding generation F0 has two copies of a particular gene, howmany
copies will offspring of the nth generation Fn have?

6.1.2. Create a Punnett square for a DdWw × DdWw cross of pea plants.
What proportion of the progeny has each genotype? Each phenotype?

6.1.3. In the text, probabilistic arguments are given to compute the proba-
bility of dwarf wrinkled-seed and dwarf round-seed phenotypes for
the progeny of a DdWw × ddWw cross of pea plants. Complete the
analysis by using probability to compute the following:
a. The probability of a tall wrinkled-seed phenotype.
b. The probability of a tall round-seed phenotype.

6.1.4. According to (Petersen et al., 1983), the recessive allele for Tay-
Sachs disease is present in 1 of 31 people in the North American
Jewish subpopulation. Because of the nature of the disease, we can
assume all adults with the allele are heterozygous.
a. What is the probability that a couple drawn from this subpopulation
will both have the allele?

b. What is the probability that a child of such a couple will develop
Tay-Sachs disease?

c. What is the probability that a child, both of whose parents come
from this subpopulation, will develop Tay-Sachs disease?

6.1.5. Consider three genes, each with dominant and recessive alleles, de-
noted A, a; B, b; and C , c.
a. If an individual has genotype AaBbCC , how many different ga-
metes might it form?

b. If two organisms with genotype AaBbCC are mated, how many
different genotypes and phenotypes are possible?

6.1.6. Generalize the result of the last problem by considering N genes for
a particular organism, with each gene having dominant and recessive
alleles.
a. How many different gametes can be formed by an organism that
is heterozygous for n genes and homozygous for N − n genes?

b. Suppose two individuals, with identical genotypes, are heterozy-
gous for n genes and homozygous for N − n genes. How many
different genotypes and phenotypes are possible if these two or-
ganisms of identical genotype are mated?

c. Suppose one individual is heterozygous for the first k genes only
and a second individual is heterozygous for first l genes only,where
k < l ≤ N . At the other loci, both organisms are homozygous re-
cessive. How many genotypes are possible when these organisms
are crossed? How many phenotypes?
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6.1.7. A testcross is a cross between a genetically unknown organism and
a homozygous recessive organism. Testcrosses can be used to de-
termine whether an organism is heterozygous or homozygous for a
particular allele.
a. Suppose three organisms with genotypes AA, Aa, and aa are
crossed with aa. What is the expected ratio of phenotypes in each
of these testcrosses?

b. Suppose that a pea plant of an unknown genotype is testcrossed
with dwarf pea plants that have wrinkled seeds and yellow pods
(ddwwyy). Of the progeny, some are tall, some are dwarf, and all
have wrinkled seeds with green pods. What is the genotype of the
unknown parental strain?

c. Explain why you can determine the genotype of an unknown plant
by testcrossing with another plant that is homozygous recessive
for all genes of interest, but not by testcrossing with a plant that is
homozygous dominant. Give both informal reasoning and quanti-
tative justification.

6.1.8. In rabbits, two independently assorting genes affect fur. The dominant
allele, B, determines black fur, and a recessive allele b determines
brown fur. Normal fur length is determined by a dominant allele, R,
and short fur length by a recessive allele, r . A homozygous (in both
genes) black rabbit with normal-length fur is crossed with a brown,
short-haired rabbit.
a. What are the possible genotypes and phenotypes of the offspring
in F1? What is the proportion of each?

b. If F1 rabbits are intercrossed, what proportion of the F2 are ho-
mozygous (both dominant and recessive) for the color gene? What
proportion are homozygous for both genes?What proportion of the
black rabbits are homozygous for both genes?

c. What is the genotype ratio for black rabbits with normal length fur
in F2?

6.1.9. To test his hypothesis that two genes assorted independently, Mendel
carried out another series of experiments. In one, he bred true-lines of
pea plants with round, yellow seeds (W W GG) and wrinkled, green
seeds (wwgg). Here, the recessive allele for green seed color is de-
noted by g. He crossbred these lines to get F1, and then the F1 plants
self-fertilized to produce F2.
a. What are the phenotypes and genotypes of F1?
b. What phenotypes will be represented in F2, and in what relative

frequencies should the phenotypes occur if the genes do assort
independently?
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Figure 6.1. A human pedigree.

c. If Mendel’s data did not exactly match that predicted in part (b),
should he have doubted the assumption of independent assortment?
By how much could the frequency data be off from the theoreti-
cal prediction before you would doubt the assumption? Explain
informally.

6.1.10. If a certain genotype is lethal to embryos, then the expected propor-
tions of genotypes in a new generation is, of course, affected.

Inmice, an allele Y l , known as the yellow-lethalmutation, is domi-
nant for yellow fur color, but homozygotes die in the embryonic stage.
Homozygotes with genotype yy have gray-brown or agouti fur.

Suppose two yellow mice are crossed. Give the genotypes, pheno-
types, and expected proportions of their viable progeny, F1.

6.1.11. Family pedigrees can be used in determining the risk of human off-
spring developing certain genetic diseases. One such disease is sickle-
cell anemia, which occurs in individuals homozygous for a certain
recessive allele.

In the pedigree of Figure 6.1, circles denote females and squares
males; horizontal lines join couples, and vertical lines indicate chil-
dren. Gray coloring indicates an individual has sickle-cell anemia.
a. For the relevant gene, what must the genotypes of the parents be?
b. What is the probability that a fourth child of the parents will be

disease-free?
c. What are the possible genotypes of one of the sons? What is the
probability of each of those genotypes?

6.1.12. Brachydactyly, or short fingers, is determined in humans by a partic-
ular gene with dominant and recessive alleles. Suppose a couple, both
with brachydactyly, have two children. One child has normal length
fingers and the other has short fingers.
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a. Is brachydactyly a dominant or recessive trait? What are the geno-
types of the parents? Of the children?

b. Suppose the couple has two more children. What is the probability
that neither of them will have brachydactyly?

6.1.13. Plants heterozygous for three independently assorting genes are
crossed.
a. What proportion of the progeny is expected to be homozygous for
all three dominant alleles?

b. What proportion of the progeny is expected to be homozygous for
all three genes?

c. What proportion of the progeny is expected to be homozygous for
exactly one gene?

d. What proportion of the progeny is expected to be homozygous for
at least one gene?

6.1.14. Mendel’s simple model of dominant and recessive alleles does not
always apply. Even when one gene with two alleles controls a trait,
sometimes neither is completely dominant.

For example, in snapdragons, homozygous W W have red flowers
and ww have white flowers. In heterozygotes Ww, however, both
genes are expressed, and theflowers are pink. In such a case, the alleles
are said to be partially dominant. If the heterozygote’s phenotype is
midway between those of the homozygotes, we say the alleles are
semidominant.

For snapdragons, what are the phenotypic proportions in F1 result-
ing from a W W × ww cross? What are the phenotypic proportions
in F2 arising from F1 self-fertilization?

6.1.15. Some genes have multiple alleles, that is, more than two alleles exist
in a population for a gene at a particular locus.

Suppose a gene has alleles a1, a2, and a3, and that a1 is domi-
nant over a2 and a3, and a2 is dominant over a3. What are the geno-
type and phenotype frequencies you would expect from a cross
a1a3 × a2a3?

6.1.16. Mendel’s model may be modified as in the last two problems to ac-
count for a gene that has more than two alleles, some of which exhibit
partial or semi-dominance.

For example, the three alleles for human blood type – I A, I B , and
I 0 – exhibit both dominance and codominance. Both I A and I B are
dominant over I 0, but an individual with genotype I A I B will have
type AB blood, because both alleles are expressed equally.
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a. What are the possible genotypes for the four phenotypic blood
types, A, B, AB, and O?

b. Suppose an individual homozygous with type A blood marries an
individual heterozygous with type B blood. What are the possible
phenotypes of any offspring, and in what relative frequencies do
these occur?

c. Suppose parents, heterozygous with types A and B blood, have
four children. Howmany of the children would you expect to have
type O blood? Would it be possible for all of the couple’s children
to have type O blood? Explain, both informally and quantitatively.

6.1.17. Mendel’s basic model only describes phenotypic traits that are con-
trolled by a single gene. However, most traits are more complicated.

A classic example is comb shape in chickens, which is deter-
mined by two independently assorting genes. There are four shapes
of chicken combs: rose, pea, single, and walnut. Two genes with two
alleles each are responsible for comb shape. The genotypes of the
four shapes are: rose R–pp, pea rr P–, single rr pp, and walnut R–
P–. (Here, a dash indicates either a dominant or a recessive allele is
possible.)
a. What phenotypes result from the crosses R Rpp × rr pp, rr P P ×

rr pp?
b. What phenotypes, and in what proportions, result from a R Rpp ×

rr P P cross? If the F1 progeny are interbred, what phenotypes,
and in what proportions, are represented in F2?

6.2. Probability Distributions in Genetics

While the Mendelian model gives a good understanding of the probability of
a single child of certain parents being homozygous recessive for a particular
gene, or of a single F2 plant being tall or dwarf, often we are interested in
calculating probabilities of more complicated events. For some of these, we
need additional knowledge of probability, rather than genetics.

The term “random variable” is sometimes used for the outcome of a mea-
surement or count when we believe some sort of random process underlies
the experiment. A few examples of random variables are

� A fair coin is flipped 10 times, and the number of heads is counted. This
number is a random variable that might take on the values 0, 1, 2, . . . , 10.

� Parents who are heterozygous for the Tay-Sachs recessive allele have three
children. The number of their children that are homozygous recessive is a
random variable that might take on the values 0, 1, 2, or 3.
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� Mendel’s F2 data on the progeny of the self-fertilized F1 cross between tall
and dwarf pea plants involved 1,064 plants. The proportion of the plants
in F2 that are tall was a random variable that could have taken on any
of the values 0 = 0/1064 (if all plants were dwarf), 1/1064, 2/1064, . . . ,
1 = 1064/1064 (if all plants were tall).

The random variables listed here are built by counting or finding propor-
tions of outcomes of simpler events. Our understanding of the simpler events
should enable us to analyze these, but how?

A function that describes the probability of the various outcomes of a
random variable is called a probability distribution. In this section, we will
consider two particular distributions of use in genetics.

The binomial distribution and expected values. As a first example, sup-
pose we flip a fair coin 3 times, and are interested in the probability of getting
exactly 2 heads among the 3 flips. We can list the 8 equally likely outcomes
of the 3 coin flips,

H H H, H H T, H T H, H T T, T H H, T H T, T T H, T T T,

each occurring with probability 1/8. In this list, the 3 outcomes

H H T, H T H, T H H

have exactly 2 heads. Thus, using the addition rule of probabilities, we find

P(exactly 2 heads in 3 flips) = 1

8
+ 1

8
+ 1

8
= 3

(
1

8

)
= 3

8
.

Now suppose we wanted to find the probability of exactly 12 heads in 35
flips? We could proceed similarly, but listing cases is likely to be difficult
and error-prone. However, a probability distribution called the binomial dis-
tribution allows us to calculate such probabilities quickly and efficiently, by
associating probabilities to each of the possible outcomes 0, 1, 2, . . . , n of
the random variable that gives the number of heads produced by n coin flips.

To develop a formula for the binomial distribution, let’s examine the ex-
ample of 2 heads in 3 flips again. For each coin flip, we have probability 1/2
of getting a head and probability 1/2 of getting a tail. Thus, for any particular
way we might get 2 heads and a tail, the probability is

P(H H T ) = P(H T H ) = P(T H H ) =
(
1

2

)2 (
1

2

)
= 1

8
.
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The 2 heads required two factors of 1/2, and the single tail required an
additional factor of 1/2. Because the coin flips are independent, we multiply
these factors.

Now why are there three scenarios in which 2 heads can be produced in
the 3 flips? We have to account for which of the 3 particular flips were the
ones in which the heads occur. They could occur on flips 1 and 2, flips 1 and
3, or flips 2 and 3. The number of scenarios is the number of different ways
that 2 of the 3 flips can be designated as producing heads.

This simple example motivates the general formula for the binomial distri-
bution. Suppose we perform n independent trials of a random process that has
two possible outcomes. For convenience, we call one of the two outcomes a
success S and the other a failure F . Suppose further that in each trial we have
P(S) = p andP(F) = q = 1− p. Then, the binomial distribution calculates
the probability of k successes among the n trials, as

P(k successes in n trials) =
(

n

k

)
pkqn−k .

Here, we have introduced the notation
(n

k

)
to mean the number of different

ways that the k successes might be located among the n trials.

� Above, we calculated the probability of 2 heads in 3 coin flips. What is
a success? A failure? What is the number of trials n and the number of
successes k?

Of course, for the binomial formula to be useful, we need a good way to
find a value for

(n
k

)
. For the 3-coin flip example, thinking of “heads” as a

success, we computed
(3
2

) = 3 by listing all the cases. (Alternatively, if we
think of “tails” as a success, the same list shows

(3
1

) = 3.) It really is not
feasible to list all the possibilities for large n and k, however. In the exercises,
you will develop the formula

(
n

k

)
= n!

(n − k)!k!
. (6.1)

The expression
(n

k

)
is called the number of combinations of n objects chosen

k at a time, but is usually read as “n choose k.” We think of it as counting how
many ways we can designate (or choose) k out of the n trials to be the ones
where the successes occur.

Let’s consider an application of the binomial distribution to genetics.
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Example. In mice, an allele A for agouti – or gray-brown, grizzled fur –
is dominant over the allele a, which determines a non-agouti color. If an
Aa × Aa cross produces 4 offspring, what is the probability that exactly 3 of
these have agouti fur?

From theMendelian model, we know that, for any particular offspring, the
probability of the agouti phenotype is 3/4. Although it is tempting to leap to
the conclusion that this means 3 of the 4 offspring must have agouti fur, that
is in fact incorrect.

We will first compute the probability that 3 of the 4 progeny have agouti
fur without using the binomial distribution, working from the basic laws of
probability instead. If we let A represent an agouti offspring and N non-
agouti, then there are four ways in which exactly 3 of the 4 offspring could
have agouti fur: in order of birth, the offspring might be N AAA, AN AA,
AAN A, or AAAN . Thus, we can use the multiplication and addition rules of
probability to find

P(exactly 3 of 4 offspring has agouti fur)
= P(N AAA)+ P(AN AA)+ P(AAN A)+ P(AAAN )

= 1

4
· 3
4

· 3
4

· 3
4

+ 3

4
· 1
4

· 3
4

· 3
4

+ 3

4
· 3
4

· 1
4

· 3
4

+ 3

4
· 3
4

· 3
4

· 1
4

= 4 · 27

256
= .421875.

Now let’s redo the computation using the binomial distribution. We’ll call
having agouti fur a success, so p = 3/4, q = 1/4. Then,

P(exactly 3 of 4 offspring has agouti fur) =
(
4

3

) (
3

4

)3 (
1

4

)

= 4!

3!1!

(
27

256

)
= .421875.

� If you decide to call having non-agouti fur a success, that changes the
details of the work in this computation, but not the answer. How do the
details change?

Notice that even though each offspring of the Aa × Aa cross has a 3/4 =
.75 chance of having the agouti phenotype, the probability that exactly 3 of 4
offspring have the phenotype is considerably lower, at around .42.

� Why is this statement not contradictory?



232 Genetics

Since Mendel’s studies focused on diallelic genes, that is, genes with
exactly two alleles, the binomial distribution very naturally fits this setting.
Of course, many genes have more than two alleles. Nonetheless, by grouping
alleles into two categories – healthy and diseased, or dominant and recessive –
the binomial distribution can often be used to make genetic predictions even
when more alleles exist. For instance, in the agouti fur example, the symbol a
actually represents a number of different alleles, each associatedwith different
fur colorings and patterns, but all recessive to agouti. Because we are only
concerned with the agouti phenotype, we can lump all others together in our
analysis.

Example. What is the probability that exactly 4 of 10mice from an Aa × Aa
cross have agouti fur?

We’ll use the same setup as before, only this timewe are interested in deter-
mining the probability of k = 4 successes (agoutis) in n = 10 trials (births).
This probability is

P(4 agouti in 10 births) =
(
10

4

)(
3

4

)4(1

4

)6

=
(
10!

4!6!

) (
3

4

)4(1

4

)6

≈ .01622.

We can use the binomial distribution together with the addition rule to
solve even more difficult problems.

Example. What is the probability that more than half of six progeny of a
Aa × Aa cross have the agouti phenotype?
Continuing to think of an offspring with agouti fur as a success, we need

to calculate P(at least 4 successes in 6 trials). But this is the same as
P(4 successesin 6 trials)+ P(5 successes in 6 trials)

+ P(6 successes in 6 trials) =
(
6

4

) (
3

4

)4 (
1

4

)2

+
(
6

5

) (
3

4

)5 (
1

4

)1

+
(
6

6

) (
3

4

)6 (
1

4

)0

≈ .83057.

Thus, it is quite likely that more than half of the six offspring have agouti fur.

Let’s return to considering the number of agouti mice in a cross producing
four progeny. Similar computations to those above give the probabilities that
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Table 6.5. Probabilities of Exactly i Agouti Mice Among Four
Progeny of Aa × Aa Cross

i 0 1 2 3 4
P(i) .00390625 .046875 .2109375 .421875 .31640625

exactly 0, 1, 2, 3, or 4 of the 4 progeny have agouti fur, as shown in Table 6.5.
Of course, the entries in this table add to 1.

While Table 6.5 tells us the probability of any outcome of this four-progeny
mouse cross, a useful summary of the table is the expected value of the
number of agouti mice progeny. Informally, the expected value tells us how
many agouti progeny wemight expect when four offspring are produced. You
should think of the expected value as an average of the outcomes, with each
outcome weighted by the probability it occurs. To be more precise,

Definition. For any probability distribution describing a random variable
with a finite number of possible outcome values i , the expected value is
defined as

E =
∑

outcomes i

i · P(i).

Because it is an average weighted by probabilities, the expected value of
a random variable might not be an integer, even if the random variable can
have only integer outcomes.

For the example described by Table 6.5, we find

E = 0 · .00390625+ 1 · .046875+ 2 · .2109375+ 3 · .421875

+ 4 · .31640625 = 3.

Thus, in this example, the expected value seems to be capturing our naive
belief that 3 of the 4 mice should have agouti fur, since the probability that
any particular mouse does is 3/4.

As you will see in the exercises, whenever a random variable with a bino-
mial distribution is used, something similar happens. More specifically, the
expected value for the number of successes in n trials, assuming the proba-
bility of any one success is p, is

E = np.

This should seem reasonable, because it simply states that if for each trial
the fraction of times you get a success is p, then of n trials, you expect np
successes.



234 Genetics

� What is the expected number of agouti offspring in 10 births?

Expected values for two random variables have a nice additive property.
Suppose for the mouse cross above, we consider the random variables

X1 = the no. of agouti mice in a litter of 4,

X2 = the no. of agouti mice in a litter of 5.

Then X1 + X2 = the no. of agouti mice in a litter of 9, since we can think of
the first 4 births and the last 5 births as two separate groups. In this case, it is
easy to check that

E(X1 + X2) = E(X1)+ E(X2), (6.2)

because the left-hand side is 9(3/4), and the right-hand side is 4(3/4)+
5(3/4). In fact, Eq. (6.2) holds for any two random variables, as you will see
in the exercises.

Theχ2 distribution. Although the binomial distribution is useful in com-
puting the probabilities of certain types of outcomes in repeated trials, many
other probability distributions arise in biology. A particular useful distribution
for genetics is the χ2 distribution. Rather then predicting the likelihood of
certain outcomes, the main use of the χ2 distribution is to determine whether
the outcome of an experiment fits a particular probabilistic model.

For instance, the Mendelian model predicts that all the phenotypic ratios
in Table 6.2 should be 3:1. However, none of them were exactly 3:1, even
though they were close. With Mendel’s data the results are so close to 3:1 that
few would doubt the model applies, but what if they had been further from
that ratio? How far could they deviate before we might doubt the model?

In designing an experiment, a scientist ideally has a hypothesis to test. For
Mendel’s experiment, thismight be: The principal of segregation, that parents
pass on each of their alleles to progeny separately and with equal likelihood,
holds. This hypothesis implies that a cross between F1 hybrids should yield
a phenotypic ratio of approximately 3:1. The larger the number of offspring,
the closer we expect the experimental ratio to match the theoretical 3:1.

If data collected from the experiment is in line with the expected results,
then evidence has been gathered in support of the hypothesis. If the data
deviates a great deal from the expected values, then a scientist must reconsider
the validity of the hypothesis; perhaps the hypothesis was wrong, or perhaps
the experiment was poorly designed. An important issue for the researcher,
then, is how to decide whether the data fits the hypothesis.
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Table 6.6. Progeny of Gg × Gg

Phenotype Observed No. Expected No.

Yellow seeds 231 245.25
Green seeds 96 81.75
total 327 327

Theχ2-statistic is oneway tomeasure goodness of fit of data to the hypoth-
esis in an experiment. From the data and hypothesis, we compute a certain
number according to a formula given below and denote it by χ2. If this
χ2-statistic is large, the fit is poor. If it is small, the fit is good. An under-
standing of the probability distribution for this particular random variable –
the χ2-distribution – will allow us to decide how large χ2 must be for us to
consider it unlikely that the hypothesis is correct.

To illustrate how the χ2-statistic is used, let’s apply it to one of Mendel’s
experiments, to test the hypothesis that the principal of segregation applies
to seed color. (This was one of Mendel’s hypotheses, though he did not
phrase it this way.) In the laboratory, we cross hybrids Gg × Gg and ob-
tain 327 progeny. Under our hypothesis, we expect that 3/4 of these,
(.75)(327) = 245.25, will be phenotypically dominant with yellow seeds,
and the remainder, (.25)(327) = 81.75,will have green seeds. The experiment
turns out to produce data that is a bit off from that, as shown in Table 6.6.

The χ2-statistic is defined as

χ2 =
n∑

i=1

(Oi − Ei )2

Ei
.

Here, Oi and Ei denote the observed and expected frequencies, that is, the
observed and expected numbers as in Table 6.6. Each expression (Oi − Ei )
measures deviation of an observation from what we expect, and because this
expression is squared, any chance of positive terms canceling with negative
ones is eliminated. Dividing each term by Ei gives us a sense of how large
the deviation is relative to the expected number. Summing gives us a measure
of total deviation.

In this experiment, we have n = 2 classes and find

χ2 =
2∑

i=1

(Oi − Ei )2

Ei
= (231− 245.25)2

245.25
+ (96− 81.75)2

81.75
≈ 3.312.

If χ2 were smaller, we would know the data fit the hypothesis better, and if
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it were larger, the fit would be worse. We still don’t know whether 3.312 is
small enough to consider the fit to be good.

Before proceeding, there is one other issue we must understand about χ2-
statistics. Because χ2 involves adding up a number of positive terms, we
would expect its value to be larger whenever there are more terms. This is
captured in the idea of a parameter called the degrees of freedom. Counting
the degrees of freedom can be quite difficult, but a rule of thumb is that there
is one degree of freedom for each class whose size can vary freely. In this
example, if we imagine the size of the first class (the yellow seed phenotype)
varies freely (it could be any number from0 to 327), then the size of the second
class (the green seed phenotype) is obtained by subtracting the first from the
total 327. This means we have one degree of freedom. More generally, if we
had n classes in a test, then the first n − 1 of them could range freely, but the
last is constrained. This corresponds to n − 1 degrees of freedom. The more
degrees of freedom in a test, the larger you might find the χ2-statistic to be,
because it requires summing more positive numbers. To judge the size of a
particular χ2-statistic, we must take this into account.

With the degrees of freedom specified, statisticians have studied the χ2

distribution. Although a formula for the distribution is too complicated to
give here, information from it is incorporated in tables and in software. This
makes it possible to compute, for a specified number of degrees of freedom,
the probability that the χ2-value lies in any specified range, assuming the
hypothesis holds.

Keep in mind that, even when the hypothesis is true, every time we do an
experiment, we will get different data and a different χ2-statistic describing
the fit. Most of these will be small, but some will be large because of chance.
We would like our goodness-of-fit test to be flexible enough to accommodate
this variation. So, to decide whether we consider our value of χ2 to be too
large for the data to fit the hypothesis, we pick a significance level, for instance
α = .05. This means we decide to view χ2 as too large if the probability of
getting a lower value is at least 1− α = 95% when the hypothesis is true.

If we consult a table, such as the abbreviated Table 6.7 at the end of this
section, we find that the critical value for a χ2-statistic with one degree of
freedom at the .05 level of significance is χ2

critical = 3.841. This means that,
assuming the hypothesis is correct, only 5% of the time would we calculate a
value of χ2 that was 3.841 or larger. Thus, if our statistic is larger than 3.841,
we say the data do not support our hypothesis at the .05 level of significance.
However, if our statistic is less than 3.841, we find that the data do support
the hypothesis at the .05 level of significance.
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Since for Mendel’s experiment, χ2 = 3.312 < 3.841 = χ2
critical, the value

of χ2 is not too large, and the experiment supports the hypothesis that the
alleles for seed color segregate.

If, instead, our statistic had turned out to be larger thanχ2
critical, leading us to

reject the hypothesis at the .05 level, a number of things could be responsible.
It could be that the hypothesiswaswrong (exactlywhatχ2-statistics are trying
to test), or it could be that our hypothesis is correct and we just happened to
obtain extreme data through randomness.

In fact, even when the hypothesis is actually correct, this second case will
happen 5% of the time. If we breed pea plants that are perfectly described by
theMendelian model again and again, as in this experiment, and calculate χ2-
statistics for each of these trials, then about 5% of the time we would expect
to see χ2-values larger than χ2

critical. A χ2 test is not capable of definitively
telling us whether the hypothesis is true or not.

� Sometimes critical values corresponding to a level of .01 or .1 are used.
Which of these makes it more likely that you will doubt the hypothesis
you are testing? Which level insists on a closer fit of the data to the
expected frequencies?

A significance level of .01 means that we only consider a χ2-value to
show a poor fit if it is larger than what would occur 99% of the time when
the hypothesis is true. That means we are less likely to reject the hypothesis
erroneously. On the other hand, the significance level .1 insists on a closer
fit for us to feel the data supports the hypothesis. With α = .1, we are more
likely to reject the hypothesis erroneously.

As you can probably imagine, we are just at the tip of the iceberg in
discussing χ2-statistics. There is much more to learn about them as they are
used ubiquitously in the scientific world. You will get some practice in the
exercises, but a course in statistics is really necessary to delve deeper.

Table 6.7. χ2
critical Values at Significance Level α

d.f. α = .10 α = .05 α = .01

1 2.70554 3.84146 6.63490
2 4.60517 5.99147 9.21034
3 6.25139 7.81473 11.3449
4 7.77944 9.48773 13.2767
5 9.23635 11.0705 15.2767

Note: d.f. denotes degrees of freedom.
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Problems

6.2.1. List all the ways that you might have exactly 3 heads among 5 coin
flips. Then compute

(5
3

)
by Eq. (6.1) to verify that it gives the correct

count.

6.2.2. In the text, the binomial distribution is used to find the probability
of exactly 1 of 3 coin flips producing tails. Find the probabilities of
exactly none, exactly two, and exactly three tails in this situation.
What is the sum of these four probabilities?

6.2.3. Verify the entries in Table 6.5.

6.2.4. Use a calculator or computer to find
(10

k

)
for each k = 0, 1, 2, . . . ,

10. A MATLAB command to do this type of calculation is
nchoosek (10,0).
a. For which k is

(10
k

)
smallest? For these particular values of k,

explainwhy it has the value it does by thinking in terms of choosing
objects.

b. For which k is
(10

k

)
largest? Is this intuitively reasonable? Explain.

c. What patterns do you notice in your calculations? Do the patterns
hold if 10 is replaced by other numbers?

6.2.5. Explain the following results not by referring to formula (6.1), but in
terms of choosing objects.
a.

(n
1

) = n and
( n

n−1
) = n for any n.

b.
(n
0

) = 1 and
(n

n

) = 1 for any n.

6.2.6. Suppose a family has six children.
a. What is the probability that four are boys and two are girls?
b. Give the probability distribution (i.e., the seven probabilities) that

the family has 0, 1, . . . , or 6 boys. Howwould your answer change
if you were to list the probability distribution for the number of
girls in the family?

c. What is the expected number of boys in the family?
d. What is the probability that the family has four or more girls?

6.2.7. In the text, the binomial distribution is used to find the probability
that exactly 3 of 4 offspring have agouti fur from a cross of mice
heterozygous for agouti fur.
a. Find the probabilities that exactly 30 of 40 offspring of this cross
have agouti fur. Then, find the probability that exactly 300 of 400
offspring have agouti fur.

b. Can these results be consistent with the fact that, in a large number
of such offspring, we would expect 3/4 of them to have agouti fur?
Explain.
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6.2.8. If you roll a fair die once, what is the expected value of the
outcome?

6.2.9. Suppose you roll two fair dice and add the results.

a. Calculate the expected value of the outcome by first finding the
probabilities of each of the outcomes 2, 3, 4, . . . , 12, and then
computing a weighted average of the outcomes.

b. Let X1 and X2 be random variables denoting the outcome of the
roll of the first and second die, respectively. Find E(X1), E(X2),
and E(X1 + X2).

6.2.10. When using the binomial distribution in applications, it does not mat-
ter which of the two trial outcomes you consider a success. Use the
binomial distribution to calculate the probability of 10 rolls of a die
producing three sixes as follows.

a. If you call “producing a six” a success,what should p,q, n, and k be
in the binomial formula for this probability? What is the resulting
probability?

b. If you call “not producing a six” a success, what should p, q , n,
and k be in the binomial formula for this probability? What is the
resulting probability?

6.2.11. Part of the reason the formula for the binomial distribution gave the
same result in both parts of the last problemwas because

(n
k

) = ( n
n−k

)
.

a. Explain in intuitive terms, in terms of choosing k or n − k objects
from n objects, why this formula should hold.

b. Explain why the mathematical formula (6.1) shows this formula
holds.

6.2.12. One formof albinism (lackof pigment) in humans is causedby a reces-
sive allele a. Suppose an homozygous albino marries a heterozygote,
and the couple has two children.

a. What is the probability their first child will be an albino?
b. What is the probability their first child will be an albino and their

second child will have normal skin pigment?
c. What is the probability exactly one of their two children will be an
albino?

d. What is the probability at least one of their two children will be an
albino?

e. What is the expected number of their children that will be albino?

6.2.13. Mice homozygous for a recessive allele, f , are fat. Suppose a dihy-
brid cross, AaF f × AaF f , is carried out by experimenters. Here, A
denotes the agouti allele.
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a. How many of 25 progeny are expected to be fat with agouti fur?
b. What is the probability that exactly 4 of 25 progeny will be fat

with agouti fur?
c. What is the probability that, at most, 4 of the 25 progeny will be
fat with agouti fur?

d. What is the probability that at least 4 of the 25 progeny will be fat
with agouti fur?

6.2.14. In a certain population of rats, the probability of an individual surviv-
ing through its first year is .5. For the rats who make it to age one, the
probability of surviving a second year is .25, and for those who make
it to age two, the probability of surviving a third year is also .25. All
rats die before the end of their fourth year.
a. What is the probability that the age (in years, rounded down) at
death of a rat is 0? 1? 2? 3? Why should these add to 1?

b. What is the expected age at death of one of these rats?

6.2.15. The yellow-lethal allele is dominant for yellow fur color, but lethal to
homozygous embryos. Suppose two mice, both heterozygous for the
yellow-lethal mutation, are crossed and produce 12 viable progeny.
a. What is the probability that exactly five of them will have normal
coloring?

b. What is probability that 10 or more of the progeny will be yellow?
c. What is the probability that at most three of the progeny will be
yellow?

6.2.16. In humans, the hereditary Huntington disease is caused by a dominant
mutation. Onset of Huntington disease occurs in midlife, between
35 and 44 years of age typically, and the progressive disorder leads
eventually to death. Suppose, in a married couple, one individual
carries the allele for Huntington disease. They have four children.
a. What is the probability that none of their children will develop
Huntington disease?

b. What is the probability that at least one of their children will de-
velop Huntington disease?

c. What is the probability three or more of their children will develop
Huntingdon disease?

6.2.17. In a trihybrid cross, AaBbCc × AaBbCc, what is the probability that
exactly 20 of 30 progeny will display the dominant phenotype for all
three traits? What is the probability that at least two of the progeny
will display the dominant phenotype for at least one of the traits?

6.2.18. The goal of this problem is to derive formula (6.1) for counting com-
binations. Formally, a combination of n things taken k at a time is
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an unordered k element subset of a set of n elements. However, it’s
better to think of it more concretely, as follows. Imagine a box of n
balls with the numbers 1, 2, 3, . . . , n printed on them. You pick out
k of these balls and first place them in a row, in the order you picked
them. Then, since you don’t care about the order, you dump them in
a bag. That’s a combination. The number of different bags of balls
you might end up with is

(n
k

)
.

a. When you pick the first ball out of the box, how many different
choices could you make for it? When you pick the second ball,
why are there only n − 1 choices for it? For the lth ball, why are
there n − l + 1 choices?

b. Why does part (a) indicate that, when the k balls are all in a
row, there aren(n − 1)(n − 2) · · · (n − k + 1) possible choices you
might have made? (The count of these ordered choices is some-
times called a permutation.)

c. Several different ordered choices might lead to the same collection
of balls in the bag, so the answer in part (b) is bigger than the
number of combinations. To see how much bigger, it’s easiest to
imagine having the balls in the bag, and (going backward in time)
putting them back in some order in a row. Using reasoning similar
to parts (a) and (b), explain why there are k(k − 1) · · · 2 · 1 = k!
choices of ways this could be done.

d. Using parts (b) and (c), conclude
(n

k

) = n(n−1)(n−2)···(n−k+1)
k! .

e. Explain why this formula can also be written as formula (6.1).

6.2.19. The binomial distribution received its name because of a relationship
to the expression (x + y)n , a power of a binomial. In fact, the numbers(n

k

)
are often called the binomial coefficients, because they give the

coefficients in the expansion of (x + y)n . That is,

(x + y)n =
(

n

0

)
xn +

(
n

1

)
xn−1y + · · · +

(
n

n

)
yn. (6.3)

a. Check this for n = 2, 3, and 4, using Eq. (6.1).
b. By thinking of (x + y)n as a product of n copies of (x + y), explain

why this product will produce a term xk yn−k for each way we
can choose k of the copies. Explain why this justifies formula
(6.3).

c. What is the sum
∑3

i=0
(3

i

)
?,

∑4
i=0

(4
i

)
?Give a formula for

∑n
i=0

(n
i

)
.

6.2.20. Suppose a trial has probability of success p, so the number of suc-
cesses in n trials is described by the binomial distribution. Show the
expected value for the number of successes in n trials is E = np as
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follows:
a. Express the expected value as a sum involving factorials and pow-
ers of p and q .

b. Show

i
n!

(n − i)!i!
pi qn−i = pn

(n − 1)!

(n − i)!(i − 1)!
pi−1q (n−1)−(i−1).

c. Use part (b) to factor pn from your expression in part (a). Then
use Eq. (6.3) to complete the problem.

6.2.21. The goal of this problem is to show that expected values of random
variables are additive, as claimed in Eq. (6.2). Only a special case
will be considered, where X1 and X2 are two independent random
variables that, for simplicity, can take on only integer values between
1 and N .
a. Explain why the expected value of X1 + X2 is

E(X1 + X2) =
N∑

i=1

N∑
j=1

(i + j)P(X1 = i)P(X2 = j).

b. Through algebra, show this can be written as

N∑
i=1

iP(X1 = i)
N∑

j=1
P(X2 = j)+

N∑
j=1

jP(X2 = j)
N∑

i=1
P(X1 = i).

c. What are
∑N

i=1 P(X1 = i) and
∑N

i=1 P(X1 = i)? Use this to con-
clude Eq. (6.2) holds.

6.2.22. Suppose an Aa × Aa cross produces 1,000 progeny, N with the dom-
inant phenotype, and 1,000− N with the recessive phenotype.
a. For N = 700, compute the χ2-statistic to test whether this data fits
the Mendelian model. Using a significance level of α = .05, is the
data in accord with the model?

b. Repeat part (a) with N = 725.
c. What is the smallest value of N that would be judged in accord
with the model (at the α = .05 level)? The largest value of N?

6.2.23. Explain informally why in Table 6.7, the entries get larger as you
move across the rows. Explain informally why they get larger as you
move down the columns.

6.2.24. The data in Table 6.8 is from Mendel’s experiments with genes for
seed shape and color resulting from WwGg × WwGg crosses (W =
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Table 6.8. Progeny of
WwGg × WwGg

Phenotype Observed No.

Round, yellow 315
Round, green 108
Wrinkled, yellow 101
Wrinkled, green 32

round; w = wrinkled; G = yellow; g = green). Use χ2 to test if the
genes for seed color and shape assort independently in pea plants.
Because there are four phenotypes, there are 4− 1 = 3 degrees of
freedom.

6.2.25. The critical value of a χ2-statistic comes from a theoretical χ2 dis-
tribution with appropriate number of degrees of freedom. Figure 6.2
shows a graph of a typical χ2 distribution.

In such a graph, the values of χ2 are along the horizontal axis, and
probabilities of χ2 falling in any interval are represented by the area
above that interval and below the curve. The total area between the
curve and the horizontal axis is 1 unit and corresponds to 100% or
a probability of 1. The critical value χ2

critical at significance level α is
the value on the horizontal axis that leaves an area of α to the right.
In Figure 6.2, this area is shaded for α = .05.
a. Suppose you are performing a χ2-test and choose a significance
level of .01 (or 1%).Where, approximately,would the critical value
fall on the horizontal axis in Figure 6.2?

b. Notice that the bulk of the area under the curve is just a bit to the
right of the vertical axis and there is very little area under the right

5 %

χcritical
2

Figure 6.2. χ2-Distribution.
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tail of the curve. If your data iswell explained by your experimental
hypothesis, where do you expect your calculated χ2-statistic to
fall? How is the shape of this curve related to the goodness-of-fit
test?

6.3. Linkage

After receiving little attention for more than 30 years, Mendel’s theory of
inheritance eventually becamewell-accepted through the efforts of the British
geneticist William Bateson and others. Since Mendel only hypothesized the
existence of genes, it was necessary to find the physical basis of these units
of inheritance. Around the turn of the century, biologists suspected strongly
that genes resided on chromosomes, large thread-like structures that could be
stained and viewed under a microscope during cell division. Evidence for this
was given by the American geneticist Thomas Hunt Morgan in 1910 and his
coworkers.Morgan’s groupworkedwith fruit flies,Drosophila melanogaster,
a favorite of geneticists, since they reproduce quickly and in great abundance
and have some readily observable traits with simple variants.

Sex-linked genes. Let’s consider one ofMorgan’s experiments to see how
his laboratory was able to discover the important role played by chromosomes
in inheritance. After 2 years of breeding Drosophila, a mutant male fruit fly
with white eyes was born. (Normal, or wildtype, eye color is red.) This white-
eyed male was crossed with wildtype red-eyed females, and the resulting
F1 generation had all red eyes, indicating that the new mutant allele was
recessive. Then, the F1 generation was interbred to produce F2.

� Assuming Mendel’s model applies, what fraction of the F2 population
should have white eyes?

The basic model predicts that, regardless of sex, 1/4 of F2 would be ho-
mozygous recessive, and hence have white eyes. However, when the F1 gen-
eration were intercrossed, the F2 were observed with phenotypes as given in
the middle column of Table 6.9. In a striking departure from the expected
values, there is a total absence of any white-eyed females. Also, roughly half
of the males had white eyes, rather than the predicted 1/4. While roughly
1/4 of all progeny had white eyes, they are not distributed equally among the
sexes. This is strong evidence for a connection between the determination of
sex and the behavior of the eye color gene.

In a second experiment in Morgan’s laboratory in which a female from
F1 was crossed with the mutant male, phenotypes of (very) roughly equal
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Table 6.9. Progeny of Two Crosses

Phenotype F1 × F1 F1× mutant

Red-eyed, female 2459 129
White-eyed, female 0 88
Red-eyed, male 1011 132
White-eyed, male 782 86
total 4252 435

frequency occurred, as shown in the last column of Table 6.9. However, this
data is not in contradiction withMendelian genetics, since a Ww × ww cross
would produce equal numbers of each phenotype, regardless of sex.

The first experiment points out the need for a newmodel consistent with its
outcome. However, any newmodelmust be capable of predicting the outcome
of the second as well.

At about the same time thatMorgan concluded from these experiments that
the inheritance of eye color must somehow be related to the determination
of sex, he also noticed a relationship between sex and chromosomes under
microscopic inspection of the flies’ cells. Although all chromosomes came in
matching pairs in female Drosophila, male Drosophila had one nonidentical
pair of chromosomes. Moreover, one of the chromosomes from the noniden-
tical pair in males was morphologically identical to a pair in females. Morgan
suspected that this set of chromosomes, the sex chromosomes, must control
sex determination in fruit flies and that a gene for eye color must lie on this
chromosome pair.

Morgan proposed amodel for this sex-linked gene behavior that used chro-
mosomes to explain the observations from experimental data. We denote the
identical sex chromosomes in females by X X , and the corresponding differ-
ing chromosomes in males by XY . In addition, we’ll use w to denote the
white-eye allele, and w+ the wildtype red-eye allele. (Such notation is com-
mon for the wildtype alleles of any gene.) Hypothesizing that the eye-color
gene lies on the X chromosome only, we let Xw denote a sex chromosome
carrying the white-eye allele, and X+ one carrying the wildtype allele.

In Morgan’s initial experiment, the females were genotype X+ X+ and the
mutant male XwY . Now, assuming segregation of chromosomes in gamete
formation, in the F1 generation we expect equal numbers of the genotypes
X+ Xw and X+Y . We continue to view the white-eyed mutation as recessive,
so each female will have red eyes due to the X+ Xw genotype. Similarly,
each of the F1 males carries only a wildtype allele X+ so they also have red
eyes. The presence of the gene for eye-color on the X chromosome, with no
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Table 6.10. Punnett Square for
X+ Xw × XwY

X+ Xw

Xw X+ Xw Xw Xw

Y X+Y XwY

corresponding gene on the Y chromosome is consistent with Morgan’s data
on the phenotypic make-up of F1.

We will leave analysis of the experiment leading to the data in the middle
column of Table 6.9 to the exercises and instead consider Morgan’s second
experiment.When F1 femaleswere crossedwith themutantmale,Morganwas
crossing heterozygous females X+ Xw with hemizygous males XwY . Again,
assuming segregation of chromosomes, the results of this cross are shown in
the Punnett square of Table 6.10.

Now, each genotype in the table is equally likely for progeny, and each
genotype gives a different phenotype. In the top row, the phenotypes are red-
eyed female and white-eyed female; in the bottom row, they are red-eyed
male and white-eyed male. This corresponds roughly with the approximately
equal numbers in the last column of Table 6.9. (In the exercises, you are
asked to perform a χ2-test to test more rigorously if the hypothesis of X -
linked inheritance of eye color meshes well with this data.)

Because males and females have a different number of X chromosomes,
X -linked traits are often manifested in different proportions in the two sexes.
For a female Drosophila to have white eyes, she must be homozygous for
the mutant allele, Xw Xw, receiving a (possibly rare) mutant allele from each
parent. However, for a male to have white eyes, he needs only one mutant
allele so that his genotype is XwY . As a consequence, recessive X -linked
traits are more likely to appear in males. In humans, certain types of color
blindness, hemophilia, and mental retardation from fragile X syndrome are
X -linked traits that are found almost exclusively in males.

Linked genes and genetic mapping. While sex-linked genes required a
modification of theMendelianmodel, other experiments fromMorgan’s labo-
ratory pointed to additional problems with the idea of independent assortment
of genes. Evenwhen sex determination was not involved, numerous examples
were found of data inconsistent with that assumption.

One such example concerns two genes in Drosophila. One gene affects
wing shape, with the dominant allele causing straight wings and the recessive
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Table 6.11. Progeny of Cross

Phenotype No.

Straight wings, red eyes 520
Straight wings, purple eyes 133
Curved wings, red eyes 129
Curved wings, purple eyes 467
total 1,249

causing curved wings. The second gene affects eye color, with the dominant
allele causing red eyes and the recessive causing purple eyes. Crossing a ho-
mozygote recessive for both genes (with curved-wing, purple-eye phenotype),
with a heterozygote for both genes (with straight-wing, red-eye phenotype),
produces data like that in Table 6.11.

� If the two genes assort independently, what is the expected phenotypic
ratio? Is the data in line with that?

Although the basic Mendelian model, with independent assortment of the
two genes, would have predicted that all four phenotypes were equally likely,
the data show clear deviation from this. The inheritance of the two genes
seems to be linked, in that there is a definite tendency for the progeny to have
a phenotype similar to one or the other of the parents.

This linkage comes from the relationship of genes to chromosomes and the
manner in which gametes are formed. The chromosomal theory of heredity
revised and improved theMendelianmodel by taking into account the physical
location of genes on chromosomes and modeling such linkage.

Most cells in diploid organisms contain a set of pairs of chromosomes,
with one chromosome in a pair inherited from each parent. Chromosomes
are divided into two types: autosomes (nonsex chromosomes) and sex chro-
mosomes. Chromosome number varies greatly between species and seems in
no way to reflect developmental complexity; humans have 46 chromosomes,
Drosophila 8, and cats 72.

According to the chromosomal theory of heredity, gametes are formed
by the segregation of chromosomes into reproductive cells, rather than the
simpler segregation of genes that Mendel imagined. Genes reside on chromo-
somes, arranged in a linear fashion. Somatic cells, or body cells, are diploid
in that they contain the full count of 2n chromosomes in a species. Gamete
cells have only half the number of chromosomes, n, and are called haploid.
At fertilization, two gametes (e.g., an egg and sperm) are united to form a
zygote, from which a new diploid offspring develops.
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A B

A B

a b

a b

Figure 6.3. Tetrad before crossing over; four chromatids are visible.

When gametes are formed, they do not simply receive a copy of one of the
chromosomes in each pair. Instead, a complicated and not completely under-
stood process of crossing over provides a source of genetic recombination.
The chromosome passed along to the gamete is not an identical copy of either
one of the parental chromosomes, but instead an amalgam of the parental
chromosome pair, with some genes from each.

� If no crossing over occurred, how would the principle of independent
assortment of genes need to be modified? If two genes were on different
chromosomes, would they assort independently? What if they were on
the same chromosome?

Let’s look more closely at how crossing over works. In the process of ga-
mete formation, chromosomes replicate forming identical chromatids joined
at a centromere. Next, matching chromosomes gather together and form ho-
mologous pairs. This arrangement, known as a tetrad, can be seen in Figure
6.3.

In crossing over, two chromatids in the tetrad exchange genetic material.
If the chromatids belong to different chromosomes, then this might result in
an exchange of alleles. For example, suppose the solid chromosome in Figure
6.3 was inherited from the mother and contains dominant alleles for two
genes AB, and that the dashed chromosome, inherited from the father, has
recessive alleles for these genes, ab. (Note that the individual in this example
is heterozygous for these two genes, AaBb.)

During crossing over, two chromatids swap DNA as shown in Figure 6.4.
Since nonidentical chromatids are involved in crossing over, they exchange
alleles B and b for the second gene. The parental types AB and ab occur in the
tetrad before crossing over, but after crossing over four genotypes are repre-
sented: AB, Ab, aB, and ab. The two new genotypes, Ab and aB, the results
of crossing over, are recombinants. In the final steps of gamete formation, the
four chromatids separate, with each one going into a different gamete.

Because it is so important biologically, we point out again that only two of
these gametes are identical to a parental chromosome; the two recombinant
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Figure 6.4. Tetrad during (L) and after (R) crossing over.

gametes, if they ultimately unite with other gametes and develop into full
organisms, will introduce new genetic combinations into the population. In
fact, more than one crossover can occur between homologous chromosomes,
so tremendous possibilities for genetic variation are introduced.Newvariation
is of course the raw material for evolution, since recombinants may be better
adapted for survival and reproduction.

Fromamodelingpoint of view, the behavior of genes on a chromosomedur-
ing gamete formation can now be captured by the probability of a crossover
occurring between them. If this probability is low, then alleles for the two
geneswill tend to be inherited together, and parental typeswill dominate in the
progeny. If this probability is high, then recombinants will be more common
in the progeny. A probability of .5 for a crossover, so that the genes essentially
behave as if on different chromosomes, would result in independent assort-
ment. Any divergence from independent assortment is known as linkage.

Alfred Sturtevant, who at the time was an undergraduate student working
in Morgan’s laboratory, realized that the observed frequencies of crossovers
could be used to create a genetic map. If we imagine that a chromosome
is a long string with genes ordered along it, then it seems natural to expect
that, for any little piece of the chromosome, there is some specific probability
of a crossover occurring there. Sturtevant’s idea was that this probabilistic
behavior could be used to give an abstract notion of genetic distance, and
then from that distance a map could be constructed. Specifically, he defined
the genetic distance between two genes on a chromosome as the average
number of crossovers that were observed between them during formation of
many gametes. If between two genes crossovers are rare, the distance between
them is small; if many crossovers typically occur, the distance is large.

Notice that genetic distance is statistical in nature. More precisely, for any
stretch of a chromosome, there is a random variable giving the number of
crossovers that occur on that piece in gamete formation. Its probability distri-
bution describes the chance of 0, 1, 2, . . . , crossovers occurring in that piece.
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The expected value of this random variable (or more simply, the expected
number of crossovers) is what Sturtevant’s average was estimating. Because
expected values are additive by Eq. (6.2), they will behave just like distances
on a map. We formalize these ideas with a definition.

Definition. The genetic distance or linkage distance between two genes on
a chromosome is the expected number of crossovers that occur between the
genes in gamete formation.

Because the expected value is an average number of crossovers, theoreti-
cally a genetic distance could take on any value from 0 upward. For physically
close genes, genetic distances will tend to be small, since crossovers are less
likely to occur, whereas for physically distant genes, distances will tend to be
larger. The type of map we will construct from crossover data is called a link-
age or genetic map. Thismapwill show the linear arrangement of the genes on
a chromosome, with genetic rather than physical distances separating genes.

Let’s see how a two-point testcross can place two genes on a linkage
map. Suppose we suspect that, in Drosophila, the genes for curved wings
c and purple eyes pr are linked. For genotypes of linked genes, we use a
special notation to keep track of which alleles are on which chromosome
in a given pair. For instance, we write c pr/c pr for a homozygous recessive
Drosophila, where the slash separates alleles inherited from different parents.
There are nowseveral differentways afly could be heterozygous at both genes;
c pr/c+ pr+ and c+ pr/c pr+ are different configurations.

As a first step in genetic mapping, we cross true-breeding, curved-wing,
purple-eyed Drosophila with true-breeding wildtype flies: c pr/c pr ×
c+ pr+/c+ pr+. Notice that all the progeny in F1 are genotypically
c+ pr+/c pr and phenotypically wildtype, since curved wings and purple
eyes are recessive traits.

Next, we cross F1 flies with curved-winged, purple-eyed flies to produce
F2. This testcross is c+ pr+/c pr × c pr/c pr , and we suppose that the data
in Table 6.11 came from such an experiment. As we noticed before, there
is a discrepancy between the data and the numbers predicted by Mendelian
genetics. Moreover, because there are two large phenotypic classes that re-
semble the parents – red-eyedwith straightwings and purple-eyedwith curved
wings, and two smaller nonparental phenotypic classes – there is evidence
for linkage.

� What are the possible genotypes of the F2 progeny in this second cross?
Which of these are parental types and which are recombinants?
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Notice how this testcrosswas designed to test for linkage and crossing over.
In the doubly recessive homozygous parent, crossing over may occur between
identical chromatids, but it has no effect on the genotype of the gamete. Such
Drosophila only create c pr gametes. In contrast, the parental-type gametes
from the heterozygous parent are cr+ pr+ and c pr , and crossing over results
in recombinants c+ pr and c pr+ that will be phenotypically detectable in
progeny.

� Why are the recombinants c+ pr and c pr+ phenotypically observable
in this cross?

Now we can estimate the average number of crossovers that occurred. Be-
cause the recombinants c+ pr and c pr+ result from a crossover, each straight-
winged, purple-eyed Drosophila, c+ pr/c pr , and each curvy-winged, red-
eyed fruit fly, c pr+/c pr , is the result of a crossover. In the testcross above,
we suspect that 133+ 129 = 262 crossovers took place.

Now, assuming all recombinants were created by a single crossover, the
recombination frequency (no. of recombinants)/(total no. of progeny) is ex-
actly the same as the average number of crossovers. Thus, the genetic distance
is estimated by

no. of recombinants

total no. of progeny
= 262

1249
≈ .21 units ≡ 21 cM.

Genetic distances are usually measured in centiMorgans (cM) in honor of
Morgan.

In our calculation, we made the assumption that all recombinants were
created by a single crossover. What if two crossovers occurred between the
genes on a chromatid with c+ pr+ and one with c pr? Then, the gametes
produced would be of parental type, and our testcross would produce no
evidence of any crossovers (see Figure 6.5). Similarly, if three crossovers
occurred between the genes, that would appear to us exactly as if only 1 had
occurred. Thus, our use of the recombination frequency may understate the
true average. Only if we believe multiple crossovers are very rare between

A B

A B

a b

a b

Figure 6.5. A double crossover producing no recombination of genes A and B.
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Table 6.12. Progeny of
gl+d+ws+/gl d ws × gl d ws/gl d ws

Phenotype No.

Normal leaves, tall, normal sheaf 301
Normal leaves, tall, white sheaf 146
Normal leaves, dwarf, normal sheaf 15
Normal leaves, dwarf, white sheaf 1
Glossy leaves, tall, normal sheaf 2
Glossy leaves, tall, white sheaf 17
Glossy leaves, dwarf, normal sheaf 154
Glossy leaves, dwarf, white sheaf 289
total 925

these genes can we believe our estimate of genetic distance is good. If the
genes are close, and the average number of crossovers is small, then our
estimation is reasonable.

Now that we have seen how testcrosses can be used as evidence for linkage
and for estimating genetic distances, let’s extend the method to locating three
or more genes on a genetic map. Consider three genes in corn plants with
recessive alleles: d for dwarf plants, gl for glossy leaves, and ws for white
sheafs. In creating a genetic map, we now have to determine the order of the
genes on the chromosome as well as find distances.

To locate the three genes, we make a three-point testcross,
gl+d+ws+/gl d ws × gl d ws/gl d ws. (Remember: The order in which the
genes are listed is not necessarily the correct order on the chromosome.) Sam-
ple data on phenotypes of progeny from such a cross is shown in Table 6.12.

The most numerous classes are parental types, indicating linkage of genes
on a single chromosome. The remaining classes must be the result of recom-
bination. Before counting the average number of crossovers, notice that we
can now observe evidence of either one or two crossovers. Because we are
mapping three genes, a first crossover could occur between the leftmost gene
and the central gene and a second crossover between the central gene and
the rightmost gene. We will use the terminology single crossover when only
one of these is observed and double crossover when both are observed.

� From Table 6.12, what are the likely phenotypes of double crossovers?
Of single crossovers?

Notice that two of the phenotypic classes are extremely rare and four of the
classes are of intermediate size. Because a double crossover ismuch less likely
than a single crossover, this identifies the phenotypic classes that correspond
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to double crossovers. Actually, we’ll be able to figure out the gene order too
now, if we examine the genotype of individual chromosomes carefully.

� If the genes are arranged along the chromosome in order gl d ws, what
gameteswouldbeproduced fromadouble crossover in the heterozygous
parent? What if they were arranged in the order gl ws d or d gl ws?

In this testcross, crossing over only effects the gametes formedbyone of the
parental strains. The parental-type gametes from this line are gl+d+ws+ and
gl d ws, with the alleles either all wildtype or all recessive. But the phenotypic
classes of the double crossovers show what the chromosome inherited from
this parent must have been. The class normal leaves/dwarf/white sheaf must
have arisen from gametes gl+d ws, and the class glossy leaves/tall/normal
sheaf from the complementary gl d+ws+.

Because the outcome of a double crossover is to exchange the middle
allele in the parental types, the only way a double crossover could produce
the gametes here is if the genes are ordered as d gl ws or ws gl d . The gl
gene must be in the middle. Figure 6.6 illustrates one possible configuration
for a three-strand double crossover in which the recombinant d+gl ws+ is
formed.

Now we are ready to estimate genetic distances. We start by finding the
distance between d and gl. Four phenotypic classes result from crossovers
between d and gl: tall/glossy leaves/white sheaf (d+gl ws) and dwarf/normal
leaves/normal sheaf (d gl+ws+) from single crossovers, tall/glossy
leaves/normal sheaf (d+gl ws+) and dwarf/normal leaves/white sheaf
(d gl+ws) from double crossovers. Thus, the recombination frequency

d
+        

gl
+        

ws
+

d
+        

gl
+        

ws
+

d   
       

gl 
         

ws

d   
       

gl 
         

ws

d
+        

gl
+        

ws
+

d
+        

gl
+        

ws
+

d   
       

gl 
         

ws

d   
       

gl 
         

ws

d
+        

gl 
         

ws
+

d
+        

gl
+        

ws

d   
       

gl 
         

ws

d   
       

gl
+
 
       

ws
+

Figure 6.6. A three-strand double crossover.
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between d and gl is

17+ 15+ 2+ 1

925
= 35

925
≈ .04.

Because this is small, we estimate the genetic distance as 4 cM .
Similarly, single crossovers between gl and ws produce phenotypes

dwarf/glossy leaves/normal sheaf (d gl ws+) and tall/normal leaves/white
sheaf (d+gl+ws). We include the double crossover phenotypic classes in
our tally, too, because a crossover occurred between the genes in them also.
Thus, the recombination frequency between gl and ws is

154+ 146+ 2+ 1

925
= 303

925
≈ .33 or 33 cM.

Thus, we estimate the genetic distance as 33 cM , but since 33 is not so small,
we may worry that this estimate is not so accurate.

Note that an estimation of the distance between d and ws requires that we
count all crossovers between the genes, so double crossovers must count as
two:

17+ 15+ 154+ 146+ 2(2)+ 2(1)

925
= 338

925
≈ .37 or 37 cM.

In particular, our estimates of genetic distance are additive, since 4 cM +
33 cM = 37 cM .

Finally, we put this together and draw the genetic map of Figure 6.7.
Return for a moment to considering only two genes, a and b. If we sus-

pect that a and b are linked, then we might breed a+b+/a b as F1, perform a
testcross with a b/a b, and calculate the recombination frequency. This fre-
quency is our estimate of the genetic distance between the genes.

Notice, however, that even if a and b are located on different chromo-
somes, a recombination frequency can still be computed. If we did not realize
they were on different chromosomes, we would count a+b and a b+ as single
crossovers. However, because the two genes assort independently, the het-
erozygous parental strain produces four types of gametes, a+b+, a+b, a b+,
and a b, in equal proportions. Thus, half the offspring in F2 will show recom-
binant genotypes and the recombination frequency will be .5. This means we
would estimate that genes on different chromosomes are 50 cM apart!

d gl ws

4 cM 33 cM

Figure 6.7. A three-gene genetic map.



6.3. Linkage 255

The error we have made is in assuming

genetic distance ≈ recombination frequency,

despite the fact that this approximation is only valid when the recombination
frequency is small. Even for genes on the same chromosome, as recombina-
tion frequencies approach .5, the true genetic distance gets larger and larger.
The approximation assumes multiple crossovers are rare, and that is only
justifiable if the recombination frequency is small.

In genetic mapping, we must map genes that are close together first, and
then build our map out from them. For example, if we want to find the dis-
tances in a chromosome with genes ordered a − b − c − d, it is better to
calculate distances between a and b, b and c, c and d , than to try to use
linkage information about only a and d. A reasonable rule of thumb is that re-
combination frequency is a good estimator of genetic distance when it is less
than .25. Genes at a distance of 50 cM or greater will assort approximately
independently, as if they were on different chromosomes.

Performing testcrosses for genetic mapping of humans is of course neither
ethical nor practical. Nonetheless, through pedigree analysis and somatic-cell
hybridization techniques, genetic maps of the longest human chromosome
have been built, with total length about 293 cM .

In addition to genetic maps, there are several other types of maps of chro-
mosomes. A physical map shows markers, which might be genes or other dis-
tinguishable features, along the chromosome. Because crossover frequency
does not correlate well with physical distance, such a map can look quite
different, despite showing the same linear ordering of genes. Sequencing a
chromosome to display the full structure of the DNA in terms of its con-
stituent bases produces the highest resolution map, though genes and other
features must be identified in a sequence to relate it to a genetic or physical
map.Despite rapid advances in sequencing, geneticmaps of the sort discussed
here will remain important because of their direct applicability to problems
of inheritance.

Problems

6.3.1. Three of Queen Victoria’s nine children by Albert are known to have
carried the X -linked allele for hemophilia. (Two of her four sons were
hemophiliacs, and one of her five daughters had a hemophiliac son.)
Neither she nor Albert were hemophiliacs.
a. Whatmust havebeen the genotypes ofVictoria andAlbert?Explain
how you can rule out all other possibilities.
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b. What was the probability of a son of Victoria and Albert having
hemophilia?Of a daughter having hemophilia?Of a daughter being
heterozygous for the allele?

c. What was the probability that exactly three of Victoria andAlbert’s
children would carry the mutant allele?

6.3.2. Using the model Morgan developed for the X -linked, white-eyed
mutant allele, compute the phenotypic ratios you would expect in
the outcome of the experiment described by the data in the middle
column of Table 6.9. Is the model in rough agreement with the data?

6.3.3. In another experiment, Morgan crossed white-eyed females to red-
eyed males.
a. What must the genotypes of these flies be?
b. What genotypes and phenotypes would be in F1? In what propor-

tions?
c. If males from F1 were crossed with females from F1, what would
be the resulting genotypes and phenotypes? In what proportion?

6.3.4. Perform a χ2-test with α = .05 to see if the observed data from the
Xt Xw × XwY in the last column of Table 6.9 is consistent with ex-
pected numbers from such a cross. (Apparently, Morgan did not per-
form such a test.)

6.3.5. Suppose a rare disease is caused by a recessive X -linked gene, and
phenotypically normal parents have a son who develops this disease.
a. If another son is born into the family, what is the probability he
will develop the disease?

b. If a daughter is born into the family, what is the probability she
will be a heterozygous carrier?

c. If there are two daughters in the family, what is the probability
both will be carriers of the mutant allele?

6.3.6. A man with X -linked color blindness marries a woman with no his-
tory of color blindness in her family. Their daughter then marries a
man with no history of color blindness and has children. What is the
probability that
a. a son in the last generation will be color blind?
b. a daughter in the last generation will be color blind?
c. exactly two of three sons in the last generation will be color blind?

6.3.7. A certain allele is known to be X -linked. Determine, to the extent
possible, genotypes of the parents and whether the allele is dominant
or recessive if the allele is expressed in the progeny by:
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a. none of the females; all of the males
b. 50% of the females; 50% of the males
c. all of the females; none of the males
d. none of the females; 50% of the males
e. 25% of the progeny

6.3.8. In a breeding experimentwith flies, a particular cross produces 105 fe-
males with mutant phenotype, 98 wildtype females, and 179 wildtype
males. Give a possible explanation for this outcome.

6.3.9. Vermilion eye color in Drosophila is caused by a recessive X -linked
gene. Black body color is caused by a recessive allele on an au-
tosome. Wildtype individuals for these genes have brick red eyes
and gray body color. What phenotypic ratios are expected from the
crosses:
a. gray females with brick red eyes heterozygous for both genes ×
black males with vermilion eyes?

b. heterozygous gray females with vermilion eyes × homozygous
gray males with brick red eyes?

6.3.10. Under a hypothesis of independent assortment of genes, the cross
resulting in the data shown inTable 6.11would be expected to produce
a 1:1:1:1 phenotypic ratio. Apply the χ2-test with α = .05 to the data
to test whether the data supports rejecting a hypothesis of independent
assortment.

6.3.11. Suppose a diploid organism has seven pairs of chromosomes, and
each chromosome has an equal number of genes on it.
a. What is the probability that two genes chosen at random lie on
distinct pairs of chromosomes?

b. Would the probability that two randomly chosen genes assort in-
dependently be greater or less than this number?

6.3.12. Suppose in the three-point test cross described by Table 6.12 you
attempt to compute the genetic distance between the d and ws genes
by first collapsing the table to only show information about these
phenotypes.

a. Create a table like Table 6.12, but with only 4 phenotypes: tall,
normal sheaf; tall, white sheaf; dwarf, normal sheaf; dwarf, white
sheaf. Fill in numbers by adding appropriate entries of Table 6.12.

b. Use your table to estimate the genetic distance.
c. Why does this not agree with the estimate in the text? What is
incorrect about this approach?
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6.3.13. Two recessive alleles, su for sugary kernels and gl for glossy leafs,
are known to exist in certain corn plants. A testcross su+gl+/su gl ×
su gl/su gl is performed to test for linkage. The progeny are: 198
wildtype, 228 sugary/glossy, 39 sugary, and 35 glossy. Is there evi-
dence for linkage? If so, what is the recombination frequency between
the loci for su and gl?

6.3.14. In Drosophila, the genes with recessive alleles sn for singed bristles
and m for miniature wings are located approximately 15 cM apart.
a. What sort of gametes, and in proportions, can be formed by

sn+m+/sn m?
b. If Drosophila with genotype sn+m+/sn m are intercrossed, what

phenotypes, and in what proportion, are the progeny?

6.3.15. Suppose two genes with alleles a and b are located 10 cM apart.
On a different autosome, two other genes with alleles c and d are
located 14 cM apart. Suppose individuals with genotype a+ b+/a b,
c+d+/c d are crossed with individuals, homozygous recessive for
each of these genes. What phenotypes, and in what proportions, are
represented in the progeny?

6.3.16. Suppose two genes with alleles, a and b, are linked. In a heterozy-
gote, there are two possible configurations for the chromosomes. If
the genotype is a+b+/a b, the arrangement is called a coupling or
cis configuration. If the genotype is a+b/a b+, the layout is known
as a repulsion or trans configuration. Is it possible to use a trans
configuration in genetic mapping? Why or why not?

6.3.17. Experimental evidence indicates that crossing over seems to be less
likely near the ends or the centromere of a chromosome. Suppose two
genes, a and b, are located near the centromere of a chromosome,
about 5 cM apart. Two other genes, c and d , are located about 5 cM
apart and about 40 cM away from the centromere. Which physical
distance, that separating a and b, or c and d, is likely to be greater?
Explain.

6.3.18. For two genes on a chromosome, give an example of a tetrad crossover
configuration that results in recombinant gametes only.Why can’t any
tetrad configuration produce one parental-type and three recombinant
gametes?

6.3.19. Suppose in a certain plant species, three genes are known to be linked.
The recessive alleles for these genes are a for amethyst flowers, b for
brown stalks, and c for curved leaves. Plants are bred with genotype
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(a+b+c)/(a b c+), where the parentheses indicate that the order of the
genes is unknown. In a testcross with (a b c)/(a b c), two phenotypic
classes occur in much smaller numbers: wildtype and plants with
amethyst flowers, brown stalks, and curved leaves.What is the correct
gene order?

6.3.20. In Drosophila, the genes with recessive alleles cl for clot eyes, dp for
dumpy wings, and rd for reduced bristles are known to be linked.
a. Give twodifferent examples of appropriate testcrosses to determine
the order of these genes.

b. Suppose the phenotype wildtype eyes, dumpy wings, and reduced
bristles corresponds to a recombinant from a double crossover,
where the heterozygous parent had genes in the (cl+dp+rd+)/
(cl dp rd) configuration. What is the correct gene order?

6.3.21. Suppose in a certain species three genes are linked, with alleles e
for enlarged eyes, h for hairy legs, and p for prickly antennae. The
wildtypes for these genes are normal eyes, hairless legs, and smooth
antennae. Suppose e h p is the correct gene order with e and h are
located 12 cM apart and h and p are located 15 cM apart. In an exper-
iment, e+h p/e h+ p+ individuals are testcrossed with triply homozy-
gous recessive individuals. What are the phenotypes of the offspring
and in what frequencies should these phenotypes occur?

6.3.22. For X -linked genes, you can also analyze three-point testcrosses.
In Drosophila, the alleles for cut wings ct , sable body s, and ver-

milion eyes v all determine recessive traits that are X -linked. The
wildtype traits are long wings, gray body, and red eyes. Table 6.13
gives the results of a testcross of (ct+s+v+)/(ct s v) females with
(ct s v) males. Parentheses here denote unknown gene order.

Table 6.13. Progeny of
(ct+s+v+)/(ct s v)× (ct s v)

Phenotype No.

Long wings, gray body, red eyes 723
Long wings, gray body, vermilion eyes 8
Long wings, sable body, red eyes 71
Long wings, sable body, vermilion eyes 125
Cut wings, gray body, red eyes 105
Cut wings, gray body, vermilion eyes 106
Cut wings, sable body, red eyes 5
Cut wings, sable body, vermilion eyes 776
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a. Notice that no data are presented on the sex of the progeny, despite
the fact that X -linked genes are being investigated. Explain why it
is not necessary to give that information.

b. Does the data give evidence for linkage between the three genes?
Explain.

c. Determine the order of the three loci ct , s, and v and estimate the
distances between them on a linkage map.

6.3.23. The occurrence of one crossover on a chromosome can inhibit the
likelihood of a second crossover occurring nearby. This phenomenon,
interference, typically takes places at distances less than 20 cM .

On chromosome III in Drosophila, the genes cu for curled wings,
Sb for stubble bristles, and e for ebony body are located at 50.0 cM ,
58.2 cM , and 70.7 cM , respectively. Suppose 2,000 fruit-fly progeny
result from a three-point testcross.
a. Assuming only single crossovers can occur between consecutive
pairs of these genes, and that there is no interference, what is the
expected number of double crossovers between cu and e?

b. If interference occurs, then the observed number of double
crossovers is less than expected. Define the coefficient of coinci-
dence, c, to be the ratio observed number of double crossovers:
expected number of double crossovers. If only three double
crossovers are observed, what is the coefficient of coincidence?

c. The level of interference is measured by I = 1− c. Explain why
I is a reasonable way to quantify interference. If there is no inter-
ference, what is the value of I?

d. What is the level of interference in the testcross above?

Projects

1. Use the outcomes of simulated experiments to map genes.
The MATLAB program genemap will perform simulated 2- and 3-

point crosses for 6 autosomal genes in Drosophila. (It is easily modified
to simulate data for mouse genes as well.) Perform a number of such
crosses and construct a genetic map from your results.

Suggestions
� Pick a reasonable number of progeny to produce, keeping in mind the
laboratory and time resources necessary for real experiments.

� Record all the data from each of your crosses, to present it as support
for your map.

� These genes may or may not all be on the same chromosome.
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� Because in a laboratory experiment, each cross could require much
time and labor, try to keep the number of crosses you do relatively
small while still gathering sufficient data. Also, 3-point crosses should
be viewed as more work than 2-point ones, since they would require
more breeding to prepare the lines.

� Once you have produced a genetic map, use it to predict the outcome
of some crossing experiments you did not do previously. Then perform
the experiments. Are the results consistent with your map? Explain any
discrepancies.

� If you repeat your work using crosses that produce 10 times as many
progeny, how does that affect your map? Of which map would you be
more confident?

� Can you back up a claim that several genes are on different chromo-
somes with evidence? Can you back up a claim that several genes are
on the same chromosomes with evidence?

6.4. Gene Frequency in Populations

So far, we have focused on one parental cross at a time in our models of
genetics. As valuable as this may be for basic biological understanding, and
for medical applications, it has neglected the larger picture. In evolution,
the genetic make-up of species and populations may change over time. Some
traitsmaybe lost, other newones arise,while somepersist unchanged. Though
chance plays a large role in the inheritance of traits in a single parental cross,
understanding how this plays out in the evolution of a population requires
mathematical modeling.

Suppose several alleles of a gene are present in a population. You might
imagine a gene that determines eye color, or one that can affect the fertility
of its carrier. Does the proportion of each allele change over time, or does it
remainfixed?The answermight dependon theparticular gene, of course, since
an allele decreasing fertility seemsmore likely to disappear from a population
than one that affects a more superficial trait such as eye color. Nonetheless,
alleles that seem innocuous are observed to disappear from certain breeding
populations.

We’ll first study a type of equilibrium of genetic composition of a popula-
tion and then investigate models of two forces tending to change the compo-
sition.

Let’s focus on a single gene in a large population. To describe the variabil-
ity of this gene among the population members, we use allele frequencies.
Although technically these are relative frequencies, or the proportions of all
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alleles that are of a certain type, we will use the simpler term “frequency”
throughout this section.

The M N blood typing system in humans provides a good example of how
we can estimate allele frequencies. The presence of each of the alleles M and
N can be detected through antigen tests.Apersonwith genotype M M has type
M blood, and a person with genotype N N has type N blood. A heterozygote
M N will test positive for both alleles and so has type M N blood. (The two
alleles M and N are thus codominant, as both are equally expressed in the
phenotype.)

Suppose, in a certain population, that 60 individuals have type M blood,
101 individuals type M N blood, and 53 individuals type N blood, for a
total population size of 214. Because each person carries two alleles of the
gene, there are a total of 2(214) = 428 alleles in this data. To determine the
frequency of M alleles, we note that each person of M blood type carries 2,
those of type M N carry 1, and those of type N carry 0. Thus, the frequency
of the alleles is

M :
2(60)+ 1(101)

428
≈ .52, N :

1(101)+ 2(53)

428
≈ .48,

and of course these add to give 1.
Notice the genotype frequencies in this population are

M M :
60

214
≈ .28, M N :

101

214
≈ .47, N N :

53

214
≈ .25.

We can use these to calculate allele frequencies also, but because each geno-
type involves 2 alleles, we have to divide by 2 to account for the change in
the number of objects:

M :
2(.28)+ 1(.47)

2
= .28+ 1

2
(.47) ≈ .52,

with a similar calculation giving the frequency of N .

Random mating and Hardy-Weinberg equilibrium. Suppose now we
have a large populationwith the allele frequencies of the M and N blood types
as calculated above. As new generations are produced, do these frequencies
change?

To explorewhatmight happen in future generations, we have tomake some
assumptions about the mating process. The simplest model, random mating,
is that the genotypes of offspring are determined by the random pairing of all
gametes that might be produced from current organisms. This means a given
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gamete is equally likely to unite with any other gamete. Because our model
does not track the sex of the source of the gamete, this is of course impossible
for many organisms. However, assuming allele frequencies are the same in
the two sexes makes the model more reasonable.

Under the random mating model, the probability of various genotypes
occurring in the next generation can be calculated simply; just multiply
the appropriate allele frequencies. Since picking two gametes to unite can
be viewed as two independent events, the multiplication rule of probabil-
ity applies. For instance, using the previously described blood type allele
frequencies, the probability that an arbitrary zygote has genotype M M is
(.52)(.52) = .2704, because .52 is the probability of picking a gamete with
the M allele. Similarly, the expected frequency of the N N genotype in the
offspring is (.48)(.48) = .2304. Since the M N genotype can be formed in two
ways, M N or N M , we find, by the addition rule for disjoint probabilities,
that expected frequency is 2(.52)(.48) = .4992.

Notice that we could have used binomial probabilities in calculating the
genotype frequencies instead. For instance, if we define a success as having
an M allele, then p = P(S) = .52, q = .48, the number of trials is n = 2,
and the frequency of the M N genotype is

P(one success in two trials) =
(
2

1

)
(.52)(.48).

� Compare the genotype frequencies of the new generation, .2704, .4992,
and .2304, with the original. Did they change? How?

Now, let’s calculate the allele frequencies in the new generation:

M : .2704+ 1

2
(.4992) = .52, N :

1

2
(.4992)+ .2304 = .48.

Remarkably, these allele frequencies are exactly the same as the original ones.
Although the genotype frequencies changed a bit, the allele frequencies did
not change in the new generation.

� Repeating these calculations for a third generation would produce ex-
actly the same allele frequencies and genotype frequencies as in the
second generation. Explain why.

Under random mating, then, we have found that the allele frequencies
are in a state of equilibrium. This equilibrium is called the Hardy-Weinberg
equilibrium, after the British mathematician Hardy and the German physician
Weinberg who independently discovered it.
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Let’s work more theoretically with the allele frequencies to see why such
an equilibrium state exists. We continue to focus our attention on a diallelic
gene, with alleles a+ and a. Let p denote the frequency of a+ in the population
and q the frequency of a, so p + q = 1. The assumption of randommating is
what allows us to calculate the frequency of a+ in the next generation: each
allele in a second generation individual is a+ with probability p, or a with
probability q.

In the next generation, then, the allele a+ occurs in genotypes a+a+ and
a+a, which have frequencies, p2 and 2pq , respectively. However, only half
of the alleles in a+a genotypes are wildtype. Thus, the frequency of the allele
a+ in the progeny equals

p2 +
(
1

2

)
2pq = p2 + pq = p(p + q) = p(1) = p,

and the allele frequencies are constant from generation to generation.

� Whether the assumption of random mating is reasonable for humans
might depend onwhat gene is being considered. Give examples of some
traits for which you think it is reasonable and some for which it might
not be.

� If a population is in Hardy-Weinberg equilibrium, what sorts of things
not included in our model might move it away from equilibrium?

You might have noticed in the M N blood typing examples previously
described that codominance allowed us to detect heterozygotes in the pop-
ulation and then to compute both genotype and allele frequencies. If a gene
has a completely dominant allele, however, it may be difficult to distinguish
between homozygous dominant and heterozygous individuals. Nonetheless,
if we assume the population is in Hardy-Weinberg equilibrium, we can still
estimate allele and genotype frequencies.

For example, in the United States, approximately 1 in every 3,700 individ-
uals suffers from cystic fibrosis, the most frequent serious genetic disease of
childhood, causing severe respiratory and digestive problems. Because cystic
fibrosis is caused by a recessive autosomal allele, we estimate the frequency
of homozygous recessives is 1/3700. Thus, we estimate

q2 ≈ 1

3700
, so q ≈ 1√

3700
≈ .0164 and

p = 1− q ≈ 1− .0164 = .9836.

With these values, an estimate for the proportion of heterozygotes in the
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population is 2pq = 2(.9836)(.0164) ≈ .0323. In other words, roughly 3%of
the population carries the mutant allele without showing signs of the disease.

In nature, many alleles are not in Hardy-Weinberg equilibrium. In fact,
evolution occurs through changing allelic frequency; so, if all genes were
in equilibrium, there could be no evolution. Indeed, many real-life circum-
stances lead to non-equilibrium situations: In a certain population, mating
might fail to be random with particular phenotypes preferring to mate with
similar phenotypes (assortative mating), or individuals might migrate into or
out of a subpopulation, disrupting an equilibrium. Differences in viability
or fertility may result in certain genotypes having a higher survival rate and
being more likely to reproduce. Spontaneous mutations may introduce new
alleles into a population, changing allele frequencies. Even the size of a popu-
lation may alter allele frequencies, because random forces may influence the
genetic makeup in small populations. Although a Hardy-Weinberg equilib-
rium is appealing mathematically, it is not a long-term feature of the natural
world.

Fitness and selection. Mutation andnatural selection, twopotent forces of
evolutionary change, bring about changes in allele and genotype frequencies.
Mutations produce new alleles, and organisms with a new genotype may have
a changed ability to survive and reproduce. Only the genes of organisms that
successfully produce offspring appear in future population members. Genes
of organisms that are less well adapted to their environment may be passed
along to the next generation in smaller numbers. Thus, the gene pool may
be in constant flux as mutations introduce variability that selection may then
weed out.

Geneticists use the term fitness for a measure of the ability of an organism
to survive and reproduce. Suppose, for two alleles of a gene, A and a, an
individual with genotype AA is the most fit. Then, we will define its relative
fitness, wAA, to be 1, and assign fitness values wAa and waa between 0 and 1
to the other two genotypes. For example, if relative fitness values are given
by

wAA = 1, wAa = .98, waa = .92,

then in this species the most fit genotype is AA, and heterozygotes are more
fit than aa homozygotes.

� With these fitness values, do you think the allele frequency of A will
increase or decrease over time?
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Of course, there are many other possible relationships between relative
fitness values. If A is completely dominant over a, and fitness depends on
phenotype, then wAA = wAa . If the homozygous recessive genotype is more
fit, then we have waa = 1 and 0 ≤ wAA = wAa < 1. In the exercises, some
of the many other cases will be investigated.

Although relative fitness can describe selective advantage, sometimes al-
ternate terminology is used, focusing on the selective disadvantage of a geno-
type. A genotype with relative fitness w is said to have selection coefficient
s = 1− w. In our previous example, the selection coefficients are 0, .02, and
.08, respectively. With a selection coefficient of .08, we see that the homozy-
gous recessive genotype is the genotype whose members will pass on the
fewest genes to progeny.

We can now model how allele frequencies change because of selection.
Suppose that A occurs with frequency p in the population, so a occurs with
frequency q = 1− p. Our model will track how p changes with time, under
the assumption that mating is random.

At fertilization, gametes randomly unite to produce genotypes AA, Aa,
and aa, in proportions

p2, 2pq, q2.

The relative fitness values then account for the competition in survival and
reproduction between the genotypes as these zygotesmature and produce new
gametes. Thus, the measures of the contribution of each of these genotypes
to the next collection of gametes are the products

wAA p2, wAa2pq, waaq2.

Now, because the relative fitness coefficients are less than or equal to 1, we
see

wAA p2 + wAa2pq + waaq2 ≤ p2 + 2pq + q2 = (p + q)2 = 1.

Therefore, wemust renormalize (i.e., divide through by the quantitywAA p2 +
wAa2pq + waaq2) to calculate the successful contribution of gametes to the
genotype proportions of the next generation, obtaining

wAA p2

wAA p2 + wAa2pq + waaq2
,

wAa2pq

wAA p2 + wAa2pq + waaq2
,

waaq2

wAA p2 + wAa2pq + waaq2
.

Finally, because all the alleles contributed by the AA genotype are A, but
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only half the alleles contributed by the Aa genotype are, we find

pt+1 = wAA p2t
wAA p2t + wAa2pt qt + waaq2

t

+ 1

2

wAa2pt qt

wAA p2t + wAa2pt qt + waaq2
t

= wAA p2t + wAa pt qt

wAA p2t + wAa2pt qt + waaq2
t

� Express this in terms of pt alone, with no qt .

Let’s consider a concrete example. Suppose, initially, 70% of the alleles
are A. Thus, p0 = .7 and q0 = .3. If all genotypes are equally fit, thenwAA =
wAa = waa = 1, and we find

p1 = p20 + p0q0
p20 + 2p0q0 + q2

0

= .49+ .21

1
= .7,

which illustrates theHardy-Weinberg equilibrium. If, however, relative fitness
values wAA = 1, wAa = .98, and waa = .92 describe the genotypes, then

p1 = p20 + (.98)p0q0
p20 + (.98)2p0q0 + (.92)q2

0

= .49+ (.98).21

.9844
= .7068.

As you might expect, the allele frequency of A has increased slightly, from
.7 to .7068, at the expense of the allele a.

Iterating the model over a few generations produces Figure 6.8. Since the
genotypes are increasingly fit according to the presence of the allele A, over
many generations A becomes fixed in the population and the recessive allele
dies out.

Thismodel becomes evenmore interesting for parameter choiceswhere the
outcome is less intuitive.What might happen if a recessive allele was themost
fit? Would it be fixed eventually, or would the fact that it was only expressed
in homozygotes give it too weak an influence to eventually predominate? Or,
what if the heterozygotes were the most fit genotype? The outcome of such a
situation is hard to predict without a mathematical model. These questions are
not simply a result of mathematical curiosity, as a few biological examples
show:

� In a certain species of moths, a dominant allele is associated with dark
coloring. Homozygous recessives are light-colored. If a moth population
lives in a forest with dark-colored trees, the light-colored moths are at a
competitive disadvantage, as their predators can more easily see them. If
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Figure 6.8. Allele frequencies of A (top) and a (bottom); relative fitness valueswAA = 1,
wAa = .98, and waa = .92.

the tree bark tends to be lighter-colored, then light-colored moths are more
likely to survive.

� In humans, the often-fatal disease sickle-cell anemia is associatedwith a ho-
mozygous recessive genotype. In certain parts of the world, the recessive
allele is quite common – by some estimates about as high as 19%. Re-
searchers have discovered that heterozygotes have an increased resistance
to malaria, and thus a greater fitness in a tropical climate.

In the exercises, we will explore a number of scenarios for the effects of
natural selection:

Selection for A: favors the dominant allele and associated phenotypes.
Selection against A: favors homozygous recessives.
Heterozygote Advantage or Overdominance: favors heterozygotes at the
expense of homozygotes.

Homozygote Advantage: favors homozygotes, at the expense of heterozy-
gotes.

The frequency of an allele may rise or fall, depending on the forces of
selection.

Genetic drift. So far, ourmodels addressing allele frequencies have tacitly
assumed that the population under study was large. For instance, we assumed
we were modeling a large population when we argued that because a certain
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Table 6.14. Probabilities That Exactly k of 4 Alleles Are A

k 0 1 2 3 4
P(k) .0625 .25 .375 .25 .0625

proportion of the gametes had an allele, then the same proportion of the ga-
metes that successfully united would have that allele. Even if half the gametes
have an allele A, if we randomly pick gametes to unite, we might pick more
or less than half As to form the next generation. In a small population, any
deviation from half might be proportionally large, and thus proportionally
greater than you are likely to have in a large population. In other words, small
populations are more greatly affected by chance than are large ones.

For a concrete illustration of this, imagine a very small population of 2
individuals of genotypes Aa and Aa. Then, the alleles A and a appear in the
gamete pool in proportions .5 and .5, and so random mating implies that each
offspring will have genotype AA (or aa) with probability .25, and genotype
Aa with probability .5.
However, if the new generation also has size 2, then to determine the alleles

in this generation, we simply pick four specific gametes out of the pool. Using
the binomial distribution, the probability of having exactly two of each allele
in the next generation is

(
4

2

)
(.5)2(.5)2 ≈ .375.

Thismeans that the probability that the allele frequencies remain stable is only
37.5%, and the more likely scenario is that allele frequencies will change.
Furthermore, any change in the allele frequency must be at least .25, because
there are only four alleles total in this small population. Thus, a reasonably
large change is quite likely.

It might seem that this result contradicts the ideas underlying the Hardy-
Weinberg equilibrium for allele frequencies. However, calculating the prob-
abilities that exactly k of 4 alleles are A for k = 0, 1, 2, 3, and 4 as in Table
6.14, we see the most likely outcome is that the allele frequencies represented
in the two offspring will be p = q = .5, the same frequencies of the parental
generation and just as Hardy-Weinberg predicts. However, this most likely
outcome is not very likely.

If a population is large – say 3,000 heterozygotes producing 3,000 off-
spring – then producing a table like Table 6.14 also shows that some change
in allele numbers is likely. However, the likely size of this change is much
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Figure 6.9. Two examples of genetic drift; population size N = 30.

smaller proportionally than for the two individual case. Rather than changes
in allele frequencies of magnitude .25, tiny changes typically occur. Thus,
the Hardy-Weinberg values are a more accurate estimate of what actually
happens.

For large populations, we lose little by ignoring chance fluctuations. If
a population is small, then chance fluctuations are much more important
and may in fact predominate. The phenomenon of chance changes in allele
frequencies dominating other factors in small populations is known as
genetic drift.

Genetic drift may be modeled by fixing a population size N and initial
allele frequencies. Then, a new generation of alleles is chosen according
to the probabilities calculated by the binomial distribution. Using the new
allele frequencies, this process is repeated for the next generation, and so on.
Because of the random choices made at each generation, no two simulations
are likely to be identical.

Figure 6.9 shows two simulations of allele frequency p over a number of
generations. In both plots, the population is small, N = 30, and the initial
value is p = .5. Notice the random fluctuation of the frequency p, and that
whether the allele remains fixed in the population or is removed entirely is a
matter of chance.

Using only concepts introduced here, it is easy to imagine a more sophis-
ticated model that combines genetic drift with selection. But models of genes
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with more alleles, or of several genes that collectively determine traits affect-
ing fitness, are also possible. Modeling the creation of new alleles through
mutation, along with their possible elimination or fixation through selection,
also leads to interesting insights. We have really only scratched the surface
of mathematical models in population genetics.

Problems

6.4.1. An autosomal recessive allele ct causes curly tails in mice. Suppose,
in a certain population of 450 mice, 441 mice have normal tails and 9
have curly tails, and that the allele frequencies are in Hardy-Weinberg
equilibrium.
a. Estimate the allele frequency of ct .
b. What percentage of the mice population is heterozygous for this

gene?

6.4.2. Color blindness is an X -linked trait that occurs in about 8% of human
males.
a. Give the allele frequencies for this gene. (Assume the frequencies

p and q are the same in both genders, and are in equilibrium.)
b. Approximately what percentage of the female population is color

blind? What percentage of the female population with normal vi-
sion carries the mutant allele?

6.4.3. Suppose a randomly mating population segregating two alleles is in
Hardy-Weinberg equilibrium.
a. What are the allele frequencies p and q if the frequency of het-
erozygotes is .4? If the frequency of heterozygotes is H?

b. Express the frequency of heterozygotes in terms of p. What values
of p and q maximize this frequency? (Either graphing or calculus
can be used to answer this.)

6.4.4. There is a strong connection between certain powers of polynomials
and genotype frequencies in simple situations.
a. Expand the binomial power (p + q)2 and explain the meaning of
each summand in terms of genotype frequencies for a diallelic
gene.

b. If a gene has multiple alleles, multinomial expansions are related
to genotype frequencies. Suppose a gene has 3 alleles, occurring
in frequencies p, q, and r . Expand (p + q + r )2 and relate each
term in the expansion to genotype frequencies.

c. Does the concept of a Hardy-Weinberg equilibriummake sense for
the 3 allele situation? Explain.
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6.4.5. The genetics of the ABO blood typing systemwas explained in Prob-
lem 6.1.16.
a. In ABO blood-typing studies in an isolated community, 32% of
the population have type A blood, 15% type B blood, 4% type AB
blood, and 49% type O blood. Determine the allele frequencies
I A, I B , and I O in this community.

b. In the United States, approximately 40% of the population have
type A blood, 11% type B blood, 5% type AB blood, and 44% type
O blood. Give the system of equations that describes the blood-
type frequencies in terms of the allele frequencies I A, I B , and I 0.
Can you solve this system? If not, explain the difficulty and its
biological implications.

6.4.6. Suppose a gene has 3 alleles in equilibrium in a randomly mating
population. To find allele frequencies for the population, what is the
minimum number of phenotype frequencies you must know? Answer
the same question for n alleles.

6.4.7. Although a Hardy-Weinberg equilibrium may exist in a well-mixed
population, over expansive geographic areas, natural barriers often
cause variations in local equilibrium frequencies.

Suppose two lakes separated by a short distance are populatedwith
the same species of fish and that both lakes are in an equilibrium state.
In the first lake, the frequency of a particular allele a+ is p1. In the
second lake, the frequency of a+ is p2. After a flood, the two lakes
are merged, and one lake is formed. Suppose both lakes contained the
same number N of fish.
a. What is the frequency p of the allele a+ in the fish in the large lake
after the flood?

b. What are the genotype frequencies immediately after the flood?
What would a Hardy-Weinberg equilibrium predict for the geno-
type frequencies? Explain why these two answers do not agree.

6.4.8. Show the selection model simplifies considerably if wAA = wAa =
waa = 1. Using these relative fitness values, give the simplest formula
possible for pt+1 in terms of pt . Explain the relationship of your
formula to Hardy-Weinberg equilibrium.

6.4.9. Investigate the behavior of the selection model experimentally, using
a computer program such as onepop, for each set of relative fitness
values below. Describe your observations on the model’s behavior,
including likely equilibria and their stability. Are the behaviors you
see biologically reasonable?
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a. wAA = 1, wAa = .98, and waa = .92 (dominant advantage)
b. wAA = .92, wAa = .98, and waa = 1 (recessive advantage)
c. wAA = 1, wAa = .92, and waa = 1 (homozygous advantage)
d. wAA = .92, wAa = 1, and waa = .92 (heterozygous advantage).

6.4.10. In mice, homozygotes for the yellow-lethal allele, Y l , die in embry-
onic stage, while heterozygotes have yellow fur. What are reasonable
values to use in the selection model for the selection coefficients for
the three genotypes? Use a computer program such as onepop to in-
vestigate the model, and describe your results. Does the allele persist
in the population?

6.4.11. Relative fitness values wAA = 0, wAa = waa = 1 describe a special
case of the selection model.
a. Interpret these biologically.
b. Show that with these values the model is simply

pt+1 = pt

1+ pt
.

c. Show that the explicit formula

pt = p0
1+ tp0

, t = 1, 2, 3, . . .

gives allele frequencies for this model.

6.4.12. Relative fitness values wAA = wAa = 1, waa = 0 describe a special
case of the selection model.
a. Interpret these biologically.
b. Give the simplest formula you can expressing pt+1 in terms of pt .
c. Find an explicit formula for pt in terms of p0 and t .

6.4.13. Find all equilibria for the selection model as follows:
a. Express the equilibrium equation that p∗ must satisfy in the form
of a cubic polynomial = 0. This shows there are at most three
equilibria.

b. Two equilibria are easy to guess. (What possible allele frequencies
would not change, nomatter what the relative fitness values were?)
What are they?

c. Use your guesses in part (b) to help you factor the cubic polynomial
in part (a) completely.

d. Use part (c) to show the third equilibrium can be written as

(waa − wAa)

(waa − wAa)+ (wAA − wAa)
.
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6.4.14. The third equilibrium for the selection model that was found in the
preceeding problem is only biologically meaningful if it is a possible
value for an allele frequency.
a. Explain why the third equilibrium is only biologically meaningful
if

(waa − wAa)(wAA − wAa) > 0.

b. Explain why the third equilibrium is only biologically meaningful
if either wAA > wAa and waa > wAa (homozygote advantage), or
if wAA < wAa and waa < wAa (heterozygote advantage).

6.4.15. Use a program such as cobweb to investigate the stability of the se-
lection model equilibria under the following conditions. Use a variety
of parameter choices for each. Express your conclusions in biological
terminology.
a. wAA > wAa and waa > wAa (homozygote advantage)
b. wAA < wAa and waa < wAa (heterozygote advantage).

6.4.16. In the selection model, the quantity

wt = wAA p2t + wAa2pt qt + waaq2
t

is called the mean fitness of the population at time t . It is possible to
show that wt+1 ≥ wt . Why is such a result reasonable biologically?

6.4.17. Use a computer program, such as genesim to explore the phe-
nomenon of genetic drift. For a population of size N = 30, begin
with equal allele frequencies and do several simulations. Repeat for
N = 300 and N = 3000. Describe your observations on how popu-
lation size affects drift.

6.4.18. The program genesim canmodel genetic drift with selection effects
due to varying relative fitness levels of genotypes. For a population
size that exhibits strong driftwhen all genotypes have the samefitness,
run simulations with interesting choices of relative fitness values. De-
scribe your observations and discuss whether they seem biologically
reasonable.

6.4.19. What is the expected value of the number of A alleles in the situation
described by Table 6.14? How does this fit with the idea of Hardy-
Weinberg equilibrium?

6.4.20. In a population of size N , if genetic drift causes changes in allele
frequencies p and q, then genotype frequencies change, too. One way
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to measure the effect of genetic drift is by monitoring the frequency
H of heterozygotes, the heterozygosity, of a population.
a. If genetic drift tends to eliminate an allele, what will the effect be
on the value of H over time? Explain.

b. A goodmodel (whichwewill not justify here) to describe the effect
of genetic drift on the heterozygosity of a population is Ht+1 =
(1− 1

2N )Ht . Use the program onepop to explore the effect of
population size on genetic drift and heterozygosity. Start with an
initial value of H0 = .5 and vary the population size N . What
happens to H if N = 100? If N = 1,000? If N is huge? How
would your answers change if the initial value was H0 = .2 or
H0 = .9?

c. Give a formula for Ht in terms of N , H0, and t .

Projects

1. Investigate the phenomenon of genetic drift in a simulated population.
Study a gene with two alleles, A and a, that occur in a diploid pop-

ulation of size N in frequencies p and q. Assume that these alleles are
selectively neutral (i.e., the resulting genotypes are all equally fit).

Use the MATLAB program genesim to observe changes in allele
frequencies in a simulated population over a number of generations.
This program assumes that the population size N remains constant from
generation to generation and that mating is random.

Explore the effect of genetic drift on allele frequencies under a variety
of assumptions.
� The population size N is small, medium, or large.
� The initial allele frequency of A is p0 = .5, p0 > .5, or p0 < .5.

The main issues to consider are:
1. What happens to the allele frequency p over the long run? Is it stable?

Does the allele A become fixed in the population? Is A eliminated
entirely? If either of these happens, how quickly does it occur?

2. How does the population size affect your answer to question 1 above?

Suggestions
� To get a feel for the effects of genetic drift, use the program genesim
to explore changes in allele frequencies for lots of reasonable choices
of N and p0. Make a note of any unusual behavior and try to explain
it.
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� After a large number k of generations, how does the allele frequency
pk compare with p0? Is there a tendency for fixation or elimination of
an allele? Explore this question for different population sizes.

� If p0 = .5, how likely is it that A becomes fixed in the population?
For fixed N , do many simulations, record the results, and from them
estimate the probability of fixation. Repeat for other N .

� Investigate the last question for specific p0 > .5 and p0 < .5.
� Does genetic drift tend to increase or decrease genetic variation within
a population? How does the population size affect your answer?

� If one population is separated into two populations by migration (early
humans leaving Africa; farm-raised fish being released into two lakes),
what effect might genetic drift have on the variability between the two
populations?

� If you perform many genetic drift simulations for a fixed value of p0
and N and average the values p50, what will you get? Does your answer
depend on the initial value p0? N?

2. For a gene with two alleles, A and a, both the simple selection model and
genetic drift often lead to fixation of one of the alleles and elimination
of the other. Why, then, do we observe so many genes with multiple
alleles in real populations? Are all of them either selectively neutral, or
in populations so large that drift is negligible?

Explore and discuss one or more of the following models that offer
further reasons for the stability of polymorphic genes.
� Heterozygote advantage: In this selection model, wAa > wAA and

wAa > waa . (This is the mechanism by which the persistence of the
sickle cell allele is generally explained.)

� Frequency-dependent selection: In this type of selection model, the
fitness coefficients depend on allele frequencies. One example is

wAA = 1− up2, wAw = 1− u2pq, waa = 1− uq2,

for some value of u between 0 and 1. In this model, the more prevalent
an allele is, the less its fitness. (In certain plants, pollen with one allele
can only successfully fertilize plants with other alleles, giving rare
alleles an advantage.)

� Mutation-selection balance: This model modifies the classical selec-
tion model to account for recurrent mutations that continually renew
the stock of an allele that might otherwise disappear. For instance, if
a fraction µ of alleles that would have been A in each new generation
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mutate to a, and pt tracks the frequency of A, such a model is

pt+1 = wAA p2t + wAa pt qt

wAA p2t + wAa2pt qt + waaq2
t

(1− µ).

Suggestions
� Investigate these models experimentally using onepop and cobweb
for a variety of parameter choices. Describe your observations and
insights.

� If possible, compute equilibria for themodels and discuss their stability.
(If you cannot do this in general, at least do it for a few parameter
choices, or bymaking special choices, such aswAA = wAa = 1, waa =
1− s in the selection-mutation model.)

� Meiotic drive, the preferential creation of gametes of a certain type, is
another mechanism that can lead to polymorphic stability. Modify the
basic selection model to take meiotic drive into account and analyze
your model.





7

Infectious Disease Modeling

Throughout history, devastating epidemics of infectious diseases have wiped
out large percentages of the human population. In the mid-fourteenth century,
the BlackDeath, a plague epidemic, killed roughly one-third of Europe’s pop-
ulation. More recently, in 1918, an outbreak of the flu killed an estimated 20
million people, more people than died in all ofWorldWar I. In our own times,
the acquired immune deficiency syndrome (AIDS) pandemic has brought un-
told personal suffering and social losses. The Centers for Disease Control
(CDC) estimates that, from 1981 to 2001, approximately 21 million people
died from AIDS worldwide. Millions of people all over the world are cur-
rently infected with the human immunodeficiency syndrome (HIV) virus,
about 95% of them in developing countries.

Althoughmedical advances have reduced the consequences of some infec-
tious diseases, preventing infections in the first place is preferable to treating
them. The development of vaccines gives us not only a means of protecting
ourselves as individuals, but also, and perhapsmore importantly from a public
health view, a means of preventing sudden and widespread outbreaks.

Once a vaccine is developed, how should it be used? Should everyone in
a society be required to be immunized for certain illnesses, regardless of their
personal desires? Is the cost of an immunization program worthwhile if a
vaccine is expensive or difficult to administer? If only those facing the highest
risk of a disease are immunized, will that be sufficient to prevent epidemics?
If a vaccination carries health risks to those who receive it, when are these
risks worthwhile? What groups, either in terms of age or social interactions,
should be targeted by vaccination programs? Questions of this sort cannot be
answered simply. Individual features of diseases and societies must be taken
into account. However, understanding the dynamics of disease transmission is
essential to addressing them, andmathematical modeling can play a role here.

Once a model has been formulated that captures the main features of the
progression and transmission of a particular disease in a population, it can

279
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be used to predict the effects of different strategies for disease eradication or
control. Although political, social, and economic factors play a large role in
setting public health policies, understanding the dynamics of contagion is an
important step. The worldwide eradication of smallpox, through a carefully
developed vaccination campaign initiated by the World Health Organization
in 1967, is a remarkable example ofwhat can be achievedwith awell-designed
plan. Infectious disease modeling, though often inexact, has enormous poten-
tial to help improve human lives.

Earlier in this book, we have discussed the simplest mathematical models
used by biologists to understand interacting populations. Now we further
develop those ideas in the particular context of infectious disease. We will
focus on giving meaningful interpretations of the key parameters that appear
in epidemic models. Once we have a basic framework for describing disease
transmission, we’ll see how various vaccination levels can prevent, or fail to
prevent, an epidemic. Finally, we consider a model of a sexually transmitted
disease to show how simple modeling approaches can capture the particulars
of a disease with quite complicated dynamical features.

7.1. Elementary Epidemic Models

Inmodeling the dynamics of an infectious disease, we focus on the population
in which it occurs. The models we consider assume that N , the total size of
the population, is constant. We thus ignore complications that might result
from new births or immigration. Although more complicated models can
account for these factors as well, our assumption is often quite reasonable.
For instance, if we are modeling the spread of brucellosis in a herd of cattle,
during the timeframe of interest the population of cattle is unlikely to gain
new members.

� Explain why ignoring births and immigration is a reasonable simplifi-
cation for modeling the spread of chickenpox at an elementary school.

� What are the characteristics of a disease and population for which this
would not be an appropriate assumption? Can you give an example?

Wewill also assume that the population under studymixes homogeneously;
all members of the population interact with one another to the same degree.
This means all uninfected individuals face the same risk of exposure to the
disease by those already infected. Again, this may be quite reasonable: In a
cattle herd, we would expect that all members interact roughly equally with
one another.
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� Would the homogeneous mixing assumption be reasonable in modeling
chickenpox spread in a first grade class? Why or why not?

� How reasonable is this assumption if the population under study is all
students in a particular school? All students in a particular city? All
students in a country?

To begin formulating our model, at each time t , we divide the population
N into three categories;

St : the susceptible class, those who may catch the disease but currently
are not infected;

It : the infective class, those who are infected with the disease and are
currently contagious; and

Rt : the removed class, those who cannot get the disease, because they
either have recovered permanently, are naturally immune, or have died.

Note that we continue to count any dead individuals in Rt since it is mathe-
matically more convenient to keep the total number of individuals constant.
Moreover, because the population is constant,

St + It + Rt = N for all t.

� Imagine how the sizes of each of the three populations under study, St ,
It , Rt , must change as an outbreak of influenza at a college occurs and
then subsides. If values of the three were plotted over time, how would
you expect the graphs to look?

Tracking the size of the infective class It probably gives the clearest indi-
cation of the course of a typical disease outbreak. For an epidemic to occur,
It must increase. A large increase in a single time step represents a rapidly
spreading outbreak, while a smaller increase signals a more gradual spread.
Thus, the magnitude of change in the number of infectives,�I , measures the
virulence of the epidemic. We would expect a graph of It to rise, as more and
more of the population becomes infected. In time, though, if it is possible
for individuals to recover, the infective class It starts to decrease in size (i.e.,
�I ≤ 0). At that point, the graph of It turns down and the epidemic begins
to subside.

Notice, however, that we have already assumed that the disease we are
discussing is one from which infectives recover. Because that is not true of all
infectious diseases, we’ll have to pay careful attention to such assumptions
when we try to model a particular disease.
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The SI R model. The simplest epidemic model uses the three classes
above. In this SI R model, members of the population progress through the
three classes in order: susceptibles remain disease-free or become infected;
infectives pass through an infectious period until they are removed perma-
nently from the grips of the disease; and a removed individual is never at risk
again. Schematically, we think of the model as:

Susceptibles → Infectives → Removed .

An outbreak of chickenpox at an elementary school can be described well
by an SI R model. Students who have been infected will recover and will
never get chickenpox again, since permanent immunity results from having
been infected. Other examples of human diseases that fit the SI R framework,
at least approximately, include the seasonal variants of influenza virus that
develop each year. Once an individual has recovered from an infection, they
are immune to that particular variant for life.

� Describe some scenarios of outbreaks of infectious diseases that can be
modeled with the basic SI R model. Why might the model be appro-
priate for modeling the spread of measles, but not the spread of head
lice?

Disease spreads when a susceptible individual comes in contact with an
infected individual and subsequently becomes infected. Mathematically, a
reasonable measure of the number of encounters between susceptible indi-
viduals and infected individuals, assuming homogeneous mixing, is given by
the product St It . This is simply the mass action principle used for interacting
populations in Chapter 3.

However, not all contacts between healthy and ill individuals result in
infection. We’ll use α, the transmission coefficient, as a measure of the likeli-
hood that a contact between a susceptible and an infective will result in a new
infection. Because the number of susceptibles St decreases as susceptibles
become ill, the difference equation modeling the number of susceptibles is
given by

St+1 = St − αSt It .

� If α = .01 for one disease and α = .02 for another disease, what does
this indicate about the difference between the diseases? If this is the
only difference between the diseases, which will spread faster?

During one time step, the infective class grows by the addition of the newly
infected. At the same time, some infectives recover or die, and so progress to
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the removed stage of the disease. The removal rate γ measures the fraction of
the infective class that ceases to be infective, and thus moves into the removed
class, in one time step. Clearly, the removed class increases in size by exactly
the same amount that the infected class decreases. This leads to the additional
equations:

It+1 = It + αSt It − γ It ,

Rt+1 = Rt + γ It .

Collectively, the three above coupled difference equations form the SI R
model.

Although the SI R model will serve as our basic infectious disease model,
it is not appropriate for many diseases. The dynamics of tuberculosis (TB)
illustrate its limitations. Many people who show a positive reaction to the
TB skin test have a TB infection, but not the disease. A healthy immune
system is able to fight the TB bacteria and keep it inactive. Such a person is
not contagious and may never develop the disease. However, if the immune
system is weakened and the infection is not medicated, a person infected
may develop tuberculosis and become infectious. Proper modeling of TB
will require at least one more class: those who are infected but not infective.

Almost every disease has unique features that must be incorporated into a
model. The art of creating a good model is deciding which of these are im-
portant to capturing the right dynamics andwhich canbeomitted to prevent the
model from becoming too complicated to analyze. Remember that our goal in
modeling disease transmission is to understand how to control it. The SI R
model is a good starting model that can be refined as needed for particular
diseases.

We should also remark briefly on the choice of time steps in modeling
diseases.Wehave commented earlier that difference equations are particularly
good for modeling populations with rigid life cycles. However, diseases often
fail to have rigid stages of development. For that reason, and sometimes for
reasons of mathematical tractability, differential equations are often used in
such models. However, the modeling principles are very similar in either the
difference or differential formulations. Moreover, both types of models are
very schematic descriptions of the real spread of a disease, so that we have to
hope our results are fairly robust to the numerous inaccuracies they involve,
regardless of which approach we take.

With that said, then, how do we choose a size for our time steps? We must
certainly take the particulars of the disease under study into consideration. If
a person is typically sick and contagious for a week, then a time step of one
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day might be appropriate. It’s usually better to use a shorter time step when
in doubt.

Problems

7.1.1. Use theMATLABprogramsir to investigate the behavior of the basic
SI R model for a variety of parameter choices. Begin, for example, with
N = 100, α = .001, and γ = .05.
a. Use a variety of choices of S0 and I0. How does this choice affect
the behavior? Are there some choices for which the number of in-
fectives grows in the first few time steps? Declines in the first few
time steps?

b. Holding the other parameters fixed, use larger and then smaller
values for the transmission coefficient. Explain the effects on the
qualitative behavior of the model.

c. Holding the other parameters fixed, use larger and then smaller
values for the removal rate. Explain the effects on the qualitative
behavior of the model.

7.1.2. In using the sir program, initial numbers of susceptibles and infec-
tives should always be specified by clicking with the cursor located
underneath the diagonal line drawn on the phase plane. Explain what
assumptions of our model require this.

7.1.3. The parasitic disease malaria is transmitted to humans through the
bite of an infected mosquito. A mosquito becomes a carrier by biting
an infected person. After the parasites have grown in the mosquito
for about a week, the mosquito can pass the disease to another human
through its bite. Is it appropriate to use an SI R model to model malaria
transmission? Explain.

7.1.4. The removal rate γ can be estimated from knowing how long individ-
uals are typically in the infective class.
a. Suppose you know that the mean time an individual is infective is
8 days. Assuming there are a large number of infectives at various
stages of the progression of the illness, what percentage of the in-
fective class would you expect to recover each day?

b. More generally, if m is the mean time of infectivity, measured in
time steps, give a formula for γ in terms of m.

7.1.5. Obviously, the parameter α of the SI R model must be positive. How-
ever, there is also anupper boundon its size in abiologicallymeaningful
model.
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To understand this, consider a small group of 100 people in close
contact, all susceptible to the disease.
a. At time 0, one individual falls ill, perhaps by exposure through con-
tacts not included in themodel. Suppose the transmission coefficient
is α = 1. What happens to the town’s population after 1 day? After
10 days? What is the medical significance of α = 1?

b. Now suppose that α = 1 and the initial number of infectives is 5.
What is the value of S1? Why doesn’t this make sense? Explain.

c. With α = .1, what is the largest value of I0 so that the behavior of
the SI R model makes sense biologically, at least for the first time
step?

d. Give a formula in terms of I0 for the largest value of α so that the
behavior of the SI R model makes sense biologically, at least for the
first time step.

7.1.6. One approach to preventing disease spread is to simply quarantine
infectives. Suppose a disease is modeled well by the SI R equations
of the text, but a society decides to attempt a quarantine program,
preventing a fraction q of the infectives from having contacts with
susceptibles. Only 1− q of the infectives will be able to spread the
disease.
a. How should the mass action term, in the equation for both St+1 and

It+1, be changed tomodel this?What value of q gives the usual SI R
model?

b. Quarantining can be viewed as a way of modifying the transmission
coefficient. If an SI R model without quarantining had transmis-
sion coefficient α, and a fraction q of the infectives are successfully
quarantined, then the model with quarantining is identical to a stan-
dard SI R model with some transmission coefficient α′, the effective
transmission coefficient. Give a formula for α′ in terms of α and q.

c. Use the MATLAB program sir to investigate the behavior of your
quarantine model for fixed values of N , α, and γ , and a variety of
values of q . For example, let N = 100, α = .001, and γ = .05 and
vary q from 0 to 1. Explain the qualitative behavior you see. Can
you find a value of q that prevents an epidemic from occurring,
regardless of the value of I0? Estimate the smallest such q.

7.1.7. Another approach to preventing disease spread is vaccination of sus-
ceptibles. Suppose a disease is modeled well by the SI R equations
of the text, but a society implements a vaccination program. One
simple model of this situation counts each successfully vaccinated
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individual in the removed class throughout the duration of the model,
but otherwise still uses the basic SI R equations.
a. Explain why this model assumes all vaccinations occur before the
time t = 0.

b. Suppose with N = 100, we have I0 = 1, with the removed class
composed of the fraction q of the population that was successfully
vaccinated. Give formulas for S0 and R0. What value of q gives the
usual SI R model?

c. Use the MATLAB program sir to investigate the behavior of your
vaccination model for a variety of values of q . Let, for example,
N = 100, α = .001, and γ = .05, and only vary q from 0 to 1.
Explain the qualitative behavior you see. Can you find a value of q
that prevents an epidemic from occurring, regardless of the value of
I0? Estimate the smallest such q.

7.2. Threshold Values and Critical Parameters

To analyze the SI R model and gain some biological insight into the param-
eters in the model, we’ll rewrite the defining equations:

�S = −αSt It ,

�I = αSt It − γ It ,

�R = γ It .

We will say an epidemic occurs if �I > 0 for some time t (i.e., if at some
time the number of infectives grows). If �I ≤ 0 for all times, then the size
of the infective class does not increase and no wider outbreak of illness takes
place. The first step in understanding disease dynamics, then, is to understand
the sign of �I . Thus, we focus our attention on determining whether

�I = αSt It − γ It

= (αSt − γ )It

is positive, zero, or negative.
First notice from this formula that if It = 0, then �I = 0. This is no

surprise, since if the population is disease free (i.e., has no infectives), it will
remain that way. Having dispensed with this easy-to-understand case, we
can now assume that It > 0. This means that �I will be positive, zero, or
negative according to whether αSt − γ is. Because α > 0, we can rephrase



7.2. Threshold Values and Critical Parameters 287

this as:

If St >
γ

α
, then �I > 0.

If St = γ

α
, then �I = 0. (7.1)

If St <
γ

α
, then �I < 0.

Notice that, from our original formulas, we have �S ≤ 0 always, so we
know that St cannot increase. This means that, if S0 <

γ

α
, then St <

γ

α
for all

t . Thus, if S0 is below the value γ

α
, then �I < 0 for all times, and the disease

decreases in the population. However, when S0 >
γ

α
, the number of infectives

will grow and an epidemic occurs.
For this reason, the ratio γ

α
is an example of a threshold value; the re-

lationship of S0 to
γ

α
is an important determinant of the dynamics of the

disease. Because γ

α
represents the removal rate γ relative to the transmission

coefficient α, we call it the relative removal rate and denote it by

ρ = γ

α
.

Comparing the initial number of susceptibles S0 to the threshold value ρ, we
can determine if an epidemic will occur.

� A larger value of γ results in a larger value of the threshold ρ. Does this
make sense? Explain, in terms of the meaning of γ . What affect does a
larger value of α have on ρ? Explain.

A slightly different approach to the same threshold behavior involves re-
writing the equation for �I as:

�I = γ

(
α

γ
St − 1

)
It .

A similar sign analysis of �I , using the above expression, shows the impor-
tant question is how the quantity α

γ
S0 compares with 1. Mathematical epide-

miologists call the expression

R0 = α

γ
S0

the basic reproduction number of the infection. Sometime you may see this
called the basic reproductive rate or basic reproductive ratio, though, so you
need to be careful about terminology when reading epidemiological studies.
We’ll use the term “basic reproduction number” exclusively. Most impor-
tantly, ifR0 > 1, then �I > 0 and an epidemic occurs.
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Let’s consider the basic reproductive numberR0 = α
γ

S0 = (αS0)( 1γ ) from
a more biological viewpoint, in order to understand both its name and its con-
ceptual importance. In the SI R model, the term αS0 I0 measures the number
of individuals that become infected at the outset of an epidemic. If we divide
by I0, we obtain a “per-infective” measurement: αS0 is the number of indi-
viduals who become infected by contact with a single ill individual during
the initial time step.

Actually, if we introduce one infective into an otherwisewholly susceptible
population S0, this ill individual may eventually infect many more than αS0
others, since an infective may remain contagious for many time steps. For
example, suppose a young child remains contagious with chickenpox for
about 7 days. Then, using a time step of 1 day, this child would infect about
(αS0)(7) susceptibles over the course of a week.

Moreover, if the period of contagion lasts 7 days, then each day we expect
roughly 1

7 or approximately 14% of the total number of infectives to move
from the infective class It into the removed class Rt . Because the removal
rate γ measures the fraction of the infective class “cured” during a single
time step, we have found a good estimate for γ ; we take γ = 1

7 ≈ .1429. At
the same time, we have found a good interpretation for 1

γ
: it is the average

duration of the infectious period. In fact, we can estimate γ for real diseases
by observing infected individuals and determining the mean infectious period
1
γ
first.
We have made progress in understandingR0 by thinking about this exam-

ple, but we need to summarize a bit:

R0 = (αS0)
(
1

γ

)

=
(
no. of new cases arising from one
infective per unit time

) (
average duration
of infection

)
.

Thus, R0 is interpreted as the average number of secondary infections that
would be produced by one infective in a wholly susceptible population of size
S0.
Note that, from this point of view, the threshold value of R0 = 1 makes

good biological sense. IfR0 > 1, then a primary case of disease spawns more
than one secondary case of the illness, the size of the infective class increases,
and an epidemic results. IfR0 = 1, then a diseased individual produces only
one newcase of the disease, and no epidemic can occur; there can be no growth
in the number of infectives. When R0 < 1, the disease dies out. In short, an
epidemic occurs if and only if the basic reproduction numberR0 > 1.

Because the basic reproduction number has such a meaningful interpre-
tation, epidemiologists try to find an expression for R0 for any model they
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propose. Although a complicated model, such as one for a sexually transmit-
ted disease, might include many additional parameters, some combination of
them should be interpretable similarly to R0 here. The basic reproduction
number plays a role in public health decisions, because a disease preven-
tion program will be effective in preventing outbreaks only when it ensures
R0 ≤ 1.

The severity andduration of epidemics. Oncewe know amodel predicts
that an epidemic will occur, we also want to be able to predict its severity.
Suppose, for a certain disease, one infective is introduced into a population of
500 susceptible individuals.We’ll assume the SI R model, and that using time
steps of 1 day is adequate for describing this disease. Suppose, additionally,
that data indicate that the likelihood a healthy individual becomes infected
from a contact with an infective is .1% and that, once taken ill, an infective
is contagious for 10 days.

� Justify the calculation of α = .001 and γ = .1 in the SI R model.

For these parameter values, we find that ρ = γ

α
= .1

.001 = 100. This means
that we expect about 1

ρ
= 1

100 of the susceptibles, or

R0 = α

γ
S0 = 1

ρ
S0 = .01S0 = (.01)500 = 5

individuals to become infected with the illness as a result of contact with the
original sick person. Moreover, becauseR0 = 5 > 1, we expect an epidemic
to occur. In fact, with such a large value ofR0, we might expect a rather de-
vastating epidemic to occur.

� Notice that I1 = αS0 I0 + (1− γ )I0 = .001(500)(1)+ .9(1) = 1.4.
Why were there not five new cases of the disease?

� What would the basic reproduction number be if S0 = 50? Would an
epidemic occur? Explain.

Using a computer, we can trace the course of the epidemic over a series of
60 days as in Figure 7.1.

� Which of the curves represents St? It? Rt? How can you tell by focusing
on the values at t = 0 and t = 60?

According to the graph, the number of infectives peaks at It ≈ 250 at about
t ≈ 21 or 22 days. As half the population is ill at this time, this is a severe
epidemic, as anticipated.
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Figure 7.1. SI R model simulation.

Mathematically, we can determine information about an epidemic’s peak
by noting that the maximum number of infectives occurs exactly when the
sign of �I changes from positive to negative. That is, the infective class
will be largest when the number of infectives stops increasing and begins
to decline. Because we have already analyzed the sign of �I in Eq. (7.1),
we again see the importance of the relative removal rate as a critical value.
When St > ρ, the infective class grows. Once St < ρ, the epidemic will sub-
side. Returning to our example, we calculated that ρ = 100. Consequently,
the epidemic begins to subside when St = 100, or by the time four-fifths of
the population has contracted the disease. We can verify our calculation by
referring to our graph – indeed, the susceptible population numbers 100 some-
where between the twenty-first and twenty-second day after the epidemic be-
gins, and It peaks just at this time.

Another interesting phenomena can be detected by examining the values
of St and It in Table 7.1 that were used to produce Figure 7.1.

Notice that even after the disease has ravaged the population for 100 days,
there are still about two people who have remained disease free. In fact, after
150 days, there are no infectives but two disease-free citizens. Apparently,
two lucky individuals escape the illness, despite the fact that they have no
special immunity to the disease. We can express this long-term behavior, that
as time increases St approaches a limiting value, by

lim
t→∞ St = 2.15.
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Table 7.1. SI R Model Simulation

Day 0 1 2 3 . . . 20 21 22 23

St 500 499.50 498.80 497.82 . . . 135.59 102.38 76.42 56.99
It 1 1.40 1.96 2.74 . . . 244.91 253.62 254.23 248.23

Day . . . 50 75 100 125 150

St . . . 2.64 2.18 2.15 2.15 2.15
It . . . 20.17 1.54 .12 .01 .00

Perhaps surprisingly, with the SI R model, it is usually the case that
lim

t→∞ St �= 0. Although the precise value of lim
t→∞ St depends on the values of

the parameters α, γ , S0, and I0, it is generally not zero. This means that,
for a disease described well by the SI R model, we should expect some
individuals to never fall prey to the disease, even though they lack any special
immunity.

� Does this seem reasonable to you? Can you explain why in intuitive
terms?

� Does an epidemic end due to a lack of susceptibles or a lack of infec-
tives? Explain.

Since the SI R model is just a special case of a multiple population model,
it is informative to draw a phase plane plot, just as we did earlier for other
nonlinear models of interaction. Though there are three classes to track, plot-
ting only two of the three classes is sufficient to tell how the third behaves,
because S + I + R = N is constant. We choose to focus on S and I , placing
S on the horizontal axis and I on the vertical one. In Figure 7.2, three orbit
diagrams are shown for the SI R model for various values of the parameters α

and γ . One of the orbitsO1 corresponds to our example above with α1 = .001
and γ1 = .1. The parameter values ofα2 = .002 and γ2 = .1 are used for a sec-
ond orbit O2, and α3 = .0007 and γ3 = .1 for a third orbit O3.

� Which way do the trajectories go along these phase plane plots? Left to
right, or right to left?

� Which of the plots is O1? O2? O3? Which epidemic is the most
severe?

The plot in the phase plane gives added insight into the three epidemics
and the SI R model. From the plot of the second orbit O2, the most severe
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Figure 7.2. SI phase plane for the SI R model.

epidemic, you can tell that the number of infectives increases rapidly at the
onset of the epidemic. In fact, just before the epidemic peaks, It is increasing
by approximately 80 individuals per time step. In a population of only 500,
this is extreme growth. Of course, a transmission coefficient of α = .002 is
quite large for a population of that size.

Note that you can approximate the relative removal rate ρ from the graphs
of the three orbits, since we know ρ is the value of St when It begins to dec-
line. Because S0 is also easily read from the graph, once we know ρ, we can
findR0.

� Determine from the graph of the orbits approximate values for ρ and
R0. Do these values match what you would calculate from the values
of the parameters γ and α?

We can make intelligent guesses about the equilibrium points of the SI R
model from the phase plane, too: Each epidemic follows a wave, progressing
toward a point on the horizontal axis. You will see in the problems that the
SI R model has a set of equilibria, including all the points along that axis.

Problems

7.2.1. The SI R model has many equilibria.
a. To find the equilibria, why is it not necessary to findwhen�R = 0,
if we find points where �S = 0 and �I = 0?
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b. Algebraically, find the equilibriumpoints S∗, I ∗ for the SI Rmodel.
Give a common-sense explanation of why the values you find are
equilibria.

c. Are these equilibria stable? Explain intuitively why they should or
should not be.

7.2.2. Suppose the mean infectious period for a certain disease is 37
days.
a. What is the removal rate γ , if time steps of 1 day are used?
b. What is the removal rate γ , if time steps of 1 week are used?

7.2.3. With α = .0008, γ = .1428, and a variety of choices of N , S0, and I0
in the SI R model, use a computer program to estimate the value of
St at which this epidemic peaks. Now use the formula for the relative
removal rate to determine the value of St at which the peak of the
epidemic occurs. Do your two answers agree exactly? Explain any
discrepancy.

7.2.4. In Chapter 1, the per-capita growth rate was used to understand the
logistic model. In this problem, we explore the “per-infective” growth
rate.
a. In the SI R model, give a formula for the per-capita growth rate of
the infective class It .

b. Plot this relative growth rate as a function of S for the fixed val-
ues of α = .0001 and γ = .2. Place the per-capita rate �I/I on
the vertical axis and S on the horizontal axis. Use your graph
to find the threshold value S for S0 (i.e., find the value S such
that an epidemic occurs if S0 > S and no epidemic occurs if S0
≤ S).

7.2.5. An isolated island population of 100 individuals is exposed to a dis-
ease.Thedisease is particularly deadly; an infected individual remains
contagious until overcome by death after 4 days. We want to predict
the diseases’s effect on the community on a daily basis. Suppose ini-
tially one individual is stricken with the disease.
a. What is the removal rate γ ?
b. For what values of the relative removal rate ρ will an epidemic

occur? Use this to determine for what values of the transmission
coefficient α an epidemic will occur.

c. Use a computer program such as sir to estimate the number of
days until the epidemic peaks for the values of α = .003, .005, .01,
and .0125, presenting your data in a table. How does themagnitude
of α relate to the time until the peak?
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Figure 7.3. SI phase plane for the SI R model.

d. Calculate the basic reproduction numbers and the relative removal
rates for the values of α above, adding that information to your
table.

7.2.6. In a population of 10,000 individuals, a new disease strikes. Once ill,
an infective is contagious for 313 days.
a. Give the removal rate γ , assuming time steps of 1 day.
b. Examine the phase plane in Figure 7.3 for four possible epidemics

with the value of γ determined above. Estimate the relative re-
moval rate ρ and the transmission coefficient α for each of the four
epidemics graphed. Then find the basic reproduction numbers for
each of the epidemics. Give your answers in a table.

c. Extend your table in part (b) by including the number of time
steps T until the epidemic peaks, and the number of susceptibles
S∞ = lim

t→∞ St remaining after the disease dies out. Explain the

effect of increasing α on the virulence of an epidemic. Does this
make biological sense?

7.2.7. A disease strikes a small town of 10,000 individuals. Suppose 10
individuals are infected initially and that the transmission coefficient
has been estimated to be α = .00008.
a. For each of the four possible epidemics plotted in Figure 7.4, esti-
mate the relative removal rate ρ, the removal rate γ , and the mean
time of infectivity. Then calculate the basic reproduction number
for each of the epidemics. Tabulate your answers.
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Figure 7.4. SI phase plane for the SI R model.

b. Extend your table in part (a) by including the number of tme steps
T until the epidemic peaks, and the number of susceptibles S∞ =
lim

t→∞ St remaining after the disease dies out. Explain the effect of

increasing γ on the virulence of an epidemic. Does this make
biological sense?

7.2.8. The text claimed that, for the SI R model, there is no epidemic of a
disease if �I ≤ 0. For �I = 0, you might expect that there is no net
change in the infective class, and so the number of incidences of the
disease should remain constant and the disease would be endemic in
society.
a. Investigate the �I = 0 situation experimentally. For instance, set

α = .000035 and γ = .175, and pick values of S0 and I0 so that
�I = 0 initially. Then use a computer program to follow the
growth or decay of the susceptible and infective classes. Record
what you notice. Repeat this for some other choices of the param-
eters for which �I = 0.

b. Give a common-sense explanation of why the disease ultimately
dies out when �I = 0 initially.

c. Reconsider the difference equations for �S and �I , and mathe-
matically explain why the disease dies out if�I = 0 initially. You
will have to think about two time steps.

7.2.9. In Chapter 3, you learned to draw and interpret nullclines in a phase
plane. Draw a coordinate system with S on the horizontal axis and I
on the vertical axis.
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a. For the values α = .000145 and γ = .1428, draw the nullclines for
the SI R model, as well as arrows suggesting directions of orbits.

b. Draw the nullclines and arrows suggesting directions of orbits for
the general SI R model with parameters α and γ .

7.2.10. Recall the quarantine model of Problem 7.1.6 of the last section. If a
fraction q of infectives is successfully quarantined, in terms of q, α,
and γ what is the resulting relative removal rate? What is the effect
of increasing q on the resulting relative removal rate? How does this
show that a large q may prevent an epidemic?

7.2.11. As discussed in the text, to model a real disease using the SI R model,
we can estimate the parameter γ from data on the length of time indi-
viduals are typically infectious. The parameter α is harder to estimate
for real populations and diseases.

Explain how you could estimate the value of the parameter α for
a disease if you had sufficient data on the number of susceptibles and
infectives in a population at various times throughout the course of a
previous epidemic. Discuss how such data might be collected.

7.3. Variations on a Theme

Once we have understood the basic SI R model, it’s not hard to make modifi-
cations to produce models that might be more appropriate for other diseases.
Here, we will consider two basic variations that capture different dynami-
cal behavior for diseases with different characteristics. We will also consider
modeling large populations by tracking fractions of populations in each class,
rather than absolute numbers.

The SI and SI S models. For some infectious diseases, there is no re-
moved class. For instance, it might be that infective individuals simply cannot
recover. This leads to the SI model:

Susceptibles → Infectives .

The SI model assumes that S + I = N and that once individuals enter the
infective class, they remain there for the duration of the model. For instance,
the spread of head lice in a human population with no means of effective
treatment would fit the SI framework.
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The equations for the SI model are

St+1 = St − αSt It ,

It+1 = It + αSt It .

� Compare these equations with those of the SI R model. How do they
differ?

� How would you expect graphs of St and It vs. time to look for the SI
model?

Another way there could be no removed class is if once infectives recover,
they are again at risk for contracting the disease. Since recovering frommany
diseases does not confer immunity on the former sufferer, an SI S model – in
which individuals pass from the infective class back into the susceptible class –
gives a more appropriate description of them. Syphilis and gonorrhea, for
example, canbe treatedwith antibiotics, but a patient, once cured,maybecome
reinfected. The common cold is a disease that most of us get repeatedly.
Schematically, the SI S model is:

Susceptibles � Infectives ,

and its equations are:

St+1 = St − αSt It + γ It ,

It+1 = It + αSt It − γ It .

� Compare these equations to those of the SI R model. How do they
differ?

� How would you expect graphs of St and It vs. time to look for the SI S
model?

In the problems at the end of the section, you will explore these models
in more detail. In particular, you will find that the SI S model can lead to a
constant, yet nonzero number of infectives in a population. In this situation,
we say the disease is endemic.

� Think of a few different infectious diseases you are familiar with, such
as leprosy, mononucleosis, and tuberculosis. Of the three basic models,
SI R, SI , or SI S, which if any is most appropriate for each disease?

Contact rate and contact number. Infectious disease models are often
formulated a bit differently than we did above, using proportions of the pop-
ulation instead of absolute numbers. For large populations in particular, this
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may be a natural approach, because the precise size of the population may
not be known, or even really matter. Such a formulation also allows us to
replace the transmission coefficient α with a new parameter that has a more
meaningful biological interpretation.

Working with the SI R model as an example, let’s set

s = S

N
, i = I

N
, r = R

N
,

and rebuild the model using proportions. Notice now that

s + i + r = 1,

because we are measuring fractions of the population. We will continue to
assume there are no births or immigration so that the total population size N
remains constant, even though N will not appear in our equations.

In this setting, a similar thought process as used in the SI R model lead to
formulas for �s, �i , �r , the change in proportions of the three classes. The
sir equations are:

�s = −βst it ,

�i = βst it − γ it ,

�r = γ it ,

where β is called the contact rate.
Before we explain the interpretation of β, we should note that, if we use

an sir model and want to introduce a specific total population size N , we can
recover SI R data by simply multiplying the sir formulas by N . For example,
the net change in number of susceptibles is

�S = (�s)N = −βsi N = −(βi)(s N ) = −(βi)S.

� Use this to show β = Nα by replacing i with
I

N
.

� In the equation�S = −αSt It , both St and It are measured in “individ-
uals.” What are the units of the transmission coefficient α?

� In the equation �s = −βst it , both s and i denote “fractions of a pop-
ulation,” and so have no units. What are the units of the contact rate
β?

Let’s try to understand the equation�S = −(βi)S more fully. By the term
“contact,” we will mean an interaction between individuals that is sufficient
for disease transmission. As infectious disease spreads to a susceptible only
from contact with an infective, not from contact with a healthy or immune
individual, the factor βi in the equation must give the average number of
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contacts an individual has with infectives during a single time step. Because i
denotes the fraction of the population in the infective class, we can interpret β
as the average number of contacts that an individual has during a single time
step. This means β measures contacts between anyone, whether infective or
not, thatwould have caused an infection if one of the individuals was infective
and the other susceptible.

Let’s turn this explanation around to make sure it is clear. The contact
rate β is defined as the average number of contacts an individual experiences
during one time step. Then βi represents the average number of contacts
with infectives that an individual experiences in a single time step. To get
the number of susceptibles that fall ill from contact with infectives during a
single time step, we multiply by the number of susceptibles S and obtain the
expression βi S.

The value of β of course depends on the particulars of the disease under
study. For example, because chickenpox is highly contagious, it seems plau-
sible that an elementary school child might have contact, sufficient to spread
chickenpox, with four other children throughout the course of a day. In this
case, we would take β = 4 and �t = 1 day. For a less contagious disease, β
might be a small number such as .02.

Another important value is the contact number σ , the average number
of contacts of a typical infective during the entire infectious period. This is
a “per-infective” measurement. For the sir model above, we multiply the
contact rate β by the mean infectious period 1

γ
to find

σ = β

γ
.

The contact number σ is closely related to the basic reproduction number
R0. This is not surprising because both are measures of the number of sec-
ondary cases of illness produced by one infective introduced into a wholly
susceptible population. In the problems, you will work out the relationship
betweenR0 and σ , and see why they are essentially the same as long as S0 is
almost as big as N .

Immunization strategies. A population can be protected from disease in
many ways. For example, the number of susceptible individuals can be re-
duced through immunizations, the contact rate can be reduced throughquaran-
tines or public health campaigns, or the removal rate can be increased through
better medical treatment of the sick. In short, a society might try to change
any of the parameters or initial conditions of themodel describing the disease.
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Vaccinations, when available, are an attractive way to control disease dy-
namics, but the private and public risks of immunization must be balanced.
One of the main goals of any immunization program is to achieve herd im-
munity, (i.e., to ensure that no epidemic can take place even if a few cases
of the disease are present). However, individuals receiving vaccinations are
usually at some small risk of adverse effects. Thus, vaccination programs
have goals that benefit the public welfare, possibly at the expense of a few
unlucky individuals.

As a result, even immunization policies that are understoodmathematically
to be capable of preventing epidemics can be controversial. In the 1970’s, con-
cern over the safety of the pertussis (whooping cough) vaccine sparked public
debate in Great Britain. Although the World Health Organization Smallpox
Eradication Program (1967–1980) was wildly successful, the United States
and Great Britain stopped routine vaccinations for smallpox in 1971, a short
time after the initiation of the program.Disease surveillance in these countries
indicated that more people were dying from complications arising from vac-
cination than would have died from smallpox itself. Moreover, discontinuing
smallpox vaccinations had economic benefits; public health costs diminished.

Before public health policy is set, the likely outcome of proposed vacci-
nation programs must be well understood so that tradeoffs in terms of public
and private good can be weighed. Thus, estimating what level of vaccination
confers herd immunity for a particular disease in a particular society is an
essential first step.

As an example, consider a large population at risk for a disease modeled
well by the sir equations. We would like to ensure that, regardless of the size
i0 of the fraction of the population that was infective, it never increases. Thus,
we want

�i = βst it − γ it < 0.

But, βst it − γ it = (βst − γ )it and since it ≥ 0, this means we want

βst − γ < 0, or st <
γ

β
= 1

σ
.

In other words, 1/σ is the threshold value determining whether disease
spreads. If the fraction of the population that is susceptible can be brought
below 1/σ then an epidemic cannot occur. The fraction of the population that
must be vaccinated successfully to ensure herd immunity is thus 1− 1/σ .

Of course, using this result for a disease in the realworld requires estimating
σ from epidemiological data. Because of uncertainties, it would also be wise
to aim for immunizing a larger fraction of the population.Whether such a goal
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is achievable depends on many social and economic factors, but the model
identifies the target.

Studying realistic immunization issues requires using more complicated
models. Disease dynamics often are different among different age and social
groups, and so often each of the s, i , and r groups must be broken into
subgroups. (Compulsory school attendance, for instance, can have a large
effect on disease transmission.) A model might break the population into
several groups by age, sex, or other factors, and be used to determine which
groups should be targeted in an immunization campaign.

Social and medical considerations are crucial. A vaccination campaign
successful in one country may be a failure in another due either to different
disease dynamics or to differing social acceptance of the program. It may,
in practice, be impossible to vaccinate a high enough percentage of the pop-
ulation in an overcrowded city or country to avert epidemics or gain herd
immunity from highly infectious diseases like measles. The best realistic pol-
icy may be to allow citizens to catch measles at a young age, when there are
few complications, and gain disease-conferred immunity.

Different strategies might also be equally successful. For instance, the
United States and Great Britain have adopted different vaccination programs
for rubella. Rubella is not a life-threatening or dangerous disease in general,
but if a pregnantwoman becomes infected her infantmay suffer from a serious
condition know as congenital rubella syndrome (CRS). Thus, ensuring the
immunity of women of childbearing age is the primary goal of any program.
In the United States, all children are routinely vaccinated against rubella as
part of their MMR shot at around 15 months. In Great Britain, children are
allowed to contract rubella while young. Only those girls who have failed to
gain disease-conferred immunity are vaccinated at around age 12.

Problems

7.3.1. Use a computer program such as sir or twopop to study the SI
model. Use a variety of values of α and N . For each choice, examine
the behavior of the SI model for a variety of values of S0 and I0.
Describe your observations.

7.3.2. Investigate the SI model by doing the following:
a. Solve for all equilibria (S∗, I ∗). Are these biologically reasonable?
b. In a phase plane, draw nullclines and arrows suggesting orbit di-

rections. What does this tell you about the dynamics of a disease
modeled by an SI model?
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7.3.3. The analysis of the SI model is made easier if we note that St + It =
N is constant, so we can substitute the formula St = N − It into the
formula for It and only track the number of infectives.
a. Do this and find a formula for It+1 in terms of It .
b. Now use a computer program such as onepop to investigate

the model. Compare your simulations to the ones obtained with
twopop.

7.3.4. Use a computer program such as sir or twopop to explore the
SI S model. Vary the parameters α, γ , N , S0, and I0. Describe your
observations.

7.3.5. Investigate the SI S model by doing the following:
a. Solve for all equilibria (S∗, I ∗). Are these biologically reasonable?
An equilibrium with I ∗ > 0 represents the endemic occurrence of
a disease. Can an SI S disease be endemic?

b. What do the phase plane, nullclines, and orbit directions tell you
about the dynamics of a disease modeled by an SI S model?

7.3.6. The analysis of the SI S model is also made easier if we note
that because St + It = N is constant, we can substitute the formula
It = N − St into the formula for St and only track the number of
susceptibles.
a. Do this and find a formula for St+1 in terms of St .
b. Now use a computer program such as onepop to investigate

the model. Compare your simulations to the ones obtained with
twopop.

c. Can you find parameter values for which the approach to an en-
demic equilibrium is oscillatory? For which the equilibrium is not
approached?

7.3.7. For the SI R model, the threshold value ρ plays an important role.
a. Is there an analogous threshold value for the SI model? If so, find
it. If not, explain why there is not.

b. Is there an analogous threshold value for the SI S model? If so,
find it. If not, explain why there is not.

7.3.8. For the SI R model, the basic reproduction number R0 plays an im-
portant role. How should you defineR0 for the SI S model?

7.3.9. Suppose a disease is modeled well by the SI framework. Explain
how new medical developments might make the model invalid, so
that either an SI S or SI R model would be needed instead.
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7.3.10. The dynamics of SI S model can be understood in terms of the logistic
model of Chapter 1.
a. Show the SI S model can be expressed as

�I = (αN − γ )I
(
1− I/

(
N − γ

α

))
.

b. Use part (a) and your knowledge of the logistic model to determine
the equilibrium, and hence a possible endemic level of the disease.
What interpretation does this give to γ /α?

c. Use part (a) and your knowledge of the logistic model to determine
a condition on the parameters of the model that ensures a stable
equilibrium.

d. Use part (a) and your knowledge of the logistic model to deter-
mine a condition on the parameters of the model that ensures an
oscillatory approach to the stable equilibrium. Do you think such
behavior is likely to occur naturally?

7.3.11. Both R0 for the SI R model and σ for the sir model are interpreted
as measures of the number of secondary cases of illness produced
by one infective introduced into a wholly susceptible population. To
understand their relationship better:
a. Express σ in terms of the SI R parameters α, γ , and N .
b. From your answer to part (a), compute a simple expression for

R0/σ .
c. If a population is mostly susceptible initially, so S0 ≈ N , what will
the value ofR0/σ be?

d. Which is larger:R0 or σ?

7.3.12. For the SI R model, we saw that ρ = γ

α
was a threshold value for

S0, determining whether an epidemic would occur or not. What is
the analogous threshold value for s0 in the sir model? Explain your
reasoning.

7.3.13. Suppose that an sir -modeled infectious disease in a certain population
has an estimated contact rate of 0.1 and a removal rate of 0.05.
a. What is the contact number for this disease?
b. Assuming a vaccination is developed that is 100% effective, what

percentage of the population should be immunized to achieve herd
immunity?

c. Assuming the vaccination is only 90% effective (so only 9 of
every 10 vaccinations confer immunity on the recipient), what
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percentage of the population should be immunized to achieve herd
immunity?

7.3.14. For the SI R model with a fixed total population size N , how many
individuals must be immunized to confer herd immunity? Express
your answer in terms of the parameters of the model.

7.3.15. Suppose that, for an sir disease, we estimate the contact number is
σ = 0.5. Then, according to the formula developed in the text, we
should try to vaccinate a fraction 1− 1

.5 = −1 of the population to
prevent an epidemic. Since a negative fraction of the population does
not make sense, explain what this must mean.

7.3.16. Recall the approach to disease control through quarantine introduced
in Problem 7.1.6.
a. Formulate an sir modelwith a fractionq of the infectives prevented
from infecting others through quarantine.

b. In terms of the parameters of your model, find the threshold value
for s0 determining whether an epidemic will occur or not.

c. In terms of the other parameters of the model, find the smallest
value of q that will prevent epidemics from occuring for any s0.

7.3.17. Why is there no point in asking what percentage of the population
should be vaccinated to confer herd immunity for an SI S disease?

7.3.18. For somediseases, like tetanus and rabies, vaccination of an individual
in no way contributes to achieving herd immunity.
a. What are the features of the way these diseases are transmitted that
are responsible for this?

b. Using your understanding of such diseases, how would you design
a reasonable vaccination policy for them?

7.3.19. Discuss the characteristics that an infectious disease and its vaccina-
tion might exhibit in order for a voluntary vaccination program to be
worthwhile. What circumstances might make a mandatory program
justified?

7.3.20. One infectious diseasemodel that takes into account births and deaths
from natural causes, as well as disease-related deaths, is given by the
equations:

�s = −βst it + pµit + γ it ,

�i = βst it + (1− p)µit − (µ + ν)it − γ it ,

where β is the contact rate, γ is the removal rate, µ is the birth and
death rate due to natural causes (which are assumed to be equal), ν
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is a disease-related death rate, and p is the probability that an infant
born to an infective is disease free.
a. Explain the meaning of each term in these modeling equations.
b. This model allows births and deaths. Does it assume that the total

population size will remain constant?
c. Would you call this a modified SI model, a modified SI S model,
or a modified SI R model? Explain.

d. The equations above do not explicitly have any terms describing
deaths of susceptibles due to natural causes, or births of infants of
susceptibles. Why are they not there?

7.3.21. Many of the common childhood diseases must be modeled by a more
general infectious disease model, known by the acronym M SE I R.
It allows for births and deaths, and in addition to S, I , and R uses
two more classes, M and E . If a pregnant woman has immunity,
either disease-conferred or from vaccination, then some antibodies
are transferred across the placenta, and a newborn inherits passive
immunity from its mother. This immunity is temporary, lasting pos-
sibly as long as 1 year after birth. Newborn infants with protection
from maternal antibodies are placed in the M class and pass into
the susceptible class after passive immunity lapses. The exposed
class E consists of those who are infected but have not yet en-
tered the infectious period where they may transmit the disease to
others.
a. Make a schematic diagram for the M SE I Rmodel that shows trans-
fer into and out of the various classes, including births and deaths.
For a challenge, write down possible equations for an M SE I R
model.

b. The childhood diseases measles, mumps, and rubella are modeled
well with an M SE I R model, whereas an SI R or SE I R model
fails to capture key dynamics of their transmission. In the United
States, the recommended age for infants to receive their first dose
of measles, mumps, rubella vaccination (MMR) is between 12
and 15 months of age. Explain why the MMR vaccination age
recommendation reflects the importance of including an M class
when realistically modeling these childhood diseases.

Projects

1. Investigate an SI R model that also takes into account births and deaths.
For many diseases, the continual introduction of newborn susceptibles is
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an important contributor to the dynamics of the disease. The childhood
diseases such as measles and mumps are examples. Good models of such
diseases require including terms for vital dynamics, i.e., the addition
of new susceptibles into the population by births and the removal of
members of the population by deaths.

Models often assume that the birth rateµ equals the death rateµ. This
has the advantage that the total population under study remains constant.
One simple way to incorporate vital dynamics in an sir model is:

�s = −βst it + µ − µst ,

�i = βst it − (γ + µ)it ,

�r = γ it − µrt ,

where s, i , r are proportions of the total population.
Investigate this model thoroughly.

Suggestions
� Explain why these three equations model the situation, by giving a
rationale for each term in the modeling equations.

� What are reasonable ranges of values for β, γ , and µ?
� To get a feel for the effect of births and deaths, investigate the model
numerically with sir for lots of reasonable choices of the parameters.
You might want to start with β = 1.1, γ = .2, and µ = .1, and then
vary the parameters from there. Make a note of any unusual behavior,
including threshold values or equilibria, and try to explain it.

� Howare the dynamics of thismodel different from the basic sir model?
How are they similar?

� The quantity 1
γ+µ

is sometimes referred to as the mean death-adjusted
infectious period. Canyougive a reasonable biological ormathematical
explanation for this terminology?

� The contact number σ for this model is σ = β

γ+µ
. Can you give a

reasonable biological explanation for this term? For what values of σ

does an epidemic occur?
� Calculate the value of σ for a variety of the values for β and γ

used above. Do your simulations mesh well with your theoretical pre-
dictions?

� Calculate analytically the equilibria in terms of σ , β, and µ. (Do not
use γ in your answer; instead use σ .) Are these equilibria stable or
unstable?

� Express the model in terms of s and i alone and consider a phase plane
drawing with nullclines.
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� Can you give good epidemiological interpretations to the equilibria?
What do the equilibria say about the disease dynamics?

� Modify the model to account for vaccination of a percentage p of
newborns at each time step. What affect does vaccination have on the
behavior of the model, including any equilibria?

2. Formulate and investigate an SIRS model.
For some diseases, recovery confers temporary immunity, but over

time the immunity declines. Eventually, a recovered individual is again
susceptible to the disease.

Formulate an SIRS model to describe such a disease, and investigate
it thoroughly.

Suggestions
� Explain each term in your modeling equations. Give names to any new
parameters.

� Explain how any new parameters might be estimated for a real disease.
� Investigate themodel experimentally for a variety of parameter choices.
Describe the behaviors you see.

� Compute equilibria. Are they biologically reasonable?
� Draw nullclines and orbit directions in the phase plane.
� Are there any threshold values of interest?
� Howmight an epidemic of such a disease be prevented?What strategies
might affect parameter values?

7.4. Multiple Populations and Differentiated Infectivity

Although the basic models such as the SI R, SI , and SI S provide good
starts at describing disease transmission, they are not elaborate enough to
capture key dynamical features of many real infectious diseases. The simple
versions of thesemodels do not take into account such things as one’s age, sex,
socioeconomic class, medical history, or other characteristic that may affect
the likelihood of infection, time of infectivity, or transmission mechanisms.
For example, the elderly and theweak are particularly susceptible to influenza.
Intravenous drug users are at increased risk for a number of diseases due to
their behavior. Some individuals seem to have a higher resistance to the HIV
infection than others. To capture such factors in modeling disease dynamics,
we need to consider several subpopulations and different parameter values
for these subpopulations, using differentiated infectivity models.

Sexually transmitted disease in particular generally requires such mod-
els, because even the simplest model of heterosexual transmission requires
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considering subpopulations of males and females. We will develop such a
model by studying the dynamics of gonorrhea.

Gonorrhea is caused by a bacterial infection that is spread through sexual
contact. The CDC estimates that approximately 650,000 cases of gonorrhea
occur each year in theUnited States, making it a common sexually transmitted
disease. Within a few days of infection, men usually develop symptoms such
as a burning sensation when urinating, a yellowish discharge from the penis,
and painful or swollen testicles. Women typically have milder initial symp-
toms, which can be mistaken for a bladder infection. If untreated, however,
women may develop pelvic inflammatory disease, which can lead to infertil-
ity. Babies born to infected woman may get the infection, which can cause
blindness and be life-threatening. Untreated men may also become infertile
or be left with urethral scarring. Fortunately, antibiotic treatment is effective,
though penicillin is no longer used since resistant strains have developed.
Once cured, an individual is unfortunately at risk of recontracting the illness;
no immunity results from an infection.

While an infected female may be asymptomatic, she may still pass on the
infection to a sexual partner. Moreover, it is reasonable to assume that the
average time from infection to treatment might be longer for females than
males, because females may be unaware of their infected state for a longer
period. In addition, data indicate that, in heterosexual intercourse between
infected and susceptible individuals, a new infection is roughly twice as likely
to result if the male is the infective rather than the female.

Because of these sex differences, to begin modeling gonorrhea, we divide
the human population into two groups: females and males. Within the two
groups, we have two subclasses: susceptible females S f

t and infective females
I f
t , and susceptible males Sm

t and infective males I m
t . Because gonorrhea is

curable, but the treatment offers no immunity from further infection, there
are no removed classes.

As before, we will assume that populations remain constant, S f + I f =
N f , Sm + I m = N m , and the total population under study is N = N f + N m .
If we assume, for modeling purposes, that gonorrhea is only spread through
heterosexual contact, then we will need a transmission coefficient α f to mea-
sure the rate at which gonorrhea is spread frommen to women and a transmis-
sion coefficient αm for the spread from women to men. Similarly, this model
requires two removal rates γ f and γ m , one for each sex.

� From the description of gonorrhea, should α f or αm be larger? Should
γ f or γ m be larger?
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We will use a two-population variant of the SI S model to describe the
spread of gonorrhea:

�S f = −α f S f
t I m

t + γ f I f
t ,

�I f = α f S f
t I m

t − γ f I f
t ,

�Sm = −αm Sm
t I f

t + γ m I m
t ,

�I m = αm Sm
t I f

t − γ m I m
t .

� Explain the meaning of each of the terms in the four equations above.

With four equations specifying our model, it seems too complicated for
easy analysis. How we can define such things as a meaningful basic repro-
duction number R0 is not clear. Fortunately, though, we can simplify our
analysis of the model by noting that since the population sizes N f and N m

are constant, knowing the sizes of the infective classes is enough to determine
the sizes of the susceptible classes. Thus, we will substitute S f

t = N f − I f
t

and Sm
t = N m − I m

t to get

�I f = α f S f
t I m

t − γ f I f
t

= α f (N f − I f
t )I

m
t − γ f I f

t ,

�I m = αm Sm
t I f

t − γ m I m
t

= αm(N m − I m
t )I

f
t − γ m I m

t .

Now our model needs only to track the sizes of the two infective classes.
Still, it is hard to have an intuitive understanding of how such a model might
behave.

� Do you think that it is possible for an epidemic to occur in the female
population, but not in the male population? Could I f be increasing
while Im is decreasing?

As youwill discover in the exercises, lots of different scenarios are possible
with this model. For instance, we will find that it is possible for �I f > 0,
while �I m < 0; that is, the female population experiences an epidemic as
the disease decreases among males. Of course, if I f increases, we might
expect that, after some time, I m would increase too; a bit later we might have
�I f < 0 and �I m > 0. Some cyclical behavior in the size of the infective
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classes is possible, in fact, though this SI S model usually moves toward
equilibrium quickly.

In the exercises, you are asked to carry out the algebra to solve the simul-
taneous equations �I = 0. You will find the equilibria, I f = 0, I m = 0 and

I f = N f N m − ρ f ρm

ρ f + N m
, I m = N f N m − ρ f ρm

ρm + N f
,

where ρ = γ

α
denotes the respective relative removal rates.

� Verify that if I f = 0 and I m = 0, then the system above is in equilib-
rium.What is the medical significance of the equilibrium?Do you think
it is stable or unstable?

Note that the existence of only one nonzero equilibrium shows there is at
most one endemic level of the disease. This level also depends only on the sizes
of the male and female populations, and the respective relative removal rate
for them, but not on the initial number of infectives. Increasing the relative
removal rates is the way that these endemic levels can be decreased. The
precise formulas allow prediction of the endemic level expected from any
relative removal rate a public health program might achieve.

Let’s examine the nonzero equilibrium state more closely. For the values
of I f and I m to make sense biologically, we must have N f N m − ρ f ρm > 0,
because we cannot have a negative number of infectives. In fact, this turns out
to be a good test to see if a disease is endemic. If N f N m − ρ f ρm is positive,
then our model predicts that gonorrhea (or a different disease modeled with
this two-population SI S model) may always be present in the society. Thus,
data collection for statistical estimates of the infection and removal rates can
help judge whether a disease is likely to remain endemic.

Indeed, with some algebra, we can squeeze out a good interpretation of
the inequality N f N m − ρ f ρm > 0. Rewrite it as N f N m

ρ f ρm > 1 and factor to get

(
N f

ρ f

) (
N m

ρm

)
> 1.

Notice the similarity between N f

ρ f = α f

γ f N f and the basic reproduction number

R0 = S0
ρ

= α
γ

S0 from the one-population SI R model.

� Before reading ahead, use your understanding ofR0 to interpret N f

ρ f =
α f

γ f N f .
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If the female population were wholly susceptible to gonorrhea, that is,
if S f

t = N f , then N f

ρ f = α f

γ f N f would give the average number of infective
female – time steps caused by an infective male during a single time step.
A similar interpretation holds for N m

ρm . Indeed, because it is rarely the case

that N f = S f , the value of N f

ρ f = σ f N f gives a maximum for this number.

We call the quantities N f

ρ f and N m

ρm the maximal male contact number and the
maximal female contact number.

In fact, our analysis above indicates that, if both
(

N f

ρ f

)
> 1 and

(
N m

ρm

)
> 1,

then the product N f N m

ρ f ρm > 1 and the disease has an endemic equilibrium state.
This property, similar to the relationship between epidemics and R0 for the
basic SI Rmodel,makes it tempting to refer to these quantities as reproduction
numbers. Keep in mind, however, that it is at least mathematically possible
for one of the maximal contact numbers to be less than 1 and the disease still
to have an endemic equilibrium.

We have only taken the first step toward creating a realistic gonorrhea
model. A key feature we have missed is that humans vary greatly in sexual
promiscuity. More elaborate models suggest the actual disease dynamics are
greatly affected by a core of highly promiscuous individuals. To build such
features into a model requires introducing further subpopulations, according
to both sex and number of sexual partners.

Problems

7.4.1. What diseases other than gonorrhea might be modeled with the two-
population SI S model developed here?

7.4.2. A certain sexually transmitted disease is described by the model of
this section. Suppose for a female population of 10,000 and a male
population of 15,000, the transmission coefficients are α f = .0000009
and αm = .000006, and the removal rates are γ f = .007 and γ m =
.05.
a. Are females more likely to catch the disease than males?Which sex
is likely to recover more quickly?

b. Find the maximal female contact number and the maximal male
contact number. Do you expect the disease to be endemic? Check
your result with a computer simulation.

c. Calculate N f N m − ρ f ρm . Then, use this expression to solve for
the equilibrium values of S f , I f , Sm, I m . Use a computer program
such as twopop to verify your solutions.
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d. Run a computer program such as twopop to determine if the
nonzero equilibria are stable or unstable. Use a variety of choices
for your initial infective populations.

7.4.3. Suppose whenmodeling a heterosexually transmitted disease, you find
that α f = .011, αm = .00023, γ f = .5, and γ m = .2.
a. If the time step is 1 day, what are the characteristics of this disease?
Include a discussion of the meaning of the transmission coefficients
and removal rates for each sex.

b. Suppose the population is fixed with 500 people, 100 females and
400males. Calculate themaximal female andmale contact numbers.
Can the disease be endemic? Explain. What if instead there are
50 females and 450 males, or if the population is evenly divided,
250 females and 250 males?

7.4.4. An infectious disease hits an isolated community. The elderly pop-
ulation is especially vulnerable; they catch the disease more readily
and are slower to recover than are the young. Suppose you attempt to
describe this using a two-population SI S model of the form:

�Se = −αe Se
t (I

e
t + I y

t )+ γ e I e
t ,

�I e = αe Se
t (I

e
t + I y

t )− γ e I e
t ,

�Sy = −αy Sy
t (I

e
t + I y

t )+ γ y I y
t ,

�I y = αy Sy
t (I

e
t + I y

t )− γ y I y
t .

a. Assuming there are a total of N e elderly people and N y young
people, rewrite the model to eliminate I e and I y .

b. If the α values are .0003 and .0001, which is αe and which is αy? If
the γ values are .21 and .05, which is γ e and which is γ y?

c. Use a computer program such as twopop to determine what hap-
pens to the two populations using the parameter values in part (b),
along with N e = 250 and N y = 750.

7.4.5. The text claims that the nonzero equilibrium solution for the two-
population SI S model of gonorrhea occurs when I f = N f N m−ρ f ρm

ρ f +N m

and I m = N f N m−ρ f ρm

ρm+N f . Verify this as follows:

a. Using �I f = 0, show that at equilibrium

I f = N f I m

I m + ρ f
.

Give a similar formula for I m at equilibrium.
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b. The formulas in part (a) relate the equilibrium values of I f and
I m . Substitute one of the formulas into the other to get an equation
relating I f at equilibrium to itself. Then solve for I f .

c. Write down the equilibrium value for I m by taking advantage of the
symmetry of the original equations.

7.4.6. Do you expect the equilibrium state I f = 0 and I m = 0 for the model
of this section to be stable or unstable? Does the answer to this question
depend on the values of the model parameters? (You may want to use
a computer to run simulations.) Linearize at the zero steady state to
verify (or discredit) your guess.
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Curve Fitting and Biological Modeling

Most of the models introduced in this text have been developed by making
reasonable theoretical assumptions, which are then incorporated into a math-
ematical framework. However, the ultimate test of the validity of any model
is that its behavior is in accord with real data. Because of the simplifications
introduced in anymathematical model of a biological system, wemust expect
some divergence between even the most carefully collected data and well-
constructed model. How can we determine if a model describes data well?
How can we determine the parameter values in a model that are appropriate
for describing real data? These questions are much too broad to have a single
answer. There are, however, mathematical tools that can be used in addressing
them.

Imagine having collected data on a population size at successive time in-
tervals. Plotting the population values as a function of time might give a plot
that appears to grow roughly exponentially. We might, therefore, think the
simple Malthusian model Pt+1 = λPt , introduced in Chapter 1, is adequate
for describing the population growth. Then, the data points should lie approx-
imately on a curve Pt = λt P0 = P0e(ln λ)t . But what should λ be? Is there a
“best” estimate of this parameter that locates the curve “closest” to the data
points? How can we be confident the population is really growing exponen-
tially, and not more slowly, with the data points actually lying on a parabola,
for instance?

As this example illustrates, many questions of the correspondence between
models and data can be thought of as questions of curve fitting. Given a number
of data points, how can we choose formulas for curves that come close to all
the points?

Even when no mathematical model has been formulated, curve fitting is
often a good way of extracting the main features of a data set. After collecting
numerical data in an experiment, a biologist might plot it and see that it
appears to cluster in a roughly linear pattern, for instance. An equation for a
line showing this main trend would succinctly summarize what might be the

315
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most important feature of the data, and perhaps eventually lead to a deeper
understanding of the mechanism producing the pattern. Thus, fitting curves to
data is useful in data-driven fields even when our understanding is too limited
to produce more detailed models.

In this chapter, we will explore some of the basic ideas in curve fitting,
including the most heavily used technique, called least squares. Though the
computations necessary for basic curve fitting are readily performed by most
data analysis software, understanding the mathematical ideas behind them is
helpful in using such software effectively.

8.1. Fitting Curves to Data

As medical researchers develop a new drug, an important issue to be under-
stood is how the concentration of the drug in the bloodstream changes as the
drug is metabolized. To study this, a researcher might administer an initial
dose to bring the concentration to the level of 200 mg/l, and then monitor the
changing concentration over the next few days. Data such as that recorded in
Table 8.1 might be obtained. Notice that no measurement was recorded for
day 2; perhaps the patient missed an appointment or the laboratory work was
botched.

Suppose for therapeutic value, the concentration of drug in the blood needs
to be kept at a level above 100 mg/l. Then, because the table shows the level
dropping below that sometime between 1 and 3 days after the initial dose, the
new dose should be administered sometime in that time period. Unfortunately,
the missing data for day 2 makes it hard to pin down more closely when the
100 mg/l level is crossed.

� Based on the available data, do you think the level that would have been
measured on day 2 is greater than or equal to 100 mg/l? How would
you try to persuade someone who disagreed with you?

One approach to answering this question begins with the observation that
the drop in level between times 0 and 1 is much larger than that between times
3 and 4. This might indicate that each passing day produces a smaller drop

Table 8.1. Concentration y of
Drug in the Bloodstream t Days

After Dosage

t (day) 0 1 2 3 4
y (mg/l) 200 129 — 58 33
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Figure 8.1. Data from Table 8.1 with an exponential decay trend.

in level, and so the measurement on day 2 would be lower than the midpoint
between the day 1 and day 3 measurements. Since (129 + 58)/2 = 93.5,
probably the day 2 measurement would have been less than 100 mg/l.

Although this sort of reasoning is fine as far as it goes, it’s inadequate for
answering more refined questions. For instance, what is the best estimate of
the level on day 2? This is a question of interpolating the data to estimate
values between entries in the table. If, instead, we wanted to estimate the level
on day 5, then we need to extrapolate, because we have data entries on only
one side of that day.

Plotting the above data produces the points marked in Figure 8.1. The
data points appear to cluster along an exponential decay curve like the one
shown. Finding a formula for that curve, or a similar one that fits the data
well, would enable us to both describe the data and estimate unknown values
easily. Interpolating and extrapolating could be performed by simply plugging
time values into the formula for the curve. A curve that describes the data
well overall, though perhaps not in all its particulars, serves as a model for the
data. Because exponential decay curves are described by formulas of the form
f (t) = aekt with k < 0, our goal is to find the best choice of the parameters
a and k to ensure a good fit between the data and the model.

You might imagine that just collecting more data, by taking more frequent
measurements over a longer time, would be preferable to fitting a curve to the
datawe have. Even ifwe collectmore data, though,wewould still find it useful
to fit a curve to it. Finding a formula that describes the overall trend in the data
would give a succinct description of it, andmight give usmore insight than the
raw numbers that were collected. Also, we should expectminor fluctuations in
the data around its overall trend, due to measurement errors and the specifics
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of the patient’s activities during the period of the study. Fitting a simple curve
to the data is, like most models, a way of focusing attention on main features
and ignoring details we consider less important.

Our first approach to finding a and k is a simple one. We can use the data
points to get relationships between the parameters by plugging the points into
the equation f (t) = aekt . For instance, the data point (1, 129) gives

129 = aek .

With two unknowns in this equation, we cannot yet solve, so considering
another data point, say (3, 58), gives

58 = ae3k .

Now, the first equation gives a = 129e−k , which can be substituted into the
second to obtain

58 = (129e−k)e3k = 129e2k .

Thus

58

129
= e2k,

so taking a natural logarithm, we find

k = 1

2
ln

58

129
≈ −.3997.

Now, becausea = 129e−k , using this value of k to solve fora givesa ≈ 192.4.
Thus, our first attempt at fitting an exponential curve to the data yields

f1(t) = 192.4e−.3997t .

This curve is the one that was graphed in Figure 8.1.

� What does this curve indicate as the amount of drug in the patient at
time t = 2? At time t = 5?

Looking at the figure carefully, we notice that the graph of y = f1(t) passes
through exactly two of the data points, but is only near the others. We should
have expected this, because we used only two data points to solve for a and
k. We have completely ignored 2 of the 4 measurements that were taken. This
is, of course, a significant drawback to our approach.

� Suppose another researcher chooses the first two data points and solves
for the constants a and k. How would the resulting curve compare with
the one above? Do you think it would be a better model?



8.1. Fitting Curves to Data 319

If different researchers propose different curves as good fits to the data, an
objective way of measuring the fit is needed. A start at measuring goodness of
fit between a curve y = f1(t) and data is to look at the difference between the
y-coordinates of the data and the y-coordinates of f1(t). We can gather these
differences into an error vector e. For the data and curve y = f1(t) above, we
find the error is

e1 ≈ (200, 129, 58, 33)− (192.4, 129.0, 58.00, 38.89)

≈ (7.6, 0, 0, −5.89).
Note that a data point below the curve produces a negative error and that one
above produces a positive error. As already observed, at the two points used
in fitting the curve, the individual errors are zero, or at least very close to zero
due to rounding.

A major flaw in our first curve-fitting attempt is that it only used some of
the data points in finding an equation. One possible way around this problem
is to fit the data to a curve with more parameters. For instance, with the data
above, fitting an exponential of the form g(t) = aekt + bwould use three data
points because of the three parameters a, k, and b. The resulting curve g(t)
will pass exactly through those three points, making three entries in the error
vector be equal to zero.

Although the idea of including more parameters in the curve seems attrac-
tive at first, it could be a real mistake. For instance, as one of the exercises
will show, there is a theoretical model that justifies why a curve of the form
f (t) = aekt is really the appropriate one for dealing with the metabolization
of a drug. Even in situations where no such theory exists, it is often better to
use simple formulas to fit data rather than complicated ones. After all, some
of the details in the data may be due to experimental artifacts and random
variations, and are not really part of the trend we hope to capture. A simple
curve that comes close to all data points may therefore be a more valuable
description than a complicated curve that exactly hits all points.

Semilog and log–log graphs. Asa second attempt to fitting a curve f (t) =
aekt to the data above,wewill try to use all the data points.Of the twounknown
parameters, a and k, we might think that k is more important because it
indicates the rate of decay. This suggests that we should focus on a technique
of finding the decay rate k using all of the data points.

A clever way to estimate k is to use a semilog plot. For the moment,
view our four data points as approximated by ordered pairs of the form
(t, y) = (t, aekt ). If we transform the data by taking natural logarithms of the
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Table 8.2. Semilog Transformation of
the Data in Table 8.1

t 0 1 2 3 4
ln y 5.298 4.860 — 4.060 3.497

y-coordinates, we obtain ordered pairs of the form (t, ln y) = (t, kt + ln a).
Notice that the new second coordinates of these points have a simpler pat-
tern; they are now linear functions of t , because they have the form kt + ln a,
where k and ln a are just constants. If we could find the slope of the line
relating these transformed data points, then that would be a good estimate for
k, the decay rate.

In a semilog plot, we graph the transformed data (t, ln y). The name refers
to the fact that we take a logarithm of only one of the coordinates. (Although
it is also possible to form a different type of semilog plot using (ln t, y), that
would not help us here, since our goal is to estimate k as best we can.)

The semilog transformation of the data of Table 8.1 gives Table 8.2 and
Figure 8.2. The figure shows how a semilog transformation converts nearly
exponential data into nearly linear data.

Although Figure 8.2 might lead us to guess that k ≈ −.5, it’s best to per-
form a calculation with all the data points to estimate the slope. A reasonable
idea is to first find the slopes of the line segments joining adjacent transformed
data points and then use the average of those three slopes as an estimate for k.

The slope between the first two transformed data points is m ≈ (4.860−
5.298)/(1− 0) = −.438. Similarly, we find the slopes between the other pairs
of consecutive points as −0.400 and −0.563. Finally, taking the average of
these slopes, we estimate k ≈ (−.438− .400− .563)/3 = −.467.

3
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Figure 8.2. Semilog plot of the data in Table 8.1: (t, ln y).
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Note that this estimate of the growth rate k is slightly different from that
found in our first attempt at curve fitting in which we used only two data
points. Although we still do not know if this estimate of k is better, we might
suspect that it is because we used all the data in the estimation procedure.

To finish finding the equation f2(t) = ae−.467t that models the data, we
must pick a value for a. A quick way is to use one of the data points to solve
for a. We will choose one of the middle data points, (1, 129), in the hope that
its central location in the data set might make the curve f2(t) fit the data the
best. Substituting t = 1 and y = 129 and solving, we obtain a ≈ 205.8, and
f2(t) = 205.8e−.467t .

� How might you better estimate a in a way that uses all of the data?

The idea of transforming data with a logarithm was useful here because it
converted exponential decay into linear behavior. A similar approach is useful
when we believe a curve given by a power function y = axn should fit our
data. For this particular curve, taking a logarithm of both x and y is useful,
because

y = axn is equivalent to ln y = n ln x + ln a.

This means that a graph of the points (ln x, ln y) = (ln x, ln a + n ln x) will
form a line, with slope n. Such a plot is called a log–log plot. If a log–log
plot of data looks close to linear, then a good estimate of the slope of the line
will be a good estimate for the degree of the correct power function to fit.
Indeed, if we can find a good estimate for the equation of the line relating
ln x and ln y, say ln y ≈ m ln x + b for some m and b, then exponentiating
this equation gives y ≈ ebxm , which is a power function fitting the data.

Significantly, semilog and log–log transformations allow us to reduce the
problemof fitting either exponential or power functions to data to that of fitting
a line to transformed data. If we develop a means of finding good models for
linear relationships between variables, then by using various transformations
on our data if necessary, we will also know how to find goodmodels of certain
other types of relationships.

Measures of error. So far, we have used two ad hoc methods to fit an
exponential curve to four data points. Both

f1(t) = 192.4e−.3997t and f2(t) = 205.8e−.467t

are reasonable candidates for exponential curves fitting the data, but which
is better? Although we suspect that the second curve f2(t) = 205.8e−.467t

probably describes the data better than f1(t) = 192.4e−.3997t , since we at
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least used all the data in finding it, we need to be precise about what “better”
means. Using graphical perception or vague suspicions to choosewhich graph
is superior is too subjective; a different viewer might choose differently.

Earlier, we determined that the vector of errors for f1(t) was given by

e1 ≈ (7.6, 0, 0, −5.89).
Each of these numbers measures the vertical displacement between a data
point (ti , yi ) and the point (ti , f1(ti )) on the graph of f1(t) with the same t
value. Calculating the error vector e2 for f2(t)’s fit to the data gives

e2 =




200
129
58
33


 −




205.8e−.467(0)

205.8e−.467(1)

205.8e−.467(3)

205.8e−.467(4)


 ≈




−5.8
0
7.3
1.22


 .

Note that only one of the entries of e2 is zero. Also, whereas e1 had two zero
entries, it also has an entry larger than any of those in e2. Apparently, there
has been a sort of trade-off, where fitting perfectly at two points produces a
worse fit at others.

Instead of comparing corresponding entries in error vectors one at a time,
the individual errors can be combined into a single scalar that measures the
overall fit. To compute a measure of the total error for each of the fitting
curves,wemight try adding the components of the error vector. Unfortunately,
because some of the components of the error vectors are positive and some
are negative, there would be some cancellation. The number computed would
give too small a measure of the total error.

A better idea is to sum the absolute value of the errors. This is called the
total deviation for the fit of the curve to the data. For the error between f1
and the data,

T D( f1) = |7.6| + |0| + |0| + | − 5.89| = 13.49,

whereas for f2,

T D( f2) = | − 5.8| + |0| + |7.3| + |1.22| = 14.32.

Total deviation, therefore, gives a quantitative reason to say that f1 fits the
data better than f2.

A second way to overcome the cancellation problem is to square each of
the entries of the error vector. This is called the sum of squares for error.

SSE( f1) = (7.6)2 + 02 + 02 + (−5.89)2 = 92.4521

SSE( f2) = (−5.8)2 + (0)2 + (7.3)2 + (1.22)2 = 88.4184



8.1. Fitting Curves to Data 323

Note that using SSE to measure total fit indicates that f2 was a better fit than
f1.
As this example shows, SSE and T D give genuinely different criteria for

determining which fit is best. Although both are reasonable measures of total
error in fitting a curve to data, one must be chosen so that we have a standard
way of comparing. The SSE measure of fit is the one most heavily used by
scientists, and the one on which we will focus. As some of the exercises will
indicate, T D has some unpleasant properties that make it a poorer choice.
The use of SSE can also be grounded in statistical models of error.

But, even if we decide to use SSE to measure total fit, there might be an
exponential curve that fits the data even better than f2 does. We have found
two particular curves, based on two approaches that happened to come to
mind, yet there may be a still better curve that we have not thought of. How
we can find the best curve will be a question for the next section.

Problems

8.1.1. Find a formula for the exponential f (t) = aekt that passes through
the first two data points in Table 8.1. Then compute the error vector,
measuring its fit to the data. Is it a better or worse fit than the function
f1(t) found in the text when the total error is measured by T D? Than
f2(t) when total error is measured by SSE?

8.1.2. In the second approach of this section to finding an exponential curve
to fit the data in Table 8.1, all data points were used to estimate k, but
only one to estimate a.
a. Invent a scheme that uses all points to estimate a (after k has been
estimated) and carry it out.

b. Use SSE to determine if the curve you found in part (a) is a better
or worse fit than y = f2(t).

8.1.3. Consider the three data points: (2, 7.6), (5, 15.3), (10, 32.1). Three
candidates for best-fit line for this data are

y = 2.9x + 1.9, y = 2.9x + 2, y = 3x + 1.1.

a. Plot the data points and the three lines on the same graph. (In MAT-
LAB this can be done with the commands like: x=[2,5,10],
y=[7.6,15.3,32.1], plot(x,y,'o'), hold on, L1=
3*x+1.1, plot(x,L1).) Which of the three appears to be the
best fit?
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b. For each line, compute the error vector and SSE .Which of the three
lines fits the data points best by giving the smallest SSE?

c. By looking at your graphs and making informed guesses, try to
find a line that produces a smaller SSE than any of the three given
ones.

8.1.4. Drug levels in the bloodstream are typically observed to decay expo-
nentially with time from the administration of a dose. A difference
equation model that describes this (and gives further reason to try to
fit the data of Table 8.1 to an exponential curve) is yt+1 = (1− r )yt ,
where r is the percentage of the drug that is absorbed by tissue or
broken down by metabolization during one time step.
a. If the initial amount of the drug is y0, explain why this model leads
to yt = y0(1− r )t .

b. Letting k = ln(1− r ) and a = y0, show this is equivalent to yt =
aekt .

c. Explain why 0 < r < 1 for this model, and then why k < 0.

8.1.5. Youmight think that the four data points in Table 8.1 could be modeled
well with a straight line.
a. Using only the twomiddle data points, fit a straight line y = mt + b
to the data. Compute the error and SSE . Is your line a better orworse
fit than y = f2(t)?

b. Invent a scheme to find a straight line that fits the data better than
the line you found in part (a). Compute its SSE . Is it a better or
worse fit than y = f2(t)?

8.1.6. At times t = 1, 2, 3, 4, 5, and 6 seconds, data values yt = 3, 7, 17,
37, 82, and 182 are recorded.
a. Plot the data. (In MATLAB, after storing the t and y values in
vectors, use plot(t,y,'o').) From this graph, do you think
a linear, exponential, or power function is the best model for the
data?

b. Produce a semilog plot and use it to roughly estimate the growth
rate k for a model of the data given by a curve of the form y = aekt .
(In MATLAB, plot(t,log(y),'o') will produce the plot.)

c. Produce a log–log plot and use it to roughly estimate the degree n
of a power function, for a model of the data of the form y = atn . (In
MATLAB, plot(log(t), log(y),'o') will produce the
plot.)

8.1.7. Using T D to measure total error can sometimes ignore a piece of data,
as this problem will show.
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Consider the three points (0, 0), (1, C), and (2, 0), where C > 0,
and the problem of finding the best horizontal line y = b to fit these
points.
a. Explain why any horizontal line below all three points cannot be
the best fit, by drawing a plot and imagining what happens to T D
as the line is moved upward.

b. Explain similarly why any horizontal line above all three points
cannot be the best fit.

c. Explain why, if a horizontal line is below the middle point and
above the others, then T D can be decreased by lowering the line to
go through the bottom two points.

d. Conclude y = 0 is the best-fit horizontal line when T D is used as
a measure of total error. Because this result does not depend on C ,
the value of C has no effect on the line.

e. For a challenge, explain why y = 0 is the best-fit line (horizontal
or not) for the three data points.

8.1.8. Using T D to measure total error does not always produce a single
best-fit curve; there can be many curves that are all equally good.
To see how this can happen, consider the four points (0, 0), (1, 1),

(2, 1), and (3, 0), and the problem of finding the best horizontal line
y = b to fit these points.
a. As in the previous problem, explain why the best-fit horizontal line
cannot lie above all the points or below all the points.

b. Explain why any horizontal line above the two bottom points and
below the two top points will have T D = 2.

c. Conclude from parts (a) and (b) that there may not be a unique
solution to the problem of fitting a curve to data, if total error is
measured using T D. (If total error is measured by SSE , there is a
unique best-fit line.)

8.2. The Method of Least Squares

While exploring the idea of fitting curves to data in the last section, we
discovered that evenfitting an exponential curve to data could be reformulated,
through the use of semilog graphs, as a problem of fitting a straight line.

In fact, the most common curve-fitting problems experimentalists face are
usually those of straight line fits. Data are collected, a plot is made (using
a transformation if necessary), and the data points often appear to cluster in
a roughly linear manner. Then, the best-fit line to describe the data must be
chosen.
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The most common means of picking the best-fit line is the method of least
squares. The philosophy of least squares is that the line that best fits data
is the one that minimizes SSE . Geometrically, the least-squares best-fit line
is the one that minimizes the sum of squares of the vertical distances between
the data points and the fitting line – of all the lines that could possibly describe
the data trend, we consider as best the one with this geometric property.
Note that one feature of this method is that it chooses the best line by a cri-
terion using all the data points.

With this criterion, the calculation of the best-fit line ultimately turns out to
be surprisingly simple. Understanding why the calculation works as it does,
though, requires a bit more effort.

If there are only two data points, then finding the least-squares best-fit
line through them is straightforward. We know that there is a line going
exactly through any twopoints, and that linewill have SSE = 0, theminimum
possible value.

Although the algebra to find the line through two points can be formulated
in a number of different but equivalent ways, a matrix formulation will set
the stage for later work. Suppose, for instance, the data points are (3, 2.3) and
(6, 1.7). Then, because a line has equation y = mx + b, we need to find m
and b so that

2.3 = m · 3+ b

1.7 = m · 6+ b

or

(
3 1
6 1

) (
m
b

)
=

(
2.3
1.7

)
. (8.1)

Solving the matrix equation gives

(
m
b

)
=

(
3 1
6 1

)−1 (
2.3
1.7

)
=

(−0.2
2.9

)
,

so the line fitting the data is y = −0.2x + 2.9. Because we solved the matrix
equation exactly, the line goes exactly through the two data points.

Suppose now we had three data points, (3, 2.3), (6, 1.7), and (9, 1.3). The
first two are the same as above, and thus lie on the linewe just found. However,
the third data point is not on that line, but rather lies above it. If we are still
trying to find a line y = mx + b to fit this data, we would like to find a
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solution to

2.3 = m · 3+ b

1.7 = m · 6+ b

1.3 = m · 9+ b

or


3 1
6 1
9 1




(
m
b

)
=



2.3
1.7
1.3


 . (8.2)

� Why can’t you attempt to solve this matrix equation by finding a matrix
inverse?

Becausematrix inverses can exist only for squarematrices, straightforward
matrix algebra is not sufficient to solve this equation. In fact, we know there
is no solution to this matrix equation – if there were, then the three data points
would lie exactly on a line. Since we cannot hope for an exact solution to
Eq. (8.2), our aim is to instead find values for m and b that minimize SSE .

More generally, suppose wewant to find the equation of a line y = m̂x + b̂
that, of all lines, best fits the data points (x1, y1), (x2, y2), . . . , (xn, yn). We
would like a solution, (m̂, b̂), to a system of equations:

y1 = mx1 + b

y2 = mx2 + b
...

yn = mxn + b,

which can be written in matrix form as




x1 1
x2 1
...
...

xn 1




(
m
b

)
=




y1
y2
...

yn


 . (8.3)

However, this equation is unlikely to have a solution (m̂, b̂), because the
original data points are unlikely to lie exactly on a line. Instead of solving
this exactly, we want to find the values of m̂ and b̂ that “almost” satisfy it, in
the precise least-squares sense.
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Although we do not yet know m̂ and b̂, consider a line y = mx + b as a
candidate for the best fit one. Let

ỹi = mxi + b, i = 1, 2, . . . , n,

denote the y-coordinates of the points on this candidate line, with x-
coordinates given by xi . Then, the error vector for the candidate line will
be

e(m, b) = (y1 − ỹ1, y2 − ỹ2, . . . , yn − ỹn)

= (y1 − mx1 − b, y2 − mx2 − b, . . . , yn − mxn − b).

The total error, using the sum of squares measure, is then

SSE(m, b) = (y1 − mx1 − b)2 + (y2 − mx2 − b)2 + · · · + (yn − mxn − b)2

=
n∑

i=1
(yi − mxi − b)2.

Notice that the error vector and the total error depend on the choice of m and
b for the line we consider. Our goal is to find values m̂ and b̂ that minimize
this number among all possible choices of m and b.

We focus our attention on m̂ first. If SSE(m̂, b̂) is minimal, then for any
choice of number m, the value of SSE(m, b̂) must be equal to or larger than
it. That is,

SSE(m, b̂) ≥ SSE(m̂, b̂),
n∑

i=1
(yi − mxi − b̂)2 ≥

n∑
i=1

(yi − m̂xi − b̂)
2
.

Now considerm = m̂ + ε for some ε, to bring attention to the perturbation
of m from its optimal value m̂. Substituting this expression for m into the
inequality and rearranging terms gives

n∑
i=1

(yi − m̂xi − εxi − b̂)
2 ≥

n∑
i=1

(yi − m̂xi − b̂)
2
, or

n∑
i=1

(
(yi − m̂xi − b̂ − εxi )

2 − (yi − m̂xi − b̂)
2
)

≥ 0.
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But the individual summands simplify as

(yi−m̂xi − b̂ − εxi )
2 − (yi − m̂xi − b̂)

2

= ((yi − m̂xi − b̂)− εxi )
2 − (yi − m̂xi − b̂)

2

= (yi − m̂xi − b̂)2 − 2εxi (yi − m̂xi − b̂)

+ (εxi )
2 − (yi − m̂xi − b̂)

2

= −2εxi (yi − m̂xi − b̂)+ (εxi )
2.

Therefore, the inequality above is
n∑

i=1
(−2εxi (yi − m̂xi − b̂)+ (εxi )

2) ≥ 0,

or

−2ε
(

n∑
i=1

xi (yi − m̂xi − b̂)

)
+ ε2

(
n∑

i=1
x2i

)
≥ 0.

In this inequality, considering a value of ε sufficiently close to zero, the second
termwill be of negligible size in comparisonwith the first, due to the ε2. Thus,
for all small values of ε, the first term must be nonnegative for the inequality
to be satisfied. However, since ε might be either positive or negative, the only
way the first term is always nonnegative is if

n∑
i=1

xi (yi − m̂xi − b̂) = 0. (8.4)

This gives us an equation m̂ and b̂ must satisfy to minimize SSE . Because
it is an equation in only two unknowns (Remember: all the xi and yi are data
values), it is more simply expressed as(

n∑
i=1

x2i

)
m̂ +

(
n∑

i=1
xi

)
b̂ =

n∑
i=1

xi yi . (8.5)

After much work, we have found one equation that relates m̂ and b̂. To
find a second equation relating m̂ and b̂, we reason similarly focusing on b̂.
The complete argument is left for the exercises, but it yields(

n∑
i=1

xi

)
m̂ + nb̂ =

n∑
i=1

yi . (8.6)

We now have two equations, (8.5) and (8.6), called the normal equations,
that relate m̂ and b̂. With two equations in two unknowns, we can solve for
m̂ and b̂ and so find the least-squares line y = m̂x + b̂.
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Before continuing with the now routine calculation of the solutions to the
normal equations, a slight detour leads to a remarkable observation about the
structure of the normal equations. We need a definition first.

Definition. If M is an m × n matrix, then the n × m matrix obtained by
interchanging the rows and columns of M is known as the transpose of M ,
and is denoted by MT ; for

M =




x11 x12 · · · x1n

x21 x22 · · · x2n
...

...
. . .

...
xm1 xm2 · · · xmn


 , MT =




x11 x21 · · · xm1

x12 x22 · · · xm2
...

...
. . .

...
x1n x2n · · · xmn


 .

Example. If A =


3 1
6 1
9 1


, then AT =

(
3 6 9
1 1 1

)
. Notice the first row of A

becomes the first column of AT , the second row of A becomes the second
column of AT , and so on. At the same time, the columns of A have become
the rows of AT .

Let’s return to the original matrix Eq. (8.3) that we would have like to have
solved to find a line through the data points. If we multiply each side of the
equation on the left by the transpose of the matrix appearing in it, we obtain

(
x1 x2 . . . xn

1 1 . . . 1

)



x1 1
x2 1
...
...

xn 1




(
m
b

)
=

(
x1 x2 . . . xn

1 1 . . . 1

)



y1
y2
...

yn


 ,

which, on multiplying the matrices, gives
(

x12 + x22 + · · · + xn
2 x1 + x2 + · · · + xn

x1 + x2 + · · · + xn 1+ 1+ · · · + 1

) (
m
b

)

=
(

x1y1 + x2y2 + · · · + xn yn

y1 + y2 + · · · + yn

)
,

or, more succinctly,
(∑

x2i
∑

xi∑
xi n

) (
m
b

)
=

(∑
xi yi∑
yi

)
, (8.7)

where the sums range over i = 1, . . . , n.
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Now compare Eq. (8.7) to Eqs. (8.5) and (8.6). Amazingly, these equations
are exactly the same; Eq. (8.5) is stored in the top row of Eq. (8.7), while
Eq. (8.6) is in the bottom row. This observation provides a quick way to
perform the method of least-squares fitting: To find the least-squares solution
to a matrix equation of the form of Equation (8.3), multiply each side of the
equation on the left by the transpose of the matrix and solve the resulting
system for m̂ and b̂.

To apply this to finding the least-squares, best-fit line for the three data
points (3, 2.3), (6, 1.7), and (9, 1.3), fromEquation (8.2),weobtain thenormal
equations

(
3 6 9
1 1 1

) 

3 1
6 1
9 1




(
m
b

)
=

(
3 6 9
1 1 1

) 

2.3
1.7
1.3


 , or

(
126 18
18 3

) (
m
b

)
=

(
28.8
5.3

)
.

Now multiplying both sides of the last equation by

(
126 18
18 3

)−1
= 1

126 · 3− 18 · 18
(

3 −18
−18 126

)

gives
(

m̂
b̂

)
= 1

126 · 3− 18 · 18
(

3 −18
−18 126

) (
28.8
5.3

)
≈

(−.1667
2.7667

)
.

The least-squares best-fit line for the three data points is thus

y = −.1667x + 2.7667.

� Graph this line and the three data points. Does the line appear to fit the
data well?

In using the least-squares approach to fit a line to data, the most important
point is that you understand the criteria that you are using to choose the
best line – the one with the smallest SSE . Of secondary importance is the
calculation you do to actually get that line. The steps for this are:

1. Write equations you would like m and b to satisfy for all the data
points to be on the line y = mx + b, by plugging each data point
into the equation. For n data points, this gives n equations in the two
unknowns, m and b, that usually cannot be solved exactly.
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2. Express the equations in matrix form as

A

(
m
b

)
= b.

Here, A will be a matrix and b a vector, each with numerical entries.
3. Create the normal equations by multiplying on the left of both sides of

the equation by AT , giving

AT A

(
m
b

)
= AT b.

4. Solve the normal equations by computing AT A, AT b, and (AT A)−1.
The solution is (

m̂
b̂

)
= (AT A)−1AT b.

Notice that the steps here say nothing about the real ideas behind least-
squares – that appeared only in our derivation of the normal equations. How-
ever, the steps have the nice feature that they provide a simple and straight-
forward calculation.

Most software packages and calculatorswill calculate a least-squares, best-
fit line (often called a regression line) at the touch of a button. Once you
understand the idea and method of calculation, these are great labor-saving
devices.

Although the matrix A was not invertible in the three data point example
above, the matrix product AT A was invertible. Because of the particular form
of the columns of any matrix A used in least-squares regression, the product
AT A is almost always invertible, ensuring that a least-squares solution can be
found using matrix algebra. In fact, provided the data has at least two points
with different x-coordinates, AT A will be invertible, although a proof of this
fact requires additional theory from linear algebra. Moreover, when AT A
is invertible, there is one and only one solution to the normal equations. This
justifies talking about the least-squares, best-fit line for a data set; one line is
genuinely better than all others in giving a smallest value for SSE .

Problems

8.2.1. Plot the three points (−1, 1), (0, 3), and (1, 4). Then, find the least-
squares, best-fit line for them, following the four steps outlined in the
text and doing all calculations without a computer. Add a graph of
the line to your plot.
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Table 8.3. Population Size in Year t

t 0 1 2 3 4 5
P 173 278 534 895 1553 2713

8.2.2. Find the least-squares, best-fit line to the data points (3, 120), (4, 116),
(5, 114), (6, 109), and (7, 106) by:
a. following the four steps given in the text, using a computer. The
MATLAB command A' gives the transpose of a matrix A.

b. following the first two steps and then using the MATLAB com-
mand A\b to find the least-squares solution x̂ to Ax = b.

c. Using the MATLAB command polyfit. For instructions, type
help polyfit.

8.2.3. Recall from the last section that the data of Table 8.1 showed an
exponential decay that we hoped to model by an exponential formula.
Table 8.2 contains transformed data that is roughly linear.
a. Find the least-squares, best-fit line ln y = m̂t + b̂ to the data in
Table 8.2.

b. Use your answer to part (a) to give an exponential curve y = aekt

fitting the data in Table 8.1.
Note: This approach to fitting an exponential curve, using a least-
squares, best-fit line to the transformed data, does not necessarily
give the exponential that minimizes SSE for the untransformed data.
It is, however, a standard approach to exponential curve fitting.

8.2.4. Suppose the population data in Table 8.3 is believed to be described
by the model Pt+1 = λPt .
a. Produce a semilog plot and explain why it justifies the choice of
the model.

b. Find the least-squares, best-fit line to the transformed data.
c. Use part (b) to find an exponential curve fitting the data.
d. Use part (c) to give a good estimate of λ for this data.

8.2.5. To produce and plot simulated data points that will be nearly on the
line y = .7x + 2.1, use the MATLAB commands

x=[1:10]', y=.7*x+2.1+.3*randn(10,1),

plot(x,y,'o').

Then A=[x,x.∧0], b=y will prepare you to perform the least-
squares, line-fitting calculation.
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a. Enter all these commands and recover the least-squares line. Is it
exactly the line y = .7x + 2.1? Is it close?Perform this experiment
several times and summarize your results.

b. What is the effect of the number .3 in these commands? If .3 is re-
placed by 3, is the line that you recover usuallymore or less similar
to y = .7x + 2.1? Explain why your observation is reasonable.

c. What is the effect of using fewer or more data points on the recov-
ery of the line? For instance, if the number 10 in these commands
is replaced with 3 or 30, is the line you recover usually more or
less similar to y = .7x + 2.1? Explain why your observation is
reasonable.

8.2.6. That there is exactly one straight line through any two points is well
known. However, this fact manifested itself in the fact that Equation
(8.1) was solvable and had a unique solution.
a. Explain why, through any three points in the plane, you would
expect to be able to find exactly one parabola of the form y =
ax2 + bx + c by expressing the equations youwould need to solve
to find a, b, and c in matrix form. What is it about the matrix
equation that suggests there is probably one and only one solution?

b. Given n points, what degree polynomial y = p(x) should you
consider to be likely to find one and only one such polynomial
curve through the data points? Explain.

8.2.7. Consider the four data points (−2, 8.1), (0, 7), (10, 5.9), and (15, 5).
a. Use MATLAB to plot the four data points and the least-squares
line fitting them.

b. Calculate themean x-coordinate x̄ andmean y-coordinate ȳ. Does
the least-squares line pass through (x̄, ȳ)?

c. Perform several similar experiments by varying the data points.

8.2.8. Show that m̂ and b̂ for the least-squares, best-fit line to data must
satisfy Eq. (8.6) as follows:
a. Explain why SSE(m̂, b) ≥ SSE(m̂, b̂) for any choice of b.
b. Using b = b̂ + δ, show that for all δ

n∑
i=1

(
(yi − m̂xi − b̂ − δ)2 − (yi − m̂xi − b̂)2

) ≥ 0.

c. Show that for all δ

−2δ
(

n∑
i=1

(yi − m̂xi − b̂)

)
+ δ2n ≥ 0.
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d. Explain why part (c) shows

n∑
i=1

(yi − m̂xi − b̂) = 0.

e. Deduce Eq. (8.6).

8.2.9. (Calculus) The normal equations for least-squares, line fitting can
also be derived using calculus. Recall that at the minimum of a dif-
ferentiable function, the derivative must be zero.
a. Derive Eq. (8.4) by differentiating SSE(m, b̂) with respect to m
and setting the result equal to zero.

b. Derive Eq. (8.6) similarly.

8.2.10. Because the normal Eqs. (8.7) can be solved by inverting a 2× 2
matrix, the formula for the matrix inverse leads to a formula for m̂
and b̂. Use this approach to deduce

m̂ = n
(∑

xi yi
) − (∑

xi
) (∑

yi
)

n
(∑

x2i
) − (∑

xi
)2

b̂ =
(∑

x2i
) (∑

yi
) − (∑

xi
) (∑

xi yi
)

n
(∑

x2i
) − (∑

xi
)2 .

8.2.11. Use the result of the last problem to show that, if x̄ an ȳ are the
mean x- and y-coordinates of the data points, then (x̄, ȳ) lies on the
least-squares, best-fit line.

8.2.12. The least-squares solution to the equation Ac = b, for a vector of
unknowns c, is given by ĉ = (AT A)

−1
AT b. You might think this

formula could be simplified as

ĉ = (AT A)
−1

AT b

= A−1(AT )
−1

AT b

= A−1 I b

= A−1b.

Explain the error in this reasoning.

8.3. Polynomial Curve Fitting

While least-squares fitting of straight lines to data is very commonly done,
fitting higher degree polynomials is often useful as well. If we have decided
to model some data by an nth degree polynomial y = f (t), then finding the
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polynomial of that degree minimizing SSE can be done by a procedure very
much like that outlined in the last section. Althoughwewill not give a proof of
why the calculation works to produce the least-squares, best-fit polynomial,
an argument similar to the one for the best-fit line can be made. Instead, we
will look at an interesting example.

Modeling the growth of AIDS. In the early stages of epidemics of most
infectious diseases, the total number of cases often grows exponentially.More
precisely, suppose at times t = 0, 1, 2, . . . , the total number of infected in-
dividuals in a population is counted, yielding I0, I1, I2, . . . . Then, a plot of
the points (t, It ) typically shows the data points clustered around a curve that
looks much like an exponential growth curve, at least for small values of t .
As the exercises will show, this type of behavior is predicted by standard in-
fectious disease models, such as those of Chapter 7. Figure 7.1 of that chapter
shows an example of this, where the plot of the number of infectives grows
roughly exponentially in the early time steps.

The CDC began collecting data on the AIDS epidemic in the United States
on a monthly basis in 1982, with reporting of new cases required by law.
Although there aremanyflaws in this data, such as time lags between infection,
diagnosis, and reporting, it still provides our best picture of the spreading
epidemic. A change in the surveillance definition in 1987, and again in 1993,
further complicate analysis. Nonetheless, studying this data might give useful
insights into the mechanisms of the disease spread.

Recorded in Table 8.4 are some of the data on the cumulative number of
AIDS cases in the United States, as reported by the end of the calendar year.
Note that because data are cumulative, all cases reported by the end of a year
appear in the count for subsequent years as well.

When a plot of this data is made, it does show amarked increase over time.
However, unlike most epidemic data, it does not seem to grow approximately
exponentially.

� If the data were growing approximately exponentially, what would a
semilog plot of the data look like?

Table 8.4. Cumulative No. of AIDS Cases Reported
to CDC

Year 1 2 3 4 5 6 7
Cases 158 767 2787 7198 15454 28629 50280

Note: “Year” is year since 1980.
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As youwill see in the exercises, a semilog plot of this data does not produce
the approximately linear behavior that an exponential model would lead to.
More surprisingly, a log–log plot of the data shows the transformed points
clustering along a line with slope approximately 3.

� If a log–log plot is linear, with slope 3, then what curve is likely to be
a good model for the data?

The log–log plot suggests that fitting the data to a polynomial of the form
y = at3 might be appropriate. However, we will use a slightly more general
curve produced by the general cubic polynomial

y = c3t
3 + c2t

2 + c1t + c0.

Here, t represents year since 1980, and y the cumulative number of AIDS
cases reported.

For each of the seven data points, we have an equation relating the unknown
coefficients c3, c2, c1, and c0. For example, from the points (1, 158) and
(7, 50280), we obtain the equations

158 = c3(1)
3 + c2(1)

2 + c1(1)
1 + c0,

50,280 = c3(7)
3 + c2(7)

2 + c1(7)
1 + c0.

Instead of writing each of the seven equations down individually, we can
express the system in matrix form as




13 12 1 1
23 22 2 1
33 32 3 1
43 42 4 1
53 52 5 1
63 62 6 1
73 72 7 1







c3
c2
c1
c0


 =




158
767
2787
7198
15454
28629
50280




.

More compactly, Ac = b, where b is the 7× 1 column vector containing the
cumulative numbers of cases, A is the 7× 4 matrix constructed from powers
of the t-values, and c is the vector of unknown coefficients we hope to find.

� Explain why this matrix equation could only have an exact solution if
all seven points lie on the graph of a cubic.

Of course, we do not expect this equation to have an exact solution, because
we do not expect any cubic to pass exactly through seven data points. Instead,
we are interested in finding an approximate solution ĉ, whichminimizes SSE .
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Fortunately, the algorithm for finding this least-squares solution is just as for
fitting a line: Multiply each side of the equation on the left by AT to get the
normal equations and solve them exactly.

In full detail,




13 23 33 43 53 63 73

12 22 32 42 52 62 72

1 2 3 4 5 6 7
1 1 1 1 1 1 1







13 12 1 1
23 22 2 1
33 32 3 1
43 42 4 1
53 52 5 1
63 62 6 1
73 72 7 1







ĉ3
ĉ2
ĉ1
ĉ0


 =




13 23 33 43 53 63 73

12 22 32 42 52 62 72

1 2 3 4 5 6 7
1 1 1 1 1 1 1







158
767
2787
7198
15454
28629
50280




.

Using a computer to perform the matrix multiplication yields



184820 29008 4676 784
29008 4676 784 140
4676 784 140 28
784 140 28 7







ĉ3
ĉ2
ĉ1
ĉ0


 =




25903869
4024191
639849
105273


 .

Finally, solving this, we find

c = (AT A)
−1

AT b or

c ≈




266.5
−1189.6
2673.8

−1708.6


 .

Thus, the equation

y = 266.5t3 − 1189.6t2 + 2673.8t − 1708.6

is the least-squares, best-fit cubic to the cumulative AIDS data.
The plot in Figure 8.3, showing the AIDS data together with the fitted

curve illustrates how good a fit this cubic is. Indeed, the fit is extraordinarily
good. In the exercises, we will quantify this and see in a different way why a
cubic is a particularly good choice of curve for this data.
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Figure 8.3. Least-squares cubic fitting data of Table 8.4.

Why the AIDS epidemic in the United States appears to have grown cubi-
cally, rather than exponentially, in its early years is an interesting question. Of
course AIDS, with its complicated pattern of transmission through different
behaviors and in various subpopulations, requires a much more complicated
model than those of Chapter 7 to even begin to capture its dynamics. For
instance, transmission through sexual contact, intravenous drug use, or blood
transfusions is not likely to satisfy the homogeneous mixing assumption of
basic infection models. Still, even without homogenous mixing, one might
expect exponential growth within “well-mixed” subpopulations, and more
detailed data analysis fails to show that. In (Colgate et al., 1989), a possible
explanation for the cubic growth is proposed through a mathematical model
that includes variation in behavior placing individuals at risk.

We could do an even better job of fitting a polynomial to this data if we
allowed ourselves to use one of a higher degree. Because there are only 7 data
points in our example, attempting to fit a sixth-degree polynomial to the data
would lead to a matrix equation Ac = b, where A is a square 7× 7 matrix.
That system can be solved exactly, and so we can find a polynomial of degree
6 whose graph goes through all the data points exactly.

However, fitting the data exactly in this way is not desirable if a simpler
cubic curve already does such a good job of capturing the main data trend.
We expect data to not conform exactly to a model and do not want to overfit
the data with a complicated curve. We instead choose our model so that it
balances the competing demands of simplicity and providing a good fit. Some
of the exercises will investigate this issue more.
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Problems

8.3.1. Produce regular, semilog, and log–log plots of the data in Table 8.4.
Why do your plots indicate that an exponential curve is probably not
an appropriate model, whereas a cubic polynomial might be?

8.3.2. In using MATLAB to perform polynomial fitting, we often need to

enter a matrix like A =


12 11 1
22 21 1
32 31 1


. One way to produce it is with

the commands x = [1,2,3]', A = [x.∧2, x, x.∧0 ].
Practice by using MATLAB to check all steps of the calcula-

tion of the least-squares cubic fitting the data in Table 8.4. The cu-
mulative numbers of cases in the table can be loaded by running
aidsdata.

8.3.3. Consider the following table of data:

x 1 2 3 4 5
y 1.1 8.7 19.8 39.5 64.7

a. What matrix equation would be solvable if the data points all lay
on a quadratic, y = ax2 + bx + c?

b. What are the normal equations that should be solved to find the
least-squares, best-fit quadratic?

c. What is the least-squares, best-fit quadratic for this data?

8.3.4. Consider the four points (1, 2), (2, 9), (3, 1), and (4, 4).
a. If all these points were on a line, what matrix equation Ac = b
would have a solution? What are the associated normal equations
for the least-squares, best-fit line? What is the best-fit line? What
is SSE for this line?

b. If all these points were on a quadratic curve, what matrix equation
Ac = b would have a solution? What are the associated normal
equations for the least-squares, best-fit quadratic?What is the best-
fit quadratic? What is SSE for this quadratic?

c. If all these points were on a cubic curve, what matrix equation
Ac = b would have a solution? What are the associated normal
equations for the least-squares best-fit cubic? What is the best-fit
cubic? What is SSE for this cubic?

d. Produce a plot of the four data points and the best linear, quadratic,
and cubic curves fitting the points.
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8.3.5. Suppose six data points were collected in an experiment: (1, 40.2),
(3, 29.4), (5, 27), (7, 18.2), (8, 18), and (9, 14).
a. Use MATLAB to graph the data points. What degree polynomial
do you think might be a good fit for these data?

b. Use built-inMATLABcommands to fit polynomials of varying de-
grees to the data. To get started, try using the following commands:

xdata = [1 3 5 7 8 9],

ydata = [40.2 29.4 27 18.2 18 14]

plot(xdata, ydata, 'ro'), axis([0 10 0 50])

hold on

L1 = polyfit(xdata,ydata,1);

x = [0:.1:10]; y = polyval(L1, x);

plot(x,y)

Modify the commands above to graph the best least-squares poly-
nomial for degrees n = 2, 3, 4, 5. For example, you will want to
use the command L3 = polyfit(xdata, ydata, 3) to
get the coefficients for the least-squares cubic.

c. What degree polynomial best captures the tendency of the data?
Although the degree 5 polynomial passes through all six data
points, why might it be a poor choice to describe the data?

8.3.6. We can find least-squares, best-fit polynomials of various degrees
fitting a set of data. The larger the degree of the polynomial, the better
fit we can get. Generally, it is desirable to fit data with as simple
a function as possible that does a good job. Investigate the best-fit
polynomials of degree 1 through degree 6 for the data in Table 8.4 by
running aidsdata and then using the MATLAB commands

x=[1:7]', y=cml1981-1987

plot(x,y,'ro'), hold on

xx=[1:.1:7];

for i=1:6

c=polyfit(x,y,i); yf=polyval(c,x); e=y-yf;

sse=e'*e; yy=polyval(c,xx); plot(xx,yy)

disp(['Degree = ', num2str(i), ', SSE = ',. . .

num2str(sse)])

pause

end
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a. From the graphs these command produce, why does it seem most
reasonable to fit the data with a cubic?

b. From SSEs computed by these commands, why does it seem rea-
sonable to fit the data with a cubic?

8.3.7. Running aidsdata creates a variable cmlJan1982-Dec1987
with monthly data on cumulative AIDS cases that is more detailed
than that in Table 8.4. Modify the commands in the last problem to fit
polynomials of various degrees to this data. Based on both the graphs
and SSE , what degree polynomial do you think is a good one to fit
this data? Is a cubic polynomial still a reasonable choice to model it?

8.3.8. Consider the three data points (1, 3), (2, 5), and (3, 10), and the prob-
lem of fitting a horizontal line of the form y = c to them.
a. Whatmatrix equationwould have a solution if all these pointswere
on a horizontal line?What is the associated normal equation?What
is the least-squares, best-fit horizontal line?

b. Show the result in part (a) could be found by averaging the y-
coordinates of the data.

c. Show that, for any set of data points, the least-squares, best-fit
horizontal line is always given by y = ȳ, where ȳ is the average
y-coordinate of the data.

8.3.9. The CDC’s AIDS data provides a good example of why caution is
necessary in extrapolating. In MATLAB, type aidsdata to de-
fine the variables cmlJan1982-Dec1987, the monthly cumulative
number of AIDS cases from January 1982 to December 1987, and
cmlJan1982-Dec2000, the monthly cumulative number of cases
from January 1982 to December 2000.
a. Use MATLAB to plot cmlJan1982-Dec1987, find the best-fit
cubic modeling that data, and plot the cubic with the data. Does
the cubic seem to be an adequate fit?

b. Plot the data cmlJan1982-Dec2000, along with the prediction
of the data given by the cubic you found in part (a). Are they close?

c. What biological, medical, or social factors might be responsible
for what you observed in part (b)?

d. What degree polynomial is needed to provide a reasonable model
of the data cmlJan1982-Dec2000? Find a good polynomial
model and graph it along with the data.

8.3.10. Simple infectious disease models result in approximately exponential
growth of the number of infectives in the early stages of an epidemic.
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To see this, first consider an SI model, where �I = αSI for some
parameter α.
a. If the total population is N , and It is small relative to N , explain
why

It+1 = It + α It (N − It ) ≈ (1+ Nα)It .

b. Explain why the approximation It+1 ≈ (1+ Nα)It leads to ap-
proximately exponential growth.

c. Showsimilarly that an SI R or SI Smodelwill showapproximately
exponential growth in the number of infectives in the early days
of an epidemic.





Appendix A

Basic Analysis of Numerical Data

Often, the goal of an experiment is the taking of some measurement or a
series of measurements. Although it may seem that, with such data in hand,
the important work has been done, and all that remains is the mopping up of
data analysis, the interpretation of the raw numbers may be as involved and
difficult as any experimental setup. Numbers by themselves tell you nothing
and extracting meaning from them is an art.

In this appendix, we look at some of the basic ideas involved in interpreting
numerical data. We will not focus on any particular type of experiment, but
rather imagine the likely outcomes of many measurements and learn the sim-
plest ways of extracting information from large batches of numbers. Although
not all data are numerical in nature (you might record qualitative information
such as color, for example), it is only numerical data that will be discussed
here.

We also focus primarily on questions of the interpretation of data and do
not attempt to discuss points of experimental design. This is actually a rather
artificial distinction, since when designing an experiment, a scientist must
be sure that once data are obtained they will be amenable to analysis. Thus,
what may appear as an after-the-fact analysis of data in this discussion should
really be an analysis that the experimenter intended to do from the start.

A.1. The Meaning of a Measurement

To be concrete, suppose we are interested in investigating the effects of a
certain nutrient on the growth of plants. We prepare two pots of soil, adding a
certain amount of the nutrient to one (the experimental pot), but not to another
(the control pot). In each pot, we plant a bean and then measure the height
of the bean after 20 days. Suppose at that time the control bean is 10 cm tall,
and the experimental bean is 15 cm tall.

An important goal of an experiment is to be able to draw conclusions that
you can then apply in other situations.

345
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� What can we conclude from this experiment? Does the nutrient cause
beans to grow more? Does it cause them to be 150% taller? Would
you feel comfortable making predictions about other beans based only
on this experiment’s result? Would you be surprised if another experi-
menter got different results? Why or why not?

A cautious scientist would be hesitant to conclude anything from this
experiment. In part, this is because of backgroundknowledge that plant growth
seems to be highly variable, even under seemingly similar conditions. Also,
humans often make mistakes, and the experimenter may have unwittingly
botched the experiment.

Wewould probably feel better drawing a conclusion if the experiment were
repeated many times. (Of course, it might be best to design the experiment
so all the repetitions are done at the same time, because that would cut down
on variation in other factors such as temperature, length of day, etc.) Perhaps
the control and experimental groups should have 10 beans each, or 100, or
1,000.

� How does an experimenter decide how many repetitions of an exper-
iment should be done? What trade-offs must be made? If the bean
experiment were repeated with pine trees that were to be grown for 20
years, would it be reasonable to use the same number of repetitions as
for beans?

Pretend we redid the experiment, this time using five beans in each group
(five is used only to keep the amount of data small for illustrative purposes).
The heights in centimeters are measured and found to be

Control: 9.3, 14.2, 11.7, 10.2, 9.8

Experimental: 12.1, 16.3, 13.2, 13.5, 14.9

Notice there is variability in the data, in that not all control plants reached
exactly the same height, nor did the experimental ones. In fact, one of the
control plants is actually taller than three of the experimental ones.

� Does the original data for one bean seem to fit with this data? If it does,
would you draw the same general conclusions you might have before?
Would there be any subtle differences in your conclusions? Should you
feel more confident about your conclusion and if so how much more
confident?

� How would you briefly summarize, in words and not numbers, your
conclusions based on this data?



A.1. The Meaning of a Measurement 347

� If another researcher repeated this experiment with only one plant in
each group and found the control plant was 13.6 cm tall and the ex-
perimental one was 13.4 cm tall, would that data be surprising? What
conclusion would that experimenter be likely to draw based solely on
that data? Is your data compelling enough to say the other researcher’s
conclusion is wrong?

Clearly, an important issue in analyzing this data is understanding the
variability within each group. In fact, you have probably already made
some hypotheses as to why the numbers might be so varied within each
group.

� Give as many reasons as you can for the variability in the data.

It’s worth distinguishing two main reasons why data might vary. The first,
called experimental error, is due to mistakes made (perhaps unavoidably) on
the part of the experimenter. For instance, the ruler used for measuring height
might be inaccurate, or the location of the top of the plant might have been
misjudged, or the nutrient may not have been applied in exactly the amount
claimed.

The second reason is that, in dealingwith a very complicated systemsuch as
a livingorganism, there are simplymore variables thanwecanpossibly control
at once. For instance, the beans may differ genetically, and the conditions of
soil, light, and air that each plant is exposed to are not identical no matter
how hard we try to make them so. One could argue that this is all a form of
experimental error, in that we have not been able to carry out our experiment
carefully enough. That misses the point, though, because if the experiment
could be carried out so that none of this variability were present, then our
resultsmight actually be lessmeaningful.Knowing howall clones of a specific
bean would respond to certain very specific conditions may well be less
valuable than knowing how a random sampling of beans will behave in a less
tightly controlled setting.

In studying anything complicated (and biological system are all compli-
cated), we should expect variability in measurements. Experimental error
should, of course, be minimized, but variability in the data often will remain.
We should take lots of measurements to be sure we have a good idea of the
nature of this variability, so that the variability within the data does not ob-
scure the effects we are trying to measure. The more data we have, the better
conclusions we should be able to draw.

We have now arrived at the central problem the discipline of statistics
is designed to address. Too little data can be misleading, so that we draw
incorrect conclusions, but too much data becomes incomprehensible to us.
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How can we boil down the large quantities of information we need to prevent
mistakes into a simpler, yet meaningful nugget of information? Given that
variability is not just due to error but actually an important part of the systems
we are studying, how can we quantify the natural variability of what we
are experimentally investigating? In what follows, we begin to address these
questions.

A.2. Understanding Variable Data – Histograms and Distributions

People often find pictorial tools useful in understanding data – perhaps be-
cause vision is a more basic function of our brain than numerical reasoning.
Thus, our first step in understanding variable data will be based on a graphical
device, the histogram.

Let’s consider just the control group of beans. Suppose we had 20 beans
in this group, and the heights we measured in centimeters were:

9.3, 9.7, 10.1, 10.2, 10.4, 10.6, 10.7, 10.7, 10.9, 11.0,

11.1, 11.1, 11.3, 11.3, 11.6, 11.7, 11.9, 12.3, 12.4, 13.4.

We begin by grouping the data together in intervals of some convenient
size. For instance, here we see there are two data points between 9 and 10,
seven data points between 10 and 11, eight between 11 and 12, two between
12 and 13, and one between 13 and 14. Thus, we draw the histogram on the
left of Figure A.1.

8 9 12 1310 11 14 8 9 12 1310 11 14

= 1 plant

= 1 plant

Figure A.1. Two histograms describing the same data.
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8 9 10 11 12 13 14

Figure A.2. A normal distribution approximating the histograms in Figure A.1.

Notice that the area of each bar tells us the number of data points in that
interval. Here, the width of each bar is 1, so the height also tells us the number
of data points, but it will be the area that matters.

Grouping the data using a finer scale, with intervals having width 0.5
instead of 1, produces the histogram on the right of Figure A.1. Because area
represents the number of data points, and the bars are now 0.5 wide, a single
plant is denoted by a bar twice as high as what would have appeared in the
left figure.

By insisting on using area to denote the number of data points in an interval,
we have kept the total shaded area in the each of these histograms the same. If
we had used vertical heights to denote the number of data points, the second
graph would look much flatter than the first, since there are fewer points in
each of its intervals. Although the two histograms are very similar, the smaller
interval size in the second one makes it appear a little less step-like.

� Howwould the histogram change if an interval of .25 was used to group
the data? An interval of .05?

� Suppose we had 100 data points to work with to construct histograms
in this manner? How would the histograms be different? How would
the histogram change if the grouping interval, or bin size, was made
smaller?

With enough data points, and a sufficiently fine bin size, the histograms
appear to look more and more like the graph in Figure A.2, which we call a
distribution. The jaggedness of the original histogram is smoothed out.

This particular distribution has a bell-shaped curve and is called a normal
distribution. “Normal” here is a technical term that you should not think of as
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Figure A.3. Four distributions.

having anything to do with meanings like “natural,” “common,” “good,” or
“expected.” Although it is common for data to follow a normal distribution,
it is also common that it does not.

A good way of thinking of the distribution is that if you repeated your ex-
periment endlessly, takingmeasurements that were fully accurate, and plotted
histograms with finer and finer groupings, then the histograms would look
more and more like the graph of the distribution. Of course, this means the
distribution is not something you can really ever determine exactly. It is a
mathematical idealization of how we believe the data would appear if we had
more data than we do.

Thus, when someone makes a claim that certain data fits a certain distribu-
tion, what they mean is that the data appears to fit such a distribution. In other
words, they are saying that a certain distribution is a good statistical model of
their data.

A few other examples of distributions that might appear to describe data
are shown in Figure A.3.

The distribution in the upper left is said to be uniform, because it describes
data that is equally spread over the interval. The upper right distribution,which
describes data that tends to fall in one lower interval and one higher one, is
said to be bimodal. Notice the bottom two distributions look vaguely like the
normal distribution, but are skewed one way or another. There are, of course,
many other distributions. Those that have been found to be particularly useful
for describing data have been named and studied extensively by statisticians.

� Consider the following hypothetical data sets and draw reasonable dis-
tribution curves for them. How would you describe the shape of each
distribution in words?

a: The age at death of a large number of a certain bird are recorded;
mortality is particularly low for young adults.
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b: The number of puppies in a litter is recorded for a large number of
dogs.

c: Downed trees in a certain forest are located, and the angles the trunks
make with due north are measured.

d: The ages of all individuals on a university campus during the workday
are recorded.

Probably you drew (a) as bimodal, with peaks showing the deaths of the
very young and very old. For (c), if there is no prevailing wind, a uniform
distribution is reasonable; otherwise you might have a distribution that looks
more normal, with a peak at the angle the wind typically blows. Because
university campuses tend to be populated mainly by individuals in their late
teens and 20’s, for (d) you should imagine a skewed distribution, with a peak
to the left and a “tail” stretching off to the right describing faculty and staff
ages.

Notice that (b) is a little different from the others in that any measurement
of the number of puppies in a litter will give an integer value such as 3 or 7,
but never a number like 4.7. When only certain values, separated by gaps, are
possible for data, we say the data is discrete. When data values do not have
to be separated in this way, as in (a) and (c), we say the data is continuous.

For discrete data, it is not too useful to group data in intervals that are
very small, so it is really best to think of something shaped like a histogram,
with step-like features, as giving the distribution. Thus, the distribution for
(b) might be a stepped version of a normal distribution, with peak located at
the average litter size.

� Would the data in (d) be discrete or continuous?

Now that the concept of a distribution is clear, let’s turn things around.
Suppose before doing an experiment, we hypothesize that the data we will
obtain will fit the normal distribution of Figure A.4.

� Before continuing, decide if each of the following data sets seems con-
sistent with that hypothesis and state how confident you feel about each
answer.

a: 2.0, 3.6, 3.8, 4.1, 4.3, 6.9
b: 6.9
c: 3.8, 3.9, 3.9, 4, 4, 4.1
d: 1.1, 1.4, 2.1, 6.3, 6.5, 7.1

You should feel the given distribution fits (a) well. For (b), with only a
single number, we do not have much to go on. The distribution shows it is
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1 2 3 4 5 6 7

Figure A.4. A normal distribution.

possible to get numbers around 6.9, but they are not as likely as those around
4. The data in (c) seems like it would be better described by a distribution with
a much narrower and higher peak around 4. For (d), a bimodal distribution
seems more reasonable. Still, with so few data points, any of these might in
fact come from an experiment described by the distribution in the figure.

� Can you make up a set of a few data points that you can say with
complete certainty do not arise from the normal distribution of Figure
A.4?

Because the graph in Figure A.4 lies above the horizontal axis for all
values, there is some likelihood of the experiment producing any number you
might mention. While a large number of data points whose histogram is not
similar to the figure makes it very likely the distribution does not describe the
experiment, you cannot completely rule out the possibility.

A.3. Mean, Median, and Mode

When approaching a new set of data, drawing a histogram to understand the
nature of the distribution is the best place to begin. Then, there are several
numerical ways of describing the key features of the distribution.

The first question to be addressed is how do we locate the central tendency
of the data. Does the data tend to cluster around some single value? If it does
appear to cluster, how do we determine that value?

A quick glance at the bimodal distribution shows that there is not always
a single central tendency to locate. If we are faced with a bimodal distribu-
tion, then often we should expect that we are really dealing with a data set
that should be broken down into two smaller sets that should be analyzed
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separately. Perhaps we have missed some important experimental variable
and need to rethink our investigation.

� Can you think of some data that might be bimodally distributed? Can
it be naturally broken into two smaller data sets?

For simplicity, assume we have a data set producing a histogram with a
single major hump, perhaps not too pronounced and maybe not symmetrical,
but that is at least visually the dominant feature.

There are three distinct ways of choosing what might be called the central
tendency of the data, each with its own strength and weaknesses.

The Mode: The mode is simply the data value that occurs most frequently.
That definition must be modified a bit in practice, though, since if you look
back at the list of 20 bean heights at the beginning of Section 2, you will see
that three of them occurred twice and all the others once. It is perhaps better
to do some grouping and say that with an interval of 1 the mode for that data
was between 11 and 12, and with a grouping interval of 0.5, it was between
11 and 11.5.

� How can you tell by glancing at a histogram what the mode of the data
is?

� Can the mode change if you use a different grouping interval?
� Can a change in a few data values change the mode by much? Is the

effect different if the largest or smallest data points are changed, or
those midsized?

The Median: This is the data value that occurs in the precise middle of all
the data values when they are arranged in order. For instance, in the data of
20 bean heights in Section 2, since we have an even number of data points,
we find 11.0 and 11.1 are the middle values. The best we can do is average
the two and report 11.05 as the median.

� Howcan you tell by a glance at a histogramwhere themedian is located?

Because in a histogram area is used to denote the number of data points,
the median will be the value where a vertical line splits the total area in half.
Since distributions are idealizations of histograms, this also allows themedian
to be located on the graph of a distribution.

� Could themedian changemuch if a fewof the data pointswere changed?
How sensitive is the median to changes in extreme data points vs. those
near the middle?
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The median is insensitive to changes of the more extreme data points,
unless of course these values, are changed so much that they jump from one
side of the median to the other. The median may move if data points closest
to the median are changed.

The Mean: The mean of a set of data is just the usual average. To calculate
it, you add up all the data values and then divide this sum by the number of
values you have added. Ifwe have n data values denoted by x1, x2, x3, . . . , xn ,
then the mean µ is simply

µ = 1

n
(x1 + x2 + x3 + · · · + xn) = 1

n

n∑
i=1

xi

� What is the mean of the 20 bean heights in Section 2?

To guess the mean of a data set by looking at a histogram is harder than
estimating the mode or median. Although we will not explain why here,
because that would involve a detour into physics, the mean is located at the
center of mass of the histogram along the horizontal axis. This is the point
along the horizontal axis at which the histogramwould balance if you imagine
it as cut out of a piece of cardboard. This interpretationwill help you in getting
a rough idea of the location of a mean from a histogram, but do not expect to
be able to pin down a mean very accurately without doing a calculation.

� Does the mean you calculated for the bean data appear to be at this
balance point on the histogram of the data?

� How sensitive is the mean to changes in only a few of the data points?
Does it matter whether these points are near the extremes or in the
middle?

Changing an extreme value can have a large effect on a mean. If you think
in terms of a balance point for a histogram, moving an extreme value outward
is likely to cause the histogram to tip in that direction, just as a see-saw does if
a weight far out on an arm is moved farther out. That means the new balance
point must be found by moving in the same direction. On the other hand,
changing a data value near the mean has little effect on the mean – just as on
a see-saw weights near the pivot have little effect.

� Can you change just one value in the bean height data set so that while
the mode and median do not change, the mean does?

Notice for a normal distribution the mode, median, and mean would all be
the same. In general, though, the three are not the same. Figure A.5 provides a
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0 2 4 6 8 10 12 14 16 18 20

Figure A.5. Mean = 4, median ≈ 3.3, and mode = 2.

good illustration of a skewed distribution. The median, which splits the area,
is around 3.3 on the horizontal axis. The mean, which is the balance point, is
further to the right, at 4, due to the rightward stretching tail. The mode, which
is at the peak, is around 2.

� Look back over all the histograms and distributions in this appendix
and estimate where the mode, median, and mean are on each.

In practice, all three of these concepts are used to describe data. The mean
is probably used most frequently, the median next most, and the mode the
least, but this varies depending on what is being studied.

For instance, in reporting incomes and housing prices, governments tends
to emphasize the median as being the most important of the three. This is
simply because the median is less sensitive to extreme values. Relatively few
very large values can cause the mean to be much larger than the median.

� Would you be more interested in knowing the mean, median, or mode
of life spans for your society? Which do you think is most optimistic?

A.4. The Spread of Data

The concepts of mean, median, and mode are useful in that they allow us to
represent the most important feature of a data set with a single number. The
drawback of reporting only them is that we draw attention away from the
fact that the data has variation in it. It is useful to have an easily reportable
measure of the spread of the data as well.

When the median is chosen to represent the central tendency of the data,
the most natural way of specifying the spread of the data is through reporting
quartiles. Just as the median is the value that divides all the data points in
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half (half being above the median and half being below the median), the first
quartile point is the value that has one quarter of the data points below it and
three quarters above. The second quartile point is just themedian, and the third
quartile point has three quarters of the data values below it, with one quarter
above. The interquartile range is the interval from the first quartile point to
the third quartile point. It always contains the median and 50% of the data.
Finding all of these is easily done from an ordered list of data.

� For the 20 bean heights of Section 2, find the interquartile range.
� From looking at a histogram or distribution, how can you judge where

the first and third quartiles lie? Estimate them for all the distributions
in this appendix.

Of course there is nothing special about quartiles. Sometimes quintiles
(fifths), or deciles (tenths), or even percentiles (hundredths), are used. Speci-
fying the full range of the data, by giving the smallest and largest values, also
gives the reader a better understanding of the variability of the data.

If the mean is chosen as the way of specifying the data’s central tendency,
then it is usual to also report the standard deviation as the measure of data
spread. To develop the idea of the standard deviation, consider an example.
Suppose the height (in centimeters) of five bean plants is our data:

12.1, 16.3, 13.2, 13.5, 14.9.

The mean of this data is µ = 14.0. Notice that two of the data values are
larger than the mean, and three are smaller, as is reasonable.

A first approach to understanding the spread of the data would be to see
how far each data point is from the mean. Hence, we calculate

12.1− 14.0 = −1.9
16.3− 14.0 = 2.3

13.2− 14.0 = −0.8
13.5− 14.0 = −0.5
14.9− 14.0 = 0.9.

We get negative values when the data point is smaller than the mean and
positive values when it is larger than the mean.

A seemingly good idea would be to average these differences from the
mean that we have just calculated. So, we should add them up and divide
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by 5:

(−1.9+ 2.3− 0.8− 0.5+ 0.9)

5
= 0

5
= 0.

Unfortunately, zero is not a good measure of spread. In fact, this calculation
of average differences will always give zero, as a little algebra can show. The
crux of the matter is that some of the differences will be positive and some
will be negative, and adding them up always results in cancellation.

The next natural idea would be to just make all these differences from the
mean positive before averaging them (i.e., average their absolute values). If
we do this we get:

(1.9+ 2.3+ 0.8+ 0.5+ 0.9)

5
= 6.4

5
= 1.28.

This looks a bit better, and means that, on average, our data points differ from
the mean of 14.0 cm by 1.28 cm. This quantity 1.28 is referred to as the mean
deviation and is a reasonable measure of data spread. To summarize for a set
of n data points,

mean deviation = 1

n

n∑
i=1

|xi − µ|.

Another way of handling the problem of cancellations is to square the
differences and then average the squares:

(
(−1.9)2 + (2.3)2 + (−0.8)2 + (−0.5)2 + (0.9)2

)
5

= 10.6

5
= 2.12.

This quantity is called the variance or mean square deviation of the data.
Note that, since our data was in centimeters (cm), the calculation produced a
quantity whose units should be squared centimeters (cm2). To have the same
units as our original data, we take the square root and get

√
2.12 ≈ 1.46.

This last quantity is called the standard deviation of the data.
To summarize for a set of n data points, the standard deviation, denoted

usually by σ , is

σ =
√√√√1

n

n∑
i=1

(xi − µ)2.

The variance, σ 2, is calculated by just leaving the square root out of this
formula.
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µ µ+σµ−σ

Figure A.6. Normal distribution, with mean µ and standard deviation σ .

� Calculate the standard deviation for the 20 bean heights of Section 2.

The standard deviation is themost commonly usedmeasure of data spread,
though the reasons for this requiremore statistical theory than canbe explained
here.When themean of data is reported, the standard deviation usually should
be as well.

For the theoretical model of data given by the normal distribution, there is
a good graphical interpretation of the standard deviation, as shown in Figure
A.6. It is the horizontal distance from the peak of the normal curve (the
mean) to the inflection points (the points where the curve changes from being
concave up to concave down or vice versa). The larger the standard deviation,
the wider the bell curve.

It can be shown that, for a normal distribution, approximately 34% of the
area under the graph is between the mean and the inflection point to the left of
themean.Because the graph is symmetrical, this holds for the area between the
mean and the inflection point to the right as well. Because area corresponds to
the number of data points, that means that if your data is normally distributed,
about 68% of your data should be within one standard deviation of the mean.
Similarly, about 95% will be within two standard deviations from the mean,
and more than 99% within three standard deviations.

Amore precise definition of the normal distribution can now be given. The
normal distribution with mean µ and standard deviation σ , where µ is any
number and σ > 0, is

f (x) = 1

σ
√
2π

e− (x−µ)2

2σ2 .

Although other curves appear to be bell-shaped, only the particular curves
given by this formula are called normal.
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A.5. Populations and Samples

There is one last point to be made concerning these basic statistical concepts.
In the discussion so far, the focus has been on having some data (a list of
numbers) and finding ways of describing that data. But we might want to
make conclusions that go beyond the particular data we have collected.

Again, thinking of bean heights as our data set, we can adopt a slightly
more sophisticated viewpoint. While we only have the heights of 20 beans
recorded, we can certainly imagine performing our experiment on all beans in
the world. We will consider all beans as the populationwe are trying to study,
and the 20 beans we actually experimented with as being a sample from that
population. Although a histogram is a good way of graphically treating the
data from our sample, the distribution curve is what describes the population
as a whole. Of course, we cannot know exactly what the distribution curve
for the population really is without experimenting on every bean, but we can
makewell-informed guesses based on histograms for data sets involving some
reasonably large number of beans.

With this viewpoint, there is a change in what we would like to get from
our bean data. Although we understand the mean and standard deviation of
the data, our real interest is the mean and standard deviation of the entire
population. But, without data on the entire population, we can’t find these
exactly. We will, however, be able to estimate them. Let

µ = mean of population

σ = standard deviation of population

be the two quantities we would like to estimate.
Not surprisingly, the best estimate you can give for themeanµ of the entire

population is simply the mean of the sample. More formally, the mean of the
sample is

x = 1

n
(x1 + x2 + x3 + · · · + xn) = 1

n

n∑
i=1

xi

and

µ ≈ x .

Although the standard deviation of the sample is not a bad estimate of
the standard deviation of the population, there is a better one. Statistics texts
prove that if

s =
√√√√ 1

n − 1

n∑
i=1

(xi − x)2
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then

σ ≈ s

and that s is the best estimator σ .

� Calculate the estimate for the population standard deviation for all beans
based on the 20 bean heights of Section 2 and compare it to the standard
deviation of that data set that you calculated before.

� Compare this formula to the formula for standard deviation of a data
set and find all the differences. What effect will these differences have
on the value you would obtain?

There are, of course, two differences between the formulas for s and σ .
First, rather than use µ, which we do not know exactly, we use x , which
estimates it. Then, after adding up the squared deviations from the data mean,
we divide by one less than the number of data points, rather than by the number
of data points. Since we divide by a smaller number, we end up with a bigger
number. Taking the square root afterward still leaves us with a bigger number.
Thus, the estimate for the population standard deviation will be inflated a bit
from the data’s standard deviation.

The informal reason why this inflation is desirable is subtle: In the formula
for s, we use not only our data points, but also the mean x of the data as an
estimate of the unknown mean µ of the population. The data points are likely
to be clustered more closely around their own mean x than they are around
the population’s meanµ. Thus if we do not modify the formula, we would get
a standard deviation that was smaller than σ . Inflating the standard deviation
slightly gives a better estimate. The full argument why replacing n by n − 1
is precisely the right thing to do can be found in statistics books.

If we have a large sample, so that n is big, then n and n − 1 are really
about the same size, so whichever one we use should not matter too much.
This is reasonable, since if the sample size is large, then the sample mean x
is likely to be quite close to the population mean µ, so little adjustment is
necessary.

A.6. Practice

Returning to beans for one last time, suppose we grow 10 beans under a set
of conditions we will refer to as condition A, and 10 beans under a different
set of conditions which we will refer to as condition B. We count the number
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of leaves on each plant and get the following data:

Condition A: 4, 6, 5, 6, 8, 4, 6, 5, 10, 5

Condition B: 7, 5, 9, 6, 10, 8, 9, 7, 8, 7

Analyze this data using all the concepts in this appendix (histograms and
distributions, mean, median, mode, interquartile range, standard deviation,
sample vs. population).



Appendix B

For Further Reading

For further study, there are many textbooks focusing on mathematical models
in biology. They generally assume a solid knowledge of calculus and some
differential equations and linear algebra, though sectionsmay be read by those
with less mathematical background. Among the books covering a variety of
biological topics are:

� Leah Edelstein-Keshet. Mathematical Models in Biology. McGraw-
Hill, New York, 1988.

� FrankC.Hoppenstaedt andCharles S. Peskin.Modeling and Simulation
in Medicine and the Life Sciences. Springer, New York, second edition,
2002.

� J.Mazumdar.An Introduction to Mathematical Physiology and Biology.
Cambridge University Press, Cambridge, second edition, 1999.

� James D. Murray. Mathematical Biology I: An Introduction and Math-
ematical Biology II: Spatial Models and Biomedical Applications.
Springer, New York, third edition, 2002.

� Clifford Taubes. Modeling Differential Equations in Biology. Prentice
Hall, Upper Saddle River, NJ, 2001.

� S. I. Rubinow. Introduction to Mathematical Biology. JohnWiley, New
York, 1975.

� E. Yeargers, R. Shonkwiler, and J. Herod.An Introduction to the Mathe-
matics of Biology: With Computer Algebra Models. Birkhauser, Boston,
1996.

For linear models, including ones using differential equations, recommended
books are:

� Hal Caswell. Matrix Population Models: Construction, Analysis, and
Interpretation. Sinauer Associates, Sunderland, MA, 1989.

� Michael R. Cullen. Linear Models in Biology. Ellis Horwood, Chich-
ester, England, 1985.
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In addition to sections of the books above, infectious disease models have
been the focus of a number of texts and survey papers:

� L. J. S. Allen. Some discrete-time SI, SIR, and SIS epidemic models.
Math. Biosci., 124:83–105, 1994.

� RoyM. Anderson and Robert M. May. Infectious Diseases of Humans:
Dynamics and Control. Oxford University Press, Oxford, England,
1992.

� Fred Brauer and Carlos Castillo-Chavez. Mathematical Models in Pop-
ulation Biology and Epidemiology. Springer, New York, 2001.

� Herbert W. Hethcote. The mathematics of infectious diseases. SIAM
Rev., 42(4):599–653, 2000 (electronic).

Material on molecular evolution and phylogenetic tree construction has not
yet appeared in other texts at this level. Several good surveys exist, directed
at researchers and advanced students, as does low-cost or free software:

� W.-H. Li. Molecular Evolution. Sinauer Associates, Sunderland, MA,
1997.

� J. Felsenstein. PHYLIP (Phylogeny Inference Package), Version 3.5c.
Department of Genetics, University of Washington, 1993.

� D. L. Swofford. PAUP* (Phylogenetic Analysis Using Parsimony *and
Other Methods), Version 4. Sinauer Associates, Sunderland,MA, 2002.

� DavidL. Swofford,Gary J.Olsen, Peter J.Waddell, andDavidM.Hillis.
Phylogenetic Inference, in Molecular Systematics. Sinauer Associates,
Sunderland, MA, second edition, 1996.

More on the classical genetics topics can be found in:

� J. F. Crow and M. Kimura. An Introduction to Population Genetics
Theory. Harper and Row, New York, 1970.

� Electronic Scholarly Publishing. Foundations of Classical Genetics, a
collection of important papers in the development of classical genetics
[http://www.esp.org].

� DanielL.Hartl andAndrewG.Clark.Principles of Population Genetics.
Sinauer Associates, Sunderland, MA, second edition, 1989.

Books providing a solid background on some of the mathematical and statis-
tical topics introduced here include:

� David C. Lay. Linear Algebra and Its Applications. Addison-Welsey,
Boston, third edition, 2002.
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� Marcello Pagano and Kimberlee Gauvreau. Principles of Biostatistics.
Duxbury, Pacific Grove, CA, second edition, 2000.

� Sheldon Ross. A First Course in Probability. Prentice Hall, Upper Sad-
dle River, NJ, fifth edition, 1997.

� Gilbert Strang. Introduction to Linear Algebra. Wellesley-Cambridge
Press, Wellesley, MA, second edition, 1993.

� Dennis D.Wackerly,WilliamMendenhall III, and Richard L. Scheaffer.
Mathematical Statistics with Applications. Duxbury, PacificGrove, CA,
sixth edition, 2002.
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Index

absolute value, 73
Africa, Out of, 171, 179, 209
agouti fur, 231
AIDS, 209, 279, 336, 338
albinism, 239
Allee effect, 37
allele, 217
codominant, 227, 262, 264
dominant, 216, 217
fixation of, 267
frequencies, 261
multiple, 227, 276
mutation, 265
partially dominant, 227
recessive, 216, 217
semidominant, 227
wildtype, 244

autocatalytic model, 19
autosome, see chromosome

base substitution, 115, 138
bases, 114
basic reproduction number, 287, 299
Bateson, William, 244
bifurcation diagram, 25
bin size, 349
binomial coefficients, 241
blood type
ABO system, 227, 272
MN system, 262

bootstrapping, 207
brachydactyly, 226

cannibalism, 108
carrying capacity, 12
Centers for Disease Control (CDC), 212, 279,

336
centromere, 248
chaos, 26–28, 39
characteristic equation, 79
chickenpox, 27, 282, 288, 299
χ2-statistic, 235
chromatid, 248
chromosome, 218, 244
autosome, 247

homologous, 248
sex, 245, 247

cobweb diagram, 15–16, 88
codominance, see allele
codon, 114, 142
color blindness, 246, 256, 271
combinations, 230, 240
competition
contest, 36
model, 85, 105–106, 109–110
scramble, 36

competitive exclusion, 110
complex numbers, 73–74
absolute value of, 73

contact number, 299
maximal male and female, 311

contact rate, 298, 299
crossing over, 218, 248, 251, 252
interference, 260

curve fitting, 315
least squares, 316, 325
line, 325, 331
polynomial, 335

cystic fibrosis, 264

deletion, 115
Demography, Fundamental Theorem of,

71
density dependence, 11
determinant, 61, 79, 167
and inverse of matrix, 61

deviation
mean, 357
mean square, 357
standard, 356–359
total (TD), 322

difference equation(s), 3, 5, 39
coupled, 42, 86
vs. differential equations, 9, 39, 283

differential equation(s), 9, 38, 39,
283

logistic, 40
diffusion, 30
diploid, 218, 247
disjoint, 120

367
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distance
additive and symmetric, 160–162, 168, 176
genetic, 249, 250, 255
Jukes-Cantor, 157–159, 176, 180
Kimura, 159–160, 166, 180
linkage, see distance, genetic
log-det, 160–162, 167–180
methods of tree construction, 180
phylogenetic, 114, 155–170
physical, 250

distribution, see also random variable, 349
bimodal, 350, 352
binomial, 229–233
expected value, 233, 241

central tendency, 352
χ2, 234–237, 243
continuous, 351
discrete, 351
normal, 349, 351, 358
probability, 229
skewed, 350
uniform, 350

DNA, 113–116
aligned sequences, 116
coding, 115, 138
junk, 115
mutation, 115–116, 138

dominance, see allele
Drosophila melanogaster, 244

edge, 172
eigenvalue and eigenvector, 65–83, 142, 145, 167
complex, 73, 102
computation of, 78–83
dominant, 70
power method, 81
strictly dominant, 70

emigration, 8
equilibrium, 7, 20–21, 44, 65, 88, 94
saddle, 102
stable, 21, 90, 102
unstable, 21, 102

Euler’s method, 39
event(s), 118
complementary, 122, 126
independent, 123
definition of, 132

mutually exclusive, 120, 129
expected value, see random variable
exponential model, 5
extrapolation, 317

fecundity, 2, 55
Fi , 216
Fick’s law, 30
Fitch-Margoliash
algorithm, 183–186, 191, 192
method, 189–190

fitness, 265
mean, 274
relative, 265

fixed point, see equilibrium

Florida dentist AIDS cluster, 209, 212
4-point condition, 193
fragile X syndrome, 246

gametes, 218
random union of, 221

GenBank, 209
gene, 114, 215, 217
linkage, 246–255

cis and trans configurations, 258
polymorphic, 276
sex-linked, 244–246

gene transfer, lateral, 173, 209
genetic code, 114
genetic drift, 268–271
genotype, 217
parental type, 248
recombinant, 248, 249

geometric model, 5
gonorrhea, 297, 308
growth rate
finite, 3, 11
finite intrinsic, 13
intrinsic, 11, 70
per capita, 11
relative, 37

haploid, 247
Hardy-Weinberg equilibrium, 263
hemizygote, 246
hemophilia, 246, 255
herd immunity, 300
heterozygosity, 275
heterozygote, 218
advantage, 268, 272, 276

histogram, 348
HIV, 209, 307
hominoid, 171, 208, 210
homozygote, 217
advantage, 268, 272

Huntington disease, 240
hypothesis test, 234

immigration, 8
immune system model, 106–107
immunization, 279, 285, 299
independent assortment
of chromosomes, 248
of genes, 219, 221, 222, 225, 246, 249

infectious disease
endemic, 295, 297, 310
epidemic, 279, 281, 286
model
differentiated infectivity, 307
MSEIR, 305
SI, 296, 343
SIR, 281, 343
sir, 298
SIRS, 307
SIS, 297, 343

sexually transmitted (STD), 307
infective class, 281
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influenza, 282
informative site, 202
inheritance
chromosomal theory, 247
Mendelian model, 217–218

initial condition, 3
insertion, 115
interpolation, 317
interquartile range, 356
intersection, 123
inversion, 115

Jacobian matrix, 104
Jukes-Cantor model, 176, 180

leaf, 173
least squares, see curve fitting
leprosy, 297
lice, head, 282, 296
likelihood, 206
linear algebra, 44, 61
linearization, 21–24, 99–101
logistic model, 12, 24–27, 33, 86

malaria, 284
Malthus, Thomas, 5
map
genetic, 249, 250, 254
linkage, see map, genetic

Markov
matrix, 142
model, 57, 141

mass action, 87, 106, 282
mating
assortative, 265
random, 262

matrix
addition, 50
characteristic equation of, 79
definition, 45
identity, 59
inverse, 59
and determinant, 61
formula, 61

multiplication, 46, 48–49
projection, 46
scalar multiple, 50
singular, 62
transition, 46, 140, 141
transpose, 167, 330

Maximum Likelihood method, 206, 207
Maximum Parsimony method, 198–202, 207
assumptions of, 202

mean, 354, 358, 359
mean infectious period, 288
death adjusted, 306

measles, 27, 282, 301, 305, 306
median, 353
meiosis, 218
meiotic drive, 277
Mendel, Gregor, 215
mitochondria, 171, 179, 208

mixing, homogeneous, 87, 280, 282, 339
mode, 353
model
linear, 5, 43
nonlinear, 11, 87

molecular clock, 144, 158, 176, 183
molecular evolution, 113
model, 138–155, 176, 206
equilibrium base distribution, 145
general Markov, 148, 160–162
Jukes-Cantor, 143–147, 155–159
Kimura, 147–148, 159–160
protein, 151

mononucleosis, 297
Morgan, Thomas Hunt, 244
multinomial coefficients, 271
mumps, 27, 305, 306
mutation, 113, 115
back, 116, 143
hidden, 116

mutation-selection balance, 276
mutualism model, 85, 107–108, 110–111

Neighbor Joining algorithm, 191–195, 207
normal equations, 329, 332, 338
nucleotides, 114
nullclines, 95, 97

operational taxonomic unit (OTU), 172
orbit, 89
orthologous sequences, 171
outgroup, 187, 198, 200
overdominance, 268

parallel evolution, 208
parasites, 208
parsimony score, 198
partial derivative, 101
pattern, 204
pedigree, 226
permutations, 241
perturbation, 21, 100
pertussis, 300
phase plane, 89
phenotype, 218
physiology models, 39
plot
log–log, 321
semilog, 319

population genetics, 261–277
population model
density dependent, 11, 33–38
discrete vs. continuous, 39–40
discrete logistic, 12
harvesting, 30–31
interacting, 85–111
Leslie, 53–55, 72, 149
linear, 5, 41–78, 315
intrinsic growth rate, 70
stable age/stage distribution, 71

Malthusian, 2–12
Markov, 57
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population model (cont.)
nonlinear, 11–38, 85–111
Ricker, 34, 37
structured, 41
Usher, 55–56, 109

power method, 81
predator–prey model, 85–105
primate, 171, 210
probability, 116–138
addition rule, 119, 121, 125–127, 129
conditional, 130–133
definition of, 132

frequency interpretation, 117
multiplication rule, 124–127

Punnett square, 219–220, 223
purine, 114, 115, 126
pyrimidine, 114, 115, 126

quarantine, 285, 296, 299, 304
quartiles, 355

rabies, 304
random variable, 228
expected value, 233
additive property of, 234, 242, 250

recessive, see allele
recombination frequency, 255
regression, 332
removal rate, 283, 288, 299, 308
relative, 287, 290, 310

removed class, 281
RNA, 114
root, 173
Rosco, 144
rubella, 301, 305

sample, 359
scalar, 50
segregation
of chromosomes, 218, 245, 247
of genes, 217, 219

selection, 265, 268, 272
coefficient, 266
frequency-dependent, 276

sensitivity, 134–135
sensitivity analysis, 77
sickle-cell anemia, 226
significance level, 236
smallpox, 280, 300
specificity, 134–135
spruce budworm, 38
stability, 21, 88
analysis, 21–24, 99–103
by calculus, 22, 104

local vs. global, 24, 103
stable age/stage distribution, 71
statistics, 345
steady state, see equilibrium
Stirling’s formula, 179
Strong Ergodic Theorem, 71, 81–83,

148

structurally unstable model, 91
Sturtevant, Alfred, 249
sum of squares for error (SSE), 322
susceptible class, 281
symbiosis, 107, 209
syphilis, 297

T cells, 106
taxon, 172
Tay-Sachs disease, 223, 224, 228
testcross, 225
3-point, 252
2-point, 250

tetanus, 304
tetrad, 248
3-point formulas, 183
threshold value, 287, 300
transient, 20, 94
transition, 115, 126, 130, 147, 164
transmission coefficient, 282, 298, 308
transversion, 115, 126, 130, 147, 164
tree, 172
bifurcating, 173
construction
algorithms vs. optimality criteria, 207
methods, 180–208

metric, 175
neighbors, 192
parsimony score, 198
phylogenetic, 171, 172
applications of, 208

rooted, 173–175
rooting, 186
topological, 173
number of, 175, 177–179

unrooted, 173, 174, 200
tribolium, 28, 108
tuberculosis, 283, 297
turbidity, 8

union, 120
UPGMA, 181–183, 186, 192

vaccination, see immunization
variability in data, 208, 347, 355
variance, 357
vector
addition, 50
definition, 45
multiplication by matrix, 46
scalar multiple, 50

vertex
interior, 173
terminal, 173

whale hunting, 209

yellow-lethal allele, 226, 240,
273

zygote, 247


