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Simulation and analysis of biochemical systems is at the heart of computational
and systems biology. This textbook covers mathematical and computational ap-
proaches to biochemical systems based on rigorous physical principles. Written
with an interdisciplinary audience in mind, this book shows the natural connection
between established disciplines of chemistry and physics and the emerging field of
systems biology, enabling the reader to take an informed approach to quantitative
biochemical systems analysis.

Organized into three parts, introducing the student to basic biophysical concepts
before applying the theory to computational modeling and analysis through to
advanced topics and current research, this book is a self-contained treatment of the
subject.

• Background material – this part introduces kinetics and thermodynamics of biochem-
ical networks, providing a strong foundation for understanding biological systems and
applications to well-conceived biochemical models.

• Analysis and modeling of biochemical systems – topics covered include enzyme-mediated
reactions, metabolic networks, signaling systems, biological transport processes, and
electrophysiological systems.

• Special topics – explores spatially distributed systems, constraint-based analysis for large-
scale networks, protein–protein interaction, and stochastic phenomena in biochemical
networks.

Featuring end-of-chapter exercises, with problems ranging in scope from straight-
forward calculations to small computational simulation projects, this book will be
suitable for advanced undergraduate or graduate level courses in systems biology,
computational bioengineering, and molecular biophysics.

Daniel A. Beard is Associate Professor in the Department of Physiology and
the Biotechnology and Bioengineering Center, Medical College of Wisconsin.

Hong Qian is Professor of Applied Mathematics and Bioengineering at the
University of Washington.





There is a growing number of physicists, engineers, mathematicians, and chemists who
are interested in joining the post-genomics party and addressing cutting-edge problems in
molecular and cell biology. The barrier to entry can be high and prohibitive. This marvelous
new book opens the door for the quantitively inclined. Beard and Qian, in an accessible and
clear style, present fundamental methods that can be used to model and analyze an array
of biomolecular systems and processes, ranging from enzyme kinetics to gene regulatory
networks to cellular transport. This book will appeal to autodidacts as well as professors
looking for course texts.

J. J. Collins, Professor of Biomedical Engineering and MacArthur Fellow,
Boston University

This is one of the most useful and readable accounts of biochemical thermodynamics that
I have seen for a long time, if indeed ever. It is very definitely a book that I shall want to
have on my shelves and to refer others to, because it contains a considerable amount of
information not easy to find elsewhere.

Athel Cornish-Bowden, Directeur de Récherche, CNRS, Marseilles

Dan Beard and Hong Qian’s Chemical Biophysics: Quantitative Analysis of Cellular Sys-
tems is a masterful portrayal of a critically important new area of science. The success of
genomics now makes it imperative to understand the relationships between proteomics,
biochemical systems behavior, and the physiology of the intact animal or human. This book
provides the path. Its clarity of description, making the complexities seem simple by adher-
ing to fundamental principles, avoiding cluttering detail while painting the broad picture to
great depth, makes it a pleasure to read and a treasure to study. It’s a must for scientists and
scholars working to understand integrative biology.

James B. Bassingthwaighte, Professor of Bioengineering, Biomathematics and
Radiology at the University of Washington, Seattle

This wonderful book will be indispensable to specialists in the fields of systems biology,
biochemical kinetics, cell signaling, genetic circuits and quantitative aspects of biology, and
also to undergraduate and graduate students. It presents a systematic approach to analyzing
biochemical systems. The complex subjects are described in a clear style, with carefully
crafted definitions and derivations. This unique book is an important step in the development
and dissemination of systems biology approaches.

Aleksander S. Popel, Professor of Biomedical Engineering, Johns Hopkins University

As computational biology moves into a more integrative and multi-scale phase, to provide
the quantitative framework for linking the mass of experimental data generated by molec-
ular techniques at the subcellular level to tissue- and organ-scale physiology, it is vitally
important that models are based on quantitative approaches that incorporate, wherever pos-
sible, thermodynamically constrained biophysical mechanisms. This new book Chemical
Biophysics: Quantitative Analysis of Cellular Systems by Dan Beard and Hong Qian does
a wonderful job of formulating models for metabolic pathways, gene regulatory networks,
and protein interaction networks on the well-established principles of physical chemistry.
Topics include enzyme-catalyzed reactions, reaction–diffusion modeling, membrane trans-
port, the chemical master equation, and much more. This book will be of lasting value to
computational biologists and bioengineers.

Professor Peter J. Hunter, Auckland Bioengineering Institute at the
University of Auckland



Metabolic modeling often contains simplified assumptions to achieve convergence of equa-
tions and these sometimes violate principles of solution physical chemistry. Readers of this
remarkable monograph will no longer find those approaches satisfactory because Beard
and Qian elucidate the principles of kinetics and thermodynamics of electrolyte solutions
relevant to metabolic modeling and computational biology. They show how these principles
are essential for molecular modeling of cellular processes most of which involve ionized
molecules and macromolecules in the cytoplasm. Their exposition is rigorous. The chap-
ters have an enormous scope and depth that present clear derivations, explanations, and
examples. Beard and Qian set the bar very high for future metabolic modeling yet show
how the details involved can be managed well and correctly. Analyses at this level of de-
tail are necessary before more complex concepts of molecular crowding and intracellular
compartmentalization can be considered. I expect this monograph will become a landmark
in computational and systems biology and will be read thoroughly by all scholars in these
fields.

Martin J. Kushmerick, Professor of Radiology, Bioengineering, Physiology and
Biophysics at the University of Washington, Seattle

Chemical Biophysics: Quantitative Analysis of Cellular Systems by Daniel Beard and Hong
Qian fills a significant niche. The text is a concise yet clear exposition of the fundamentals
of chemical thermodynamics and kinetics, aimed specifically at practitioners of the new
science of systems biology. It is marvelously illustrated with biochemical examples that
will aid those who aim to analyze and model the workings of biological cells.

David Eisenberg, Director UCLA-DOE Institute for Genomics & Proteomics,
University of California, Los Angeles, Investigator, Howard Hughes Medical Institute
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Preface

The life sciences have strong traditions as quantitative disciplines. In several fields
quantitatively minded research was at a zenith in the 1960s and 1970s. Flick through,
for example, chapters of the American Physiological Society’s Handbook of Phys-
iology that were published in this era (and even into the 1980s) and one will see
physiology revealed as an engineering science, applying the tools of chemical, me-
chanical, and electrical engineering to measure, analyze, and simulate biological
systems. A great deal of biochemical research in the 1960s and 1970s was focused
on the kinetics, thermodynamics, and generally physical chemistry of biochemical
systems. From this work emerged an interdisciplinary field sometimes called bio-
physical chemistry, which encompasses a collection of physical and mathematical
methods for analyzing molecular structure and dynamics.

This great era of quantitative physiology and biochemistry was temporarily side-
tracked by revolutions in molecular biology and molecular genetics, which, at risk
of oversimplification, are focused on the question of what is there (inside a cell)
rather than how it works. In the 1980s and 1990s much of the physically oriented
quantitative research in biology was similarly focused on isolated molecules. In
the 1990s the term molecular biophysics arose as a popular name of new depart-
ments combining experimental techniques with theory and simulation, emphasizing
physicochemical approaches to studying biological macromolecules.

Nowadays, with several genomes sequenced and large amounts of data available
on what molecules are present in what quantities and inside what sorts of cells,
attention is shifted to the question of how it all works. The new focus is some-
times called systems biology. Whatever we call it, although a number of recent
publications would have the reader believe that systems biology is an entirely new
endeavor, the basic idea of pursuing quantitative mechanistic-based understanding
of how biological systems function is a shift back to the philosophy of a previous
era.

xvii



xviii Preface

Of course we should not imply that progress in biological systems analysis ever
ceased or that the current trend calls for a wholesale abandonment of reductionist
approaches in favor of integrative systems analysis. Yet it is obvious to even the
casual browser of the headlines of the science magazines that, in some form or
another, systems analysis in biology is in the spotlight for now and at least the
foreseeable future. At the heart of a systems approach to biology is a recognition
of the importance of dynamic behavior (and function) of a system (a cell, an or-
gan, or an organism) emerging from the interaction of its components. Moreover,
computational modeling and simulation is centrally important to analysis of such
systems.

While it is in the context of this newfound attention on quantitative and compu-
tational biology that we hope this book is useful, some readers may find some of the
content old fashioned. A student planning a career in systems biology may wonder
whether our emphasis on the physical chemical basis of natural phenomena looks
backward or forward. This text represents an attempt to do both in synthesizing
a basic foundation in chemical biophysics for analysis and simulation of cellular
systems. The title of the book, yet another permutation of phys-, chem-, bio-, and
related syllables, arises from this desire to continue the rigorous tradition while at
the same time define something new.

We are fortunate to have been mentored by a number of leading scientists, in-
cluding James Bassingthwaigthe, Elliot Elson, Carl Frieden, John Hopfield, James
Murray, John Schellman, and Tamar Schlick. In particular we have both benefited
a great deal from our long-time association with Jim Bassingthwaigthe. His advice
and inspiration is at the root of much of what we have endeavored to do, including
writing this book. In addition, we owe a particular debt to Athel Cornish-Bowden
who gave us advice, both specific and general, and encouragement on the text. His
book on enzyme kinetics sets the standard for clarity that we can only strive for.
These two books, perhaps together with one that emphasizes molecular biophysics,
could provide appropriate material for a year-long sequence on biophysical chem-
istry, from macromolecules to biochemical systems. On its own, this book has been
used for a semester-long course on computational biology.

Many others provided feedback on the text, discovered typos and errors, and sug-
gested improvements. We are grateful particularly to Xuewen Chen, Ranjan Dash,
Ed Lightfoot, Clark Miller, Luis Moux-Dominguez, Feng Qi, Rebecca Vanderpool,
Kalyan Vinnakota, Fan Wu, and Feng Yang.



Introduction

Nearly every area of modern research in biology and biomedical science is tar-
geted in one way or another on gaining quantitative understanding of the behavior
of biochemical systems. Cellular metabolic pathways, genetic regulatory systems,
and protein interaction networks represent different examples of biochemical sys-
tems that obey a common set of physicochemical laws, and may be analyzed and
simulated based on a common set of principles derived from such laws. It is the
purpose of this book to introduce and make use of the methods for the analysis and
simulation of biochemical systems that lie at the foundation of current and future
research in biological and biomedical science.

Computational biology

Since the time of Newton, a key scientific strategy has been to understand physical
systems based on their representation in terms of the smallest possible subsystem
(i.e., model) that captures the important mechanistic interactions. The influence of
gravity in maintaining the earth’s orbit about the sun is satisfactorily explained by
analyzing the equations of motion representing a universe consisting of two mas-
sive bodies; a complete mathematical analysis of the three-body problem remains
out of reach. Living biological systems consist of not two, or even two hundred
interacting components. Analysis, prediction, and rational manipulation of cellular
function requires a mechanistic understanding of physical systems of unimagin-
able complexity. Thus the computer is an essential tool in helping us to analyze and
simulate living systems.

The term computational biology has emerged to describe theoretical and
computer-aided analysis and prediction of biological behaviors.1 Yet while the

1 Unfortunately the vocabulary of biology is often imprecise. The terms computational biology and bioinformatics
are interchangeable in some circles. Here we define computational biology as specifically focusing on the use of

1



2 Introduction

terminology may be new, the practice of computational biology is not [15]. In 1919
August Krogh and Agner Erlang established one of the first mathematical models
of a living system [118], used to predict the oxygen distribution around a capil-
lary based on a model formulation that is still in use today [136, 157]. It has been
over five decades since Alan Hodgkin and Andrew Huxley published their work
using computational modeling to characterize the electrophysiological function of
the squid giant axon [94, 95, 96, 97, 98]. Current work in computational biology
takes advantage of computational resources that are well beyond anything that was
available to Krogh or Hodgkin and Huxley. Yet in terms of clarity, precision, and
insight, the work of these Nobel Prize winning physiologists continues to set the
standard for the field. The Krogh–Erlang model is analyzed in Chapter 8 of this
text; the Hodgkin–Huxley model in Chapter 7.

Systems biology

Systems biology – another recently emerged term – is widely used to define the
current era of biomedical research. While no simple universal definition of systems
biology exists, in vague terms systems biology is the application of a systems view
to biology research. Since biological systems are complex collections of interacting
parts, the aim is to study the operation of the system as a whole rather than that
of the individual parts in isolation. Thus computational biology is an essential
component of systems biology. In fact, we can enumerate a number of specific
roles that computational biology plays in (systems) biology research.

(i) To analyze data. Computational models are used to translate measured data that pro-
vide indirect measurements on the function of biological systems into quantitative
mechanistic information.

(ii) To formulate hypotheses. Hypotheses that are quantitative and subject to quantitative
testing are best formulated as computational models. A computational model of a
biological system represents a precise unambiguous hypothesis regarding the operation
of that system.

(iii) To fix/improve hypotheses. Given a disproved or inadequate specific hypothesis, com-
putational models will suggest possible improvements to the hypothesis to explain the
available data.2

(iv) To generate further hypotheses. Given validated and verified models (i.e., hypotheses)
of subcomponents of a system, these models may be integrated together to predict
behavior of the integrated system and generate predictions to be tested.

mathematical and computational tools to simulate and analyze the biophysical processes underlying biological
phenomena, and bioinformatics as focusing on managing and mining large-scale data that emerge from high-
throughput biotechnologies. The former is the subject of this book.

2 Often we cycle between items (ii) and (iii) in this list as our understanding becomes more sophisticated and our
models become less wrong. This idea is outlined elegantly in Platt’s essay on Strong Inference [158].
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(v) To design optimal experiments. A computational model provides a means of designing
experiments for which the hypotheses to be tested (see item (ii) in this list) are sensitive
to the variables to be measured.

(vi) To transfer information obtained from one experimental regime to apply to another.
For example, the potential impact of observations on enzyme expression levels on
metabolic function can be explored using a computational model of the given enzymes
and related biochemical pathways.

The key to being able to do all of the above is to be able to build physically real-
istic models of biological systems. Since basic physical principles circumscribe the
behavior of biological systems, we place a special emphasis on physical realism in
computational biology and simulation of biochemical systems in this text. Models
developed this way attain certain a priori validity that is missing in models based on
experimental data alone. Viewed from this perspective there is nothing fundamen-
tally novel in the systems biology endeavor. In his Nobel lecture Eduard Buchner
argued in 1907 that “the differences between the vitalistic view and the enzyme
theory have been reconciled” [25]. By building biological theory on a foundation
of physicochemical theory, we will ensure that vitalism does not creep back into
the study of biology in the twenty-first century. As Buchner put it, “We are seeing the
cells of plants and animals more and more clearly as chemical factories, where
the various products are manufactured in separate workshops.” This way of seeing
cells (and organs and organisms) is at the philosophical foundation of this text.

Inherent in the study of biological systems is the notion of emergent properties –
the idea that the functions of a complex system transcend the properties of all
its individual parts. It is fair to say that the most rigorously understood emergent
properties in nature are related to how the observed macroscopic properties of
matter arise from the microscopic behavior of atoms and molecules. This is the
domain of statistical thermodynamics. Thus the analysis of biochemical systems
in terms of statistical thermodynamics provides a natural framework within which
current applications in systems biology from electrical, chemical, and computer
engineering (such as feedback in networks, optimization, statistical inference, and
data mining) may be integrated into a consistent theory of biological systems [78].
One goal of this text is to build a bridge between physical chemical concepts and
engineering-based analysis of biological systems.

Organization of this book

This book is organized into three parts. The first part introduces background ma-
terial on physical chemistry and the treatment of kinetics and thermodynamics in
biochemical reactions. While the concepts introduced in Chapter 1, Concepts from
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physical chemistry, are essential for assimilating material in the remainder of the
text, detailed mathematical derivations related to this material are not essential and
appear in Chapter 12. Key concepts that directly relate to material in the later chap-
ters are introduced and/or reviewed. The second chapter of Part I, Conventions and
calculations for biochemical systems, introduces the concepts of apparent equilib-
rium constants and apparent Gibbs free energy, and shows how these concepts are
applied to in vivo and in vitro biochemical systems. The third chapter covers basic
techniques in modeling and simulating chemical systems.

Part II of this book represents the bulk of the material on the analysis and
modeling of biochemical systems. Concepts covered include biochemical reac-
tion kinetics and kinetics of enzyme-mediated reactions; simulation and analy-
sis of biochemical systems including non-equilibrium open systems, metabolic
networks, and phosphorylation cascades; transport processes including membrane
transport; and electrophysiological systems. Part III covers the specialized topics of
spatially distributed transport modeling and blood–tissue solute exchange,
constraint-based analysis of large-scale biochemical networks, protein–protein in-
teractions, and stochastic systems.

Since the scope of this book is broad, one could write a whole book on the
topics of several of the chapters herein. Indeed for many topics, such books exist.
Therefore throughout this book, typically at the conclusion of a given chapter, we
refer the reader to a number of excellent texts that we have found useful in studying
and synthesizing the important concepts in the analysis of biochemical systems.



Part I

Background material





1

Concepts from physical chemistry

Overview

An essential property of all living systems is that they operate in states of flux,
transporting and transforming mass, transducing free energy between chemical,
electrical, and mechanical forms, and delivering signals and information in terms
of biochemical activities. Consequently, the principles governing the behavior of
biochemical systems are the principles of physical chemistry. As an introduction
to background material necessary for describing and understanding the behavior of
biochemical systems, this chapter covers the concepts of chemical thermodynamics
including temperature, entropy, chemical potential, free energy, and Boltzmann
statistics.

In the early nineteenth century Carnot gave birth to the field that came to be
known as thermodynamics, with the first theoretical treatise on mechanical work
and efficiency in heat engines [28]. Over the course of that century, a complete
physical theory of how changes in heat, mechanical work, and internal energy
of molecular systems are related – in short the theory of thermodynamics – was
assembled by Clausius, Helmholtz, Boltzmann, Gibbs, and others. As part of the
thermodynamic theory a number of familiar physical quantities were introduced,
including entropy, enthalpy, and free energy. We shall see that understanding these
quantities and how they are related is essential for building physically realistic
simulations of biochemical systems.

1.1 Macroscopic thermodynamics

Our study begins with an enumeration of the laws of thermodynamics:

0. If two systems have the same temperature as a third, then they have the same temperature
as one another.

1. The total energy of an isolated system is conserved.

7



8 Concepts from physical chemistry

2. The entropy of an isolated system does not decrease.
3. The minimal entropy of a system is achieved at the temperature of absolute zero.

Readers may recall encountering these famous laws (expressed in either this form
or related equivalent forms) in a number of places – from chemistry to engineering
courses – during their student careers. Yet it is our experience that knowledge of
these laws does not necessarily translate into proficient understanding and applica-
tion. The disconnect between knowledge and understanding may arise from the fact
that while the laws are simple and straightforward, the quantities that they govern
may be somewhat mysterious. For example, the so-called zeroth law makes a pre-
cise statement about the physical quantity temperature. Yet the quantity temperature
is not defined, leaving us without an understanding of the physical significance of
the statement.

Of the three quantities (temperature, energy, and entropy) that appear in the laws
of thermodynamics, it seems on the surface that only energy has a clear definition,
which arises from mechanics. In our study of thermodynamics a number of addi-
tional quantities will be introduced. Some of these quantities (for example, pressure,
volume, and mass) may be defined from a non-statistical (non-thermodynamic) per-
spective. Others (for example Gibbs free energy and chemical potential) will require
invoking a statistical view of matter, in terms of atoms and molecules, to define
them. Our goals here are to see clearly how all of these quantities are defined
thermodynamically and to make use of relationships between these quantities in
understanding how biochemical systems behave.

To illustrate the potential disconnect between knowledge and understanding in
the study of thermodynamics, consider the basic equation of macroscopic thermo-
dynamics [88],

d E = T d S − PdV + µd N , (1.1)

which relates infinitesimal changes in internal energy E , entropy S, volume V , and
number of particles N in a system, to the temperature T , pressure P , and chemical
potential µ. Armed with Equation (1.1) and the second law of thermodynamics,
which we will encounter in several different forms throughout this book, one may
develop all of the relevant formulas of macroscopic thermodynamics. For example,
if the volume and number of particles in a system is held constant then the following
relationship is apparent: (

∂S

∂ E

)
N ,V

= 1

T
. (1.2)

In Equation (1.2) we have used the conventional notation (·)N ,V to specify that the
expression in parentheses is computed holding N and V constant.
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The definition of the Gibbs free energy G = E − T S + PV may be combined
with Equation (1.1) to show the following.

dG = d E − T d S − SdT + PdV + V d P

dG = µd N − SdT + V d P(
∂G

∂ N

)
T,P

= µ. (1.3)

Yet mathematical manipulations such as above do not tell us why it is useful to
introduce G as a thermodynamic variable. We shall see in Section 1.4.1 that systems
held at constant temperature and pressure – i.e., typical laboratory conditions and
a reasonable approximation for most biological systems – spontaneously move in
the direction of lower G. Therefore gradients in Gibbs free energy represent the
thermodynamic driving force for constant temperature and pressure (isothermal
and isobaric) systems. To appreciate why this is the case, we need first to develop
some ideas about how large numbers of microscopic particles interact and exchange
energy under different macroscopically imposed conditions.

In the following sections we will see how temperature, entropy, and free en-
ergy are statistical properties that emerge in systems composed of large numbers
of particles. In Chapter 12, the appendix to this book, we dig more deeply into
statistical thermodynamics, derive a set of statistical laws that are used in this
chapter, and show how Equation (1.1) – the fundamental equation of macroscopic
thermodynamics – is in fact a statistical consequence of more fundamental princi-
ples operating at the microscopic level.

1.2 Isolated systems and the Boltzmann definition of entropy

An isolated system is defined to be a system that does not exchange material or
energy with its environment. Thus the extensive thermodynamic variables N , V ,
and E are held fixed. Boltzmann’s formula for the entropy of such a system is

S = kB ln �(N , V, E), (1.4)

where kB is the Boltzmann constant, and �(N , V, E) is the total number of mi-
crostates that are available to the system at given values of N , V , and E . (The
term microstate refers to the microscopic configuration of the system. For classical
systems the microstate is defined by the positions and momenta of all particles mak-
ing up the systems. For quantum mechanical systems the number �(N , V, E) can
be obtained by counting the number of independent solutions to the Schrödinger
equation that the system can adopt for a given eigenvalue E of the Hamiltonian
[156].)
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Similarly, if one is interested in a macroscopic thermodynamic state (i.e., a subset
of microstates that corresponds to a macroscopically observable system with fixed
mass, volume, and energy), then the corresponding entropy for the thermodynamic
state is computed from the number of microstates compatible with the particular
macrostate. All of the basic formulae of macroscopic thermodynamics can be ob-
tained from Boltzmann’s definition of entropy and a few basic postulates regarding
the statistical behavior of ensembles of large numbers of particles. Most notably
for our purposes, it is postulated that the probability of a thermodynamic state of a
closed isolated system is proportional to �, the number of associated microstates.
As a consequence, closed isolated systems move naturally from thermodynamic
states of lower � to higher �. In fact for systems composed of many particles, the
likelihood of � ever decreasing with time is vanishingly small and the second law
of thermodynamics is immediately apparent.

Combining Equations (1.1) and (1.4), we can develop a statistical interpretation
of the thermodynamic quantity temperature,(

∂S

∂ E

)
N ,V

= kB

(
∂ ln �

∂ E

)
N ,V

= 1

T
, (1.5)

which states that temperature is a measure of the relationship between number of
microstates and the internal energy of matter.

1.3 Closed isothermal systems

1.3.1 Helmholtz free energy

In biology and chemistry we are usually not interested in the study of isolated
systems. Biological systems exchange energy and material with the environment
and it is important to understand what are the thermodynamic driving forces in such
systems. Since biochemical processes occur in an aqueous environment, we wish
to treat the environment in a rigorous way without worrying about the details of the
solvent molecules’ conformations and interactions. The statistical thermodynamic
approach to this problem was introduced by Josiah Gibbs [49].

In this section we study closed systems (closed to mass transport but not energy
transfer) held at constant temperature. In statistical mechanics these systems are
referred to as NVT systems (because the thermodynamic variables N , V , and T
are held fixed). We shall see that the Helmholtz free energy represents the driv-
ing force for NVT systems. Just as an isolated system (an NVE system) evolves
to increase its entropy, an NVT system evolves to decrease its Helmholtz free
energy.

Since a system of constant volume and mass held at constant temperature ex-
changes energy with its surroundings, we can no longer define a fixed total internal



1.3 Closed isothermal systems 11

0 0.2 0.4 0.6 0.8 1

× 10
−20

0

0.05

0.1

0.15

0.2

0.25

Energy (joules)

P
ro

ba
bi

lit
y

 

 

T = 273K 
T = 1000K 

Figure 1.1 Illustration of the Boltzmann probability law of Equations (1.6) and
(1.7). The state probability distribution is plotted at two different temperatures
for a system with ten possible microstates with energy ranging from 10−21 to
10−20 joules. At the lower temperature (T = 273 K), the lower-energy states are
significantly more probable than the higher-energy states. At the higher temper-
ature (T = 1000 K), the energy distribution becomes more uniform than at the
lower temperature.

energy E of the system. The probability of a microstate that has internal energy
E is proportional to e−E/kB T , according to the Boltzmann probability law. (See
Section 12.2.) Thus the probability of a state can be calculated

P(E) = e−βE

Q
, (1.6)

where

Q =
∑

i

e−βEi , (1.7)

where the factor β is equal to 1/kB T . The summation in Equation (1.7) is over all
possible states i . The Boltzmann probability law is illustrated in Figure 1.1. Using
this probability law, we can determine an expression for the average internal energy
U . In general, with the NVT probability distribution function defined according to
Equation (1.6), we can calculate the expected value of a property of the system as

〈 f 〉 =
∑

i fi e−βEi

Q
(1.8)

where 〈 f 〉 is the expected value of some observable property f , and fi is the value of
f corresponding to the i th state. The average internal energy of a closed isothermal
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system is defined as the expected value of E :

U =
∑

i Ei e−βEi∑
i e−βEi

= − ∂

∂β
ln

[∑
i

e−βEi

]
= − ∂

∂β
ln Q. (1.9)

Similar to the case of an isolated system, which naturally moves to maximize
� (the sum total number of accessible states), the NVT system naturally moves to
maximize Q (the probability-weighted sum of states). Thus the second law takes
a form in the NVT system analogous to that of the NVE system. The difference is
that each state is not equally likely in the constant temperature case, as it is in the
constant-energy case. Keeping in mind that we expect NVT systems to move from
macrostates of lower Q to macrostates of higher Q, we shall now see why a certain
free energy (specifically the Helmholtz free energy in the NVT system) is a useful
quantity in determining the direction of spontaneous change in thermodynamic
systems.

The Helmholtz free energy A is defined as A = U − T S, and incremental
changes in A can be related to changes in average internal energy, temperature,
and entropy by d A = dU − T d S − SdT . Substituting this into the basic ther-
modynamic formula accounting for the incremental changes in internal energy
dU = T d S − PdV + µd N , results in:

d A = −SdT − PdV + µd N . (1.10)

Thus, the internal energy U = A + T S can be expressed (through a clever manip-
ulation [156]) as:

U = A − T

(
∂ A

∂T

)
N ,V

= −T 2

[
∂

∂T

(
A

T

)]
N ,V

=
[
∂(A/T )

∂(1/T )

]
N ,V

. (1.11)

We can equate Equations (1.9) and (1.11) by recalling that β = 1/kB T . Thus, the
Helmholtz free energy can be calculated directly from the quantity Q in Equation
(1.7):

A = −kB T ln Q. (1.12)

Equation (1.12) makes a powerful and useful statement:

NVT systems that minimize Helmholtz free energy maximize Q. Therefore A is a
useful thermodynamic potential for NVT systems; NVT systems spontaneously move
down gradients in Helmholtz free energy.
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1.3.2 Entropy in an NVT system

We know that the probability of a given state i in an NVT system is given by:

Pi = e−βEi /Q. (1.13)

Next we take the expected value of the logarithm of this quantity:

〈ln Pi 〉 = − ln Q − β 〈Ei 〉 = − ln Q − βU = β(A − U ). (1.14)

A useful relationship follows from Equation (1.14). Since A − U = −T S, S =
−kB〈ln Pi〉. The expected value of ln Pi is straightforward to evaluate, and

S = −kB

∑
i

Pi ln Pi . (1.15)

Interestingly, this equation applies equally to both the NVE and NVT cases. In the
NVE system, each state is equally likely. Therefore Pi = �−1, and Equation (1.15)
becomes

S = kB

∑
i

�−1 ln � = kB ln �, (1.16)

which is the familiar definition of entropy for an isolated system. Equation (1.15) is
called the Gibbs formula for entropy [104], while Equation (1.16) is the Boltzmann
definition introduced in Section 1.2.3

1.3.3 Interpretation of temperature in the NVT system

In Sections 1.2 and 1.3 we discovered two ways to interpret the thermodynamic
variable T . First we saw that temperature can be thought of as a measure of the
amount of internal energy necessary to add to a system to allow it to obtain additional
microstates. Second, given the definition A = U − T S, we can interpret T as a
gauge that determines the relative contributions of U and S in driving spontaneous
processes. At high temperature, entropy dominates the free energy and systems
are driven to maximize internal disorder. In the low-temperature limit, free energy
is dominated by internal energy and systems move in the direction of decreasing
internal energy. A third interpretation of T arises from the equipartition of energy
in constant temperature systems. The equipartition theorem states that the average
kinetic energy of each particle is given by 3kB T/2. (See Section 12.2.4 for a detailed
description of the equipartition theorem.) The higher the temperature, the higher
the amount of energy stored in each internal degree of freedom.

3 Incidentally, Equation (1.15) is also called the Shannon formula for entropy. Claude Shannon was an engineer
who developed his definition of entropy, sometimes called “information entropy,” as a measure of the level of
uncertainty of a random variable. Shannon’s formula is central in the discipline of information theory.
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1.4 Isothermal isobaric systems

1.4.1 Gibbs free energy

We have seen that NVT systems spontaneously move to maximize the probability-
weighted sum over all internal states Q and simultaneously to minimize Helmholtz
free energy A. Yet the thermodynamics of biological systems is best understood in
the context of systems held at constant pressure, rather than constant volume. What
is the appropriate statistical law for constant-temperature (isothermal) constant-
pressure (isobaric) systems? What free energy is the appropriate thermodynamic
potential to apply in this situation? For this case, the Gibbs free energy represents
the appropriate thermodynamic driving force. Gibbs free energy in NPT systems
(constant N , P , and T ) is the analog of the Helmholtz free energy in NVT systems.

The relative probability of a state in an NPT system is expressed as a function
of thermodynamic quantity enthalpy, which is defined as H = E + PV . From
Equation (1.1) we have

d H = T d S − V d P + µd N

and (
∂S

∂ H

)
N ,P

= 1

T
. (1.17)

Thus in an NPT system enthalpy takes the place of internal energy in an NVT
system. The probability law for an NPT system is

P = e−β H/Z

Z =
∑

i

e−β Hi , (1.18)

which is derived in Section 12.3. Thus the average enthalpy of an NPT system is
computed

H =
∑

i Hi e−β Hi∑
i e−β Hi

= − ∂

∂β
ln

[∑
i

e−β Hi

]
= − ∂

∂β
ln Z . (1.19)

The Gibbs free energy is defined as G = E − T S + PV or G = H − T S. Fol-
lowing logic analogous to that of Section 1.3.1, we have

H = G − T

(
∂G

∂T

)
N ,V

= −T 2

[
∂

∂T

(
G

T

)]
N ,V

=
[
∂(G/T )

∂(1/T )

]
N ,V

. (1.20)

Equating (1.19) and (1.20), we obtain.

G = −kB T ln Z . (1.21)



1.5 Thermodynamic driving forces in different systems 15

To complete the analogy to Helmholtz free energy in NVT systems:

NPT systems that minimize Gibbs free energy maximize Z. Therefore G is a useful
thermodynamic potential for NPT systems; NPT systems spontaneously move down
gradients in Gibbs free energy.

1.4.2 Entropy in an NPT system

In Section 1.3.2 we saw that the Gibbs formula for entropy applies equally well to
an isolated system as to a closed isothermal system. To determine whether or not
this formula applies to NPT systems as well, we can substitute the NPT probability
law of Equation (1.18) into Equation (1.15):

S = −kB

∑
i

e−β Hi

Z
ln

e−β Hi

Z

= kB

∑
i

e−β Hi

Z
(β Hi + ln Z )

= kBβ H + kB ln Z . (1.22)

Multiplying by T we have

ST = H + kB T ln Z = H − G, (1.23)

which agrees with the definition G = H − T S.

1.5 Thermodynamic driving forces in different systems

In the previous three sections we have seen that three different thermodynamic
driving forces are associated with three different systems (the NVE, NVT, and NPT
systems). The driving forces for the three systems are summarized in Table 1.1.
In the simplest case (the NVE system), in which the system does not exchange
energy or material with its surroundings, the isolated system moves naturally to

Table 1.1 Thermodynamic driving forces in three systems

System Thermodynamic driving force

NVE Maximize entropy S
NVT Minimize Helmholtz free energy E − T S
NPT Minimize Gibbs free energy E + PV − T S
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maximize its entropy by maximizing the number of microstates associated with its
thermodynamic macrostate. The NVT and NPT systems require the introduction of
the concept of free energy, with the Helmholtz and Gibbs free energies operating
in these respective systems.

1.6 Applications and conventions in chemical thermodynamics

1.6.1 Systems of non-interacting molecules

To apply the preceding concepts of chemical thermodynamics to chemical reaction
systems (and to understand how thermodynamic variables such as free energy vary
with concentrations of species), we have to develop a formalism for the dependence
of free energies and chemical potential on the number of particles in a system.
We develop expressions for the change in Helmholtz and Gibbs free energies in
chemical reactions based on the definition of A and G in terms of Q and Z . The
quantities Q and Z are called the partition functions for the NVT and NPT systems,
respectively.

Consider the case where we have an open system consisting of a single pro-
tein molecule in solution. This system could consist, for example, of a biological
molecule in a bath of water held at constant temperature. If this molecule adopts
a number of conformational states, its NVT and NPT partition functions are the
familiar quantities:

Q1 =
∑

i

e−βEi

Z1 =
∑

i

e−β Hi

where Ei and Hi are the energy and enthalpy associated with the i th state. The
subscript “1” in the above formulas indicates that these are the single-molecule
partition functions. (Note that it is possible that the solvation energy may change
with molecular conformation; in this case these changes are assumed to be incor-
porated into the Ei and Hi .)

If our system consists of two identical and independent macromolecules, then
the two-molecule canonical partition function is expressed

Q2 = 1

2

∑
i

∑
j

e−β(Ei +E j ) = 1

2
Q2

1. (1.24)

The factor of 1/2 in the above equation for Q2 is there so that we do not double-
count identical states, assuming that the two molecules in the system are identical
and indistinguishable. Generalizing from Equation (1.24) for the N -molecule case,
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we have4

QN = 1

N !
QN

1 . (1.25)

Equation (1.25) assumes that the system is dilute. Specifically this means that the
molecules do not interact with one another in such a way that the energy associated
with a given conformation of one molecule is not affected by the conformation of
any other molecule in the system.

From here we can easily express the free energy

A = −kB T ln(QN ) = kB T (ln N ! − N ln Q1)

= kB T (N ln N − N − N ln Q1) , (1.26)

where we have invoked the Stirling approximation that ln N ! ≈ N ln N − N for
large N . Using the formula µ = (∂ A/∂ N )V,T , we have

µ = kB T (ln N − ln Q1). (1.27)

The above equation can be written

µ = kB T ln(N/V ) − kB T ln(Q1/V )

µ = µo + kB T ln c, (1.28)

where µo is a constant that depends on the molecular species and c is the concen-
tration of molecules of that species.

One may be concerned about taking the log of a dimensional variable in
Equation (1.28). Formally the values of µo are defined based on a specific ref-
erence concentration co = 1 Molar and the equation for chemical potential is
µ = µo + kB T ln(c/co).

1.6.2 Gibbs free energy of chemical reactions and chemical equilibrium

Because the Gibbs energy is the thermodynamic potential for the NPT system,
the thermodynamic properties of chemical species and chemical reactions under
laboratory conditions are formulated in terms of Gibbs free energy. Recall

dG = −SdT + V d P + µd N . (1.29)

Or, at constant pressure and temperature

(dG)P,T = µd N . (1.30)

4 See Exercise 1.4.
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In dilute systems consisting of a number of different species, the Gibbs free energy
is computed from the sum of independent contributions from Ns different species.

(dG)P,T =
Ns∑

i=1

µi d Ni (1.31)

Next we consider a general chemical equation that be expressed as

−
Ns∑

i=1

νi Ai � 0 (1.32)

where {Ai } represent chemical species and {νi } are the stoichiometric coefficients.
For example, for the reaction

A1 + 2A2 � A3 (1.33)

the stoichiometric coefficients are ν1 = −1, ν2 = −2, and ν3 = +1.
If the general reaction of Equation (1.32) were to proceed an infinitesimal amount

in the forward (left-to-right) direction, the change in free energy of the system is

(dG)P,T =
Ns∑

i=1

µiνi dφ, (1.34)

where the variable φ represents the turnover or the number of times the reaction
has progressed. From Equation (1.34) we make the following definition

�r G =
(

dG

dφ

)
P,T

=
Ns∑

i=1

µiνi . (1.35)

Using the expression for µ that was introduced in the previous section,

�r G =
Ns∑

i=1

νi
[
µo

i + kB T ln(ci/co)
]

= �r Go +
Ns∑

i=1

νi kB T ln(ci/co), (1.36)

where �r Go = ∑Ns
i=1 νiµ

o
i . In these equations �r Go and �r G are expressed as

the change in free energy associated with a single turnover of the reaction. More
conventionally, �r Go and �r G are expressed in units of the change in free energy
per mole of flux through a reaction. To express the above formulas in these units,
we make use of the fact that the universal gas constant R is equal to NAkB , where
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NA ≈ 6.022 × 1023 is the Avogadro constant:

�r G = �r Go +
Ns∑

i=1

νi RT ln(Ci/Co)

�r Go =
Ns∑

i=1

νi� f Go
i , (1.37)

where � f Go
i is the free energy of formation of species i . The value of � f Go

i for a
given species depends on the environmental conditions, most notably temperature,
pressure, and the ionic solution strength. The ionic strength affects the activity
coefficients of charged species; this phenomenon is addressed in the next chapter.

Chemical equilibrium is achieved when the driving force for the reaction �r G
goes to zero. Equilibrium yields

− �r Go

RT
=

Ns∑
i=1

νi ln(Ci/Co) = ln
Ns∏

i=1

(Ci/Co)νi

e−�r Go/RT = Keq =
Ns∏

i=1

(Ci/Co)νi , (1.38)

where Keq is the equilibrium constant for the reaction.
Equations (1.37) and (1.38) should be familiar to students of chemistry and

biochemistry. Admittedly, the path that took us to Equations (1.37) and (1.38) was
long; we may have avoided using considerable time and effort by simply writing
these expressions down at the beginning of the chapter. However, in developing
these ideas from first principles we have a deeper understanding of the meaning
and assumptions behind them than we would otherwise have.

1.7 Applications of thermodynamics in biology

1.7.1 Enzyme reaction mechanisms

Thermodynamic concepts are useful to apply to the study of enzyme-mediated
enzyme kinetics. Through a variety of reaction mechanisms, specific enzymes cat-
alyze specific biochemical reactions to turn over faster than they would without the
enzyme present. Making use of the fact that enzymes are not able to alter the over-
all thermodynamics (free energy, etc.) of a chemical reaction, we can develop sets
of mathematical constraints that apply to the kinetic constants of enzyme reaction
mechanism.

As an example we consider the overall chemical reaction, S1 + S2 � P, for
which we denote the equilibrium constant Keq . A possible enzyme-mediated



20 Concepts from physical chemistry

E

ES1

ES2

ES1S2 E + P 

k+1

k−1

k+2
k−2

k−4k−3
k+4

k+3

k+5

k−5

S1 S2

S2 S1

Figure 1.2 Illustration of an enzyme binding and reaction scheme for the reaction
S1 + S2 � P.

reaction scheme for this reaction is illustrated in Figure 1.2, which assumes that
substrates S1 and S2 bind to the enzyme E in arbitrary (random) order and the
complex ES1S2 converts to free enzyme plus product, P.

The kinetic constants ki in Figure 1.2 apply to mass-action kinetics for the
state transition steps illustrated in the diagram. For example, the rate at which E
binds to S1 and generates the complex ES1 is k+1[E][S1], where [X] stands for
the concentration of X. This process proceeds in the reverse direction at the rate
k−1[ES1].

It is straightforward to show that in chemical equilibrium(
[P]

[S1][S2]

)
eq

= Keq = k+1k+2k+5

k−1k−2k−5
. (1.39)

This relationship is a consequence of the detailed balance condition that in equi-
librium each of the reactions in this scheme is in equilibrium with its forward flux
equal to reverse flux [127]. Similarly,

Keq = k+3k+4k+5

k−3k−4k−5
. (1.40)

Equations 1.39 and 1.40 represent constraints on the kinetic constants for the
enzyme mechanism that arise from the overall thermodynamics of the reaction that
is catalyzed by the enzyme. Algebraic analysis of these two equations reveals that

k+1k+2k−3k−4

k−1k−2k+3k+4
= 1, (1.41)

which is a thermodynamic consequence of the closed reaction loop illustrated in
Figure 1.2.

In addition to the thermodynamic constraints on the reaction kinetics, a number
of assumptions (including quasi-equilibrium binding and quasi-steady state as-
sumptions) are often invoked in computer modeling of enzyme kinetics. Analysis
of enzyme kinetics is treated in greater depth in Chapter 4.
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1.7.2 Electrostatic potential across a cell membrane

The electrostatic potential across cell membranes plays important roles in transport
and in cell signaling. Muscle contraction is stimulated by depolarization of the
cell membrane. Nerve cells communicate with other cells via propagated changes
in membrane potential. Also the potential across membranes of intracellular or-
ganelles, such as mitochondria, can be central components of the function of the
organelles.

In a state where the cell membrane is primarily permeable to a single ion,
potassium for example, the membrane potential is primarily a function of the
concentrations of that ion on either side of the membrane. If the potassium concen-
trations inside and outside of a cell are denoted [K+]i and [K+]o, respectively, and
if [K+]i > [K+]o, then there will exist a concentration-gradient driven thermody-
namic driving force quantified by:

µi − µo

kB T
= ln

(
[K+]i

[K+]o

)
. (1.42)

However, if ions move down the concentration gradient (from the inside to the
outside of the cell) an electrostatic imbalance will be created, resulting in more
positive charges outside of the cell than inside. The resulting electrostatic force will
drive the positive potassium ions across the membrane from outside to inside. In
thermodynamic equilibrium, the concentration driven potential is exactly balanced
by the electrostatic potential, a situation illustrated in Figure 1.3.

The difference in electrostatic energy per ion between the outside and inside of
the cell is given by ��/kB T , where �� is the electrostatic energy per charge.
Expressing the electrostatic potential in conventional units of volts (joules per
coulomb of charge), the concentration and electrostatic potential are equated in
equilibrium:

ln

(
[K+]i

[K+]o

)
= F��

NAkB T
= F��

RT
, (1.43)

where F ≈ 9.65 × 104 coulomb per mole is the Faraday constant and NA ≈
6.022 × 1023 is the Avogadro constant. The gas constant R is equal to NAkB .
Thus considering the potassium ion as the only permeant ionic species, the equilib-
rium membrane potential is given by �� = RT

F ln([K+]i/[K+]o). Equation (1.43)
is known as the Nernst equation and its predicted equilibrium potential is known
as the Nernst potential.

If we note that the probability of finding a particle on one side of the membrane
is proportional to the concentration of that side of the membrane, then we can arrive
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Figure 1.3 Illustration of a potassium ion concentration gradient across a cell
membrane. The concentration gradient and the electrostatic potential oppose and
balance one another in thermodynamic equilibrium.

at Equation (1.43) using the Boltzmann probability law:

[K+]i

[K+]o
= Pi

Po
= eF��/RT . (1.44)

In living cells the potential dynamically changes as different ion transporters
and channels controlled by various mechanisms open and close. Approaches to and
examples of modeling cellular electrophysiology are covered in greater depth in
Chapter 7.

Concluding remarks

This chapter has introduced foundational concepts of statistical thermodynamics
and physical chemistry for analysis of systems involving chemical reactions, molec-
ular transitions, and material transport. A few simple examples of applications of
thermodynamic concepts to biological systems were illustrated in Section 1.7. The
remainder of this book focuses on applications to the analysis of biological systems.

Interested readers can find an introduction to statistical thermodynamics, with
derivations of the statistical concepts used in this chapter, in Chapter 12. For deeper
study of statistical mechanics and physical chemistry a number of excellent texts are
available. See for example the texts on statistical mechanics of Hill [86] and Pathria
[156] and the comprehensive physical chemistry text of McQuarrie and Simon
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[138]. The elegant monograph by Hill [91] treats the subject of kinetic analysis
of biochemical cycles in greater detail than has been provided in Section 1.7.1.
In addition, specialized theories applicable to certain problems will be introduced
at the appropriate places in the remainder of this text. That said, our introduction
of the foundational theories is for the most part complete. It is expected that at
this point readers are proficient with the quantitative tools for characterizing the
thermodynamic processes that drive chemical processes and possess some degree
of intuition for those processes. In the coming chapters we begin our study of the
behavior of biochemical systems in earnest.

Exercises

1.1 In Planck’s natural unit system, entropy is a unitless variable and Boltzmann’s constant
takes the value 1. In this system, what are the physical units of temperature?

1.2 The values of extensive thermodynamic variables, such as N , V , and E , are proportional
to the size of the system. If we combine NVE subsystems into a larger system, then
the total N , V , and E are computed as the sums of N , V , and E of the subsystems.
Temperature, pressure, and chemical potential are intensive variables, for which values
do not depend on the size of the system. Show that entropy is an extensive variable.

1.3 Verify that the equalities in Equations (1.11) and (1.12) are indeed correct.
1.4 Equations (1.24) and (1.25) assume that the number of possible single-molecule states

is so high that the probability of two molecules having identical states is vanishingly
small. Show how this assumption leads to these equations.

1.5 Consider a gel that carries a certain concentration ci (r) of immobile negative charges
and is immersed in an aqueous solution. The bulk solution carries monovalent mobile
ions of concentration c+(r) and c−(r). Away from the gel, the concentration of the salt
ions achieves the bulk concentration, denoted co. What is the difference in electrical
potential (known as the Donnan potential) between the bulk solution and the interior
of the gel? [Hint: assume that inside the gel the overall concentration of positive salt
ion balances immobile gel charge concentration.]
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Conventions and calculations for
biochemical systems

Overview

Biochemical species, from small-molecule metabolites such as inorganic phosphate
to large proteins, reversibly bind hydrogen and metal ions, altering their thermo-
chemical properties. Inorganic phosphate, for example, may exist in solution in
several different states of protonation, including H2PO4

− and HPO4
2−. Yet in the

biochemical literature it is standard practice to refer to the concentration of inor-
ganic phosphate without explicitly considering the different species that contribute
to its overall concentration.

In this chapter we describe how to derive expressions for apparent equilibrium
constants and apparent Gibbs free energies for biochemical reactions expressed in
terms of reactants that are made up of sums of rapidly interconverting species. We
will see that the calculation of free energies, pH, and other variables that change as
reactions evolve depends on the constraints that are imposed on a reaction system –
is the system closed, or is the system maintained in a non-equilibrium steady state by
transporting material into and out of the system? Is pH held constant by injecting or
removing hydrogen ions or does the pH vary as the reactant concentrations change?
We will see that consideration of these questions will be important in developing
simulations of both in vivo and in vitro biochemical systems.

2.1 Conventional notation in biochemical thermodynamics

In this book, we follow the convention that the term species refers to a unique
chemical compound, while a reactant is a biochemical compound that may be
present as a number of related and rapidly inter-converting species. In a modern
biochemistry textbook a reaction, such as the ATP hydrolysis reaction

ATP � ADP + PI, (2.1)

24
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is written in terms of biochemical reactants, such as ATP, ADP, and inorganic
phosphate (PI).1 Equation (2.1) is not balanced in terms of mass or charge, as
detailed below in Section 2.2.2. The standard free energy of the ATP hydrolysis
reaction is reported to be approximately �r G ′o = −30.5 kJ mol−1; and the reaction
free energy is calculated

�r G ′ = �r G ′o + RT ln
[ADP][PI]

[ATP]
, (2.2)

where the concentrations [ATP], [ADP], and [PI] refer to summed concentrations
of species that make up the reactants ATP, ADP, and inorganic phosphate, re-
spectively. Because the thermochemical properties of species that make up [ATP],
[ADP], [PI], and other biochemical reactants (and the relative concentrations of the
species that make up the reactants) vary as functions of pH and concentration of
other ionic species in the solution, biochemists define a biochemical standard state
for which the solution is dilute ([H2O] = 55.5 M), pH is constant at 7 ([H+] = 10−7

M), and magnesium ion concentration [Mg2+] is held constant (typically around
1 mM). Therefore calculations of reaction free energies do not depend explicitly
on water, hydrogen ion, or magnesium ion concentrations – these concentrations
in the biochemical standard state are implicitly incorporated into the definitions
of the standard transformed reaction Gibbs free energies. The prime notation on
free energies is used to denote variables and constants based on the biochemical
standard state. Lehninger’s Principles of Biochemistry explains, “Physical con-
stants based on this biochemical standard state are called standard transformed
constants and are written with a prime (such as �r G ′o and K ′

eq) to distinguish
them from the untransformed constants used by chemists and physicists” ([147]
p. 491).

As we will see later in this book, the so-called biochemical standard state is
not necessarily maintained in vivo or in vitro. In vitro systems are often closed,
meaning that as reactions progress pH may change as hydrogen ions are bound and
unbound and incorporated and released from various species. Similarly the pH may
vary in vivo. For example, certain subcellular compartments are maintained at pH
values significantly different from neutral; the cytoplasmic pH may drop into the
neighborhood of 6 during certain cardiac pathologies. Thus for certain applications
we will need to perform calculations for systems that deviate from the biochemical
standard state.

1 The reactant inorganic phosphate is sometimes abbreviated Pi . Because in later chapters we use subscripts to
indicate compartment, we stick to the convention here of abbreviating reactants using all capital letters.
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Figure 2.1 Illustration of two species of ATP: ATP4− and HATP3−.

2.2 Reactants and reactions in biochemistry

2.2.1 An example of a biochemical reactant

As an example of a biochemical reactant, consider the ubiquitous compound adeno-
sine triphosphate (ATP). In its fully unprotonated state there are four negatively
charged hydroxyl groups associated with the three phosphate groups on the ATP
molecule. In solution near neutral pH, one of the phosphates may be protonated,
as illustrated in Figure 2.1. Here we denote the two species illustrated in the figure
ATP4− and HATP3−.2

In solutions of ionic strength of approximately 0.25 M, a hydrogen ion dissoci-
ates from HATP3− with an acid-base pK of approximately 6.47 [5], where pK is
defined as − log10 Keq and Keq is the dissociation reaction equilibrium constant.
The equilibrium expression is:

Keq = 10−pK = [ATP4−][H+]

[HATP3−]
. (2.3)

If we denote total ATP concentration [ATP] = [ATP4−] + [HATP3−] and assume
that the system is in equilibrium, then

[ATP] = [ATP4−] + [HATP3−]

= [ATP4−] + [ATP4−][H+]

Keq

= [ATP4−]

(
1 + [H+]

Keq

)
. (2.4)

2 For biochemical species we use the convention of indicated charge with a superscript number and sign. This
way, even an uncharged species such as NADH0 is distinguished from the reactant NADH, which could be made
up of several rapidly interconverting species.
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Figure 2.2 Mole fractions of ATP4− and HATP3− as functions of pH, predicted by
Equation (2.5), given pK = 6.47.

The molar fractions of ATP that are in the two forms are given by

[ATP4−]

[ATP]
= 1

1 + [H+]/Keq
;

[HATP3−]

[ATP]
= [H+]/Keq

1 + [H+]/Keq
. (2.5)

Figure 2.2 illustrates the relative fractions of each of these species as a function
of pH ranging from 5 to 8. At low pH, the fraction [HATP3−]/[ATP] approaches 1,
as expected. At high pH, the majority of the ATP is in the unprotonated form.

The above analysis may be generalized to treat any biochemical reactant with two
distinct species with different levels of proton binding. However, many reactants
(including ATP) have multiple sites of proton association. Under acidic conditions
(pH less than approximately 5), a second hydrogen ion may become associated with
the ATP molecule, forming H2ATP2−. To treat the general case, where multiple
hydrogen ions may bind and there exist multiple protonated forms, we denote the
state with i protons bound to reactant L as [LHi ]. Denoting the total concentration
of L as [L], we have:

[L] = [LH0] + [LH1] + [LH2] + · · · =
N∑

i=0

[LHi ], (2.6)

where N is the maximum number of protons bound. If K1 is the dissociation constant
for the first protonation, then

[LH1] = [LH0]
[H+]

K1
. (2.7)
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If the second dissociation constant is denoted K2, then

[LH2] = [LH1]
[H+]

K2
=

(
[LH0]

[H+]

K1

)
[H+]

K2
. (2.8)

In general,

[LHi ] = [LH0]
[H+]i∏
j≤i

K j

. (2.9)

Thus the total concentration may be expressed

[L] = [LH0]

(
1 + [H+]

K1
+ [H+]2

K1 K2
+ · · ·

)
= [LH0]

(
1 +

N∑
i=1

[H+]i∏
j≤i K j

)
, (2.10)

and the molar fraction of LHi is

[LHi ]

[L]
=

[H+]i∏
j≤i K j(

1 +
N∑

i=1

[H+]i∏
j≤i K j

) =
[H+]i∏

j≤i K j

PL ([H+])
. (2.11)

The denominator of Equation (2.11) is called the binding polynomial for reactant
L and is denoted PL ([H+]).

The pK’s for the first and second proton binding for ATP are 6.47 and 3.83,
respectively [5]. Given these values, the predicted molar fractions of H2ATP2−,
HATP3−, and ATP4− are plotted in Figure 2.3. The state H2ATP2− becomes a
significant fraction of total ATP at extremely low pH values.

2.2.2 An example of a biochemical reaction

Based on our exploration of a biochemical reactant in the previous section, we now
recognize that the familiar biochemical reaction

ATP � ADP + PI (2.12)

is not stoichiometrically balanced in terms of mass or charge. We define the fol-
lowing reference reaction written in terms of species that is stoichiometrically
balanced:

ATP4− + H2O � ADP3− + HPO4
2− + H+. (2.13)
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Figure 2.3 Mole fractions of ATP4− and HATP3− as functions of pH, predicted by
Equation (2.11), given pK1 = 6.47, pK2 = 3.83.

Equation (2.12) is the convenient form for biochemists who are interested in
tracking reactant concentrations and apparent equilibrium constants and free ener-
gies; Equation (2.13) is the physicochemically rigorous equation from which we
can build relationships for the apparent thermodynamics of Equation (2.12).

Equation (2.13) has associated with it a Keq and a �r Go that do not depend on
pH:

Keq = e−�r Go/RT =
(

[ADP3−][HPO4
2−][H+]

[ATP4−]

)
eq

, (2.14)

where the above expression makes the assumption of a dilute solution, and each
concentration is expressed in molar units. Note that, as discussed in Sections 2.4
and 2.5, these thermodynamic variables vary with the temperature and ionic con-
centration of the solution. At an ionic strength of 0.25 M and T = 298.15 K,3 the
equilibrium constant of Equation (2.14) is approximately Keq = 0.1. The concen-
trations [ATP4−], [HADP3−], and [HPO4

2−], may be computed

[ATP4−] = [ATP]

(
1 + [H+]

K AT P
1

+ [H+]2

K AT P
1 K AT P

2

)−1

= [ATP]

PAT P ([H+])

[HADP3−] = [ADP]

(
1 + [H+]

K AD P
1

+ [H+]2

K AD P
1 K AD P

2

)−1

= [ADP]

PAD P ([H+])

[HPO4
2−] = [PI]

(
1 + [H+]

K P I
1

)−1

= [PI]

PP I ([H+])
. (2.15)

3 The ionic strength is a function of the total concentrations of all ionic species in a solution. It is defined
I = (1/2)

∑
i z2

i ci , where zi and ci are the charge number and concentration of each dissolved species.
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Table 2.1 Approximate pKs for hydrogen
binding to ATP, ADP, and PI

pK1 pK2

ATP 6.47 3.83
ADP 6.33 3.79
PI 6.65 –

Values are obtained from [4] and correspond to
T = 298.15 K and ionic strength I = 0.25 M.

Again [ATP], [ADP], and [PI] denote the total (sums of species) concentrations
of ATP, ADP, and PI. The hydrogen binding polynomials for ATP, ADP, and PI
are denoted PAT P ([H+]), PAD P ([H+]), and PP I ([H+]). In Equation (2.15), K AT P

i ,
K AD P

i , and K P I
i denote the hydrogen ion binding constants for ATP, ADP, and PI,

respectively. Table 2.1 lists the approximate pKs at ionic concentration of 0.25 M.
Binding of a second hydrogen ion to phosphate is highly unfavorable for pH greater
than 5. Therefore there is only one pK for phosphate.

Combining Equations (2.14) and (2.15), we have,

Keq = e−�r Go/RT =
(

[ADP][PI][H+]

[ATP]

)
eq

· PAT P ([H+])

PAD P ([H+]) PP I ([H+])
. (2.16)

The transformed �r G ′o and K ′
eq may be computed4

K ′
eq = e−�r G ′o/RT =

(
[ADP][PI]

[ATP]

)
eq

= Keq
PAD P ([H+]) PP I ([H+])

[H+] PAT P ([H+])
. (2.17)

Figure 2.4 illustrates how the transformed equilibrium Gibbs free energy �r G ′o

varies with pH of the solution. Because of the hydrogen ion generated in the ref-
erence reaction of Equation (2.13), the reaction becomes more favorable as pH
increases. Near pH of 7, the �r G ′o is approximately −36 kJ mol−1.

Next we explore the question of how the apparent thermodynamic variables
change as a reaction progresses from a non-equilibrium initial condition toward
equilibrium in a closed system. Imagine a closed system initially contains ATP,
ADP, and PI, at concentrations of 10 mM, 1 mM, and 1 mM, respectively, at neutral
pH of 7. To see how pH and related thermodynamic properties change as the
reaction progresses toward equilibrium, imagine that an ATP hydrolysis enzyme
is present in our system, and the reference reaction of Equation (2.13) moves in

4 Equations (2.16) and (2.17) describe equilibria in terms of concentrations rather than activities. The concept of
activity versus concentration of a species is discussed in Section 2.5.
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Figure 2.4 Transformed equilibrium Gibbs free energy as a function of pH, pre-
dicted from Equation (2.17), using the reference Keq = 0.1, and the pK values
from Table 2.1.

the forward (left-to-right) direction until equilibrium is achieved. At any time, the
total concentration of hydrogen ion bound to reactant L may be computed from
Equation (2.11)

[
HL

bound

] =
N∑

i=1

i[LHi ] = [L]



N∑
i=1

i
[H+]i∏
j≤i

K j

1 +
N∑

i=1

[H+]i∏
j≤i

K j


=

[L]
N∑

i=1

i
[H+]i∏
j≤i

K j

PL ([H+])
. (2.18)

The total concentration of bound hydrogen ion is computed by summing over all
reactants: [Htotal

bound] = ∑
L [HL

bound].
If the system is closed then the total number of protons in the system is conserved.

This conservation statement may be expressed

(Bound H+) + (Free H+) = (Initial Bound H+) + (Initial Free H+)

+ (Generated H+) (2.19)

or [
Htotal

bound

] + 10−pH = [
Htotal

bound

]
o
+ 10−7 + ([ATP]o − [ATP]) , (2.20)

where concentrations are expressed in Molar. In Equation (2.20),
[
Htotal

bound

]
o and

[ATP]o denote the initial concentration of bound hydrogen ions and ATP, respec-
tively. The third term on the right-hand side of the mass balance equation computes
the number of times the reference reaction has turned over, generating hydrogen
ions. Given a set of initial concentrations, Equation (2.20) can be numerically solved
for pH at any ATP concentration.
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Figure 2.5 Upper panel shows change in pH as a function of ATP, ADP, and PI
concentrations predicted by Equation (2.20). The lower panel illustrates �r G ′o and
�r G ′ as function of reactant concentration. The solid line represents predictions
for the closed system, where pH varies with reactant concentrations; dashed line
represents a system with pH clamped.

Figure 2.5 illustrates how the pH varies in the closed system as ATP concentra-
tion is reduced from the initial value of 10 mM. Note that as ATP concentration is
reduced, ADP and PI concentrations increase in proportion. As the ATP concentra-
tion approaches zero, the pH drops below 6.5. Figure 2.5 also shows how the �r G ′

and �r G ′o vary as the reaction progresses and pH is reduced. The dashed lines in
Figure 2.5 illustrate how the system would behave if it were assumed that pH is
held at the constant value of 7.

When pH is held constant �r G ′o remains constant at all concentrations of ATP,
ADP, and PI. On the other hand, if the system is closed and pH drops as the reaction
progresses, then the impact of the pH variation is apparent on the computed �r G ′o

and �r G ′.

2.3 Effects of pH and ion binding on biochemical
reaction thermodynamics

The previous section illustrated how to calculate apparent equilibrium properties
for biochemical reactions expressed in terms of biochemical reactants that are sums
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of rapidly inter-converting species. The species considered consisted of different
proton-binding states. As a result the apparent thermodynamic properties vary as
functions of pH. Yet in addition to binding hydrogen ions, biochemical reactants
may bind to other ionic species in solution. Important examples are magnesium and
potassium ions, Mg2+ and K+. Because of its +2 charge and its relative abundance
in cells, Mg2+ interacts significantly with ATP4−, ADP3−, and HPO4

2−. Potassium
ion tends to bind negatively charged biochemical species with a lower affinity (lower
pKs) than either hydrogen or magnesium ion. However K+ tends to be present in
many cells in concentrations of the order of 0.1 M, while Mg2+ and H+ are present
in concentrations of the order of 10−3 M and 10−7 M, respectively. The overall result
is that potassium ion binding can be as significant as magnesium ion binding in
cells [122]. Thus in biological systems binding to K+ and Mg2+ must be accounted
for in the calculation of apparent thermodynamic properties.

The impact of K+ and Mg2+ binding on the apparent equilibrium constant may
be calculated by incorporating binding of these species into the binding polynomials
for the reactants in a given reaction. For example, for the ATP hydrolysis reaction,
the binding polynomials for the three reactants become:

PAT P ([H+], [K+], [Mg2+]) = 1 + [H+]

K AT P
1

+ [K+]

KK–ATP
+ [Mg2+]

KMg–ATP

PAD P ([H+], [K+], [Mg2+]) = 1 + [H+]

K AD P
1

+ [K+]

KK−AD P
+ [Mg2+]

KMg–ADP

PP I ([H+], [K+], [Mg2+]) = 1 + [H+]

K P I
1

+ [Mg2+]

KMg−P I
, (2.21)

where here we have ignored states with more than one exchangeable H+ bound
to ADP and ATP. (This is a reasonable approximation near pH = 7.) The above
expressions assume that Mg2+ associates with the unprotonated species ATP4−,
ADP3−, and HPO4

2−, and that K+ associates with the unprotonated species ATP4−

and ADP3−. Dissociation constants are given in Table 2.2.
When K+ and Mg2+ binding are considered, the apparent equilibrium free energy

and equilibrium constant are computed as functions of the K+- and Mg2+-dependent
binding polynomials.

K ′
eq = e−�r G ′o/RT = Keq

PAD P ([H+], [K+], [Mg2+]) PP I ([H+], [K+], [Mg2+])

[H+] PAT P ([H+], [K+], [Mg2+])
.

(2.22)

Using the values listed in Table 2.2, Equation (2.22) yields �r G ′o = −36.4 kJ
mol−1 at [K+] = [Mg2+] = 0, and �r G ′o = −31.2 kJ mol−1 at [K+] = 150 mM
and [Mg2+] = 1 mM (at pH = 7). Because K+ and Mg2+ bind to unprotonated ATP
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Table 2.2 Approximate dissociation constants for
K+ and Mg2+ binding to ATP, ADP, and PI

Reactant (L) KK−L KMg−L

ATP 1.78 × 10−2 M 2.63 × 10−4 M
ADP 3.63 × 10−2 M 2.46 × 10−3 M
PI – 2.63 × 10−2 M

Values are obtained from [134] and correspond to T =
298.15 K and ionic strength I = 0.25 M.

(with its −4 charge) with affinities higher than those of other species, potassium
and magnesium binding tends to move the equilibrium of the reference reaction
of Equation (2.13) from right to left. Higher free magnesium concentrations result
in a lower magnitude of the apparent equilibrium Gibbs free energy for the ATP
hydrolysis reaction.

2.4 Effects of temperature on biochemical reaction thermodynamics

As we saw in Chapter 1, the standard free energy for a chemical reaction of the
form

−
Ns∑

i=1

νi Ai � 0

is computed based on the standard free energy of formation of the species

�r Go =
Ns∑

i=1

νi� f Go
i . (2.23)

For example, for the chemical reaction

ATP4− + H2O � ADP3− + HPO4
2− + H+,

Equation (2.23) yields

�r Go = � f Go
AD P + � f Go

P I − � f Go
AT P − � f Go

H2 O − � f Go
H . (2.24)

Substituting tabulated values [4] for the � f Go’s yields

�r Go = −1906.13 − 1096.10 + 2768.10 + 237.19 + 0 kJ mol−1

= +3.06 kJ mol−1, (2.25)

where the above values correspond to zero ionic strength and T = 298.15 K.
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Defining enthalpy and entropy of formation according to the definition of Gibbs
free energy, we have

� f Go
i = � f H o

i − T � f So
i . (2.26)

If the standard enthalpies of formation for the species are known and assumed
to remain approximately constant (over some range of temperature), then Equa-
tion (2.26) yields the following expression for calculating � f Go

i as a function of
temperature:

� f Go
i (T2) =

(
1 − T2

T1

)
� f H o

i +
(

T2

T1

)
� f Go

i (T1). (2.27)

Given information on the standard enthalpies of formation for the species in a
reaction, this expression may be used to estimate the standard free energies of
formation at one temperature T2 as functions of the values of � f Go

i at another
temperature T1.5 The temperature-corrected estimates of � f Go

i yield temperature-
corrected estimates of �r Go through Equation (2.23). This ability to correct for
temperature is important because the majority of biochemical reaction data are
tabulated at 25◦C, while human beings and many other warm-blooded creatures
operate at temperatures near 37◦C.

2.5 Effects of ionic strength on biochemical reaction thermodynamics

Because the energy associated with solvation depends on the ionic properties of the
solution, the values of � f Go

i depend on the ionic properties of the solution. This
phenomenon is formally accounted for by defining the activity of species i as

ai = γi ci , (2.28)

where γi is called the activity coefficient, which is a function of the ionic solution;
the activity coefficient is 1 in the limit of zero ionic strength.

We construct a formulation of the values of � f Go
i for species and �r Go that

absorbs the concept of activity by defining the � f Go
i as a function of ionic strength,

I :

� f Go
i (I ) = � f Go

i (I = 0) + RT ln γi (I ), (2.29)

so that

�r Go(I ) =
Ns∑

i=1

νi� f Go
i (I ) (2.30)

5 Values of Gibbs free energy and enthalpy of formation for a number of species (at T = 298.15 K and zero ionic
strength) are tabulated by Alberty [4].
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and the usual equilibrium expression holds:(
Ns∏

i=1

cνi
i

)
eq

= e−�r Go/RT . (2.31)

The extended Debye–Hückel equation [138] provides a useful approximation
for γi (I ) for non-dilute solutions:

ln γi = − Az2
i I 1/2

1 + B I 1/2
, (2.32)

where zi is the charge number of species i and the parameter B is equal to 1.6
M−1/2 [3].

The quantity A varies with temperature; an empirical function that reproduces
apparent thermodynamic properties over a temperature range of approximately 273
to 313 K is [33, 5]:

A = 1.10708 − (1.54508 × 10−3)T + (5.95584 × 10−6)T 2. (2.33)

Appropriate values of � f Go
i can be computed at given temperature and ionic

strength by applying Equations (2.27) and (2.29) in concert. First, Equation (2.27)
is used to compute � f Go

i (T, I = 0); then Equation (2.27) is used to compute
� f Go

i (T, I ).

2.6 Treatment of CO2 in biochemical reactions

Carbon dioxide in solution does not significantly bind to hydrogen ions or other
metal ions. Thus it is possible to treat CO2 as a reactant composed of a single species
in biochemical reactions, without introducing a binding polynomial or multiple ion-
bound states for CO2. However, CO2 can be hydrolyzed to H2CO3 via the reaction

CO2 + H2O � H2CO3 (2.34)

and protons can dissociate from the species H2CO3, forming HCO3
− and CO3

2−.
The reactions and dissociation constants associated with CO2 acid–base buffering
are listed in Table 2.3.

For certain applications it is convenient to express apparent thermodynamic
properties for reactions involving CO2 in terms of total carbon dioxide, which is
defined

[
CO2] = [CO2] + [H2CO3] + [HCO3
−] + [CO3

2−]. (2.35)

As an illustrative example, let us consider a reaction of the form

A � B + CO2, (2.36)
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Table 2.3 Dissociation constants for CO2 buffering reactions

Dissociation constants
Reaction (I = 0 M) (I = 0.25 M)

CO2 + H2O � H2CO3 Kh = 2.714 × 10−3 2.714 × 10−3

HCO3
− � CO3

2− + H+ K1 = 5.891 × 10−11 M 1.602 × 10−10 M
H2CO3 � HCO3

2− + H+ K2 = 1.748 × 10−4 M 2.439 × 10−4 M

Values computed for T = 310 K and I = 0.25 M based on data in [3].

which is a chemical reference reaction with A, B, and CO2 denoting chemical
species. The apparent thermodynamic properties of this reaction are computed

K ′
eq = e−�r G ′o/RT =

(
[
B][CO2]

[
A]

)
eq

= Keq · PB

PA
, (2.37)

where [
A] and [
B] denote the sum of concentrations of all species of reactants
A and B, PA and PB are the binding polynomials for reactants A and B, and
Keq is the equilibrium constant for the reference reaction. Thus Equation (2.37)
determines the apparent equilibrium properties for the biochemical reaction 
A �

B + CO2.

Alternatively, one may be interested in the apparent equilibrium properties for
the biochemical reaction


A � 
B + 
CO2, (2.38)

in which the total carbon dioxide concentration appears as a reactant. To analyze
this case, we express [
CO2] in terms of the concentration of the reference species
CO3

2−:

[
CO2] = [
CO3

2−] (
1 + [H+]

K1
+ [H+]2

K1 K2
+ [H+]2

Kh K1 K2

)
= [

CO3
2−] · P
C O2 ([H

+]), (2.39)

where the dissociation constants Kh , K1, and K2 are defined in Table 2.3.
Since we have expressed [
CO2] in terms of [CO3

2−], we must consider a
reference reaction in terms of CO3

2− rather than CO2. For the biochemical reaction
of Equation (2.38), we have:

A + H2O � B + CO3
2− + 2 H+, (2.40)

where the H2O and H+ appear in order to balance the reaction in terms of mass and
charge. (Equation (2.40) is the sum of chemical reference reactions A � B + CO2

and CO2 + H2O � CO3
2− + 2 H+.) This reference reaction has well defined �r Go
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and Keq that are not functions of pH. Thus the apparent equilibrium properties for
the biochemical reaction are computed in terms of the Keq for the reference reaction:

K ′
eq = e−�r G ′o/RT =

(
[
B][
CO2]

[
A]

)
eq

= Keq · PB P
C O2

[H+]2 PA
. (2.41)

2.7 pH variation in vivo

2.7.1 In vivo deviation from the standard state

Cells contain numerous species that buffer pH, including the reactants studied
in this chapter. In addition to the small molecule metabolites such as PI, ATP,
and ADP, large proteins contain sites of hydrogen ion association/dissociation and
serve as important intracellular buffers. Although pH in many living systems is
tightly regulated under normal conditions, the pH within cells is rarely (if ever)
maintained at exactly the so-called biochemical standard state. In the human body,
pH and concentrations of ionic species vary throughout the different body fluids and
cell types and vary with physiological state. As we have seen, the thermodynamic
properties of biochemical reactants and reactions change as systems move away
from the standard state conditions.

There are numerous important examples where physiological pHs may vary
greatly from the standard state. In exercising skeletal muscle the pH may drop
below 6.5 as net ATP hydrolysis generates excess hydrogen ions via Equation
(2.13). The intracellular pH in cardiac muscle may drop as low as 6.0 when blood
supply to tissue is compromised, such as during a heart attack or during surgery. In
addition, certain intracellular compartments are maintained at pH values different
from the rest of the cell. For example, the pH of the mitochondrial matrix is thought
to be maintained at a value between 7 and 8 [149]. Thus it is important to understand
how the thermodynamic properties of biochemical reactions in these systems vary
with pH.

2.7.2 The bicarbonate system in vivo

An important physiological buffering system active in the blood is the bicarbonate
system. Bicarbonate (H2CO3) is a weak acid that is involved in maintaining the
pH of human blood in the neighborhood of 7.4. The acid–base equilibration for
bicarbonate is expressed

[H+] = K2
[H2CO3]

[HCO3
−]

, (2.42)
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where K2 is the dissociation constant given in Table 2.3. The two sources of bi-
carbonate in the blood are bicarbonate salts such as Na HCO3 (which dissociates
into Na+ and HCO3

−), and carbon dioxide. Carbon dioxide is converted into bicar-
bonate through the hydrolysis reaction of Equation (2.34), which is catalyzed by
the enzyme carbonic anhydrase. If carbonic anhydrase maintains Equation (2.34)
in equilibrium with an equilibrium constant Kh , then the H+ concentration is

[H+] = Kh K2
[CO2]

[HCO3
−]

. (2.43)

The lumped pK for the bicarbonate buffer system, pK = − log(Kh K2), is approxi-
mately 6.18. Thus the pH may be expressed:

pH = 6.18 + log
[HCO3

−]

[CO2]
. (2.44)

Carbon dioxide levels in the blood vary with the rate of respiration, while bicar-
bonate concentration is regulated primarily by the kidney [75]. Thus the pH of the
blood is maintained by the coordinated function of the lungs and the kidneys in
maintaining the ratio [HCO3

−]/[CO2] at a value of approximately 18 [75].

Concluding remarks

This chapter has presented the basics of how thermodynamics are treated for bio-
chemical systems, with an emphasis on the impact of pH and ion binding on apparent
equilibria and Gibbs free energy functions. This field owes much to the work of
Robert Alberty; an extensive study of the field is presented in Alberty’s text, Ther-
modynamics of Biochemical Systems [4]. In our study of the theory and simulation
of biochemical systems, we will usually be concerned with biochemical reactants
such as ATP and ADP, although the detailed breakdown of these reactants into
individual species will be important for many applications.

Exercises

2.1 Make a plot of the molar fractions of the species H2ADP−, HADP2−, and ADP3− as a
function of pH, given the pK values listed in Table 2.1.

2.2 Write a computer program that solves Equation (2.20) for pH as a function of the
concentrations of reactants ATP, ADP, and PI. Verify your results by comparison to
Figure 2.5.

2.3 There are conservation statements for total magnesium and potassium concentrations
that are analogous to that for hydrogen ion of Equation (2.20). Write the potassium and
magnesium conservation statements in terms of the binding polynomials.
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2.4 Ethylene glycol tetraacetic acid (EGTA) is commonly used as a chelator of calcium
ions in biochemical solutions. Given ion-binding pKs for EGTA show in the table
below, corresponding to 298.15 K and I = 0.1 M, plot the free [Ca2+] as a function
of total concentration for solutions containing 1 mM EGTA, 10 mM NaCl, 130 mM
KCl, and 1 mM MgCl at pH = 6.5, 7.0, and 7.5.

Ion-dissociation data for EGTA:

Ion pK

H+ (first) 9.32
H+ (second) 8.71
K+ 1.38
Na+ 1.38
Mg2+ 5.28
Ca2+ 10.86
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Chemical kinetics and transport processes

Overview

Differential equations are the backbone of computer modeling and simulation in
fields ranging from astrophysics to ecology. Essentially, when differential equations
are used to model the behavior of any system, including chemical reaction systems, a
set of model equations is developed that mimics as faithfully as possible the essential
behavior of the system. When a physical system, such as a living cell or tissue, is to
be simulated, it is important not only that the behavior of the system is mimicked by
the model equations, but also that the model equations are physically reasonable.
Thus the principles of physical chemistry and thermodynamics presented in the
previous chapters provide both laws that biochemical models must obey and a
framework for building simulations that make physical sense. Our emphasis on
physically realistic simulations is not necessarily appreciated by all practitioners in
the field. Yet we believe that this emphasis is crucial for building simulations that
not only mimic observed behaviors in biological systems, but also predict behaviors
that are not easily observable or have not yet been observed.

Here we focus on the issue of how to build computational models of biochemical
reaction systems. The two foci of the chapter are on modeling chemical kinetics
in well mixed systems using ordinary differential equations and on introducing
the basic mathematics of the processes that transport material into and out of (and
within) cells and tissues. The tools of chemical kinetics and mass transport are es-
sential components in the toolbox for simulation and analysis of living biochemical
systems.

Instead of digging into the details of differential equations and numerical analy-
sis, which we leave to specialized books on those topics, we show examples of how
mathematical models may be simulated using tools such as Matlab, a high-level
and easy-to-use programming environment. Thus our focus here is on building

41
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differential equation-based models – setting up the governing equations and related
conditions – and not on mathematical analyses of model systems.

3.1 Well mixed systems

The first step in developing general methodologies for the theory and simulation of
chemical reaction systems is the study of kinetics in well mixed systems. A system is
considered to be well mixed when spatial gradients in concentration are considered
negligible. (Imagine that the system is stirred rapidly and the concentrations of
all species in the system remain homogenous.) When the progress of reaction and
transport processes are deterministic (not random) in a well mixed system, and the
concentrations of species and reactants are treated as continuous (not discrete), its
behavior is governed by a set of ordinary differential equations. Ordinary differential
equations have a single independent variable – in this case, time.

3.1.1 Differential equations from mass conservation

Differential equations governing the kinetics of chemical reaction systems may be
thought of as arising from statements of mass conservation. For example, consider
the well mixed system illustrated in Figure 3.1, containing reactants A and B in a
dilute system of constant volume, V .

The statement of mass conservation of any reactant has the form:

rate of change = rate of appearance − rate of disappearance. (3.1)

The mass of reactant A is calculated from the volume times the concentration:
V · [A]; and the rate of change, assuming that the volume is constant, is V d[A]/dt .
The rates of appearance and disappearance are computed from the mass fluxes (the
“�’s”) illustrated in Figure 3.1. If each flux is expressed in units of mass per unit
time, then the differential equation governing [A] is

V
d[A]

dt
= (

�in
A + �−

r

) − �+
r , (3.2)

where �in
A is the flux of A into the system, and �+

r and �−
r are the forward and

reverse fluxes through the reaction A � B, respectively. Similarly, the differential

BA
in

A
Γ in

B
Γr

+Γ

r

−Γ

Figure 3.1 Illustration of a system containing molecules A and B, undergoing
reaction A � B.
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equation for [B] is

V
d[B]

dt
= (

�in
B + �+

r

) − �−
r . (3.3)

Summing Equations (3.2) and (3.3), we arrive at

V

(
d[A]

dt
+ d[B]

dt

)
= �in

A + �in
B . (3.4)

If the system is closed, then the transport fluxes �in
A and �in

B are zero and d([A]+[B])
dt =

0, and the total mass of reactants in state A plus reactants in state B in the system
remains constant.

Here the symbol � has been used to denote mass flux in units of mass per unit
time. Throughout this book we use the symbol J to denote a chemical concentration
flux for constant volume systems. Chemical flux J has units of concentration per
unit time. Writing Equations (3.2) through (3.4) in terms of chemical fluxes, we have

d[A]

dt
= (

J in
A + J−

r

) − J+
r , (3.5)

d[B]

dt
= (

J in
B + J+

r

) − J−
r , (3.6)

and (
d[A]

dt
+ d[B]

dt

)
= J in

A + J in
B , (3.7)

where J in
A = �in

A /V , J in
B = �in

B /V , J+
r = �+

r /V , and J−
r = �−

r /V .

3.1.2 Reaction thermodynamics revisited

Simulation of the kinetic behavior of systems such as the one illustrated in Figure 3.1
involves determining mathematical expressions for the fluxes in Equations (3.2) and
(3.3), which are typically expressed as functions of the concentrations of reactants
A and B. However, before studying mechanisms that govern reaction fluxes, and in
turn control reaction kinetics, it is valuable to dig a bit more deeply into the general
thermodynamic properties of a chemical reaction such as A � B. We have seen in
Chapter 1 that the Gibbs free energy change per mole of molecules that transform
from state A to state B is expressed

�G = �Go + RT ln(NB/NA), (3.8)

where NA and NB are the number of molecules in states A and B, respectively.
In equilibrium, the ratio NB/NA is equal to e−�Go/RT = Keq and the net reaction
flux is J = J+ − J− = 0, where J+ and J− are the forward and reverse reaction
fluxes, respectively. When �G < 0, the net flux J is positive.
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Figure 3.2 Illustration of a system containing molecules A and B, undergoing
reaction A � B. Molecules in state A are pumped into the system and molecules
in state B are pumped out of the system at steady state flux J . Molecules converted
from B to A via the reverse reaction are labeled A∗.

To determine how flux and free energy are related for systems not in equilibrium
we consider, without loss of generality, the case where NB/NA < Keq and J > 0.
In a non-equilibrium steady state NA and NB are held constant by pumping A
molecules into the system, and pumping B molecules out of the system, at the
steady state flux rate J .

Next imagine that we are able to place a label on each molecule that converts
from state B to state A. These particles we denote by A∗. Apart from the label,
A∗ molecules are identical in every way to unlabeled A molecules in this thought
experiment. In addition, imagine that A∗ molecules lose their label when they
convert to B molecules. Thus if we continue to pump A and B molecules into and
out of the system at the constant flux J , then a steady state will be reached for
which NA∗, the number of labeled molecules in state A∗, is less than or equal to
NA, the total number of labeled plus unlabeled molecules in state A.

This system is illustrated in Figure 3.2. The steady state is reached when the rate
of conversion of labeled A∗ molecules into state B is equal to the rate of conversion
from B to A∗. Since there is no transport of A∗ into or out of the system, then in
the steady state the NA∗ molecules in state A∗ will be in equilibrium with the NB

molecules in state B. Next, we define

j+ = J+/NA , j− = J−/NB,

the per-particle forward and reverse fluxes. The flux j+ is the rate at which a single
molecule in state A transforms to state B; j− is the rate at which a single molecule
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in state B transforms to state A. (The per-particle forward rate is also the inverse of
the average time that a particle in state A waits to transform to state B.)

At the steady state conservation of mass requires that j+ · NA∗ = j− · NB . Be-
cause the ensemble of NA∗ molecules in state A∗ is in equilibrium with the ensemble
of NB molecules in state B,

j+

j− = NB

NA∗
= Keq . (3.9)

Equation (3.9) holds for a reaction operating in any steady state, including thermo-
dynamic equilibrium. In equilibrium, J+ = J−, and

J+

J− = 1 = j+

j−

(
NA

NB

)
eq

. (3.10)

Thus it is trivial that Equation (3.9) holds in equilibrium. The more interesting case
is a non-equilibrium steady state for which

j+

j− = J+

J−
NB

NA
= Keq . (3.11)

From Equation (3.11), we have J+/J− = NA
NB

Keq , from which follows the
relationship

�G = −RT ln(J+/J−). (3.12)

Equation (3.12) is an identity that does not depend on the details of the kinetic
reaction mechanism that is operating in a particular system [19]. We [19] have
shown that Equation (3.12) is intimately related to the Crooks fluctuation theorem
[41] – an important result in non-equilibrium statistical thermodynamics – as well
as to theories developed by Hill [87, 90], Ussing [201], and Hodgkin and Huxley
[95].

3.1.3 Reaction kinetics

The last step to building a simulation of a well mixed system such as the one
illustrated in Figure 3.1 is to define the mathematical form of the reaction fluxes in
Equations (3.2) and (3.3). The simplest possible rate law for reaction fluxes is the
well-known law of mass action.

3.1.3.1 Mass action kinetics

The law of mass action is built on the assumption that the per-particle forward and
reverse fluxes j+ and j− are independent of the number of particles in a system.
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In other words, for the forward reaction the rate at which an individual A molecule
transforms into a B molecule in the reaction A � B does not depend on NA or
[A]. This assumption is valid if each molecule of A does not interact with other A
molecules (even indirectly) in transforming from A to B. Similarly for the reverse
reaction, if j− does not depend on [B] the reverse kinetics are governed by the law
of mass action. (The mass-action assumption is not valid for the overall reaction,
for example, if the reaction is catalyzed by an enzyme and the number of sites
available for interaction with the enzyme depends on the total number of A and
B molecules in the system competing for the enzyme. We shall see that when an
enzyme catalyzes a reaction A � B, the overall reaction is typically modeled by a
number of subreactions, each of which is governed by mass action.)

The law of mass action implies

J+ = k+[A]

J− = k−[B] (3.13)

for the reaction A � B, where k+ and k− are constants. These expressions yield

J+

J− = k+
k−

[A]

[B]
. (3.14)

Combining Equations (3.14) and (3.12) yields k+/k− = Keq . It is straightforward
to verify that a closed system governed by mass action kinetics will approach the
proper equilibrium when the kinetic constants satisfy this relationship.

Using Equation (3.13) we rewrite Equations (3.5) and (3.6) as

d[A]

dt
= (

J in
A + k−[B] − k+[A]

)
d[B]

dt
= (

J in
B + k+[A] − k−[B]

)
. (3.15)

As shown in Section 3.1.1, if the system is closed and the transport fluxes are zero,
d([A]+[B])

dt = 0. Thus [A] + [B] = Xo, where Xo is some constant and the closed
system may be reduced to a one-dimensional system:

d[A]

dt
= −(k− + k+)[A] + k− Xo. (3.16)

The steady state solution to this equation is obtained by setting d[A]
dt = 0, which

yields (
[B]

[A]

)
eq

= k+
k−

. (3.17)

Thus the relationship k+/k− = Keq is verified.
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Figure 3.3 Simulation of open system kinetics governed by Equations (3.18) for
the reaction A � B, with constant flux J . Solution is plotted from Equation (3.19)
for parameter values Xo = 1 mM, k+ = 1 min−1, k− = 1 min−1, V = 1 ml, and
J = 0.2 × 10−6 M min−1. The initial condition is Ao = Xo/2.

Thermodynamic equilibrium is a special-case steady state that is obtained by
closed systems. Open systems with steady (constant) transport fluxes may approach
stable steady states that are not equilibrium states. For example, a non-equilibrium
steady state is achieved by the system of Equations (3.15) when J in

A = −J in
B = J =

constant. As in the case of the closed system, d([A]+[B])
dt = 0 and [A] + [B] = Xo

under this assumption and

d[A]

dt
= −(k− + k+)[A] + J + k− Xo. (3.18)

Equation (3.18) has solution

A(t) = J + k− Xo − [J + k− Xo − Ao(k− + k+)] e−(k−+k+)t

(k− + k+)
(3.19)

where the variable A(t) represents the concentration [A] as a function of time, t ,
and Ao is the initial concentration of A.

The steady state concentrations can be obtained by setting Equation (3.18) to
zero, which yields

[A]ss = A(t → ∞) = (J + k− Xo)

(k− + k+)
. (3.20)

Figure 3.3 illustrates the predicted time courses of [A] and [B], for parameter
values indicated in the figure legend. The initial condition used corresponds to
thermodynamic equilibrium ([B]/[A] = k+/k−); since the flux is positive (left-to-
right in Figure 3.1), the ratio [A]/[B] increases to a value greater than 1/Keq in the
steady state.

(Note that it is possible to set the constant flux J high enough that Equation (3.19)
predicts that [A] will become greater than Xo, and [B] will simultaneously become
negative. Of course a negative number of molecules (or a negative concentration)
does not make physical sense. Nonsense predictions from Equations (3.15) arise
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when [B] → 0−, at which point it is not possible to remove B molecules from the
system at a constant flux.)

The mass-action assumption that j+ and j− do not depend on reactant concentra-
tions can be applied to reactions other than the uni-unimolecular reaction A � B.
For example, the mass-action rate laws for the reaction

A + E
k+�
k−

C (3.21)

are

J+ = k+[A][E] ; J− = k−[C], (3.22)

which we indicate in the chemical equation using the symbol
k+�
k−

.

It is straightforward to write down the governing differential equations for this
system. For example, if the system is closed,

d[A]

dt
= (−J+ + J−)

d[E]

dt
= d[A]

dt
d[C]

dt
= −d[A]

dt
. (3.23)

The above set of equations is reduced to one independent differential equation by
defining two conservation relationships

Xo = [A] + [C] = constant, and, Yo = [E] + [C] = constant.

Given these definitions, the governing equation for [A] is

d[A]

dt
= −k+[A]2 − (k+(Yo − Xo) + k−) [A] + k− Xo. (3.24)

This equation is non-linear, which is a general property of kinetics of mass-action
reaction systems other than uni-unimolecular reaction systems.

3.1.3.2 Complex rate laws

Rate laws that are different from simple mass action often arise in chemical and
biochemical applications. Important examples in biochemistry are enzyme and
transporter mediated reactions where it is often assumed that a number of discrete
steps are involved in converting substrates to products. The individual steps may
be governed by mass action, but the overall steady state flux through an enzyme
can take a more complex form.
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As an example in this section, we consider the well-known Michaelis–Menten
enzyme mechanism:

A + E
k+1�
k−1

C
k+2�
k−2

B + E, (3.25)

in which E is an enzyme involved in converting substrate A into product B. The
enzyme-mediated mechanism is composed of two steps: (i) binding of A to the
enzyme forming a substrate–enzyme complex denoted C, and (ii) conversion of C
to product B and unbound enzyme E. For convenience in analyzing this system,
we denote the concentrations a = [A], b = [B], e = [E], and c = [C]. In addition,
we make the assumption that the total concentration of free plus substrate-bound
enzyme is conserved: e + c = Eo = constant. The kinetic equations, if the system
is closed, are

da/dt = −k+1ae + k−1c

dc/dt = −(k−1 + k+2)c + (k+1a + k−2b)e

db/dt = +k+2c − k−2be

de/dt = da/dt + db/dt. (3.26)

(Again, chemical fluxes are defined as mass per unit volume per unit time. For
example J+

1 = k+1ae, where a and e have units of M and k+1 has units M−1 sec−1.)
Using the conservation statement e = Eo − c, we eliminate one of the redundant

dependent equations and arrive at

da/dt = −k+1 Eoa + (k−1 + k+1a)c

dc/dt = −(k−1 + k+2)c + (k+1a + k−2b)(Eo − c)

db/dt = −k−2 Eob + (k+2 + k−2b)c. (3.27)

The equilibrium constant for the overall reaction A � B can be found by setting
da/dt , dc/dt , and db/dt to zero. Alternatively, one may use the fact that, in
equilibrium, each of the steps in Equation (3.25) is in thermodynamic equilibrium,
and ( c

ae

)
eq

(
be

c

)
eq

=
(

b

a

)
eq

= k+1k+2

k−1k−2
= Keq . (3.28)

The behavior of the Michaelis–Menten enzyme system is illustrated in Figure 3.4;
parameter values and initial conditions are listed in the figure legend. For the pa-
rameter values indicated Keq = 10, which corresponds to the final ratio of b/a
for a closed system. From the figure it is apparent that for the given set of pa-
rameters, the enzyme complex concentration c changes at a rate much smaller in
magnitude than da/dt and db/dt . Based on this observation we can introduce the
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Figure 3.4 Simulation of Michaelis–Menten enzyme mechanism kinetics in
closed system. Solid lines correspond to solution of Equations (3.27) with pa-
rameter values k+1 = 1000 M−1 sec−1, k−1 = 1.0 sec−1, k+2 = 0.1 sec−1, k−2 =
10 M−1 sec−1, and Eo = 0.1 mM. The initial conditions are a(0) = 1 mM,
b(0) = 0, and c(0) = 0. Dashed lines correspond to the solution obtained by
Equations (3.32).

approximation that c(t) remains in a quasi-steady state, while a and b change more
rapidly. This approximation leads to a simplified approximation for the enzyme
mechanism. Setting dc/dt = 0, we obtain

c(a, b) = Eo (k+1a + k−2b)

k−1 + k+2 + k+1a + k−2b
. (3.29)

With c expressed as a function of a and b, we express the forward and reverse fluxes
through the enzyme as:

J+ = k+1a(Eo − c) = k+2c

and

J− = k−2b(Eo − c) = k−1c. (3.30)

From these equations, we have

JM M (a, b) = J+ − J− = Eo (k+1k+2a − k−1k−2b)

k−1 + k+2 + k+1a + k−2b
= k f a − kr b

1 + a/Ka + b/Kb
,

(3.31)

where k f = Eok+1k+2/(k−1 + k+2), kr = Eok−1k−2/(k−1 + k+2), Ka = (k−1 +
k+2)/k+1, and Kb = (k−1 + k+2)/k−2. For the parameters listed in the legend of
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Figure 3.4, k f = 9.09 × 10−3 sec−1, kr = 9.09 × 10−4 sec−1, Ka = 1.10 mM, and
Kb = 110 mM.

Equation (3.31) is the standard form for the steady state flux though a simple
reversible Michaelis–Menten enzyme. This expression obeys the equilibrium ratio
arrived at above: (b/a)eq = Keq = k+1k+2/(k−1k−2), when JM M (a, b) = 0. In ad-
dition, from the positive and negative one-way fluxes in Equation (3.30), we note
that the relationship J+/J− = Keq(a/b) = e−�G/RT is maintained whether or not
the system is in equilibrium. Thus, as expected, the general law of Equation (3.12)
is obeyed by this reaction mechanism.

Based on Equation (3.31) we can model the kinetics of the system (ignoring the
dc/dt equation) as

da/dt = −JM M (a, b)

db/dt = +JM M (a, b). (3.32)

The solution obtained using this system of equations is plotted as dashed lines
in Figure 3.4. The solution based on this quasi-steady state approximation closely
matches the solution obtained by solving the full kinetic system of Equations (3.27).
The major difference between the two solutions is that the quasi-steady approxi-
mation does not account explicitly for enzyme binding. Therefore a + b remains
constant in this case, while in the full kinetic system a + b + c remains constant.
Since the fraction of reactant A that is bound to the enzyme is small (c/a � 1), the
quasi-steady approximation is relatively accurate.

Obtaining quasi-steady approximations for fluxes through reaction mechanisms,
including mechanisms more complex than the simple Michaelis–Menten system
studied in this section, is a major component of the study of enzyme kinetics. This
topic will be treated in some detail in Chapter 4.

3.1.3.3 Net flux for nearly irreversible reactions is proportional to reverse flux

In computational modeling of biochemical systems, the approximation that cer-
tain reactions are irreversible is often invoked. In this section, we explore the
consequences of such an approximation, and show that the flux through nearly
irreversible enzyme-mediated reactions is proportional to the reverse reaction flux.

Our analysis of nearly irreversible systems begins with Equation (3.12), from
which we have

J+/J− = e−�G/RT (3.33)

for a given reaction. The net flux through the system is J = J+ − J−; thus,
e−�G/RT = J/J− + 1, which leads to the approximation

J = J−e−�G/RT = J−Keq
a

b
(3.34)
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Figure 3.5 Simulation of a nearly irreversible Michaelis–Menten enzyme sys-
tem. Solid lines correspond to solution of Equations (3.32) with parameter val-
ues k f = 9.09 × 10−3 sec−1, kr = 9.09 × 10−5 sec−1, Ka = 1.1 mM, and Kb =
1.10 M. The initial conditions are a(0) = 1 mM and b(0) = 0. Dashed lines corre-
spond to the simulation of the system governed by irreversible kinetics of Equations
(3.35) and (3.36).

for nearly irreversible reactions (J � J−). Thus the flux through the enzyme is
proportional to the reverse flux.

For the quasi-steady approximation of Equation (3.31) the reverse flux is J− =
kr b/(1 + a/Ka + b/Kb); thus for a nearly irreversible reaction

J = kr Keqa

1 + a/Ka + b/Kb
= k f a

1 + a/Ka + b/Kb
,

which is the expression that we would arrive at by setting kr = 0 in Equation
(3.31). When the reaction is nearly irreversible and the reverse mechanism is not
near saturation, we can approximate the flux as

JIR = k f a

1 + a/Ka
; (3.35)

and the kinetics of a and b can be modeled by

da/dt = −JIR(a)

db/dt = +JIR(a). (3.36)

Figure 3.5 illustrates the comparison between a system governed by the reversible
Michaelis–Menten kinetics of Equations (3.31) and (3.32), the irreversible kinetics
of Equations (3.35) and (3.36). The parameter values are indicated in the legend.
The values used correspond to the same set of values as used in Figure 3.4 with the
exception that k−2 is changed from 10 M−1 sec−1 in Figure 3.4 to 1.0 M−1 sec−1 in
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Figure 3.5. These values ensure that the reaction simulated in Figure 3.5 is nearly
irreversible over most of the concentration range of a and b, with an equilibrium
constant of Keq = 100. It is apparent that the solution obtained for this system using
the irreversible approximation is nearly identical to the simulation using reversible
kinetics over most of the concentration range. As a and b approach equilibrium the
assumption that J � J− becomes less reliable, and the irreversible approximation
becomes less accurate.1

3.1.3.4 Net flux for highly reversible reactions is proportional to reverse flux

Near equilibrium (for |�G| � RT ) the flux can be approximated as linearly pro-
portional to the thermodynamic driving force: J = −X�G, where X is called
the Onsager coefficient [154, 155]. When the near-equilibrium approximation
|�G| � RT holds, the flux ratio J+/J− is approximately equal to 1. In this case
Equation (3.12) is approximated:

�G = −RT (J+/J− − 1) = RT

J− (J+ − J−). (3.37)

From this expression, we have

J = − J−

RT
�G. (3.38)

Therefore for highly reversible systems, the net flux is proportional to the reverse
flux times the thermodynamic driving force; the Onsager coefficient is equal to
J−/RT .

3.1.4 Using computers to simulate chemical kinetics

3.1.4.1 Example: simulating Michaelis–Menten enzyme kinetics

As we have pointed out in the introduction, our focus in this chapter is on how to
build models of biochemical systems, and not on mathematical analysis of models.
As an example, consider the system of Equations (3.27), which represents a model
for the reactions of Equation (3.25). It is possible to analyze these equations using a
number of mathematical techniques. For example Murray [146] presents an elegant
asymptotic analysis of a model of an irreversible (with k−2 = 0) Michaelis–Menten
enzyme. Such analyses invariably yield mathematical insights into the behavior of

1 Although the irreversible approximation successfully simulates the enzymatic flux in the range in which the
reverse flux is small compared to the forward flux, the impact of approximating nearly irreversible reactions
as entirely irreversible in simulations of reaction systems can be significant. It has been shown that feedback
of product concentration in nearly irreversible reactions, either through reverse flux or product inhibition, is
necessary for models of certain reaction networks to reach realistic steady states [36].
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model systems, as illustrated in Section 4.2.2 of the following chapter on enzyme ki-
netics. However, the goal of the present chapter is to develop techniques for building
models of a scale and complexity that are inaccessible to traditional mathematical
analysis.

For large-scale problems, the most widely useful mathematical tool available is
computational/numerical simulation. A great number of computer tools are avail-
able for simulation of ordinary differential equation (ODE) based models, such as
Equations (3.27). Here we demonstrate how this system may be simulated using
the ubiquitous Matlab software package.

The major requirement to simulate an ODE-based model using Matlab (or most
other packages) is to supply a code that computes the time derivatives of the state
variables – the right-hand side of Equations (3.27). An example of a function that
computes the time derivatives for this model using Matlab syntax is given below.2

function [f] = dCdT_mm1(t,x,kp1,km1,kp2,km2,Eo);
% FUNCTION dCdT_mm1
% Inputs: t - time (seconds)
% x - vector of concentrations {a,b,c} (M)
% kp1 - forward rate constant (M^{-1} sec^{-1})
% km1 - reverse rate constant (sec^{-1})
% kp2 - forward rate constant (sec^{-1})
% km2 - reverse rate constant (M^{-1} sec^{-1})
% Eo - total enzyme concentration (M)
%
% Outputs: f - vector of time derivatives
% {da/dt,dc/dt,db/dt}
a = x(1);
c = x(2);
b = x(3);
f(1) = -kp1*Eo*a + (km1 + kp1*a)*c;
f(2) = -(km1 + kp2)*c + (kp1*a + km2*b)*(Eo - c);
f(3) = -km2*Eo*b +(kp2 + km2*b)*c;
f = f';

2 We make use of Matlab to present the applications in this section because of its widespread use and because
its syntax represents a convenient pseudo-code format for representing algorithms [29]. For this same reason
we will continue to use Matlab syntax for certain examples throughout this book. However, Matlab is certainly
not the only available software package for simulating ODE systems. There exist a great many freely available
packages based in Fortran, C, or other computing languages, for integrating systems of ODEs. The web repository
www.netlib.org maintained by Oak Ridge National Laboratory is a useful resource to search for codes for
integrating ODEs and other applications in computing. Two packages that are widely used by the metabolic
modeling community are Jarnac [179] and Copasi [99].
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The function “dCdTmm1” accepts as inputs: a variable representing time, a
vector that stores the three state variables, and variables that represent the model
parameters, as indicated in the comments in the code. (Comments follow the symbol
“%” at the beginning of a given line of code.) The output is the vector “f”, which
lists the time derivatives da/dt , dc/dt , and db/dt .

The above code represents “the model” for Equations (3.27); with this code we
can use a package such as Matlab to simulate the behavior of the model. The simula-
tion illustrated in Figure 3.4 is completed using the following commands in Matlab:

% Set parameter values:
kp1 = 1000; km1 = 1.0; kp2 = 0.1; km2 = 10.0; Eo = 1e-4;
% Set initial Condition:
xo = [0.001 0 0];
% Integrate ODE:
[t,x] = ode15s(@dCdT_mm1,[0 500],xo,[],kp1,km1,kp2,km2,Eo);
% Plot results:
plot(t,x(:,1)*1e3,t,x(:,2)*1e3,t,x(:,3)*1e3);

The commands above set the parameters to the values indicated in the figure,
then introduce a variable “xo”, in which are entered the initial conditions for the
simulation. Next, the ODE system is integrated over the interval t ∈ [0, 500 sec]
using the built-in ODE solver “ode15s”. The ODE-solver package accepts as
inputs the name of the function used to compute the derivatives, the time range over
which to simulate the system, and the values of the initial conditions and parameters
to use in the simulation. The final command plots the three state variables, in units
of mM, as functions of time.

3.1.4.2 Example: non-linear oscillations in glycolysis

As a next example, we consider the model of Termonia and Ross [193] for the non-
linear kinetics of glycolysis. This model simulates the kinetics of the following
reactions

rxn 1 : GLU + ATP � F6P + ADP

rxn 2 : F6P + ATP � FBP + ADP

rxn 3 : FBP + 2 NAD + 2 ADP + 2 PI � 2 PEP + 2 ATP + 2 NADH

rxn 4 : PEP + ADP � PYR + ATP (3.39)

where the first reaction combines the reactions of hexokinase and phosphoglucose
isomerase; the second reaction is phosphofructokinase; the third reaction combines
the reactions of aldolase, triose phosphate isomerase, glyceraldehyde-3-phosphate
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dehydrogenase, phosphoglycerate kinase, phosphoglycerate mutase, and enolase;
the fourth reaction is the reaction of pyruvate kinase. The reactants in this system
are: glucose (GLU), fructose-6-phosphate (F6P), fructose-1,6-bisphosphate (FBP),
phosphoenolpyruvate (PEP), pyruvate (PYR), NAD, NADH, ATP, ADP, and inor-
ganic phosphate (PI).

In the model of Termonia and Ross, glucose, inorganic phosphate, NAD, and
NADH concentrations are not modeled explicitly and assumed fixed. The kinetic
equations for the remaining reactants are

d[F6P]/dt = J1 − J2

d[FBP]/dt = J2 − J3

d[PEP]/dt = 2J3 − J4

d[PYR]/dt = J4 − J5

d[ATP]/dt = −J1 − J2 + 2 ∗ J3 + J4 − J6

[ATP] · [AMP]

[ADP]2
= K

Ao = [ATP] + [ADP] + [AMP], (3.40)

where [AMP] is the adenosine monophosphate concentration, K is the apparent
equilibrium constant for the adenylate kinase reaction (2 ADP � AMP + ATP),
and Ao is total conserved concentration of adenine nucleotide in the system. The
J ’s in Equation (3.40) represent the fluxes through the corresponding reaction;
J5 and J6 represent transport of pyruvate out of the system and the rate of ATP
consumption, respectively.

The above set of model equations is a combined set of differential and algebraic
expressions. The algebraic equation [ATP]·[AMP]

[ADP]2 = K arises because the assumption
is made that the adenylate kinase reaction rapidly achieves equilibrium and is main-
tained in equilibrium at all times. We will see below how this algebraic expression
is treated in simulating the kinetics of Equation (3.40).

The expressions for the fluxes in this model are

J1 = constant = 2.0 min−1

J2 = V2([F6P]/(1 mM))n

(K2 + K2 R2([ATP]/[AMP])n + ([F6P]/(1 mM))n)

J3 = k3([FBP]/(1 mM))α − k̄3([PEP]/(1 mM))β

J4 = V4([PEP]/(1 mM))γ

(K4 + K4 R4([ATP]/[FBP])m + ([PEP]/(1 mM))γ )

J5 = k5 · [PYR]

J6 = k6 · [ATP], (3.41)
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Figure 3.6 Simulation of the model of Termonia and Ross [193] based on the
Equation (3.40). K = 1, Ao = 40.95 mM, n = 2, K2 = 0.0016, R2 = 0.1736,
V2 = 12.5 mM min−1, k3 = 5.8 mM min−1, k̄3 = 0.01 mM min−1, α = 0.05,
β = 6, γ = 1, m = 4, K4 = 0.1296, R4 = 2.1389 × 10−7, V4 = 100 mM min−1,
k5 = 1.0 min−1, and k6 = 0.1 min−1. The assumed initial conditions are [F6P] =
13 mM, [FBP] = 0.24 mM, [PEP] = 1.5 mM, [PYR] = 4.0 mM, and [ATP] =
39.7 mM.

where the assumed parameter values are listed in the legend of Figure 3.6.
The rapid-equilibrium algebraic expression may be handled in this model by

solving the system of equations

[ATP] · [AMP]/[ADP]2 = K

Ao = [ATP] + [ADP] + [AMP]

for [AMP] and [ADP] as a function of [ATP] and the parameter values. Assuming
K = 1 yields

[AMP] = (2Ao − [ATP] − [(2Ao − [ATP])2 − 4([ATP] − Ao)2]1/2)/2

[ADP] = Ao − [ATP] − [AMP]. (3.42)

Equation (3.42) provides [ADP] and [AMP] in terms of the state variable [ATP].
Therefore these expressions can be used to compute the fluxes and the derivatives
of the state variables as explicit functions of the values of the state variables.

An example simulation of this model is illustrated in Figure 3.6, using the pa-
rameter values and initial conditions indicated in the legend. Note that the model
predicts sustained non-linear oscillations, which have been observed in yeast cells
and in extracts from yeast and also mammalian cells [82].
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Figure 3.7 Enclosed volume V with the continuum vector field mass flux density
��i and scalar concentration field ci .

3.2 Transport processes

When biochemical systems are studied in vitro, it is typically under well mixed
conditions. Yet the contents of living cells are not necessarily well mixed and the
biochemical workings within cells are inseparably coupled to the processes that
transport material into, out of, and within cells. The three processes responsible
for mass transport in living systems are advection, diffusion, and drift. Character-
izing which, if any, of these processes is active in a given system is an important
component of building differential equation-based models of living biochemical
systems.

In general, the equations governing various transport processes, like equations
for chemical kinetics in well mixed systems, are built upon the foundation of mass
conservation [23].

To derive equations for mass transport we introduce the quantity ��i , which we
define as the mass flux density of species i , expressed in units of mass per unit area
per unit time. Given ��i , we express the rate of change of total mass inside volume
V as equal to the rate of mass flux into the volume:

∂

∂t

∫
ci dV = −

∮
n̂ · ��i d S, (3.43)

where the concentration of species i , ci , is a continuous spatial concentration field,
the symbol

∮
indicates a surface integral over the surface S enclosing the volume

V , and n̂ is the outward-point unit normal vector on the surface of the volume V .
The concept is illustrated in Figure 3.7.

Using Gauss’ theorem, Equation (3.43) can be rewritten

∂

∂t

∫
ci dV = −

∫
∇ · ��i dV . (3.44)

Since within a continuum system the volume V is arbitrary in Equation (3.44), the
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statement of mass conservation may be expressed in differential form:

∂ci

∂t
= −∇ · ��i . (3.45)

Equation (3.45) is the general continuum statement of mass conservation of
species i written in terms of the mass flux density ��i and the concentration field ci .

3.2.1 Advection

Advection is the process by which material contained in a flowing fluid is transported
by bulk motion of the fluid. An important example is blood flow, which delivers
oxygen and nutrients to the tissues of the body. Maintaining blood flow is essential
to maintaining life in higher organisms.

In advection the mass flux is driven by a continuous velocity field. Given a veloc-
ity field �v and concentration field ci , the mass flux density is ��i = ci �v. Substitution
of this expression into Equation (3.45) yields

∂ci

∂t
= −∇ · (ci �v) = −ci∇ · �v − �v · ∇ci . (3.46)

For incompressible fluids ∇ · �v = 0, and this equation simplifies to

∂ci

∂t
= −�v · ∇ci . (3.47)

Equation (3.47) is known as the advection equation. For one-dimensional fluid flow
the advection equation reduces to

∂ci

∂t
= −v

∂ci

∂x
, (3.48)

which has the general solution: ci (x, t) = ci (x − vt, 0). One-dimensional advection
is illustrated in Figure 3.8, which demonstrates that concentration profiles governed
by the advection equation translate in space with velocity v.

x

c (x, 0) c (x, t )

vt

Figure 3.8 Illustration of advection governed by Equation (3.48).
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One-dimensional advection will be used in Chapter 8 as a component in
models of cellular biochemical systems that are coupled to blood–tissue solute
exchange.

3.2.2 Diffusion

According to Fick’s first law of diffusion [56], the mass flux density due to molecular
diffusion is proportional to the gradient in concentration. Formally,

��i = −Di∇ci , (3.49)

where Di is called the molecular diffusion coefficient. Substitution into Equation
(3.45) yields

∂ci

∂t
= ∇ · (Di∇ci ), (3.50)

which is called the diffusion equation. If the system studied is homogenous and Di

is not a function of position, then the diffusion equation becomes ∂ci/∂t = Di∇2ci .
Equation (3.50) is used below to develop an expression for the passive flux of so-

lute across a thin homogeneous membrane. In addition, diffusion-driven processes
will appear in our study of spatially distributed systems in Chapter 8.

3.2.3 Drift

The term drift is used to describe mass transport of charged species driven by an
electric field. The drift mass flux density is

��i = zi

|zi |ui ci �E, (3.51)

where zi is the valence of the ion, ui is the electrokinetic mobility, and �E is the
electric field vector. The factor zi/|zi | = ±1 is the sign of the charge of species
i . Positive ions are driven in the direction of �E , negatively charged ions are
driven in the opposite direction. For uncharged species, zi = 0 and the drift flux is
zero.

In biology, we are typically concerned with the study of electrostatic systems in
which electromagnetic interactions are ignored and the electric field is the gradient
of the electrostatic potential: �E = −∇φ. The differential equation for electrokinetic
drift follows from Equation (3.45).

∂ci

∂t
= zi

|zi |ui∇ · (ci∇φ) = zi

|zi |ui ci∇2φ + zi

|zi |ui (∇φ) · (∇ci ) (3.52)
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3.2.3.1 Einstein relation relates molecular diffusivity and
electrokinetic mobility

We have seen in Chapter 1 that, in equilibrium, the probability of a state is ex-
pressed as a function of the energy of the state according to the Boltzmann law:
Pi = e−Ei /kB T . In a dilute system of non-interacting charged particles, the energy
associated with a particle of species i located at position �xi is Ei = zi Fφ(�xi )/NA,
where φ(�xi ) is the electrostatic potential expressed in units of energy per unit of
charge and F/NA ≈ 1.602 × 10−19 coulomb is the proton charge. The equilibrium
particle concentration field may be thought of as a measure of the relative prob-
ability of finding a particle in a given position in space. According to Boltzmann
statistics, the equilibrium concentration is ci (�x) = coe−zi Fφ(�x)/RT .

In equilibrium the net particle flux is zero; when drift and diffusion are the two
active transport processes, ��drift

i + ��diffusion
i = 0, or

− Di∇ci − zi

|zi |ui ci∇φ = 0. (3.53)

This equation can be re-expressed:

∇ci

ci
= − zi ui

|zi |Di
∇φ, (3.54)

which may be integrated:

ln ci = − zi ui

|zi |Di
φ + ao, (3.55)

where ao is a constant. This equation is rewritten

ci = coe− zi ui
|zi |Di

φ
, (3.56)

where co is a constant. Equating Equation (3.56) with the Boltzmann equilibrium
distribution yields

ui

Di
= |zi |F

RT
, (3.57)

which is called the Einstein relation. Equation (3.57) is a form of the fluctuation-
dissipation theorem, which relates the magnitude of thermal fluctuations (in this
case molecular diffusivity) to the system response to macroscopic driving forces
(in this case current flow in response to an electric field).

3.2.4 Example: passive permeation across a membrane

If a biological membrane is treated as a homogeneous isotropic medium, then
transport of a solute in the membrane is governed by the diffusion equation
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0 dx

c1

c0

Figure 3.9 Steady state concentration profile due to passive diffusion in a homo-
geneous membrane of width d . Linear concentration profile is given by Equation
(3.59).

∂c/∂t = Dm∇2c, where Dm is the molecular diffusion coefficient of the solute in
the membrane. If the membrane is thin compared to other space scales in the system,
then the transport in the membrane is effectively represented by a one-dimensional
equation ∂c/∂t = Dm∂2c/∂x2. In the steady state, we have Dmd2c/dx2 = 0, or
dc/dx = a1, where a1 is a constant. Therefore the concentration profile in the
membrane is linear:

c(x) = a1x + ao. (3.58)

If the membrane has width d and the concentrations on either side of the membrane
are given by c(0) = c0, c(d) = c1, then the concentration profile in the membrane
is given by

c(x) = c1 + (c1 − c0)x/d, (3.59)

which is illustrated in Figure 3.9.
The flux through the membrane is calculated

� = −Dm
dc

dx
= Dm

d
(c0 − c1). (3.60)

Therefore the steady state flux through the membrane is linearly proportional to the
concentration difference across the membrane. Defining the membrane permeabil-
ity p = Dm/d, we have � = p�c.

3.2.5 Example: coupled diffusion and drift in a membrane

To treat the coupled diffusion and drift of a charged ion in a homogeneous mem-
brane, we include both molecular diffusion and electrokinetic drift in the governing
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0 dx

c1

c0

Figure 3.10 Steady state concentration profile due to molecular diffusion and elec-
trokinetic drift in a homogeneous membrane of width d. Concentration profile is
given by Equation (3.63) with zF��/RT = 2.

transport equation:

∂c

∂t
= −∇ · (��drift + ��diffusion)

= −∇ ·
(

−Dm∇c − z

|z|uc∇φ

)
. (3.61)

For a thin membrane in the steady state, and assuming a uniform electric field
directed across the membrane,3 we have:

Dm
d2c

dx2
+ zu

|z|
(

dφ

dx

) (
dc

dx

)
= 0

Dm
d2c

dx2
− zu

|z|
(

��

d

) (
dc

dx

)
= 0, (3.62)

where �� = φ(0) − φ(d). Equation (3.62), with boundary conditions c(0) = c0

and c(d) = c1, has the solution:

c(x) = coe
zF��

RT − c1 + (c1 − c0)e
zF��x

RT d

e
zF��

RT − 1
, (3.63)

where we have used the Einstein relation. Equation (3.63) is illustrated in
Figure 3.10 for the case zF��/RT = 2.

The flux through the membrane is calculated

� = −Dm
dc

dx
+ z

|z|u
��

d
c,

3 The uniform-field approximation is valid when the width of the membrane (or length of the channel through
which the ion passes) is small compared with the Debye length, which is the length scale over which mobile
ions screen the electric field in the membrane. The Debye length is inversely proportional to the square root of
the ionic strength [138]. At high ionic concentrations, a linear-conductance model (introduced in Chapter 7) is
more appropriate than the uniform-field approximation.
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or

� = zDF��

d RT

(
c0e

zF��
RT − c1

e
zF��

RT − 1

)
. (3.64)

Equation (3.63) is known as the the Goldman–Hodgkin–Katz equation for passive
flux of an ion through a membrane [108, 123].

Concluding remarks

This chapter has developed the theory of how to build differential equation-based
models of biological systems based on simulating chemical kinetics and transport
phenomena. The coming chapters build on these techniques in analyzing succes-
sively larger and more complex biochemical reaction systems in Chapters 4 through
7. The transport processes active in living systems will be represented at varying
levels of detail depending on the application. In Chapters 4 through 7, cells are
represented as one or more well mixed compartments with transport into, out of,
and between compartments governed by fluxes of solutes across thin membranes.
Chapter 8 explicitly considers spatially distributed transport in the cells, tissues,
and organs of living organisms. For a study of the field of mass transport that delves
deeply into how mass and energy are transported in physical systems of all sorts,
we highly recommend Bird, Stewart, and Lightfoot’s canon Transport Phenomena
[23].

Exercises

3.1 Verify that the relationship k+/k− = Keq follows from Equations (3.14) and (3.12).
3.2 Verify that Equation (3.19) is the solution of Equation (3.18), and that d([A]+[B])

dt = 0,
[A] + [B] = Xo, and Equation (3.18) is valid when J in

B = −J in
A = J = constant.

3.3 Derive Equation (3.24) from the stated assumptions.
3.4 Although Equation (3.24) is non-linear, a convenient closed form solution is available.

Find the solution and make a plot of [A], [E], and [C], given an assumed set of
parameters and initial conditions.

3.5 What is the equilibrium constant for the association of reactant A to the enzyme for
the kinetic parameters used in Figure 3.4? How close is the reaction A + E � C
to equilibrium during the simulation that is illustrated? How does the quasi-steady
approximation depend on the equilibrium constant for enzyme binding?

3.6 Use computational simulation to investigate the validity of the quasi-steady assump-
tion for different sets of parameters and initial conditions for the Michaelis–Menten
system. Under what circumstance(s) does the approximation fail?

3.7 Write a computer program to generate the simulation shown in Figure 3.6 using the
computing language and environment of your choice.
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3.8 The flux expressions for this model of Section 3.1.4.2 violate certain physical con-
straints on reaction fluxes. What constraints are violated? Under what circumstances
will these violations be important?

3.9 Show that ∇ · �v = 0 for an incompressible fluid. [Hint: start with the continuity
equation for fluid density ρ: ∂ρ/∂t = −∇ · (ρ�v).]

3.10 Show that in the limit �� → 0, Equation (3.64) reduces to Equation (3.60).
3.11 For a given concentration ratio c0/c1, at what value of��does Equation (3.64) predict

that the flux through the membrane will be zero? Provide a physical explanation of
why flux is zero at this value of membrane potential.





Part II

Analysis and modeling of biochemical systems
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Enzyme-catalyzed reactions: cycles, transients,
and non-equilibrium steady states

Overview

There is almost no biochemical reaction in a cell that is not catalyzed by an en-
zyme. (An enzyme is a specialized protein that increases the flux of a biochemical
reaction by facilitating a mechanism [or mechanisms] for the reaction to pro-
ceed more rapidly than it would without the enzyme.) While the concept of an
enzyme-mediated kinetic mechanism for a biochemical reaction was introduced
in the previous chapter, this chapter explores the action of enzymes in greater de-
tail than we have seen so far. Specifically, catalytic cycles associated with enzyme
mechanisms are examined; non-equilibrium steady state and transient kinetics of
enzyme-mediated reactions are studied; an asymptotic analysis of the fast and slow
timescales of the Michaelis–Menten mechanism is presented; and the concepts of
cooperativity and hysteresis in enzyme kinetics are introduced.

While the majority of these concepts are introduced and illustrated based on
single-substrate single-product Michaelis–Menten-like reaction mechanisms, the
final section details examples of mechanisms for multi-substrate multi-product re-
actions. Such mechanisms are the backbone for the simulation and analysis of
biochemical systems, from small-scale systems of Chapter 5 to the large-scale sim-
ulations considered in Chapter 6. Hence we are about to embark on an entire chapter
devoted to the theory of enzyme kinetics. Yet before delving into the subject, it is
worthwhile to point out that the entire theory of enzymes is based on the simplifi-
cation that proteins acting as enzymes may be effectively represented as existing in
a finite number of discrete states (substrate-bound states and/or distinct conforma-
tional states). These states are assumed to inter-convert based on the law of mass
action. The set of states for an enzyme and associated biochemical reaction is known
as an enzyme mechanism. In this chapter we will explore how the kinetics of a given
enzyme mechanism depend on the concentrations of reactants and enzyme states
and the values of the mass action rate constants associated with the mechanism.

69



70 Enzyme-catalyzed reactions

4.1 Simple Michaelis–Menten reactions revisited

4.1.1 Steady state enzyme turnover kinetics

As was demonstrated computationally in Section 3.1.3.2, when the rate of change in
the concentration of an enzyme–substrate complex (dc/dt in the example) is much
smaller in magnitude than the rate of change in the concentrations of substrates and
products, (da/dt and db/dt in the example) then kinetics of the enzyme mecha-
nism may be approximated using the quasi-steady approximation. Specifically, the
approximation that dc/dt = 0 is invoked. For the example in Section 3.1.3.2, the
initial concentration of the substrate is ten times greater than that of the enzyme:
a(0) = 1 mM and Eo = 0.1 mM. In many biological settings, the ratio of reactant to
enzyme concentration is much greater than ten and the quasi-steady approximation
tends to be valid.

In fact, certain enzymatic reactions in cells may involve only a handful of enzyme
molecules, with as few as several hundred or several thousand enzyme molecules
present compared to many more substrate and product molecules. This condition
implies that the substrate molecules compete for binding to the relatively few en-
zyme molecules, while the enzymes function more or less independently of one
another. The assumption that the molecules of a particular enzyme act indepen-
dently significantly simplifies the modeling of biochemical kinetics. In addition, if
reactants are present in quantities much greater than enzymes then one can reason-
ably treat enzyme turnover kinetics by assuming that the substrate concentration
remains effectively constant over the timescale of enzyme turnover.

While precise information on the numbers of copies of all the enzymes present
in specific cells is not yet available, a recent study in yeast has shown that the
number of copies of all proteins present ranges from about 100 to 250 000. (These
numbers correspond to total proteins of all types. Enzymes are specialized pro-
teins that catalyze specific reactions. Not all cellular proteins serve as enzymes.)
Figure 4.1 shows the frequency distribution of number of protein copies per cell
from Ghaemmaghami et al. [64]. The peak in the frequency distribution is around
3000 molecules per cell. In other words, for a typical protein approximately 3000
copies are present in an individual cell. Some proteins are present in greater quan-
tities; some in smaller quantities.

The quasi-steady approximation is generally valid when the amount that enzyme
complex concentrations change is less than the amount that reactant concentrations
change over the timescale of interest. This is true, for example, in Section 3.1.3.2
as long as dc/dt � JM M . Thus the stricter condition that reactant concentrations
are large compared to enzyme concentrations (a condition that is by no means
universally true in vivo) is not necessarily required to apply the approximation.
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Figure 4.1 The distribution of the number of different proteins in a yeast cell. Data
are from Ghaemmaghami et al. [64].

Consider again the simple irreversible Michaelis–Menten scheme:

E + S
k+1�
k−1

ES
k+2→ E + P. (4.1)

This mechanism can be represented as the catalytic cycle illustrated in Figure 4.2A,
in which an individual enzyme molecule converts between two states: free (un-
bound) enzyme E and the enzyme–substrate complex ES. The catalytic cycle is
represented by the following kinetic mechanism.

E
k+1[S]
�
k−1

ES
k+2→ E (4.2)

and the kinetic equations for E and ES are

d[E]

dt
= −k+1[S][E] + (k−1 + k+2)[ES] (4.3a)

d[ES]

dt
= k+1[S][E] − (k−1 + k+2)[SE]. (4.3b)
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E ES

k+1[S]

k−1

k+2

E ES

k+1[S]

k−2[P]

k−1

k+2

(A)

(B)

Figure 4.2 Kinetic mechanism of a Michaelis–Menten enzyme. (A) The reac-
tion mechanism for the irreversible case – Equation (4.1) – is based on a sin-
gle intermediate-state enzyme complex (ES) and an irreversible conversion from
the complex to free enzyme E and product P. (B) The reaction mechanism for the
reversible case – Equation (4.7) – includes the formation of ES complex from free
enzyme and product P. For both the irreversible and reversible cases, the reaction
scheme is illustrated as a catalytic cycle.

Here, k+1[S] serves as the apparent mass-action rate constant for the conversion
E → ES. Each time an enzyme cycles from state E to ES and back to E again,
one molecule of S is converted to P. If the rate of turnover of the catalytic cycle is
significantly greater than the rate of change of reactant (S and P) concentrations,
then the apparent mass-action constant k+1[S] in Equation (4.2) remains effectively
constant over the timescale of the catalytic cycle. This is true, for example, when the
enzyme concentration is small compared to reactant concentrations, many catalytic
cycles are required to produce a significant change in reactant concentrations.

Since the catalytic cycle operates with relatively rapid kinetics, E and ES will
obtain a steady state governed by Equations (4.2) and (4.3) and the quasi-steady
state concentrations of enzyme and complex will change rapidly in response to
relatively slow changes in [S]. Thus the quasi-steady approximation is justified
based on a difference in timescales between the catalytic cycle kinetics and the
overall rate of change of biochemical reactions.

The steady state populations for [E] and [ES] are readily obtained by setting
d[E]
dt = d[ES]

dt = 0:

[E] = k−1 + k+2

k−1 + k+2 + k+1[S]
Eo, [ES] = k+1[S]

k−1 + k+2 + k+1[S]
Eo, (4.4)
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Figure 4.3 Lineweaver–Burk, or double-reciprocal, plot for single-substrate irre-
versible Michaelis–Menten enzyme. A plot of 1/J versus 1/[S] yields estimates
of Vmax and KM , as illustrated in the figure.

where Eo = E + ES: the total enzyme concentration. The steady state flux, which
is the flux for the cycle E → ES → E, is the rate of product formation:

J = k+2[ES] = k+1[S][E] − k−1[ES] = k+1k+2[S]Eo

k−1 + k+2 + k+1[S]
. (4.5)

Equation (4.5), which can be rewritten

J = Vmax [S]

KM + [S]
, (4.6)

which is the by-now familiar Michaelis–Menten equation, exhibiting a hyperbolic
dependence of J as a function of [S]. The Michaelis–Menten parameters are Vmax =
k+2 Eo and KM = (k−1 + k+2)/k+1, which may be estimated from the so-called
Lineweaver–Burk (or double-reciprocal) plot of 1/J versus 1/[S], as illustrated in
Figure 4.3 [132]. The quantity 1/J varies with 1/[S] according to 1/J = 1/Vmax +
(Km/Vmax ) · (1/[S]). Thus the slope and intercept of the Lineweaver–Burk plot
provide estimates of Vmax and KM as illustrated in the figure.1

4.1.2 Reversible Michaelis–Menten kinetics

The derivation of the Michaelis–Menten equation in the previous section differs
from the standard treatment of the subject found in most textbooks in that the
quasi-steady approximation is justified based on the argument that the catalytic
cycle kinetics is rapid compared to the overall biochemical reactant kinetics. In

1 Note that Vmax and KM may be estimated from data on steady state flux and substrate concentration based on a
number of different ways of plotting J and [S]. Cornish-Bowden illustrates that the Lineweaver–Burk plot (or
double-reciprocal plot) is not recommended when one would like to minimize the effect of experimental error
on parameter estimates. For a detailed discussion see Section 2.6 of [35].



74 Enzyme-catalyzed reactions

Section 4.2 we explore the quasi-steady approximation with somewhat more math-
ematical rigor. However, before undertaking that analysis, let us analyze the re-
versible enzyme mechanism studied in Chapter 3 from the perspective of cycle
kinetics.

In Chapter 3 we determined the conditions under which it is and is not appropriate
to treat a reaction as irreversible. Using the notation of cycle kinetics and apparent
mass-action constants, the reversible mechanism of Equation (3.25) is represented

E
k+1[S]
�
k−1

ES
k+2�

k−2[P]
E. (4.7)

Assuming again that the cycle kinetics are rapid and maintain enzyme and com-
plex in a rapid quasi-steady state, we can obtain the steady state velocity for the
reversible Michaelis–Menten enzyme kinetics:

J = (k+1k+2[S] − k−1k−2[P])Eo

k−1 + k+2 + k+1[S] + k−2[P]
. (4.8)

With the Michaelis–Menten parameters given by

V f
max = k+2Eo, V r

max = k−1Eo, KM,S = k−1 + k+2

k+1
, KM,P = k−1 + k+2

k−2
,

(4.9)

we have

J =
V f

max [S]
KM,S

− V r
max [P]
KM,P

1 + [S]
KM,S

+ [P]
KM,P

. (4.10)

These expressions are equivalent to those derived in Section 3.1.3.2.
One of the important predictions from Equation (4.10) is the Haldane relation,

which states that

V f
max/KM,S

V r
max/KM,P

= k+1k+2

k−1k−2
= Keq, (4.11)

where Keq is the equilibrium constant between P and S. This relation follows from
the fact that J = 0 when P and S are in chemical equilibrium. Since the apparent
equilibrium constant for S � P is independent of the enzyme, the feasible values of
the kinetic parameters for the enzyme mechanism are constrained by the equilibrium
thermodynamics of the reaction.

4.1.3 Non-equilibrium steady states and cycle kinetics

As discussed in Chapter 3, living cells exist away from thermodynamic equilibrium.
When a reaction such as S � P is maintained in a steady state, we refer to this state
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as a non-equilibrium steady state. Such a state is characterized by non-zero net flux,
which necessarily is maintained by input of substrate and removal of product from
the system. When the reaction is part of a network of coupled reactions, the whole
system is sustained by input and output of material across its boundary. In other
words, biological systems are open systems – open to the exchange of material and
energy with their environments.

For the example of the reversible Michaelis–Menten enzyme catalyzing S � P,
in the steady state S and P are transported into and out of the system at the constant
rate J . The positive and negative fluxes of the catalytic cycle are given by

J+ =
V f

max [S]
KM,S

1 + [S]
KM,S

+ [P]
KM,P

(4.12a)

J− =
V r

max [P]
KM,P

1 + [S]
KM,S

+ [P]
KM,P

, (4.12b)

where the net flux is given by J = J+ − J−. These positive and negative fluxes
correspond to the positive and negative cycle fluxes illustrated in Figure 4.2B. The
forward cycle flux J+ is the rate at which the cycle E → ES → E proceeds in the
clockwise direction; the reverse cycle flux is the rate at which the cycle proceeds
in the counterclockwise direction.

From Equations (4.12), the identity of Equation (3.12) is obeyed: �G =
−RT ln(Keq[S]/[P]) = −RT ln(J+/J−). From this identity follows the corollary

J · �G = −(J+ − J−) · RT ln

(
J+

J−

)
≤ 0. (4.13)

The equality in Equation (4.13) holds if and only if J = 0 and �G = 0, i.e., when
the reaction is in equilibrium.

When an enzyme-catalyzed biochemical reaction operating in an isothermal
system is in a non-equilibrium steady state, energy is continuously dissipated in
the form of heat. The quantity J · �G is the rate of heat dissipation per unit time.
The inequality of Equation (4.13) means that the enzyme can extract energy from
the system and dissipate heat and that an enzyme cannot convert heat into chemical
energy. This fact is a statement of the second law of thermodynamics, articulated
by William Thompson (who was later given the honorific title Lord Kelvin), which
states that with only a single temperature bath T , one may convert chemical work
to heat, but not vice versa.

In Chapter 9 we will see that the second-law inequality of Equation (4.13)
will form a cornerstone of the constraint-based approach to analyzing biochemical
networks.
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4.2 Transient enzyme kinetics

The quasi-steady approximation, which was introduced in Section 3.1.3.2 and jus-
tified on the basis of rapid cycle kinetics in Section 4.1.1, forms the basis of the
study of enzyme mechanisms, a field with deep historical roots in the subject of
biochemistry. In later chapters of this book, our studies make use of this approx-
imation in building models of biochemical systems. Yet there remains something
unsatisfying about the approximation. We have seen in Section 3.1.3.2 that the
approximation is not perfect. Particularly during short-time transients, the quasi-
steady approximation deviates significantly from the full kinetics of the Michaelis–
Menten system described by Equations (3.25)–(3.27). Here we mathematically
analyze the short timescale kinetics of the Michaelis–Menten system and reveal
that a different quasi-steady approximation can be used to simplify the short-time
kinetics.

4.2.1 Rapid pre-equilibrium

If in the mechanism of Equation (4.1) the first-order rate constant k+2 is much
smaller than the first-order constant k−1, then the association reaction E + S � ES
occurs on a much faster timescale than the transformation ES → E + P. Hence, the
first reaction may be assumed to achieve a rapid equilibrium

[ES] = k+1

k−1
[E][S] = k+1

k−1
(Eo − [ES]) [S]. (4.14)

Solving for [E] and [ES] yields:

[E] = k−1 Eo

k+1[S] + k−1
, [ES] = k+1[S]Eo

k+1[S] + k−1
. (4.15)

The timescale for the association step E + S � ES is (k+1[S] + k−1)−1 (which is
even smaller than 1/k−1), while the timescale for the transformation ES → E + P
is 1/k+2. Thus, if k−1 � k+2, the association step equilibrates rapidly compared to
the rate of product formation.

Under the assumption of rapid pre-equilibrium, the rate of product formation is
then

J = k+2[ES] = k+1k+2[S]Eo

k+1[S] + k−1
. (4.16)

In this case the Michaelis–Menten parameters are KM = k−1/k+1, which is the
dissociation constant, and Vmax = k+2 Eo. Here we have arrived at the familiar
Michaelis–Menten result without making the assumption that the substrate con-
centration [S] is in excess of the enzyme concentration. Recall that the quasi-steady
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analysis yielded KM = (k−1 + k+2)/k+1. Thus when k−1 � k+2, the two ap-
proaches yield essentially the same result.

Kinetics involving rapid pre-equilibrium steps finds numerous applications both
within and beyond the study of enzyme kinetics. Other important examples are the
theory of proton–deuterium exchange kinetics of a protein [169] and gene activa-
tion involving DNA looping [186]. Because of its central importance in biological
kinetics, let us provide a more complete mathematical treatment of the problem in
a short digression.

We consider the simple kinetics of

A
α
�
β

B
γ→ C. (4.17)

The kinetic equations are

d

dt

 [A]
[B]
[C]

 =
−α β 0

α −(β + γ ) 0
0 γ 0

  [A]
[B]
[C]

 . (4.18)

This system has two eigenvalues:

λ1,2 = 1

2

(
α + β + γ ±

√
(α + β + γ )2 − 4αγ

)
. (4.19)

A third eigenvalue is zero, due to the sum [A] + [B] + [C] being constant in the
kinetics. Now if β � γ , then

λ1,2 = 1

2

( − α − β − γ ±
√

(α + β + γ )2 − 4αγ
)

≈ −α + β + γ

2
±

(
α + β + γ

2
− αγ

(α + β)

)
λ1 ≈ −(α + β), λ2 ≈ − αγ

α + β
. (4.20)

Kinetics on the timescale of rapid equilibrium (determined by α and β) is governed
by the larger eigenvalue λ1. The slower timescale is governed by λ2, which is equal
to γ multiplied by the rapid equilibrium fraction of β.

This simple example shows us that when rapid pre-equilibrium steps exist, one
simply solves the equilibrium among the rapid steps and calculates equilibrium
fractions of each state. When doing this, one neglects all the slow steps (i.e., γ ),
and the fast eigenvalue(s) λ1 determine(s) the relaxation rate for the rapid A � B
when γ = 0. In the above example, the equilibrium fractions are α

α+β
and β

α+β
.

Then for the slower kinetics one can simply lump all the states in pre-equilibrium
together as a single state, with rate constant(s) being the average(s) according to
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the pre-equilibrium. That is, λ2 is the rate constant for (A ∪ B) → C:

d[C]

dt
= γ [B] = γ [B]

[A] + [B]
[A ∪ B] = λ2[A ∪ B]. (4.21)

Approaching problems of this sort based on separation of timescales can be
powerful. The following analysis is based on a formalization of this kind of
analysis.

4.2.2 A singular perturbation approach to Michaelis–Menten kinetics

The flux expression in Equation (4.16) displays the canonical Michaelis–Menten
hyperbolic dependence on substrate concentration [S]. We have shown that this
dependence can be obtained from either rapid pre-equilibration or the assumption
that [S] � [E]. The rapid pre-equilibrium approximation was the basis of Michaelis
and Menten’s original 1913 work on the subject [140]. In 1925 Briggs and Haldane
[24] introduced the quasi-steady approximation, which follows from [S] � [E].
(In his text on enzyme kinetics [35], Cornish-Bowden provides a brief historical
account of the development of this famous equation, including outlines of the
contributions of Henri [80, 81], Van Slyke and Cullen [203], and others, as well as
those of Michaelis and Menten, and Briggs and Haldane.)

A more cogent mathematical treatment of this problem was given in the 1970s
by several mathematical biologists. For details see books by Lin and Segel [130]
and Murray [146]. Here we provide a brief account of this approach. The ap-
proach uses the somewhat advanced mathematical method of singular perturbation
analysis, but does provides a deep appreciation of the Michaelis–Menten enzyme
kinetics.

Let us return to the kinetics of Equation (4.3). From this mechanism we have the
equations

d[S]

dt
= −k+1[S][E] + k−1[ES], (4.22a)

d[ES]

dt
= k+1[S][E] − (k−1 + k+2)[ES]. (4.22b)

The total enzyme concentration is [E] + [ES] = Eo, and the initial concentrations
are assumed to be [E] = Eo and [S] = So at t = 0. Thus at t = 0, substrate is present
in concentration So and the enzyme complex concentration [ES] is zero.

For a mathematically convenient analysis of these equations, we express the
concentrations of E and S as unitless quantities. Specifically, we express their
concentrations relative to the initial contractions: u = [S]/So and v = [ES]/Eo.
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From these definitions, Equations (4.22) are recast

du

dτ
= −u(1 − v) +

(
k−1

k+1So

)
v, (4.23a)

ε
dv

dτ
= u(1 − v) − KM

So
v, (4.23b)

where τ = k+1 Eot and ε = Eo/So. The variables u and v are unitless state variables
representing substrate and enzyme complex levels and τ is the unitless time variable.

If ε � 1 then the second equation in Equation (4.23) reaches steady state much
faster than the first equation. Hence, u(1 − v) − (KM/So)v = 0, which yields

v = uSo

KM + uSo
. (4.24)

This implies that when u changes with time, v follows Equation (4.24) nearly
instantaneously. Substituting Equation (4.24) into the first equation in (4.23) we
have

du

dτ
= −

(
k+2

k+1

)
u

KM + uSo
. (4.25)

In terms of the original variables with physical units, we have

d[S]

dt
= − k+2 Eo[S]

KM + [S]
= −J ([S]) (4.26)

where J , as a function of [S], is the familiar function of Equation (4.6). Equation
(4.25) can be solved to obtain u(τ ), which can then be substituted into Equation
(4.24) to obtain v(τ ).

However, the above approach remains incomplete: at τ = 0 (and t = 0), the
initial conditions that we have imposed are u(0) = 1 and v(0) = 0 (or [S] = So and
[ES] = 0). However these initial conditions are inconsistent with Equation (4.24),
v(0) = So/(KM + So) �= 0. This conflict arises from setting the small (but finite)
ε equal to zero in Equation (4.23). In doing so, we have neglected the early kinetics
in which dv/dτ may be large compared to du/dτ . Hence at τ = 0, ε(dv/dτ ) is
not small!

To remedy this inconsistency, applied mathematicians have developed an elegant
approach. The idea is to analyze Equations (4.23) in a short timescale on the order
of ε. If we let τ̂ = τ/ε, then we have

du

d τ̂
= ε

(
−u(1 − v) +

(
k−1

k+1So

)
v

)
, (4.27a)

dv

d τ̂
= u(1 − v) − KM

So
v. (4.27b)



80 Enzyme-catalyzed reactions

0 1 2
0

0.01

0.02

0.03

0.04

0.05

[E
S

] (
m

M
)

Time (sec)

Eon

0 50 100

n F H 

Figure 4.4 Plot of enzyme complex concentration as a function of time for the
Michaelis–Menten mechanism of Equations (4.22). The concentration of ES pre-
dicted from a kinetic simulation of Equations (4.22) is plotted as a solid line. The pa-
rameter values used are k+1 = 1000 M−1 sec−1, k−1 = 1.0 sec−1, k+2 = 0.1 sec−1,
and Eo = 0.1 mM. The left plot illustrates the fast-time kinetics. The fast-time
variable v(τ̂ ) predicted by Equation (4.29) is plotted as a dashed line.

Now if we now let ε → 0, we are saying that du/d τ̂ = 0. In other words, on the
short timescale, u(τ̂ ) = 1 remains essentially constant, while v(τ̂ ) changes with
time τ̂ . Therefore, we have

dv

d τ̂
= (1 − v) − KM

So
v, (4.28)

which has the solution (with initial value v(0) = 0) of

v(τ̂ ) = So

KM + So

(
1 − e− KM +So

So
τ̂
)

. (4.29)

Notice that when τ̂ → ∞, v → So/(KM + So). This is exactly the value of v that
we arrived at for τ = 0. Thus as τ̂ → ∞ (on the fast timescale), v approaches the
derived initial condition for the slow timescale (τ = 0). Hence, the entire transient
for Michaelis–Menten kinetics can be represented by combining the short timescale
result, Equation (4.29), with the long timescale result, the solution to Equation
(4.25). The two results match seamlessly at τ̂ = ∞ and τ = 0. This is known as
asymptotic matching in singular perturbation analysis [110].

Figure 4.4 illustrates how the fast time kinetics of this system are represented by
the approximation of Equation (4.29). In the figure the enzyme complex concentra-
tion as a function of time is plotted based on a numerical simulation of the reactions
of Equation (4.22). The parameter values are identical to those used in the simula-
tion of the irreversible system in Section 3.1.3.3 of Chapter 3. (See Figure 3.5 for the
corresponding plot of substrate and product concentrations.) The ES concentration
predicted by Equation (4.29) approaches the value EoSo/(So + Km) ≈ 0.048 mM
with the exponential time constant of 1/(k+1(Km + So)), which is approximately
equal to 0.48 seconds for the parameter values listed in the figure legend.
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Figure 4.5 Conformational change of an enzyme that is responsible for elongation
in biosynthesis in bacteria: EF-Tu (elongation factor-Tu). The protein can bind
either GDP (left) or GTP (right). There are two conformations of the protein
associated with the two different nucleotides. In biochemical modeling, different
conformational states of the enzyme are usually modeled as two distinct states or
species. Image on the left is from the GDP bound structure published by Heffron
et al. [79]. Image on the right is from a structure bound to the GTP analog GPPNHP
[84]. Both structure images rendered with the KiNG program.

4.3 Enzyme with multiple binding sites: cooperativity

Cooperativity is an important concept that links enzyme kinetics at the molecular
level with functional biological processes at the cellular level. An essential idea
in cooperative enzyme kinetics is allosteric regulation, which involves binding of
ligands to enzymes resulting in changes in the enzymes’ molecular conformations,
as illustrated in Figure 4.5. The different conformational states of an enzyme, which
affect its function, can be observed using techniques such as x-ray crystallography
[47]. Historically, the idea of allosteric regulation originated with Jacques Monod,
a pioneer in the field of molecular genetics [143].

The tendency of proteins in biological systems to exist in a number of well-
defined discrete conformational states sets the study of protein kinetics apart from
the general theory of polymer physics, such as presented by Grosberg and Khokhlov
[73]. A rich theory of biological polymers, including of proteins and their confor-
mational transitions, is presented in Cantor and Schimmel’s Biophysical Chemistry
[27].

4.3.1 Sigmoidal equilibrium binding

To illustrate the phenomenon of cooperative binding, let us consider an enzyme E,
which has two binding sites for its substrate S:

E + S
K1� ES1; ES1 + S

K2� ES2. (4.30)
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The upper-case K1 and K2 are equilibrium association constants for the reactions.
The fraction of sites occupied as a function of the concentration of the free S is
determined based on the equilibrium expressions:

[ES1]

[E][S]
= K1,

[ES2]

[ES1][S]
= K2,

([E] + [ES1] + [ES2]) = Eo.

The fraction of enzyme binding sites that are occupied is calculated

fb = [ES1] + 2[ES2]

2Eo
= K1[S] + 2K1 K2[S]2

2(1 + K1[S] + K1 K2[S]2)
. (4.31)

Two special cases of Equation (4.31) are particularly worth mentioning: (i) If
the two sites are identical and independent, then K1 = 2K and K2 = K/2, where
K is the association constant for a single binding site. (K1 is equal to 2K because
there are two sites for binding the first substrate; K2 = K/2 because both sites can
release a substrate.) In this case we have

fb = K1[S] + 2K1 K2[S]2

2(1 + K1[S] + K1 K2[S]2)
= K [S]

1 + K [S]
(4.32)

(ii) The second situation is K1 ≈ 0 while K2 ≈ ∞ such that K1 K2 = K 2 is finite.
In this case the two sites are highly cooperative: either none binds or both bind to
substrate. Here we have

fb = K1[S] + 2K1 K2[S]2

2(1 + K1[S] + K1 K2[S]2)
= K 2[S]2

1 + K 2[S]2
(4.33)

We see that, as a function of [S], Equation (4.33) has sigmoidal shape. This
is the hallmark of the cooperativity: the fraction of site occupied has a more
sharp response to changes in [S] compared to the case of independent identical
binding.

4.3.2 Cooperativity in enzyme kinetics

Equation (4.31) gives us the equilibrium binding in the case of dual cooperativity,
yet it does not tell us what cooperative binding has to do with enzyme kinetics.
To illustrate the role of cooperativity in enzyme kinetics, consider the following
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Figure 4.6 The fraction of saturation, fb, of a protein with two binding sites binds
its substrate as a function of the substrate concentration [S], according to Equation
(4.31). Plots are for K = 1 mM. The solid line represents two independent sites
and the dotted line represents two highly cooperative sites.

kinetic scheme:

E � ES1 � ES2 ES1 + P

E + P

S S

k f 1

k f 2

�

�

where the enzyme E is assumed to have two catalytic sites. Product is generated
from ES1 with rate constant k f 1 and from ES2 with rate constant k f 2. If k f 1 =
k f 2/2 = k f /2 and the two binding steps are modeled using rapid pre-equilibrium,
then the flux expression will have the form J = k f Eo fb([S]), where fb([S]) is given
by Equation (4.33). If k f 1 �= k f 2, then the general form

J = a[S] + b[S]2

1 + c[S] + d[S]2

is still obeyed, where a, b, c, and d are constants.

4.3.3 The Hill coefficient

Figure 4.6 illustrates the effects of cooperativity on binding saturation. The level of
cooperativity can be quantified in terms of the steepness of the binding curve at its
50 percent-saturation level. A parameter widely used to characterize the steepness
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of this curve is the Hill coefficient, which is defined as

hn = 2

(
d ln fb

d ln[S]

)
fb=0.5

(4.34)

Thus the Hill coefficient is essentially a measure of the sensitivity of the bind-
ing saturation to the substrate concentration. For the saturation curve of Equation
(4.33), hn = 2, corresponding to theoretical maximum for the case of two binding
sites.

4.3.4 Delays and hysteresis in transient kinetics

The previous section illustrated how allosteric cooperativity can result in a sigmoidal
relationship between binding saturation and substrate concentration. In this section,
we demonstrate how a sigmoidal relationship between product concentration and
time can arise from enzyme kinetics with time lags.

Recall that in the standard Michaelis–Menten enzyme kinetics we approximate
the kinetics of substrate and product using Equation (3.32) or (4.26) for the essen-
tially irreversible case:

d[P]

dt
= −d[S]

dt
= k+2 Eo[S]

KM + [S]
. (4.35)

Taking the second derivative of [P], we obtain

d2[P]

dt2
= k+2 Eo KM

(KM + [S])2

(
d[S]

dt

)
< 0.

Thus the initial phase of the [P] as a function of t is an increasing function with
negative curvature. However, for certain enzyme kinetics, [P] as a function of t
has a positive curvature, a lag, in its initial phase. This phenomenon is known as
hysteresis, first discovered by Carl Frieden [60].

Strictly speaking, any multi-step kinetic scheme will involve a lag. However,
realistically observing hysteresis in enzyme kinetics is always associated with the
existence of one of several slow step(s) prior to the final step. This is because
if all the steps prior to the final step were fast, then there would be a rapid pre-
equilibriation and the rapid steps could be lumped into a single kinetic species (see
Section 4.2.1).

To illustrate quantitatively the above discussion, we can again use the simple
example given in Equation (4.17):

A
α
�
β

B
γ→ C.
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The kinetics of the appearance of C is given by

c(t) = 1 − λ2e−λ1t − λ2e−λ2t

λ2 − λ1
, (4.36)

in which λ1,2 are given in Equation (4.19) and c = [C]. The initial phase of c(t) in
Equation (4.36) has slope zero and curvature λ1λ2 = αγ .2 Since both α and γ are
positive, the initial curvature is positive. Hence, theoretically c(t) always has a lag.

Realistically, however, this lag phase can be too small to be observed. To see how
significant the lag phase is, we compute the inflection point at which the curvature
turns from positive to negative. Setting d2c(t∗)/dt2 = 0, we solve the inflection
point t∗ = 1

λ1−λ2
ln(λ1

λ2
). (Whether one can observe a lag phase depends on whether

the time resolution of the measurement is greater than t∗.)
Here we can see a pattern in the mathematics. Note that the initial slope of c(t)

is dc(0)
dt = γ b(0). Hence, if b(0) = 0, then dc(0)

dt = 0, and d2c(0)
dt2 = γ db(0)

dt = γαa(0).
By the same argument, if a kinetic process starts with a species that is more than
two steps away from the species C, then even the initial curvature in c(t) will be
zero.

An example of a kinetic scheme that displays hysteresis occurs when a slow
conformation change between two enzyme–substrate complexes is required before
the product can be released:

E + S
k+1�
k−1

ES
k+2�
k−2

(ES)∗
k+3→ E + P. (4.37)

Invoking the quasi-steady approximation, the steady state flux expression for this
system can be shown to be:3

JSS = k+3 Eo[S]

[S] + KS + Ko[S]
(4.38)

where

Eo = [E] + [ES] + [(ES)∗]

KS = k−1k−2 + k+2k3 + k−1k3

k+1k+2

Ko = k+3 + k−2

k+2
. (4.39)

A simulation of this system is illustrated in Figure 4.7. The solid lines show the
predicted time courses for [S] and [P] given initial conditions of [S] = 1 mM, and
[P] = [ES] = [(ES)∗] = 0 mM and parameter values listed in the figure legend. The

2 See exercise 5.
3 See exercise 6.
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Figure 4.7 Simulation of the kinetics of the system of Equation (4.37). The solid
lines show the predicted time courses for [S] and [P] given initial conditions of
[S] = 1 mM, and [P] = [ES] = [(ES)∗] = 0 mM. The dashed lines correspond to a
simulation using the quasi-steady approximation, Equation (4.39). The parameter
values used are k+1 = 100 M−1 sec−1, k−1 = 0.01 sec−1, k+2 = 0.1 sec−1, k−2 =
0.01 sec−1, k+3 = 0.05 sec−1, and Eo = 0.2 mM.

dashed lines in the upper panel correspond to a simulation based on the steady state
flux expression of Equation (4.38):

d[S]

dt
= −JSS

d[P]

dt
= +JSS. (4.40)

Enzyme binding and conformational change cause a delay of approximately ten
seconds in the appearance of product in the simulations based on the full kinetics of
Equation (4.37) compared to the simplified kinetics of Equation (4.40). This delay
results in a positive second derivative for [P] at early times.

4.4 Enzymatic fluxes with more complex kinetics

Detailed kinetic analyses of mechanisms such as in Equation (4.37) and the deter-
mination of flux expression such as Equation (4.38) is a central theme of several



4.4 Enzymatic fluxes with more complex kinetics 87

treatises on enzyme kinetics. Important texts include Segel’s encyclopedic Enzyme
Kinetics [183] and Cornish-Bowden’s cogent Fundamentals of Enzyme Kinet-
ics [35]. The essence of the field is to determine what mechanism is consistent
(and which mechanisms are inconsistent) with the available data on a given en-
zyme. In the era before scientific computing became widely available this process
was daunting. With the power of computing and numerical solutions to differ-
ential equations, we are able to compare quickly the dynamics predicted by a
particular kinetic scheme with available experimental data. However, likely due
to increased attention to reductionist molecular biology and qualitative methods
in recent decades, the attention paid to enzyme kinetic studies has diminished
since the 1970s. It is expected that in the coming years attention will be returned
to this subject due to its central role in understanding the behavior of biological
systems.

Often the key entity one is interested in obtaining in modeling enzyme kinetics
is the analytical expression for the turnover flux in quasi-steady state. Equations
(4.12) and (4.38) are examples. These expressions are sometimes called Michaelis–
Menten “rate laws.” Such expressions can be used in simulation of cellular bio-
chemical systems, as is the subject of Chapters 5, 6, and 7 of this book. However,
one must keep in mind that, as we have seen, these rates represent approxima-
tions that result from simplifications of the kinetic mechanisms. We typically use
the approximate Michaelis–Menten-type flux expressions rather than the full sys-
tem of equations in simulations for several reasons. First, often the quasi-steady
rate constants (such as KS and Ko in Equation (4.38)) are available from experi-
mental data while the mass-action rate constants (k+1, k−1, etc.) are not. In fact,
it is possible for different enzymes with different detailed mechanisms to yield
the same Michaelis–Menten rate expression, as we shall see below. Second, in
metabolic reaction networks (for example), reactions operate near steady state
in vivo. Kinetic transitions from one in vivo steady state to another may not in-
volve the sort of extreme shifts in enzyme binding that have been illustrated in
Figure 4.7. Therefore the quasi-steady approximation (or equivalently the approxi-
mation of rapid enzyme turnover) tends to be reasonable for the simulation of in vivo
systems.

4.4.1 Reciprocal of flux: the mean time of turnover

As we have seen, the catalytic cycle flux provides a useful metric for analyzing
enzyme kinetics. In this section, we analyze the turnover time for catalytic cycles
and show that the quasi-steady rate law arises from the mean cycle time [151]. In
addition, we show that for arbitrary mechanisms for a single-substrate reaction, the
steady state rate law can always be expressed using the Michaelis–Menten form
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of Equation (4.5) when the product unbinding step(s) is (are) approximated as
irreversible.

Consider the irreversible catalytic cycle illustrated in Figure 4.2A. We can com-
pute the mean time it takes to transition from state E to ES and back to E again
as the sum of the mean dwell time in state E and the mean dwell time in state
ES:

TE→ES→E = 1

k+1[S]
+ 1

k−1 + k+2
. (4.41)

However, this expression does not provide the mean cycle time. Since a fraction
of the transitions ES → E are through the reverse binding step ES → E + S, the
mean cycle time is longer than TE→ES→E computed by the above equation.

The probability that a transition ES → E is through the reaction ES → E + P
(rather than through ES → E + S) is given by:

Pforward = k+2

k+1 + k+2
(4.42)

and the mean cycle time is:

Tcycle = TE→ES→E

Pforward
. (4.43)

Combining these equations, we get

Tcycle = k−1 + k+2

k+1k+2[S]
+ 1

k+2
, (4.44)

which is the mean time of turnover of a single enzyme; 1/Tcycle is the rate of
turnover, and Eo/Tcycle gives the flux of Equation (4.5).

For a more complex mechanism the expressions for KM and Vmax might differ,
but Tcycle = 1

Vmax
( kM

[S] + 1) still holds true for any irreversible reaction with a single
substrate–enzyme binding step. In this case there may be several inter-conversion
steps between different enzyme–substrate complexes. Yet since there is only a
single substrate binding step, the only term that involves [S] in the Tcycle has to
be proportional to 1/(k+1[S]). Hence the general form of Michaelis–Menten-type
kinetics.

Next, we can use the mean turnover time to analyze the reversible catalytic cycle
illustrated in Figure 4.2B. For this case the mean dwell time in state E plus the
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mean dwell time in state ES is

TE→ES→E = 1

k+1[S] + k−2[P]
+ 1

k−1 + k+2
. (4.45)

In this case there is a total of four pathways for transition E → ES → E. The tran-
sition time TE→ES→E is the forward cycle time multiplied by the probabilities that
the transitions E → ES and ES → E are in the forward (clockwise in Figure 4.2B)
direction:

T +
cycle

(
k+2

k−1 + k+2

) (
k+1[S]

k+1[S] + k−2[P]

)
= 1

k+1[S] + k−2[P]
+ 1

k−1 + k+2
,

(4.46)

where T +
cycle is the forward cycle time.

Solving for T +
cycle we obtain

T +
cycle = 1

k+2
+ k−1 + k+2

k+1k+2[S]
+ k−2[P]

k+1k+2[S]
, (4.47)

which is Eo/J+ in Equation (4.12).

4.4.2 The method of King and Altman

In 1956, King and Altman introduced a shortcut method for determining expressions
for steady state concentrations and fluxes from diagrams of catalytic mechanisms
[112]. This procedure is useful in determining flux expressions for complex mech-
anisms and is used in the remaining sections of this chapter. Rather than providing
a general proof, which would be too cumbersome for our purposes, here we illus-
trate how the method is applied to the specific catalytic mechanism illustrated in
Figure 4.8. This is an example of an enzyme catalyzing the reaction A � B, with
four distinct enzyme states, E1, EA, EB, and E2.

To effectively express concentrations and fluxes for this example, we intro-
duce the shorthand notations , , , , , , , , , , , , ,

, , and , where each of these symbols represents a product of three first-
order or pseudo-first-order rate constants. These symbols (called directional di-
agrams) represent the product of rate constants along the path defined by the
diagram. The symbol represents the product k+2k+3k+4. Where substrate or
product concentrations participate in one of the state transitions for a diagram, the
pseudo-first-order rate constant (which incorporates the steady state reactant con-
centration) is used. Therefore the diagram represents the product k−4k−3k−2[B],
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E1 EA

E2 EB

k+1 [A]

k−3 [B]

k
+

2k +
4 k

−4

k−1

k
−2

k+3

Figure 4.8 Four-state catalytic mechanism for the reaction A � B.

where k−3[B] is the pseudo-first-order rate constant for the state transition from E2

to EB.
For the example illustrated in Figure 4.8 the full set of directional diagrams is

defined:

= k−4k−3k−2[B] = k+2k−3k−4[B]
= k+2k+3k+4 = k+2k+3k−4

= k+4k+1k+2[A] = k+1k−2k+4[A]
= k−2k−1k−4 = k−1k−2k+4

= k−3k−2k−1[B] = k+1k−2k−3[A][B]
= k+1k+2k+3[A] = k+1k+2k−3[A][B]
= k+3k+4k+1[A] = k−1k+3k+4

= k−1k−4k−3[B] = k−1k+3k−4

for this mechanism.
The steady state concentrations of any of the enzyme states E1, EA, EB, or E2

can be expressed as the sum of all the directional diagrams that feed into a given
state divided by the sum of all diagrams. For example, the directional diagrams
that feed into state EA are , , , and . The concentration [EA] is given
by

[EA]

Eo
=

+ + +
+ + + + + + + + + + + + + + +

= (k+3k+4k+1 + k+1k−2k+4)[A] + k−4k−3k−2[B] + k+1k−2k−3[A][B]



(4.48)

where Eo = [E1] + [EA] + [EB] + [E2] is the total enzyme concentration and 


represents the sum of all diagrams.
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Similarly the steady state concentration of E2 is given by

[E2]

Eo
=

+ + +
+ + + + + + + + + + + + + + +

= k+4k+1k+2[A] + (k−1k−4k−3 + k+2k−3k−4)[B] + k+1k+2k−3[A][B]



(4.49)

and the steady state flux can be expressed J = k+2[EA] − k−2[E2].
For this and other mechanisms, the set of directional diagrams used in this anal-

ysis is the set of all directed graphs that include the maximal number of edges (lines
in the graph) while forming no closed loops and no diverging edges. The require-
ment of no diverging edges means that for any node in a diagram (corresponding
to an enzyme state) with more than one edge connected, the directions associated
with the edges do not diverge. For example, the diagram is not allowed.

To illustrate this point, we consider another four-state mechanism for A � B:

E1

EA

A

EB

AB

B

E2

which involves two unbound enzyme states E1 and E2. The complete set of direc-
tional diagrams for this mechanism is:
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4.4.3 Enzyme-catalyzed bimolecular reactions

Previous sections of this chapter have focused on developing general principles for
enzyme-catalyzed reactions based on analysis of single-substrate enzyme systems.
Yet the majority of biochemical reactions involve multiple substrates and products.
With multiple binding steps, competitive and uncompetitive binding interactions,
and allosteric and covalent activations and inhibitions possible, the complete set of
possible kinetic mechanisms is vast. For extensive treatments on a great number of
mechanisms, we point readers to Segel’s book [183]. Here we review a handful of
two-substrate reaction mechanisms, with detailed analysis of the compulsory-order
ternary mechanism and a cursory overview of several other mechanisms.

4.4.3.1 Compulsory-order ternary mechanism

Consider first the case where two substrates (A and B) bind to an enzyme in an
ordered manner and two products (P and Q) dissociate in an ordered manner as
well:

E + A
k+1�
k−1

EA, E · A + B
k+2�
k−2

E · AB,

E · AB
k+3�
k−3

E · Q + P, E · Q
k+4�
k−4

E + Q.

This mechanism is known as the “ordered bi-bi” mechanism (“bi-bi” denotes a
bi-substrate bi-product reaction), or the “compulsory-order ternary mechanism”,
where the term “ternary” refers to the three-species complex formed by the binding
of two substrates to the enzyme.

This catalytic mechanism is illustrated in Figure 4.9. Here E represents free
(unbound) enzyme; E·A represents the complex formed between enzyme and the

E E·A

E·Q E·AB

k+1a

k−3p

k
+

2 bk
+

4

k
−4 q

k1

k
−2

k+3

Figure 4.9 Basic compulsory-order ternary-complex mechanism. The basic or-
dered mechanism for the general reaction A + B � P + Q, with a = [A], b = [B],
p = [P], and q = [Q] is illustrated. The four states are unbound enzyme (E),
enzyme–substrate A complex (E·A), enzyme–substrate A-substrate B complex
(E·AB), and enzyme–product Q complex (E·Q).
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species A, which binds first; E·AB is the ternary complex that represents enzyme
bound to both substrates or both products; and E·Q represents the complex formed
between enzyme and the species Q. In Figure 4.9 the substrate and product con-
centrations are denoted a = [A], b = [B], p = [P], and q = [Q] and the reactant
concentrations are incorporated into apparent mass-action rate constants for the
state transitions between the four enzyme states.

From the four-state diagram of Figure 4.9, the expression for the steady state
flux through the reaction can be obtained from the diagrammatic method of King
and Altman [112]. The flux J may be expressed

J = N

D
(4.50)

where

N = Eok+1k+2k+3k+4(ab − pq/Keq) (4.51)

and

D = (k+2k+3k+4b + k−1k+3k+4 + k−2k−1k+4 + k−3k−2k−1 p) I1

+ (k−4k−3k−2 pq + k+3k+4k+1a + k+4k+1k−2a + k+1k−2k−3ap) I2

+ (k−4k−3k+2bpq + k−1k−4k−3 pq + k41k+1k+2ab + k+1k+2k−3abp) I3

+ (k−4k+3k+2 pq + k−1k−4k+3q + k−1k−2k−4q + k+1k+2k+3ab) I4.

(4.52)

The constant Keq is the equilibrium constant for the reaction; Eo = [E] + [E · A] +
[E · AB] + [E · Q] is the total enzyme concentration; and the Ii factors in Equation
(4.52) account for non-productive binding (inhibition) of inhibitors to each of the
enzyme states. These inhibition factors are computed

Ii = 1 +
∑

j

c j Ki j , (4.53)

where Ki j is the binding constant for non-productive binding of species j to enzyme
state i and c j is the concentration of species j .

Defining

n = N

k−1k+4(k+3 + k−2)

and

d = D

k−1k+4(k+3 + k−2)
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The flux equation is J = n/d, where the numerator and denominator written in
terms of kinetic constants are

n = Vm

KeA Km B
(ab − pq/Keq), (4.54)

and

d =
(

1 + Km Ab

KeA Km B
+ Km Q p

KeQ Km P

)
I1

+
(

a

KeA
+ Km Qap

KeA Km P KeQ
+ Km A pq

K 2
eA Km B K ′

eq

)
I2

+
([

1

KeA Km B
− Km Q K ′

eq

K 2
eQ Km P

]
ab +

[
1

Km P KeQ
− Km A

K 2
eA Km B K ′

eq

]
pq

+ Km Qabp

KeA KeB Km P KeQ
+ Km Abpq

KeA Km B KeP KeQ

)
I3

+
(

q

KeQ
+ Km Q K ′

eqab

K 2
eQ Km P

+ Km Abq

KeA Km B KeQ

)
I4. (4.55)

The kinetic constants in Equation (4.55) are defined:

Vm = Eok+3k+4

k+3 + k+4

Km A = k+3k+4

k+1(k+3 + k+4)

Km B = k+4(k−2 + k+3)

k+2(k+3 + k+4)

Km P = k−1(k−2 + k+3)

k−3(k−2 + k−1)

Km Q = k−1k−2

k−4(k−1 + k−2)

KeA = k−1

k+1

KeB = k−2

k+2

KeP = k+3

k−3

KeQ = k+4

k−4
. (4.56)
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Expressing the steady state kinetics in terms of these parameters, only the Vm pa-
rameter, which has units of mass per unit time per unit volume, has units that include
time. All other parameters have units of concentration (mass per unit volume). In
addition, the eight concentration parameters cannot vary independently. For exam-
ple we can compute KeQ in terms of the other parameters if the equilibrium constant
of the reaction is known:

KeQ = Keq KeA KeB

KeP
. (4.57)

4.4.3.2 Overview of other bimolecular mechanisms

The “random bi-uni” mechanism (random bi-substrate binding order with single
product) has the form:

E + A
k+1�
k−1

E · A, E + B
k+2�
k−2

E · B,

E · A + B
k+3�
k−3

E · AB, E · B + A
k+4�
k−4

E · AB,

E · AB
k+5�
k−5

E + P.

The random bi-uni quasi-steady flux is expressed (in terms of rate constants) [183]

J = k+5 (k+1k+3(k−2 + k+4[A]) + k+2k+4(k−1 + k+3[B])) ([A][B] − Kd[P])

D
(4.58)

where

D =
(

[A][B] + k−3[A]

k+3
+ k−3k−1

k+3k+1
+ k−3k−1k+2[B]

k+3k+1k−2

)
× (k+1k+3(k−2 + k+4[A]) + k+2k+4(k−1 + k+3[B]))

+ (k+5 + k−5[P])(k−2 + k+4[A])(k−1 + k+3[B])

+ (k−1 + k+3[B])(k+2k+5[B] + k−4k−5[P])

+ (k−2 + k+4[A])(k+1k+5[A] + k−3k−5[P])

and the constant Kd is

Kd = k−1k−3k−5

k+1k+3k+5
= k−2k−4k−5

k+2k+4k+5
.

The so-called “ping-pong” mechanism has the form
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E + A
k+1�
k−1

E · A
k+2�
k−2

E∗ + P, E∗ + B
k+3�
k−3

E∗ · B
k+4�
k−4

E + Q.

In this case the enzyme first reacts with one substrate, leading to a covalently
modified (unbound) enzyme E∗ and the release of P. The enzyme in state E∗ then
reacts with a second substrate Q and is converted back to E. An example of an
enzyme that displays this mechanism is phosphoglycerate mutase [105].

The flux expression for the ping-pong mechanism is [183]

J = k+1k+2k+3k+4[A][B] − k−1k−2k−3k−4[P][Q]

D
(4.59)

where

D = k+1k+2(k−3 + k+4)[A] + k+3k+4(k+2 + k−1)[B] + k−1k−2(k−3 + k+4)[P]

+ k−3k−4(k−1 + k+2)[Q] + k+1k+3(k+2 + k+4)[A][B]

+ k+1k−2(k−3 + k+4)[A][P] + k−2k−4(k−1 + k−3)[P][Q]

+ k+3k−4(k−1 + k+2)[B][Q].

J. J. Hopfield has proposed a so-called energy relay model [101], in which the
ping-pong mechanism operates on two identical substrate molecules and releases
two identical product molecules. The model introduces the novel idea of dynamic
cooperativity by which biomolecular processes in living cells, such as DNA repli-
cation and protein biosynthesis, can achieve high fidelity. The model was developed
as an alternative to the kinetic proofreading mechanism which we shall discuss in
Chapter 5.

4.4.4 Example: enzyme kinetics of citrate synthase

As an example to illustrate analysis of kinetic data to characterize the mechanism
of a real enzyme, here we apply the general compulsory-order ternary mechanism
introduced above to citrate synthase to determine kinetic parameters for several
isoforms of this enzyme and to elucidate the mechanisms behind inhibition by
products and other species not part of the overall chemical reaction.

Citrate is a key intermediate of the tricarboxylic acid (TCA) cycle, also known as
the Krebs cycle, in the central metabolism of cells. (The set of reactions of the TCA
cycle will be considered in some detail in Chapter 6.) One reaction in the cycle is the
combination of oxaloacetate (OAA) and the acetyl group from acetyl coenzyme
A (ACCOA), in the presence of H2O, to form citrate (CIT), thiol coenzyme A
(COASH), and hydrogen ion (H+). The chemical reference reaction for this aldol
condensation-hydrolysis reaction catalyzed by citrate synthase is:

ACCOA0 + OAA2− + H2O � CIT3− + COAS− + 2 H+ (4.60)
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Table 4.1 Thermodynamic and cation binding parameter values for reactants
involved in citrate synthase reaction

� f Go Ion-bound
Reactant Abbr. Ref. species (kJ·mol−1) species pK

water H2O H2O −235.74 – –

coenzyme A COASH COAS− −0.2 8.13

acetyl- ACCOA ACCOA0 −178.19 – –
coenzyme A

oxaloacetate OAA OAA2− −794.41 MgOAA0 0.0051a

citrate CIT CIT3− −1165.59 HCIT2− 5.63
MgCIT− 3.37a

KCIT2− 0.339a

adenosine ATP ATP4− −2771.00 HATP3− 6.59
triphosphate MgATP2− 3.82a

KATP3− 1.87a

adenosine ADP ADP3− −1903.96 HADP2− 6.42
diphosphate MgADP− 2.79a

KADP2− 1.53a

adenosine AMP AMP2− −1034.66 HAMP− 6.22
monophosphate MgAMP0 1.86a

KAMP− 1.05a

succinyl- SCOA SCOA− −507.55 HSCOA0 3.96
coenzyme A

All values from [4] unless otherwise noted.
aNIST database 46: Critical Stability Constants [134].

where the biochemical species and related thermodynamic data are listed in Table
4.1. Data for additional species that act as inhibitors of the citrate synthase enzymes
are also listed in the table.

The standard Gibbs free energy is computed

�r Go
cts = � f Go

C I T + � f Go
C O ASH − � f Go

ACC O A − � f Go
O AA − � f Go

H2 O

= 42.36 kJ · mol−1 (4.61)

where the basic thermodynamic data are listed in Table 4.1. The equilibrium con-
stant for reaction is computed from the standard Gibbs free energy

K o
eq,cts = 1

h2
exp

(
−�r Go

cts

RT

)
(4.62)
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where we have introduced the definition h = 10−pH and this equilibrium constant
explicitly accounts for pH. Therefore this constant represents the equilibrium ratio
of [COAS−][CIT3−]/[ACCOA0][OAA2−] at given pH. The relationships between
species and reactant concentrations, which depend on the pH and concentration of
metal ions that reversibly bind to biochemical species, are expressed in terms of
the binding polynomials:

PO AA = 1 + [Mg2+]

KM,O AA

PACC O A = 1

PC I T = 1 + h

K H,C I T
+ [K+]

KK ,C I T
+ [Mg2+]

KM,C I T

PC O ASH = 1 + h

K H,C O ASH

PAT P = 1 + h

K H,AT P
+ [K+]

KK ,AT P
+ [Mg2+]

KM,AT P

PAD P = 1 + h

K H,AD P
+ [K+]

KK ,AD P
+ [Mg2+]

KM,AD P

PAM P = 1 + h

K H,AM P
+ [K+]

KK ,AM P
+ [Mg2+]

KM,AM P

PSC O A = 1 + h

K H,SC O A
. (4.63)

Note that only states that are expected to be significant in the pH and ionic range
studied are included in these calculations. Therefore some binding polynomials
do not include terms for all possible cation-bound states. Given these forms of the
binding polynomials, the relationships between the reference species concentrations
and the reactant concentrations take the usual form:

[OAA2−] = [OAA]/POAA

[ACCOA0] = [ACCOA]/PACCOA

[CIT3−] = [CIT]/PCIT

[COAS−] = [COASH]/PCOASH

[ATP4−] = [ATP]/PATP

[ADP3−] = [ADP]/PADP

[AMP2−] = [AMP]/PAMP

[SCOA−] = [SCOA]/PSCOA. (4.64)
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The apparent equilibrium constant for the biochemical reaction is computed as
a function of pH, [K+], and [Mg2+]:

Keq,cts = K o
eq,cts

PC O ASH PC I T

PO AA PACC O A
. (4.65)

Although investigations have led to proposing more complex behavior, involving
cooperativity and random order and dead-end binding of substrates [135], here we
propose that the standard compulsory-order ternary-complex mechanism derived
above can explain the kinetic behavior of citrate synthase with substrate and prod-
ucts identified as: a = [OAA2−], b = [ACCOA0], p = [COAS−], q = [CIT3−].
The specific mechanism is:

E + OAA2− k+1�
k−1

E · OAA2−

E · OAA2− + ACCOA0 k+2�
k−2

E · OAA2− · ACCOA0

E · OAA2− · ACCOA0 + H2O
k+3�
k−3

E · CIT3− + COAS− + 2 H+

E · CIT3− k+4�
k−4

E + CIT3−. (4.66)

In this mechanism only the third reaction (in which hydrogen ion explicitly appears)
depends on pH. Since KeP , the equilibrium constant for the third reaction, depends
on pH while the others do not, we compute KeP as a function of the equilibrium
constant for the reference reaction

KeP = K o
eq,cts KeA KeB

KeQ
. (4.67)

The rate constant k−3 is assumed to depend on pH according to the formula k−3 =
(h/10−7)2k ′

43 where k ′
43 is independent of pH. Therefore the kinetic constant Km P

is defined to depend on pH as

Km P =
(

10−7

h

)2

K ′
m P , (4.68)

where K ′
m P is a kinetic constant that is independent of pH. In addition to the pH

dependency of the kinetic constants, the overall enzyme activity depends on pH,
with the numerator of the flux expression taking the form:

n = Vm

KeA Km B

ab − pq/K o
eq,cts

1 + h/Ki H
(4.69)
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Table 4.2 Kinetic parameter values for citrate synthase

Parameter Rat kidney Rat liver Bovine heart

Vm (µmol·min−1·µg−1) 0.3355 – –
Km A (µM) 8.227 1.347 1.775
Km B (µM) 7.402 13.62 8.041
K ′

m P (µM) 0.156 – –
Km Q (mM) 4.548 – –
KeA (µM) 0.8879 1.936 1.143
KeB (µM) 30.05 – –
KeQ (mM) 3.618 – –
Ki AT P (µM) – 38.43 70.11
Ki AD P (µM) – 139.4 –
Ki AM P (µM) – 1023 –
Ki SC O A (µM) – – 70.06
Ki H (µM) – 0.055 –

which is used to reproduce the pH dependency observed by Shepherd and Garland
[63]. Equation (4.69) assumes that the enzyme is a monobasic acid, with dissociation
constant Ki H .

Studies have revealed that a number of substances, including succinyl-coenzyme
A and adenine nucleotides, act as inhibitors of citrate synthase. Analysis of kinetic
data on citrate synthase from rat liver and bovine heart indicate a model involving
ATP, ADP, and AMP inhibiting the enzyme by forming unproductive complexes
with enzyme state 2 is consistent with the observed data. This study was not able to
elucidate the site of SCOA binding: models assuming binding at either state 1 or state
2 are equally well able to explain the observed data. Since the adenine nucleotide
inhibition was determined to occur at enzyme state 2, a model was developed
assuming that SCOA binds to this complex as well. Based on this formulation of
the model, the inhibition term I2 is

I2 = 1 + [ATP4−]

Ki AT P
+ [ADP3−]

Ki AD P
+ [AMP2−]

Ki AM P
+ [SCOA−]

Ki SC O A
(4.70)

and inhibition at other complexes is not considered: I1 = I3 = I4 = 1.
Kinetic parameter values for citrate synthase for several isoforms of the model

may be estimated for the general analysis of the compulsory-order ternary mecha-
nism outlined in Section 4.4.3.1 based on observed data. The parameter estimates
for citrate synthase obtained from rat kidney, rat liver, and bovine heart are listed
in Table 4.2.
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Figure 4.10 Fits to kinetic data from [135] on the operation of citrate synthase from
rat kidney. Data (flux as a function of substrate concentrations) were obtained from
Figures 2, 3, 4, 5, 6, 7, and 9 of [135]. Initial fluxes (µmol of COASH (or CIT)
synthesized per minute per µg of enzyme) measured at the substrate concentrations
indicated are plotted in A, B, C, and D. For A, B, and D, the initial product (CIT
and COASH) concentrations are zero. In C, flux was measured with COASH added
in various concentrations to investigate the kinetics of product inhibition. E and F
show fits to kinetic data on the reverse operation of kidney enzyme, with product
concentrations indicated in the figure. All data were obtained at pH = 8.1 at 28 ◦C.
Model fits in all cases are plotted as solid lines.
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Figure 4.11 Fits to kinetic data from [63] on the forward operation of liver enzyme.
Measured flux in arbitrary units was obtained from Figures 1, 2, 5, 6, 13, and 14 of
[63]. For all cases the product (CIT and COASH) concentrations are zero and total
substrate and inhibitor concentrations are indicated in the figure. Data obtained with
no inhibitors present are plotted in A and B. In C the relative activity (normalized
to its maximum) of the enzyme is plotted as functions of [ATP], [ADP], and [AMP]
measured at [ACCOA] = 11 µM and [OAA] = 1.9 µM. D. The measured flux is
plotted as a function of [ACCOA] at [OAA] = 34 µM with ATP, ADP, and AMP
present as indicated in the figure. In E the relative activity of the enzyme is plotted as
functions of [ATP] at [Mg2+] = 0 mM (shaded circles), 0.5 mM (shaded triangles),
1.0 mM (shaded squares), 2.0 mM (open circles), and 4.0 mM (diamonds). In
F relative activity is plotted as a function of pH. Substrate concentrations are
[ACCOA] = 21 µM and [OAA] = 8.6 µM. All data were obtained at 25 ◦C. pH is
fixed a 7.4 for A. Model fits are plotted as solid lines.
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Figure 4.12 Analysis of data from Smith and Williamson [188] on inhibition of
cardiac enzyme. Measured flux in arbitrary units was obtained from Figures 1
and 2 of [188]. A. Flux is plotted as a function inhibitor ATP concentration for
[ACCOA]=16 µM and [OAA]=1.13 and 2.25 µM. B. Flux is plotted as a function
of [ACCOA] at [OAA] = 5 µM at three different concentrations of ATP indicated
in figure. C. Flux is plotted as a function of [ACCOA] at [OAA] = 3.1 µM at three
different concentrations of SCOA indicated in figure. All data were obtained at
pH = 7.4 at 21 ◦C. Model fits are plotted as solid lines.

Note that data sensitive to all parameter values are not available for all isoforms
of the enzyme. Therefore estimates are not provided for all parameters for all tissue
types.

The data and associated model fits used to obtain these kinetic constants are
shown in Figures 4.10 through 4.12. These data on quasi-steady reaction flux as
functions of reactant and inhibitor concentrations are obtained from a number of
independent sources, as described in the figure legends. Note that the data sets
were obtained under different biochemical states. In fact, it is typical that data on
biochemical kinetics are obtained under non-physiological pH and ionic conditions.
Therefore the reported kinetic constants are not necessarily representative of the
biochemical states obtained in physiological systems.
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In this analysis we have addressed and corrected this problem by posing the
reaction mechanism in terms of species and ensuring that mechanisms properly
account for thermodynamics. This basic approach was first introduced by Frieden
and Alberty [61], yet has received little attention.

Concluding remarks

Predicting and understanding how and why concentrations and states of
biomolecules in living systems change with time represents the central goal of quan-
titative research in biological systems. Since enzymes catalyze nearly all of the
chemical transformations occurring in a cell, enzyme kinetics represents the heart
and soul of this endeavor. While we have not yet reached the point where all of
the processes occurring in a cell can be simulated in a convincing way, a great
deal of individual cellular processes are realistically represented by the techniques
introduced in this chapter. Integrating individual processes together, we are able to
build computer simulations of biological systems. While systems of progressively
increasing complexity are considered in Chapters 5, 6, and 7 of this book, we hope
that readers will find the tools of enzyme kinetics useful in building simulations of
scale and realism beyond anything described in this book or elsewhere.

Exercises

4.1 Show that the non-dimensional Equations (4.23) follow from u = [S]/So, v = [ES]/Eo,
and Equations (4.22). Substitute Equation (4.24) into Equation (4.23) to yield Equation
(4.25).

4.2 Equation (4.25) has an analytic solution in which τ can be expressed as an explicit
function of u(τ ). What is this function? Plot u(τ ) versus τ based on this equation.

4.3 Determine the constants a, b, c, and d in terms of K1, K2, k f 1, and k f 2 for the example
in Section 4.3.2.

4.4 What is the Hill coefficient for the function y(x) = xn/(xn + xn
o )? What is the value of

the Hill coefficient for the curves plotted in Figure 4.6? [Hint: the identity x
y

dy
dx = d ln x

d ln y
is useful.]

4.5 Show that the relationship λ1λ2 = αγ , used in Section 4.3.4, is satisfied by the eigen-
values of Equation (4.17).

4.6 Derive the steady state rate expression of Equations (4.38) and (4.39) from the kinetic
mechanism of Equation (4.37). What is the apparent Michaelis–Menten constant for
this mechanism?

4.7 Show that the reverse cycle time for the catalytic cycle illustrated in Figure 4.2B is
given by T −

cycle = Eo/J− for this mechanism.
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Biochemical signaling modules

Overview

The central dogma of molecular biology describes how one form of biological
information (an organism’s genetic sequence) is processed in terms of DNA repli-
cation, RNA transcription, and protein synthesis. However, a related mystery is yet
to be worked out in sufficient detail: how is the information encoded in the DNA
(i.e., genotypes) related to cellular functions (i.e., phenotypes)? How do different
signals tell different cells to synthesize different proteins?

To tackle these questions we adopt a view of the cell as a machine that processes
diverse information [206, 166]. The hardware for cellular information processing
consists of specialized biochemical reactions and their associated molecules, form-
ing so-called signal transduction networks. As we have discussed in the previous
chapter, the majority of biochemical reactions involve proteins acting as enzymatic
catalysts. Reactions in signaling systems are no exception. In fact it is a common
motif in signaling systems for enzymes to carry information via regulations of
their biochemical activities; activities are modulated by covalent modification or
allosteric binding by effector molecules.

A central question in cellular biology is now to elucidate (meaning to develop
models with reliable predictive power) the mechanisms by which the cells transduce
information and perform their functions. Cellular biochemical signaling systems
are customarily visualized as “logic circuits”; the components for the circuitry, now
popularly called “modules” [78], consist of molecules and biochemical reactions.
Hence they can be subjected to kinetic and thermodynamic analysis as we have
introduced in the previous chapters. In this chapter, we study several such modules
that occur widely in cellular biology.

5.1 Kinetic theory of the biochemical switch

Biochemical switches inside a cell are usually based on the conformational tran-
sition of a protein: the protein can have little or no biological activity in one state

105
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but high biological activity in another. Conformational transition between the two
states, thus, constitutes a molecular switch. The biological activity of interest is
often the catalytic activity of an enzyme and the transitions are effected via enzyme-
mediated reactions. Thus often enzymes serve as substrates for other enzymes in
biochemical signaling pathways.

There are essentially two types of control mechanisms for biochemical switching:
allosteric cooperative transition and reversible chemical modification. Allosteric
cooperativity, which was discussed in Chapter 4, was discovered in 1965 by Jacques
Monod, Jefferies Wyman, and Jean-Pierre Changeux [143], and independently by
Daniel Koshland, George Némethy and David Filmer [116]. The molecular basis of
this phenomenon, which is well understood in terms of three-dimensional protein
crystal structures and protein–ligand interaction, is covered in every biochemistry
textbook [147] as well as special treatises [215].

Reversible chemical modification of enzymes, which was discovered in 1955 by
Edmond Fischer and Edwin Krebs [58], is a more prevalent mechanism for cel-
lular signaling switching. Fischer and Krebs showed that enzymes can be turned
from an inactive form to an active form via phosphorylation of certain residues of
the protein. Enzymes that catalyze phosphorylation (addition of a phosphate group
coupled with ATP or GTP hydrolysis) are called protein kinases. Enzymes that
catalyze dephosphorylation (which is not the reverse reaction of the phosphoryla-
tion) are called phosphatases. For example, a protein tyrosine phosphatase is an
enzyme that catalyzes the removal of a phosphate group from a tyrosine residue in
a phosphorylated protein [57].

Complex signaling networks can result from having a number of interacting
enzymes catalyzing the activation and deactivation (or switching-on and switching-
off) of one another. Often non-protein messenger molecules are thrown into the mix
as well, as is shown in Figure 5.1, which illustrates the signaling network associated
with phosphatidylinositol-3,4,5-triphosphate (PIP3). The PIP3 pathway is involved
in regulating a number of processes in a number of cell types. One of the tasks of
computational cell biology is to translate cartoon illustrations such as Figure 5.1
into quantitative biochemical kinetic models.

If we concentrate on one particular component of this map – the phosphorylation
of PI(4,5)P2 to PI(3,4,5)P3 by PI3K and the dephosphorylation of PI(3,4,5)P3 to
PI(4,5)P2 by PTEN, we can study the detailed enzyme kinetic scheme of this so-
called phosphorylation–dephosphorylation cycle, which is illustrated in Figure 5.2.
This illustrated cycle represents a ubiquitous module in biochemical signaling. It
could, for example, represent the phosphorylation of mitogen-activation protein
kinase (MAPK) by MAPK kinase (MAPKK) and dephosphorylation of MAPK by
MAPK phosphatase (MKP).
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Figure 5.1 The PIP3 signaling pathway obtained from the Alliance for Cell Sig-
naling [177]. Proteins are illustrated as circles and non-protein molecules as trian-
gles. Arrows indicate the direction of information flow in the network, including
phosphorylation reactions, such as the phosphorylation of PI to PI(4)P, which is
catalyzed by phosphoinositide 4-kinase (PI4K), and allosteric activations indicated
by arrows with “+” signs.
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Figure 5.2 A typical cellular biochemical switch consisting of a phosphorylation–
dephosphorylation cycle. The substrate molecule S may be a protein or other
signaling molecule. If S is a protein then the phosphorylation of S is catalyzed by a
protein kinase (K) and the dephosphorylation is catalyzed by a protein phosphatase
(P). The entire cycle is accompanied by the reaction ATP � ADP+PI. In the
context of mitogen-activation protein kinase pathway, S, K, and P correspond to
MAPK, MAPKK, and MKP, respectively. In the context of the example from the
PIP3 pathway, the kinase is PI3K and the phosphatase is PTEN.
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5.1.1 The phosphorylation–dephosphorylation cycle

The simplest kinetic model for the phosphorylation–dephosphorylation cycle as-
sumes that the concentration of substrate S is sufficiently lower than the Michaelis–
Menten constants: [S] � K1 and K2, where K1 and K2 are the effective Michaelis–
Menten constants for S for the kinase and phosphatase, respectively. Similarly,
[S∗] � K ∗

1 and K ∗
2 , where K ∗

1 and K ∗
2 are the effective Michaelis–Menten constants

for S∗. Applying the formulas from Equation (4.9) to the mechanism of Figure 5.2,
we have the following expressions for the Michaelis–Menten parameters:

K1 = k−1 + k+2

k+1[ATP]
, K2 = k−3 + k+4

k−4[PI]

K ∗
1 = k−1 + k+2

k−2[ADP]
, K ∗

2 = k−3 + k+4

k+3
(5.1)

when ATP, ADP, and PI concentrations are held fixed. Under the assumption that
the enzymes remain unsaturated the reversible Michaelis–Menten flux of Equation
(4.10) varies linearly with reactant concentrations. For this system, we have

Jk = k+2 Ko

K1
[S] − k−1 Ko

K ∗
1

[S∗]

Jp = k+4 Po

K ∗
2

[S∗] − k−3 Po

K2
[S], (5.2)

where Jk and Jp are the net kinase and phosphatase fluxes and Ko and Po are the
concentrations of the kinase and phosphatase enzymes, respectively.

Equivalently, we model the system with mass action kinetics as:

S + ATP
a+ Ko�
a− Ko

S∗ + ADP, S∗ b+ Po�
b− Po

S + PI, (5.3)

with rate constants for phosphorylation

a+ = k+1k+2

k−1 + k+2
, a− = k−1k−2

k−1 + k+2
,

and for dephosphorylation

b+ = k+3k+4

k−3 + k+4
, b− = k−3k−4

k−3 + k+4
. (5.4)

The kinetics is governed by

d[S]

dt
= (

a−[S∗][ADP] − a+[S][ATP]
)

Ko + (
b+[S∗] − b−[S][PI]

)
Po, (5.5)



5.1 Kinetic theory of the biochemical switch 109

in which [S] + [S∗] = So is the total substrate concentration. The steady state pop-
ulation fraction in the phosphorylated state is

f ∗ = [S∗]ss

[So]
= a+[ATP]Ko + b−[PI]Po

a+[ATP]Ko + b−[PI]Po + a−[ADP]Ko + b+ Po
,

which can be rewritten as [166]

f ∗ = [S∗]ss

So
= θ + µ

θ + µ + θ/(µγ ) + 1
, (5.6)

with the three parameters

θ = a+[ATP]Ko

b+ Po
= k+1k+2(k−3 + k+4)[ATP]Ko

(k−1 + k+2)k+3k+4 Po
, (5.7a)

µ = b−[PI]

b+
= k−3k−4[PI]

k+3k+4
, (5.7b)

γ = a+b+[ATP]

a−b−[ADP][PI]
= k+1k+2k+3k+4[ATP]

k−1k−2k−3k−4[ADP][PI]
. (5.7c)

Equation (5.6) is the fundamental equation for a phosphorylation–dephosphory-
lation switch. The parameter θ is the control parameter that represents the ratio of
the apparent kinase activity to that of phosphatase; K catalyzes phosphorylation
and P catalyzes dephosphorylation. The parameter µ characterizes the level of S∗

in the absence of the kinase K (when θ = 0); µ determines the basal activity and
is usually very small.

The parameter γ represents the amount of available free energy for ATP hy-
drolysis; specifically, −RT ln γ is the free energy change associated with ATP
hydrolysis. To see this, consider the four reactions of Figure 5.2:

S + ATP + K
k+1�
k−1

KS

KS
k+2�
k−2

S∗ + ADP + K

S∗ + P
k+3�
k−3

S∗P

S∗P
k+4�
k−4

S + PI + P,

which sum to the overall reaction:

ATP � ADP + PI,

with equilibrium constant Keq = (k+1k+2k+3k+4)/(k−1k−2k−3k−4). Thus �G AT P =
− RT ln γ .
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Figure 5.3 Phosphorylation–dephosphorylation cycle activation as a function of
the activating signal θ and available free energy γ . The solid lines and dashed lines
are without and with enzyme saturation, i.e., Equations (5.6) and (5.18), respec-
tively. In both cases, from top to bottom: γ = 1010, 104, and 103. All computations
are done with µ = 0.001, and for the dashed lines K1

So
= K2

St
= 0.01. If γ = 1, then

both the solid and dashed lines will be strictly horizontal.

Equation (5.6) indicates that if there is no available free energy for ATP hydrolysis
(γ = 1) then

[S∗]ss

So
= µ

1 + µ
, (5.8)

which is independent of θ altogether. From this we draw an important lesson:
a biochemical switch cannot function without free energy input. No energy, no
switch. The solid lines in Figure 5.3 show how f ∗ changes as a function of both θ

and γ according to Equation (5.6).
We can further characterize the amplitude of the switch, AO S:

AO S =
(

[S∗]ss

So

)
θ=∞

−
(

[S∗]ss

So

)
θ=0

= µ(γ − 1)

(µγ + 1)(µ + 1)
≤ γ − 1

1 + γ + 2
√

γ
. (5.9)

The inequality indicates that the optimal µ for the maximal AO S is when µ = 1√
γ

.
Substituting �G AT P = −RT ln γ , we have the optimal AO S

optimal AO S =
√

γ − 1√
γ + 1

= tanh

(−�G

4RT

)
. (5.10)

As a function of θ , f ∗ in Equation (5.6) increases with θ . Hence, we can char-
acterize the sharpness of the transition in terms of the Hill coefficient introduced in
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Figure 5.4 Switch-like behavior of the phosphorylation–dephosphorylation cycle.
The left panel illustrates the off position (unphosphorylated) of the biochemical
switch, in which the phosphatase activity is higher than the kinase activity. When
the kinase activity exceeds the phosphatase activity, as in the right panel, the
biochemical switch is in the opposite state.

Equation (4.34):1

nh = 2

(
d ln f ∗

d ln θ

)
f ∗=0.5

= (1 − µ)(µγ − 1)

µ(γ − 1)
. (5.11)

Thus nh ≤ 1 and equals 1 when µ � 1 and µγ � 1. That is,

f ∗ = θ

1 + θ
, (5.12)

which is the maximum obtainable sensitivity for the phosphorylation–dephosphory-
lation kinetics given in Equation (5.3).

5.1.2 Ultrasensitivity and the zeroth-order
phosphorylation–dephosphorylation cycle

Can a phosphorylation–dephosphorylation switch be more sensitive to the level of
kinase concentration than nh = 1 as given in Equation 5.12? We note that the kinetic
scheme in Equation (4.7) is obtained under the assumption of no Michaelis–Menten
saturation. Since this assumption may not be realistic, let us move on to study the
enzyme kinetics in Figure (5.2) in terms of saturable Michaelis–Menten kinetics.
The mechanism by which saturating kinetics of the kinase and phosphatase leads
to sensitive switch-like behavior is illustrated in Figure 5.4. The reaction fluxes as a
function of f ∗ (the ratio [S∗]/So) for two cases are plotted. The first case (switch off)

1 See exercise 1.
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represents the situation where the phosphatase activity is slightly higher than the
kinase activity. The value of f ∗ for which the reaction fluxes are equal (the steady
state) is close to zero and the biochemical switch is in the unphosphorylated state
(here denoted as the “off” state). When kinase activity is higher than phosphatase
activity, the switch moves to the “on” state ( f ∗ ≈ 1).

To analyze this system, we assume that the enzymes obey the flux expression
of Equation (4.10). Using this Michaelis–Menten expression, we replace Equation
(5.5) with the following

d[S]

dt
= −

V1[S]
K1

− V ∗
1 [S∗]
K ∗

1

1 + [S]
K1

+ [S∗]
K ∗

1

+
V ∗

2 [S∗]
K ∗

2
− V2[S]

K2

1 + [S∗]
K ∗

2
+ [S]

K2

. (5.13)

In Equation (5.13),

V1 = k+2 Ko, V ∗
1 = k−1 Ko (5.14)

are forward and reverse Vmax ’s for the kinase enzyme. Again, the constant Ko is
the total concentration of the kinase. Similarly,

V ∗
2 = k+4 Po, V2 = k−3 Po (5.15)

are parameters for the phosphatase enzyme, where Po is the total concentration of
the phosphatase.

Again examining the steady state, the fraction of phosphorylated f ∗ = [S∗]ss/So

satisfies

θ =
µγ [µ − (µ + 1) f ∗]

(
f ∗ − K ∗

1 (So+K1)
(K ∗

1 −K1)So

)
K2 K ∗

2 (K ∗
1 − K1)

[µγ − (µγ + 1) f ∗]
(

f ∗ + K ∗
2 (So+K2)

(K2−K ∗
2 )So

)
K1 K ∗

1 (K2 − K ∗
2 )

, (5.16)

where

θ = V1 K ∗
2

K1V ∗
2

= k+1k+2(k−3 + k+4)[ATP]Ko

(k−1 + k+2)k+3k+4 Po
, (5.17a)

µ = V2 K ∗
2

K2V ∗
2

= k−3k−4[PI]

k+3k+4
, (5.17b)

γ = V1 K ∗
1 V ∗

2 K2

V ∗
1 K1V2 K ∗

2

= k+1k+2k+3k+4[ATP]

k−1k−2k−3k−4[ADP][PI]
, (5.17c)

are the same parameters in Equation (5.7). Equation (5.16) can be solved for an
explicit equation for f ∗. However, such an expression is terribly messy and it is
more convenient to deal with the implicit function of Equation (5.16).

If we assume that affinity of kinase for S∗ and affinity of phosphatase for S are
low, that is K ∗

1 � K1, K2 � K ∗
2 , and K2 � So, then Equation (5.16) is simplified
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into

σ = V1

V ∗
2

=
µγ [µ − (µ + 1) f ∗]

(
f ∗ − 1 − K1

So

)
[µγ − (µγ + 1) f ∗]

(
f ∗ + K ∗

2
So

) . (5.18)

Equation (5.18) is the general equation for a phosphorylation–dephosphorylation
switch with Michaelis–Menten kinetics [163]. Two limiting cases are particularly
worth mentioning. First, if the kinase and the phosphatase are not saturated with
respect to the substrate, i.e., So � K1, K ∗

2 , then we have

θ = σ K ∗
2

K1
= µγ [(µ + 1) f ∗ − µ]

µγ − (µγ + 1) f ∗ . (5.19)

As expected, solving f ∗ in Equation (5.19) reduces to the Equation (5.6).
Second, if the free energy is infinite, i.e., γ → ∞, and the basal level of phos-

phorylation is zero, i.e., µ = 0, then we have

σ =
f ∗

(
1 − f ∗ + K1

So

)
(1 − f ∗)

(
f ∗ + K ∗

2
So

) . (5.20)

This is the famous Goldbeter–Koshland formula for zeroth-order ultrasensitivity
[70]. The most important feature of this equation for f ∗ as function of σ , the control
parameter, is that the transition can be very sharp. In fact, the Hill coefficient is

nh =
(

1 + 2 K1
So

) (
1 + 2 K ∗

2
So

)
K1
So

+ K ∗
2

So
+ 4 K1 K ∗

2
S2

o

. (5.21)

For example, for K1
So

= K ∗
2

So
= 0.01, nh = 51, indicating an ultrasensitive switch! The

coefficient nh is large if K1 and K ∗
2 � So. That is, the enzyme reactions are highly

saturated. This means the rates for the phosphorylation and dephosphorylation
reactions S � S∗ are independent of the respective substrate concentrations [S]
and [S∗]. Hence, both reactions are effectively zeroth order. Ultrasensitivity arises
from this zeroth-order behavior. In comparison with the case where there is no
enzyme saturation, the dashed lines in Figure 5.3 show the sharp transitions. Figure
5.3 also shows that the ultrasensitivity does not change the amplitude of the switch.

5.1.3 Substrate selectivity of the phosphorylation–dephosphorylation switch

We now study how, as a kinetic circuit, a phosphorylation–dephosphorylation
switch can amplify the affinity difference between two competing substrate
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proteins, thus achieving higher specificity than expected from in vitro measure-
ments. Our study here is based on the simple unsaturated kinetics of Section 5.1.1.
Focusing on the ratio of the concentrations of the phosphorylated to the dephos-
phorylated forms of a substrate protein we have: f ∗

1− f ∗ , where f ∗ is given in Equa-
tion (5.6):

f ∗

1 − f ∗ = θ (i) + µ(i)

θ (i)/(µ(i)γ ) + 1
, (5.22)

in which the superscripts i = 1, 2 are for the two competing substrate proteins.
As before, γ is related to the free energy of ATP hydrolysis that is independent
of the substrate proteins or the kinetic constants. In order to make a comparison,
let us assume that the two substrate proteins are structurally homologous in the
S form but identical in the S∗ form, with differences only in the dissociation rate
constants k−1 and k+4. Because the equilibrium constant for ATP hydrolysis Keq =
(k+1k+2k+3k+4)/(k−1k−2k−3k−4) is fixed, we have

k(1)
−1

k(2)
−1

= k(1)
+4

k(2)
+4

= ξ. (5.23)

Without the loss of generality, we assume ξ < 1. This means the affinity of the
kinase for the protein 1 is greater than that of the protein 2.

The ratio of the ratios,

η =
(

f ∗
1− f ∗

)(1)

(
f ∗

1− f ∗

)(2) =
µ(1)

(
θ (1)

µ(1) + 1
) (

θ (2)

µ(2)γ
+ 1

)
µ(2)

(
θ (1)

µ(1)γ
+ 1

) (
θ (2)

µ(2) + 1
) , (5.24)

characterizes the difference in the affinities of the phosphorylation–dephosphory-
lation cycle for proteins 1 and 2. In a test tube with γ = 1 (in the absence of ATP free
energy), η = µ(1)/µ(2) = 1/ξ . However, with ATP hydrolysis driving the system,

η = (ω + ξ )(ω + γ )

ξ (ω + ξγ )(ω + 1)
, (5.25)

in which ω = k+1k+2[ATP]Ko/(k(2)
−1k−4[PI]Po) is a constant. Equation (5.25) is

obtained if k−1 � k+2 and k−3 � k+4, leading to θ (1)/θ (2) = 1/ξ 2. Equation (5.25)
gives η = 1/ξ for ω = 0 and ∞. The maximal selectivity occurs when ω = √

ξγ

and we have

η =
(√

ξ + √
γ
)2

ξ
(
1 + √

ξγ
)2 . (5.26)
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Figure 5.5 Biomolecule selectivity, η, as a function of the intrinsic affinity, ξ , and
the available free energy �G = kB T ln γ , according to Equation (5.26).

Equation (5.26) gives the selectivity as a function of the available free energy in ATP
hydrolysis [164]. In the limit of γ � 1, we have η = 1/ξ 2. This is the celebrated
result of John Hopfield and Jacques Ninio [100, 150], who independently discovered
in the mid 1970s the kinetic proofreading mechanism for biosynthesis. They showed
that biomolecular specificity can be amplified in living cells through pure kinetic
means (at the expense of consuming cellular free energy) without altering molecular
structures and equilibrium affinities. Figure 5.5 shows how the selectivity increases
with increasing free energy. We also note that if the hydrolysis reaction were to
be thermodynamically driven in the reverse direction, i.e., γ ≤ 1, then the same
mechanism can diminish the difference between the affinities of two substrates.

5.1.4 The GTPase signaling module

The transmembrane GTPase system, which was discovered by Martin Rodbell
and Alfred Gilman in the 1970s [175, 176], is another important cellular signal-
ing module. The GTPase signaling system involves a GTP-hydrolyzing protein
(here called GTPase, or G-protein) that acts with a protein called GTPase activat-
ing protein (GAP) and a protein called guanine-nucleotide exchange factor (GEF).
The “wiring diagram” of the GTPase system is remarkably isomorphic to that of
the phosphorylation–dephosphorylation cycle, as shown in Figure 5.6. Usually, the
GTP-bound GTPase is the active form of the biological molecule. The hydrolysis
of GTP in the protein–nucleotide complex is catalyzed by GAP, generating a
GTPase–GDP complex. The GTPase–GDP complex exchanges its nucleotide to
form GTPase–GTP via a reaction catalyzed by the GEF, as illustrated in Figure 5.6.
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ATP

Pi Pi

(A) (B)

S

K GEF

GAPP

S* GGDP GGTP

ADP GTP GDP

Figure 5.6 “Wiring diagrams” for two most important cellular signaling mod-
ules (small networks). (A) Phosphorylation–dephosphorylation cycle as shown in
Figure (5.2): substrate protein that can be in either phosphorylated and dephospho-
rylated states, S and S∗. K is a protein kinase and P is a protein phosphatase. The
entire switching on and off cycle hydrolyzes one ATP. (B) Essentially isomorphic
topology for the GTPase transmembrane signaling system. GGT P and GG D P are
GTP- and GDP-bound GTPase. GEF is guanine-nucleotide exchange factor and
GAP is GTPase activating protein.

The reactions of the GTPase system are

GGDP + GEF
ko
+1�

ko
−1

GGDP · GEF

GGDP · GEF + GTP
ko
+2�

ko
−2

GGTP + GDP + GEF

GGTP + GAP
ko
+3�

ko
−3

GGTP · GAP

GGTP · GAP
ko
+4�

ko
−4

GGDP + GAP + PI. (5.27)

In the previous section, we obtained the steady state population of the phos-
phorylated protein in a phosphorylation–dephosphorylation network that consists
of a kinase and a phosphatase. Based on the homologous reaction networks, the
mathematics for the phosphorylation network translates immediately to the GTPase
system.

If we consider a single GTPase protein, the chemical physics of macromolecules
dictates that it fluctuates between the GDP-bound and GTP-bound states. In this
case f ∗ then can be interpreted as the probability of a single substrate protein in
the GTP state. In addition to this steady state probability, we would also like to
know how frequently the signaling protein switches between the on and off states.
The rate of cycling per unit time is directly related to the mean dwell time in the
activated state.

Denoting T as the time in the GTPase–GTP state, then the number of switching
cycles per unit time is simply f ∗/T . More precisely, each time the protein is
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activated, the dwell time is stochastic; the T defined above is the mean dwell time.
In addition to the mean time, we are interested in the probability distribution of
dwell times. This distribution, which was first studied in [128], can be biologically
important since the GTPase has been widely considered as a timer in cellular
signaling: the amount of time a GTPase is in the GTP-bound state is directly related
to the “amount of signal” transmitted to the down-stream biochemical event.

5.1.5 Duration of switch activation and a biochemical timer

In analyzing the temporal behavior of a biochemical switching molecule, we can
study either of the equivalent models of the phosphorylation–dephosphorylation
cycle or the GTPase signaling module. In particular, we are interested in the duration
of each activation event at the single-molecule level.

For the GTPase system, every GTPase molecule can be in one of the four states.
Using 1, 2, 3, and 4 to represent the GGDP, GGDP · GEF, GGTP, and GGTP · GAP, we
have from Equation (5.27)

1
k+1�
k−1

2, 2
k+2�
k−2

3, 3
k+3�
k−3

4, 4
k+4�
k−4

1, (5.28)

with pseudo-first order rate constants defined as k+1 = ko
+1[GEF], k−1 = ko

−1,
k+2 = ko

+2[GTP], k−2 = ko
−2[GDP][GEF], k+3 = ko

+3[GAP], k−3 = ko
−3, k+4 =

ko
+4, k−4 = ko

−4[PI][GAP]. Again, the overall system is driven by free energy dis-
sipation, in this case through hydrolysis of GTP to GDP and PI rather than ATP to
ADP and PI as in the phosphorylation–dephosphorylation system.

States 3 and 4 correspond to GTPase with GTP bound. Hence we are interested
in the dwell time in state 3 and 4: (3 ∪ 4). If we can determine the probability of a
molecule remaining in state 3 ∪ 4 at time t , given that the system was in state 3 ∪ 4
at t = 0, then we will have the distribution of dwell times in the state. From the
kinetics, the probabilities satisfy the equations

dp3

dt
= −(k−2 + k+3)p3 + k−3 p4 (5.29a)

dp4

dt
= k+3 p3 − (k−3 + k+4)p4. (5.29b)

This is a system of two linear ordinary differential equations. The eigenvalues of
the system are

λ1,2 = 1

2

[
(k−2 + k+3 + k−3 + k+4)

±
√

(k−2 + k+3 + k−3 + k+4)2 − 4(k−2k−3 + k+3k+4 + k−2k+4)
]
.

(5.30)
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The solution to the Equation (5.29), with an initial condition of p3(0) + p4(0) = 1,
is

p3(t) + p4(t) = αe−λ1t + (1 − α)e−λ2t , (λ2 > λ1 > 0), (5.31)

where the amplitude depends on the value of p3(0) ∈ (0, 1):

α = (k+4 − k−2)p3(0) − k+4 + λ2

λ2 − λ1
. (5.32)

If the system is in state 3 ∪ 4 at t = 0, then the probability of remaining in the
state at time t , p3∪4(t) in Equation (5.31), is the probability that the dwell time is
greater than t . That is, p3∪4(t) = Pr{T > t}. The probability density function for
the dwell time, T , then is

fT (t) = d

dt
(1 − p3∪4(t)) = αλ1e−λ1t + (1 − α)λ2e−λ2t , (5.33)

which has mean and variance

〈T 〉 = α

λ1
+ 1 − α

λ2
(5.34)

〈(�T )2〉 = 2α

λ2
1

+ 2(1 − α)

λ2
2

− 〈T 〉2. (5.35)

To see how broad is the probability distribution for T , we consider the relative
variance (r.v.):

〈(�T )2〉
〈T 〉2

= 2αλ2
2 + 2(1 − α)λ2

1

(αλ2 + (1 − α)λ1)2
− 1. (5.36)

We see that if α = 1 or α = 0, the r.v. is 1. In fact, for 0 ≤ α ≤ 1, the r.v. is always
greater than 1. If α � 1, then the r.v. can be very small. One can verify, however,
that the α in Equation (5.33) has to be ≤ λ2

λ2−λ1
in order for the fT (t) to be positive

for all t – a necessary condition for the fT (t) to be a meaningful probability density
function. Hence, when α = λ2

λ2−λ1
, the fT (t) achieves the minimal r.v. of

λ2
1 + λ2

2

(λ1 + λ2)2 . (5.37)

This minimal value of r.v. corresponds to the maximal accuracy of the timer. In
the limit that r.v. is small, the dwell time at the single-molecule level is consistent
between individual molecules. Yet the minimal value that this r.v. can obtain is 1/2,
which occurs in the limit that λ1 ≈ λ2.

We note that Equation (5.32) gives the minimal r.v. obtained in the limit that
[GDP] → 0 (and thus k−2 → 0) and p3(0) = 1. Indeed, near irreversibility is
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provided by the free energy of GTP hydrolysis, which drives the cycle in a living
cell. When GDP and PI go to zero, k−4 and k−2 approach zero, and γ → ∞. Thus
the optimal timer is obtained (as we have seen for the cases of optimal sensitivity
and specificity), when the free energy GTP (or ATP) hydrolysis is maximized.

In a closed chemical system in which the GTP is in chemical equilibrium with
GDP and PI, there is no net GTP hydrolysis. In this case

k+1k+2k+3k+4

k−1k−2k−3k−4
= ko

+1k+2k+3k+4[GTP]

k−1ko
−2k−3ko

−4[GDP][PI]
= 1,

and

p3(0) = k+1k+2

k+1k+2 + k−1k−4
. (5.38)

Substituting this result into Equation (5.32), we obtain

α = k+1k+2(λ2 − k−2) + k−1k−4(λ2 − k+4)

(k+1k+2 + k−1k−4)(λ2 − λ1)
. (5.39)

We note that both k+4 and k−2 ≥ λ1, and both ≤ λ2.2 Hence

k+1k+2k−2 + k−1k−4k+4

k+1k+2 + k−1k−4
≥ λ1.

This leads to 0 ≤ α ≤ 1. Thus, without free energy from GTP hydrolysis, the prob-
ability density function for the dwell time is monotonic with r.v. greater than 1,
resulting in a non-ideal and inaccurate timer.

The results of this mathematical analysis are perhaps most easily illustrated based
on an example with model parameters assigned specific values. Using the param-
eter values ko

−2 = 5 × 106 M−2·sec−1, ko
+3 = 3.30 × 104 M−1·sec−1, ko

−3 = 3 ×
10−5 sec−1, and ko

+4 = 0.0333 sec−1, and physiologically realistic values of the con-
centrations, [GEF] = 1 µM, [GAP] = 1 µM, [GTP] = 5 mM, [GDP] = 0.1 mM,
and [PI] = 1 mM, we obtain λ1 = 0.0324 sec−1 and λ2 = 0.0344 sec−1. Note that
concentrations of [GTP], [GDP], and [PI] yield �G ′

GT P = −60 kJ·mol−1 for the
reaction GTP � GDP + PI and correspond to a physiologically reasonable cellular
phosphorylation potential. With these values and setting p3(0) = 1, Equation (5.32)
yields α = 16.98. The functions p3∪4(t) and fT (t) for these values are plotted as
solid lines in Figure 5.7.

To treat the case where the reaction GTP � GDP + PI is in equilibrium,
we compute the concentrations [GTP] = 4.1 × 10−8 mM, [GDP] = 5.1 mM, and

2 The square-root term in Equation (5.30) can be rewritten as
√

(k+4 + k−3 − k−2 − k+3)2 + 4k+3k−3. Hence,
λ1 ≤ 1

2 [(k−2 + k+3 + k−3 + k+4) − |k+4 + k−3 − k−2 − k+3|] and λ2 ≥ 1
2 [(k−2 + k+3 + k−3 + k+4) +

|k+4 + k−3 − k−2 − k+3|]. That is, λ1 ≤ both (k+4 + k−3) and (k−2 + k+3) ≤ λ2.
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Figure 5.7 Comparison of GTPase timing for physiological (non-equilibrium) and
non-physiological (equilibrium) cases. Results at cellular phosphorylation poten-
tial (�G ′

GT P = −60 kJ·mol−1) are plotted as solid lines; results at equilibrium
(�G ′

GT P = 0) are plotted as dashed lines. The top panel plots p3∪4(t), the proba-
bility that the G protein is in the GTP-bound state given that it is in the state GGTP

at t = 0. The bottom panel plots fT (t) the probability distribution of dwell time
in the GTP-bound state. See text for details and parameter values.

[PI] = 6 mM, based on the equilibrium constant value Keq = 7.5 × 105 M. Assum-
ing that all rate constants remain the same as for the physiological example, these
concentrations yield λ1 = 0.0333 sec−1 and λ2 = 0.0585 sec−1. In this case, setting
p3(0) = 1, Equation (5.32) yields α = 1.31. The functions p3∪4(t) and fT (t) for
the equilibrium case are plotted as dashed lines in Figure 5.7.

Note that the relative variance of the timing probability distribution is consider-
ably larger in the equilibrium case than in the physiological case. However, even
in the physiological case, the system behavior is far from that of a perfect timer. In
this near ideal case, r.v. ≈ 1/2, which is the minimal value obtained by Equation
(5.37) when λ1 ≈ λ2.

In cells, improved timing accuracy arises from cascades of phosphorylation
events. This insight is in fact the theoretical basis for a recent kinetic model for
phototransduction signaling in vertebrate rod cells published by Hamer et al. [76].
It is proposed that multiple, successive phosphorylations of rhodopsin by rhodopsin
kinase lead to high accuracy in the single-photon responses of a rod cell. Briefly,
if we assume n identical, irreversible phosphorylation steps with only the fully
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Figure 5.8 Dwell time probability distributions predicted by Equation (5.40) for
several values of n.

phosphorylated rhodopsin being active, then the probability distribution for the
dwell time will be simply

f (n)
T = kntn−1

(n − 1)!
e−kt (5.40)

in which the k is the rate constant associated with a single step. Equation (5.40) is
known as the Gamma distribution in statistics. The r.v. for the Gamma distribution
is 1

n . Our previous example has n = 2. In the model by Hamer et al., n may be as
large as 7. Figure 5.8 illustrates dwell time probability distributions predicted by
Equation (5.40) for several values of n.

5.1.6 Synergistic action of kinases and phosphatases and the
phosphorylation energy hypothesis

We have seen that the behaviors of biochemical signaling modules, in terms of their
sensitivity (Section 5.1.2), specificity (Section 5.1.3), and timing (Section 5.1.5),
are all intimately tied to the available free energy for ATP and GTP hydrolysis. The
previous sections of this chapter have shown that, as a function of the level of kinases
and phosphatases, the fractions of the signaling molecules in various states can
display either a graded transition, if the kinases and phosphatases are not saturated,
or an all-or-none transition, if the kinases and phosphatases are highly saturated.
(See Figure 5.3.) Both types of responses are employed in cellular regulations and
signaling.

The interplay of kinases and phosphatases can go beyond the simple activation
switching. Even though it is widely accepted that the state of activity of a signaling
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protein depends on the ratio of its phosphorylated to dephosphorylated forms ( f ∗
1− f ∗ ),

other mechanisms have been suggested, in particular for the tyrosine kinases and
phosphatases. Fischer and his colleagues [57] have suggested a scenario in which
dephosphorylated proteins have temporal memory: after dephosphorylation by a
protein tyrosine phosphatase (PTP), the substrate protein can retain its activity for
a finite period of time, before it returns to the dephosphorylated, inactive state.

As we have seen, phosphatase-catalyzed protein dephosphorylation reactions do
not merely counteract the kinase catalyzed protein phosphorylation. The hydrolysis
cycle is not “futile.” Free energy from the ATP and GTP hydrolysis is essential in the
functioning of biochemical switches. Thus, it is not surprising that biological organ-
isms have evolved to use phosphorylation as one of the dominant mechanisms for
signal transduction regulations. The phosphorylation hypothesis, recently proposed
by one of the authors, suggests that free energy derived from cellular phosphoryla-
tion is necessary for overcoming intrinsic biochemical “noise” from thermal agita-
tions, small copy numbers, and limited affinities, guaranteeing precise and robust
cell signaling and functions [166].

5.2 Biochemical regulatory oscillations

Engineers have long been fascinated by oscillations. Oscillatory dynamics in me-
chanics and electronics provides our modern lives with clocks and radios among
many other devices. Yet it is arguable that chemical oscillations are yet to find an
application apparent in daily life. In biology, oscillations are everywhere, but the
governing molecular mechanisms are often elusive. In recent years, bioengineers
have started to study biological circuits that oscillate at the cellular level. This
approach, now known as synthetic biology [9], has revealed a host of interesting
dynamics a cellular system can exhibit. Through these efforts we have improved
our level of understanding and confidence in cellular modeling predictions.

5.2.1 Gene regulatory networks and the repressilator

As we have seen in Section 3.1.4.2, oscillations can arise from chemical kinetic
systems. As a general rule, in order for such a kinetic system to oscillate, it must
exhibit both activation and inhibition. Such a feedback loop in fact exists in one
of the central reactions of molecular biology: gene expression, producing mRNA
and leading to protein synthesis. If the synthesized protein serves as a transcription
factor and is a repressor of the gene expression, then there is a simple feedback loop.
This idea motivated several researchers to construct such feedback transcriptional
regulatory networks in living cells. In independent laboratories in 2000, Becskei
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and Serrano [20] constructed such a loop involving one repressor protein; Gardner,
Cantor and Collins [62] constructed such a loop with two repressor proteins; and
Elowitz and Leibler [50] designed a system consisting of three repressor proteins.
These investigators showed that by increasing the delay in the feedback loop, the
dynamics of the synthetic transcription system becomes more complex. Becskei
and Serrano observed on and off transitions, Gardner et al. were able to show bi-
stability in the on and off states. Elowitz and Leibler indeed saw oscillations, which
they named a repressilator.

Elowitz and Leibler modeled their system in terms of the concentrations of three
repressor proteins, lacI, tetR, and cI, and their corresponding mRNA concentrations.
If we use subscripts 1, 2, and 3 to denote these three, their generic equations for the
mRNA and protein concentrations mi and pi (i = 1, 2, 3) are

dmi

dt
= −γi mi + αi0 + αi1

1 +
(

pi−1

Ki

)2 , (5.41a)

dpi

dt
= λi mi − βi pi , (5.41b)

where p0 = p3. The rationale for these kinetic equations is as follows. The i th
mRNA has associated with it an intrinsic degradation rate γi . The parameter αi0

is the rate of mRNA transcription in the presence of saturating repressor i − 1,
representing promotor “leakiness.” The repressors act via cooperative binding with
an affinity Ki and Hill coefficient of 2. The sum (αi1 + αi0) is the maximal rate
transcription of the i th mRNA in the absence of the repressor. The parameter λi

is the rate of synthesis of protein i , and βi is the rate of the protein degrada-
tion. Mathematical analysis of models like that in Equation (5.41) have a rich
history. The model was first proposed by Brian Goodwin in 1965 for studying
oscillatory enzyme control processes [71]. (For a recent discussion of the model,
see [51].)

There are six ODEs and eighteen parameters in the full model of Elowitz and
Leibler. To simplify the analysis, Elowitz and Leibler assumed that all the parame-
ters are independent of the i in their subscripts. That leaves six parameters, which
can be further simplified by introducing unitless variables

ui = λ

βK
mi , vi = 1

K
pi , τ = γ t (5.42)

dui

dτ
= −ui + a0 + a1

1 + v2
i−1

, (5.43a)

dvi

dτ
= b (ui − vi ) , (5.43b)
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Figure 5.9 Biochemical oscillation of an engineered signaling system, “repressi-
lator.” u1 and v1: lacI mRNA and protein concentrations. The behavior of the other
two genes, tetR and cI, is essentially the same, with a time delay. See [50] for more
details.

where i = 1, 2, 3, v0 = v3, and

a0 = λα0

βγ K
, a1 = λα1

βγ K
, b = β

γ
. (5.44)

The set of parameter values α0 = 5 × 10−4 sec−1, α1 = 0.5 sec−1, λ = 20 βK , β =
1.67 × 10−3 sec−1, γ = 0.83 × 10−2 sec−1, K = 40, yields a0 = 1.2, a1 = 1200,
and b = 0.2 for Equation (5.43). Simulation of the oscillatory dynamics of this
system is illustrated in Figure (5.9).

To obtain the steady state(s) of Equation (5.43), we have by repeated substitution:

u1 = f (u3) = f ( f (u2)) = f ( f ( f (u1))), (5.45)
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in which the function

f (x) = a0 + a1

1 + x2
(5.46)

is a strictly monotonic decreasing function of x for x > 0. Hence, f ( f ( f (x))) is a
strictly monotonic decreasing function of x , and Equation (5.45) has a single root
x∗. The system of ODEs, thus, has a unique steady state: ui = vi = x∗ (i = 1, 2, 3),
which satisfies

(1 + x∗2)(x∗ − a0) + a1 = 0. (5.47)

How can the result of unique steady state be consistent with the observed os-
cillation in Figure 5.9? The answer is that the steady state, which mathematically
exists, is physically impossible since it is unstable. By unstable, we mean that no
matter how close the system comes to the unstable steady state, the dynamics leads
the system away from the steady state rather than to it. This is analogous to the
situation of a simple pendulum, which has an unstable steady state when the weight
is suspended at exactly at 180◦ from its resting position. (Stability analysis, which
is an important topic in model analysis and in differential equations in general, is
discussed in detail in a number of texts, including [146].)

5.2.2 Biochemical oscillations in cell biology

The 1952 Hodgkin–Huxley model for membrane electrical potential is perhaps the
oldest and the best known cellular kinetic model that exhibits temporal oscilla-
tions. The phenomenon of the nerve action potential, also known as excitability,
has grown into a large interdisciplinary area between biophysics and neurophys-
iology, with quite sophisticated mathematical modeling. See [103] for a recent
treatise.

Derived from Hodgkin–Huxley’s celebrated theory and inspired by the experi-
mental observations, cellular calcium dynamics, either stimulated via inositol 1,4,5-
trisphosphate (IP3) receptor in many non-muscle cells [69, 139], or via the ryanodine
receptor in muscle cells [108], is another extensively studied oscillatory system.
Both receptors are themselves Ca2+ channels, and both can be activated by Ca2+,
leading to calcium-induced calcium release from endoplasmic reticulum.

The cell cycle oscillator is one of the best studied cellular signaling networks in
terms of kinetic models. Readers are encouraged to consult the very readable paper
[198] and book chapter [197] by John Tyson and his colleagues. For a succinct
review of recent studies of various oscillations in cell biology, see [120].
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Concluding remarks

Traditional cellular biochemical research, focusing on either metabolism or signal
transduction, primarily deals with pathways. By pathways, we mean the biochem-
ical reaction schemes as defined by a set of chemical reactions that define a set of
species (or players in layman’s terminology), and a set of reactions that connect the
species. One important research focus is to determine schematics like that in Figure
(5.1) for important pathways and networks. Over a period of time from approxi-
mately the 1940s to the 1970s, the studies on metabolic pathways focused on the
production and utilization of important biochemicals inside cells. These metabolic
pathways include the biosynthesis of DNA, proteins, and a host of other macro-
and small molecules that are essential for cell survival. More recently, the diverse
functional aspects of cells have led molecular biology to focus on regulation of the
pathways. The cellular regulations are themselves achieved through biochemical
networks consisting of reactions and regulatory proteins. These issues underlie the
importance of studying biochemical reactions and processes from an integrated
systems perspective since studying biochemical processes as isolated phenomena
is often not sufficient for understanding the behavior of cells [113].

One of the possible approaches to current research in systems biology of cells is
to quantify the biochemical pathways and develop integrative mathematical mod-
els for the pathways. Of course mathematical models come in different forms. The
focus of this chapter (and the following chapter on modeling reaction networks) is
on models developed in terms of chemical reaction kinetics. While this approach
has the advantage of a concrete foundation in physical chemistry, it does not nec-
essarily mean that models developed through such an approach are automatically
valid. The difficulty is in the incompleteness of the chemical knowledge we have in
biochemical reactions, and in the impossibility of computations from first princi-
ples. Early emphasis on kinetics and thermodynamics in biochemistry was greatly
diminished in recent decades, perhaps resulting in less than optimal progress on the
basic chemical knowledge. We anticipate that the current emphasis on quantitative
model building, combined with technologies for high-throughput measurement and
databasing, will result in a dramatic increase in the available kinetic and thermo-
dynamic data for biochemical systems modeling.

Nevertheless one still needs to proceed in physicochemical-based modeling with
caution. It is easy to build models of great size and complexity that involve bio-
chemical reactions with many more unknown mechanisms and parameter values
than are available from experimental observation. The value in studying small bio-
chemical modules is that such models can be experimentally tested, through efforts
such as in synthetic biology. These small systems (or modules) serve intermediate
entities in our quantitative thinking and actual modeling of large systems.
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Exercises

5.1 Show that when θ = µγ (1−µ)
µγ−1 in Equation (5.6) for the non-saturating phosphorylation–

dephosphorylation cycle of Section (5.1.1), f ∗ = 1
2 .

5.2 For Equation (5.12), show that if one wants to increase f ∗ from 0.1 to 0.9 by changing
θ , one needs to increase θ by a factor of 81. That is, it takes about a one-hundred-fold
increase in the kinase activity to turn on the switch.

5.3 Consider a phosphorylation–dephosphorylation cycle for a substrate protein (S) with
saturated kinase (K) but unsaturated, first-order, phosphatase (P). For simplicity, we
neglect the cofactors such as ATP, ADP, and PI:

S + K
k1�
k2

KS
k3−→ S∗ + K, S∗ k4P−→ S,

in which the concentration of phosphatase, [P], is assumed to be constant.
(a) Establish the kinetic equations for the concentrations [S], [K], [KS], and [S∗].

Note that the total concentrations for the substrate protein and kinase are constants:

St = [S] + [KS] + [S∗], Kt = [K] + [KS].

Show that the steady state concentration of the phosphorylated [S∗]ss = x satisfies the
quadratic equation(

1 + Kt

θ St

)
x2 − (θ St + KM + Kt + St )x + θ S2

t = 0,

in which θ = k3 Kt
k4[P]St

, and KM = k2+k3
k1

is the Michaelis–Menten constant for the kinase.
(b) Solve for x in (a) as a function of θ . This function is called the activation curve.

Explore the dependence of the activation curve on the parameters of the model: St , Kt ,
and KM .

(c) If we introduce f ∗ = [S∗]
St

, then one can compute the Hill coefficient defined in
Equation (5.11). Try to show numerically that nh is never greater than 2. What is the
condition under which the nh = 2?

5.4 Consider the biochemical reaction system with four species:

A
k1−→ X, X + Y

k2−→ 2 Y, Y
k3−→ B.

(a) Assume that the species A and B are with fixed concentrations a and b, while
the concentrations of X and Y vary. Write down the kinetic equations for [X] and [Y].
Show that the concentrations of X and Y oscillate.

(b) Next consider the case in which all reactions are reversible, with backward reaction
rate constants k−1, k−2, and k−3, for the three reactions. Show that the equilibrium
constant for the ratio of b/a is K AB = k1k2k3

k−1k−2k−3
. Write down the kinetic equations

for [X] and [Y] for the reversible system. Show that if b/a = K AB , there will be no
oscillation.
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Biochemical reaction networks

Overview

Previous chapters have introduced methods for simulating the kinetics of relatively
simple chemical systems, such as the phosphorylation–dephosphorylation system
of Section 5.1 or the model of glycolysis illustrated in Section 3.1.4.2. However, the
essential fact that biochemical reactants in solution exist as sums of rapidly inter-
converting species, as described in Chapter 2, is not explicitly taken into account in
these simple models. As a result, influences of the binding of hydrogen and metal
ions to reactants on thermodynamic driving forces and reactions’ kinetics are not
taken into account in these simulations.

Since a great deal of information is available regarding the thermodynamic and
ion-binding properties of biochemical reactants [4, 5], it is possible to construct
simulations of biochemical systems that properly incorporate these data. Specifi-
cally, realistic simulations of biochemical systems require combining the following
concepts into the simulations.

(i) A formal treatment of biochemical reactants as sums of distinct species formed by
different hydrogen and metal ion binding states.

(ii) Conservation of mass based on reaction stoichiometry and multiple equilibria of bio-
chemical reactions.

(iii) pH and ionic dependence on enzyme kinetics and apparent equilibria and thermody-
namic driving forces for biochemical reactions.

This chapter will present a general methodology for incorporating these ele-
ments into a simulation of a biochemical system and illustrate the concepts
based on the specific example of a kinetic model of the tricarboxylic acid (TCA)
cycle.

128
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The final section of this chapter develops various methods and theories to explore
control and regulation in biochemical networks.

6.1 Formal approach to biochemical reaction kinetics

The essential components of a methodology for biochemical network kinetic sim-
ulation formally treating reactants of sums of rapidly inter-converting species were
synthesized by Vinnakota et al. in a computer model of glycogenolysis in skeletal
muscle [205]. The methods, which follow from that primary work, are presented
here in four steps: (1) establishing the components of the biochemical network
model; (2) determining the expressions for the biochemical fluxes; (3) determin-
ing the differential equations for biochemical reactants, pH, and binding ions; and
(4) computational implementation and testing.

6.1.1 Establishing the components of the biochemical network model

The first step is to determine what reactions and associated reactants are to be
considered in a given model, and to compile all of the information necessary to
specify the thermodynamic properties of the system. The necessary information
for each reactant and each reaction in the system is specified below.

For each reactant we compile the following information.

(i) Definition of a reference species for a given reactant. The choice of reference
species is arbitrary. However, it is convenient to choose the minimum-proton-
bound state. For example, for the reactant ATP, we choose ATP4− as the reference
species.

(ii) List of all species making up a given reactant. This list includes all H+-, K+-, and Mg2+-
bound states (and any other significant states that are to be considered in the system).
For example, for ATP, the significant species considered may be ATP4−, HATP3−,
MgATP2−, and KATP3−. The state H2ATP2−, which is present in a significant fraction
for pH values below 6, may or may not be important to include, depending on the pH
range to be treated by the model.

(iii) Binding constants for H+ and other ions that are associated with the species of each
reactant.

(iv) Thermodynamic information. If available, it is convenient to compile the apparent
free energy of formation � f Go for each individual species of a given reactant for
the appropriate ionic strength and temperature that are to be simulated. The apparent
equilibrium constants for each reaction in the system may be calculated based on the
� f Go of the reference species of each reactant, the binding constants, and the pH and
the free concentrations of other binding ions.
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For example, for the reactants ATP, ADP, and PI, the following information is
compiled:

Reference � f Go Ion-bound
Reactant species (I = 0.17 M) species pK

ATP ATP4− −2771.00 HATP3− 6.59
H2ATP2− 3.83
MgATP2− 3.82
KATP3− 1.87

ADP ADP3− −1903.96 HADP2− 6.42
H2ADP− 3.79
MgADP− 2.79
KADP2− 1.53

PI HPO4
2− −1098.27 H2PO4

− 6.71
MgHPO4 1.69
K2PO4

− 0.0074

H2O H2O −235.74

where free energies are given in kJ mol−1 and the pK values are the negatives of
the base-10 logarithms of the binding constants for H+, Mg2+, and K+ in units
of Molar. Apparent equilibrium free energies and values of � f Go vary with total
ionic strength of the solution. The above values are tabulated for ionic strength
I = 0.17 M, which is a suitable value to represent the intracellular medium.

We define each reaction in terms of the reference reaction stoichiometry, which
conserves mass (in terms of all elements) and charge. Therefore the reference
reactions include explicit proton and H2O stoichiometry. For example, the reaction
of ATP hydrolysis is given by

ATP4− + H2O � ADP3− + HPO4
2− + H+ (6.1)

as described in Section 2.2.2.
Mass- and charge-balanced reference reactions are the basis for computing the

apparent thermodynamic properties of a given reaction as functions of pH, [Mg2+],
and [K+], as described in Chapter 2. For example, for the ATP hydrolysis reaction,
the �Go for the reference reaction is computed

�Go = +� f Go
ADP3− + � f Go

HPO4
2− + � f Go

H+

− � f Go
ATP4− − � f Go

H2O = 4.51 kJ mol−1 (6.2)

and the equilibrium constant for the reference reaction is

Keq = e−�Go/RT ≈ 0.16. (6.3)
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The apparent equilibrium constant and equilibrium free energy for the reaction are
computed

K ′
eq = e−�G ′o/RT = Keq

PAD P ([H+], [Mg2+], [K+]) PPi ([H+], [Mg2+], [K+])

[H+] PAT P ([H+], [Mg2+], [K+])
.

(6.4)

The functions PAT P ([H+], [Mg2+], [K+]), PAD P ([H+], [Mg2+], [K+]), and
PPi ([H+], [Mg2+], [K+]) are the binding polynomials for the three reactants (see
Chapter 2) that account for H+, Mg2+, and K+ binding:

PAT P = 1 + [H+]

K H−AT P1

+ [H+]2

K H−AT P1 K H−AT P2

+ [Mg2+]

KMg−AT P
+ [K+]

KK−AT P

PAD P = 1 + [H+]

K H−AD P1

+ [H+]2

K H−AD P1 K H−AD P2

+ [Mg2+]

KMg−AD P
+ [K+]

KK−AD P

PPi = 1 + [H+]

K H−Pi1

+ [Mg2+]

KMg−Pi
+ [K+]

KK−Pi
. (6.5)

Given the binding constant and � f Go values listed above for the example network
of Section 6.2, setting pH = 7, [Mg2+] = 1 mM, and [K+] = 150 mM yields

�G ′o = −34.3 kJ mol−1

K ′
eq = 1.004 × 106 (6.6)

for ATP hydrolysis.

6.1.2 Determining expressions for biochemical fluxes for the reactions

Appropriate expressions for the fluxes of each of the reactions in the system must
be determined. Typically, biochemical reactions proceed through multiple-step cat-
alytic mechanisms, as described in Chapter 4, and simulations are based on the
quasi-steady state approximations for the fluxes through enzyme-catalyzed reac-
tions. (See Section 3.1.3.2 and Chapter 4 for treatments on the kinetics of enzyme
catalyzed reactions.)

The quasi-steady approximation is strictly valid when the rate of change of
enzyme-bound intermediate concentrations is small compared to the rate of change
of reactant concentrations. This is the case either when a given reaction remains
in an approximately steady state (reactant concentrations remain nearly constant)
or when total reactant concentrations are significantly higher than total enzyme
concentration, as illustrated in Figure 3.4.
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For a given reaction, the expression used to model the flux must be constrained
based on the apparent equilibrium constant and overall transformed thermodynamic
driving force. Specifically it is required that the flux goes to zero when the reaction
reaches equilibrium and that the forward and reverse fluxes satisfy the relationship
�G ′ = −RT ln(J+/J−) introduced in Section 3.1.2.

As an example of a flux expression derived from the quasi-steady approximation
consider the reversible Michaelis–Menten flux arrived at in Section 3.1.3.2:

JM M ([A], [B]) = J+ − J− = k f [A] − kr [B]

1 + [A]/Ka + [B]/Kb
(6.7)

for the reaction A � B. It is straightforward to show that the relationship
�G ′ = −RT ln(J+/J−) is satisfied when the ratio k f /kr is equal to the equilibrium
constant for the reaction. Thus when the equilibrium constant for the biochemical
reaction A � B is a function of pH and free binding ion concentrations, then either
or both of k f and kr must be appropriate functions of pH and binding ion con-
centrations to ensure that the constraint k f /kr = K ′

eq remains satisfied. Examples
of flux expressions that satisfy this thermodynamic criterion are given below in
Section 6.2.3.

6.1.3 Determining the differential equations

The strategy for determining the differential equations for biochemical reactants,
pH, and binding ions is to express the equations for reactants based on the stoi-
chiometry of the reference reactions and to determine the kinetics of pH and binding
ions based on mass balance.

For example, if the ATP hydrolysis flux (for the reaction of Equation (6.1)) were
denoted JATPase, then the differential equations for concentrations of reactants ATP,
ADP, and PI would follow from the stoichiometry of the reference species in the
reference reaction:

d[ATP]/dt = −JATPase

d[ADP]/dt = +JATPase

d[PI]/dt = +JATPase. (6.8)

However, the differential equations for the pH, [Mg2+], and [K+] (and concen-
trations of any other binding ions) are not as straightforward to determine as the
equations for the biochemical reactants.

The kinetics of pH are governed by proton binding and unbinding as well as
the consumption and generation of protons via chemical reactions. For a general
system of Nr reactants, and considering [H+], [Mg2+], and [K+] binding, the total
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concentration of protons bound to reactants is calculated

[Hbound] =
Nr∑

i=1

([Li H1] + 2[Li H2] + · · · ) , (6.9)

where i indexes the reactants denoted by Li ; the concentrations of the one- and two-
proton bound species of reactant i are denoted by [Li H1] and [Li H2], respectively.
If we ignore species with two or more protons bound, then

[Hbound] =
Nr∑

i=1

[Li H1] =
Nr∑

i=1

[Li ]
[H+]/K H

i

Pi ([H+], [Mg2+], [K+])
, (6.10)

where [Li ] is the total concentration for reactant i , K H
i , and Pi are the proton

binding constant and binding polynomial for the reactant. (Equation (6.10) follows
from Equation (2.11), where Equation (2.11) includes only proton binding in the
binding polynomial while Equation (6.10) includes H+-, Mg2+-, and K+-bound
species.) The binding polynomials are calculated

Pi ([H
+], [Mg2+], [K+]) = 1 + [H+]/K H

i + [Mg2+]/K Mg
i + [K+]/K K

i ,

(6.11)

where K Mg
i and K K

i are the binding constants for Mg2+ and K+. Equation (6.10)
expresses the total concentration of reversibly bound protons as a function of the
total reactant concentrations in the system, and the pH and free concentrations of
Mg2+ and K+.

If the system is closed, then the rate of change of free [H+] can be calculated
based on mass conservation. The total proton concentration in the system is given
by

Ho = [H+] + [Hbound] + [Hreference], (6.12)

where [Hreference] is the concentration of hydrogen in reference species and [H+] is
the free hydrogen ion concentration. If the system is closed d Ho/dt = 0 and

d[H+]/dt = −d[Hbound]/dt − d[Hreference]/dt. (6.13)

The term d[Hreference]/dt is computed from the proton fluxes of the reference
reactions:

d[Hreference]

dt
= −

∑
k

nk Jk . (6.14)

The stoichiometric number of protons generated by the kth reference reaction and
the flux through the reaction are denoted by nk and Jk . Summation in Equation
(6.14) is over all reactions.
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The term d[Hbound]/dt is expressed via the chain rule:

d[Hbound]

dt
= +∂[Hbound]

∂[H+]

d[H+]

dt
+ ∂[Hbound]

∂[Mg2+]

d[Mg2+]

dt

+∂[Hbound]

∂[K+]

d[K+]

dt
+

Nr∑
i=1

∂[Hbound]

∂[Li ]

d[Li ]

dt
. (6.15)

Combining Equations (6.13)–(6.15) yields the following equation for the free H+

concentration:

d[H+]

dt
=

− ∂[Hbound]
∂[Mg2+]

d[Mg2+]
dt − ∂[Hbound]

∂[K+]
d[K+]

dt − ∑Nr
i=1

∂[Hbound]
∂[Li ]

d[Li ]
dt + ∑

k nk Jk

1 + ∂[Hbound]
∂[H+]

,

(6.16)

where the above partial derivatives can be expressed:

∂[Hbound]

∂[Mg2+]
= −

Nr∑
i=1

[Li ][H+]/K H
i

K Mg
i (Pi ([H+], [Mg2+], [K+]))2

,

∂[Hbound]

∂[K+]
= −

Nr∑
i=1

[Li ][H+]/K H
i

K K
i (Pi ([H+], [Mg2+], [K+]))2

,

∂[Hbound]

∂[Li ]
= [H+]/K H

i

Pi ([H+], [Mg2+], [K+])
,

∂[Hbound]

∂[H+]
=

Nr∑
i=1

[Li ]
(
1 + [Mg2+]/K Mg

i + [K+]/K K
i

)
K H

i (Pi ([H+], [Mg2+], [K+]))2
. (6.17)

Notice that the partial derivatives ∂[Hbound]
∂[Mg2+]

and ∂[Hbound]
∂[K+] are always negative since

magnesium and potassium compete with hydrogen ion for binding with the reactants
in the system. The partial derivatives ∂[Hbound]

∂[Li ]
and ∂[Hbound]

∂[H+] are always positive
because as either the reactant concentration or the free hydrogen ion concentration
increases, the amount of hydrogen ion bound to reactants increases.

Also notice that Equation (6.16) assumes that all of the proton binding species
in the system are included in the Nr reactants. The validity of this assumption is
application specific. We will see in Section 7.4.1.5 of the following chapter that it
is straightforward to modify these equations to account for additional buffers in the
system.
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If the system is open and hydrogen ion is transported in or out, then Equation
(6.16) becomes

d[H+]

dt
=

− ∂[Hbound]
∂[Mg2+]

d[Mg2+]
dt − ∂[Hbound]

∂[K+]
d[K+]

dt + �H

1 + ∂[Hbound]
∂[H+]

, (6.18)

where

�H = −
Nr∑

i=1

∂[Hbound]

∂[Li ]

d[Li ]

dt
+

∑
k

nk Jk + J H
t

and J H
t is the flux of [H+] into the system.

The equations for free Mg2+ and K+ are developed in a manner similar to that
for hydrogen ion, with the major difference that neither Mg2+ nor K+ are involved
in the biochemical reference reactions. The kinetic equation for magnesium ion is
derived from the expression for the total bound magnesium in the system:

[Mgbound] =
Nr∑

i=1

[Li ]
[Mg2+]/K Mg

i

Pi ([H+], [Mg2+], [K+])
. (6.19)

The rate of change of free magnesium ion is given by:

d[Mg2+]

dt
=

− ∂[Mgbound]
∂[H+]

d[H+]
dt − ∂[Mgbound]

∂[K+]
d[K+]

dt + �M

1 + ∂[Mgbound]
∂[Mg2+]

, (6.20)

where

�M = −
Nr∑

i=1

∂[Mgbound]

∂[Li ]

d[Li ]

dt
+ J M

t

and J M
t is the flux of [Mg2+] into the system. The partial derivatives are expressed:

∂[Mgbound]

∂[H+]
= −

Nr∑
i=1

[Li ][Mg2+]/K Mg
i

K H
i (Pi ([H+], [Mg2+], [K+]))2

,

∂[Mgbound]

∂[K+]
= −

Nr∑
i=1

[Li ][Mg2+]/K Mg
i

K K
i (Pi ([H+], [Mg2+], [K+]))2

,

∂[Mgbound]

∂[Li ]
= [Mg2+]/K Mg

i

Pi ([H+], [Mg2+], [K+])
,

∂[Mgbound]

∂[Mg2+]
=

Nr∑
i=1

[Li ]
(
1 + [H+]/K H

i + [K+]/K K
i

)
K Mg

i (Pi ([H+], [Mg2+], [K+]))2
. (6.21)
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The magnesium transport flux is denoted J M
t . Similarly, for potassium we have

[Kbound] =
Nr∑

i=1

[Li ]
[K+]/K K

i

Pi ([H+], [Mg2+], [K+])
, (6.22)

d[K+]

dt
=

− ∂[Kbound]
∂[H+]

d[H+]
dt − ∂[Kbound]

∂[Mg2+]
d[Mg2+]

dt + �K

1 + ∂[Kbound]
∂[K+]

, (6.23)

�K = −
Nr∑

i=1

∂[Kbound]

∂[Li ]

d[Li ]

dt
+ J K

t ,

and

∂[Kbound]

∂[H+]
= −

Nr∑
i=1

[Li ][K+]/K K
i

K H
i (Pi ([H+], [Mg2+], [K+]))2

,

∂[Kbound]

∂[Mg2+]
= −

Nr∑
i=1

[Li ][K+]/K K
i

K Mg
i (Pi ([H+], [Mg2+], [K+]))2

,

∂[Kbound]

∂[Li ]
= [K+]/K K

i

Pi ([H+], [Mg2+], [K+])
,

∂[Kbound]

∂[K+]
=

Nr∑
i=1

[Li ]
(
1 + [H+]/K H

i + [Mg2+]/K Mg
i

)
K K

i (Pi ([H+], [Mg2+], [K+]))2
. (6.24)

Since the time derivatives d[H+]/dt , d[Mg2+]/dt , and d[K+]/dt are expressed
as functions of d[H+]/dt , d[Mg2+]/dt , and d[K+]/dt in Equations (6.18), (6.20),
and (6.23), these derivatives cannot be calculated as explicit functions directly from
these expressions. However, this system of three equations can be solved for three
explicit functions for d[H+]/dt , d[Mg2+]/dt , and d[K+]/dt , yielding the following
unavoidably complex expressions.

d[H+]

dt
=

[(
∂[Kbound]

∂[Mg2+]
· ∂[Mgbound]

∂[K+]
− αMαK

)
�H

+
(

αK
∂[Hbound]

∂[Mg2+]
− ∂[Hbound]

∂[K+]
· ∂[Kbound]

∂[Mg2+]

)
�M

+
(

αM
∂[Hbound]

∂[K+]
− ∂[Hbound]

∂[Mg2+]
· ∂[Mgbound]

∂[K+]

)
�K

] /
D, (6.25)
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d[Mg2+]

dt
=

[(
αK

∂[Mgbound]

∂[H+]
− ∂[Kbound]

∂[H+]
· ∂[Mgbound]

∂[K+]

)
�H

+
(

∂[Kbound]

∂[H+]
· ∂[Hbound]

∂[K+]
− αHαK

)
�M

+
(

αH
∂[Mgbound]

∂[K+]
− ∂[Hbound]

∂[K+]
· ∂[Mgbound]

∂[H+]

)
�K

] /
D, (6.26)

and

d[K+]

dt
=

[(
αM

∂[Kbound]

∂[H+]
− ∂[Kbound]

∂[Mg2+]
· ∂[Mgbound]

∂[H+]

)
�H

+
(

αH
∂[Kbound]

∂[Mg2+]
− ∂[Kbound]

∂[H+]
· ∂[Hbound]

∂[Mg2+]

)
�M

+
(

∂[Mgbound]

∂[H+]
· ∂[Hbound]

∂[Mg2+]
− αHαM

)
�K

] /
D, (6.27)

where

D = αH
∂[Kbound]

∂[Mg2+]
· ∂[Mgbound]

∂[K+]
+ αK

∂[Hbound]

∂[Mg2+]
· ∂[Mgbound]

∂[H+]

+ αM
∂[Hbound]

∂[K+]
· ∂[Kbound]

∂[H+]
− αMαK αH

− ∂[Hbound]

∂[K+]
· ∂[Kbound]

∂[Mg2+]
· ∂[Mgbound]

∂[H+]

− ∂[Hbound]

∂[Mg2+]
· ∂[Mgbound]

∂[K+]
· ∂[Kbound]

∂[H+]
, (6.28)

and

αH = 1 + ∂[Hbound]

∂[H+]
,

αM = 1 + ∂[Mgbound]

∂[Mg2+]
,

αK = 1 + ∂[Kbound]

∂[K+]
. (6.29)

6.1.4 Computational implementation and testing

Once the differential equations for a given system are determined, it is left to con-
struct a computer simulation based on the equations. This step requires supplying
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a computer code to compute the time derivatives of the state variables and using a
simulation package to integrate the derivatives, as outlined in Chapter 3. In general
a numerical solver will introduce some degree of numerical error into the solution
and it is prudent to check that the error involved in one’s simulation of a given
system is within an acceptable tolerance.

A convenient check on the accuracy of a simulation is based on checking con-
served quantities in the system. The equations of Section 6.1.3 conserve overall
elemental mass balance. Thus, were the equations to be solved exactly, then the
total proton, magnesium, and potassium concentrations would remain constant in
time.

As an example system we return to the simple ATP hydrolysis reaction with
reactants ATP, ADP, and PI. For this reaction, the time derivatives of the reactants
are given by Equation (6.8) and the time derivatives of the binding ions are given by
Equations (6.25), (6.26), and (6.27). To complete the system of equations, we use
the following form for the reaction flux: J+ = k[ATP], J− = J+e�G ′/RT , where
k is a constant (set equal to 0.1 sec−1), and �G ′ is the apparent free energy for the
reaction.

Figure 6.1 illustrates results from a simulation of this system obtained from the
following initial conditions: [ATP] = 10 mM; [ADP] = 100 µM; [PI] = 1 mM;
[H+] = 1 × 10−7 M; [Mg2+] = 1 mM; and [K+] = 150 mM. Solutions are ob-
tained using the Matlab solver ‘ode45’, which is based on an explicit fourth-order
Runge–Kutta algorithm, using the default numerical settings (Matlab version 7
Release 14).

Also shown are the total protons Ho, total magnesium Mo, and total potassium
Ko computed from the simulation:

Ho = [H+] + [Hbound] + (0.010 M − [ATP])

Mo = [Mg2+] + [Mgbound]

Ko = [K+] + [Kbound]. (6.30)

The third term on the right-hand side of the equation for Ho accounts for protons
released from the reference species ATP4− as the ATP concentration drops below
the initial value of 10 mM. It is apparent from the figure that the Ho, Mo, and
Ko remain essentially constant over the course of the simulation. The numerical
noise in these variables is less than 10−4 times of their mean values. The numerical
accuracy may be increased based on adjusting the tolerances used in the simulation
and/or using different algorithms. Of course one must keep in mind that in general
increases in accuracy cost additional computational time.
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Figure 6.1 Simulation of ATP hydrolysis reaction described in Section 6.1.4.
Upper panel shows the predicted concentrations of ATP, Mg2+, and K+ as func-
tions of time. In the lower panel the quantities Ho, Mo, and Ko, which report
the conservation of protons, magnesium, and potassium in system simulation, are
plotted versus time.
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6.2 Kinetic model of the TCA cycle

6.2.1 Overview

The tricarboxylic acid (TCA) cycle (also known as the citric acid cycle and the
Krebs cycle) is a collection of biochemical reactions that oxidize certain organic
molecules, generating CO2 and reducing the cofactors NAD and FAD to NADH and
FADH2 [147]. In turn, NADH and FADH2 donate electrons in the electron transport
chain, an important component of oxidative ATP synthesis. The TCA cycle also
serves to feed precursors to a number of important biosynthetic pathways, making
it a critical “hub in metabolism” [147] for aerobic organisms. Its ubiquity and
importance make it a useful example for the development of a kinetic network
model.

6.2.2 Components of the TCA cycle reaction network

In prokaryotic animals, the TCA cycle reactions are confined to occur within the
intracellular organelle called the mitochondrion. The reactions are illustrated in
Figure 6.2, with a total of eight enzyme-catalyzed reactions responsible for ox-
idizing citrate to oxaloacetate (OAA) and synthesizing citrate from oxaloacetate
and acetyl-coenzyme A (ACCOA). In the kinetic model we consider one source of
ACCOA, the pyruvate dehydrogenase reaction (reaction number 1 in the figure),
which generates ACCOA from pyruvate. In addition, the aspartate aminotransferase
reaction (reaction 11), which is important in several cell types, is included in the
diagram. The biochemical reactants in this system, with the abbreviations used
here and the reference species definitions, are given in Table 6.1. The biochemical
reference reactions are listed in Table 6.2.

Charges for all of the references species in Table 6.1 are indicated using su-
perscripts, even when the charge is zero. This notation distinguishes biochemical
reactants (for example ACCOA) from references species (for example ACCOA0).

The Gibbs free energies of formation and pKs for cation-bound species are
listed in Table 6.1 for ionic strength I = 0.17 M. (See Section 2.5.) Here we have
considered species of each reactant that make significant contributions in the region
of pH = 7. All cation-species that make significant contributions at the pH and
concentrations considered in the model are listed in the table. Some reactants, such
as ACCOA, do not significantly bind hydrogen ions or other cations. Therefore no
bound states are listed for these reactants.

We have chosen to use CO3
2− as a reference species in reaction numbers 1, 4,

and 5. Therefore the apparent thermodynamic properties of these reactions will
be calculated in terms of the biochemical reactant 
CO2. (See Section 2.6 for a
discussion on the treatment of CO2 in biochemical reactions.)
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Figure 6.2 Illustration of the reactions of pyruvate dehydrogenase and the TCA
cycle. The abbreviations for the biochemical reactants are listed in Table 6.1 and
the stoichiometries of the 11 biochemical reference reactions are listed in Table
6.2.

The reference reactions tabulated in Table 6.2 correspond to the 11 reactions
illustrated in Figure 6.2. The first ten reactions sum to an overall reaction for the
TCA cycle of:

PYR− + 4 NAD+ + CoQ0 + ADP3− + PI2− + 5 H2O

� 4 NADH0 + CoQH2
0 + ATP4− + 3 CO3

2− + 9 H+. (6.31)

The eleventh reaction (aspartate aminotransferase) serves as a shortcut through
the cycle, generating oxaloacetate and glutamate directly from α-ketoglutarate and
glutamate.

The source of ACCOA for citrate synthase (reaction 2) is the oxidation of car-
bohydrate, fatty acid, and amino acid molecules. The COAS generated by cit-
rate synthase is used in the oxidation of substrates (such as pyruvate via pyruvate
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Table 6.1 Biochemical reactants of the TCA cyclea

Reference Additional
Reactant Abbrev. species � f Go species pK

adenosine ATP ATP4− −2771.00 HATP3− 6.59
triphosphate MgATP2− 3.82

KATP3− 1.87

adenosine ADP ADP3− −1903.96 HADP2− 6.42
diphosphate MgADP− 2.79

KADP2− 1.53

inorganic PI HPO4
2− −1098.27 H2PO4

− 6.71
phosphate MgHPO4 1.69

KHPO4
− 0.0074

guanosine GTP GTP4− −2771.00 HGTP3− 6.59
triphosphate MgGTP2− 3.82

KGTP3− 1.87

guanosine GDP GDP3− −1903.96 HGDP2− 6.42
diphosphate MgGDP− 2.79

KGDP2− 1.53

acetyl- ACCOA ACCOA0 −178.19
coenzyme A

coenzyme COAS COAS− −0.72 COASH0 8.13
A-SH

oxalo- OAA OAA2− −794.41 MgOAA0 0.0051
acetate

citrate CIT CIT3− −1165.59 HCIT2− 5.63
MgCIT− 3.37
KCIT2− 0.339

isocitrate ICIT ICIT3− −1158.94 HCIT2− 5.64
MgCIT− 2.46

NAD NAD NAD+ 18.10
(oxidized)

NAD NADH NADH0 39.31
(reduced)

α-keto- AKG AKG2− −793.41
glutarate

carbon 
CO2 CO3
2− −530.71 HCO3

− 9.75
dioxide

succinyl- SCOA SCOA− −507.55 HSCOA0 3.96
coenzyme A



6.2 Kinetic model of the TCA cycle 143

Table 6.1 (continued )

Reference Additional
Reactant Abbrev. species � f Go species pK

succinate SUC SUC2− −690.44 HSUC− 5.13
MgSUC0 1.17
KSUC− 0.503

fumarate FUM FUM2− −603.32 HFUM− 4.10

malate MAL MAL2− −842.66 HMAL− 4.75
MgMAL0 1.55
KMAL− −0.107

ubiquinol CoQ CoQ0 65.17
(oxidized)

ubiquinol CoQH2 CoQH2
0 −23.30

(reduced)

aspartate ASP ASP− −692.26 HASP0 3.65
MgASP+ 2.32

glutamate GLU GLU− −692.40 HGLU0 4.06
MgGLU+ 1.82

water H2O H2O −235.74

a Values computed for T = 298.15 K and I = 0.17 M based on data in Alberty [3, 4] and
NIST database of stability constants [134] as described in [213].

dehydrogenase), while the reduced cofactors NADH and CoQH2 generated by the
remaining reactions of the TCA cycle donate electrons to the electron transport
system. The GTP synthesized is converted to ATP via the nucleoside diphosphate
kinase (NDK) reaction; ATP is transported out of the mitochondria to the cytoplasm
via the andenylate translocase (ANT) transporter. (The kinetics of ANT and of other
transporters are treated in Chapter 7.)

6.2.3 Flux expressions for TCA cycle reaction network

As outlined in Section 6.1, the next step in building a computational model of the
TCA cycle is determining an expression for the biochemical fluxes in the system.
Flux expressions used here are adopted from Wu et al. [213], who developed ther-
modynamically balanced flux expressions for the reactions illustrated in Figure 6.2
and listed in Table 6.2. Here we describe in detail the mechanistic model and the
associated rate law for one example enzyme (pyruvate dehydrogenase) from Wu
et al.’s model. For all other enzymes we simply list the flux expression and refer
readers to the supplementary material to [213] for further details.
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Table 6.2 Reference reactions of pyruvate dehydrogenase and the TCA cycle

Enzyme name and reference reaction

1. pyruvate dehydrogenase:

PYR− + COAS− + NAD+ + H2O � CO3
2− + ACCOA0 + NADH0 + H+

2. citrate synthase:

ACCOA0 + OAA2− + H2O � CIT3− + COAS− + 2 H+

3. aconitase:

CIT3− � ICIT3−

4. isocitrate dehydrogenase:

ICIT3− + NAD+ + H2O � AKG2− + NADH0 + CO3
2− + 2 H+

5. α-ketoglutarate dehydrogenase:

AKG2− + COAS− + NAD+ + H2O � SCOA− + NADH0 + CO3
2− + H+

6. succinyl-CoA synthetase:

SCOA− + GDP3− + PI2− � SUC2− + GTP4− + COAS− + H+

7. succinate dehydrogenase:

SUC2− + CoQ0 � FUM2− + CoQH2
0

8. fumarase:

FUM2− + H2O � MAL2−

9. malate dehydrogenase:

MAL2− + NAD+ � OAA2− + NADH0 + H+

10. nucleoside diphosphokinase:

GTP4− + ADP3− � ATP4− + GDP3−

11. aspartate aminotransferase:

AKG− + ASP2− � OAA2− + GLU−

6.2.3.1 Pyruvate dehydrogenase

The standard Gibbs free energy for the chemical reference reaction for pyruvate
dehydrogenase is computed

�r Go
pdh = � f Go


C O2
+ � f Go

ACC O A + � f Go
N ADH

− � f Go
PY R − � f Go

C O AS − � f Go
N AD − � f Go

H2 O

= 19.59 kJ · mol−1. (6.32)

The equilibrium constant for the reference reaction is

K o
pdh = exp

(
−�r Go

pdh

RT

)
= 5.02 × 10−4 M−1. (6.33)
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The apparent equilibrium constant for the biochemical reaction is

K ′
pdh = K o

pdh

1

[H+]

P
C O2 PACC O A PN ADH

PPY R PC O AS PN AD
, (6.34)

where the binding polynomials are functions of pH, [K+], and [Mg2+] as detailed
in Chapter 2.

The reaction mechanism is assumed to be hexa-uni-ping-pong [34] when the
reactant water is ignored with the following steps [114]:

E + PYR− � E · PYR−

E · PYR− → E · CHOCH3
− + CO2

E · CHOCH−
3 + COASH0 � E · ACCOA−

E · ACCOA− → E− · ACCOA0

E− + NAD+ � E + NAD0

E · NAD0 → E + NADH0. (6.35)

The flux expression for this mechanism follows from application of the method of
King and Altman [112]:

J+
pdh = Vm f [A][B][C]

KmC [A][B] + Km B[A][C] + Km A[B][C] + [A][B][C]
, (6.36)

where we have used the notation [A] = [PYR], [B] = [COAS], [C] = [NAD]; Vm f ,
Km A, Km B , and KmC are kinetic constants.

The model of Wu et al. [213] assumes that ACCOA and NADH bind to the
enzyme in competition for COASH and NAD with binding constants Ki ACC O A and
Ki N ADH , respectively. Incorporating these competitive inhibitions into the model,
the flux expression becomes

J+
pdh = Vm f [A][B][C]

KmCαi2[A][B] + Km Bαi1[A][C] + Km A[B][C] + [A][B][C]
, (6.37)

where

αi1 = 1 + [ACCOA]

Ki ACC O A

and

αi2 = 1 + [NADH]

Ki N ADH
.
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Assuming that the expression for J+
pdh represents the flux for the one-way mech-

anism of Equation 6.35, we can compute the net flux as:

Jpdh = J+
pdh − J−

pdh = J+
pdh

(
1 − 1

K ′
pdh

[P][Q][R]

[A][B][C]

)
, (6.38)

where [P] = [
CO2], [Q] = [ACCOA], and [R] = [NADH].
The kinetic parameters for pyruvate dehydrogenase are assigned values Vm f =

0.122 mol sec−1 (l mito)−1, Km A = 38.3 µM, Km B = 9.9 µM, KmC = 60.7 µM,
Ki ACC O A = 40.2 µM, and Ki N ADH = 40.0 µM; estimation and assignment of
parameter values is discussed in [213]. The flux and Vm f are expressed in units of
mass per unit time per unit mitochondrial volume.

6.2.3.2 Citrate synthase

The flux expression for citrate synthase is

Jcits = J+
ci ts

(
1 − 1

K ′
ci ts

[P][Q]

[A][B]

)
, (6.39)

where [A] = [OAA], [B] = [ACCOA], [P] = [COAS], and [Q] = [CIT] and K ′
ci ts

is computed according to the usual procedures. The forward flux J+
ci ts is computed

J+
ci ts = Vm f [A][B]

Kia Km Bαi1 + Km Aαi1[B] + Km Bαi2[A] + [A][B]
(6.40)

where

αi1 = 1 + [fCIT]

KiC I T

and

αi2 = 1 + [fATP]

Ki AT P
+ [fADP]

Ki AD P
+ [fAMP]

Ki AM P
+ [COAS]

KiC O AS
+ [SCOA]

Ki SC O A
.

The concentrations [fCIT], [fATP], [fADP], [fAMP] refer to unchelated (non-
magnesium-bound) citrate, ATP, ADP, and AMP.

The parameter values are Vm f = 11.6 mol sec−1 (l mito)−1, Km A = 4 µM, Km B =
14 µM, Kia = 3.33 µM, KiC I T = 1600 µM, Ki AT P = 900 µM, Ki AD P = 1800 µM,
Ki AM P = 6000 µM, KiC O AS = 67 µM, and Ki SC O A = 140 µM.

6.2.3.3 Aconitase

The flux expression for aconitase is

Jacon =
Vm f

Km A
[A] − Vm f

Km P
[P]

1 + [A]/Km A + [P]/Km P
(6.41)

where [A] = [CIT] and [P] = [ICIT].
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The parameter values are Vm f = 3.21 × 10−2 mol sec−1 (l mito)−1, Km A =
1161 µM, and Km P = 434 µM. The value of Vmr is computed

Vmr = Vm f Km P

K ′
acon Km A

, (6.42)

where K ′
acon is the apparent equilibrium constant for the biochemical reaction.

6.2.3.4 Isocitrate dehydrogenase

The flux expression for isocitrate dehydrogenase is

Jisod = J+
isod

(
1 − 1

K ′
isod

[P][Q][R]

[A][B]

)
, (6.43)

where [A] = [NAD], [B] = [ICIT], [P] = [AKG], [Q] = [NADH], and [R] =
[
CO2] and K ′

isod is the apparent equilibrium constant. The forward flux J+
isod is

computed

J+
isod = Vm f [A][B]nH

[A][B]nH + K nH
m Bαi [A] + Km A

(
[B]nH + K nH

ib αi + αi [Q][B]nH /Kiq
)

(6.44)
where

αi = 1 + Ka AD P

[fADP]

(
1 + [fATP]

Ki AT P

)
.

The concentrations [fATP] and [fADP] refer to unchelated (non-magnesium-bound)
ATP and ADP.

The parameter values are Vm f = 0.425 mol sec−1 (l mito)−1, nH = 3.0, Km A =
74 µM, Km B = 183 µM, Kib = 23.8 µM, Kiq = 29 µM, Ki AT P = 91 µM, and
Ka AD P = 50 µM.

6.2.3.5 α-Ketoglutarate dehydrogenase

The flux expression for α-ketoglutarate dehydrogenase is

Jakgd = J+
akgd

(
1 − 1

K ′
akgd

[P][Q][R]

[A][B][C]

)
, (6.45)

where [A] = [AKG], [B] = [COAS], [C] = [NAD], [P] = [
CO2], [Q] = [SCOA],
and [R] = [NADH] and K ′

akgd is the apparent equilibrium constant. The forward
flux J+

akgd is computed

J+
akgd = Vm f[

1 + αi
Km A

[A] + Km B

[B]

(
1 + [Q]

Kiq

)
+ KmC

[C]

(
1 + [R]

Kir

)] (6.46)
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where

αi = 1 + Ka AD P

[fADP]

(
1 + [fATP]

Ki AT P

)
.

The concentrations [fATP] and [fADP] refer to unchelated (non-magnesium-bound)
ATP and ADP.

The parameter values are Vm f = 7.70 × 10−2 mol sec−1 (l mito)−1, Km A =
80 µM, Km B = 55 µM, KmC = 21 µM, Kiq = 6.9 µM, Kir = 0.60 µM, Ki AT P =
50 µM, and Ka AD P = 100 µM.

6.2.3.6 Succinyl-CoA synthetase

The flux expression for succinyl-CoA synthetase is

Jscs =
Vm f Vmr

(
[A][B][C] − [P][Q][R]

K ′
scs

)
denom

, (6.47)

where [A] = [GDP], [B] = [SCOA], [C] = [PI], [P] = [COAS], [Q] = [SUC], [R]
= [GTP], K ′

scs is the apparent equilibrium constant, and the denominator in this
expression is

denom = Vmr Kia Kib KmC + Vmr Kib Kmc[A] + Vmr Kia Km B[C]

+ Vmr KmC [A][B] + Vmr Km B[A][C] + Vmr Km A[B][C] + Vmr [A][B][C]

+ 1

K ′
scs

(Vm f Kir Km Q[P] + Vm f Kiq Km P [R] + Vm f Km R[P][Q]

+ Vm f Km Q[P][R] + Vm f Km P [Q][R] + Vm f [P][Q][R])

+ 1

Kia K ′
scs

(Vm f Km Q Kir [A][P] + Vm f Km R[A][P][Q])

+ 1

Kir
(Vmr Kia Km B[C][R] + Vmr Km A[B][C][R])

+ 1

Kia Kib K ′
scs

(Vm f Km Q Kir [A][B][Q] + Vm f Km R[A][B][P][Q])

+ 1

Kiq Kir
(Vmr Kia Km B[C][Q][R] + Vm f Km A[B][C][Q][R])

+ 1

Kip Kiq Kir
(Vmr Km A Kic[B][P][Q][R] + Vmr Kia Km B[C][P][Q][R]

+ Vm f Km A[B][C][P][Q][R])

+ 1

Kia Kib Kic K ′
scs

(Vm f Kir Km Q[A][B][C][P]

+ Vm f Kip Km R[A][B][C][Q] + Vm f Km R[A][B][C][P][Q]). (6.48)
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The parameter values are Vm f = 0.582 mol sec−1 (l mito)−1, Km A = 16 µM,
Km B = 55 µM, KmC = 660 µM, Km P = 20 µM, Km Q = 880 µM, Km R = 11.1 µM,
Kia = 5.5 µM, Kib = 100 µM, Kic = 2000 µM, Kip = 20 µM, Kiq = 3000 µM,
and Kir = 11.1 µM. The value of Vmr is computed

Vmr = Vm f Km P Kiq Kir

K ′
scs Kia Kib KmC

. (6.49)

6.2.3.7 Succinate dehydrogenase

The flux expression for succinate dehydrogenase is

Jsdh =
Vm f Vmr

(
[A][B] − [P][Q]

K ′
sdh

)
denom

, (6.50)

where [A] = [SUC], [B] = [CoQ], [P] = [CoQH2], [Q] = [FUM], and K ′
sdh is the

apparent equilibrium constant. The denominator of the flux expression is

denom = Vmr Kia Km Bαi + Vmr Km B[A] + Vmr Km Aαi [B] + Vm f Km Qαi

K ′
sdh

[P]

+ Vm f Km P

K ′
sdh

[Q] + Vmr [A][B] + Vm f Km Q

K ′
sdh Kia

[A][P] + Vmr Km A

Kiq
[B][Q]

+ Vm f

K ′
sdh

[P][Q], (6.51)

where

αi =
(

1 + [OAA]

Ki O AA
+ [SUC]

KaSUC
+ [FUM]

KaFU M

) / (
1 + [SUC]

KaSUC
+ [FUM]

KaFU M

)
.

The parameter values are Vm f = 6.23 × 10−2 mol sec−1 (l mito)−1, Km A =
467 µM, Km B = 480 µM, Km P = 2.45 µM, Km Q = 1200 µM, Kia = 120 µM,
Kiq = 1275 µM, Ki O AA = 1.5 µM, KaSUC = 450 µM, and KaFU M = 375 µM.
The value of Vmr is computed

Vmr = Vm f Km P Kiq

K ′
sdh Kia Km B

. (6.52)

6.2.3.8 Fumarase

The flux expression for fumarase is

J f um =
Vm f Vmr

(
[A] − [P]

K ′
f um

)
Km AVmrαi + Vmr [A] + Vm f [P]

K ′
rum

, (6.53)
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where [A] = [FUM], [P] = [MAL], and K ′
f um is the apparent equilibrium constant.

The factor αi accounts for competitive inhibition by citrate and unchelated ATP,
ADP, GTP, and GDP:

αi = 1 + [CIT]

KiC I T
+ [fATP]

Ki AT P
+ [fADP]

Ki AD P
+ [fGTP]

KiGT P
+ [fGDP]

KiG D P
.

The concentrations [fATP], [fADP], [fGTP], and [fGDP] refer to unchelated (non-
magnesium-bound) ATP, ADP, GTP, GDP.

The parameter values are Vm f = 7.12 × 10−3 mol sec−1 (l mito)−1, Km A =
44.7 µM, Km P = 197.7 µM, KiC I T = 3500 µM, Ki AT P = 40 µM, Ki AD P =
400 µM, KiGT P = 80 µM, and KiG D P = 330 µM. The value of Vmr is computed

Vmr = Vm f Km P

K ′
f um Km A

. (6.54)

6.2.3.9 Malate dehydrogenase

The flux expression for malate dehydrogenase is

Jmdh =
Vm f Vmr

(
[A][B] − [P][Q]

K ′
mdh

)
denom

, (6.55)

where [A] = [NAD], [B] = [MAL], [P] = [OAA], [Q] = [NADH], and K ′
mdh is

the apparent equilibrium constant. The denominator of the flux expression is

denom = Vmr Kia Km Bαi + Vmr Km B[A] + Vmr Km Aαi [B] + Vm f Km Qαi

K ′
mdh

[P]

+ Vm f Km P

K ′
mdh

[Q] + Vmr [A][B] + Vm f Km Q

K ′
mdh Kia

[A][P] + Vmr Km A

Kiq
[B][Q]

+ Vm f

K ′
mdh

[P][Q] + Vmr

Kip
[A][B][P] + Vm f

Kib K ′
mdh

[B][P][Q] (6.56)

where

αi =
(

1 + [fATP]

Ki AT P
+ [fADP]

Ki AD P
+ [fAMP]

Ki AM P

)
.

The parameter values are Vm f = 6.94 mol sec−1 (l mito)−1, Km A = 90.55 µM,
Km B = 250 µM, Km P = 6.13 µM, Km Q = 2.58 µM, Kia = 279 µM, Kib =
360 µM, Kip = 5.5 µM, Kiq = 3.18 µM, Ki AT P = 183.2 µM, Ki AD P = 394.4 µM,
and Ki AM P = 420 µM. The value of Vmr is computed

Vmr = Vm f Km P Kiq

K ′
mdh Kia Km B

. (6.57)
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6.2.3.10 Nucleoside diphosphokinase

The flux expression for nucleoside diphosphokinase is

Jndk =
Vm f Vmr

(
[A][B] − [P][Q]

K ′
ndk

) /
αi

denom
, (6.58)

where [A] = [GTP], [B] = [ADP], [P] = [GDP], [Q] = [ATP], K ′
ndk is the apparent

equilibrium constant, and

αi =
(

1 + [fAMP]

Ki AM P

)
.

The denominator of the flux expression is

denom = Vmr Km B[A] + Vmr Km A[B] + Vmr [A][B] + Vm f Km Q

K ′
ndk

[P]

+ Vm f Km P

K ′
ndk

[Q] + Vm f

K ′
ndk

[P][Q] + Vmr Km A

Kiq
[B][Q]

+ Vm f Km Q

K ′
ndk Kia

[A][P]. (6.59)

The parameter values are Vm f = 2.65 × 10−2 mol sec−1 (l mito)−1, Km A =
111 µM, Km B = 100 µM, Km P = 260 µM, Km Q = 278 µM, Kia = 170 µM, Kib =
143.6 µM, Kip = 146.6 µM, Kiq = 156.5 µM, Ki AM P = 650 µM. The value of Vm f

is computed

Vmr = Vm f Km Q Kip

K ′
ndk Km B Kia

. (6.60)

6.2.3.11 Aspartate aminotransferase

The flux expression for aspartate aminotransferase is

Jaat =
Vm f Vmr

(
[A][B] − [P][Q]

K ′
aat

)
denom

, (6.61)

where [A] = [ASP], [B] = [AKG], [P] = [OAA], [Q] = [GLU], and K ′
ndk is the

apparent equilibrium constant. The denominator of the flux expression is

denom = Vmr Km B[A] + Vmr Km A[B] + Vmr [A][B] + Vm f Km Q

K ′
aat

[P]

+ Vm f Km P

K ′
aat

[Q] + Vm f

K ′
aat

[P][Q] + Vmr Km A

Kiq
[B][Q]

+ Vm f Km Q

K ′
aat Kia

[A][P]. (6.62)
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The parameter values are Vm f = 7.96 mol sec−1 (l mito)−1, Km A = 3900 µM,
Km B = 430 µM, Km P = 88 µM, Km Q = 8900 µM, Kia = 3480 µM, Kib = 50 µM,
Kip = 710 µM, and Kiq = 3480 µM. The value of Vmr is computed

Vmr = Vm f Km Q Kip

K ′
aat Km B Kia

. (6.63)

6.2.4 Differential equations for TCA cycle reaction network

The next step in building a biochemical network model for the TCA cycle
is determining the governing differential equations. Since we are not treating
transport of material into or out of the mitochondrion, the reactants of the overall
reaction of Equation (6.31) are held clamped in this model. In addition, ASP and
GLU are held fixed because there are no sources or sinks for the metabolites other
than the aspartate aminotransferase reaction built into the model at this stage.
Since the electron transport system is not modeled, proton transport is not included
and pH is held fixed.

The fixed concentrations are set at [PYR] = 0.076 mM, [CoQ] = 0.97 mM,
[CoQH2] = 0.38 mM, [PI] = 1.8 mM, [ASP] = 0.06 nM, [GLU] = 0.06 mM,
[
CO2] = 21.4 mM, and [H+] = 10−7.2 M, which are physiologically reasonable
values. (In Chapter 7 this model is integrated with a detailed model of oxidative
phosphorylation and mitochondrial substrate and ion transport in which none of
these species or reactants are held at fixed concentrations.) The concentrations
of NAD, NADH, ATP, and ADP are varied in order to examine the biochemical
mechanisms regulation flux of the TCA cycle.

For the remaining (non-clamped) reactants, we have the following differential
equations that arise from the stoichiometry of the reference reactions:

d[ACCOA]/dt = (−Jcits + Jpdh)/Wx

d[CIT]/dt = (+Jcits − Jacon)/Wx

d[ICIT]/dt = (+Jacon − Jisod)/Wx

d[AKG]/dt = (+Jisod − Jakgd − Jaat )/Wx

d[SCOA]/dt = (+Jakgd − Jscs)/Wx

d[COAS]/dt = (−Jpdh − Jakgd + Jscs + Jcits)/Wx

d[SUC]/dt = (+Jscs − Jsdh)/Wx

d[FUM]/dt = (+Jsdh − J f um)/Wx

d[MAL]/dt = (+J f um − Jmdh)/Wx

d[OAA]/dt = (−Jcits + Jmdh + Jaat )/Wx

d[GTP]/dt = (+Jscs − Jndk)/Wx

d[GDP]/dt = (−Jscs + Jndk)/Wx , (6.64)
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where Wx = 0.6514 (l water)·(l mito)−1 is the mitochondrial matrix water space per
unit mitochondrial volume [13]. Since pH is held fixed, the equations for binding
ions are simplified and we have, for Mg2+ and K+ kinetics:

d[Mg2+]

dt
=

αK �M −
(

∂[Mgbound]
∂[K+]

)
�K

αMαK − ∂[Mgbound]
∂[K+]

∂[Kbound]
∂[Mg2+]

(6.65)

and

d[K+]

dt
=

αM�K −
(

∂[Kbound]
∂[Mg2+]

)
�M

αMαK − ∂[Mgbound]
∂[K+]

∂[Kbound]
∂[Mg2+]

. (6.66)

6.2.5 Simulation of TCA cycle kinetics

We start our analysis of the TCA cycle kinetics by examining the predicted steady
state production of NADH as a function of the NAD and ADP concentrations. From
Equation (6.31) we see that there can be no net flux through the TCA cycle when
concentration of either NAD or ADP, which serve as substrates for reactions in the
cycle, is zero. Thus when the ratios [ATP]/[ADP] and [NADH]/[NAD] are high,
we expect the TCA cycle reaction fluxes to be inhibited by simple mass action.
In addition, the allosteric inhibition of several enzymes (for example inhibition of
pyruvate dehydrogenase by NADH and ACCOA) has important effects.

The overall control of integrated system behavior by NAD and ADP can be
understood based on simulation of the model as follows. We define the rate of
NADH production as JDH = Jpdh + Jisod + Jakgd + Jmdh , and compute the pre-
dicted steady state JDH as a function of [ADP]/Ao and [NAD]/No, where Ao =
[ATP] + [ADP] = 10.0 mM and No = [NADH] + [NAD] = 2.97 mM are the total
concentrations of adenine nucleotide and NAD nucleotide [213].

We can see from Figure 6.3 that the relative NADH concentration is the more
important controller of steady state TCA cycle flux, in agreement with experimental
observations [124]. When ADP concentration is low, a variation in [NAD]/No from
0 to 1 produces a change in JDH from 0 to nearly 1.59 mmol · sec−1 · (l mito)−1.
When NAD concentration is near zero, the rate of NADH production is not sensitive
to ADP. Yet the flux is by no means insensitive to ADP. Neither NAD nor ADP
represents a sole independent controller of the system.

To understand how the TCA cycle responds kinetically to changes in demand,
we can examine the predictions in time-dependent reaction fluxes in response to
changes in the primary controlling variable NAD. Figure 6.4 plots predicted reaction
fluxes for pyruvate dehydrogenase, aconitase, fumarase, and malate dehydrogenase
in response to an instantaneous change in NAD. The initial steady state is obtained
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Figure 6.3 Rate of production of NADH by the TCA cycle as a function of the
relative concentrations of NAD and ADP. The flux JDH is given in units of mmole
NADH generated per second per unit mitochondrial volume. Contours are drawn
at JDH = 0.30, 0.60, 0.90, and 1.20 mmol · sec−1 · (l mito)−1.

at [ADP]/Ao = 0.5 and [NAD]/No = 0.20, for which the predicted net rate of
NADH generation is JDH = 0.58 mmol · sec−1 · (l mito)−1. At time t = 5 seconds,
the [NAD]/No ratio is suddenly increased to 0.80, which produces a near maximal
steady state JDH = 1.43 mmol · sec−1 · (l mito)−1.

The four fluxes plotted in the figure correspond to different locations on the TCA
cycle diagram. (The reaction numbers from the diagram of Figure 6.2 are indicated
in Figure 6.4.) We can see that the predicted fluxes reach peak values within one sec-
ond following the perturbation before settling down to the new steady state. As ex-
pected, the pyruvate dehydrogenase flux (reaction 1) responds sharply to an increase
in NAD. (The peak is not shown in the plot for pyruvate dehydrogenase.) After an
initial increase from 0.15 to approximately 2.0 mmol · sec−1 · (l mito)−1, the flux ap-
proaches the new steady state value of approximately 0.33 mmol · sec−1 · (l mito)−1.

The aconitase flux (reaction 3) and the fumarase flux (reaction 8) display over-
shoots that are small compared to pyruvate dehydrogenase. The aconitase reaction
flux reaches a peak value that is only a few percent greater than the final steady
state value. The fumarase flux does overshoot the final steady state, but the over-
shoot is too small to be observed on the scale plotted. This behavior occurs because
these reactions are downstream of any reactions directly using NAD as a substrate.
Therefore their response is muted compared to reactions that are directly controlled
by NAD/NADH.

The final dehydrogenase in the system (malate dehydrogenase, reaction 11)
uses NAD as a substrate and, like pyruvate dehydrogenase, responds sharply to
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Figure 6.4 Predicted response in flux of several reactions in the TCA cycle follow-
ing an instantaneous increase in NAD. At time t = 5 seconds the ratio [NAD]/No
is increased from 0.20 to 0.80.

the global increase in NAD. Similar to the pyruvate dehydrogenase reaction, the
predicted peak flux following the perturbation (not shown) is approximately 2.1
mmol · sec−1 · (l mito)−1.

One important shortcoming of the model and associated results reported in this
section is the fact that input and output concentrations of Equation (6.31) are held
fixed, and that the reactions that consume NADH and CoQH2 and regenerate NAD
and CoQ are not included. Modeling these processes requires integrating the reac-
tion system studied here with mitochondrial transport processes. Such a study is
the subject of an example model developed in Chapter 7, which is devoted to inte-
grating reaction and transport systems. Based on simulating the integrated system
of the TCA cycle and oxidative phosphorylation, it is demonstrated that ADP and
PI act as the primary controllers of oxidative ATP synthesis [213]. Since PI is a
TCA cycle substrate, PI concentration is a significant determinant of both oxidative
phosphorylation activity and also TCA cycle activity.

6.3 Control and stability in biochemical networks

In the previous section we explored the impact of changes in certain concentrations
on TCA cycle fluxes. For example, Figure 6.3 plots the predicted NADH-producing
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flux as a function of NAD and ADP concentrations. This analysis is one example of
a sensitivity analysis, in which we have explored the sensitivity of flux to concen-
trations. In this section we lay out a theory of sensitivity analysis for biochemical
reaction networks based on analyzing the response of linearized systems to various
perturbations.

Metabolic control analysis (MCA) is a specialized theory that is concerned with
particular sensitivity coefficients, elasticity coefficients and control coefficients.
These coefficients tell us how a steady state of a biochemical system shifts in
response to perturbation in enzyme activities or external (clamped) substrate con-
centration [53, 209].

6.3.1 Linear analysis near a steady state

Metabolic control analysis and related theories are based on examining how a
system responds to infinitesimally small perturbations. Thus in general one can
make use of a linearized set of governing kinetic equations. To be specific, an
N -dimensional system governed by a non-linear system of differential equations

dx
dt

= f(x), (6.67)

may be linearized about an asymptotically stable steady state x∗, as follows:

d

dt
(δxi ) =

N∑
j=1

∂ fi

∂x j

∣∣∣∣
x=x∗

· δx j , (6.68)

in which δx j = x j − x∗
j . Defining the linear stability matrix A

Ai j = x∗
j

∂ fi

∂x j

∣∣∣∣
x=x∗

we have

d

dt
δxi =

N∑
j=1

Ai j

(
δx j

x∗
j

)
. (6.69)

For a reaction network of M biochemical reactions involving N biochemical
species Xi (i = 1, 2, . . . , N ), the j th biochemical reaction is characterized by a set
of stoichiometric coefficients ν = {ν j

i } and κ = {κ j
i }:

ν
j
1 X1 + ν

j
2 X2 + · · · + ν

j
N X N � κ

j
1 X1 + κ

j
2 X2 + · · · + κ

j
N X N , (6.70)

( j = 1, 2, . . . , M), where integers ν’s and κ’s can be zero. The N × M matrix S

(with entries Si j = κ
j

i − ν
j

i ) is known as the stoichiometric matrix.
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Denoting the concentration of species Xi as xi , we have dx/dt = f(x) = SJ + Je,
where x and Je are N -dimensional and J is an M-dimensional column vector. In
a closed reaction system, Je = 0. In this case, thermodynamic equilibrium is the
only positive stationary solution: the internal fluxes J = J+ − J− = 0 for each and
every reaction (see Chapter 9). Therefore, in a non-equilibrium steady state either
one or more injection fluxes must be non-zero (J e

i �= 0), or certain concentrations
xi must be held at constant levels. We refer to the first case as external flux injection,
the latter as external concentration clamping.

There is a close analog between an open biochemical system and an electri-
cal circuit powered by a battery. Recall that there are two types of ideal batteries,
those that provide constant current (current sources with zero internal conductance)
and those that provide constant voltage (voltage sources with zero internal resis-
tance). A real battery of course has a finite internal resistance and conductance.
For a metabolic system in an ideal setting, one can either control the fluxes and let
the concentrations change in response, or one can control the concentrations and
let the fluxes change in response. Controlling fluxes can, but not necessarily, be
accomplished by changing enzyme activities.

The linear stability matrix for chemical reaction systems is computed

Ai j = x∗
j

∂ fi

∂x j

∣∣∣∣
x=x∗

= x∗
j

M∑
k=1

Sik
∂ Jk

∂x j

∣∣∣∣
x=x∗

(6.71)

and we define its inverse A
−1 = B.1 From Equation (6.71) we also define the matrix

R, where A = SR and

Ri j = x∗
j

∂ Ji

∂x j

∣∣∣∣
x=x∗

. (6.72)

We will see below that the matrix R is central to MCA.

6.3.2 Metabolic control analysis

6.3.2.1 Elasticity coefficients

Let us first consider the case where the concentration of a species, species n, is
changed: x∗

n → x∗
n + δxn . Since the state x is asymptotically stable, the system will

return to the original steady state if xn is a dynamic variable. However, if xn is a
clamped concentration, then the system will achieve a new steady state. Locally

1 The non-linear dynamics scheme dx/dt = SJ + Je may conserve certain quantities. (See Section 9.4.3.) In such
cases A is singular [159] and must be transformed into a non-singular matrix by removing the redundancies
from the original dynamics scheme resulting in replacing the linearly dependent rows of A with vectors in its
left null space. Here A is understood as the transformed non-singular matrix.
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and immediately, before reaching the new steady state, the response is only in the
flux of the reactions involving Xn . The local change is characterized by:

εm
n �

[
xn

Jm

∂ Jm

∂xn

]
x=x∗

= Rmn

Jm
(6.73)

which is called the local elasticity coefficient [54].
The coefficient εm

n is distinguished from the coefficient εm
n , which characterizes

the steady state response [208]. When a new steady state is established following
a change of x∗

n → x∗
n + δxn in clamping the species n, the remaining (N − 1)

concentrations satisfy the system of linear equations:

N∑
j �=n

Ai j
δx j

x∗
j

= −Ain
δxn

x∗
n

(1 ≤ i ≤ N , i �= n), (6.74)

from setting Equation (6.69) to zero.
Solving Equation (6.74) for δxi , we have δxi/x∗

i = Binδxn/Bnnx∗
n where Bin is

the nth column vector of the matrix A
−1. The new steady state established near

{x∗
i } is {x∗

i + δxi }.2
The fluxes in the new steady state, Jm + δ Jm , are given by:

δ Jm =
N∑

�=1

∂ Jm

∂x�

· δx� =
N∑

�=1

εm
�

B�nδxn

Bnnx∗
n

Jm . (6.75)

Hence the steady state elasticity coefficient is

εm
n � x∗

n

Jm

(
δ Jm

δxn

)
=

N∑
�=1

εm
�

B�n

Bnn
= (RB)mn

Jm Bnn
. (6.76)

The two quantities ε and ε have different properties as we shall see.

6.3.2.2 Control coefficients

We now consider the case where enzyme activity for the mth reaction Em is
changed: Em → Em + δEm . Assuming that the flux through the reaction is lin-
early proportional to the activity of the enzyme catalyzing the reaction, Em , when
Em → Em + δEm , the new steady state satisfies

d

dt
(δxi ) =

N∑
j=1

Ai j
δx j

x∗
j

+ Sim Jm
δEm

Em
= 0, (6.77)

2 See Exercise 3.
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which arises from the linear expansion of Equation (6.67)

d

dt
(δxi ) =

∑
j

∂ fi

∂x j
· (δx j ) + ∂ fi

∂ Em
· (δEm).

Solving Equation (6.77) for δx j ( j = 1, 2, . . . , N ), we have

δx j

x∗
j

= −
N∑

i=1

B ji Sim Jm
δEm

Em
. (6.78)

We define

Ĉm
j � Em

x∗
j

(
δx j

δEm

)
= −(BS) jm Jm, (6.79)

which is called the concentration control coefficient. Combining Equations (6.78)
and (6.75), we have

Cm
n � En

Jm

(
δ Jm

δEn

)
= δmn − 1

Jm
(RBS)mn Jn, (6.80)

where δmn is the Kronecker delta function: δmn = 0 if m �= n and = 1 if m = n.
The quantity Cm

n is called the flux control coefficient.

6.3.2.3 Summation theorems

There exist several important theorems related to sums of these control coefficients
[209, 53]. From Equation (6.79) it is apparent that

M∑
m=1

Ĉm
n = 0 (6.81)

if there is no injection flux (SJ = −Je = 0). Similarly, from Equation (6.80)

M∑
j=1

Cn
j = 1 (6.82)

if there is no injection flux. Thus both summation theorems depend on the injec-
tion flux being zero. In other words, the metabolic steady state is sustained by
concentration clamping.3

3 The significance of the injection fluxes can be best understood in terms of Euler’s theorem of homogeneous
functions [65]: if there are no injection fluxes in a system, it is sustained by clamped concentrations. Assuming
every reaction in the system is catalyzed by an enzyme, then if each and every enzyme concentration is doubled,
the flux in each reaction doubles. In other words, the flux is a homogeneous function of enzyme concentrations
with order 1. This leads to the summation rule for Cm

n , Equation (6.82). At the other extreme, if the steady state
is sustained by injection fluxes and there are no clamped concentrations, then the flux is a homogeneous function
of enzyme concentrations with order 0. A similar argument exists for steady state concentrations as functions
of enzyme concentrations leading to the summation rule for Ĉn

j .
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One of the many important consequences of these summation theorems is that, in
the case where all flux control coefficients are positive, all coefficients have values
between 0 and 1. In this case, the reaction for which Ci

j is greatest represents the
reaction to which the flux Jj is most sensitive. In the limit that one flux control
coefficient has a value close to 1 and all others have values close to 0, we can say
that there exists a rate-limiting step; a change in activity of the rate-limiting enzyme
would be expected to elicit a proportional change in the flux Jj .

Summation rules for elasticity coefficients can be obtained by noting BSR = I

⇒ (RBS)(RB) = RB, which yields

M∑
n=1

εn
N Cm

n =
M∑

n=1

εn
N Cm

n = 0

N∑
n=1

εn
N Ĉn

m = −δm N ,

N∑
n=1

εn
N Ĉn

m = − Bm N

BN N
. (6.83)

Finally, the steady state fluxes J, stoichiometric matrix S, and flux control coefficient
matrix C satisfy

M∑
m=1

Sim JmCm
j = 0. (6.84)

Note that local slopes of the surface illustrated in Figure 6.3 at given concen-
trations of reactants provide a sensitivity measure that is equivalent to the steady
state elasticity coefficients. Namely Figure 6.3 illustrates the sensitivity of flux
to finite changes in clamped concentration values. One appeal of this analysis is
that it illustrates the sensitivity of flux over a wide range of behavior in the system,
rather than at a single specified steady state. Of course, analysis and visualization in
multi-dimensional sensitivity analysis is a challenge. The control of one predicted
variable by two parameters over a range of values can be illustrated by a surface or
contour plot such as in Figure 6.3. Higher dimensional analyses require different
strategies.

Concluding remarks

Here we have introduced a detailed formalism for building models of biochem-
ical systems. This approach has the advantages that the influences of pH and
metal ion concentrations on apparent thermodynamic properties are explicitly ac-
counted for. This detailed accounting allows us to take advantage of the rich data
available on dissociation constants and thermodynamic properties. Even so, the
available data remain incomplete. While standard free energies of formation are
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available for many biochemical reference species, little information on enthalpies
of formation is available. Thus it is not always possible to accurately adjust reaction
free energies for temperature. When one looks for kinetic information, one finds
that the available data are less complete, less consistent, and less well analyzed
than the thermodynamic data. Thus, assigning values to kinetic parameters (such
as in the kinetic model of the TCA cycle developed in this chapter) is typically not
a straightforward or unambiguous task. To make continued progress in this field,
strategies must be developed for obtaining and analyzing missing thermodynamic
and kinetic data for enzyme-catalyzed biochemical reactions.

It is also important to note that the simplification that pH and metal ion concen-
trations remain constant is a reasonable approximation in many cases. For example,
if a cell maintains a constant metabolic state, then we expect pH to remain constant
under most circumstances. However, we are ultimately not interested in cases in
which a constant normal state is maintained. Our ultimate goal is to understand how
cell systems act and respond to stress and disease. Since metabolism provides the
energy and raw materials for cellular function, including the signaling modules of
Chapter 5, fully integrated analysis of cellular function in health and disease will
hinge on the detailed modeling approach outlined here.

Exercises

6.1 Construct a computer program to reproduce the simulation outlined in Section 6.1.4.
Compare the behavior of the conservation relations (Ho, Mo, and Ko) computed using
different solvers and numerical settings.

6.2 Derive Equations (6.65) and (6.66).
6.3 Show that δxi/x∗

i = Binδxn/Bnn x∗
n solves Equation (6.74). (Recall that B = A

−1.)
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Coupled biochemical systems and
membrane transport

Overview

As we have seen in previous chapters, living systems require that material be trans-
ported in and out in order to maintain an operating state (or operating states) that is
far from thermodynamic equilibrium. Material is transported into and out of cells
via passive permeation and by a diverse set of channels, pumps, transporters, and
exchangers. In this chapter we consider kinetic models of transport across mem-
branes, with specific examples of coupled transport and reaction in metabolic and
electrophysiological systems. In the final example a computational model of oxida-
tive ATP synthesis (which occurs as a set of reactions transporting charged species
across the mitochondrial inner membrane) is developed. This model may be inte-
grated with the detailed kinetic model of the TCA cycle presented in Chapter 6,
allowing us to simulate and explore how the coupled systems interact – the TCA
cycle producing reduced cofactors and the oxidative phosphorylation systems trans-
ducing the free energy of oxidation of these cofactors to synthesize and transport
ATP.

7.1 Transporters

In Section 3.2 we introduced the basic processes of advection, diffusion, and drift,
by which material is transported in biophysical systems. In this chapter we focus on
a specialized class of transport: transport across biological membranes. Transport of
a substance across a membrane may be driven by passive permeation, as described
by Equation (3.60), or it may be facilitated by a carrier protein or transporter
that is embedded in the membrane. Thus transport of substances across membranes
mediated by transporters is termed carrier-mediated transport. The most basic way
to think about carrier proteins or transporters is as enzymes that catalyze reactions
that involve transport.

162
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7.1.1 Active versus passive transport

Transport reactions are usually categorized into two classes: active transport and
passive transport. Active transport implies that some species is moving against
its electrochemical gradient in the transport process. This movement against the
gradient is accomplished through other chemical processes that move down the
electrochemical gradient. A typical coupled reaction in active transport is the hy-
drolysis of ATP, as in the sodium/potassium ATPase pump (or Na-K pump) that
hydrolyzes an ATP while transporting 3 Na+ ions out of the cardiac muscle cell
and 2 K+ into the cell against their electrochemical gradients.

Regardless of whether a transport reaction is termed active or passive, the overall
process spontaneously moves down the overall gradient in free energy, as we shall
demonstrate in the following examples. Since all transport processes act in the
direction of free energy dissipation, the distinction between active and passive
transport is a question of whether or not a chemical transformation is coupled to the
transport processes. Thus, perhaps the terminology of active and passive transport
is not perfect. In fact, it would perhaps be more informative if the terms active and
passive transport were replaced with the terms reacting and non-reacting, reflecting
processes that do and do not involve chemical transformation.

7.1.2 Examples: a uniporter and an antiporter

As a first example, let us consider the transport of glucose across the cell membrane
via a glucose transport (GLUT). There exist several different isoforms of this en-
zyme expressed in different mammalian cell types. Glucose transporters are called
uniporters because they transport a single substance across the membrane. Here
we analyze a generic model for GLUT-mediated transport of glucose across the
cell membrane, illustrated in Figure 7.1. In this model, glucose binds to a binding
site on the protein, which may be exposed to either side of the cell membrane, as
illustrated in the figure.

The cartoon of Figure 7.1 is modeled by the molecular mechanism illustrated in
the left panel of Figure 7.2. One glucose molecule is transported from the outside
to the inside of the cell every time one GLUT undergoes a forward catalytic cycle
through the states 1 → 2 → 3 → 4 → 1. The overall reaction is

Gout � Gin.

Therefore there is no overall chemical reaction. Assuming that conditions such as
pH and ionic strength are the same on both sides of the membrane, the equilibrium
constant for the transport reaction is KGLU T = 1 and the equilibrium Gibbs free
energy is �Go

GLU T = 0.
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G

G

G
G

outside

inside

1 2 3 4 

glucose molecule

glucose binding site 

Figure 7.1 Transport of glucose across the cell membrane mediated by a glucose
transporter. Four discrete states are illustrated. In state 1 the glucose binding site
is exposed on the outside of the cell; in state 2 a glucose molecule is bound to
the binding site on the outside of the cell; in state 3 the glucose-bound binding
site is exposed to the inside of the cell; in state 4 the glucose is dissociated and
the binding site is exposed to the inside of the cell.

1 2 

34

+

Go

Gi

1 2 

34

+

Ao + Bi

Ai + Bo

Figure 7.2 Left panel: reaction mechanism for glucose transporter illustrated in
Figure 7.1. Right panel: reaction mechanism for antiport reaction Aout + Bin �
Ain + Bout.

The principle of detailed balance, which states that at equilibrium the forward
and reverse fluxes are equal for all component reactions in a mechanism [127],
requires that in equilibrium each step in the mechanism shown in the left panel of
Figure 7.2 is in equilibrium. Multiplying the equilibrium ratios for each reaction in
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the mechanism, we obtain:(
e2

[Gout]e1

)
eq

·
(

e3

e2

)
eq

·
(

[Gin]e4

e4

)
eq

·
(

e4

e1

)
eq

=
(

[Gin]

[Gout]

)
eq

= KGLU T = 1,

(7.1)

where we have denoted the concentrations of the enzyme in each state e1 = [E1],
e2 = [E2], e3 = [E3], and e4 = [E4]. Expressing the equilibrium ratios of Equation
(7.1) in terms of mass-action rate constants for the steps we have

k12

k21
· k23

k32
· k34

k43
· k41

k14
= 1. (7.2)

To analyze this system we simplify the kinetic mechanism by assuming that the
binding and unbinding of glucose from the transporter are rapid, with dissociation
constant Kd on both sides of the membrane. This rapid-equilibrium assumption
yields:

e2 = [Gout]e1/Kd

e3 = [Gin]e4/Kd, (7.3)

where Kd = k21/k12 = k34/k43. It follows that Equation (7.2) simplifies to

k23

k32
· k41

k14
= 1. (7.4)

Next we introduce the quasi-steady approximation, which yields:

J = k41e4 − k14e1 = k23e2 − k32e3 (7.5)

and a statement of conservation of total enzyme (or transporter):

Eo = e1 + e2 + e3 + e4. (7.6)

Combining Equations (7.3), (7.5), and (7.6) to solve for e1, we have

e1 = Eo (k41 Kd + k32[Gin]) Kd

K 2
d (k14 + k41) + [Gout]Kd (k41 + k23) + · · ·

× [Gin]Kd (k14 + k32) + [Gout][Gin] (k23 + k32) . (7.7)

Next we introduce the simplification that the conformational transformation of
the protein that moves the binding site from one side of the membrane to the other
is not affected by the presence of bound glucose. Therefore the kinetics governing
transitions between states 2 and 3 is identical to that governing transitions between
1 and 4:

k23 = k14 = k+
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and

k32 = k41 = k−.

Note that with the above simplification, Equation (7.4) is satisfied. Substituting
these expressions into Equation (7.9) we obtain

e1 =
Eo Kd

(
k−

k++k−

)
[Gout] + Kd

. (7.8)

Using this expression for e1, we obtain the quasi-steady flux expression

J =
Eo Kd

(
k+k−

k++k−

)
([Gout] − [Gin])

([Gout] + Kd) ([Gin] + Kd)
. (7.9)

If we set [Gin] = 0, then

J =
Eo

(
k+k−

k++k−

)
[Gout]

[Gout] + Kd
= Vmax [Gout]

[Gout] + Kd
, (7.10)

which is the familiar Michaelis–Menten expression for a single-substrate irre-
versible enzyme flux.

To illustrate the general case with [Gin] �= 0 we introduce the non-dimensional
flux

v = J (k− + k+)

Eok+k−
, (7.11)

which is plotted in Figure 7.3 as a function of glucose concentration outside the
cell for several different values of [Gin].

0 1 2 3 4 5
0.5

0

0.5

1

v

[Go] /Kd

[Gi] /Kd = 0

[Gi] /Kd  = 1/2

[Gi] /Kd  = 1

Figure 7.3 Flux of glucose transporter predicted by Equation (7.6). Non-
dimensional flux v is defined in Equation (7.11).
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A form for the flux more general than that of Equation (7.6) is obtained if we do
not invoke the rapid pre-equilibrium assumption [108]:

J = Eok12k21 (k23k41[Gout] − k32k14[Gin])

(Koi [Gout][Gin] + Ko[Gout] + Ki [Gin] + K )
, (7.12)

where the following assumptions have been made: k12 = k43 and k21 = k34.
The rate constants in Equation (7.12) expressed in terms of the mass-action
rate constants are: Koi = k2

12/(k23 + k32), Ko = k12(k23(k41 + k21) + k41(k32 +
k21)), Ki = k12(k14(k23 + k21) + k32(k14 + k21)), and K = k21(k14 + k41)(k21 +
k23 + k32). Note that in this case Equation (7.2) reduces to Equation (7.4) because
k12 = k43 and k21 = k34. Therefore the overall equilibrium(

[Gin]

[Gout]

)
eq

= 1

is obeyed by Equation (7.12).
Next we consider an antiport transport reaction, in which one substance on one

side of the membrane is exchanged for another on the other side of the mem-
brane. For example, an antiport reaction that exchanges A for B has the overall
reaction

Aout + Bin � Ain + Bout.

As for the glucose transport reaction, there is no overall chemical reaction and the
equilibrium constant for the process is 1.

A possible mechanism for this antiport reaction is illustrated in the right panel
of Figure 7.2. Here the binding and unbinding of reactants to the antiporter protein
are lumped into single reactions:

Aout + Bin + E1 � E2

and

Ain + Bout + E4 � E3,

which allows us to simplify the analysis and make the flux expression tractable.
Assuming binding and unbinding are in rapid equilibrium, we have

e2 = [Aout][Bin]e1/Kd

e3 = [Ain][Bout]e4/Kd, (7.13)

where the dissociation constant Kd has units of M2. Using the quasi-steady flux
approximation (analogous to the above treatment of the glucose transporter), we
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obtain

J =
Eo Kd

(
k+k−

k++k−

)
([Aout][Bin] − [Ain][Bout])

([Aout][Bin] + Kd) ([Ain][Bout] + Kd)
(7.14)

for the flux expression for the antiporter.
A lesson to draw from the analysis of the two above examples is that trans-

porters are treated as enzymes using techniques equivalent to those introduced in
Chapter 4. The only difference is that transport reactions involve species on both
sides of a membrane. Thus transport reaction may involve no overall chemical re-
action, as is the case for the two examples in this section. Note that even when there
is no overall chemical reaction, the equilibrium constant for a transport reaction
can differ from unity. This is the case when charged species are transported across
membranes, as described in the next section.

7.2 Transport of charged species across membranes

Many cells and subcellular organelles maintain an electrostatic potential difference
across their membranes. This potential typically is important to the operation of
the cell or organelle. For example, in nerve cells and other cells with excitable
membranes such as muscle cells, the electrostatic potential is an important signal
that governs cellular behavior. In these cells, some form of electrochemical signal
that is sent to the cell can elicit an action potential – a transient change in the
membrane potential that can trigger intracellular events, such as contraction of a
muscle cell.

7.2.1 Thermodynamics of charged species transport

The thermodynamic potential that drives a chemical process involving the move-
ment of charges across a membrane is given by:

�µ = �µo + ��

NC

∑
i ∈ inside

νi zi + kB T
∑

i

νi ln ci (7.15)

where �� denotes the electrostatic potential difference between the two sides of
the membrane. Associating the sides of the membrane with the inside and outside
of a cell, �� is the potential inside the cell relative to the potential outside – it is the
inside potential minus the outside potential. The sign convention for Equation (7.15)
is that the positive flux direction is defined to be from outside to inside. The constants
kB and NC are Boltzmann’s constant and the Coulomb constant, respectively. The
notation

∑
i ∈ inside denotes summation over all participating species on the inside

of the membrane; zi and νi represent the valence and stoichiometric number for
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the i th participating species, respectively; ci denotes the concentration of the i th
species.

The term
∑

i ∈ inside νi zi in Equation (7.15) computes the total charge translocated
across the membrane for the transport process. Note that since a chemical reaction
does not create or destroy charge,∑

i

νi zi =
∑

i ∈ inside

νi zi +
∑

i ∈ outside

νi zi = 0. (7.16)

Applying Equation (7.15) to isothermal isobaric transport, we have the following
equation for the Gibbs free energy for the coupled chemical reaction and transport
process:

�G = �Go + F��
∑

i ∈ inside

νi zi + RT
∑

i

νi ln ci (7.17)

where F is Faraday’s constant, which is equal to the Avogadro constant divided by
the Coulomb constant. Note that Equation (7.17) is written in terms of chemical
species, for which the charge is defined, and not in terms of chemical reactants.
Thus �G in Equation (7.17) is the free energy for a chemical reaction, not the
apparent free energy for a biochemical reaction.

As an example, let us consider the coupled transport of ADP and ATP through the
adenine nucleotide translocase (ANT) exchanger located on the mitochondrial inner
membrane. This transporter exchanges the species ATP4− in the mitochondrial ma-
trix for ADP3− in intermembrane space between the outer and inner mitochondrial
membranes, as illustrated in Figure 7.4. This exchange occurs against the concen-
tration gradient, and is driven by the electrostatic potential across the membrane.
The overall reference reaction for the transporter is:

ATP4−
in + ADP3−

out � ATP4−
out + ADP3−

in (7.18)

outside

inside

+

−

∆Ψ

ATP4−

ATP4−

ADP3−

ADP3−

Figure 7.4 Cartoon of transport reaction catalyzed by adenine nucleotide translo-
case (ANT). ATP4− in the mitochondrial matrix is exchanged for ADP3− in inter-
membrane space between the outer and inner mitochondrial membranes.
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where the subscripts “in” and “out” denote matrix and intermembrane space, re-
spectively. Applying Equation (7.17), we have:

�G AN T = −F�� + RT ln

(
[ATP4−]out[ADP3−]in

[ADP3−]out[ATP4−]in

)
, (7.19)

since the �Go for this chemical reaction is zero. The potential difference �� in
Equation (7.19) is measured as the potential in the intermembrane space minus the
potential in the matrix.

The ratio ([ATP4−]/[ADP3−]) in the matrix is typically on the order of 1 and
may be as low as 0.2, while in the cytoplasm and in the intermembrane space the
ratio is approximately 50. The membrane potential in respiring mitochondria is ap-
proximately 160 mV. Under these conditions the free energy of the ANT exchanger
is computed

�G AN T ≈ −F · (180 mV) + RT ln(250)

≈ −5.98 RT + 5.52 RT = −0.46 RT . (7.20)

Thus under typical conditions the concentration free energy barrier of 5.52 RT is
overcome by an electrostatic driving force of 5.98 RT .

7.2.2 Electrogenic transporters

Electrogenic transporters are membrane transport proteins that effect transport reac-
tions that involve overall charge transport. Thus for electrogenic transport reactions
the reaction is influenced by (and influences) the electrostatic potential across the
membrane and the second term on the right-hand side of Equation (7.17) is non-zero.

Consider as an example the sodium–calcium (NC) exchanger, which exchanges
3 Na+ ions for 1 Ca2+ across the cell membrane. The exchanger typically operates
with calcium moving out of the cell and sodium ion moving in, as illustrated in
Figure 7.5. The overall reaction for the NC exchanger is:

3 Na+
out + Ca2+

in � 3 Na+
in + Ca2+

out . (7.21)

From Equation (7.17), the Gibbs free energy for the transport reaction is

�G N AC = F�� + RT ln

(
[Na+

in]3[Ca2+
out ]

[Na+
out]

3[Ca2+
in ]

)
(7.22)

and the apparent equilibrium constant, accounting for the membrane potential, is
KN AC = e−F��/RT . In addition, if we assume that the transport proceeds according
to the mechanism illustrated in Figure 7.5, the kinetic constants obey the relationship

k12k23k34k41

k21k32k43k14
= e−F��/RT . (7.23)
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Figure 7.5 Cartoon (left) and mechanism (right) for sodium–calcium exchanger.
This electrogenic transporter exchanges 3 Na+ ions for 1 Ca2+ ion.

Analogous to the treatment of the antiporter in Section 7.1.2, the mechanism
of Figure 7.5 assumes that the binding and unbinding steps are lumped into sin-
gle reactions. This assumption is reasonable if the binding and unbinding re-
action are maintained in rapid equilibrium: e2 = [Na+

out]
3[Ca2+

in ]e1/Kd and e3 =
[Na+

in]3[Ca2+
out ]e4/Kd . These relationships allow us to simplify Equation (7.23) to

k23k41

k32k14
= e−F��/RT . (7.24)

This equilibrium condition is satisfied by the following choice of kinetic constants

k23 = k̂+ = k+e−γ F��/RT

k41 = k̂− = k−e−(1−γ )F��/RT

k14 = k+
k32 = k− (7.25)

where k+, k−, and γ are arbitrary. Typically we expect 0 < γ < 1.
The quasi-steady flux for this mechanism can be expressed

J= Eo(k̂+k̂−[Na+
out]

3[Ca2+
in ] − k+k−[Na+

in]3[Ca2+
out ])

K0+K1[Na+
out]3[Ca2+

in ]+K2[Na+
in]3[Ca2+

out ]+K3[Na+
out]3[Ca2+

in ][Na+
in]3[Ca2+

out ]
,

(7.26)

where K0 = (k̂− + k+)Kd , K1 = (k̂+ + k̂−), K2 = (k+ + k−), and K3 = (k− +
k̂+)/Kd . Since k̂+ and k̂− depend on the membrane potential, the flux depends
on the membrane potential.
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7.3 Electrophysiology modeling

Electrophysiology modeling – the modeling of the electrical properties of cells –
was born with the Nobel Prize-winning work of Hodgkin and Huxley, reported in
a series of papers in 1952 [94, 95, 96, 97, 98]. Hodgkin and Huxley demonstrated
that the action potential (transient spike in membrane potential) in the squid giant
axon (a convenient cell for study)1 is primarily governed by sodium and potassium
current across the membrane and introduced a computational model quantitatively
describing the observed phenomena. Part of the legacy of Hodgkin and Huxley is
that today the field of electrophysiology is one in which computational modeling
is closely tied with experimental biology. Applications to a number of important
cell types, including a deep literature on cardiac cell electrophysiology, have been
developed.2 In this section we introduce the basics of electrophysiology modeling
using the original model of Hodgkin and Huxley as an example.

7.3.1 Ion channels

Ion channels are specialized transport proteins that facilitate the selective perme-
ation of ions through cell membranes. Opening and closing of these channels (called
gating) modulate the membrane potential in excitable cells, such as muscle and
nerve cells. Modeling the voltage-dependent gating of ion channels, and the ef-
fects of ionic currents on membrane potential, is the basis of electrophysiology
modeling.

Consider as an example the current of Na+ ion through a sodium channel. As
was illustrated in Section 1.7.2, there is an equilibrium membrane potential for
which the passive sodium current is zero. This equilibrium potential is given by

VNa = RT

F
ln

(
[Na+

out]

[Na+
in]

)
.

When the membrane potential �� equals VNa there is no net flux of sodium through
a passive sodium channel.

A useful and widely used model for the outward current through a sodium channel
is:

INa = gNa(�� − VNa), (7.27)

1 In a 1929 lecture to the International Physiology congress, August Krogh said that “For a large number of
problems there will be some animal of choice, or a few such animals, on which it can be most conveniently
studied” [119]. Hans Krebs called this concept the “August Krogh Principle,” which Hodgkin and Huxley
brilliantly applied to arrive at the giant axon of the squid as a convenient model for their electrophysiology
studies.

2 An historical review of the field that tracks the extensions of Hodgkin and Huxley’s pioneering work to the heart
is given by Noble [152].



7.3 Electrophysiology modeling 173

20 0 20 40 60 80
−1.2

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

I N
a
(m

A
⋅c

m
−2

)

∆Ψ (mV)

∆Ψ = VNaGHK model

Linear model

Figure 7.6 Current–voltage relationship for passive channel models of Equations
(7.27) and (7.28). Sodium concentrations typical for the squid giant axon are
used: [Na+

out] = 437 mM; [Na+
in] = 50 mM. The sodium equilibrium potential is

VNa = 58.5 mV. Conductance gNa is set to 0.01 mS·cm−2. The permeability for
the GHK model of Equation (7.28) is set so that both models predict the same
current density at �� = 0. Figure adapted from [108].

where gNa is the conductance of the channel. Typically current is measured as
current density, amperes per unit cell membrane surface area, and conductance is
measured in units of resistance per unit cell membrane surface area.

This linear current–voltage relationship can be compared to the Goldman–
Hodgkin–Katz model of Equation (3.64), which in terms of current density is

INa = PNa
F2��

RT

(
[Na+

in]eF��/RT − [Na+
out]

eF��/RT − 1

)
. (7.28)

Both Equations (7.27) and (7.28) predict zero current at �� = VNa , as illustrated
in Figure 7.6. Note that the current–voltage curve does not go through the point
(0,0). The outward current is positive only when the membrane voltage exceeds the
equilibrium voltage. For all membrane potential values below VNa , the current is
inward. Ionic current through membranes can be further understood in terms of the
theory of electro-diffusion. For a mathematical treatment of the subject, see [102].

7.3.2 Differential equations for membrane potential

In electrophysiology modeling biological membranes are typically treated as ca-
pacitors with constant capacitance. The basic equation for a capacitor is:

Cm
d��

dt
= −

∑
Ioutward, (7.29)
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where Cm is the capacitance of the membrane. The rate of change of membrane
potential is proportional to the sum of currents across the membrane. The summation
in Equation (7.29) is over all membrane currents. The sign of the right-hand side in
Equation (7.29) arises from the convention that membrane potential is defined as
the inside potential minus the outside potential. Therefore positive outward current
tends to lower the potential across the membrane. The apparent capacitance of
biological membranes is on the order of 1 × 10−6 µF·cm−2.

7.3.3 The Hodgkin–Huxley model

The Hodgkin–Huxley model involves three membrane currents due to potassium,
sodium, and a leak current of charge through other pathways. The model assumes
linear current–voltage relationships:

Cm
dv

dt
= −ḡK n4(v − vK ) − ḡNam3h(v − vNa) − ḡL (v − vL ) + Iapp

dm

dt
= αm(1 − m) − βmm

dn

dt
= αn(1 − n) − βnn

dh

dt
= αh(1 − h) − βhh, (7.30)

where ḡK n4 is the potassium conductivity, ḡNam3h is the sodium conductivity,
and ḡL is the leak conductivity. The current Iapp is the current applied across the
membrane. In the experiments of Hodgkin and Huxley, Iapp was imposed by a
capillary electrode. In vivo, the applied current arises from an event (such as a
synapse firing) that causes a transient increase in current or from the spread of an
action potential along a nerve fiber.

The voltage v in the Hodgkin–Huxley model is the membrane potential measured
relative to the equilibrium voltage Veq : v = �� − Veq , where Veq is the potential
when no current is applied. The experimentally determined equilibrium potentials
(which depend on the ion gradients across the membrane) for the model are

vK = −12 mV, vNa = 115 mV, vL = 10.6 mV

and the constants ḡK , ḡNa , and ḡL are

ḡK = 36 mS·cm2, ḡNa = 120 mS·cm2, ḡL = 0.3 mS·cm2.

The capacitance has a value Cm = 1 × 10−6 µF·cm−2.
The variables m, n, and h are phenomenological variables that describe the

observed gating of the sodium and potassium channels in response to changes in
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the membrane potential. If the potential were held fixed, m, n, and h would obtain
values:0

m∞ = αm

αm + βm

n∞ = αn

αn + βn

h∞ = αh

αh + βh
, (7.31)

where the αs and βs are empirical functions of the membrane potential v. The empir-
ical functions for the αs and βs were developed to match experimental observation
on the kinetics of sodium and potassium currents in the giant axon:

αm = 0.1
25 − v

exp
(

25−v
10

) − 1

βm = 4 exp

(−v

18

)
αn = 0.01

10 − v

exp
(

10−v
10

) − 1

βn = 0.125 exp

(−v

80

)
αh = 0.07 exp

(−v

20

)
βh = 1

exp
(

30−v
10

) + 1
, (7.32)

where voltages are expressed in units of mV. The m∞, n∞, and h∞ predicted by
these functions are illustrated in Figure 7.7.

From this figure we can see that the conductivities given by ḡK n4 and ḡNam3h
will be relatively small when the potential is near zero. However, if the potential is
increased to approximately v = 10 mV, the “m-gate” will open. (The variable m ob-
tains a value that increases with v.) As illustrated in Figure 7.7, the conductivity of
the sodium channel, given by ḡNam3h, will be zero in the limit that v becomes very
high. However, the functions for the αs and βs are designed to capture the observed
phenomenon that the sodium channels open on a timescale faster than that on which
they close. Thus, the sodium channel opening at small positive v results in an inward
sodium current because (v − vNa) < 0, generating an increase in the membrane po-
tential. This hyperpolarization will temporarily result in a positive feedback situa-
tion as increasing Na+ current leads to increasingv and increasing Na+ conductivity.

The temporary hyperpolarization caused by the sodium current is illustrated
in Figure 7.8, which illustrates the predicted membrane potential transients for
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for the Hodgkin–Huxley model. Figure adapted from [108].
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is predicted.
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different values of the applied current. When the applied current is high enough
to open the sodium channel to a substantial degree, the membrane hyperpolarizes
due to the sodium current. Following hyperpolarization by the sodium current, the
sodium channel closes and the potassium channel opens, both events happening on
the timescale of a few milliseconds. The combined action of closing the sodium
channel and opening the potassium channel causes the membrane to move back to
its resting potential near vK , which is −12 mV.

Figure 7.8 illustrates that applied currents too small (Iapp = 0.7 µA·cm−2 in the
figure) to open the sodium channel do not result in action potentials. Higher applied
currents (Iapp = 0.8 µA·cm−2 in the figure) result in a single action potential and
return to a stable steady state near v = 0. Still higher currents (Iapp = 6.2 µA·cm−2

in the figure) result in a periodic train of sustained action potentials.
The predicted channel conductivities for the case of sustained periodic action

potentials are plotted in the lower panel of Figure 7.8, illustrating the predicted
kinetics of channel opening and closing.

7.3.3.1 Computer code

A Matlab computer code for the Hodgkin–Huxley model is given below. The
code to compute the time derivatives of the state variables (the right-hand side of
Equation (7.30)) is:

function [f] = dXdT_HH(t,x,I_app);
% FUNCTION dXdT_HH
% Inputs: t - time (milliseconds)
% x - vector of state variables {v,m,n,h}
% I_app - applied current (microA cm^{-2})
%
% Outputs: f - vector of time derivatives
% {dv/dt,dm/dt,dn/dt,dh/dt}
% Resting potentials, conductivities, and capacitance:
V_Na = 115;
V_K = -12;
V_L = 10.6;
g_Na = 120;
g_K = 36;
g_L = 0.3;
C_m = 1e-6;
% State Variables:
v = x(1);
m = x(2);
n = x(3);
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h = x(4);
% alphas and betas:
a_m = 0.1*(25-v)/(exp((25-v)/10)-1);
b_m = 4*exp(-v/18);
a_h = 0.07*exp(-v/20);
b_h = 1 ./ (exp((30-v)/10) + 1);
a_n = 0.01*(10-v)./(exp((10-v)/10)-1);
b_n = 0.125*exp(-v/80);
% Computing currents:
I_Na = (m^3)*h*g_Na*(v-V_Na);
I_K = (n^4)*g_K*(v-V_K);
I_L = g_L*(v-V_L);
% Computing derivatives:
f(1) = (-I_Na - I_K - I_L + I_app)/C_m;
f(2) = a_m*(1-m) - b_m*m;
f(3) = a_n*(1-n) - b_n*n;
f(4) = a_h*(1-h) - b_h*h;
f = f';

The model may be simulated and the predicted voltage transient plotted using
the following commands:

% Initial equilibration with I_app = 0 to
% Generate initial condition xo for simulation:
I_app = 0;
[t,x] = ode15s(@dXdT_HH,[0 30],xo,[],I_app);
xo = x(end,:);
% Add nonzero applied current:
I_app = 6.2;
[t,x] = ode15s(@dXdT_HH,[0 30],xo,[],I_app);
% Plot computed action potential
plot(t,x(:,1));

See Section 3.1.4 for an outline of the use of computer solvers, such as the
‘ode15s’ function in Matlab, to integrate ordinary differential equations.

7.4 Large-scale example: model of oxidative ATP synthesis

The mitochondrion is the key cellular organelle responsible for transducing free
energy from primary substrates into the ATP potential that drives the majority
of energy-consuming processes in a cell. Thus the mitochondrion plays a central
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Matrix. This large internal space contains a highly concentrated mixture
of hundreds of enzymes, including those required for the oxidation
of pyruvate and fatty acids for the citric acid cycle. The matrix also
contains several identical copies of the mitochondrial DNA genome,
special mitochondrial ribosomes, tRNAs, and various enzymes required
for expression of mitochondrial genes.

Inner membrane. The inner membrane is folded into numerous cristae,
greatly increasing its total surface area. It contains proteins with three
types of functions: (1) those that carry out the oxidation reactions of the
electron transport chain, (2) the ATP synthase that makes ATP in the
matrix, and (3) transport proteins that allow the passage of metabolites
into and out of the matrix. An electrochemical gradient of H+, which
drives the ATP synthase, is established across this membrane, so
the membrane must be impermeable to ions and most small charged
molecules.

Outer membrane. Because it contains a large channel-forming protein
(called porin), the outer membrane is permeable to all molecules 5000
daltons or less. Other proteins in this membrane include enzymes
involved in mitochondrial lipid synthesis and enzymes that convert lipid
substrates into forms that are subsequently metabolized in the matrix.

Intermembrane space. This space contains several enzymes that use the
ATP passing out of the matrix to phosphorylate other nucleotides.

Figure 7.9 Structural organization of the mitochondrion. Figure reproduced from
[1] with permission.
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Figure 7.10 Illustration of the biophysical process of oxidative phosphorylation.

role in the majority of eukaryotic intracellular events. Its structural organization is
illustrated in Figure 7.9.

The biophysical processes involved in oxidative ATP synthesis are illustrated
in Figure 7.10. The reactions and stoichiometry, along with a kinetic model of the
transport reactions of these processes, are described in the following section.

Briefly, a series of enzymes located on the inner membrane of the mitochon-
drion pump protons from the matrix into the inner membrane space, generating an
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electrostatic potential, ��, that is positive on the outside of the inner membrane.
These proton pumps are denoted Complex I, III, and IV and are labeled CI, CIII,
and CIV in the figure. The pumping of positively charged hydrogen ions against
the electrostatic gradients is driven by the oxidation of NADH and QH2 generated
by the reactions of the TCA cycle, as discussed in Section 6.2.

The electrostatic gradient established by the proton pumps is consumed in syn-
thesizing ATP from ADP and PI, and in transporting ATP out of the matrix. ATP
synthesis is catalyzed by F0F1-ATPase, also called Complex V and labeled CV in
the figure. The antiporter that exchanges ATP4− inside the matrix with ADP3− out-
side is called adenine nucleotide translocase, as described in the example in Section
7.2.2. Transport of inorganic phosphate is via an electrically neutral co-transport
of H+ and H2PO4

− (or alternatively through antiport of OH− and H2PO4
−). The

phosphate–hydrogen cotransporter is labeled PHT.
A number of additional ion transporters exist on the mitochondrial inner mem-

brane. Channels and exchangers responsible for Ca2+, Na+, and K+ transport are
illustrated in Figure 7.10.

The outer membrane is highly permeable to small molecules (see Figure 7.9). The
model described below assumes passive permeability of ATP, ADP, and PI across
this membrane; cations such as Ca2+ and Na+ are assumed to rapidly equilibrate
with no significant concentration gradient across the outer membrane.

7.4.1 Model of oxidative phosphorylation

Here we present a computational model of mitochondrial electrophysiology and
oxidative phosphorylation is based on the models of one of the authors [13, 14]
and Wu et al. [212]. The processes illustrated in Figure 7.9 are modeled based
on the electrophysiology modeling approach outlined in Section 7.3. Thermody-
namic constants for the transport reactions are computed from thermodynamic data
tabulated in Table 6.1.

7.4.1.1 Electron transport chain reactions

The transport reaction of Complex I is

5 H+
x + NADH + CoQ � NAD+ + QH2 + 4 H+

i , (7.33)

where subscripts “x” and “i” denote H+ ions in the matrix and intermembrane space
(between inner and outer membranes), respectively. This reaction pumps four H+

ions out of the matrix and across the inner membrane. The fifth H+ ion on the left-
hand side of the reaction participates in the chemical reaction NADH + CoQ +
H+ � NAD+ + QH2. Thus the H+ ion pumping is driven by the redox reaction
that transfers an electron pair from NADH to QH2.
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The apparent equilibrium constant for the reaction is computed

K ′
C1 =

(
[NAD][QH2]

[NADH][CoQ]

)
eq

= [H+
x ]5

[H+
i ]4

exp
[−(�Go

C1 + 4F��)/RT
]
,

(7.34)

where �Go
C1 = −109.7 kJ·mol−1 is the equilibrium free energy for the chemical

reaction. The term 4F�� accounts for the charge transport across the membrane.
In the absence of knowledge regarding the detailed kinetics of the transporter, we
use simple mass action to describe the kinetics:

JC1 = xC1(K ′
C1[NADH][CoQ] − [NAD][QH2]), (7.35)

where xC1 = 2.47 × 104 mol·s−1·M−2·(l mito)−1 is the activity of the transporter.
With the activity expressed in these units, the flux is computed in mass per unit
time per unit volume of mitochondria.

In the Complex-III reaction, the reduced QH2 is re-oxidized to CoQ and cy-
tochrome C is reduced:

2 H+
x + QH2 + 2 C(ox)3+ � CoQ + 2 C(red)2+ + 4 H+

i , (7.36)

where C(ox)3+ and C(red)2+ are the oxidized and reduced forms of cytochrome C,
which is a protein that is present in the intermembrane space. This reaction involves
a total charge transfer of two positive charges from the matrix to the intermembrane
space – four H+ ions appear in the intermembrane space, while two cytochrome
molecules are reduced from a +3 charge to a +2 charge every time the reaction
turns over.

The apparent equilibrium constant for the reaction is computed

K ′
C3 =

(
[CoQ][C(red)2+]2

[QH2][C(ox)3+]2

)
eq

= [H+
x ]2

[H+
i ]4

exp
[−(�Go

C3 + 2F��)/RT
]
,

(7.37)

where �Go
C3 = +46.69 kJ·mol−1 is the equilibrium free energy for the chemical

reaction. The kinetics are modeled by the equation:

JC3 = xC3

(
1 + [PIx ]/kP I 1

1 + [PIx ]/kP I 2

)(√
K ′

C3[C(ox)3+][QH2]1/2 − [C(red)2+][CoQ]1/2

)
,

(7.38)

where the term describes allosteric activation of Complex III by inorganic phos-
phate (1 + [PIx ]/kP I 1)/(1 + [PIx ]/kP I 2). The activity of the transporter is xC3 =
0.665 mol·s−1·M−3/2·(l mito)−1; the activation parameters are kP I 1 = 28.1 µM and
kP I 2 = 3.14 mM.



182 Coupled biochemical systems and membrane transport

In the Complex-IV reaction, the reduced cytochrome C is re-oxidized and oxygen
is reduced to form water:

4 H+
x + 2 C(red)2+ + 1/2 O2 � 2 C(ox)3+ + H2O + 2 H+

i . (7.39)

In this reaction a total of four charges are transported across the inner membrane.
The apparent equilibrium constant for the reaction is computed

K ′
C4 =

(
[C(ox)3+]2

[C(red)2+]2[O2]1/2

)
eq

= [H+
x ]4

[H+
i ]2

exp
[−(�Go

C4 + 4F��)/RT
]
,

(7.40)
where �Go

C4 = −202.2 kJ·mol−1 is the equilibrium free energy for the chemical
reaction. The kinetics are modeled by the equation:

JC4 = xC4

(
[O2]

[O2] + KO2

) (
[C(red)2+]

Co

)
·
(√

K ′
C4[C(red)2+][O2]1/4 − [C(ox)3+](1M)1/4

)
, (7.41)

where Co = [C(red)2+] + [C(ox)3+] = 2.7 mM is the total concentration of cy-
tochrome C. The activity of the transporter is xC4 = 9.93 × 10−5 mol·s−1·M−1 ·
(l mito)−1; the KM for oxygen is KO2 = 0.12 mM.

7.4.1.2 ATP synthesis

In the ATP synthesis reaction, catalyzed by the transporter complex F0F1-ATPase,
n A H+ ions are transported from the intermembrane space to the matrix:

n A H+
i + ADP3−

x + PI2−
x � ATP4−

x + (n A − 1) H+
x + H2O, (7.42)

where H+
x appears on the right-hand side of the reaction with the stoichiometric

coefficient n A − 1 because one H+ ion is consumed by the chemical reaction. The
value of n A is assumed to be three in the model. The movement of H+ ions down
the electrostatic gradient allows the above overall transport reaction to proceed,
forcing the chemical reaction ADP3−

x + PI2−
x + H+

x � ATP4−
x + H2O to proceed

against the free energy gradient.
The apparent equilibrium constant for the reaction is computed

K ′
F1 =

(
[ATPx ]

[ADPx ][PIx ]

)
eq

= [H+
i ]n A PAT Px

[H+
x ]n A−1 PAD Px PP I x

· exp
[−(�Go

ATPase − n A F��)/RT
]
, (7.43)

where the equilibrium free energy for the reaction is �Go
ATPase = −4.51 kJ·mol−1.

Note that this equation differs from those for the reactions of Complex I, III, and
IV in two important ways. First, the binding polynomials, PAT Px , PAD Px , and PP I x ,
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are included to account for cation binding to the biochemical reactants ATP, ADP,
and PI in the matrix. (The reactants for the previous reactions do not significantly
bind cations; see Table 6.1.) Second, the potential term �� enters the exponent
with a positive sign because in this case the overall charge transport for the forward
reaction results in positive charges moving into the matrix.

The flux is modeled using mass-action kinetics

JF1 = xF1
(
K ′

F1[ADPx ][PIx ] − [ATPx ](1M)
)
. (7.44)

The activity of the transporter is xF1 = 1000 mol·s−1·M−1·(l mito)−1.

7.4.1.3 Substrate transport

The overall transport reaction, in terms of references species, for the phosphate-
hydrogen cotransporter is:

2 H+
i + PI2−

i � 2 H+
x + PI2−

x . (7.45)

Thus the exchange is electroneutral and not dependent on the membrane potential.
Assuming that the species HPO4

2− is cotransported with H+ ion and that the trans-
port flux does not saturate in H+ concentration, we have from Equation (7.9) the
equation for flux:

JP H T = xP H T
(
[H+

i ][H2PO4
−
i ] − [H+

x ][H2PO4
−
x ]

)(
[H2PO4

−
i ] + K P H T

) (
[H2PO4

−
x ] + K P H T

) , (7.46)

where the HPO4
2− species concentrations on either side of the membrane are com-

puted the usual way:

[H2PO4
−
x ] = [HPO4

2−
x ][H+

x ]

K H
P I PP I x ([H+

x ], [K+
x ], [Mg2+

x ])

and

[H2PO4
−
i ] = [HPO4

2−
i ][H+

i ]

K H
P I PP I i ([H

+
i ], [K+

i ], [Mg2+
i ])

.

The binding polynomials for PI in the matrix and intermembrane space are denoted
PP I x and PP I i , respectively. The hydrogen-ion dissociation constant K H

P I is listed
in Table 6.1. The activity of the transporter is xP H T = 2.0 × 107 mol·s−1·M−1 ·
(l mito)−1 and the Michaelis–Menten constant is K P H T = 1.0 mM.

As discussed in Section 7.2.2, ATP is delivered to the intermembrane space via
the adenine nucleotide translocase (ANT) enzyme. The reference transport reaction
is

ATP4−
x + ADP3−

i � ATP4−
i + ADP3−

x . (7.47)
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The flux is modeled using an empirical expression based on the concentrations of
ATP4− and ADP3− on both sides of the membrane, which are computed the usual
way

[ATP4−
x ] = [ATPx ]/PAT Px

[ADP3−
x ] = [ADPx ]/PAD Px

[ATP4−
i ] = [ATPi ]/PAT Pi

[ADP3−
i ] = [ADPi ]/PAD Pi , (7.48)

where PAT Px , PAD Px , PAT Pi , and PAD Pi are the binding polynomials for ATP and
ADP in the matrix and intermembrane space.

JAN T = xAN T

(
[ADP3−

i ]

([ADP4−
i ] + [ATP4−

i ]e−ψi )
− [ADP4−

x ]

([ADP4−
x ] + [ATP4−

x ]e−ψx )

)

· [ADP4−
i ]

[ADP4−
i ] + K AD P

, (7.49)

where ψi = θ F��/RT , ψx = (θ − 1)F��/RT , and θ is an empirical param-
eter with value set to 0.60. The activity of the transporter is xAN T = 7.27 ×
10−3 mol·s−1·(l mito)−1 and the Michaelis–Menten constant is K AD P = 3.6 µM.

ATP, ADP, and PI are assumed to permeate across the outer membrane with
biochemical transport reactions

ATPc � ATPi

ADPc � ADPi

PIc � PIi (7.50)

in terms of biochemical species ATP, ADP, and PI on both sides of the membrane.
The subscript “c” denotes concentrations in the cytoplasm compartment.

The fluxes, governed by passive permeation, are computed in terms of total
reactant concentrations:

JAT Pt = γ pA ([ATPc] − [ATPi ])

JAD Pt = γ pA ([ADPc] − [ADPi ])

JP I t = γ pP I ([PIc] − [PIi ]), (7.51)

where γ = 6 µm−1 is the outer membrane area per unit mitochondrial volume,
pA = 85 µm·s−1 is the permeability to adenine nucleotides, and pP I = 320 µm·s−1

is the permeability to phosphate.
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7.4.1.4 Cation transport

Additional cation transporters on the inner membrane are included in the model.
The potassium–hydrogen exchanger, which has chemical transport equation

K+
i + H+

x � K+
x + H+

i (7.52)

is important for regulation of mitochondrial pH and osmotic pressure. We model
the flux using the mass-action expression:

xK H
(
[K+

i ][H+
x ] − [K+

x ][H+
i ]

)
, (7.53)

where xK H = 5.65 × 106 mol·s−1·M−2·(l mito)−1.
The integrity of the inner membrane is not perfect and an unproductive “leak”

of H+ ions into the matrix can occur:

H+
i � H+

x . (7.54)

The leak current of hydrogen ions is modeled using the Goldman–Hodgkin–Katz
expression:

JHle = xHle��

(
[H+

i ]eF��/RT − [H+
x ]

eF��/RT − 1

)
, (7.55)

where xHle = 250 mol·s−1·M−1·mV−1·(l mito)−1.

7.4.1.5 Model differential equations

The differential equations for biochemical reactions and membrane potential arise
directly from the stoichiometry of the reactions outlined above:

d��/dt = (4JC1 + 2JC3 + 4JC4 − n A JF1 − JAN T − JHle)/CI M

d[QH2]/dt = (JC1 − JC3)/Wx

d[C(red)2+]/dt = (2JC3 − 2JC4)/Wi

d[ATPx ]/dt = (JF1 − JAN T )/Wx

d[PIx ]/dt = (−JF1 + JP H T )/Wx

d[ATPi ]/dt = (JAT Pt + JAN T )/Wi

d[ADPi ]/dt = (JAD Pt − JAN T )/Wi

d[PIi ]/dt = (−JP H T + JP I t )/Wi . (7.56)

The constants Wx and Wi represent the matrix and intermembrane space water
fractions and are estimated at 0.6514 and 0.0724 (l water)·(l mito)−1, respectively.
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Additional concentrations are computed based on conserved pools of metabo-
lites:

[C(ox)3+] = Co − [C(red)2+]

[CoQ] = Qo − [QH2]

[ADPx ] = Ao − [ATPx ] (7.57)

where Co = 2.7 mM, Qo = 1.35 mM, and Ao = 10 mM.
The concentrations of NAD and NADH are not modeled in the above equations.

Since NADH-generating fluxes are not included, this model holds NAD and NADH
concentrations at fixed concentrations. The behavior of the model as a function of
NADH redox state is explored below.

Since the outer membrane is highly permeable to small molecules, it is assumed
that it does not represent a significant barrier to H+ and K+ transport. Therefore
the concentrations in the intermembrane space are set to reasonable concentrations
for muscle cell cytoplasm:

[H+
i ] = [H+

c ] = 10−7.1 M

and

[K+
i ] = [K+

c ] = 0.150 M.

In addition, cytoplasmic PI concentration is set at [PIc] = 1 mM. Cytoplasmic ATP
and ADP are varied, as explained below.

The pH, K+, and Mg2+ kinetics inside the mitochondrial matrix are governed
by Equations (6.25), (6.26), and (6.27), derived in Chapter 6. In these equations,
the hydrogen flux term is

�H = −
Nr∑

i=1

∂[Hbound]

∂[Li ]

d[Li ]

dt
− 4JC1 − 2JC3 − 4JC4

+ (n A − 1)JF1 + 2JP H T + JHle − JK H , (7.58)

where the stoichiometric numbers associated with Complex I, III, and IV, F0F1-
ATPase, phosphate–hydrogen cotransport, potassium–hydrogen exchange, and pro-
ton leak follow from the transport reactions. The stoichiometric coefficient for
JC1 is 4 rather than 5, as appears in Equation (7.33), because it is assumed
that for each NADH consumed, the reaction NAD+ + H2O � NADH + H+ turns
over.

Transport of magnesium ion across the inner membrane is not considered. There-
fore the Mg2+ ion kinetics is governed by binding and unbinding to biochemical
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reactants:

�M = −
Nr∑

i=1

∂[Mgbound]

∂[Li ]

d[Li ]

dt
.

Potassium ion is transported via the KH exchanger:

�K = −
Nr∑

i=1

∂[Kbound]

∂[Li ]

d[Li ]

dt
+ JK H .

The buffering terms in Equations (6.25), (6.26), and (6.27) are computed as
described in Chapter 6:

αH = 1 + ∂[Hbound]

∂[H+]
+ Bx

K Bx (1 + [H+
x ]/K Bx )2

αMg = 1 + ∂[Mgbound]

∂[Mg2+]

αK = 1 + ∂[Kbound]

∂[K+]
, (7.59)

where we have added an additional H+-buffering term to account for buffering by
biochemical species not explicitly accounted for in the model. The constants Bx

and K Bx are set to 0.02 M and 10−7 M, respectively.

7.4.2 Model behavior

The predicted steady state behavior of the model is explored in Figures 7.11
and 7.12. Figure 7.11 plots the predicted membrane potential as a function
of the NADH reduced fraction, [NADH]/No, where the total NADH is No =
[NADH] + [NAD] = 2.97 mM. At [NADH]/No = 0, there is no driving force for
the respiratory chain to maintain the membrane potential. Within the operating
range illustrated, �� is predicted to be between approximately 165 and 200 mV.
For finite NADH, the membrane potential increases with increasing driving force
[NADH]/No. As is illustrated in the figure, the relationship between NADH and
�� depends on the ADP concentration in the cytoplasm. As the ADP concentration
is increased, the ANT flux increases and the load on the oxidative phosphorylation
capacity increases. As this load is increased, the membrane potential decreases.

The relationship between the work rate (rate of delivery of ATP out of the
mitochondrion) and [ADPc] is illustrated in Figure 7.12. Flux through the ANT
transporter increases with [ADPc], with higher flux possible at higher NADH con-
centration, due to the effect of NADH on ��, which drives ANT.
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Figure 7.11 Relationship between NADH redox state and predicted mitochondrial
membrane potential at different levels of cytoplasmic ADP. The cytoplasmic ADP
concentration is fixed at the values indicated and the cytoplasmic ATP concen-
tration is computed [ATPc] = 8.2 mM − [ADPc]; cytoplasmic phosphate [PIc] is
clamped at 1 mM.
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Figure 7.12 Predicted relationship between the rate of delivery of ATP out of the
mitochondrion and the cytoplasmic ADP concentration. For these model predic-
tions, the cytoplasmic ATP concentration is computed as a function of [ADPc] as
described in the legend to Figure 7.11; cytoplasmic phosphate [PIc] is clamped at
1 mM.

7.4.3 Applications to in vivo systems

Of course, [ADPc] and [NADH]/No do not vary independently in vivo, as in the
preceding model analysis. Neither does cytoplasmic PI concentration stay fixed for
varying work rates in cells. The integrated system behavior can only be captured by
simultaneously simulating the generation of redox equivalents by the TCA cycle (as
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Figure 7.13 Illustration of integrated components of TCA cycle and oxidative
phosphorylation model.

discussed in Chapter 6), oxidative phosphorylation by the mitochondrial respiratory
system (as outlined above), and the reaction of cellular energetics, including ATP
hydrolysis in the cytoplasm. A simulation study that puts all of these things together
to understand muscle cell energetics has been published by Wu et al. [213].

Mitochondrial oxidative ADP phosphorylation is the primary source of ATP in
skeletal muscle during aerobic exercise. Thus, to maintain the free-energy state of
the cytoplasmic phosphoenergetic compounds ATP, ADP, and inorganic phosphate
(PI), oxidative phosphorylation is modulated to match the rate of ATP utilization
during exercise. The mitochondrial components of Wu et al.’s model are illustrated
in Figure 7.13. Additional components include ATP hydrolysis, adenylate kinase,
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Figure 7.14 Model prediction of ADP concentration and inorganic phosphate con-
centration in cytoplasm as a function of ATP hydrolysis rate in the healthy subjects.
Data are from [106]; solid lines are prediction of model of Wu et al. [213].

and creatine kinase reactions in the cytoplasm. The full model is described in detail
in [213].

Among other predictions, the integrated model reveals that as work rate is var-
ied, commensurate increases in the rate of mitochondrial ATP synthesis are effected
by changes in concentrations of available ADP and inorganic phosphate. In other
words, mitochondrial respiratory control is achieved in vivo by substrate feedback
control. The predicted relationship between substrates and work rate is plotted in
Figure 7.14. Model predictions are compared to data obtained from NMR spec-
troscopy of exercising flexor forearm muscle in healthy human subjects [106].

Concluding remarks

In this chapter we have shown how membrane transport processes are linked with in
vivo biochemical function. The basic equations for and examples of electroneutral
and electrogenic transport were introduced. The deep field of electrophysiology
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modeling was introduced based in large part on the example of Hodgkin and Hux-
ley’s classic model of the squid giant axon. For further reading in this area, we
suggest Keener and Sneyd’s text [108], particularly the first 12 chapters, which
emphasize electrophysiology modeling in clearly explained detail.

The ultimate example studied in this chapter is the mitochondrial respiratory
system and oxidative ATP synthesis. This system, in which biochemical network
function is tightly coupled with membrane transport, is essential to the function of
nearly all eukaryotic cell types. As an example of a critically important system and
an analysis that makes use of a wide range of concepts from electrophysiology to
detailed network thermodynamics, this model represents a milestone in our study of
living biochemical systems. To continue to build our ability to realistically simulate
living systems, the following chapter covers the treatment of spatially distributed
systems, such as advective transport of substances in the microcirculation and
exchange of substances between the blood and tissue.

Exercises

7.1 Express the equilibrium potential in terms of ion conductances for a membrane perme-
able to both Na+ and K+ ions with relative conductivities gNa and gK . [Hint: assume
that the flux of each ion is proportional to conductivity multiplied by the driving force,
which can be expressed as the difference between the membrane potential and the
Nernst equilibrium potential for a given ion.]

7.2 Use computer simulation to determine if the solution to the Hodgkin–Huxley model
of Section 7.3.3 is periodic at Iapp = 6.2 µA·cm−2. What happens when the applied
current is lowered to 6.0 µA·cm−2?





Part III

Special topics





8

Spatially distributed systems and reaction–
diffusion modeling

Overview

Previous chapters have treated cells – or cellular organelles such as mitochondria –
as well-mixed bags of reacting biochemical components, without accounting for
spatial heterogeneities in the concentrations of reacting species. This well-mixed-
compartment approximation is indeed an appropriate assumption for certain ap-
plications. However, it is clear that intracellular concentration gradients exist. For
example, the intracellular transport of oxygen, like that of many important species,
is driven by diffusion. Diffusion is driven by concentration gradients. Thus, for oxy-
gen to be transported from the outside of a cell to sites of oxidative phosphorylation,
significant intracellular gradients must exist.

This chapter introduces the concept of reaction–diffusion modeling – that is,
modeling of coupled diffusion and reaction of chemical species. Following a brief
overview of the mathematics of diffusion, classical models of oxygen transport to
tissue are explored. Studying these analytically tractable models will provide the
reader with the basic tools for modeling and analysis of spatially distributed trans-
port of other species. Although a major focus is placed on oxygen transport, general
models for transport and exchange between blood and tissue regions of solutes are
developed. For more complex models, the focus here is on establishing appropri-
ate governing equations without going into the details of numerical methods for
simulations. The final section of this chapter provides a survey of applications in
three-dimensional modeling of transport in biological systems.

8.1 Diffusion-driven transport of solutes in cells and tissue

Section 3.2 introduced the governing equations for three physical processes re-
sponsible for transporting material in living systems: advection, drift, and diffu-
sion. Advection refers to the process by which solutes are transported with the bulk

195
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movement of fluid, as in oxygen carried in the blood; drift refers to movement of
material directed by some force field, such as the movement of a charged particle
in an electric field; diffusion is the process by which the unbiased thermal motion
of particles results in the net transport down concentration gradients. Diffusion
is the most important of these three phenomena in transporting small molecules,
including oxygen and metabolic intermediates, within cells.

8.1.1 The diffusion equation: assumptions and applications

Fick’s first law of diffusion [56], which arises as a consequence of random unbiased
movement of particles, states that the mass flux of particles in a continuous con-
centration field is proportional to the negative of the spatial concentration gradient.
Fick’s first law in a general form is [39]

�� = −D∇c = −
 D11 D12 D13

D21 D22 D23

D31 D32 D33

 ∇c. (8.1)

Here �� is the mass flux density and c(�x, t) is the concentration of a solute, contin-
uously distributed in the spatial field �x . For this general anisotropic case D is the
positive definite diffusion matrix.1

The conservation statement ∂c/∂t = −∇ · �� yields the diffusion equation:2

∂c

∂t
= ∇ · D ∇c, (8.2)

or expressed using Einstein notation,

∂c

∂t
= ∂

∂xi
Di j

∂

∂x j
c.

(This shorthand implies summation over all repeated indices. In the case of this
expression the repeated indices are i and j .)

Off-diagonal entries of D arise from the fact that the coordinate system in which
Equations (8.1) and (8.2) are expressed does not necessarily coincide with the
principle directions of anisotropic diffusion defined by D. The principle diffusion
directions correspond to the eigenvectors of D, with the highest rate of diffusion
occurring in the direction associated with the largest eigenvalue of D. To see this
we introduce the coordinate transformation �ζ = R �x (or ζi = Ri j x j ). Application

1 Compare Equation (8.1) to Equation (3.49), which applies to the isotropic case. In the case of Equation (8.1),
diffusive transport proceeds at different rates in different directions.

2 Equation (8.2) is also called the heat equation and was introduced by Fourier to simulate the distribution of
temperature in solids. In mathematics it is characterized as a parabolic differential equation.
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of the chain rule to Equation (8.2) yields

∂c

∂t
= ∂

∂ζk
Rki Di j Rl j

∂

∂ζl
c

= ∂

∂ζk

(
R D R

T
)

kl

∂

∂ζl
c

= ∇ζ · R D R
T ∇ζ c, (8.3)

where ∇ζ · and ∇ζ are the divergence and gradient operators in the ζ coordinate
system.

If the coordinate transformation R is chosen so that D = R
T � R, where � is a

diagonal matrix, then (recalling the fact that the eigenvectors of a positive definite
matrix are orthogonal) � = R D R

T and the diffusion equation is

∂c

∂t
= �∇2

ζ c, (8.4)

for the homogeneous case where � is constant in space. In other words, the eigen
decomposition of D yields the diffusion equation

∂c

∂t
= λ1

∂2c

∂ζ 2
1

+ λ2
∂2c

∂ζ 2
2

+ λ3
∂2c

∂ζ 2
3

, (8.5)

where the coordinates ζi are the directions defined by the eigenmodes of the diffu-
sion matrix and the constants λi are the diffusion coefficients associated with the
eigenmodes.

Equation (8.2) can be shown to apply equivalently to either a continuous con-
centration field or the position probability density of a single particle undergoing
Brownian motion [174]. This equation is used to model transport processes in a
wide range of natural phenomena from population distribution in ecology [146]
to pollutant distribution in groundwater [30]. One of the earliest (and still impor-
tant) applications to transport within cells and tissues is to describe the transport of
oxygen from microvessels to the sites of oxidative metabolism in cells.

8.1.2 Oxygen transport to tissue and the Krogh–Erlang model

Typical estimates of the molecular diffusivity of oxygen in tissue are in the range of
2 × 10−5 cm2 · sec−1. The rate of oxygen consumption in the heart during exercise
may be as high as 2 × 10−4 moles per liter per second. Based on these numbers we
can estimate how far oxygen can passively diffuse in tissue before it is consumed. If
we consider a slab of tissue with oxygen supplied on one side at a fixed concentra-
tion, we can analyze this system using the one-dimensional homogeneous version
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Figure 8.1 Concentration profiles predicted by Equation (8.8) with D = 2 ×
10−5 cm2 · sec−1 and L = 25 µm and values of M indicated in the figure.

of Equation (8.2):

∂c

∂t
= D

∂2c

∂x2
− M, (8.6)

where the term −M has been added to account for an assumed constant rate of
consumption. Steady state solutions to this equation can be obtained:

∂2c

∂x2
= M

D
∂c

∂x
= M

D
x + A

c = M

D
x2 + Ax + B, (8.7)

where A and B are constants. Assuming the tissue slab has fixed width L , oxygen
is supplied at x = 0 at concentration co, and there is no flux into or out of the slab at
x = L , we apply the boundary conditions c(x = 0) = co and dc/dx |x=L = 0, and
obtain the concentration profile

c(x) = M

D

(
x2

2
− Lx

)
+ co. (8.8)

Concentration profiles predicted by Equation (8.8) for co = 2.6 × 10−5 M are plot-
ted in Figure 8.1. (Given an oxygen solubility ofα = 1.3 × 10−6 M · mmHg−1, co =
2.6 × 10−5 M corresponds to an oxygen partial pressure of co/α = 20 mmHg.)

Predicted oxygen concentration decreases as the rate of oxygen consumption
increases. In fact, Equation (8.8) predicts that oxygen concentration becomes neg-
ative when the rate of oxygen consumption is greater than 2Dco/L2. For the
values of co, D, and L used in Figure 8.1, this maximal consumption value is
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M = 1.664 × 10−4 M · sec−1. Given values of co, D, and M , the maximal width of
the slab that maintains positive oxygenation is computed Lmax = (2Dco/M)1/2. At
D = 2 × 10−5 cm2 · sec−1, M = 2 × 10−4 M · sec−1, and co = 2.6 × 10−5 M, the
maximal diffusion distance is Lmax ≈ 22.8 µm. This value provides an approxima-
tion of the maximal distance over which diffusion can effectively supply oxygen
to tissue at this rate of oxygen consumption. Clearly this length is much shorter
than the typical dimensions of most multicellular organisms. Certainly the distance
between most cells in the human body and the atmosphere is much greater than
23 µm.

Higher organisms use a circulatory system to deal with such relatively short
diffusion distances. In vertebrates oxygenated blood flows from the left side of the
heart through a branched network of successively smaller arterial vessels until it
reaches the microcirculation, a collections of vessels of diameter of the order of a
few micrometers. Most of the exchange of oxygen, nutrients, and wastes with the
tissues occurs at the level of the microcirculation, which (for tissues other than the
lung) drains into a collection of successively larger vessels leading to the right side
of the heart.3

In tissues such as skeletal muscle and the heart, the primary sites of exchange
of solutes between the blood and tissue are the capillaries – the smallest vessels
with walls composed of a single endothelial cell. Capillaries in striated muscle tend
to run parallel to the muscle fibers, which are approximately cylindrical cells with
diameters ranging from approximately 15 to 20 µm (typical cardiac muscle cells) to
over 50 µm (skeletal muscle cells). Based on the observation that capillaries tend to
be distributed regularly in the plane perpendicular to the axis of their orientation (and
orientation of the muscle cells), Krogh (1919) introduced the approximation that
each capillary supplies “oxygen independently of all others to a cylinder of tissue
surrounding it” [118]. This approximation, called the Krogh cylinder, has been the
basis of much of the field of analysis of oxygen transport to tissue ever since.

The Krogh–Erlang model of oxygen transport to tissue is illustrated in Figure
8.2. Two concentric cylinders, corresponding to the central capillary vessel and
the surrounding tissue, are illustrated in the lower panel of the figure. Blood flows
through the capillary, carrying oxygen with it. Oxygen passively diffuses and is
consumed in the tissue. While Krogh analyzed the predicted concentration profile
in the radial direction and did not treat oxygen transport in the axial (z) direction,
it is a natural extension of the model to determine the oxygen profile as a function
of both the axial and radial variables in this model.

3 In the early 1600s William Harvey deduced the existence of the microcirculation. Until then it was thought that
venous blood and arterial blood made up independent pools. Capillary vessels were first observed later in the
century by Marcello Malpighi, verifying the existence of a microcirculation connecting the arterial and venous
networks.
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Figure 8.2 Cylindrical geometry of the Krogh–Erlang model of blood–tissue ex-
change. The upper panel, from Middleman [141], illustrates the assumed parallel
arrangement of capillaries with each vessel independently supplying a surrounding
cylinder of tissue. A diagram of the model geometry is provided in the lower panel.
Figure in upper panel is reprinted with the permission of John Wiley & Sons, Inc.

Before analyzing the model, it is valuable to state explicitly the additional as-
sumptions and approximations that are a part of this model. First, we will assume
that oxygen consumption is homogeneous and constant in the tissue. Second, we
will ignore diffusion of oxygen in the axial direction. Both of these assumptions are
reasonable – oxygen consumption is expected to be fairly homogeneous unless a
portion of the tissue becomes hypoxic and diffusion along the z direction is not im-
portant compared to advective transport in the capillary. These assumptions, which
allow us to determine closed form model solutions, are easily relaxed in numerical
simulations of oxygen transport to tissue.

Under the simplifying assumptions of the Krogh–Erlang model, the steady state
oxygen distribution in the tissue at any position z is governed by the steady state
diffusion equation in radial coordinates

1

r

d

dr
r

d

dr
c = Mt

D
, (8.9)

where Mt is the rate of oxygen consumption in the tissue. This equation has general
solution

c(r ) = Mt

4D
r2 + a ln r + b, (8.10)

where a and b are constants. Assuming no flux (dc/dr = 0) at r = R2 and c(r =
R1) = c1, the radial concentration profile is

c(r ) = Mt

2D

[(
r2 − R2

1

2

)
+ R2

2 ln (R1/r )

]
+ c1. (8.11)
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Krogh used this solution to express the concentration difference from the capillary
(r = R1) to the outside of the tissue cylinder:

c1 − c(R2) = Mt

2D

[
−

(
R2 − R2

1

2

)
+ R2

2 ln (R2/R1)

]
. (8.12)

Because Krogh credited the help of “the mathematician Mr. Erlang” [118] in de-
riving this formula, this model is appropriately referred to as the Krogh–Erlang
model.

Reasonable parameter values for the Krogh–Erlang model can be estimated
for a specific tissue. For example, the measured density of capillaries in the
heart is approximately ρ = 2500 mm−2. From this the outer radius of the effec-
tive tissue cylinder can be computed R2 = (πρ)−1/2 = 11.3 µm; capillary radii
(R1) are approximately 2 µm; the diffusion coefficient of molecular oxygen in
tissue is approximately 2 × 10−5 cm2 · sec−1 = 2000 µm2 · sec−1. Given Mt =
1.74 × 10−4 M · sec−1, the difference c1 − c(R2) is approximately 7 × 10−6 M, or
5 mmHg of partial pressure.

In the capillary oxygen binds to hemoglobin in red blood cells. In fact, the
majority of oxygen in the blood is bound to hemoglobin with only a few per-
cent at most freely dissolved. One hemoglobin molecule has four binding sites for
O2 and the oxygen–hemoglobin binding is highly competitive with a Hill coeffi-
cient of approximately 2.5. Over the physiological range of oxygen concentration,
the oxygen–hemoglobin binding is effectively approximated by the simple Hill
equation

SHb = Pn

Pn + Pn
50

(8.13)

where P is the oxygen partial pressure, P50 ≈ 25 mmHg is the 50% saturation
pressure, and n ≈ 2.5 is the Hill coefficient. (Partial pressure is related to free
concentration by the expression c = αP , where α ≈ 1.3 × 10−6 M · mmHg−1 is
the oxygen solubility.)

The concentration of oxygen bound to hemoglobin in blood is given by

cT = HcCHb SHb (8.14)

where Hc is the hematocrit – the volume fraction of the blood composed of red
blood cells, approximately 0.45 – and CHb ≈ 0.0231 M is the concentration of
oxygen binding sites in a red cell. If we assume that Equation (8.14) defines the
total oxygen concentration in blood (ignoring the free dissolved oxygen), then the
transport equation for oxygen in blood is given by the advection equation:

∂cT

∂t
= −v

∂cT

∂z
− 2π D

R1

∂c

∂r

∣∣∣∣
r=R1

, (8.15)
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where v is the velocity of blood in the capillary. Applying this one-dimensional
advection equation assumes that no significant concentration gradient exists in the
radial direction inside the capillary. The final term in Equation (8.15) is the diffusive
flux out of the capillary into the tissue.

In the steady state, mass flux out of the capillary is equal to the rate of consumption
in the tissue. The mass consumption rate in the tissue (mass per unit time) is equal to
the volume times Mt , the mass consumed per unit volume per unit time. Similarly,
if Mc is the rate of oxygen loss from the capillary expressed as mass per unit volume
per unit time, then Vc Mc is the mass flux out of the capillary, where Vc is the volume
of the capillary. Equating Vt Mt and Vc Mc, where Vt is the volume of tissue, Mc is
equal to Vt Mt/Vc. Thus in the steady state, Equation (8.15) becomes

− v
∂cT

∂z
− Vt

Vc
Mt = 0, (8.16)

with solution

cT (z) = co −
(

Vt

Vc

Mt

v

)
z, (8.17)

where co is the total oxygen concentration at the entrance to the capillary at z = 0.
For arterial blood with oxygen partial pressure of 100 mmHg, the total oxygen
concentration is co = 9.3 mM.

Blood flow to tissue is usually measured as volume per unit time per unit volume
or mass of tissue. Typical blood flow to heart tissue is of the order of 1–4 ml per
minute per ml of tissue. If we denote tissue flow F , then flow and velocity in the
Krogh–Erlang model are related

F = Vc

Vt

v

L
= π R2

1v

π R2
2 L

, (8.18)

where L is the length of the cylinder. Substituting this expression into Equation
(8.17), we have

cT (z) = co −
(

Mt

F

)
z

L
. (8.19)

With Mt = 2 × 10−4 M · sec−1 and F = 2 ml · min−1 · ml−1, the predicted outlet
concentration is cT (L) = co − 6 mM, or 3.3 mM, when co = 9.3 mM. Thus given
these conditions, approximately 65 percent of the arterial input oxygen is extracted
from the blood as it passes from inlet to outlet.

The predicted partial pressure in the capillary can be computed by inverting
Equation (8.14) to convert from total oxygen to partial pressure. The oxygen profile
in the tissue as a function of r and z is given by combining Equation (8.19), which
gives the capillary oxygen concentration as a function of z, with Equation (8.11),
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Figure 8.3 Oxygen profile predicted by the Krogh–Erlang model of oxygen trans-
port to tissue, based on the geometry of Figure 8.2. Parameter values used are
D = 1.5 × 10−5 cm2 · sec−1, M = 2 × 10−4 M · sec−1, F = 2 ml · min−1 · ml−1,
co = 9.3 mM, L = 500 µm, and ρ = 2500 mm−2, R1 = 2 µm. The computed
value of R2 is (πρ)−1/2 = 12.62 µm for this geometry.

which gives the radial oxygen profile at each z position. The combined solution is
illustrated in Figure 8.3, for parameter values specified in the legend.

8.1.3 Facilitated diffusion

The preceding analysis of oxygen transport based on the Krogh–Erlang model
assumed that oxygen diffuses and is consumed homogeneously with no other pro-
cesses affecting the transport of oxygen in the tissue space. This assumption of
course is a simplification used to allow us to focus on a model that represents the
key transport phenomena while remaining accessible to analysis. One potentially
important phenomenon ignored in this analysis is oxygen binding to myoglobin, a
heme-containing protein present in varying concentrations in muscle cells. In fact,
the role of myoglobin in affecting oxygen transport in tissue has yet to be unambigu-
ously established. Here we explore the potential role of myoglobin in facilitating
passive diffusion of oxygen based on a mathematical analysis introduced by James
Murray [145].

Myoglobin is a single-chain protein, homologous to one of the four chains of
the hemoglobin protein, with a single oxygen binding site. It is present in typical
mammalian cardiomyocytes in concentrations of the order of 100–400 µM. This
binding affinity of oxygen to myoglobin is of the order of 2 mmHg; therefore at typ-
ically intracellular PO2 of 20 mmHg, which corresponds to approximately 26 µM,
the concentration of oxygen bound to myoglobin can be an order of magnitude
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Figure 8.4 Cylindrical model for the muscle fiber. Figure redrawn from Murray [145].

higher than that freely dissolved. The tissues of sea mammals contain even greater
concentrations of myoglobin. For example, myoglobin concentration in skeletal
muscle is as high as 4 mM in some dolphin species [45], pointing to the adaptive
role of myoglobin as an oxygen storage buffer in these species. However, the po-
tential of myoglobin as a useful buffer in highly oxidative tissue such as the heart
is weak. Assuming a relatively low consumption rate of M = 1 × 10−4 M · sec−1,
then at most a few seconds worth of oxygen is stored at myoglobin concentrations
in the range of 100–400 µM.

In the early 1950s investigators began to explore the role of myoglobin in the
passive diffusion of oxygen in cells (for a review see [211]), and theoretical mod-
els soon followed [214, 144, 145]. While the molecular diffusion coefficient of
myoglobin in cells may be two orders of magnitude lower than that of molecular
oxygen, it is possible that, due to the non-linear oxygen–myoglobin binding curve,
passive diffusion of oxygen-bound myoglobin contributes significantly to overall
oxygen transport in certain concentration regimes.

Murray [145] analyzed this problem based on the cylindrical geometry illustrated
in Figure 8.4. Here, the muscle fiber is assumed to be a homogeneous cylinder, with
oxygen supplied via the capillary network to the outer boundary of the fiber.

The oxygen–myoglobin association is assumed to be a first-order reaction

O2 + Mb
k+�
k−

MbO2, (8.20)

which is assumed to proceed by simple mass-action kinetics. The net rate of binding
(forward flux minus reverse flux) is given by:

b = k+CMb(1 − SMb)c − k−CMb SMb, (8.21)

where c is the concentration of freely dissolved oxygen, CMb = [Mb] + [MbO2]
is the total myoglobin saturation, and SMb is the fractional oxygen–myoglobin
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saturation

SMb = [MbO2]

CMb
. (8.22)

Given these definitions, the steady state reaction diffusion equations for oxygen
and oxy-myoglobin in the muscle fiber in radial coordinates are

DO2

1

r

d

dr
r

d

dr
c = b + M

CMb DMb
1

r

d

dr
r

d

dr
SMb = −b, (8.23)

where r is the radial coordinate and M is the rate of oxygen consumption in the
fiber. Dissolved oxygen and myoglobin-bound oxygen diffuse with two different
molecular diffusion coefficients, DO2 and DMb, respectively. Summing these two
equations and multiplying by r we obtain

DO2

d

dr
r

d

dr
c + CMb DMb

d

dr
r

d

dr
SMb = Mr. (8.24)

Integrating this expression once we obtain

DO2

d

dr
c + CMb DMb

d

dr
SMb = Mr

2
+ A

r
, (8.25)

where A is an integration constant. The condition at r = 0 (dc/dr |r=0 =
d SMb/dr |r=0 = 0), which arises from the axisymmetry of the model, yields A = 0.
(Alternatively, the physical condition that the solution remains finite at r = 0 yields
the same result.) Integrating one more time, we have

DO2c + CMb DMb SMb = Mr2

4
+ B. (8.26)

Next we apply the boundary condition that the concentration at the exterior of the
muscle fiber is prescribed: c(r = R) = co and SMb(r = R) = So. Thus we have

DO2co + CMb DMb So = M R2

4
+ B. (8.27)

Subtracting Equation (8.27) from Equation (8.26) yields

DO2 (c − co) + CMb DMb(SMb − So) = M

4
(r2 − R2). (8.28)

Solving this equation for SMb we obtain

SMb = So + 1

CMb DMb

[
M

4
(r2 − R2) + DO2co

]
− DO2c

DMbCMb
(8.29)
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for the spatial dependence of myoglobin saturation. Substituting this expression
into Equation (8.23) yields a single differential equation for c, the free oxygen
concentration:

DO2

1

r

d

dr
r

dc

dr
= M − k−CMb

[
So + 1

CMb DMb

(
M

4
(r2 − R2) + DO2co

)]
+ k+CMb

[
1 − So + 1

CMb DMb

(
M

4
(r2 − R2) + DO2co

)]
c

+ k−
DO2

DMb
c + k+

DO2

DMb
c2

o. (8.30)

Introducing the non-dimensional (unitless) variables c1 = c/co, r1 = r/R, this ex-
pression is drastically simplified:

1

r1

d

dr1
r1

d

dr1
c1 = (

α + γ r2
1

) + (
β + λr2

1

)
c1 + δc2

1, (8.31)

where the non-dimensional parameters α, γ , β, λ, and δ have the following
definitions

α = M R2

co DO2

− k− R2CMb So

co DO2

+ k−M R4

4co DMb DO2

− k− R2

DMb

β = CMbk+ R2

DO2

[
1 − So + M R2

4CMb DMb
− co DO2

DMb DMb

]
+ k− R2

DMb

γ = − k−M R4

4co DMb DO2

, δ = k+ R2co

DMb
, λ = − k+M R4

4DMb DO2

. (8.32)

A set of parameter values that represents reasonable choices for skeletal muscle
is:

R = 25 µm

k+ = 2.4 × 107 M−1 · sec−1

k− = 65 sec−1

co = 1.3 × 10−5 M

CMb = 2.8 × 10−4 M

M = 1.75 × 10−4 M · sec−1

DO2 = 2 × 10−5 cm · sec−1

DMb = 2 × 10−7 cm · sec−1, (8.33)

where, with certain exceptions noted as follows, these values are the same as those
used in the study of Murray [145]. Here the assumed value of DMb is ten times
smaller than that assumed by Murray. The value chosen by Murray corresponds
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to the estimated molecular diffusion coefficient for myoglobin in dilute aqueous
solution. In cells, the molecular diffusivity of globular proteins such as myoglobin
is severely restricted and the value used here represents a much more realistic value
than that used by Murray and others in early theoretical studies of myoglobin-
facilitated oxygen transport. Because of this lower value for the myoglobin diffu-
sivity, facilitated diffusion is apparent only at oxygen concentration lower than the
concentration range studied by Murray. Therefore, we use a value of co that cor-
responds to approximately 10 mmHg, which is approximately three times smaller
than that used by Murray.

If the myoglobin–oxygen binding reaction occurs rapidly enough that it is main-
tained near equilibrium, then So can be computed

So = co

co + k−/k+
≈ 0.83,

for the given parameter values.
Substituting these parameter values into Equation (8.32) yields the following

estimates for the non-dimensional parameters:

α = −1781.8

β = −4427

γ = −610.35

δ = 9750,

λ = −2929.7. (8.34)

To analyze the non-linear system governed by Equation (8.31) we note that all
of the non-dimensional parameters have magnitude much greater than 1. Taking
advantage of this fact, we introduce a non-dimensional parameter ε � 1 and re-
scale Equation (8.31):

ε
1

r1

d

dr1
r1

d

dr1
c1 = (a + gr2

1 ) + (b + lr2
1 )c1 + dc2

1, (8.35)

where

a = εα, b = εβ, g = εγ

d = εδ, l = ελ. (8.36)

Since the value of ε is arbitrary, we are free to choose any value that makes
our analysis convenient. Given the non-dimensional parameter values in Equation
(8.34), we choose ε = 10−3, so that (away from any boundary layer) the left-hand
side of this equation is of the order of ε while the right-hand side is of the order



208 Spatially distributed systems and reaction–diffusion modeling

−1 0.5 0 0.5 1
0

0.2

0.4

0.6

0.8

1

r/R

c/
c o

M = 0.50 × 10−4 M ⋅sec−1

M = 1.75 × 10−4 M ⋅sec−1 

Figure 8.5 Oxygen profiles predicted by Equations (8.38) and (8.41) for the model
illustrated in Figure 8.4. Solutions are illustrated for two different consumption
values for the case with (solid lines; Equation (8.38)) and without (dashed lines;
Equation (8.41)) myoglobin present.

of 1. Therefore, the first-order solution can be obtained from

(a + gr2
1 ) + (b + lr2

1 )c1 + dc2
1 = 0, or

(α + γ r2
1 ) + (β + λr2

1 )c1 + δc2
1 = 0. (8.37)

Thus, the concentration profile is approximated

c1 = −
(

β + λr2
1

2δ

)
+ 1

2δ

[
(β + λr2

1 )2 − 4δ(α + γ r2
1 )

]1/2
, (8.38)

which satisfies the boundary conditions c1(1) = 1, or c(R) = co.
With no myoglobin present, the governing equation for this model reduces to

DO2

1

r

d

dr
r

d

dr
c = M, (8.39)

or in non-dimensional form,

1

r1

d

dr1
r1

d

dr1
c1 = M R2

DO2co
, (8.40)

which, given the imposed boundary conditions, has solution

c1 = M R2(r2
1 − 1)

4co DO2

+ 1. (8.41)

Oxygen concentration profiles predicted by Equations (8.38) and (8.41), for the
cases with and without myoglobin respectively, are illustrated in Figure 8.5. Only
when the oxygen concentration falls near zero does the presence of myoglobin
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(and myoglobin-facilitated diffusion) have a significant impact on the concentration
profile.4

In numerical simulations of oxygen transport accounting for myoglobin binding
and diffusion, both species [O2] and [MbO2] (or SMb) are usually not explicitly
accounted for as state variables. Instead, typically either free oxygen or partial
pressure is treated as a state variable and the oxygen–myoglobin saturation is as-
sumed to be maintained in equilibrium everywhere in the tissue, with myoglobin
saturation given by

SMb(c) = c

c + k−/k+
. (8.42)

In this case the total diffusive oxygen flux is computed from the sum of diffusion
terms for free and bound oxygen [161]:

�� = − [
DO2∇c + DMbCMb∇SMb

]
= −

[
DO2 + DMbCMb

∂SMb

∂c

]
∇c. (8.43)

The conservation equation for total (free plus bound) oxygen is

∂

∂t
(c + CMb SMb) = −∇ · �� − M

∂c

∂t
+ CMb

∂SMb

∂c

∂c

∂t
= ∇ ·

[
DO2 + DMbCMb

∂SMb

∂c

]
∇c − M (8.44)

or

∂c

∂t
= ∇ · [

DO2 + DMbCMb
∂SMb
∂c

] ∇c − M

1 + CMb
∂SMb
∂c

, (8.45)

which is a partial differential equation for c that does not require invoking a separate
differential equation for bound oxygen.

8.2 Advection–diffusion modeling of solute transport in tissues

From Figure 8.3 it is apparent that the arterial–venous oxygen concentration differ-
ence is much greater than concentration differences in the radial direction occurring
at a specific axial position. This is generally the case for solutes that are highly ex-
tracted from the blood in their passage through the microcirculation – the drop
in concentration from the input to the output of a capillary is much larger than

4 Since recent measurements using NMR methods yield an estimate of DMb = 7.85 × 10−7 cm · sec−1 at 35 ◦C
in the myocardium [131], which is significantly higher than the values used here, the role of facilitated diffusion
of oxygen by myoglobin remains unclear.
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Figure 8.6 Diagram of a transport model for simulating exchange of solutes be-
tween blood and tissue. Four distinct regions are included: parenchymal cells
(functional cells of a given organ), interstitial fluid (ISF) that bathes the tissue, en-
dothelial cells that make up the capillary wall, and intra-capillary space, in which
blood flows. In general, exchange of solutes occurs directly between the ISF and
the parenchymal cells, between the ISF and the endothelial cells, between the en-
dothelial cells and the blood, and directly between the ISF and the blood through
clefts in the capillary wall. Associated with each of these transport processes is a
permeability-surface area (PS) product. Also each region has associated with it a
volume of distribution (the V ’s in the figure) associated with a given solute. The
symbols Gec and G pc represent biochemical reaction processes, here assumed to
be confined to endothelial cells and parenchymal cells. Figure from Schwartz et al.
[182], used with permission.

the drop in concentration from the capillary wall to the periphery. In addition,
there exist structural features of the tissue that are not explicitly accounted for in
the Krogh–Erlang model (endothelial cell and parenchymal cell membranes) that
represent resistance barriers to the transport of certain solutes. The result is that
stepwise changes in concentration occurring across membranes and across the cap-
illary wall may be more significant than continuous concentration gradients within
the volumes bounded by those barriers [11]. Even the transport of oxygen (a solute
to which biological membranes do not pose significant transport resistance) may
be effectively simulated for certain applications by models that are continuously
distributed in the axial direction only, with relatively few concentric regions (rep-
resenting the blood, the capillary wall, interstitial fluid, and parenchymal cells)
separated by apparent permeability barriers [43].

Figure 8.6 shows a diagram of a general model of blood–tissue solute transport,
used to analyze data on the transport of labeled solutes introduced in the blood
or perfusate flow supplied to individual organs. The development and analysis
of models of this sort to analyze solute transport in physiological systems is a
field pioneered by Sangren and Sheppard [178], Renkin [172], and Crone [40].
Optically detectable probes (such as Evans Blue dye bound to albumin) can be
used in conjunction with model analysis to probe the intravascular transport of
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solutes governed by the distribution of flow in the vascular network. Radioactively
labeled bio-active molecules (such as 125I-albumin, 14C-sucrose, and 15O2) can be
used to probe how the non-labeled analogs of the molecules are transported and
metabolized in tissue.5

8.2.1 Axially distributed models of blood–tissue exchange

Before examining how a model of the level of detail of the four-region model
illustrated in Figure 8.6 is constructed, we first examine the two-region model
analyzed in 1953 by Sangren and Sheppard [178]. This model will allow us to
explore the kinetics of blood–tissue exchange based on an analytically tractable set
of governing equations.

To develop the two-region Sangren–Sheppard model, consider a substance that
traverses the endothelial cell clefts but does not enter endothelial cells (such as
L-glucose, which is not taken up by cells.) This solute is assumed to exchange
passively between the capillary and interstitial fluid (ISF) spaces. Applying a one-
dimensional approximation, the governing equation for solute concentration in the
blood is the advection equation:

∂cB

∂t
= −v

∂cB

∂z
− P S

VB
(cB − cI SF ), (8.46)

where cB(z, t) and cI SF (z, t) are the concentrations in the capillary blood and ISF
spaces, v is the blood velocity in the capillary, P S is the permeability-surface area
product for the exchange between the capillary and ISF (typically measured in units
of volume per unit tissue mass), and VB is the blood volume (typically measured
in units of volume per unit tissue mass.) The second term on the right-hand side
of Equation (8.46) accounts for passive permeation between the capillary and ISF
spaces.

The governing equation for the concentration in the ISF is similar to Equation
(8.46). However, there is no advection term in the ISF equation since we assume
the ISF to be stagnant.

∂cI SF

∂t
= + P S

VI SF
(cB − cI SF ). (8.47)

Note that the exchange term on the right-hand side of Equation (8.47) has the
opposite sign to that of Equation (8.46). Also, the volume in the denominator is

5 Incidentally, August Krogh was one of the pioneers of the use of radioactive tracers to investigate biological
transport. Krogh’s mentor and colleague at the University of Copenhagen was Christian Bohr. Krogh’s collabo-
rators in the application of radioisotopes were George de Hevesy and Christian’s son, the physicist Niels Bohr
[125].
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the ISF space volume, VI SF – the volume of distribution of the given solute in the
interstitial fluid.

By multiplying Equation (8.46) by VB and Equation (8.47) by VI SF and summing
the resulting equations, we can show that the system governed by these equations
conserves mass:

∂

∂t
[VBcB + VI SF cI SF ] = −VBv

∂cb

∂z
. (8.48)

Since this model does not account for chemical transformation or diffusion in the
axial direction, the rate of change of mass of solute at any location along the capillary
is driven by advection alone. If the blood velocity were zero, then the total mass
density at any location z would remain constant.

Equations (8.46) and (8.47) describe the Sangren–Sheppard model. While the
equations are straightforward and can be thought of as the minimal model that
captures the important biophysical phenomena of solute exchange along a capillary,
this model represents nearly the maximal level of complexity that can be effectively
analyzed without invoking numerical approximations to simulate it.6

Given an initial condition specifying concentration in the capillary and ISF, and
a boundary condition at the capillary inlet, solutions to Equations (8.46) and (8.47)
may be obtained. For the sake of exploring the kinetic properties of this system, and
studying how a solute injected into the microcirculation washes out of a tissue, we
determine the impulse response function that arises from the following conditions.

We specify that there is no solute present in either the capillary or ISF space at
the beginning of the experiment:

cB(z, t = 0) = 0, 0 < z ≤ L

cI SF (z, t = 0) = 0, 0 ≤ z ≤ L , (8.49)

where L is the length of the capillary. To represent the situation where an impulse
of solute is injected into the capillary inflow at time t = 0, the boundary condition

c(z = 0, t) = qo

F
δ(t) (8.50)

is applied, where qo is the finite mass injected into the capillary and F is the blood
flow to the tissue (F = vVB/L).

The function δ(t) is the Dirac delta function, which has properties

δ(s) = 0, s �= 0

6 Actually, the distinction between analytically and numerically obtained model solutions is rarely clear. Ana-
lytical solutions to governing differential equations are often expressed in terms of special functions such as
exponentials, which must be approximated numerically. Here we will see that the solutions to the Sangren and
Sheppard model are conveniently expressed in terms of a class of special functions called modified Bessel
functions.
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and ∫ +∞

−∞
δ(s)ds = 1. (8.51)

The function qoδ(t)/F can be thought of here as a spike of finite mass qo injected
into the capillary at position z = 0 at time t = 0. If flow (F) and volumes (VB

and VI SF ) are expressed relative to total mass of tissue (for example, in units of
ml · min−1 · g−1 and ml · g−1, respectively) then the injected mass qo is expressed
in units of moles per mass of tissue. The finite mass injected at z = 0 results in
an infinitely high concentration in an infinitely small volume. Thus, this function
is a mathematical abstraction used to represent the limiting case of instantaneous
injection of mass at time t = 0.

Given these initial and boundary conditions, the concentration in the capillary
as a function of t and z is given by

cB(z, t) = qo

F
e− P Sz

vVB δ
(

t − z

v

)
+ qo

F
e
− P S

VI SF

[
t−

(
1− VI SF

VB

)]
P S√

VB VI SF
(

vt
z − 1

) I1(β), t ≥ z/v,

cB(z, t) = 0, t < z/v, (8.52)

where I1(β) is the first-order modified Bessel function of the first kind [153]; and
the argument β is given by

β = 2P S

[
(t − z/v)z

vVB VI SF

]1/2

.

This equation for the concentration profile in the capillary has two terms. The
first term is a delta function δ (t − z/v) that travels through the capillary at velocity
v and decays in strength exponentially as it travels from the inlet to the outlet of
the capillary. The decay is due to permeation out of the capillary; thus the decay
constant is proportional to the permeability-surface area product of the capillary
wall. If P S = 0, then the impulse travels along the capillary and reaches the outlet
at undiminished strength at time t = L/v. The second term in Equation (8.47)
represents the concentration profile in the capillary that trails behind the impulse.

The concentration profile in the ISF is given by

cI SF (z, t) = qo

F

P S

VI SF
e
− P S

VI SF

[
t−

(
1− VI SF

VB

)]
I0(β), t ≥ z/v

cI SF (z, t) = 0, t < z/v, (8.53)

where I0 is the zeroth-order modified Bessel function of the first kind [153].
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Figure 8.7 Concentration profiles for the Sangren–Sheppard model following im-
pulse injection of solute into the capillary. The solution predicted by Equations
(8.52) and (8.53) is plotted at four different times, for parameter values indicated
below. Capillary blood concentrations are plotted as solid lines and ISF concen-
trations are plotted as dashed lines. The impulse at z = vt is indicated by a ver-
tical line and the relative strength e−P Sz/(vVB ) is indicated in the plots. Parameter
values are VB = 0.05 ml · g−1, VI SF = 0.20 ml · g−1, P S = 6.0 ml · min−1 · g−1,
F = 1.0 ml · min−1 · g−1, L = 500 µm, qo = 10−3 mol · g−1. The velocity is v =
F L/VB = 166.7 µm · s−1. Concentrations are plotted in Molar units.

Concentration profiles predicted by the Sangren–Sheppard model, following
impulse injection of solution into the capillary, are illustrated in Figure 8.7. The
figure plots capillary and ISF solute concentrations as a function of distance along
the capillary at different times following the initial impulse.

8.2.2 Analysis of solute transport in organs

While it may be elegant to obtain analytic closed-form model solutions, such as
Equations (8.52) and (8.53) (introduced by Sangren and Sheppard as solutions to
their model governing equations [178]), modeling of transport in biological systems
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nearly always requires simulation based on numerical (computer-generated) so-
lutions to governing equations. For example, simulating the transport of labeled
solutes that move between many regions (such as illustrated in Figure 8.6) is prac-
tically possible only by solving the governing equations using computers. Here, we
examine how to construct the governing equations for this class of transport models
(axially distributed models) without going into the details of how to simulate these
models using computers.

The governing equations for the multiple-region models such as that of Figure 8.6
are constructed analogously to those of the two-region Sangren–Sheppard model.
For example, for this model the solute concentration in the blood is governed by
the equation:

∂cp

∂t
= − F L

Vp

∂cp

∂z
− P Sg

Vp

(
cp − cis f

) − P Secl

Vp

(
cp − cec

)
, (8.54)

which is analogous to Equation (8.46) with the addition of a term accounting for
passive permeation between the blood and the endothelial cell space. Here P Sg is
the permeability-surface area product for gaps in the capillary wall and P Secl is the
permeability-surface area product for transport between the blood and capillary wall
endothelial cells. The concentrations cp, cis f , and cec are the solute concentrations
in the plasma, interstitial fluid, and in the endothelial cell regions, respectively.

This equation may be further modified to account for molecular diffusion and/or
flow-mediated dispersion in the axial direction:

∂cp

∂t
= − F L

Vp

∂cp

∂z
− P Sg

Vp
(cp − cis f ) − P Secl

Vp
(cp − cec) + Dp

∂2cB

∂z2
, (8.55)

where Dp is the axial dispersion coefficient for the plasma region.
Similarly a general governing equation in the endothelial cells is

∂cec

∂t
= + P Secl

V ′
ec

(cp − cec) − P Seca

V ′
ec

(cec − cis f ) + Dec
∂2cec

∂z2
− Gec, (8.56)

where P Seca is the permeability-surface area product for transport between en-
dothelial cells and the ISF and Dec is the dispersion coefficient for the endothelial
cell region. The term Gec represents biochemical consumption of the solute in en-
dothelial cells. Here the volume V ′

ec represents the apparent volume of distribution
of the given solute, which due to binding may be different from the physical volume
of the region [182].

In the interstitial fluid, the general governing equation is

∂cis f

∂t
= + P Seca

V ′
is f

(cec − cis f ) − P Spc

V ′
is f

(cis f − cpc) + Dis f
∂2cis f

∂z2
− Gis f ,

(8.57)
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where the subscript pc denotes parenchymal cell, Dis f is the ISF space dispersion
coefficient, and Gis f is a consumption term.

In the parenchymal cell,

∂cpc

∂t
= + P Spc

V ′
pc

(cis f − cpc) + Dpc
∂2cpc

∂z2
− G pc, (8.58)

where G pc is the consumption term for the parenchymal cell space. Simulation
and analysis of data on transport of labeled solutes in the heart based on Equations
(8.55)–(8.58) are presented, for example, in Gorman et al. [72] and Schwartz et al.
[182].

8.2.3 Whole-organ metabolic modeling

Equations of the sort developed in the previous section are useful in simulating the
transport of solutes in tissues and organs. Typical applications make use of simu-
lating multiple parallel pathways (made up of multiple axially distributed models)
to account for heterogeneities in flow and other variables observed in tissues. In
addition, this basic model formulation can serve as the basis of integrated models
of transport and metabolism. For example, by accounting for oxygen transport us-
ing a model of this sort, and accounting for oxygen-dependent energy metabolism
using the model introduced in the previous chapter, we can simulate the impact of
ischemia (reduction in flow) on cardiac energy metabolite concentrations [14], as
is illustrated in Figure 8.8.

8.3 Three-dimensional modeling

Modern computing resources make it possible to simulate transport and reaction
in three space dimensions based on model geometries constructed to realistically
represent anatomies of cells and tissues. Such applications allow researchers to
simulate the intricate concentration fields in tissues generated by the non-idealized
microvascular geometries, as illustrated in Figure 8.9. Three-dimensionally dis-
tributed modeling of reaction and transport in non-idealized geometry requires
specialized numerical tools for computational modeling. A number of software
packages, including the biologically focused Virtual Cell package [187], are avail-
able for modeling reaction–diffusion systems.

Concluding remarks

This chapter has developed the basic concepts of modeling diffusive transport and
coupled diffusion, advection, and reaction in physiological systems. The emphasis
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Figure 8.8 Integrated modeling of transport and metabolism. An axially distributed
model of oxygen transport and metabolism [14], with parallel pathways used to
simulate heterogeneity in path length and flow is used to simulate an experiment
in which coronary flow is reduced and myoglobin saturation and concentrations
of phosphate metabolites are measured. Data are from Zhang et al. [218].
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Figure 8.9 Predicted three-dimensional distributions of oxygen partial pressure
in tissue. Model simulations from Tsoukias et al. [196] are based on a realistic
model of the microvascular network associated with skeletal muscle. Predicted
partial pressure distributions are illustrated for a control simulation (upper panel)
and for a simulation of hemodilution – reduced hematocrit – plus addition of
blood substitute (lower panel.) Predicted oxygen tension in mmHg is indicated by
grayscale. Figure provided courtesy of Nicolaos Tsoukias.
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here was on developing the appropriate equations to represent these processes
for models of oxygen transport in tissue and the exchange of solutes between
the blood and tissue. In analyzing the foundational Krogh–Erlang model, we saw
how advection and hemoglobin binding of oxygen in blood, passive diffusion of
oxygen into tissue, and metabolic consumption are coupled in tissue. The non-
linear phenomena of facilitated diffusion were explored, also based on an idealized
geometrical model. Time-dependent solute transport in tissue was studied based on
the Sangren–Sheppard model.

All of these simple models have in common the fact that they are accessible to
mathematical analysis, while more complex models are not. Yet whether one is
dealing with idealized (analyzable) models or complex three-dimensional models,
it is essential that the governing equations appropriately represent the underlying
physical phenomena. To serve as a resource for this purpose, examples involving
time-dependent and steady state transport, simple and facilitated diffusion, and
passive permeations between regions were studied.

However, regardless of the range of phenomena investigated here, the scope of
this field is much bigger than can be contained in a single chapter. For further study,
a number of resources are available. The book by Middleman [141] is a classic that
is still relevant more than 30 years after its original publication. For the analysis
of solute transport in tissues, the handbook chapter by J. B. Bassingthwaighte and
C. A. Goresky (who, along with a number of colleagues, introduced key techniques
and technologies in this area) gives a deep review of the field through the mid 1980s,
with an emphasis on analyzing transient washout of tracers from organs to probe
the biochemical fates of the labeled solutes [11].

Exercises

8.1 Examine the model of passive flux through a membrane introduced in Section 3.2.4.
How does the flux expression change if it is assumed that the transported solute (for
example, oxygen) is consumed in the membrane?

8.2 Develop a numerical simulation to verify that the results of the asymptotic analysis
in Section 8.1.3 are valid. Compare simulation results to the predictions illustrated in
Figure 8.5.

8.3 Explore the behavior of the Sangren–Sheppard model for different values of the unitless
parameter P S/F . Replot the simulations illustrated in Figure 8.7 for the limiting case
as P S/F → ∞. Explain why the model behaves in the way it does.
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Constraint-based analysis of biochemical systems

Overview

When mechanistic information is available or obtainable for the components of
a system, it is possible to develop detailed analyses and simulations of that sys-
tem. Such analyses and simulations may be deterministic or stochastic in nature.
(Stochastic systems are the subject of Chapter 11.) In either case, the overriding
philosophy is to apply mechanistic rules to predict behavior. Often, however, the
information required to develop mechanistic models accounting for details such as
enzyme and transporter kinetics and precisely predicting biochemical states is not
available. Instead, all that may be known reliably about certain large-scale systems
is the stoichiometry of the participating reactions. As we shall see in this chap-
ter, this stoichiometric information is sometimes enough to make certain concrete
determinations about the feasible operation of biochemical networks.

Analysis of biochemical systems, with their behaviors constrained by the known
system stoichiometry, falls under the broad heading constraint-based analysis,
a methodology that allows us to explore computationally metabolic fluxes and
concentrations constrained by the physical chemical laws of mass conservation
and thermodynamics. This chapter introduces the mathematical formulation of
the constraints on reaction fluxes and reactant concentrations that arise from
the stoichiometry of an integrated network and are the basis of constraint-based
analysis.

As we shall see, linear algebraic constraints arising from steady state mass bal-
ance form the basis of metabolic flux analysis (MFA) and flux balance analysis
(FBA). Thermodynamic laws, while introducing inherent non-linearities into the
mathematical description of the feasible flux space, allow determination of feasible
reaction directions and facilitate the introduction of reactant concentrations to the
constraint-based framework.

220
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9.1 Motivation for constraint-based modeling and analysis

The traditional modeling approach in biochemistry is differential equation-based
enzyme kinetics. Consequently, the majority of this book so far has been devoted
to kinetic modeling. Many examples demonstrate the power and feasibility of ki-
netic modeling applied to a few enzymatic reactions at a time. It remains to be
demonstrated, however, that that approach can be effectively scaled up to an in vivo
system of hundreds of reactions and species with thousands of parameters [194].
More importantly, it is clear that the kinetic approach is not yet feasible for many
large systems simply because the necessary kinetic information is not yet available.

The constraint-based approach facilitates prediction of system function based
on limited information, such as only the stoichiometry of the reactions in a system.
Doing so, this approach circumvents several difficulties currently at the center of
the analysis of biological networks. It facilitates integration of experimental data
of disparate types and from disparate sources, while increasing the accuracy in its
prediction [107]. It does not require a-priori knowledge (or assumptions) regarding
all of the mechanisms and parameters for a given system. However, when a-priori
knowledge exists, such as data on enzyme kinetics or measurements of in vivo
concentrations and fluxes, this knowledge may be introduced in the form of con-
straints, on equal footing with molecular genetic observations on the topology and
information flow in a biochemical network. While traditional differential equation-
based modeling provides predictions with relatively high information content, its
predictions tend to be highly sensitive to assumptions and parameter values that
may rest on shaky ground. The constraint-based approach, by design, provides a
low level of false prediction, but can not often provide precise predictions.

At this most simple modeling level (considering only reaction stoichiometry),
whole-genome metabolic models of several single-celled organisms have been de-
veloped [162, 171, 195, 202]. Thus, this approach to modeling and analysis holds
great promise as a tool for large systems.

9.2 Mass-balance constraints

9.2.1 Mathematical representation for flux balance analysis

Metabolic fluxes are responsible for maintaining the homeostatic state of the cell.
This condition may be translated into the assumption that the metabolic network
functions in or near a non-equilibrium steady state (NESS). That is, all of the con-
centrations are treated as constant in time. Under this assumption, the biochemical
fluxes are balanced to maintain constant concentrations of all internal metabolic
species. If the stoichiometry of a system made up of M species and N fluxes
is known, then the stoichiometric numbers can be systematically tabulated in a
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M × N matrix, known as the stoichiometric matrix S [31, 32]. The Si j entries of
the stoichiometric matrix are determined by the stoichiometric numbers appearing
in the reactions in the network. For example, if the j th reaction has the form:

ν
j
1 X1 + . . . + ν

j
MXM � κ

j
1 X1 + . . . + κ

j
MXM , (9.1)

where Xi represents the i th species, then the stoichiometric matrix has the form
Si j = κ

j
i − ν

j
i .

The fundamental law of conservation of mass dictates that the vector of steady
state fluxes, J, satisfies

SJ = b, (9.2)

where b is the vector of boundary fluxes that transport material into and out of
the system.1 As an example, consider a simple network of three unimolecular
reactions:

A
J1� B, B

J2� C, C
J3� A (9.3)

where all reactions are treated as reversible; left-to-right flux is the direction defined
as positive. The network of Equation (9.3) is represented by the stoichiometric
matrix:

S =
A
B
C

−1 0 +1
+1 −1 0

0 +1 −1

 . (9.4)

Next, consider that species A is transported into the system at rate bA and species
B is transported out at rate bB . Then the mass-balance equations SJ = b can be
expressed: −1 0 +1

+1 −1 0
0 +1 −1

  J1

J2

J3

 =
−bA

+bB

0

 . (9.5)

Algebraic analysis of this equation reveals that mass-balanced solutions exist if
and only if bA = bB . Equation (9.5) can be simplified to J2 = J3 = J1 − bA. Thus,
mass balance does not provide unique values for the internal reaction fluxes. In fact,
for this example, solutions exist for

J1 ∈ (−∞, +∞), J2 ∈ (−∞, +∞), J3 ∈ (−∞, +∞). (9.6)

1 If the values of the boundary fluxes are not known, Equation (9.2) can be written as SJ = 0 in which the boundary
fluxes have been incorporated into the M × (N + N ′) matrix S where N ′ is the number of boundary fluxes [168].
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Figure 9.1 Metabolic network model from Varma and Palsson [204]. Reactions are
indicated by enzyme abbreviations indicated; arrows represent reactions. Cofac-
tors, such as ATP and NADH, are not shown for all reactions. Figure is from [204].

Equation (9.6) illustrates the fact that often the mass-balance constraint poses an
underdetermined problem; typically it is necessary to identify additional constraints
and/or to formulate a model objective function to arrive at meaningful estimates
for biochemical fluxes.

9.2.2 Energy metabolism in E. coli

The research group of Bernhard Palsson and colleagues has developed a number
of applications in constraint-based analysis, many using Escherichia coli as model
organism. Some of their foundational work is reported in a 1993 publication on
analysis of a portion of this organism’s intermediary metabolism [204]. The reaction
network studied is illustrated in Figure 9.1 and the associated stoichiometric matrix
is given in Figure 9.2.
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The metabolic network described by this matrix is simplified in the following
ways. First, in some cases several reactions are lumped together when the network
is so constrained that the fluxes through the combined reactions are the same in a
steady state. For example the reaction of the third column in the matrix (labeled
“G6PDH”) is actually the combination of two serial reactions

G6P + NADP � 6PGL + NADPH (9.7)

and

6PGL + NADP � CO2 + R5P + NADPH, (9.8)

where the following abbreviations are used: G6P: glucose-6-phosphate; 6PGL:
6-phospho-D-glucono-1,5-lactone; NADP: nicotinamide adenine dinucleotide
phosphate (oxidized); NADPH: nicotinamide adenine dinucleotide phosphate (re-
duced). Since there are no other reactions considered in this model that involve
6PGL, this intermediate need not be considered in the stoichiometric matrix and
both of the above reactions must have the same flux and are conveniently lumped
together.

Second, some reactants that make up a free inter-converting pool are combined
into a single metabolite [204]. For example the two glycolytic intermediates di-
hydroxyacetone phosphate and glyceraldehyde 3-phosphate are represented by the
lumped species T3P (for triose-3-phosphate).

Third, for convenience some reactants are left out of the network. For example,
rows are not included in the stoichiometric matrix for cofactor molecules NAD,
NADP, and coenzyme A [204]. Leaving these cofactors out does not affect the
overall flux balance of the reaction network.

The model also assumes that physiologically reversible reactions operate in
either direction. Here the reactions PGI (reaction 2), TRALD (reaction 6), TRKET
(reaction 7), PGK (reaction 8), PGM (reaction 9), LACDH (reaction 14), PFLASE
(reaction 15), PTACET (reaction 16), ACO (reaction 22), ISODH (reaction 23),
SCOASN (reaction 26), FUMARASE (reaction 28), TRANSH2 (reaction 32), and
ATPASE (reaction 39) are considered reversible. The fluxes of all other reactions
are constrained to operate in the direction defined as positive by the stoichiometric
matrix.

Given the basic network structure we can ask a series of questions regarding
the limits and flexibility of its operation. For example, we can ask the question
illustrated in Figure 9.3: how much ATP may be generated from oxidizing one
glucose molecule?

To address this question, we need to account for glucose input and ATP output
in our stoichiometric model. If we wish to treat both of these fluxes as unknowns it
is convenient to include them explicitly into the stoichiometric matrix. Therefore
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Reaction
network

1 glucose ? ATP

Figure 9.3 Illustration of the kind of question that can be addressed with stoichio-
metric constraint-based network analysis.

the matrix in Figure 9.2 is appended with columns corresponding to these transport
fluxes. These columns have the following non-zero entries: S1,41 = +1, S6,42 = −1.
Thus the 41st entry of the flux vector corresponds to glucose input and the 42nd
entry corresponds to ATP output.

To compute the maximal ATP production per glucose consumed, we pose the
following linear optimization problem: maximize J42 under the constraints:

SJ = 0

J41 ≤ 1

Ji > 0, i ∈ II R, (9.9)

where II R corresponds to the set of irreversible reactions. The constraint J41 ≤ 1
sets the maximal glucose uptake to 1, in arbitrary units. So the optimal value of
J42 will correspond to the maximal number of ATP molecules generated for each
glucose consumed.

The problem described above is a linear programming problem – that is, an
optimization problem with a linear objective function and linear constraints. Here
the linear object is quite simple (maximize J42). The linear constraints include both
linear equalities (SJ = 0) and inequalities (Ji > 0); yet both sets of constraints are
linear in the sense that they involve no non-linear operations on the unknowns (J).

Carrying out this optimization, we find that 18.667 ATP may be synthesized in
this system for each glucose molecule consumed. The flux distribution at this opti-
mal solution is illustrated in Figure 9.4. Here, 14.667 ATP/glucose are synthesized
by the ATPase reaction of the oxidative phosphorylation system, 2 by glycolysis
and 2 by the TCA cycle.

Analogous to the question of maximal ATP production, we can use linear pro-
gramming to compute the maximum possible production of other cofactors. For
example, this reaction network may be used in the cell to generate NADPH to be
used in other metabolic pathways. To compute the maximal NADPH yield, we have
to add a transport flux for NADPH to S by adding a new column with non-zero
entry S9,43 = −1.

To compute the maximal NADPH production per glucose consumed, we pose
the following linear optimization problem: maximize J43 (the NADPH output flux)
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Figure 9.4 Flux values in model of Varma and Palsson [204] corresponding to
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under the constraints:

SJ = 0

J41 ≤ 1

J42 ≥ 0

Ji > 0, i ∈ II R. (9.10)

Here we have added the additional constraint J42 ≥ 0 to the list given in Equation
(9.10). Since we have assigned the ATP output flux to the 42nd column, this con-
straint ensures that the ATP production is zero or positive, with no energy source
other than glucose.

The computed optimal NADPH production is 12 molecules produced for ev-
ery glucose molecule consumed. The flux distribution at this optimal solution is
illustrated in Figure 9.5.

9.3 Thermodynamic constraints

In addition to the stoichiometric mass-balance constraint, constraints on reac-
tion fluxes and species concentration arise from non-equilibrium steady state
biochemical thermodynamics [91]. Some constraints on reaction directions are
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Figure 9.6 Small network example to illustrate the application of thermodynamic
constraints in constraint-based analysis.

necessary to determine physically feasible and biologically reasonable flux patterns
in constraint-based analysis. In a series of recent papers, we have demonstrated that
application of thermodynamic constraints can be used to determine feasible flux
directions from networks structure [17, 16, 83, 168, 167, 216].

9.3.1 The basic idea

The basic idea can be demonstrated based on the simple small-scale network illus-
trated in Figure 9.6.

The dashed line encloses the internal reactions, labeled J1 through J5; the pro-
cesses J6, J7, and J8 are transport fluxes that transport material into or out of the
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Figure 9.8 Example of infeasible sign patterns. Figure adapted from [216].

system. If we assume that the directions of the transport fluxes are known or imposed
on the system, then thermodynamics requires that the internal reaction direction be
associated with feasible thermodynamic potentials for the reactions in the system.
For this small system we can enumerate all possible flux direction patterns, which
are illustrated in Figure 9.7.

Recall that there is a chemical potential associated with each reactant in the
network. The first illustrated flux pattern is associated with chemical potentials
obeying the inequalities µA > µB > µD > µc, where µA, µB , µC , and µD are the
potentials associated with the reactants A, B, C, and D. The chemical potential
inequalities associated with the other two flux patterns in Figure 9.7 are indicated
in the figure.

Before digging further into the mathematical details, the reader may wish to try
sketching alternative flux direction patterns. Doing so, one will find that no other
pattern agrees with the transport flux directions and has a feasible thermodynamic
potential. For example consider the direction patterns illustrated in Figure 9.8.
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The first pattern in Figure 9.8 is disqualified because there is no way to achieve
steady state balance of mass of A or D given this sign pattern. The second pattern is
disqualified because there is no feasible chemical potential pattern associated with
this flux pattern.

9.3.2 Mathematical details

Recall that for a biochemical reaction at a constant temperature T , such as

A + B � C + D, (9.11)

there exists a forward flux J+ and a backward flux J−, with net flux J = J+ − J−.
The concentrations of the reactants and products in this reaction are related to the
chemical potential of the reaction via

�µ = µC + µD − µA − µB = kB T ln(J−/J+), (9.12)

where kB is the Boltzmann constant. Equivalently, for isothermal isobaric systems,
we have [19]2

�G = RT ln(J−/J+). (9.13)

We see from these equations that J and �µ (or �G) always have opposite signs,
and are both zero only when a reaction is in equilibrium.

For a system of reactions, let µ and ∆µ be the column vectors that contain
the potentials for all the species and the potential differences for all the reactions,
respectively. The chemical potential differences are computed

∆µ = S
Tµ (9.14)

or �µ j = µi Si j using the Einstein notation introduced in the previous chapter.
Next we recall the fundamental mass balance equation (Equation (9.2)):

SJ = b, (9.15)

where here the transport fluxes are listed on the right-hand side in the vector b and
the matrix S contains the stoichiometry of only the internal reactions. We combine
Equations (9.14) and (9.15) as follows:

µT
S = ∆µT

µT
SJ = ∆µT J = µT b, (9.16)

yielding the equality between heat dissipated per unit time by the internal reactions
(−∆µT J) and rate at which chemical energy is supplied by the boundary fluxes

2 Recall, this relationship was derived in Section 3.1.2.
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(−µT b). This is the statement of energy conservation (first law of thermodynamics)
for this system [168]:

− ∆µT J = −µT b

−
∑

J

�µ j J j = −
∑

j

µ j b j . (9.17)

If r is a vector that has the property Sr = 0, then

rT ∆µ = rT
S

Tµ = 0. (9.18)

More generally, if R is a matrix that contains a basis for the right null space of S

(i.e., SR = 0), then

R
T ∆µ = R

T
S

Tµ = 0. (9.19)

Using Equation (9.19), the thermodynamic constraint that there must exist a
feasible thermodynamic driving force for any flux pattern can be expressed as
follows:

There must exist a vector ∆µ for which
R

T ∆µ = 0 (9.20)
where R contains a basis for the right null space of S and

�µ j J j < 0 (9.21)
for every reaction in the system [17].

This theorem is a generalization of Kirchhoff’s loop law and Tellegen’s theorem in
electrical circuit analysis3.

For the example of Equation (9.3), Equation (9.20) is expressed as

[1 1 1]

�µ1

�µ2

�µ3

 = 0. (9.22)

Here, the matrix S of Equation (9.4) has a one-dimensional right null space, for
which the vector [1 1 1]T is a basis. Equation (9.22) corresponds to summing the
reaction potentials about the closed loop formed by the reactions in Equation (9.3).

Under this constraint of Equation (9.21), the bounds on the fluxes of Equa-
tion (9.5) are narrowed from those of Equation (9.6) to:

J1 ∈ (0, bA), J2 ∈ (0, bA), J3 ∈ (0, bA). (9.23)

3 It can also be seen as a consequence of the first and second laws of thermodynamics.
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Thus, in general, the thermodynamic constraint narrows the feasible flux space, but
not necessarily to a unique solution. Knowledge of the boundary fluxes translates
into constraints on the reaction directions. Thus, the feasible reaction directions are
a function of an open system’s (i.e., a cell’s) interaction with its environment.

9.3.3 Feasible sign patterns

Identifying constraints on reaction directions is essential for applications of
metabolic flux analysis. However, in many applications the procedure used for
determining reaction directions is not concretely defined. Typically, a subset of
the reactions in a model is assigned as irreversible and the feasible directions are
assigned based on information in pathway databases [59]. In these applications,
by treating certain reactions as implicitly unidirectional, biologically reasonable
results can often be obtained without considering the system thermodynamics as
outlined above.

As an alternative to ad hoc procedures for assigning reaction directions, it is
possible to determine reactions directions from first principles based on the thermo-
dynamic constraint defined in the preceding section and knowledge of the direction
of the transport flux directions. In fact, it is possible to mathematically state the
thermodynamic constraint of Equations (9.20) and (9.21) in an alternative form in
terms of the sign pattern of the vector J [16].

To define the thermodynamic constraint in terms of sign patterns, it is first nec-
essary to define the concept of a sign vector. A sign vector is a vector with possible
entries 0, +, and −. The operation sign (·) is defined to return the sign vector as-
sociated with a vector of real numbers. For example sign{−0.1, +5, 0, −2.1} =
{−, +, 0, −}.

Next, it is necessary to define the concept of orthogonality of sign vectors. Two
sign vectors a and b are said to be orthogonal (a ⊥ b) if either (1) the supports of
a and b have no indices in common, or (2) there is an index i for which ai and
bi have the same signs and there is another index j ( j �= i) for which a j and b j

have opposite signs. Given these definitions, the thermodynamic constraint may be
stated as:

For a stoichiometric matrix S associated with the internal reactions of a given system,
with right null space R, the vector of internal fluxes J is thermodynamically feasible if
and only if

sign(J) ⊥ sign(r) (9.24)
for every r ∈ R.
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Figure 9.9 All of the possible sign patterns of the internal reactions of the network
of Figure 9.6 captured in the cycles C defined in Equation (9.25).

This alternative statement of the thermodynamic constraint is shown to be equiv-
alent to Equations (9.20) and (9.21) by Beard et al. [16]. Here we illustrate the
concept by returning to the example of Figure 9.6. The feasible sign patterns of
Figure 9.6 are feasible because they are orthogonal to the sign vectors of all vectors
belonging to the right null space R.

All possible sign patterns in the right null space are captured in the set of three
cycles:4

C =

J1

J2

J3

J4

J5


− − 0
0 − +
+ 0 +
+ 0 +
0 + −

 , (9.25)

where each row corresponds to a cycle, with signed entries corresponding to direc-
tions of reactions indicated. These cycles are illustrated in Figure 9.9.

Based on these sign patterns, which enumerate all possible sign patterns of
vectors in R, the sign pattern on the right-hand side in Figure 9.8 is judged infeasible
because it is not orthogonal to the first sign pattern in Figure 9.9. Here the definition
of sign orthogonality is apparent. The vectors are not orthogonal because the signs
of all non-zero entries in the pattern

A

B

C

D

4 It is not necessary to explicitly enumerate the cycles with sign exactly opposite to those listed in Equation (9.25).
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are the same as the signs of those entries of the following pattern from Figure 9.8.

J3 J7

J8

J4
J1

J5

J2

J6
A

B

C

D

Therefore the above sign pattern is not thermodynamically feasible because it is
not orthogonal to the sign pattern of a vector from the right null space of the
stoichiometric matrix of internal reactions.

The above example is convenient for illustration because it is relatively small
and involves only uni-unimolecular reactions. For large systems with arbitrary
reaction stoichiometry, it turns out that the assignment of feasible reactions is an NP-
complete computational problem [216]. Therefore, application of thermodynamic
constraints in genome-scale problems is an area of ongoing research.

9.4 Further concepts in constraint-based analysis

9.4.1 Feasible concentrations from potentials

Introducing the chemical potential (or free energy) and the thermodynamic con-
straint provides a solid physical chemistry foundation for the constraint-based anal-
ysis approach to metabolic systems analysis. Treatment of the network thermo-
dynamics not only improves the accuracy of the predictions on the steady state
fluxes, but can also be used to make predictions on the steady state concentra-
tions of metabolites. To see this, we substitute the relation between reaction Gibbs
free energy (�r G ′) j of the j th reaction and the concentrations of biochemical
reactants

(�r G ′) j = (�r G ′o) j + RT
∑

i

Si j ln ci (9.26)

into the requirement that (�r G ′) j J j ≤ 0, resulting in the inequality

(�r G ′o) j J j + RT
∑

i

Si j ln ci J j ≤ 0. (9.27)

Here (�r G ′o) j is the standard transformed equilibrium Gibbs free energy for reac-
tion j , which may be obtained from a standard chemical reference source.

If a flux vector J is thermodynamically feasible, then there exist concentrations
ci that satisfy the above inequality. In fact, Equation (9.27) defines a feasible space
for the metabolites concentrations as a convex cone in the log-concentration space.
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If the set of feasible concentrations is empty, then the vector J = {Jj } is thermo-
dynamically infeasible.

9.4.2 Biochemical conductance and enzyme activity

From the traditional biochemical kinetics standpoint, both steady state biochemical
concentrations and reaction fluxes are predictable from known enzyme reactions
with appropriate rate constants and initial conditions. In steady state, the fluxes
are computable from the concentrations of the reactants and products. However,
a realistic challenge we confront is that our current understanding of the reaction
mechanisms and measurements of rate constants are significantly deficient. From
the standpoint of constraint-based analysis, the ratio between the J and �r G ′ of
a particular reaction is analogous to the conductance, which can be shown to be
proportional to the enzyme activity of the corresponding reaction. We emphasize
that the magnitudes of both J and �r G ′ are functions of the reaction networks
topology. Therefore, each one alone will not be sufficiently informative of the
level of enzyme activity (i.e., the level of activity due to gene expression or post-
translational modification).

9.4.3 Conserved metabolite pools

In addition to the constraint on concentrations imposed by Equation (9.27), a re-
action network’s stoichiometry imposes a set of constraints on certain conserved
concentration pools [2]. These constraints follow from the equation for the kinetic
evolution of the metabolite concentration vector:

Pdc/dt = SJ, (9.28)

where P is a diagonal matrix, with diagonal entries corresponding to the partition
coefficients, or fractional intracellular spaces, associated with each metabolite in
the system. In Equation (9.28), columns corresponding to the boundary fluxes have
been grouped into the matrix S. Here, the vector J includes both internal reaction
fluxes and boundary fluxes. The left null space of the matrix P

−1
S may be computed

and a basis for this space stored in a matrix L, such that:

Ldc/dt = LP
−1

SJ = 0. (9.29)

It follows from Equation (9.29) that the product Lc remains constant and defines a
number of conserved pools of metabolic concentrations. For example, if we were to
consider the glycolytic series as an isolated system, with no net flux of phosphate-
containing metabolites into or out of the system, then as phosphate is shuttled
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among the various metabolites, the total amount of phosphate in the system is
conserved.

9.4.4 Biological objective functions and optimization

The simple examples introduced above make use of computers to optimize mathe-
matical objective functions, given defined mathematical constraints. Such an opti-
mization problem is defined by maximizing a flux under the constraints of Equation
(9.9). While we do not go into the mathematical/computational details of how to
find solutions to optimization problems here, readers may find an accessible intro-
duction to optimization theory, which represents a mature field of modern applied
mathematics, elsewhere. (See for example, Strang’s Introduction to Applied Mathe-
matics [190].) We also note that optimization theory has been a major mathematical
engine behind bioinformatics and genomic analysis. Constraint-based approaches
have also been very successful in biological structural modeling ranging from dis-
tance geometry calculations for protein structure prediction from NMR to structural
determination of large macromolecular complexes.

Mathematical optimization deals with determining values for a set of unknown
variables x1, x2, . . . , xn , which best satisfy (optimize) some mathematical objec-
tive quantified by a scalar function of the unknown variables, F(x1, x2, . . . , xn).
The function F is termed the objective function; bounds on the variables, along
with mathematical dependencies between them, are termed constraints. Constraint-
based analysis of metabolic systems requires definition of the constraints acting on
biochemical variables (fluxes, concentrations, enzyme activities) and determining
appropriate objective functions useful in determining the behavior of metabolic
systems.

Therefore, the objective functions used play a crucial role in constraint-based
analysis. A given objective function can be thought of as a mathematical formula-
tion of a working hypothesis for the function of a particular cell or cellular system.
These objective functions should not be considered to be as theoretically sound
as the physicochemical constraints; but they may be informative and biologically
relevant. They can serve as concrete statements about biological functions and
powerful tools for quantitative predictions, which must be checked against ex-
perimental measurements. One of the surprising discoveries in constraint-based
modeling is how well certain simple objective functions have described biological
function.

That a cell functions precisely following some rule of optimality is, of course,
highly suspect. There may be an evolutionary argument in favor of certain objec-
tive functions, but the ultimate justification lies in the correctness of its predictions.
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In this sense, the constraint-based optimization approach provides a convenient
way to efficiently generate quantitative predictions of biological hypotheses for-
mulated in terms of objective functions.5 The value of this approach is in facilitating
the systematic prediction-experimental verification-hypothesis modification cycle,
ideally leading to new discoveries.

For bacterial cells, growth rate (rate of biomass production) has been a widely
used objective function. This objective is constructed as a net flux out of the cell
of the components of biomass (amino acids, nucleotides, etc.) in their proper sto-
ichiometric ratios, which translates into a linear function of the reaction fluxes.
Based on this elegant paradigm, predictions from flux-balance analysis (FBA)
of the fate of the E. coli MG1655 cell following deletions of specific genes for
central metabolic enzymes have been remarkably accurate [48]. When combined
with thermodynamic analysis (or energy balance analysis), it has been shown [17]
that cells with non-essential genes deleted can redirect the metabolic fluxes un-
der relatively constant enzyme activity levels, with few changes due to gene ex-
pression regulation and/or post-translational regulation. The FBA/EBA combined
approach predicts which enzyme must be up regulated, which must be down reg-
ulated, and which reactions must be reversed, given perturbations to the geno-
type and/or cellular environment. Using this combined approach, a clear relation
is established between the enzyme regulation and constraint-based analysis of
metabolism.

Different objective functions can be used in studying other biological systems
and problems. When addressing cellular metabolic pathway regulation, robustness
has proven to be a useful objective. Robustness can be defined as a measure of
the amount that metabolic fluxes, steady state concentrations, or enzymes activi-
ties change following perturbations. For example, minimization of flux adjustment
has been used to model the metabolic response of E. coli JM101 with pyruvate
kinase knockout [184]. In this study, it is assumed that the cell acts to maintain its
wild-type flux pattern in response to the challenge imposed by a gene knockout.
However, a minimal change in the flux pattern may require an unrealistic level of
metabolic control. We have shown that the objective of minimal changes in en-
zyme activities predicts the key regulatory sites in switching between glycogenic
and gluconeogenic operating modes in hepatocytes [18]. This approach facilitates
inverse analyses, where the regulatory system is treated as a black box and con-
trol mechanisms are identified from measurements of the inputs and outputs to the
system.

5 Objectives that have proved useful include optimal energetic efficiency or optimal cell growth rate [48, 204].
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9.4.5 Metabolic engineering

Metabolic engineering is “the purposeful design of metabolic networks” [189] in
microbial organisms for specific tasks. Thus the aim of metabolic engineering is
different from that of biological research aimed at understanding existing organisms
[8, 189]. In metabolic engineering, one is more interested in the capacity and optimal
behavior of biological hardware rather than its natural function per se. For this reason
the metabolic engineering community has been a major developer and proponent
of the constraint-based analysis approach.

9.4.6 Incorporating metabolic control analysis

As briefly outlined in Section 6.3, one of the theoretical frameworks in quantitative
analysis of metabolic networks is metabolic control analysis. In metabolic control
analysis, the enzyme elasticity coefficients provide empirical constraints between
the metabolites’ concentrations and the reaction fluxes. These constraints can be
considered in concert with the interdependencies in the J and c spaces that are
imposed by the network stoichiometry. If the coefficients εi

k = (ck/Ji )∂ Ji/∂ck are
known, then these values bind the fluxes and concentrations to a hyperplane in the
(J, c) space.

Concluding remarks

One can view biochemical systems as represented at the most basic level as net-
works of given stoichiometry. Whether the steady state or the kinetic behavior
is explored, the stoichiometry constrains the feasible behavior according to mass
balance and the laws of thermodynamics. As we have seen in this chapter, some
analysis is possible based solely on the stoichiometric structure of a given system.
Mass balance provides linear constraints on reaction fluxes; non-linear thermody-
namic constraints provide information about feasible flux directions and reactant
concentrations.

Applying mass-balance and thermodynamic constraints typically leaves one
without a precisely defined (unique) solution for reaction fluxes and reactant con-
centration, but instead with a mathematically constrained feasible space for these
variables. Exploration of this feasible space is the purview of constraint-based anal-
ysis. It has so far been left unstated that any application in this area starts with the
determination of the reactions in a system, from which the stoichiometric matrix
arises. This first step, network reconstruction, integrates genomic and proteomic
data to determine carefully the enzymes present in an organism, cell, or subcellular
compartment. The network reconstruction process is described elsewhere [107].
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Exercises

9.1 Consider the following uni-unimolecular reaction network.6

A  D

B

C

6 7

1 2

3 4

5

Construct the stoichiometric matrix for this system, given the reaction numbering de-
fined in the figure. Assume that internal reactions 1 through 4 are irreversible with
feasible directions indicated in the figure. Reactions 6 and 7 are transport reactions,
also irreversible with directions indicated. If the maximum uptake rate of A is 1 (in
arbitrary units), what is the maximal output of D? Given that production of D is optimal,
is the internal flux distribution unique?

9.2 Set up the previous exercise as a linear programming problem and solve using a com-
puter. (The built-in Matlab utility linprog is one possible package to use.) Investigate
deleting reactions and applying additional linear (inequality) constraints to the reaction
fluxes in this example. Is the production of D in this example robust to changes in the
network structure?

9.3 Use the flux balance constraint and the thermodynamic feasibility to show that for a
closed chemical reaction system, i.e., b = 0 in Equation (9.2), the only possible steady
state is J = ∆µ = 0. That is, the steady state of a closed chemical reaction system is
necessarily a chemical equilibrium.

9.4 Use linear programming to compute the optimal solutions illustrated in Figures 9.4 and
9.5 for the reaction network defined by the stoichiometric matrix given in Figure 9.2.
(Note that to obtain the reported results, the model must include the transport fluxes
and the irreversibility constraints defined in Section 9.2.2.)

9.5 Is the flux sign pattern in exercise 34 thermodynamically feasible? Would it be ther-
modynamically feasible for reaction 4 to operate in the reverse direction? Why or why
not?

6 This reaction network is motivated from an example in Joyce and Palsson [107].
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Biomacromolecular structure and
molecular association

Overview

The theories of chemical kinetics and thermodynamics – largely the theoretical
foundation of this book – are concerned primarily with describing how distinct
molecular states are distributed temporally and among ensembles of molecules.
Based on these theories, previous chapters have developed mathematical models of
biochemical systems that account for molecular state changes that include chemical
reactions, conformational changes, and non-covalent binding interactions, with
little attention paid to the underlying structural details. Yet there is much to be
learned from examining the structural basis of biomolecular states and functions.
After all, structure and function are inseparable.

In fact, a tremendous amount of information is available on the structures of
biological macromolecules; descriptions of structures of proteins and nucleic acids
make up major portions of modern textbooks in biochemistry and molecular bi-
ology. The Protein Data Bank and the Nucleic Acid Database are online archives
that contain sequence and structural data on thousands of specific molecules and
complexes of molecules. This structural information comes from in vitro experi-
ments, with structures inferred from the x-ray diffraction patterns of crystallized
molecules, spectroscopic measurements using multi-dimensional nuclear magnetic
resonance, and a host of other methodologies.

Even though in vitro experiments necessarily remove biomolecules from the
cellular environment, the structures and dynamics of individual macromolecules
provide insights to their biological functions. For example, structural studies have
revealed that the protein hemoglobin is made up of four interacting subunits, two α

subunits and two β subunits. Furthermore, each subunit has two distinct conforma-
tional states, called the R state and the T state, and the energy of interaction between
two neighboring subunits in different states is different from that of two subunits in
the same state. This phenomenon is the structural basis of the observed allosteric

240
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cooperativity in oxygen binding to hemoglobin [21]. In sickle-cell anemia, a single
mutation in the β subunit of hemoglobin causes the globular protein to form fibers,
leading to the sickle shape of red blood cells [21]. Thus the structural dysfunction
at the molecular scale can underlie disease.

In some cases, the structure essentially is the function. The most celebrated
example is the structure of the DNA double helix, which “immediately suggests a
possible copying mechanism for the genetic material” [207]. More often than not,
however, a definitive understanding of biological and physiological function cannot
be reached in terms of isolated biomolecular structures and dynamics alone. Many
important biological processes involve many interacting molecules. Hence, the
serious attention paid in the current era to networks of macromolecular interaction.

Theoretical approaches to structural biophysics, like the theories of transport and
reaction kinetics explored in other chapters of this book, are grounded in physical
chemistry concepts. Here we explore a few problems in molecular structural dy-
namics using those concepts. The first two systems presented, helix-coil transitions
and actin polymerization, introduce classic theories. The material in the remainder
of the chapter arises from the study of macromolecular interactions and is motivated
by current research aimed at uncovering and understanding how large numbers of
proteins (hundreds to thousands) interact in cells [7].

10.1 Protein structures and α-helices

The structure of a biological macromolecule – a large protein or nucleic acid, for
example – determines its static and dynamic properties in aqueous solution and thus
in large part its biological function(s).1 The term “structure” should be understood
broadly: the nucleotide and peptide sequences of DNA and protein molecules are
components of their chemical structures. Beyond the primary sequences, biological
macromolecules take on the complex three-dimensional structures of the sort that
one will find illustrated in any biology textbook. These structures give us a static
picture of biological macromolecules. Yet it is usually the dynamic character of a
macromolecule that is the key to understanding the link between its structures and
its functions.

Both the structures and the dynamics of macromolecules are studied in terms
of statistical thermodynamics. In the following section, we introduce the helix-coil
transition theory that accounts for formation of the ubiquitous α-helical structure
of peptide chains in aqueous solution. To a large extent, current research on protein

1 In the era of systems biology, great attention is paid to the structures of networks of reactions and interact-
ing molecules (i.e., the topological connectivities). In some ways network structures have replaced molecular
structures as the central object of biological attention.
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folding, combining simple ideas from statistical thermodynamics with powerful
computation, is built upon insight developed from helix-coil transition theory.

10.1.1 The theory of helix-coil transition

Images of three-dimensional protein structures are often rendered using cartoon-like
ribbons to indicate common features of the carbon backbone, such as α-helices and
β-sheets. Casually browsing the structures illustrated in a biology textbook or an
online database, one is struck by the frequent appearance of the right-handed helical
structures known as α-helices. The structural features of α-helices are illustrated
in Figures 10.1 and 10.2.

As is apparent from Figure 10.1, an α-helical structure imposes fairly rigid
constraints on the relative positions of successive residues in a peptide chain. Thus
there is a loss of entropy that must be overcome energetically in order for an α-
helix to form. To explain the underlying biophysics of this system, John Schellman
introduced a theory of helix-coil transitions that is motivated by the Ising model
for one-dimensional spin system in physics [180, 170].

We can characterize the primary structural degrees of freedom in a polypeptide
chain (ignoring side-chain conformations) by the two dihedral angles (φ and ψ)
associated with the Cα of each residue. As illustrated in Figure 10.1, these angles
determine the relative positions of two successive peptide bonds. A chain of M
residues has M − 1 sets of (φ, ψ) angles.2 When three consecutive (φ, ψ) com-
binations fall within the relatively narrow region of α-helical structure indicated
in Figure 10.1, a hydrogen bond may form between the carbonyl group of the i th
peptide and the amide group of the (i + 4)th peptide, as illustrated in Figure 10.2.
Thus the formation of a hydrogen bond requires three consecutive helical states for
dihedral angles associated with α carbons.

Let us consider a polypeptide chain with M residues, characterized by N =
M − 1 (φ, ψ) pairs. The helix-coil theory characterizes each dihedral pair as either
helical (within the α-helical region) or coil (not helical).3 Thus there are three
possible energetic states: coil, non-hydrogen-bonded helical, and hydrogen-bonded
helical. We denote the energies of these states as Ec, Enh , and Ehh , respectively.
Since we do not want to count each hydrogen bond twice, we use the convention
that only the residue nearer the C-terminus (i.e., the residue on the right within a
hydrogen bond in Figure 10.2B) is counted as hydrogen bonded.

2 There is no (φ, ψ) set associated with the N-terminal α carbon. The (φ, ψ) pair associated with the C-terminal
α carbon defines the relative orientation of the C-terminal peptide bond and the terminal COOH group.

3 The term coil refers to a random unstructured chain in polymer science. The term may be confusing because in
common use the word coil does not necessarily invoke a picture of a random structure.
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Figure 10.1 Basic polypeptide geometry. The upper panel shows a short peptide
sequence of three amino acids joined by two peptide bonds. A relatively rigid planar
structure, indicated by dashed lines, is formed by each peptide bond. The relative
positions of two adjacent peptide bond planes is determined by the rotational
dihedral angles φ and ψ associated with the Cα of each peptide. The relative
frequency of φ and ψ angles occurring in proteins observed in a database of
structures obtained from crystallography is illustrated in the lower panel. In this
plot, called a Ramachandran plot, the shaded regions denote (φ, ψ) pairs that occur
with some frequency in the database. The white region corresponds to (φ, ψ)
values not observed in crystal structures of proteins due to steric hindrance. The
most commonly occurring (φ, ψ) values correspond to β-sheets and right-handed
α-helices. Left-handed α-helical conformations occur with lower frequency.

Given the energies associated with the possible states, the Boltzmann prob-
ability law tells us that the respective probabilities of a residue being in a coil
state, a non-hydrogen-bonded helical state, and hydrogen-bonded helical state
are proportional to e−Ec/kB T = 1, v = e−Enh/kB T , and w = e−Ehh/kB T . Thus w > 1
implies that helix formation is energetically favorable. The formation of hydro-
gen bonds is energetically favorable and can stabilize the formation of helices
[129, 170].



244 Biomacromolecular structure and molecular association
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planar peptide bond

amino acid residue amide group

carbonyl group

Backbone–backbone hydrogen bond

B

Figure 10.2 A polypeptide can form a helical structure in which the carbonyl group
of the i th peptide bond is aligned with the amide group of the (i + 4)th peptide
bond and forms a hydrogen bond (A) if all the three amino acid residues, i.e., Cα ,
are in their helical state (B). Image in (A) reprinted from Berg et al. [21] with
permission.

We call the relative probability weights (1, v, and w) the Boltzmann weights –
they are the non-normalized probabilities of possible states. For a polypeptide chain,
its conformation may be described by a sequence of N states as shown in the table
below. The corresponding total energy of the conformation is simply the sum of
the energies for each residue. Then the corresponding Boltzmann weight will be
computed as the product of the weights corresponding to the states.

Sequence of states Boltzmann weight
cchhhhcc . . . 1 · 1 · v · v · w · w · 1 · 1 · · ·
hhhchhhh . . . v · v · w · 1 · v · v · w · w · · ·

Here states c and h correspond to coil and helical, respectively. Determination of
whether a helical state is hydrogen bonded or not, and assignment of the Boltzmann
weight for a given state, requires knowing the states of the two preceding residues.
The state hhh has energy v · v · w because the sequence of three helical (φ, ψ)
pairs allows for the formation of one hydrogen bond.

Computing the partition function for an N -state chain requires enumerating all
possible states. The clever trick associated with the helix-coil transition theory is
to generalize this calculation using the statistical-weight matrix:

M =

cc hc ch hh
cc 1 0 v 0
hc 1 0 v 0
ch 0 1 0 v

hh 0 1 0 w

(10.1)



10.1 Protein structures and α-helices 245

in which each row corresponds to the first pair of states in a three-state sequence,
and each column corresponds to the second two states in the sequence. The entries
in the matrix are the Boltzmann weights given to the third state. For example, the
entry in the row hc and column ch corresponds to the sequence hch. Hence, the
Boltzmann weight for the h is v. The zeros in the matrix represent incompatibility
between a given column and a given row.

For an N -state system, the first two states can take the form cc, hc, ch, or hh,
with corresponding Boltzmann weights 1, v, v, and v2. Putting these weights into a
vector in the respective order that corresponds to the columns of M, and multiplying
by M yields a vector that lists the weights of all possible three-state sequences:[

1, v, v, v2
]

M = [
1 + v, v + v2, v + v2, v2 + v2w

]
. (10.2)

These entries can be summed by taking the product

[
1, v, v, v2

]
M


1
1
1
1

 = [
1 + v, v + v2, v + v2, v2 + v2w

] 
1
1
1
1


= 1 + v + v + v2 + v + v2 + v2 + v2w, (10.3)

where these eight terms correspond to the 23 possible three-state sequences ccc,
hcc, chc, hhc, cch, hch, chh, and hhh.

This result is generalized for an N -state polypeptide (N + 1 residues):

Z (v, w) = [
1, v, v, v2

]
M

N−2


1
1
1
1

 , (10.4)

which gives us the partition function – the weighted sum of all possible states. From
Equation (1.21), we can compute −kB T ln Z , which is the free energy of the entire
polypeptide chain, with the all-coil conformation cccc · · · c as the reference state.
In other words, the probability of the all-coil state is Z−1.

The partition function of Equation (10.4) is the source of much information on the
thermodynamics of helix-coil conformations. We note that Z (v, w) is a polynomial
of w of order N − 2:

Z (v, w) =
N−2∑
k=0

ak(v)wk, (10.5)

in which ak(v)wk is the Boltzmann weight for the peptide with exactly k hydrogen-
bonded helical residues. Thus, akw

k is proportional to the probability of the
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Figure 10.3 The helix-coil transition curves according to Equation (10.6), with
v = 0.01. In realistic laboratory experiments, one can change the temperature or
the solvent conditions to change w, hence observing the transition.

polypeptide having k hydrogen bonds. To obtain the average number of hydro-
gen bonds, we have

〈nh〉 =
∑N−2

k=0 kakw
k∑N−2

k=0 akwk
=

(
∂ ln Z

∂ ln w

)
v

. (10.6)

Figure 10.3 shows the number of hydrogen bonds in a peptide, normalized by the
length of the polypeptide 〈nh〉/N . We see that with increasing length of a peptide,
the coil to helix transition becomes sharper, more cooperative.

Matlab computer codes for the helix-coil model are given below. First, we in-
troduce a function that computes and returns the vector [1, v, v, v2] M

k , given the
inputs v, w, and k:

function LM = lm(v,w,k)

leftv = [1, v, v, v^2];
M = [1, 0, v, 0; 1, 0, v, 0; 0, 1, 0, v; 0, 1, 0, w];
LM = leftv*M^k;

Next, a function that computes and returns the column vector

M
k


1
1
1
1


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function RM = rm(v,w,k)

rightv = [1, 1, 1, 1]';
M = [1, 0, v, 0; 1, 0, v, 0; 0, 1, 0, v; 0, 1, 0, w];
RM = M^k*rightv;

The following function calls the above two functions and computes the helical
fraction of a chain of length N given input parameters v and w.

% This function computes the mean number of
% h-bonds according to the helix-coil theory

function HCONTENT = hcontent(v,w,N)

% Computing the partition function Z
rightv = [1, 1, 1, 1]';
Z = lm(v,w,N-2)*rightv;

% The derivative of matrix M with respect to w
% is the matrix D given below:
D = [0, 0, 0, 0; 0, 0, 0, 0; 0, 0, 0, 0; 0, 0, 0, 1];

% The dZ/dw can be carried out by the chain rule
dZdw = 0;
for i = 0:N-3

dZdw = dZdw + lm(v,w,i)*D*rm(v,w,N-3-i);
end

% The mean number of h-bonds
HCONTENT = w*dZdw/Z;

This function can be called in Matlab using the following syntax to compute the
number of hydrogen bonds as a function of the w parameter, with v = 0.01 and
N = 50.

function Hvsw = hvsw()

v = 0.01;
N = 50;
Hvsw = [];
for w = 0:0.05:5



248 Biomacromolecular structure and molecular association

Hvsw = [Hvsw,HCONTENT(v,w,N)];
end

w = [0:0.05:5];
plot(w,Hvsw);

We note that the α-helical structure of a polypeptide chain is a component of
secondary structures in proteins. An α-helix is determined by the local orientations
of neighboring peptide bonds. Thus the theory of helix-coil transitions deals with
only one way in which hydrogen bonds along a peptide chain can contribute to
secondary structure. The theory completely neglects any interaction between amino
acids more than four residues apart. It also neglects interactions involving the side
chains of the amino acids. Taking these tertiary interactions into consideration in a
theory is a task that is outside of the scope of this chapter. Still, the helix-coil theory
has found wide applications including local secondary structures of proteins and
soluble, bio-active small peptides. It has also been applied to study the structure of
DNA [160].

10.2 Protein filaments and actin polymerization

The previous section dealt with the secondary structure of a peptide chain and
demonstrated how the inclination to form α-helices, as a function of chain length
and hydrogen-bonding energy, is explained on the basis of the thermodynamic
theory of Chapter 1. In this section we examine how a higher level of structural
organization – the association of certain globular proteins to form filaments – is
described by the kinetic theory of Chapter 2. For example globular actin monomers
(G-actin units) can string together to form a filament called F-actin, which is made
up of two parallel strings of G-actin monomers twisted about one another as shown
in Figure 10.4A. F-actin makes up an important component of the cytoskeleton
and is involved in cell motility. Another important protein filament in cells is the
microtubule that is made of tubulin monomers. Microtubules play key roles in
intracellular transport of organelles and in cell division.

The processes of polymerization of protein monomers into filaments, such as
actin and tubulin, can be investigated based on a simple kinetic model. To develop
a model, we let A1 represent the monomer and A� represent the filaments made up
of � subunits. Our simple kinetic model has two distinct steps:

A1 + A1

k∗
+1�

k∗
−1

A2, A1 + A�

k+1�
k−1

A�+1, (10.7)

where the first reaction involves the association of two monomers into a dimer and
the second reaction represents elongation of a polymer of length l ≥ 2. The rate
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B

Figure 10.4 (A) A schematic of globular actin monomer forming a protein filament,
called F-actin. This filament is one of the important components of muscle cells,
as well as the cytoskeleton of other cells. (B) Oriented actin filaments inside a
fibroblast cell, called stress fibers, seen through a fluorescence microscope. Image
obtained from Nguyen et al. [148] and reprinted with permission.

constants k+1 and k−1 are associated with the polymerization and depolymerization
rates for the elongation of the polymer. The first reaction, called nucleation, has
rate constants k∗

+1 and k∗
−1 different from all other reaction steps. Generally the

nucleation step is less favorable than elongation; this phenomenon is reflected in
the rate constants by setting

k∗
+1

k∗
−1

� k+1

k−1
. As is the case for the helix-coil system, the

low likelihood of nucleation can be compensated for in long polymers.4

10.2.1 Nucleation and critical monomer concentration

If the ratio

k∗
+1/k∗

−1

k+1/k−1

4 In the twisting double-helical actin chain, the nucleation step involves only one monomer–monomer interaction
while each monomer placed on the chain following nucleation involves two monomer–monomer bonds. In the
helix-coil theory, the formation of two consecutive helical states represents the nucleation step that allows for a
third helical state and hydrogen bond formation.
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is very small, then the formation of a nucleus is an extremely unlikely event.
Therefore, when there is a nucleus, the dynamics of the reaction system in Equation
(10.7) is dominated by filament growth rather than forming additional nuclei. In
this scenario, if we use Ap to denote all the polymers with length greater than 1
and A1 for monomer, the system simplifies to a single chemical reaction:

A1 + Ap
k+1�
k−1

Ap. (10.8)

The chemical equilibrium of Equation (10.8) is

[A1]eq = [A1]eq[Ap]eq

[Ap]eq
= k−1

k+1
. (10.9)

This is a very interesting result. It suggests that, no matter what is the total initial
monomer concentration, the polymer will continue to grow until the monomer
concentration reaches the equilibrium value k−1

k+1
. The constant k−1

k+1
is called the

critical concentration for the polymerization. According to this simple model, if
the initial monomer concentration is lower than the critical concentration, there will
be no polymerization.

10.2.2 Theory of nucleation-elongation of actin polymerization

The above concept of critical concentration can be further understood through the
more realistic reaction system of Equation (10.7). The multiple chemical equilibria
of Equation (10.7) are given by

[A2]eq(
[A1]eq

)2 = k∗
+1

k∗
−1

= K ∗,
[A�+1]eq

[A�]eq[A1]eq
= k+1

k−1
= K (� ≥ 2). (10.10)

Mass conservation yields the conservation relationship

[A1]eq + 2[A2]eq + · · · + �[A�]eq + · · · = A0 (10.11)

where A0 is the total monomer concentration in the system. Expressing each [A�]eq

in terms of [A1]eq and substituting back into Equation (10.11), the system of equa-
tions can be collapsed into one:

[A1]eq + 2K ∗ (
[A1]eq

)2 + K ∗
∞∑

�=3

�K �−2
(
[A1]eq

)� = A0. (10.12)

Equation (10.12) is conveniently written

x + 2(1 − σ )x2 + 3(1 − σ )x3 + 4(1 − σ )x4 + · · · = xt ,

where x = K [A1]eq , xt = K A0, and σ = 1 − K ∗
K .
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Figure 10.5 The equilibrium monomer concentration as a function of the total
monomers for a nucleation-elongation protein polymerization process described
by Equations (10.7) and (10.13). The constant K = k+1/K−1 is the association
constant of a monomer to the polymer; [A1]eq is the equilibrium free monomer
concentration; and A0 is the total monomer concentration. The variable σ = 1 −
K ∗/K depends on the difference in equilibrium constants between elongation
and nucleation steps. At σ = 0 there is no difference in equilibrium constants; at
σ = 1 nucleation is highly unfavorable compared to elongation and there is infinite
cooperativity in the polymerization process.

The above equation can be rearranged to give an equation for free unbound
monomer concentration (represented by the variable x = K [A1]eq) and the total
monomer concentration (represented by the variable xt = K A0):

x − 2σ x2 + σ x3

(1 − x)2
= xt (x ≤ xt ). (10.13)

Figure 10.5 plots the relationship between K [A1]eq and K A0 predicted by
Equation (10.13). When K A0 � 1, all the monomers tend to stay in the monomeric
form, regardless of the nucleation kinetics. Therefore K [A1]eq ≈ K A0 in the limit
of K A0 → 0.

When nucleation is highly unfavorable (i.e., σ ≈ 1) the polymer system exhibits
a biphasic behavior depending on the total monomer concentration A0. In this
case there is a sharp phase transition between the all-monomer state for A0 <

1/K , where 1/K is the critical monomer concentration. When A0 exceeds 1/K
the free monomer concentration stays fixed at [A1]eq = 1/K . This type of non-
smooth behavior at x = 1 for σ = 1 is called a transcritical bifurcation in non-linear
dynamics [191]. It is also widely known as phase transition in physics. Figure 10.5
shows that for σ less than unity, the transition is smooth. Hence we see that the
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phenomenon of a critical concentration crucially depends on relatively unfavorable
nucleation.

10.3 Macromolecular association

In this section, we study the non-covalent association of macromolecules, say of
proteins A and B to form a complex AB:

A + B
k+1�
k−1

AB. (10.14)

Such associations are fundamental in protein–protein interaction networks in cell
signaling.

Protein–protein networks can be visualized by representing proteins as nodes in
a network and potential associations as edges. An example network is shown in
Figure 10.6. The figure represents cellular proteins (from yeast) as circles with a
line drawn between every pair of proteins observed to associate in the cell. (Loops
connecting a circle to itself represent self interactions.) The resulting graph is a
rather complicated mess, perhaps more like an abstract painting than a scientifically
meaningful diagram.

Here we introduce a theory to help make some sense of protein–protein in-
teractions from statistical perspective. Like our study of the phosphorylation–
dephosphorylation cycle in a signaling system in Chapter 5, we analyze a single
event that represents a repeating motif in this large network. Specifically, given
total amounts of some proteins A and B, we are interested in the expected amount
of complex AB, as well as the corresponding probability distribution. Since in a
living cell the number of some signaling proteins can be of the order of tens and
hundreds, it is important to account not only for average behavior, but also for the
inherent variability in systems of relatively small numbers of molecules. Therefore,
unlike our analysis of actin polymerization that relied on computing the equilibrium
distributions of monomers and polymers in solution, here we may not implicitly
invoke the thermodynamic limit by assuming continuous concentrations of large
numbers of molecules. Instead, we develop a statistical mechanical approach to
computing probability distributions of protein–protein association [185].

10.3.1 A combinatorial theory of macromolecular association

Let us first consider a simple system containing one protein A molecule and one
protein B molecule confined in a volume V . Due to intra-molecular interaction
there are two possibilities for the system: A and B are separated, or A and B are
associated in a complex AB. There are two possible states of the system: A + B and
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Figure 10.6 An example network of 1006 proteins, with 948 protein–protein in-
teractions obtained from a two-hybrid experiment to search for interacting pairs
of proteins. Vertices (circles in the graph) represent protein types and edges (lines
connecting the circles) represent observed interactions. The graph is constructed
from data from Uetz et al. [200], using the Pajek program [12].
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AB, corresponding to the left and right sides of Equation (10.14). If the probability
of complex existing (the relative amount of time the system is found in the AB state)
is p, then the Boltzmann probability law says that the energy difference between the
two possible states is −kB T ln p

1−p . As we shall see, the probability p is a function
of V , the volume of the system. We define Ka = p

1−p , which will be shown to be
related to (but not equal to) the equilibrium constant for the reaction.

Next, we consider a container with volume held constant containing a number
of A and B molecules. We define n0

A and n0
B to be the total numbers of A and B

(including molecules found in complexed and uncomplexed states) in the system
and � to be the number of AB complexes. By elementary combinatorics, the number
of ways of choosing � A molecules out of the total set of n0

A is
(n0

A
�

)
.5 The number

of ways of choosing � B molecules out of the total set of n0
B is

(n0
B
�

)
. Since there are

�! number of ways to pair the � A and B molecules, the total number of ways we
can form � complexes is

(n0
A
�

)(n0
B
�

)
�!

The energy associated with � AB complexes (compared to the reference state of
all in the uncomplexed state) is −�kB T ln Ka . Thus the Boltzmann weight for an
individual state with � complexes is

e−(�E)kB T = K �
a .

If we count all of the independent ways of combining � A and B molecules into �

complexes, then the non-normalized probability of � AB complexes existing is

Pr{n AB = �} ∝
(

n0
A

�

)(
n0

B

�

)
�!K �

a = n0
A! n0

B!

�!(n0
A − �)!(n0

B − �)!
K �

a . (10.15)

Normalizing this probability we have

p� = Pr{n AB = �} = Q−1 n0
A! n0

B!

�!(n0
A − �)!(n0

B − �)!
K �

a (10.16)

where Q is the normalization factor

Q =
min(n0

A,n0
B )∑

�=0

n0
A! n0

B!

�!(n0
A − �)!(n0

B − �)!
K �

a . (10.17)

The function Q(Ka, T ) is the partition function for the two-molecule association
system. The free energy of the system, with the completely non-associated state as
the reference, is −kB T ln Q.

Given Ka , n0
A, and n0

B , the average number as well as the most probable number
of AB complexes can both be computed from the p� given in Equation (10.16).

5 The number
(n

m

) = n!
m!(n−m)! is the number of ways of choosing m (non-ordered) members from a total set of n

molecules.
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The most probable number �̂ can be obtained by setting p�+1 − p� = 0. This is
the discrete analog of setting the derivative of a continuous function equal to zero
to find the extreme point. By this calculation, �̂ is not necessarily an integer. Setting

K �̂
a

�̂!(n0
A − �̂)!(n0

B − �̂)!
= K �̂+1

a

(�̂ + 1)!(n0
A − �̂ − 1)!(n0

B − �̂ − 1)!

yields

�̂ + 1

(n0
A − �̂)(n0

B − �̂)
= Ka. (10.18)

Equation (10.18) is the small-number analog of standard theory of chemical equi-
librium in elementary chemistry and biochemistry texts. (See Exercise 3.)

Based on the probability distribution p� in Equation (10.16), we can also compute
the mean and variance of the number of AB complexes. Similar to Equation (10.6),
we have

� =
∑

�

�p� = d ln Q

d ln Ka
, (10.19)

σ 2
� = (

� − �
)2 = �2 − �

2 = d�

d ln Ka
. (10.20)

For large n0
A and n0

B , we expect the probability distribution for n AB to be narrow
and � ≈ �̂. Using this approximation, and solving for �̂ in Equation (10.18) we have

� =
1 + Kan0

A + Kan0
B −

√
(1 + Kan0

A + Kan0
B)2 − 4K 2

a n0
An0

B

2Ka
. (10.21)

The variance can be obtained by differentiating both sides of the equation
Ka(n0

A − �)(n0
B − �) = � with respect to Ka:

d

d Ka

(
Ka(n0

A − �)(n0
B − �)

) = d�

d Ka
.

Noting that � is a function of Ka , while n0
A and n0

B are not,

(n0
A − �)(n0

B − �) = Ka
d�

d Ka
(n0

B − �) + Ka(n0
A − �)

d�

d Ka
+ d�

d Ka
,

σ 2
� = d�

d ln Ka
= Ka

d�

d Ka
= (n0

A − �)(n0
B − �)

n0
A + n0

B + 1/Ka − 2�
.

Substituting Equation (10.18) into the denominator on the right-hand side of the
above expression, we have in the limit � � 1, n0

A + n0
B + 1/Ka − � = n0

An0
B/�.
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Combining these results we have the expression for the relative variance:

r.v. = σ 2
�

�
2 ≈ 1

Ka(n0
An0

B − �
2
)
. (10.22)

Thus the relative variance decreases in proportion to the square of the number
of molecules in the system. For n0

A = n0
B = 100 and Ka = 0.5, Equation (10.21)

yields � = 86.8 and r.v. = 8.1 × 10−4. Thus, even for this relatively small number
of molecules, the relative variance is small for most practical purposes.

In chemistry and biochemistry, bimolecular associations are characterized by
the dissociation constant for the reaction of Equation (10.14), which is defined in
terms of equilibrium concentrations: Kd = [A][B]/[AB] = k−1

k+1
. (The dissociation

constant is the inverse of the equilibrium constant.) For our given volume V (when
� � 1) we have

Ka =
(

n AB

n AnB

)
eq

=
(

[AB]V

[A][B]V 2

)
eq

= 1

Kd V
= Keq

V
. (10.23)

10.3.2 Statistical thermodynamics of association

The probabilistic model of macromolecular association introduced in the previous
section, for the case of large n A and nB , may be recast into the formal language
in terms of statistical thermodynamics. Recall from Chapter 1 that the chemical
potential of a species has two terms, a structural energy (enthalpy) term and a
concentration/entropy term:

µX = µ0
X + kB T ln nX . (10.24)

Here the X can represent A, B, or AB in the current problem. The free energy of
the system then is

G(�) = n AµA + nBµB + n ABµAB (10.25)

where n A = n0
A − �, nB = n0

B − �, n AB = �, and µ0
A + µ0

B − µ0
AB = kB T ln Ka .

Hence, we have relative probability

p�+1

p�

= e− G(�+1)−G(�)
kB T = (n0

A − �)n0
A−�(n0

B − �)n0
B−�(�)�

(n0
A − � − 1)n0

A−�−1(n0
B − � − 1)n0

B−�−1(� + 1)�+1
Ka,

(10.26)

which can be obtained directly from Equation (10.15) if one assumes that n A, nB ,
and � are large and uses Sterling’s approximation ln n! ≈ n ln n − n.
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10.4 A dynamics theory of association

The previous section worked out the relationship between the statistics of associ-
ation of a collection of A and B molecules as a function of p, the probability of a
single pair of A and B molecules to form a complex in a volume V . We saw that
the probability p is related to the experimentally determined dissociation constant
Kd via

Kd = 1 − p

V p
, (10.27)

which in turn is related to kinetic rate constants k+1 and k−1

Kd = k−1

k+1
. (10.28)

The kinetic constants k+1 and k−1, which are properties of the molecules A and
B and their interaction under specific conditions, are more difficult to determine
experimentally than their ratio, which does not require resolving rapid transients
to measure. One method to measure rate constants is by stopped-flow experiments,
in which small reacting volumes are rapidly mixed and reaction progress followed,
usually using some spectrophotometric assay.

In this section, we briefly introduce a basic theory of chemical kinetics that
provides a relationship between interaction energies (and the interaction-energy
landscape) and the kinetics of interaction of two molecules. Here we treat the
molecules A and B as spherically symmetric, making the interaction energy land-
scape one dimensional. (Since the molecules are spherically symmetric, the dis-
tance between their centers tells us everything about the relative conformation of
the two molecules.) The goal is to understand how one of the rate constants, k−1,
and the probability of interaction depend on the molecular energy landscape. Given
a measurement of k−1, Equations (10.27) and (10.28) can be combined to provide
the estimate of k+1 = k−1V p

1−p . (Thus the theory will have to also tell us how the
probability of association depends on the volume V .)

Let r be the distance between the centers of mass of the two molecules, and the
interaction energy be U (r ). The distance r is known as the reaction coordinate for
the association process. The potential U (r ) could take the form, for example, of
Lennard–Jones’ 6-12 potential:

U (r ) = −V0

[
2

(r0

r

)6
−

(r0

r

)12
]

, (10.29)

which effectively models the non-covalent van der Waals interaction energy. This
potential function is illustrated in Figure 10.7A.
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Figure 10.7 A schematic showing the energy and free energy landscapes for the
association of simple spherical molecules A and B with the potential defined
by Equation (10.29). (A) The solid shows the energy U (r ) and the dashed line
shows the free energy, which combines the energy with the entropic contribution
of the spherical shell volume 4πr2dr . The transition state for the dissociation
reaction occurs at r ‡, the location of the free energy maximum. (B) The association–
dissociation free energy landscape is shown for the finite concentration case, where
4
3πr3

c [B] = 1.

As is apparent in the figure, a minimum in energy occurs where the molecules A
and B are separated by r0. Conformations in or near this energy correspond well to
the AB complex in Equation (10.14). Values of r that are sufficiently greater than
r0 correspond to the A + B uncomplexed state. To make this definition precise, we
note that the probability of the distance between A and B, RAB , is directly related
to U (r ) following the Boltzmann probability law:

Pr{r < RAB ≤ r + dr} = Q−1e−U (r )/kB T 4πr2dr, (10.30)

for infinitesimally small dr . The term 4πr2dr is the volume in spherical coordinates
between r and r + dr , accounting for the spherical coordinates of the conforma-
tional state space. The normalization factor Q will be determined below.

We can gain important insight by rewriting the right-hand side of Equation
(10.30) as e−F(r )/kB T dr in which

F(r ) = U (r ) − kB T ln
(
r2

) + const. (10.31)

The function F(r ) is called free energy landscape for the spherical A and B asso-
ciation. It has an enthalpic part U (r ) and an entropic part kB ln(r2). An important
feature of the free energy landscape is that it has a maximum, denoted r ‡, which is
called a transition state. The transition state separates the AB complex, occurring
in the neighborhood of r ∼ r0, and dissociated state, occurring for r > r ‡.

The free energy landscape is shown as the dashed line in Figure 10.7A for the
Lennard–Jones potential. From observed behavior that F(r ) continuously decreases
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as − ln(r2) one might infer that the probability of A and B being dissociated is
infinitely greater than that of being associated. In fact that is true in an infinite
volume, in which there are no bounds on r . It is not surprising that in an infinitely
large volume, the probability of association, p, is zero.

To appropriately take a finite volume V (or equivalently finite concentrations)
into account, let us consider a system centered on one A molecule. A fixed con-
centration of molecule B implies that each single B molecule occupies on average
a volume of 1/[B]. Therefore, the r in Equation (10.30) should not be extended to
infinity, but rather bounded by r ≤ rc with 4

3r3
c = 1

[B] . Then we have the probability
of association computed from Boltzmann statistics

p =
∫ r ‡

0 e−U (r )/kT 4πr2dr∫ rc

0 e−U (r )/kT 4πr2dr
. (10.32)

Figure 10.7B shows that when r is bounded, the free energy landscape has two
minima, which is typical for a chemical reaction. Each minimum corresponds to
one side of the reaction; the transition state occurs at the position r ‡ along the
reaction coordinate. Note that, given an energy landscape for a reaction coordinate
r , we can compute p from U (r ) using Equation (10.32). However, it is not possible
in general to determine U (r ) from an experimental measurement of p.

10.4.1 Transition-state theory and rate constants

The free energy landscape given in Figure 10.7B provides the basis for computing
the dissociation and association constants, k−1 and k+1, in terms of the height of
the transition state, and the curvatures of the energy wells and peak. According to
Kramers’ theory, the dissociation rate constant is given by [117]

k−1 =
√

νν‡

2πη
e−�F‡/kB T , (10.33)

in which ν is the curvature of the energy well where a reactant resides, ν‡ is the
curvature, in absolute value, at the transition state, �F‡ is the free energy barrier
height, and η is a frictional coefficient. For a detailed derivation of Equation (10.33),
readers should consult the original paper by Kramers [117].

Concluding remarks

The rich subject of the structural and dynamical aspects of macromolecules certainly
cannot be contained by a single chapter. Here we have only touched on the subject to
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illustrate basic concepts and how those concepts fit into the aspects of biochemical
systems kinetics and thermodynamics that this text is largely concerned with.

For further reading on the subject, the classic text of Tanford [192] remains an
excellent resource, as does the text by Cantor and Schimmel [27]. Recent books by
Dill and Bromberg [44] on molecular biophysics and by Schlick [181] on compu-
tational chemistry are highly recommended.

Exercises

10.1 For the helix-coil theory of Section 10.1.1, show that Z = (1 + v)N if w = v. This is
expected for a chain of independent units, each of which has two states with energy 0
and −kB T ln v.

10.2 Show that the algorithm in the function hcontent in Section 10.1.1 does indeed
compute the derivative of the partition function with respect to the parameter w.

10.3 Consider the association reaction in Equation (10.14) with equilibrium association
constant Keq = k+1

k−1
. The equilibrium concentrations for A, B, and AB are(

[AB]

[A][B]

)
eq

= Keq .

Use this relation to determine the equilibrium concentration of AB as a function of
total numbers of A and B molecules in a finite volume. Compare your result with
Equations (10.18) and (10.21).
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Stochastic biochemical systems and the
chemical master equation

Overview

Chemical reactions inside cells are ultimately tied to constant thermal motion that
brings reacting species into contact and allows reaction systems to cross the free
energy barriers that separate distinct chemical states. From the perspective of a
molecule, or a collection of molecules, immersed and interacting in a larger system
such as a test tube or living cell, thermal agitation contributes an effectively purely
random component to the kinetics of the system. The resulting stochastic nature of
biochemical systems has received increasing attention in recent years.

While individual molecules behave stochastically in an aqueous solution in
test tubes or inside cells, the dynamics of systems consisting of large numbers
of molecules is remarkably non-random, deterministic. The emergence of deter-
minism from randomness is a realization of the same law of large numbers that
allows Las Vegas casinos to be confident in their profitability. Consider for exam-
ple tossing three fair coins in the air and observing how many land heads side up.
The probability of observing no heads-up outcomes is 1/8 – not astronomically
small by any means. The likelihood that 30 000 tosses will result in no heads-up
outcomes is 1/230 000, which is a terrifically small number. Though the chance of
any one specific outcome (30 000 tails, for example) is vanishingly small, we can
predict with great confidence that nearly one half of the total number of tosses will
be heads. In fact, if we were to repeat this experiment many times, the relative
variability (standard deviation divided by mean number of heads outcomes) would
be approximately 0.006. Thus we can predict the outcome of a single experiment
to vary from the predicted outcome of half heads/half tails by less than one percent.

It is, thus, not surprising that when we deal with macroscopic systems with
numbers of molecules of the order of the Avogadro constant (6.022×1023), we
do not need to concern ourselves with stochastic fluctuations. In a biological cell,
however, many reacting species occur with only a few, or a few hundred, copies (see

261
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Figure 4.1). The realization that fluctuations can be important in such a system has
led to a surge of interest in stochastic models of biochemical reactions in systems
biology.

Just as deterministic models for the kinetics of biochemical reactions are based
on the law of mass action, stochastic kinetics are governed by an equivalently
fundamental theory. The theory is based on the chemical master equation (CME),
which in recent years has gained significant visibility due to the influential work
of Daniel Gillespie [66, 67, 68]. The CME approach is also known as the Gillespie
algorithm. This chapter builds a basic working knowledge of the CME and its
application in modeling biochemical reaction systems at the cellular level.

11.1 A brief introduction to the chemical master equation

The mathematical models of reaction systems considered throughout much of this
book have relied largely on two fundamental principles from physical chemistry: the
Boltzmann probability law (see Section 12.2.1), describing equilibrium probability
distributions, and the law of mass action (see Section 3.1.3.1), describing the kinetics
of elementary steps in reaction systems. The Boltzmann probability law determines
the relative equilibrium probabilities of various states in terms of their energies in an
NVT system (or equivalently in terms of enthalpies in an NPT system; see Section
12.3). Kinetic models, on the other hand, require determination of the rate constants
associated with the reactions. Reaction energetics and kinetics are not independent.
The link between the energy/enthalpy landscape and chemical kinetics was outlined
in Section 10.4.1, where it was shown that, at least in principle, it is possible to
compute biochemical association reaction rate constants based on biomolecular
structures and energy landscapes.

The chemical master equation (CME) for a given system invokes the same rate
constants as the associated deterministic kinetic model. Yet the CME is more fun-
damental than the deterministic kinetic view. Just as Schrödinger’s equation is the
fundamental equation for modeling motions of atomic and subatomic particle sys-
tems, the CME is the fundamental equation for reaction systems. Remember that
Schrödinger’s equation is not a model for a specific mechanical system. Rather, it
is a theoretical framework upon which models for particular systems can be devel-
oped. In order to write down a model for an atomic system based on Schrödinger’s
equation, one needs to know how to write down the Hamiltonian a priori. Similarly,
the CME is not a model for a specific biochemical reaction system; it is a theoretical
framework. To determine the CME model for a reaction system, one must know
what are the possible elementary reactions and the associated rate constants.

As far as we know, the CME first appeared in the work of Max Delbrück in
1940, who studied a small chemical reaction system in terms of a stochastic model
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[42].1 In the same year Hendrik Kramers published his landmark paper [117] on the
theory of chemical reaction rates based on thermally activated barrier crossing by
Brownian motion [77]. These two papers clearly mark the domains of two related
areas of chemical research. Kramers provided the framework for computing the
rate constants of chemical reactions based on the molecular structures, energy,
and solvent environment. (See Section 10.4.1.) Delbrück’s work set the stage for
predicting the dynamic behavior of a chemical reaction system, as a function of the
presumably known rate constants for each and every reaction in the system.

Deterministic dynamics of biochemical reaction systems can be “visualized”
as the trajectory of (c1(t), c2(t), · · · , cN (t)) in a space of concentrations, where
ci (t) is the concentration of i th species changing with time. This mental picture of
path traced out in the N -dimensional concentration space by deterministic systems
may prove a useful reference when we deal with stochastic chemical dynamics. In
stochastic systems, one no longer thinks in terms of definite concentrations at time
t ; rather, one deals with the probability of the concentrations being x1, x2, · · · , xN

at time t :

p(x1, x2, · · · , xN , t) = Pr{c1(t) = x1, c2(t) = x2, · · · , cN (t) = xN }. (11.1)

The CME is the equation for the probability function p, or equivalently if the sys-
tem’s volume is constant, for the probability function p(n1, n2, · · · , nN , t) where ni

is the number of molecules of species i . With given concentrations (c1, c2, · · · , cN )
at a time t , deterministic kinetic models give precisely what the concentrations will
be at time t + δt . According to the stochastic CME, however, the concentrations at
t + δt can take many different values, each with certain probability.

The CME was extensively studied in the 1960s by many people, including Don-
ald McQuarrie, who wrote a comprehensive review [137]. In the 1970s, Thomas
Kurtz, a mathematician, proved that in the limit of system’s size going to infinity,
the solution to the CME is precisely the solution to the corresponding deterministic
differential equations based on the law of mass action [121]. Hence, as a mathe-
matical foundation of chemical reaction systems, the CME supersedes the law of
mass action, just as Schrödinger’s equation supersedes Newton’s law of motion
since one can prove that the latter occurs as the limit of the former when Planck’s
constant, �, goes to zero. (Figure 11.1 illustrates the analogy between the relation-
ships between the CME and mass-action kinetics and Schrödinger’s and Newton’s
equations.)

Furthermore, the CME framework has been shown to be consistent with the gen-
eral theory of non-equilibrium thermodynamics [109], and the recently developed

1 In genetics, Delbrück’s contribution to stochastic modeling, the Luria–Delbrück distribution, is well known
[126]. That theory is also based on a master equation approach.
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Newton’s Law of Motion
x1(t), x2(t), · · · , xN (t)

�→0←− The Schrödinger Equation
ψ(x1, x2, · · · , xN , t)

The Law of Mass Action
c1(t), c2(t), · · · , cN (t)

V →∞←− The Chemical Master Equation
p(n1, n2, · · · , nN , t)

Figure 11.1 A schematic that illustrates the analogy between the theories for me-
chanical motions and for chemical dynamics. Newton’s law of motion, govern-
ing a collection of particles with positions x1(t), x2(t), · · · , xN (t), arises from
Schrödinger’s equation for the wave function ψ in the limit � → 0. Similarly, the
chemical master equation for p(n1, n2, · · · , nN , t) yields the law of mass action
in the limit V → ∞.

statistical physics of open, driven systems with entropy production [46, 164]. Thus,
the CME is the mathematical foundation for modeling dynamics of biochemical
reactions systems inside cells.

Yet the applications of the CME to biochemical systems are only in their in-
fancy. Because this is a rich area of research at the intersection of cell biology,
physical chemistry, and mathematical biology, it is tempting to project future de-
velopments by drawing some analogies to three different areas of current chemical
and biochemical research.

First, the current state of affairs is remarkably similar to that of the field of
computational molecular dynamics 40 years ago. While the basic equations are
known in principle (as we shall see), the large number of unknown parameters makes
realistic simulations essentially impossible. The parameters in molecular dynamics
represent the force field to which Newton’s equation is applied; the parameters in the
CME are the rate constants. (Accepted sets of parameters for molecular dynamics
are based on many years of continuous development and checking predictions with
experimental measurements.) In current applications molecular dynamics is used
to identify functional conformational states of macromolecules, i.e., free energy
minima, from the entire ensemble of possible molecular structures. Similarly, one of
the important goals of analyzing the CME is to identify functional states of a reaction
network from the entire ensemble of potential concentration states. These functional
states are associated with the maxima in the steady state probability distribution
function p(n1, n2, · · · , nN ). In both the cases of molecular dynamics and the CME
applied to non-trivial systems it is rarely feasible to enumerate all possible states
to choose the most probable. Instead, simulations are used to intelligently and
realistically sample the state space.

Second, with a set of identified functional states, the CME framework may be
used to compute the rates of transition between the functional states. This task is
similar to the barrier-crossing problem of computing the reaction rate constants
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based on Kramers’ theory. However, the task for the CME involves unique difficul-
ties that arise from the open-chemical nature of living systems [166].

Third, numerically solving the CME and obtaining the probability distribution
p(n1, n2, · · · , nN , t) is a problem mathematically similar to solving the Schrödinger
equation for a quantum chemistry problem. In both cases p(n1, n2, · · · , nN , t) and
ψ(x1, x2, · · · , xN , t) are governed by partial differential, or difference, equations
where n can be very large. Perhaps methodologies from quantum chemistry, such
as Hartree–Fock approximation [111], may be borrowed for solving the CME.

11.2 Essential materials from probability theory

11.2.1 The law of large numbers

The law of large numbers is fundamental to probabilistic thinking and stochastic
modeling. Simply put, if a random variable with several possible outcomes is re-
peatedly measured, the frequency of a possible outcome approaches its probability
as the number of measurements increases. The weak law of large numbers states that
the average of N identically distributed independent random variables approaches
the mean of their distribution.

These laws are the fundamental reason why objects in the macroscopic world
behave deterministically while individual atoms and molecules are under constant
irregular motion. If there is a sufficient number of atoms and molecules in a system,
the stochasticity tends to be canceled out and the system exhibits the average
behavior in a deterministic way.

11.2.2 Continuous time Markov chain

As a generic description of a stochastic system, consider a system with N possi-
ble states, labeled 1, 2, · · · , N . Since the system is stochastic, we cannot define
equations that determine the specific state that the system adopts at a specific time.
Rather, we look for equations that govern the probability pm(t) that the system is
in state m at time t .

The rate of change in pm(t) is equal to the rate of transition from other states l to
m minus the rate of transition from state m to other states. The simplest model for
how the probabilities change with time is the Markov chain, which assumes that
the transition probabilities are dependent only on the current state and independent
of all past (and future) states. Formally,

dpm(t)

dt
=

∑
� �=m

Qlm pl −
∑
��=m

Qml pm (11.2)
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where the Q�m , � �= m, is the rate of transition from state � to state m. The {Q�m}
are first-order rate constants with units of [time]−1.

Equation (11.2) can be simplified by defining

Alm = Qlm for � �= m

and

Amm = −
∑
� �=m

Qml,

yielding

dpm(t)

dt
=

N∑
�=1

Alm pl . (11.3)

Equation (11.3) is known as the master equation in the physics literature. Note
that this equation must satisfy the property that

∑
m pm(t) = 1 for all t . Therefore

d

dt

N∑
m=1

pm(t) =
N∑

l=1

pl

N∑
m=1

Alm = 0. (11.4)

Since beyond the fact that probabilities are positive and sum to 1, the values of the
{pm} are arbitrary, Equation (11.4) requires

N∑
m=1

Alm = 0.

One of the most important consequences of a model based on Equation (11.3) is
that, under quite general conditions, the long-time limit of the probability distribu-
tion {pm(∞)} is unique. No matter what is the initial state of the system, the system
evolves toward {pm(∞)}. This steady state of the system, however, is characterized
not by a single state m, but by a distribution of probabilities of all states. Hence,
in general, the steady state of a system governed by a master equation will involve
fluctuations.

In the chemical and biochemical literature, Equations (11.2) and (11.3) and
similar equations have been used in modeling kinetics of single molecules, from
single membrane channel proteins to single enzymes in solution [10, 52, 91]. In
those models, the various states represent conformational states of proteins. In the
CME approach to chemical reaction systems, the state of a system is the specific
set of numbers of copies of all the species in the system. Thus for chemical reaction
system applications, the adjective “chemical” is applied. Sometimes these two
different applications of master equations are referred to as state tracking versus
number tracking [142]. In the state tracking formalism, the state space of a model
has no particular geometry, while in the CME, the state space is an N -dimensional
space of non-negative integers.
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Figure 11.2 The image in the upper left panel shows a snapshot of several individ-
ual protein molecules immobilized in a gel. Each protein undergoes conformational
fluctuations that can be monitored by a fluorescent probe. The fluorescent signal
from a single protein molecule, as a function of time, is recorded in the time trace
shown in the lower left panel. On the right, the experimental situation and the flu-
orescent time trace are idealized as a two-state conformational transition process
as given in Equation (11.5), with A representing the darker state and B represent-
ing the brighter state. Image and data in left panel obtained from Lu et al. [133].
Reprinted with permission from AAAS.

11.3 Single molecules and stochastic models for unimolecular
reaction networks

Conformational transitions of single biological macromolecules can be measured
in a variety of experimental settings. An important example is that of single-channel
recordings of current through ion channels, using patch-clamping techniques es-
tablished in the 1980s [93]. More recently, optical methods have been used to
probe the kinetics of single enzyme molecules in aqueous solution [133]. In these
experiments, individual proteins are immobilized on a coverslip and excited by
a focused laser. Conformational transitions can be measured using highly sensi-
tive single-photon detection methods. An experiment of this type is illustrated in
Figure 11.2.

11.3.1 Rate equations for two-state conformational change

Let us assume that the kinetic scheme for a simple two-state conformational tran-
sition is

A
λ1�
λ2

B (11.5)

where λ1 and λ2 are two first-order rate constants with dimension [time]−1.
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number of A molecules

Nl2 (N−1)l2 (N−k)l2 l2

l1 2l1 kl1 Nl1

0 1 2 k N

Figure 11.3 State transition diagram for stochastic discrete model for the single
unimolecular reaction of Equation (11.5). It is assumed that there is a total of N
molecules in the system; k is the number of molecules in state A. The intrinsic rate
constants are λ1,2.

Unimolecular reactions such as this one involve conformational changes of a sin-
gle molecule without explicit interaction with other molecules. Implicit interactions
with the solvent, of course, are assumed. As for the generic master equation intro-
duced above, rather than asking the question “What is the concentration of species
A at time t?,” we ask “What is the probability that a single molecule is in state A
at time t?”

For this simple two-state transition, the traditional deterministic chemical kinet-
ics (see Chapter 3) is based on rate equations for the concentration of A:

d[A]

dt
= −λ1[A] + λ2(ET − [A]) (11.6)

where we have assumed that the total concentration ET = [A] + [B] remains con-
stant. The concentration [A] is real and non-negative.

If we are dealing with a finite number N of E molecules in a cell, and the number
is small enough that fluctuations are expected to be significant, then clearly we
need to modify the Equation (11.6) in two crucial ways. First, the species A must
now be measured in discrete numbers n A rather than continuous concentration [A].
Second, we recognize that n A has a probability distribution

pk(t) = Pr{n A(t) = k} (11.7)

for every time t . The task of stochastic modeling is to develop the equations for
pk(t).2

Figure 11.3 shows how the state of this system, characterized by n A, can change
with time. At the state n A = k there are k A molecules, each of which transitions
to B with rate λ1. Therefore rate of transition from n A = k to n A = k − 1 is kλ1.
Similarly, rate of transition from n A = k to n A = k + 1 is (N − k)λ2.

2 Recall that in Section 10.3 we worked out a detailed theory for the equilibrium distribution for the reaction
A + B � C. Here the task is to determine the governing differential equation (chemical master equation) for
the dynamics of the state probabilities in Equation (11.5).
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The chemical master equation (CME) for this system accounts for the rate of
transition out of state n A = k, as well as the rate of transition from states n A = k − 1
and n A = k + 1 to state n A = k:

dpk(t)

dt
= −(kλ1 + (N − k)λ2)pk + (k + 1)λ1 pk+1 + (N − k + 1)λ2 pk−1,

(k = 0, 1, · · · , N ). (11.8)

To solve Equation (11.8), we introduce the generating function, which is essen-
tially the Laplace transform for discrete functions. We define

G(s, t) =
N∑

k=0

pk(t)sk . (11.9)

Multiplying both sides of Equation (11.8) by sk and summing over k from 0 to N ,
we obtain

∂

∂t
G(s, t) = [(1 − s)λ1 + s(1 − s)λ2]

∂

∂s
G(s, t) + N (s − 1)λ2G(s, t).

(11.10)
Equation (11.10) is a partial differential equation for which the solution is not
immediately apparent. Fortunately, we can find a solution by defining G(s, t) =
gN (s, t) and noting that g(s, t) satisfies

∂

∂t
g(s, t) = [(1 − s)λ1 + s(1 − s)λ2]

∂

∂s
g(s, t) + (s − 1)λ2g(s, t). (11.11)

This is a very insightful result: Equation (11.11) is the special case of Equation
(11.10) for N = 1. It shows that the kinetics for the system of N E molecules is
simply related to the kinetics of a single E molecule!

The kinetics for a single enzyme can be obtained from the one-molecule version
of Equation (11.6):

dpA(t)

dt
= −λ1 pA + λ2 (1 − pA) (11.12)

in which pA = [A]/ET is the probability that the molecule is in state A. Assuming
the initial condition that at time zero the molecule is in state A (pA(0) = 1), the
solution is

pA(t) = λ2 + λ1e−(λ1+λ2)t

λ1 + λ2
. (11.13)

We can now verify that

g(s, t) = spA(t) + (1 − pA(t)) = λ1 + sλ2 + (s − 1)λ1e−(λ1+λ2)t

λ1 + λ2
, (11.14)
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is indeed the solution to Equation (11.10) with N = 1. The solution to Equation
(11.8) with arbitrary N follows a binomial distribution

pk(t) =
(

N

k

)
(pA(t))k (1 − pA(t))N−k . (11.15)

The right-hand side has a clear combinatorial meaning. It is the probability of finding
k molecules in state A, among the total N identical and independent molecules,
when each molecule has the probability of pA being in state A and probability
1 − pA being in state B.

Therefore, for N E molecules, the mean number of A at time t is

〈n A(t)〉 = N pA(t), (11.16)

and the variance is

V ar [n A(t)] = N pA(t)(1 − pA(t)). (11.17)

What we see is that if N is large, say of the order of 104, then the relative variance,
i.e., the broadness of the probability distribution for n A(t), is

√
V ar [n A]

〈n A〉 ∝ 1√
N

= 0.01. (11.18)

Therefore, when N is this large the deterministic model of Equation (11.6) is a very
accurate model for the chemical kinetics. There is no need to be concerned with
the stochasticity. On the other hand, if N is of the order of tens and hundreds, then
the variance can be significant.

11.3.2 Michaelis–Menten kinetics of single enzymes

In Chapter 4 (Section 4.1.1), we derived the Lineweaver–Burk double-reciprocal
relation between the steady state flux of an enzyme reaction and its substrate con-
centrations. (See Equation (4.5).) Furthermore, we showed in Section 4.4.1 that
the same equation can be obtained from a stochastic point of view. Recalling this
derivation, consider the basic mechanism

E + S
k+1�
k−1

ES
k+2−→ E + P (11.19)

from the perspective of a single enzyme molecule. We wish to determine the average
time it takes for the kinetic cycle of Figure 4.2 to turn over, 〈Tcycle〉.

Breaking down the overall reaction of converting one S to one P, the first step
of binding of S to E takes an average time 1/(k1[S]). The dwell time in state ES
is 1/(k−1 + k2), after which the ES complex transitions either to E + P or back to



11.4 Non-linear biochemical reactions with fluctuations 271

E + S, with corresponding probabilities k2
k−1+k2

and k−1

k−1+k2
. Hence, we have [151]

〈Tcycle〉 = 1

k1[S]
+ 1

k−1 + k2
+

(
k2

k−1 + k2
0 + k−1

k−1 + k2
〈Tcycle〉

)
. (11.20)

Solving for 〈Tcycle〉 we obtain

〈Tcycle〉 = k−1 + k2

k1k2[S]
+ 1

k2
. (11.21)

Comparing Equations (11.21) and (4.5), we see that 1
〈Tcycle〉 is exactly equal to J in

Equation (4.6). The above derivation also indicates that if the enzyme has only one
unbound state, then the mean waiting time will always have the double reciprocal
form of a/[S] + b.

11.4 The CME models for non-linear biochemical
reactions with fluctuations

For unimolecular reaction systems described by mass-action kinetics, the kinetic
equations are always linear. Hence they are called linear reaction systems. For
stochastic unimolecular systems, the key is to understand the multi-state kinetics of a
single molecule, as we have seen. If N is the number of states of a molecule, and there
are M number of identical, independent molecules, then the probability of having
m1, m2, · · · , m N molecules in the states 1, 2, · · · , N (m1 + m2 + · · · m N = M)
will be the multinomial distribution

p(m1, m2, · · · , m N , t) = M!

m1!m2! · · · m N !
pm1

1 (t)pm2
2 (t) · · · pm N

N (t), (11.22)

where pk(t) is the probability of a single molecule being in state k at time t . This
result was demonstrated by Terrell Hill in 1971 [89, 92].

For non-linear systems, closed form solutions usually do not exist and it is
necessary to simulate their behavior.

11.4.1 Chemical master equation for Michaelis–Menten kinetics

Enzyme-catalyzed reactions involve multi-molecular enzyme-substrate associa-
tion. Therefore, even when the overall reaction is unimolecular, the enzyme mecha-
nism is generally non-linear. If a system has more than one copy of the enzyme and
a small number of the reactant molecules, then one needs the CME framework to
represent the stochastic behavior of the system. Note that in cellular regulatory net-
works, the substrates themselves may be proteins that are present in small numbers
of copies. Recall from Section 5.1, for example, that the mitogen-activated protein
(MAP) is the substrate of MAP kinase, and the MAPK is the substrate of MAPKK.
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Figure 11.4 Diagrammatic procedure to obtain the CME from a given chemical
kinetic scheme. The first step is to translate the standard chemical kinetic scheme,
here Equation (11.19), into the master equation graph shown above. The traditional
kinetic model based on the ordinary differential equations has two independent
dynamic species. Correspondingly, the master equation graph is a two-dimensional
grid in which each grid point represents the state of the system by specifying the
number of molecules for each dynamic species. Each grid point in the graph is
connected to several of its neighboring grid points. Each reaction in the kinetic
scheme corresponds to an arrow pointing outward from a grid point. The label,
i.e., the “rate constant” on an arrow in the diagram, is determined by the product
of the number of molecules of reactants multiplied by the corresponding rate
constant k̂i . The corresponding CME, Equation (11.23), is then obtained directly
from the diagram.

Here to illustrate the procedure for non-linear systems, we work out the chemical
master equation for the Michaelis–Menten reaction of Equation (11.19). We let
p(m, n, t) be the probability that m, S, and n ES molecules occur in the enzyme
reaction system at time t . The probability p(m, n, t) satisfies the CME

dp(m, n, t)

dt
= − (

k̂1m(NE − n) + k̂−1n + k̂2n
)

p(m, n, t)

+ k̂1(m + 1)(NE − n + 1)p(m + 1, n − 1, t)

+ k̂−1(n + 1)p(m − 1, n + 1) (11.23)

+ k̂2(n + 1)p(m, n + 1),

(0 ≤ m ≤ NS, 0 ≤ n ≤ NE )

in which NS and NE are the total numbers of substrate molecules and enzyme
molecules. The constants {k̂i } are related to (but not equal to) the constants {ki } in
Equation (11.19), as described below.

Figure 11.4 illustrates how the CME is systematically developed from a chemical
kinetic scheme such as given in Equation (11.19). The terms in Equation (11.23)
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correspond to the state transitions that connect state (m, n) with neighboring states
in the diagram. Just as the differential equations based on the law of mass action
are completely determined from a given kinetic scheme, the CME is completely
determined from a given kinetic scheme.

11.4.2 A non-linear biochemical reaction system with
concentration fluctuations

The previous example involved a two-dimensional system (involving two indepen-
dent dynamic species). Thus the CME followed from the two-dimensional reaction
diagram. For systems with more species, the dimension of the problem grows ac-
cordingly. For a system with three species, say A, B, and C, the CME tracks the
three-dimensional probability of � A molecules, m B molecules, and n C molecules
present at time t . In general, the mathematical description of an N -dimensional sys-
tem is the joint probability distribution

p(�, m, n, · · · , t) = Pr{n A(t) = �, nB(t) = m, nC (t) = n, ...}. (11.24)

As for the two-dimensional Michaelis–Menten example, the general procedure
to obtain the CME from a given chemical kinetic scheme starts with translating
the chemical kinetic scheme into the master equation and master equation graph.
The kinetic schemes of Equations (11.5) and (11.19) correspond to the graphs of
Figures 11.3 and 11.4, respectively. Note that the number of independent dynamic
species in the chemical reaction system is usually smaller than the total number
of chemical species involved since conserved pools of reactants usually exist. For
example in the reaction system of Equation (11.5), there are two species but only
one independent dynamic species. Similarly, there are four species in the Equation
(11.19) but only two independent dynamic species. The master equation graph is an
M-dimensional grid, where M is the number of independent species and each grid
point represents the state of the system by specifying the numbers n1, n2, · · · , nM ,
the numbers of molecules of species 1 through M . Each grid point in the graph is
connected to several of its neighboring grid points through chemical reactions. Each
reaction in the kinetic scheme corresponds to an arrow pointing outward from a
grid point. The label on an arrow, i.e., the effective rate constant of a state transition,
is given by the product of the number of molecules of all substrates involved in a
reaction, multiplied by the corresponding rate constant k̂.

As a third example, let us consider a simple non-linear chemical reaction system

A + 2X
α1�
α2

3X
(11.25)

B + X
β1�
β2

C
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a1nAK (K−1)ˆ

b1nBKˆ

ˆ

b2nC
ˆ

b2nC
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b1nB
ˆ 2b1nB

ˆ

b2nC
ˆ

ˆV1= a1nA K(K−1)+b2nc

ˆ ˆWk = a2(K+1)K(K−1) + b1nB (K+1)
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a2K(K−1)(K−2)
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number of X molecules

Figure 11.5 The master equation graph for the reaction system shown in Equation
(11.25). There are four elementary reactions in the system, which are accounted
for by the four arrows pointing outward from state k shown in the upper left.
The rates of these reactions are combined to obtain the vk and wk , the rates for
the corresponding master equation graph, which leads to the CME of Equation
(11.27).

in which species A, B, and C are at fixed concentrations a, b, and c, respectively.
Therefore, this system involves only one independent dynamic species, X. The
macroscopic (deterministic) kinetics of this system evolve according to the law of
mass action [146]

dx

dt
= −α2x3 + α1ax2 − β1bx + β2c (11.26)

where x is the concentration of X.
In the CME framework of discrete molecular numbers, X changes one by one

stochastically. The stochastic CME model follows the master equation graph of
Figure 11.5:

dpk(t)

dt
= vk−1 pk−1(t) + wk pk+1(t) − (vk + wk−1)pk(t), (11.27)

where pk(t) = Pr{nX = k} is the probability of having k X molecules in the system
at time t , and

vk = α1ak(k − 1)

V
+ β2cV, wk = α2(k + 1)k(k − 1)

V 2
+ β1b(k + 1),

(11.28)
and V is the volume of the system. For example, α1ax2 is the production rate of X,
due to reaction A + 2X → 3X, in units of concentration (number per volume) per
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time. Hence in pure numbers we have α̂1n Ak(k − 1) = V
(
α1ax2

)
is the production

rate of X in number of molecules per time. The corresponding concentrations are
x = k/V , a = n A/V , b = nB/V , and c = nC/V . Furthermore, the rate constants
of the reaction in pure numbers are α̂1 = α/V 2 in which α1 is a third-order rate
constant. Similarly, α̂2 = α2/V 2; β̂1 = β1/V ; β̂2 = β2.

It is usually not possible (and never easy!) to solve equations such as Equation
(11.27) analytically. So computational simulation of the stochastic trajectories are
necessary. The numerical method to obtain stochastic trajectories by Monte Carlo
sampling, which we shall discuss in Section 11.4.4, is known as the Gillespie
algorithm [68]. However, it happens that the steady state of Equation (11.27) can
be obtained in closed form. This is because in steady state, the probability of
leaving state 0, v0 p0 has to exactly balance the probability of entering state 0
from state 1, w0 p1. Similarly, since v0 p0 = w0 p1, we have v1 p1 = w1 p2, and
so on:

vk−1 pk−1 = wk−1 pk . (11.29)

Therefore,

pk

p0
= pk

pk−1

k − 1

pk−2
· · · p1

p0
=

k−1∏
�=0

v�

w�

, (11.30)

in which p0 is determined through normalization:

p0 =
(

1 +
∞∑

k=1

k−1∏
�=0

v�

w�

)−1

. (11.31)

Figure 11.6 shows the resulting probability distribution for this model.
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Figure 11.6 The steady state probability distribution for the number of molecule
nX . Parameters used: α1 = α2 = 10−6, β1 = β2 = 0.05, V = 1; a = 500, b = 1,
and c = 20. The steady state distribution shows two peaks, corresponding to two
stable states of the non-linear biochemical reaction system.
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11.4.3 Bistability and non-equilibrium steady state

The probability distribution in Figure 11.6 indicates that there are two stable states
for the chemical reaction system of Equation (11.25). Since the system is open to
species A, B, and C, these states are non-equilibrium steady states (NESS). A more
careful discussion of the terminology is in order here. The concept of an NESS
has different meanings depending on whether we are considering a macroscopic
or a microscopic view. This difference is best understood in comparison to the
term chemical equilibrium. From a macroscopic standpoint, an equilibrium simply
means that the concentrations of all the chemical species are constant, and all
the reactions have no net flux. However, from a microscopic standpoint, all the
concentrations are fluctuating.

The concentrations fluctuate in a non-equilibrium steady state as well. In fact,
the concentrations may fluctuate around multiple probability peaks, as illustrated in
Figure 11.6. This system tends to fluctuate around one state, and then occasionally
jump to the other. The situation is quite analogous to the transitions between two
conformational states of a protein and the local fluctuations within the conforma-
tional states.

11.4.4 Stochastic simulation of the CME

To use a computer to simulate a stochastic trajectory of the chemical master equation
such as described in Figure 11.4, one must establish the rules of how to move the
system from one grid point to its neighboring points. The essential idea is to draw
random moves from the appropriate distribution and to assign random times (also
drawn from the appropriate distribution) to each move. Thus each simulation step
in the simulation involves two random numbers, one to determine the associated
time step and one to determine the grid move.

The two random numbers, denoted r1 and r2, are randomly sampled from a
uniform distribution over the interval [0, 1]. The time T , as dictated by any first-
order decay process, is exponentially distributed:

fT (t) = qe−qt (t ≥ 0) (11.32)

where q is the sum of all the outward rate constants, and 1
q is the mean lifetime of

the state. For example for the state (m, n) in Figure 11.4,

q = k̂1m(NE − n) + k̂−1n + k̂2n.

The upper panel in Figure 11.7 shows a state with four outward steps and the
corresponding rate constants are q1, q2, q3, and q4. Hence q = q1 + q2 + q3 + q4.
To convert the uniformly distributed (pseudo)random number r1 obtained from the
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q = q1 + q2 + q3 + q4,

pm= qm /q , (m = 1,2,…,4)

fT (t ) = q e−qt,

T = −(1/q) In (r1).

q3

q2

q4

r2

p1 + p20

1 2 3 4

p1 + p2+ p3 p1 + p2 + p3 + p4 = 1

q1

3

2 1

4

Figure 11.7 A schematic illustration of the Monte Carlo simulation method for
computing the stochastic trajectories of a chemical reaction system following the
CME. Two random numbers, r1 and r2, are sampled from a uniform distribution to
simulate each stochastic step: r1 determines when to move, and r2 determines where
to move. For a given state of a master equation graph shown in the upper panel,
there are four outward reactions, labeled 1–4, each with their corresponding rate
constants qi (i = 1, 2, · · · , 4). The upper and lower panels illustrate, respectively,
the calculation of the random time T associated with a stochastic move, and the
probability pm of moving to state m.

computer to the random time T given by Equation (11.32), we use

T = −1

q
ln r1. (11.33)

Using Equations (11.32) and (11.33), it is straightforward to verify that the random
time T follows the exponential probability distribution if r1 follows a uniform
probability distribution:

Pr{x < r1 ≤ x + dx} = Pr{x < e−qT ≤ x + dx}
= Pr{ln x < −qT ≤ ln x + dx/x}

= Pr

{
−1

q
ln x > T ≥ −1

q
ln x − dx

qx

}
= qeq(ln x)/q dx

qx
= dx (0 ≤ x ≤ 1).

Once we have determined when to “jump” out of a state, we must next deter-
mine where to jump. For the four possible destinations in Figure 11.7, the corre-
sponding probabilities are pm = qm/q, (1 ≤ m ≤ 4). Obtaining a second uniformly
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Figure 11.8 An example of the stochastic trajectory from Monte Carlo simula-
tion according to the Gillespie algorithm for reaction system given in Equation
(11.19) and corresponding master equation graph given in Figure 11.4. Here we set
NS = 100 and NE S = 0 at time zero and total enzyme number NE = 10. (A) The
fluctuating numbers of S and ES molecules as functions of time. (B) The stochastic
trajectory in the phase space of (m, n).

distributed random number from the computer, r2 ∈ [0, 1], the destination state is
chosen as follows. If r2 is in [0, p1), then the system jumps to state 1; if r2 is in
[p1, p2), then the system jumps to state 2, etc. The procedure is shown in the lower
panel of Figure 11.7.

After completing a step (a jump in state) the corresponding outward rate constants
for the new state are now all different. To continue the simulation, we draw another
two random numbers, make another move, and so on. A stochastic trajectory is thus
obtained. One notes that the trajectory has randomly variable time steps, a feature
indicative of the Gillespie algorithm.

Figure 11.8 illustrates an example of a stochastic simulation. It is based on the
model given in Section 11.4.1 with k̂1 = 1.0, k̂−1 = 0.5, k̂2 = 2, and NE = 10. In
the simulation, the initial values for m and n, the numbers of S and ES, are set at
100 and 0. Since the enzyme reaction is irreversible, both numbers of S and ES
eventually go to zero.

11.5 The CME model for protein synthesis in a single cell

The stochastic behavior of biochemical reactions has been observed in single living
cells as well as in in vitro experiments. Sunney Xie and colleagues have observed
a stochastic, randomly timed bursting behavior in the production of proteins, i.e.,
translation of an mRNA [26, 217]. The observed number of the protein molecules
produced in each burst, n P , follows a geometric distribution,

pn P (�) = Pr{n P = �} = (1 − θ )θ�, � = 1, 2, · · · , (11.34)
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and the duration between two consecutive bursts, T , follows an exponential prob-
ability distribution,

fT (t) = λe−λt . (11.35)

Based on the CME framework it is possible to demonstrate that these observations
are exactly consistent with a very simple kinetic model for translation. In this model
we let R be a ribosome that carries out the protein synthesis. We further assume that
a ribosome and an mRNA can form a complex that continues to synthesize copies
of the protein until the complex dissociates. The kinetic scheme is

R + mRNA
ko

1�
k2

mRNA · R,

mRNA · R + n AA
ko

3−→ mRNA · R + P, (11.36)

in which AA represents a constant source of amino acid-loaded tRNA, n is the
number of amino acids in the protein, and P represents synthesized protein.

We define pseudo-first order rate constants k1 = ko
1[mRNA], k3 = ko

3[AA]n . In
addition, for simplicity, we assume there is only a single ribosome and that the
mRNA concentration remains fixed. The CME for the kinetic in Equation (11.36)
then is

dp0(�, t)

dt
= k1 p1(�) − k2 p0(�) − k3 p0(�) + k3 p0(� − 1), (11.37a)

dp1(�, t)

dt
= −k1 p1(�) + k2 p0(�), (11.37b)

where pm(�, t) = Pr{n P (t) = �, nR(t) = m}, m = 0, 1.
The solution to Equation (11.37) can be obtained in two parts. From the two-state

transition R � mRNA · R it follows that the duration between two bursts of protein
synthesis is exponentially distributed with mean time 1/k1. The duration of each
burst is also exponentially distributed with mean time 1/k2. Thus the λ in Equation
(11.35) is related to the kinetic constant: λ = k1.

For each burst, we can obtain the probability distribution for the number of
proteins produced from Equation (11.37) with ko

1 = 0:

dp0(�, t)

dt
= − (k2 + k3) p0(�) + k3 p0(� − 1), (11.38a)

dp1(�, t)

dt
= k2 p0(�), (11.38b)

pn P (�) = p1(�, ∞), (11.38c)

with initial condition p0(�, 0) = δ�0, p1(�, 0) = 0.
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Equation (11.38a) can be solved to obtain

p0(�, t) = (k3t)�

�!
e−(k2+k3)t . (11.39)

Therefore, Equations (11.38b) and (11.38c) together give

pn P (�) = k2

∫ ∞

0
p0(�, t)dt = k2k�

3

(k2 + k3)�+1
. (11.40)

Comparing Equation (11.40) with Equation (11.34), we have θ = k3/(k2 + k3).
Equation (11.40), which has been confirmed in recent experiments [26, 217], was
first predicted theoretically by Berg [22] based on a model similar to that of Equation
(11.36). The assumption we made here about weak ribosome–mRNA association
with multiple translation possible while each complex exists can be replaced by
assuming that mRNA complexes with multiple ribosomes, as suggested by Cai
et al. [26].

Recalling the definitions of the pseudo-first order rate constants, we have

θ = k2

k2 + ko
3[AA]n

, λ = ko
1[mRNA]. (11.41)

The CME model for stochastic protein production provides specific predictions: the
λ increase with the level of mRNA in a cell, and θ is a function of the concentrations
of the amino acids charged tRNA, and the size of the protein.

Concluding remarks

It is widely appreciated that chemical and biochemical reactions in the condensed
phase are stochastic. It has been more than 60 years since Delbrück studied a
stochastic chemical reaction system in terms of the chemical master equation.
Kramers’ theory, which connects the rate of a chemical reaction with the molecular
structures and energies of the reactants, is established as a central component of
theoretical chemistry [77]. Yet study of the dynamics of chemical and biochemi-
cal reaction systems, in terms of either deterministic differential equations or the
stochastic CME, is not the exclusive domain of chemists. Recent developments in
the simulation of reaction systems are the work of many sorts of scientists, ranging
from control engineers to microbiologists, all interested in the dynamic behavior
of biochemical reaction systems [199, 210].

Stochastic models for biochemical reaction systems in terms of the CME are not
an alternative to the differential equation approach, but a more general theoretical
framework that deserves further investigation. In particular, the relation between the
dynamic CME and the general theory of statistical thermodynamics of closed and
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open systems requires further elucidation. We suggest that the importance of the
CME to small biochemical reaction systems is on a par with the Boltzmann equation
for gases and the Navier–Stokes equation for fluids. This is a big claim; whether it
is justified remains to be tested through more studies along the lines presented in
this chapter to simple as well as ever more complex biochemical reaction systems.
It is also worth pointing out that one of the most promising laboratory methods for
testing predictions from the CME is fluorescence correlation spectroscopy (FCS),
which can be used to measure the concentration fluctuations in a small non-linear
reaction system [173], beyond the conformational transition of single molecules.

Exercises

11.1 Show that Equations (11.10) and (11.11) are related by G(s, t) = gN (s, t).
11.2 To find the deterministic steady state of reaction system of Equation (11.25), set the

right-hand side of Equation (11.26) to zero and find the root(s) to the equation. Using
the parameters given in Figure 11.6 (α1 = α2 = 10−6, β1 = β2 = 0.05, a = 500, b =
1, and c = 20) numerically find the steady states. How many steady states are there?
Compare these results with Figure 11.6. What happens if all the parameters are the
same as above but a = 100?

11.3 Show that the concentrations a, b, and c in the system of Equation (11.25) satisfy
c/(ab) = α1β1/(α2β2) in equilibrium. Show that if this equation holds true then it is
impossible to have bistability. Rather, the distribution is Poissonian.

11.4 Perform a computer simulation of the CME for the system of Equation (11.25), using
the parameters given in the legend of Figure 11.6. (Assume that A, B, and C are held
at fixed numbers.) From the simulated stochastic trajectory, can you reproduce the
steady state probability distribution shown in Figure 11.6?
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Appendix: the statistical basis of thermodynamics

Overview

To truly appreciate how thermodynamic principles apply to chemical systems, it is
of great value to see how these principles arise from a statistical treatment of how
microscopic behavior is reflected on the macroscopic scale. While this appendix
by no means provides a complete introduction to the subject, it may provide a view
of thermodynamics that is refreshing and exciting for readers not familiar with the
deep roots of thermodynamics in statistical physics. The primary goal here is to
provide rigorous derivations for the probability laws used in Chapter 1 to introduce
thermodynamic quantities such as entropy and free energies.

12.1 The NVE ensemble

Thermodynamic principles arise from a statistical treatment of matter by studying
different idealized ensembles of particles that represent different thermodynamic
systems. The first ensemble that we study is that of an isolated system: a collection
of N particles confined to a volume V , with total internal energy E . A system
of this sort is referred to as an NVE system or ensemble, as N , V , and E are
the three thermodynamic variables that are held constant. N , V , and E are ex-
tensive variables. That is, their values are proportional to the size of the system.
If we combine NVE subsystems into a larger system, then the total N , V , and E
are computed as the sums of N , V , and E of the subsystems. Temperature, pressure,
and chemical potential are intensive variables, for which values do not depend on
the size of the system.

An NVE system is also referred to as a microcanonical ensemble of parti-
cles. In addition to the NVE system, we will encounter NVT (canonical) and
NPT (isobaric) systems. Sticking for now to the NVE system, let us imagine that
for any given thermodynamic state, or macrostate, the many particles making up

282
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the system may adopt a number of possible configurations, or microstates. Thus
each macrostate (defined by N , V , and E) has associated with it a number of
microstates for which the N particles confined to the fixed volume V have total
energy adding up to E . According to the principles of quantum mechanics there
is a finite number of microscopic states that may be adopted by such a system.
We denote this number by �(N , V, E) – the number �(N , V, E) can be obtained
by counting the number of independent solutions to the Schrödinger equation that
the system can adopt for a given eigenvalue E of the Hamiltonian [156]. The
quantity � is commonly referred to as the microcanonical partition function, a
partition function being a statistically weighted sum over the possible states of a
system. The microcanonical partition function � is a non-biased enumeration of the
microstates.

For classical systems the microstates are not discrete and the number of possible
states for a fixed NVE ensemble is in general not finite. To see this imagine a system
of a single particle (N = 1) traveling in an otherwise empty box of volume V . There
are no external force fields acting on the particle so its total energy is E = 1

2 mv2.
The particle could be found in any location within the box, and its velocity could be
directed in any direction without changing the thermodynamic macrostate defined
by the fixed values of N , V , and E . To apply ensemble theory to classical systems
�(N , V, E) is defined as the (appropriately scaled) total volume accessible by
the state variables of position and momentum accessible by the particles in the
system.

Applications in statistical mechanics are based on constructing expressions for
�(N , V, E) (and other partition functions for various ensembles) based on the
nature of the interactions of the particles in a given system. To understand how
thermodynamic principles arise from statistics, however, it is not necessary to worry
about how one might go about computing �(N , V, E), or how � might depend
on N , V , and E for particular systems (classical or quantum mechanical). It is
necessary simply to appreciate that the quantity �(N , V, E) exists for an NVE
system.

Pathria [156] begins his treatment of the subject with the following thought exper-
iment. Consider two systems, denoted system 1 and system 2, having macrostates
defined by (N1, V1, E1) and (N2, V2, E2), respectively. Imagine that these two sys-
tems are in thermal contact (see Figure 12.1). By thermal contact we mean that the
systems are allowed to exchange energy, but nothing else. That is E1 and E2 may
change, but N1, N2, V1, and V2 remain fixed. Of course the total energy remains
fixed as well. That is,

E0 = E1 + E2 = constant, (12.1)

if the two systems interact with only one another.
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N1,V1, E1 N2, V2, E2

Figure 12.1 Two NVE systems in thermal contact.

Now we introduce a fundamental postulate of statistical thermodynamics: at a
given N1, V1, and E1, system 1 is equally likely to be in any one of its �1 microstates;
similarly system 2 is equally likely to be in any one of its �2 microstates (more on
this assumption later). The combined system, consisting of systems 1 and 2, has
associated with it a total partition function �0(E1, E2), which represents the total
number of possible microstates. The number �0(E1, E2) may be expressed as the
multiplication:

�0(E1, E2) = �1(E1)�2(E2). (12.2)

To seek the statistical consequences of thermal equilibrium, we look for the dis-
tribution of internal energy (values of E1 and E2) for which the number of mi-
crostates �0(E1, E2) achieves its maximum value. We will call this achievement
equilibrium, or more specifically thermal equilibrium, the assumption here being
that physical systems naturally move from less probable macrostates to more prob-
able macrostates.1 Due to the large numbers with which we deal on the macro
level (N ∼ 1023), the most probable macrostate is orders of magnitude more prob-
able than even closely related macrostates [156]. That means that for equilibrium
we must maximize �0(E1, E2) under the constraint that the sum E0 = E1 + E2

remains constant.
At the maximum ∂�0/∂ E1 = 0, or

∂ [�1(E1)�2(E2)]

∂ E1
=

[
∂�1

∂ E1
�2 + �1

∂ E2

∂ E1
· ∂�2

∂ E2

]
E1=E∗

1 ,E2=E∗
2

= 0, (12.3)

where (E∗
1 , E∗

2 ) denote the maximum point. Since ∂ E2/∂ E1 = −1 from Equation
(12.1), Equation (12.3) reduces to:

1

�1
· ∂�1

∂ E1
(E∗

1 ) = 1

�2
· ∂�2

∂ E2
(E∗

2 ), (12.4)

which is equivalent to

∂

∂ E1
ln �1(E∗

1 ) = ∂

∂ E2
ln �2(E∗

2 ). (12.5)

1 Again, the term macrostate refers to the thermodynamic state of the composite system, defined by the variables
N1, V1, E1, and N2, V2, E2. A more probable macrostate will be one that corresponds to more possible microstates
than a less probable macrostate.
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To generalize, for any number of systems in equilibrium thermal contact,

∂

∂ E
ln � = β = constant (12.6)

for each system.
Next consider that systems 1 and 2 are not only in thermal contact, but also their

volumes are allowed to change in such a way that both the total energy Eo and the
total volume V0 = V1 + V2 remain constant. For this example imagine a flexible
wall separates the two chambers – the wall flexes to allow pressure to equilibrate
between the chambers, but the particles are not allowed to pass. Thus N1 and N2

remain fixed. For such a system we find that maximizing �0(V1, V2) yields

∂ [�1(V1)�2(V2)]

∂V1
=

[
∂�1

∂V1
�2 + �1

∂V2

∂V1
· ∂�2

∂V2

]
V1=V ∗

1 ,V2=V ∗
2

= 0, (12.7)

or

1

�1
· ∂�1

∂V1
(V ∗

1 ) = 1

�2
· ∂�2

∂V2
(V ∗

2 ), (12.8)

or

∂

∂V1
ln �1(V ∗

1 ) = ∂

∂V2
ln �2(V ∗

2 ), (12.9)

or

∂

∂V
ln � = η = constant. (12.10)

We shall see that the variables β and η are related to the intensive thermodynamic
quantities temperature and pressure, respectively. But before completing the picture
of how macroscopic thermodynamics emerges from the NVE ensemble, we first
have one more equilibration to consider – concentration equilibration. For this
case, imagine that the partition between the chambers is perforated and particles
are permitted to freely travel from one system to the next. The equilibrium statement
for this system is

∂

∂ N
ln � = ζ = constant. (12.11)

The derivation of the above equation for concentration equilibration follows the
same approach as the derivations for thermal and pressure equilibration.2

2 See exercise 1.
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To summarize, we have the following:

For constant N and V (thermal equilibrium) we arrive at(
∂ ln �

∂ E

)
N ,V

= β (d ln �)N ,V = βd E . (12.12)

For constant E and N (pressure equilibrium) we arrive at(
∂ ln �

∂V

)
E,N

= η (d ln �)E,N = ηdV . (12.13)

For constant E and V (concentration equilibrium) we arrive at(
∂ ln �

∂ N

)
E,V

= ζ (d ln �)E,V = ζd N . (12.14)

From the above expressions we write

d ln � = (d ln �)N ,V + (d ln �)E,N + (d ln �)E,V

= βd E + ηdV + ζd N , (12.15)

which relates changes in �(N , V, E) to changes in N , V , and E in a given system.
The variables β, η, and ζ are clearly intensive thermodynamic variables. How are
they related to the intensive thermodynamic parameters familiar to our everyday
experience – temperature, pressure, and chemical potential? Remember that the
variable β is constant for systems in thermal equilibrium – i.e., systems having
the same temperature. Pressure equilibrium implies constant η, and concentration
equilibrium implies constant ζ . The remaining key is in the formula S = kB ln �,
which was introduced by Boltzmann. As Pathria puts it, this formula “provides a
bridge between the microscopic and the macroscopic” [156]. With this key, we can
assign physical meaning to the variables in Equation (12.15) through comparison
to Equation (1.1). From this comparison, we arrive at the following.

β = 1/kB T

η = P/kB T

ζ = −µ/kB T . (12.16)

To summarize, we have shown that a specific physical interpretation of the in-
tensive variables governed by Equation (1.1) – temperature, pressure, and chem-
ical potential – arises from the assumption that systems move to thermodynamic
macrostates that maximize the number of accessible microstates. This is our first
application of the famous second law of thermodynamics, which, as is implicit in
the above derivations, is stated as the entropy of a closed system never decreases.
It is worth noting that our interpretation of the intensive thermodynamic variables
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is not arbitrary. For example, the temperature of the NVE ensemble is expressed as

T = 1

kB

(
∂ E

∂ ln �(N , V, E)

)
N ,V

=
(

∂ E

∂S

)
N ,V

. (12.17)

This expression serves as a precise mathematical definition of temperature. It is
interesting to note that temperature, a variable with which we have intuitive and
sensory familiarity, is defined based on entropy, one with which we may be less
familiar. In fact, we shall see that entropy and temperature are intimately related in
the concept of free energy, in which temperature determines the relative importances
of energy and entropy in driving thermodynamic processes.

12.2 The NVT ensemble

While the NVE (microcanonical) ensemble theory is sound and useful, the NVT
(canonical) ensemble (which fixes the number of particles, volume, and tempera-
ture while allowing the energy to vary) proves more convenient than the NVE for
numerous applications.

12.2.1 Boltzmann statistics and the canonical partition function: a derivation

Our study of the NVT ensemble begins by treating a large heat reservoir thermally
coupled to a smaller system using the NVE approach. The energy of the heat
reservoir is denoted Er and the energy of the smaller subsystem, Ei . The composite
system is assumed closed and the total energy is fixed: Er + Ei = Eo = constant.
The composite system is assumed to be a closed NVE system and the subsystem is
assumed to have constant N and V .

This system is illustrated in Figure 12.2. For a given microstate i and correspond-
ing energy Ei of the subsystem, the reservoir can obtain �r (Eo − Ei ) microstates,
where �r is the microcanonical partition function of the heat reservoir. For each
state i obtained by the subsystem, the total number of states available to the compos-
ite system is enumerated by �r , the partition function for the reservoir. According
to our standard assumption that the probability of a state is proportional to the
number of microstates available to the system:

Pi ∼ �r (Eo − Ei ). (12.18)

In addition, from Equation (12.6) we know that ln �r is equal to βEr + a, where
the constant a does not depend on the energy of the system. From this relationship
we have

�r (Eo − Ei ) ∼ eβ(Eo−Ei ) (12.19)
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Ei

Er

Figure 12.2 A system with energy Ei thermally coupled to a large heat reservoir
with energy Er .

and therefore

Pi ∼ e−βEi , (12.20)

where β = 1/kB T has been defined previously. Equation (12.20) is called the
Boltzmann probability law; it is the central result in NVT ensemble theory. It tells
us how the probability of a given state of a system in a constant-temperature heat
bath depends on its energy.

It should be noted that in our derivation (as is the usual case in derivations of the
Boltzmann probability law) we have invoked the idea that a subsystem is embedded
in a much larger heat reservoir. However, this idea that one system in Figure 12.2 is
much larger than the other is not applied or needed in this derivation. The important
things are that the composite system is large enough to be thought of as having a
constant temperature and that the subsystem is held at fixed N and V . (Constant N
and V allow us to use the relationship ln �r = βEr = a.)

12.2.2 Another derivation

A second approach to the NVT ensemble found in Feynman’s lecture notes on sta-
tistical mechanics [55] is also based on the central idea from NVE ensemble theory
that the probability of a microstate is proportional to the number of microstates
available to the system. Thus

P(E1)

P(E2)
= �(Eo − E1)

�(Eo − E2)
(12.21)

where again Eo is the total energy of the system and a heat reservoir to which the
system is coupled. The energies E1 and E2 are possible energies of the system and
� is the microcanonical partition function for the reservoir. (The subscript r has
been dropped.)

Next Feynman makes use of the fact that energy is defined only up to an additive
constant. In other words, there is no absolute energy value, and we can always add
a constant, say ε, so long as we add the same ε to all relevant values of energy.
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Without changing its physical meaning Equation (12.21) can be modified:

P(E1)

P(E2)
= �(Eo − E1 + ε)

�(Eo − E2 + ε)
. (12.22)

Next we define the function g(x) = �(Eo − E2 + x). Equating the right-hand sides
of Equations (12.21) and (12.22) results in

�(Eo − E1)�(Eo − E2 + ε) = �(Eo − E2)�(Eo − E1 + ε) (12.23)

or

g(E2 − E1)g(ε) = g(0)g(ε + E2 − E1) . (12.24)

Equation (12.24) is uniquely solved by:

g(ε) = g(0)eβε, (12.25)

where β is some constant.3 Therefore the probability of a given energy E is pro-
portional to e−βE , which is the result from Section 12.2.1. To take the analysis one
step further we can normalize the probability:

P(E) = e−βE

Q
, (12.26)

where

Q =
∑

i

e−βEi (12.27)

is called the canonical partition function and Equation (12.26) defines the NVT
probability distribution function. (Feynman does not go on to say why β = 1/kB T ,
as we saw is the case in the previous derivation.) The quantity Q is called the
canonical partition function. Summation in Equation (12.27) is over all possible
microstates. Equation (12.27) is Equation #1 on the first page of Feynman’s notes on
statistical mechanics [55]. Feynman calls this equation the “summit of statistical
mechanics” and notes that “the entire subject is either the slide-down from this
summit . . . or the climb-up.” The climb took us a little bit longer than it takes
Feynman, but we got here just the same.

12.2.3 One more derivation

Since the NVT probability distribution function is the summit, it may be instructive
to scale the peak once more via a different route. In particular we seek a derivation
that stands on its own and does not rely on the NVE theory introduced earlier. The

3 See exercise 4.
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following derivation follows from those found in Section 3.2 of Pathria [156] and
Chapter 1 of Hill [86].

Consider a collection of M identical systems, which are thermally coupled and
thus share energy at a constant temperature. If we label the possible states of the
system i = 1, 2, . . . and denote the energy of these obtainable microstates as Ei ,
then the total number of subsystems in the system is equal to the summation,∑

i

ni = M, (12.28)

where ni are the number of systems that correspond to microstate i . The total energy
of the ensemble can be computed as∑

i

ni Ei = MU (12.29)

where U is the average internal energy of the systems in the ensemble.
Equations (12.28) and (12.29) represent constraints on the ways microstates can

be distributed among the members of the ensemble. Analogous to our study of
NVE statistics, here we assume that the probability of obtaining a given set {ni } of
numbers of systems in each microstate is proportional to the number of ways this
set can be obtained. Imagine the numbers ni to represent bins counting the number
of systems at a given state. Since the systems are identical, they can be shuffled
about the bins as long as the numbers ni remain fixed. The number of possible ways
to shuffle the states about the bins is given by:

W ({ni }) = M!

n1!n2! . . .
. (12.30)

One way to arrive at the canonical distribution is via maximizing the number W
under the constraints imposed by Equations (12.28) and (12.29). At the maximum
value,

∇W · �δ = 0, (12.31)

where the gradient operator is ∇ = { ∂
∂n1

, ∂
∂n2

, . . . }, and �δ is a vector which repre-
sents a direction allowed by the constraints.4

We can maximize the number W by using the method of Lagrange multipliers.
Again, it is convenient to work with the logarithm of the number W , which allows

4 The occasional mathematician will point out the hazards of taking the derivative of a discontinuous function with
respect to a discontinuous variable. Easy-going types will be satisfied with the explanation that for astronomically
large numbers of possible states, the function W and the variables {ni } are effectively continuous. Sticklers for
mathematical rigor will have to find satisfaction elsewhere.



12.2 The NVT ensemble 291

us to apply Stirling’s approximation, ln x! ≈ x ln x − x . Thus

ln W = M ln(M) −
∑

i

ni ln(ni ). (12.32)

This equation is maximized by setting

∇ ln W − α∇
∑

i

ni − β∇
∑

i

ni Ei = 0, (12.33)

where α and β are the unknown Lagrange multipliers. The second two terms in this
equation are the gradients of the constraint functions. Evaluating Equation (12.33)
results in:

− ln ni − 1 − α − βEi = 0 (12.34)

for each of the independent entries of the gradients in Equation (12.33). Thus
Equation (12.34) gives us a straightforward expression for the optimal ni :

ni = e−(a+βEi ) (12.35)

where a = α + 1 and the unknown constants a and β can be obtained by returning
to the constraints.

The probability of a given state j can be computed from Pj = n j/M =
(e−a/M)e−βE j . Since

∑
i Pi = 1, a = ln(M/

∑
i e−βEi ), and

Pj = e−βE j∑
i e−βEi

(12.36)

which is by now familiar as the NVT probability distribution function. As you
might guess, the parameter β once again turns out to be 1/kB T when we examine
the thermodynamics of the NVT ensemble.

Note that the above derivation assumed that the numbers of states {ni } assumes
the most probable distribution, e.g., maximizes W . For a more rigorous approach,
which evaluates the expected values of ni , see Section 3.2 of Pathria [156].

12.2.4 Equipartition

The equipartition theorem, which describes the correlation structure of the variables
of a Hamiltonian system in the NVT ensemble, is a central component of the
field of statistical mechanics. Although the intent of this chapter is to introduce
aspects of statistical thermodynamics essential for the remainder of this book –
and not to be a complete text on statistical mechanics – the equipartition theorem
provides an interpretation of the intrinsic variable T that is useful in guiding our
intuition about temperature in chemical reaction systems.
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Here we derive the theorem for classical systems. The classical laws of motion
can be formulated in terms of the Hamiltonian function for the particles in a system,
which is defined in terms of the particle positions {qi } and momenta {pi = mi q̇i }.
Let the scalar quantities pi and qi be the entries of the vectors p and q. For a
collection of N particles p ∈ �3N and q ∈ �3N are the collective positions and
momenta vectors listing all 3N entries. The Hamiltonian function is an expression
of the total energy of a system:

H =
3N∑
i=1

p2
i

2mi
+ U (q1, q2, . . . , q3N ). (12.37)

The equations of motion are written as,

q̇i = ∂H
∂pi

(12.38)

ṗi = −∂H
∂qi

, (12.39)

which are equivalent to Newton’s second law:

q̇i = pi/mi , ṗi = −∂U/∂qi = fi . (12.40)

To derive the equipartition theorem we denote the 6N independent momentum
and position coordinates by xi and seek to evaluate the ensemble average:

〈
xi

∂H
∂x j

〉
=

∫ (
xi

∂H
∂x j

)
e−βHd6N x∫

e−βHd6N x
, (12.41)

where the integration d6N x is over all possible values of the 6N x coordinates. The
Hamiltonian H depends on the internal coordinates although the dependence is not
explicitly stated in Equation (12.41).

Using integration by parts in the numerator to carry out the integration over the
x j coordinate produces:

〈
xi

∂H
∂x j

〉
=

∫ [(
− xi

β
e−βH

)∣∣∣x+
j

x−
j

+ ∫
1
β

(
∂xi
∂x j

)
e−βHdx j

]
d6N−1x∫

e−βHd6N x
(12.42)

where the integration over d6N−1x indicates integration over all x coordinates ex-
cluding x j . The notation x−

j and x+
j indicates the extreme values accessible to

the coordinate x j . Thus for a momentum coordinate these extreme values would
be ±∞, while for a position coordinate the extreme values would come from
the boundaries of the container. In either case, the first term of the numerator in
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Equation (12.42) vanishes because the Hamiltonian is expected to become infinite
at the extreme values of the coordinates.

Equation (12.42) can be further simplified by noting that since the coordinates
are independent, ∂xi/∂x j = δi j , where δi j is the usual Kronecker delta function.
(δi j = 1 for i = j ; δi j = 0 for i �= j .) After simplification we are left with〈

xi
∂H
∂x j

〉
= kB T δi j , (12.43)

which is the general form of the equipartition theorem for classical systems. It should
be noted that this theorem is only valid when all coordinates of the system can be
freely and independently excited, which may not always be the case for certain
systems at low temperatures. So we should keep in mind that the equipartition
theorem is rigorously true only in the limit of high temperature.

Equipartition tells us that for any coordinate 〈x ∂H
∂x 〉 = kB T . Applying this theo-

rem to a momentum coordinate, pi , we find,〈
pi

∂H
∂pi

〉
= 〈pi q̇i 〉 = kB T . (12.44)

Similarly,

〈qi ṗi 〉 = −kB T . (12.45)

From Equation (12.44), we see that the average kinetic energy associated with
the i th coordinate is 〈mv2

i /2〉 = kB T/2. For a three-dimensional system, the average
kinetic energy of each particle is specified by 3kB T/2. If the potential energy of the
Hamiltonian is a quadratic function of the coordinates, then each degree of freedom
will contribute kB T/2 energy, on average, to the internal energy of the system.

12.3 The NPT ensemble

The NPT ensemble can be analyzed by returning to derivation of the NVT partition
function in Section 12.2.3, which determined how energy is statistically distributed
among a collection of systems in thermal equilibrium. In that case the assumption
that each system maintained a constant volume was implicit in the fact that while
the energy was allowed to exchange between the subsystems, the subsystems were
treated as identical in every other way. Holding the mean energy constant at the
value U provides an important constraint on how the total energy may be distributed
among the subsystems.

To obtain the statistical distribution for the NPT case (constant pressure, constant
temperature), we hold the mean volume of each subsystem fixed at V and allow
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the volume of the subsystems to vary under the constraint∑
i

ni Vi = MV . (12.46)

Adding this constraint to those of Section 12.2.3 and maximizing the number of
ways to shuffle the system, we have

∇ ln W − α∇
∑

i

ni − β∇
∑

i

ni Ei − γ∇
∑

i

ni Vi = 0, (12.47)

where γ is the additional Lagrange multiplier associated with Equation (12.46).
Evaluating this equation leads to:

− ln ni − 1 − α − βEi − γ Vi = 0 (12.48)

for each of the independent entries of the gradients in Equation (12.33).
Defining the thermodynamic quantity enthalpy H = E + PV and recognizing

that γ = P/kB T , we have

ni ∼ e−β(Ei +PVi ) (12.49)

and the NPT probability law

Pi = e−Hi /kB T /Z

Z =
∑

i

e−Hi /kB T . (12.50)

The above formula for Z , the NPT partition function, was first reported by
Guggenheim [74], who wrote the expression down by analogy rather than based
on a detailed derivation. While this form of the partition function is thought to be
broadly valid and is widely applied (for example in molecular dynamics simulation
[6]), it introduces the conceptual difficulty that the meaning of the discrete volumes
{Vi } is not clear. Discrete energy states arise naturally from quantum statistics.
Yet it is not necessarily obvious what discrete volumes to sum over in Equation
(12.50). In fact for most applications it makes sense to replace the discrete sum
with a continuous volume integral. Yet doing so results in a partition function that
has units of volume, which is inappropriate for a partition function that formally
should be unitless.

Hill discusses how to make reasonable choices for the discrete volumes in the sum
[85] and more recent authors have developed a complete theory of the NPT ensemble
where continuous volume integrals are made unitless by the proper normalization
[37, 38, 115].
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Exercises

12.1 Derive Equation (12.11) from the assumptions stated in Section 12.1.
12.2 Show that the result of Equation (12.20) can be obtained by first taking the logarithm

of both sides of Equation (12.18) and expanding ln �r (Eo − Ei ) about ln �r (Eo).
12.3 For a system of non-interacting monatomic particles (an ideal gas) the microcanonical

partition function is proportional to V N . Based on � ∼ V N , we can derive the state
equation known as the ideal gas law:

P

kB T
= ∂ ln �

∂V
= N

V
.

Consider a gas of particles that do not interact in any way except that each particle
occupies a finite volume vo, which cannot be overlapped by other particles. What
consequences does this imply for the gas law? [Hint: use the relationship �(V ) ∼ ∫

dx.
You might try assuming that each particle is a solid sphere.]

12.4 Show that Equation (12.25) is the unique solution to Equation (12.24).
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[184] D. Segrè, D. Vitkup, and G. M. Church. Analysis of optimality in natural and
perturbed metabolic networks. Proc. Natl. Acad. Sci. USA, 99:15112–15117,
2002.

[185] Y. Y. Shi, G. A. Miller, O. Denisenko, H. Qian, and K. Bomsztyk. Quantitative
model for binary measurements of protein–protein interactions. J. Comput. Biol.,
14:1011–1023, 2007.

[186] D. Shore, J. Langowski, and R. L. Baldwin. DNA flexibility studied by covalent
closure of short DNA fragments into circles. Proc. Natl. Acad. Sci. USA,
78:4833–4837, 1981.

[187] B. M. Slepchenko, J. C. Schaff, I. Macara, and L. M. Loew. Quantitative cell
biology with the virtual cell. Trends Cell. Biol., 13:570–576, 2003.

[188] C. M. Smith and J. R. Williamson. Inhibition of citrate synthase by succinyl-CoA
and other metabolites. FEBS Lett., 18:35–38, 1971.

[189] G. Stephanopoulos. Metabolic engineering. Curr. Opin. Biotechnol., 5:196–200,
1994.

[190] G. Strang. Introduction to Applied Mathematics. Wellesley-Cambridge Press,
Wellesley, MA, 1986.

[191] S. H. Strogatz. Nonlinear Dynamics and Chaos: With Applications to Physics,
Biology, Chemistry and Engineering. Perseus Books Group, Cambridge, MA, 2001.

[192] C. Tanford. Physical Chemistry of Macromolecules. John Wiley & Sons, New York,
NY, 1961.

[193] Y. Termonia and J. Ross. Oscillations and control features in glycolysis: numerical
analysis of a comprehensive model. Proc. Natl. Acad. Sci. USA, 78:2952–2956,
1981.

[194] B. Teusink, J. Passarge, C. A. Reijenga et al. Can yeast glycolysis be understood in
terms of in vitro kinetics of the constituent enzymes? Testing biochemistry. Eur. J.
Biochem., 267:5313–5329, 2000.

[195] I. Thiele, T. D. Bo, N. D. Price, and B. O. Palsson. An expanded metabolic
reconstruction of Helicobacter pylori (iIT341 GSM/GPR): an in silico
genome-scale characterization of single and double deletion mutants. J. Bacteriol.,
187:5818–5830, 2005.



Bibliography 305

[196] N. M. Tsoukias, D. Goldman, A. Vadapalli, R. N. Pittman, and A. S. Popel. A
computational model of oxygen delivery by hemoglobin-based oxygen carriers in
three-dimensional microvascular networks. J. Theor. Biol., 2007.

[197] J. J. Tyson. Biochemical oscillations. In C. P. Fall, E. Marlang, J. Wagner, and J. J.
Tyson, editors, Computational Cell Biology, chapter 3, pages 230–260. Springer,
New York, NY, 2002.

[198] J. J. Tyson, K. Chen, and B. Novak. Network dynamics and cell physiology. Nature
Rev. Mol. Cell Biol., 2:908–916, 2001.

[199] J. J. Tyson. Bringing cartoons to life. Nature, 445:823–823, 2007.
[200] P. Uetz, L. Giot, G. Cagney et al. A comprehensive analysis of protein-protein

interactions in Saccharomyces cerevisiae. Nature, 403:623–627, 2000.
[201] H. H. Ussing. The distinction by means of tracers between active transport and

diffusion. The transfer of iodide across the isolated frog skin. Acta Physiol. Scand.,
19:43–56, 1949.

[202] S. J. van Dien and M. E. Lidstrom. Stoichiometric model for evaluating the
metabolic capabilities of the facultative methylotroph methylobacterium extorquens
am1, with application to reconstruction of c(3) and c(4) metabolism. Biotechnol.
Bioeng., 78:296–312, 2002.

[203] D. D. Van Slyke and G. E. Cullen. The mode of action of urease and of enzymes in
general. J. Biol. Chem, 19:141–180, 1914.

[204] A. Varma and B. Ø. Palsson. Metabolic capabilities of Escherichia coli: I. Synthesis
of biosynthetic precursors and cofactors. J. Theor. Biol., 165:477–502, 1993.

[205] K. C. Vinnakota, M. L. Kemp, and M. J. Kushmerick. Dynamics of muscle
glycogenolysis modeled with pH time-course computation and pH-dependent
reaction equilibria and enzyme kinetics. Biophys. J., 91:1264–1287, 2006.

[206] P. H. von Hippel. From “simple” DNA-protein interactions to the macromolecular
machines of gene expression. Ann. Rev. Biophys. Biomol. Struct., 36:79–105, 2007.

[207] J. D. Watson and F. H. C. Crick. Molecular structure of nucleic acids: a structure for
deoxyribose nucleic acid. Nature, 171:737–738, 1953.

[208] H. V. Westerhoff and Y.-D. Chen. How do enzyme activities control metabolite
concentrations? An additional theorem in the theory of metabolic control. Eur. J.
Biochem., 142:425–430, 1994.

[209] H. V. Westerhoff and K. van Dam. Thermodynamics and Control of Biological
Free-Energy Transduction. Elsevier, Amsterdam, 1987.

[210] D. J. Wilkinson. Stochastic Modelling for Systems Biology. Chapman & Hall/CRC,
New York, NY, 2006.

[211] J. B. Wittenberg. Myoglobin-facilitated oxygen diffusion: role of myoglobin in
oxygen entry into muscle. Physiol. Rev., 50:559–636, 1970.

[212] F. Wu, J. A. Jeneson, and D. A. Beard. Oxidative ATP synthesis in skeletal muscle
is controlled by substrate feedback. Am. J. Physiol., 292:C115–C124, 2007.

[213] F. Wu, F. Yang, K. C. Vinnakota, and D. A. Beard. Computer modeling of
mitochondrial tricarboxylic acid cycle, oxidative phosphorylation, metabolite
transport, and electrophysiology. J. Biol. Chem., 282:24525–24537, 2007.

[214] J. Wyman. Facilitated diffusion and the possible role of myoglobin as a transport
mechanism. J. Biol. Chem., 241:115–121, 1966.

[215] J. Wyman and S. J. Gill. Binding and Linkage: Functional Chemistry of Biological
Macromolecules. University Science Books, Mill Valley, CA, 1990.

[216] F. Yang, H. Qian, and D. A. Beard. Ab initio prediction of thermodynamically
feasible reaction directions from biochemical network stoichiometry. Metab. Eng.,
7:251–259, 2005.



306 Bibliography

[217] J. Yu, J. Xiao, X. J. Ren, K. Q. Lao, and X. S. Xie. Probing gene expression in live
cells, one protein molecule at a time. Science, 311:1600–1603, 2006.

[218] J. Zhang, K. Ugurbil, A. H. From, and R. J. Bache. Myocardial oxygenation and
high-energy phosphate levels during graded coronary hypoperfusion. Am. J.
Physiol., 280:H318–H326, 2001.



Index

aconitase, 146
action potential, 168, 172
adenine nucleotide translocase (ANT), 169
adenosine triphosphate, 26
adjustable parameters, 74, 95, 96

estimation, 103
advection, 58
advection equation, 59
Alberty, R. A., 39, 104
alpha-ketoglutarate dehydrogenase, 147
aspartate aminotransferase, 151
axially distributed transport modeling, 215

Bassingthwaighte, J. B., 219
bicarbonate system, 38
binding polynomial, 28
biochemical kinetics

components of a biochemical network, 129
determination of differential equations, 132
equations for rapidly binding cations, 132
formal approach to simulation, 129
reaction fluxes, 131

biochemical reactant, 24, 26, 128, 129
reference species, 129

biochemical reaction, 28, 129
fluxes, 131
in vivo states, 38
kinetics, 129, 132
reference reaction, 28, 130

biochemical reaction thermodynamics
carbon dioxide, 36
ionic strength, 35
magnesium binding, 32
potassium binding, 32
temperature, 34

biochemical standard state, 25
biochemical switch, 105

control, 109
free energy dissipation, 109
fundamental equation, 109
Goldbeter–Koshland equation, 113
with Michaelis–Menten kinetics, 111
phosphorylation–dephosphorylation cycle, 105, 108

selectivity, 113
sensitivity, 111

biochemical timer, 115, 117
maximal accuracy, 118

bioinformatics, 1
biological objective functions, 236
biomacromolecular structure, 240
blood–tissue solute exchange, 201, 209, 210
Bohr, N. H. D., 211
Boltzmann probability law, 22, 288
Boltzmann statistics, 10, 243, 288
Brownian motion, 197, 263
Buchner, E., 3

capillaries, 199
cardiac tissue, 201
cardiomyocyte – cardiac muscle cell, 199
carrier-mediated transport, 162
catalytic cycle time, 88, 270
cell membrane, 21

capacitance, 173
Changeux, J.-P., 106
chemical master equation (CME), 261, 262

bistability, 273
brief introduction, 262
diagram, 271
non-linear reaction, 273
protein synthesis, 278
simulation, 276
unimolecular reaction, 269

chemical potential, 7, 17
chemical reaction

flux, 42
highly reversible systems, 53
kinetics, 41, 45
mass conservation in, 42
nearly irreversible systems, 51
non-linear, 48
rapid equilibrium, 56

circulatory system, 199
citrate synthase, 96, 146
computational biology, 1

role in biological research, 2

307



308 Index

concentration clamping, 157
conservation law, 31, 42
conserved metabolite pools, 235
constraint-based analysis, 220

biological objective functions, 236
concentration constraints, 234
feasible sign patterns, 232
mass-balance constraints, 221
motivation, 221
network reconstruction, 238
non-uniqueness, 222
thermodynamic constraints, 75, 227, 228,

230
control and regulation, 155

metabolic control analysis, 157
cooperativity

allosteric, 81, 106
dynamic, 96
Hill coefficient, 83
in enzyme kinetics, 82

Cornish-Bowden, A., 73, 78
critical monomer concentration, 250
cytoskeleton, 248

de Hevesy, G. C., 211
Delbrück, M., 262
detailed balance, 20, 164
diffusion, 58

anisotropic, 196
diffusion distances, 199
diffusion equation, 60, 196
diffusion matrix, 196

eigen decomposition, 197
directional diagram, 89, 91
Donnan potential, 23
double-reciprocal plot, 72, 271
drift, 58

Einstein notation, 196
Einstein relation, 61
electrophysiology modeling, 172

action potential, 175
equation for membrane potential, 173
Hodgkin–Huxley model, 174
Hodgkin–Huxley model computer code,

177
membrane capacitance, 173

emergent property, 3
energy metabolism, 223
ensembles

NPT, 282
NVE, 282
NVT, 282, 287, 288, 289

enthalpy, 14
definition, 294

entropy, 7
Boltzmann entropy, 9, 286
Gibbs formula, 13
in the NPT system, 15
in the NVT system, 13
Shannon formula, 13

enzyme activity, 158, 160
influence of pH, 99
reaction conductance, 235

enzyme concentration, 70
enzyme kinetics

asymptotic analysis, 78
biomolecular reactions, 92
catalytic cycle, 70, 74, 87
highly reversible systems, 53
mean turnover time, 87
Michaelis–Menten, 49, 70
nearly irreversible systems, 51
quasi-steady approximation, 50, 51
rapid pre-equilibrium, 76
sigmoidal binding curve, 81
sigmoidal time course, 84
single molecules, 270
thermodynamics, 19
transient kinetics, 76, 84

enzyme mechanism
compulsory-order ternary, 92
energy relay model, 96
ordered bi-bi, 92
ping-pong, 95
random bi-uni, 95

enzymes, 69
allosteric binding, 106
reversible covalent modification, 106

equilibrium, 46, 286
concentration, 285
pressure, 285
thermal, 284

equilibrium constant, 19
apparent, 24, 30

equilibrium potential, 21, 191
equilibrium, chemical, 17
equipartition theorem, 291
Erlang, A., 2, 201
Escherichia coli, 223
ethylene glycol tetraacetic acid (EGTA), 40

facilitated diffusion, 203
Feynman, R. P., 288, 289
Fick’s first law of diffusion, 196
Fick, A., 196
Filmer, D. L., 106
Fischer, E. H., 106, 122
fluctuation-dissipation theorem, 61
fluctuations, 266, 271, 273, 276

in chemical systems, 252, 262
in non-equilibrium steady state, 276

fluid incompressibility, 65
fluorescence correlation spectroscopy (FCS),

281
flux balance analysis, 220
flux injection, 157
flux-potential relationship, 43
free energy landscape, 258
Frieden, C., 84, 104
Fumarase, 149
Futile cycle, 122



Index 309

G protein system, 115
GTPase activating protein (GAP), 115
guanine-nucleotide exchange factor (GEF),

115
gene regulatory networks, 122

bistability, 123
expression, 122
on–off transition, 123
repressilator, 122

genome-scale modeling, 221, 234
Gibbs free energy, 8, 14

apparent, 24, 30
as a function of flux, 43
of a chemical reaction, 17, 43

Gibbs, J. W., 10
Gillespie algorithm, 262, 276
Gillespie, D. T., 262
Gilman, A. G., 115
glycolysis

non-linear oscillations, 55
Goldbeter, A., 113
Goldman–Hodgkin–Katz equation, 64, 173
Goresky, C. A., 219
GTPase signaling module, 115

timer, 117

Haldane relation, 74
Hamiltonian function, 291
Harvey, W., 199
heat equation, 196
helix-coil transition, 242

computer codes, 246
Helmholtz free energy, 10, 12
hemoglobin, 201, 241

oxygen binding, 201
Hill, T. L., 271
Hodgkin, A. L., 2, 172
Hopfield, J. J., 115
Huxley, A. F., 2, 172

inhibition, 122, 145, 149
ion channels, 172

conductivity, 172
voltage gating, 172, 174

ionic strength, 29
Ising model, 242
isocitrate dehydrogenase, 147
isothermal isobaric systems, 14
isothermal isovolemic systems, 10

kinases, 106
kinetic proofreading, 96, 115
King–Altman Method, 89
Kirchhoff’s loop law, 231
Koshland, D. E., 106, 113
Kramers, H., 263
Krebs, E. G., 106
Krebs, H. A., 172
Krogh cylinder, 199
Krogh, A., 2, 172, 199, 211
Krogh–Erlang model, 199

Kronecker delta function, 293
Kurtz, T. G., 263

law of large numbers, 261, 265
weak law of large numbers, 265

law of mass action, 45, 262
linear programming, 239
linear stability analysis, 156
Lineweaver–Burk plot, 72, 270

macromolecular association, 252
combinatorial theory, 252
thermodynamics, 256

magnesium binding, 32, 129
malate dehydrogenase, 150
Malpighi, M., 199
Markov chain

continuous time, 265
mass balance, 42

elemental balance, 128
mass conservation, 42, 133
mass transport, 58

advection, 59, 201, 209
anisotropic diffusion, 196
diffusion, 60, 196
drift, 60
Fick’s first law of diffusion, 60
membrane transport mechanisms, 162
mobility, 60
molecular diffusion coefficient, 60
transport of charged species, 168

McQuarrie, D. A., 263
membrane potential, 21
metabolic control analysis, 156, 157, 238

control coefficients, 158
elasticity coefficients, 157
Euler’s theorem of homogeneous functions,

159
summation theorems, 159

metabolic engineering, 238
metabolic flux analysis, 220
metabolism, 140, 161, 220, 223
Michaelis–Menten enzyme kinetics, 49, 70

computer simulation, 53
irreversible, 51
reversible, 49, 73
stochastic, 270, 271
timescale analysis, 79

microcirculation, 199
microtubule, 248
mitochondria, 169, 178, 180

cation transport, 185
in vivo function, 140, 188
inner membrane, 179
membrane potential, 179
outer membrane, 180
structural organization, 178
substrate transport, 183

mitogen-activation protein kinase (MAPK) pathway,
106

molecular association, 252



310 Index

Monod, J. L., 81, 106
Murray, J. D., 203
myoglobin

oxygen binding, 204
role in buffering versus transport of oxygen, 203
in sea mammals, 204

Némethy, 109
Nernst potential, 21, 172
networks, 220, 241

biochemical, 129
metabolic, 221, 223
protein interaction, 241
reconstruction, 238
signaling, 106

Ninio, J., 115
NMR spectroscopy, 240
non-dimensional variables, 78, 104, 206
non-equilibrium steady state, 24, 44, 45, 47, 74, 75,

227
concentration clamping versus flux injection,

157
free energy, 43

nucleation, 248, 249
nucleic acid database, 240
nucleoside diphosphokinase, 151
Némethy, G., 106

Onsager coefficient, 53
open systems, 46, 232
ordinary differential equations, 42

computational implementation and testing,
137

computer simulation, 53, 137
solver packages, 54, 137

oscillations in biochemical kinetics, 122, 125
oxidative phosphorylation, 178

complex I, 180
complex III, 181
complex IV, 181
computational model, 180
F0F1-ATPase, 182

oxygen transport to tissue, 197, 216
oxygen extraction, 202

Palsson, B. Ø., 223
partition functions, 16

canonical, 287, 289
microcanonical, 282, 283

passive permeability, 61
permeability-surface area (PS) product, 210, 211
pH buffering, 132
phosphatases, 106
phosphatidylinositol-3,4,5-triphosphate (PIP3)

pathway, 106
phosphorylation energy hypothesis, 121
phosphorylation–dephosphorylation cycle, 106, 108

substrate selectivity, 113
zeroth-order, 111

Planck natural unit system, 23
potassium binding, 32, 129
protein data bank, 240

protein structure
α-helix, 241, 242
actin polymerization, 248, 250
dihedral angles, 242
filaments and polymerization, 248
G-actin and F-actin, 248
random coil, 242

protein synthesis, 278
protein tyrosine phosphatase (PTP), 122
proteins

conformational fluctuations, 81, 276
copies per cell, 70
dihedral angles, 242
secondary and tertiary structure, 248

proton binding, 129
biochemical reactants, 27
to ADP, 29
to ATP, 26, 29
to biochemical reactants, 26
to PI, 29

pyruvate dehydrogenase, 144

quantitative biochemical kinetic models, 2, 106, 126
quasi-steady approximation, 49, 70, 72, 73, 76, 78

Ramachandran plot, 243
Ramachandran, G. N., 243
rate constants

from transition-state theory, 259
reaction coordinate, 257
reaction network, 128, 129, 140

open versus closed, 157
reaction-diffusion modeling, 195
repressilator, 123
ribosome, 279
robustness in biochemical networks, 122, 237, 239
Rodbell, M., 115

Sangren–Sheppard model, 211
Schellman, J. A., 242
sensitivity analysis, 156
sign vectors, 232

enumeration of, 233
orthogonality, 232

signal transduction networks, 105
signaling modules, 105
single-molecule enzymology, 267
skeletal muscle cell, 199, 204
spatially distributed systems, 195
stability analysis, 125
stochastic biochemical systems, 261

functional states, 264
Michaelis–Menten enzyme, 270
non-linear reactions, 271
unimolecular reaction networks, 267
versus deterministic systems, 263

stoichiometric matrix, 156, 222
structure-function relationship, 240
succinate dehydrogenase, 149
succinyl-CoA synthetase, 148
synthetic biology, 122
systems biology, 2, 241



Index 311

Tellegen’s theorem, 231
temperature, 7, 286, 293

physical interpretation, 13
thermal agitation, 261
thermodynamic constraints, 227, 228, 230
thermodynamics

basic equation, 7
biochemical, 24
charged species transport, 168
chemical reaction, 17, 43
equation of state, 295
extensive and intensive variables, 23
extensive variables, 282
first law, 7, 231
history, 7
in constraint-based analysis, 75, 227
intensive variables, 282
macrostate, 10, 282, 283, 284
microstate, 10, 282, 283
non-equilibrium, 43, 227
second law, 7, 9, 75, 231, 286
temperature, 9
thermodynamic driving forces, 15
third law, 7
zeroth law, 7

Thompson, W. (Lord Kelvin), 75
three-dimensional transport modeling, 216
transcription, 122
transition state, 258, 259
translation, 278
transport, 58

thermodynamics of transport across a membrane,
168

through a membrane, 61, 62, 65

transporters, 162
active transport, 163
adenine nucleotide translocase (ANT),

169, 183
antiporter, 163, 167
electrogenic, 168, 170
Gibbs free energy, 169
glucose transporter, 163
passive transport, 163
phosphate-hydrogen cotransporter,

183
reacting versus non-reacting, 163
sodium–potassium pump, 163
sodium-calcium exchanger, 170
uniporter, 163

tricarboxylic acid cycle, 140
control, 153
differential equations, 152
flux expressions, 143
kinetic model, 140
reactants, 141
reactions, 141
simulation, 153

Tyson, J. J., 125

ultrasensitivity, 111

well mixed systems, 42
whole-organ metabolic modeling,

216
Wyman, J., 106

x-ray crystallography, 240
Xie, X. S., 278


	Cover
	Half-title
	Series-title
	Title
	Copyright
	Dedication
	Contents
	Preface
	Introduction
	Computational biology
	Systems biology
	Organization of this book

	Part I Background material
	1 Concepts from physical chemistry
	Overview
	1.1 Macroscopic thermodynamics
	1.2 Isolated systems and the Boltzmann definition of entropy
	1.3 Closed isothermal systems
	1.3.1 Helmholtz free energy
	1.3.2 Entropy in an NVT system
	1.3.3 Interpretation of temperature in the NVT system

	1.4 Isothermal isobaric systems
	1.4.1 Gibbs free energy
	1.4.2 Entropy in an NPT system

	1.5 Thermodynamic driving forces in different systems
	1.6 Applications and conventions in chemical thermodynamics
	1.6.1 Systems of non-interacting molecules
	1.6.2 Gibbs free energy of chemical reactions and chemical equilibrium

	1.7 Applications of thermodynamics in biology
	1.7.1 Enzyme reaction mechanisms
	1.7.2 Electrostatic potential across a cell membrane

	Concluding remarks
	Exercises

	2 Conventions and calculations for biochemical systems
	Overview
	2.1 Conventional notation in biochemical thermodynamics
	2.2 Reactants and reactions in biochemistry
	2.2.1 An example of a biochemical reactant
	2.2.2 An example of a biochemical reaction

	2.3 Effects of pH and ion binding on biochemical reaction thermodynamics
	2.4 Effects of temperature on biochemical reaction thermodynamics
	2.5 Effects of ionic strength on biochemical reaction thermodynamics
	2.6 Treatment of CO2 in biochemical reactions
	2.7 pH variation in vivo
	2.7.1 In vivo deviation from the standard state
	2.7.2 The bicarbonate system in vivo

	Concluding remarks
	Exercises

	3 Chemical kinetics and transport processes
	3.1 Well mixed systems
	Overview
	3.1.1 Differential equations from mass conservation
	3.1.2 Reaction thermodynamics revisited
	3.1.3 Reaction kinetics
	3.1.3.1 Mass action kinetics
	3.1.3.2 Complex rate laws
	3.1.3.3 Net flux for nearly irreversible reactions is proportional to reverse flux

	3.1.4 Using computers to simulate chemical kinetics
	3.1.4.1 Example: simulating Michaelis–Menten enzyme kinetics
	3.1.4.2 Example: non-linear oscillations in glycolysis


	3.2 Transport processes
	3.2.1 Advection
	3.2.2 Diffusion
	3.2.3 Drift
	3.2.3.1 Einstein relation relates molecular diffusivity and electrokinetic mobility

	3.2.4 Example: passive permeation across a membrane
	3.2.5 Example: coupled diffusion and drift in a membrane

	Concluding remarks
	Exercises


	Part II Analysis and modeling of biochemical systems
	4 Enzyme-catalyzed reactions
	Overview
	4.1 Simple Michaelis--Menten reactions revisited
	4.1.1 Steady state enzyme turnover kinetics
	4.1.2 Reversible Michaelis--Menten kinetics
	4.1.3 Non-equilibrium steady states and cycle kinetics

	4.2 Transient enzyme kinetics
	4.2.1 Rapid pre-equilibrium
	4.2.2 A singular perturbation approach to Michaelis--Menten kinetics

	4.3 Enzyme with multiple binding sites: cooperativity
	4.3.1 Sigmoidal equilibrium binding
	4.3.2 Cooperativity in enzyme kinetics
	4.3.3 The Hill coefficient
	4.3.4 Delays and hysteresis in transient kinetics

	4.4 Enzymatic fluxes with more complex kinetics
	4.4.1 Reciprocal of flux: the mean time of turnover
	4.4.2 The method of King and Altman
	4.4.3 Enzyme-catalyzed bimolecular reactions
	4.4.4 Example: enzyme kinetics of citrate synthase

	Concluding remarks
	Exercises

	5 Biochemical signaling modules
	5.1 Kinetic theory of the biochemical switch
	5.1.1 The phosphorylation–dephosphorylation cycle
	5.1.2 Zeroth-Order Ultrasensitivity
	5.1.3 Substrate selectivity
	5.1.4 The GTPase signaling module
	5.1.5 Duration of switch activation and a biochemical timer
	5.1.6 Synergistic action of kinases and phosphatases and the phosphorylation energy hypothesis

	5.2 Biochemical regulatory oscillations
	5.2.1 Gene regulatory networks and the repressilator
	5.2.2 Biochemical oscillations in cell biology

	Concluding remarks
	Exercises

	6 Biochemical reaction networks
	6.1 Formal approach to biochemical reaction kinetics
	6.1.1 Establishing the components of the biochemical network model
	6.1.2 Determining expressions for biochemical fluxes for the reactions
	6.1.3 Determining the differential equations
	6.1.4 Computational implementation and testing

	6.2 Kinetic model of the TCA cycle
	6.2.1 Overview
	6.2.2 Components of the TCA cycle reaction network
	6.2.3 Flux expressions for TCA cycle reaction network
	6.2.4 Differential equations for TCA cycle reaction network
	6.2.5 Simulation of TCA cycle kinetics

	6.3 Control and stability in biochemical networks
	6.3.1 Linear analysis near a steady state
	6.3.2 Metabolic control analysis
	6.3.2.1 Elasticity coefficients
	6.3.2.2 Control coefficients
	6.3.2.3 Summation theorems


	Concluding remarks
	Exercises

	7 Coupled biochemical systems and membrane transport
	7.1 Transporters
	7.1.1 Active versus passive transport
	7.1.2 Examples: a uniporter and an antiporter

	7.2 Transport of charged species across membranes
	7.2.1 Thermodynamics of charged species transport
	7.2.2 Electrogenic transporters

	7.3 Electrophysiology modeling
	7.3.1 Ion channels
	7.3.2 Differential equations for membrane potential
	7.3.3 The Hodgkin--Huxley model

	7.4 Large-scale example: model of oxidative ATP synthesis
	7.4.1 Model of oxidative phosphorylation
	7.4.2 Model behavior
	7.4.3 Applications to in vivo systems

	Concluding remarks
	Exercises


	Part III Special topics
	8 Spatially distributed systems and reaction–diffusion modeling
	8.1 Diffusion-driven transport of solutes in cells and tissue
	8.1.1 The diffusion equation: assumptions and applications
	8.1.2 Oxygen transport to tissue and the Krogh–Erlang model
	8.1.3 Facilitated diffusion

	8.2 Advection–diffusion modeling of solute transport in tissues
	8.2.1 Axially distributed models of blood–tissue exchange
	8.2.2 Analysis of solute transport in organs
	8.2.3 Whole-organ metabolic modeling

	8.3 Three-dimensional modeling
	Concluding remarks
	Exercises

	9 Constraint-based analysis of biochemical systems
	9.1 Motivation for constraint-based modeling and analysis
	9.2 Mass-balance constraints
	9.2.1 Mathematical representation for flux balance analysis
	9.2.2 Energy metabolism in E. coli

	9.3 Thermodynamic constraints
	9.3.1 The basic idea
	9.3.2 Mathematical details
	9.3.3 Feasible sign patterns

	9.4 Further concepts in constraint-based analysis
	9.4.1 Feasible concentrations from potentials
	9.4.2 Biochemical conductance and enzyme activity
	9.4.3 Conserved metabolite pools
	9.4.4 Biological objective functions and optimization
	9.4.5 Metabolic engineering
	9.4.6 Incorporating metabolic control analysis

	Concluding remarks
	Exercises

	10 Biomacromolecular structure and molecular association
	10.1 Protein structures and -helices
	10.1.1 The theory of helix-coil transition

	10.2 Protein filaments and actin polymerization
	10.2.1 Nucleation and critical monomer concentration
	10.2.2 Theory of nucleation-elongation of actin polymerization

	10.3 Macromolecular association
	10.3.1 A combinatorial theory of macromolecular association
	10.3.2 Statistical thermodynamics of association

	10.4 A dynamics theory of association
	10.4.1 Transition-state theory and rate constants

	Concluding remarks
	Exercises

	11 Stochastic biochemical systems and the chemical master equation
	11.1 A brief introduction to the chemical master equation
	11.2 Essential materials from probability theory
	11.2.1 The law of large numbers
	11.2.2 Continuous time Markov chain

	11.3 Unimolecular reaction networks
	11.3.1 Rate equations for two-state conformational change
	11.3.2 Michaelis–Menten kinetics of single enzymes

	11.4 Non-linear biochemical reactions with fluctuations
	11.4.1 Chemical master equation for Michaelis–Menten kinetics
	11.4.2 A non-linear biochemical reaction system with concentration fluctuations
	11.4.3 Bistability and non-equilibrium steady state
	11.4.4 Stochastic simulation of the CME

	11.5 The CME model for protein synthesis in a single cell
	Concluding remarks
	Exercises

	12 Appendix: the statistical basis of thermodynamics
	12.1 The NVE ensemble
	12.2 The NVT ensemble
	12.2.1 Boltzmann statistics and the canonical partition function: a derivation
	12.2.2 Another derivation
	12.2.3 One more derivation
	12.2.4 Equipartition

	12.3 The NPT ensemble


	Bibliography
	Index



