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Preface

This book represents the collective work of approximately 18 research groups 
actively engaged in fluency-based curriculum-based measurement (CBM) work 
across the country and internationally. Its release coincides with two recent journal 
special issues on the topic of fluency-based measurement technology (Cummings 
& Biancarosa, 2015; Petscher, Cummings, Biancarosa, & Fien, 2013) and repre-
sents, at least a portion of, work from second- and third-generation research labs 
investigating the development, implementation, and interpretation of fluency-based 
measurement technology in schools. Though initiated as a special education tech-
nology, CBM has been both directly and indirectly part of many fundamental para-
digm shifts in education since its practice was first codified during the mid-1970s 
through the University of Minnesota Institute for Research on Learning Disabili-
ties (IRLD; Deno & Mirkin, 1977). Notable contributions include: (a) the shift in 
school psychology practice from a within-student, aptitude-by-treatment interaction 
(ATI) approach to one of formative assessment within the context of more effective 
instruction (Deno, 1990); (b) the move toward universal screening of all general 
education students to make early intervention more powerful and effective (NCLB, 
2001; Reading First); (c) reauthorizing the Individuals with Disabilities Education 
Act (2004; Gersten et al., 2008); and (d) continuing the push toward data-based 
decision-making regarding student progress and efficacious programs through the 
American Recovery and Reinvestment Act (ARRA, 2009). For many of us, whether 
we loved or hated these new uses, they have left an indelible print on our landscape 
that is hard to ignore. As we look toward the future, with the Common Core State 
Standards (CCSS) for instruction, next generation assessments, computer-adaptive 
testing, and ever-growing issues with the measurement technology, some may ask 
what the future holds for CBM. We hope to answer some of those questions here.

The purpose of this book is to provide a comprehensive overview of fluency 
as construct applied through the use of CBM technology. Biancarosa and Shanley 
provide an introductory foundation to the text in Chap. 1 by introducing us to the 
concept and definitions of fluency from the perspective of three educational areas 
(i.e., language acquisition, reading, and mathematics), and closing with recommen-
dations for improved clarity regarding the term ‘‘fluency’’ across fields. The book 
is then organized into sections based on the primary interest group that is targeted 
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by the content. In Part 1, we focus on educational professionals who use fluency-
based measurement data to make decisions about their students. In Part 2, we turn 
our focus to the area of test development, with chapters focused on test equating and 
methods used to select criterion-referenced benchmark goals. As an additional fo-
cus in this section, we bring to bear important work in the areas of classical test and 
item-response theories, which hold critical implications for CBM test construction 
in the future. Part 3 of the text deals with advanced statistical methods for measure-
ment researchers utilizing fluency data. The text as a whole is closed by Espin and 
Deno Chap. 13, who remind us that fluency measures (as well as educational assess-
ment in general) must remain grounded in both the decisions we wish to make as 
well as the consequences, both intentional and unintentional, of those decisions. By 
targeting the diverse groups of fluency CBM users and researchers, we hope to paint 
a picture of the construct that is nuanced and relevant for the myriad decisions that 
fluency data are intended to facilitate. Nevertheless, as with most scientific endeav-
ors, the true value of this book is the foundation it will provide to future work. We 
hope that this text, at least a small part of it, sets the stage for your own participation 
in the future research and development of fluency CBMs. 
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Chapter 1
What Is Fluency?

Gina Biancarosa and Lina Shanley

Fluency is a deceptively simple term, but one that differs in its connotations depend-
ing on the literature or field referenced. Even within a single field in education, the 
term’s meaning is sometimes debatable. Although the meaning of fluency invari-
ably touches on its earliest usage in English in the early seventeenth century, when 
it meant an unrestrained or smooth flow (fluency, n.d.), the peculiar connotations 
within each field can vary from incredible specificity to equally incredible gener-
ality. This chapter presents definitions of and perspectives on fluency from three 
educational fields: language acquisition, reading, and mathematics. It then explores 
the foundations of the concept of fluency in research and finally makes recommen-
dations for improved clarity regarding the term across fields.

Fluency in Language Proficiency

In casual conversation, the term fluency tends to be used most frequently in refe-
rence to language proficiency, especially second language (L2) proficiency (e.g., 
“she is a fluent Spanish speaker”). Although in common terms L2 fluency conveys 
both ease and accuracy in speaking (fluency, n.d.), in the field of linguistics fluency 
has a more specific, distinct meaning. In recent definitions of linguistic fluency, 
accuracy or correctness in expression is distinctly not a part of fluency (Housen, 
Kuiken, & Vedder, 2012). Instead, fluency in language proficiency is “the ability 
to produce the L2 [second language] with native-like rapidity, pausing, hesitation, 
or reformulation” (p. 2). The distinction between fluency and accuracy, as well as 
complexity, has been bolstered by factor analyses that identify each as uncorrelated 
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factors in L2 performance (e.g., Norris & Ortega, 2009). Note that complexity in 
this field refers to have more elaborated knowledge of a language’s syntax and lexi-
con (Housen et al., 2012).

Despite the distinction between fluency and accuracy or complexity, fluency can 
also be used within the linguistics field to refer more broadly to global L2 proficien-
cy, a fact bemoaned by many (e.g., Derwing, Rossiter, Munro, & Thomson, 2004; 
Housen et al., 2012; Schmidt, 1992). At issue is that use of a more general meaning 
for the term (i.e., as “broadly synonymous with language mastery and native-like 
performance” (Chambers, 1997, p. 536)) and the predominance of its use in casual 
conversation generate confusion in research and in practice. For example, while 
psycholinguistic researchers emphasize grammatical knowledge in their defini-
tion of fluency, researchers in communications emphasize communicative compe-
tence which involves far more than just grammar (Schmidt, 1992). These multiple 
meanings of the term fluency become engrained in the minds of those who rely on 
both sources of research to inform their work, be that work research- or practice-
oriented, leading to more and more reliance on the holistic meaning (Chambers, 
1997; Schmidt, 1992). As a result, many have argued for restricting the use of the 
term fluency in speech to easily quantifiable aspects of speech related to timing 
(Chambers, 1997) and specifically to procedural language skills that can become 
automatic (Derwing et al., 2004; Schmidt, 1992). Thus, while fluency in language 
acquisition is distinct from accuracy and complexity, these aspects of linguistic pro-
ficiency seem to serve as prerequisites for fluency in that they must be automatic for 
fluent, native-like L2 speech to occur.

At the same time, fluency in L2 proficiency, along with accuracy and complex-
ity, is not a fixed state. Rather, it is affected by the task at hand and the extent to 
which planning is afforded (e.g., Derwing et al., 2004; Foster & Skehan, 1996, 
2013; Schmidt, 1992; Yuan & Ellis, 2003). For example, novice L2 speakers per-
form better on conversational tasks than on more formal speech tasks like telling 
a story (Derwing et al., 2004). In addition, given time to plan speech improves the 
fluency (and complexity) of L2 speakers (Yuan & Ellis, 2003). Moreover, task and 
planning time interact in their effects on fluency and other aspects of L2 proficiency 
(Foster & Skehan, 1996).

Contrast this nuanced definition and understanding of L2 linguistic fluency with the 
definition of native language (L1) fluency. According to Fillmore (1979), L1 fluency 
can refer to as many as four different definitions, all of which are relatively widely ac-
cepted and are used interchangeably as though they represent no important difference 
in meaning. One definition of L1 fluency is speed and ease in speech. Second is qual-
ity of speech, as in complexity and coherence of utterances. The third definition focus-
es on pragmatics, or the social niceties of language, such that L1 fluency represents an 
ability to speak appropriately in a variety of social contexts. The last definition relates 
to the ability to play with language, with fluency being the ability to manipulate lan-
guage in creative ways, as in the creation and use of jokes, puns, metaphors, analogies, 
irony, etc. This multiplicity of definitions in many ways reflects earlier disagreements 
among theorists about how to define fluency in L2 acquisition. It may also reflect the 
relative scarcity of research on L1 fluency in and of itself outside of specialized fields 
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like speech and language pathology. In the field of speech and language pathology, the 
definition of fluency endorsed by the American Speech–Language–Hearing Associa-
tion (ASHA) invokes not one, but at least two of the above-mentioned definitions. 
ASHA (1999) defines fluency as “the aspect of speech production that refers to the 
continuity, smoothness, rate, and/or effort with which phonologic, lexical, morpho-
logic, and/or syntactic language units are spoken.” ASHA also notes the confusion 
surrounding the term fluency and that the roots of this confusion are multifaceted, 
arising from historical, cultural, linguistic, and practical sources.

Fluency in Reading

Debates about the meaning of “fluency” are not unique to the language proficiency 
field. The field of reading has also long debated its definition and nature, and these 
debates have intensified recently. Interest in fluency in reading dates back to a semi-
nal work by LaBerge and Samuels (1974) in which they theorized that processes 
in reading developed in two stages: the accuracy stage, in which attention is neces-
sary to successful performance, and the automaticity stage, in which attention is no 
longer necessary to successful performance. Moreover, they detail a model wherein 
words presented in writing are processed in working memory first visually, then 
phonologically (although this phase can sometimes be skipped), then semantically, 
and finally stored in episodic memory, where a mental account of what is being 
read is developed. They invoke the concept of fluency in detailing their theory by 
noting that “the goal of fluent reading” is that “the reader can maintain his attention 
continuously on the meaning units of semantic memory, while the decoding from 
visual to semantic systems proceeds automatically” (p. 313). According to their 
theory, automatization of decoding is necessary for a reader to be considered fluent. 
Moreover, their theory explains why, as Smith and Holmes (1971) noted, a reader 
who is not fluently decoding is “not going to comprehend what he is reading simply 
because his memory system will not be able to retain, organize, and store the frag-
mentary information in any efficient way” (p. 412).

LaBerge and Samuels (1974) do not directly define oral reading fluency. Their 
theory is explicitly one of automatic reading processes. Nonetheless, they do note 
that to the proficient reader reading feels like an integrated, effortless process in 
which a variety of subskills (e.g., letter recognition, letter-sound associations, 
blending, etc.) are mastered to an automatic level such that the reader is not even 
aware of using and integrating subskills when reading. As long as words are recog-
nized and their meanings are accessed automatically, a reader remains focused on 
deriving and retaining meaning at the episodic level. They further note that their 
model accounts for word callers in that there are readers who read aloud well with-
out directing attention to the semantics of what they read, as well as for the phe-
nomenon of a proficient reader who cannot recall what has been read because of an 
inattention to episodic processing of text. They explain word callers by suggesting 
that they are early readers who focus their attention solely on decoding (converting 
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visual representations into phonological ones), whereas the inattentive proficient 
reader decodes and activates word meanings so automatically that it literally leaves 
the mind “free to wander to other matters” (p. 320). In the latter case, the reader is 
not using attentional resources to organize automatically activated meanings into 
any higher-order structure.

Since the time of LaBerge and Samuels’ (1974) casual reference to word call-
ers, their existence has been hotly debated . Some question whether word calling 
truly occurs (Hamilton & Shinn, 2003; Meisinger, Bradley, Schwanenflugel, & 
Kuhn, 2010; Meisinger, Bradley, Schwanenflugel, Kuhn, & Morris, 2009; Nathan 
& Stanovich, 1991). Others claim it is an unintended negative consequence of too 
much instructional and assessment attention to phonics and fluency (e.g., Goodman, 
1973; Samuels, 2007). Whether or not one believes, as do Nathan and Stanovich 
(1991), that the phenomenon of word callers is a red herring, the forgetting after 
reading phenomenon cited by LaBerge and Samuels is uncontested (perhaps due to 
most proficient readers having experienced it firsthand). What is unclear from their 
references to these phenomena is whether LaBerge and Samuels would consider 
word calling and reading without recall instances of fluent reading, because their 
criteria for fluency are not explicitly defined.

Within less than a decade of the publication of LaBerge and Samuels’ theory, 
oral reading fluency became a frequently used indicator of automaticity in reading 
(e.g., Deno, Mirkin, & Chiang, 1982; Fuchs, Deno, & Marsten, 1983) and fluency 
interventions became a targeted subject of study (e.g., Allington, 1983; Martin & 
Meltzer, 1976; Samuels, 1979). Along the way, the role of prosody in the definition 
of reading fluency became contested (e.g., Allington, 1983), despite the fact that 
it played no explicit role in many of the original theories regarding reading flu-
ency (e.g., LaBerge & Samuels, 1974; Nathan & Stanovich, 1991; Perfetti, 1985). 
Prosody refers to a reader’s ability to alter vocal volume and pitch and utilize pauses 
to scaffold and convey meaning when reading aloud (Benjamin & Schwanenflugel, 
2010). The National Reading Panel seemingly settled the debate by defining oral 
reading fluency as reading “with speed, accuracy, and proper expression” (NICHD, 
2000, pp. 31), and a special 2002 National Assessment of Educational Progress study 
further bolstered the argument that prosody was an essential component of reading 
fluency (Daane, Campbell, Grigg, Goodman, & Oranje, 2005). Recent research in 
oral reading fluency has specifically attempted to disentangle prosody from rate and 
accuracy (Benjamin, Schwanenflugel, Meisinger, Groff, Kuhn, & Steiner, 2013; 
Cowie, Douglas-Cowie, & Wichmann, 2002). These studies have found that read-
ers can be fast and accurate but not necessarily prosodic in their reading; however, 
prosody rarely exists in the absence of accuracy and speed. Nonetheless, most com-
monly used measures of oral reading fluency, such as curriculum-based measures 
(CBMs), focus solely on accuracy and speed in reading and largely continue to 
ignore prosody (e.g., Deno et al., 1982; Fuchs et al., 1983; Fuchs, Fuchs, Hosp, & 
Jenkins, 2001).

Although the privileging of speed and accuracy in reading fluency measurement 
is at least partially due to the comparative ease with which speed and accuracy are 
measured in comparison to prosody (e.g., Fuchs et al., 2001), some have argued that 
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the neglect of prosody in fluency measures reflects a theoretical misunderstanding 
or misspecification of reading development (e.g., Allington, 1983; Slocum, Street, 
& Gilberts, 1995). Allington (1983) has argued that poor oral reading fluency is er-
roneously interpreted as an indicator (or symptom) of poor efficiency in word recog-
nition, in other words, nonautomatic decoding. Allington joins Schreiber (1980) in 
arguing that merely learning to decode quickly and correctly does not fully explain 
fluent reading. Specifically, they cite early fluency intervention research (Samuels, 
1979) in which the effects of repeated reading of connected texts are contrasted with 
the effects of training in automatic recognition of individual words. They argue that 
the superior effects of repeated reading suggest more is at issue than simply achiev-
ing decoding efficiency and that developing efficiency in the parsing of syntax also 
contributes to reading fluency.1 This syntactic processing of text, reading not so 
much word-by-word as in meaningful word groups, supports a reader’s ability to 
comprehend a text as a whole (i.e., text-level semantic processing). Recent research 
on the development of fluency supports this notion (e.g., Klauda & Guthrie, 2008; 
Kuhn & Stahl, 2003; Miller & Schwanenflugel, 2008; Rasinski, Rikli, & Johnston, 
2009). Nevertheless, it remains unclear whether the original LaBerge and Samuels’ 
theory of automaticity in reading accounts for this development. Syntactic process-
ing might constitute another intermediate phase of reading not accounted for in the 
original model, or it could be argued as occurring simultaneously and integrally 
with semantic processing.

Fluency in Mathematics

The definition of fluency in the field of mathematics also suffers from some ambi-
guity. There is general agreement that performance on complex mathematical tasks 
depends on the ability to quickly and accurately carry out the necessary opera-
tions (Bull & Johnston, 1997; Floyd, Evans, & McGrew, 2003). Indeed, Floyd et al. 
(2003) defined processing speed as the “ability to perform simple cognitive tasks 
quickly, especially when under pressure to maintain focused attention and concen-
tration” (p. 159). Yet, much like the role of syntactic processing in oral reading flu-
ency is not fully specified, what precisely must become both quick and accurate is 
not fully determined. For example, researchers have investigated the role of general 
processing speed in mathematics proficiency, finding correlations with mathematics 
difficulties that suggest a deficit in general processing speed at least partially ex-
plains mathematics difficulties (Bull & Johnston, 1997). But more recent research 
investigating the degree to which processing speed affects mathematics perfor-
mance has found conflicting evidence for a direct effect (Floyd et al., 2003) versus 
an indirect, mediating effect (Rindermann & Neubauer, 2004). Similarly, evidence 

1 Interestingly, Samuels has since become one of the more vocal proponents of the importance 
of not only prosody, but also comprehension in the definition and measurement of oral reading 
 fluency (e.g., Samuels, Ediger, & Fautsch-Patridge, 2005; Samuels, 2007).
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on the role of item identification (e.g., tracking the operational signs in a fact flu-
ency task)—which is parallel to the concept of phonological recognition of words in 
reading—has been mixed. Although some research points to a crucial role for quick 
and accurate item identification in successful computational performance because 
items that are identified more quickly free mental resources for computation (e.g., 
Case, Kurland, & Goldberg, 1982), other research suggests that experimentally dis-
rupting item identification (i.e., enforcing slower identification of items) does not 
disrupt successful computational performance (e.g., Deschuyteneer & Vandieren-
donck, 2005).

Due to the more obvious generative nature of mathematics problem-solving 
(i.e., the student must generate a visible or audible answer to a problem, which is 
more akin to writing than to reading), theories articulate another important aspect 
of mathematics fluency: response selection, which is defined as “a process that is 
required in order to assimilate the different response alternatives and to select a cor-
rect response between activated alternatives” (Deschuyteneer & Vandierendonck, 
2005, p. 1473). For example, one must be able to not only identify problem type but 
also attend to details such as operational sign (e.g., +, ÷) in order to determine an 
appropriate range of responses from which to select one’s own response. The clos-
est parallel to this part of mathematics fluency in reading fluency might be when 
the reader must choose among meanings for a polysemous word (i.e., a word with 
many meanings; e.g., bank) or even decide on whether a vowel within a word uses 
a short, long, or other sound. A more intuitive parallel can be construed in linguistic 
fluency, perhaps because of its emphasis on speech production. Specifically, re-
sponse selection in mathematics fluency can be seen as paralleling accuracy in L2 
proficiency because of the requirement of considering and choosing the best among 
many alternatives. Thus, fluency must be tempered based on the task demand, or 
else accuracy may be sacrificed for speed.

Similar to reading fluency, fluency in mathematics has become a strong focus 
in assessment and instruction (e.g., Carnine, 1997; Clarke, Nelson, & Shanley, 
in press; Gersten, Jordan, & Flojo, 2005; Rhymer Dittmer, Skinner, & Jackson, 
2000). Researchers have noticed that students who struggle with mathematics not 
only have difficulty with both accuracy and speed in responding to mathematical 
problems (Gersten et al., 2005; Hasselbring, Goin, & Bransford, 1988), but also 
struggle with efficient and effective strategy application (e.g., Geary, 1993; Geary, 
Brown, & Samaranayake, 1991; Gersten et al., 2005). As a result, timed measures 
of mathematical skills have been employed in the early identification of students 
at risk for poor progress in mathematics (e.g., Chard, Clarke, Baker, Otterstedt, 
Braun, & Katz, 2005; Clarke & Shinn, 2004). Nonetheless, some argue that this 
attention to fluency in mathematics fails to differentiate the real root of students’ 
struggles with mathematics; whether that is a general deficit in processing speed 
or a specific deficit in mathematical understanding (Chiappe, 2005). That is, the 
lack of mathematical fluency may represent not so much lack of speed and ac-
curacy in mathematics procedures as a fundamental deficit in the understanding 
of numbers.
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Fluency as Automaticity in Procedural Skill

As the preceding sections have hopefully made clear, debate around what consti-
tutes fluency is not unique to any particular field in education. How then are we 
to arrive at a precise definition of fluency? A return to the origins of fluency as a 
concept in education may help.

The most consistent concept featured in each of the reviews above is that fluency 
is connected to automaticity. Again and again the idea that skills (and usually pro-
cedural skills) must become not only accurate but also automatic is invoked (Bull & 
Johnston, 1997; Derwing et al., 2004; Floyd et al., 2003; LaBerge & Samuels, 1974; 
Schmidt, 1992). Although he was defining fluency in language, Schmidt highlights 
this critical component by calling fluency “automatic procedural skill” (p. 358). But 
really, what does it mean to be automatic? And why procedural skill?

Automaticity

Bargh and Chartrand (1999) argue that what all definitions of automaticity share 
is a clear definition of what automaticity is not, rather than of what it is. The main 
thing that automatic processes are not is conscious. Conscious processes are ones of 
which an individual agent is aware, that the agent intends, that require effort by the 
agent, and that are actively controlled by the agent. In contrast, automatic processes 
are ones in which the processes require no or limited attention, intention, effort, 
and control. As a result, conscious mental capacity is freed to attend to other things.

To understand just how unconscious automatic processes can be a common ex-
ample given is the commute from home to work and back again. For those with rou-
tinized and dependable schedules, once the commuting procedure is mastered, the 
commuting process can become so automated that we have no conscious memory 
of anything specific to that process that occurred along the way, unless it deviates 
from the usual. An even simpler example is how we respond to reading the phrase 
“don’t think of a pink elephant.” Did you think of a pink elephant? Chances are, 
you did. At issue here is that even though the phrase directs us not to think of some-
thing, proficient readers cannot follow this directive because the words “pink” and 
“elephant” are not challenging for us to decode and their meanings are immediately 
activated whether we want them to be or not. Thus, we think of a pink elephant. 
Inevitably, reading words conjures up their meanings and associated mental images 
so long as decoding the words is not challenging and the words’ meanings are suf-
ficiently well known.

Another important aspect of automaticity is that this unconscious execution of 
processes can be acquired either consciously or unconsciously (Bargh & Chartrand, 
1999). In the commuting example above, the acquisition of automaticity is likely un-
conscious. Once one has a route and routine, practice does the trick. As Bargh and 
Chartrand (1999) explain, unconscious acquisition of automaticity has only two “nec-
essary and sufficient ingredients […] frequency and consistency of use of the same 
set of component mental processes under the same circumstances” (p. 469). For con-
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scious acquisition of automaticity, one merely needs to set out intentionally to do the 
same. For example, if you wish to become more automatic at riding a bike, you can 
decide to practice regularly. Assuming no impediments to your ability to ride a bike, 
repeated intentional practice should yield more automatized bike riding. One sets out 
intentionally to practice a process until successful execution no longer requires con-
scious, intentional control and attention becomes superfluous to its execution.2

Yet another important part of automaticity is that when a complex process, such 
as commuting, is involved, it is better applied to components of the process rather 
than holistically. Although the commuting process, such as driving to and from 
work, may seem simple enough at first blush, it actually involves the coordination 
of a number of component processes. Driving to and from work requires not only a 
memorization of the route, but a coordination of other activities so as to avoid being 
late and of course also knowledge of how to drive a car. When rush hour is involved, 
coping with increased traffic adds to the necessary skill set. And when carpooling is 
involved, the driver also needs to be able to cope with conversation while driving. 
Any one of these components of the commuting process can be automatized … or 
not. While speed does not figure explicitly into a definition of automaticity, a clear 
consequence of lack of automaticity is temporal: the agent engaged in the process 
hesitates, slows down, and stutters in responding to tasks for which automaticity has 
not been achieved. Hence, the unpracticed carpooling commuter may halt speak-
ing mid-conversation each time turning is required or need to turn down the radio 
in order to parallel park. In contrast, the practiced and proficient commuter will 
tend to show no sign of disruption or competition for cognitive resources despite 
changes in route, conversational topic, traffic, or other attentional demands. Given 
the obvious coordination of many component processes in complex skills, some 
have argued that automaticity of cognitive processes of any sort is best understood 
by first completing a comprehensive and precise specification of all the component 
processes involved (Jonides, Naveh-Benjamin, & Palmer, 1985).

Procedural Skill

According to John R. Anderson (1982; 1996), knowledge has two basic forms: 
declarative and procedural. Declarative knowledge is knowing that, whereas proce-
dural knowledge is knowing how. Automaticity is said to develop only for this latter 
type of knowledge (Logan, 1985). Even within the concept of procedures becoming 
automatic, theorists emphasize components of tasks, rather than tasks as a whole, as 
what become automatized (e.g., LaBerge & Samuels, 1974; Logan 1985).

Take our earlier commuting example. According to cognitive psychology, we 
would be better off describing each component of the commuting process and what 
automaticity in it looks like rather than describing the process as a whole. These com-

2 Hasher and Zacks (1979) argue that automaticity should not be applied to processes that benefit 
from practice, but this perspective is decidedly in the minority (for discussion see Fisk & Schnei-
der, 1984).
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ponents do not refer to steps in the commute, but rather to each of the processes upon 
which the execution of the daily commute relies. Some of the processes involved 
include but are not limited to conversing, retrieving route knowledge, and driving, 
each of which naturally could be broken into several component processes of its own 
(Hoover & Gough, 1990). Similarly, in the field of reading, for example, the reading 
process can be broken into at least two processes (i.e., decoding and comprehension), 
each of which also has subprocesses that are required for skillful execution. For exam-
ple, skilled comprehension relies on automaticity in many mental processes (Thurlow 
& van den Broek, 1997). Among these is the use of comprehension strategies such 
as summarizing, predicting, and monitoring one’s comprehension. The skilled reader 
will demonstrate automaticity in each of the component processes of reading.

Nonetheless, automaticity is not purely synonymous with skill in the execution 
of procedural knowledge (Logan, 1985). Logan argues that skills, like speaking or 
reading, “consist of collections of automatic processes that are recruited to perform 
the skilled task” (p. 368) but that the difference between skilled and unskilled per-
formances cannot be ascribed to automaticity alone. Instead, Logan suggests that 
skilled performers are also likely to have more declarative knowledge than unskilled 
performers, as well as more understanding (or, more specifically, metacognition) that 
allows them to recruit that declarative knowledge for more efficient and effective use 
of procedural knowledge. In short, Logan argues that skill is defined by the coor-
dinated execution of automatized procedural knowledge in the presence of specific 
goals and constraints. As a less complex example, consider running. We learn to run 
relatively early in life and automatize running fairly rapidly. Nonetheless, not every 
runner is a skilled runner. Differences in skill not only relate partially to practice but 
also depend in large part on the task set for the runner. For example, it is the rare 
runner who is equally skilled at sprint running, marathon running, relay running, 
and obstacle running (e.g., hurdles). Each type of running requires specific foci for 
practice. While the same essential component processes are involved in the act of 
running, each differs in the other processes with which running must be coordinated 
(e.g., hand offs in relay running, jumping in obstacle running). Whereas some pro-
cesses inevitably overlap, others do not and may even conflict. Thus, skill in running 
overall relies on the runner’s ability to adapt the execution of automatized processes 
contingent on the demands of the task at hand, to coordinate both declarative and 
procedural knowledge for an optimal outcome.

As a result, Logan (1985) also suggests that assessing automaticity for a specific 
process (e.g., running pace, stride length) in relative isolation from other processes 
or specific tasks is not enough and may leave us with an incomplete picture of skill. 
When processes are assessed out of context, an important aspect of skill in perfor-
mance is lost, namely the more skilled performer’s ability to anticipate responses 
based on context. Take, for example, research that has demonstrated that speed and 
accuracy in reading words depends on whether the words are presented in context 
(e.g., a passage or story) or out of context (e.g., in a list or a passage or story with 
the words in a random order; Jenkins, Fuchs, van den Broek, Espin, & Deno, 2003). 
In the study by Jenkins and colleagues (2003), fourth graders read more quickly, by 
an average of 44 correct words or more per minute, when reading words in context 
than out of context. Moreover, speed of reading in context better predicted reading 
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comprehension on a separate criterion measure of reading comprehension than it 
did either out of context speed measure, suggesting that the more closely aligned a 
component process is to the fully executed target skill (here, reading comprehen-
sion), the more informative of the skill it is.

Thus, if we are to truly understand automaticity, not only of component skills but 
also of their coordinated use, Logan argues that we must study it in both situations, 
in and out of context. To continue the reading example, assessing decoding both in 
and out of context has the potential to yield information. Reading words out of con-
text isolates the component skills of decoding allowing insight into the automaticity 
of decoding alone,3 while reading words in context comes closer to the target skill 
allowing insight into the coordination of decoding with other processes, including 
syntactic and semantic processing.

Fluency 

If we define fluency as involving automaticity in procedural skill, then it becomes 
necessary to define more precisely the procedural skills and the signs of automatic-
ity in them. This issue of definition is exemplified in an article by Samuels (2007), 
one of the originators of automaticity theory relative to reading. In this article, he 
contends that reading fluency measures such as the Dynamic Indicators of Basic 
Early Literacy Skills (DIBELS) are not truly fluency measures, rather he argues:

[N]one of the DIBELS instruments are tests of fluency, only speed …. To understand the 
essential characteristic of fluency and what its window dressings are, we must look to auto-
maticity theory for guidance (LaBerge & Samuels, 1974). At the risk of oversimplification, 
in order to comprehend a text, one must identify the words on the page and one must con-
struct their meaning. If all of a reader’s cognitive resources are focused on and consumed 
by word recognition, as happens with beginning reading, then comprehension cannot occur 
at the same time. (Samuels, 2007, p. 564)

Based on the preceding sections regarding automaticity theory, Logan (1985) and 
others might argue that Samuels and the authors of DIBELS are defining automa-
ticity for different procedural skills or under different constraints. DIBELS assess-
ments focus on the component process of decoding (and other component skills) 
under different conditions (e.g., word reading out of context, word reading in con-
text), while Samuels is insisting on assessments that examine decoding with tasks 
that require readers to read for meaning and not just demonstrate skill in isolated 
procedures. For Samuels, fluency in reference to reading necessarily invokes coor-
dinated performance of all the component processes involved in reading. But for 
assessments like DIBELS, fluency can refer to any of the myriad component pro-
cesses involved in reading.

3 Note that among reading researchers interested in full isolation of decoding, reading of decod-
able nonsense words out of context is considered preferable to reading real words out of context 
because it isolates decoding even from sight recognition and effects of vocabulary knowledge 
(e.g., Ehri, 2005).
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Recommendations for the Study of “Fluency”

Based on the preceding, we posit that it is time to move beyond fluency as a term. 
Too often fluency draws up notions of complex, holistic skills. The confusion is 
only natural, given the origins of the term in the Latin verb fluere meaning to flow 
(fluency, n.d.). Nonetheless, as long as any number of researchers and theorists 
treats fluency as a unitary concept within a field, much time and effort will be lost 
arguing about whether and what figures into this vague concept which we call flu-
ency. Instead of fluency, we recommend in this section that using the term automa-
ticity invokes far less confusion.

Disagreement about the meaning of fluency can lead to debates about its role in 
complex processes that are pointless because the underlying meaning of the term is 
arguably what is at issue. For example, in the field of reading, the idea that reading 
can be broken into the two primary component processes of decoding and compre-
hension is called the “simple view of reading” (Gough & Tunmer, 1986; Hoover 
& Gough, 1990). However, there is a long-standing debate that has only picked up 
in intensity recently about whether fluency ought to be included as a third primary 
process in this and other theoretical models. Research has not yielded a clear answer 
(e.g., Adlof, Catts, & Little, 2006; Kershaw & Schatschneider, 2012; Silverman, 
Speece, Harring, & Ricthey, 2013; Tilstra, McMaster, van den Broek, Kendeou, & 
Rapp, 2009). In some cases, fluency stands out a separable construct, but in others 
it does not. Discrepancies in findings might be attributed to differences in analytic 
approach, but perhaps a more important difference across such studies is in the mea-
sures used. For instance, in two recent studies measures of word list reading fluency 
were included as indicators of fluent reading (Adlof et al., 2006; Silverman et al., 
2013), but in two others they were not (Kershaw & Schatschneider, 2012; Tilstra 
et al., 2009). Moreover, one study included measures of word list reading fluency as 
measures not of fluency but of decoding (Kershaw & Schatschneider, 2012). Nota-
bly, none of these studies included fluency measures tapping prosody as an aspect 
of fluency. We would argue that the inconsistency in how fluency is represented and 
the inclusion of fluency measures as measures of decoding, which are not unique 
to this group of studies, reflect a fundamental lack of clarity and agreement in the 
field as to what fluency is.

What if instead of debating what is or is not fluency, we followed the rather 
old advice of Jonides et al. (1985) to focus on automaticity and identify first the 
components of more complex processes and then set the criteria for automaticity 
rooted in those component processes rather than in more complex behavior? If 
we did, within each field, be it language, reading, or mathematics, we would at-
tempt to lay out each of the component processes involved in skilled performance 
and then determine what criteria we will use for detecting automaticity in those 
processes rather than more holistically in language, reading, and mathematics. In 
such an approach, for our reading theorists debating the role of “fluency,” we 
would instead investigate the role of automaticity in reading words, which would 
include the reading of words both in and out of context, and  automaticity in other 
reading processes as well. For the growing number of researchers who argue a role 
for prosody in proficient reading (Allington, 1983; Benjamin & Schwanenflugel, 
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2010; Klauda & Guthrie, 2008; Kuhn & Stahl, 2003; Miller & Schwanenflugel, 
2008; Rasinski et al., 2009; Samuels, 2007), we would also investigate automa-
ticity in prosody in reading aloud. In other words, we propose that decoding can 
be construed as one process and prosodic parsing of text as another and that flu-
ency be used in reference to neither. Instead, we suggest the field define how 
automatization of each process can be construed separate from the other. We say 
this despite the fact that each inevitably interacts with the other in the execution 
of reading, and all the more so the longer and more authentic the text being read.

Moreover, our position is not a new one and applies to each of the fields covered 
in our review. Although usually cited as support for the role of prosody in fluency, 
Hudson, Pullen, Lane, and Torgesen (2009) suggested that not only can reading flu-
ency be broken down into at least four components (one of which is prosody) but 
also that one of those components (i.e., decoding fluency) can be broken down into 
further subcomponents of fluency. In many ways, the field of L2 acquisition has 
made the most progress in this vein, at least in terms of the acceptance of the idea 
that separating accuracy and complexity of utterances are and should be separable 
from fluency in utterances. The acronym CAF, which stands for complexity, ac-
curacy, and fluency, has been used quite widely in the literature on L2 acquisition 
since the 1990s (e.g, Housen & Kuiken, 2009). Yet, even within this field there have 
been calls for greater specificity for each of the constructs making up CAF and calls 
for addressing the multidimensional nature of fluency (e.g., Pallotti, 2009). In other 
words, even within L2 acquisition theory and research, the use of that pesky term 
fluency still invites confusion. If fluency in language proficiency is “the ability to 
produce the L2 [second language] with native-like rapidity, pausing, hesitation, or 
reformulation” (Housen et al., 2012, p. 2), then there remains a need to define and 
investigate each of these components of fluency in language proficiency (Pallotti, 
2009). Critical to clarity here, as in the field of reading, is disentangling speed (i.e., 
rapidity) from prosody (i.e., pausing) and from metacognitive monitoring and repair 
practices.

At the very least, if we follow the lead of L2 acquisition, accuracy is its own 
separable construct and should not figure into measures of automaticity. Thus, for 
example, in the reading field the common approach of using rate of accurate reading 
(i.e., correct words per minute) as an index of automaticity confounds two aspects 
of reading proficiency: accuracy and speed. Although this practice offers some ef-
ficiencies in measurement and statistical modeling and is the most common form of 
measuring oral reading fluency (Deno et al., 1982; Fuchs et al., 1983; Fuchs et al., 
2001; Jenkins et al., 2003; see also Espin & Deno, in press), the practice does not 
always translate well to all contexts. For example, although Jenkins et al. (2003) 
found that accuracy (measured as proportion of correct words to total words read) 
did not add anything over and above speed (measured as correct words per minute) 
to the explanation of reading comprehension, the two measures were not truly in-
dependent of each other. Even when accuracy is measured as number of errors per 
minute (e.g., Baker et al., in press), accuracy, or here the lack of accuracy, is still 
confounded with rate.
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Despite the seemingly inevitable confound between accuracy and rate when they 
are derived from the same prompts, recent research has demonstrated that even 
accuracy can uniquely contribute to the explanation of reading comprehension, par-
ticularly in contexts where speed of reading is not as widespread and variability in 
accuracy is greater. For example, studies have found that measuring accuracy as 
well as speed yields more information about readers among students with disabili-
ties (e.g., Puolakanaho et al., 2008) or in contexts where universal literacy is fur-
ther from realization (e.g., Farukh & Vulchanova, 2014; Vagh & Biancarosa, 2011). 
Nonetheless, the reader who reads quickly but inaccurately is a rarity. If readers 
like that exist at all, they have yet to turn up in a wide range of studies examining 
heterogeneity among the struggling readers at varying grade levels (e.g., Brassuer-
Hock, Hock, Kieffer, Biancarosa, & Deshler, 2011; Buly & Valencia, 2002; Catts, 
Hogan, & Adlof, 2005).

For the vast majority of performers (in reading or otherwise) there is a relation 
between accuracy and speed (e.g., MacKay, 1982). As accuracy improves, speed 
also tends to improve. In other words, until accuracy reaches some level of pro-
ficiency, speed cannot improve very much. However, this phenomenon relies on 
practice as a mechanism for improvement of both accuracy and rate, and more im-
portantly that speed is not intentionally valued over accuracy. In fact, in the latter 
case efforts to execute a process at either much greater or much slower rates than 
are typically practiced will result in compromised accuracy. Although the evidence 
regarding this phenomenon have been demonstrated primarily in speech produc-
tion and for physical processes (e.g., moving one’s arm in a particular manner; 
see MacKay, 1982 for discussion), the link between accuracy and speed and their 
dependence on practice conditions are consistent with more general theories of au-
tomaticity (Bargh & Chartrand, 1999; Logan, 1985).

Despite the clear distinction between accuracy and speed, there may be practical 
reasons for confounding the two in measurement. In fields like education, the idea 
of measuring for speed without also measuring for accuracy risks a lack of face 
validity, wherein a measure of just speed does not have the appearance of measur-
ing the intended (or valued) construct. Although face validity plays no quantifiable 
role in measurement, it can have a profound impact on which measures get adopted 
as well as on test-taker behavior (Thorndike & Thorndike-Christ, 2010). Thus, par-
ticularly in educational practice if not in basic research, automaticity measures that 
confound accuracy and speed may be unavoidable.

Nevertheless, we argue that use of a term less fraught with confusion and de-
bate than fluency is advisable. Instead of fluency, we suggest using the term au-
tomaticity itself or, alternatively, efficiency. Efficiency has the advantage of con-
noting not only speed but also accuracy. In other words, it invokes the idea of the 
speed–accuracy trade-off (MacKay, 1982) wherein speed without accuracy and 
accuracy without speed are of limited value. Perfetti was perhaps one of the first 
reading theorists to use the term efficiency when discussing theories of the read-
ing process (e.g., Perfetti, 1985). More recently, measures of what has typically 
been called decoding fluency have also shunned the term fluency for efficiency 
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(i.e., Torgesen, Wagner, & Rashotte, 2012). Similar refinements of terminology 
exist within the field of mathematics as well, wherein accuracy and speed are de-
fined separately and efficiency is seen as combining the two qualities in computa-
tional skill (e.g., Hoffman & Spatariu, 2008). Indeed the president of the National 
Council of Teachers of Mathematics noted that “Focusing on efficiency rather 
than speed means valuing students’ ability to use strategic thinking to carry out a 
computation without being hindered by many unnecessary or confusing steps in 
the solution process” (Gojak, 2012). Thus, a shift in terminology is not necessar-
ily an onerous task and could help to reduce confusion in practice and research in 
numerous fields.

Conclusions

So what is fluency? It depends on whom you ask. Even within fairly narrow fields, 
definitions vary. Thus, we recommend treating the term fluency as a holistic de-
scription of a skilled performance. In addition, we recommend reserving more 
specific terms for processes that are components of skilled performance. These 
recommendations are by no means revolutionary, but as our review of the literature 
in three education fields demonstrates they have yet to catch on in studies of flu-
ency in language acquisition, reading, and mathematics. The advantage of using 
more precise terms for the component processes involved in complex procedural 
skills like speaking in a foreign language, reading, or solving a mathematics prob-
lem is an avoidance of age-old confusion and debates that have at their root the 
term “fluency.” We should cease arguing about fluency and what it means and 
instead focus on each component process involved in complex procedural skills 
and the characteristics of proficiency in each process (e.g., accuracy, speed, effi-
ciency, and complexity). This improved clarity would also serve to support efforts 
to understand the complex interactions between task and proficiency (i.e., how and 
why individuals might display superior accuracy or speed in one context than in 
another). An emphasis on clarity and specificity in terminology can also serve to 
inform efforts to improve fluency as a term by forcing developers and evaluators 
of instruction and intervention to reconsider what precisely they intend to affect 
(i.e., overall proficiency in a complex skilled performance or automaticity in some 
component aspect of a skilled performance). Most importantly, without a renewed 
commitment to precision in the terms we use, we risk wasting more time splitting 
hairs about what fluency is and who should define it. We would argue that whatev-
er the field, the public is better served by and our attention is better turned toward 
developing nuanced and testable theories, measures, and interventions regarding 
the skills in which we are interested.
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Part I
Applied Use of Fluency Measures

In this first section, we focus on educational professionals who use fluency-based 
measurement data to make important educational decisions about students. The 
chapters in this section represent information regarding fluency metrics as applied 
to writing (Ritchey et al., Chap. 2, this volume) and mathematics measures (Clarke 
et al., Chap. 3, this volume) and also include syntheses of the work to date on using 
fluency-based measures to make universal screening (Lembke et al., Chap. 4, this 
volume) and response to intervention (Burns et al., Chap. 5, this volume) decisions.

Writing and mathematics metrics, as lesser studied curriculum-based measure-
ments (CBMs) than either reading or early literacy measures, are given a detailed 
treatment in Chaps. 2–3 by some of the lead researchers in the field who are actively 
studying these measures in their respective labs. The chapters, focused on universal 
screening (Chap. 4) and response-to-intervention procedures (Chap. 5), take a broad 
stroke, applying those decisions across CBM academic areas and grade levels.
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Chapter 2
Indicators of Fluent Writing in Beginning 
Writers

Kristen D. Ritchey, Kristen L. McMaster, Stephanie Al Otaiba, Cynthia S. 
Puranik, Young-Suk Grace Kim, David C. Parker and Miriam Ortiz

Learning to read and write are significant achievements in a child’s education, and 
many children seem to pick up reading and writing skills with ease. They become 
fluent readers and writers and are able to coordinate reading and writing activities 
with seemingly little effort. But not all children learn to write with the same ease. 
Consider the case of Toby.

Toby is a happy, precocious first grader who loves to learn. He listens intently 
when his teacher, Mrs. Wright, reads aloud to the class, and participates enthusi-
astically in class discussions. During independent reading time, he devours books 
about dinosaurs, fossils, and rocks. He loves science, and often draws intricate 
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pictures to illustrate the science topics discussed in class, describing them with 
detailed precision to his classmates. Mrs. Wright often jokes that he has the vocabu-
lary of a paleontologist.

Despite his excitement about learning, Mrs. Wright has noticed that Toby has great 
difficulty with handwriting, spelling, and written composition. For example, Toby of-
ten shares elaborate stories of his family’s camping excursions, relates what he re-
cently learned at the science museum, or makes up harrowing adventure tales about 
himself and his dog. Yet, when Mrs. Wright encourages him to write about these ideas 
in his daily journal, he typically only writes a few words—such as “I like rocks,” “I 
went fishing,” “I saw a big bird.” Mrs. Wright has noticed that he forms each letter 
with painstaking care, and he often stops to ask her or a peer how to spell a word. 
Toby usually takes the entire 10 min allotted for journal writing to write these few 
words. Even then, his writing is often barely legible, with many erasures and cross-
ings-out. Sometimes he gets frustrated and tears up his paper or wads it into a ball.

Mrs. Wright is concerned that, over time, Toby’s struggles with writing will de-
crease his excitement about school and learning.

This case example illustrates a child who is not a fluent writer, particularly due 
to his difficulties with handwriting and spelling, which comprise the transcription 
component of writing. Though Toby appears to have no trouble generating text—in 
the form of elaborate, articulate stories and explanations—getting his ideas onto 
paper is extremely difficult. His attention is consumed by forming letters and words, 
reserving little capacity for translating his sophisticated ideas into written text. For 
Toby, writing can be a frustrating activity, and his written production is not a good 
indicator of his ideas.

Early identification and intervention will be critical for students with writing 
problems, including students like Toby, to develop overall writing proficiency 
(Berninger, Nielsen, Abbott, Wijsman, & Raskind, 2008; Berninger et al., 2006), 
which will in turn have an impact on their long-term success in school and beyond 
(Graham & Perin, 2007). Early identification and intervention require assessments 
that can be used to establish current levels of writing proficiency, as well as to 
monitor progress in response to instruction and supplemental intervention. These 
assessments should focus on aspects of writing that serve as global indicators of 
fluent writing.

This chapter reviews existing work on the role of fluency in assessing writing, 
specifically when applying curriculum-based measurement (CBM; Deno, 1985) 
approaches to assessing fluent writing. We focus on work conducted at the early 
stages of writing development, from prekindergarten to third grade. This period 
is targeted because of the importance of early writing development, increased at-
tention to writing instruction at these grades, and the need for further research that 
informs how fluent writing develops. We hope this chapter serves to further the 
conversation about appropriate approaches for assessing writing at early stages of 
writing development.



232 Indicators of Fluent Writing in Beginning Writers

The first section of this chapter reviews the importance of writing and pro-
vides a description of writing fluency, drawing from definitions of reading fluency 
operationalized by CBM. It is followed by a review of measures that have been de-
veloped as indicators of writing; these measures directly or indirectly target fluency. 
Next, the chapter discusses the correlates of writing and how assessment can inform 
writing instruction and intervention. The chapter concludes with a discussion of 
directions for future research.

Importance of Writing

Like reading, writing is important to academic and vocational success. By the time a 
child enters formal school settings, many foundational literacy skills have begun to 
develop, and the ability to express ideas in writing is further cultivated by academic 
instruction and experiences. The importance of writing has been highlighted in re-
cent years for two reasons: the importance of writing to academic and vocational 
success and the poor writing of many students in the United States.

First, writing is critical to overall literacy development (Biancarosa & Snow, 
2004). Writing provides students with the means to communicate what they know 
(Graham & Perin, 2007), is important for integrating knowledge and thinking criti-
cally (Shanahan, 2004), and can also “be a vehicle for improving reading” (Graham 
& Hebert, 2010, p. 6). Second, far too few students develop proficient writing. In 
fact, data from the most recent National Assessment of Educational Progress (Na-
tional Center for Educational Statistics, 2012), indicate that only 30 % of students 
in grades 8 and 12 performed at or above the “proficient” level (defined as solid 
academic performance) in writing. This widespread lack of writing proficiency is 
problematic given that a majority of jobs require employees to write proficiently at 
work (National Commission on Writing in America’s Schools and Colleges, 2004). 
In addition, many students with specific learning disabilities or other learning needs 
have more trouble writing than their peers do (Graham & Harris, 2005). For ex-
ample, students with learning disabilities often experience significant difficulties 
with handwriting, spelling, and mechanics, as well as difficulties generating ideas 
and organizing, planning, and revising their writing (Troia, 2006).

These discussions have pointed to the need to improve writing instruction in 
schools. The National Commission on Writing (2003) called writing the “neglected 
‘R.’” They called for comprehensive writing standards and proposed that writing 
should be built into “every curriculum area and at all grade levels … from the earli-
est years through secondary school” (p. 5). While writing instruction has been iden-
tified as important and as an area for improvement at many points in the past decade 
(Biancarosa & Snow, 2004; Graham & Perin, 2007; National Commission on Writ-
ing, 2003), legislative attention has focused more heavily on improving reading, 
especially as part of Reading First and No Child Left Behind initiatives.
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More recently, the development of the Common Core State Standards (National 
Governors Association & Council of Chief School Officers, 2010) has drawn in-
creased attention to the instructional targets for writing for the US students. Nearly 
every state (45 states and the District of Columbia to date) has adopted the Common 
Core State Standards which delineate writing expectations for students beginning 
in kindergarten. The Common Core State Standards describe specific expectations 
for students to write across genres and to produce text that meets standards for writ-
ing conventions (e.g., syntax, mechanics). A summary of grade-level expectations 
is presented in Table 2.1. These expectations require high-quality instruction with 
sufficient opportunities to practice writing.

Writing Grades K-2
Category Skill
Text types and purposes 1. Students should be able to create a product where they 

talk about a book and provide an opinion about the book 
with supported reasons.

2. Students should be able to create informative/explana-
tory texts where they are able to produce a topic and 
provide information on it.

3. Students should be able to describe or write a narrative 
event or sequence of events and discuss them with orga-
nization as well as react to what happened.

Production and description 
of writing

4. Students should answer questions and respond to sug-
gestions made by their peers in order to build up their 
writing.

5. Students should be able to participate in research proj-
ects, explore books, and express opinions in writing.

Research to build and pres-
ent knowledge

6. Students should be able to participate in research projects 
including exploring books and expressing opinions use 
them in writing.

7. Students should be able to remember information from 
personal experiences or be able to gather information 
from a provided source in order to answer a question.

Writing grade 3
Category Skill
Text types and purposes 1. Students should be able to write opinion pieces with sup-

port for a point of view.
 a. Students should be able to provide a topic, give an opin-

ion, and organize reasons for that opinion.
 b. Students should provide reasons for their opinion.
 c. Students should use linking words and phrases in order 

to connect reasons and opinions.
 d. Students should provide a conclusion statement or sec-

tion in their writing.
2. Students should be able to write informative and explan-

atory pieces that examine a topic and conveys ideas and 
information clearly.

Table 2.1  Common Core State Standards in Writing. (Adapted from the Common Core State 
Standards in Writing for K-third grade)
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Student performance on these standards will be assessed in newly developed as-
sessment programs aligned to the Common Core State Standards. These assessments 
may require many school systems and teachers to use formative writing assessment 
and to provide feedback on their students’ writing performance. With these new 
standards, it is possible that many schools will need to make substantial changes to 

Writing Grade 3
 a. Students should be able to pick a topic, examine it, and 

convey information and ideas about the topic clearly.
 b. Students should be able to develop the topic using facts, 

definitions, and details.
 c. Students should be able to use linking words and phrases 

to connect ideas and information.
 d. Students should provide a conclusion statement or sec-

tion in their writing.
3. Students should be able to write narratives to develop 

either real or imagined experiences, and include events 
while using effective techniques, descriptive details, and 
clear event sequences.

 a. Students should be able to establish a situation, create a 
narrator and characters while organizing a sequence of 
events that has a natural progression.

 b. Students should be able to use dialogue, describe actions, 
thoughts, and feelings of characters to create an experi-
ence or show the response of a character to a situation.

 c. Students should be able to use temporal words and 
phrases to create organization and signal order.

 d. Students should provide a sense of closure within their 
story.

Production and distribution 
of writing

4. With scaffolding and guidance, students should be able 
to produce writing with clear organization and develop-
ment for its intended purpose.

5. With scaffolding and guidance, students should be able 
to improve their writing as needed through the use of 
planning, revising, and editing.

6. With scaffolding and guidance, students should be able 
to use technology to publish their writing in addition to 
interacting and collaborating with others.

Research to build and pres-
ent knowledge

7. Students should be able to conduct research projects to 
facilitate building knowledge about a topic.

8. Students should be able to remember information from 
personal experience or be able to gather information 
from print sources as well as digital sources, and be able 
to sort the evidence into categories.

Range of writing 9. Students should be able to write routinely over extended 
periods of times including time for research, reflection, 
and revision (or shorter time frames) for a range of tasks, 
purposes, and audiences.

Table 2.1  (continued)
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how they assess and teach writing in the early grades, especially as reading instruc-
tion has dominated literacy instructional time. It will be critical to consider stages of 
writing development within these assessments and instructional techniques. Even if 
high-stakes writing assessments are not included until later grades, the early grades 
should provide the foundation to develop critical writing skills including acquisi-
tion of and fluency in the component processes of writing. What remains unclear 
is the best way to accurately and efficiently assess writing proficiency and growth 
in a way that can inform instruction and maximize student progress within the cur-
riculum and toward grade-level standards.

Fluent Writing

Our current efforts have focused on the development of measures of writing for 
children in prekindergarten to third grade, with a specific interest in developing 
measures that fit into a CBM framework and that could serve as global indicators of 
fluent writing. The focus has been on defining appropriate tasks (i.e., what students 
are asked to do) and the scores (i.e., how the written product is evaluated) that pro-
vide the most technically adequate indices of writing proficiency.

Using Principles of CBM to Define Fluency

Work in CBM began almost 40 years ago by Stan Deno and colleagues as part of 
the Institute for Research on Learning Disabilities (IRLD) at the University of Min-
nesota. One of the goals of the IRLD was to develop a set of efficient and simple as-
sessment procedures that could provide information about “vital signs” of academic 
health. These vital signs are often referred to as “global indicators” that can be used 
to indicate whether a student is making sufficient progress toward important aca-
demic goals, or whether a lack of progress indicates an underlying problem, such 
as a learning disability that requires further diagnosis and instructional changes or 
intervention (Deno, 1985).

Deno (1985) established key criteria for CBM. First, the measures are designed 
to provide information about a student’s proficiency and progress in academic areas 
such as reading, math, and writing. These measures use brief, direct observation of 
academic behaviors in ways that could be both efficient and yield scores that are 
reliable and valid indicators of academic outcomes. These academic outcomes are 
drawn from the curriculum to ensure alignment between the provided instruction 
and the assessment. Additionally, because the measures are to be used to moni-
tor progress, they are designed to be sensitive to growth, meaning that the mea-
sures should yield scores that could be influenced by small amounts of learning. 
For example, the score might be expected to increase by one or two (or more) 
“points” when students were administered the tasks weekly or biweekly (Fuchs, 
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Fuchs, Hamlett, Walz, & German, 1996). Research on CBM has been conducted in 
core academic areas such as reading, mathematics, spelling, written expression, and 
content areas (see Foegen, Jiban, & Deno, 2007; McMaster & Espin, 2007; Way-
man, Wallace, Wiley, Ticha, & Espin, 2007 for reviews).

CBM work in reading informs our work in developing CBM assessments for 
writing. For example, in reading, the most common CBM approach involves direct 
assessment of a student reading aloud from grade-level text while the number of 
words read correctly (and errors) in 1 min are recorded. At the elementary level, stu-
dents’ scores on CBM Passage Reading Fluency (also called Oral Reading Fluency) 
have strongly correlated with standardized reading measures (Fuchs, Fuchs, Hosp, 
& Jenkins, 2001; Wayman et al., 2007), suggesting that CBM Passage Reading 
Fluency provides the type of global indicator of reading that Deno and colleagues 
were seeking. Further, the measures have been found to distinguish among students 
of different skill levels, to be useful for identifying students who may be at risk 
for reading disabilities (Jenkins, Hudson, & Johnson, 2007), and to be sensitive to 
growth made in brief time periods (Wayman et al., 2007).

We draw from the assertion that reading can be assessed by asking students to 
read text and that reading fluency can be identified as a global indicator of proficient 
reading. We posit that writing fluency can be assessed by asking students to write 
in response to a prompt and identifying the fluency of their response as a global 
indicator of proficient writing. We acknowledge that, as global indicators, this ap-
proach to assessment will not completely capture all of the many important aspects 
of writing, but that the derived scores do have instructional utility. Specifically, 
these indicators provide scores that can indicate whether a student is on track to 
meet important academic standards or is experiencing difficulties and is in need of 
further diagnosis and intervention.

Defining Fluent Writing

Given our focus on developing global indicators of fluent writing, we turned to 
the CBM reading literature for a fluency definition. Deno and Marston (2006) de-
fine fluent reading as the way that “an individual easily processes text and that 
the processing of text encompasses both word recognition and comprehension” 
(pp. 179–180). Applying this definition to fluent writing, we propose that it is the 
way an individual easily produces written text, and that the generation of writ-
ten text encompasses both text generation (translating ideas into words, sentences, 
paragraphs, and so on) and transcription (translating words, sentences, and higher 
levels of discourse into print). Thus, fluent writing comprises the ease with which 
an individual both generates and transcribes text. Below, we describe these com-
ponents within a theoretical model of writing, provide operational definitions, and 
explain how the simultaneous execution and coordination of these components con-
tributes to fluent writing.
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Components of Fluent Writing: Transcription and Text Generation

The text generation and transcription components of writing are derived from the 
seminal work of Hayes and Flower (1980), whose model of writing specified three 
key writing processes: planning, translating, and reviewing/revising. Research-
ers (e.g., Berninger, 2009; McCutchen, 2006) have further specified this model for 
early writing development. For example, Berninger and Amtmann (2003) described 
a “simple view of writing” that divides the translating process into two key com-
ponents—text generation and transcription—and groups planning and reviewing/
revising into a third component comprising self-regulatory processes. These three 
components can be presented in a triangle, such as that depicted in Fig. 2.1, with 
transcription and self-regulatory processes at the base, and text generation at the peak 
(Berninger & Amtmann, 2003). Fluent execution and coordination of these com-
ponents is constrained by cognitive resources, such as short-term, long-term, and 
working memory (Berninger, 2009; McCutchen, 2006). Lack of automaticity (or 
execution of a process with little or no attention), in lower-level transcription pro-
cesses constrains the higher-order processes involved in text generation, as well as 
for planning, organizing, and revising written text. For example, in the case example 
presented at the beginning of this chapter, Toby’s lack of automaticity in handwriting 
and spelling constrains his attentional capacity such that he is only able to generate 
and write down simple words and sentences even though his ideas are more complex.

Further, development of the transcription and text generation components of 
writing occurs at multiple levels of language, including sub-word, word, sentence, 

Fig. 2.1  This figure illustrates the “simple view of writing” (Berninger & Amtmann, 2003). Flu-
ent writing is constrained by memory, which can influence automatic execution of any of three 
components. Further, in the measures described in this chapter, transcription and/or text generation 
are assessed at each level of language. While self-regulation is not directly assessed, scaffolding 
is provided in the form of verbal, visual (e.g., pictorial), or written prompts to support children’s 
regulation of each type of task
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and discourse levels (Whitaker, Berninger, Johnston, & Swanson, 1994). At the 
sub-word and word levels, children develop awareness of the alphabetic principle 
and graphophonemic relations and begin to transcribe letters, sounds, and words 
(Ehri, 1986). As children gain awareness and use writing conventions, they begin 
to separate words with spaces and thoughts with punctuation (Tolchinsky, 2006), 
and thus generate and transcribe text at the sentence level. As they gain knowledge 
of content and writing genres, they begin to produce longer units of writing at the 
discourse level (McCutchen, 2006).

Figure 2.1 illustrates how the component processes of writing (text generation, 
transcription, and self-regulation) are constrained by cognitive resources and de-
velop across four levels of language (sub-word, word, sentence, and discourse). 
Work conducted by our research teams and others has included a search for global 
indicators of fluent writing for young children by tapping transcription (early in de-
velopment) and text generation (as development progresses) across the four levels 
of language. Of note, self-regulatory processes in isolation have not been specific 
targets of these assessments; rather, the tasks provide varying levels of scaffolding 
(using verbal, visual, or written prompts) to support beginning writers’ regulation of 
text generation. Below, we provide operational definitions of the components of the 
writing construct to be measured (transcription and text generation).

Transcription

Transcription is the process of encoding sounds, words, sentences, and larger units of 
discourse into print, and involves both handwriting and spelling. For skilled writers, 
these skills are executed with automaticity, such that they require no or few attentional 
resources (e.g., Berninger, 2009; McCutchen, 2006; also see LaBerge & Samuels, 
1974 for a seminal paper on automaticity). Handwriting involves the integration of 
orthographic coding [the “ability to represent a printed word in memory and then to 
access the whole word pattern, a single letter, or letter cluster in that representation” 
(Berninger & Rutberg, 1992, p. 260)] and those components of the motor system 
involved in executing the process of translating those words into print (Berninger, 
2009). Beginning writers must allocate significant working memory resources to this 
orthographic-motor integration, which constrains higher-order writing processes. 
Handwriting is thus an important component of early writing assessment.

Spelling also involves orthographic coding, along with phonological coding 
(analysis and synthesis of phonemes in words; Berninger & Swanson, 1994). 
Like handwriting, spelling presents a significant challenge for young writers 
(e.g., Graham, Harris, & Fink-Chorzempa, 2002) and thus can place significant 
constraints on the development of other writing processes. Theoretical mod-
els of spelling development specify stages of qualitatively different approach-
es to spelling words (e.g., Ehri, 1986; Ehri & McCormick, 1998; Treiman & 
Bourassa, 2000a, 2000b). Accounting for differences across developmental 
stages in spelling is likely to be useful in capturing early indices of students’ 
developing progress in writing.
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Text Generation

Text generation is the process of “turning ideas into words, sentences, and larger 
units of discourse” (McCutchen, 2006, p. 123), and is distinct from transcription 
of ideas into actual print (Berninger & Swanson, 1994). Text generation draws on 
linguistic sources including vocabulary knowledge (Coker, 2006; Kim et al., 2011; 
Olinghouse & Leird, 2009) as well as knowledge about topic and genre (McCutchen, 
2006). As with transcription, text generation is constrained by cognitive resources. 
For example, working memory resources can constrain the writer’s ability to avoid 
grammatical errors and maintain linguistic connections within and across sentences 
and larger units of text. Long-term memory resources are related to knowledge of 
topic and genre, which can constrain quality and quantity of text generation.

Like transcription, text generation has been demonstrated to be uniquely related 
to overall writing proficiency. Skilled writers are able to generate language more 
efficiently than less skilled writers, and this efficiency is a key predictor of writing 
quality (Dellerman, Coirer, & Marchand, 1996). This finding holds true for children 
just beginning to develop writing skills. For example, Juel, Griffith, and Gough 
(1986) reported that the number of ideas generated uniquely predicted first and 
second graders’ writing quality. Efficiency with language leads to greater language 
production and thus longer texts, and text length has been found to provide a strong 
index of text production as well as quality (Berninger & Swanson, 1994).

While transcription and text generation are distinct components that are predictive 
of overall writing proficiency, there is a necessary interplay between these compo-
nents for writing to occur. Both transcription and text generation involve a complex 
coordination of component processes (e.g., orthographic, motoric, linguistic) that 
place considerable demands on cognitive resources needed for writing (Berninger, 
1999). We hypothesize that measures that tap the development and automatiza-
tion of transcription skills will serve as global indicators of children’s developing 
writing proficiency early on, but that measures that tap both text generation and 
transcription will quickly become important as children gain automaticity in their 
transcription skills. These global indicators are intended to identify students who 
may be at risk for writing difficulties and thus in need of further diagnostic assess-
ment (beyond CBM), which would be used to develop specific interventions. In 
the next section, we describe assessments that hold promise as global indicators of 
beginning writing in prekindergarten to third grades.

Assessment of Fluent Writing

Given our operational definition, our research teams have used the transcription and 
text generation constructs to develop and refine assessments that have potential to 
serve as indicators of fluent writing. As noted above, our work has been an exten-
sion of the work on CBM by Deno and colleagues which led to the development 
of the story prompt task (Deno, Mirkin, & Marston, 1982) which asks students to 
provide a written response for 3–5 min. An example of a story prompt completed by 
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a third-grade student is presented in Fig. 2.2. The prompts are scored using produc-
tion scores such as the number of words written, words spelled correctly, correct 
word sequences (which accounts for both spelling and grammar; Videen, Deno, & 
Marston, 1982), and correct minus incorrect word sequences (CIWS; Espin, Scier-
ka, Skare, & Halverson, 1999). The definitions and an example of these scores are 
presented in Table 2.2.

Early research on CBM-writing tasks indicated that the measures were relatively 
simple and efficient to administer and score, and produced scores that were reliable 
and valid indicators of student writing proficiency for upper elementary students 
(Deno, Mirkin, & Marston, 1982; Parker, Tindal, & Hasbrouk, 1991; Tindal & Park-
er, 1991). One concern, however, was that the measures did not produce scores with 
technical adequacy for younger writers as strong as those produced for older writ-
ers. The measures yielded somewhat weak reliability ( r = .20 – .47; Deno, Mirkin, 
& Marston, 1982), and weak to moderate criterion validity ( r = .23 – .63; Gansle et 
al., 2004; Jewell & Malecki, 2005; Parker et al., 1991) for elementary students (as 
young as first grade). One possible explanation is that young students are unable to 
fluently produce sufficient text within the short time period or without some scaf-
folding of the writing activity, which could result in floor effects. This suggests that 
other tasks may be more appropriate for assessing the fluency of developing writers.

In the following sections, we describe tasks that could be useful as indicators of 
fluent writing for students in prekindergarten to third grade at the sub-word, word, 
sentence, and discourse levels of language. Some of these tasks were developed by 
our respective research teams, but we include the work of other researchers who 
have contributed to the current understanding of how to assess beginning fluent 
writing. We also include recent studies on using Story Prompt with first- to third-
grade students. The tasks share the defining key criteria of CBM including align-
ment to curriculum and instruction, direct assessment of students, attending to a 
brief, standardized assessment time period, and using scoring procedures to index 
various aspects of writing proficiency which have the potential to monitor progress. 
Fluency, as operationally defined above, has been one of the aspects guiding the 
development of these measures.

Fig. 2.2  Story prompt response from a third-grade student
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Table 2.3 lists the assessments and the proposed grade levels when they may 
be useful as indicators of fluent writing. In the early grades (prekindergarten and 
kindergarten), the curriculum focus is on writing names, letters, and words. For stu-
dents in kindergarten and first grade, the curriculum focus is on spelling words and 
writing text, such as sentences, and these foci continue and expand for second and 
third grades. Both transcription and text generation skills are included in aspects of 
the assessments. In the following sections, we describe assessments that have the 
potential to serve as indicators of fluent writing at the sub-word, word, sentence, 
and discourse levels of language.

Name Writing

At the prekindergarten level, the development of writing is nascent, and the devel-
opment of emergent literacy skills and fine motor skills that support writing are 
often the focus. Drawing and simple writing are the types of activities in which 
children might engage, especially in earlier months of prekindergarten (Tolchinsky, 
2006). Some early writing skills that children demonstrate include writing their 
names and letters of the alphabet. Writing may also be supported by a teacher who 

Table 2.2  Scoring procedures
There are several scoring procedures typically applied to index writing production. This text is 
a first-grade student’s response to a Sentence Writing (Coker & Ritchey, 2010) prompt in which 
she was asked to write about an animal that lives on a farm. This was completed in the spring 
of first grade.

Words written scores are based upon the total number of words written, defined as any letter or 
group of letters separated by a space. Correct spelling and usage are not considered in the num-
ber of words written. In this example, there are six words written (a, elyfint, live, on, a, farm).
Word spelled correctly scores are based upon the number of words that are spelled correctly, 
given the context. In this example, there are three correctly spelled words (on, a, farm).
Correct word sequence scores take into account the correct spelling of each word, mechan-
ics (capitalized word at the beginning of each sentence, terminal punctuation), and syntax of 
the response. A correct word sequence is marked with a ̂  and an incorrect word sequence is 
marked with a ˅ . In this example, there are two correct word sequences. Correct minus incorrect 
word sequence is the difference score. In this case, there are five incorrect word sequences and 
the score is a negative number.

˅ A ˅  elyfint ˅live ˅  on ^ a ^ farm ˅
Correct letter sequence scores take into account the sequence of the letters within words. The 
first letter and the last letter in a word earn 1 and each correct sequence earns 1.

^o^n^ = 3 correct letter sequences
^f^a^r^m^ = 5 correct letter sequences

^e^l ˅y˅f˅i ˅n^t^ = 4 correct letter sequences
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transcribes a student’s ideas or students might dictate “stories” to adults, who then 
write them down.

One writing indicator that could represent a global indicator of early writing 
at this level is name writing. Knowing how to write one’s name appears to be an 
important literacy achievement; it is often the first word children learn to write be-
cause of its social and personal significance to the child. When children first start 
writing, they use the first letters of their names to spell the other words (e.g., Both-
de Vries & Bus, 2008, 2010; Treiman, Kessler, & Bourassa, 2001) perhaps serving 
as a model for future writing (Bloodgood, 1999; Ferreiro & Teberoksy, 1982). Past 
research has highlighted the important role of name writing in the development of 
children’s spelling skills. For example, the National Early Literacy Panel (Lonigan, 
Schatschneider, & Westberg, 2008) reported a moderate relation of r = .36 between 
children’s name writing and spelling. Other research has shown that children with 
more advanced name writing skills spell more words (Bloodgood, 1999; Both-
de Vries & Bus, 2010; Levin et al., 2005; Puranik & Lonigan, 2012; Treiman & 
Broderick, 1998; Welsh, Sullivan, & Justice, 2003) leading some to suggest that 
name writing could be used as a screener for children’s literacy skills (Haney, 2002; 
Haney, Bissonnette, & Behnken, 2003).

Assessing name writing skills can occur formally or informally, whereby chil-
dren write their names in authentic situations (e.g., drawing or signing their names 
on greeting cards). An alternative to counting the number of letters or percentage 
of letters is the use of a rubric scoring system. Several rubrics have been proposed 
to examine name writing (Bloodgood, 1999; Diamond, Gerde, & Powell, 2008; 
Haney et al., 2003; Levin & Bus, 2003; Molfese et al., 2011; Puranik & Lonigan, 
2011; Sulzby et al., 1989; Welsh, Sullivan, & Justice, 2003). To evaluate whether 
any one of these rubrics was a better indicator of children’s name writing skills, 
Puranik, Schreiber, Estabrook, and O’Donnell (2014) compared children’s name 
writing scores on six rubrics including a simple scale and examined their correla-
tion to literacy skills (letter names, letter sounds, phonological awareness, print 
concepts, and spelling) in a sample of 346 preschool children pooled across four 
studies. Scores from these rubrics were highly correlated ( r = .62–.94). Further, 
the magnitude of the correlations among name-writing scores and children’s lit-
eracy skills were similar ( r = .52–.60 for letter writing, r = .30–.39 for phonological 
awareness, r = .38–.49 for letter sounds, r = .46–.54 for spelling). This suggests that 
these rubrics provide similar indices of children’s name writing skills at a single 
assessment point.

Despite the importance of name writing, it has limited use as an indicator of early 
writing development. For example, researchers have noted incongruities in chil-
dren’s knowledge regarding the letters in their names, and that children often write 
their names by rote. These observations have led researchers to contend that name 
writing reflects procedural, rather than conceptual knowledge of letters (Drouin & 
Harmon, 2009; Puranik & Lonigan, 2012). Another limitation is that, by the end of 
preschool, some children appear to be able to write their names conventionally and 
their scores (across multiple studies) show ceiling effects (e.g., Puranik & Lonigan, 
2012). In summary, name writing appears to be better suited for predicting literacy 
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skills early in the preschool years, but may not be robust for tracking children’s 
progress in acquiring and developing fluent writing over time.

To date, researchers have not focused specifically on fluent name writing, yet 
fluency is likely an important aspect of name writing. Most teachers have worked 
with at least one student who slowly and laboriously writes his or her name on 
school papers, indicating dysfluent name writing. How to capture fluent name writ-
ing is a measurement challenge. While timing a child’s writing is one way to capture 
fluency, it may not generalize to a child’s name or provide a meaningful score as 
names can vary in length and in the difficulty of the letters in any given name. Given 
the limitations with name writing noted above, and difficulties related to assessing 
fluent name writing, other approaches to assessing development of fluent writing 
are likely needed.

Letter Writing Assessments

By the end of the preschool years, children’s letter writing may be a better indica-
tor of developing writing skills than their name writing skill. Assessments of letter 
writing have included copying, production (untimed), and fluent production (timed) 
measures. For example, VanDerHyden, Witt, Naquin, and Noell (2001) studied a 
letter-copying task that was part of a readiness battery with kindergarten students. 
Students were provided with a sheet of paper with uppercase letters, and instruction 
to copy the letter in a space below each letter; the score was the number of correct 
letters copied in 1 min. Alternate-form reliability for two forms (one with letters 
in ascending order and one with letters in descending order) was r = .68 ( N = 107). 
Validity coefficients of Letter Copying with the Onset Recognition Fluency subtest 
of Dynamic Indicators of Basic Early Literacy Skills (DIBELS; Good & Kaminski, 
1996), and the Comprehensive Inventory of Basic Skills (Brigance, 1999) ranged 
from r = .21 to .59 ( N = 40). These coefficients do not provide evidence of strong 
reliability and validity, but the order of letters within the alternate forms was noted 
by the authors as possibly introducing measurement error, and the measures were 
administered in the second half of kindergarten in a group-administration format. 
It is possible that this type of task could be a better index for younger children’s 
writing, such as in prekindergarten or early kindergarten, but the recommendation 
requires additional research.

Untimed letter production tasks, such as Letter Writing (Ritchey, 2006), are 
designed to capture transcription skills and students’ ability to reproduce letters 
from memory (i.e., without a model). In this assessment, letters of the alphabet are 
dictated to students and they are asked to write both the upper and lowercase letter 
provided by the examiner. Subsequent letters are dictated when the student is fin-
ished or indicates “I don’t know.” In pilot work, letters were administered at a set 
interval (every 10 s, similar to spelling CBM administration procedures described 
below), but it was determined to be difficult for many students who were unable 
to quickly retrieve the letter form and write the letters, overly time consuming for 
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students who wrote letters quickly, and frustrating for students who identified an 
error, but did not have time to make corrections. Responses are scored based on 
whether or not the letter could be identified in isolation. Alternate forms of Letter 
Writing were created by randomly selecting the order of letters. Split-half reliability 
coefficients for letter writing was in the .90 range, suggesting appropriate internal 
consistency of all forms. The concurrent criterion-related validity coefficients were 
.61 with the Test of Early Reading Ability, 3rd Edition (TERA-3; Reid, Hresko, & 
Hammill, 2001), and .72 with Letter Name Fluency.

Two limitations of an untimed measure include the possibility of ceiling effects 
(especially at later stages of letter writing development) and the inability to capture 
individual differences in fluent production. One alternative is to determine the total 
amount of time required to complete all letters and calculating a rate score (number 
of letters per minute). Another approach would be to further investigate dictating 
letters at a set interval, which would also allow for standardization for small-group 
or whole-class administration. Others have investigated letter writing fluency tasks, 
described below.

Letter writing fluency—the ability to retrieve and write the letters of the alpha-
bet as quickly as possible under timed conditions—has been repeatedly shown to 
be an excellent indicator of both writing quality and quantity in older elementary 
school children (e.g., Graham, Berninger, Abbott, Abbott, & Whitaker, 1997; Jones 
& Christensen, 1999). Berninger and Rutberg (1992) found a strong correlation 
between the letter fluency task and spelling and composition in their study with 
first-, second-, and third-grade students and concluded that the letter fluency task as 
measured in 15 s has adequate concurrent validity for assessing beginning writing.

Puranik, Al Otaiba, Folsom, and Greulich (2013) recently examined Letter 
Writing Fluency in a sample of 102 kindergarten children. Participants were 
recruited from eight classes in four different schools across three districts. The 
mean age of the participants was 69.6 months ( SD = 4.3), and gender was equally 
distributed (50 males and 52 females). Letter Writing Fluency was administered in 
a whole-class format and children were asked to write the lowercase letters of the 
alphabet as quickly as possible in 1 min. In addition, these children were also indi-
vidually administered standardized tests of spelling and writing. Assessments were 
completed at the end of the fall.

The mean score for Letter Writing Fluency was 4.72 letters per minute 
( SD = 4.06; Range 0–23), although there was large variability in the number of let-
ters children were able to write. The score was positively related to DIBELS Letter 
Naming Fluency ( r = .58). Criterion-related validity was investigated using the Test 
of Early Written Language-3 (TEWL-3; Hresko, Herron, Peak, & Hicks, 2012) 
and the Spelling subtest of the Woodcock–Johnson Tests of Achievement, Third 
Edition (WJ-III; Woodcock, McGrew, & Mather, 2001, 2007). The validity coeffi-
cients were r = .56 and r = .44 respectively. Thus, preliminary evidence indicates that 
Letter Writing Fluency may present a potential option for assessing writing fluency 
in kindergarten children.

An important consideration in assessing letter writing as an indicator of fluent 
writing of young children is that all letters are not of the same difficulty, both in 
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letter formation and in children’s exposure, and opportunities to practice them. 
Recently, Puranik, Petscher, and Lonigan (2012) examined the dimensionality and 
reliability of letter writing skills in 471 preschool children with the aim of deter-
mining whether a sequence existed in how children learn to write the letters of the 
alphabet. Puranik et al.’s findings indicate that the ability to write some letters is 
acquired earlier than the ability to write other letters. Furthermore, results of item 
response theory analyses indicated the existence of an approximate developmental 
sequence to how children learn to write uppercase letters. The 10 easiest letters 
for preschool children to write were O, L, A, B, X, T, H, I, E, and P, whereas the 
10 hardest letters to write were J, K, Z, G, Q, V, U, Y, R, and N. In contrast, there 
was less evidence for a clear sequence for letters in the middle range of difficulty 
(e.g., C, D, F, S, and W). These findings could be considered when assessing let-
ter writing. For example, if the goal is to assess school readiness, letters with high 
discrimination but low difficulty (e.g., L, I, T, X, and E) could be included in the 
assessment; however, to distinguish among more precocious students, letters with 
high discrimination and high difficulty (e.g., G, K, R, U, V, and Y) may be more ap-
propriate. These findings could aid in monitoring children’s progress of developing 
letter-writing skills.

Word Writing and Spelling

Transcribing, spelling, and generating words are important to writing development. 
It is possible that tasks involving such transcription processes at the word level 
could serve as a global indicator of beginning writers’ overall writing proficiency. 
These tasks may have the greatest utility for students in kindergarten and first grade, 
or as indices of spelling. Word-level measures such as copying, dictation, and spell-
ing target the transcription component of writing, and word generation tasks also 
target the text generation component of writing.

Lembke, Deno, and Hall (2003) investigated a copying task that fits into the 
framework as a word-level transcription assessment. In Word Copying, students are 
presented with written words and are asked to copy each word on lines below the 
word, and the score relates to the amount of text produced in 2 min. Scores include 
correct letter sequences, number of words, and words spelled correctly. The crite-
rion measure was an “atomistic” score from a story prompt writing sample (average 
words written, words spelled correctly, correct word sequences, and correct minus 
incorrect word sequences). The validity coefficients ranged from r = .06 to .69 for a 
sample of 15 students enrolled in a summer program (rising second grade). Twelve 
of the 24 coefficients were at or exceeded .50. These values may be relatively low, 
given the developmental level and small sample of students.

In a second study examining Word Copying, Hampton, Lembke, and Summers 
(2013) investigated several characteristic of the measure, including the effect of 
manipulating the amount of time that students were provided to write and the effect 
on reliability and validity. A 1, 2, and 3 min score (using correct word sequences 
and correct minus incorrect word sequences) was calculated. The alternate-form 
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reliability for 1 min ranged from .34 to .72, for 2 min ranged from .56 to .86, and 
for 3 min ranged from .71 to .98. The 3 min score generally yielded stronger coef-
ficients. Using the Test of Early Written Language, 2nd Edition (TEWL-2; Hresko, 
Herron, & Peak, 1996) as the criterion measure and the correct word sequence score, 
the validity coefficient for 1 min was .39, for 2 min was .30, and for 3 min was .44. 
Similar to reliability, the 3 min score generally yielded the strongest validity coeffi-
cients. These tasks show promise as a way to assess fluency with transcription tasks, 
but may be most appropriate for younger students. This task has not, however, been 
studied with younger students.

Other tasks at the word level of language require students to generate the spelling 
of the word. Spelling assessments vary in the type of words that children are asked 
to spell (regular or irregular spellings, real words or nonsense words) and the man-
ner in which the assessments is administered (timed, untimed, delivery of words at 
set intervals, or timing of completion of the whole task). Spelling tasks can assess 
word-level transcription, using decodable and high-frequency-word spelling words. 
For example, Spelling Fluency includes words that are randomly drawn from the 
Harris–Jacobson grade-level list (Deno, Mirkin, Lowry, & Kuehnle, 1980; cited in 
Fuchs, Fuchs, Hamlett, & Allinder, 1991a, 1991b). Students are asked to spell a new 
word every 10 s for 2 min. The scores calculated include correct words and correct 
letter sequences per minute. Tindal, German and Deno (1983, cited in Shinn & 
Shinn, 2002) reported alternate-form reliability ranging from .86 to .97 (for grades 
1 to 6). Deno, Mirkin, Lowry, & Kuehel, (1980) reported strong test-retest reli-
ability of .92, and criterion validity based on the Spelling subtest of the Peabody 
Individual Achievement Test and the Spelling subtest of the Stanford Achievement 
Test ( r = .73 and .99), respectively for second- to sixth-grade students.

This measure is similar to the CBM spelling materials available from AIMSweb 
(Shinn & Shinn, 2002). Spelling words are randomly selected from grade-level sets 
of words taken from words that were found across available literacy curriculum. 
There are 20 alternate forms of first-grade probes, and 30 alternate forms of second- 
and third-grade probes. One important difference between the spelling measures is 
the interval of word delivery by the examiner. For students in first and second grade, 
a new word is administered every 10 s and for students in third grade and above, 
a new word is administered every 7 s. Responses are scored for correct words and 
correct letter sequences.

Another task, Word Dictation (Lembke et al., 2003) adopted the procedures for 
developing CBM spelling tasks, but for this version sets of spelling words were 
identified for each alternate form by sampling words from the Basic Elementary 
Reading Vocabulary list (Harris & Jacobson, 1972). To develop alternative forms, 
words are randomly selected and administration is timed (3 min). The administra-
tion of this task differs from CBM Spelling. In this task, words are dictated when 
students have finished writing the previous word or after a 5 s pause. Each word is 
repeated twice and responses are scored for correct letter sequences, words written, 
and correct words.
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Word Dictation was also investigated in the Hampton et al. (2013) study, and 
the time interval was manipulated. The words for this version of the measure were 
selected from the Fry 100 Words List (Fry, Kress, & Fountoukidis, 1993) that had 
seven or fewer letters. The alternate-form reliability for 1 min ranged from r = .55 
to .92, for 2 min ranged from r = .66 to .92, and for 3 min ranged from r = .58 to 
.97. The validity coefficients for this measure (also using TEWL-2 as the criterion 
measures) were r = .50 for 1 min and r = .48 for both 2 and 3 min. One important dif-
ference between the two tasks is the time structure. With a standardized, set timing 
of Word Dictation, it is possible that the assessment could be group administered, 
but approaches that provide subsequent words to students as they finish may be 
most appropriate for individual administration. These are important considerations 
if spelling or other word-level tasks are to be efficiently administered.

The ability to spell a word provided by an examiner or teacher is one aspect of 
word-level writing skills. However, another aspect of writing competence is the 
ability to generate words and transcribe them efficiently. McMaster, Du, and Pe-
tursdottir (2009) developed a task that required students to generate, as well as to 
spell, words using letter prompts. Three alternate forms of Letter Prompt were ad-
ministered to 50 first graders. Each form contained four pages with 54 letters total 
(with repetition). The letters were selected randomly from all letters in the alphabet 
except q, x, y, and z, which are used infrequently by first-grade students (these let-
ters were used for practice). After practicing with the examiner, students wrote as 
many words as they could that started with the letters provided. After 3 and 5 min, 
students circled the last letter they had written. Letter Prompt was scored for words 
written, words spelled correctly, and correct letter sequences. Alternate-form reli-
ability ranged from r = .38 to .81, with stronger reliability for 5 min samples. An 
important consideration is the grade level; this measure may be a better indicator 
for younger writers.

The preliminary efforts in developing CBM measures for young children suggest 
that assessing sub-word and word-level components writing may serve as global 
indicators of fluent early writing. In turn, future research is needed to test whether 
these components are indeed good predictors of longitudinal growth, whether the 
skills they assess are malleable to early intervention, and whether the measures 
themselves are sensitive enough to growth to be used diagnostically in a RTI frame-
work. These tasks focus heavily on transcription skills, which align to one compo-
nent of the theoretical model. Several tasks (such as Word Copying or Spelling) 
may be applicable for students who are younger than those originally studied, which 
may be an avenue for additional research. For example, Word Copying or other 
word-level tasks (spelling simple words, such as c-v-c words) may be tasks appro-
priate for prekindergarten or kindergarten and serve to fill in a gap in assessments 
for young writers.
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Sentence Writing

Several measures have been developed that focus on fluent writing of sentences, 
and these measures serve to bridge the word-level writing proficiency to extended 
discourse-level writing proficiency. For young children, especially in kindergarten 
and beginning first grade, measures that assess only word-level writing proficiency 
may not be challenging enough (e.g., spelling c-v-c words). An assessment that asks 
students to write a sentence or several sentences may be one way to elicit extended 
responses, but in a way in which there are modest expectations for the length of the 
text produced, the topical complexity (such as the number of details), and the type 
of planning required. Assessments at the sentence level have included measures that 
focused on transcription only or included both transcription and text generation. 
These measures have typically been conceptualized for students in later kindergar-
ten and first grade, as they may have limited applicability for students with more 
fluent writing proficiency.

One measure, Sentence Copying (Lembke et al., 2003, McMaster et al., 2009, 
McMaster, Du, Yeo, Deno, Parker, & Ellis, 2011), is a sentence-level measure de-
signed to focus only on transcription. In each alternate form, students are presented 
with 15 sentences of 5–7 words in length, and each sentence has a lined space under 
each sentence on which the students are to copy the sentence. Sentences are select-
ed from existing language arts curriculum materials and include simple statements 
such as “We have one cat.” and questions such as “Who is he?” After a practice item, 
students copy the remaining sentences in the allotted time (3 and 5 min time periods 
were studied). Sentences are scored for words written, words spelled correctly, cor-
rect word sequences, and correct minus incorrect word sequences.

Lembke et al. (2003) also investigated a sentence writing measure, and they re-
ported a wide range of validity coefficients, with as low as −.01 and as high as .81 
(19 of the 32 coefficients exceeded .50) using a writing sample as the criterion mea-
sure for rising second-grade students using a 3 min administration. The criterion 
measure was a writing sample evaluated using atomistic scores (described above). 
McMaster et al. (2009) compared scoring options and administration time (3 vs. 
5 min) and reported reliability coefficients ranging from r = .71 to .85 for 3 min and 
r = .76 to .89 for 5 min for first-grade students. Validity coefficients ranged from 
r = .48 to .67 for 3 min and r = .43 to .67 for 5 min using a teacher rating as the cri-
terion measure; r = .67 to .70 for 3 min and r = .53 to .65 for 5 min using a writing 
sample scored using a district writing rubric as the criterion; and r = .33 to .44 for 
3 min and r = .32 to .47 for 5 min using the Test of Written Language, 3rd Edition 
(TOWL-3, Hammill & Larsen, 1996) as the criterion measure. Overall, Sentence 
Copying appears to have reasonable technical characteristics. However, one impor-
tant limitation include that many teachers view copying as having low-face validity, 
that is, they do not view copying as an end goal of writing instruction which could 
limit adoption.

In the Lembke et al. (2003) study, Sentence Copying was compared to Sentence 
Dictation, another task that includes transcription skill, but required students to 
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spell words in the sentences and attend to mechanics such as capitalization and 
punctuation, rather than only copy the presented sentences. Text generation was 
not a construct assessed in this measure. For Sentence Dictation, sentences that 
ranged in length from 5–7 sentences are dictated to students two times, and stu-
dents are provided with the next sentence after a 5 s pause or completion of the 
sentence. Sentences are administered for 3 min each, and the total amount of text 
produced by the student in that time period is determined. Responses were scored 
for words written, words spelled correctly, correct word sequences, and correct mi-
nus incorrect word sequences. Validity coefficients ranged from r = .27 to .92, with 
28 of the 32 coefficients greater than .50. The criterion measure was an “atomistic” 
score described above. In general, the technical adequacy of Sentence Dictation was 
stronger than Sentence Copying for this grade level when atomistic ratings of writ-
ing were evaluated. It also served to address concerns expressed by teachers who 
believed that copying tasks were not valid indicators of writing. However, copying 
may be an indicator of how well a writer can coordinate the orthographic-motor 
processes required in writing and appropriate for younger students as an indicator 
of fluent writing.

Two other sentence writing assessments have been developed, and include atten-
tion to fluent transcription and text generation. Sentence Writing (Coker & Ritchey, 
2010) was developed as a measure that could capture both text generation and tran-
scription. In this task, students are given a topic and asked to generate text. In this 
task, two sentence prompts are orally presented. (e.g., Chocolate chip cookies are 
yummy. Write about your favorite cookie.). After each prompt, students are given 
up to 3 min to write. Student can respond by writing a word, phrase, or sentence 
in response to the sentence prompt. Students’ written production is evaluated using 
words written, words spelled correctly, and correct word sequences. (A qualitative 
score was also developed and is discussed below). Alternate-form reliability for 
Sentence Writing was r = .74 and .77 for words written, r = .80 and .75 for cor-
rect word sequences, and r = .81 and .87 for words spelled correctly for students in 
spring of kindergarten and first grades. Using Test of Early Written Language; 2nd 
Edition (TEWL-2; Hresko, Herron, & Peak, 1996) for kindergarten as the crite-
rion variable, and WJ-III Spelling, Writing Samples, and Broad Writing composite 
scores (WJ-III; Woodcock et al., 2001, 2007) as the criterion measures for first 
grade, the validity coefficients ranged from r = .20 to .46 in kindergarten and r = .25 
to .57 for first grade.

A final measure of sentence-level writing that includes attention to both transcrip-
tion and idea generation is called Picture-Word (McMaster et al., 2009; McMaster, 
Ritchey, & Lemke, 2011). Fluent writing is assessed via students’ responses to a 
picture paired with a word that describes the picture (e.g., a picture of a hat with the 
word hat written below it). Providing a picture and a word for students was hypoth-
esized to provide support and scaffolding for first-grade students who were begin-
ning writers. Students are given 3 min (after a practice item) to write, and there are 
multiple pages of picture-words so that students will not finish the entire task in the 
allotted time. Students’ writing production is scored for the words written, words 
spelled correctly, and correct word sequences. Reliability estimates ranged from 
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r = .44 to .79 for 3 min and r = .53 to .79 for 5 min, and validity estimates ranged 
from r = .37 to .60 for teacher rating and writing sample scored using a district 
rubric, but were not statistically significant for the TOWL-3.

In summary, several assessments have focused on fluent sentence writing and 
have included copying, dictation, and composition formats. The reliability of the 
measures varies, often depending on which score is being considered. A clear pat-
tern of which score (or scores) is the most appropriate index of sentence-level writ-
ing proficiency is not evident. For some tasks, words written yields highest reliabil-
ity estimates, but other scores yield higher reliability for other assessments. Validity 
estimates vary widely, and these differences could be attributed to different criterion 
measures used across studies (i.e., different norm-referenced assessments, teacher 
rating, and writing samples scored with divergent approaches).

One challenge for assessments that require text generation (both for sentences 
and discourse-level tasks) is that the writer produces the text that is evaluated, not 
the assessment. Consider a spelling assessment. The examiner provides the word, 
and the student is asked to reproduce that word; scoring is based on the degree to 
which the student’s response matches the correct spelling. In an assessment that re-
quires text generation, students can produce text that varies widely. In the sentence 
writing assessment described above, first-grade students responded to the prompt 
about animals that lived on a farm with widely varied responses, including writing 
about only one animal such as a goat or a horse, writing about multiple animals that 
could live on a farm, including common pets such as dogs and cats, and a response 
about an elephant (which though unlikely, is not impossible). Students could select 
words that were easier to spell (e.g., pig instead of alpaca), use a strategy for spell-
ing that uses words found in the printed prompt for support in spelling (e.g., use 
the spelling of animals and farm as models), or use invented spelling for words 
that were unfamiliar. The spelling of words may be legible to the scorer, but the 
child’s spelling of some words can be so unclear that a scorer is unable to identify 
the intended word or meaning. In scoring writing samples, there are no correct or 
incorrect criteria for children’s wide range of ideas, which can challenge the de-
velopment and implementation of any scoring system. Thus, the state of the art of 
assessment to inform instruction and intervention is evolving. Converging evidence 
supports the promise of writing CBM for diagnostic purposes, but there are not 
yet a set of evidence-based practices for assessing progress or for conceptualizing 
benchmarks. These scoring challenges extend to discourse-level writing measures, 
which include those described in the following section.

Discourse Writing

A final set of assessments that could be used as indicators of fluent writing are 
discourse-level measures. These measures ask children to write extended text, typi-
cally on a single topic. These assessments have the greatest potential to be used as 
global indicators across grade levels, as the ability to write extended discourse with 
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fluency is an important goal for skilled writers. The procedures and prompts could 
be applied both within and across grade levels. Fluent writers are able to plan and 
organize ideas quickly and efficiently as well as revise and edit text. For younger 
children, discourse-level writing abilities may be limited to short, simple narratives 
or descriptions. An important consideration in developing discourse-level tasks for 
beginning writers is that text generation may be constrained by transcription skills. 
Students may be unable to produce large amounts of text, and students may get 
“stuck” trying to spell words or transcribing ideas as quickly as they can generate 
ideas. In the following sections, we describe several measures that have been inves-
tigated with younger writers.

As described above, the first CBM measure of written expression was the CBM 
Story Prompt designed by Deno and colleagues. The task was originally proposed 
for first to sixth grades (Deno, Mirkin, & Marston, 1982; Marston & Deno, 1981), 
and has been evaluated across these grade levels and extended upward to 11th grade 
(see McMaster & Espin, 2007, for a review). In contrast to CBM for reading and 
math, Story Prompt is the only CBM measure with assessment probes that are not 
grade-specific, and it can be used both within and across grades. In this task, students 
are provided with a story starter such as One day, I was walking home from school 
and … or It was a cold and rainy day. All of a sudden … and were asked to finish the 
story. Sets of writing prompts are available from AIMSweb (http://www.aimsweb.
com) and the Research Institute on Progress Monitoring (www.progressmonitoring.
org). Each alternate form of Story Prompt includes a sentence or sentences that 
begin a story, a set of ellipses, and lined writing space for the student to write the 
story. Students are provided with 1 min to plan and 3 or 5 min to write (which 
can vary by developer or grade level). Scores are based on the amount of text that 
students can produce in the given time period and include counting words written, 
correctly spelled words, correct letter sequences, correct word sequences, and/or 
correct minus incorrect word sequences. McMaster and Espin (2007) summarized 
11 studies (out of 28 reports and published articles) that included first-, second- 
and third-grade students and reported a wide range of reliability ( r = .006–.96) and 
validity ( r = −.24–.88) using scores for words written, words spelled correctly, per-
centage of words spelled correctly, correct word sequences, percentage of correct 
word sequences, correct minus incorrect word sequences, and T-units, an index of 
mature and large words.

More recent work has studied this assessment in early elementary grades 
(McMaster et al., 2009; Ritchey & Coker, 2013). Some of this work has taken a 
comparative approach by studying whether a novel measure (or measures) yields 
scores that improve the reliability and validity of scores as compared to those of 
Story Prompt. For example, McMaster et al. (2009) used Story Prompt and evaluat-
ed whether 3 or 5 min of writing time was most appropriate in yielding reliable and 
valid scores. After 3 min, the examiner instructed participants to stop and raise their 
pencils in the air, circle the last letter they had written, and then continue writing 
until a total of 5 min had passed. Students wrote in response to a single prompt, but 
the text produced in each time interval was evaluated. Test-retest reliability ranged 
from r =  .49 to .74 for 3 min and r = .45 to .83 for 5 min. Alternate-form reliability 
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was similar, and also slightly higher for 5 min ( r = .47–.75 for 3 min; r = .54–.83 for 
5 min). Ritchey and Coker (2013) investigated the validity of Story Prompt, using 
the WJ-III Writing Samples (Woodcock et al., 2001, 2007) and a teacher rating 
(1–5 scale) as the criterion measures. The validity coefficients with WJ3 Writing 
Samples ranged from r = .31 to .42 and with teacher rating ranged from r = .30 to .48 
for words written, words spelled correctly, and correct word sequences.

Several other measures have added a picture to the writing prompt. Picture Story 
(Ritchey & Coker, 2013) is a discourse-level writing task for first to third grades. 
Students are asked to write a story that matches the events portrayed in a sequence 
of three pictures. To date, three sets of prompts have been evaluated by Ritchey and 
Coker. The prompts include three pictures (e.g., a picture of a dog covered with 
mud, a picture of a dog getting a bath, and a picture of a clean dog) and students are 
asked to write for 5 min. Production scores (including words written, words spelled 
correctly, and correct word sequences) have been evaluated. The alternate-form re-
liability ranged from r = .78 to .83; validity coefficients ranged from r = .37 to .42 
with WJ-III Writing Samples (Woodcock et al., 2001, 2007) and r = .29 to .50 with 
a teacher rating.

The tasks described above have primarily been focused on narrative writing, 
which is an important writing skill, but it is not the only writing skill and curriculum 
focus. These other genres become increasingly more prevalent in the curriculum 
and writing expectations as students move to higher grades, including broader cov-
erage in the Common Core State Standards. McMaster and Campbell (2008) exam-
ined whether different types of discourse-level measures (e.g., narrative, exposi-
tory, and photo writing prompts) that were previously validated with older students 
in fifth and seventh grades could serve as indicator for third-grade students. They 
found that photo prompts (which prompted students to write about a photograph of 
children doing school-related activities) administered for 3 min yielded sufficient 
reliability ( r > .70) and validity ( r > .50) coefficients within third grade, and that 
5 min narrative story prompts administered for 5 min yielded sufficient reliability 
and validity coefficients.

In describing one final assessment, we offer an example of a task designed for 
discourse-level writing that was deemed not appropriate for beginning writers be-
cause of a possible misalignment of the complexity of the writing demand and 
the writing abilities of first-grade students. McMaster et al. (2009) extended three 
discourse-level tasks to first grade. These tasks included Story Prompts and Photo 
Prompts (described above), and a third type of prompt: Picture-Theme. Picture-
Theme included three prompts with the following themes that were identified (with 
participating teachers’ help) as familiar to most first graders attending the US public 
schools in the Midwest: birthday party, snow, and school. These prompts used high-
frequency words from the literacy curriculum (Houghton-Mifflin). Each theme con-
tained four pictures with one related word underneath each picture. For example, 
the “birthday party” theme had the pictures of cake, friends, home, and birthday bal-
loon with the four words: cake, friends, home, and birthday printed underneath each 
picture. The pictures came from Microsoft clip art and researcher-drawn pictures. 
Each theme prompt was printed at the top of the first page with lines printed below 
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the prompt. Additional lined sheets were provided in case they were needed. Before 
students were asked to write, the examiner first instructed the participants to iden-
tify the four pictures provided and then asked the participants to write a story based 
on the theme. Picture-Theme was scored for words written, words spelled correctly, 
and correct word sequences, and correct letter sequences for 3 and 5 min writing 
time. None of these scoring procedures produced particularly strong alternate-form 
reliability ( r = .31–.70, with most coefficients below .70). Criterion-related validity 
coefficients with teacher ratings and a district scoring rubric ranged from r = .37 
to .60. Given relatively weak reliability coefficients compared to other sentence-
level (Picture-word) and discourse-level (Story Prompt) measures, Picture-Theme 
was not viewed as promising indicator (McMaster et al., 2009).

We offer this example to illustrate the challenge of identifying appropriate tasks 
and appropriate supports in measures designed as fluency-based global indicators 
for beginning writers. Specifically for Picture-Theme, we speculate that the writing 
demands and the cognitive resources required to use a specific set of words and to 
write on a specific topic may have required more planning and organization on a 
student’s part than a more open-ended prompt. Another possible explanation is that 
perhaps 5 min was not enough time for students to plan, organize, and transcribe 
ideas, and a longer time period may be necessary to yield sufficient text to evalu-
ate. These aspects of the assessment may, in part, explain the weaker reliability 
and validity coefficients. Another concern with the use of CBM at early stages of 
writing development is the complexity of the task and determining the appropriate 
writing topic for students. The topic has to be familiar to the students, so that a lack 
of background knowledge or variability in background knowledge across students 
does not impact the validity of score. Creating sufficient alternate forms with topics 
of equivalent difficulty is especially challenging for measure development.

Recent work has resulted in several sets of discourse-level measures that ad-
dress these challenges. For example, the prompts have been evaluated to ensure that 
they support children writing about familiar topics, so that individual differences in 
background knowledge or life experiences do not negatively affect text generation. 
Children can select topics (and vocabulary) that are familiar, which could support 
transcription of their ideas into written text. However, open-ended prompts often 
yield responses that widely vary across children. In response to a prompt such as 
One day, I was walking home from school and … an individual child could write a 
personal narrative about what happens each day when she walks home, a personal 
narrative about an interesting walk home one day last year, or a fantasy about meet-
ing a pink dragon while walking home one day. Or a child such as Toby may write 
simple sentences such as “I like school” or “I saw my friend.” The ability to write 
on any topic might support fluent writing or might hinder it, especially if children 
have difficulty planning or generating ideas. As an alternative, tasks that provide 
more specific topical focus such as a specific story might provide approaches to 
evaluate the content of what was written or support children who have difficulty 
with text generation.

A limitation of discourse-level measures as indicators of fluent writing is that 
children, especially young children, do not produce a great deal of text. If children 
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are exerting a great deal of cognitive resources into generating and transcribing 
ideas, text production may be limited given the allotted writing time. Efficient ad-
ministration is a key characteristic of CBM, but children write slowly and produce 
little text in 2 or 3 min. This can impact the reliability, validity, and utility of scores 
to inform instructional practices for progress monitoring. Increasing the duration of 
writing time or including multiple items (e.g., three stories instead of one) might 
improve technical features of the measures, but could become both fatiguing for 
students and cumbersome for teachers to administer and score. Clearly, discourse-
level CBM writing measures also require future research to provide clearer expec-
tations for growth and benchmarking. This research agenda will be increasingly 
important in light of the Common Core State Standards and the need for measures 
to assess writing progress.

Expanding Beyond Production-Based Definitions of Fluent 
Writing

It is important to consider that quantitative assessment of writing does not capture 
some important dimensions of writing and that given the complexity of writing, in 
the broader research on writing and writing development studies have evaluated 
students’ writing in terms of quality and productivity. Studies have shown that writ-
ing productivity is moderately related to writing quality for children in elementary 
grades (Abbott & Berninger, 1993; Kim, Al Otaiba et al., 2014; Olinghouse, 2008). 
While productivity and quality have been used widely as separate constructs in 
previous studies (Abbott & Berninger, 1993; Olinghouse, 2008; Olinghouse & Gra-
ham, 2009), a recent study with first-grade students has confirmed that the writing 
quality and productivity are separate dimensions (Kim et al., 2014).

Using data from first-grade students who were assessed using a timed prompt, 
children’s scores on the ideation, organization, sentence structure, and vocabulary 
choice aspects have been shown to capture a construct of writing quality. In contrast, 
the number of words, number of different words, and number of ideas were shown 
to capture the distinct construct of writing productivity. Below is a description of 
how writing quality and productivity have been conceptualized and operationalized.

Writing Quality

Writing quality is typically conceptualized as the extent to which ideas (or topics) 
are developed, and how those ideas are expressed and organized. Previous studies 
have measured writing quality in the following three ways. First, a holistic rating 
scale (e.g., 1–7 or 1–8) is used to evaluate various aspects of students’ writing in 
such as idea (ideation), organization, grammar, and word choice with similar weight 
on all the aspects (Graham et al., 2002; Graham, Harris, & Mason, 2005; Graham, 
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Berninger, & Fan, 2007; Olinghouse, 2008). A rater rates the student’s composition 
on an overall impression of quality taking into accounting these multiple aspects. 
Similarly, Babayigit and Stainthrop (2011) considered accuracy and clarity of the 
depiction of the events in the pictures and the appropriate use of vocabulary for 
writing quality.

The second way is rating the student’s composition on a rating scale on predeter-
mined aspects related to quality such as ideation, organization, sentence structure, 
and vocabulary. For narrative stories, inclusion of specific narrative elements is also 
rated (Hooper, Swartz, Wakelly, de Kruif, & Montgomery, 2002). This second ap-
proach is different from the first approach in that a rating score is available on each 
aspect rather than a single holistic score. For instance, in Olinghouse and Graham’s 
(2009) study, students’ narrative stories were evaluated on a 7-point scale in three 
aspects (or traits): (1) organization, (2) the development of plot, characters, and set-
ting, and (3) creativity. Likewise, Wagner and colleagues (2011) examined students’ 
written composition on an expository prompt in terms of presence of topic sentence, 
logical ordering of ideas, and presence of main idea, body, and conclusion.

Coker and Ritchey investigated qualitative scoring procedures for two measures: 
Sentence Writing and Picture Story. This score was developed to address limitations 
in scores that only evaluate production and to provide a score that reflects possible 
instructional goals and objectives, especially for younger students who would have 
difficulty producing text with sufficient length to analyze. For Sentence Writing 
Coker and Ritchey, (2010), the qualitative score is a composite of ratings of five 
unique components of writing: response type (if the student’s response is a word or 
words, a complete sentence, or multiple sentences), spelling (percentage of words 
spelled correctly), mechanics (capitalization and punctuation), grammatical struc-
ture, and relation to prompt (the extent to which the student’s response was related 
or unrelated to the prompt topic). The qualitative score for Sentence Writing had 
internal consistency of approximately .80 and alternate-form reliability of r = .65–
.71 (which is a slightly smaller magnitude in comparison to the production-based 
scores of total words written, correctly spelled words, and correct word sequences, 
r = .74–.81). The concurrent criterion-related validity coefficients was approximate-
ly r = .40 for kindergarten and r = .50 for first-grade students.

The qualitative score for Picture Story was developed in a similar manner 
(Ritchey & Coker, 2013), but includes expanded components, as the writing task 
and the grade levels are different (first to third grade). In addition to scoring for re-
sponse type, spelling, mechanics, grammatical structure, and relation to the prompt 
criteria included from Sentence Writing, components were added for descriptive 
words and the criteria for scores within other components (e.g., response type) were 
revised to reflect more advanced writing skills. The qualitative score for Picture 
Story had internal consistency that ranged from r = .77 to .80, and concurrent cri-
terion-related validity coefficients using WJ-III Writing Samples (Woodcock et al., 
2001, 2007) as the criterion was r = .44 for the sample of second- and third-grade 
students.

This recent work suggests that it may be possible to extend scoring procedures to 
include aspects of quality and to include attention to the content written by students 
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(Tindal & Hasbrouk, 1991). This approach to scoring writing samples also aligns 
to current practices, such as use of holistic and analytic writing rubrics, and makes 
them appealing to classroom teachers, particularly because qualitative information 
can provide diagnostic information that is useful for determining what to focus 
on during instruction. Further research is needed to determine whether such infor-
mation does, indeed, enhance instruction and improve student outcomes. Further 
research is also needed to determine how genre may be important as a consider-
ation in evaluating writing quality, especially given broad coverage of genres in the 
Common Core State Standards. It could be that other options are needed to address 
other aspects of writing that are important for writing across genres.

Correlates of Writing that May Inform Instructional 
Targets

Just as understanding the correlates and predictive componential skills of reading 
has led to a better understanding of interventions, there is a need to refine such 
knowledge about predictors, correlates, and componential skills of writing. This 
knowledge could provide targets for identification of important areas for assess-
ment and instruction in writing and lead to better understanding of how to meet 
the needs of students who experience difficulty in writing. Further, this knowledge 
will be needed to understand whether students are meeting Common Core State 
Standards for writing.

For example, Kim, Al Otaiba, Puranik, Sidler, Greulich, and Wagner (2011) used 
structural equation modeling (SEM) to investigate the shared and unique relations 
of potential component skills of writing of 242 kindergarten beginning writers (i.e., 
beginning composition). At the end of the school year, research assistants intro-
duced the writing task and attempted to orient children to task expectations through 
a brief group discussion, as follows: You have been in kindergarten for almost a 
whole year. Today we are going to write about kindergarten. Let’s think about what 
you enjoyed about being in kindergarten. What did you learn in school? Did any-
thing special happen to you in kindergarten? Children had 15 min to write. Us-
ing the coding scheme developed by Puranik, Lombardino, and Altmann (2007; 
2008), three variables were derived from students’ writing: words written, number 
of ideas, and number of sentences. The authors categorized words as correct that 
were recognizable in the context of the child’s writing despite some spelling errors. 
By contrast, random strings of letters or sequences of nonsense words (both were 
very rare in the sample) were not counted as words. Number of ideas was a count 
of the total number of propositions (i.e., predicate and argument) included in the 
child’s writing sample. For example, I love kindergarten was counted as one idea. 
Finally, sentences was the count of the number of sentences included in the writing 
sample. Sentence structure was used to determine the number of sentences when 
punctuation and capitalization were not used, which is common for kindergartners. 
These scores were used to create a latent variable of writing performance.
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The findings indicated that oral language, spelling, and letter writing automaticity 
were uniquely related to end of kindergarten writing performance. Moreover, varia-
tion in students’ reading skills was not significantly related to their writing perfor-
mance after these three component skills were entered into the model. This is likely 
because the contribution of reading to writing, at this early stage of development, 
may have been explained by spelling, as indicated by the strong correlation between 
the spelling and reading latent variables ( r = .74). Indeed, individual differences in 
spelling and letter writing fluency were uniquely related to beginning writing, but 
these components were related to different aspects of writing. Spelling appeared to 
capture phonological, alphabetic, and orthographic knowledge (Cassar, Treiman, 
Moats, Pollo, & Kessler, 2005; Kim, 2010; Moats, 2005/2006), whereas letter writ-
ing fluency may have captured students’ knowledge of letters and the ability to write 
them efficiently. The findings also emphasize the importance of oral language skills 
(composed of vocabulary, grammatical knowledge, and sentence imitation), which 
showed a moderate bivariate correlation with writing ( r = .41). Kim et al. (2011) sug-
gested that students with stronger spelling and handwriting skills might be better able 
to use their oral language skills to devote attention and working memory to various 
higher-order aspects of writing (e.g., planning, translating, and revising).

Another recent study has examined a component that has been less commonly 
examined in writing fluency studies: self-regulation. Kent and colleagues (Kent, 
Wanzek, Petscher, Al Otaiba, & Kim, 2014) examined the unique and shared role 
of self-regulation, transcription, reading, and language ability longitudinally across 
kindergarten and first grade. The authors formed latent variables and used SEM to 
demonstrate that a model including self-regulation was better fitting than a model 
with only language and literacy factors. Three factors were uniquely and positively 
related to compositional fluency in kindergarten: self-regulation, reading and spell-
ing proficiency, and letter writing automaticity. For first grade, the self-regulation 
and higher-order literacy factors were predictive of both composition quality and 
fluency and oral language showed unique relations only with first grade writing 
quality. Findings from these two studies suggest that it is important to attend not 
only to transcription skills but also to increase students’ self-regulation.

In a similar study, Kim, Al Otaiba, Folsom, Greulich, and Puranik (2014) used 
a variety of scoring approaches (modified 6 + 1 trait scoring, Education Northwest, 
2012), syntactic complexity measures, productivity measures such as number of 
words and ideas) to identify writing dimensions and then examined the shared and 
unique relations of oral language and literacy skills (i.e., reading, spelling, and let-
ter writing fluency) to the identified dimensions of written composition. First-grade 
students ( N = 527) were assessed on oral language (vocabulary and grammatical 
knowledge), reading (word reading and oral reading fluency), spelling, letter writ-
ing fluency, and writing in the spring. Kim and colleagues used a latent variable 
approach and SEM. They found that the seven traits in the 6 + 1 trait system rep-
resented two constructs, which they called “substantive quality” and “spelling and 
writing conventions.” In contrast, when the other scoring procedures were included 
(productivity and syntactic complexity), four dimensions emerged: substantive 
quality, productivity, syntactic complexity, and spelling and writing conventions. 
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They reported that language and literacy predictors were differentially related to 
each of these four dimensions of written composition.

In a study with children in second and third grade, unique predictors differed for 
different writing outcomes (Kim, Al Otaiba, Wanzek, & Gatlin, 2015). Specifically, 
when children’s CBM scores (i.e., a latent variable of correct minus incorrect word 
sequences and percent of correct word sequences) in response to three prompts were 
the outcome, children’s reading skill, spelling, paragraph copying, and attentiveness 
were unique predictors. In contrast, when the outcome was writing quality, oral 
language, letter writing automaticity, and rapid automatized naming were additional 
unique predictors. In other words, different dimensions or aspects of writing draw 
from different sets of language, literacy, and cognitive skills.

Finally, gender appears to play a role in writing achievement. Ever since writing 
has been included in the National Assessment of Educational Progress (NAEP), 
girls have outperformed boys consistently across grades 4, 8, and 12 with effect 
sizes greater than 0.5 (e.g., National Center for Education Statistics, 2003). This 
gap in writing is even found with beginning writers (Kim et al., 2013; Knudson, 
1995), particularly with respect to performance level (but not necessarily growth 
rate; Parker, McMaster, Medhanie, & Silberglitt, 2011). Despite this consistent gap 
in writing as a function of gender, our understanding of sources of gaps is limited. 
A few studies suggest that attitude toward writing may be one explanation as boys 
tend to have less positive attitudes toward writing and less value in writing than 
girls (Knudson, 1995; Lee, 2013; but also see Graham, Berninger, & Fan, 2007). 
Additionally, differences in oral language, literacy, and attentiveness partially ex-
plained gender differences in writing (Kim et al., 2015).

In summary, important correlates and predictors for fluent writing in the early 
years appear to converge with theoretical models. Transcription skills and letter 
writing fluency appear to be important predictors, as is self-regulation. In addition, 
these variables predict both fluent writing and the quality of writing in terms of 
ideation, syntactic complexity, and spelling and writing conventions. An obvious 
implication is that teachers not only consider both fluent writing but also qualitative 
features in their writing assessment and instruction. We emphasize, however, that 
additional research is needed to more accurately guide teachers in planning instruc-
tion and intervention.

Informing Classroom Instruction and Interventions

Thus far, we have focused on the critical components of writing and how they might 
be assessed, with an eye toward identifying global indicators in line with a CBM 
framework. The original purpose of CBM was to provide educators with timely 
information about students’ proficiency level and progress in core academic skills, 
such that problems could be identified early on and meaningful solutions could be 
identified and implemented (Deno, 2005). Consistent with this initial purpose, a 
major goal in developing CBM for young writers is to design an instructionally use-
ful tool for identifying and responding to struggling young writers’ difficulties. In 
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this section, we consider the current context of writing instruction in primary class-
rooms. Then, we propose an approach to integrating assessment and instruction to 
supporting young children’s development of fluent writing using CBM.

Current Knowledge About Writing Instruction and Intervention  
in the Primary Grades

Starting in the early years of schooling, children’s classroom experiences should 
include explicit instruction in basic writing skills. Given that writing requires the 
simultaneous management and coordination of multiple cognitive–linguistic pro-
cesses (e.g., Berninger, 2008; Moats, 2005/2006), such instruction should empha-
size each of the component processes of writing (as illustrated above). For example, 
instruction targeting automaticity of handwriting and spelling has led to improve-
ments in young students’ writing fluency and quality (e.g., Berninger et al., 2002, 
2006; Graham, Harris, & Fink, 2000; Graham et al., 2002; Graham, McKown, Kiu-
hara, & Harris, 2012; Jones & Christensen, 1999). At the same time, early instruc-
tion in generating text (including instruction in language use, text structure, genre, 
and content; Coker, 2006; Graham, McKeown, Kiuhara, & Harris, 2011; Oling-
house & Leird, 2009), as well as self-regulation of the writing process (e.g., plan-
ning and organizing, reviewing and revising; e.g., Baker, Chard, Ketternlin-Geller, 
Apichatabutra, & Doabler, 2009; Harris, Graham, & Mason, 2006), is critical for 
developing overall writing proficiency.

Researchers have recommended that as beginning writers benefit more from 
short but frequent practice (Graham, 2006); Graham & Miller, 1980, writing in-
struction should be implemented daily, for about 30 min, starting in kindergarten 
(Edwards, 2003; Graham, Bollinger et al., 2012; Jones & Christensen, 1999). Fur-
ther, instruction should include a balance between teacher instruction and student 
independent writing (e.g., Cutler & Graham, 2008; Gilbert & Graham, 2010). The 
Common Core State Standards further delineate what is expected of children as 
they complete each grade level (see Table 2.1).

Despite these recommendations, evidence suggests that teachers spend little time 
providing explicit early writing instruction. In survey studies, teachers have reported 
spending about 20 min a day on writing in the primary grades, with 90 % reporting 
teaching an average of 70 min of handwriting instruction per week (Cutler & Graham, 
2008; Graham et al., 2008). Though teachers report using a combination of instruction 
in the writing process and direct skills related to spelling, grammar, capitalization, and 
punctuation (Cutler & Graham, 2008), observational studies reveal a somewhat differ-
ent picture with respect to the amount of time spent in meaningful writing instruction.

For example, Puranik, Al Otaiba, Folsom, and Greulich (2014) examined the na-
ture of writing instruction in kindergarten classrooms and described student writing 
outcomes at the end of the school year. Twenty-one teachers and 238 kindergarteners 
from 9 schools participated. The entire 90 min instructional block for language arts 
was videotaped twice per year, and at the end of the year students completed handwrit-
ing fluency, spelling, and writing tasks. Findings indicated that, on average, teachers 



52 K. D. Ritchey et al.

spent only 6.1 min in the fall and 10.5 min in the winter on any kind of writing instruc-
tion. Students spent most of the time writing independently (journals, worksheets) and 
received very little modeling or scaffolding by their teachers. Approximately 2 min 
of spelling instruction, on average, was observed and only a minimal amount of time 
was spent on instruction focused on the writing process. Large variability was ob-
served in the amount of writing instruction, the amount of time kindergarten teachers 
spent on writing, and the amount of time students spent on writing.

Marked variability in classroom practices both within and across schools was re-
flected in the large variability noted in kindergartners’ handwriting, spelling, and writ-
ing performance (Puranik et al., 2014). For handwriting fluency, students were asked 
to write their ABC’s for 1 min. On average, students could write 9.9 letters ( SD = 6.08, 
Range 0–26); however, 7 of the 238 students did not write a single letter and about 
40 students wrote fewer than 5 letters. Performance differences were noted among 
classrooms with mean class scores on the handwriting fluency task ranging from a 
low of 3.75 letters to a high of 15.45 letters. Similarly, the mean spelling score was 
49.01 ( SD = 20.38, Range 0–82 out of a possible 84). Several children only used initial 
and final letters to spell words, and about 5–20 % of children either did not respond or 
wrote a random string of letters to spell words. However, the mean class scores varied 
from 17.80 to 62.47 points. The third type of data collected was a 15 min sample from 
writing prompt that asked students to tell what they had learned in kindergarten. The 
sample mean for words written was 14.37 ( SD = 15.62, Range = 0–90). As with the 
handwriting fluency and spelling assessments, large variability was noted, with some 
students writing only a few words to one child writing 90 words. Again there was 
considerable variation at the classroom level with the words written class mean rang-
ing from 1 to 51.38. An observational study suggests that students at risk for reading 
difficulties may have even fewer opportunities for writing instruction. Kent, Wanzek, 
and Al Otaiba (2012) observed kindergarten language arts instruction to explore lit-
eracy activities broadly, and more specifically, the amount and type of engagement in 
reading print for over 100 kindergarten students at-risk for reading difficulties during 
their general education classroom reading instruction. Minimal amounts of time were 
noted for vocabulary, fluency, writing and spelling.

Integrating Assessment and Instruction to Improve Fluent Writing 
in Young Children

Converging evidence from studies such as those described above suggests that 
insufficient time and emphasis is given to writing instruction in classrooms. We 
propose that the current state of early writing assessment and instruction can and 
should be improved, and that one way of doing so is to integrate the types of assess-
ments discussed in this chapter with instruction, such that teachers have a frame-
work within which to make data-based decisions about the effectiveness of their 
instruction. Below, we describe how CBM can be used to inform instructional deci-
sions. Then, we return to our case example to illustrate how data-based instructional 
decision-making could be part of a multitiered system of instructional supports to 
improve writing outcomes for young students.
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Using CBM to Inform Instructional Decisions

The fluency-based assessments described in this chapter are particularly useful for 
informing instruction because they directly measure students’ skills within a curricular 
domain (Shapiro, 2011). Direct assessments use standardized procedures that produce 
reliable and valid data, such as those that have been described in this chapter. For 
example, students who read very few words correct per minute using direct assess-
ment procedures for oral reading fluency are identified as needing additional support. 
Students who can complete only single-digit addition math facts in third grade also 
need support. Similarly, students who cannot correctly produce accurate letter forma-
tions and basic spelling, such as those described in the Puranik and Al Otaiba (2012) 
study, likely need additional support in writing. What follows are two examples of how 
CBM assessments have been used to target and evaluate early writing interventions.

The Picture-Word assessment was used in a recent application of brief experi-
mental analysis (BEA) for beginning writing. BEA is an approach to direct assess-
ment that tests the effects of different instructional variables on academic perfor-
mance (Jones & Wickstrom, 2002). The instructional variables that are tested using 
BEA derive from hypotheses for why students struggle to perform academic skills, 
such as not wanting to complete the task (i.e., motivation), lack of practice, or not 
having had enough instruction (Daly, Witt, Martens, & Dool, 1997). What is neces-
sary for BEA are direct assessments that provide information regarding the effects 
of instructional approaches designed to test these hypotheses. In reading, CBM 
was used to compare the effects of multiple interventions, and results showed clear 
differentiation in reading performance, which identified the most promising instruc-
tional approach (Daly, Martens, Dool, & Hintze, 1998; Hintze, 1998).

Parker, Dickey, Burns, and McMaster (2012) extended BEA procedures to strug-
gling first-grade writers, and used CBM assessments to determine the effects of 
the tested hypotheses. Results of the BEA showed differentiation across the tested 
hypotheses for each participating student. As a follow-up, the same CBM procedures 
were used to assess the effects of the interventions that were implemented following 
the BEA. Each student’s level and trend improved from baseline to intervention.

The Picture-Word assessment also shows promise for use in a skill-by-treatment 
interaction framework for targeting intervention (Burns, Codding, Boice, & Lukito, 
2010). Central to this framework is the idea that instructional approaches should 
be tailored to address students’ present skill level in a way informed by concepts 
such as the zone of proximal development (Vygotsky, 1978) and the instructional 
level (Betts, 1945). The skill-by-treatment interaction framework operationalizes 
these concepts using a research-based model of skill development, in which skills 
develop according to stages of acquisition, fluency, generalization, and adaptation 
(Haring & Eaton, 1978). Depending on students’ skill performance, different inter-
ventions may be necessary for different students.

Fluency-based direct assessments are promising for use within a skill-by-treat-
ment interaction framework because they provide data for making inferences about 
whether fluency is (a) not an appropriate target because skills that are still being 
acquired, (b) an appropriate target because students are slow but accurate, or (c) 
sufficiently developed such that more complex skills can be targeted. Parker, Mc-
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Master, and Burns (2011) used an extant data set to derive an instructional level 
for early writing skills performed by first-grade students, and the results showed 
promising technical characteristics for instructional-level criteria. Thus, students 
performing below the instructional level could be provided intervention that focuses 
on the accurate production of early writing skills, students performing within the 
instructional level could be provided intervention that gives additional practice and 
feedback, and students performing above the instructional level could be provided 
intervention that targets more complex, self-regulatory strategies (e.g., Graham & 
Harris, 1996). Applications of the skill-by-treatment interaction framework pro-
duced positive outcomes in reading (Parker & Burns, 2014) and in a meta-analysis 
of math interventions (Burns et al., 2010).

Using CBM in a Multitiered System of Support to Promote Fluent Writing in 
Young Children

As illustrated above, CBM can be used to inform early writing instruction, although 
clearly further research is needed. Such data-based decision-making approaches are 
consistent with current multitiered systems of support that are used to ensure that 
all students are provided with appropriate instruction based on their needs (Gersten 
et al., 2008). One such multitiered framework is RTI, which includes (a) Tier 1: 
universal screening and evidence-based core instruction implemented with fidelity, 
(b) Tier 2: ongoing progress monitoring and supplementary instruction for students 
identified as at risk during screening, and (c) Tier 3: more intensive, individualized 
intervention for students for whom supplementary intervention is not sufficient and 
a corresponding increase in the specificity and frequency of progress assessment. 
RTI has been applied most broadly in reading (Gersten et al., 2008), and to a lesser 
extent, in math (Gersten et al., 2009; Lembke, Hampton, & Beyers, 2012). The 
measures discussed in this chapter provide preliminary direction for establishing an 
RTI approach to improving students’ early writing outcomes. Continued research 
is needed to establish which of these assessments are best suited for screening and 
monitoring progress of early writing; thus, this proposal should be viewed as heu-
ristic in nature (see also McMaster, Parker, & Jung, 2012; Saddler & Asaro-Saddler, 
2013 for additional discussions of RTI applications to writing). Below, we illustrate 
how an RTI model could be used to address Toby’s lack of fluent writing skills.

Tier 1: Universal Screening and Core Instruction 

Recall that Toby’s teacher, Mrs. Wright, has some concern about Toby’s writing 
performance in her first-grade classroom. As part of her school’s RTI process, she 
administers a CBM prompt to all of her students in fall of the school year, records 
each child’s score, and notes the mean score of the class. Six students, including 
Toby, score 0 (far below the class mean of 6), so Mrs. Wright decides to monitor 
their progress on a weekly basis. Figure 2.3 shows the class average and the six at-
risk students’ baseline scores. The last data point on the graph shows the expected 
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first-grade CBM performance in winter, based on school-wide data. Mrs. Wright 
then begins her core language arts instruction, which includes 30 min of explicit 
daily handwriting, spelling, and composition instruction conducted with the whole 
class. As Fig. 2.3 shows, two students appear to make progress toward the expected 
winter benchmark, but four students do not (including Toby).

Tier 2: Supplementary Intervention

Mrs. Wright consults her school’s data team, which consists of the other first-grade 
teacher, the intervention specialist, a special education teacher, and a school psy-
chologist. Based on their examination of the four students’ CBM samples, along 
with other products such as handwriting, spelling, and journal-writing samples, the 
team hypothesizes that though the students have no trouble generating ideas for 
writing, they have difficulties with transcription. They determine that an important 
first step will be to improve the students’ handwriting and spelling skills so that 
they can better transcribe their ideas onto paper. So, in addition to core instruction, 
the intervention specialist meets with the four students in a small group for 20 min 
daily, and implements explicit, evidence-based handwriting and spelling instruc-
tion. Three of the students respond well to the Tier 2 supplemental intervention, as 
evidenced by clear changes in their CBM slopes (see Fig. 2.3). However, Toby does 
not appear to be making progress. After 6 weeks of Tier 2 intervention, the data 
team determines that more intensive, individualized instruction is needed.

Fig. 2.3  Class data
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Tier 3: Highly Intensive, Individualized Intervention

In January, the intervention specialist, Mr. Lein, begins working with Toby for 
30 min per day, 5 days per week. To identify an intervention to help Toby improve 
his writing skills, Mr. Lein conducts a series of brief, systematic tests of hypotheses 
for why Toby is struggling, using the BEA approach described above (Daly et al., 
1997; Parker et al., 2012). Mr. Lein determines that a combination of modeling 
and repeated practice results in Toby’s best performance. Therefore, Mr. Lein adds 
modeling and repeated practice to the handwriting and spelling instruction already 
in place.

The data team sets a goal for Toby to improve his writing by one word spelled 
correctly per week on Picture-Word task, or 22 words spelled correctly by the end 
of the year, as indicated by the goal line on the graph in Fig. 2.4. As can be seen in 
Fig. 2.4, Toby begins to make progress, but not enough to meet the goal. Although 
his spelling and handwriting begin to improve, he continues to write very slowly. 
He does begin to use more descriptive words, such as “raptor” and “sedimentary.” 
When four of Toby’s data points fall below the goal line, Mr. Lein again implements 
the BEA procedure to decide on an appropriate instructional change. This time, Mr. 
Lein determines that adding a timed fluency-building component to Toby’s practice 
sessions will likely improve his progress. In fact, Toby does make more progress, 
but continues to fall short of his goal. Once again, the Mr. Lein uses BEA to identify 
another instructional change: daily goal-setting during the fluency-building activity 
with incentives for meeting daily goals. After this addition, Toby makes steady 

 

Fig. 2.4  Toby’s progress in Tier 3
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progress, and by the end of the year, meets (and even exceeds) the goal, producing 
longer, more legible, accurate, and interesting texts.

If Toby continues to make good progress, he could receive instruction at Tier 1 
and/or 2; if needed, he would again have access to Tier 3. The decision about the ap-
propriate tier of instruction should be made based on ongoing progress-monitoring 
data. In this way, CBM remains an essential component in ensuring that Toby re-
ceives instruction that best meets his needs within an RTI framework.

Directions for Future Research

Although, much work has been conducted focusing on the development and valida-
tion of indicators of fluent writing and on efforts to improve writing instruction, 
more work is needed. Much of the existing work has focused on identifying a par-
simonious set of tasks that would be appropriate to capture fluent writing develop-
ment for a specific writing area or grade-level group. In recent reviews (McMaster 
& Espin, 2007; McMaster, Ritchey, & Lembke, 2011), the technical features have 
been described with the goal of selecting those assessments that exhibit the stron-
gest technical adequacy. More recent work has also tried to link the assessments 
to emerging knowledge and theoretical models of writing development. However, 
more research is needed to provide researchers and teachers with a broad set of as-
sessments that can be used within and across grade levels. To date, there are still 
gaps in measures that align to developmental progressions and have evidence of 
technical adequacy within and across grades. For example, more work has been 
conducted in the spring of kindergarten and first grade, with a gap for appropriate 
fall measures. The majority of existing studies have been at a single grade or cross 
sectional; longitudinal investigation of children’s performance on these measures 
over time holds promise for better understanding the components the a seamless 
assessment system.

We also propose that additional research is needed to evaluate the best way to 
capture students’ writing using validated scoring techniques. Production scores 
have worked well as indicators of performance, but serve as a limited assessment 
of a child’s overall writing proficiency. Future attention to the content and the qual-
ity of the child’s writing could improve the utility of measures. In addition to the 
scoring construct, there are many directions for future research related to scoring 
efficiency. Scoring a class of children’s writing samples each week using a variety 
of scores is time consuming, and teachers may lack the resources needed to quickly 
and reliably score large amounts of writing assessments. Technology-based scoring 
is one direction for future research.

Technology also holds promise for better understanding of children’s fluent writ-
ing while engaged in writing activities. Touch screen technology or other ways to 
capture the online processes a child uses while writing could refine measurement 
procedures and support understanding of how children approach the writing stimuli 
included in these assessments. Technology may also provide data about individual’s 
response time—especially about time to write letters, spell words, “thinking time” 
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involved in text generation, and other important online activities related to the role 
of self-regulation in fluent writing.

Finally, more work is needed with respect to the capacity of the measures to be 
useful for screening and progress monitoring. One of the goals of CBM is systematic 
universal screening that can occur several times per year. Ritchey and Coker have 
conducted short-term screening and classification accuracy studies (predicting from 
mid-year to the end of the year) using measures for students in kindergarten (Coker & 
Ritchey, 2014), first grade (Coker & Ritchey, 2012; Ritchey & Coker 2014), and second 
and third grades (Ritchey & Coker, 2013). In a similar way, additional research could 
extend the understanding of fluency-based assessments within the skill-by-treatment 
interaction framework (Burns et al., 2010) beyond the current state of understanding 
that exists only for first grade (Parker, McMaster & Burns, 2011). With respect to 
progress monitoring, most research has focused on whether the scores are sensitive 
to growth in short time periods, with small change in scores (Coker & Ritchey, 2010; 
McMaster, Ritchey, & Lemke, 2011). If these measures are to hold promise for moni-
toring progress, especially for students who are receiving supplemental instruction 
(i.e., Tier 2 and Tier 3), additional work is needed to develop measures which yield 
scores that are sensitive to weekly or biweekly growth. Last, it is important to learn 
more about how using these measures could lead to improved education outcomes.

Conclusion

Learning to write is an important component of academic development. As illustrat-
ed in the chapter, multiple aspects of writing instruction can support development of 
fluent writing, including attention to the amount and quality of writing instruction 
and the use of assessments to guide instructional decisions. For children like Toby, 
these components are essential if his writing proficiency is to improve. Progress 
has been made in the development of technically adequate assessments and there is 
better understanding of the correlates of writing development and role of instruction 
in supporting this development. However, much more work is needed to develop a 
seamless system of instruction and assessments that can support the development of 
fluent writing for children in prekindergarten to third grade.
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Chapter 3
Mathematics Fluency—More than the Weekly 
Timed Test

Ben Clarke, Nancy Nelson and Lina Shanley

Pencils up, start…tick…tick…tick, stop, pencils down. If there is a shared cor-
nerstone experience in education, the weekly timed test may be the winner. But 
why? Why across decades have teachers spoken those words and students furiously 
worked through sheets containing a range of problems from addition facts to divi-
sion facts? This chapter attempts to provide answers to that fundamental question. 
We start with an exploration as to why fluency in mathematics is critical, examine 
interventions designed to increase fluency, and in the end provide an overview of 
the measures used to assess fluency and provide our thoughts to guide future work 
as the field gains a greater understanding of mathematics fluency.

As a nation, we compete in an international marketplace driven by technological 
innovation. Employment projections by the US Bureau of Labor Statistics indi-
cate that the majority of the fastest growing occupations in the coming decade will 
require substantial preparation in mathematics or science (Lockard & Wolf, 2012). 
As policy-makers seek to address a dearth of workers prepared for science, technol-
ogy, engineering, and mathematics (STEM) jobs in the USA, K-12 mathematics and 
science education is increasingly at the center of discussions about how to ensure 
international competitiveness. For instance, the current presidential administra-
tion has launched an “Educate to Innovate” campaign (The White House, 2012), 
designed to improve the coordination and facilitation of efforts to improve STEM 
education and prepare the students of today for the jobs of tomorrow.

In the STEM fields, mathematics and science education provide the foundation 
for advanced knowledge and professional skills that will prepare our nation’s youth 
to compete for the surge of high-level jobs in engineering and technology (National 
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Math Advisory Panel [NMAP], 2008). Arguably, students’ understanding of math-
ematics, starting at an early age, is at the core of their ability to gain access to STEM 
jobs. Accordingly, proficiency in mathematics is receiving increasing attention, 
beginning in the early years of a student’s education, because the early elementary 
years represent a critical first step in building a long-term foundation for success 
in mathematics. Emerging evidence suggests the long-term consequences of strug-
gling early in mathematics exact the same or greater deleterious toll as early read-
ing difficulties (Duncan et al., 2007; Morgan, Farkas, & Wu, 2009). For instance, 
students struggling to learn mathematics are ill-prepared for well-paying jobs in a 
modern, technological economy (National Academy of Sciences, 2007). Disparities 
in mathematical competency are evident between students from different racial and 
socioeconomic subgroups, impacting the life opportunities of a substantial portion 
of the population (Siegler et al., 2010). Moreover, mathematics difficulties are as 
persistent and difficult to remediate as reading difficulties (NMAP, 2008). In other 
words, just as early intervention in reading is critical, prevention of mathematics 
difficulties and effective early intervention should also be a primary focus of educa-
tional research and practice in mathematics.

Unfortunately, mathematics achievement in the USA is lagging. Results of the 
2011 National Assessment for Educational Progress (NAEP) indicate that only 40 % 
of fourth graders scored at or above proficient in mathematics, and nearly half of 
all fourth graders with a disability scored below basic. The percentage of students 
that demonstrate proficiency in mathematics also worsens over time (e.g., 35 % 
of the eighth graders scored at or above proficient in mathematics in 2011). On 
international measures of achievement in fourth and eighth grades, the USA ranks 
ninth and twelfth, respectively, of approximately 50 countries participating in in-
ternational benchmarking (Trends in International Mathematics and Science Study: 
TIMSS, 2011b). Although these rankings indicate students in the USA could be per-
forming far worse, we are also failing to prepare students for the level of mathemat-
ics they may need, in order to acquire the 62 % of American jobs that will require 
advanced math skills in the coming decade (Hanushek, Peterson, & Woessmann, 
2010). Just 6 % of the US students scored at the equivalent of the advanced level 
in mathematics on the Program for International Student Assessment (Organization 
for Economic Cooperation Development & Programme for International Student 
Assessment, 2007), while 30 other countries had a larger percentage of students 
scoring at this level out of 56 total countries that participated in the assessment 
(Hanushek et al., 2010). In sum, when it comes to ensuring the ability of our youth 
to successfully compete for jobs in an international marketplace that requires pro-
ficiency in mathematics for technological prowess, we are being outcompeted by a 
number of countries that do not share the same level of resources we possess in the 
USA (Hanushek et al., 2010; TIMSS, 2011b).

As competitors in an international marketplace, increasingly driven by technolog-
ical innovation, it is imperative that US students acquire mathematical proficiency. 
Results from national and international assessments indicate that we, as a nation, 
have been inadequate in achieving this aim. The rest of this chapter emphasizes on 
the role of fluency in mathematical proficiency, discusses the types of interventions 
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that are employed to promote mathematical fluency, and describes the assessment 
instruments used to measure mathematical fluency across grade levels.

Why Focus on Mathematics and Mathematical Fluency?

Despite a clear need to focus on mathematics education, the research based on the 
development of mathematical proficiency pales in comparison to extensive research 
that has been conducted in the area of reading (Clarke, Gersten, & Newman-Gon-
char, 2010). But we can use what we know about the development of reading skills 
to inform our thinking about mathematics. For instance, there is broad consensus 
that foundational (e.g., phonological awareness) and higher order skills (e.g., vo-
cabulary and reading comprehension) are critical areas of reading skill development 
that must be taught in concert. Congruently, mathematics experts agree that concep-
tual understanding (i.e., understanding mathematical ideas, the way they function, 
and the contexts where they apply) must be emphasized alongside efforts to teach 
procedural fluency, in an intertwined manner (NMAP, 2008; National Research 
Council [NRC], 2001).

There are also parallels between the types of skills that form the basis of under-
standing in reading in mathematics. We know, for example, that students learning 
to read must demonstrate phonemic awareness to have a solid understanding of the 
sounds that comprise language and become strong readers (National Reading Panel 
[NRP], 2000). In mathematics, to demonstrate proficiency, students must possess 
early numeracy skills (e.g., numeral identification, understanding one-to-one cor-
respondence, and magnitude comparison) to understand relations between numbers 
and quantities (NRC, 2001). Although developmental trajectories in mathematics 
are often considered more linear (i.e., more advanced skills build directly upon 
basic skills over time) than the trajectories described for reading development (e.g., 
students apply similar reading skills in each grade to different types of texts that 
increase in difficulty as students make progress), the parallels between reading and 
mathematics in the types of skills and the need to simultaneously emphasize foun-
dational and higher order thinking can inform efforts to improve mathematical pro-
ficiency.

Perhaps because research about the development of mathematical proficiency is 
relatively nascent, there is also substantially less evidence about effective practices 
for teaching mathematics when compared to our knowledge about effective prac-
tices for teaching reading (NMAP, 2008). However, we can learn from the research 
that has been conducted on reading instruction and intervention in several ways. 
First, as a result of No Child Left Behind (NCLB), there is increased emphasis on 
comprehensive systems of support to assist all students in meeting rigorous stan-
dards of achievement by 2014. Research in reading has informed the types of as-
sessments (e.g., screening and progress monitoring) and scaffolded supports (e.g., 
Tier 2, Tier 3 interventions) that comprise these multitiered systems. Similarly, the 
Institute of Education Sciences (IES) Practice Guide, Assisting Students Struggling 
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with Mathematics: Response to Intervention for Elementary and Middle Schools 
(Gersten et al., 2009), was written to provide guidance to schools and districts look-
ing to establish Response to Intervention (RTI) systems of support in mathematics, 
using the best evidence available for interventions and assessments. The IES Prac-
tice Guide provides support that an RTI approach may be an effective mechanism 
for supporting the mathematical proficiency of all students.

As momentum shifts toward building service delivery systems of support and 
identifying the interventions that work to improve students’ mathematical profi-
ciency, increased attention has been given to the content that should comprise these 
interventions. Research on instruction and intervention in mathematics indicates 
there are key concepts (akin to the five “big ideas” in reading: Coyne, Zipolo, & 
Ruby, 2006) that should be targeted to support students’ proficiency. These key 
concepts include a focus on whole number concepts in the elementary grades, and 
an emphasis on rational numbers beginning in fourth grade to support algebra readi-
ness, and other critical foundations of algebra, including key topics in geometry and 
measurement (Gersten et al., 2009; NMAP, 2008). A number of states have sought 
to adopt the Common Core State Standards for Mathematics (CCSS-M, 2010). The 
CCSS-M are widely vetted standards that rest on the NCTM (2000) process stan-
dards (i.e., problem-solving, reasoning and proof, communication, connections, and 
representation) and the principles outlined by the National Research Council (2001) 
in their volume, Adding It Up (i.e., understanding, computing, applying, reasoning, 
and engaging). The CCSS-M is built on the consensus of experts that conceptual 
understanding and procedural fluency are critical constructs within mathematics 
topics, across grades. Recognizing the importance of fluency, one of the eight rec-
ommendations in the IES Practice Guide is to “devote about 10 min in each session 
to building fluent retrieval of basic arithmetic facts” in interventions at all grade lev-
els (Gersten et al., 2009). That is, across grades, experts indicate a need for students 
to develop automaticity with whole and rational number operations.

Not surprisingly, the bulk of this chapter focuses on the importance of fluency in 
mathematics; however, we are not advocating that “fluency” is promoted at the cost 
of conceptual understanding, nor that fluency carries a narrow definition. In fact, we 
agree with the NCTM (2000) that “developing fluency requires a balance and con-
nection between conceptual understanding and computational proficiency” (p. 35). 
In addition, we describe how mathematical fluency supports mathematical profi-
ciency for students with learning disabilities (LD) and their typically developing 
peers, in terms of working memory demands and cognitive load theory.

What is Mathematical Fluency?

There is overwhelming support from cognitive scientists, researchers, and educators 
alike that fluency in mathematics supports mathematical proficiency, and should be 
a focus in Grades K–12 (e.g., NCTM, 2000; NMAP, 2008; NRC, 2001). Tradition-
ally, fluency has been defined in terms of computational proficiency, or being able to 
quickly and accurately recall basic math facts and procedures. However, this narrow 
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definition does not take into account the relation between conceptual understand-
ing, procedural knowledge, and basic fact recall, and the notion that demonstrat-
ing mathematical fluency requires an awareness of these interconnections. Baroody 
(2011) defines fluency as the quick, accurate recall of facts and procedures, and the 
ability to use them efficiently. That is, as students develop procedural fluency, it is 
essential that mastery be tied to conceptual understanding to promote adaptive ex-
pertise. In other words, students need to know when they can use an algorithm and 
when they cannot, in order to demonstrate mathematical fluency. We contend, as do 
others (e.g., Fennell, 2011) that fluency is a broad construct, which refers to profi-
ciency across mathematical domains (e.g., early numeracy, whole number concepts, 
rational number concepts, and algebra).

How Does Mathematical Fluency Support Mathematical 
Proficiency?

Mathematical fluency provides access to mathematical proficiency through several 
hypothesized mechanisms. As evidenced by the results of national assessments, stu-
dents with LD tend to struggle in mathematics to a greater degree than their nondis-
abled peers (e.g., 2011 NAEP results). Research demonstrates that students with LD 
in mathematics typically struggle to attain fluency with basic number combinations 
and simultaneously demonstrate working memory deficits that may be contributing 
to these “developmental differences” in computational proficiency (Geary, 1996; 
Geary, Hoard, Byrd-Craven, Nugent, & Numtee, 2007). Students who struggle to 
automatically retrieve basic number combinations often work more slowly and tend 
to be more error prone when attempting more complex mathematical problems 
(Geary, 2004; Jordan & Montani, 1997). Furthermore, fluent basic number combi-
nation retrieval has been linked to successful word problem completion, presum-
ably due to reduced working memory demands (Geary & Widaman, 1992; Geary, 
2004). For the 5–8 % of the students with LD in mathematics, it appears working 
memory deficits may be inhibiting mathematical fluency, and contributing to gen-
eralized difficulties in developing mathematical proficiency.

Working memory may also play a broader role in mathematical proficiency for 
a range of learners, where students who score lower on a range of working memory 
tasks demonstrate increased difficulty in mathematics (Raghubar, Barnes, & Hecht, 
2010). Several studies have demonstrated that working memory skills predict math-
ematical fluency and problem-solving, even when controlling for cognitive vari-
ables, including attention, intelligence, and phonological processing (Fuchs et al., 
2005; Swanson & Beebe-Frankenberger, 2004). In addition, research indicates a 
range of factors (e.g., age, language, and math representations) may interact with 
working memory to predict mathematical skill, including mathematical fluency 
(Raghubar et al., 2010).

There is also support that fluency in mathematics frees cognitive resources 
for higher order reasoning activities. In their seminal article on reading fluency, 
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LaBerge and Samuels (1974) argued that human beings can only actively attend to 
only one thing at a time, thus learners can only do more than one thing at a time if 
one of the tasks can be performed automatically. Although initially applied to issues 
of reading performance, these conclusions are relevant to a discussion of the role of 
fluency in mathematics performance, as well. Advocates for mathematics interven-
tions that train students to become more fluent at targeted mathematics tasks posit 
that being fluent with mathematics tasks reduces the learner’s cognitive load and 
frees cognitive resources for more complex tasks (Geary, 2004; Geary & Widaman, 
1992; Jordan & Montani, 1997).

Broadly, because foundational knowledge and skills unlock the door for under-
standing of higher order concepts, students who struggle to develop mathematical 
fluency will struggle to demonstrate mathematical proficiency across their school-
ing years, with the normative gap growing over time. Take, for instance, the student 
that is slow and methodical in performing math procedures and recalling number 
combinations. In elementary school, this student may simply require more time to 
complete instructional activities. However, when this student encounters a course 
in Algebra in middle or high school, she may have difficulty understanding daily 
lessons, because she cannot keep up with the pace of instruction (e.g., even though 
she understands the procedures, working memory deficits may be preventing access 
to new concepts). Alternatively, the student may struggle to learn new concepts 
because she is exhausting cognitive resources solving algorithms (e.g., the cog-
nitive demand of both solving algorithms and learning new algebra concepts is 
overwhelming in combination). Regardless of the source of the deficit, it is clear 
that students who are unable to demonstrate fluency in mathematics will fall farther 
behind their peers who do not struggle with mathematical fluency. Mathematical 
fluency is, thus, a key ingredient for mathematical proficiency, achievement, and, 
ultimately, access to life opportunities.

Fluency-Based Interventions in Mathematics

Although mathematical fluency is a key skill for successful mathematics achieve-
ment, general mathematics interventions often do not focus primarily on fluency. 
Instead, general mathematics interventions tend to target concrete mathematical 
knowledge and skills such as number sense, algorithms, vocabulary, and proofs. 
However, as noted in the previous section, mathematics fluency interventions that 
train students to become more fluent at targeted mathematics tasks are important 
because possessing mathematical fluency frees students’ cognitive resources for 
more complex tasks. If students struggle to automatically retrieve basic number 
combinations, they will work more slowly and make more errors when solving 
complex mathematics problems, whereas students who are fluent in basic number 
combination retrieval are able to complete word problems more accurately.

In school-based settings, versions or elements of fluency interventions are often 
implemented class wide in the elementary grades as students are expected to master 
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all basic number combinations to 100. In Grades 6–12, fluency interventions are 
typically utilized in small group settings as part of specialized academic programs. 
When implementing targeted mathematics fluency interventions, interventionists 
aim to improve students’ cognitive processes and resources that underlie fluent 
mathematical performance. However, it can be difficult to determine whether or 
not improved mathematical performance as measured by fluency assessments dis-
cussed in the following section is truly an indicator of cognitive development and 
not simply an artifact of rote memorization. Ultimately, all fluency interventions 
operate on the premise that improving mathematical fluency is fundamental to over-
all improvement in mathematics performance. Mathematics fluency interventions 
can be categorized into three general types: (1) those that utilize repeated trials with 
multiple forms to train students to become more fluent at a specific task; (2) inter-
ventions that target underlining academic and cognitive skills to teach students gen-
eralizable strategies that result in improved mathematics fluency; and (3) general 
mathematics interventions that include fluency skill-building components to impact 
both basic number combination proficiency and conceptual fluency.

In the following section, we describe each type of intervention, provide examples 
of interventions within each category that have been used in research and practice, 
and summarize research that has been conducted to evaluate the effectiveness of 
each type of intervention. We follow with a discussion of the challenges related 
to evaluating the generalizability of mathematics fluency interventions and con-
clude with summative recommendations to consider when selecting a mathematics 
fluency intervention.

Repeated Trials Fluency Training

For many years, researchers and educators have advocated for the use of repeated 
daily timed mathematics activities to build fact fluency with elementary students by 
implementing a variety of training components to build rate and accuracy (Miller 
& Heward, 1992). As repeated practice is a key feature of fluency interventions, 
most protocol-based fluency training programs rely on discrete learning trials with 
numerous practice opportunities of the same mathematical material to build speed 
and accuracy in responding. Some sample programs are detailed in Table 3.1.

Much of the research base for these interventions originates in special education 
literature and utilizes single-case designs to isolate specific learning gains. Fluency-
based interventions tend to target repeated measures of basic number combinations 
with elementary-aged students as the focal population. As these interventions are 
tested with a small number of learners, computing effect sizes and making gen-
eralized claims about the research findings can be challenging. Single-subject 
researchers compute effect sizes using techniques that compare the distinct char-
acteristics of student performance in each phase of the study (e.g., pre- and post-
intervention). By comparing data points across phases, researchers generate either 
percentage of nonoverlapping data (PND), interpreted as a percentage with values 
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larger than 70 % considered meaningful, or a metric called percentage of all non-
overlapping data (PAND) and convert this value to a Phi coefficient ( φ) that serves 
a measure of effect size (Parker & Hagan-Burke, 2007; Parker, Hagan-Burke, & 
Vannest, 2007). Phi is intended to represent the effect of an intervention and can 
be interpreted with a rule of thumb where values ≤ 0.20 are considered small, 0.21 
through 0.79 represent a medium effect, and ≥ 0.80 are considered large. It should 
be noted however, that because φ is directly tied to the number of data points col-
lected in each phase of a single subject study, the potential values of φ are unbound-
ed and it is not uncommon to generate extremely large values when studies have a 
large number of nonoverlapping data points.

In recent years, meta-analyses have been conducted to compare the treat-
ment effects of various fluency interventions in mathematics and other academic 
areas (e.g., Codding, Burns, & Lukito, 2011; Joseph et al., 2012). By grouping 
interventions according to the fundamental strategy employed or by the general 
treatment component utilized (e.g., drill, practice with modeling, and self-man-
agement), researchers have been able to compare categories of interventions. Per-
haps not surprisingly, meta-analytic findings suggest that interventions employing 
flashcard-based drill activities (e.g., incremental rehearsal) and practice sessions 
with a modeling component (e.g., math to mastery and great leaps) have proven 
most effective, with mean φ values of 92.00 (extremely high) and 0.71 (moderately 

Table 3.1  Sample repeated trial fluency-training interventions
Intervention Description
Cover, copy, and compare 
(Skinner, Turco, Beatty, & 
Rasavage, 1989)

Five step process: (1) look at a model of the math fact with 
the answer included, (2) cover the math fact with the answer, 
(3) write the fact with the answer, (4) uncover the original 
math fact with the answer, and (5) compare

Incremental rehearsal (Burns, 
2005)

A flashcard-based drill procedure that combines unknown 
facts with known facts

Taped-problems (McCallum, 
Skinner, & Hutchins, 2004)

Using a list of problems on a sheet of paper, the learner 
is instructed to answer each problem before the answer is 
provided by an audiotape player using various time delay 
procedures to adjust the intervals between the problem and 
answer (adapted from Freeman & McLaughlin’s (1984) 
taped-words intervention)

Detect, practice, and repair 
(Poncy, Skinner, & O’Mara, 
2006)

Multicomponent intervention: (1) metronome-paced, group 
assessment administered to identify unknown facts, (2) cover, 
copy, and compare procedures used with unknown facts, (3) 
1-min speed drill, and (4) learners graph their accuracy

Math to mastery (Doggett, 
Henington, & Johnson-Gros, 
2006)

Multicomponent intervention: (1) preview problems, (2) 
repeated practice, (3) immediate corrective feedback, (4) 
summative and formative feedback, and (5) self-monitoring 
of progress

Great leaps math (Mercer, 
Mercer, & Campbell, 2002)

Multistage strategy: (1) greeting and set behavior 
expectations, (2) review previous facts and progress graph, 
(3) conduct instructional session with short-timed practice, 
error correction, and teaching, (4) administer a 1-min fluency 
probe, (5) graph accuracy
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strong), respectively. Self-management strategies that require learners to monitor 
their own understanding (e.g., cover, copy, and compare) demonstrated moderate 
effect sizes (mean φ = 0.55 and mean PND = 60.2–70.7) proving productive as well 
(Codding et al., 2011; Joseph et al., 2012). However, fluency interventions that 
prescribed learner practice without a modeling component had little to no impact on 
student performance (mean φ = −0.003).

When evaluating additional characteristics of fluency interventions, meta-ana-
lytic results suggested that fluency approaches including multiple components with 
combinations of rehearsal, correction, and practice strategies demonstrated better 
learner outcomes. Specifically, interventions with more than three components had 
a moderately strong effect size (mean φ = 0.68) and those with less than three com-
ponents had a negligible mean φ value (Codding et al., 2011). Additionally, cou-
pling mathematics fluency interventions based on self-management strategies with 
other instructional components was found to be effective across numerous studies, 
mean PND = 87.9–97.5 (Joseph et al., 2012).

In addition to conventionally delivered fluency interventions, technology-de-
livered fluency interventions have become increasingly popular and prolific. Tra-
ditionally, computer-aided interventions utilized drill-based procedures providing 
repeated practice of basic number combinations, but technological advances have 
allowed intervention developers to incorporate a variety of effective practice and 
self-management strategies into technology-delivered fluency programs. Programs 
that present sets of basic number combinations from a specified numerical range 
(e.g., flash card program and Math Blaster) are freely available for download and 
have been used in research programs to compare their utility to peer tutoring and 
other drill-based procedures (Cates, 2005; Mautone, DuPaul, & Jitendra, 2005). 
These studies have generated mixed results, with some students responding well 
to technology-based interventions and others performing better in traditional inter-
vention conditions. Studies of both downloadable basic number combinations pro-
grams and researcher-developed mathematics drill programs such as Math Facts in 
a Flash (Renaissance Learning, 2003) have dedicated particular attention to at-risk 
students for mathematics difficulties. Results of this research suggest that comput-
er-based interventions may result in not only improved mathematical fluency, but 
also increased on-task behavior (Mautone et al., 2005; Burns, Kanive, & DeGrande, 
2012).

When comparing fluency interventions and evaluating their effectiveness for 
specific populations, it may be that distinct learner characteristics are predictive of 
the likelihood of responding well to a particular intervention. Research in this area 
has found that initial level of mathematics fluency can be a significant predictor of 
intervention effectiveness (Codding et al., 2007), and meta-analytic findings have 
suggested that baseline levels of fluency (instructional or frustration) may be as-
sociated with differential intervention effectiveness when comparing interventions 
that either (a) aim to support basic number combination acquisition (acquisition), or 
(b) intend to bolster learner fluency with known facts (rehearsal) (Burns, Codding, 
Boice, & Lukito, 2010). More specifically, the results of this study suggested that 
initial fluency performance was significantly linked to intervention outcomes such 
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that acquisition interventions were more effective for learners with a frustration 
baseline fluency level (mean φ = 0.84) compared to learners with an instruction-
al baseline fluency level (mean φ = 0.49). These findings provide support for the 
argument that effective mathematics fluency interventions should be implemented 
with careful consideration of initial learner performance, and also suggest that one 
should consider the phases of mathematical fluency (e.g., acquisition or rehearsal) 
when selecting a fluency intervention.

Targeting Generalizable Skills and Behaviors

Although initial level of fluency is a logical predictor of a learner’s response to a 
repeated trial fluency-training intervention, research has shown that a variety of 
additional cognitive and behavioral factors are also predictive of both mathematics 
fluency and general mathematics achievement (Geary, Hoard, Nugent, & Bailey, 
2013). Based on these correlational findings, mathematics fluency intervention de-
velopers have created and studied programs that target learners’ underlying cog-
nitive traits and behavioral tendencies. Rather than directly training learners with 
repeated trials and regular exposure to basic number combinations, these interven-
tions use mathematics fluency probes primarily as outcome measures and attempt 
to strengthen the learners’ foundational skills by teaching generalizable strategies.

Advocates for generalizable skill (e.g., self-management, goal setting, self-
evaluation) interventions argue that teaching students to utilize their cognitive 
resources more efficiently and effectively will not only translate into improved fluen-
cy, but improved general mathematics achievement as well. Research on behavioral 
self-management interventions has suggested that these strategies can improve both 
mathematics fluency and academic engagement, and generalize to more complex 
mathematical tasks (McDougall & Brady, 1998; Farrell & McDougall, 2008). Per-
formance feedback and goal setting have also been studied as mathematics fluency 
interventions. Results from these studies have indicated that there is an association 
between goal setting and feedback-based interventions and improved performance 
on mathematics fluency measures (Codding, 2003; Figarola et al., 2008). The chal-
lenge in evaluating these interventions is that it can be difficult to isolate the link 
between improved fluency and the underlying cognitive and behavioral factors. As 
these interventions rely on the repeated administration of fluency probes to monitor 
student progress, one could argue that mathematics fluency improvements could 
simply be due to the additional fluency practice and residual testing effects resulting 
from regular fluency probe administration.

Mathematics Interventions with Fluency Skill-Building 
Components

Rather than targeting underlying skills through cognitive training intended to sup-
port performance on both basic and complex mathematical tasks, others advocate 
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for allocating intervention resources to boost general mathematical knowledge 
based on its relation with both accuracy in basic number combinations and general 
mathematics skill development. For example, because number sense performance 
in kindergarten can predict later calculation fluency above and beyond cognitive 
factors (Locuniak & Jordan, 2008), researchers claim that early academic inter-
ventions support the acquisition of foundational skills that are pre- or corequisites 
of mathematics fluency. In addition to boosting the development of foundational 
academic skills, many general mathematics interventions include fluency-training 
components to build speed and accuracy with targeted mathematical material. In 
fact, researchers recommend that mathematics interventions include fluency exer-
cises (Fuchs et al., 2008a; Gersten, Jordan, & Flojo, 2005), and there is a high 
prevalence of fluency components in successful mathematics intervention curricula 
(Bryant et al., 2008; Fuchs, Fuchs, & Hollenbeck, 2007; Ketterlin-Geller, Chard, & 
Fien, 2008; Jitendra et al., 2013). Results from intervention research conducted by 
Fuchs et al. (2008) suggested that efforts to improve general mathematics skills and 
performance on complex mathematical tasks should be supported by mathematical 
fluency skill building. Although, improving fluency is not the primary objective 
of most general mathematics interventions, computational fluency is considered 
an essential aspect of mathematical performance and often explicitly addressed in 
intervention curricula aimed at at-risk students.

Challenges in Establishing Generalizable Interventions

Although some have argued that fluency is an interwoven component of applied 
problem-solving (Lin & Kubina, 2005) and improved fluency is associated with 
improved performance on more complex tasks (VanDerHeyden & Burns, 2009), 
others have found that fluency does not generalize across mathematics problems or 
skills (Poncy, Duhon, Lee, & Key, 2010). Poncy and colleagues suggest that fluency 
instruction targeting basic declarative skills (i.e., basic number combinations) 
needs to be supplemented with instruction that supports the fluent completion of 
procedural, multistep tasks for fluency to generalize to overall mathematics perfor-
mance. In sum, general research evidence suggests that for the mathematics fluency 
interventions to be optimally effective, they should utilize a variety of strategies to 
train learners to be more fluent with basic number combinations and be integrated 
into the general mathematics instructional program to support skill transfer and 
generalization.

The variety of mathematics fluency intervention approaches speaks to the 
lingering debate about the generalizability of fluency and the role of automaticity 
with foundational material in facilitating advanced mathematical achievement. The 
debate about the role of fluency in mathematics parallels similar debates about the 
nature of the relation between fluency and comprehension in reading. Few years 
ago, Slocum, Street, and Gilbert (1995) found that interventions that proved effec-
tive at increasing reading rate had unreliable impacts on reading comprehension. 
They also noted challenges related to (a) identifying sensitive outcome measures of 



78 B. Clarke et al.

general reading performance and (b) the experimental design of the study when at-
tempting to examine the mechanisms that link fluency and general reading achieve-
ment. Similar challenges abound in mathematics fluency research. Additional re-
search is needed to investigate the mechanisms that link mathematical fluency and 
overall mathematics performance and determine how one can isolate intervention 
techniques that target rate of responding (considered true fluency) from repeated 
exposure or additional practice, two common features of fluency interventions that 
can increase overall mathematics performance on their own regardless of whether 
or not the interventions improve general fluency proficiency (Doughty, Chase, & 
O’Shields, 2004). The effect of mathematics fluency training interventions is evalu-
ated by comparing pre- and posttests of student performance on basic number com-
bination probes, but it can be difficult to isolate the source of those gains. Improved 
performance on fluency probes is often assumed to be evidence of improved rate of 
responding, but could also be the result of increased knowledge or the simple ac-
quisition of basic number combinations alone. Effective assessments of mathemati-
cal fluency are critical to identifying factors of effective interventions and simply 
measuring student progress. In the next section, we will examine how mathematical 
fluency is measured and the role that fluency plays in mathematics assessment.

Fluency and Mathematics Assessment

The relation between fluency and mathematics assessment is complex. At first 
glance, the complexity of this relation is not readily apparent. In simple terms, 
a large number of commonly used mathematics assessments are timed, and a 
timed measure seems to imply that the measure functions as a fluency measure. 
However, a more in-depth examination of commonly used mathematics measures 
reveals a more dynamic relation between the construct of fluency and mathematics 
assessment.

To fully explore the role of fluency in mathematics assessment, we first examine 
the original development of widely used measures that are considered to be fluency-
based mathematics assessments and their intended use in educational decision-
making. We follow by providing an overview of measures currently in use and 
conclude with a discussion examining critical unanswered questions to which 
we feel the field should be attuned as we attempt to advance in both research and 
practice.

How Are We Measuring Fluency?

The construct of fluency in mathematics assessment is typically examined within 
the realm of a set of measures broadly classified as curriculum-based measures or 
CBM. Math CBM (M-CBM) measures have a long history and the general CBM 
category includes an expanding set of instruments used for a variety of purposes 
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by schools such as screening, program evaluation, and monitoring student growth 
(Deno, 2003; Deno & Mirkin, 1977). Originally M-CBM measures focused on a 
student’s understanding of computation objectives and application of conceptual 
understanding to problem-solving for the elementary school grades. But now the 
umbrella of M-CBM measures includes an array of measures designed to cover 
student development in mathematics from beginning number sense in the early 
elementary grades (Gersten et al., 2012) to a student’s understanding of pre-algebra 
in middle school (Foegen, 2008). Across this spectrum, content-assessed ranges 
from students comparing the magnitude of two one-digit numbers to combining 
like integers. Yet across this vast range of mathematics content one central fea-
ture remains prevalent—a timing element. But why is a timing element a common 
universal feature of almost all M-CBM measures?

The design of M-CBM measures was governed by a multitude of considerations 
including the content assessed and technical characteristics (Deno, 2003). But seri-
ous consideration was also given toward the practical application of their use in 
schools. Because the original intent of CBM measures was to monitor the growth 
of at-risk students to gauge their response to instructional interventions and modi-
fications (i.e., progress monitoring), the measures needed to have certain design 
characteristics that enabled them to be administered frequently and repeatedly over 
time (Deno, 1985). It was this consideration that played a major role in the inclu-
sion of a timing element. Seminal articles detailing the use and design features of 
the measures were linked to their need to be used in a repeated fashion and the 
importance of efficient measures to meet that goal.

Typically, an M-CBM battery consists of two measures; a computation measure 
that covers major topics in the standards relating to computation, and a concepts 
and applications subtest that assesses all other topics including word problems, 
measurement, money and time, and geometry. While the computation and con-
cepts and applications approach to M-CBM measures has long been utilized, a new 
theoretical framework has been advocated and initially researched that explores the 
possibility that math disabilities can occur in one of the two areas or both simultane-
ously (Fuchs, Fuchs, & Zumeta, 2008). M-CBM measures demonstrate acceptable 
test–retest, inter-rater and alternate-form reliability, and concurrent and predictive 
validity between .50 and .60 (Foegen, Jiban, & Deno, 2007). The timing of the mea-
sures varies by grade level with shorter durations (1 or 2 min) in the earlier grades, 
and up to 5 min for the later grades.

Although originally M-CBM measures were designed to align with actual curri-
cula (i.e., the C in CBM stood for a specific curriculum) over time new iterations of 
M-CBM measures were designed to align to specific state standards (Gersten et al., 
2012) and other similar but non-timed measures were aligned to foundational docu-
ments such as the National Council of Teachers of Mathematics Focal Points (2006; 
Clarke et al., 2011). This trend has specific implications for future measurement de-
velopment as more contemporary standards, such as the Common Core, are adopted 
and implemented. Other advancements in the use of M-CBM have focused on ex-
tending the use of M-CBM-like measures to the early elementary and middle school 
grades. In the next section, we detail developments in those age and grade ranges.
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Fluency-Based Measures Assessing Number Sense 

At the early elementary grades (kindergarten and first grade) fluency-based mea-
sures are designed to tap into a student’s beginning and developing number sense. 
Although the concept of number sense is widely accepted it has been elusive to 
operationalize. It has been postulated as a corollary to phonological awareness and 
described by Gersten and Chard (1999) as “a child’s fluidity and flexibility with 
numbers, the sense of what numbers mean, and an ability to perform mental math-
ematics and look at the world and make comparisons” (p. 19). Other researchers 
have noted the complexity of attempting to define number sense but at the same 
time attempted to begin articulating exactly what is number sense (Berch, 2005).

Possessing number sense ostensibly permits one to achieve everything from understanding 
the meaning of numbers to developing strategies for solving complex math problems; from 
making simple magnitude comparisons to inventing procedures for conducting numerical 
operations; and from recognizing gross numerical errors to using quantitative methods for 
communicating, processing, and interpreting information. (p. 334).

The complexity in defining number sense is often encapsulated by the wide range 
of specific number proficiencies put forth as indicating an underlying understand-
ing of number. That is, although there is a general consensus on what number sense 
is, the specific proficiencies that capture number sense are varied. The National 
Research Council’s (2009) Mathematics Learning in Early Childhood recognized 
the inherent difficultly in operationally defining number sense and noted that any 
attempt to measure number sense would likely focus on assessing key proficiencies 
(e.g., applying number properties or counting strategies to solving addition and sub-
traction problems and simple word problems). Thus, while measures developed to 
assess number sense would assess specific proficiencies, the larger goal was for the 
measure to tap into the underlying construct of number sense. Despite the complex-
ity and difficulty in measuring number sense through examining specific skills, a 
number of assessments have been developed. Typically, these assessments focus on 
key constructs of beginning number sense.

In the next section, we detail and summarize that work focusing on three compo-
nents of number sense judged to be critical by cognitive psychologists and educa-
tion researchers: magnitude comparison (Booth & Siegler, 2006), strategic count-
ing (Geary, 2004), and basic fact fluency (Jordan, Hanich, & Kaplan, 2003). The 
overview is not intended to suggest other aspects of mathematics development and 
number sense are not critical (e.g., solving word problems) or to suggest that other 
timed measures have not been developed to assess number sense or math readiness 
(e.g., numeral identification) but rather to focus on those measures tapping critical 
constructs and do so in a manner that is focused on a student’s fluency with the con-
struct. It should also be noted that although the measures and constructs reviewed 
focus on a specific skill, the original development of the measures mirrors that of 
early CBM development in that the goal is to provide a powerful indicator of a 
student’s broader understanding of the domain. Thus, while a measure may have 
a student complete a specific number sense or mathematics task (e.g., noting the 
missing number in a sequence of numbers) the measures are intended to provide an 
indicator or overall level of understanding.
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Magnitude Comparison 

Magnitude comparison is made up of a number of specific skills but fundamentally 
it is based on the ability to draw comparisons about relative magnitude. Magnitude 
comparison can include the ability to determine which number is the greatest in a 
set and to be able to weigh relative differences in magnitude quickly and accurately. 
For example, initially children may know that 5 is bigger than 2 and then begin to 
understand that 7 is also bigger then 2 and that the difference between 7 and 2 is 
greater than the difference between 5 and 2. As children advance to developing a 
more nuanced understanding of number and quantity, they are able to make increas-
ingly complex judgments about magnitude. In the earlier grades, the development of 
an understanding of magnitude is a critical underpinning of the ability to calculate.

It has been hypothesized that as children develop a greater understanding of 
magnitude, they map that understanding onto a mental number line and begin to use 
that mental number line to further understand magnitude and to solve initial calcula-
tion problems (Dehaene, 1997). For example, when a student is presented a problem 
to add 4 and 2, a student who can recognize 4 as the greater magnitude can then 
solve the problem by counting up 2 (this example also implies an understanding of 
the commutative property and the use of strategic counting) on a mental number 
line to derive a correct answer.

Typically, measures of magnitude comparison require a student to identify the 
greater number from a set of two numbers. A number of research teams have de-
signed and tested similar measures of magnitude comparison for kindergarten and 
first grade with all measures including a timing element but varying the range of 
numbers used in the materials in response to potential concerns about floor or ceil-
ing effects. For example, some measures uses number sets from 0 to 10 for kinder-
garteners (Lembke & Foegen, 2009; Seethaler & Fuchs, 2010), while others use 
0–20 (Clarke et al., 2011).

A recent overview of screening measures in the early grades (Gersten et al., 
2012), noted strong reliability coefficients across studies of examining magnitude 
comparison measures. Evaluations included interscorer, alternate-form, and test–re-
test, all of which reported coefficients consistently greater than .80, and concurrent 
and predictive validity data correlating with summative measures of mathematics 
falling mostly in the .50–.70 range.

Strategic Counting 

Strategic counting is fundamental to developing mathematical understanding and 
proficiency and has been defined as the ability to understand how to count effi-
ciently and to employ efficient counting strategies to solve an array of problems 
(Siegler & Robinson, 1982). Students who fail to develop strategic counting and 
to utilize counting principles efficiently to solve problems are more likely to be 
classified as having a mathematics learning disability (Geary, 1994). As children 
develop strategic counting strategies they are more able to efficiently solve addi-
tion and subtraction problems by applying this knowledge in combination with a 
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growing understanding of number properties. For example, a child who understands 
counting up (e.g., 5 + 2 can be solved by counting up from 5) and the commutative 
property (i.e., a + b = b + a) can apply the min strategy (counting up from the larger 
addend) so if given a problem “what is 6 more than 3?” she will solve the problem 
by changing the problem to “what is 3 more than 6?” and simply count on from 6 
to derive the answer.

The most common strategic counting measures require students to determine 
the missing number from a sequence of numbers. Similar to magnitude comparison 
measures, strategic counting measures include a timing element and vary the range 
of numbers used based on the grade level to avoid floor or ceiling effects. Some 
researchers have begun to experiment with measures that require skip counting 
(e.g., filling in the blank in a number series, 5, 10, __, 20) (Lembke & Foegen, 
2009) An overview of strategic counting measures found moderate concurrent and 
predictive validities (range = .37–.72) and strong reliabilities (range from .59 to .98) 
(Gersten et al., 2012).

Retrieval of Basic Arithmetic Facts 

An established finding in the research based on mathematics disabilities has been 
that students who are diagnosed as mathematics LD exhibit consistent and persis-
tent deficits with the automatic retrieval of addition and subtraction number com-
binations (Goldman, Pellegrino, & Mertz, 1988; Hasselbring et al., 1987). Geary 
(2004) found that children with difficulties in mathematics typically fail to make 
the transformation from using simple strategies to solve problems (e.g., by counting 
on their fingers or with objects) to solving problems mentally without using these 
objects (also Jordan, Kaplan, Ramineni, & Locuniak, 2009).

Research trends seem to indicate that, although students with mathematics LD 
often make progress in their use of algorithms when provided with classroom in-
struction, significant deficits remain in their ability to retrieve basic number combi-
nations (Geary, 2004; 2001; Jordan et al., 2003). A number of theories have been put 
forth to explain these difficulties. Geary (2004) hypothesized that the difficulty was 
related to issues with semantic memory (i.e., the ability to store and retrieve abstract 
information efficiently). Jordan et al. (2003) hypothesized that fact-retrieval dif-
ficulty was rooted in weak number sense, and that when students lack number 
sense and an understanding of the relations between and among numbers and op-
erations they fail to develop automaticity with addition and subtraction number 
combinations. Whatever the root cause of difficulty with addition and subtrac-
tion number combinations, they remain a powerful predictor of later mathematics 
achievement (Jordan et al., 2009). Initial research on number combination or fact 
fluency measures shows promise in the early elementary grades (first and second 
grade; Bryant, Bryant, Gersten, Scammacca, & Chavez, 2008; Gersten, Clarke, Di-
mino, & Rolfhus, 2010).
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Fluency-Based Measures in the Middle School Grades 

As students advance to the middle school grades, new CBM-like measures have 
been designed to assess critical concepts of algebra (Foegen, 2008), problem-
solving (Montague, Penfield, Enders, & Huang, 2010), and estimation (Foegen & 
Deno, 2001). Similar to M-CBM computation and concepts, and applications mea-
sures for the same grade range, these new CBM-like measures provide more time 
(e.g., 5 min) for students to work. The complexity of mathematics skills assessed 
by upper-grade measures brings into question how well we can assess mathematics 
using a timed measure. Consider one of the algebra measures developed by Foe-
gen (2008) designed to assess, among other features, the following basic skills in 
algebra: applying the distributive property, working with integers, combining like 
terms, and simplifying equations. Whether or not a timed measure (and of what 
duration) is the best approach to assessing this content is a legitimate question along 
with considering how untimed or measures with a longer duration fit into different 
types of assessments (e.g., screening and progress monitoring).

In part, the issue of timing represents the larger issue of whether or not a timed 
measure is also a fluency measure. Given that the original purpose of developing 
CBM measures was to provide an initial gauge of student understanding in a topic 
and a long-term analysis of growth in that topic, one could argue that not all of the 
measures reviewed in this chapter are fluency measures. However, given that all 
the measures do assess how quickly and accurately a student applies specific skills 
(whether for 1 min or for 5), they do assess fluency. The answer likely lies between 
those two positions in that the measures provide useful information in both pro-
viding an indicator of overall student understanding and a student’s fluency with 
greater overlap between the two in the earlier grades.

Conclusion

The concept of fluency and its importance is well established and accepted in the 
field of mathematics. Seminal documents on mathematics instruction readily ac-
knowledge the role of fluency in the development of student proficiency in math-
ematics (NMAP, 2008; Gersten et al., 2009). Perhaps in a proactive attempt to 
avoid the “reading wars” that have plagued the field of reading instruction, the 
mathematics field has been more overt and proactive in advocating for viewing 
fluency in conjunction with the development of conceptual understanding (NMAP, 
2008). That is, fluency and conceptual understanding are both of importance and 
that growth in one fuels increased growth in the other rather than one aspect of 
mathematics being developed at the cost of another (Wu, 2005).

Given the general acceptance of fluency’s importance, continued evaluation of 
existing and development of new interventions specifically designed to impact flu-



84 B. Clarke et al.

ency seems likely. We consider the development and research efforts reviewed in 
this chapter as a solid foundation for further work. We believe going forward two 
important considerations should guide the field. First, if researchers provide only 
a fluency intervention and evaluate the impact of that intervention with a measure 
that is closely aligned to the intervention, caution should be exercised when inter-
preting results. In particular if that measure is considered by the field to provide an 
overall index of understanding in the broader domain of mathematics. For example, 
an intervention may focus exclusively on building fluency in identifying the greater 
of a set of numbers and use a measure of magnitude comparison to examine impact. 
But because the intervention is specifically targeted on magnitude comparison, 
increased scores on a measure of the same content may not reflect a generalized 
improvement in the underlying domain of number sense. Second, given the high 
probability that low levels in fluency are accompanied by deficits in other areas of 
mathematics, fluency interventions should rarely be delivered in isolation. That is, 
students who struggle with fluency in mathematics need a comprehensive interven-
tion that includes, but is not limited to, addressing fluency-related problems. This 
position is not to say that isolated intervention and research conducted to date lacks 
importance, it is rather to acknowledge that students with severe deficits in math-
ematics need an intervention of an intensity equal to their deficits and that likely 
involves a sustained effort to build conceptual understanding of critical mathemat-
ics concepts.

Lastly, developers of current and future measures of mathematics that include a 
timing element should be proactive in laying forth what constructs they are measur-
ing and how they view the development and use of their measures. A cautionary 
tale from reading illustrates the point. When Reading First advanced the framework 
of five big ideas of beginning reading instruction, including accuracy and fluency 
with connected text (Baker, Fien, & Baker, 2010), states and districts viewed this 
framework as specifying a need to measure each big idea. The previous role of oral 
reading fluency as a measure of overall reading health was to some extent replaced 
with oral reading fluency serving only as a measure of accuracy and fluency with 
connected text despite the continued evidence that oral reading fluency continues 
to be validated as a strong measure of general reading achievement including com-
prehension (Fuchs et al., 2001). Thus, if developers and researchers design and 
view their mathematics measures as assessing student understanding in a broader 
domain but a timing element is also included, they should be proactive in discuss-
ing and demonstrating the link between their measure and greater understanding in 
mathematics.

We believe that efforts in all of these areas will help further our understanding 
of the role of fluency in developing mathematics proficiency. As we advance our 
understanding, we believe that the field will be better positioned to ensure that all 
children achieve success in mathematics.
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Chapter 4
Using Curriculum-Based Measurement Fluency 
Data for Initial Screening Decisions

Erica S. Lembke, Abigail Carlisle and Apryl Poch

Curriculum-based measurement (CBM) has enjoyed a long history of success and 
study as a practice for data-based decision-making (Deno, 2003). Originally devel-
oped and studied at the University of Minnesota in the mid-1970s (see Shinn, 2012 
or Tindal, 2013 for a detailed history), Stan Deno and his colleagues developed 
CBM measures and the problem-solving process as part of one of the Institutes for 
Research on Learning Disabilities (IRLDs), centers funded by the Office of Special 
Education Programs that addressed significant issues for students with learning dis-
abilities. With Deno’s interests in applied behavior analysis, it seemed logical to 
apply methodologies such as collecting baseline data, setting goals for students, 
and collecting and graphing ongoing data and then using them to make educational 
decisions, as a student’s data is compared to a goal. As part of work in the IRLD, 
that is exactly what Deno and colleagues did, developing a system of technically 
adequate (i.e., reliable and valid) assessments that could be administered quickly 
and efficiently up to three times per week. These data would be graphed on an ongo-
ing basis and compared with a goal set for a student. If data fell below the student’s 
goal for a specified number of points, a curricular change or instructional tweak 
would be instituted. All of these components were couched in a problem-solving 
process so that teachers and teams could utilize on a frequent basis to help make 
better decisions about student learning. As you will note already, the CBM process 
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or model is not just the measures themselves, but the use of those measures in a 
more comprehensive, problem-solving process. In this chapter the use of CBM, and 
specifically CBMs as measures of fluency, is discussed in depth. The theoretical 
support for measures of fluency is discussed along with more detailed research that 
supports the use of CBM, basic components of the process, and using CBM data to 
make screening decisions across a variety of academic subjects.

Fluency as a Proxy for Academic Proficiency

Ask most educators to define what fluency is and many will say “fast reading or 
fast computing.” Defining fluency and providing a rationale for why fluency tasks 
might be important are critical, yet somewhat overlooked objectives. Fluency tasks 
are often associated with timing, working quickly, and are not always associated 
with a student’s best effort. Yet as this book illustrates, fluency is much more than 
just timed reading or math production. Fluency tasks embody characteristics of aca-
demic proficiency that students exhibit. Following administration directions, per-
formance samples are elicited from students that are indicative of broader skills. For 
instance, some common CBM metrics include the number of words read correctly 
in a set amount of time or the number of mathematics problems completed during 
a given time. Both of these activities prompt students to work quickly (due to the 
timing) but also accurately; the final score represents the number correct, not just 
the number completed. When students have to work quickly and accurately, differ-
ent skills are required thanwhen they have unlimited time to complete a task. The 
cognitive skills accessed when students demonstrate fluent reading or computation 
are different from those accessed or applied on tasks where there is unlimited time 
or where accuracy is not paramount.

Fluency components in basic academic areas like reading, mathematics, and 
writing have been identified. In the area of reading, automaticity (LaBerge & Samu-
els, 1974), prosody (Schreiber, 1980), accuracy, and word recognition are all com-
ponents that have been used in definitions of fluency (see Kuhn, Schwanenflugel, 
& Meisinger, 2010). In mathematics, the National Mathematics Panel (NMP, 2008) 
describes fluency in the area of whole numbers and fractions as critical foundational 
elements to prepare students for algebra. The NMP describes mathematical fluency 
as not just recalling basic facts, but being able to apply operational knowledge in 
problem solving. Fluency with algorithms for the basic mathematical areas is men-
tioned as well. In one paper, writing fluency is defined as the rate at which text is 
produced (Chenoweth & Hayes, 2001). Berninger and Fuller (1992) identified writ-
ing fluency as one of the key components in a two-part model to predict develop-
ment skill and later writing achievement. Next, a brief discussion about the theory 
underlying each academic area is provided, prior to a return to how fluency tasks 
are utilized for CBM screening decisions.
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Theoretical Support for Fluency as a Construct  
in Reading, Mathematics, and Writing

Reading

In the area of reading, fluency measures have often been criticized because they ap-
pear to be simplistic “quick reads,” which only serve as an indication of how many 
words can be “called” in the time given. This lack of face validity has largely been 
overcome through careful discussion in the literature, as well as studies that address 
this issue head-on (c.f., Hamilton & Shinn, 2003).

Four main components have been utilized to describe fluent reading: automatic-
ity, prosody, accuracy, and word recognition. Two major theories have emerged 
when linking word recognition with fluent reading: LaBerge and Samuels’ (1974) 
theory of automaticity and Perfetti’s (1985) verbal efficiency theory. Reading flu-
ency is most frequently linked with the theory of automaticity, as described in La-
Berge and Samuels’ (1974) seminal article. In this article, the authors described 
automaticity as rapid and fluent word reading. LaBerge and Samuels theorized that 
if children were able to read words more fluently, not much time would be spent de-
coding individual sounds and words. This, in turn, would free up working memory, 
leaving room for comprehension to take place. The more fluently a child reads the 
more working memory available and the better the comprehension. Similar to La-
Berge and Samuels’ theory, Perfetti’s verbal efficiency theory proposes that readers 
can become more efficient readers through practice, and that efficiency in word 
recognition frees up cognitive resources. Perfetti posits that slow rates of word rec-
ognition “clog” working memory, affecting comprehension and recall. Shankweiler 
and Crain (1986) extended Perfetti’s verbal efficiency model by proposing that the 
combination of difficulties in orthographic decoding and limited-working memory 
capacity lead to difficulties in reading comprehension.

Moving from automaticity to prosody, Schreiber (1980) focuses on prosody, or 
expression, in reading and proposes that students’ lack of reading fluency may be 
a result of their inattention to prosodic cues, like phrasing and the rhythmic char-
acteristics of language. Schwanenflugel, Hamilton, Wisenbaker, Kuhn and Stahl 
(2009) provide their definition of prosody, “when a child is reading prosodically, 
oral reading sounds much like speech with appropriate phrasing, pause structures, 
stress, rise and fall patterns, and general expressiveness” (p. 121). Meyer and Felton 
(1999) also include elements of prosody in their definition of reading fluency in a 
review of literature, where they describe fluency as “the ability to read connected 
text rapidly, smoothly, effortlessly, and automatically with little conscious atten-
tion to the mechanics of reading, such as decoding” (p. 284). Although Schreiber’s 
theory was proposed over 30 years ago, little research has been focused on prosody 
as an element of reading fluency. In a brief review for this chapter, out of 29 em-
pirical articles on reading fluency interventions, only three included some form 
of prosody as a dependent measure. This search was conducted back to 2000 and 
involved a search of electronic databases using PsychInfo and Google Scholar but 
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did not involve a hand search. The majority of articles used dependent measures 
that addressed accuracy, fluency, and comprehension. There is a paucity of research 
using prosody as an indicator of fluency (Schwanenflugel, Hamilton, Wisenbaker, 
Kuhn, & Stahl, 2009) and this lack of use of prosodic features as an outcome is due 
in part to the difficulty of measuring expression in students’ reading. For example, 
research by Young, Bowers, and MacKinnon (1996) and Young and Bowers (1995), 
in particular, have examined the effects of prosody on students’ reading fluency 
using voice-activated devices to measure prosodic cues, such as pausal intrusions.

Another theory of reading fluency offered by Adams (1990) is a “connection-
ist” approach, in which orthography, phonology, meaning, and context interact to 
produce reading fluency. Adams suggests that rapid word identification and phrasal 
knowledge are necessary components, but are not sufficient to produce fluent read-
ing on their own. Adams hypothesizes that a failure to make connections between 
words, meanings, and ideas results in nonfluent reading.

Wolf and Katzir-Cohen (2001) cite research by Kame’enui, Simmons, Good and 
Harn (2000) and Berninger, Abbott, Billingsley, and Nagy (2001) that characterizes 
fluency in a different manner than either a single-word recognition, prosodic, or 
connectionist view. Kame’enui and colleagues discuss fluency as a developmental 
process, where efforts at remediation need to be focused on early reading skills. 
Berninger and colleagues characterize fluency development as a systems approach, 
where the visual or verbal input, internal-language processes, and coordination of 
responses by the executive system all combine to influence growth in fluency.

The theory that underlies a researcher’s position on fluency determines how 
studies are conducted and also what outcomes are measured. One of the keys to 
empirically examining a concept is operationalizing the term that you are studying. 
This has been difficult in the case of reading fluency, with definitions varying from 
study to study. Wolf and Katzir-Cohen (2001) discussed the lack of a clear defini-
tion of fluency and how even subtle changes in definition result in differences in 
assessment and intervention. Across all definitions, there are elements of speed and 
accuracy, including fluency described as verbally translating text with speed and 
accuracy (Fuchs, Fuchs, Hosp, & Jenkins, 2001) and accuracy of word recognition 
and reading speed, with an emphasis on speed (Samuels, 1997). Other researchers 
describe fluency as 3D, with expression or prosody accompanying rate and accu-
racy (Dowhower, 1991; Schreiber, 1980). Fluency has also been described as an 
indicator of comprehension.

When measuring or assessing fluency, nearly all studies use measures of reading 
speed and accuracy. This is not surprising given the theories just discussed and the 
emphasis on speed and accuracy as two of the primary components in addition to 
prosody. Reading speed is generally measured by counting the number of words 
that a student reads correctly in a constrained period of time, and accuracy is as-
sessed by looking at the number of errors that a student makes in that reading. This 
is where CBM enters back into the picture.
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Curriculum-Based Measurement

CBM is a system of progress monitoring in academic areas that utilizes technically 
adequate measures to assess progress. Technical adequacy studies are completed in 
three phases or stages (Fuchs, 2004). Stage 1, technical features of the static score 
(including reliability and validity), involves evaluation of measures that can be used 
to administer all students at  limited times during the year to check on student perfor-
mance compared to established norms. Stage 2, technical features of slope, involves 
development of measures that can be utilized for ongoing monitoring of student 
progress in an academic area. These progress-monitoring measures might be given 
as often as weekly. Stage 3, instructional utility, is focused on examining how the 
measures function when teachers utilize them for monitoring the progress of their 
students, including determining when instructional changes need to be made. Please 
see Burns, Silberglitt, Christ, Gibbons, and Coolong-Chaffin, Chap. 5, this volume, 
for more information about progress monitoring decisions—including response to 
intervention decisions.

CBM draws upon theories of automaticity and fluency, with a focus on develop-
ment of measures that serve as indicators of broad constructs, such as reading pro-
ficiency. Deno, Mirkin, and Chiang (1982) initially identified the number of words 
read correctly in 1 min as a technically adequate indicator of overall reading pro-
ficiency. Initially, 1 min samples were collected to provide ease and efficiency for 
teacher administration. But there is nothing magic about 1-min timings; the duration 
of the assessment must be balanced with the item types and content of the measure. 
Thus, some CBM measures require 6 or 8 min to obtain adequate, reliable samples 
of information. More detail about average lengths of administration can be found in 
Table 4.1. In reading, repeated studies have been conducted on the efficacy of using 
the number of words read correctly in 1 min as a fluency indicator. It is important to 
note that the CBM research has shown the number of words read correctly in 1 min 
is not just a measure of decoding skill, but predicts general reading achievement. 
Multiple studies have been conducted on the validity and reliability of the CBM 
reading measure demonstrating strong correlations with other measures of fluency 
and comprehension (Shinn et al., 1992; Reschly et al., 2009).

Mathematics

In the area of mathematics, Rhymer et al. (2000) cites literature suggesting that 
computational fluency, defined as responding accurately and rapidly, leads to better 
long-term outcomes, maintenance of skills, and better application to novel math-
ematics tasks. The National Council of Teachers of Mathematics (NCTM, 2000) 
describes fluency in mathematics as “…having efficient and accurate methods for 
computing. Students exhibit computational fluency when they demonstrate flex-
ibility in the computational methods they choose, understand and can explain these 
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methods, and produce accurate answers efficiently” (p. 152). In this definition, flu-
ency is more than just production, but efficiency in application and explanation. 
Thomas (2012) suggests that perhaps we have moved beyond simple speed and 
accuracy in mathematics and that there are three competing definitions of fluency 
when applied to this skill area: “(1) Speed/efficiency are the sole components; (2) 
Speed/efficiency are the emphasized components, but meaning is also necessary; or 
(3) Meaning is the emphasized component and speed/efficiency are characterized 
as natural outgrowths of deep understanding” (p. 327). The National Mathematics 
Advisory Panel (2008) suggests that mathematical fluency includes both computa-
tional and procedural fluency. As many states implement the Common Core State 
Standards (CCSS), fluency is included as an aspect to be practiced, but not at the ex-
pense of understanding. The CCSS defines fluency as both quickness and accuracy. 
Within the standards, fluency is built from grade to grade on  increasingly difficult 
skills. Clearly, there is a common theme throughout these reports, manuscripts, and 
standards indicating that rapid naming of facts and the ability to quickly apply pro-
cedures are critical to developing further mathematics skill.

In their article on computational fluency for high-school students, Calhoon et al. 
(2007) cite work demonstrating the far-reaching influences of fluency. For instance, 
The National Research Council (2001) provides an analogy suggesting that lack of 
computational fluency may have negative effects on mathematical comprehension 
similar to the effects that poor decoding has on reading comprehension (in Calhoon 
et al., 2007). In addition, Calhoon and her coauthors provide a overview of the lit-
erature suggesting that higher-order mathematics cannot be accessed as efficiently 
if fluency is not present (Gerber & Semmel, 1994; Johnson & Layng, 1994; Pel-
legrino & Goldman, 1987 in Calhoon, 2007). See also Clarke, Nelson, and Shanley 
(Chap. 3, this volume) for more information about the importance of fluency in 
mathematics assessments. The parallels between reading and mathematics fluency 
are compelling and provide a strong rationale for the use of fluency tasks as screen-
ing measures in systems of data-based decision-making. But more about that after 
we discuss theories of fluency in the area of writing.

Writing

In the area of writing, the skills most often targeted include transcription and text 
generation (McCutchen, 2006) or text production (Chenoweth & Hayes, 2001). 
Transcription, translation of language into written symbols, is most often measured 
through handwriting or spelling tasks for students. These tasks, which at first glance 
may appear to be fairly straightforward and perhaps even rudimentary, are strongly 
predictive of future writing performance (Graham, Harris, & Fink, 2000). In fact, 
in a recent study (Puranik & Alotaiba, 2012), the authors found that handwriting 
and spelling made statistically significant contributions to the prediction of written 
expression proficiency.
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Text generation is the process of “turning ideas into words, sentences, and larger 
units of discourse” (McCutchen, 2006, p. 123). Text generation is also constrained 
by cognitive resources including working memory. How does working memory 
relate to writing fluency? Students who have strains on working memory may have 
difficulty retaining rules about use of grammar, accuracy in spelling, or simply 
brainstorming and retention of content ideas. Long-term memory resources are re-
lated to knowledge of topic and genre, which can constrain quality and quantity of 
text generation (McCutchen, 2006). Text generation has been found to be related to 
overall writing quality (Dellerman, Coirier, & Marchand, 1996) including that of 
beginning writers (Juel et al., 1986). Ritchey and colleagues (Chap. 2, this volume) 
have active research labs studying and refining theories supporting new and innova-
tive measures of written language and are a great resource for further information 
on the topic.

Developing further understanding of the underlying theoretical constructs that 
support the use of fluency in each of these academic areas is important, as some 
would dismiss fluency tasks as simply “responding fast” if deeper understanding 
was not cultivated. As Deno and his colleagues at Minnesota, and others since, have 
reported, fluency with academic tasks serves as an indicator of something broader 
than just quick responding. As discussed in the preceding section, fluency with 
tasks can be directly linked to stronger comprehension in reading, greater problem 
solving ability in mathematics, and lengthier compositions in the area of writing. 
Theoretical foundations of learning support the use of fluency tasks for brief as-
sessment in academic areas. With a better understanding of how fluency undergirds 
more sophisticated processing in these academic areas, we next move to a discus-
sion regarding how fluency measures might be utilized for teachers and schools as 
part of a data-based decision-making, particularly in the area of universal screening.

Basic Components of Data-Based Decision-Making

When CBM measures were developed in the mid-1970s, the initial framework for 
teacher-data utilization was termed as data-based program modification (DBPM; 
see Shinn, 2012 for a well-articulated account of this early work). DBPM had roots 
in teacher development, behavior analytic techniques, and precision teaching (Lind-
sley, 1990). Precision teaching included direct and explicit teaching methods, such 
as modeling and precise and frequent feedback using visual models. Deno and his 
colleague Phyllis Mirkin (1977) brought these components together in a manual 
that was published by the Council for Exceptional Children (CEC). The DBPM 
manual detailed methods that special education teachers could utilize to monitor 
the performance and progress of their students in basic skill areas. Special educa-
tion teachers could empirically evaluate the progress of their students and make 
decisions about their instruction based on actual student performance data. This 
method differed from past practices where teachers might just guess about when 
to try something new or make judgments about the effectiveness of an intervention 
based on anecdotes or personal feelings. This new way of thinking brought about a 
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more data-based scientific approach to education. Centered around a problem-solv-
ing process (see Marston et al., 2003), DBPM provided a model to assist teachers as 
they identified an area of need, developed an intervention, monitored the progress 
of the student in the intervention, and then continued or modified the intervention 
after examination of data at regular intervals. This basic model is now termed data-
based individualization (National Center on Intensive Intervention, 2012), Preven-
tion Science (i.e., see Lembke, McMaster, & Stecker, 2009), or even response to 
intervention (RTI).

The basic components in the DBPM process include universal screening, goal 
setting, diagnostic assessment, hypothesis generation about potentially effective 
interventions, development and implementation of an instructional plan, weekly 
progress monitoring, and making ongoing changes in intervention using decision-
making rules. Each step is described in more detail below using a case study of Mrs. 
Hammond’s classroom and one of her students, Samuel.

Step 1–Screening Using CBM Measures

All students should be screened using CBM measures, ideally, three times per 
year (fall, winter, spring). Universal screening means that all students in a build-
ing are tested. Typical measures used for screening are short-duration tasks that are 
matched to students’ grade levels; the results of those tests are then compared to 
established normative levels of performance. These norms are developed as a result 
of national, state, or local data collection, and translate into benchmark levels of 
performance that are standard criteria where students need to be performing to be 
deemed “not at risk” at a particular time of year (see Smolkowski, Cummings, and 
Stryker, Chap. 8 this volume, for more information about how benchmark levels of 
performance may be statistically determined). The criteria that determine risk status 
are determined statistically after examining data that has been collected for each 
grade at each time of year. Students who fall below a predetermined benchmark on 
the CBM are identified as needing additional instruction or interventions and their 
progress will be monitored more frequently.

Case Study

Mrs. Hammond teaches literacy to students in grades 1–3 who have difficulties 
or are on individualized education programs (IEPs) for reading or writing. At her 
school, these students come to work with her on their academic skills for at least 
30 minutes per day in her classroom. Mrs. Hammond screens all of her students fall, 
winter, and spring using CBM measures. After scoring those measures, she has a 
sense of how her students compare to others who have completed these measures 
and she also has a better sense of the students’ skill deficits. In the fall when she 
screens her students, she determines that several may have needs in the area of 
spelling.
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Step 2—Setting an Ambitious Goal for the Student and Labeling 
the Goal Line on the Student’s Progress Monitoring Graph

An ambitious yet attainable goal is set for all of Mrs. Hammond’s students who 
scored below criterion. The specified goal is for a given time period (e.g., several 
months, a semester, end of year, etc.). Goals can be determined in one of three 
ways: (1) according to national norms, which vary by CBM product, (2) grade-
level benchmarks, which also vary by CBM product or (3) an intraindividual frame-
work, where a student’s individual data are used to project a reasonable goal in the 
time allotted using expected rates of growth. For example, using the intraindividual 
framework, a teacher could specify that a student would gain two words per week 
on a test of oral reading fluency (ORF). The end goal would be determined by the 
following formula:

If a student had an initial score of 20, the goal score in 27 weeks would be 74.
However the goal is decided, it along with the student’s current level of fluency 

(baseline; present level of performance) is marked on an individual student graph. 
The baseline and goal points are connected and a line is drawn between them. This 
goal line spans the number of instructional weeks between the baseline level of 
performance and the point by which the goal is desired to be achieved. This goal 
line determines the most direct route to take when attempting to reach the desired 
level of performance.

Case Study

Mrs. Hammond sets a goal for each student based on the national normative data 
available from the publisher of the measures and marks this goal on each student’s 
graph. She then marks each student’s baseline score, or current level of spelling flu-
ency, and connects the two points to create a goal line (Fig. 4.1).

Step 3–Identification of Strengths and Weaknesses Using 
Diagnostic Measures

In addition to CBM screening measures, students who have been identified as re-
quiring more intensive interventions may be given diagnostic measures. CBMs tell 
us if there is a problem. Diagnostic assessments tell us specifically what skills are 
deficient and what the student is able to do well. Diagnostic information is then used 
to develop an intervention plan and determine where to focus instruction. An ex-
ample of a diagnostic fluency assessment is a miscue analysis (Fuchs, Fuchs, Hosp, 
& Jenkins, 2001), which determines the specific types of errors a student is making 

(2     )  27      
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in reading. Teachers make notation about student errors as the student is reading 
aloud and then later go back and categorize the types of errors the student made.

Case Study

Mrs. Hammond needs to decide what to teach for each student or group of students 
in her classroom who scored below the normative criterion at the screening point. 
She conducts an error analysis on each student’s spelling to determine which let-
ter patterns are in error. She groups students based on strengths and specific needs 
identified from the use of this diagnostic tool before initiating step 4.

Step 4–Generating a Hypothesis About Appropriate Method  
to Individualize Instruction for the Student

Using CBM results and diagnostic data as appropriate, educators should come up 
with logical ideas about what type of intervention program, instructional content, 
and delivery setting would be appropriate for each student. It is important to con-
sider not only the specific skills the student needs to work on but also the amount 
and frequency of supplemental instruction and the size and composition of the in-
tervention group.

Case Study

Mrs. Hammond uses each student’s school instructional plan or IEP as a template 
for how to individualize her lessons. She also brings back the error analysis data, 
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as well as any other information she has about the students, to bear in terms of 
selecting an intervention plan that is most likely to be successful. She considers 
that some students will likely do well in a small-group intervention setting, while 
a few students have significant needs that may be better served in a one-to-one or 
very small group structure. She also uses her own personal knowledge of student 
behavior to decide if students will work well together in their small groups. Perhaps 
Samuel and Sally tend to feed off each other in terms of who can be the biggest 
class clown; however, they work fine when paired with other students. She would 
then choose to separate them so that instructional time is more wisely used. After 
grouping considerations are finalized, the content of the lesson is made specific. We 
talk about this more in step 5.

Step 5–Creating an Instructional Plan for Each Student  
or Group of Students

Based on the above discussion, educators will develop an instructional plan with 
a goal and instructional activities for each student. These activities should be re-
search- or evidence-based and typically include direct, explicit, and systematic in-
tervention for the deficit area(s) identified during the diagnostic step above.

Case Study

To identify the content and activities she will use in the plan, Mrs. Hammond ex-
amines her menu of available intervention options matched to each student’s needs 
and goals to further individualize for each student. In addition to determining the 
size of each student’s intervention group, Mrs. Hammond thinks about whether a 
standardized intervention package that is delivered the same way to all students in 
a group might be appropriate, or if a more individualized strategy targeting specific 
spelling patterns may fit a student’s needs. She must consider the intervention strat-
egies and activities available, how much time each intervention will take, and the 
order of spelling patterns and targeted content she will cover with each student or 
group of students.

Step 6–Beginning Regular and Frequent Instruction Using  
the Instructional Plan

The instruction or intervention will be provided for as much time as possible, rel-
evant to the skill needs. The greater the academic needs of the students, the more 
often the intervention should be implemented and for a greater length of time each 
session.
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Case Study

Mrs. Hammond begins implementing the instructional plan for each student. She 
monitors her own fidelity of implementation, keeping data on how long she is able 
to implement the plan each day and to what extent she is able to implement the es-
sential elements of the plan. She also regularly and informally checks for mastery of 
content before moving on to the next unit or subunit in the instruction. This informal 
measurement is not CBM, but is critical to ensuring that instruction is effective for 
each student.

Step 7–Regular Progress Monitoring, Including Scoring  
and Graphing, Using a CBM Measure

To continuously monitor student response to the intervention, regular weekly prog-
ress monitoring data using a CBM is necessary. Continue to graph these data on the 
student’s graph to determine if the student’s performance is changing and how close 
his or her data points are to the goal line (see step 2 and Chap. 5 for more details 
about progress monitoring decision rules and evaluating a student’s response to 
instruction). Weekly progress monitoring is recommended for students who are sig-
nificantly behind their peers (e.g., someone in a tier 3-level intervention), whereas 
monitoring every other week or monthly may be more appropriate for students who 
are not as far behind (e.g., someone in a tier 2-level intervention).

Case Study

In the area of progress monitoring, because she is providing an intensive tier 3 in-
tervention for these particular students, Mrs. Hammond collects data weekly using 
one of the CBM measures in writing. She scores the measure and plots each indi-
vidual data point for each student, by week. She then connects each of the progress 
monitoring data point for easier visual analysis. The connected line running through 
all of the student’s data points is called a “trendline.” This line describes the trend 
of student performance and can be interpreted relative to the aim or target line 
(shown in red, Fig. 4.2). This process of analyzing student performance over time 
is described in step 8.

Step 8—Making Ongoing Changes in Instruction Based  
on Decision-Making Rules

Using progress monitoring data, educators can determine if the instructional plan is 
having the intended effect. The main method for making educational decisions us-
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ing student progress monitoring data is the trendline rule. There are several methods 
for determining the trend of student’s progress. The National Center for Response 
to Intervention (NCII, 2014) lists the methods for several of the most common and 
supported in its glossary of terms available at the following web address: http://
www.intensiveintervention.org/ncii-glossary-terms. Recent publications indicate 
that as many as 12 data points might be necessary to establish a reliable trend line 
(Ardoin et al., 2013). When the trendline is at or above the aimline, the intervention 
will be continued and likely faded if progress remains strong. When the student 
progress (represented by the trendline) is below the aimline, consider making a 
change to the intervention delivery or, in some cases, content.

Case Study

Mrs. Hammond uses decision-making rules to make ongoing decisions about inter-
vention effectiveness. She does not want to continue with an intervention if student 
growth is not observed. For one of her students, Samuel, his data through Octo-
ber 1st indicates that his current trend of data is not approaching his aimline (see 
Fig. 4.3). For this reason, Mrs. Hammond decides to make a change for Samuel. She 
consults with her fellow teachers and her special education consultant to choose an 
intervention change that is supported by evidence.

For the purposes of this chapter, our focus remains on utilizing CBM measures 
for screening as specified in step 1.

Using CBM for Screening Decisions

CBM measures embody specific characteristics, including: (a) efficient adminis-
tration, (b) short duration, (c) technical adequacy, and (d) indicators of academic 
proficiency. The term indicator is used to signify the short duration of the measures 
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as well as their strong relation to other measures of broad academic proficiency in 
that content area. Utilizing the theories underlying fluency, we can develop brief 
measures that serve as proxies for overall academic proficiency. Thus, although, a 
common measure of CBM in reading is the number of words read correctly in 1 min 
(oral reading fluency), this score serves as a broader indicator of academic profi-
ciency in reading. As mentioned previously, in her 2004 article on the use of CBM 
measures, L. S. Fuchs described three stages of CBM research: stage 1, technical 
features of the static score; stage 2, technical features of slope; and stage 3, instruc-
tional utility. These stages are important because measures need to be researched 
and then utilized only for the purpose they were intended and the purposes for 
which they have been validated. A measure that is appropriate for stage 1 (assess-
ing performance) may not have strong instructional utility. When considering what 
measure or combination of measures will be utilized for screening decisions for 
students, one must consider several technical features including: the accuracy of 
decision-making, predictive validity, and instructional utility of the measures across 
grades. In certain content areas like early mathematics (see Gersten et al., 2012), a 
battery of measures might be considered rather than a single measure.

Other Features that May Impact Screening Decisions

Once an appropriate measure is selected that maps on to our desired educational de-
cision, other factors must be considered. The importance of classification accuracy 
is a critical component of any screener (Gersten, 2012; Johnson, Jenkins, & Petscher, 
2010; Kovaleski, Vanderheyden, & Shapiro, 2013; Smolkowski et al., Chap. 8, this 
volume). Classification accuracy refers to how accurately a measure can be utilized 
to predict a decision regarding future student performance. For instance, classifica-
tion accuracy might be calculated to determine how likely a student would be to 
pass or fail a high-stakes assessment in the spring based on initial performance on a 
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CBM during fall screening. Sensitivity, specificity, and the area under the receiver 
operating characteristic (ROC) curve are some of the statistics used to estimate the 
accuracy of a given screening measure, and is only interpretable for given associ-
ated set of cut points, in terms of correctly identifying students at one point in time 
as at at-risk or on track for outcomes measured at a later time. Sensitivity (i.e., the 
true positive fraction) describes how acutely a particular cut point on a screening 
measure identifies children as at-risk who end up failing the outcome measure; sen-
sitivity is not interpretable without knowing the corresponding value of specificity 
for that same cut point. Specificity (i.e., 1-false positive fraction), on the other hand, 
refers to the degree to which a given cut point on specific screening measure rules 
out students who are not at risk for failing the outcome measure; a screener that is 
specific reduces the number of students who are identified erroneously as needing 
additional instructional support. There are trade-offs between sensitivity and speci-
ficity (i.e., as one increases the other decreases) and, depending on how accurate the 
screener is overall, the differences between sensitivity and specificity can be quite 
large. A book published in 2013 by Kovaleski and colleagues, Identification of Stu-
dents with Learning Disabilities Utilizing RTI, provides a comprehensive overview 
of how classification accuracy can be improved and utilized for high-stakes deci-
sion-making and details how schools could use CBM screening data in a multitiered 
system to make classification decisions regarding students who might be in need of 
additional intervention. The goal for schools would be to maximize the number of 
students correctly identified. Utilizing a complementary process of screening and 
then a few weeks of follow-up progress monitoring to confirm or disconfirm the 
screening decision can be effective in enhancing classification accuracy.

This recent work in classification accuracy highlights the movement toward 
greater precision in decision-making utilizing CBM. Initial development of CBM 
focused on decisions that an individual teacher might make about a small group 
of students. A teacher would examine recent data values that had been collected 
and would apply a decision rule like the “three below, six above rule” (see Deno 
& Mirkin, 1982) where if three weekly data points were below the goal line (see 
Fig. 4.1), an intervention change would be needed, but if six weekly data points 
were above the goal line, it would be a time to raise the goal for the student. As the 
use of CBM morphed from individual teacher decision-making to decision-making 
for larger groups of students (utilizing normative data), the need for greater ac-
curacy emerged. CBM essentially transitioned from serving as a key measure in 
an individualized, instructionally driven model for special education teachers, to 
being utilized across general education for universal screening, to serve as a key 
component in special education eligibility decision-making as part of an RTI model.

As another part of universal screening, CBM is utilized to predict performance 
on high-stakes tests (cf. McGlinchey & Hixson, 2004). Prediction of performance 
within a year or across years allows schools to better divert resources to students 
or groups of students who might fail if intervention is not provided. Thus, screen-
ing serves as an important technique to identify students at risk early, while there 
is still time to intervene. For CBM screening, the higher the stakes of the deci-
sion, the more important precision in decision-making becomes. For instance, 
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making a decision about student placement in special education is extremely high 
stakes and CBM screening data is one piece of data to aid that process. Precise 
decision-making is necessary when utilizing CBM data for this purpose, where a 
student’s placement will be substantially influenced. A lower stakes decision that 
still requires specificity, but not to the same degree as special education evaluation, 
might be  determination of small-group intervention activities for a low-performing 
classroom based on CBM screening data. The good news is that educators can find 
greater detail and more specificity on these issues in resources such as the book by 
 Kovaleski et al. (2013) and in the chapters contained in this volume (i.e., Burns et 
al., Chap. 5; Smolkowski et al., Chap. 8; Espin & Deno, Chap. 13).

Potential CBM Screening Measures

Next, discussion of the various measures available for screening will be provid-
ed. See Table 4.1 for a table of fluency-based CBMs in reading, math, writing, 
and other content areas that span the grade levels from early elementary through 
high school. The reader is also encouraged to access the Progress Monitoring and 
Screening Tools Charts assembled by the National Center on Intensive Intervention 
(NCII) and the National Center on RTI (NCRTI) respectively (see http://www.in-
tensiveintervention.org/chart/progress-monitoring and http://www.rti4success.org/
resources/tools-charts/screening-tools-chart) for additional information regarding 
the technical adequacy of the fluency-based CBMs discussed below. These charts 
are updated annually with new screening measures as well as with evolving infor-
mation for existing tools.

Reading

In the area of reading, typical measures utilized for screening in early literacy (i.e., 
pre-K through early grade 1) include letter naming, letter sound naming, phoneme 
segmentation, nonsense word fluency, and word identification fluency. Each mea-
sure is individually administered for 1 min and the number of correct responses 
is totaled and graphed. In the area of elementary literacy (i.e., grades 1–5), com-
mon CBM measures include oral reading fluency and maze. Oral reading fluency 
measures are individually administered for 1 min and the number of words read 
correctly in that minute is graphed. The maze task is group administered and the 
time for the task varies from 1 to 3 min depending on the students’ grade level (e.g., 
earlier grade levels tend to have longer time to engage the task) and the specific 
test publisher. Students read a passage to themselves where every seventh word 
(approximately) is deleted and replaced by three choices: the correct word and two 
distractors. As students read the passage, they circle the word that they feel makes 
the most sense in the context of the passage. The number of correct choices selected 
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by the student is the score that is graphed. As students improve in their fluency on 
these tasks, an increase in academic achievement should also be noted.

Knowledge of letter names has been identified as one of the best predictors of 
later reading acquisition and growth (Stage, Sheppard, Davidson, & Browning, 
2001). The letter naming fluency (LNF) CBM is a measure of students’ ability to 
correctly name in 1 min a selection of random lowercase and uppercase letters. 
Each probe provides students with a randomly ordered list of letters and requires 
students to reproduce the letter name associated with each letter. The ability to ac-
curately recognize and name different letters has been linked to later word reading 
ability as one must easily be able to recognize letters and sounds in order to use 
grapheme-phoneme knowledge to decode words (Stage et al., 2001).

CBMs in letter-sound naming (LSN) require students to produce the phonologi-
cal sound of the presented letter. Students are given a list of 26 letters presented in 
random order and asked to say the sound that the letter makes. As the student reads 
off the list provided, the administrator marks errors on a corresponding score sheet 
(Fuchs & Fuchs, n.d.). Students receive one point for each correct letter sound.

Phoneme Segmentation CBM presents students with words containing approxi-
mately four phonemes. They must accurately pronounce each phoneme of the word 
presented. Students are timed for 1 min, whereas the administrator marks errors on 
a corresponding score sheet (Fuchs & Fuchs). Students receive one point for each 
phoneme pronounced correctly.

Nonsense word fluency is a first-grade dynamic indicators of basic literacy skills 
(DIBELS) measure (Good & Kaminski, 2002). Students are given 1 min to read 
through a list of pseudo-words that primarily follow the consonant-vowel-consonant 
(CVC) pattern. Credit is earned in one of two ways: (1) by saying each individual 
sound in the pseudo-word, or (2) by blending the sounds into a word (Fuchs, Fuchs, 
& Compton, 2004). Thus, the final NWF score is the number of sounds produced cor-
rectly, with up to three sounds per pseudo-word, as well as the total number of CVC 
words that were decoded completely and correctly. NWF therefore provides both an 
index of letter-sound correspondence and the ability to blend letters into words using 
the most common sounds for each letter (Fuchs, Fuchs, & Compton, 2004).

Word identification fluency (WIF) is a 1-min timed CBM for first-grade students 
that requires reading from a list of approximately 50 high-frequency words (Fuchs & 
Fuchs, www.studentprogress.org). On the scoring sheet, the administrator awards the 
student 1 point for reading a word completely and correctly and a 0 for an incorrect 
response, which could include an error on any part of the word. At the end of 1 min, 
the administrator circles the last word the student read, and tallies and then graphs 
the number of words read correctly. This score represents automatic word recogni-
tion, which is essential for reading proficiency (Fuchs, Fuchs, & Compton, 2004).

Content Areas

CBMs in the area of vocabulary matching for secondary students have also been 
researched as both indicators of performance and progress in social studies and 

http://www.studentprogress.org


111

science (see Espin, Shin, & Busch, 2005; Espin, Busch, Shin, & Kruschwitz, 2001; 
special issue of Assessment for Effective Intervention on content area measurement 
38, Lembke, E.). These studies have examined both student-read and administrator-
read forms. Student-read forms contain 22 vocabulary terms with two distractors 
printed on the left side of a page and listed alphabetically. Twenty definitions were 
provided on the right side of the same page; each definition was reworked to contain 
15 words or fewer. Vocabulary terms were chosen at random from a social studies 
textbook and from teachers’ lectures. Vocabulary-matching probes were adminis-
tered for 5 min. Students were expected to read both the vocabulary terms and the 
definitions and to match each term with its respective definition. Administrator-read 
probes were developed from the same list of vocabulary words, but the form stu-
dents received only contained the vocabulary terms. Administrators read the defini-
tions aloud, one at a time, to students, who were asked to identify the term that best 
matched the definition read. Probes were administered for 5 min with a 15-s interval 
between each item. Students received one point for each vocabulary term matched 
correctly. Espin, Shin, and Busch (2005) found that student-read probes produced 
reliable and valid growth trajectories and exhibited sufficient sensitivity to growth 
over time.

Mathematics

In mathematics, the most common measures at the elementary level have tradi-
tionally been computation or concepts and applications measures (see Foegen et 
al., 2007 for a detailed review). These measures require students to complete sim-
ple arithmetic or applied mathematics problems. In early numeracy development 
(i.e., kindergarten through grade 1), CBMs in oral counting, number identification, 
quantity discrimination, and missing number are commonly used. These measures 
capture early numeracy skills that are believed to be related to later mathemati-
cal proficiency and understanding and are based on the principle of number sense 
(Clarke et al., Chap. 3, this volume; Clarke & Shinn, 2004). CBMs for secondary 
math instruction in the area of Algebra have also been developed and are discussed 
at the end of this subsection.

The oral counting CBM requires students to count out loud starting at one and 
going as far as they can in 1 min. No student materials are required; the adminis-
trator records the student’s progress on a scoring sheet, placing a bracket after the 
last number that the student states. The final score is determined as the number of 
correct values, in a sequence, that the student was able to say. This value is recorded 
and graphed. Only numbers counted in sequence are counted as correct. Numbers 
not counted in sequence, and numbers provided to the student after a brief hesitation 
(e.g., 3 s) are scored as incorrect (Clarke & Shinn, 2004).

Number identification is another early numeracy CBM that requires students to 
verbally identify, or name, numbers between 1 and 20 that are presented in random 
order. Students are provided with a form that contains a table of numbers and are 
asked to read the numbers aloud, reading from left to right across rows. Numbers 

4 Using Curriculum-Based Measurement Fluency Data for Initial Screening …



112 E. S. Lembke et al.

correctly identified are scored as correct; numbers misidentified or numbers that 
are skipped are marked as incorrect. Students pausing for 3 or more seconds are 
prompted by the administrator to move onto the next number. The number of cor-
rectly identified numbers is recorded and graphed (Clarke & Shinn, 2004).

Quantity discrimination asks students to, when presented with two numbers, ver-
bally state which is larger. Numbers are randomly paired and appear side by side in 
separate boxes. Students are asked to work from left to right across rows identifying 
the larger number. Boxes in which the student correctly identified the larger number 
are scored as correct. When students select the smaller number, state an incorrect 
answer, or hesitate for more than 3 s, an error is marked. As with other CBMs, when 
the student hesitates for at least 3 s, he or she is prompted by the administrator to 
move onto the next pair. The number of correctly discriminated pairs is totaled and 
then recorded (Clarke & Shinn, 2004).

Missing number measures ask students to identify a missing number within a 
sequence of three, with the missing number appearing at either the initial, medial, 
or final position. The three-string sequences are presented in individual boxes, and 
students complete the task with paper and pencil. Students need to correctly identify 
the missing number in the sequence to receive credit for the response. Responses 
are scored as incorrect if the student either names the incorrect number or skips a 
problem. Students who hesitate for at least 3 s are directed by the administrator to 
move onto the next sequence (Clarke & Shinn, 2004).

Computation CBM assess students’ basic computation skills in single, mixed, or 
multi-step addition, subtraction, multiplication, and division (Lembke & Stecker, 
2007). This CBM is group administered for 2–3 min (Fuchs, Fuchs, & Zumeta, 
2008). Students receive credit for correctly identified digits when completing each 
problem; thus, partial credit is possible for more advanced items with two or more 
digits in the final answer.

Concepts and application measures assess students’ skills with completing math-
ematical problems in an applied context. Included domains in these measures vary 
by grade level, but can include counting, number concepts, number naming, mea-
surement, money, grid reading, charts, graphs, fractions, decimals, applied com-
putation, word problems, quantity discrimination, temperature, etc. (Fuchs, Fuchs, 
& Zumeta, 2008; Lembke & Stecker, 2007). Often math concepts and application 
measures include multiple digits or words in their complete answers. Students re-
ceive credit for the number of blanks completed correctly, allowing them to earn 
partial credit for their responses.

CBM probes in Algebra, part of Project AAIMS (see http://www.education.ia-
state.edu/c_i/aaims/), have been identified and include four different probes. The 
basic skills algebra probes contain 60 items and are designed to test a student’s basic 
algebra performance in areas including, but not limited to, solving simple equations, 
combining like terms, applying the distributive property, working with integers, and 
working with proportions. (Johnson, Gallow, & Allenger, 2013; Foegen & Morrison, 
2010). The basic skills probes are group administered and students have 5 min to 
complete as many items as they can. Students earn credit (1 point) for each correctly 
answered problem (60 points maximum); the total number correct are then tallied 
and graphed (Foegen & Morrison, 2010; Foegen, Olson, & Impecoven-Lind, 2008).

http://www.education.iastate.edu/c_i/aaims/
http://www.education.iastate.edu/c_i/aaims/
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Beyond basic skills, the algebra foundations CBM is group administered for 
5 min and assesses student performance across the following domains: (a) variables 
and expressions, (b) integers, (c) exponents, (d) order of operations, (e) graphing, 
(f) solving simple equations, (g) extending patterns in data tables, (h) writing a word 
phrase for expressions, and (i) graphing expressions. Students earn credit (1 point) 
for each correct item (50 points maximum; Foegen & Morrison, 2010; Foegen, 
Olson, & Impecoven-Lind, 2008).

The third AAIMS measure, content analysis, is a multiple-choice CBM that cov-
ers numerous algebraic concepts (e.g., solving equations, evaluating expressions, 
solving linear systems, calculating slope, simplifying expressions with exponents; 
Foegen & Morrison, 2010; Foegen, Olson, & Impecoven-Lind, 2008). Each prob-
lem is worth a total of 3 points. Students earn full credit by circling the correct 
choice. Partial credit is awarded for showing work using a rubric-based key. Scores 
are the total sum of points across all problems. Students are provided 7 min to com-
plete as many items as they can (Foegen, Olson, & Impecoven-Lind, 2008).

The final algebra measure is translations. This task requires students to explore 
numerical relations in multiple formats (e.g., data tables, graphs, equations; Foe-
gen, Olson, & Impecoven-Lind, 2008). Students are required to correctly identify 
matches across the multiple formats. The algebra measures are currently under fur-
ther development through federal grant work conducted by Foegen and  colleagues 
(see http://www.education.iastate.edu/c_i/aaims/).

Writing

CBM in writing originally involved story prompts to which students responded for 
3–5 min and were scored for number of words written (WW), words spelled cor-
rectly (WSC), and correct word sequences (CWS, which accounts for spelling and 
grammar; Videen, Deno, & Marston, 1982). These measures have yielded reliable 
and valid indices of writing proficiency for students in grades 2 and up (see McMas-
ter & Espin, 2007 for a review). Recently, researchers have extended writing CBMs 
to provide indicators of students’ early writing proficiency with evidence of reli-
ability, validity, and sensitivity to growth made over short-time periods (e.g., Coker 
& Ritchey, 2010; Lembke, Deno, & Hall, 2003; Hampton, Lembke, & Summers, 
2010; McMaster, Du, & Petursdottir, 2009; McMaster, Du, Yeo, Deno, Parker, & 
Ellis, 2011; Parker, McMaster, Medhanie, & Silberglitt, 2011).

CBM for beginning writers has included tasks designed to capture transcription 
and text generation to reflect early writing development at the word, sentence, and 
discourse levels of language and has included scaffolding (in the form of verbal, 
picture, or written prompts) to support young writers’ developing self-regulatory 
skills. The tasks are timed to gauge production fluency, which is a strong predictor 
of overall writing quality (e.g., Berninger & Swanson, 1994) most likely because 
fluency in lower-order processes frees up cognitive resources for higher-order pro-
cesses (Berninger & Amtmann, 2003; McCutchen, 2006). These tasks have included 
dictation, sentence writing, and story writing. The writing subsection of Table 4.2 
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provides a summary of research on CBM for beginning writers, highlighting mea-
sures that have been established as having adequate reliability, validity, and utility 
for monitoring progress over time across early elementary grades. Three CBM tasks 
that are well established in terms of reliability, validity, and capacity to show growth 
in short-time periods are word dictation, picture-word prompts, and story prompts. 
These measures offer teachers a selection of tools that can be utilized at the word, 
sentence, and discourse levels based on the grade and skill level of their students.

Word dictation (WD), a measure designed to capture students’ transcription 
skills at the word level, is administered individually. WD requires students to write 
words dictated by the examiner. Words (approximately 20–40) used in these probes 
may come from high-frequency word lists designed to address students’ knowledge 
of various spelling patterns (e.g., VC, CVC, VCe, etc.), grade-level spelling texts, 
or unit-specific words.

Picture word (PW) prompts are group administered and are designed to capture 
students’ transcription and text generation skills at the sentence level. Each prompt 
contains a series of pictures with the corresponding name below the picture. Stu-
dents are asked to compose a sentence about the picture and the names of each 
picture may be read aloud to students prior to administration.

Story prompts (SP), also group administered, are designed to capture students’ 
transcription and text generation skills at the paragraph or discourse level. Each 
prompt contains a story starter surrounding a topic that reflects the experiences of 
students attending the US public schools. They contain simple vocabulary and a 
simple sentence structure. Students are presented with the story prompt and asked to 
think about their story for 30 s before responding. Elementary aged students are then 
asked to write independently for 3 min. Secondary level students may write for 5 or 
7 min, but the time of administration must remain constant across the academic year.

Issues for Consideration, Including Limitations of the Use 
of CBM for Screening Decisions

Face Validity and Fluency

Educators should use CBMs strategically, realizing that these measures are impor-
tant for quick screening but other measures may need to be brought to bear in cases 
where students are identified as needing additional support. In this way, multiple 
skills in a content area are assessed in order to gain a more robust picture of student 
ability and draw reasonable conclusions about his or her overall performance. For 
example, assessing oral reading fluency or letter identification provides one piece 
of information about a student’s reading ability, but additional measures of reading 
comprehension as well as diagnostic measures to investigate types of errors made 
are necessary to make sound instructional decisions for students. Educators should 
use CBMs with an eye toward interpreting results carefully and within the confines 
of what the task requires students to do.
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Students with Speech and Language Impairments

In general, when administering CBMs that require a verbal response to students 
with speech and language impairments, educators must score and interpret assess-
ment results with caution. Students should not be penalized for errors of production 
if those errors are a direct result of their speech impairment. Likewise, educators 
should be careful when interpreting CBM results for students with language impair-
ments, as they may be slower to process directions and give responses. CBM results 
can provide information about a student’s performance, but should not be the only 
piece of data used to make educational decisions regarding classroom performance 
for students with speech and language impairments. In addition, consideration 
should be given to the individual needs of students and whether fluency-based as-
sessments accurately capture students’ performance and progress, keeping in mind 
that in some cases, a fluency-based measure is not appropriate.

For students with speech difficulties, the person administering the fluency CBM 
should be familiar with the student’s speech patterns and be able to correctly score 
his/her responses. It may be necessary for the school or district’s speech-language 
pathologist to participate in testing or to serve as a second scorer. Additionally, 
students with a fluency impairment (i.e., a student who stutters) may be accurate in 
his/her oral reading fluency but may read slowly. These students may have a low 
rate of words read per minute (WPM) as a result of their dysfluency, not as a result 
of a true reading deficit. It is important to consider this when making educational 
decisions and grouping students by ability, as an oral reading fluency CBM may not 
be the best representation of the reading level of a student who has difficulties or 
disabilities with respect to speech production.

Students with language impairments may read fluently but may in fact struggle 
with comprehension and vocabulary of a CBM passage. Educators must be sure to 
assess the comprehension of students with language impairments and use data from 
reading fluency and comprehension measures to determine the need for reading 
interventions.

In all content areas, including mathematics and writing, students with language 
impairments may struggle to understand and correctly follow the directions for a 
CBM task, especially the first time the assessment is given. Every effort must be 
taken to ensure that CBM results reflect the student’s ability in that content area 
and not the deficits created by their language impairment. Although administra-
tion directions are standardized to allow for comparison of results across peers, it 
may be necessary to repeat or even reword the task directions, depending on the 
age of the student and the severity of the language impairment. If directions were 
altered in any way, educators must interpret results carefully and avoid making peer 
comparisons (e.g., avoid comparing scores collected in that manner to established 
criterion-referenced goals or benchmarks). Rather, in cases where the standardiza-
tion of the assessment is lost, only within-individual comparisons can be made (e.g., 
comparing a student’s current performance to her past performance given consistent 
breaks in standardization between the two administrations). Educators should use 
several different, and sometimes individualized, assessments to make educational 
and intervention decisions for students with language impairments.

4 Using Curriculum-Based Measurement Fluency Data for Initial Screening …
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Future Research

Using CBM fluency data for universal screening can provide a snapshot of a stu-
dent’s academic proficiency in reading, mathematics, writing, and other content 
areas. Although these tasks have demonstrated adequate reliability and validity and 
provide a general indication of a student’s academic health as it relates to broader 
academic skills in each of these areas, future research surrounding the use of flu-
ency measures is needed in many areas. Consistent with previous sections of this 
chapter, issues related to future research are also broken down by skill and content 
areas.

Reading

Although research in CBM in reading is well documented, many areas remain open 
for future research. Specifically, research might address ways to map reading rates 
to productive reading strategies, text type (e.g., narrative vs. expository), level of 
text difficulty for secondary students, as well as the kinds of qualitative data that can 
be extracted from fluency measures “to help teachers generate diagnostically use-
ful performance profiles,” including linking diagnostic information to instructional 
recommendations, and exploring methods for assessing prosody and its impact on 
reading competence (Fuchs, Fuchs, Hosp, & Jenkins, 2001, p. 252).

Mathematics

In early mathematics, we need more research regarding whether a single mathemat-
ical indicator can be utilized across multiple grade levels to track student progress 
and growth over time or whether multiple measures of early mathematical fluency 
are required for assessing progress (Clarke & Shinn, 2004). At the secondary level, 
more research is needed surrounding the technical adequacy of CBM in advanced 
mathematics, such as algebra or geometry, along with the “instructional utility” 
(Calhoon, 2008, p. 237) of these measures for teachers making instructional deci-
sions. Future research might also explore the criterion validity of M-CBM and high-
stakes assessments, as well as the criterion and predictive validity of multiple-skill 
M-CBMs (measures with several types of mathematics tasks on one probe) (Christ 
& Vining, 2006).

Writing

What defines fluency and how to define fluency in writing continues to remain an 
area for future research. Though quantitative scoring indices have primarily been 
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utilized throughout the early research in this area (Coker & Ritchey, 2010) in which 
researchers have demonstrated that simple, countable indices of writing such as 
WW, WSC, and CWS are reliable and valid (Deno, Marston, Mirkin, Lowry, Sin-
delar, & Jenkins, 1982; Deno, Mirkin, & Marston, 1982; Videen, Deno, & Mar-
ston, 1982), the validity of these writing indices have not remained stable across 
grade level. Furthermore, relatively little work explores alternative scoring indices 
in writing or the use of qualitative writing indices. Whether such scoring (both 
quantitative and qualitative) is consistent with the indices that teachers value most 
must also be considered (Gansle, Noell, VanDerHeyden, Naquin, & Slider, 2002).

Content Areas

In the content areas of social studies and science, CBM vocabulary assessments 
offer promise, however, relatively little work exists in this area. Although research 
has begun to address how vocabulary assessments might be used for making place-
ment decisions, identifying discrepancies in student performance and progress, and 
determining need for intervention (Espin, Busch, Shin, & Kruschwitz, 2001; Espin, 
Shin, & Busch, 2005), additional empirical research is needed. Research is also 
needed in using vocabulary-matching measures as progress-monitoring measures, 
on how CBM in vocabulary influences teacher decision-making, and on student 
achievement in the content areas (Espin, Busch, Shin, & Kruschwitz, 2001; Espin, 
Shin, & Busch, 2005).

Moreover, fluency tasks in the above outlined areas share many similar chal-
lenges that necessitate future research. Although research must continue across all 
of Fuchs’ (2004) stages given the varying depths of the extant literature in the differ-
ent areas, specific attention is needed in stage 3. Namely, as Espin, Shin, and Busch 
(2005) noted above, fluency CBMs must explore the effect of both screening and 
progress monitoring on teachers’ instructional practices and student performance 
(see also Foegen & Morrison, 2010, regarding the effect of teacher use of CBM on 
student progress), as well as on special education decision-making. As Fuchs (2004) 
adds, incorporating teacher and student feedback loops for designing “instruction-
ally informative diagnostic profiles” as supplements to graphing, may improve 
“CBMs instructional utility” (p. 191). If the goal is that use of CBM will result in 
improved outcomes for students, research must ensure that teachers know how to 
use and interpret CBM scores to inform their instruction. Similarly, teachers must 
perceive the data obtained through the use of CBM as useful, what Calhoon1 (2008) 
calls the “acceptability or utility” (p. 237) of CBM. Acceptability can be particu-
larly difficult at the middle and high-school levels where teachers’ caseloads often 
exceed 100–180 students (Calhoon, 2008). The unique needs of secondary teachers 
and students must be examined, as certain CBM measures and scoring techniques 

1 Although Calhoon talks specifically of the struggles in mathematics, these concerns must be 
recognized across content classes at the secondary level.
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may not be appropriate for adolescent learners, failing to adequately capture their 
individual progress.

Furthermore, the movement toward multiple-skill CBM measures over single-
skill measures, has been supported, as adequate growth over time in the latter 
may not be sufficient for demonstrating broader knowledge in the content domain 
(Fuchs, 2004). Fuchs (2004) also suggests that long-term progress monitoring using 
single-skill measures may too narrowly restrict teachers’ instructional focus.

Finally, while Tindal and Parker (1991) recommend “embed[ding] assessment 
within a decision-making framework” (p. 218) for writing, such a recommendation 
is also important for the other fluency measures. Situating and supporting instruc-
tional, intervention, and placement recommendations within and with data-based 
decisions is central to identifying what to measure, how to improve performance, 
and how to document student growth to ensure that the decisions being made accu-
rately reflects student need (Tindal & Parker, 1991; See Fig. 4.4 for specific steps).

As fluency is a complex construct, research must continue to explore the many 
nuances of what it means to be fluent in reading, mathematics, writing, and the con-
tent areas across grade levels and across ability levels of students. Unfortunately, 
such measures will only be useful to the extent that they are properly used, inter-
preted, and provide valuable instructional recommendations for teachers. Though 
the current research demonstrates great promise, much work remains.

Fig. 4.4  Steps in a data-based model for decision-making using CBM
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Chapter 5
Using Oral Reading Fluency to Evaluate 
Response to Intervention and to Identify 
Students not Making Sufficient Progress

Matthew K. Burns, Benjamin Silberglitt, Theodore J. Christ,  
Kimberly A. Gibbons and Melissa Coolong-Chaffin

Reading is complex to learn, teach, accurately practice, and understand (Carnine, 
Silbert, Kame’enui, & Tarver 2009). Thus, instructional reading methods have long 
been venomously argued and debated in schools, articles, books, newspapers, gov-
ernment panels, and policy papers with few resounding agreements (Coles, 1998). 
The complexity of the reading process and the importance of effective reading in-
struction serve to emphasize the need for accurate reading assessments in order to 
develop instructional techniques that maximize every student’s individual skills and 
ultimately allow them to become effective readers.

An effective reading assessment should measure some of the basic foundational 
components of reading development and instruction. The National Reading Panel 
(NRP, 2000) report responded to a Congressional mandate to help educators and 
policymakers identify the central skills necessary for reading acquisition. After crit-
ically reviewing more than 100,000 peer-reviewed and scientifically based studies, 
the NRP identified the now famous five building blocks for reading instruction of 
phonemic awareness, phonics, fluency, vocabulary, and text comprehension. Read-
ing fluency is the ability to read with both speed and accuracy (NRP, 2000) and 
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fluent readers read effortlessly without having to devote cognitive resources toward 
decoding words, which allows the reader to focus on word recognition, compre-
hension of text ideas, and the use of their own background knowledge to connect 
with concepts within the text. Reading fluency is an important skill that allows the 
reader to both gain meaning from the text and subsequently reinforce reading due 
to the success of the process. Thus, fluency is a skill that most directly encompasses 
the other reading skills within it which makes it an effective assessment approach 
(Fuchs, Fuchs, Hops, & Jenkins, 2001).

Reading Fluency as an Assessment

Fluent reading is often used as a general outcome measure for overall reading health 
because it is an indication of proficient decoding and comprehension (Berninger, 
Abbott, Vermeulen, & Fulton, 2006; Fuchs, Fuchs, Hops, & Jenkins, 2001). Cur-
riculum-based measurement (CBM) of oral reading fluency (ORF) consists of a set 
of standardized, individually administered reading probes that are brief (1 min) to 
administer and measure reading development across multiple grades. ORF assesses 
a child’s reading skills by measuring the accuracy and fluency of connected text 
with grade-level material, and constraining the measurement procedure to 1 min 
standardizes the process and makes the data comparable across students and points 
in time while also facilitating efficient measurement of reading.

Purposes of Assessing ORF

The ORF assessments consist of multiple standardized sets of passages and ad-
ministration procedures that are designed to identify children who may require ad-
ditional instructional support and to monitor progress towards predetermined in-
structional goals. ORF works well as a screener because it is theoretically linked to 
overall reading competence (Fuchs, Fuchs, Hosp, & Jenkins, 2001) and it correlates 
well with reading comprehension ( r  = .48–.55, Valencia et al., 2010; r  =  .54, Burns 
et al., 2011; r   = .76, Roberts, Good & Corcoran, 2005). Moreover, ORF data pre-
dict state accountability test performance in reading with high accuracy (Shapiro, 
Keller, Lutz, Santoro, & Hintze, 2006; Yeo, 2009).

Psychometric Properties of ORF

Various studies have suggested that ORF assessments from CBM have acceptable 
technical adequacy. A synthesis of psychometric evaluations of ORF data collected 
with CBM found test-retest, interrater, and alternateform reliability coefficients that 
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ranged from .82 to .95 (Goffreda & DiPerna, 2010). The criterion-related validity of 
ORF data is also well established, with correlation coefficients that exceed .60 be-
tween it and other measures of reading (e.g., comprehension, vocabulary, decoding, 
and word identification) (Reschly, Busch, Betts, Deno, & Long, 2009). Moreover, 
estimates of predictive validity also exceeded .60, even when the duration between 
predictor and criterion was 1 year (Keller-Margulis, Shapiro, & Hintze, 2008).

ORF Assessment and Response to Intervention

Response to intervention (RtI) has made assessment and data-based decision-mak-
ing important priorities in K-12 schools. Federal law states that a local education-
al agency “may use a process that determines if the child responds to scientific, 
research-based intervention as a part of the evaluation procedures” (Pub. L. No. 
108–446 § 614 [b][6][A]; § 614 [b][2 & 3]), which is the legal basis for RtI data to 
be used to identify a specific learning disability (SLD). Yet, RtI generally refers to 
a systematic process of collecting data to assess and evaluate the effectiveness of 
instruction and intervention, and not necessarily to make special education eligibil-
ity decisions. Our preferred definition is that RtI is the systematic use of assessment 
data to efficiently allocate resources to enhance learning for all students (Burns & 
VanDerHeyden, 2006).

Given that RtI is a process to make decisions in order to allocate resources, 
there are four potential decisions with RtI data. Riley-Tillman and Burns (2009) 
described these decisions. First, an effective intervention is identified and success-
ful. In other words, the intervention led to increased growth and the student demon-
strated adequate proficiency. In this case, the intervention is often no longer needed 
(decision 1). Second, the intervention is effective but not successful. In this case, 
the student’s reading skills increases at a desirable rate, but the student still remains 
below expectations for proficiency and the intervention often continues (decision 
2). The third possibility is a twist in the second because it involves an intervention 
that is effective, but is so intense that it cannot continue without increased resources 
(decision 3). Finally, the fourth possibility is that an effective intervention is not 
identified (decision 4).

The first two options involve continued or decreased resources, but the latter 
two involved increased resources including possibly, but not necessarily, special 
education. Thus, RtI is more of a resource-allocation model than an approach for 
identifying special education eligibility. In most RtI models, special education is 
prescribed when research-based interventions are attempted for a predetermined 
amount of time without demonstrated success, but few states have well-established 
criteria for determining the effectiveness of an intervention.

Effectiveness of an intervention within an RtI framework is typically evalu-
ated in terms of the students’ level and rate of growth on ORF assessments 
with CBM (Gresham, 2002). As stated above, ORF data are reliable and corre-
late well with other important measures of reading (Goffreda & DiPerna, 2010; 
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Reschly et al., 2009; Yeo, 2009), but that research was conducted with only single 
ORF data points. The reliability and validity of rate of growth metrics for ORF 
should also be considered when evaluating intervention effectiveness. Below we 
discuss two approaches to interpreting ORF data when monitoring the rate of 
growth of student progress.

Interpreting ORF Data when Monitoring Student Progress

Historically, ORF data were presented in a time-series graph and a collection of the 
student’s individual progress data points were compared to an aimline with data-
point decision rules used to guide decisions about whether or not the gains were 
sufficient (Deno, 1986). However, recent reforms due to RtI implementation have 
led to student progress being evaluated by computing and interpreting a numerical 
slope rather than using a simple data-point decision rule as a part of a dual discrep-
ancy that evaluates both the value of the slope of growth and the post-intervention 
reading level (DD; Fuchs, 2003).

Data-Point Decision Rule

 The aimline, sometimes referred to as a goal line (Deno, 1986), is the expected rate 
of progress of a student given where the student started and the desired post-inter-
vention goal. More specifically, an aimline is the line that connects the initial level 
(baseline) of performance and the desired level by a particular goal date (typically 
the middle or end of a school year). Student data are then plotted on a time-series 
graph and progress is measured by comparing subsequent individual or groups of 
data points to the aimline. A student is making sufficient progress if the data points 
approximate the aimline, with specific decisions about the adequacy of their gains 
evaluated using data-point decision rules. The most common data-point decision 
rule uses a requirement of three consecutive data points above the aimline to sug-
gest that a more ambitious goal is needed and three or four consecutive data points 
below the aimline to suggest that the intervention is not effective (Mirkin, Deno, 
Tindal, & Kuehnle, 1982; Fuchs, Fuchs, Hintze, & Lembke, 2006; Shinn, 1989). 
Within an RtI framework, three consecutive points below the aimline suggest that 
the intervention is not working and a more intensive corresponding tier of interven-
tion is needed (i.e., decision 4; Fuchs, Fuchs, Hintze, & Lembke, 2006).

The process of student self-monitoring with plotted CBM data has been dem-
onstrated to improve reading achievement (Stecker & Fuchs, 2000) and teachers’ 
use of progress monitoring data using data-point decision rules has resulted in both 
more frequent revisions to student education plans and increased student achieve-
ment (Fuchs, Fuchs, Hamlett, & Stecker, 1991; Stecker, Fuchs, & Fuchs, 2005). 
Still, most data-point decision rules are based on expert opinion rather than em-
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pirical research (Ardoin, Christ, Morena, Cormier, & Klingbeil, 2013) and RtI has 
enhanced the need for research regarding decisions made from progress monitoring 
data because those data could result in changes to student placement or resource 
allocation (Salvia, Ysseldyke, & Bolt, 2010).

Using data-point decision rules for resource allocation could also be problem-
atic because the resulting decisions tend to be unreliable and fall far below stan-
dards for data used to make resource allocation decisions. Previous research found a 
split-half reliability estimate for a data-point decision rule that recommended three 
data points below the aimline of .44, which is well below desired standards (Burns, 
Scholin, Kosciolek, & Livingston, 2010). Three potential reasons why comparing 
individual progress monitoring data points to aimlines might have lesser reliability 
are that: (a) similar growth rates for different students could result in different deci-
sions based on the level of baseline performance (VanDerHeyden, Witt, & Barnett, 
2005), (b) the standard error of measurement for the single data point from which 
the aimline is drawn can be too large to make aimlines useful (Burns et al., 2010), 
and (c) graphed data do not result in reliable estimates of growth until 12 to 14 data 
points are collected (Christ, 2006). Still, most test authors and practitioner recom-
mendations continue to focus on data-point decisions being made with only three 
data points while ignoring all other data.

Dual Discrepancy

ORF data used to monitor progress can also be examined from a dual discrepancy 
(DD) model (Burns & Senesac, 2005; Fuchs & Fuchs, 1998; Vellutino et al., 1996). 
Growth within a DD framework is conceptualized as a linear function represented 
by least-squares regression slopes between ORF progress measures and days of 
instruction (Deno, Fuchs, Marston, & Shinn, 2001). Thus, growth data can be com-
puted with ordinary least squares (OLS). Students whose performance is discrepant 
from established standards in both post-intervention level and growth (as measured 
by slope, not a cluster of data points) are described as dually discrepant and the 
intervention is judged to be ineffective. Students whose post-intervention fluency 
scores meet or exceed standards are identified as proficient readers who are no lon-
ger in need of intervention (i.e., decision 1). Growth data suggesting that the student 
is making sufficient progress, but has yet to meet ORF standards, such as a seasonal 
benchmark, suggest that the intervention is leading to sufficient growth and should 
be continued (i.e., decision 2).

Dual Discrepancy Criteria

Although there are a number of published studies that provide guidance to define 
the criteria for a DD model within RtI, there are serious questions left to be an-
swered before a standardized three-tiered model with DD criteria can be established 
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(Burns & Ysseldyke, 2005). Achievement discrepancies are defined in a variety 
of ways within the published research. A discrepancy in level has been defined as 
performance below the 25th percentile (standard score of 90) on post-intervention, 
norm-referenced reading tests (Torgesen et al., 2001). Discrepancies in level can 
also be defined by performance below criterion-referenced standards on post-in-
tervention ORF assessment administrations (Fuchs, 2003) such as estimates of risk 
(e.g., the goal criteria used by the Dynamic Indicators of Basic Early Literacy Skills 
(DIBELS); Good, Gruba & Kaminski, 2002).

Similar methods are used to define discrepancies in the rate of academic growth. 
Published standards for growth are within the range of 1–2 words read correctly per 
minute (WRCM) per week (Deno, Fuchs, Marston, & Shin, 2001; Fuchs, Fuchs, & 
Speece, 2002; Hasbrouck & Tindal, 2006) and are based on local normative data 
to derive percentile cutoffs (Fuchs, Fuchs, McMaster, & Al Otaiba, 2003), group 
medians (Vellutino et al., 1996), or rates of growth associated with effective prac-
tice (e.g., 1.39 WRCM per week; Deno, Fuchs, Marston & Shin, 2001). Normative 
slope standards have been suggested such as the 25th percentile (Burns & Senesac, 
2005) or one standard deviation (Fuchs, 2003; Speece & Case, 2001; Speece, Case, 
& Molloy, 2003) of the growth rates for the general population. Students in higher 
grades have higher ORF scores and lower rates of typical growth than students in 
lower grades (Hasbrouck & Tindal, 2006). For example, a first grade student whose 
score increased at a rate of 1.2WRCM per week would score at the 50th percentile 
for his or her grade group, but a score increase of only 0.90 WRCM per week would 
represent the 50th percentile for a fifth grade student. Normative expectations for 
growth with ORF data generally expect students to improve by 1–2 WRCM (Deno, 
Fuchs, Marston, & Shin, 2001; Silberglitt & Hintze, 2007).

There is clearly no consensus for how to best determine adequate rates of growth 
within a DD model with various pros and cons for each. A criterion-referenced ap-
proach to both level and slope has also been explored. Previous research used slope 
standards identified by Deno and colleagues (2001) as the criterion for slope of 
student learning (i.e., Burns, 2007; Burns & Senesac, 2005). This approach to DD 
used criterion-referenced standards for both post-intervention reading level (DI-
BELS standards) and slope of student learning (1.39 WRCM per week as identified 
by Deno, Fuchs, Marston, & Shin, 2001).

A hybrid approach can be used in place of solely a criterion-referenced or norma-
tive approach to DD. Interpretive criteria could include (a) a normative criterion for 
both level and slope, (b) a criterion-referenced approach for level and slope, (c) a 
norm-referenced approach for level and a criterion-referenced approach for slope, 
or (d) a criterion-referenced approach for level and a normative approach for slope. 
Silberglitt and Gibbons (2005) proposed a norm-referenced approach where dis-
crepancies in level were defined as CBM-R performances below the 7th percentile 
on local norms. Although Silberglitt and Gibbons implemented a norm-referenced 
approach to evaluate level, they maintained a criterion-referenced approach to eval-
uate the rate of growth. But it is often not practical or feasible to conduct progress 
monitoring with all students to obtain reliable slopes and to then use normative 
slope data requires cross-cohort comparisons. To address these concerns, Silberglitt 
and Gibbons (2005) used target scores for creating a slope criterion.



5 Using Oral Reading Fluency to Evaluate Response … 129

First, benchmark target scores were developed and linked to performance on 
state-mandated assessments using logistic regression (Silberglitt & Hintze, 2005), 
which resulted in consistent benchmark standards across a school year because all 
target scores were linked to the same outcome variable. Next, the rate of growth of 
these target scores was examined. In the above example, 34 weeks elapsed between 
fall and spring benchmark testing, so the weekly growth rate of the targets was 
1.03 WRCM per week. This growth rate represents a criterion equal to 1 year’s 
growth in 1 year’s time (Silberglitt & Gibbons, 2005). Finally, a confidence inter-
val around this criterion was computed and students below this confidence inter-
val were considered significantly below criterion (to assist in eligibility decisions), 
while students above the confidence interval were considered significantly above 
criterion. Students within the confidence interval required additional data in order to 
make a decision about their status. For DD, children whose post-intervention level 
fell below the 7th percentile (normative for level) and whose slope of learning fell 
below the confidence interval around the criterion for their grade level (criterion-
referenced for slope) were considered not responding to their current instructional 
program (Silberglitt & Gibbons, 2005).

Evaluating Criteria to Interpret ORF Data within a Dual 
Discrepancy

Previous research found that a DD approach is superior to a single-discrepancy ap-
proach, which relies on either a low reading level or rate of achievement (Fuchs, 
2003). The results of some studies provided evidence that DD criteria for identifica-
tion and diagnosis converged with the outcomes of norm-referenced reading tests 
because students who exhibited a DD scored lower on reading tests than students 
with reading difficulties who did not exhibit a DD (Burns & Senesac, 2005; Mc-
Master, Fuchs, Fuchs, & Compton, 2005; Speece & Case, 2001; Speece, Case, & 
Molloy 2003). In fact, several DD models consistently differentiated between stu-
dents who are responding and students who are not responding adequately to their 
current instructional environment (Burns & Senesac, 2005).

There are a variety of options for establishing DD criteria within an RtI model. 
Given that high stakes decisions will be made with these data, it seems especially 
important to refine and validate the models used. Thus, we examined four DD mod-
els including each of the following combinations to determine nonresponse: (a) 
criterion-referenced level and norm-referenced slope at the 25th percentile; (b) cri-
terion-referenced level and a norm-referenced slope at the 16th percentile (i.e., 1 SD 
below the mean); (c) norm-referenced level at the 7th percentile and criterion-ref-
erenced slopes; (d) and, finally, criterion-referenced level and criterion-referenced 
slopes. Our goal was to determine: (a) for children identified as at-risk for reading 
failure, do the four DD models differentiate reading skills of those who are dually 
discrepant and those who are not, and (b) what would the prevalence rate be for 
children identified as dually discrepant within the four DD models?
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Comparing the Data

Students ( n = 3354) from second through eighth grades in five rural school districts 
in Minnesota were participants for the study and all data were gathered during a 
single school year. There were 1625 (48.4 %) females and 1729 (51.6 % males), 
with 3156 (94.1 %) of the students being Caucasian and 32.3 % participating in the 
federal free or reduced-price lunch program. Native American students made up 
2.4 % of the sample, and Asian-American (1.1 %), African-American (1.4 %), and 
Hispanic (1.2 %) children each represented less than 2 % of the sample. Moreover, 
there was a relatively equal distribution of students across grade levels with the 
exception of Grade 8 (2nd = 14.1 %, 3rd = 14.8 %, 4th = 16.6 %, 5th = 17.4 %, 
6th = 16.8 %, 7th = 12.8 %, and 8th = 7.6 %).

The sample was limited to those students whose spring benchmark ORF score 
fell at or below the 25th percentile ( n = 773). The sample was limited to the bottom 
25 % because that level of student performance was sufficiently discrepant in level 
to identify a child as at-risk for reading difficulties.

Measures and Criteria

ORF

Post-intervention reading levels were assessed with the spring benchmark assess-
ment using CBM of ORF. Student slopes were calculated using the three ORF mea-
sures that are administered in the fall, winter, and spring of the academic year. At 
each of the three assessment periods, students were asked to read three ORF stan-
dardized reading passages (AIMSweb, 2006) that were written at a grade-appropri-
ate difficulty level and were standardized and equated as recommended by Howe 
and Shinn (2002). Individual passage WRCM scores consisted of the total words 
read correctly in 1 min minus the total number of errors made while reading (see 
Wayman, Wallace, Wiley, Tichá, & Espin, 2007 for more information about general 
scoring rules for ORF). Final data for this study were recorded as WRCM and the 
median score of the three assessments was used for decisions and analyses.

Trained school personnel administered and scored the ORF probes using stan-
dardized procedures (Shinn, 1989). The training consisted of a 2-h instructional 
session followed by a competency assessment that involved a scoring rehearsal. 
Each scorer was required to come within two correct words per minute of the cor-
rect score on three consecutive videotaped assessments. The size of the sample did 
not allow for inter-rater reliability data to be collected, but previous research on 
ORF data collected with CBM demonstrated inter-rater reliability above .99 and 
test-retest reliability that exceeded .90 (Goffreda & DiPerna, 2010).
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Measures of Academic Progress for Reading

As consistent with previous research (Burns & Senesac, 2005), a standardized mea-
sure that was external to the curriculum and the DD criteria was used to compare 
reading skills of students identified as dually discrepant and those who were not. 
The Measures of Academic Progress for Reading (MAPR; Northwest Evaluation 
Association; NWEA, 2003) was administered to every student in the study three 
times per year and was used to compare the reading skills as an external criterion 
to evaluate the decisions. The MAPR is a criterion-referenced assessment designed 
with item response theory to determine item difficulty and equate different items 
from a pool of several thousand (NWEA, 2003). Normative data were also provided 
for students in Grades 2 to 10, based on the national pool of test takers (NWEA, 
2005). The test primarily consisted of brief passages, each of which was followed 
by a multiple-choice question, with 42 items on the test. The MAPR is untimed, but 
typically requires approximately 1 h to complete.

After completing the test, students are assigned a Rasch Unit (RIT) Score. RIT 
scores are based on student performance and difficulty level of the items, and range 
from a low of approximately 130 to a high of approximately 270. Thus, MAPR data 
are RIT scores that are grade-level independent (NWEA, 2005). In other words 
a fifth grade student and third grade student with equal scores demonstrate equal 
reading skills. Moreover, since data were grouped across grades, grade-specific 
standard scores were calculated (mean = 100, standard deviation = 15) and then 
used for all analyses. Test-retest reliability estimates for the MAPR data ranged 
from .81 (second grade) to .89 (fourth grade), estimates of internal consistency all 
exceeded .90, and correlation coefficients between MAPR and other group reading 
tests all exceeded .75 (NWEA, 2004).

Dual Discrepancy Criteria

Four DD models were used for the study. The first two used the same criterion 
level and different normative slopes. The criterion level was the grade-appropriate 
standard from DIBELS, in that children who scored at or below the cutoff score for 
at-risk were considered to be below the benchmark level. The normative slope con-
sisted of slopes that fell below the 25th percentile for the grade (henceforth referred 
to as the 25th percentile model) or that fell more than one standard deviation below 
the grade-level mean (henceforth, referred to as the 1SD model).

The third DD model used a normative level (below the 7th percentile) and crite-
rion-referenced slope (Silberglitt & Gibbons, 2005). The criterion slope was com-
puted by determining the progress necessary to achieve benchmark target scores 
(Silberglitt & Gibbons, 2005). Thus, children were identified as dually discrepant if 
their post intervention ORF score was at or below the 7th percentile and the slope 
fell below the lowest end of the confidence interval around the target slope. Subse-
quently, this will be referred to as the Silberglitt and Gibbons model.
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Finally, the fourth DD model used a criterion-referenced level (the DIBELS 
standards) and criterion-referenced slope (1.39 WRC/min per week for effective 
practice; Deno, Fuchs, Marston, & Shin, 2001). Scores represented a DD if the ORF 
level fell below the grade appropriate cutoff for at-risk in DIBELS standards and 
slopes fell below 1.39 WRC/min per week (Deno, Fuchs, Marston, & Shin, 2001). 
Subsequently, this will be referred to as the Deno et al. model.

Procedure

ORF data were collected for all students as part of the systematic benchmark read-
ing assessments collected three times each year in the participating districts (see 
Howe, Scierka, Gibbons, & Silberglitt, 2003 for a complete discussion of the as-
sessment plans). The MAPR was administered by trained classroom teachers or by 
other trained school personnel using standardized procedures (NWEA, 2003).

The slope of student growth was computed across the fall, winter, and spring 
benchmark ORF assessments using ordinary least squares regression. There were 
minimal missing data (less than 5 %), which were assumed to be missing at ran-
dom. Individual slope estimates for each student were calculated using SAS version 
9 (2005). The assessments were conducted in September, January, and May, and 
resulting slope estimates represented the average weekly increase in WRCM. The 
equation used to estimate performance for each individual i at time j was as follows:

 (5.1)

From this equation, the value of β1i for each individual i served as the datum for that 
student. The subsequent analysis was designed to evaluate trend. Consistent with 
DD models for service delivery, students who are discrepant in both level and trend 
are considered for more intensive services.

Data for the 773 students were then used to group children as responding or not 
responding using the four different DD models. MAPR standard scores between the 
two groups were compared with an analysis of variance and a Bonferroni-corrected 
alpha level of .0125. Because the scores for two groups were compared, a Cohen’s 
d (1989) was computed to examine the magnitude of the difference, which was 
interpreted with Cohen’s criteria of 0.80 being large, 0.50 medium, and 0.20 small.

The second research question inquired about prevalence of children identified as 
DD. Therefore, the number of children who were demarked as DD within each of 
the four models was recorded and divided by the number of children in the entire 
sample, which was the entire second through eighth grade population for the five 
districts.

0 1 eij i i ij ijy b b t= + +
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Results

Our first goal was to inquire if the four DD models differentiated reading scores be-
tween students who were DD and those who were not, using a standardized norm-
referenced measure of reading (MAPR). As displayed in Table 5.1, all four models 
significantly differentiated between the two groups. The Deno et al. model, and the 
Silberglitt and Gibbons model both led to large effects (0.81 and 1.12, respectively). 
The 1SD and 25th percentile models both used a criterion-referenced level and 
norm-referenced slope, so the d for the two were averaged and equaled a medium 
to large effect of 0.77.

The second goal addressed prevalence of children identified as DD using the 
four models. As shown in Fig. 5.1, the overall prevalence rate of students who were 
DD ranged from less than 2 to 7 % in second grade, and from approximately 3 to 
20 % in eighth grade. The range in prevalence was 3.6–7.7 % for the 25th percentile 
model, 2–3.9 % for the 1SD model, 1.6–4 % for Silberglitt & Gibbons model, and 
7–20 % for the Deno et al. model. A total of 77 children (2.2 %) were identified as 
DD by all four models. The range for the prevalence of children identified as SLD 
using a traditional IQ-achievement discrepancy model per existing district guide-
lines was 0.7–4 %.

The two DD models with the smallest range were the 1SD model and the Sil-
berglitt & Gibbons model. To better visually examine prevalence rates, these two 
models were graphed separately in Fig. 5.2 along with the SLD prevalence for com-
parison. As shown in the figure, the percentage of children identified as DD was ap-
proximately 4 % in second grade for both models, and fell to approximately 3.5 % 
in eighth grade. The percentage of children identified as SLD was 0.7 % in second 
grade, but increased to 4 % in eighth grade. Therefore, the prevalence rates using 
DD and SLD crossed at seventh or eighth grade.

Finally, 89.6 % of the sample was identified as nondisabled by both the tradi-
tional SLD and the 1SD model, and 90.4 % were consistently nondisabled by SLD 
assessments and the Silberglitt & Gibbons model. Conversely, 1.3  and 1.1 % of the 
sample was consistently identified as DD and SLD using the above two respective 
DD approaches.

Table 5.1  Mean standard scores for Measures of Academic Progress for Reading between dually 
discrepant and non-dually discrepant students for the four dual discrepancy criteria

Dual discrepant Non-dual discrepant
Criteria n Mean SD n Mean SD F d
25th percentile 181 76.63 15.47 589 87.21 13.44 79.75* 0.73
1 SD 104 74.30 16.50 669 86.37 13.61 66.63* 0.80
Deno et al. 379 79.19 15.29 387 90.10 11.71 123.12* 0.81
Silberglitt & 
Gibbons

76 70.17 15.10 697 86.34 13.66 93.98* 1.12

Mean standard score for norm group was 100 (SD = 15)
*p  < .001
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Fig. 5.2  Percentage of students identified as dually discrepant and learning disabled (SLD) in 
each grade level for 1SD and Silberglitt and Gibbons (2005) models

 

Fig. 5.1  Percentage of students identified as dually discrepant and learning disabled (SLD) in 
each grade level
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Potential Implications

The current chapter examined how well DD criteria differentiated reading skills of 
children who were below the 25th percentile for reading and who were identified as 
dually discrepant or non-discrepant. All four approaches significantly differentiated 
reading skills with mostly large effects. These results were consistent with previous 
research which also found significant differences in skills between DD and non-DD 
students (Burns & Senesac, 2005; Fuchs, 2003; McMaster, Fuchs, Fuchs, & Comp-
ton 2005; Speece & Case, 2001; Speece, Case, & Molloy 2003). This represents 
an interesting and consistent finding because the inability to differentiate reading 
skills of SLD and low-achieving non-SLD students was a common criticism of tra-
ditional SLD diagnostic approaches (Aaron, 1997). Although the students identified 
as exhibiting a DD were not necessarily identified as SLD in this example, using 
DD data for SLD identification could differentiate reading skills better than any 
previous approach.

The second research question was to describe the prevalence of children identi-
fied as needing intensive intervention with DD models. Two of the four DD models 
had the highest percentage of children identified as needing intense intervention 
at second grade, but in all models the percentage of children identified as SLD in-
creased in every grade except sixth. Put another way, although second graders were 
the most likely to need intensive reading interventions, they were less likely to get 
this help through special education services than their older peers. This could have 
significant implications for RtI practice because RtI is the use of assessment data 
to allocate resources most efficiently in order to enhance learning for all students 
(Burns & VanDerHeyden, 2006) and research has consistently shown that the ear-
lier reading interventions occur, the more successful they are (Clay, 1993; Snow, 
Burns, & Griffin, 1998). The current data suggest that resources could be allocated 
to children needing intensive interventions in earlier grades with the DD model than 
with a traditional SLD wait-to-fail identification model. Moreover, the prevalence 
rates found here closely approximated the idealized prevalence rate (5 %) of chil-
dren requiring the most intense intervention in order to implement a sustainable RtI 
model (Burns & Coolong-Chaffin, 2006; Reschly, 2003).

Using a normative level and criterion-referenced slope (i.e., the Silberglitt and 
Gibbons model) has an advantage over other models from a practical standpoint. 
Problematically, normative slope calculations have typically been conducted in post 
hoc studies. This is because, if a normative slope is to be calculated for a specific 
group of children, it must be done after the data are collected. This is not practical 
from the standpoint of a school wanting to deliver interventions and make eligibil-
ity decisions on students throughout the school year. An alternative would be to use 
a national slope norm, or to use slope norms from previous years for the school or 
district. But, national slope norms have yet to be established, and using prior years’ 
slope norms may be inappropriate, depending on curriculum and instructional pro-
gramming changes at that school or district. Using a criterion-referenced slope 
avoids these problems, as a consistent standard is provided across school years, and 
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the standard can be known to students and educators on the first day of the school 
year (Silberglitt & Hintze, 2007). Still, using a normative level allows some control 
over prevalence rates. When using normative levels high-performing schools can 
still provide services to the lowest-performing fraction of their student body, as can 
lower-performing schools, without concern that their performance relative to some 
benchmark will create unacceptably high or low prevalence rates.

Given that the critical component of RtI is to systematically allocate resources 
to improve learning for all children (Burns & VanDerHeyden, 2006) and to iden-
tify and remediate problems (Christ, Burns, & Ysseldyke, 2005), the goal for RtI 
implementation is to find solutions rather than failures. Thus, a child who does not 
benefit from an intervention or instruction should not be thereafter characterized as 
a “nonresponder,” but the instructional approach should be characterized as insuf-
ficient to establish an appropriate and desired response. This is a subtle, but critical 
distinction. Problems are solved with ecological manipulations and systematic eval-
uations of those manipulations. The problem is properly described as an interaction 
between the child’s needs and the services provided. In that sense, labeling the child 
as a nonresponder does very little to facilitate RtI and has the potential to undermine 
intervention efforts. Both the right focus (i.e., program effects in terms of student 
response) and adequate standards for evaluation are necessary for the success of a 
multi-tiered DD model of RtI.

Future Research

Although the current data have potential implications for practice, several limita-
tions should be considered. First, these data were from one education district with 
a relatively homogeneous population. Therefore, replication of this methodology 
with a more diverse student population would be beneficial. Moreover, this study 
examined data that were part of a district-wide benchmarking system and were 
not collected within a fully-implemented RtI model. Therefore, it is unknown how 
small-group interventions or intensive individual interventions would affect the 
data. It may also be advantageous to replicate the study with a longitudinal design 
to examine prevalence of dual discrepancies across grades with a longitudinal de-
sign. Finally, slopes of student growth for children receiving intensive interventions 
are usually collected more frequently than the three benchmarks used here (Reschly, 
2003). Future researchers may wish to replicate this study using weekly progress 
monitoring data.

In addition to replications to address the limitations mentioned above, future 
researchers may also wish to further examine student and environmental character-
istics of children who are dually and nondually discrepant. These data may be more 
relevant to practice than theory. Therefore, future research in the schools could ex-
amine the actual, rather than assumed, implications for resource allocation and SLD 
identification. Finally, RtI may serve as a defining variable for future DD research. 
In other words, researchers could implement a sound intervention with children 
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identified as DD and non-DD to compare growth rates between the two after iden-
tification.

Conclusions

Measuring student competence has long been a frequently researched and debated 
topic that was intensified with the 2004 RtI provision in federal special education 
regulations. An operational definition of student response and lack thereof needs 
to be objective, meaningful, and empirically supported. Traditional approaches 
to SLD identification were somewhat subjective (Algozzine & Ysseldyke, 1982; 
1983; Haight, Patriarcha, & Burns, 2002) and lacked research to support the valid-
ity of decisions made with them (Aaron, 1997). Thus, a growing literature already 
supports the DD approach over traditional SLD identification, but being superior 
to a highly criticized model is neither convincing nor the goal. Future research and 
resulting practice should focus on the use of DD, and RtI in general, in the enhance-
ment of student learning and competence with the ultimate yardstick for empirical 
support being the improvement of outcomes as a result of collecting the data.

Reading is complex and there is certainly more to how well a student reads 
than how fluently they do so, but ORF is directly linked to comprehension and is 
an overall indicator of overall reading skills. The data presented here suggest that 
one of the simplest ways to conceptualize reading assessment could be one of the 
most useful when identifying students for whom intervention is or is not successful. 
Additional research is needed, especially given the large number of students who 
continue to struggle with reading and the promising data presented here.

References

Aaron, P. G. (1997). The impending demise of the discrepancy formula. Review of Educational 
Research, 67, 461–502.

AIMSweb. (2006). Measures and norms. Eden Prairie: Edformation.
Algozzine, B., & Ysseldyke, J. (1982). Classification decisions in learning disabilities. Educa-

tional and Psychological Research, 2, 117–129.
Algozzine, B., & Ysseldyke, J. (1983). Learning disabilities as a subset of school failure: The over 

sophistication of a concept. Exceptional Children, 50, 242–246.
Ardoin, S. P., Christ, T. J., Morena, L. S., Cormier, D. C., & Klingbeil, D. A. (2013). A systematic 

review and summarization of the recommendations and research sounding curriculum-based 
measurement of oral reading fluency decision rules. Journal of School Psychology, 51, 1–18.

Berninger, V. W., Abbott, R. D., Vermeulen, K., & Fulton, C. M. (2006). Paths to reading compre-
hension in at-risk second grade readers. Journal of Learning Disabilities, 39, 334–351.

Burns, M. K. (2007). Reading at the instructional level with children identified as learning dis-
abled: Potential implications for response-to-intervention. School Psychology Quarterly, 22, 
297–313.

Burns, M. K., & Coolong-Chaffin, M. (2006). Response-to-intervention: Role for and effect on 
school psychology. School Psychology Forum, 1(1), 3–15.



M. K. Burns et al.138

Burns, M. K., Scholin, S. E., Kosciolek, S., & Livingston, J. (2010). Reliability of decision-mak-
ing frameworks for response to intervention for reading. Journal of Psychoeducational Assess-
ment, 28, 102–114.

 Burns, M. K., & Senesac, B. K. (2005). Comparison of dual discrepancy criteria for diagnosis of 
unresponsiveness to intervention. Journal of School Psychology, 43, 393–406.

Burns, M. K., & VanDerHeyden, A. M. (2006). Using response to intervention to assess learning 
disabilities: Introduction to the special series. Assessment for Effective Intervention, 32, 3–5.

Burns, M. K., & Ysseldyke, J. E. (2005). Questions about response-to-intervention implementa-
tion: Seeking answers from existing models. The California School Psychologist, 10, 9–20.

Burns, M. K., Kwoka, H., Lim, B., Crone, M., Haegele, K., Parker, D. C., Petersen, S., & Scholin, 
S. E. (2011). Minimum reading fluency necessary for comprehension among second-grade 
students. Psychology in the Schools, 48, 124–132.

Carnine, D. W., Silbert, J., Kame’enui, E. J., & Tarver, S. G. (2009). Direct instruction reading 
(5th ed.). Upper Saddle River: Merrill Prentice Hall.

Christ, T. J. (2006). Short-term estimates of growth using curriculum-based measurement of 
oral reading fluency: Estimating standard error of the slope to construct confidence intervals. 
School Psychology Review, 35, 128–133.

Christ, T. J., Burns, M. K., & Ysseldyke, J. E. (2005). Conceptual confusion within response-to-
intervention vernacular: Clarifying meaningful differences. Communiqué, 34(3), 1, 6–8.

Clay, M. (1993). An observation survey of early literacy achievement. Portsmouth: Reed.
Cohen, J. (1989). Statistical power analysis for the behavioral sciences (2nd ed.). Hillsdale: Law-

rence Erlbaum.
Coles, G. (1998). Reading lessons: The debate over literacy. New York: Hill and Wang.Deno, S. L. 

(1986).  Formative evaluation of individual student programs: A new role for school psycholo-
gists. School Psychology Review, 15, 358–374.

Deno, S. L., Fuchs, L. S., Marston, D., & Shin, J. (2001). Using curriculum-based measurement to 
establish growth standards for students with learning disabilities. School Psychology Review, 
30, 507–524.

Fuchs, L. S. (2003). Assessing intervention responsiveness: Conceptual and technical issues. 
Learning Disabilities: Research & Practice, 18, 172–186.

Fuchs, L. S., & Fuchs, D. (1998). Treatment validity: A unifying concept for reconceptualizing 
the identification of learning disabilities. Learning Disabilities Research and Practice, 13, 
204–219.

Fuchs, L. S., Fuchs, D., Hamlett, C. L., & Stecker, P. M. (1991). Effects of curriculum-based 
measurement and consultation on teacher planning and student achievement in mathematics 
operations. American Educational Research Journal, 28, 617–641.

Fuchs, L. S., Fuchs, D., Hosp, M. K., & Jenkins, J. R. (2001). Oral reading fluency as an indicator 
of reading competence: A theoretical, empirical, and historical analysis. Scientific Studies of 
Reading, 5, 239–256.

Fuchs, L. S., Fuchs, D., & Speece, D. L. (2002). Treatment validity as a unifying construct for 
identifying learning disabilities. Learning Disability Quarterly, 25, 33–46.

Fuchs, D., Fuchs, L. S., McMaster, K. N., & Al Otaiba, S. (2003). Identifying children at risk 
for reading failure. Curriculum-based measurement and dual discrepancy approach. In H. L. 
Swanson & K. R. Harris (Eds.), Handbook of learning disabilities (pp. 431–449). New York: 
Guilford.

Fuchs, L. S., Fuchs, D., Hintze, J., & Lembke, E. (2006). Progress monitoring in the context 
of responsiveness-to-intervention. Presentation at the Summer Institute on Student Progress 
Monitoring, Kansas City, MO.

Goffreda, C. R., & DiPerna, J. C. (2010). An empirical review of psychometric evidence for the 
dynamic indicators of basic early literacy skills (DIBELS). School Psychology Review, 39, 
463–483.

Good, R. H., Gruba, J., & Kaminski, R. A. (2002). Best practices in using dynamic indicators of 
basic early literacy skills (DIBELS) in an outcomes-driven model. In A. Thomas & J. Grimes 



5 Using Oral Reading Fluency to Evaluate Response … 139

(Ed.), Best practices in school psychology IV (pp. 679–700). Washington, DC: National As-
sociation of School Psychologists.

Gresham, F. (2002). Responsiveness to intervention: An alternative approach to the identification 
of learning disabilities. In R. Bradley, L. Danielson, & D. P. Hallahan (Eds.), Identification of 
learning disabilities: Research to practice (pp. 467–519). Mahwah: Lawrence Erlbaum.

Haight, S. L., Patriarca, L. A., & Burns, M. K. (2002). A statewide analysis of eligibility crite-
ria and procedures for determining learning disabilities. Learning Disabilities: A Multidisci-
plinary Journal, 11(2), 39–46.

Hasbrouck, J., & Tindal, G. (2006). Oral reading fluency norms: A valuable assessment tool for 
teachers. Reading Teacher, 59, 636–644.

Howe, K. B., & Shinn, M. M. (2002). Standard reading assessment passages (RAPs) for use in 
general outcome measurement: A manual describing development and technical features. Eden 
Prairie: Edformation.

Howe, K. B., Scierka, B. J., Gibbons, K. A., & Silberglitt, B. (2003). A school-wide organiza-
tion system for raising reading achievement using general outcome measures and evidence-
based instruction: One education district’s experience. Assessment for Effective Intervention, 
28(3&4), 59–72.

Keller-Margulis, M. A., Shapiro, E. S., & Hintze, J. M. (2008). Long-term diagnostic accuracy 
of curriculum-based measures in reading and mathematics. School Psychology Review, 37, 
374–390.

McMaster, K. L., Fuchs, D., Fuchs, L. S., & Compton, D. L. (2005). Responding to nonresponders: 
An experimental field trial of identification and intervention methods. Exceptional Children, 
71, 445–463.

Mirkin, P. K., Deno S., Tindal G., & Kuehnle, K. (1982). Frequency of measurement and data uti-
lization strategies as factors in standardized behavioral assessment of academic skill. Journal 
of Behavioral Assessment, 4, 361–370.

National Reading Panel. (2000). Teaching children to read: An evidence-based assessment of the 
scientific research literature on reading and its implications for reading instruction. Reports of 
the subgroups. Bethesda: National Institute for Literacy.

 Northwest Evaluation Association. (2003). Technical manual for the nwea measures of academic 
progress and achievement level tests. Lake Oswego: Northwest Evaluation Association.

Northwest Evaluation Association. (2004). Reliability and validity estimates: NWEA achievement 
level tests and measures of academic progress. Lake Oswego: Northwest Evaluation Associa-
tion.

Northwest Evaluation Association. (2005). RIT scale norms for use with achievement level tests 
and measures of academic progress. Lake Oswego: Northwest Evaluation Association.

Reschly, D. J. (2003). What if LD identification changed to reflect research findings?: Conse-
quences of LD identification changes. Paper presented at the Responsiveness-to-Intervention 
Symposium, Kansas City, MO.

Reschly A, Busch T, Betts J, Deno S, & Long J. (2009). Curriculum-based measurement oral 
reading as an indicator of reading achievement: A meta-analysis of the correlational evidence. 
Journal of School Psychology, 47, 427–469.

Riley-Tillman, T. C., & Burns, M. K. (2009). Single case design for measuring response to educa-
tional intervention. New York: Guilford.

Roberts, G., Good, R., & Corcoran, S. (2005). Story retell: A fluency-based indicator of reading 
comprehension. School Psychology Quarterly, 20, 304–317.

Salvia, J., Ysseldyke, J. E., & Bolt, S. (2010). Assessment (11th ed.). Boston: Houghton Mifflin.
SAS (2005). SAS Version 9.1.3 (software). Cary: SAS Institute, Inc.
Shapiro, E. S., Keller, M. A., Lutz, J. G., Santoro, L. E., & Hintze, J. M. (2006). Curriculum-based 

measures and performance on state assessment and standardized tests: Reading and math per-
formance in Pennsylvania. Journal of Psychoeducational Assessment, 24, 19–35.

Shinn, M. R. (Ed.). (1989). Curriculum-based measurement: Assessing special children. New 
York: Guildford.



M. K. Burns et al.140

Silberglitt, B., & Gibbons, K. A. (2005). Establishing slope targets for use in a response to inter-
vention model (technical manual). Rush City: St. Croix River Education District.

Silberglitt, B., & Hintze, J. M. (2005). Formative assessment using CBM-R cut scores to track 
progress toward success on state-mandated achievement tests: A comparison of methods. Jour-
nal of Psychoeducational Assessment, 23, 304–325.

Silberglitt, B., & Hintze, J. M. (2007). How much growth can we expect? A conditional analysis of 
R-CBM growth rates by level of performance. Exceptional Children, 74, 71–84.

Snow, C. E., Burns, M. S., & Griffin, P. (Eds.) (1998). Preventing reading difficulties in young 
children. Washington, DC: National Academies Press.

Speece, D. L, & Case, L. P. (2001). Classification in context: An alternative approach to identify-
ing early reading disability. Journal of Educational Psychology, 93, 735–749.

Speece, D. L., Case, L. P., & Molloy, D. E. (2003). Responsiveness to general education instruc-
tion as the first gate to learning disabilities identification. Learning Disabilities Research & 
Practice, 18, 147–156.

Stecker, P. M., & Fuchs, L. S. (2000). Effecting superior achievement using curriculum-based 
measurement: The importance of individual progress monitoring. Learning Disabilities Re-
search & Practice, 15, 128–134.

Stecker, P. M., Fuchs, L. S., & Fuchs, D. (2005). Using curriculum-based measurement to improve 
student achievement: review of research. Psychology in the Schools, 42, 795–819.

Torgesen, J. K., Alexander, A. W., Wagner, R. K., Rashotte, C. A., Voeller, K. K. S., & Conway, T. 
(2001). Intensive remedial instruction for children with severe reading disabilities: Immediate 
and long-term outcomes for two instructional approaches. Journal of Learning Disabilities, 
34, 33–58.

VanDerHeyden, A. M., Witt, J. C., & Barnett, D. A. (2005). The emergence and possible futures of 
response to intervention. Journal of Psychoeducational Assessment, 23, 339–361.

Valencia, S. W., Smith, A. T., Reece, A. M., Li, M., Wixson, K. K., & Newman, H. (2010). Oral 
reading fluency assessment: Issues of construct, criterion, and consequential validity. Reading 
Research Quarterly, 45, 270–291.

Vellutino, F. R., Scanlon, D. M., Sipay, E. R., Small, S., Chen, R., Pratt, A., & Denkla, M. B. 
(1996). Cognitive profiles of difficulty-to-remediate and readily remediated poor readers: Ear-
ly intervention as a vehicle for distinguishing between cognitive and experimental deficits as 
basic causes of specific reading disability. Journal of Educational Psychology, 88, 601–638.

Wayman, M. M., Wallace, T., Wiley, H. I., Tichá, R., & Espin, C. A. (2007). Literature synthesis on 
curriculum-based measurement in reading. The Journal of Special Education, 41(2), 85–120.

Yeo, S. (2009). Predicting performance on state achievement tests using curriculum-based mea-
surement in reading: A multilevel meta-analysis. Remedial and Special Education, 31, 1–12.



Part II
Recommendations for Test Developers

An important consideration when using any measure of fluency is the extent to 
which a set of scores are reliable and valid and lead to appropriate decisions about 
students. What constitutes a reliable score, however, is dependent on the measure-
ment framework used to estimate reliability coefficients. In Chap. 6 of this section, 
Christ and colleagues summarize aspects of classical test theory, generalizability 
theory, and item response theory as mechanisms for establishing the reliability of 
scores. They discuss Kane’s (2013) interpretation of test validity and use argument 
framework as a relevant model to connect psychometrics with interpretation. Chap-
ter 7 of this book, by Prindle and colleagues, presents the use of item response 
analysis that uses both speed and accuracy data to estimate a students’ score and 
improve reliability. Comparisons are made to other measurement frameworks to 
evaluate differential reliability in scores. Chapters 8 and 9 address topics related 
to further improving the accuracy and validity of scores from fluency assessments. 
Smolkowski and colleagues provide an introduction to signal detection theory in 
Chap. 8. The authors delve into the terminology of universal screening with flu-
ency measures and illustrate the important considerations necessary to evaluate and 
interpret criterion-referenced scores like benchmark levels of student performance. 
Lastly, Chap. 9 by Santi and colleagues address a critical issue in fluency research: 
evaluating the equivalence of scores across different test forms of oral reading flu-
ency. The authors present different methods for equating test scores including linear 
equating, equipercentile equating, and latent variable equating while highlighting 
trade-offs among the different approaches.
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Chapter 6
Foundations of Fluency-Based Assessments 
in Behavioral and Psychometric Paradigms

Theodore J. Christ, Ethan R. Van Norman and Peter M. Nelson

The concept of fluency influenced both theory and practice in education since the 
1970s. For the purpose of this chapter, fluency is the accurate performance of be-
havior per unit of time. As a prominent example of a fluency measure, curriculum-
based measurement (CBM) is designed to measure student performance per unit of 
time. CBM of oral reading (CBM-R) measures the words read correctly per minute 
(WRCM). CBM and similar fluency measures are useful because they are quick 
to administer, repeatable, and potentially sensitive to changes in student achieve-
ment across time (Deno, 1985, 2003). These characteristics are useful because they 
facilitate the measurement and evaluation of instructional effects within the frame-
works of universal screening and time series idiographic analysis. That is, data are 
collected repeatedly across time to document student’s progress and those data are 
then evaluated to determine whether an instructional program established sufficient 
effects. This concept emerged along with CBM as educators grappled with the new 
requirements of special education law, which required measureable goals as part of 
an individual education plan (IEP).

Although psychometric theory guides the development and use of most tests, it 
does not provide easy or obvious solutions to meet the new requirements associated 
with individual goals and progress monitoring. Psychometric theory places empha-
sis on the development of measures for theoretical or latent traits. There is sub-
stantial emphasis placed on the reliability and stability of measurement outcomes 
with regard to rank ordering. Historically, there was substantially less emphasis on 
sensitivity to changes in student performances across time. As a result, many of 
the tests that emerged from a psychometric paradigm were not sensitive to change. 
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That limited their utility to monitor IEP goals. In contrast, assessments that emerged 
from behavioral theory seemed more applicable. That is, the behavioral assessments 
were often developed to measure very specific behaviors repeatedly across time. 
They were most often designed to evaluate the influence of the environment on the 
individual. Reliability was not a primary issue because there is an expectation that 
behaviors change as a function of the environment and state of an organism. This 
contrasts with the psychometric perspective. Behavioral assessments were designed 
to be sensitive and less stable. As is discussed below, CBM emerged primarily out 
of the behavioral and idiographic paradigm. Once emerged, behavioral and psycho-
metric paradigms quickly became entangled.

The behavioral and idiographic approach is clearly illustrated in the writing of 
Stan Deno who led the early conceptualization and development CBM. Prior to his 
work on CBM, he coauthored Data-Based Program Modification: A Manual (Deno 
& Mirkin, 1977). In that text, he defined the principles which later inspired the de-
velopment of CBM. These principles include:

1. At the present time we are unable to prescribe specific and effective changes to 
instruction for individual pupils with certainty. Therefore, changes in instruc-
tional programs which are arranged for an individual child can be treated only as 
hypotheses which must be empirically tested before a decision can be made on 
whether they are effective for that child (p. 11).

2. Time series research designs are uniquely appropriate for testing instructional 
reforms (hypotheses) which are intended to improve individual performance 
(p. 11).

3. Special education is an intervention system, created to produce reforms in the 
educational programs of selected individuals, which can (and, now, with due 
process requirements, must) be empirically tested (p. 13).

4. To apply time series designs to (special) educational reforms we need to specify 
the data representing the “vital signs” of educational development which can be 
routinely (frequently) obtained in and out of school (p. 14).

5. Testing program modifications (reforms) requires well-trained professionals 
capable of using time series data analysis to draw valid conclusions about pro-
gram effects (p. 15).

Deno’s and Mirkin’s (1977) manual proposed a number of measurement systems 
that did not take hold. It was CBM that later emerged as the measurement system to 
serve the above principles first proposed in the manual.

In that manual and later writings, Deno illustrated the influence of behavioral 
assessment and idiographic analysis on the development of CBM (Deno, 1985, 
1989, 1990, 2003); however, he also explicitly stated an interest to use psycho-
metric methods to develop and evaluate the qualities of CBM. In his own words, 
“The measures would have to be [r]eliable and valid if the results of their use were 
to be accepted as evidence regarding student achievement and the basis for mak-
ing instructional decisions” (Deno, 1985, p. 221). That was stated as one of the 
primary values to guide the development of CBM. The use of both the principles of 
single case time series analysis, along with that of traditional validity and reliability 
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metrics, prompted the intermingling of behavioral-idiographic and psychometric-
nomothetic paradigms. This intermingling has caused confusion over the years, but 
it also contributed to the uniqueness of CBM as a fluency measure.

The purpose of this chapter is to discuss the previous and future contribution of 
test theory to the development and evaluation of fluency measures. In our opinion, 
it is necessary to consider the contexts of both behavioral and psychometric assess-
ment to truly understand fluency-based measures. That context helps establish how 
classical test theory (CTT) and generalizability theory (GT) remain relevant to the 
future development of CBM and other fluency measures. The application of these 
theories will be contrasted with that of behavioral assessment and item response 
theory (IRT).

Behavioral and Psychometric Paradigms

Assessment is broadly defined as the process of collecting information to make a 
decision. Two dominant paradigms inform the development and use of assessments 
in the social sciences. Those are the behavioral paradigm and psychometric para-
digm. CBM is a fairly unique example of a standardized assessment procedure that 
emerged from a behavioral assessment paradigm, yet its researchers and develop-
ers quickly adopted a psychometric assessment paradigm (Ardoin, Roof, Klubnick, 
& Carfolite, 2008; Christ & Hintze, 2007; Deno, 2001). This is likely a source of 
ongoing confusion because each paradigm relies on distinct assumptions, levels 
of inference, and sources of evidence. These differences are briefly discussed in 
the subsections below and include manifest and latent variables, the directness of 
measurement, differences in response format, repeatability of observations, and the 
methods by which scores are interpreted. As noted, fluency measures are some-
what unique in that they draw on characteristics of the behavioral and psychometric 
paradigms.

Manifest and Latent Variables

One of the fundamental differences between psychometric and behavioral assess-
ment is the attribution and inferences associated with score interpretation. Histori-
cally, the psychometric paradigm relied substantially on expectancy or latent trait 
theory, whereas the behavioral assessment paradigm rejected the need to rely on 
unobservable theoretical observations or traits. As is discussed below, recent con-
ceptions of validity and test theory may have reduced the necessity to rely on latent 
traits as part of psychometric test development.

A latent trait is an unobservable characteristic of an individual that explains—
or causes—a person’s performance. Intelligence and abilities related to reading or 
mathematics achievement are good examples of latent traits. These traits are often 
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assumed for purposes of psychometrically based educational assessment. The ob-
served performance on a particular test is inferred to be a manifestation of an under-
lying trait. As such, observable student performances are described as manifest—or 
observable—and the underlying trait is described as latent—or unobservable. The 
manifest performance is directly observed and the state of the latent trait is inferred. 
This trait theory is foundational to IRT. In a similar way, expected value theory is 
the foundation to CTT and GT. Both trait and expected value theories provide that 
individual observations are mere samples of behaviors that are used to generalize 
to a larger set of possible observations. Although it is not precisely correct, we use 
“trait theory” to refer both latent trait and expected value theories.

Despites its integral role in other prominent test theories, trait theory is practi-
cally irrelevant to the behavioral paradigm for assessment because behavioral inter-
pretations require low levels of inference. That is, attributions of performance are 
limited to other observable phenomena rather than a theoretical latent variable. The 
observable influential variables often include characteristics of the environment, 
learning history, or observable biology events (e.g., blood pressure, neural activ-
ity) of the student. Observable behavior and events are of primary interest in the 
behavioral paradigm rather than unobservable behavior or theoretical constructs, 
such as latent traits.

Directness of Measurement

Measurement in the psychometric paradigm is inherently indirect. As described, the 
purpose of measurement is to estimate the state of a latent trait or average perfor-
mance. The manifest variables, which are observable behaviors, are indicators of 
those. These underlying assumptions provide the basis to use multiple-choice items 
on tests of reading comprehension as indicators of the latent trait (i.e., comprehen-
sion) or average performance. The behavior of interest is not circling answers or 
completing a response sheet, but either could be used as the observed behavior—or 
manifest variable—that functions as an indicator of the construct of reading com-
prehension. The same is true for the use of rating-scale responses to gauge other 
traits or tendencies such as depression. The authenticity of the task is secondary to 
its perceived value as an indicator of the person’s trait or tendency.

Measurement in the behavioral paradigm is inherently direct. The occurrence 
and nonoccurrence of the behavior is used as the primary variable of interest. Un-
observable variables are of less interest and the consideration of concepts such as 
reading comprehension or depression requires an operational definition of authentic 
behaviors. The units of measurement are most often accuracy, frequency, rate, dura-
tion, latency, or magnitude of the target behavior. Thus, the issue of directness var-
ies across the two paradigms. Fluency measures are quite common in the behavioral 
paradigm. They are relatively less common in the psychometric paradigm as they 
are a direct measure of the number of correct responses by unit of time. Neverthe-
less, fluency is often considered to be an indirect measure of various academic 
outcomes. While fluency measures are inherently direct, the manner in which those 
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measures are applied may be direct or indirect. For example, the number of words 
read correctly on material drawn from grade-level curriculum can be interpreted as 
a direct measure of the appropriateness of that curriculum. Alternatively, those same 
data may be used to make an indirect inference about overall reading competence. 
The dual purpose of fluency as a direct observation of reading performance and an 
indicator of reading ability is discussed below.

Power, Speeded, and Fluency Tests

The two primary modes of assessment within the psychometric paradigm are power 
and speeded tests. Power and speeded tests are typically constructed in a manner 
that is “long enough to allow all, or nearly all, examinees to finish” (Crocker & 
Algina, 1986, p. 145). Even in the case of a speeded test, it is expected that most 
examinees have sufficient time to respond to all stimuli. The fluency assessments 
discussed here are timed, continuous performance tasks developed to ensure that 
all, or nearly all, examinees do not finish and respond to all stimuli. These fluency-
type assessments are not always inconsistent with the psychometric paradigm. 
They are just less typical in the psychometric paradigm.

Repeatability

Repeatability of observations is of primary importance in the psychometric para-
digm. It is assumed that behavior is influenced primarily by a latent trait or tendency, 
which should be stable or measured reliably. The implication is that repeated mea-
surements should be consistent for the same individual on tasks where performance 
is influenced by a latent trait or tendency to perform in a similar manner. Inconsisten-
cy within an administration occasion or across two measures that are administered 
in close temporal proximity are both indicators of poor—or less reliable—measure-
ment. In contrast, the reliability of an observation is of secondary importance in the 
behavioral paradigm. It is assumed that behavior is influenced primarily by proxi-
mal and observable events. These events are often related to the environment, but 
they might also relate to biological events within the individual or learning history. 
Applied behavior analysis depends on the variation of behavior across observations 
to glean the functional relation of behavior and other observable events.

Fluency-based assessments are often used in the idiographic tradition of prog-
ress monitoring, which is meant to evaluate the specific effect of an intervention on 
the individual. Ongoing measurement to gauge response to intervention requires 
assessments to be highly sensitive to relevant changes in student performance over 
time. Repeated administrations of fluency tests produce estimations of response 
rate, which are likely to be more variable than the outcomes of power and speeded-
tests. This particular feature of fluency-based measures might provide enhanced 
sensitivity to intervention effects, which is often assumed, but it might also reduce 
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the psychometric reliability and equivalence of scores collected with alternate 
measurement forms, occasions, and raters.

Idiographic and Nomothetic

The nomothetic tradition in science aims to describe and explain general principles 
and laws. In contrast, the idiographic tradition in science aims to describe and ex-
plain individual events. As discussed, psychometric assessment tends to converge 
with the nomothetic tradition, and behavioral assessment tends to converge with 
the idiographic tradition. Psychometric assessments emerge from sampling theory. 
Examinees and items are sampled from a larger universe to estimate their charac-
teristics and relations which are tested to evaluate their implications and general-
izations. Tests are often developed with samples separate from those persons for 
whom the tests and test scores are used. The items and behaviors sampled are not 
necessarily of interest. Instead, they are representative samples of relevant items 
and behaviors. Tests are then used summatively and the interpretation of the test 
score is contextualized by the performance of the group, or normative sample. One 
assessment—rather than repeated assessments—is often appropriate because the 
nomothetic approach supports the assumption that the best context for interpreta-
tion of the stable latent trait or tendency is the group. The status of the test score 
in the larger universe of other examinees establishes the context for interpretation.

Behavioral assessments emerge from specific circumstances. They are devel-
oped as authentic measures of behavior that occur in a specific set of circumstances. 
They are often developed to address problems or concerns of an individual person, 
rather than a generic sample of examinees. The individual is then assessed repeat-
edly within or across conditions. The scores are evaluated for their level, trend, and 
variability. The stability or variation of behavior for the individual(s) and circum-
stances are evaluated. Importantly, variation in behavior across observations is of-
ten useful within the behavioral and idiographic traditions. That variation in behav-
ior is examined along with covariation of other observable events. This comparison 
helps researchers and practitioners to test the functional relations between the target 
behavior and other events. The goal is not to generalize to others as the performance 
of independent samples or norm groups are rarely the context for interpretation. The 
individual’s performance and, perhaps, that of other individuals in the environment, 
provides the context for interpretation.

It is useful to contrast these traditions, but they are not mutually exclusive. As 
described by Kimble (1989), “Every individual is a unique expression of the joint 
influence of a host of variables. Such uniqueness results from the specific (idio-
graphic) effects on individuals of general (nomothetic) laws” (p. 495). That is, the 
case of an individual person or circumstance is unique; however, there are likely 
general principles that apply to an individual as well as to a group. The adoption 
and use of an idiographic approach does not necessarily discount consideration 
of general principles. Neither does the adoption and use of nomothetic approach 
negate the consideration of the uniqueness of specific persons or circumstances.
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Fluency as an Indicator

CBM emerged from a behavioral and idiographic paradigm. The early emphasis 
was on repeated performance sampling, graphic display of time series data, and 
rate-based recordings of fluency. At the same time, there was an early emphasis on 
the psychometric and nomothetic paradigm. This was described by Deno in a very 
early paper on the development of CBM.

Since the purpose of developing measurement procedures was to place in teachers’ hands 
a simple way to routinely monitor student achievement in the curriculum, a set of design 
characteristics was specified that guided all research and development activities. The mea-
surements would have to be (1) Reliable and valid … (2) Simple and efficient … (3) Easily 
understood … Inexpensive since multiple forms were to be required for repeated measure-
ment. (1985, p. 221)

The very first design characteristic elicits the psychometric paradigm. A review 
of early summaries of psychometric development established that the work was 
wholly dependent on CTT (e.g., Marston, 1989), which was characteristic of most 
psychometric development at the time.

In addition to the design principles above, there is also evidence that CBM scores 
were intended as “indicators” rather than merely using fluency as the behavior of 
interest. For example, CBM was defined as a general outcome measure such that 
individual performances were construed as indicators of general academic health 
and general performance in the annual curriculum (Fuchs & Deno, 1991). The term 
“indicator” was popular in the early years (Shinn, 1989). Later, CBM was some-
times referred to as a Dynamic Indicator of Basic Skills (DIBS) (Shinn, 1995).

The frequent use of the term “indicator” suggests that the observed behavior 
was used to infer something more. For example, educators, administrators, and par-
ents infer that the observed oral reading fluency (WRCM) indicates performance in 
the curriculum and not just their performance on a particular passage at one point 
in time. Fluency scores are sometimes interpreted as an indicator of generalized 
reading competence and even reading comprehension (Good, 1998; Shinn, 1992). 
Those inferences relate to the latent construct of reading achievement and not sim-
ply to the observed behavior at a particular point in time. As a result, the validity 
requires evidence and evaluation of the degree to which scores actually represent 
the latent trait, tendency to behave, and domain of interest.

To summarize, when individuals collect CBM or similar fluency scores, particu-
larly across time, there is often an implicit assumption that performance is an indi-
cator of a latent trait or broader domain. This inference goes beyond the observed 
behavior so it should be evaluated. Kane (2013) helps conceptualize the validity of 
fluency as an indicator of academic well-being. There are at least three assumptions 
which require evidence and evaluation: (a) the theory is plausible, (b) predictions 
about observable phenomena are reasonably accurate, and (c) indicators provide 
appropriate estimates of the construct. These assumptions are discussed in more 
detail below. In addition, there are other assumptions related to scoring, content, 
and material development. These issues are also addressed below; however, it is 
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important to emphasize that CBM materials were initially curriculum-based and 
curriculum-derived; the stimulus materials were sampled directly from the curricu-
lum. Generally, that is no longer the practice.

There was some research conducted in the 1990s to support the use of curriculum-
independent material for evaluating reading fluency (Fuchs & Fuchs, 1992; Fuchs 
& Deno, 1994). There was also research conducted to examine the variability of 
student performance across time (Shinn, 1989; Good & Kaminski, 2002). It was 
observed that curriculum-sampled stimulus materials were often highly variable, 
which resulted in variable student performance across forms. Those findings 
spurred the development of standardized instrumentation. Up to that time, only the 
procedures for administration and scoring were standardized. The actual materials 
were curriculum based. This illustrates how CBM continued to diverge from the 
behavioral assessment paradigm, which would be more consistent with curriculum 
sampling, to a psychometric approach, which would typically require standardized 
instrumentation.

Psychometric Theory and Inference

Issues of validity are more burdensome and complex for psychometric assessment 
than behavioral assessment. The burden is greater in the psychometric context be-
cause the level of inference is more substantial. The complexity is greater because 
there are multiple threats to the validity of inferences, which must be identified 
and evaluated. It requires a number of inferences to move from an oral reading 
observation to an estimate of reading health and literacy. Test theory is useful to 
evaluate the veracity of the claim that WRCM functions as an indicator. As will be 
evident in the subsections below, the consistency of observed performance plays a 
central role in the psychometric validation of fluency measures; however, the way 
in which consistency is defined and measured differs across theoretical approaches 
to validation.

Classical Test Theory (CTT)

As discussed, during a CBM-R assessment, students read aloud from a grade-level 
passage. This method—as with any measurement in the social sciences—is always 
associated with error. The magnitude of error associated with a test score is likely 
to differ for any number of reasons, not limited to the quality of the measurement 
tool. Regardless of the magnitude, estimating how much error is associated with 
scores is requisite for any further score interpretation. CTT is the most long standing 
framework to evaluate the precision of measurement (Spearman, 1904; Brennan, 
2011). The CTT model includes terms for the observed score (X), true score (T), 
and a general error term (E):
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X T E= +

From the above model, it follows that a student’s fluency score (X) is equal to the 
sum of their true score (T) and error score (E). The true score and error term in the 
CTT model are unobservable. A student’s true score is conceptually equivalent to 
the average of an infinite number of observed scores. Because this computation 
cannot actually be completed, researchers rely on some of the assumptions of CTT 
to estimate reliability. In CTT, it is assumed that the true score and error score are 
unobservable and uncorrelated. In addition, errors of observations are uncorrelated 
and test forms (e.g., CBM probes) are assumed to have equal observed score means, 
variances, and covariances.

In the CTT model, if multiple observations of individuals in a group are con-
sistent across forms, occasions, or administrators, this is taken as evidence that the 
relation between the observed score and true score is high. If observed scores are 
inconsistent, it follows that the relation is weaker. Assuming the tendency to behave 
or respond throughout an assessment remains constant, changes in the observed 
score (X) across conditions are attributed to error (E). A strong relation between true 
and observed scores is evidence for reliability.

Perhaps equally important is the direct connection between reliability and pre-
cision—higher levels of consistency allow for more confidence in the observed 
score as an estimate of the true score. For example, knowing that a student reads 
60 WRCM is much more useful if a teacher is confident that the student would per-
form consistently on other administrations. It would make little sense to interpret 
the above score if the same student, when given a new reading passage, read 100 
WRCM. In this case, the relation between observed score and true score would be 
much too large for any meaningful interpretation.

In the context of CBM, a student’s WRCM may change slightly as a function of 
different forms, occasions or administrators. The CTT model assumes the construct 
is relatively stable over any brief period of time so fluctuations in the observed 
score are attributed to error. For example, the quality of reading passages for CBM 
is likely to impact—sometimes to a large degree—students’ WRCM. Consequently, 
researchers who develop and disseminate reading passages for screening and prog-
ress monitoring must provide information to support score consistency across read-
ing passages, which is indicated by evidence of alternate-form reliability. A similar 
experimental procedure is applied to students’ scores over a short period of time 
(test–retest reliability). It is important to note that in each case, there is only one 
error term. Thus, if a researcher designs an experiment to estimate test–retest reli-
ability, he/she attributes all error to the manipulated variable (in this case, time) and 
assumes that additional error is negligible.

Fluency scores likely reflect a confluence of variables, one of which is the flu-
ency construct, but many of which are not. The potentially large number of factors 
influencing fluency scores makes the CTT framework less useful for estimating 
the reliability of CBM. Recall that within CTT, error is assumed to be constant and 
uncorrelated across measurement occasions. Even if a large degree of control is 
exercised by researchers, the reported reliability coefficients may not be replicable 
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in applied settings. In the case of fluency scores, it may be more useful to consider 
the relative contribution of a variety of error sources that are expected to vary from 
one measurement occasion to the next. The following section briefly describes GT, 
which, as an extension of CTT, provides the framework for such considerations.

Generalizability Theory 

Although the CTT framework continues to remain relevant in the measurement 
literature, the potential advantage of quantifying multiple sources of error in the 
same model is readily apparent. Like CTT, GT is a statistical approach to estimate 
the consistency of measurements. Both approaches rely heavily on the notion of 
domain sampling as both treat items (i.e., passages) as one sample from an infinite 
domain of such items; however, GT expands on the CTT model by allowing a more 
particular definition of the measurement process. More specifically, each sample 
of behavior is considered to be a sample from a universe for generalization that 
consists of all possible observations of the person. Importantly, the researcher or 
test developer defines the universe for generalization and thus defines which fac-
tors are included in the universe and which are not. These measurement factors are 
referred to as facets in GT and together define the measurement conditions that the 
test developer wishes to generalize across. The identification and measurement of 
facets is one of the most powerful contributions of GT because it allows the vari-
ous sources of error that were bound together in CTT to become disentangled and 
estimated individually. Brennan (2001) illustrates this conceptual difference in the 
following equation:

1 1 p HX E E Eµ= + + + …

Where pµ  is the universe score and the error terms represent the variance associated 
with a given set of fixed or random facets of measurement. The universe score is 
the analogue of the true score in CTT but can be markedly different in meaning de-
pending on the universe of generalization (i.e., number and type of facets) defined 
by the researcher. From the above equation, it follows that GT is akin to a random 
effects analysis of variance (ANOVA), with each facet represented by a fixed or 
random factor.

In addition to the variance components for facets included in the universe of gen-
eralization, there are two reliability coefficients of interest in GT, each related to the 
intended use of the measurement itself. More specifically, GT provides researchers 
with the means to estimate measurement error for relative decisions and absolute 
decisions. As a normative metric, relative measurement error provides an estimate 
of consistency in the rank order of individuals across conditions. This contrasts 
with absolute measurement error, which estimates the consistency for comparisons 
against a criterion that is unrelated to the performance of other individuals. In the 
context of CBM, both absolute (i.e., whether a student is meeting grade level bench-
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marks) and relative (i.e., how a student scores relative to his/her peers) decisions 
are important.

Researchers generally estimate error for relative and absolute decisions using 
information generated from the random effects ANOVA model mentioned above. 
During this process, referred to as a “Decision Study” in GT, decision makers may 
use information about some or all the facets for measurement to estimate reliability. 
Regardless of the facets included in the universe of generalization, measurement 
error for relative and absolute decisions is defined differently as different variance 
components are included in each computation. For relative decisions, only variance 
components that would be expected to impact students’ relative standing are in-
cluded for analysis. In the context of CBM research, variance components for items 
and administrators are omitted from any estimation of relative error if all students 
respond on each passage and are exposed to each administrator. As a result, the 
main effect of passage and administrator is constant across students and is not re-
quired for estimating the error for relative decisions; however, all two and three way 
interaction terms are included. The GT coefficient for relative decisions is referred 
to as the generalizability coefficient and is interpreted as the proportion of observed 
score variance due to universe score variance.

In contrast to the measurement error associated with relative decisions, error 
for absolute decisions includes all facets of variance (as defined by the decision 
maker). The resulting coefficient is referred to as the dependability index and is ap-
propriate for considering an individual’s score relative to a criterion of interest (e.g., 
grade-level benchmark in CBM) across the conditions included in the universe for 
generalization.

Item Response Theory

Item response theory (IRT; see Chap. 7 this volume) is the primary alternative to 
CTT and GT. It is substantially dependent on latent trait assumptions. Whereas the 
primary measure of interest within CTT and GT is overall test scores, IRT focuses 
on individual item responses. More specifically, researchers and test developers use 
IRT to model the probability of a correct response to an individual item through 
mathematical functions. These functions incorporate characteristics or parameters 
of an individual item (e.g., discrimination, difficulty, and pseudo-guessing), as well 
as the estimated level of the latent trait in the individual to predict the likelihood that 
the examinee will endorse a particular response or answer an item correctly.

Brennan (2011) offers an apt analogy to compare and contrast the main perspec-
tives of measuring performance with CTT, GT, and IRT:

Consider individual items as trees and the universe of items as the forest. If we focus on 
individuals trees as we do in IRT, then we are easily oblivious to the forest. If we focus on 
the forest, the trees are indistinguishable. (p. 17–18).

That is, using a CTT or GT framework comes at the expense of losing information 
at the item level. Conversely, adopting an IRT-based approach—particularly mul-
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tiparameter models—restricts traditional analyses for overall test scores. Although 
CTT and GT remain as relevant and useful psychometric theories, IRT has con-
tributed immensely to the research literature on psychological measurement and 
has greatly enhanced scale development. One only needs to look at the research 
on computer adaptive testing for evidence of IRTs contributions (Ware, Bjorner & 
Kosinski, 2000).

An individual’s level of a latent trait or θ, is the closest approximation to a test 
score within IRT; however, the number of items an examinee answers correctly is 
not necessarily equal to the total score. Instead, responses to individual items are 
weighted based on their associated parameters. The estimated value of the latent 
trait in IRT provides the most likely explanation for any given response pattern 
(hence the name maximum likelihood estimate). Because of the inherent connec-
tion to individual items, traditional notions of reliability (i.e., true score variance ÷ 
observed score variance) are not directly applicable to test scores calculated from 
IRT analysis.

Although there are reliability-like statistics that can be computed from IRT 
analysis, reliability within an IRT framework is often conceptualized as the mag-
nitude of error variance at a given ability level (Brennan, 2001). This character-
istic of IRT analysis overcomes the restriction of equal SEM as well as potential 
problems with replication of reliability in CTT. The conditional error variance is 
the inverse of the information function at that ability level. This conceptualiza-
tion of reliability is not based on semantic interpretations, it is a mathematical 
derivation (Brennan, 2011). Implicit with the derivation of the standard error of 
the maximum likelihood estimate of θ, there is no consideration of sampling items 
(Brennan, 2011). If items are not sampled, they are fixed. Because items are fixed, 
replications within IRT, conceptually, involve the administration of items with 
identical parameters. That is, conditional standard errors within IRT represent rep-
lications over perfectly parallel forms. When researchers limit the role of facets as 
in IRT, the power of replications becomes limited. Therefore, current applications 
of IRT do not allow researchers to investigate different sources of measurement 
error as in GT. The different sources of measurement error, as stated previously, 
are of high substantive interest. Limiting the role of facets in IRT restricts reli-
ability estimates for scores across different conditions of interest. In essence, the 
conditional standard error of measurement within IRT is only demonstrative of the 
reliability of scores across a very narrowly defined set of conditions (i.e., perfectly 
parallel forms).

Other assumptions associated with IRT pose particular problems for measuring 
fluency. Researchers have advocated for the application of IRT models to CBM-R 
passages at a word-by-word level, with words functioning as items and passages 
functioning as tests (Betts, Pickart & Heistad, 2009). That is, parameters would be 
derived for each word in the CBM-R passage and the resulting θ estimate would be 
a measure of the student’s ability. There are several obstacles associated with the ap-
plication of IRT to CBM-R. First, most applications of IRT rely on the assumption 
that the examinee has an unlimited amount of time to complete the measure and each 
examinee has a chance to respond to every item (i.e., a power test). As stated before, 
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CBM-R and other fluency-based measures are constructed with the assumption that 
very few examinees will have the opportunity to respond to every item. Granted, 
time-based IRT models have been developed (e.g., Wise & DeMars, 2006). Yet it is 
unclear how such models could be adapted to fluency-based measures.

Another issue related to applying an IRT model at a word-by-word level is the 
assumption of conditional independence. The assumption of conditional indepen-
dence states that the likelihood of answering one item correctly on a test does not af-
fect the likelihood of answering any other item on the test correctly. The robustness 
of conditional independence is often debated within IRT (Wainer, Wang, Skorupski, 
& Bradlow, 2005), but the argument is typically framed as individuals responding to 
a small cluster of items related to a common passage. The argument is rarely framed 
as a timed task of reading connected text, often with repeated words.

Finally, it should be noted that the process of deriving item parameters for tests 
is time and resource intensive. There are no gold standards for sample sizes, but 
simulation studies suggest that for a 60-item, three-parameter model, over 1000 
responses might be needed (Baker, 1992). If one was interested in parameterizing 
a CBM-R passage for upper elementary students with the same three-parameter 
model, the recommended sample size grows considerably. Related to the point 
raised earlier, the issue of parameterizing items when not every examinee is equally 
likely to respond to every item adds another level of complexity. We do not raise 
these concerns to be dismissive of the application of IRT to fluency-based mea-
sures. Rather, we are intrigued and excited about the application of new scaling 
techniques to measures. We raise these issues as a caution for viewing IRT as an 
all-encompassing replacement of CTT and GT.

An Argument-Based Framework

Before placing too much stock in the meaning of reliability—whether derived from 
CTT, GT, or IRT—it is helpful to carefully consider the broader context and pur-
pose for reliability research. In the case of CBM-R, teachers are tasked with mak-
ing meaningful decisions about students’ literacy skills using a timed measure of 
WRCM. In a broad sense, those who create an assessment must compose an argu-
ment for its use in applied settings. Some of this argument is grounded in traditional 
notions of reliability and other parts related to validity, but the argument should 
be a coherent and defensible narrative. Kane’s (2006, 2013) perspective on vali-
dation incorporates aspects of both reliability and validity, creating a framework 
to guide test development and evaluation. Kane’s interpretation and use argument 
(IUA) framework is particularly relevant here because it illustrates the connection 
between concepts that are sometimes considered distinct and draws attention to the 
subjective nature of the psychometric argument itself. Kane describes an interpreta-
tion and use approach to validation. This contemporary approach to validity unifies 
the various aspects of test development and test score evaluation that are discussed 
previously in this chapter.
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There are at least three assumptions in Kane’s IUA that apply to the use of flu-
ency measures as indicators (Rodriguez, personal communication, 2013). These 
include: (a) the theory is plausible, (b) predictions about observable phenomena 
are reasonably accurate, and (c) indicators provide appropriate estimates of the 
construct. The IUA includes at least three inferences: (a) scoring (the scoring rule 
provides clear, consistent scores), (b) generalization to the universe of generaliza-
tion (passage sampling, behavior sampling, rater sampling), and (c) interpretation 
from the value of the indicator to the value of the construct (see Chap. 13, this 
volume). We use Kane’s conception of IAU to provide a context and perspective on 
test development. In the case of fluency measures, it is very helpful to apply CTT 
and GT to spur development, evaluate the assumptions, and test the inferences. A 
generic depiction of the inferences and components associated with interpretation 
are presented in Fig. 6.1.

Trait or Tendency (1) 

As discussed, the latent trait (IRT) or behavioral tendency (CTT, GT) influences or 
causes performance in a particular domain. In our example, the trait is literacy and 

Fig. 6.1  Depiction of hypothesized relations between the latent trait of literacy and the target 
domain of generalized reading health
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the target domain is generalized reading health. Figure 6.1 illustrates that perfor-
mance in the target domain is influenced by the latent trait.

Target Domain (2) 

As illustrated by the cloud-shape in Fig. 6.1, target domains are often difficult 
to define and even more difficult to observe because they are diffuse and often 
substantial in size. An exhaustive set of observations, in all possible contexts, 
is rarely possible. For example, it would be very difficult to observe a student’s 
performance on all reading activities encompassing all reading attributes and 
behaviors. There are many aspects of reading to consider, which might include 
self-regulation along with phonological, orthographic, and semantic skills. At the 
same time, there are many forms of reading stimuli to consider, which include 
websites, books, newspapers, magazines, menus, and instructional materials. Each 
type of stimuli might vary in length and content. They also might vary in syntac-
tic, semantic and orthographic complexity. In sum, the target domain is large. It 
requires sampling rather than comprehensive observation of the whole domain. 
It is necessary to define a subset of activities and materials that are intended to 
represent the target domain for assessment purposes. In the language of GT, that 
is the universe of generalization.

Universe of Generalization (3) 

As discussed in the subsection on GT, The universe of generalization defines the 
characteristics of all possible behavior samples and stimulus materials that might 
be used for assessment. Note that the universe of generalization is entirely defined 
by researchers and test developers. For example, the universe of generalization 
for CBM-R might be restricted to oral reading of narrative-type grade-level pas-
sages. This definition substantially restricts the variety of possible behaviors and 
observations associated with the much larger target domain. It excludes alternative 
behaviors, which might include responses to multiple-choice comprehension items. 
It excludes passages that are out of grade level. It also excludes informational or 
poetry passage types. In this example, only a small portion of the target domain is 
included in the universe of generalization. This restricts characteristics of assess-
ment and qualities of observation. A restricted universe of generalization increases 
consistency of measurement, but it might also limit the extrapolation of perfor-
mance on the assessment to performance in the larger domain. At this point, we tend 
not to think of this restriction as sampling from the target domain—we tend to think 
of it as restricting the target domain to a testable domain (universe of generalization) 
only including those tasks and contexts which are assessable. From the universe 
of generalization, we hope to sample tasks and contexts for any given assessment. 
Here we run the risk of construct underrepresentation, but realize that practical con-
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straints prevent us from testing some aspects of the target domain (so it is less about 
sampling and more about purposive reduction). This is discussed below.

Behavior Sample (4): Sampling 

The behavior sample is 1 min of oral reading on one of many grade-level narrative 
texts that are available from the universe of generalization. The data that are pro-
vided to the examiner represent oral reading behavior at a particular time and setting 
and with a particular passage. Only a small portion of the universe of generaliza-
tion is observed. It is necessary to validate the inference that the limited sample is 
a quality indicator of the larger universe. In the context of GT, the assumption here 
is that the tasks are sampled from the universe of generalization, such that they are 
exchangeable. GT uses the ANOVA framework, which assumes random sampling. 
We cannot, of course, randomly sample from the universe because it is difficult to 
define completely and often impossible to observe to a large extent.

Observed Score (5) 

The observed score is the numeric value that characterizes the behavior sample, 
which requires the development and application of score rules. The examiner must 
apply scoring rules to derive the unit of measurement that is WRCM for CBM-R. 
The quality of the scoring rules influences the quality of inferences that follow 
from assessment outcomes. Interpretation and use of test scores requires an infer-
ence that the scoring is appropriate, standardized, and free from bias. Many of the 
fluency-based score rules are fairly objective and easy to implement, which makes 
the inference easier to evaluate. Nevertheless, GT provides useful conceptualiza-
tion and procedures to evaluate the scoring inference, which often includes estima-
tion of variance components associated with the universe of raters, conditions, and 
procedures.

After applying administration and scoring rules, the observed score is available 
for the sample observation. Interpretation is rarely limited to the observed score. 
That is, interpretation is rarely limited to student performance for one setting, pas-
sage, administrator, time of day, and day of week. Instead, there is an inference of 
generalization to the universe score.

Universe Score (6): Generalization 

The universe score is the expected level of performance across all observations in 
the universe of generalization. This is often operationalized as the average of all 
possible observations. Figure 6.1 illustrates that the observed score—WRCM—is 
generalized to represent the expected WRCM in the entire universe of generaliza-
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tion, which again, is defined by those responsible for validating the assessment. 
Both CTT and GT provide methods to examine the generalization inference. Yet, 
that is still not the inferential conclusion. Up to this point, the inferences apply both 
to observable attributes and indicators (as to this point, indicators are operational-
ized functionally and serve the role of observable attributes). Now, we hope to use 
them as indicators of a construct and thus require deeper inferences and evidence. 
There are two more likely inferences.

Target Score (7): Extrapolation 

The target score is the expected level of performance across all observations in the 
target domain. In the CBM-R example, the target score depicts generalized read-
ing health, which is a theoretical value. As previously discussed, the target domain 
encompasses all of the various forms of reading stimuli that vary in length and com-
plexity—most of which were not observed. In this example, WRCM on a CBM-R 
passage from the universe of generalization is extrapolated to infer the state of gen-
eralized reading health.

Trait Score (8): Implication 

Finally, the state of the trait is inferred through implication. That is, an estimated 
level of performance in the target domain is used to implicate the state of the trait, 
which is literacy in the CBM-R example. This is the ultimate inference, from the 
value of the indicator to the value of the construct. The assumptions required to 
support this inference are that (a) the theory is plausible, (b) predictions about 
observable phenomena are accurate, and (c) CBM as an indicator is an appropriate 
estimate of the construct. These might lead to the strongest challenges for the use of 
CBM as an indicator. This is because we must address the challenges of construct 
underrepresentation and construct-irrelevant variance (Rodriguez, personal com-
munication, 2013).

While the early components of Kane’s framework address issues of replication 
(i.e., reliability), the meaningfulness of extrapolations to the domain and trait is 
closely aligned with traditional conceptualizations of validity (e.g., content and 
criterion-related validity). From Fig. 6.1, it follows that Kane’s account of the valid-
ity argument bridges the interpretive gap between issues of reliability and validity 
that are sometimes divided from one another; however, more relevant to the current 
chapter, it also highlights the direct connection between the universe of generaliza-
tion and the universe score.

Importantly, the universe score only offers reliability evidence for replications 
conducted under conditions similar to those used to generate reliability evidence. For 
example, if researchers use GT to account for the effect of various administrators, 
forms, and occasions, the reliability estimate is only adjusted for those error sources. 
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This adjustment is further dependent on whether these sources are treated as fixed 
or random. In this way, researchers exercise direct control over reliability—it is not 
the measure itself that is reliable, but the scores under a set of prespecified condi-
tions. It follows that if the universe of generalization is small, score reliability will 
be higher (and vice versa).

Aligning Psychometric Theory with Applied Practice

The manner in which the universe of generalization is defined is perhaps the most 
important consideration for those who continue to conduct or consume research on 
fluency measures. Given the instrumental and contextual fluctuations that occur 
when measuring fluency, it is meaningful to consider the scope of reliability es-
timates. Assuming that an applied measurement condition (e.g., a student reading 
aloud from a grade-level passage in the hallway of a school) differs from the con-
ditions used in reliability research, the reliability of the observed score is less 
predictable.

Previous CBM work using GT addresses some of the most typical reliability con-
cerns—namely differences across forms and raters—but it may be useful to expand 
the universe of generalization to include variations common in school settings. For 
example, student characteristics, such as motivation and self-efficacy, may interact 
with CBM materials and procedures enough to produce unexpected differences in 
performance. Such fluctuations may be explicitly modeled if included in the uni-
verse of generalization. Likewise, it may be useful to expand the universe of gen-
eralization to include variations in the life experience (e.g., culture) of students as 
these factors may be predicted to influence the reliability of CBM-R scores. Given 
the increasingly diverse population of students who interact with CBM-R materi-
als, novel extensions to the universe of generalization may more accurately reflect 
the nature of CBM-R practices in schools. Finally, in a recent review of CBM re-
search, Tindal (2013) calls for reliability studies to include aspects of instruction 
and intervention. That is, the type and intensity of intervention in particular may 
also influence the reliability of progress monitoring data.

Reliability is largely under the control of those who choose the methods and 
procedures for its estimation. While it may not be feasible for researchers to capture 
all possible sources of error in the context of CBM-R, it is worthwhile to closely 
consider the manner in which the CBM-R is used in schools and think critically 
about which factors should be subject to empirical review. Recent work examin-
ing the reliability of CBM-R demonstrates the potential benefit of such review; 
however, it may be beneficial to expand the universe of generalization even further 
to better reflect applied practice. Such an expansion may increase the relevance 
and utility of CBM-R in school settings and strengthen the validation argument for 
CBM-R as a tool for monitoring student response to intervention.
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Summary and Conclusion

CTT and GT remain relevant to the ongoing development and evaluation of fluency 
assessments. That is, CTT and GT rely on expected value theory, which is the basis 
of many statistical applications (e.g., ANOVA). In contrast, IRT is substantially 
dependent on latent trait theory. We treated these theories as similar in this chapter, 
but the former assumes a probabilistic relation between one observation and other 
possible observations. IRT depends on a latent trait, which is unobservable. Second, 
fluency scores are often reported on their natural scale, which is generally consis-
tent with behavioral assessments. This works well with CTT and GT, but IRT sacri-
fices the natural scale and requires rescaling. Some have criticized that IRT is really 
more of a scaling technique and less of a psychometric theory (Brennan, 2001).

Although CTT and GT are sample dependent, development and evaluation re-
quires relatively small sample sizes. This places their application within the hands 
of many researchers and practitioners in education. IRT requires large sample 
sizes, more sophisticated analysis, and often times requires more expensive and 
difficult to use software. IRT should be evaluated for application with fluency 
assessments, but short-term progress and wide-scale development by non-psycho-
metric researchers and practitioners is likely to begin with CTT and GT. As we 
emphasized throughout the chapter, these remain relevant test theories notwith-
standing the emergence and recent popularity of IRT in many large-scale testing 
programs. Many of those IRT applications are more focused on estimating stable 
traits and tendencies. In contrast, fluency assessments are often used to estimate 
the level, trend, and variability of student performance within and across time. This 
generalization requires a highly sensitive scale for assessment and it often also 
depends on behavioral and idiographic paradigms, which are most consistent with 
GT and, perhaps, CTT.

Finally, Kane (2006, 2013) provides a useful framework for test development 
and validity, which is presented in IUA. Kane’s framework is useful to help us 
identify the inferences and assumptions that are inherent to our interpretation and 
use of assessments. We must evaluate and devise evidence to support or refute those 
interpretations and uses. CTT and GT provide a very useful set of tools for those 
purposes.

1. Trait: person characteristic that influences or causes performance in the domain
2. Target domain: the possible behaviors, conditions, and observations influenced 

by the trait
3. Universe of generalization: subset of possible behaviors, conditions, and 

observations that are intended to represent the target domain for purposes of 
assessment

4. Behavior sample: a more narrow subset of actual behaviors, conditions, and 
observations that are assessed
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5. Observed score: numeric value that characterizes the behavior sample or test 
performance

6. Universe score: expected level of performance across all observations in the 
universe of generalization (3; e.g., average of all possible observations), which 
is inferred an not directly observed

7. Target score: expected level of performance in the target domain (2), which is 
inferred and not directly observed

8. Trait score: expected level of the target trait (1), which is inferred and not directly 
observed
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Chapter 7
Using Response Time and Accuracy Data  
to Inform the Measurement of Fluency

John J. Prindle, Alison M. Mitchell and Yaacov Petscher

The purpose of assessment is to collect information to estimate a person’s true 
ability in a performance domain. One might have a student read for 60 s with the 
aim of using that 1-min sample to approximate that student’s likelihood of being 
successful at reading and understanding grade-level text. Assessments must have 
high levels of validity and reliability to target the appropriate performance skills 
efficiently. Although most assessments focus on accuracy, considering a student’s 
pattern of correct versus incorrect responding, not all capture speed of response as 
a performance factor. Leveraging all extant data to increase reliability in estimation 
of scores is a potentially beneficial effort for those in both practice and research 
settings.

Due to the presence of technology in educational settings, computerized assess-
ments have become increasingly more common (Gray, Thomas, & Lewis, 2010; 
Miranda & Russell, 2011; Pressey, 2013). One benefit of computerized testing 
is the built-in capacity to capture speed of performance in addition to accuracy. 
Computers allow for the precise logging of item response time without being con-
tingent on time as a limiting factor, as an alternative to pencil–paper fluency tasks. 
Specifically, response speed on an item can be captured even when students’ are not 
limited to a certain timeframe within which to respond, presenting a broader con-
text for use of this information (Petscher, Mitchell, & Foorman, 2015). Although 
one might posit that this additional information would be beneficial, this question 
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requires empirical validation. Because time and precision are both premiums in the 
world of assessments, our goal in the chapter is to highlight how classical test theory 
(CTT) and item response theory (IRT) compare to each other in terms of accuracy 
data and then how each of these approaches differ when response time is used. Our 
chapter begins with a discussion of fluency and how it is typically measured, fol-
lowed by a quick treatment of the importance of response latency in the literature, 
and how vocabulary knowledge could be used as an outcome with attributes of 
speed and accuracy. Next, we focus our attention on measurement models with de-
tails on distinct aspects of classical test and item response theories and introduce the 
conditional item response theory model (CIRT) for speed and accuracy. The chapter 
concludes with an empirical example and considerations for future directions. Note 
that this chapter serves as an extension and replication of a similar work found in 
Petscher, Mitchell, and Foorman (2015).

Measures of Fluency

Fluency is frequently defined as a composite of speed and accuracy in performance 
(Chard, Vaughn, & Tyler, 2002). Fluency measures are used in multiple academic 
domains, including reading, math, and writing. In the domain of reading, fluency 
tasks have been used to measure knowledge of letter names, letter sounds, single 
words, connected text, or gist-level comprehension (e.g., maze tasks). Oral reading 
fluency, which measures a student’s rate of reading of connected text, demonstrates a 
high correlation with measures of reading comprehension, making it a common mea-
sure used for screening students for risk of reading difficulty (Fuchs, Fuchs, Hosp, 
& Jenkins, 2001). Assessments of reading fluency are generally found in two forms: 
those that assess student skills using word or object lists (e.g., letter sound fluency) 
and those that measure reading using connected text (e.g., oral reading fluency).

Curriculum-based measurement (CBM) is a form of norm-referenced fluency 
assessment that can be used multiple times a year to measure growth in performance 
in academic skills (Deno, 2003). Relative to many other types of standardized 
assessments, this method is quick to administer and cost-effective while still sup-
plying reliable data that reference individual student performance compared with a 
normative sample. These tasks often also demonstrate greater sensitivity to change 
in specific skills than global standardized achievement tests, making them more 
appropriate to administer in frequent intervals. CBMs are frequently used to screen 
students for risk of failure in an academic domain (Cummings, Atkins, Allison, & 
Cole, 2008) and to monitor student’s growth in a skill over the course of the year 
(Fuchs, Deno, & Mirkin, 1984). Further, an integral aspect of fluency scores relates 
to measuring the speed of performance. In these CBM tasks, a student may be given 
a worksheet of subtraction questions and asked to answer as many questions as 
possible in 3 min or presented a narrative passage and instructed to read for 1 min. 
The student’s rate of performance is determined by looking at their number of cor-
rect responses or words read accurately within the given time limit (Deno, 2003).
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It is well known that most fluency assessments are based in CTT (see Christ, 
Van Norman, & Nelson, Chap. 6, this volume). A fundamental assumption of CTT, 
as it pertains to reliability, is that the standard error of measurement is assumed to 
be constant across the range of scores in a population. Despite this assumption, 
Poncy, Skinner, and Axtell (2005) applied generalizability theory to CBM probes 
and found that reliability ranged from .81 to .99. These results indicate that, for 
some individuals, fluency scores were highly accurate and reliable; for others, flu-
ency scores were observed to have relatively lower reliability. This result has been 
replicated in other studies pertaining to fluency, suggesting that standard error is not 
equal across a population (Christ & Silberglitt, 2007; Mercer et al., 2012). While a 
score for one student may be highly reliable, another student’s score may not have 
sufficient reliability. Such variance in reliability may have meaningful implications 
for the validity of individual student’s scores, even if the population reliability is 
deemed to be sufficient. One core feature of CBMs is the presence of multiple 
equitable assessment forms, such that progress can be monitored across the year us-
ing the same baseline. Although CBMs have generally acceptable reliability across 
forms, concerns have still been documented related to the presence of form effects 
(e.g., Cummings, Park, & Schaper, 2012; Francis et al., 2008; Petscher & Kim, 
2011). If two passages are not adequately equated in terms of difficulty, misinterpre-
tations may be made about a student’s growth in a particular skill or their response 
to specific interventions that they receive.

Overcoming the reliability concerns resulting from static standard error levels or 
form effects, while still allowing consideration of speed as a factor, may require an 
alternative framework to CTT. CBMs allow for one way to capture both accuracy 
and speed factors at a global level, as a student’s accuracy level on a number of 
items is determined within a specified timeframe. Computerized assessment sys-
tems provide the opportunity to capture item response time information without 
reliance on time contingencies. In this testing paradigm, students are not limited to a 
certain timeframe within which to respond. It is important to acknowledge that utili-
zation of computerized testing would not replace the practical benefits of time-lim-
ited CBMs, such as speed, convenience, and relatively intuitive administration and 
interpretation. But by utilizing the response information gathered via computerized 
assessment we may be able to reconsider what constitutes “fluent performance” and 
overcome the dichotomous choice identified by Cattell (1948) between tests that 
serve to measure either power (i.e., accuracy given unlimited time) or performance 
(i.e., ability given limited time).

Capturing Response Latency

Speed of response, also termed response latency, is considered an impactful fac-
tor in performance across a number of different domains, including cognitive sci-
ence (Sternberg, 1969) and psycholinguistics (Goodglass, Theurkauf, & Wingfield, 
1984). The significance of response latency was established in one study where 
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students were designated as skilled or less-skilled comprehenders (Perfetti & Ho-
gaboam, 1975). Low comprehenders had longer vocalization latencies for words 
they were shown and asked to pronounce, especially for low-frequency words or 
pseudowords. In fact, the skilled and nonskilled readers demonstrated similar re-
sponse times when presented with high-frequency words; however, skilled students 
were faster in responding to low-frequency words and pseudowords. These results 
provide a seminal demonstration of the significance of response time, beyond 
accuracy alone, in providing a comprehensive measure of performance.

One factor to consider when recording response time is the nature of the testing 
format. Measures structured in lists or maze tasks that are limited to a few sentences 
are likely suited to item response accuracy modeling, because the individual items 
can be programmed in a computer environment where response accuracy and re-
sponse time could be captured accurately. On the other hand, connected text mea-
sures may not be as easily incorporated into current item response models because the 
data would violate the assumption of local item independence due to the repetition of 
many high-frequency words in a given text. Further, accurately obtaining response 
time per word would likely be challenging given that you would need a way to mea-
sure time spent on each word in a sequence, which would likely introduce threats to 
reliability. Thus, in order to incorporate response time into a measurement model, 
attention must be directed to the manner in which questions are delivered.

Measurement Model Considerations

As noted previously, the psychometrics of scores from CBM assessments are often 
rooted in CTT. Common CTT terms for reliability include internal consistency, test-
retest, parallel-form, and split-half reliability. At its core, CTT relates an observed 
score ( X) to a true score ( T) and random error ( e). The ratio of the true-score vari-
ance to observed-score variance is reliability, which separates out the random-error 
variance from the variance in scores attributable to the ability of the individuals. In 
addition, there is an inherent assumption of CTT that the standard error of measure-
ment for the test does not vary across a population. Also a limitation, the total test 
score cannot be directly compared to the difficulty (i.e., p-value) of the items in the 
assessment. A p-value ranges from 0 to 100 %; where low values reflect difficult 
items and high values indicate easy items. The p-value of an individual item and the 
total test scores are on different metrics, thus, it is difficult to make an explicit link 
between the two. For example, items may range in difficulty from 0 to 100 %, while 
the individual total scores may appear in a raw metric (e.g., 0–26 for a letter naming 
task), an age-standardized metric (e.g., mean of 100 and standard deviation of 15), 
or a developmental-standardized metric to capture growth over time (e.g., mean of 
500, standard deviation of 100). The relation between an individual’s standard score 
of 100 on a letter naming task and a particular letter’s difficulty (e.g., Z; p-value 
for the sample = 40 %) can be quite challenging to associate given this difference in 
item and person metrics.
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An alternative measurement framework, IRT overcomes the limitations of CTT. 
Its estimation framework is such that it places the item difficulty and the person’s 
ability on the same scale (i.e., a z-score) via a function known as the item charac-
teristic curve (ICC). The assumption of equal measurement error for all individuals 
in CTT does not exist in IRT, thus, the reliability of scores is allowed to vary across 
students (Embretson & Reise, 2000). Two key parameters are embedded within the 
ICC. First, the item difficulty represents the point on the curve where the probability 
of correctly answering the question is .50, and is known as the b parameter. Second, 
the discrimination represents the steepness of the slope of the ICC, and is known as 
the a parameter. Item difficulties typically range from approximately−3 to 3 and can 
be interpreted similarly to z-scores. Negative values indicate that items are easier 
while positive values denote harder items. The metric of item discriminations in 
IRT is −∞ – + ∞, with optimal values ranging from .8 to 2.5 (de Ayala, 2009); this 
parameter is related to the notion of the item-to-total correlation whereby large val-
ues for item discrimination or the item-to-total correlation suggest a strong relation 
between the item and the measured construct.

Like the b value, the ability of the individual, known as a θ score, ranges from 
approximately −3 to 3. With the item difficulties and individual abilities on the 
same scale, a link can be made between the two. An examinee with an average abil-
ity score (i.e., θ = 0) who is presented with an item of average difficulty (i.e., b = 0) 
has a 50 % chance of correctly answering that item. When controlling for the diffi-
culty of the item at b = 0, individuals with an ability greater than 0 have greater than 
a 50 % chance of answering the question correctly because their ability exceeds the 
difficulty of the item. Similarly, individuals with an ability less than zero have less 
than a 50 % chance of answering the item correctly because their ability is lower 
than the difficulty of the item.

Although item statistics in IRT framework are typically comprised of the item 
difficulty, discrimination, and a pseudo-guessing parameter, other models have 
been developed that capture additional sources of variance that may influence an 
individual’s likelihood of correctly answering an item. Testlet effects (Wainer, Bra-
dlow, & Wang, 2007), which describe sets of items that are administered as a bundle 
(e.g., such as in reading comprehension), are known to influence the probability of a 
correct response. Item response models have been developed that account for testlet 
effects; and, as it pertains to the present chapter, it is possible to view item response 
latency, or the amount of time it takes a student to respond to an item, as another 
parameter that could influence the probability of a correct response.

With the increasing access and utilization of technology in the classrooms and 
schools (Blackwell, Lauricella, Wartella, Robb, & Schomburg, 2013; Miranda & 
Russell, 2011; Pressey, 2013), computerized testing has become a common way 
to administer academic achievement assessments. Along with recording item-level 
accuracy data, computers possess the valuable capability to accurately record item-
level response times. By recording both time and accuracy, one is able to overcome 
the dichotomous distinction made by Cattell (1948) who noted that tests function 
to measure either power (i.e., accuracy given unlimited time) or performance (i.e., 
ability given limited time).
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Response Time Models 

Though several different theoretical models have been reported in the literature 
for modeling response time (Schnipke & Scams, 2002), we focus on three that are 
relevant to the current work. van der Linden and Krimpen-Stoop (2003) proposed 
that response time is modeled directly into a traditional IRT model, as an interaction 
between the parameters of response time and accuracy. Specifically, the authors 
posited that more difficult items are related to longer response times. Prior to the 
work by van der Linden and Krimpen-Stoop (2003), Scheiblechner (1985) pro-
posed a different method, which stated that the distribution of response time is inde-
pendent of the item accuracy. This theory is limited because it ignores the ability 
of the individual. Subsequently, the joint relation between speed and accuracy is 
unknown. A third method, proposed by van der Linden (2007) is called the CIRT 
model. This model postulates that item responses vary due to two hierarchical lev-
els, a person/item level and a population/domain level (Fig. 7.1).

At level 1 (the individual level) there are two estimated vectors, one for the 
individual’s item responses (i.e., Uij ) and one for the individual’s response time 
(i.e., Tij ). The item response vector is defined as:

( )~ ; , , ,ij ij j i iU f u a bθ

where uijis the item response on item i for person j, θj is the latent ability of person,  
ai is the item discrimination, and bi is the item difficulty. This function is solved by 
a traditional two-parameter probability function. The response time vector includes 
new parameters into the item response theory framework with:

( )~ ; , , .ij ij j i iT f t τ α β

Fig. 7.1  A structural equation model diagram for joint response and response time modeling. 
Ability ( θ) and speed ( ζ ) are indicated by responses and response times, respectively. The covari-
ance between ability and speed ( σθζ) is included to indicate that speed may relate to ability scores
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where tij is the response time on item i for person j, τj is the average speed of the in-
dividual, αi is the discrimination parameter (i.e., variation in response times across 
items), and βi is time intensity for the item. Among the response time, speed, and 
time intensity parameters, only response time is a measured variable. Time intensity 
is the amount of labor required by the item, or as the effect of an item on the mean 
log time. Time intensity and the average speed of the individual are considered to be 
latent constructs. The relation among response time, speed, and time intensity can 
be expressed as a ratio, where response time is the ratio of time intensity and aver-
age speed (van der Linden, 2011). Further, the association between time intensity 
and average speed is analogous to the interpretations previously described concern-
ing the relation between item difficulty and individual ability. Just as an individual 
has a higher probability of a correct item response when their ability exceeds the 
difficulty of the item, so it is also the case that it is more beneficial for the individ-
ual’s speed to exceed the intensity of the item (i.e., τj > βi) than the reverse (τj < βi).

The population portion of Fig. 7.1 (level 2) represents the estimation of the per-
son and item components, as well as the covariances among them, as a function of 
the level-1 components. The CIRT model includes elements of the theories posited 
by both van der Linden and van Krimpen-Stoop (2003) and Scheiblechner (1985), 
whereby, the CIRT approach incorporates the theoretical notion of independence at 
the individual level of estimation but then includes the joint relation between speed 
and accuracy at the population level.

Because CIRT is based in IRT, CIRT difficulty and discrimination parameters 
in the accuracy portion of the model can be compared to those estimated in tradi-
tional IRT models. Recent research has suggested that accounting for response time 
yields more precise estimates of ability due to the joint estimation of accuracy and 
response latency at level 2 of the CIRT model (Ferrando & Lorenzo-Seva, 2007; 
van der Linden, 2007). Using the CIRT model has the potential for greater under-
standing of cognitive processes relative to the task. For example, it may be possible 
to evaluate the extent to which ability is related to speed, whether difficult items are 
the most time intensive, and whether other aspects of the test might moderate the 
relation between an individual’s ability and their speed.

Why CIRT?

A chief concern in educational assessment is maximizing information gained while 
minimizing time spent in the process of testing. Assessment efficiency is aided 
when all information gathered can be utilized to inform predictive estimations. 
Inclusion of speed as a variable beyond accuracy is one way to leverage extant 
performance information. Although traditional fluency assessments, such as CBMs, 
capture speed by limiting the response time window, their reliance on multiple 
forms and invariable levels of standard error may influence the precision of estima-
tion. A CIRT model may allow for the relation between response accuracy and time 
to be considered in a different way than other assessment measures. A computerized 
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maze vocabulary task was utilized for this exercise as an alternative to traditional 
fluency tasks that measure accuracy within a specified time limit and due to the 
meaningful connection between language skills and comprehension (Scarborough, 
2001).

Applied Example

Participants

A total of 212 third-grade students (110 boys, 100 girls, 2 not recorded) in the 
southeastern USA participated in the present study. The children came from pre-
dominantly low socioeconomic backgrounds, as 70 % of the students were eligible 
for free or reduced price lunch. The sample was primarily White (50 %), followed 
by Hispanic (28 %), Black (12 %), Asian (4 %), Multiracial (4 %) and other (2 %). 
Four percent of students were identified as English language learners, and 13 % had 
an individualized education program.

Measure

Vocabulary Knowledge Task (VKT; Foorman, Petscher, & Bishop, 2012) In 
this task, students completed 30 sentences1 by selecting one of three morphologi-
cally related words that best completed the sentence. Items were manipulated to 
test knowledge of prefixes and derivational suffixes (e.g., The student [attained*, 
retained, detained] a high grade in the class through hard work). Because this is a 
sentence-level task, there are concomitant word recognition, semantic, and syn-
tactic demands in addition to the demands of the phonological and orthographic 
shifts. Target words in the task were selected on the basis of their printed word 
frequency (Zeno, Ivens, Millard, & Duvvuri, 1995) and sentences were assigned to 
grade level using the Flesch–Kincaid grade-level readability formula, along with  
researchers’ judgment about what topics would be familiar to students at different 
grades. Item administration was such that students were provided a fixed-order set 
of items and, as each item was presented, students read the sentence, chose the 
option they believed was correct, and submitted the response via a “submit” button 
on the screen. Response time was calculated (in seconds) as the amount of time that 
lapsed from the computer delivery of the item to the student clicking the submit 
button. Dimensionality was previously evaluated via factor analysis across grades 
3–10 (Foorman et al., 2012) and demonstrated that a one-factor model provided the 
most parsimonious structure to the data. The present study used data from one test 
form within third grade, allowing for exploration of both the dimensionality of item 

1 The 30 sentences administered to students in this example were from an alternate form than that 
given to a different set of 212 students in the sample from the Petscher et al. (2014) study.
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responses within the selected form as well as an item response theory analogue to 
classical test reliability known as marginal reliability (Sireci, Thissen, & Wainer, 
1991).

A benefit of using computerized list or sentence-based item delivery formats 
is that it may be possible to expand the types of tasks that can include speed as 
a performance factor. For example, vocabulary knowledge has been measured in 
multiple formats, including computerized sentence-level maze tasks (Foorman, 
Petscher, & Bishop, 2012), yet outside of the Test of English as a Foreign Lan-
guage (Educational Testing Service, 2007), relatively few measures of vocabu-
lary include both accuracy and speed. A student’s early vocabulary knowledge is 
significant predictor of their later reading comprehension performance (Cunning-
ham & Stanovich, 1997; Kamil, 2004; National Institute of Child Health and Hu-
man Development, 2000). Understanding the relevance of a student’s speed of 
word knowledge or sentence-level vocabulary comprehension has the potential to 
increase understanding in this domain.

Data Analysis

Prior to the estimation of the item parameters, the extent to which the items’ ac-
curacy responses from the form yielded a unidimensional construct was evaluated. 
Due to the dichotomous scoring of the item responses, a combination of parametric 
and nonparametric tests of exploratory and confirmatory factor analyses were con-
ducted in order to comprehensively evaluate the underlying structure of responses 
(Tate, 2003). Parametric exploratory and confirmatory factor analyses were run 
using Mplus (Muthen & Muthen, 1998–2012), where the ratio of eigenvalues, 
comparative fit index (CFI; Bentler, 1990), Tucker-Lewis index (TLI; Bentler and 
Bonnet, 1980), and the root mean square error of approximation (RMSEA, Browne 
& Cudeck, 1992) were used to evaluate model fit in the exploratory analysis. All 
but the ratio of eigenvalues were also used to evaluate the parametric confirmatory 
factor analysis model. Comparative fit index (CFI) and TLI values greater than or 
equal to .95 are considered to be minimally sufficient criteria for acceptable model 
fit, and RMSEA estimates < 005 are desirable. Nonparametric exploratory analysis 
was run using DIMTEST (Stout, 1987), where a nonsignificant T value indicates 
that the factor structure is essentially unidimensional. DETECT software (Zhang & 
Stout, 1999) estimated the nonparametric confirmatory model where a DETECT 
index less than .20 provides evidence of an essentially unidimensional model (Jang 
& Roussos, 2007).

Following the tests of dimensionality, CTT statistics, including item p values, 
item-to-total correlations, and internal consistency of item responses via Cron-
bach’s alpha, were estimated using SAS 9.3 software (SAS Institute Inc., 2011). IRT 
analyses using Mplus (Muthen & Muthen, 1998–2012) with maximum likelihood 
estimation included the fitting of Rasch and two-parameter logistic models in 
order to estimate item parameters and person-ability scores. The conditional item 
response theory analyses were fit using the CIRT package (Fox et al., 2007) in R 
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(R Core Team, 2014). A total of four CIRT models were estimated to identify which 
best captured the data: (1) a one-parameter response, one-parameter response time 
model (Model 1), (2) a two-parameter response, one parameter response time mod-
el (Model 2), (3) a one-parameter response, two-parameter response time model 
(Model 3), or (4) a two-parameter response, two-parameter response time model 
(Model 4). CIRT models were evaluated by using the deviance information criterion 
(DIC), which estimates the data-model deviation penalized by the model param-
eters and is computed by the sum of the posterior mean of the deviation (i.e., D ) 
and the effective number of model parameters (i.e., pD ). Similar to other informa-
tion criteria, such as the Bayesian information criterion (BIC), a DIC is evaluated 
based on its relative comparison to other DICs. As such, while a DIC may be large 
in magnitude, it is intended to be compared to others, and the model with the small-
est DIC should be retained.

Dimensionality Results

Results from the four methods of testing dimensionality all converged upon the 
same conclusion, namely, that the item responses were most parsimoniously rep-
resented by a unidimensional construct. The analysis of the correlation matrix 
for the parametric exploratory analysis yielded eigenvalues of 5.52, 1.62, and 
1.46 for the first three estimated coefficients. When comparing the ratios amongst 
them, the ratio of the first to second eigenvalue was 3.39, which was larger than 
the ratio of the second and third eigenvalues (i.e., 1.12), suggesting that the struc-
ture was essentially unidimensional (Divgi, 1980; Lord, 1980). Moreover, the fit 
for a one-factor solution was excellent, with CFI =  .96, TLI = .95, RMSEA = .029 
(95 % CI =  .013,   .040). The parametric confirmatory analysis resulted in identical 
fit indices as the exploratory model. Nonparametric analyses also provided suf-
ficient evidence for a unidimensional structure. A T statistic of −.66 was estimated 
from the DIMTEST model ( p = .74), leading to a fail-to-reject decision of the null 
hypothesis that the item responses were unidimensional in the exploratory model. 
Similarly, a DETECT index of −.0035 was estimated for the confirmatory model, 
which was less than the desired .20 for a unidimensional model (Jang & Roussos, 
2007).

CTT Results

Given the evidence for the unidimensionality of the item responses, descriptive 
statistics for the accuracy of item responses and response times were calculated and 
reported in Table 7.1; there were no missing data for this sample. The item p-values 
ranged from .39 to .85, indicating a range of difficult to easy items and the average 
proportion correct was .64. Internal consistency, as measured by Cronbach’s alpha, 
was initially estimated as α = .84. Item-to-total correlations were also estimated and 
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broadly suggested that item responses were moderately associated with overall total 
test score performance. Item 27 was dropped from subsequent analyses because it 
was negatively associated the scale. The response-time data indicated that students 
spent an average of 15.09 s per item (SD = 9.46), and ranged from 12.20 s (item 
17) to 20.05 s (item 7). Several observations concerning the response-time data 
are worth noting. The mean and standard deviations were correlated at r(1) = .79, 
p < .001, which suggested that items on which the students spent the longest also 
demonstrated the greatest variability in time spent  across the sample; however, 
evaluating the data from Table 7.1 demonstrated that this correlation may vary con-
ditionally on the mean response time. For items where the average response time 
was long (e.g., items 3 and 7), students tended to vary in their average responses to 
those items (SD = 10.75 and 11.92). Conversely, items with short average response 
times, such as items 19 and 20, presented with standard deviations that illustrate 
less variability in the average response (SD = 8.96 and 6.55, respectively). Petscher, 

Table 7.1  Classical and item response properties
Item p-value Item-total r Mean RT SD RT 1PL 2PL

a b a b
1 .75 .24 17.93 12.26 1 − 1.23 0.43 − 2.61
2 .63 .45 15.62 8.72 1 − 0.61 0.99 − 0.66
3 .43 .41 19.19 10.75 1   0.29 0.88   0.33
4 .83 .44 15.68 8.93 1 − 1.82 1.33 − 1.6
5 .64 .48 17.78 10.95 1 − 0.68 1.17 − 0.66
6 .78 .52 14.11 8.27 1 − 1.43 1.71 − 1.11
7 .73 .5 20.05 11.92 1 − 1.12 1.55 − 0.93
8 .53 .47 15.46 11.7 1 − 0.17 1.09 − 0.18
9 .65 .41 13.89 8.71 1 − 0.7 0.93 − 0.79
10 .85 .5 13.1 8.41 1 − 1.97 2.2 − 1.35
11 .45 .29 17.52 11.85 1   0.23 0.55   0.39
12 .67 .26 13.75 7.63 1 − 0.8 0.45 − 1.61
13 .39 .39 13.31 7.57 1   0.5 0.85   0.58
14 .8 .47 13.36 6.76 1 − 1.55 1.41 − 1.32
15 .42 .41 14.93 9.72 1   0.38 0.88   0.43
16 .7 .45 16.76 10.84 1 − 0.99 1.17 − 0.96
17 .69 .58 12.2 6.94 1 − 0.94 1.83 − 0.73
18 .58 .48 14.75 8.98 1 − 0.36 1.16 − 0.36
19 .81 .36 13.79 8.96 1 − 1.61 0.91 − 1.83
20 .6 .6 13.23 6.55 1 − 0.48 1.76 − 0.4
21 .73 .55 12.76 7.74 1 − 1.12 1.78 − 0.87
22 .65 .38 15.75 11.53 1 − 0.7 0.86 − 0.83
23 .65 .32 16.08 10.5 1 − 0.7 0.62 − 1.07
24 .56 .55 14.54 10.67 1 − 0.28 1.48 − 0.25
25 .6 .61 12.6 9.68 1 − 0.48 1.82 − 0.39
26 .52 .48 14.08 9.36 1 − 0.12 1.12 − 0.13
27 .23 .21 15.72 12.4
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Mitchell, and Foorman (2014) systematically show that this variation is signifi-
cantly more varied for slower average response times versus faster response times.

Item Response Theory Results

For the IRT analyses, Rasch (1PL) and two-parameter logistic (2PL) models were 
estimated. A comparison of log likelihoods between the two models favored the 2PL 
model (Δχ2  = 91, Δdf = 26, p  < .001). Item discrimination and difficulty parameters 
for both models are reported in Table 7.1. Item difficulties for the 2PL model ranged 
from −2.61 to .58 and correlated with the classical test p-values at r(1) = −.88, p 
<  .001. Despite the difference in metrics between the classical and item response 
approaches, the negative direction of the correlation indicates that items identified 
as easy in the classical framework (i.e., high p-value) were also easy in the item re-
sponse analysis (i.e., negative b value). The item discriminations in the 2PL model 
ranged from .43 to 2.22. Similar to the relation between the classical test and item 
response difficulties, the 2PL discrimination parameter was strongly correlated with 
the item-to-total statistic at r(1) = .91, p < .001.

Conditional Item Response Theory Results

Response Time Model Fits Each of the four CIRT models were estimated and, as 
part of the model evaluation, it was of interest to evaluate the fit of the models as 
well as the extent to which resulting theta scores differentially correlated with speed. 
Scatterplots for the relation between ability and speed are presented in Fig. 7.2. It 
can be seen that the scatter did not meaningfully differ across Model 1 [r(1) = .29,  
p = .003], Model 2 [r(1) = .31, p = .003], Model 3 [r(1) = .29, p = .003], or Model 4 
[r(1) = .32, p = .003], and that the relation was moderate in nature such that individu-
als with higher ability tended to respond to items more quickly. Given the compa-
rability of ability and speed, the model fit was evaluated (Table 7.2). Models 2 and 
4 provided the most parsimonious fit as evidenced by the DIC (Model 2 = 12,139, 
Model 4 = 12,149), whereas Models 1 and 3 were comparatively worse (12,213 and 
12,225, respectively). ∆DIC values > 5 suggests practically important model fit dis-
crepancies, with the lower value model selected; however, ∆DIC = 10 suggests both 
models should be considered. The ∆DIC for Model 2 and 4 compared to Models 
1 and 3 was > 90 but the ∆DIC between Model 2 and 4 was 10, suggesting that 
although both Models 2 and 4 were on the threshold of practical difference, they 
provided superior fit to Models 1 and 3. The primary difference between Models 2 
and 4 is the constrained value of the item speed discrimination values to = 1 in the 
former, and freely estimated values in the latter. Table 7.3 reports the item response 
parameters (i.e., difficulty and discrimination) and response-time parameters (i.e., 
intensity and speed discrimination) for Models 2 and 4.
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The results for the item response portion of the models mapped on well to those 
estimated by the 2PL IRT models. Correlations between the 2PL and CIRT dis-
criminations were near perfect for both Models 2 and 4 [r(1) = .98, p <  .001] and, 
additionally, the difficulty values were highly related [r(1) = .99, p < .001]. The cor-
relation between the ability score (i.e., θ ) and response speed (i.e., ω) was r(1) = .31 
and .32 (with p < .001) for both Models 2 and 4 respectively, which suggested that a 
moderate association existed between accuracy and speed whereby individuals with 
higher ability responded to items more quickly than lower ability individuals. In-

Table 7.2  CIRT model fit statistics for joint response and response time models

Model D pD DIC LL
1 11,748.8 464.0 12,212.8 − 5875.2
2 11,665.5 473.6 12,139.1 − 5832.2
3 11,737.7 487.3 12,225.0 − 5869.5
4 11,652.8 495.7 12,148.5 − 5826.5

Fig. 7.2  Scatterplots of estimated person ability and fluency scores for CIRT Models 1–4
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terestingly, the estimated correlations among the item parameters indicated that no 
relation existed between the item difficulty and intensity [i.e., r(1) = −.02, p  = .91]. 
A review of the estimated intensity parameters (Table 7.3) shows that values do not 
considerably vary, thus, more difficult items did not require more time. The positive 
correlation between ability and speed indicates that students with higher abilities 
spent less time with more difficult questions. We note that it is important to identify 
that the prior distribution used for response time modeling fits the data being mod-
eled (log-normally distributed). This is evaluated with P-P plots where estimated 
sample probabilities are plotted against the assumed prior distribution shown as a 
line in the plot; the extent to which the plotted points deviate from the prior distribu-
tion would provide evidence that the sample distribution was biased (i.e., that the 
sample is not log-normally distributed; Casella & Berger, 2002). Resulting plots 
(Fig. 7.3) demonstrated that little bias existed when a log-normal distribution was 
assumed for item response times.

Table 7.3  CIRT response and response time item parameters for models 2 and 4
Item Model 2 Model 4

a b α β a b α β
1 0.46 − 2.49 1.00 2.74 0.46 − 2.52 0.78 2.74
2 1.11 − 0.60 1.00 2.62 1.10 − 0.61 1.05 2.62
3 1.03   0.27 1.00 2.81 1.03   0.28 1.18 2.81
4 1.36 − 1.51 1.00 2.63 1.35 − 1.52 1.07 2.63
5 1.31 − 0.61 1.00 2.73 1.32 − 0.61 1.10 2.73
6 1.68 − 1.07 1.00 2.51 1.70 − 1.07 1.07 2.51
7 1.73 − 0.85 1.00 2.85 1.72 − 0.85 0.94 2.85
8 1.25 − 0.17 1.00 2.56 1.26 − 0.18 1.19 2.56
9 1.06 − 0.72 1.00 2.49 1.06 − 0.72 0.95 2.49
10 2.01 − 1.32 1.00 2.42 2.00 − 1.32 1.10 2.42
11 0.67   0.32 1.00 2.71 0.68   0.31 1.10 2.71
12 0.51 − 1.50 1.00 2.50 0.50 − 1.51 0.85 2.50
13 0.95   0.52 1.00 2.46 0.95   0.51 0.88 2.46
14 1.51 − 1.22 1.00 2.48 1.50 − 1.23 1.05 2.48
15 0.99    0.39 1.00 2.55 0.98   0.39 0.98 2.55
16 1.30 − 0.88 1.00 2.68 1.31 − 0.88 1.14 2.68
17 2.00 − 0.67 1.00 2.37 2.01 − 0.67 1.06 2.37
18 1.28 − 0.34 1.00 2.56 1.28 − 0.34 0.99 2.56
19 0.95 − 1.74 1.00 2.46 0.95 − 1.75 1.20 2.46
20 1.91 − 0.36 1.00 2.48 1.90 − 0.36 0.91 2.47
21 1.90 − 0.81 1.00 2.41 1.89 − 0.81 0.95 2.41
22 0.97 − 0.77 1.00 2.60 0.97 − 0.77 1.00 2.60
23 0.71 − 0.98 1.00 2.62 0.71 − 0.98 0.90 2.62
24 1.65 − 0.25 1.00 2.49 1.64 − 0.25 1.01 2.49
25 1.90 − 0.36 1.00 2.34 1.88 − 0.36 0.98 2.34
26 1.27 − 0.14 1.00 2.48 1.28 − 0.13 0.83 2.48
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Comparison of Model-Based Reliability

As previously noted, an expected benefit of the CIRT model is that the standard 
error of the estimated ability score should be lower when compared to traditional 
IRT as well as CTT. It is possible to estimate the marginal reliability of scores, with 
the resulting value allowing for a meaningful comparison to an estimate of inter-
nal consistency from CTT (Andrich, 1988; Embretson & Reise, 2000; Orlando &  
Thissen, 2000). Marginal reliability is computed as a function of the variance of the 
estimated θ scores and the average of the squared standard errors of θ. In the present 
study, the marginal reliability was estimated at .83 for CIRT Models 2 and 4 and .78 
for the 2PL model. Compared to the observed reliability in the classical test model 
(α = .81), it is only representative of the average relation between ability and error. 
A more useful heuristic for evaluating the relation lies in plotting the standard errors 
for the CIRT and IRT models, as it is possible to view where each model is differ-
entially reliable across the range of abilities as well as how they differ if one were 
to assume the fixed standard error from CTT. Figure 7.4 plots the standard errors of 
ability from the 2PL item response model (triangles), CIRT Model 2 (crosses), and 
CIRT Model 4 (circles). Additionally, three horizontal reference lines are included, 
which correspond to the observed classical test reliability in the current sample (i.e., 
α = .81; solid line), α = .85 (dashed line), and α = .90 (dotted line). The standard error 
associated with each alpha index was converted to an IRT scale in order to allow 
for a direct comparison between the two theoretical approaches (Dunn, Baguley, & 
Brunsden, 2014; McDonald, 1999).

Several characteristics of this graph are worth noting; first, both the CTT esti-
mate of internal consistency and the CIRT marginal reliability coefficients assume 
that the error is constant for all students, as evidenced by the horizontal reference 

Fig. 7.3  P-P plots of response time model fits for 26 items in CIRT Model 4 estimation. Plots that 
lie along the identity line indicate well-fitting response times for the response time model
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lines. Based on the plots from item response and conditional item response models, 
this assumption did not hold. The 2PL item response standard errors varied con-
siderably and were the lowest for individuals whose estimated ability was lower 
than average (θ < .0). It can be seen that for students whose 2PL IRT ability ranged 
from −2.00 to approximately .50, their ability was under the dashed line indicating 
their scores were minimally reliable at α = .85 and, up to θ  of about .80, reliability 
was equal to the CTT estimate of α = .81. Conversely, when θ < .80, the ability score 
was less precise, and thus less reliable, than that estimated by CTT. CIRT model 
reliability was more precise than the 2PL IRT model up to θ levels of about .80. 
Even within this specified range it can be seen that the standard errors estimated by 
the CIRT models were below the dotted line, which corresponded to reliability of 
α = .90. Toward the upper range of ability scores the advantage of the CIRT models 
was disappearing.

As the relative difference in standard errors between the IRT and CIRT models 
varied, conditional on θ, it follows that an important contextual consideration is 
quantifying the conditional impact of the CIRT model on the reliability of resulting 
θ scores for the sample. This was evaluated by computing an estimate of efficiency 
reflecting the observed percentage change in the standard error of θ from the IRT 
model when response latency was accounted for by the CIRT models. Across the 

Fig. 7.4  Plots of standard error of ability for 2PL IRT Model, CIRT Model 2, and CIRT Model 4. 
Scale reliability from classical models are included as standard error of measurement for α = .81 
( solid line), α = .85 ( dashed line), and α = .90 ( dotted line)
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full range of ability scores, the CIRT model (e.g., Model 4), resulted in an average 
4.6 % reduction (SD = 3.6 %) in the standard error of individual scores. An analysis 
of variance was conducted to determine the extent to which efficiency for the CIRT 
model was greater for low ability (θ < −.50; N = 64), average ability (−.50 < θ  < .50; 
N = 90), or high ability (θ  > .50; N = 58) individuals in the sample. Results indicated 
a strong effect for ability groups in efficiency [F(2209) = 100.9, p < .001], with stu-
dents who were categorized as low ability gaining little from the CIRT model (M 
= .93 %, SD = 1.60 %) compared to either the average (M = 5.61 %, SD = 2.32 %) 
or high ability (M = 7.23 %, SD = 3.39 %) students. All pairwise comparisons were 
statistically significant ( p < .001), with Hedge’s g effect sizes demonstrating that 
efficiency of the model was stronger for average ability compared to low ability 
students ( g = 2.27), as well as high ability compared to either low ( g = 2.40), or 
average ( g = .58) ability differences.

Such stark differences in the model efficiency in favor of the high-ability stu-
dents, coupled with higher variance in efficiency for those individuals, warrant-
ed further exploration. A scatter plot was generated (Fig. 7.5) that plotted ability 
against the CIRT model efficiency for the full sample. Within this plot the three 
ability groups are denoted by different markers and they are further distinguished 
by whether the student was below the mean in average response time (i.e., faster) 
or above the mean (i.e., slower); fast students are represented by the open shapes 
and slower students by the filled shapes. It can be observed that low- and average-
ability students have an approximately equal number of individuals who were fast 
or slow, whereas the high-ability students maintained a stronger representation of 
fast students. The nonlinear shape of the scatter is largely marked by the variation of 
these high-ability, fast-response students, in that some of these individuals received 
a precision benefit to their ability score, while others did not.

To more fully explore this phenomenon, elements of Figs. 7.4 and 7.5 were 
combined to evaluate the relations among ability, the standard error of ability, and 
the percent efficiency for the CIRT model (Model 4; Fig. 7.6). This plot highlights 
what has been previously observed, namely, that CIRT model efficiency is strongest 
for the higher ability students, as well as that the standard errors for the full sample 
are lowest for lower ability individuals in the sample. What this further illuminated 
was that there appeared to be diminishing returns in response speed as it pertained 
to ability and its standard error. Note that as ability and standard error increased, 
so did the impact of the efficiency of the CIRT model, yet once θ exceeds 1, model 
efficiency showed a decline in returns.

Conclusions

Determining comprehensive and efficient ways to measure student performance is 
essential for individuals working in school settings as well as those conducting ap-
plied research. The current chapter considered the effects of incorporating response 
time into an item response measurement framework. First, in order to consider the 
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general impact on this process in terms of reliability, the estimated item parameters 
from CTT, IRT, and CIRT analyses were compared. Relations between response 
accuracy and speed were specifically studied by evaluating the extent to which the 
three measurement approaches provided different information concerning the reli-
ability or precision of student ability scores. Through this comparison, the added 
value of including response time above the information provided by accuracy alone 
was considered. Item parameter values were very high across the three approaches. 
CTT p-values were strongly associated with IRT and CIRT item difficulties, item 
discriminations, and item-to-total correlations. Further, item response analysis of 
the data found variability in ability scores connected to where on in the distribution 
the ability score was estimated. This suggests a benefit to IRT estimations compared 
to static CTT estimations.

The CIRT model improved on the reliability of student scores by yielding lower 
overall standard errors associated with the individual ability scores. But the extent 
to which the reliability improved was contingent on the specific ability level of the 
individual. This finding is notable because speed may be a less significant factor in 

Fig. 7.5  Plot of estimated ability score and CIRT model efficiency gain, with scores grouped 
by score and response time. Low, medium, and high scores, and fast and slow responses provide 
grouping characteristics
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an instance when one’s ability on the administered task is high and the precision of 
the ability score is low. Regardless of this contingency, these results indicated that 
response time is a valuable consideration and can be incorporated into a measure-
ment model. Recording response times is an easily built-in component of comput-
erized testing and, thus, researchers do not need to expand testing time in order to 
capture data that could be used for modeling purposes. Rather, the response time 
simply needs to be recorded by the software program and recovered in a data file 
along with the accuracy of the student response. Further, it is relevant to note that 
the CIRT analysis is no more difficult to conduct than is a traditional IRT analysis, 
and may, in fact be easier due to the specificity of the software available to conduct 
the analysis (R package version 3.0.0; R Core Team, 2014).

Use of a vocabulary knowledge task for this analysis extends the work that has 
previously been done in terms of evaluating CIRT models. This application may be 
used to consider both accuracy and speed in estimating performance in a number 
of areas and has meaningful connections to the work of several groups. Educa-
tors in practical settings are continuously looking for efficient and reliable testing 
methods, while researchers are invested in improving the precision of assessment 
scores. CIRT models may lend themselves to using response time to meet these 

Fig. 7.6  3D scatterplot of standard error of ability, ability, and percent efficiency gain in CIRT 
modeling. Increasing score values fade to black, with higher efficiency gains indicated by more 
elevated points
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goals. By understanding not only what students know, but also how facile they are 
with this knowledge, it may be possible to gather greater understanding that can 
connect to performance outcomes.

Considerations for Future Work

Students in this illustration were not aware that item-level response time was be-
ing collected and, thus, it is possible that differences in precision could be obtained 
when students are aware that their rate of response is being considered as a perfor-
mance factor. If accuracy and response-time data are available at the item level, 
future work might test the dimensionality of both components to see if evidence is 
presented for a unidimensional or multidimensional representation of the data. With 
the implementation of computers in task assessment, the introduction of adaptive 
methods in testing is also productive. The added benefit of improved reliability 
when response time data is used is that researchers may use the CIRT model to 
create an adaptive task that implements both response and response time data, and 
balance reliability with number of items presented (Prindle, 2012). The balance of 
items necessary is task dependent on the relation between individual accuracy and 
speed.
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Chapter 8
An Introduction to the Statistical Evaluation of 
Fluency Measures with Signal Detection Theory

Keith Smolkowski, Kelli D. Cummings and Lisa Strycker

Fluency represents the learned ability to respond quickly, effortlessly, and accu-
rately to a given stimuli. The basic principle applies to skills across a variety of 
domains, from sports to science, music to mathematics, and reading to public speak-
ing. Athletes often refer to fluency in terms such as muscle memory or motor learn-
ing, forms of procedural memory. Educators may refer to fluency as automaticity 
or overlearning. Regardless of the specific terms, fluency captures the ability to 
perform a task correctly and quickly without conscious, focused thought about the 
details. Hence, fluency comprises two key features of a skill: speed and accuracy.

Fluency can be described on a continuum. Many small children begin to learn 
counting around 2 or 3 years of age, and these early learners count slowly and often 
only to three or maybe five or ten. They also make errors, possibly skipping a num-
ber or getting two out of order. As children age, they learn to count more quickly 
and more precisely, with most able to count into the 20s by age 5 and to 50 by the 
end of kindergarten (Clarke, Baker, Smolkowski, & Chard, 2008). Older children 
and adults can count almost indefinitely and without much thought; it becomes 
automatic. The same basic continuum of fluency applies to learning a variety of 
activities such as singing a song, playing chess, reading a book, dancing, tying a 
shoelace, or driving a car. Whether someone is sufficiently fluent at a skill depends 
on context. Reading at 40 words/min would be outstanding for a kindergarten stu-
dent but far short of adequate for a third grader.

Fluency in many skills also requires fluency with subskills. To become fluent 
at reproducing a piece of music, a cellist must become skilled at reading music, 
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intonation, complex rhythms, tempo changes, vibrato, and other techniques (e.g., 
pizzicato and bowing). Instruction does not begin with whole pieces of music, but 
specific subskills. A student might first learn to pull her bow across the strings, and 
after learning how to reduce the screech to a pleasing tone, she might begin to learn 
finger placements, then rhythms, and so on. Similarly, dancers perform best through 
marking, where they practice only partial movements of a performance, that con-
serves energy and reduces cognitive load (Warburton, Wilson, Lynch, & Cuyken-
dall, 2013). No individual skill, mastered to perfection, can by itself approach the 
beauty achieved by masters such as Yo-Yo Ma. Automaticity or fluency at each 
skill, and each subskill, requires practice (Bengtsson et al., 2005; Cepeda, Pashler, 
Vul, Wixted, & Rohrer, 2006; Ericsson, Roring, & Nandagopal, 2007; Fields 2005; 
Logan 1988; Posner, DiGirolamo, & Fernandez-Duque, 1997). “The idea that 
practice can automate a skill has been with us since the inception of psychology” 
(Posner et al., 1997, p. 267). Indeed, fluency requires deliberate practice, which 
includes repeated, independent activities designed to focus on specific skill deficits, 
account for preexisting knowledge, and provide immediate feedback (Engelmann 
& Carnine, 1991; Ericsson, Krampe, & Tesch-Römer, 1993; Kopiez & Lee, 2006; 
Smolkowski & Gunn, 2012).

When learning to read, children must decode the sounds of specific letters, blend 
them together into a word, and produce a coherent thought from several succes-
sive words. A kindergarten student who slowly sounds out letters and then care-
fully figures out the words in a short sentence would be considered to be disfluent 
or low on the fluency continuum. Adults, many of whom long forgot about their 
struggles learning to read, simply see words and phrases, as if the brain “magically” 
understands them. This behavior represents the other end of the spectrum—fluency. 
Reading requires fluency with several skills. As English, like many other languages, 
is code based, a reader must learn that words are formed from individual sounds, 
that written letters codify those sounds, that blending those sounds together forms 
whole words, and that reading a string of words produces a coherent thought. A stu-
dent who cannot produce all his consonant sounds or associates a particular sound 
(e.g., /d/) with the wrong letter (e.g., b) will not likely become fluent at reading 
whole words unless intervening instruction is provided. Similarly, students who be-
come fluent at reading words but fail to understand the text have not likely become 
fluent with their vocabulary or comprehension skills. Such problems usually repre-
sent instructional errors—a focus on a subset of component skills (e.g., letter sounds 
and blending) while paying insufficient attention to others (e.g., word meaning and 
comprehension). The fluent application of a skill requires frequent practice on all 
relevant subskills (Ericsson et al., 2007). Fluency with decoding does not necessar-
ily imply fluency with comprehension or vice versa.

Fluency with a skill requires deliberate practice, and not simply repetition of sub-
skills that have already been grasped, but rehearsal of those subskills that have not 
yet become fully fluent. A cellist practicing for a production of Bach’s Brandenburg 
Concerto No. 3 would not spend her time on the portions of the piece that she found 
easy, but rather she would focus on the most challenging sections, such as those 
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with complicated rhythms and transitions and the coordination with the violins and 
violas. Similarly, a student who supposedly “word calls” but cannot comprehend 
(cf. Hamilton & Shinn, 2003) has likely over-practiced decoding with insufficient 
practice on comprehension skills. This might be similar to the cellist whose focus on 
intonation precludes her attention to the rhythms and tempo changes that produce 
the “feel” of a piece. Practice on subskills that students have mastered can become 
easy and rewarding, so students often need help identifying and spending the time 
on the areas that require additional rehearsal.

When students do not reach fluency, diagnosing the source of the disfluency 
becomes critical for educators, conductors, and coaches. Educators often assess 
fluency with measures that indicate the rate of accurate responding, such as a mea-
sure of oral reading fluency (ORF) that characterizes fluency with the number of 
correct words read in 1 min. As schools, by design, begin with students who are 
not yet fluent at the relevant skills, educators need to know how to best identify the 
strengths and weaknesses of their students. It is important to identify the students 
who struggle with fluency, ideally early enough that teachers can provide additional 
supports before their students fall too far behind. The answer to the following ques-
tion helps teachers discriminate students’ challenges and offer targeted supports: 
What skills can children perform with speed and accuracy and with which skills do 
they struggle? That is, if students struggle, do they have difficulty with all subskills 
or only a subset?

This approach, however, requires a judgment about the level at which poor flu-
ency becomes disfluency, which also depends on the context. With guidance on ac-
ceptable levels of fluency performance in different grade levels and different times 
of the year, teachers, school psychologists, or other educators can make informed 
instructional decisions about the provision of services for students. In many such 
cases, educators must make decisions based only on their own familiarity with 
their students and their knowledge of the instructional material; they make profes-
sional judgments. Judgments, however, are not without problems. Teachers, like all 
people, fall prey to a number of cognitive heuristics and biases (Connolly, Arkes, 
& Hammond, 2000; Kahneman, Slovic, & Tversky, 1982) that reduce the accuracy 
of instructional decisions. The halo effect (Dompnier, Pansu, & Bressoux, 2006), 
for example, refers to the case where judgments about specific skills become in-
fluenced by overall impressions (e.g., friendliness, appearance, or skill in another 
domain). Rather than relying solely on judgments, teachers can more easily and 
accurately assign students to small-group instructions or other support services 
through the use of diagnostic or classification decisions methods. This chapter 
describes the basic methods recommended for the development and evaluation of 
classification systems using a framework called signal detection theory. The meth-
ods can be applied to any screener or test (continuous or ordinal) used to gauge the 
likely accomplishment of some relevant criterion, including many measures that are 
available in education.
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Statistical Evaluation of Screeners

The methods for the statistical evaluation of screeners attempt to first character-
ize the overall accuracy of a continuous or ordinal measure to determine if it can 
adequately discriminate those who meet the criterion versus those who do not and 
then to identify the score that optimally predicts membership in one of two popula-
tions. The methods answer questions like the following: Can a particular measure 
of fluency discriminate between a population of normally achieving students and a 
population of students with identified learning disabilities, and what precise level of 
fluency best discriminates between the two populations? The two populations, how-
ever, could be represented by any classification, including artificial populations of 
students who “succeed” or “fail” on a particular criterion test. To catch students who 
struggle with mathematics concepts, for example, their teachers would benefit from 
a universal screening system that allows for early detection of difficulties, before 
the students have the opportunity to develop more serious performance problems. 
A well-developed diagnostic system will suggest the level at which a student is suf-
ficiently likely to encounter problems later so that the teacher can then choose the 
appropriate level of supports to prevent future struggles.

A screening system is one representation of a diagnostic or classification system 
that aims to classify individuals into one of two categories based on a screener. The 
Dynamic Indicators of Basic Early Literacy Skills (DIBELS) along with the infor-
mation used to identify levels of risk for individual students represents one screen-
ing system. A single DIBELS measure, by itself, is just a screener, and it becomes 
a diagnostic system when coupled with the guidance about how to classify students 
into risk categories based on their scores. Decisions about which interventions stu-
dents may require lie outside the screening system, as do data management services 
(e.g., AIMSweb or the DIBELS Data System). Data management services provide 
easy access to data entry tools and help teachers classify their students based on cut 
scores, but do not represent screening systems per se. The DIBELS Data System, 
for example, offers educators access to both the DIBELS and easyCBM screening 
systems, but teachers have the option to use either screening system independent of 
the DIBELS Data System. The underlying set of screening measures and decision 
rules represents the screening system.

Diagnostic systems are intended to help make dichotomous decisions and include 
different types of tests, such as screeners and diagnostic tests. Diagnostic tests typi-
cally classify individuals with signs or symptoms of a disability or disorder. Screen-
ers are typically given to a larger sample where such signs are not yet present. If a 
student was assigned to Tier 3 based on the results of a screener, a special educator 
might then use a diagnostic test to determine if the child might be diagnosed with a 
learning disability. Although educators and education researchers frequently refer 
to academic screeners to aid decision-making, most such tests are technically prog-
nostic tests (Kraemer, 1992). Screeners and diagnostic tests assume that the disorder 
or disability is present during the period of testing, while prognostic tests predict a 
disorder or disability in a follow-up period. As research on fluency tests generally 
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use a criterion collected in a follow-up period, well after the screener administra-
tion and additional instruction, the prognostic-test label better describes this class 
of assessments. Nonetheless, all three types of tests are intended to discriminate 
two categories of individuals and have been treated identically with respect to the 
evaluation methods (Kraemer, 1992; Pepe, 2003), so we continue the tradition in 
education and refer to fluency screeners rather than fluency prognostic tests.

The goal of diagnostic or classification systems is to demonstrate the accuracy 
of a screener or diagnostic test, and to choose a cut score or decision threshold 
among the many possible scores along the range of the diagnostic measure that 
best corresponds to some important student outcome. The methods attempt to do 
so in an unbiased and consistent manner, so all students are classified identically, 
within the limits of measurement error. To align with the variety of supports offered 
by schools, a tiered set of decision thresholds can also be useful. Each decision 
threshold can allow educators to make well-informed decisions that may lead to the 
provision of additional supports, such as increasing practice opportunities, placing 
students in smaller instructional groups, or referring them for special education.1 
The value of screening systems depends on how well they meet certain method-
ological standards and how well teachers and their schools implement the system 
(Cook & Odom, 2013).

Diagnostic systems have been applied across a variety of settings. “Diagnostic 
systems are all around us. They are used to reveal diseases in people, malfunctions 
in nuclear power plants, flaws in manufactured products, threatening activities of 
foreign enemies, collision courses of aircraft, and entries of burglars” (Swets, 1988, 
p. 1285). The methods were first developed to work on radio signal detection (Pe-
terson, Birdsall, & Fox, 1954), and this history accounts for some of the unusual 
languages, such as “signal detection” or “receiver operating characteristics” in the 
literature. The methods, however, have successfully spread to medicine (Kraemer, 
1992; Pepe, 2003; Zhou, McClish, & Obuchowski, 2002), epidemiology and pub-
lic health (Fleiss, 1981; Katz & Foxman, 1993), psychology (Swets, 1996; Swets, 
Dawes, & Monahan, 2000b), weather and forecasting (Brooks, 2004; Mason & 
Graham, 1999), and elsewhere (e.g., Burkel et al., 2002).

The work on signal detection has also benefited from Paul Meehl’s (1954) book, 
Clinical versus Statistical Prediction: A Theoretical Analysis and a Review of the 
Evidence, and his criticism of prior attempts to create cut scores for classification 
systems (Meehl & Rosen, 1955). Meehl (1954) first showed that statistical mod-
els outperformed clinical judgment when making predictions about treatments, 
which has survived the test of time unscathed (Grove, 2005; Grove & Lloyd, 2006; 
Grove et al., 2000; Meehl, 1986). Meehl’s work has since been extended to show 
that regression weights from statistical models are, in fact, unnecessary and that 

1 Screening systems may ultimately be used to discriminate between students with a specific 
disability and typically achieving students, but the identification of a specific disability requires 
more information and is a more-involved process than simply labeling all students who fall below 
a certain screener score (AERA, APA, & NCME, 1999; Engelmann & Carnine, 1991; Smolkowski 
& Cummings, 2014). We therefore refer generically to students with “difficulties” in reading, 
math, or other content rather than students with disabilities.
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correlation weights (Goldberg, 1972) and even unit weights (Dawes, 1979, 1986) 
can, in certain situations (Dana & Dawes, 2004), outperform both clinical and even 
complex statistical models. Swets et al. (2000b) showed how this work extends to 
screening systems. They demonstrated that the improvements of statistical predic-
tion are most beneficial for dichotomous-choice decisions when cut scores have 
been chosen through a set of rigorous methods. The approach to diagnostic deci-
sion-making, then, has a rich history in the behavioral sciences, and offers a number 
of valuable tools for education researchers.

In this chapter, we discuss the accuracy of screeners used in diagnostic systems 
and the theoretical foundations of diagnostic methods. We then move on to decision 
criteria—the choice of a cut score—as well as the various indices and rules. Before 
proceeding, we make a brief note about terminology. Educators and educational re-
searchers prefer to frame topics positively, in terms of success. The literature on di-
agnostic decision systems, in contrast, typically frames the methods and discussions 
around adverse events. These events include the prediction of tornados, the presence 
of cancer, fractures in critical airplane components, and mental disorders. Conse-
quently, in most papers and books written about methods for diagnostic systems, a 
higher score indicates an adverse event. We refer to student with reading difficul-
ties or failure, or risk of reading difficulty or failure, where higher scores on reading 
screeners indicate better performance and lower scores indicate difficulties. To reduce 
confusion, we have reversed the scaling direction in the examples presented in this 
chapter to match common examples in education, where higher scores are better.

Diagnostic systems

The theoretical representation of a diagnostic or classification system includes two 
populations, a diagnostic test, and four potential outcomes. The two populations are 
represented by two distributions, one for the typically achieving student population 
and one for the population of students with reading difficulties. The two population 
distributions are frequently determined by the criterion measure—a “gold standard” 
test—but in general, students can be assigned to the two populations based on any 
method that validly determines population membership. Criterion measures are also 
generally imperfect (see below), but signal detection theory nonetheless assumes 
that the goal is to discriminate between two distinct populations.

The two distributions can also be characterized by the scores from a diagnostic 
test or screener. The exemplar diagnostic system depicted in Fig. 8.1 attempts to 
discriminate between two populations, a reading difficulty population and a typi-
cally achieving population, based on a screener. The population distributions are 
characterized by scores on the screener with values that range from 0 to 30 for the 
reading difficulty population and from 10 to 40 for the typically achieving popula-
tion. A lower score on this screener indicates a greater chance that the student is a 
member of the reading difficulty population. The two populations overlap in terms 
of screener scores, and a different screener that more accurately classified students 
would lead to less overlap among the distributions—the distribution of the typically 
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achieving students in Fig. 8.1 would shift to the right. A good system would allow 
an educator to make a relatively accurate dichotomous decision about whether to 
assume that a given student is a member of the typically achieving population or the 
population of students with reading disabilities.

A sufficiently low score on the screener indicates a positive test result or a deci-
sion that the student is a member of the reading difficulty population and a negative 
test result, a sufficiently high score, implies that the student is a member of the typi-
cally achieving population. In Fig. 8.1, the vertical dashed line depicts the decision 
threshold, the cut score or cut point along the screener used to classify students into 
one of the two distributions. Scores to the left of the line are considered to be a posi-
tive test result and scores to the right indicate a negative test result.

Figure 8.1 also shows the four possible outcomes of a dichotomous screening 
decision. A negative decision—a score to the right of the dashed line—may be a 
true-negative, if the student is really in the typically achieving population, or a false-
negative, if the student is truly in the population of students with reading disabilities. 
Similarly, a positive test result occurs when scores fall the left of the dashed line 
and may represent a false-positive, if the student is truly in the typically achieving 
population or a true-positive if the student is in the reading difficulty population. 

Fig. 8.1  Overlapping populations for typically achieving students and students with reading dif-
ficulties. The vertical dashed line defines the decision threshold used to discriminate between 
population memberships, where a positive test indicates membership in the reading difficulty 
population. The decision threshold determines the fractions of students classified into four pos-
sible outcomes: the true-positive fraction (TPF) and false-positive fraction (FPF) associated with 
students in the typically achieving population and the FPF and TPF associated with the reading 
difficulty population
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A high-quality diagnostic system will maximally discriminate between the two 
populations. Hence, the methods developed to evaluate the system represented in 
Fig. 8.1 must address two concerns: the accuracy of the screener—or equivalently 
the discrimination between the two populations—and the choice of the decision 
threshold.

Accuracy of Diagnostic Systems

This section discusses the accuracy of a diagnostic system and primarily concerns the 
overall accuracy of a screener to determine if it sufficiently describes the underlying 
populations of interest or to determine how it compares with other screeners regard-
less of a chosen decision threshold. Although selecting a decision threshold may be 
the ultimate goal, in many cases a different decision threshold could be used in dif-
ferent situations. Furthermore, comparing two screening systems by using, say, the 
sensitivity of a single cut point from each leaves out considerable information that 
could become valuable in later research. When comparing overall screener accuracy, 
irrespective of an a priori decision threshold, it is important to recognize that the 
methods we outline below assume the same general population of learners. Screener 
characteristics, and the performance of a criterion measure, may differ between popu-
lations of children from the Spanish-speaking homes of recent immigrant families or 
children with hearing deficits. Nonetheless, a screener determined to be superior with 
one population may prove similarly more accurate with different populations.

A more accurate screener will better discriminate between the two underlying 
populations of interest (e.g., students with reading difficulty and those without)—it 
will result in fewer false-positives and false-negatives—than a less accurate screener. 
In terms of Fig. 8.1, a more accurate screener will result in greater separation between 
the two population distributions. To evaluate whether or not a diagnostic test is accu-
rate, we recommend three evaluative criteria (Pepe, 2003; Swets, 1988, 1996). First, 
a measure of accuracy must be independent of the probability of occurrence of the 
criterion event of interest (e.g., the proportion of students with reading difficulties). In 
the present case, this means that the estimate of the accuracy of a particular measure 
should not depend on whether 15 % of the sample or 50 % of the sample has failed to 
achieve the desired reading outcomes, provided the samples represent the same over-
all population of students. Second, the system’s accuracy should remain unaffected 
by the criterion measure. This means that estimates of accuracy should not rely on the 
diagnostic system under consideration, so a system should not be tested against itself; 
it should be evaluated against an external criterion. Finally, the accuracy of a screener 
should not depend on the specific decision threshold (i.e., cut score) used to predict 
membership in the two populations. In this section we demonstrate the methods used 
to achieve these fundamental attributes in the assessment of screener accuracy.

The receiver (or relative) operating characteristic (ROC) curve has become 
the standard for the evaluation of accuracy, and the area under the curve, A, is 
the recommended index of accuracy (Swets, 1996; Pepe, 2003). An ROC graph 
represents the proportion of times that an adverse outcome was correctly chosen 
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by the screener relative to the proportion of times that an adverse outcome was 
incorrectly chosen across the range of all possible screener scores. The first pro-
portion concerns true-positives or “hits” and the second involves false-positives or 
“misses.” The ROC curve is a plot of the true-positive fraction (TPF) on the vertical 
axis against the false-positive fraction (FPF) on the horizontal axis as the decision 
threshold changes from the lowest score on the screener to the highest, that is, as the 
vertical line in Fig. 8.1 moves from left to right. The curve begins in its lower-left 
corner with screener values that represent no true-positives and no false-positives 
(i.e., TPF = FPF = 0) and proceeds to the upper-right corner where all cases are true-
positives or false-negatives (i.e., TPF = FPF = 1).

ROC curves are convex and appear in the upper-left half of the unit-square with a 
decreasing slope. Figure 8.2 shows two hypothetical curves. A curve that represents 
a screener that carries no information (i.e., decisions at chance) would lie along the 
diagonal from the lower left to upper right (TPF ≈ FPF). For a useless screener like 
this one, the two populations shown in Fig. 8.1 would overlap perfectly. For an ac-
curate screener, the curve will start in the lower-left corner where TPF and FPF both 
equal .00; the curve will increase rap represent relatively poor diagnostic utility. 

Fig. 8.2  The relative operating characteristic (ROC) graph plots the true-positive fraction (sensi-
tivity) against the false-positive fraction (1 − specificity). Of the two curves depicted, one repre-
sents a fairly accurate screener with the areas under the curve, A ≈ .90, and the other a less accurate 
screener, with A ≈ .70. The diagonal line would represent a screener that carries no information
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Such idly while FPF values are still low and then level off after TPF nears 1.00; the 
curve will end in the upper-right corner with TPF and FPF at 1.00. Such a perfect 
screener would produce distributions in Fig. 8.1 that are separated entirely by at 
least one score on the screener. The two curves in Fig. 8.2 (i.e., A ≈ .70 and A ≈ .90) 
fall between the two extremes of perfect prediction and uselessness.

The TPF and FPF can be described in terms of conditional probabilities, which 
require the definition of some terms. Membership in the difficulty population, 
which in education is defined by a criterion test’s standard for proficiency, is labeled 
D = 1, and membership in the typically achieving population is labeled D = 0. We 
use the term “difficulty” primarily as a mnemonic for the meaning of D. A screener 
can then have a positive test result, Y = 1, which indicates the likely membership 
in the difficulty population (i.e., left of the vertical line in Fig. 8.1), or a negative 
test result, Y = 0, which indicates the likely membership in the typically achieving 
population. We define the TPF as the probability of a positive screener result—an 
indication of a likely reading difficulty—among students who fall into the reading 
difficulty population: P( Y = 1 | D = 1). The TPF is frequently called sensitivity, which 
refers to how acutely a screener can detect students with true reading difficulties. 
Some authors refer to TPF as the true-positive proportion or rate.

The FPF equals the probability of a positive screener result among students who 
achieve an acceptable standard on the criterion measure: P( Y = 1 | D = 0). The FPF 
quantifies the likelihood that the positive test was actually false. The FPF has also 
been labeled the false-positive proportion or rate. Rather than plotting TPF against 
FPF, many sources refer to replace FPF with 1 − specificity. Specificity equals 
1 − FPF or P( Y = 0 | D = 0), the true-negative fraction. It describes how well a screener 
can rule out unwanted cases. A specific screener minimizes the number of students 
who test positive on the screener in error. The ROC curve is often shown as a plot of 
sensitivity on the vertical axis versus 1 − specificity on the horizontal axis, but this is 
the same as a plot of the TPF versus the FPF. We will use both sets of terms, as they 
are common in the literature and each has benefits in different contexts.

The area under the ROC curve, A (as illustrated in Fig. 8.2), usefully summarizes 
the overall performance of a screener across a range of possible decision thresholds 
and represents the mean sensitivity or TPF averaged uniformly over the range of 
specificity or FPF values and vice versa; A describes the average sensitivity over 
all values of specificity. A also has a useful interpretation in a forced-choice task, 
where a decision maker is provided with scores from two individuals, one selected 
at random from the reading difficulty population and one selected randomly from 
the population of typically achieving students. In this scenario, A represents the 
likelihood that the two students will be correctly assigned to the two populations 
based on their scores on the screener. Importantly, as a measure of accuracy, A is 
not confounded by either the proportion of students in the reading difficulty popula-
tion, termed the base rate, or the specific decision threshold (cut score) chosen for 
the screener.

As noted above, values of A may range from .50 to 1.00. The ROC curve for 
a screener with no information follows the diagonal, so the value of A for such a 
measure would be about .50. With a useless screener, the ability to classify students 
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in the forced-choice task would be no better than the flip of a coin. A nearly perfect 
screener would lead to a curve that covers almost the entire area of the unit square. 
In this case, A ≈ 1.00 and implies nearly perfect assignment of any a pass–fail pair 
of students in the forced-choice task. Precise criterion values for the area under the 
ROC curve have not been established, but generally speaking, “values of A between 
.50 and .70 or so represent a rather low accuracy—the true-positive proportion is not 
much greater than the false-positive proportion anywhere along the curve. Values 
of A between about .70 and .90 represent accuracies that are useful for some pur-
poses, and higher values represent a rather high accuracy” (Swets, 1988, p. 1292). 
For many purposes, values of A above .95 indicate an excellent screener, .85– .95 
signify a very good screener, values .75– .85 suggest a reasonable screener. Values 
below .75 represent relatively poor diagnostic utility. Such low accuracies may have 
their greatest value in cases where judgments with other methods are very poor 
and the consequences of the incorrect choice can be especially costly or dangerous 
(e.g., invasive surgery). In reading instruction, teachers have a reasonable capacity 
to judge student performance (Martin & Shapiro, 2011), and for values of A below 
.75, we believe their judgments are likely more valuable than a weak screener.

Figure 8.3 shows three ROC curves, one each for three DIBELS 6th Edition 
screening measures administered in the spring of first grade, ORF, nonsense word 
fluency (NWF), and phoneme segmentation fluency (PSF), with a sample of stu-
dents fluent in English (Smolkowski & Cummings, 2014). Each of these measures 
was used to discriminate between students in a population that is at risk for reading 
difficulty, defined by those below the 20th percentile on the Stanford Achievement 
Test–10th Edition (SAT10; Pearson Education, Inc., 2007), from those not at risk for 
later reading difficulty with a sample of 4885 students.

For each measure, the figure shows the plot of the TPF against the FPF along 
with two thin, gray lines that show the confidence bounds around the TPF and FPF 
at each point. From the description of the ROC curves and A, it is clear that the 
curve for ORF, with A = .95, represents a fairly accurate screener. Given ORF scores 
from two students, one from the reading difficulty population and one from the typi-
cally achieving population, the ORF at the end of Grade 1 would correctly order 
those two students 96 % of the time. The curve for NWF, A = .84, is less accurate, 
but NWF may still be useful for instructional decisions, especially as it focuses on 
a specific subskill (decoding). The curve for PSF, however, might be characterized 
as mediocre or poor, as A = .60 implies that a decisions based on that measure at the 
end of first grade would improve only marginally on chance. At that level of accu-
racy, teachers are likely to be better judges of student performance and its relevance 
to student membership into the two assumed underlying populations. Due to the 
large sample size ( N ≈ 4885) in this example, statistical uncertainty was very low. 
The 95 % confidence bounds for A were .94– .95 for ORF, .83– .85 for NWF, and 
.58– .62 for PSF. For each measure, Fig. 8.3 also shows a larger point on the ROC 
curve surrounded by a small box, which represents the decision threshold for the 
lowest score that exceeds a TPF value of .80. The small box shows the confidence 
bounds on the TPF and FPF at that cut point.
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Several other indices to assess accuracy have been suggested, but most have 
been dispensed as inadequate to the task due to their dependence on either the base 
rate or decision mechanism (Swets, 1986), which can lead to misleading results. 
The overall percentage correctly classified by the screener, for example, depends 
on both the decision threshold and the base rate of the outcome of interest in the 
chosen sample and can be biased. Sensitivity, by itself, is also inadequate (Swets, 
1988). Sensitivity depends on the chosen decision threshold and associated level of 
specificity and cannot solely describe the accuracy of a screener. Specificity simi-
larly relies on a level of sensitivity given a chosen cut score. Even when provided 
as a pair, sensitivity and specificity offer a limited description of accuracy because 
they depend on the chosen decision threshold. This makes comparisons between 
screeners particularly difficult as different thresholds for any given screener will 
produce different pairs of sensitivity and specificity values. Comparisons of screen-

Fig. 8.3  ROC curves for oral reading fluency (ORF), nonsense word fluency (NWF), and pho-
neme segmentation fluency (PSF) from the spring administration of first grade used to discrimi-
nate between students at risk and those not at risk determined by the 20th percentile on the SAT10. 
The area under the curve, A, indicates that ORF was quite accurate, NWF was less accurate but 
still useful, and PSF was poor. Values of A in brackets represent 95 % confidence bounds, and the 
light lines surrounding the curve for each measure show 95 % confidence interval for TPF and FPF 
at each potential cut point. The large markers on each line, surrounded by a small box, indicate the 
decision thresholds where the TPF (sensitivity) exceeds .80: 31 correct words per minute for ORF, 
62 correct letter sounds for NWF, and 61 correct phonemes for PSF. The small box shows the 95 % 
confidence bounds on TPF and FPF at the selected decision thresholds
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ers based upon threshold-specific statistics is similar to comparing the capacity of 
two containers that contain some prespecified amount of water rather than when 
filled to their maximum volume. In contrast, the ROC curves in Fig. 8.3 allow the 
direct comparison of measures across their entire range of scores. Similarly, A sum-
marizes the curves in a way that also allows comparisons across measures without 
relying on a single decision threshold.

Some authors have proposed that predictive values can be used to assess accu-
racy, but these statistics are also problematic. The positive predictive value (PPV) 
characterizes the probability of failure on the criterion test among those who test 
positive on screener, P( D = 1 | Y = 1), and the negative predictive power (NPV) de-
scribes the probability of passing the criterion test among those who test negative on 
screener, P( D = 0 | Y = 0). While these indices have their uses, like TPF and FPF, they 
also depend on the chosen decision threshold (e.g., benchmark goal or cut score), 
which makes them a poor measure of the overall accuracy of a decision system. 
Moreover, predictive values depend on the base rate on the outcome event in the 
sample in which they were derived, which violates one of the fundamental attri-
butes of a measure of accuracy (Swets, 1988). With a perfect screener, for example, 
PPV = NPV = 1.0, but for a screener that carries no information, PPV will equal the 
base rate, ρ, and NPV will equal its complement, 1 − ρ. Unlike sensitivity and speci-
ficity, the predictive values seldom cover the range from 0 to 1, which means they 
cannot be used to create a curve similar to the ROC, and the area under such a curve 
would not be defined for the entire unit square.

The accuracy of the diagnostic system provided by the ROC curve and A offer 
valuable information, such as whether one screener is inherently better at classi-
fying students in the two underlying populations across the range of values. The 
ROC and A also provide information about whether, for a particular scenario, a 
different cut score might offer a better trade-off between sensitivity and specificity 
(or between predictive values). Many approaches to accuracy other than the ROC 
curve and its summary statistic, A, fail to address the full range of screener values 
and its overall worth as an accurate predictor of performance, such as the relying 
on a statistics from a single contingency table (e.g., sensitivity, NPV, percent cor-
rectly classified). “In short, indices defined in terms of a single 2 × 2 table confound 
discrimination capacity and decision criterion” (Swets, 1986), and reporting only 
such measures is analogous to describing a randomized trial only for subjects with 
a single pretest score. The selection of the area under the ROC curve, A, as the ideal 
index of accuracy (Swets, 1996), however, did not stem from the problems with 
other proposed measures of accuracy. Rather, these methods have been formulated 
from a rich foundation in statistical theory.

Signal Detection Theory

Signal detection theory and the methods for the evaluation of diagnostic systems 
were originally developed from work on hypothesis testing (e.g., Neyman & Per-
son, 1933). “Modern detection theory treats the problem as one of distinguish-
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ing between two statistical hypotheses” (Swets, 1988, p. 1291; see also Peterson, 
Birdsall, & Fox, 1954; Streiner & Cairney, 2007). The challenge involved the dis-
crimination between a noise distribution and a signal-plus-noise distribution. Early 
researchers noticed that their problem was not unlike those addressed by the null-
hypothesis testing framework, where investigators compare a distribution under the 
null hypothesis (noise) to one that includes an intervention (signal plus noise). They 
began to consider two overlapping normal curves and the choice of a critical value 
to achieve certain levels of sensitivity (TPF) and specificity (1−FPF) values.

The four outcomes in signal detection theory are identical to those used in hy-
pothesis testing (see Fig. 8.4). Specificity equals the true-negative fraction. Its 
complement (1− specificity) equals the FPF, which is called the Type I error rate in 
hypothesis testing. The false-negative fraction is equivalent to the Type II error rate 
in hypothesis testing. Its complement, the TPF (sensitivity), is equivalent to statisti-
cal power in the null-hypothesis testing framework. Hence, the ROC curve plots 
the relative values of the two operating characteristics for null-hypothesis testing, 
power and the Type I error rate, on the unit square. Figure 8.4 depicts a decision 
threshold with the TPF or power at 70 % and the FPF or Type I error rate at 10 %. 
One can also draw direct comparisons between the area under the ROC curve, A, 
values of Cohen’s d, the point-biserial correlation coefficient, and other measures of 
effect size (Swets, 1996; Rice & Harris, 2005). Like A, Cohen’s d, for example, also 

Fig. 8.4  Overlapping populations for typically achieving students (noise) and students with read-
ing difficulties (signal + noise). The figure depicts the four outcomes with associated terms used 
in signal detection and null-hypothesis testing theories. In signal detection theory, the ROC curve 
represents the relative values of the TPF and FPF as the vertical line moves from left to right
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characterizes the separation between two populations. Chapter 1 in Swets (1996; 
also Swets, 1973) provides an extensive history of the development of ROC curves 
and methods for the evaluation of diagnostic systems.

The Assumption of Two Populations

As detailed above, signal detection theory relies fundamentally on the assumption that 
individuals are placed into two populations. In education, as in many fields, the two 
populations are typically created by using a comprehensive criterion measure, such as 
a state reading test or the SAT10. The criterion places students into populations: one 
for students with acceptable performance on the test and one for unacceptable per-
formers. This assignment by a criterion test can be somewhat arbitrary, but it is neces-
sary to meet the assumptions of the methods. Although this criterion is often called a 
gold standard, the implied perfection is generally unattainable. Few fields have even 
a near-perfect, reproducible criterion (Swets, 1988). When testing a cancer screener 
(e.g., mammogram), biopsies may be used as a criterion measure, but surgeons may 
miss the affected tissue. In engineering, destructive stress tests may be used as a cri-
terion (e.g., tests of airplane wing failure), but such tests can seldom duplicate all 
the forces at work during flight. Imperfect criterion tests are actually quite common 
across fields, and the reproducibility of results is “not uniformly higher for the diag-
noses based on ‘hard’ rather than ‘soft’ evidence” (Kraemer, 1992, p. 15). The lack 
of a perfect measure will most likely depress estimates of accuracy, so the area under 
an ROC curve may never feasibly reach 1.0 for criterion measures, such as those in 
education and psychology that typically have some flaws. Kraemer (1992) suggests 
methods for characterizing the reproducibility of criterion tests, such as with kappa, 
and portraying their magnitude (e.g., Landis & Koch, 1977). Nonetheless, diagnostic 
systems frequently outperform alternative approaches to decision-making even with 
imperfect criterion measures (Swets, 1996; Swets et al., 2000a, 2000b).

An adequate criterion measure should meet several conditions. It should be a 
reliable, valid, and accurate indicator of the content under investigation. If the crite-
rion measure is ordinal or continuous, it should have a value that justifiably places 
test cases into the two populations in order to gauge the value of a screener. Most 
importantly, the determination of the population memberships should not depend on 
either the system under evaluation or the test sample. “The truth about sample items 
should be determined without regard to the system’s operation, that is, without re-
gard to the system’s decisions about test cases” (Swets, 1988, p. 1290). Evaluating a 
screener or screening system against itself will inflate the apparent accuracy (Swets 
et al., 2000b). Similarly, the procedures to establish whether an event has occurred 
should not affect the sample under investigation, such as the evaluation of a clas-
sification system that determines acceptance into college that relies on a sample 
of students accepted into college. Finally, a test sample, used for the evaluation of 
a screener, should include cases that represent the different types of decisions and 
adverse events, the four outcomes, to which the system should be applied.

Many measures are adequate for the evaluation of literacy screeners. Criterion 
measures differ but frequently involve validated, norm-referenced tests that allow 
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placement of students into populations based on a percentile. Petscher, Kim, and 
Foorman (2011) used the SAT10 and Gates-MacGinitie Reading Test–Fourth Edi-
tion (MacGinitie & MacGinitie, 2006) as criterion measures. Silberglitt and Hintze 
(2005) reported on ORF from the winter of 1st grade through the spring of 3rd grade, 
and all ORF assessments were evaluated against the reading portion of the Minne-
sota Comprehensive Assessment. Hintze, Ryan, and Stoner (2003) used the CTOPP 
as their criterion, which they collected at the same time as the DIBELS screener 
measures they evaluated. Smolkowski and Cummings (2014) and Smolkowski, 
Cummings, and Baker (2014) used the SAT10 as the criterion measure for Grades 
K through 2 and the OAKS for Grade 3. Smolkowski and colleagues chose the 20th 
normative percentile on the SAT10 as the criterion for high risk and the 40th norma-
tive percentile to distinguish some risk from students at acceptable levels of perfor-
mance (benchmark). The choice of criterion was selected more so by convention 
than an established standard. They characterize students below the 20th percentile as 
at high risk and those below the 40th percentile as below benchmark (or some risk).

When choosing a criterion measure or interpreting the results of a published 
study, it is important to consider what skill or ability is assessed by the criterion 
measure. An investigator should choose a criterion measure that defines the popula-
tion of students at risk in similar terms as the screener under investigation. Simi-
larly, educators should choose a screener that has been evaluated with respect their 
needs, or at least a reasonable approximation thereof. For example, the analysis of 
Smolkowski and Cummings (2014) may work well in a school that uses the SAT10 
or a state test that correlates highly with the SAT10 but possibly not in a school that 
uses a very different standard. Thus, like any research study, the details, such as the 
criterion test, the chosen criterion level to describe risk, and the sample of students 
selected all help determine the generalizability of the study and its applicability 
within any other given context.

Decision Thresholds Once a screener has been shown to be accurate with respect 
to an appropriate criterion measure, its practical use depends on the choice of a deci-
sion threshold, a score on the screener that best discriminates members of the two 
populations of interest. For literacy instruction, the decision threshold specifies the 
score on the screener below which students are more likely to come from the reading 
difficulty population and less likely to come from the typically achieving popula-
tion. In practice the decision threshold is the point on the screener that determines 
whether the student receives additional support. It is important to recognize that the 
decision threshold is not a mandate to provide services. As with any assessment, 
measurement error is always present. Thus, for some students who fall just below 
the decision threshold, their teachers may choose to retest them, test them with a 
more sensitive measure, or more closely observe their progress in Tier 1 before 
making any changes to their instructional program. We recommend data-based deci-
sions, however, whenever a good screener or other assessment is available, because 
decisions based on clinical or professional judgment rarely outperform decisions 
based on statistically generated rules (Dana & Dawes, 2004; Grove, Zald, Lebow, 
Snitz, & Nelson, 2000; Meehl, 1954).
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Several procedures can be used to produce a valid decision threshold, which re-
iterates the importance of prioritizing at the outset of a study the decision rules that 
will be used to select a given cut score. The particular procedure should be in line 
with the theoretical construct of the difficulty wished to diagnose and the overall 
goals of the diagnostic system (Pepe, 2003). Most procedures depend on the use of 
a 2 × 2 contingency table, where one dimension represents the criterion (i.e., reading 
difficulty vs. typically achieving students) and the other a particular score on the 
screener. Each score on the screener—each potential decision threshold—produces 
a different table, and the table can be summarized with a wide array of statistics 
(Streiner, 2003; Schatschneider, Petscher, & Williams, 2008). From these statistics, 
we discuss a subset of the possible methods to select a decision threshold.

Swets et al. (2000b) discuss a general decision method that attempts to “maxi-
mize the ‘expected value’ of a decision, i.e., to maximize its payoff in the currency 
of benefits and costs” (p. 9). They express the decision goal as a formula in terms of 
the probabilities of true population membership, such as the typically achieving or 
reading difficulty populations, and the benefits and costs associated with the joint 
occurrence of a particular population membership and screener decision. When the 
screener decision and population memberships agree (i.e., true-positives and true-
negatives), the choice results in benefits. When they disagree (i.e., false-positives 
and false-negatives), the choice results in costs. The formula and procedure articu-
lated by Swets et al. (2000b) works well when costs and benefits can be estimated 
clearly and accurately, which offer a clear justification for the decision rule.

In most educational situations, useful approximations of costs and benefits have 
been difficult to obtain. In such cases, the selection of a decision threshold based 
on sensitivity and specificity offers a reasonable alternative. Swets et al. (2000a), 
for example, suggest that a simple goal might maximize the sensitivity for a given 
level of sensitivity or specificity. The content area and context intended for a diag-
nostic system will help determine the decision rule used to set a decision threshold. 
As with most analytical approaches, it is important to select a decision rule for the 
selection of a cut score a priori to avoid post hoc choices that may be sample spe-
cific or biased by other factors. We review a sample of approaches to the selection 
of a decision threshold below and offer an example justification for one potential 
rule, based on sensitivity.

Sensitivity and Specificity 

Sensitivity and specificity offer one method for the selection of a decision thresh-
old. The cut score may be chosen to meet a defined level of specificity, a particular 
level of sensitivity, or some combination. We next discuss one example of a deci-
sion rule based on sensitivity within a prevention-oriented screening model, which 
could be adjusted or changed to fit other contexts in education.

The selection of a decision threshold for reading fluency measures within a 
prevention-oriented approach suggests a focus on sensitivity, or more precisely, 
the complement of sensitivity, the false-negative fraction. A rule based on sen-
sitivity prioritizes the identification of students who will perform below a given 
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standard determined by the criterion measure. A careful consideration of the goals 
surrounding reading instruction might lead to the rule that a reading fluency screen-
er should incorrectly identify not more than 20 % of students from the reading dif-
ficulty population as typically achieving. Relying on this premise, Smolkowski and 
Cummings (2014) and Smolkowski et al. (2014) decided to select decision thresh-
olds corresponding to the score on each DIBELS measure with a false-negative 
fraction at or below .20. This translates into the score where sensitivity is equal or 
greater than .80, which would correctly classify 80 % of struggling readers.

This decision rule for the selection of a cut score has several benefits. First, false-
negatives appear to be a more problematic error when it comes to educational deci-
sion-making than false-positives. False-negatives represent students who will likely 
not receive additional instructional supports or interventions even though they may 
need such supports. They have been deemed a typically achieving student who hap-
pens to fall in the lower end of the distribution. In contrast, false-positive students 
will likely receive an intervention, additional supports, or at a minimum, additional 
monitoring. Providing additional instruction to students who do not necessarily need 
it seems more ethically responsible than the failure to provide such instruction to a 
student who truly needs it. Second, false-negative errors are more difficult to correct 
than false-positive errors. Because teachers are less likely to monitor or intervene 
with students who screen negative, teachers are also less likely to notice prediction 
errors when they occur. A false-negative student will not likely receive the addi-
tional attention from his or her teacher or instructional assistant because she will not 
receive additional services. Such a student may flounder in whole-class instruction 
for some time. In contrast, teachers are more likely to identify those students who 
screen positive in error, so teachers can take corrective action more quickly. If a typi-
cally achieving student performed poorly on a screening assessment (e.g., ORF) and 
becomes incorrectly assigned to small-group instruction, his teacher or instructional 
assistant may quickly determine that he does not need to participate in small group 
instruction. That student could be placed back in standard instruction at any time 
(e.g., in Tier 1 in a response-to-intervention framework).

As the purpose of DIBELS, as a diagnostic system, is to identify students with 
the potential for reading difficulty or skill deficits, we chose to focus our criteria on 
the statistics associated with the population of students potentially with reading dif-
ficulty rather than the population of typically achieving students. That justification 
applies well to reading fluency measures in the context of a multitiered system of 
instructional supports, but it does not represent the only decision rule. Within similar 
contexts, a more stringent decision rule might be chosen to correctly classify 90 % of 
struggling readers (sensitivity ≥ .90). A similar approach and justification for a differ-
ent diagnostic system might rely on specificity or its complement (the false-positive 
fractions) if such decision rules met the goals and context for the system.

Youden Index 

In some situations, or perhaps if a choice between reliance on sensitivity or specific-
ity is unclear, a rule based on a combination of the two might be most appropriate. 
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Youden (1950) described a procedure for selecting a decision threshold that maxi-
mizes the combination of sensitivity and specificity. To calculate the Youden index, 
one simply computes J = sensitivity + specificity − 1 (equivalently, J = TPF − FPF) 
for each score on the screener. The decision threshold is the score that maximizes J. 
This process typically selects the point on the ROC curve closest to the upper-left 
corner and produces results similar to those from the more complicated, iterative 
procedure recommended by Silberglitt and Hintze (2005, see p. 316). The Youden 
index implies that the costs of the errors associated with sensitivity and specificity 
are weighted equally as it simultaneously maximizes them. In contexts where the 
two types of errors have similarly weighted consequences, the largest value from 
the Youden index may usefully determine the decision threshold. Conversely, when 
the two errors carry very different costs, such as the identification of students with 
the potential for reading failure, this equal weighting of true-positives and false-
positives may make it a poor choice for the selection of a decision threshold.

Boundary Scenarios 

Nearly any screener can, at some point, attain a sensitivity value greater than say, .80. 
But at the same decision threshold, less accurate screeners may produce very low 
specificity. In the framework presented herein, this concern is minimized because 
it is unlikely that a measure with such discrepant sensitivity and specificity values 
would have achieved adequate accuracy (i.e., A is likely poor). Decision thresholds 
are typically only useful to generate given reasonably accurate screeners or diag-
nostic tests. Figure 8.3 offers an example of a measure, PSF, that demonstrates the 
scenario of a screener with low accuracy. At the score (61) where PSF attains a sen-
sitivity value greater than .80 (.82), specificity equals .27. This indicates a very high 
rate of false-positives, 73 %. A decision threshold that correctly classifies only 27 % 
of the students in the typically achieving population is likely unacceptable for many 
instructional situations. We could have anticipated a result like this one because PSF 
had a very low accuracy value, A = .60. Screeners with very low accuracy often result 
in decision thresholds with discrepant sensitivity and specificity values, and we 
would not recommend selecting a decision threshold for measures such as these. The 
use of signal detection theory is the first to demonstrate sufficient accuracy of a mea-
sure generally rules out choosing decision thresholds for inaccurate measures that 
could lead to an unsatisfactorily low or discrepant sensitivity and specificity values.

A potentially interesting theoretical argument is whether measures could be de-
signed to have excellent discrimination around a single point yet no other points, 
suggesting that a measure could have high sensitivity and specificity values (e.g., 
≥.75) yet not achieve a reasonable accuracy level (e.g., A <.75). We illustrate two 
example cases that suggest this scenario is highly unlikely. In the first scenario, 
assume a 3-point screener that produces sensitivity and specificity values equal to 
.75 at the midpoint, with the boundary values at each extreme (e.g., sensitivity = 0 
and specificity = 1). Such a screener will have an accuracy value of A = .75. Simi-
larly, other 3-point screeners with A = .75 might have sensitivity–specificity pairs 
of .55 and .95 or .95 and .55 at their midpoints, respectively. In Fig. 8.5 we display 
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the ROC curves associated with these three hypothetical 3-point screener scenarios 
(dashed lines). Each of the three 3-point screeners achieves an acceptable level of 
accuracy, A. If additional scores were added to one of the screeners and the curve 
maintained the concave nature typical for ROC curves, it would then produce accu-
racy values at or above .75. These hypothetical scenarios suggest that it is unlikely 
that a measure could have high sensitivity and specificity values around a single 
point yet not achieve a reasonable accuracy value, A.

As a second example, we present a 5-point screener that has excellent screener 
properties at a single point, yet no discriminative properties at four points. That is, 
at the decision threshold the screener achieves sensitivity and specificity values 
equal to .75, yet at all other points, either sensitivity equals zero with specificity 
equal to .75 or specificity equals zero with sensitivity equal to .75. This type of 
screener would not maintain a concave ROC curve. Rather, it would have convex 
sections. Figure 8.5 also shows this scenario with the dark solid line (square). 

Fig. 8.5  ROC curves for three 3-point screeners ( dashed lines) and one 5-point screener ( solid 
line). All three 3-point screeners produce accuracy values, A, of .75. The heavy dashed line rep-
resents a screener with sensitivity and specificity both equal to .75. The light dashed lines repre-
sent screeners with sensitivity and specificity equal to .55 and .95 and vice versa. The solid line 
represents a 5-point screener with maximal discriminability at its upper-left most point, where 
sensitivity and specificity both are equal to .75. This screener, however, has an accuracy value, 
A = .56, barely above the no-information screener, due to the other points in the curve, where either 
sensitivity or specificity is equal to zero
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This curve produces a much lower accuracy value, A = .56. In the forced-choice 
task mentioned earlier, this indicates that the screener, as a whole, would only 
correctly classify students from the two populations about half the time (56 %), 
barely better than chance. Given the adequate sensitivity and specificity values, 
how can this be?

The answer has to do with the other cut points on the measure. Cut points above 
or below the decision threshold provide no discrimination in one characteristic di-
mension or the other. Such a 5-point reading screener has sensitivity and specificity 
values of .00 and 1.00 at a score of 0, .00, and .75 at a score of 1, .75, and .75 at 
a score of 2, and .75 and .00 at a score of 3, and 1.00 and .00 at a score of 4. As a 
consequence, a score of 1 has a true-positive fraction of zero, or no discrimination 
among the reading difficulty population. Similarly, a score of 3 does not discrimi-
nate among the typically achieving population. Such a screener, however, would 
produce very unlikely, bimodal distribution of the two populations, which be-
comes clear when considering one population at a time. Considering false-positives 
(1 − sensitivity) of the typically achieving population, no members scored 0, 25 % 
scored 1, none scored 2, 75 % scored 3, and none scored 4. Turning to true-positives 
(sensitivity) in the reading difficulty population, none scored 0 or 1, 75 % scored 2, 
none scored 3, and 25 % scored 4.

The scenarios above considered two general types of screeners optimized for 
single cut scores. We believe the examples show how A is valuable as a measure 
of overall accuracy even for single-score-optimized screeners. In contrast, because 
A is a function of sensitivity and specificity, it is not likely to find a screener with 
acceptable accuracy yet no cut score with potentially adequate sensitivity and speci-
ficity values.

Predictive Values The use of predictive values to establish decision thresholds has 
also been put forth, primarily in the education literature base, as a recommended 
practice. This recommendation leads to a number of challenges because predictive 
values are not indices of the accuracy of diagnostic tests (Pepe, 2003; Swets, 1996). 
Rather, uncorrected predictive values depend on the base rate of reading difficulty 
in a given sample and thus serve to characterize the clinical or educational sig-
nificance of the test in a manner that is analogous to a local normative comparison 
(versus a national norm comparison). Although predictive values can be useful for 
teachers or parents, because they are sensitive to the base rate on the criterion test, 
they do not characterize the accuracy of the test and are not useful for selecting 
decision thresholds on screener measures that will persist across other samples of 
schools. “A low PPV may simply be a result of low prevalence of [reading difficul-
ties] or it may be due to a [screener] that does not reflect the true [reading difficulty] 
status of the subject very well” (Pepe, 2003, p. 16).

It might be helpful to define PPV in terms of Fig. 8.4. PPV is the relative propor-
tion of students to the left of the dashed vertical line who are in the reading diffi-
culty population rather than the typically achieving population. Within signal detec-
tion theory, the PPV does not portray the discrimination between two populations 
because it represents a relative number of students within just a portion of each of 
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the two populations. The proportion of students to the left of the decision threshold 
depends on the number of students in the each of the two populations, the shape of 
the two distributions, and the choice of the decision threshold. As described above, 
in a screener that carries no information, the PPV will equal the base rate, ρ, so the 
PPV for any given screener can range only between ρ and 1.0.

To further demonstrate the challenges with predictive values, consider a thought 
experiment. Dr. C and Dr. S plan to evaluate the same reading screener against the 
same criterion measure, and each researcher selects a sample of students from the 
same district. Both researchers want to know how well the chosen cut score of 24 
appropriately selects students who are at risk. The district as a whole has 1300 total 
students with reading difficulties and 2700 students who perform adequately. Dr. C 
and Dr. S, however, have different sampling goals in mind, so Dr. C sampled the 
same number of students from each of the reading difficulty and typically achieving 
populations (1000 students each). Dr. S selected approximately 23 % of the reading 
difficulty population (300 students) and about 63 % of the typical achievers (1700 
students). To avoid the potential for bias, each of the researchers randomly sampled 
the populations of reading difficulty and typically achieving students, respectively. 
That is, the means and standard deviations for the samples collected by Dr. C and 
Dr. S match those for the whole district. The distribution of the reading difficulty 
populations and typically achieving populations for the whole district and each of 
the two samples are depicted in Fig. 8.6.

Because the two samples of students have the same distributions as the entire 
student enrollment in the district, Dr. C and Dr. S estimate nearly identical sensi-
tivity and specificity values, about .95 and .90, respectively. Both samples would 
also produce the same ROC curve and A values as an analysis of all students in 
the district, except for some random sampling error. The proportion of students in 
each sample differs—Dr. C included nearly 77 % of all reading difficulty students, 
whereas Dr. S included just 23 %—so their predictive values will also differ. Dr. C 
calculated PPV = .91 and NPV = .95 but Dr. S obtained PPV = .63 and NPV = .99. 
These values, when calculated for the whole district, are .82 and .97, respectively. 
As the base rates differed in the two samples, so will the investigators’ conclusions 
about the value of the screener, especially if they rely on PPV. As described earlier, 
both predictive values depend on the base rate, and for Dr. C the base rate is 50 %, 
so her predictive values can range from .50 to 1. For Dr. S, however, the base rate is 
.15, so PPV ≥.15 and NPV ≥ .85.

Had both investigators drawn conclusions about the accuracy of the chosen cut 
point from their respective samples using predictive values, they would have drawn 
considerably different conclusions even if they used the same a priori decision 
rules. Let us say for example that Dr. C and Dr. S agreed at the outset of the study 
that their aim was to accept the cut point as valid if PPV > .80. This decision rule is 
akin to noting that at least 80 % of the students who screen positive (i.e., at risk for 
later reading outcomes) will actually perform below the criterion standard. Given 
that PPV will range from .15 to 1 in Dr. S’s sample, he is much less likely to find the 
cut point of 24 acceptable compared with Dr. C.
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This thought experiment is clearly hypothetical, but it represents real studies in 
some respects. Often the statistical evaluation of screeners relies on samples that 
were collected for other purposes. For example, the sample in Smolkowski and 
Cummings (2014) relied on students in schools who participated in Oregon Read-
ing First. Due to the Reading First participation criteria for districts and schools, the 

Fig. 8.6  Three sets of overlapping distributions from a hypothetical school district: the district 
population, a sample collected by Dr. C, and a sample collected by Dr. S. In each case, the means 
and standard deviations for reading difficulty students are assumed to be the same, similarly for 
the means and standard deviations of the typically achieving students
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original sample likely included more struggling readers than many schools; it may 
be more similar to the Dr. C sample. Nonetheless, because they relied on specificity 
to select decision thresholds, their evaluation is not subject to the same limits as an 
evaluation based on predictive values. This is not to say that the sample of Oregon 
Reading First Schools generalizes to all other students. For example, to general-
ize to a new set of schools, the shape of the distribution for students with reading 
difficulties in Oregon Reading First Schools should be similar to the shape of the 
distribution within the new set of schools. But the shape of the distribution is more 
stable than the base rate, since the base rate is a function of both the sample sizes 
selected for an evaluation as well as the shape of the underlying distributions.

Thus, all evaluations of diagnostic systems may generalize to only a subset of 
students and schools. To generalize decision thresholds based on predictive values, 
however, investigators have an additional burden because they need to demonstrate 
that not only does the sample have similar shaped distribution—similar means and 
standard deviations at a minimum—but they also need to ensure that their sample of 
students has the same relative proportions as the population of students with reading 
difficulties and the population of typically achieving students to which they hope 
to generalize. Unfortunately, in most cases such validating data are unavailable, es-
pecially for a new, untested screener. As a consequence, the selection of a decision 
threshold with predictive values is unlikely to be stable across samples and hence 
more difficult to generalize to new settings than decision thresholds selected with 
decision rules based on sensitivity or specificity.

Authors must also be aware of the role of base rate on their decision rules. Piasta 
et al. (2012) “focused on the negative predictive power when examining these re-
sults” (p. 950). One of their key measures, however, produced base rates of .14 for 
each of two different screeners, uppercase and lowercase letter naming. With a base 
rate of .14, NPV is bound by the range from .86 to 1.0 and therefore cannot address 
the question, “is this decision threshold good or poor?”; even a screener that carried 
no information (i.e., A ≈ .50) would appear valuable in this context because it could 
never result in an NPV that was less than .86.

The decision rules based on predictive values need not always lead to based-rate 
specific cut scores. Kraemer (1992) describes a process where predictive values can 
be adjusted for the base rate to produce a value she calls the quality of the predic-
tive value; she similarly adjusts sensitivity and specificity for the probability of a 
positive test. But with those adjustments, “it becomes apparent that the quality of 
the sensitivity is exactly equal to the quality of the predictive value of the negative 
test” (Kraemer, 1992, p. 99). Decision rules based on these metrics, however, take 
us beyond the scope of the present chapter, and other authors tend to rely more 
completely on sensitivity and specificity (e.g., Pepe, 2003) or more comprehensive 
decision rules (e.g., Swets et al., 2000a).

Summary The statistical evaluation of screeners requires several steps. The inves-
tigator should first choose the criterion measure that will define the two populations 
of interest and then select one or more screeners to evaluate in terms of their ability 
to discriminate between the two populations. Next, a priori decision rules should be 
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specified to establish the minimal level of accuracy (e.g., A) and the methods for the 
choice of a decision threshold that will determine a positive or negative test result. 
At this point, the investigator should test the accuracy of the screener with respect 
to the two underlying populations defined by the criterion measure, which requires 
an ROC curve and evaluation of whether the area under the curve, A, meets the 
decision rules. Finally, for a screener with sufficient accuracy, the decision thresh-
old would be chosen based on the prespecified rules, such as the score where sen-
sitivity exceeds .80 or the score that maximizes the combination of sensitivity and 
specificity (e.g., Youden index).

We make two recommendations for reporting the results of the statistical 
evaluation of screeners. First, we recommend that whenever possible, results of 
evaluations include ROC curves or, at a minimum, the area under the ROC curve, 
A, as a measure of overall accuracy. This allows for the comparison of different 
screeners even when investigators or educators may select different cut scores than 
those reported. For example, numerous papers in education discuss the diagnostic 
capability of individual cut scores for various screeners, yet their information is 
incomparable because they report statistics only for one chosen cut score. Similarly, 
investigators may choose to compare screeners across different learner populations 
(see below), where, case presenting the ROC curve, or at least reporting A, offers 
more complete information.

Second, as with most other types of evaluations, authors should include 
confidence bounds around estimates of A, sensitivity, and specificity. Few papers 
in education and school psychology literature report confidence intervals, which 
would shed light on the statistical uncertainty of estimates. For example, Piasta 
et al. (2012) report sensitivity and specificity values for their chosen benchmark for 
lowercase-letter screener of .70 and .61, but calculation of 95 % confidence bounds 
indicates that these values could fall in the ranges of [.58, .82] and [.56, .67], re-
spectively. Nelson (2008) similarly reports on sensitivity and specificity that, had 
they calculated confidence intervals, would have produced very wide bounds. In 
one such case, a sensitivity value estimated to be .62 had a 95 % chance of a true 
value between .48 and .76. As with other statistical results, confidence bounds offer 
information about precision. When papers report single-point estimates, it suggests 
greater confidence than may be truly offered by the estimate. Reporting confidence 
bounds will provide precise estimates of precision.

One implication of the wide confidence intervals in evaluations of diagnostic 
accuracy is that such studies require large sample sizes. In some cases, results are 
based on cells sizes of one, such as a sensitivity value of .94 reported by Nelson 
(2008) that depended on a single student who screened positive. When interpreting 
results, we also recommend considering the size of the sample, and the individual 
cell sizes in particular, upon which the conclusions are based. When planning a 
study using these methods, researchers should also consider the required sample 
size (see Lasko, Bhagwat, Zou, & Ohno-Machodo, 2005; Malhotra & Indrayan, 
2010; Pepe, 2003).

Finally, we recommend authors who evaluate the diagnostic accuracy and 
decision thresholds for fluency screeners consider the recommendations of the 
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Standards for the Reporting of Diagnostic accuracy studies (STARD Statement, 
2008; http://www.stard-statement.org/). The STARD Statement offers additional 
details that would aid in the interpretation of study results.

Screeners in Different Populations

In this section we provide two examples that illustrate the process of selecting a 
cut point on a screening measure with two different general populations. Earlier, 
we showed how the ROC curve and associated statistics could be used to compare 
different fluency screeners in the same overall population of learners (e.g., Fig. 8.3). 
Here we show that the same methods can be used to assess the relative accuracy of 
a screener and its decision thresholds within different populations. We computed 
decision thresholds for DIBELS 6th Edition ORF at the end of Grade 1, when used 
to discriminate typically achieving students from those with at least some risk (be-
low benchmark) for serious reading difficulty (Smolkowski & Cummings, 2014; 
Smolkowski et al., 2014) across two general populations namely: students profi-
cient in the English language—most often their first language—and English learn-
ers—students who had received services for English as a second language during 
the year of data collection. In this example, we treated two groups of students: Eng-
lish learners (ELs) and English speakers (ESs) as different populations and used the 
same sensitivity-based decision rule to select cut scores on ORF for each group. The 
criterion for some risk was the 40th percentile on the SAT10, which in our sample 
produced base rates of .59 for ESs ( N = 4885) and .83 for ELs ( N = 1960).

The value of A = .93 for ESs suggested that ORF discriminated students with 
likely reading difficulty from typically achieving students very accurately. We then 
calculated the optimal decision threshold using sensitivity, with the decision rule 
described earlier (see statistical evaluation of screeners section, sensitivity and 
specificity subsection). Using the sensitivity criterion, our analysis chose a decision 
threshold of 47 correct words per minute for ESs. The decision threshold achieved 
a specificity value of .89 and placed 52 % of students below benchmark, indicating 
some risk. It was also associated with a PPV of .92, so 92 % of students below the 
cut score were members of the reading difficulty population (i.e., performed below 
the 40th percentile on the SAT10). The NPV of .76 implies that 76 % of ESs who 
screened negative were typical achievers. For ELs, ORF discriminates students with 
likely reading difficulty from typically achieving students with similar accuracy, 
A = .93, to ESs. Using the same decision rule, we selected a decision threshold of 
48 correct words/min for ELs, which achieved a specificity value of .90, also similar 
to ESs. For ELs, however, 69 % screened below benchmark, indicating some risk, 
and the cut score was associated with predictive values, PPV of .98 and NPV of .49.

Figure 8.7 presents ROC curves for both populations of students and shows the 
decision threshold on the two ROC curves. The 95 % confidence bounds for A over-
lap, and the bounds for sensitivity and specificity at the decision threshold for ELs 
encompasses the decision threshold chosen for ESs. These imply that ORF, as a 

http://www.stard-statement.org/
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fluency screener, and the associated decision thresholds perform equivalently in the 
two populations of students. Because the sensitivity value for a score of 47 among 
ELs was nearly .80 (.798), we would not likely need different thresholds for ESs 
and ELs, at least not for the benchmark criterion at the end of Grade 1.

A similar decision rule that relied on the NPV would have presented a different 
story. In the sensitivity scenario, we chose the score where sensitivity exceeded  
.80; so we used a rule where NPV need to exceed .80 for the selection of a decision 
threshold. An NPV of at least .80 selected a decision threshold of 52 correct words 
per minute for ESs and 82 for ELs. For ESs, the cut score of 52 was associated with 

Fig. 8.7  ROC curves for ORF from the spring of first grade used to discriminate between students 
with some risk (benchmark) and typically achieving students determined by the 40th percentile 
on the SAT10. The solid curve shows the relative operating characteristics for English speakers 
(ESs) and the dashed curve shows the curve for students who had received services for English as a 
second language during the year the data was collected. Values of A, with 95 % confidence bounds 
in brackets, indicate that ORF was quite accurate for both populations of students. The thin lines 
next to each curve shows 95 % confidence bounds for TPF and FPF at each potential cut point. 
The large markers on each line, surrounded by a small box, indicate the decision thresholds where 
the TPF (sensitivity) exceeds .80 namely: 47 correct words/min for proficient ESs and 48 correct 
words per minute for English learners (ELs). The small boxes show the 95 % confidence bounds on 
TPF and FPF at the selected decision thresholds. The boxes overlap; the bounds for ELs is larger 
than the bounds for ESs
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PPV of .89, sensitivity of .86, and specificity of .84, with 57 % of all ESs students 
screened as having some risk. For ELs, the cut score of 82 was associated with PPV 
of .90, sensitivity of .98, and specificity of .45, and 91 % of all ELs were screened 
as having some risk. The wide difference in the choice of decision thresholds under 
the NPV scenario stems largely from the greater proportion of struggling readers 
among ELs (83 %) than among ESs (59 %). The distributional characteristics are 
similar, however, as suggested by the similar values of A, sensitivity, and specific-
ity at the same cut scores. When using a decision threshold based on sensitivity, 
the difference in base rates shows up in the proportion that screen positive, 52 % of 
ELs versus 69 % of ESs. The decision rule based on NPV, however, compounds this 
difference due to its dependence on the base rate and consequently screens 91 % of 
ELs as below benchmark and 57 % of ESs below benchmark. Equivalently stated, 
the cut point based on NPV for ELs is not specific; its specificity of .45 implies that 
55 % of typically achieving ELs will be incorrectly identified as having some risk.

Conceptually, characterizing a screener with predictive values is analogous to 
grading on a curve in that the acceptability of one student’s performance depends 
on the performance of all other students in the classroom. This is evident in the dif-
ference in decision thresholds chosen for ESs and ELs, as their base rates differ by 
24 %. The choice of population decision thresholds, however, should not depend so 
heavily on the selected sample of students. Sensitivity and specificity, in contrast, 
describe the discrimination between the two underlying reading difficulty and typi-
cally achieving populations without reliance on the base rate. This is not to say that 
the populations do not differ in important ways that could affect their sensitivity 
or specificity values, but those population differences will also affect predictive 
values. Due to the additional challenges with base-rate dependence, we believe, 
however, that NPV (and PPV) are insufficient measures for the selection of decision 
thresholds because they lead to sample-specific decisions in potentially unpredict-
able ways. Decision thresholds selected to achieve a certain level of sensitivity, 
specificity, or some combination will tend to agree more frequently than rules based 
on predictive values.

Recommendations for the Application of Signal 
Detection Theory

Signal Detection Theory and methods have a valuable place in education. With 
their rich history in psychology, medicine, and public health, educators have only 
relatively recently begun to apply the methods to educational settings. These meth-
ods can be used to set screener values, as we demonstrate in this chapter. When 
the methods have been appropriately applied to this purpose, researchers can also 
compare the value of screeners within and even across samples. Additionally, as in 
other fields, the application of empirical decision thresholds outperforms clinical 
or professional teacher judgments in terms of making special education referrals 
(Marston, Muyskens, Lau, & Canter, 2003). The successful use of these methods, 
however, depends on a thorough understanding of their development and theory.



8 An Introduction to the Statistical Evaluation of Fluency … 215

Pepe (2003) has outlined some basic criteria for the choice of any screening or 
diagnostic system: (a) the difficulty, disability, or disease should have serious con-
sequences; (b) the difficulty, disability, or disease should be relatively prevalent in 
the target population; (c) the difficulty, disability, or disease should be treatable; (d) 
the treatment should be available to anyone who screens positive; (e) the screener 
should not harm individuals; and (f) the screener should accurately classify indi-
viduals who have or do not have a difficulty, disability, or disease. Most educational 
uses fit these criteria. Nonetheless, the use of these methods could be improved.

Comparing Screening Systems in Education

The evaluation framework outlined in the preceding sections recommends methods 
for comparing screeners and in education, perhaps more so than in other fields, 
researchers have developed multiple screeners for the same purpose. This natu-
rally leads to comparisons between screeners, as educators should have the “best” 
screener for their intended purposes. At the outset, comparisons require first a 
match between the goals of the screener and the goals of an educator or researcher. 
But within those goals (e.g., assessment of kindergarten decoding fluency), several 
screeners may be available, and the methods discussed within this chapter allow for 
the comparison of screeners and diagnostic tests.

The ROC curve provides valuable information that researchers can use to quickly 
compare one screener to another. “The ROC curve transforms tests to a common 
scale” (Pepe, 2003, p. 72) and “by reporting the entire ROC curve, information about 
a test can be compared and possibly combined across studies” (Pepe, p. 71). The 
ROC curve provides information about the performance of the screener across the 
entire range of scores. A graph of the full ROC curve is particularly valuable when 
comparing diagnostic tests with relatively fewer values (e.g., Lewinsohn, Seeley, 
Roberts, & Allen, 1997; Streiner & Cairney, 2007). The area under the curve reduces 
the information in the ROC curve into a single number. For continuous tests with a 
wide range of values, such as most screeners used in classrooms, the ROC curve is 
relatively smooth and looks somewhat similar to the curves in Fig. 8.2 and 8.3. In our 
experience, A provides a useful summary of these screeners, although variations are 
sometimes required. Lasko and colleagues (2005) offer an accessible overview of the 
use of ROC curves, methods for graphing and computing their confidence bounds, 
and extensions, such as the partial area under the curve in situations when an inves-
tigator is interested in a screener only when its sensitivity exceeds a certain value.

Educators can also examine individual scores for a screener. Such evaluations do 
not assess the value of a screener as a whole, but only an individual decision thresh-
old on a particular screener. Many comparisons between screeners in education, how-
ever, rely only on cut-score-specific statistics. Jenkins, Hudson, and Johnson (2007), 
for example, examine universal screening for reading, as screening represents the 
principal means to identify students who require additional intervention within a 
response-to-intervention (RTI) framework. The authors review studies published 
since 1998 and summarize the evidence on candidate measures. Jenkins and col-
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leagues compare several kindergarten literacy screeners with their sensitivity values. 
While one screener had “poor sensitivity (50 %)” (p. 588) and other had “good sen-
sitivity (88 %)” (p. 589), specificity levels “ranged from 63 to 87 %” (p. 589). Each 
sensitivity value, however, is paired with a single specificity value and depends on 
the decision threshold. As demonstrated with an ROC curve (e.g., Fig. 8.3), every 
screener with more than a few possible scores has some point at which sensitivity 
equals approximately .80. A comparison similar to that made by Jenkins et al. but 
based on the cut scores in Fig. 8.3 would lead to the conclusion that ORF, NWF, and 
PSF were similarly accurate—they all have sensitivity of about .80—but their speci-
ficity ranged from .27 to .91. Figure 8.3, however, clearly shows that PSF is inferior 
to NWF, which is less accurate than ORF. Conclusions based on a single statistics 
offer little guidance, and even inferences that reference the criterion test, the chosen 
decision threshold, sensitivity, specificity, and other statistics offer insufficient infor-
mation to make critical judgments about a screener as a whole.

In a warning about poor screeners, Glover, Albers, and Kratochwill (2007) find 
that “many authors have suggested that the utility of screening instruments with sen-
sitivity, specificity, and PPVs that are below 75 % (Gredler, 2000b; Kingslake, 1983) 
or 80 % (e.g., Carran & Scott, 1992; Carter, Briggs-Gowan, & Davis, 2004; Meisels, 
1989) be questioned carefully” (p. 125). A value of specificity below .75 might be 
well worth the trade-off to obtain a sensitivity value above .99 in the right context. 
Such situations arise in medicine with diseases that have a high mortality rate (e.g., 
HIV in the 1980s), where it is critical to identify as many individuals with the disease 
as possible and false-positives can be ruled out with more invasive testing. In educa-
tion, there may be scenarios where educators find it more beneficial to catch all stu-
dents with potential academic problems and provide intensive supports than waiting 
to rule out additional typically achieving students from the intervention.

Reporting and comparing the ROC curve or A resolves the challenges that stem 
from the reliance on sensitivity, specificity, or other diagnostic statistics (e.g., pre-
dictive values) that apply to a single value. Generally speaking a screener with 
a somewhat larger area under the ROC curve, A, will have, at some point in the 
continuum, a more useful cut score than a screener with a lower A value. Due to 
the relation between (a) the ROC curve and A and (b) sensitivity and specificity, the 
former offers a more complete and hence more valuable picture.

District or School-Specific Decision Thresholds

Some authors (e.g., Richmond, 2012; Schatschneider et al., 2008) have suggested 
that schools use their own decision thresholds. The impetus for this recommendation 
is not without merit, but we believe the conclusion that schools should use different 
cut scores is unwarranted. The rationale perhaps lies in some schools’ inability to 
support all students at risk. If teachers in one school screen their first-grade students 
with DIBELS ORF and find that 75 % of students require some intervention, they 
would not likely have access to the resources to provide those supports. This find-
ing might lead to those educators to consider lowering the decision threshold for 
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“at risk” status for their students. Such a strategy, however, would mislabel some 
students as typically achieving when they are not, which could lead to a number of 
adverse consequences. For example, parents who move their children to a different 
school might be unpleasantly surprised to find that their “typically reading” child is 
now at significant risk of reading failure.

Kloo and Zigmond (2008) reported on a school where only 18 % of first-grade 
students had no risk of reading difficulty based on ORF scores. Rather than suggest-
ing a lower standard for risk, they recommended that the school adopt an empiri-
cally supported core curriculum, which was not in place, and that teachers teach 
reading for 90 uninterrupted minutes per day. Kloo and Zigmond also asked schools 
to introduce small-group instruction. The students in this school improved: in the 
following year, 45 % of first graters had no risk of reading difficulty. Had this school 
changed their cut scores, they would have reported that some larger proportion of 
their students were reading at an appropriate level, so administrators may have been 
less willing to consider a change to their core curriculum. If schools have a strong 
core curriculum and a tiered support system in place and still find a large proportion 
of students at risk, it is possible that not all students at risk can receive the interven-
tions they need. We believe it may be more suitable, ethically and politically, to 
accurately report the proportions of at risk students and the inability to fund inter-
ventions for all the students that require help.

Conclusion

In this chapter, we have summarized the literature on signal detection theory and of-
fered an introduction to procedures for the evaluation of diagnostic or classification 
systems. In the summary of the section on signal detection theory, we offer some 
of the key best practices, with references to additional details (e.g., the STARD 
statement), which will help researchers and consumers of research understand this 
common approach to the evaluation of screeners and the choice of decision thresh-
olds. Fluency-based screeners were among the first educational measures to offer 
criterion-referenced cut scores to teachers that predict the future performance of 
students, and the increased use of the methods will improve the evaluation and se-
lection of screeners and diagnostic tests for literacy, mathematics, student behavior, 
and other key outcomes in schools.

Fluency in any academic or behavioral skill typically requires fluency with sub-
skills. Fluent readers typically learn first to decode fluently; students fluent at mul-
tiplication must first attain fluency with addition. Fluency screeners help teachers 
identify whether students have achieved normative progress, and with a sufficient 
set of screeners, teachers can use screeners to determine whether students struggle 
with subskills. A struggling first-grade reader, for example, may simply need more 
practice reading connected text, but her challenges might stem from disfluency with 
certain letter sounds. These two potential diagnoses (among others) suggest differ-
ent interventions: additional practice reading connected text versus practice with 
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the sounds for specific subset of letters. Unlike the orchestra conductor, however, 
who can easily hear an out-of-tune cello, a rushed drumbeat, or a missed note by 
the pianist, identifying students who have not achieved fluency with blending 
sounds, single-digit addition, or the doubling rule for spelling (e.g., stop  + ing = 
stopping) is not so easy. Fluency screeners offer teachers a tool to help make such 
discriminations easier and more objective.

Screeners, however, do not mandate intervention. In schools with limited re-
sources, students who are at risk for reading difficulties yet at the better-performing 
end of the continuum might not receive immediate intervention. In some cases, 
teachers may choose to monitor those students more closely to determine if they 
continue to improve without more intensive services. The identification of specific 
subskills, however, can also improve the efficiency of instruction, which is critical 
for resource-strapped districts. As the evaluation of screeners improves and new 
tests more clearly identify subskills, teachers can better focus instruction for their 
students. Focused instruction for students, like marking for dancers (Warburton 
et al., 2013), should reduce the cognitive load and more efficiently lead to fluency 
gains.
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Chapter 9
Different Approaches to Equating Oral Reading 
Fluency Passages

Kristi L. Santi, Christopher Barr, Shiva Khalaf and David J. Francis

This chapter examines different solutions to the problem of test equating as it relates 
to the measurement of oral reading fluency (ORF) using different text probes, a 
problem that Francis et al. (2008) referred to as “form effects.” The chapter begins 
with an overview of ORF and curriculum-based measurement (CBM) and a general 
introduction to the problem of form effects in CBM. Information is provided about 
form effects and the problems they cause in accurately measuring student progress 
using CBM as well as about the reasons why equating passages through readability 
formulas alone is insufficient to ensure form equivalence and a constant measure-
ment scale. Using a middle school data set, the next section of the chapter provides 
examples of different methods of equating reading probes. Two of these methods, 
specifically linear equating and equipercentile equating, focus on the equating of 
raw scores, whereas other methods involve the use of latent variables (LVs) to 
equate test forms. The latter methods include both linear and nonlinear equating us-
ing LVs. This section also includes information on converting unequated raw scores 
to factor scores on a common scale. The chapter concludes with a discussion of the 
implications of using equating to improve results when using CBM either to screen 
for reading problems or risk of reading problems, or to measure student growth over 
the course of the academic year.
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Oral Reading Fluency

Fluency, the ability to read text aloud with speed, accuracy, and prosody, is an 
important skill in reading development due to its ability to serve as a proxy for 
comprehension and its consequent value in the identification of children at risk of 
reading difficulty (National Reading Panel; NRP, 2000; Deno, Fuchs, Marston, 
& Shinn, 2001; Fuchs, Fuchs, Hosp, & Jenkins, 2001; Snow, Burns, & Griffin, 
1998). When placed in the appropriate developmental perspective, ORF is indica-
tive of efficient word-level processing, a rich vocabulary knowledge base, and 
an understanding of text (Kame’enui & Simmons, 2001). As a result, measures 
of ORF have widespread utility as means of identifying and monitoring students’ 
progress in overall reading skills (Cummings, Atkins, Allison, & Cole, 2008). 
Although ORF measures were originally idiographic, and truly based on local 
curricula, a number of standardized measurement systems with common sets of 
reading passages have since been developed; for example, Dynamic Indicators of 
Basic Early Literacy Skills (DIBELS; Good & Kaminski, 2002a), Texas Primary 
Reading Inventory (TPRI: TEA, UTHSC, & UH, 2010), Read Well (Sprick, How-
ard, & Fidanque, 1998), Continuous Monitoring of Early Reading Skills (Mathes, 
Torgesen, & Herron, 2008), and the Texas Middle School Fluency Assessment 
(TMSFA; Francis, Barth, Cirino, Reed, & Fletcher, 2010). Attention to reading 
fluency has increased through the literature base on CBM, which employs stan-
dardized oral reading tests that serve as indicators of overall reading achievement 
(Fuchs et al., 2001).

Students’ ORF ability is measured by computing the total number of words 
read correctly in a fixed unit of time, typically 1 min, on connected text. Typical-
ly, ORF scores are then plotted over time to measure students’ growth in reading 
rate. These measures of student growth in fluency (i.e., the level of performance 
and slope) provide teachers with a means of tracking students’ overall reading 
progress and identifying instructional modifications that might lead to improved 
learning (Deno, 2003; Fuchs & Stecker, 2003; Shinn, 2002). In order for ORF 
assessments to accurately measure students’ true growth in reading ability, the 
CBM probes used to measure fluency must meet several criteria. Essentially, 
these criteria culminate in the individual assessments being reliable and valid. 
Reliability serves to index the degree to which scores are consistent. One way 
to think of this consistency is to imagine administering the same CBM fluency 
assessment to the same individuals on two separate occasions that are relatively 
close in time (e.g., 30 min to 3 days apart). Probes with reliable scores would 
yield similar rank orderings of the individuals on the two occasions because one 
would not expect any true change in fluency, or differences between individuals 
in the amount of true change between the two occasions of measurement. Con-
sequently, individuals’ relative standing on the two measures would be similar, 
even though individuals’ actual scores on the two occasions may be quite differ-
ent reflecting differences in the difficulty of the passages used on the two separate 
occasions. Using unequated, but reliable test scores, a teacher could determine 
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which students are the strongest readers in her class and which are the weakest; 
however, a teacher interested in tracking student progress, in determining the 
amount of progress made by individual students, or in ordering the students based 
on their progress, requires test scores that are equated across text probes in ad-
dition to being reliable. When using CBM as a tool for progress monitoring, it is 
not enough for the rank orderings of students to remain consistent across different 
probes. The scores themselves must remain consistent. To accurately measure 
progress, it is essential that differences in test scores from different probes reflect 
only differences in true ability and differences in the errors in measurement. Hav-
ing reliable scores ensures that the errors of measurement are small, but does not 
guarantee that the differences in test scores are due only to differences in ability 
and differences in error. To ensure that test score differences reflect differences in 
ability requires a more rigorous process for developing and scoring the passages, 
and a formal process for equating scores from different probes. In the absence of 
such a formal equating process, the amount of progress that students make from 
one time to the next will depend on the order in which the probes were used over 
time. Only when probes yield equivalent scores can the probes be used over time 
to accurately convey how much progress individual students are making in read-
ing. A teacher administering a series of equated probes over time can be confident 
that scores are not going up over time simply because students are reading easier 
passages, or going down because students are reading more difficult passages. 
These effects on CBM scores have been removed through the equating process. 
Any upward or downward movement in the scores is a combination of two fac-
tors—changes in ability and error in measurement. The measurement errors can 
be minimized through the use of reliable scores and by averaging multiple CBM 
probes at each measurement occasion.

Although we often speak of assessments being valid, validity is not so much 
an attribute of assessments, but rather an attribute of the inferences that we wish 
to make based on those assessments (Messick, 1988). One way to think about 
the validity of inferences from CBM assessments is with respect to inferences 
about status and growth. If we say that a student is reading at grade level based 
on a CBM assessment (i.e., we make an inference about status), the accuracy of 
that statement is a reflection of test validity. If we say that one student is making 
more progress than another student (i.e., we make an inference about growth), or 
that a student is making sufficient progress to be on grade level by the end of the 
year, the accuracy of these statements is a reflection of validity. Of course, the 
same concerns apply when children’s performance is not up to expectations. For 
students who are not making sufficient progress towards end of the year grade 
level expectations, this lack of progress must reflect a lack of progress in the stu-
dent’s reading as opposed to a flaw in the test construction. How assessments are 
developed and the procedures used to administer them are part and parcel to their 
reliability and validity.

To ensure that CBM assessments measure ORF reliably and that inferences 
based on CBM ORF assessments are valid, developers need to attend to various 
aspects of CBM probe development and CBM administration procedures. First, 
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standardization of test administration procedures (i.e., item sample, duration, ad-
ministration directions, and scoring) can help to ensure consistency across different 
administrations; both administrations by the same assessor to different examinees 
and administrations to the same examinees by different assessors. Second, the pro-
cedures for administering the assessment and computing the scores should be effi-
cient and easy for teachers to follow, as teachers are most commonly the individual 
in schools tasked with assessing students on CBM ORF measures. Third, the CBM 
ORF probes used to monitor reading progress (i.e., the short texts that students are 
asked to read) must be grade appropriate and, more importantly, of equivalent dif-
ficulty. Finally, generated scores (total words attempted minus errors) should be 
established on a constant metric and free from measurement artifacts (i.e., practice 
or form effects) (Shinn, Rosenfield, & Knutson, 1989; Fuchs & Deno, 1991; Mart-
son, 1989). These principles apply whether one is attempting to construct a scale 
for use within a single grade, or to construct a developmental scale for use across 
multiple grades. In the case of ORF, the problem of vertical equating (i.e., creating 
a scale to span multiple years of development in reading fluency) is less challenging 
than vertically equating tests of other cognitive abilities where the construct being 
measured may change qualitatively over time.

Research has provided substantial evidence that the first two criteria above can 
be met with standard approaches to develop and administrate CBM probes to mea-
sure ORF, whether based on 1 or 3 min of reading by the student. There is sub-
stantial evidence to indicate that ORF procedures can be standardized, they are 
efficient and easy to use, and can be used effectively by teachers, teacher aides, and 
researchers. In addition, administration procedures have been standardized across 
tests to ensure consistent measurement of ORF ability. Further, ORF assessments 
are clearly both efficient and easy to administer because a child can be assessed, and 
his or her performance can be scored in less than 5 min (Shinn, 2002). That CBM 
procedures routinely meet these criteria speaks to the general reliability of CBM as-
sessments. Ample evidence also exists supporting the validity of CBM assessments 
for predicting status on other reading assessments, such as non-CBM measures of 
reading fluency and more traditional measures of reading comprehension, and for 
predicting academic progress (see Deno, 2003; Deno, Fuchs, Marston, & Shin, 
2001; Madelaine & Wheldall, 2004).

As alluded previously, one challenge to monitor reading progress over time is the 
equating of scores that come from different reading probes. Related to this problem 
of score equating, is the equating of materials used to generate those scores. When 
texts differ in difficulty, then ORF fluency scores will vary because of these dif-
ferences in text difficulty. Although these differences may be inconsequential to 
the relative status of children to one another, they are crucial to inferences about 
status relative to grade-level benchmarks (Petscher & Kim, 2011) and to differences 
between students in progress (Francis et al., 2008). In the next section, we review 
different ways in which CBM developers attempt to control the difficulty of text 
to ensure comparability of ORF passages. Subsequently, we show that the simple 
control of ORF passage difficulty is insufficient to ensure the scores generated from 
those passages reflect a constant scale for the assessment of fluency.
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Form Equivalence as Measured by Readability Formulas

A common method for providing evidence of equivalent passage difficulty is by 
using readability formulas (Betts, Pickart, & Heistad, 2009). Readability formulas 
objectively estimate, without measuring characteristics of readers, the difficulty of 
written material, which is expressed through a numerical score that differs from one 
formula to the next, both in terms of its construction and in terms of its expression. 
These scores are often expressed as an estimated grade level (Bailin & Grafstein, 
2001) intended to convey the idea that an average reader in that grade should be 
able to read or “cope” with the text without undue frustration (Begeny & Greene, 
2014; Bailin & Grafstein, 2001; Compton, Appleton, & Hosp, 2004). The different 
readability formulas take into account a combination of factors that contribute to 
text difficulty, including, but not limited to the percentage or density of high fre-
quency, easy words (e.g., evaluated against a predetermined list of familiar words to 
most students in a particular grade, or words that frequently occur in text at a given 
grade level as evidenced by a standard corpus of word frequency), the percentage 
or density of difficult words (e.g., words that are not included on the list of familiar 
words, or words that occur infrequently in text at a given grade), the average num-
ber of words per sentence, the average number of syllables per word, the number 
of single-syllable words, or the number of words with multiple syllables (Begeny 
& Greene, 2014).

Although the first instance of concern about difficulty levels of written mate-
rial goes back to 900 AD when the Talmudists counted the number of occurrences 
of words and individual ideas in their scrolls, a scientific approach to text diffi-
culty and readability originated in the 1920s (Tekfi, 1987; Klare & Buck, 1954). 
Throughout the 20th century, several formulas have been developed and used for 
different purposes, such as, determining the readability of government documents, 
newspaper articles, schoolbooks, and medical documents (Begeny & Greene, 2014; 
Bailin & Grafstein, 2001). For example, the Forcast formula, which is calculated 
based on the number of one-syllable words per 100 words, was developed to evalu-
ate exams and entrance forms for the US Army (Sticht, 1973). Table 9.1 provides a 
display of some of the more commonly used readability formulas utilized in educa-
tion today along with the corresponding formulas. Of the formulas for measuring 
text difficulty listed in Table 9.1, only the Lexile framework was developed as a 
metric that could be applied to both readers and texts in order to place both on a 
common, interval scale; that is to say, a scale where numerical differences of a 
given magnitude mean the same thing no matter where they appear in the scale. 
The Lexile framework is based on a theoretical formulation of the factors that af-
fect the comprehensibility of text and is backed by empirical research that supports 
the theoretical formulation. The objective behind the framework is to place read-
ers and texts on the same scale such that the score assigned to a student indicates 
the level of text that the student can read with a specified level of understanding. 
Therefore, by analyzing a student’s performance on calibrated reading tasks, she/he 
is then located on the Lexile scale at the point where she/he is predicted to achieve 
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75 % comprehension of the text. That is, a student with a Lexile measure of 500L is 
estimated to correctly answer 75 % of Lexile items sampled from a text measuring 
500L (Stenner, Burdick, Sanford, & Burdick, 2007). Thus, the more difficult the 
passage, the higher the Lexile measure for that text, and the more skilled the student 
must be to comprehend the text.

Although readability statistics are widely used by teachers as tools for selecting 
reading materials that are matched to students’ reading proficiency levels (Hiebert, 
2002) and for selecting passages that are of comparable difficulty to one another, 
researchers have questioned the use of these formulas for over 50 years (e.g., Swan-
son & Fox, 1953). A number of studies have examined the relation between ORF 
and readability and the extent to which readability accounts for variability in ORF 
across CBM probes. These studies have generally found weak correlations between 
readability levels and ORF for both struggling readers and typically developing 
readers (Compton et al., 2004; Powell-Smith & Bradley-Klug, 2001). Other studies 
have evaluated the validity of readability formulas as predictors of student’s ORF 
rates and found weak relations between ORF rates and passage difficulty (Ardoin, 
Suldo, Witt, Aldrich, & McDonald, 2005). Finally, researchers have also examined 
variability in estimates of readability when different formulas are applied to the 
same CBM probes. For example, Good and Kaminski (2002b) developed passages 
that were targeted at the end of the year or the beginning of the next grade year us-
ing the Spache readability index. However, using other readability indices, the same 
passages showed a markedly different range of readability estimates depending on 
the formula used to evaluate them. For example, passages with Spache indices rang-
ing from 2.4 to 2.7 were found to range from 4.3 to 8.0 on the FOG, 3.0–6.6 on the 
Fry, 6.8–9.5 on the Forcast, and 2.2–5.3 on the Flesch (see Table 9.4, pg. 7, Good 
& Kaminski, 2002b). At first glance, this inconsistency across measures may seem 

Table 9.1  Summary of readability formula

Name Formula
Dale-Chall
Dale & Chall, 1948

Grade = (0.1579 × percent unfamiliar words) + (0.0496 × word/
sentence) + 3.6365

Flesch-Kincaid
Flesch, 1948

Grade = 0.39 (average words/sentence) + 11.8 (average syllables/
word) − 15.59

FOG
Gunning, 1952

Grade = 0.4 [(average words/sentence) + (percent of hard words)]

Forcast
Sticht, 1973

Grade = 20 − (# single-syllable words/10)

Fry
Fry, 1968

Grade = graph average (#sentence, #syllables) from three 100-word 
passages

Lexile
Stenner et al., 2007

Based on word frequency and sentence length (rounded to the 10L)

SMOG
McLaughlin, 1969

Grade = (0.121 × word/sentence) + (0.082 × percent unfamiliar 
words) + 0.659

Spache
Spache, 1953

Grade Level = (0.141 × ASL) + (0.086 × PDW) + 0.839
(AWL = average sentence length and PDW = percent of difficult words)
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surprising; however, on closer examination, it would seem to be expected. On the 
one hand, readability formulas are designed to estimate the difficulty that students 
may encounter in understanding a text, and ORF probes are used to measure flu-
ency as a proxy for comprehension. ORF probes do not measure comprehension 
directly, but only indirectly through the link between fluency and comprehension. 
Second, the link between readability and comprehension is also imperfect in so far 
as measures of readability are imperfectly related to students’ comprehension, al-
though readability and comprehension are more strongly correlated than readability 
and fluency.

Recently the notion of readability has evolved into a more general notion of text 
difficulty, with significant contributions from researchers interested in text and dis-
course and cognitive models of reading comprehension. These approaches attempt 
to go beyond the features of words and sentence composition to examine more 
complex features of text. Several of the more comprehensive approaches to exam-
ining text difficulty were recently reviewed by Nelson, Perfetti, Liben, and Liben 
(2012) in a report for the Council of Chief State School Officers. These researchers 
found variability across the measures, but nevertheless found strong correlations 
(generally in the range from .5 to .8) with reference indicators of text difficulty. 
Specifically, the study involved five reference sets of text that had been ordered 
a priori according to difficulty. For example, one set of texts was comprehension 
passages from the Gates-MacGinitie Reading Test, and a second was comprehen-
sion passages from the Stanford Achievement Test a third set was passages from 
state standardized reading assessments. These passages can be ordered in difficulty 
a priori based on the grade level in which they are used. More importantly, the re-
searchers found strong relations between text difficulty and measures of students’ 
reading ability as measured by the average item difficulty for questions associated 
with specific texts. These correlations tended to be higher (generally between .7 
and .8 with one exception) than the correlations between the text difficulty mea-
sures and grade level. The researchers further concluded that the more comprehen-
sive measures, such as CohMetrix (Graesser, McNamara, & Kulokowich, 2011), 
better explained text difficulty than measures that were limited to word frequency 
and sentence length.

Beyond Form Equivalence to Score Equivalence

Even though readability and text difficulty measures provide useful information 
about the relative difficulty of texts, the measurement of growth requires a more 
stringent equivalence criterion among ORF CBM probes than is possible through 
typical form development standards and readability formulas. A large number of 
research studies have shown that estimates of text difficulty based on readability 
formulas are not adequate for ensuring that reading materials are equivalent (see 
Begeny & Greene, 2014). For example, Betts et al. (2009) found that although 
readability statistics were able to identify course differences in difficulty levels 
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between different grades, they were not able to identify fine differences within 
a grade level. Equivalence of test scores is difficult to achieve through design 
specifications alone. This problem is not unique to the development of CBM 
ORF probes, but until recently had been largely ignored in the CBM literature. 
Test developers routinely go through processes for equating scores from different 
forms of the same test so that students are neither advantaged nor disadvantaged 
by the specific test form that they happen to take on a particular day. The same 
has not been routinely done in the development of CBM ORF probes. Using dif-
ferent probes from a published CBM ORF assessment, Francis et al. (2008) found 
substantial differences in estimates of ORF scores depending on which probes 
students were asked to read. More importantly, they showed that these passage ef-
fects also changed the shape of growth trajectories and affected estimates of linear 
growth rates. At the same time, Francis et al. (2008) demonstrated how the same 
procedures used to equate different test forms for traditional assessments could be 
used to remove form differences in CBM ORF probes. By using explicit equat-
ing procedures with CBM probes to remove passage effects, Francis et al. (2008) 
showed that explicit equating is essential to the development of equivalent forms, 
which in turn is essential to make valid inferences about growth. Although scores 
from different test forms were highly correlated, meaning the scores rank-order 
students in approximately the same order across forms, variability in difficulty 
affected students’ absolute levels of performance in predictable ways and conse-
quently affected estimates of student growth.

When measuring skills like comprehension or reading fluency, we cannot ignore 
the stimulus materials and their influence on our estimate of true scores. Many ele-
ments of stimulus construction can be averaged across administrations to diminish 
their influence on true score estimation. For example, we can use both narrative 
and expository passages in a measure of reading comprehension, and we can select 
passages from a wide variety of subject matter areas so that individuals are not 
advantaged or disadvantaged by the topical focus or genre of the reading passages. 
It would be theoretically possible to average out the effects of passage difficulty in 
the assessment of ORF if one were willing to have students read multiple passages 
each time they were tested and were willing to average the different ORF scores 
for the student. But interest in efficiency has dominated assessment procedures in 
CBM, so much so that even when multiple assessments are used, it is common to 
limit the number of passages to three and to take the median ORF score as the most 
stable one. Although the median of three measures is less variable than any one 
measure, it is more variable than the average of those measures. Most importantly, 
the median will not have the same expected value as the mean if the three measures 
are not equally difficult. The expected value of the median of three measures is the 
population median of the three measures, whereas the expected value of the mean 
is the population average of the three measures. However, when the three passages 
are not equally difficult, the mean and median are not equally effective in averaging 
out the effects of text difficulty. (For a detailed examination of using the median to 
estimate ability in CBM procedures, see Barth et al., 2012; for a more detailed com-
parison of the mean and median for estimating ability, see Petscher and Kim, 2011.)
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The difference between the mean and median for estimating ORF ability could 
be diminished and the effects of passage difficulty could be eliminated, if the me-
dian and mean were computed on equated scores, rather than raw scores. What 
is needed is not for students to read more passages, but to equate the scores from 
passages that differ in difficulty so that all scores are placed on a common scale. In 
what follows, we will use data from a project with middle school students to dem-
onstrate several practical ways that test developers can mitigate the effects of text 
difficulty on the estimation of students’ ORF ability. We contend that it is not pos-
sible, nor is it desirable, to have passages that exist at a single level of text difficulty. 
Rather, passages should sample from the range of text difficulty that students are 
likely to encounter in their grade. What teachers need is a mechanism for removing 
the effects of text difficulty on a student’s estimated ORF ability so that, from the 
standpoint of the student and teacher, it is irrelevant which passage(s) the student 
reads on any particular day and what results from the assessment is an accurate 
reflection of the student’s ability to read grade-level text. This mechanism for plac-
ing all passage scores on the same scale is known as equating. Through a formal 
equating process test developers can provide teachers and students with scores on 
a constant scale that remove the effects of varying levels of text difficulty on the 
estimation of students’ ORF ability. We begin the remainder of the chapter by first 
introducing the dataset on which the examples in this chapter are based followed by 
a description of several different approaches to equating CBM probes along with 
applications of these approaches to the sample dataset.

Equating CBM Probes for Middle School Students

The Texas Middle School Fluency Assessment 

The TMSFA is a reading instrument designed to measure growth in reading fluency 
for students in grades 6, 7, and 8. The TMSFA measures students’ ability to both 
recognize words by sight in the absence of context and to identify words while read-
ing connected text. The reading fluency skills measured by the TMSFA are essential 
to the development of overall reading ability. As a result, the TMSFA has been 
developed to help identify why certain middle school students are lagging behind 
their peers. Moreover, like all ORF measures, the TMSFA permits frequent assess-
ments either by a classroom teacher, diagnostician, or other testing professional 
(Fletcher, Lyon, Fuchs, & Barnes, 2007; Snow, Burns, & Griffin, 1998) in order to 
evaluate student progress.

The TMSFA was developed in the summer of 2006, piloted in August, 2006, and 
implemented in the early fall of 2006, with additional testing sessions taking place 
in December, 2006, and January, February, and April, 2007. A total of 1867 students 
in grades 6–8 participated in the validation studies for the TMSFA, 733 students in 
grade 6, 450 students in grade 7, and 684 students in grade 8. Across grades, there 
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were 754 typical readers; this subgroup comprised 40 % of the total sample. The 
remaining 1113 students were identified as struggling readers. Gender and ethnic-
ity information was also obtained. The ethnic breakdown was as follows: 42 % of 
the sample was African American, 36 % Hispanic, 19 % Caucasian, and 3 % Asian. 
Furthermore, both genders were almost equally represented (49.5 % female). Lunch 
status was not available for 60 students, but of the remainder, 68 % were eligible for 
free or reduced lunch. Thus, the sample was ethnically and economically diverse 
(Francis et al., 2010).

The TMSFA consists of two subtests: (a) the word reading fluency measure and 
(b) the passage reading fluency measure. In addition to receiving the TMSFA mea-
sures, students participating in the project were also assessed on both subtests of the 
Tests of Word Reading Efficiency (TOWRE; Torgesen et al., 2001; viz., phonemic 
decoding efficiency and sight word efficiency), the Test of Sentence Reading Effi-
ciency (TOSRE; Wagner, Torgesen, Rashotte, Pearson, 2010), and the Test of Silent 
Contextual Reading Fluency (TOSCRF; Hammill et al., 2006). Table 9.2 provides a 
summary of all measures administered to students and the order in which they were 
administered. Because the remainder of the chapter is focused on the equating of the 
CBM probes for the passage reading fluency measure, we will not say more about 
the other component of the TMSFA or the validating battery of tests except for three 
measures used in the LV equating. Interested readers should consult Francis et al. 
(2010) or contact the chapter authors for additional information.

Table 9.2  Fluency passage ordering within and across grades

Order read
Grade Order First Second Third Fourth Fifth
6 A  1  2  3  4  5
7 A  2  3  4  5  6
8 A  3  4  5  6  7
6 B  8  9 10 11 12
7 B  9 10 11 12 13
8 B 10 11 12 13 14
6 C 15 16 17 18 19
7 C 16 17 18 19 20
8 C 17 18 19 20 21
6 D 22 23 24 25 26
7 D 23 24 25 26 27
8 D 24 25 26 27 28
6 E 29 30 31 32 33
7 E 30 31 32 33 34
8 E 31 32 33 34 35

Note: The grey shaded boxes with the bold number indicate the five stories across all grades used 
in the analysis. Story 2—Koalas; Story 3—Suni; Story 4—An Unusual Job; Story 5—A Wonderful 
Friendship; and Story 6—The King’s Gold. The remaining stories may be found in the TMSFA.
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The Passage Reading Fluency Measure 

The passage reading fluency measure consists of 35 passages that were developed 
in both narrative and expository text structure. All passages averaged approximately 
500 words each. Passages ranged in difficulty from approximately 350 Lexiles to 
approximately 1400 Lexiles (for more on the Lexile metric see Stenner et al., 2007). 
Within grades, students were randomly assigned to one of five groups, with each 
group reading five passages. Within a given grade, different groups read different 
passages, but across grades there was some overlap in the passages read as shown 
in Table 9.2. Table 9.2 displays the passages read by the students in each group in 
each grade and the order in which the passages were read. The group designation in 
Table 9.2 signifies the grade and the randomly assigned group within grade (A–E). 
The table makes clear the overlap in stories between students in different grades. 
For example, in group A, students in grade 6 read stories 1–5, students in grade 7 
read stories 2–6, and students in grade 8 read stories 3–7. As can be seen in the table, 
within a given group set (A–E) there are four passages that overlap between 6th 
and 7th graders, three passages that overlap between 6th and 8th graders, and four 
passages that overlap between 7th and 8th graders. The procedures for the study 
required that students read five stories for 1 min each within a single sitting and 
then answer approximately eight explicit and inferential questions about the story. 
ORF scores were recorded individually as the number of words read correctly per 
minute of reading (words correct per minute (WCPM)). Although students read the 
first two stories in their entirety, the analyses are based on the WCPM score from 
the first minute of reading.

Test of Word Reading Efficiency (TOWRE; Torgesen et al., 2001) 

TOWRE is an individually administered test of speeded reading of single words. 
This measure consists of two subtests: sight word efficiency and phonemic decod-
ing efficiency. The sight word efficiency task requires students to read as many 
printed real words as they can within 45 s. The phonemic decoding task requires 
students to read as many pronounceable pseudo words as they can within 45 s. 
The internal consistency reliability for the sight word efficiency and the phonemic 
decoding efficiency tasks is .93 and .94, respectively.

Test of Sentence Reading Efficiency and Comprehension (TOSRE; 
Wagner et al., 2010) 

TOSRE is a 3-min, group-based assessment of reading fluency and comprehension. 
Students are presented with a series of short sentences and are required to read 
each sentence to themselves and then mark on the page next to the sentence if the 
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statement read was true or false. The raw score is the number of correct minus the 
number incorrect. The test is both reliable and valid for the age range of interest.

Linear Equating

Linear equating is the process of placing observed scores on a common metric 
based on means and standard deviations (Holland & Rubin, 1982). In the case of 
ORF, linear equating removes mean and variance differences in WCPM across 
probes. Linear equating defines passages as being equivalent through the following 

equation: 
1 ( 1) 2 ( 2)

,
( 1) ( 2)

− −
=

p i P p i P

P P

µ µ
σ σ

 where p1i and p2i are the WCPM scores for 

person i on passage 1 and 2, respectively, and μ( Pk) and σ( Pk) designate the mean 
and standard deviation, respectively, for passage k. This formula stipulates that a 
given person’s score ( 1 , 2 )p i p i  would be the same on two different probes if we 
expressed each score as a standardized deviation from the mean ( ( 1), ( 2))P Pµ µ  
for that probe. Linear equating assumes that scores can be equated using the same 
function at all points of the WCPM score distribution. Put another way, this for-
mula assumes that the score distributions for two probes have the same shape; the 
distributions simply differ in their means ( ( 1), ( 2))P Pµ µ  and standard deviations 
( ( 1), ( 2)).P Pσ σ  By using linear equating for all test forms, we assume that students’ 
true WCPM scores differ between any two CBM probes by a constant difference 
multiplied by a scaling factor (i.e., the standard deviation). Any other difference 
between observed WCPM scores for the same student on two different probes is 
due to error. Error can occur in two forms, random and systematic (Kolen & Bren-
nan, 1995). Random error occurs because the equating relations were created using 
samples drawn from the population and not the entire population. Random error 
decreases as sample size increases. Systematic error can come from several sources, 
including bias in the method of estimation, nonrandom samples, violations to statis-
tical assumptions, etc. Sample size has no impact on systematic error. As a general 
rule, standard errors of equating should be about .1 at the mean, and can increase to 
1 at the Mean  ± 2SD (Kolen & Brennan, 2004).

Linear Equating Empirical Example 

In this section, we present an empirical example for linear equating from the 
TMSFA. Specifically, we will present the linear equating process and results for 
five stories: Koalas, Suni, An Unusual Job, A Wonderful Friendship, and The 
King’s Gold. These stories are the five stories that were read by students in grade 
7, group A, but four of these five stories were also read by grade 6, group A, and 
grade 8, group A. Recall from the previous design discussion that there are 15 
groups across three grades and students in the same grade in each group read the 
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same five passages. Across the three grades, each group (A, B, C, D, and E) was 
assigned seven passages with the sixth graders reading the first to fifth passage, 
seventh graders read the second to sixth passage, and eighth graders read the third 
through seventh passage in a set of seven passages. For the current empirical 
example, we are omitting the first and seventh passages and only focusing on the 
five passages in the set with some overlap across the three grades. The descriptive 
statistics for the raw WCPM scores prior to equating can be seen in Table 9.3. As 
seen in the table, Koalas has the lowest observed mean, which is to be expected 
because students in lower grades would be expected to read slower than students 
in upper grades and no eighth graders read this probe. Yet the passage The King’s 
Gold did not have the highest mean, even though this passage was read by only 
seventh and eighth grader students, who would be expected to read the fastest. 
Instead, Suni a passage read by all three grades had the highest mean, though 
it was quite comparable to The King’s Gold and only differed by d = .07. Of the 
remaining passages read by all students, An Unusual Job and A Wonderful Friend-
ship had observed means less than both Suni and The King’s Gold.

When conducting equating, the typical approach is to generate a referent value 
that allows for the comparison of observed scores on multiple forms. Three ex-
amples of referent values are: (a) equating to arbitrary values on an arbitrary scale, 
such as equating WCPM to t scores (i.e., Mean = 50, sd = 1.0), (b) equating back 
to the simplest passage values, or (c) equating to composite WCPM values (i.e., 
an average WCPM computed across multiple probes). These referent values can 
then be associated with specific WCPM values for the fluency passages and al-
low instructors to obtain the referent score for any given student’s WCPM on 
any given fluency passage. Thus, WCPM scores can be directly compared across 
multiple passages. In the current example, we chose to use composite WCPM 
values. For our referent WCPM scores, we computed the mean and standard de-
viation for scores across the three passages that were read by students in all three 
grades: Suni, An Unusual Job, and A Wonderful Friendship. In this way, we used 
the maximum amount of information from a common set of students as our refer-
ent. Table 9.4 displays the unadjusted values of the five passages and the referent 
value of these passages across the range of scores from −2 standard deviations 
to +2 standard deviations. The table allows for a direct comparison of WCPM 

Table 9.3  Descriptive statistics for grade 7 group A ORF passages

Variable N Mean Standard 
deviation

Minimum Maximum

Koalas 230 117.02 37.73  3 217
Suni 367 132.05 36.73 26 239
An Unusual 
Job

367 119.93 37.96 22 214

A Wonderful 
Friendship

367 124.14 35.24 29 208

The King’s 
Gold

222 129.06 39.77 33 245
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values from different passages back to the common referent. For example, reading 
187 WCPM on Suni or 177 WCPM on A Wonderful Friendship both trace back 
to a referent value of 180 WCPM. Thus, a student who reads 187 WCPM on Suni 
would have the same expected fluency ability as a student who reads 177 WCPM 
on A Wonderful Friendship.

Equipercentile Equating

As mentioned, linear equating assumes that the scores being equated are normally 
distributed and thus all relevant information about distribution differences are con-
tained in the means and standard deviations of the distributions. Problems can arise 
with linear equating when WCPM score distributions are non-normal, or differently 
shaped across passages. Equipercentile equating can provide more accurate equated 
scores, particularly when scores are either very low or very high relative to the 
mean, but requires large sample sizes because of the reliance on accurate estimation 
of order statistics. Linear equating is, in fact, considered to be an approximation 
of equipercentile equating (Hambleton, Swaminathan, & Rogers, 1991). Equipe-
rcentile equating does not rely on passage means or standard deviations to equate 
passages. Instead, equipercentile equating assumes that the passages are equivalent 
based on percentile ranks of observed WCPM scores. This reliance on percentile 
rankings allows relations between observed WCPM scores and true scores to be 
nonlinear. If it is the case that curvilinearity exists in the relation of observed and 
true scores, equipercentile equating is the only observed score equating method 
that will account for this curvilinearity. In other contexts, such as tests that yield 
a number correct as the observed score, equipercentile equating is also better at 
handling passages when the differences in the difficulties of the forms are large, or 

Table 9.4  Linear equating of grade 7 group A ORF passages

Reference 
value

Reference 
WCPM

Koalas Suni An Unusual 
Job

A Won-
derful 
Friendship

The King’s 
Gold

+ 2 SD 198.66 192.48 205.51 195.85 194.62 208.6
+ 1.5 SD 180.34 173.615 187.145 176.87 177 188.715
+ 1 SD 162.02 154.75 168.78 157.89 159.38 168.83
+ 0.5 SD 143.70 135.885 150.415 138.91 141.76 148.945
Mean 125.37 117.02 132.05 119.93 124.14 129.06
− 0.5 SD 107.05 98.155 113.685 100.95 106.52 109.175
− 1 SD 88.73 79.29 95.32 81.97 88.9 89.29
− 1.5 SD 70.41 60.425 76.955 62.99 71.28 69.405
− 2 SD 52.09 41.56 58.59 44.01 53.66 49.52

WCPM words correct per minute
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when there is differential strength in the students’ abilities. But because equipercen-
tile equating involves the estimation of more parameters than linear equating, the 
sample size requirements are greater (Kolen & Brennan, 2004).

Generally speaking, equipercentile equating requires significantly larger sam-
ples than linear equating. However, the specific sample size required to achieve 
the same precision with linear and equipercentile equating will depend on many 
factors, including the expected shape of the distribution and the desired precision 
in equating at specific points on the score distribution. Kolen and Brennan (2004), 
in their excellent text on test equating, give an example where the desired precision 
is .1 raw score standard deviations between −2 and +2 standard deviations of the 
mean, and the distribution of observed scores is normal. In this particular instance, 
using a random equating design (i.e., subjects randomly assigned to one test or the 
other), linear equating would require a sample of 400 students per form, whereas 
equipercentile equating would require a sample size of 1500 students per form, or 
roughly four times as many students to achieve the same precision.

In some ways, for CBM equating, the prior example might be considered a best 
case scenario as raw CBM scores may be non-normal, and interest in CBM is of-
ten in scores at the low end of the distribution (i.e., scores well beyond −1.5 stan-
dard deviation units below the mean). Of course, if the focus is on low-performing 
students, it is possible to concentrate sampling on those students and to develop 
equating rules for use of CBM assessments with at-risk students. That is, it is not 
necessary to use a sample of 10,000 to get 200 students below the 20th percentile. 
Rather, sampling can be concentrated on those students for whom the test is to be 
used for progress monitoring. It is also important to note that, within the subgroup 
of at-risk students, CBM scores may be more normally distributed, and thus, lin-
early related across passages, making it possible to use linear equating effectively 
within this population of students, Of course, if the test is to be used with all stu-
dents, then a restricted sampling strategy would not lead to the desired equating for 
all students, regardless of whether linear or equipercentile equating were used. In 
this instance, an alternative is to oversample at-risk students, providing increased 
precision in the lower tail of the distribution while preserving the ability to equate 
scores throughout the range of possible CBM scores and also keeping sample size 
requirements more manageable.

In equipercentile equating if all possible observed WCPM raw scores do not 
occur in a given sample, interpolation methods would be required to obtain an equi-
percentile rank for any unobserved WCPM values. Additionally, at points of the 
distribution where there is limited information (e.g., fewer scores in the tails of the 
distribution) the reliability of the estimates will be lower. Oversampling at-risk and 
high-ability students can reduce the impact of these potential problems and lower 
the overall sample size requirements to obtain the same degree of precision in the 
tails of the distribution. Finally, it must be kept in mind that when distributions are 
similarly shaped, linear equating can be more accurate than equipercentile equating.
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Equipercentile Equating Empirical Example 

In this section, we present the empirical example for equipercentile equating. 
Figure 9.1 presents real data from for the percentiles of Suni. As seen in the fig-
ure, the relation between the percentiles and WCPM is fairly linear between the 
20th and 80th percentiles but becomes curvilinear beyond that. A linear equating 
framework would likely overestimate performance in the bottom tail and under-
estimate performance in the top tail. Like the linear equating example above, 
we will present the equating process and results for five stories: Koalas, Suni, 
An Unusual Job, A Wonderful Friendship, and The King’s Gold. In conducting 
equipercentile equating, the cumulative percentage of all scores below a target 
score are added to ½ of the percentage at the target score. For example, if 50 % of 
students read less than 100 WCPM and 3 % of students read exactly 100 WCPM, 
then the equipercentile value for 100 is 51.5 % (50 % + (.5 × 3 %)). This addition 
of ½ of the percentage of examinees at the target value to the cumulative percent 
essentially treats the value of 100 as representing the interval of values from 
99.5 to 100.49. By adding ½ of the percentage, the examinees at the value 100 
are being spread across the interval from 99.5 to 100.49 so that they contribute 
equally to the cumulative percentage below the target value and the percentage 
below the next higher value. Although this ½ percent below and above a specific 
WCPM seems trivial, it underscores the continuous nature of the underlying flu-
ency construct, in that an observed score may be an integer but its true value can 
range from ±.5 of the WCPM. For a complete explanation of this reasoning, see 
Blommers and Forsyth (1977).

Through equipercentile equating, any WCPM score can be given an equal 
rank in cumulative percentages (i.e., an equipercentile rank) so long as data are 

Fig. 9.1  Equipercentile equating plot for Suni. The figure depicts the curvilinear nature of the data 
as it approaches the tails of the distribution
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available about the percentages of students at or below specific WCPM scores 
from a sufficient number of students. This equating process requires normative 
data and must be carried out by test developers or researchers with expertise in 
measurement and familiarity with CBM probes. Test equating is not the responsi-
bility of test users, such as classroom instructors, but of test developers. Typically, 
the test developer constructs look-up tables for each passage and test users convert 
obtained WCPM scores during testing to equated WCPM scores through the look-
up tables or through software that carries out the table look-up in the background. 
The look-up table converts the observed WCPM raw score from a specific probe to 
a percentile rank and then to a scaled score that is equivalent across different test 
probes. The scale is constructed to have a desired mean and standard deviation. 
The values for the mean and standard deviation of the scaled score are arbitrary, 
but could be chosen to reflect the distribution of ORF scores at a specific grade 
level, or on the distribution for a particular probe used at that grade. Although other 
scale choices exist, basing the mean and standard deviation of the scaled score on 
a particular test form, or the average across all forms at a grade are consistent with 
the general philosophy behind CBM assessment. Regardless of the choice of scale 
by the test developer, the look-up tables allow classroom instructors to easily and 
rapidly determine the scaled score value for a given WCPM score from any CBM 
ORF probe. By using these equated scaled scores, teachers can easily monitor flu-
ency progress on a common metric across passages without concern that scores 
will fluctuate from one period to the next because of changes in the CBM probe. 
Although scores will still fluctuate across assessment intervals, one considerable 
source of fluctuation in the scores has been controlled resulting in scores that are 
more comparable over time.

We have constructed these look-up tables and present them in Table 9.5 for the 
five passages read by grade 7, group A students. As seen in the table, a student read-
ing 120 WCPM on Koalas scored at roughly the 48th percentile for all students read-
ing that probe. Based on the equating tables, this same student would be expected 
to read 129–130 WCPM, 118–119 WCPM, 124–125 WCPM, and 123–124 WCPM, 
on passages Suni, An Unusual Job, A Wonderful Friendship, and The King’s Gold, 
respectively. In the construction of the table, we used all available data—grade 6 
data on Koalas, Suni, An Unusual Job, and A Wonderful Friendship, grade 7 data 
on Koalas, Suni, An Unusual Job, A Wonderful Friendship, and The King’s Gold, 
and grade 8 data on An Unusual Job, A Wonderful Friendship, and The King’s Gold. 
The use of all data is preferable because form effects on passages are a characteristic 
of the passages themselves and not of samples reading the passages. Although it is 
possible to develop equating tables that are grade specific, we would argue that it is 
more appropriate to have a scale that can reflect the development of ORF across the 
entire developmental range where the particular CBM probe has been targeted for 
use. Using all available data allows for more reliable estimation of the equipercen-
tile rank for values of WCPM across the full range of the underlying fluency ability, 
that is, over the developmental range of ability for which the probe will be used.

It is important to distinguish equipercentile ranks, which are associated with 
the raw score distributions for specific ORF passages, from norm-referenced 
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Equipercentile 
rank

Koalas Suni An Unusual 
Job

A Wonderful 
Friendship

The King’s 
Gold

< 1 LE 2 LE 25 LE 21 LE 28 LE 32
1 19.30 44.17 25.06 37.17 38.22
2 35.10 51.34 33.84 46.17 46.44
3 37.40 59.51 43.01 52.51 56.16
4 49.20 66.18 47.39 55.18 60.94
5 58.00 70.68 60.68 65.85 65.60
6 59.90 73.52 63.51 71.51 67.82
7 61.60 76.35 65.56 73.06 73.04
8 63.70 80.68 69.86 74.29 74.69
9 64.85 83.53 72.67 75.52 75.25
10 66.50 86.68 73.28 77.35 77.70
11 67.27 87.62 74.29 79.19 80.21
12 68.03 90.54 75.51 80.26 83.14
13 68.95 92.18 76.24 81.40 84.62
14 70.60 94.88 77.88 84.19 87.04
15 72.00 97.51 79.53 86.85 88.65
16 73.90 98.43 80.93 88.36 90.52
17 76.05 100.30 82.20 89.63 92.44
18 77.90 102.52 84.03 90.85 92.99
19 79.85 103.43 85.41 92.37 94.73
20 82.50 104.73 86.70 93.90 96.20
21 85.58 105.35 88.19 95.27 97.31
22 86.15 105.96 90.08 96.75 98.42
23 87.90 106.60 91.30 97.97 100.52
24 91.30 107.53 94.19 99.19 101.26
25 91.88 108.88 95.42 100.19 102.00
26 93.10 109.90 96.57 100.98 102.86
27 94.55 110.52 97.18 101.72 103.97
28 96.90 111.44 97.94 102.45 105.08
29 98.73 112.19 100.64 103.72 106.46
30 99.50 113.03 102.05 105.53 108.10
31 100.27 113.75 103.19 106.89 108.86
32 101.70 114.28 104.55 107.91 109.31
33 102.47 114.85 104.96 108.56 110.57
34 103.23 115.46 105.36 109.95 111.12
35 104.00 115.99 106.71 111.73 112.70
36 104.90 116.62 107.23 112.92 115.73
37 106.60 119.10 107.86 114.29 116.29
38 108.20 120.65 108.62 115.19 117.77
39 109.85 121.78 109.57 116.54 118.22
40 111.00 122.59 111.10 117.90 118.70
41 112.15 123.00 111.85 118.91 119.26
42 113.80 123.40 112.38 119.55 119.75

Table 9.5  Equipercentile equating of grade 7 group A ORF passages
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Equipercentile 
rank

Koalas Suni An Unusual 
Job

A Wonderful 
Friendship

The King’s 
Gold

43 115.95 124.77 113.44 120.77 120.19
44 117.10 126.24 114.20 121.99 120.67
45 117.88 127.29 115.54 122.93 121.23
46 118.45 127.90 116.46 123.62 121.87
47 119.20 128.43 117.80 124.14 122.61
48 120.20 129.66 118.66 124.69 123.35
49 121.35 131.21 119.97 125.31 123.86
50 122.00 132.33 120.63 126.33 124.30
51 122.55 133.79 121.53 127.29 126.61
52 122.93 135.07 122.27 128.21 127.94
53 123.32 135.75 122.92 129.34 129.33
54 123.74 136.36 123.55 130.14 130.44
55 124.20 136.98 124.46 130.87 131.20
56 125.30 137.57 125.38 131.57 132.66
57 126.20 138.10 126.30 132.02 134.27
58 126.97 138.67 127.22 132.48 135.88
59 127.68 139.41 128.13 133.21 136.99
60 128.25 139.96 129.05 134.55 137.90
61 128.93 140.48 130.44 135.47 138.71
62 129.60 141.89 131.39 136.64 139.82
63 129.98 142.74 132.04 137.71 140.67
64 130.37 143.48 132.60 139.22 141.12
65 131.67 144.01 133.01 140.35 141.58
66 132.43 144.57 133.41 141.31 142.13
67 132.92 145.68 134.97 141.98 142.87
68 133.38 146.41 136.28 142.57 143.98
69 133.84 147.31 137.15 143.03 145.59
70 134.30 148.08 138.13 143.49 146.90
71 135.80 149.28 139.14 143.95 148.81
72 138.30 151.62 139.87 144.41 150.92
73 140.40 152.98 140.49 145.08 153.56
74 142.10 153.90 141.10 145.76 156.78
75 143.00 154.92 141.75 146.38 157.87
76 143.90 155.98 142.48 146.99 158.43
77 146.02 156.82 144.29 147.80 159.47
78 146.48 157.54 146.59 149.25 160.58
79 146.94 158.06 147.69 150.23 161.69
80 148.50 159.10 148.42 151.87 162.80
81 149.80 160.77 151.13 154.64 163.77
82 151.53 164.47 156.19 156.15 164.54
83 152.95 166.80 156.92 157.15 166.76
84 154.60 169.07 159.97 158.26 168.98
85 156.50 171.15 160.49 159.24 171.85

Table 9.5 (continued) 
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percentile scores. Equipercentile ranks are used to link raw scores from differ-
ent forms to a common underlying scale in an effort to develop a scale of scores 
that can be used with all test forms. In this way, the specific form used to test a 
child becomes arbitrary because differences between forms have been removed 
through the equating process. In contrast, norm-referenced percentile scores al-
low one to draw inferences about the performance of a given student relative to 
the performance of a target reference group. These norm-referenced percentile 
scores should be applied to the equated scores, and it is, of course, possible to 
develop multiple sets of reference norms. For example, a student’s score could 
be expressed relative to other students in the same grade, or relative to other stu-
dents of the same gender in the same grade, or students from a particular grade 
span. These are different reference groups and the percentile rank for the same 
equated score would potentially differ across these reference groups. Norm-refer-
enced percentile rankings indicate where students in a given group rank relative 
to their peers. The same scaled score can map to different normative percentile 
scores in different reference groups that apply to the same examinee. To un-
derstand why this distinction is important, it is instructive to keep in mind that 
in order to develop normative percentile values one must have a representative 
sample of the population to which the norms are intended to apply. The same is 
not true for developing equating tables using equipercentile equating. In fact, 
with equipercentile equating, what is most needed is information about how the 
distribution of scores on one measure relates to the distribution of scores for an-
other. It is not uncommon to oversample the tails of the distribution in equating 
studies to ensure that one has good information about the distribution of scores in 
the extremes. If one used the same sampling strategy to obtain normative percen-
tile values, one would have to down-weight these extreme scores to offset their 
having been over-sampled.

Equipercentile 
rank

Koalas Suni An Unusual 
Job

A Wonderful 
Friendship

The King’s 
Gold

86 158.90 173.62 161.81 162.23 172.96
87 160.55 177.14 163.93 162.76 174.07
88 161.90 179.48 166.98 164.15 177.12
89 164.70 181.31 170.04 165.16 177.86
90 168.00 183.15 171.27 166.27 182.27
91 170.80 184.24 172.98 167.99 183.52
92 173.03 186.32 174.38 170.32 186.12
93 174.95 186.97 176.81 173.65 189.23
94 175.80 187.50 179.99 176.49 191.18
95 176.38 191.82 185.15 182.32 195.40
96 177.40 195.82 189.82 185.27 201.06
97 179.78 198.00 193.49 189.99 205.84
98 180.35 204.66 197.39 198.66 214.56
99 182.20 223.33 205.16 202.66 226.28
> 99 GE 217 GE 239 GE 214 GE 208 GE 231

Table 9.5 (continued) 
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Summary of Linear and Equipercentile Equating

Both linear and equipercentile equating can be used to place passage WCPM scores 
on a common metric that allows for quick and easy use with all CBM ORF probes 
from a given assessment system. Linear equating can adjust passages such that they 
all have a common mean and standard deviation, but as a method it makes the same 
adjustment at all levels of WCPM. Thus, linear equating assumes that observed 
WCPM scores have the same relation to true scores at all levels of the underlying 
fluency ability. This assumption is not made in equipercentile equating. Equiper-
centile equating relies on observed WCPM percentages and as such can make dif-
ferent score adjustments at different levels of WCPM. For example, it may be that in 
the center of the ability distribution the relation of observed WCPM and underlying 
fluency is linear (i.e., a one-unit shift in WCPM results in the same shift in underly-
ing fluency), but observed scores in the tails of the distribution require a different 
score adjustment relative to scores in the center of the distribution. This differential 
adjustment was observed in the current empirical example. Specifically, in the 
tails of the distribution a one-unit shift in the equipercentile rank corresponded to 
a change in 5–10 WCPM, whereas in the center of the distribution a one-unit shift 
in the equipercentile rank corresponded to an increase in about 0.50 WCPM. This 
differential relation of observed WCPM scores at different points in the distribution 
of WCPM is ignored in linear equating.

Finally, sampling and sample size are important considerations when conducting 
linear or equipercentile equating studies. Linear equating estimates two parameters 
per passage—the mean and standard deviation, whereas the estimation of param-
eters in equipercentile equating is substantially greater. Thus compared to linear 
equating, equipercentile equating requires substantially larger sample sizes that 
cover the entire range of WCPM scores in order to reliably estimate parameters 
across the range of possible WCPM scores. As mentioned, it is not uncommon to 
oversample the extremes of the distribution when designing a study to use equipe-
rcentile equating.

Latent Variable Equating

One limitation of both linear equating and equipercentile equating is that their fo-
cus is explicitly on observed scores. In a sense, these are classical psychometric 
methods that conceptualize a true score as an unobserved average score for a person 
hypothetically computed across equivalent forms of a test. An alternative approach 
conceptually, is to consider the observed scores as imperfect indicators of a latent 
ability, either in the factor analytic sense of a latent ability, or in the strong true 
score framework of item response models. Latent Variable (LV) methods are an 
alternative to observed variable equating methods that reflect this conceptualization 
of assessments as indicators of latent abilities, although, as we will see, these LV 
methods are not strictly “equating” methods.
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LV equating is the process of equating observed ORF forms based on an un-
observed underlying latent ORF ability. Unlike linear equating and equipercentile 
equating, which are methods for transforming the raw score distributions associated 
with test forms, LV equating is more an approach to understanding the degree of 
equivalence across test forms than a method of transforming their raw score dis-
tributions. The degree of equivalence or non-equivalence determined through LV 
equating provides information about the type of transformation that is required to 
equate the raw scores. Thus, although LV equating is not strict about score equat-
ing, the findings from such an LV analysis have implications for the equating of 
raw scores and the development of constant scales. It is also possible to use the 
factor scores that result from an LV analysis as a type of equated scale score and we 
discuss the challenge to develop such an equating table in the final section of this 
chapter. In presenting LV equating, we note that there are two general approaches 
to equating by using LVs. Specifically, LV equating can be conducted using either 
linear or nonlinear relations between observed indicators and the LVs (Stoolmiller, 
Biancarosa, & Fien, 2013; Zopluoglu, 2013). As with any measurement model, in 
order to study form equivalence using LV models it is generally necessary to mea-
sure students on at least three different test forms measuring the same LV. Follow-
ing an investigation of the equivalence of observed measures, equating tables can 
be generated from LV equating similar to equating tables generated from either 
linear or equipercentile equating (e.g., Betts et al., 2009; Francis et al., 2008). Once 
these tables are established, a score on a single observed passage can be directly 
compared to any other equated passage. Thus, like with other methods of equating, 
the data collection requirements for the equating study are not the same as the data 
collection requirements for assessing students after forms have been equated. The 
necessity to use at least three forms is a requirement of the LV equating method. It is 
not necessary to use at least three forms to assess students once the test forms have 
been equated, although it may still be desirable to use multiple equated probes at 
each occasion of measurement to improve the accuracy of measuring students’ ORF.

After discussing different approaches to LV equating, we discuss the issues 
involved in using the relation between the observed scores and latent constructs 
to establish an equating table and provide an example of such. First, we discuss 
LV equating and the different approaches to LV equating that have been used with 
CBM assessments. We discuss both linear and nonlinear LV equating methods and 
present an empirical example that shows how the measurement models investigated 
through LV equating methods have implications for the equivalence of observed 
scores and how this information can subsequently be used to generate equating 
tables.

Linear Latent Variable Equating

Linear LV equating makes use of constrained factor models in confirmatory 
factor analysis, or LV structural equation modeling, to extend the traditional 
linear equating of observed scores. Like traditional linear equating, linear LV 
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equating can account for and correct differences in means and standard devia-
tions, but does not correct for distributional differences (Cummings, Park, & 
Bauer Schaper, 2013). However, linear LV equating extends traditional linear 
equating by assessing the relation between observed scores and latent abilities 
and using this relation to develop a common scale on which to express scores 
from individual test forms. Just as in confirmatory factor analysis, in LV equat-
ing, a latent factor is assumed to be the cause of the observed scores and, because 
multiple indicators are used to identify the latent factor, its mean is more precise 
that the mean of any single indicator. Observed score means can be computed 
from the factor mean and factor loading in this fashion, M = λα + ν, where M is 
the observed mean, λ is the factor loading, α is the mean of the latent factor, and 
ν is the measurement intercept.

The process of linear LV equating involves fitting observed ORF scores to a 
measurement model. Observed ORF indicators are treated as continuous, linear in-
dicators of an underlying fluency ability. Within the LV equating framework, three 
types of model constraints can be imposed. These constraints imply increasing de-
grees of equivalence between the different CBM ORF forms. The three types of 
constraints and the four resulting models are analogous to the models for estab-
lishing measurement invariance (e.g., Lubke, Dolan, Kenderman, & Mellenbergh, 
2003; Vandenberg & Lance, 2000). The assumptions that these model constraints 
make and the practical meaning of these constraints will be described below as they 
relate to the problem of test equating.

Under the most restrictive model, forms are assumed to be parallel. In this mod-
el, depicted in Fig. 9.2, factor loadings, measurement intercepts, and residual vari-
ances are all constrained to be equal across forms. As shown in the figure, all three 
observed ORF scores have the same residual variance, c, the same mean, b, and are 
on the same scale, a, that is, their relation to the underlying construct is identical. 
Under these model constraints, observed scores on one form are not only equal at 
the mean, but observed deviations about the mean are comparable between forms. 
Raw scores on parallel forms are substitutable for one another. That is to say, a 
person with a given ability has the same expected raw score on any two parallel 

Fig. 9.2  Fully constrained 
LV equating model. The fully 
constrained model is depicted 
here. Parameters that share a 
common letter are con-
strained to be equal—a single 
factor loading, measurement 
intercept, and residual vari-
ance are estimated
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forms. Thus, when raw scores are used to make decisions about examinees (e.g., the 
examinee is “at-risk”), parallel forms make it arbitrary which form is used with a 
particular examinee. Only with parallel forms is the same raw score expected for the 
examinee regardless of the form used to assess them, and thus, it is inconsequential 
to the examinee which form was used to assess them. LV equating allows the test 
developer to test whether or not different test forms are parallel, and thus, whether 
or not raw scores are substitutable for one another without loss of information or 
impact to the examinee.

A less restrictive model would relax the constraint, c, on residual variances (see 
Fig. 9.2). This model still assumes that the true scores from the ORF passages are all 
on the same scale, a, and have the same mean, b, but the magnitude of the residual 
variances is allowed to differ between the ORF forms, which implies that the ob-
served scores are on different scales (i.e., have different variances). In other words, 
students scoring at a particular value of the LV will have the same expected ob-
served scores on different forms. However, because the error variance is different, 
the distribution of observed scores for these students will be different for different 
ORF forms, even though those distributions have the same average value.

One way to conceptualize this non-equivalence is to imagine having two regres-
sion lines with the exact same slope, but different spreads in the points around 
the regression lines. The lines depict the relation between the observed score on 
the vertical axis and the true score (i.e., the score on the factor) on the horizontal 
axis. Points on the lines depict the expected observed score of all individuals with 
a given factor score, whereas the points around the line depict how the actual ob-
served scores deviate from the expected scores because of measurement error. The 
situation being described here is one of coincident lines where the spread of the 
data points around the two lines is not the same. The coincident lines imply that the 
expected (i.e., average) observed score is the same on the different forms for people 
with the same factor score, but the spread of the observed scores around those ex-
pectations are different across the different forms.

A still lesser constrained model would remove both the constraint, c, on residual 
variances and the constraint, b, on the observed ORF scores’ measurement inter-
cepts, but the factor loadings, a, are still held equal. In this model, the ORF true 
scores are still on the same scale but the true score means and observed score means 
are allowed to differ across forms. Thinking back to the analogy of two regres-
sion lines, we now have two parallel lines, but not two coincident lines. Thus, true 
scores on one form are simply shifted up or down a constant amount relative to true 
scores on the other form. The observed score distributions are similarly shifted. 
ORF forms in this model are considered essentially tau equivalent. In other words, 
because the true scores are the same except for the constant shift, any relation with 
other measures, such as a measure of reading comprehension, will be the same for 
the essentially tau equivalent forms, except for the intercept. Practically speaking, 
the expected observed score for people with the same score on the factor would 
differ between people taking the two forms, but this difference would be the same 
throughout the distribution of ability. In that sense, the true scores are not literally 
equivalent, but they are essentially equivalent.
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In a final, fully unconstrained model, all model parameters are allowed to differ 
across forms. In this case, observed ORF means differ, the spread of scores about 
those means differ, and the observed scores’ relation to the underlying fluency fac-
tor differ. Thinking back to the regression analogy, we now have lines that differ 
in their slopes as well as their intercepts. Thus, the expected observed score differs 
across forms for people with the same true score. Moreover, the magnitude of this 
difference in expected scores varies across the distribution of ability. Finally, not 
only do the expected scores differ between test forms for people with the same 
true ability, the distributions of observed scores around these expected values also 
differ across the forms. The one assumption that this model continues to make is 
that the three forms measure the same unidimensional fluency construct, an as-
sumption that would be evaluated through the examination of fit indices like in a 
traditional CFA.

Nonlinear Latent Variable Equating Using the Continuous 
Response Model 

Although the continuous response model (CRM) was proposed as a limiting form 
of the graded response model over 40 years ago (Samejima, 1973), there have been 
few applications of the model (Bejar, 1977; Ferrando, 2002; Wang & Zeng, 1998) 
and only one instance we were able to identify where CRM was applied to fluency 
data (Zopluoglu, 2013). The CRM can be fit using either limited-information or 
full-information estimations methods. Because full-information estimation methods 
are currently unavailable for nonlinear models in standard LV modeling software 
packages (Zopluoglu, 2013), we will restrict our discussion and empirical examples 
of the CRM to limited-information estimations methods.

Nonlinear LV equating under the limited-information CRM framework is quite 
similar to linear LV equating with the primary difference being the handling of 
the observed data. Under CRM, an observed score x is considered to be a graded 
response between 0 and m, where m is the maximum possible observed score, and 
y is a rescaled observed score such that =

x
y

m
 (Samejima, 1973). Thus, in the con-

text of ORF assessment, the observed scores are rescaled such that an individual’s 
score is divided by the maximum possible score on a given ORF form, resulting 
in scores between 0 and 1. These rescaled scores are then transformed to logits 

log it( ) log ,
1

  
=  −  

y
y

y
 and the covariance matrix of these transformed logits is 

used as the input data for model fitting (Bejar, 1977; Ferrando, 2002). Once the data 
are input in this fashion, the same types of linear measurement models described 
above are used to model the data (Bejar, 1977; Ferrando, 2002). For the sake of 
comparison, in presenting our empirical example, we will estimate the same four 
sets of model constraints described above with both linear LV equating and nonlin-
ear CRM LV equating.
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Latent Variable Equating: Empirical Example 

In this section, we present the results of our empirical example. We will begin with 
presenting the linear LV equating from the most restrictive to least restrictive mod-
els. Following this section, the models for the continuous response nonlinear model 
will be presented.

Linear Latent Variable Equating 

In this section, we present the four models described above, moving from the most 
constrained to the least constrained models. Recall for the design described above 
that the 35 ORF passages were administered to 6th, 7th, and 8th-grade students 
where seven passages were semi-spiraled within groups such that the A groups were 
administered passages 1–7 with 6th-grade students receiving passages 1–5, 7th-
grade students receiving passages 2–6, and 8th-grade students receiving passages 
3–7. Then the B groups received passages 8–14 and these passages were spiraled in 
the same fashion. Because common ORF passages are repeated within groups but 
not between groups, we used three additional assessments to anchor all passages to 
the same metric. These three assessments were the TOWRE Phonemic Decoding, 
TOWRE Sight Word, and the TOSRE. All students across all groups and grades 
received the same version of each or these three assessments. Figure 9.3 presents 
the measurement model for a single group. Note that the figure portrays the fully 
constrained model as in Fig. 9.2, but in this figure the factor loadings, measurement 
intercepts, and residual variances for the TOWRE Phonemic Decoding, TOWRE 
Sight Word Decoding, and the TOSRE are allowed to differ from the ORF passages. 
These parameters are allowed to differ because even though these three assessments 
measure fluency they are not expected to function the same as the ORF passages.

In the first, most constrained model, we fix all factor loadings, measurement 
intercepts, and residual variances to be the same for all passages. The results for 7th 
grade, group A are presented in Tables 9.6 and 9.7. Table 9.6 presents the unstan-
dardized parameter estimates for the five ORF passages read by 7th-grade group 
A, as well as the group’s factor mean and variance. As can be seen in Table 9.6, 
all five reading passages have the same parameter estimates for factor loadings, 
measurement intercepts, and residual variances. In other words, this model assumes 
that observed passages are completely parallel—the passages are on the same scale, 
have the same mean, and same variance. These assumptions can be seen borne out 
in the relations between the factor scores and observed scores in Table 9.7, as shown 
below.

Table 9.7 presents expected observed scores on the different forms for individu-
als who differ in their ability as measured by their having different factor scores. 
These differences are expressed in the table as being measured in standard devia-
tion units around the factor mean. This section consists of both a description of 
how these tables of expected observed scores are generated and a presentation of 
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the equating results from the LV fluency models. Recall from the equation above, 
the expected mean for a given passage is M = λα + ν. Thus, to compute the expected 
mean for a passage ( Koalas as an example) the factor loading 31.62 is multiplied by 
the factor mean 0.25 and the measurement intercept 114.29 is added to this product 
resulting in an expected mean of 122.26 words correct per minute (WCPM). Note 
that because of constrains on the factor loadings and intercepts, the factor mean 
and variance need not be constrained to 0 and 1 for scaling. In order to obtain the 
expected observed score at different values of the fluency factor all that is neces-
sary is to change the value of the fluency factor by adding the desired difference 
to the factor mean. For example, if one wanted to compute the expected observed 
score on Koalas for individuals with a factor score +2SD from the factor mean, the 
factor loading 31.62 would be multiplied by this factor score (i.e., the factor mean 
plus 2 SD, or 0.25 + 2.13), and this product (31.62 × 2.38) would then be added to 
the measurement intercept of 114.29 resulting in 189.51 WCPM. Note that the mea-
surement intercept is just the expected observed score for individuals with a score 
of 0 on the factor. This type of conversion can be done at all points of the fluency 
factor. With regard to the results for the fully constrained model, expected WCPM 
scores are the same for all passages at all points of the fluency ability range. Thus, 
a student with a fluency ability 2SD above the mean would be expected to read 
189.51 WCPM on each of the five passages.

Fig. 9.3  LV equating empirical example model. This figure depicts the fully constrained measure-
ment model for the LV empirical example. Factor loadings, measurement intercepts, and residual 
variances are constrained equal for the fluency forms, but vary for the TOWRE and TOSRE. 
TOWRE and TOSRE subtests are included to anchor the fluency factor across groups and grades.
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We have shown how the tabled values of expected observed scores and LV 
scores can be generated from the results of the factor model. In practice, of course, 
the desire is to obtain a score on the common scale from the WCPM score on a 
particular CBM ORF probe. In the fully constrained model, there is a one-to-one 
mapping of observed scores to scores on the LV. Regardless of which CBM ORF 
probe was administered, the expected observed score can be found in the table and 
translated into a score on the LV distribution. As the relation between the LV and the 
observed score becomes less constrained across different forms, the table begins to 
appear somewhat more complex.

Table 9.6  Grade 7 group A oral reading fluency (ORF) passage parameter estimates: linear LV 
equating

Parameter Stories Model constraint
Factor 
loadings;
measurement 
intercepts;
residual 
variances

Factor 
loadings;
measurement 
intercepts

Factor 
loadings

Unconstrained

Factor 
loadings

Koalas 31.62 32.47 32.01 35.70

Suni 31.62 32.47 32.01 30.66
An Unusual 
Job

31.62 32.47 32.01 34.14

A Wonderful 
Friendship

31.62 32.47 32.01 29.44

The King’s 
Gold

31.62 32.47 32.01 33.43

Measurement 
intercepts

Koalas 114.29 114.06 119.97 128.10

Suni 114.29 114.06 122.46 130.60
An Unusual 
Job

114.29 114.06 111.34 119.47

A Wonderful 
Friendship

114.29 114.06 113.82 121.96

The King’s 
Gold

114.29 114.06 113.04 121.18

Residual 
variances

Koalas 297.35 205.45 186.41 164.86

Suni 297.35 134.09 68.72 68.28
An Unusual 
Job

297.35 159.33 133.20 123.88

A Wonderful 
Friendship

297.35 140.76 145.63 141.44

The King’s 
Gold

297.35 158.60 149.94 146.66

Factor mean  0.25  0.27  0.24  0.00
Factor 
variance

 1.13  1.20  1.18  1.00
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Table 9.7  Grade 7 group A: Relation between expected observed scores and factors scores for 
different linear latent variable (LV) equating models

Constrained factor loadings, measurement intercepts, and residual variances
Factor score Koalas Suni An Unusual 

Job
A Wonderful 
Friendship

The King’s 
Gold

2.38 189.51 189.51 189.51 189.51 189.51
1.85 172.70 172.70 172.70 172.70 172.70
1.32 155.89 155.89 155.89 155.89 155.89
0.78 139.07 139.07 139.07 139.07 139.07
0.25 122.26 122.26 122.26 122.26 122.26

− 0.28 105.45 105.45 105.45 105.45 105.45
− 0.81 88.63 88.63 88.63 88.63 88.63
− 1.34 71.82 71.82 71.82 71.82 71.82
− 1.87 55.01 55.01 55.01 55.01 55.01
Constrained factor loadings and measurement intercepts

2.46 193.84 193.84 193.84 193.84 193.84
1.91 176.09 176.09 176.09 176.09 176.09
1.36 158.34 158.34 158.34 158.34 158.34
0.82 140.58 140.58 140.58 140.58 140.58
0.27 122.83 122.83 122.83 122.83 122.83

− 0.28 105.07 105.07 105.07 105.07 105.07
− 0.82 87.32 87.32 87.32 87.32 87.32
− 1.37 69.56 69.56 69.56 69.56 69.56
− 1.92 51.81 51.81 51.81 51.81 51.81
Constrained factor loadings

2.42 197.42 199.91 188.79 191.26 202.05
1.88 180.01 182.50 171.38 173.86 183.87
1.33 162.60 165.09 153.97 156.45 165.69
0.79 145.19 147.68 136.56 139.04 147.51
0.24 127.78 130.27 119.15 121.63 129.33

− 0.30 110.37 112.86 101.74 104.22 111.15
− 0.84 92.96 95.45 84.33 86.81 92.98
− 1.39 75.56 78.04 66.92 69.40 74.80
− 1.93 58.15 60.63 49.52 51.99 56.62
Unconstrained model

2.00 199.50 191.91 187.76 180.84 188.03
1.50 181.65 176.58 170.69 166.12 171.32
1.00 163.80 161.26 153.62 151.40 154.60
0.50 145.95 145.93 136.54 136.68 137.89
0.00 128.10 130.60 119.47 121.96 121.18

− 0.50 110.25 115.27 102.40 107.24 104.46
− 1.00 92.40 99.94 85.33 92.52 87.75
− 1.50 74.55 84.61 68.26 77.80 71.04
− 2.00 56.71 69.28 51.19 63.07 54.32
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In the second model, the constraint on residual variances is relaxed. The results 
of this model can also be seen in Tables 9.6 and 9.7. As seen in Table 9.6, parameter 
estimates for factor loadings and measurement intercepts are the same across ORF 
passages but the parameter estimates for residual variances differ. This model as-
sumes that all passages are on the same scale and that the expected observed scores 
for different passages are identical. However, residual variation about the mean is 
allowed to differ across passages. Note that this differential residual variation has 
no bearing on the expected observed score on different forms at any given value of 
the factor score, for example, on any form the expected observed score is the same 
for people scoring 2SD below the factor mean, just as it is the same across forms 
for people scoring at the factor mean, or for people scoring at 2SD above the factor 
mean. Expected observed scores differ for people with different scores on the factor, 
but expected observed scores are the same on each form for any given set of indi-
viduals with the same score on the factor. As shown in Table 9.7, individuals with 
a factor score of 1.91 have an expected score of 176.09 WCPM on any given form, 
whereas individuals with a score of 0.82 on the factor would be expected to score 
140.58 on any given form. These expectations would hold for anyone with a score 
of 1.91 or 0.82 on the factor, respectively. Because the residual errors are assumed 
to have an expected value of 0, relaxing the constraint of equal residual variances 
has no impact on the expected observed scores for different passages at different 
points on the fluency factor.

This lack of impact on the expected observed scores is shown in Table 9.7. Like 
the results of the fully constrained model, in this less constrained model all passages 
have the same expected value at any given point on the fluency factor. Although ex-
pected observed scores differ by an amount determined by the factor loading as one 
moves away from the factor mean, this difference is the same for each form and thus 
no difference in expected scores is found across forms. Thus, if the assumptions of 
this model are reasonable, then passages are interchangeable to a certain extent. In 
so far as a student’s expected score is the same across forms, it is somewhat arbi-
trary which form a student is administered. However, because the error associated 
with the student’s score is not the same across forms, the possibility of having an 
observed score that differs greatly from the student’s expected score is not the same 
for the two forms. Generally speaking, it is most fair if all students are tested on 
forms that are equally precise in estimating their true ability. That is, it may not be 
enough to know that expected scores are equal across the forms if one form is as-
sociated with substantially more error than another form.

In the third model, the constraint on measurement intercepts is relaxed. As shown 
in Table 9.6, factor loadings of the five passages are identical but the measurement 
intercepts and residual variances differ. This model assumes that true scores for 
passages are on the same scale (factor loadings constrained equal), but allows them 
to have different mean values, and the residual variances associated with observed 
scores are allowed to differ. The different estimates for intercepts affects both the 
mean of the true scores and the mean of the observed scores, whereas the differences 
in residual variances affect the variances of the observed scores, but not the varianc-
es of the true scores. In other words, this model assumes that passages are essentially 
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tau equivalent—true scores differ across forms by a constant amount at all points of 
the latent ability continuum. This equivalence can be seen in Table 9.7. As shown 
in the table, the expected values of the ORF passages differ for all passages at all 
points along the range of fluency. However, the magnitude of the difference between 
any two passages is the same at all points of the fluency ability range. For example, 
if one compares the difference in expected observed scores for Koalas and Suni in 
Table 9.7 for the model with only constrained factor loadings, one finds that the dif-
ference in expected observed scores is always 2.49 (e.g., 199.91 − 197.42 = 2.49 for 
individuals with a factor score of 2.42, 182.50 − 180.01 = 2.49 for individuals with 
a factor score of 1.88, etc.). This common magnitude in the difference between the 
forms occurs because of the computation of the expected mean M = λα + ν. For all 
forms λα = 32.01  ×  .24 and forms only differ in their measurement intercept, ν. For 
Koalas and Suni, this difference in intercepts is 2.49 (i.e., 122.46 − 119.97 = 2.49), 
as shown in Table 9.6 for the model with constrained factor loadings. The difference 
in intercepts coupled with the constraint of equal slopes translates into a constant 
difference in the expected observed scores (i.e., the true scores) for any two forms 
across the range of the latent factor.

In the final, unconstrained model, there are no constraints placed on any ORF 
passage parameters. However, for model identification purposes the factor mean 
and variance are fixed to 0 and 1, respectively. This model allows all passages to 
be on different scales have different measurement intercepts and different residual 
variances. As shown in Table 9.6, all model parameters differ across the ORF pas-
sages. These differences in the scales and intercepts are illustrated in the tables of 
expected observed scores in Table 9.7. For example, Koalas and Suni differ by 
about 2.5 WCPM at the mean of the passages, but they differ by about 7.5 WCPM 
at 2SD above the mean.

In summary, LV equating can be used to test different sets of model constraints 
that translate into different degrees of equivalence across test forms.1 In the two 
models, where factor loadings and measurement intercepts were constrained to be 
equal, the model results and tables of expected observed scores illustrate how ORF 
forms are either parallel, when all parameters are equal across forms, or produce 
interchangeable expected observed scores when only slopes and intercepts are equal 
across forms. Of course, because of differences in precision, forms are not fully 
interchangeable in the latter case. In the model where only factor loadings are con-
strained equal, the model allows the means of the expected observed scores for the 
ORF passages to differ, but holds the scale for the expected observed scores of pas-
sages constant. Although this constraint ensures that regression relations with other 
variables will be the same for different passages, the constant difference in expected 
observed scores could result in different decisions when scores are compared to 
benchmarks if the shift in the scale means is ignored. In the final, unconstrained 
model, scales and measurement intercepts differ across forms, along with residual 

1 The appropriate model for the data depends on tests of invariance, which are typically carried 
out by examining the χ2 test of model fit, comparing the −2 log likelihood of a more constrained 
nested model with that of a less constrained model.
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variances, which is clearly seen in the differences in the tables of expected observed 
scores. Finally, it is important to note that these are all nested models and as such 
the appropriateness of the model constraints is directly testable by comparing the 
likelihood ratios of the models. Researchers would typically perform these tests 
when investigating differences between CBM ORF probes. The purpose here was to 
demonstrate LV equating, not to explore the features of these particular CBM ORF 
probes, the examination and discussion of which are beyond the scope of this sec-
tion. There are many excellent references on the comparison and testing of nested 
models in LV modeling contexts (e.g., Mueller & Hancock 2008).

Nonlinear Latent Variable Equating Using the Continuous Response Model 

Like in the linear LV equating example above, this section contains the four CRM 
models beginning with the most constrained model and ending with the least con-
strained model. Recall that once observed scores are put on a metric from 0 to 1 
and then converted to logits, the means and covariances can be modeled just as they 
would for the linear LV equating models. As such, the model portrayed in Fig. 9.3 is 
still the example for a measurement model for a single group and this model contin-
ues to use the TOWRE Phonemic Decoding, TOWRE Sight Word, and the TOSRE 
as anchor assessments across groups and grades.

In the first CRM model, all factor loadings, measurement intercepts, and residual 
variances are fixed to be the same for all passages. The results for 7th grade, group 
1 continue to be used as an example and these results shown in Tables 9.8 and 
9.9. Again, Table 9.8 presents the unstandardized parameter estimates for the five 
ORF passages and the group’s factor mean and variance. As shown in Table 9.8, 
all five reading passages have the same parameter estimates for factor loadings, 
measurement intercepts, and residual variances. However, because these data were 
transformed in a non-linear way prior to modeling, these constraints do not result in 
equivalent expected observed scores once the data are scaled back into their original 
metric. This lack of parallelism from the fully constrained model can be seen in the 
table of expected observed scores, which are presented in Table 9.9.

Table 9.9 presents the expected observed scores for the different CRM mod-
els for these five passages for a range of fluency scores 2SD±  to +2SD from the 
factor mean. Expected observed scores are presented in both the logit metric and 
the WCPM metric. The construction of these tables is somewhat different than the 
tables constructed in Table 9.7 for the linear LV equating models. The first step in 
creating the tables is the same as above—computing the expected observed score 
for a given passage with the equation M = λα + ν. Using the Koalas passage as an 
example, the factor loading 0.69 is multiplied by the factor mean 0.42 and the mea-
surement intercept −0.20 is added to this product resulting in an expected observed 
score mean of 0.09. However, these model parameters and the resulting expected 
means are on a logit scale and not in WCPM. The expected means must then be con-
verted back into a WCPM metric. To be put on a WCPM metric, the expected score 
must go through a three-step process. In the first step, the exponent of the expected 
score M is taken, eM . In the current example, the exponent of 0.09 is 1.10. Next, 
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this resulting value y must be converted to a probability with the equation ,
1

=
−
p

y
p

 

or .
1

=
+
y

p
y

 In this example, 1.10
0.52.

1 1.10
=

+
 Finally, in the third step, the probabil-

ity is put back into the WCPM metric with the equation , or *max,
max

= =
x

p x p  

where max equals the passage maximum used to create the original probabilities. 
In this example, the passage maximum is 217 WCPM. Thus, a probability of 0.52 
results in a WCPM score of 113.5. This process can be repeated across the range 

Table 9.8  Grade 7 group A: Oral reading fluency (ORF) passage parameter estimates: nonlinear 
continuous response model

Parameter Stories Model constraint
Factor 
loadings;
measurement 
intercepts;
residual 
variances

Factor 
loadings;
measurement 
intercepts

Factor 
loadings

Unconstrained

Factor 
loadings

Koalas 0.69 0.68 0.68 0.81

Suni 0.69 0.68 0.68 0.70
An Unusual 
Job

0.69 0.68 0.68 0.79

A Wonderful 
Friendship

0.69 0.68 0.68 0.73

The King’s 
Gold

0.69 0.68 0.68 0.77

Measurement 
intercepts

Koalas − 0.20 − 0.27 − 0.39 0.00

Suni − 0.20 − 0.27 − 0.35 0.04
An Unusual 
Job

− 0.20 − 0.27 − 0.45 − 0.06

A Wonderful 
Friendship

− 0.20 − 0.27 − 0.35 0.04

The King’s 
Gold

− 0.20 − 0.27 − 0.41 − 0.02

Residual 
variances

Koalas 0.18 0.09 0.09 0.08

Suni 0.18 0.03 0.03 0.03
An Unusual 
Job

0.18 0.05 0.05 0.04

A Wonderful 
Friendship

0.18 0.05 0.05 0.05

The King’s 
Gold

0.18 0.05 0.05 0.05

Factor mean 0.42 0.42 0.63 0.00
Factor 
variance

1.16 1.25 1.23 1.00
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Constrained factor loadings, measurement intercepts, and residual variances: logits
Factor score Koalas Suni An Unusual 

Job
A Wonderful 
Friendship

The King’s 
Gold

2.57 1.58 1.58 1.58 1.58 1.58
2.03 1.21 1.21 1.21 1.21 1.21
1.49 0.84 0.84 0.84 0.84 0.84
0.95 0.46 0.46 0.46 0.46 0.46
0.42 0.09 0.09 0.09 0.09 0.09

− 0.12 − 0.28 − 0.28 − 0.28 − 0.28 − 0.28
− 0.66 − 0.65 − 0.65 − 0.65 − 0.65 − 0.65
− 1.20 − 1.02 − 1.02 − 1.02 − 1.02 − 1.02
− 1.74 − 1.39 − 1.39 − 1.39 − 1.39 − 1.39
Constrained factor loadings and measurement intercepts: logits

2.65 1.52 1.52 1.52 1.52 1.52
2.09 1.14 1.14 1.14 1.14 1.14
1.53 0.77 0.77 0.77 0.77 0.77
0.97 0.39 0.39 0.39 0.39 0.39
0.42 0.01 0.01 0.01 0.01 0.01

− 0.14 − 0.36 − 0.36 − 0.36 − 0.36 − 0.36
− 0.70 − 0.74 − 0.74 − 0.74 − 0.74 − 0.74
− 1.26 − 1.12 − 1.12 − 1.12 − 1.12 − 1.12
− 1.82 − 1.49 − 1.49 − 1.49 − 1.49 − 1.49
Constrained factor loadings: logits

2.84 1.54 1.57 1.47 1.57 1.51
2.29 1.16 1.20 1.10 1.20 1.14
1.74 0.79 0.82 0.72 0.83 0.76
1.18 0.41 0.45 0.35 0.45 0.39
0.63 0.04 0.08 − 0.02 0.08 0.01
0.08 − 0.33 − 0.30 − 0.40 − 0.30 − 0.36

− 0.48 − 0.71 − 0.67 − 0.77 − 0.67 − 0.73
− 1.03 − 1.08 − 1.04 − 1.14 − 1.04 − 1.11
− 1.58 − 1.45 − 1.42 − 1.52 − 1.42 − 1.48
Unconstrained model: logits

2.00 1.62 1.44 1.52 1.51 1.51
1.50 1.22 1.09 1.12 1.14 1.13
1.00 0.81 0.74 0.73 0.78 0.74
0.50 0.41 0.39 0.34 0.41 0.36
0.00 0.00 0.04 − 0.06 0.04 − 0.02

− 0.50 − 0.40 − 0.31 − 0.45 − 0.33 − 0.41
− 1.00 − 0.81 − 0.66 − 0.85 − 0.69 − 0.79
− 1.50 − 1.21 − 1.01 − 1.24 − 1.06 − 1.17
− 2.00 − 1.61 − 1.36 − 1.64 − 1.43 − 1.55
Constrained factor loadings, measurement intercepts, and residual variances: WCPM

2.57 179.93 181.58 172.46 167.49 172.46
2.03 167.07 168.61 160.14 155.52 160.14

Table 9.9  Grade 7 group A: Relation between expected observed scores and factor scores for dif-
ferent nonlinear continuous response models
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of the fluency factor by first computing expected scores on the logit scale, just as 
with linear LV equating, and then applying the three-step conversion process to re-
express those values on the original scales. With regard to the results for the fully 
constrained CRM model, WCPM are the same only if the passage maximum is the 

Constrained factor loadings, measurement intercepts, and residual variances: logits
Factor score Koalas Suni An Unusual 

Job
A Wonderful 
Friendship

The King’s 
Gold

1.49 151.39 152.78 145.11 140.92 145.11
0.95 133.24 134.47 127.72 124.03 127.72
0.42 113.51 114.56 108.80 105.67 108.80

− 0.12 93.44 94.30 89.57 86.98 89.57
− 0.66 74.37 75.06 71.29 69.23 71.29
− 1.20 57.39 57.92 55.01 53.42 55.01
− 1.74 43.11 43.51 41.32 40.13 41.32
Constrained factor loadings and measurement intercepts: WCPM

2.65 178.04 179.68 170.66 165.73 170.66
2.09 164.53 166.05 157.71 153.16 157.71
1.53 148.15 149.52 142.01 137.91 142.01
0.97 129.38 130.57 124.01 120.43 124.01
0.42 109.21 110.22 104.68 101.66 104.68

− 0.14 89.00 89.82 85.31 82.84 85.31
− 0.70 70.09 70.74 67.18 65.25 67.18
− 1.26 53.52 54.01 51.30 49.82 51.30
− 1.82 39.81 40.17 38.16 37.06 38.16
Constrained factor loadings: WCPM

2.84 178.54 181.32 169.18 167.30 170.34
2.29 165.26 168.20 155.99 155.22 157.42
1.74 149.15 152.21 140.11 140.48 141.80
1.18 130.64 133.73 122.06 123.44 123.92
0.63 110.68 113.67 102.82 104.95 104.74
0.08 90.58 93.33 83.65 86.19 85.51

− 0.48 71.66 74.07 65.82 68.42 67.50
− 1.03 54.98 56.99 50.26 52.64 51.68
− 1.58 41.08 42.68 37.40 39.43 38.55
Unconstrained model: WCPM

2.00 181.21 177.19 170.64 165.45 170.36
1.50 167.44 164.02 157.00 153.16 157.10
1.00 150.33 148.36 140.36 138.33 141.00
0.50 130.36 130.64 121.28 121.37 122.57
0.00 108.72 111.69 100.93 103.12 102.86

− 0.50 87.06 92.61 80.81 84.73 83.22
− 1.00 67.04 74.52 62.37 67.38 65.02
− 1.50 49.86 58.34 46.59 52.02 49.23
− 2.00 36.03 44.59 33.88 39.13 36.30

Table 9.9 (continued)
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same, as was the case for An Unusual Job and The King’s Gold, but as the passage 
maximums differed, so did all expected WCPM across the range of the fluency 
factor. Also shown in the table, the scales of passages that do not have a common 
maximum differ across passages. The key point in thinking about these constrained 
models in the case of nonlinear LV modeling is to keep in mind that the equivalence 
imposed by the model applies to the transformed metric, not the original WCPM 
metric. Generally speaking, equivalency constraints imposed in LV modeling are 
not scale invariant. That is, they are tests of equivalence in the metric in which the 
constraint is applied and their applicability in one metric does not imply that they 
will hold in a different metric. This caveat is not unique to nonlinear LV models.

In the next model, the constraint on residual variances is removed. The param-
eter estimates and expected observed scores for this model can also be shown in 
Tables 9.8 and 9.9. Like the results of the previous model, in this less constrained 
model the expected scores on the logit scale are identical at all points across the 
range of the fluency factor, but only ORF passages with common passage maxi-
mums will have WCPM scores that are equal and on the same scale. Thus, the only 
passages that are interchangeable under these model assumptions are those with 
common maximums. All other passages would need to be equated to one another or 
back to a single common metric. Again, the caution raised above regarding unequal 
precisions must be kept in mind for models with equal true scores, but unequal 
residual variances.

In the next model, the constraint on measurement intercepts is relaxed. As shown 
in Table 9.8, factor loadings are the only parameter that is identical across the five 
passages. On the logit scale, this model assumes that passages are essentially tau 
equivalent—they are on the same scale but have different intercepts, but they are 
not essentially tau equivalent on the WCPM scale. This can be clearly shown in 
Table 9.9 where ORF passages’ WCPM differ in both the expected observed scores 
and the scale.

In the unconstrained model, there are no constraints on any parameters. In this 
model, passage scales, measurement intercepts, and residual variances differ on 
the logit scale, as well as the WCPM scale. The results for this model shown in 
Tables 9.8 and 9.9.

Conclusions Regarding the Use of Nonlinear Latent Variable 
Models in Equating 

In conclusion, CRM equating can be performed on the same types of models as 
linear LV equating. Model parameters and the resulting expected observe scores for 
the passages follow the same patterns as those in the linear LV equating models, but 
the implied equivalence on “expected observed scores” applies to the transformed 
metric and does not hold once the logits are transformed back to WCPM. Under the 
CRM framework, even the most restrictive models only indicate that passages are 
interchangeable when the passage maximums are the same. Otherwise, the resulting 
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equating tables will have WCPM that differ in both expected observed scores and 
scales. Further, in models where measurement intercepts, as well as factor loadings, 
are not constrained, then passages with common maximums cease to be identical 
across the fluency ability range. Thus, even though the measurement models are 
identical between linear LV equating and CRM equating and the results for the 
CRM on the logit scale follow the same pattern as the results of linear LV equat-
ing, the results on a WCPM scale are quite different between the two modeling 
frameworks.

Converting Raw Scores to Factor Scores

A major contribution of the linear and non-linear factor models presented above 
is in allowing one to determine the kind of equating that is optimal for the data 
(Stoolmiller et al. 2013). As Tables 9.7 and 9.9 show, the different constraints imply 
different degrees of equivalence across the expected observed scores. When tests 
are parallel, raw scores are equivalent in that expected observed scores are equal and 
the precision with which true scores are estimated is equal. When the unconstrained 
factor model provides the best fit to the data, either equipercentile or linear equating 
is needed depending on the shape of observed sore distributions. It is tempting to 
view Tables 9.7 and 9.9 as providing the transformation from raw scores to factor 
scores, i.e., to view these tables as equating tables that allow one to place observed 
scores onto an equated scale. However, they do not serve that purpose. The reason 
these tables cannot be used to find the factor score associated with a particular 
observed test score rests on an important, but somewhat overlooked problem in 
factor models, namely the problem of obtaining factor scores from observed vari-
able scores. As the reader will no doubt recall, the values in Tables 9.7 and 9.9 were 
produced by taking factor scores and converting them to expected observed scores. 
Practically speaking the problem stems from the fact that Tables 9.7 and 9.9 show 
us the expected observed score for a person with a particular factor score. In test 
equating, we have the observed score; what we desire is the factor score. What we 
need then is not a table that takes us from the factor score to the observed score, but 
from the observed score to the expected factor score. Because the observed scores 
are measured with error, the expected factor score associated with a particular ob-
served score is not the same as the factor score that produces that observed score as 
an expected observed score. Put another way, returning to our regression analogy 
used to explain the different model constraints, in regression, the slope of the line 
predicting Y from X is not generally the reciprocal of the line predicting X from Y, 
except when X and Y are measured without error. That is, if Yi = b0 + b1Xi + ei, then 
why is not also true that Xi = b′0 + b′1Yi + e′I, where b′1 = 1/b1 and b′0 = − b0/b1? The 
answer is error in Y. If Y were measured without error, then, indeed, we could sim-
ply use Tables 9.7 and 9.9 to obtain expected factor scores from individual instances 
of expected observed WCPM scores. Unfortunately, the observed scores contain er-
rors, and so we need to determine the expected factor score associated with a given 
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expected observed score when the distribution of observed scores varies around 
the expected observed scores due to measurement error. It is possible to make this 
determination using what are known as the factor score regression coefficients in 
factor analysis, or factor score estimation in standard psychometric software, such 
as MPlus. These factor scores will be approximately normally distributed and will 
have a mean of 0 and standard deviation of 1.0. We can use these factor scores to de-
velop a normally distributed scale score and then develop equating tables by using 
regression to find the expected scaled score associated with each observed score.

In Table 9.10, we provide such an equating table based on the unconstrained 
linear factor model. In this case, the scaled score was constructed to have a mean of 
128 and a standard deviation of 15. These choices were arbitrary, but were chosen 
because the mean of the five observed scores for grade 7 students was approxi-
mately 128. After a student is tested on one of the five passages, the examiner would 
simply find the column associated with the passage read by the student, and then 
find the obtained row associated with the raw score in the column for that form, and 
convert the raw score to the Scaled Score number that appears in the first column 
and the same row. The process of generating the table is a bit beyond the scope of 
this chapter, but suffice it to say that the results will either parallel mean, linear, or 
equipercentile equating with observed scores depending on the factor model that 
was used to develop the factor score regression coefficients.

Conclusions

ORF has a long-standing research base as a way to measure student growth in read-
ing through the use of curriculum-based measurement (CBM) techniques. CBM 
has provided special education teachers with a reliable and valid measurement tool 
that can be quickly administered and allows for both teachers and students to chart 
progress in several academic content areas. With several federal legislative man-
dates in place, general education has increasingly turned to CBM as an efficient way 
to monitor student progress. Given the growing popularity of this type of assess-
ment, it is important for researchers to find ways to ensure that the results indicate 
true growth in reading ability and not artifacts resulting from form effects by using 
forms of different difficulty at different assessment times, or with different students.

This chapter provides researchers and educators with alternative methods for 
translating raw scores (simple words correct per minute) into scaled scores with 
more desirable measurement properties than observed scores, and thus reducing the 
variability in raw scores that results from differences in form difficulty. The expres-
sion of observed WCPM scores on a constant metric provides classroom teachers 
a more accurate and stable metric on which to quantify changes in reading ability 
over time. Research in this area is important not only to the development of better 
assessments, but also to assist teachers and administrators in their use and inter-
pretation of test data, and in their efforts to convey the meaning of test data to all 
stakeholders including parents, school boards, and legislative bodies.
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Scale score Koalas Suni An Unusual 
Job

A Wonderful 
Friendship

The King’s 
Gold

165 219
161 217–218 208
160 214–216 206–207 202
159 211–213 204–205 201 207–208
158 217 207–210 202–203 199–200 203–206
157 215–216 204–206 200–201 196–198 201–202
156 213–214 201–203 198–199 193–195 199–200
155 211–212 198–200 196–197 190–192 197–198
154 208–210 195–197 193–195 188–189 195–196
153 206–208 192–194 190–192 186–187 192–194
152 203–205 189–191 188–189 184–185 189–191
151 200–202 187–188 185–187 182–183 186–188
150 196–199 185–186 182–184 180–181 183–185
149 193–195 183–184 178–181 177–179 181–182
148 190–192 181–182 176–177 174–176 179–180
147 187–189 179–180 174–175 171–173 177–178
146 183–185 177–178 172–173 169–170 174–176
145 181–182 175–176 169–171 167–168 171–173
144 179–180 173–174 165–168 164–166 168–170
143 176–178 170–172 163–164 162–163 166–167
142 173–175 167–169 162 160–161 164–165
141 170–172 165–166 160–161 158–159 162–163
140 167–169 163–164 158–159 156–157 159–160
139 164–166 161–162 155–157 153–155 156–158
138 162–163 158–160 152–154 151–152 154–155
137 160–161 156–157 149–151 149–150 152–153
136 157–159 154–155 146–148 147–148 149–151
135 154–156 152–153 144–145 145–146 146–148
134 152–153 150–151 141–143 142–144 143–145
133 149–151 148–149 139–140 140–141 141–142
132 146–148 146–147 137–138 137–139 138–140
131 143–145 144–145 134–136 135–136 135–137
130 141–142 141–143 131–133 133–134 132–134
129 138–140 139–140 129–130 130–132 130–131
128 135–137 137–138 126–128 128–129 128–129
127 133–134 134–136 124–125 126–127 126–127
126 130–132 132–133 121–123 124–125 123–125
125 127–129 130–131 119–120 122–123 120–122
124 124–126 128–129 116–118 119–121 118–119
123 122–123 125–127 113–115 117–118 116–117
122 119–121 123–124 111–112 114–116 113–115
121 117–118 121–122 108–110 112–113 110–112

Table 9.10  Grade 7 group A ORF scale score table for equating raw scores based on an uncon-
strained linear factor model
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Part III
Advanced Research Methods

With an assessment selected, psychometrics evaluated, and scores obtained from 
data collection, a natural question that may emerge is, “What are the new methods 
for analyzing fluency data?” This part contains three chapters that focus on emerg-
ing statistical methods in fluency research, all of which are critical to contemporary 
research questions. Chapter 10 by McCoach and colleagues provides a discussion 
of growth curve analysis using structural equation modeling. In this chapter, the au-
thors demonstrate different forms of the individual growth curve and how to model 
change with multiple outcomes. Chapter 11 by Logan and colleagues presents an 
introduction to mixture models via latent class analysis. This technique uses a cat-
egorical latent variable to test if observed measures identify one or more groups of 
responders. Chapter 12 by Petscher and colleagues introduces the reader to latent 
change score analysis, a model which views growth as a function of average change 
over time as well as a function of auto-regressive and coupling effects. All the three 
chapters use the same data set to illustrate the technique. The data and code are 
available at http://myweb.fsu.edu/ymp5845/.

http://myweb.fsu.edu/ymp5845/
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Chapter 10
Using Individual Growth Curves to Model 
Reading Fluency

D. Betsy McCoach and Huihui Yu

Longitudinal research generally involves the collection of data from the same 
people across multiple time points. As longitudinal studies collect repeated “panels” 
across multiple waves of data collection, researchers often refer to the data collected 
from such studies as longitudinal data, repeated measures data, or panel data (Frees, 
2004; Hsiao, 2003). Analyzing longitudinal data involves a deep understanding 
of both statistical modeling and the substantive construct of interest. In this way, 
modeling longitudinal data is part art, part science.

There are a wide variety of longitudinal models that focus on different aspects 
of the longitudinal or change process and make very different assumptions about 
the underlying mechanisms that influence the stability or change in data across 
time. Therefore, “when thinking about any repeated measures analysis it is best to 
first ask, what is your model for change?” (McArdle, 2009, p. 579). To determine 
the correct model for the analysis of longitudinal data, the researcher must have a 
substantive theory about whether and how the data should change over time, as well 
as some understanding of how observations across time should relate to each other. 
In addition, the purpose and the focus of the analysis and the nature of the research 
questions help to determine the correct longitudinal model.

Two of the most common families of models for examining longitudinal data 
in the social sciences are autoregressive or panel models (also sometimes referred 
to as Markov chain models) and individual growth curve models. Autoregressive 
panel models seek to describe interindividual differences in change across time, 
growth models focus on understanding within-person change across time (Little, 
2013). There are several major differences between autoregressive panel models 
and growth models. First, autoregressive models estimate fixed parameters to ex-
plain the nature of change over time. In contrast, growth models allow for variance 
in the parameter estimates, which means that different individuals can have differ-
ent expected growth trajectories. Second, autoregressive models are generally less 
concerned with the estimation of means or changes in level across time.
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Both autoregressive models and growth models allow for correlations of obser-
vations across time, but the assumed correlational structure differs between the two 
families of models. In autoregressive models, “a variable is expressed as an additive 
function of its immediately preceding value plus a random disturbance” (Bollen 
& Curran, 2006, p. 208). The correlational structure of an autoregressive model 
fits a simplex pattern, where the correlations between the adjacent time points are 
strongest, and the correlations between time points that are further and further apart 
become increasingly small. The autoregressive parameter captures the degree of 
stability across adjacent time points: the larger the autoregression parameter, the 
longer it takes for the correlations of nonadjacent time points to dampen or dis-
sipate. The model-implied correlational structure of a growth model also allows 
for dependency across time; however, the structure of the errors makes different 
assumptions about the dependency and models the dependency using the variance 
components.

Not all longitudinal models involve systematic growth or decline over time. For 
example, imagine that a researcher collects mood data on adults every day for 3 
months. Although these data are longitudinal and the researcher would expect to 
see day-to-day changes in mood, he or she would probably not expect to see any 
“growth” in mood across time. Instead, mood at any given time may be predicted 
by a person’s overall mean mood and some amount of random daily fluctuation or 
error. If mood on the prior day predicts today’s mood, then the model has an au-
toregressive quality. Still, such a dataset does not actually involve growth or decay 
over time.

In this chapter, we focus on one specific type of longitudinal model that has 
become quite popular in the research literature over the past decade: the individual 
growth model. In reading fluency research, growth curve modeling has been used 
to examine general growth patterns in oral reading fluency (ORF) as well as to 
examine differences in growth related to language impairments, disability status, 
English language learning status, socioeconomic status and other salient factors 
(Crowe, Connor, & Petscher, 2009, Logan & Petscher, 2010; McCoach, O’Connell, 
Reis, & Levitt, 2006; Puranik, Petscher, Al Otaiba, Catts, & Lonigan, 2008; Speece 
& Ritchey, 2005). Researchers can fit growth curve models to explicitly estimate 
systematic change in the outcome variable across time. Individual growth models 
have widespread appeal to developmental and behavioral researchers because they 
allow for the estimation of systematic growth or decline over time. Growth curve 
models can be estimated using either multilevel (mixed) or structural equation mod-
els (SEM). Although most basic growth models can fit in either framework, each of 
the techniques provides certain advantages. Therefore, in this chapter, we provide 
a brief introduction to individual growth curve modeling in both the multilevel and 
structural equation modeling frameworks. It is important to remember, however, 
that traditional growth curve models represent only one of many families of models 
that can be applied to longitudinal data.
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Purpose of Growth Curve Models

As the name suggests, growth curve models provide researchers with a method to 
investigate systematic growth (or decline) in outcomes across time. One of the most 
appealing features of individual growth curve models is that they allow for the esti-
mation of growth parameters (such as the initial status and the growth rate) for each 
individual in the study. Therefore, we can estimate distinct model-implied growth 
rates for each individual in the study. We can also partition variance into within- 
and between-person variance, which allows us to better understand the nature of 
the change process. If most of the variability in the data is within-person variabil-
ity, then change across time is responsible for the lion’s share of the variability. If 
between-person variance represents a sizeable proportion of the total variance, then 
people are systematically different from each other as well as changing across time.

The simplest growth curve models assume a linear change trajectory; however, 
it is possible to estimate a wide variety of nonlinear trajectories by altering the 
specifications of the growth model. In this chapter, we demonstrate one method 
to estimate nonlinear growth trajectories by specifying a piecewise linear growth 
model. We also extend the growth framework to model multiple outcome variables. 
Finally, we provide a brief example of multilevel growth modeling, in which people 
are clustered within organizations such as schools.

Data Requirements and Assumptions of Growth Curve 
Modeling

In general, the study of change requires data collected from the same units across 
multiple time points. Further, growth modeling techniques also require at least 
three waves of data to estimate simple linear trajectories. The estimation of non-
linear growth trajectories requires additional observations across time. With larger 
numbers of time points, it is possible to fit increasingly complex growth functions. 
Therefore, it is advantageous to hypothesize the nature and shape of the growth 
trajectory prior to collecting data to ensure that the hypothesized trajectory will 
be estimable. Both the number and the spacing of data collection points influence 
our ability to accurately capture change across time. When data points are too in-
frequent or when there are too few data points, it may not be possible to accurately 
model the functional form of the change process.

There are two additional requirements for conducting individual growth mod-
eling. First, it is essential to document how much time has elapsed between data 
collection points. Fortunately, the data need not be collected across equally spaced 
intervals; however, we must know the length of the time interval between data col-
lection points (Singer & Willett, 2003). When plotting growth trajectories, time 
is plotted on the x-axis and the score and the outcome variables are plotted on the 
y-axis. Therefore, knowing the distance between testing occasions allows us to plot 
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the dependent variable or the “y” score, on the correct location of the x-axis to cor-
rectly model the functional form of the growth.

The second requirement is that the outcome measure must be psychometrically 
sound and produce scores that are comparable over time (Singer & Willett, 2003). 
The measurement scale must also remain consistent across time. In other words, a 
person whose outcome score has not changed across time would receive the same 
score at each measurement occasion. This generally requires the use of the same as-
sessment at multiple time points or the use of vertically scaled assessments (Singer 
& Willett, 2003). Vertically scaled assessments have undergone a procedure to place 
scores from a variety of ages or developmental levels on the same scale or metric, 
which allows for the direct comparison of scores over time. Subsequently, they are 
useful for modeling growth across time for constructs that cannot be measured using 
the same assessment across multiple time points. For instance, cognitive constructs 
such as academic achievement and cognitive ability cannot be measured using the 
same assessment at different stages of development. A test that measures a typical 
5-year old’s reading ability would not be an appropriate assessment of a typical high 
school student’s reading ability and vice versa. Therefore, tests that are designed to 
measure the same construct at different developmental levels must be “equated” so 
that the scores from different sets of items given at different ages are comparable.

In the absence of vertical scaling, the difference between the two scores on two 
different tests does not measure growth in any meaningful way because the two 
scores are on two different, unlinked scales. Many academic tests are scaled within 
a specific content area and grade level; however, they are not designed to place 
scores along the same metric across time points. In such a scenario, comparing stu-
dents’ scores across time cannot provide information on student growth. In addition 
to having a scale that provides a common metric across time, the validity of the as-
sessment must remain consistent across multiple administrations of the assessment 
(Singer & Willett, 2003). For example, an ORF probe may provide a good indica-
tion of a first grader’s reading ability, but would likely not provide a good indication 
of a tenth grader’s reading ability.

It is possible to model dichotomous, ordinal, Poisson, or other types of non-
normal outcome variables using growth modeling techniques; however, standard 
growth models assume that the outcome variables are continuous and normally dis-
tributed. Given that participants are changing across time, the score distribution of 
the outcome variable may change over time, especially when using the same mea-
sure across time. ORF, as measured by the dynamic indicators of basic early literacy 
skills (DIBELS), provides an excellent example in which the shape of the distribu-
tion changes across time (Catts, Petscher, Schatschneider, Bridges, & Mendoza, 
2009). Catts et al. found that early DIBELS scores were strongly positively skewed 
and exhibited strong floor effects during the first few administrations. For example, 
ORF was strongly positively skewed and exhibited strong floor effects though fall 
of first grade. By April of second grade, ORF scores were relatively normally dis-
tributed. Floor effects are particularly troubling for researchers. When many stu-
dents score at the floor of the test, it is impossible to distinguish their skill levels. 
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Thus, in spite of the variability among those examinees in terms of their reading 
ability, the test is unable to detect those differences. In contrast, when tests of ORF 
are administered to upper elementary and middle school students, the assessments 
exhibit substantial ceiling effects and the scores on the ORF are negatively skewed. 
By late elementary school, the ORF passages would be quite easy for most of the 
students. Further, there is an upper limit on the speed at which a person can read 
aloud. Therefore, the distribution of scores for older children and adults tends to 
be negatively skewed: Few examinees have low scores and many students are able 
to reach a maximum possible score of words read aloud correctly in 1 min. The 
data in this chapter exhibit such properties: The ORF distribution of ORF scores is 
positively skewed at the first data collection point, which occurs in the fall of first 
grade, but it becomes more normal by the eighth data collection point, which occurs 
at the end of second grade.

When the shape of the distribution changes across time, transformation of the 
outcome variable is not a viable option. Transforming the dependent variable in the 
same manner across all of the time points would alleviate the problem at some time 
points but exacerbate the issue at another time points. Applying different transfor-
mations across the different time points is also not possible as it would place the 
outcome variable on different and incomparable scales across time. Standardizing 
the dependent variable at each time point to normalize the distribution and to try to 
ensure that the scores are equated across time is also a poor idea. Recall that stan-
dardized scores have a mean of 0 and a standard deviation of 1 (and thus a variance 
of 1).Therefore, the mean at every time point is 0. Assume that children’s ORF 
scores do increase across time. A child with a standardized score of 0 at every time 
point would actually be growing. The score of 0 tells us that the student is scoring at 
the 50th percentile on reading at each time point. Because the mean is standardized 
to be 0 for each of the time points, growth models using standardized scores are not 
capturing growth per se, instead, they capture change in relative status across time. 
Second and more importantly, standardizing scores at each time point constrains the 
variance of the measure to be equal across time. Yet when scores are systematically 
changing across time, we would not expect the variance to be constant across time. 
In fact, if the variance remains constant across time and students’ scores increase, 
then the correlation between students’ initial status and their growth rate must be 
negative (Campbell & Kenny, 1999). The variance in achievement, skills, or abil-
ity generally increases across time (Bast & Reitsma, 1998; Gagné, Wager, Golas, 
Keller, & Russell 2005; Kenny, 1974), and there is generally a positive correlation 
between students’ initial reading scores and their reading growth across time. In fact, 
the observation of Matthew effects in reading is not possible unless the variance in 
reading scores increases across time. Therefore, standardizing the variable of inter-
est to have a constant mean and a constant variance at each time point “constitutes 
a completely artificial and unrealistic restructuring of interindividual heterogeneity 
in growth” (Willett, 1989), which is likely to produce distorted results (Thorndike, 
1966; Willett, 1989). Thus, it is inadvisable to standardize the dependent variable 
when conducting growth curve analyses (Willett, 1989).
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Time-Structured and Time-Unstructured Data

Data are time structured if all the units are measured on the same data collection 
schedule (i.e., at the same time points). The time-structured nature requires that 
the interval between data collection points 1 and 2 and the interval between data 
collection points 2 and 3 is equal across all students in the sample (Kline, 2005). 
In contrast, when time intervals can vary both within and across people, such data 
are often referred to as “time-unstructured” data (Singer & Willett, 2003). Time-
unstructured data are collected on different schedules or at different time points 
(Skrondal & Rabe-Hesketh, 2008) and the data collection schedule can be com-
pletely different for every person in the sample. When using multilevel analyses, 
each participant can have their own unique data collection schedule. In other words, 
each person could have a different number of observations spaced across different 
time intervals.

Growth curve models are more flexible than traditional repeated measures analy-
ses in that they can accommodate missing data, as long as the data are missing at 
random. With time-unstructured data, we can flexibly model any data collection 
schedule. This flexibility allows us to easily model growth trajectories for partici-
pants with missing data.

Model Specification for Basic Growth Curve Models

In the following sections, we describe the data structure and model specification for 
multilevel growth models. Afterward, we describe the analogous structural equation 
modeling specifications for growth models.

Data Structure for Growth Curve Models

Individual growth analysis requires that individuals are measured repeatedly on the 
same outcome variable. Therefore, the repeated measures are nested within indi-
viduals and they are correlated with each other across time. Because multilevel ap-
proaches to growth curve modeling view observations across time as nested within 
people, and because time enters the model as an explicit independent variable, mul-
tilevel approaches to growth curve analyses require long, univariate, person–period 
data files. In such a structure, each observation at a given time point becomes a 
row in the data file. Therefore, each unit (or person) occupies multiple rows within 
the person–period data file (Singer & Willett, 2003). Generally, data are stored in a 
multivariate or wide file, where each row denotes a separate person. Further, when 
using SEM to fit growth models, the data need to be arranged in a wide file. Still, 
it is quite simple to restructure data from a wide file to a long file to use multilevel 
techniques. Figure 10.1 depicts the data restructure wizard in statistical package for 
the social sciences (SPSS). This tool seamlessly restructures data from a wide for-
mat to a long format or from a long format to a wide format. Most major software 
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programs have a similar tool or command that allows for the convenient restructur-
ing of data into a long, person–period dataset.

The Two-Level Multilevel Model for Linear Growth

From a multilevel perspective, a simple growth curve model has two levels: a with-
in-individual level (level-1) and a between-individual level (level-2). Observations 
across time are the level-1 units, and they are nested within people, who are the 
level-2 units. Thus, the level-1 model captures the shape of an individual’s growth 
trajectory across time and includes any covariates that vary across time within in-
dividual. In other words, the variable can take on a different value for the same 
person at different time points throughout the study period. In a study of reading 
fluency, time-varying covariates might include scores on other language or reading 
assessments, the number of instructional minutes that the student spends engaged in 
reading activities, or whether or not the student received additional support services 
during the time period in question. The level-2 model captures the between-person 
variability in the growth parameters across time and includes any covariates that 
vary across individuals but are constant across time within a given individual. Ex-
amples of level-2 covariates include gender, race/ethnicity, or other stable, personal 
characteristics. The equations below depict a simple two-level linear growth model.

Level-1:

Level-2:

0 1 ( ) .ti i i ti tiy time eπ π= + +

0 00 0 .i irπ β= +

1 10 1 .i irπ β= +

Fig. 10.1  SPSS data restructure wizard, which converts wide files to long files
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The dependent variable ( )yti  is the score for student i at time t, which is a function 
of the intercept, 0iπ , (which is the predicted value of yit when time = 0), 1 ( )i titimeπ ,  
and individual error. The time slope, 1iπ , represents the linear rate of change over 
time. As we mentioned earlier, because time enters the equation as an independent 
variable, each participant can have its own unique values on the time variable. To 
make the intercept interpretable, the time variable is generally centered on some 
meaningful value that occurs during the data collection period. The most common 
approach is to center time at the beginning of the study period. Using such a cen-
tering scheme, the intercept represents the expected value at the beginning of the 
study. If age is used as the time variable, it is quite common to center at a particular 
age (for example, at age 6). This has the added advantage of controlling for age in 
addition to centering time. For example, if age/time = 0 occurs when each of the stu-
dents is 6 years old, then the intercept represents the model predicted score at age 6.

Notice that both the slope and the intercept contain a subscript i, indicating that 
a separate slope and intercept are estimated for each person in the sample. The de-
viation of a particular observation from the model-predicted trajectory is captured 
in the error term, ( )eti , which represents the within-person measurement error as-
sociated with that individual’s data at that time point. The pooled error variability 
within individuals’ trajectories is estimated by the variance of 2[ ( ) ]ti tie var e σ=  
(Raudenbush & Bryk, 2002), and this error variance is generally assumed to be 
constant across time.

The level-2 equation models the average growth trajectory across people. It also 
captures between-person differences in the model-implied growth trajectories based 
on level-2 (time invariant) covariates. The second level of the multilevel model spec-
ifies that the randomly varying intercept 0( )iπ  for each individual ( i) is predicted by 
an overall intercept 00( )β , the effects of any level-2 predictors on the intercept, and 
r i0 , the level-2 residual, which represents the difference between person i’s mod-
el-predicted intercept (based on the overall intercept, 00β , and level-2 predictors) 
and his or her actual intercept. Likewise, the randomly varying linear growth slope 

1( )iπ  for each individual ( i) is predicted by an overall intercept 10( )β , the effects 
of level-2 variables on the linear growth slope, and r i1 , the level-2 residual, which 
represents the difference between person i’s model-predicted linear growth slope 
and his or her actual growth slope. Imagine a simple scenario in which time is coded 
0, 1, 2. The intercept, 0iπ , represents the predicted initial status of person i. Thus, 

00 β  represents the overall average intercept. The linear growth parameter 1( )iπ  
represents the average growth rate 10( )β . The between-student variability in the in-
tercept is captured by the variance of r0i 0 00[ ( ) ]ivar r τ= . If the intercept is centered 
on initial status, then 00τ  represents the between-person variability in initial status, 
or where people start. Likewise, the amount of variability in the time slope between 
students is estimated by the variance of r0i 1 11[ ( ) ]ivar r τ=  (Raudenbush & Bryk, 
2002): 11τ  represents the between-person variability in peoples’ growth rates. The 
inclusion of the r0i and r i1  in the level-2 equations allows for between-person vari-
ability in the intercepts and slopes. In addition, we generally estimate their covari-
ance, 01τ . The standardized 01τ  estimate from the model above (which does not yet 
include any level-2 predictors) provides the correlation between initial status (or, 
more generally, the intercept) and growth.
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Generally, we start by estimating the model above and we develop the final 
level-1 model prior to including person-level (level-2) predictors of the level-1 
parameters. To develop the level-1 model, first we consider the shape of the growth 
trajectory and try to fit a model that adequately captures the shape of the growth tra-
jectory without any time-varying covariates (which are level-1 predictors that vary 
across time). Next, we introduce time-varying covariates into the level-1 model. Fi-
nally, we consider any potential interactions among time variables and time-varying 
covariates. After we are satisfied with the level-1 model, we turn our attention to the 
level-2 model. At this point, we can include person-specific variables in the level-2 
model to explain variation in the intercept and the growth slope. For instance, per-
son-level predictors such as gender, student’s socioeconomic status, or their cogni-
tive ability may help to explain where students start and how fast they grow in terms 
of their reading fluency. Ideally, if person-level covariates help to explain some of 
the interindividual variability in terms of where people start (the intercept) or how 
fast people grow (the slope), then the variances for r0i and r i1  should decrease as 
those predictors are included in the model. Once level-2 predictors are included in 
the model, 00τ  becomes the residual variance in the intercept after controlling for 
the covariates. Likewise, 11τ  becomes the amount of between-student variability 
in the time slope after accounting for the person-level covariates (Raudenbush & 
Bryk, 2002). The standardized 01τ  estimate from the conditional model above is the 
residualized correlation between initial status (or, more generally, the intercept) and 
growth, which provides the relation between initial status and rate of change after 
controlling for the other variables in the model.

Piecewise Growth Models

Often, growth trajectories may not be modeled well by a single linear slope or rate 
of change, even after adjusting for time-varying covariates. There may be scenarios 
in which a growth pattern might be more aptly represented by dividing the tra-
jectory into growth segments corresponding to fundamentally different patterns of 
change (Collins, 2006). For example, imagine that a reading researcher collects 
achievement data on elementary students across an entire calendar year. Time points 
between September and June capture the span of time for the change in achievement 
across the school year, whereas the period between June and the end of August cap-
tures the span of time for the change in reading scores during the summer (nonin-
structional) months. The achievement slope is likely to be substantially steeper and 
constant during instructional months and flatter (or perhaps even negative) during 
the summer, when students receive no academic instruction: a single linear growth 
parameter cannot represent the data well in this situation. Piecewise linear growth 
models “break up the growth trajectories into separate linear components” (Rauden-
bush & Bryk 2002, p. 178), and can be particularly valuable when comparison of 
growth rates between the separate components are of interest. Piecewise models 
also allow researchers to investigate differences in substantive predictors of growth 
between the components. Note that a sufficient number of timepoints are required 
to enable modeling of a separate slope for each component.
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Piecewise regression techniques conveniently allow for changes in a linear 
growth slope across time. To achieve these representations, we include multiple-
time variables into the model to capture the multiple linear growth slopes. For 
example, if we expect one rate of growth for time points 1–4, and another rate of 
growth for time points 4–8, we would introduce two time variables. The second 
time variable always clocks the passage of time, starting (from 0) at the point at 
which the discontinuity or change in slope is expected. Following our above ex-
ample, our two-piece linear growth model would then be expressed as follows:
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Generally, reading scores exhibit substantial growth during the school year; 
 however, reading scores often remain flat (or even decrease) over the summer 
months. Therefore, to adequately capture the growth in ORF, we need to fit at least 
two linear growth trajectories: one for school-year growth and another for summer 
growth. To model these multiple trajectories, we can create two time variables: one 
that clocks the passage of time from the beginning of the study that occurs during 
the school year (time_piece1) and another that clocks the passage of time during 
the summer (time_piece2). If we could assume that school-year growth remained 
constant within child across the multiple years of the study and summer growth 
also remained constant within child across the study, we could capture the zig-zag 
pattern of growth across the multiple years of the study with only two different 
slope parameters: 10β , which would capture the school-year slope, and 20β  which 
would capture the summer slope. Thus, creative use of piecewise regression models 
can capture a variety of patterns of nonlinear change as well as discontinuities in 
growth. Of course, multiple changes in linear growth rates can be captured through 
piecewise models as well. In our current dataset, reading growth is measured at eight 
time points: four times a year across two school years. We model such data using 
a three-piece growth model. The first slope captures change across the first-grade 
year, the second slope captures the summer growth rate, and the third slope captures 
the growth rate during the second-grade year. Although the piecewise model allows 
us to flexibly model two or more growth rates that occur across particular time in-
tervals, they are just one type of nonlinear model. Often polynomial models or other 
types of nonlinear models are used to capture nonlinear trajectories. The interested 
reader should consult O’Connell et al. (2013) for further details on specifying and 
interpreting polynomial growth models.

SEM Models

The SEM approach to growth curve analysis formulates individual growth curves 
(the intercept and the linear growth rate) as latent variables. Therefore, the mean 
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and the variance of the latent variables provide the parameter estimates of interest 
for the individual growth curves. The means of the latent variables provide the ex-
pected values for the intercept and slope parameters. In other words, the mean of the 
mean factor depicts the average level within the sample and the mean of the slope 
factor describes the average rate of change across time. The variances of the latent 
variables capture the between-person variance in the slope and the intercept. If the 
slope variance were zero, then everyone in the sample would be growing at the same 
rate, a common assumption in repeated measures analysis of variance (ANOVA). In 
traditional SEM, time is introduced through the factor loadings for the latent vari-
able representing the linear-growth slope (Stoel & Garre, 2011); therefore, standard 
SEM approaches to growth curve modeling require time-structured data.

Figure 10.2 provides a graphical depiction of a linear growth model with data 
collected at three time points, modeled within the SEM framework. This model con-
tains two latent variables: the slope and the intercept. To model growth using SEM 
requires the estimation of a model that includes means (and intercepts) as well as 
variances and covariances. The means of the latent variables provide the parameter 
estimates for the expected value of the slope and the intercept. The variances of these 
latent variables provide information about the between-person variability in the in-
tercept and the slope. The factor loadings for the intercept factor are fixed to be 1 
across time. The factor loadings for the slope variable contain the information about 
the passage of time. If we want to center time at the time of the first observation, then 
we would constrain the path from the slope factor to T1 (which is the outcome vari-
able at time 1) to 0. Then, the mean of the intercept factor represents the expected 
value of the outcome variable at time 1. The path coefficient for the path from the 
slope factor to T2 represents the amount of time that has elapsed since the first data 
collection at time 1. Here, the path is fixed at 1 because 1 year has elapsed since the 
collection of T1 data. The third path is fixed to 2, which represents the total amount 
of time that has elapsed since the first data collection (T1). In other words, the model 
above illustrates a model in which the outcome variable is measured at three time 
points, each of which are spaced 1 year apart. Therefore, the mean of the slope 

Fig. 10.2  Graphic represent-
ing the estimation of a linear 
growth model from data 
collected at three time points 
using SEM
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represents the yearly growth rate because the fixed path  coefficients are measured in 
the metric of “years.” The SEM approach is analogous to the multilevel approach. 
But because the information about the passage of time is contained in the path coef-
ficients instead of in a separate variable, everyone must have the same basic data 
collection schedule. This is why traditional SEM analyses require time-structured 
data whereas multilevel models can accommodate time-unstructured data.

The residual variances at different time points represent the time-specific mea-
surement error in the outcome variable (Bollen & Curran, 2006; Muthén & Muthén, 
1998). Conventional multilevel models pool this measurement error across time 
points and people. Therefore, in the most traditional or standard growth models all 
of the error variances are constrained to be equal. This traditional growth model 
estimates six parameters: two latent means, two latent variances, the covariance 
between the two latent variables, and one error variance. To identify the mean struc-
ture of the model, we set the intercepts for the outcome variable to be 0 across all 
time points. Conceptually, this means that the intercept and the growth slope explain 
change in the level of the observed scores across time. It is not uncommon to al-
low the variances of these residual terms to vary across time in SEM. Duncan et al. 
(2006) provide a readable introduction to growth curve models in SEM and Bollen 
and Curran (2006) provide a more advanced treatment of the topic.

Multilevel Models versus Structural Equation Models

Traditional SEM latent growth models require time-structured data; this represents 
a major difference between the SEM and hierarchical linear modeling (HLM) ap-
proaches to individual growth modeling, and is one major advantage to modeling 
growth data within a multilevel framework. Every participant can have their own 
unique data collection schedule. Thus, traditional multilevel models are inherently 
flexible in modeling unstructured data. In contrast, because the information about 
time is contained in the factor loadings, traditional SEM require time-structured 
data. If data are time unstructured and preserving that structure is important, multi-
level approaches to growth curve analysis provide a seamless method of modeling 
time in a purely unstructured fashion.

But there are several advantages to using the SEM approach to growth curve mod-
eling. First, whereas multilevel models provide a variety of a priori error covariance 
structures within the mixed-model framework, it is easier to specify a wide variety 
of “ad hoc” error covariance structures within the SEM framework. Second, SEM 
provides the ability to build a measurement model for the outcome variable, allow-
ing for the incorporation of multiple indicators at each time point. In other words, the 
outcome variable itself can be a latent variable. For example, instead of using one 
measure of ORF as an outcome variable, we can create a latent variable called flu-
ency, which is comprised of multiple (preferably three or more) ORF trials. Utilizing 
this latent variable strategy allows researchers to disaggregate measure-specific error 
from time-specific error, which is a tremendous benefit of using SEM (Kline & ebrary, 
2011). Third, SEM models can incorporate latent variables as predictors. Account-
ing for measurement error in the predictors should result in less-biased parameter 
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estimates. Fourth, SEM models can accommodate mediational models far more easily 
than multilevel models can (Little, 2013). Fifth, SEM models allow for the simul-
taneous or sequential estimation of multiple growth models for multiple-dependent 
variables (Duncan, Duncan, & Strycker, 2006). Sixth, SEM allows for more flexibility 
in the incorporation of time-varying covariates into the growth model (Curran, Lee, 
Howard, Lane, & MacCallum, 2012). Finally, because the information about time is 
contained in the factor loadings, when there are at least four time points it is possible 
to fix two factor loadings and free the rest of the loadings, allowing for a very flex-
ible expression of the growth trajectory (Bollen & Curran, 2006). Therefore, SEM 
provides a great deal of flexibility for modeling growth. The SEM and multilevel 
approaches can be combined, using multilevel SEM, which can capture the nested 
nature of educational data and capitalize on the strengths of the SEM tradition.

Growth trajectories can be influenced by many factors. These factors may be ob-
served or latent and time varying or time invariant. If these factors can be measured 
quantitatively, then they could be included as exogenous variables in growth curve 
models to better explain the nature of the growth process. Because our focus is to 
demonstrate how to model a growth trajectory, we do not use any time-varying or 
time-invariant covariates in our models in this chapter. When including covariates, 
we recommend the following model-building process: First, include only the time 
variables, next include any other level-1 variables, and, as a final step, add level-2 
predictors. We now turn our attention to an applied example to illustrate the utility 
of growth curve modeling within fluency research.

Applied Example

To illustrate the use of individual growth curves to model fluency data, we use 
two DIBELS measures: nonword fluency (NWF) and ORF. We begin with a series 
of univariate analyses using ORF data. We contrast the multilevel and SEM ap-
proaches to growth curve analysis, fitting the same growth models to the data under 
the two approaches. In addition, we compare the fit of linear and piecewise growth 
models to these data. Lastly, we introduce NWF into our analyses to demonstrate 
how to model multiple outcome variables in one model. We use the HLM 7 program 
to fit the multilevel models and Mplus 7 to fit the SEM models.

Step 1: Understanding Our Data

Our dataset contains 18,667 students, measured quarterly at eight time points across 
kindergarten and first grade. A full description of the data can be found in Chap. 12 
(Petscher, Koon, Kershaw) of this volume. We cannot overstate the importance of 
visually inspecting both individual growth trajectories and a plot of the change in 
the means on the outcome variable across time. No modeling technique, no matter 
how novel or sophisticated, can substitute for a solid understanding of nature of 
the observed change within the dataset (McCoach et al., 2013). Prior to conducting 
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any statistical analysis, we examined the raw data to describe the observed growth 
trajectories. We present the means, standard deviations (SD), and correlations for 
the eight repeated measures of NWF and ORF in Table 10.1. Our preliminary de-
scriptive analyses revealed several points of interest. First, the correlations among 
the repeated measures of the same construct are moderately high (ranging from .55 
to .81 for NWF and ranging from .64 to .94 for ORF) and the correlations among 
the repeated measures across constructs are also moderately high (ranging from 
.49 to .76). Observations of the same measure over time are clearly associated, and 
the two measures, NWF and ORF, are also correlated with each other. Second, the 
magnitudes of the correlations decrease as the time intervals between observations 
increase. Figure 10.3 plots the correlations within and across constructs over time. 
Third, as expected, the means of ORF and NWF increase over time (Table 10.1). 
Yet the growth rates are not consistent over time. Thus, a linear model does not 
seem appropriate to capture the growth in reading fluency across this 2-year period. 
The ORF and NWF slopes are markedly less positive between time point 4 (ORF 
4 and NWF4) and time point 5 (ORF 5 and NWF5), which encompass the summer 
vacation period between first grade and the second grade. According to the plots in 
Fig. 10.4, students make positive growth during the first four data collection points 
(which are collected during first grade). Time 4 is the last data collection in first 
grade. Time 5 is the first data collection point in grade 2. Therefore, the summer 
break occurs between data points 4 and 5. During the summer (which is captured by 
examining the line between data points 4 and 5), students regress slightly in NWF 
and make little to no progress in ORF. Given this even pattern of development, we 
would expect a nonlinear model such as a piecewise model to fit the data better than 
a simple linear model. Lastly, the variances in the repeated measures increase over 
time. Such a pattern is common in reading research, and it indicates that students 
are becoming increasingly more different from each other (Bast & Reitsma, 1997, 
1998; McNamara, Scissons, & Gutknecth, 2011).

To demonstrate univariate growth models, we present a series of growth models 
using the ORF data. The NWF fluency data look quite similar; therefore we do not 
repeat the process with NWF. To demonstrate simple multivariate growth models, 
we utilize both NWF and ORF.

Model 1: The Unconditional Single-Process Growth Curve Model

First, we model growth in ORF across the eight time points. According to the plot 
(b) in Fig. 10.4, the growth trajectories change across time; there is not one constant 
growth rate. Instead, there is one elbow at time point 4 and another one at time point 
5. In addition, the growth between these time points is substantially lower than the 
growth between time points 1–4 and time points 5–8.

For comparison, we present two unconditional models: a linear growth model 
and a piecewise growth curve model. The linear growth model fits one slope across 
all eight time points, thus assuming that the growth is consistent over time. But giv-
en the shape of the observed data, such a model is unlikely to provide the best fit to 
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the data. As described earlier, a piecewise linear model consists of multiple pieces, 
each of which are linear slopes. Although all of the pieces are themselves linear, the 
resulting growth trajectory is a nonlinear amalgam of two or more linear segments.

For the piecewise growth curve model, we fit three linear pieces (i.e., slopes). 
The first slope represents the growth rate from time 1 to 4; the second slope repre-
sents the growth rate from time 4 to 5; and the third slope represents the growth rate 
from time 5 to 8. Assuming that data are time structured, Table 10.2 presents the de-
sign matrix for these two models. X0tj represents the multiplier or factor loading for 
the intercept and it is always 1. In the linear model, X1tj represents the unit change 
in time across all eight time periods. In the piecewise linear model, X1tj represents 
the unit change in time between time points 1 and 4, X2tj represents the unit change 
in time between time points 4 and 5, and X3tj represents the unit change in time 

Fig. 10.4  The Boxplots of the dependent variables

 

Fig. 10.3 The Plots of the correlations among the repeated measures
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between time points 5 and 8. To appropriately model a piecewise growth trajectory 
with separate slopes, only one time variable changes from (t−1) to t.

If students grew at the same rate across first and second grades, we could easily 
simplify the model above to fit a two-piece model in which there are only two rates 
of change: Rate 1 would capture the growth rates from times 1–4 and times 5–8 and 
rate 2 would capture the summer growth (from times 4–5). In the current example, 
such a two-piece model does not fit the data as well as the three-piece model does 
but, in other scenarios or datasets, it certainly could.

We used both multilevel modeling and SEM to analyze these data, using both 
linear and piecewise linear models. Table 10.3 presents these two approaches side 
by side for comparison. The initial SEM models constrain all the residual variances 
to be equal across time for direct comparison to the traditional HLM approach. We 
also provide results from the SEM models that allow for heterogeneous error vari-
ances across time.

Table 10.4 summarizes the variance components and residual variances for the 
linear growth model; Table 10.5 summarizes the variance components and residual 
variances of the piecewise growth model. For both linear growth models and piece-
wise growth models after controlling for the growth factors, the residual variances 
do differ across the eight time points ( p < .0001) and the fit is slightly better for these 
models (The BIC for the piecewise model is 1145099.2, whereas the BIC for the 
linear model is 1166288.2). But constraining the within-person residual variance to 
be equal across all eight time points has a fairly trivial influence on the estimated 
between-person residual variances for the intercept and growth slopes and no ap-
preciable effect on the estimates of the intercept and growth slopes.

Comparing the constrained linear growth model with the constrained piece-
wise growth model, the within-student across-time variance (σ2) from the linear 
growth model is 90, and the within-student across-time variance (σ2) decreases 
to 65. In other words, using the three piecewise growth models helps to explain 
(90 − 65)/90 = 25/90 = 27.8 % more of the within-student (across time) variance than 
the standard linear growth model does.

Table 10.6 summarizes the estimated fixed effects obtained from the three mod-
els and compares the model-predicted values to the actual sample values for each 

Time (t) Linear growth 
model ( n = 1)

Piecewise growth model ( n = 3)

x0tj x1tj x0tj x1tj x2tj x3tj

1 1 0 1 0 0 0
2 1 1 1 1 0 0
3 1 2 1 2 0 0
4 1 3 1 3 0 0
5 1 4 1 3 1 0
6 1 5 1 3 1 1
7 1 6 1 3 1 2
8 1 7 1 3 1 3

Table 10.2  Examples of the 
arbitrary values of the latent 
slopes’ loadings
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Multilevel model SEM model with homogeneous error variances
Linear growth models
Level-1 Model:

( )0 1 1*tj j j tjtj
y i s x e= + +

Level-2 Model:

0 00 0j ji rβ= +

1 10 1j js rβ= +

Default assumption:
The level-1 residual variance within students 
is constrained to be equal across times, which 
is the default assumption in the HLM program
Two Fixed effects:

00β : the expected (mean) initial score
10β : the expected (mean) growth rate

Three Random effects:
Level-1:
Variance of etj  (σ 2): the within-student 
(residual) 
variance, which is assumed homogenous 
across time points
Level-2: 
Variance of r j0  (τ00): the between-person 
(residual) variance in the initial ORF scores
Variance of r j1 (τ11): the between-person 
(residual) variance in the growth slope

In the SEM model, error variances of e1–e8 
are constrained to be equal. This constrained 
SEM model is identical to the two-level HLM 
model on the left side
The residual variance of the 8 observed out-
come variables corresponds to the level-1 error 
variance (σ 2) in the HLM model
The latent intercept variable “i” is the initial 
ORF level at time one, which corresponds to 
i j0  in the HLM model
Therefore, the mean of “i” corresponds to the 
fixed effect of 0 00( )ji β  and the variance of “i” 
is corresponds to the random effect of i j0 (τ00)
The latent slope variable s1 is the latent 
growth rate, which corresponds to the fixed 
effect of 1 10( )js β  The variance of s1 corre-
sponds to the random effects of s j1 (τ11)

Piecewise growth models
Level-1 Model:

( ) ( ) ( )0 1 1 2 2 3 3* * *tj j j j j tjtj tj tj
y i s x s x s x e= + + + +
Level-2 Model:

0 00 0j ji rβ= +

1 10 1j js rβ= +

2 20 2j js rβ= +

3 30 3j js rβ= +

ORF
i

ORF
s1

ORF
s2

ORF
s3

0
0

0 0
0

1 2 3 3 3 1 1 1 1

0
0 0

0
1 2 30

ORF1 ORF2 ORF3 ORF4 ORF5 ORF6 ORF7 ORF8

Error variances of e1–e8 are constrained to be 
equal

Table 10.3  Comparing the multilevel modeling approach and the SEM approaches
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Multilevel model SEM model with homogeneous error variances
Four fixed effects:

00β  : the expected value of the initial score
10β  : the expected growth rate from time 1 to 

time 4
20β  : the expected growth rate from time 4 to 

time 5
30β  : the expected growth rate from time 5 to 

time 8
Five random effects:
Level-1:
Variance of etj  (δ2): the within-person variance 
which is assumed to be homogenous across 
time points
Level-2:
Variance of r j0  (τ00): the between-person vari-
ance in the initial ORF scores
Variance of r j1  (τ11): the between-person vari-
ance in the first slope, which represents the 
growth rate from time 1 to time 4
Variance of r j2  (τ22): the between-person vari-
ance in the second slope, which represents the 
growth rate from time 4 to time 5
Variance of r j3  (τ33): the between-person vari-
ance in the third slope, which represents the 
growth rate from time 5 to time 8

The latent intercept variable “i” is the initial 
ORF level at time one, which corresponds to 
i j0  in the HLM model
Therefore, the mean of “i” corresponds to the 
fixed effect of ( )0 00ji β and the variance of “i” 
corresponds to the random effect of i j0  (t00)
The latent slope variables “s1”, “s2”, and “s3” 
are respectively representing the growth rate 
from time 1 to time 4, the growth rate from 
time 4 to time 5, and the growth rate from time 
5 to time 8. The means of “s1”, “s2”, and “s3” 
correspond to the fixed effects of ( )1 10js β , 

( )2 20js β , and ( )3 30js β The variances of “s1”, 
“s2”, and “s3” correspond to the random effects 
of s j1  (τ11), s j2  (τ22), and s j3  (τ33)

Table 10.3 (continued)

Table 10.4  Estimated variance components for the linear growth model
HLM Constrained SEM Unconstrained SEM
σ2 90.07 Residual variance 

constrained as 
equal

90.08 Residual variance ORF1 85.039
Residual variance ORF2 33.086
Residual variance ORF3 93.496
Residual variance ORF4 92.967
Residual variance ORF5 119.74
Residual variance ORF6 69.117
Residual variance ORF7 87.25
Residual variance ORF8 129.556

τ00 541.55 Variance of i 541.70 Variance of i 551.31
τ11 12.51 Variance of s1 12.51 Variance of s1 13.48
Model fit indices
AIC 1166241.2 1161788.5
BIC 1166288.2 1161890.4
Adjusted 
BIC

1166269.2 1161849.1

BIC  bayesian information criterion, AIC  akaike information criterion
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of the eight time points. Using the parameter estimates from the linear model, we 
predict that students’ initial ORF is approximately 21 words ( . )B00 21 06=  and that 
they gain approximately 10 words per benchmark assessment ( . )B10 9 94=  across 
the 2-year period. Using the piecewise linear growth model, we still estimate that 
students’ initial ORF is 21 words ( . )B00 21 40= . But their reading fluency growth 
rate is approximately 10 points ( . )B10 10 38=  per quarter during the first-grade 
school year, 4 points ( . )B20 3 84=  during the summer break between first and sec-
ond grade, and 12 points ( . )B30 12 30=  per quarter during the school year of sec-
ond grade. The results of the piecewise linear model indicate that reading fluency 
growth is faster during the school year than during the summer and that ORF grows 
faster in second grade than it does in first grade.

Figure 10.5 plots the trajectories for both ORF and NWF. Clearly, the data for 
both measures appears to be nonlinear: students make more growth on both ORF 
and NWF during the school year than they do in the summer.

Figure 10.6 plots both the observed means and estimated means for the linear 
and piecewise models. The piecewise growth models fit the sample data better than 
the linear growth models do, especially for time points 5 and 8. In contrast, the lin-
ear models overestimate the mean at time 5 and underestimate the mean at time 8. 

Table 10.5  Estimated variance components for the piecewise growth model
HLM Constrained SEM Unconstrained SEM
σ2 65.19 Residual variance 

constrained as 
equal

65.20 Residual variance 
ORF1

23.24

Residual variance 
ORF2

47.31

Residual variance 
ORF3

74.46

Residual variance 
ORF4

55.74

Residual variance 
ORF5

67.17

Residual variance 
ORF6

64.70

Residual variance 
ORF7

88.97

Residual variance 
ORF8

81.91

τ00 389.95 Variance of i 390.04 Variance of i 384.45
τ11 28.54 Variance of s1 28.53 Variance of s1 34.86
τ22 47.93 Variance of s2 47.91 Variance of s2 94.20
τ33 18.65 Variance of s3 18.65 Variance of s3 46.26
Model fit indices
AIC 1144981.7 1142007.0
BIC 1145099.2 1142179.3
Adjusted BIC 1145051.5 1142109.4
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Fig. 10.5  The plot of means of the eight repeated measures on the ORF and NWF

 

Fig. 10.6  Plots of observed means and estimated means at student level
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It is essential to compare the model-predicted values to the sample values to ensure 
that the model is able to adequately recover the shape of the growth trajectory. Ex-
plicit comparisons of the model-predicted and observed values at each of the time 
points reveals the shortcomings in a given model.

Traditional multilevel approaches allow for the flexible treatment of time and 
provide elegant options for univariate growth models. But if we wish to consider 
two-dependent variables simultaneously within one model, it is generally easiest to 
employ structural equation modeling approaches to growth modeling. Our next set 
of models reintroduces NWF. Modeling NWF and ORF simultaneously helps us 
to better understand the linkages between the two variables. Traditional multilevel 
models are univariate. In contrast, the SEM approach accommodates multiple out-
come variables seamlessly. Therefore, we fit the dual-process growth models using 
SEM.

Model 2: The Unconditional Dual-Process Growth Curve Model

In a dual-process growth model, we can model the concurrent growth on two out-
come variables by fitting two growth trajectories simultaneously. So, in one sense, 
the dual-process model is akin to modeling side-by-side growth models. Yet the 
real advantage of the dual-process growth model is that it allows us to estimate the 
correlations among the growth parameters for two outcome variables (e.g., NWF 
and ORF). This allows us to answer many questions including: (1) how does the 
first-grade growth slope for NWF relate to students’ ORF growth in first or second 
grades; and (2) how do NWF scores in the beginning of first grade relate to ORF 
growth in first grade, summer, or second grade?

Figure 10.5 plots observed means of the repeated measures on NWF and ORF. 
The plots of means indicate nonlinearities in the two trajectories. The slope changes 
appear to occur at the same time points. There are two elbows on the plots of both 
NWF and ORF, and therefore we introduce three separate slope pieces for each: the 
first slope represents the growth rate from time 1 to 4; the second slope represents 
the growth rate from time 4 to 5; and the third slope represents the growth rate from 
time 5 to 8. The plots suggest piecewise growth curve models might fit the data for 
both fluency constructs. However, the ORF trajectory looks much “cleaner” than 
the NWF trajectory. Whereas the ORF has three very distinct linear pieces, the 
NWF has some jaggedness, even within the three separate pieces.

To fit the dual process growth model, we estimate two separate latent variable 
growth models. Thus, there are eight latent variables in this dual-process piecewise 
growth curve model: two latent intercepts and six latent growth slopes. We allow 
the latent growth parameters (the intercepts and the slopes) to correlate with each 
other within and across each of the outcome variables.

Figure 10.7 presents the diagram of the measurement model, which is built to 
estimate the fully-crossed correlation matrix among the eight latent variables. In the 
measurement model, all the latent variables are allowed to correlate with each other. 
In this model, we had to constrain the correlation between the second ORF slope 
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and the third ORF slope at zero to solve a “Heywood” case. Heywood cases are 
negative estimates of variances or correlation estimates greater than one (Kolenikov 
& Bollen, 2008). The covariance between the second and third NWF slope was also 
not statistically significantly different from 0.

Table 10.7 contains the means and covariances for the latent means and inter-
cepts. The second (summer) growth slopes for both NWF and ORF are negatively 
related to the intercepts and the two school-year growth slopes.

Fig. 10.7  Diagram of the measurement model
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Table 10.8 contains the model predicted and sample observed means at each of the 
eight time points for NWF and ORF. The growth rates for NWF and ORF are quite sim-
ilar in first grade, approximately 10.5 points ( . )BSNW1 10 54=  and ( . )BSOR1 10 47= .  
During the summer break, NWF decreases slightly ( . )BSNW 2 2 33= −  while ORF 
increases slightly ( . )BSOR2 3 66= . During second grade, the two slopes diverge 
slightly: the slope for NWF is slightly less in second grade than it was in first grade 
( . )BSNW 3 9 81=  while ORF increases slightly ( . )BSOR3 12 33= . So, in second grade, 
the slope of NWF is lower than it was in first grade, but the slope of ORF is higher 
than it was in first grade. Figure 10.8 compares the model predicted and sample ob-
served means for ORF and NWF using the piecewise simultaneous growth model. 
As would be expected from Fig. 10.5, the three-piece model does a far better job 
reproducing the ORF data than it does with the NWF data.

Table 10.9 contains the bivariate correlations among the latent slopes and inter-
cepts for ORF and NWF. Most of the correlations are statistically significant except 
the correlation between the summer and second-grade growth slopes of the NWF 
and the correlation between the summer and second-grade growth slopes of the 
ORF. The correlations between initial NWF and ORF is quite high (r = .86) as are 
the correlations among the latent slopes measured during the same time periods. 
For example, the correlation between the first-grade ORF growth slope and first-
grade NWF growth slope is .67; the correlation between the two summer reading 
slopes is .79, and the correlation between the two second-grade growth slopes is 
.59. Therefore, there is clearly a strong relation between students’ growth on the 
two assessments.

Table 10.7  Estimated means and covariance matrix for the latent variables
Mean

INW SNW1 SNW2 SNW3 IOR SOR1 SOR2 SOR3
37.92 10.54 − 2.33 9.81 21.23 10.47 3.66 12.33

Covariance matrix
INW SNW1 SNW2 SNW3 IOR SOR1 SOR2 SOR3

INW 380.57
SNW1 25.17 32.99
SNW2 − 9.21 − 10.16 104.08
SNW3 17.67 9.88 2.16 40.97
IOR 330.15 16.48 − 8.23 16.90 384.62
SOR1 54.27 22.79 − 6.39 11.41 50.90 34.80
SOR2 − 36.28 − 12.00 64.78 − 10.66 − 50.04 − 5.57 65.43
SOR3 3.32 5.55 − 8.40 16.87 − 9.02 6.89 0* 20.13

INW  intercept for NWF, SNW1  first grade slope for NWF, SNW2  summer slope for NWF, SNW3  
second grade slope for NWF, IOR  intercept for ORF, SOR1  first grade slope for ORF, SOR2  sum-
mer slope for ORF, SOR3 second grade slope for ORF
The covariance between SOR3 and SOR2 is constrained at zero
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Model 3: Using the Growth Factors in a Regression Model

The repeated measures follow a particular time sequence; therefore, using ear-
lier latent growth factors from one construct to predict subsequent latent growth 
factors from another construct often makes conceptual sense. Fitting regression 

Fig. 10.8  Plots of observed and estimated NWF means using the piecewise simultaneous growth 
model

 

Table 10.8  NWF and ORF
Latent 
factors

Means T1 T2 T3 T4 T5 T6 T7 T8

NWF
INW 37.92 1 1 1 1 1 1 1 1
SNW1 10.54 0 1 2 3 3 3 3 3
SNW2 − 2.33 0 0 0 0 1 1 1 1
SNW3 9.81 0 0 0 0 0 1 2 3
Estimated means 37.92 48.46 59.00 69.54 67.21 77.02 86.83 96.64
Observed means 37.02 52.51 58.65 69.06 65.95 80.92 87.09 95.2
Residual variance 87.44 170.24 173.67 188.47 180.03 324.62 265.84 337.61
R-square .813 .732 .779 .815 .826 .754 .82 .818
ORF
IOR 21.23 1 1 1 1 1 1 1 1
SOR1 10.47 0 1 2 3 3 3 3 3
SOR2 3.66 0 0 0 0 1 1 1 1
SOR3 12.33 0 0 0 0 0 1 2 3
Estimated means 21.24 31.7 42.17 52.64 56.3 68.63 80.96 93.29
Observed means 21.08 32.91 42.38 52.65 56.09 69.18 81.7 92.7
Residual variance 26.04 45.91 72.97 57.61 56.22 65.63 89.48 77.52
R-square .937 .919 .909 .946 .943 .937 .922 .939
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paths between one latent factor and any other latent factors that precede it allow 
us to explore those explanatory relations. To demonstrate this technique, we re-
cast the bivariate growth model as a simultaneous growth model in which earlier 
latent intercepts and growth slopes predicted later growth slopes. After deleting 
all the nonstatistically significant paths, we obtained the final model, shown in  
Fig. 10.9.

As we saw in the bivariate growth model, the correlation between the two la-
tent intercepts was quite high ( r = .86), which indicates a strong relation between 
students’ NWF scores and their ORF scores at the beginning of first grade. After 
controlling for the initial oral reading scores, initial NWF did positively predict 
both the first and second grade reading slopes. But after controlling for NWF, initial 
ORF negatively predicted first-grade NWF growth and did not predict second-grade 
NWF growth. This pattern of results suggests that initial NWF scores do have some 
value in predicting ORF. The paths between initial ORF and the three growth slopes 
are .093, − .349, and − .655, respectively. After controlling for initial NWF, and after 
controlling for the first-grade NWF and ORF growth slopes in the case of the sec-
ond-grade ORF slope, the relation between initial ORF and the three growth slopes 
becomes increasingly negative. Although this may seem counter intuitive, it actu-
ally makes sense. Those who start out with the highest scores will not experience as 
much growth as those with lower scores during the summer and the second-grade 
school year, probably because growth on reading fluency slows after students reach 
a certain level of reading fluency. There are moderately high correlations (ranging 
from .5 to .6) between the disturbances for the three pairs of latent slopes. These 
correlations among the disturbances indicate that the unexplained variance in the 
ORF growth slope and the unexplained variance in the NWF growth slope are fairly 
strongly associated with each other.

According to Table 10.9, the growth slope of NWF in second grade (SNW3) 
correlates with all the other latent factors except the summer NWF growth slope 
(SNW2). But only the first-grade growth slope of NWF (SNW1) and the first-grade 
growth slope of ORF (SOR1) predict NWF growth in second grade. In other words, 
students’ growth rates in both NWF and ORF during first grade help to predict their 
second-grade NWF growth; however, both of these coefficients are fairly small. 

Table 10.9  Estimated correlation matrix for the latent intercepts and slopes 
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Moreover, after controlling for the growth rate in NWF and ORF during first grade, 
students’ NWF growth rate during second grade is not correlated with students’ ini-
tial NWF or ORF level (at the beginning of the first grade) or their growth rate dur-
ing the summer vacation between first and second grades. In contrast, both initial 
ORF and NWF scores and first-grade reading slopes help to predict second-grade 
ORF slope.

Moreover, we also notice several negative path coefficients. For instance, the 
path coefficient between first-grade NWF growth slope and second-grade NWF 
growth slope is − .116. But the mean of the first growth slope of NWF is positive 

NWF
INTERCEPT

NWF
SLOPE1

NWF
SLOPE2

NWF
SLOPE3

ORF
INTERCEPT

ORF
SLOPE1

ORF
SLOPE2

ORF
SLOPE3

NWF1 NWF2 NWF3 NWF4 NWF NWF6 NWF       NWF8

ORF1 ORF2 ORF3 ORF4 ORF5 ORF6 ORF7 ORF8

Fig. 10.9  Diagram of the final dual-process regression model
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and the second growth slope of NWF is negative. Therefore, the negative path co-
efficient indicates that students who make faster NWF growth during first grade 
regress slightly more on NWF during the summer vacation between first and second 
grades, but this is a very small effect. Further, neither the summer NWF growth 
slope nor the summer ORF slope is a good predictor of second-grade growth in 
either ORF or NWF. In summary, NWF does appear to provide some additional 
information to help us to predict students’ ORF growth in second grade.

Model 4: Unconditional, Single-Process, Multilevel Growth Curve 
Model

Growth models can also be extended to incorporate the clustering of students within 
schools. Such analyses can be conducted using two-level SEM models or three-lev-
el multilevel models. In this section, for simplicity, we illustrate multilevel growth 
modeling using a univariate outcome, ORF, again measured across eight time 
points. Students are clustered within schools, and we anticipate that students who 
attend the same school may be more similar to each other than students who attend 
different schools. Thus, estimates of the variance components and their standard 
errors for the fixed effects and the variance components should be more accurate 
when we take the clustered nature of the data into account. In addition, correlations 
between ORF scores across time may be different at the school level and the school 
level as students’ ORF level and growth are conceptually different from schools’ 
(aggregated) ORF and growth.

We examine the cluster effect of schools on students’ ORF scores. Table 10.10 
presents descriptive statistics for ORF as well as correlations among the eight 
repeated measures on ORF at the student level and at the school level. First, the 
correlations among the repeated measures are moderately high (ranging from .64 
to .93 within-school and from .65 to .97 between-schools). Clearly, ORF mea-
sures over time are strongly related both within- and between-schools. Second, the 
within-school correlations tend to be lower than the corresponding between-school 
correlations. Third, the correlations among scores decrease as the time intervals 
between observations increase. Fourth, as we have seen previously, the ORF means 
increase over time and the growth rates are not consistent over time, especially 
during the summer vacation between first and second grade. According to the plot 
in Fig. 10.10, schools’ mean ORF changes very little during the summer vacation 
period. Finally, the intraclass correlations for ORF at each time point range from 
.06 to .08, which indicates that 6–8 % of the variance in ORF lies across schools. 
In other words, school can explain 6–8 % of the variance in ORF at any given time 
point; 92–94 % of the ORF variance lies within-schools. Although these are fairly 
modest ICCs, the best approach to accounting for the dependence in the data is to 
use multilevel growth modeling.

Based on the piecewise growth curve model, we also present two approaches 
to analyze the multilevel growth curve model: the multilevel modeling approach 
and the SEM approach. Table 10.11 presents these two approaches side by side 
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for comparison. Figure 10.11 plots both the observed means and estimated school 
means. In the corresponding SEM model, all the residual variances are constrained 
to be equal across all time points within students and constrained to be zero across 

Fig. 10.10  Plot of school mean ORF scores

 

Table 10.10  Descriptive statistics and correlations among the repeated measures of ORF at 
within- and between-school levels

ORF-1 ORF-2 ORF-3 ORF-4 ORF-5 ORF-6 ORF-7 ORF-8
Within-school
ORF-1 1.00
ORF-2  .91 1.00
ORF-3  .85  .93 1.00
ORF-4  .80  .88  .93 1.00
ORF-5  .76  .85  .89  .92 1.00
ORF-6  .72  .81  .86  .90  .92 1.00
ORF-7  .66  .76  .82  .86  .89  .93 1.00
ORF-8  .64  .73  .79  .84  .87  .91  .92 1.00
Variance 360.85 601.97 882.15 863.95 931.98 928.10 1088.32 1135.38
Between-school
ORF-1 1.00
ORF-2  .95 1.00
ORF-3  .91  .97 1.00
ORF-4  .82  .92  .96 1.00
ORF-5  .82  .89  .93  .94 1.00
ORF-6  .77  .85  .90  .92  .95 1.00
ORF-7  .71  .79  .86  .88  .91  .96 1.00
ORF-8  .65  .75  .82  .84  .87  .93  .96 1.00
Means 21.35 33.40 43.35 53.34 56.76 69.99 82.51 93.62
Variance 25.45 49.18 76.21 74.46 67.49 70.95 83.93 77.82
ICC .066 .076 .080 .079 .068 .071 .072 .064
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Three-level univariate HLM model Two-level multivariate SEM model
Level-1 model: 
y i s x s x

s x e

tjk jk jk tjk ij tjk

ij tjk tjk

= + ( ) + ( )
+ ( ) +

0 1 1 2 2

3 3

* *

*

Level-2 Model:
0 00 0jk k jki rβ= +

1 10 1jk k jks rβ= +

2 20 2jk k jks rβ= +

3 30 3jk k jks rβ= +
Level-3 Model:

00 000 00k kuβ γ= +

10 100 10k kuβ γ= +

20 200 20k kuβ γ= +

30 300 30k kuβ γ= +

ORF
iw

ORF
sw1

ORF
sw2

ORF
sw3 0

0
00

0
123331111

0
00

0
123 0

ORF1ORF2ORF3ORF4ORF5ORF6ORF7ORF8

ORF
ib

ORF
sb1

ORF
sb2

ORF
sb30 0

0 0
01 2 3 3 3 1 1 1 1

0

0 0
0

1 2 30

ORF1 ORF2 ORF3 ORF4 ORF5 ORF6 ORF7 ORF8

Four fixed effects:
000γ  : the expected initial score
100γ  : the expected growth rate from time 1 to 

time 4
200γ  : the expected growth rate from time 4 to 

time 5
300γ  : the expected growth rate from time 5 to 

time 8
Nine random effects:
Level-1, within students:
Variance of etjk  (σ2): the variance within 
students across time, which is assumed to be 
homogenous
Level-2, between students within schools: Vari-
ance of ( )( )0 00jkr τ π : the variance in the initial 
ORF scores crossing students within schools
Variance of ( )( )1 11jkr τ π : the variance in 
the first slope between students and within 
schools, which represents the growth rate from 
time 1 to time 4
Variance of ( )( )2 22jkr τ π : the between-student 
variance in the second slope within schools, 
which represents the growth rate from time 4 
to time 5
Variance of ( )( )3 33jkr τ π : the between-student 
variance within schools in the third slope, 
which represents the growth rate from time 5 
to time 8
Level-3, Between schools:
Variance of ( )( )00 00ku τ β : the between-
schools variance in the initial ORF scores

“Within” and “Between” indicate within and 
between the “CLUSTER”. In this two-level 
SEM model, the “CLUSTER” is “SCHOOL”
The level-1 residual variance within students 
is constrained to be equal across time points 
and level-2 residual variance between schools 
is constrained at zero, which are the two 
default assumptions in the HLM program
To construct a SEM model identical to 
the HLM model, these two constraints are 
introduced
The residual variance of the eight observed 
variables (or dependent variables) within stu-
dents corresponds to the level-1 error variance 
(σ2) in the HLM model
The means of the latent intercept or the latent 
slopes are ONLY estimated at the highest 
level, which is the “%BETWEEN%” level in 
this case. Therefore, the mean of “ib” is cor-
responding to the fixed effect of ( )00 000kβ γ
in the HLM model, the mean of “sb1”, 
“sb2”, and “sb3,” respectively correspond to 
the fixed effects of ( ) ( )10 100 20 200,k kβ γ β γ , 
and ( )30 300kβ γ
The variance of “sw1”, “sw2”, and “sw3” 
correspond to the level-2 random effects of 

( )( )1 11jks τ π , ( )( )2 22jks τ π , and ( )( )3 33jks τ π
in the HLM model. The variance of “sb1”, 
“sb2”, and “sb3” correspond to the level-3 
variance components of ( )( )10 11ku τ β ,  

( )( )20 22ku τ β , and ( )( )30 33ku τ β in the HLM 
model

Table 10.11  Two approaches to modeling growth when people are nested within clusters
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schools. After considering this standard approach to multilevel growth modeling, 
we present an SEM model without these constraints and examine the influence of 
the constraints on the estimates of fixed and random effects. Therefore, we present 
three multilevel growth models: a three-level HLM model, a constrained two-level 
SEM model identical to the HLM model, and an unconstrained two-level SEM 
model.

Table 10.12 summarizes the estimated variance components and Table 10.13 
summarizes the estimated fixed effects obtained from the three models. The un-
constrained model suggests that residual variances do differ across the eight time 
points. Comparing the estimated variance components from the multilevel growth 
model (Table 10.12) and the ones in Table 10.5, the estimated residual variances 
(σ2) are roughly the same from the constrained models with or without consider-
ation of the cluster effect of schools. The between-student variance components 
in the two-level HLM model (single-level SEM model) are larger than the cor-
responding variance components in the three-level HLM model (or the two-level 

Three-level univariate HLM model Two-level multivariate SEM model

Variance of ( )( )10 11ku τ β : the between-schools 
variance in the first slope, which represents the 
growth rate from time 1 to time 4
Variance of ( )( )20 22ku τ β : the between-schools 
variance in the second slope, which represents 
the growth rate from time 4 to time 5
Variance of ( )( )30 33ku τ β : the between-schools 
variance in the third slope, which represents 
the growth rate from time 5 to time 8

Table 10.11 (continued)

Fig. 10.11  Plots of observed and estimated school mean ORF scores
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SEM model). This is because the three-level HLM model (two-level SEM model) 
partitions the between-student variance into two components, one of which lies 
between students within schools and the other of which lies between schools. The 
between-school variance components are relatively small as compared to the cor-
responding variance components between students within schools in this case. But 
including the cluster effect of schools should provide more accurate estimates of 
the standard error. Table 10.13 provides the parameter estimates for the three mul-
tilevel growth models. The parameter estimates for the multilevel growth models 
are quite similar to the parameter estimates for the piecewise growth models that 
we presented earlier.

Model Fit Comparisons of the Growth Models

In mean and covariance structure (MACS) SEM, the number of observed vari-
ables and the number of levels in the model determines the maximum number of 
parameters that can be estimated. For single-level models, the maximum number 
of parameters that can be estimated is n n

n
× +

+
( )1

2
 or n n× +( )3

2
. For multilevel 

models, the maximum number of parameters is n l
n n

+ ×
× +( )1

2
, where n is the 

number of observed variables, l is the number of levels. Table 10.14 demonstrates 

Table 10.12  Random effects
HLM Constrained SEM Unconstrained SEM
Within- student
δ2 65.20 Residual variance 

constrained as equal
64.88 Residual variance ORF1 24.79

Residual variance ORF2 43.69
Residual variance ORF3 69.89
Residual variance ORF4 54.88
Residual variance ORF5 66.42
Residual variance ORF6 60.59
Residual variance ORF7 84.22
Residual variance ORF8 80.09

Between-student within-school level
τ(π)00 362.45 Variance of i 372.02 Variance of i 369.77
τ(π)11 25.85 Variance of s1 25.49 Variance of s1 31.49
τ(π)22 40.64 Variance of s2 39.15 Variance of s2 45.31
τ(π)33 17.05 Variance of s3 16.26 Variance of s3 14.64
Between-school level
τ(β)00 31.45 Variance of i 31.27 Variance of i 26.84
τ(β)11 3.22 Variance of s1 3.25 Variance of s1 3.27
τ(β)22 8.87 Variance of s2 8.96 Variance of s2 6.15
τ(β)33 2.09 Variance of s3 2.13 Variance of s3 1.40
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Observed 
variable

Model Estimated variables df

ORF Single-process linear growth model (latent factors: i s1)
HLM model con-
strained SEM model

n = 8, l = 1
Max number: 8(8 + 3)/2 = 44
Number of error variance 
(σ2): 1
Number of variances in 
latent factors: 2
Number of means: 2
Number of covariances 
among latent factors: 1

44 − 1 − 2 − 2 − 1 = 38

Unconstrained SEM 
model

n = 8, l = 1
Max number: 8(8 + 3)/2 = 44
Number of error variance: 8
Number of variances in 
latent factors: 2
Number of means: 2
Number of covariances 
among latent factors: 1

44 − 8 − 2 − 2 − 1 = 31

Single-process piecewise growth model (latent factors: i s1 s2 s3)
HLM Model con-
strained SEM model

n = 8, l = 1
Max number: 8(8 + 3)/2 = 44
Number of error variance 
(σ2): 1
Number of variances in 
latent factors: 4
Number of means: 4
Number of covariances 
among latent factors: 6

44 − 1 − 4 − 4 − 6 = 29

Unconstrained SEM 
model

n = 8, l = 1
Max number: 8(8 + 3)/2 = 44
Number of error variance 
(σ2): 8
Number of variances in 
latent factors: 4
Number of means: 4
Number of covariances 
among latent factors: 6

44 − 8 − 4 − 4 − 6 = 22

ORF and NWF Dual-process piecewise growth model (latent factors: iNW sNW1 sNW2 
sNW3 iOR sOR1 sOR2 sOR3)
Unconstrained SEM 
model (there is one 
constraint made to 
solve the Heywood 
case)

n = 16, l = 1
Max number: 
16(16 + 3)/2 = 152
Number of error variances 
(σ2): 16
Number of variances for 
latent factors: 8
Number of means: 8
Number of covariances 
among latent factors: (28 − 1)

152 − 16 − 8 − 8 − 27 = 93

Table 10.14  Calculation of degrees of freedom
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how to calculate the degrees of freedom for the different models that we have pre-
sented.

If two models are nested, we can use the model chi-square or the model devi-
ance to compare the two models directly. Two models are nested when one model 
is a subset of the other (Kline, 1998). The simpler model always has a higher chi-
square or deviance than the more complex model. In large samples, the difference 
between the deviances of two hierarchically nested models is distributed as an ap-
proximate chi-square distribution with degrees of freedom equal to the difference 
in the number of parameters being estimated between the two models (de Leeuw, 
2004). Subtracting the chi-square or deviance of the simpler model from the chi-
square or deviance from the more complex model provides a change score that can 
be compared to the critical value of chi-square with degrees of freedom equal to the 
difference in the degrees of freedom between the two models. In evaluating model 
fit using the chi-square difference test, the more parsimonious model is preferred, 
as long as it does not result in significantly worse fit. In other words, if the model 
with the larger number of parameters (fewer degrees of freedom) fails to reduce the 
chi-square or deviance by a substantial amount, the more parsimonious model is 
retained. Therefore, when the change in deviance exceeds the critical value of chi-
square with degrees of freedom equal to the difference in the number of parameters 
being estimated between the two models, we favor the more complex model. But if 
the more complex model does not result in a statistically significant reduction in the 
deviance statistic, we favor the more parsimonious model.

Observed 
variable

Model Estimated variables df

ORF Single-process multilevel piecewise growth model (latent factors: i s1 s2 s3)
HLM model con-
strained SEM model

n = 8, l = 2
Max number: 
8 + 2 × 8(8 + 1)/2 = 80
Number of error variances 
(σ2): 1
Number of variances for 
Latent Factors: 8
Number of means: 4
Number of covariances 
among latent factors: 12

80 − 1 − 8 − 4 − 12 = 55

Constrained SEM 
model

n = 8, l = 2
Max number: 
8 + 2 × 8(8 + 1)/2 = 80
Number of error variance 
(σ2): 16
Number of variances in 
latent factors: 8
Number of means: 4
Number of covariances 
among latent factors: 12

80 − 16 − 8 − 4 − 12 = 40

Table 10.14 (continued)
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We conducted chi-square difference tests to compare the fit of the constrained 
linear growth model to the other three models. In addition, we conducted a chi-
square difference test to compare the fit of the two piecewise growth models. The 
results are presented in Table 10.15. Not surprisingly, the results indicate that the 
piecewise growth models fit better than the linear growth models do. In addition, 
the chi-square comparison between the constrained and unconstrained piecewise 
growth models indicates that unconstrained model fits better, which suggests that 
the residual variances are not homogeneous across time. Table 10.16 summarizes 
the model fit indices of all our models.

Summary

What have we learned about reading fluency using these approaches? First and fore-
most, growth in reading fluency does not follow a linear trajectory across first and 
second grades. Instead, growth is faster during the school year and slower during 
the summer. Also, the growth rates in first and second grades differ from each other. 
For ORF, the growth rate is higher in second grade than it is in first grade, whereas 
for NWF, the opposite is true. ORF and NWF growth rates are fairly strongly re-
lated to each other. We can do a better job predicting ORF growth rates than we can 
predicting NWF growth rates. School only explains a small amount of the between-
student variability in growth rates. Finally, the within-person residuals do differ 
across time in our models, but constraining them to be equal across time has very 
little effect on our parameter estimates.

We hope that this introduction to growth modeling within the multilevel and 
SEM frameworks provides a starting point for fluency researchers who are interest-
ed in analyzing change or growth. Although we have provided several illustrations 
of growth models for fluency within this chapter, we have provided only a small 
sample of the possible growth models that can be fit to fluency data. In addition, 
other longitudinal models, such as autoregressive, cross-lagged, or latent change 
score models may prove even more beneficial in terms of understanding the nature 
of fluency growth and development across time.

Table 10.15  Chi-square test on nested models (from the most parsimonious to the most complex 
model)
Model χ2 df Δχ2 Δdf Δχ2 Δdf P-value
Constrained linear 
growth model

31671.80 38

Unconstrained linear 
growth model

27205.10 31 4466.7 7 < .001

Constrained piecewise 
growth model

10394.25 29 21277.55 9 < .001

Unconstrained piece-
wise growth model

7405.53 22 24266.27 7 2988.7 7 < .001
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Appendix A: Computing the Estimated Means at Each 
Time Point

Using the estimated fixed effects from the HLM piecewise growth model, we dem-
onstrate how to calculate the estimated means at each time point. In general, for 
student i, Yi is a 1 × 8 vector representing the eight observations across time, Bi  is a 
1 × 4 vector representing the four estimated fixed effects from the HLM piecewise 
growth model, and Xi  is a 4 × 8 vector representing the factor loadings of the latent 
intercept and the three latent growth slopes. Then, the calculation is:

Table 10.16  Fit indices for model testing
Outcome Growth curve 

model
CFI TLI BIC RMSEA χ2 df

ORF Unconditional single-process single level linear growth model
HLM model 
constrained 
SEM model

 .87  .91 1166288.23  .211 31671.80 38

Unconstrained 
SEM model

 .89  .90 1161890.37  .217 27205.10 31

Unconditional single-process piecewise growth model
HLM model 
constrained 
SEM model

 .96  .96 1145099.19  .138 10394.25 29

Unconstrained 
SEM model

 .97  .96 1142179.31  .134 7405.53 22

ORF & 
NWF

Dual-process
Unconstrained 
SEM model

 .97  .96 2387179.06  .091 14402.33 93

Regression 
model

 .97  .96 2387393.87  .087 14715.49 103

Unconditional single-process multilevel
ORF HLM model 

constrained 
SEM model

 .95  .95 927704.40  .082 5475.674 55

Unconstrained 
SEM model

 .96  .95 923943.45  .083 4109.138 40

Note: TLI Tucker-Lewis index, RMSEA root mean square error of approximation
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Taking time 6 as an example, the estimated mean ORF is equal to:
21.40 × 1 + 10.38 × 3 + 3.84 × 1 + 12.30 × 1 = 68.68.
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Chapter 11
Introduction to Latent Class Analysis  
for Reading Fluency Research

Jessica A. R. Logan and Jill M. Pentimonti

The practice of splitting people, places, or things into groups is common in all as-
pects of our lives. Doctors group their patients to decide if someone is at risk for a 
particular disease. Psychologists group their patients into whether or not they can 
be diagnosed with a mental disorder. Policymakers make decisions about whether 
programs are failing or succeeding, and teachers have to decide whether or not a 
student needs intervention. While some of those decisions are more data based than 
others, the common and sometimes even subconscious division of constructs into 
groups is an integral part of many things we do. However, splitting people into 
groups can be problematic; a fact that becomes clear as soon as you begin to opera-
tionalize how to split people into those groups. Imagine a scenario where a teacher 
needs to determine which of the students in her first grade class are in of a reading 
intervention. The teacher could choose to use interim progress monitoring assess-
ments such as the oral reading fluency (ORF) subtest of dynamic indicators of basic 
early literacy skills assessment ( DIBELS; Good, Kaminski, Smith, Laimon, & Dill, 
2001). In this test, a midyear first grader who reads 20 words correctly in 1 min is 
considered to be reading well, while those reading more slowly or inaccurately are 
considered to be at some risk for reading failure. This type of classification implies 
that students who read 19 words correctly per minute (WCPM) are qualitatively dif-
ferent than those who read 20 WCPM. To extend this to the teacher in our scenario, 
she should provide intervention for those who read 19 WCPM, but not for those 
who read 20 WCPM. Realistically, this would not be the only factor a teacher would 
consider. The DIBELS has several subtests, and each one has a suggested bench-
mark or criteria that indicate risk. A student who can correctly name fewer than 27 
letters exactly in 1 minute is also considered to be at risk. Just like with ORF, this 
benchmark system indicates that a student reading fewer than 26 letters correctly 



310 J. A. R. Logan and J. M. Pentimonti

in 1 minute is in need of intervention, while a student reading 27 letters is not. It is 
easy to imagine a scenario where a child scores below the benchmark in one test but 
not in the other, in which case the decision of whether to spend resources interven-
ing with this student is more complex.

The goal of this chapter is to describe latent class analysis (LCA), which is a 
technique that is in essence about splitting a sample of people, places, or things into 
meaningful groups. As mentioned above, there are clear instances when grouping 
people is necessary. Such is the case with the example teacher who has to decide 
whether to provide extra intervention for a child. LCA is an excellent method as it 
lets you identify groups based on the data you have rather than an arbitrary idea of 
what constitutes membership in a group.

Conceptual Introduction

The goal of this chapter is to introduce the reader to the concepts underlying an 
LCA, specifically in terms of how it can be used with measures of reading fluency. 
In later sections, an application of LCA using reading fluency data is demonstrated. 
The topic will first be introduced here in the context of a construct that has been 
more commonly assessed with LCA in the research literature; the classification of 
a mental disorder. Consider the plight of the psychologist who must decide whether 
a person has attention deficit/hyperactivity disorder (ADHD) or not. In any given 
sample of people (let us use students as they are most likely to obtain a diagnosis 
of ADHD), we can assume that four different groups exist. Some students will have 
the inattentive type, some the hyperactivity type, some with the combined type, 
and last there will be some students who do not have ADHD. The way students are 
typically given a classification into one of these categories is to have a clinician 
determine how many of the nine indicators of hyperactivity and nine indicators of 
attention problems (included in the Diagnostic and Statistical Manual of Mental 
Disorders; DSM-V) apply to the student (American Psychiatric Association, 2013). 
If a student displays six or more behaviors (in the right categories) then they are di-
agnosed with the corresponding type of ADHD. The fact that six items is the cutoff, 
rather than five or seven, is a seemingly arbitrary distinction.

Instead of this arbitrary cutoff approach, several researchers have instead used 
LCA to divide students into groups based on their ADHD symptoms (e.g., Hudziak, 
Heath, Madden, Reich, Bucholz, Slutske, Bierut, Neuman, & Todd, 1998; Rasmus-
sen, Neuman, Heath, Levy, Hay, & Todd, 2002). The LCA method allows research-
ers in this area to assign each person to a group based on their responses to the same 
18 items mentioned earlier. Because the test was designed to assess two different 
constructs, an LCA should theoretically identify four groups based on each stu-
dent’s probability of endorsing each of the items: one group with a high probability 
of endorsing the items that measure hyperactivity, one with a high probability of 
endorsing the inattention items, one with a high probability on all items, and one 
with a low probability on all items.



31111 Introduction to Latent Class Analysis for Reading Fluency Research

A simplified representation of the analysis is depicted graphically in Fig. 11.1, 
where the first two boxes on the left side of the figure represent items on the test 
that measure inattention, while the second two represent those items that measure 
hyperactivity. You will notice that the four squares representing the observed vari-
ables, all have arrows into them from a circle that is labeled “C.” Traditional struc-
tural-equation-modeling notation holds that observed variables are represented with 
boxes and latent variables are represented by circles. Therefore the “C” represents 
a latent variable of class membership. In this particular example, class membership 
refers to the ADHD group to which each student belongs.

The model depicted in Fig. 11.1 asserts that the underlying group (i.e., class 
membership) is a representation of a basic truth about each person. It is a person’s 
membership in this group that theoretically causes their scores on the four observed 
items. In other words, a person who is truly hyperactive should be very likely to 
endorse the questions that tap hyperactive behavior. The assessed items are assumed 
to berelated only through their common relation with the latent class variable.

The right side of Fig. 11.1 is a graphical representation of the probabilities of 
endorsing each of the four items. As the first two items measure inattention, re-
sponders with the inattentive subtype and the combined subtype are highly likely 
to endorse those items. Those with the hyperactivity subtype and those who do not 
have ADHD are unlikely to endorse these items. The opposite is true for the hyper-
activity items. The result is four distinct profiles of response behavior, which maps 
to the four groups of students hypothesized to exist.

The basic structure of LCA can generalize to any behavior or characteristic in-
cluding reading fluency. The four indicators from the left side of Fig. 11.1 could 
instead be reading fluency, reading accuracy, reading prosody, and phonological 
awareness, though with continuously measured variables like these, this same anal-
ysis is sometimes referred to as a latent profile analysis (LPA). If a student is truly 
developmentally delayed in reading, theoretically this “true risk” will cause the 
student to score poorly on all four reading-related tasks. Switching to the right side 
of Fig. 11.1, students with a global deficiency in reading would have low scores 
across all four reading assessments. If instead, a student has a specific deficiency 
in reading fluency, this specific deficit would result in a lower score for this subtest 
while the others remained in the relatively normal range.

Fig. 11.1  Illustrated example for the analysis of ADHD symptoms
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LCA Versus Factor Analysis

At this point, it is possible that LCA seems to be almost the same as a latent variable 
approach to factor analysis. The difference between the two types of analyses is the 
nature of the latent variable. In factor analysis, the latent variable is continuous, 
while in LCA the variable is categorical. The underlying goals of the two analyses 
are very similar, but while factor analysis focuses on the relations among the items, 
LCA focuses on the relations between the items within the person. These differ-
ences are highlighted in Table 11.1. In factor analysis, one goal is to examine the 
underlying dimensionality of any number of observed items to determine if they 
represent one factor or several factors. Similarly, LCA asks whether the observed 
items identify one group of responders or several groups of responders. A second 
goal of factor analysis is to approximate the true scores of participants on the esti-
mated constructs, as factor analysis models the common variance across observed 
variables, yielding a factor score which is perfectly reliable. Instead of a true score, 
LCA estimates true group membership derived from probability-based classifica-
tion. It is assumed that each responder’s true group membership is what causes them 
to respond in the way they did on the observed variables. Third, factor analysis is a 
method of data reduction. Rather than multiple items representing a person’s skills 
or abilities, the factor analysis provides one variable to represent the total score on 
several items. LCA is also a method of data reduction where the result is one vari-
able. In the case of LCA, the one variable represents each person’s assigned group 
membership. Rather than finding a cut score on the observed variables to place 
responders into groups, LCA estimates the probability that each person will belong 
to each group, given their responses on, and covariances among, all observed items.

In addition to the aforementioned goals, another way LCA is similar to a fac-
tor analysis is that it can be used in either a confirmatory or exploratory way. In 
the ADHD example, we knew we wanted to find four groups of responders; there 
is a clearly established history of four groups of people in respect to their ADHD 
diagnosis. Because of that known factor structure, we know that the LCA should 
identify four different groups of responders. This is not necessarily the case in many 
other research areas, where such criteria are unknown or unclear. When this is the 

Table 11.1  Factor analysis and LCA comparison
Shared characteristics Factor analysis LCA
Has a latent variable Continuous Categorical
Purpose 1: find the 
structure

Determine the underlying num-
ber of factors for all observed 
items

Determine the underlying number 
of groups in the sample of 
responders

Purpose 2: get the truth Estimate the true scores of 
participants

Estimate the true group member-
ship of the participants

Purpose 3: reduce the data One variable represents scores 
on multiple items

One variable represents the 
scores and covariances of 
multiple items

LCA latent class analysis
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case, LCA can be used in an exploratory way to identify whether distinct groups of 
people exist, how many distinct groups exist, as well as what distinguishes them. 
The exploratory LCA method will be demonstrated in the Application section.

What LCA Is Not: Cluster Analysis

Another analytic technique that is similar to LCA is cluster analysis. Both types of 
analyses have the goal of identifying underlying groups of people based on their 
responses on the observed data and to assign those people to groups. Though LCA 
is similar in conceptualization to cluster analysis, it does have some key differences. 
First, cluster analysis estimates how a given cluster fits the observations assigned 
to it using the sums of squared errors approach also used in analysis of variance 
(ANOVA) and regression. Therefore, it falls under the same assumption rules as re-
gression analysis in regards to the normality of the data and the importance of outli-
ers (Cronbach & Gleser, 1953). In contrast, LCA estimates class membership based 
on the probability of belonging to a given group and therefore does not require the 
same assumptions be met. In other words, LCA is more flexible and can be used 
with data with non-normal distributions that demonstrate heteroskedasticity or have 
heterogeneity of variance. A second important difference is that LCA allows for the 
inclusion of all types of variables (dichotomous, categorical, count, or continuous 
or any combination of these) when identifying groups, while cluster analysis is 
limited only to continuous variables. In sum, while there are some similarities in 
the underlying purpose of the two techniques, LCA is a more flexible analytic tool.

The “So What” Section

It is hopefully clear now that LCA can be used when the goal of the research is to 
identify groups. Although it is often inherently interesting to determine whether 
groups exist and what identifies them, this practice always begs the question: So the 
groups exist. So what? The next step in an LCA is to determine if the groups have 
some external importance or validity. Returning to the factor analysis example, this 
process would be akin to using the factor score of one construct to predict some 
other separate but related construct. Similarly, groups identified in an LCA can be 
examined for their relations with other constructs, either concurrently measured 
constructs, previously measured constructs, or as predictors of future performance.

For example, in the case of students with ADHD, the analysis identified four 
different groups of responders (those with an attention problem, those with a hy-
peractivity problem, those with a combined problem, and those with no problem). 
After identifying these groups, a second research question can be identified. For 
example, these groups of students may also have different background characteris-
tics. Perhaps the groups of students have caregivers with different parenting styles, 
have different socioeconomic backgrounds, or have a family history of attention 
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problems. Alternatively, students in the four different groups might demonstrate 
significantly different academic skills, have different school attendance rates, or 
have different physical activity levels. In terms of predicting future performance, it 
may make sense to assess whether students in these groups are more or less likely 
to graduate from high school, whether they attend college, or even their likelihood 
of engaging in criminal activity. The “so what” question is reliant on the goals of 
the research being conducted.

Reading and Fluency Research

Historically, LCA has been used almost exclusively in substance abuse research 
(e.g., Agrawal, Lynskey, Madden, Bucholz, & Heath, 2007; Muthén, 2006) and 
mental or psychological disorders, such as depression or attention deficit disorder 
(e.g., VanLang, Ferdinand, Ormel, & Verhulst, 2006). As a result, the technique is 
most commonly used with scores on a single test, or occasionally scores on multiple 
tests, with the goal of classifying individuals into known categories (e.g., the four 
groups of ADHD classifications or abusers vs. non-abusers). When considering this 
format in the context of reading research, the meaning behind the groups could 
take many forms depending on the observed variables included in the model. For 
example, current procedures for identification of a student’s risk for reading failure 
involve comparing student scores on a particular reading test. Rather than using a 
single cut point to identify those students, an LCA could be used to select students 
based on their scores on several different reading tests. Another way LCA could be 
used with reading data is to identify different profiles of strengths and weaknesses 
on a range of different skills. For example, if students are tested on reading decod-
ing, reading fluency, and reading comprehension, an LCA could be used to identify 
whether the groups of students existed with relative strengths or weaknesses in each 
of these areas, and could then be targeted for intervention in those areas of need or 
enhanced instruction. Though thousands of articles exist that examine children’s 
reading development using reading fluency and curriculum-based measurement, 
few have done so using LCA.

Because so few examples of research questions regarding reading fluency have 
been addressed using LCA, the remainder of this section includes some examples 
from the broader base of education research that make use of this technique, each 
of which uses reading fluency in some way. We focus on ideas of how educational 
research questions can be framed and answered using LCA. Three studies will be 
examined in depth; one examining adult dyslexic readers, one examining school-
level risk, and a third examining adolescent reading skills. These three disparate 
examples are given to highlight the flexibility of LCA and the value of the person 
centered approach. This is done in the hope that you will be more readily able to 
map on your specific research question to the LCA technique.
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Example 1: Adult Dyslexic Readers

Though LCA examples in reading fluency are scarce, some work in this area has 
been done by Leinonen and colleagues (Leinonen, Müller, Leppänen, Aro, Ahonen, 
& Lyytinen, 2001). In this article, the researchers used cluster analysis to identify 
whether groups of adult dyslexic readers could be identified based on their read-
ing accuracy and reading speed. The results of the cluster analysis identified four 
profiles of dyslexic readers. The first identified group was the “hasty dyslexic read-
ers” group, who read quickly but made a lot of errors. The second group, hesitant 
dyslexic readers, made a few errors but read slowly. Third, a group of mildly dys-
lexic readers was identified, who were relatively fast and made relatively few errors 
compared to the rest of the dyslexic sample. Finally, the fourth group demonstrated 
extremely high error rates and very slow reading speed, and was named the severe 
dyslexic group. The researchers next examined whether the four groups identified 
in the cluster analysis would be significantly different from a normative sample 
on measures of phonological processes. Though the Leinonen et al. (2001) paper 
used cluster analysis, the same questions could be addressed with LCA: identifying 
groups of dyslexic readers based on their text accuracy and text reading speed.

Example 2: School Risk

It is important to note that the analytic technique does not have to be used ex-
clusively to identify groups of people. Logan and Petscher (2010) used LCA to 
identify groups of schools based on the percentages of at-risk students the school 
served. Historically, schools with higher percentages of students considered to be 
at risk—based on their language, minority status, and poverty status—are found to 
also perform more poorly on state standardized tests. Previous research in the area 
of school risk used an arbitrary cut point on only one of the aforementioned risk fac-
tors, such that schools above the cut point were deemed at-risk, while those below 
the cut point were considered not-at-risk.

Logan and Petscher assessed the percentage of English language learners, minor-
ity students, and students eligible for free or reduced-priced lunch in a large sample 
of elementary schools ( n = 569) to determine whether distinct groups of schools 
existed based on these factors (2010). They found four groups of schools. Similar 
to the previous example, two classifications of schools followed a typical “high vs. 
low risk” pattern: one group of schools had very low percentage of English lan-
guage learners, minority students, and students living in poverty, and one had very 
high percentages of those same students. The remaining two groups had relatively 
high percentage of students living in poverty and of minority status, but one had 
high percentage of English language learners, while one did not.

Next, for the “so what” portion of the analysis, the authors wanted to determine 
if the students had different reading skills depending on their school’s assigned 
group membership from the LCA. In this study, the researchers had measured stu-
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dents four times during the year, which allowed for growth models to be fit to the 
data. The school clusters extracted from the LCA were added to the growth model 
as predictors. This was done in such a way that separate estimates were obtained 
for each identified cluster. Because four clusters of schools were identified by the 
analysis, four separate sets of mean growth rates and beginning-of-year intercepts, 
were obtained—one for each group. The authors found significant differences be-
tween the four groups in the intercepts (where students began the year) and slopes 
(how quickly they grew during the year). This validated the theory that multiple 
indicators of school risk should be considered.

Example 3: Adolescent Reading Ability

Although much focus has been given to students’ reading skills early in their school-
ing, recently there has been a shift of this focus to the issues facing older students 
who are struggling to read, particularly those who struggle with reading comprehen-
sion. In a 2011 paper, researchers sought to identify the groups of adolescent students 
(ninth grade) based on their reading comprehension skills (Brasseur-Hock, Hock, 
Kieffer, Biancarosa, & Deshler, 2011). Brasseur-Hock and colleagues used three 
different assessments of reading comprehension: the Kansas state-administered 
Reading Assessment, the WLPB-R Passage Comprehension subtest (Woodcock, 
1991), and the GORT-4 Comprehension subtest (Wiederholt & Bryant, 2001); and 
identified four different profiles of students: struggling comprehenders, low-aver-
age comprehenders, average comprehenders, and advanced comprehenders.

The identified reading comprehension groups have some inherent importance, but 
Brasseur-Hock and colleagues took the analysis a step further. They examined reading 
fluency as a part of the “so what” portion of this study. The researchers conducted a 
second LCA based on the component skills of only those students in the lowest two 
groups of reading comprehension (as identified in the first LCA). The goal of this 
work was to determine if different groups of poor comprehenders could be identified 
based on their reading fluency, reading accuracy, and language comprehension. The 
results of this LCA identified five groups of poor comprehenders: global weakness, 
moderate global weakness, weak language comprehension, weak reading compre-
hension, and germane to the present focus, they also identified a group of dysfluent 
readers (who read more slowly than their other poor-comprehending peers). These 
different profiles suggest that reading comprehension is complex, with many underly-
ing causes and therefore many different approaches to potential treatments.

These three examples demonstrate one other unique aspect of LCA. In each ex-
ample, the groups identified in an LCA provide more information than you could 
get using all of the observed variables in a regression-based statistical test (like 
t-test, ANOVA, or multiple regression). Sometimes called variable-centered ap-
proaches, a regression-based test would identify how much of the variance in the 
outcome can be uniquely explained by each of the observed variables. In contrast, 
an LCA independently considers the relative position of each person on a whole 
set of predictors. The resulting latent class variable encompasses how each person 
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scores on several different items, as well as how their scores on those items covary. 
In other words, LCA provides a way of capturing the variability within a person’s 
scores, and is for that reason sometimes referred to as a person-centered approach.

When Do I Use It?

When a researcher begins to conceptualize a study that will use LCA, there are 
several important considerations. A summary of these has been included in the LCA 
guidelines callout box below. Generally, LCA should be used when you have re-
search questions about identifying groups of responders (e.g., people, classrooms, 
schools, parents), whether the observed variables are categorical or continuous. The 
term LPA can be used when the observed variables are continuous (e.g., Muthén 
& Muthén, 2000). But as the conceptualization is identical, LCA is an overarching 
term that can be used to refer to both models. It is important when considering this 
analysis to conceptualize how you intend to validate the results. Research involving 
an LCA should have a two-part question. What follows is an in-depth description of 
the research question that will be used to guide the analyses conducted during the 
remainder of the chapter. Notice that the relations among the constructs have been 
written in the language of both a variable-centered and a person-centered approach.

Some LCA Guidelines

As you are planning to use this analysis to answer your own research ques-
tions, you should take the following into consideration:

1. Use two-part questions: Identifying groups in your sample is only the 
first step. Think through what you plan to do with the groups. In other 
words, decide on your “so what” question.

2. More is better: The more observed variables you have, the more stable 
the model is, and the more likely you are to reach convergence. We rec-
ommend three as the minimum number of observed variables (Goodman, 
1974).

3. But not too many more: More observed variables require more observa-
tions (a larger sample size) in order to find a solution. Be cautious of your 
sample size when deciding how many observed variables to use in the 
LCA. Simulation studies are useful to determine the sample size you need 
to measure the effect you are interested in.

4. Constructs matter: The types of groups LCA identifies depend on the 
observed variables that go into it. If the observed variables measure all 
the same theoretical construct, the LCA can be considered an alternative 
to a quantitative difference, or a cut point. If the observed variables mea-
sure different constructs, then the LCA will identify qualitative differences 
between groups on the constructs of interest.
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Application to Reading Fluency

Research Question

The focus of the remainder of the chapter is students’ early reading skills. Read-
ing comprehension is a critical skill in early elementary, as reading is required to 
learn about all other school topics and is especially critical as students move from 
“learning to read” to “reading to learn” (Adams, 1990). Curriculum-based mea-
surement of reading fluency has often been demonstrated to be a good predictor of 
later reading comprehension in variable-centered approaches (e.g., Fuchs, Fuchs, & 
Maxwell, 1998; Gough, Hoover, & Peterson, 1996). Variable-centered approaches 
to this problem typically ask a research question such as, “Can we predict read-
ing comprehension at the end of Grade 2 from student’s beginning of school-year 
scores on several reading fluency assessments?” However, we argue that it is im-
portant to understand if there are reliable profiles of students on reading fluency, 
because these can provide a data-based guideline for identifying which students are 
at risk for later reading comprehension difficulties, necessitating a person-centered 
approach. The person-centered approach to this research question will be examined 
for the remainder of this chapter, and has two parts. First, we will determine if there 
are reliable profiles of students based on their reading fluency skills at the begin-
ning of Grade 1, and second, we will determine whether students in these profiles 
demonstrate significantly different scores on reading comprehension at the end of 
Grade 2.

Sample

The sample was drawn from the Progress Monitoring and Reporting Network 
(PMRN), an archival data set containing data on students in every Reading First 
school in the state of Florida. The present sample included 17,830 students who 
were followed longitudinally at six assessment points through first and second 
grade in the 2004–2005 and 2005–2006 school years. These students were enrolled 

5. Use similar scales: If the observed variables are on different scales (e.g., 
if one has a mean of 100 and standard deviation of 15, and another has a 
mean of 10 and standard deviation of 0.40), the model may not fit eas-
ily. When this is the case, use a standardization procedure to convert the 
observed variables to z-scores. Like cluster analysis, standardizing data for 
LCA can help with interpretation, but unlike cluster analysis, LCA cluster-
ing is invariant to linear transformations of data.
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in 342 different schools across 37 districts throughout the state of Florida. The sam-
ple of children was 1.4 % Asian, 31.4 % Black, 22.5 % Hispanic, 4.4 % Multiracial, 
and 39 % White. Regarding their language proficiency, 82.9 % were native English 
speakers (5.7 % graduated, 10.7 % still enrolled in an ESOL program). The sample 
had relatively high poverty, with 72 % of students eligible for free or reduced-priced 
lunch. Finally, a small percentage of students were identified with a primary excep-
tionality: 6.8 % had speech impairment, 2.4 % had language impairment, 2.2 % had 
a specific learning disability, and 1 % of the sample was considered gifted.

Measures

In the present application, reading comprehension skills were assessed at the end of 
second grade with the Stanford Achievement Test, 10th edition (SAT 10; Harcourt 
Brace, 2003). The SAT 10 is a widely used standardized measure administered to 
students in a group setting by the classroom teacher. In the test, students read pas-
sages and answer multiple-choice questions about the content. The SAT 10 measure 
will be used in the “so what” portion of the analysis. The assessments included in 
the LCA in the present study are four subtests of the Dynamic Indicators of Basic 
Early Literacy (DIBELS; 5th edition; Good et al., 2001): phonemic segmentation 
fluency (PSF), letter naming fluency (LNF), nonsense word fluency (NWF), and 
ORF. For each subtest, the administrator noted the number of errors and reported 
the number of stimuli read correctly per minute (higher is better). In LNF, students 
were asked to read presented letters as quickly as possible. In the PSF subtest, stu-
dents were required to provide the individual phonemes from a given word (e.g., 
say all the sounds in “ ”). NWF is a nonword reading task (e.g., say all the sounds 
in “mip”). Finally, ORF performance was measured by having students read three 
separate passages aloud, with final scores representing the median fluency (Good et 
al., 2001, p. 30). The included data set contains the four DIBELS subtests, the SAT 
10, and a variable representing the child’s ID.

Each of the four DIBELS subtests represents one of four different skills that un-
derlie reading ability. The four skills are specific but similar; they are related but not 
perfectly correlated. To illustrate, the distributions of each skill have been graphed 
in Fig. 11.2. There are three columns (panels); each with four rows. Each row rep-
resents a different reading fluency skill. The first column (or panel) highlights those 
students who are considered at risk in LNF based on the DIBELS benchmark. In 
that column, the same students’ scores on the three other administered subtests have 
also been highlighted. Note that the students deemed to be “at risk” in LNF have 
scores across the distribution of PSF and NWF. The same is true for cutoffs on the 
three other subtests. Thus, it is possible that a student who has difficulty in one skill 
may be proficient in another. The heterogeneity and covariance among the four in-
dicators would be ignored in a variable-centered approach like ANOVA, regression, 
or factor analysis, but can be captured in an LCA.
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Steps in LCA

An LCA requires that the researcher provides an estimated number of classes to ex-
tract. When the true number of underlying groups is not predetermined, an explor-
atory analysis can be conducted to determine the optimal number of groups for the 
data (see Muthén, 2008). The exploratory approach requires that several models be 
fit to the data, each with an increasing number of groups. Model comparisons (dis-
cussed in subsequent sections) are then used to determine which of the models, and 
thus which number of classes, is the best fit to the data. Based on the specified num-
ber of groups, the LCA will provide a suggested group membership for each person. 
For example, if LCA was used to cluster the students into two groups, it would 
likely find one low group (students with poor fluency) and one high group (students 
with good fluency skills). Usually, in an exploratory analysis we will fit six models 
to the data, including between two and seven groups, though more groups can be fit 
if the data or hypotheses call for it.

To place students in groups, LCA calculates the probabilities that each child be-
longs to each of the extracted groups, based on the child’s responses on the observed 
items. The probabilities take into account both the value (high or low) of a child’s 
response on each item, as well as how similar or different the responses are to each 
other (the covariance among the different responses within person). The analyses 
examine each student’s probabilities of belonging to each group, and assign him or 
her to the group with the highest probability. If the LCA is asked to extract three 
groups, students could theoretically have a 33 % chance of belonging to the first two 
groups, and a 34 % chance of belonging to a third group. In this case, the student 
would be assigned to the third group even though the probability of his belonging 
there is not very high. In this way, LCA is fundamentally different from the cut 
score or threshold approach of making groups. LCA does not attempt to identify a 

Fig. 11.2  Histogram of the distributions of the four examined reading fluency subtests
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cut score or threshold to the observed response or pattern of responses. In fact, it is 
possible that two people who have exactly the same score on one response variable 
can be placed in different groups, if their scores on the other items are different.

Getting Started with Mplus

Though a complete description of Mplus is beyond the scope of this particular chap-
ter, we will prove with some basic information to help you get started. First, the 
data file should be saved as a text file. Two data files are provided with this chapter; 
one in SPSS and the same in a tab-delimited text file. It is the tab-delimited file 
that Mplus uses to run analyses. For an introduction to working with Mplus, the 
program, see the introductory text Data Analysis with Mplus by Christian Geiser 
(2012). Figure 11.3 contains the input text to run a two-group LCA. There are sev-
eral pieces of code that are important to working with Mplus, and all are described 
thoroughly in the Mplus user guide.

Briefly, the DATA command lists the name of the data file and describes the for-
mat. The VARIABLE command lists the names of all variables in the data file, and 
selects which ones will be used for the particular analysis. Because the goal of this 
particular analysis is to determine whether there are identifiable groups based on the 
students’ scores over the year, the USEVARIABLES command contains the vari-
able names of the four assessments of ORF in Grade 1. The Missing command lets 
you indicate how missing data are coded. In our case missing data is blank. Finally, 
the piece of code that tells Mplus that you want to run an LCA is the “CLASSES” 

Fig. 11.3  Annotated Mplus input for two-group model
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line. The letter “c” here represents the name of the latent class variable. The number 
in parentheses is the number of groups you want the analysis to find. Here, we are 
asking for two. When you increase the number of groups, you can save the input file 
with a new name, change the number of classes as indicated on this line, and rerun 
the analysis. When this program is run, Mplus automatically opens the almost iden-
tical looking output file. There are a few pieces of output you will examine closely 
for indication of model fit, the locations of which are explained here.

Selecting the Final Model

As previously indicated, when conducting an LCA, several models will be run in 
the course of analysis. The first model that the researcher actively fits is the two-
group model, after which several additional models are run, each increasing the 
number of groups by one. Deciding on the final model to report is a balancing act 
between several model fit indices and the interpretability of the results. When con-
sidering that decision, we discuss model fit first, followed by interpretability and 
decision-making.

Model Fit

When evaluating model fit, it is necessary to examine and balance several different 
criteria. A few of the statistical tests are automatically calculated in Mplus when con-
ducting an LCA. These statistics can be found in the output. Directly after the infor-
mation about the run of the model there is a section of the output called “Model Fit 
Information.” The number of free parameters is the first piece of information in this 
section. The −2LL information is contained here (labeled Loglikelihood, H0 value). 
Both of these can be harvested for a chi-squared comparison test between models. 
Other statistics reported in this section include the Bayesian information criterion 
(BIC; Schwarz, 1978) and the Akaike information criterion (AIC; Akaike, 1974), 
which are used to compare relative model fit. The AIC and BIC are popular measures 
from the structural equation modeling literature. They combine fit and complexity to 
compare model parsimony, with lower values indicating better model fit. Model fit 
for BIC and AIC are only useful in relative terms. If the ratio of the BIC for model 
A (model with fewer groups) to the BIC for model B (model with more groups) will 
typically be >1, suggesting that the model with more groups is a better fit. One rule of 
thumb suggests that if the value of the ratio is between 1 and 3, it indicates minimal 
evidence, between 3 and 10 indicates some evidence, between 10 and 100 is strong 
evidence, and greater than 100 indicates decisive evidence of an increase in model fit 
(Raftery, 1995). These values are extracted from each of the models run, and are typi-
cally plotted to examine their incremental change with each additional group added to 
the model. When the slope of the plotted AIC or BIC curve begins to flatten, it is an 
indication that there is very little information gained relative to the number of degrees 
of freedom sacrificed for the model to identify additional groups.
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A second statistical test automatically calculated in an LCA conducted in Mp-
lus is entropy (Ramaswamy, DeSarbo, Reibstein, & Robinson, 1993). The entropy 
statistic can be used to determine how separated the identified groups are from 
one another. In other words, this statistic can measure how much differentiation 
there is between the different groups. Entropy values greater than .80 indicate a 
good separation of the identified groups (Ramaswamy et al., 1993). Entropy is also 
automatically reported in Mplus, is clearly labeled, and is displayed in the output 
presented in Fig. 11.4. There are also two tests that can be estimated in Mplus if they 
are specifically asked for in the input file (See Fig. 11.3, the line including Tech 11 
and Tech 14). These are the Lo–Mendell–Rubin likelihood ratio test (specified as 
TECH 11; Lo, Mendell, & Rubin, 2001) and a parametric bootstrapped likelihood 

Fig. 11.4  Annotated Mplus output for two-group model
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ratio test (specified as TECH 14; McLachlan & Peel, 2000). The null hypothesis of 
these statistical tests is that the model being tested has identical model fit to a model 
with one less group (e.g., a model with four groups fits the same as a model with 
three groups). When the p-value is significant, it indicates that the null hypothesis is 
rejected, and the current model fits better than the previous one.

To conduct these analyses, it is necessary to extract this information from the 
output of each model that is run. In the current application eight models were run, 
each testing for a different number of groups. We have extracted the model fit in-
dices from each one of the outputs and placed them in Table 11.2. The entropy sta-
tistic looks good for all fitted models (values ≥ .80). The Tech 14 did not show any 
change, but the nonsignificant p-value for Tech 11 in the nine-class model indicates 
that the nine-class model does not fit better than the eight-class model. Both the AIC 
and BIC are evaluated in relative terms, and both decrease as more groups are added 
to the model. To assess relative model fit, we plotted the values of the AIC, which 
are presented in Fig. 11.5. In Fig. 11.5, there is a sharp decline from the two-group 
model to the four-group model, a slightly less steep decline from the four-group to 
the five-group model, and an even weaker decline after that point. This is where the 

Table 11.2  Model fit indices for each model fit to the fluency data
Number 
of groups

− 2LL Free 
parameters

AIC BIC Entropy Tech 11 Tech 14

2 − 298375 13 596775.3 596876.5 0.944 0 0
3 − 293178 18 586392.7 586532.9 0.793 0 0
4 − 290117 23 580279.4 580458.5 0.834 0 0
5 − 288609 28 577273.9 577492 0.805 0.014 0
6 − 287420 33 574905 575162.1 0.819 0.0016 0
7 − 286660 38 573395.8 573691.7 0.834 0.0361 0
8 − 286121 43 572328.9 572663.8 0.844 0.025 0
9 − 285635 48 571366.7 571740.5 0.846 0.6802 0
AIC Akaike information criterion, BIC Bayesian information criterion

Fig. 11.5  AIC values from models with 2–9 groups
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balancing act begins. Each of these indices suggests a different number of groups 
should be retained. We tend to lean toward parsimony, thus selecting either the four-
group or five-group model to be retained.

Model Interpretability

As indicated in the previous section, the decision of which model to retain also involves 
how interpretable the identified models are. This step involves two main indexes. The 
first is the number of responders placed in each group (See Fig. 11.4). If provided the 
opportunity, an LCA could potentially place individual responders in their own group. 
But this does not make conceptual sense because one person does not make a group. 
A good conceptual rule of thumb is that each identified class (group) should contain 
at least 5 % of responders, or at least five responders in our case (based on simulations 
presented by Nylund, Asparouhov, & Muthén, 2007). If a group has fewer than five 
people, it is more difficult to ascertain whether the participants represent a true group 
of responders rather than a chance group of outlying responders. If the model fit indices 
compared in the first step suggest a model be retained even when one group has fewer 
than five responders, you should instead select a model with fewer identified groups.

The next, and arguably most important, indicator of model fit is whether the 
identified groups make theoretical sense. As indicated in Fig. 11.4, LCA provides 
mean scores for each identified group. By examining the mean scores on each 
group, we can identify what the groups conceptually represent. For example, in 
the two-group model presented in Fig. 11.4, there is one group with relatively low 
scores and one group with relatively high scores. All identified means are within the 
range of observed data. In addition, the groups make theoretical sense; if one group 
was identified containing hundreds of students with very poor LNF skills (the most 
basic subtest) but very high ORF skills (the most advanced subtest), this would not 
make sense given the visual representation of the data in Fig. 11.2.

Decision-Making

The examination of the aforementioned fit indices culminates in a decision of which 
model to retain. At this point in the analysis, the decision becomes a balancing act. Sev-
eral fit indices have been discussed, and these may provide contradicting information to 
one another. Each of the factors should be considered when making the final decision.

First, the AIC/BIC graph should be examined to give a general idea of a more nar-
row range of potential final solutions. Based on the previously described analysis of 
the graph (Fig. 11.5), the model fit indices extracted from the results from our series 
of analyses suggest that we could select either the four-group model or the five-
group model. Next, return to Table 11.2 and examine whether entropy is sufficiently 
large to indicate good fit. Entropy is > .80 for both the four-class and five-class 
models, indicating good model fit. Next, examine the Tech 11 or Tech 14 outputs 
to determine if they also agree with the conclusion that either the four-class or five-
class model is most appropriate (Table 11.2). In this case, they do not. The Tech 14 
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option is never larger than zero, while Tech 11 suggests that model fit improves with 
each increasing number of classes, except the model with nine groups does not fit 
better than eight. Based on the BIC graph, we know that eight is not a reasonable 
number of groups. This leaves us still considering the differences between the four- 
and five-group models. Next, we can move to determining whether the models make 
theoretical sense. To aid with the decision of which model to retain, we have plotted 
the estimated mean values for each of the extracted groups in the two front-running 
models in separate graphs (Fig. 11.6).

At this point, it is a good idea to give the groups names to aid in the decision about 
which to keep. In the case of the four DIBELS subtests, these have been normed such 
that we have suggested benchmarks indicating on track student progress at the begin-
ning of Grade 1; these are a score of 35 for PSF, 37 for LNF, 24 for NWF, and 13 for 
ORF. Given these statistics, the four groups estimated in the four-class solution could 
be named as follows: (1) low performers, (2) average performers, (3) above average 
performers, and (4) advanced performers. The five-class solution identifies these same 
groups, but also identifies a group best conceptualized as “slightly above average per-
formers” (group 3 in the second panel of Fig. 11.6). This group is slightly above the 
“average performers” group, and below the “above average performers” group. We 
find the “slightly above average performers” group to be lacking specificity; there is 
nothing about the “slightly above average” group that makes it unique from either of 
the surrounding groups. This means we have finally arrived at the decision of the num-
ber of groups represented by the data, and will retain the four-group model.

Reviewing the Model Fit Indices

When conducting an LCA, there are five indicators of model fit that should be bal-
anced to determine the final model: (1) the AIC/BIC, which in this case indicated 
either the four- or five-class model be retained, (2) the − 2LL and number of free 
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Fig. 11.6  Four- and five-group solutions
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parameters, (3) the Tech 11 and Tech 14 outputs, both of which suggested each model 
fit is better than the previous one, (4) model entropy and (5) the number of people 
placed in each group, both of which were sufficient for all models fitted, and finally 
(6) that the groups identified by the model are theoretically sound. Balancing all five 
fit indicators is where LCA becomes more like an art than a science. Based on balanc-
ing all of these fit indices, we identified the four-group model as the best fit to the data.

The first research question has now been answered: Yes, reliable groups of stu-
dents were identified based on their Grade 1 fluency scores. The students fall into 
the groups we have termed as low performers, average performers, above average 
performers, and advanced performers. Notably, no groups emerged suggesting rela-
tive weaknesses in one area of fluency-based reading skill, rather the differences 
were more quantitative in nature. It is important to note that the PSF subtest seems to 
hit a ceiling; all three of the higher groups have approximately the same score on this 
subtest. The greatest differentiation between groups is observed in the ORF subtest.

So What?

The results of the first research question suggest that the best fit to the data is a model 
with four groups. Now we can move to the second research question: determining 
the extent to which membership in one of these four groups is related to later reading 
comprehension skills. To do so, we need to know to which group each child belongs. 
This step is accomplished by saving a data file that includes this information along 
with each child’s ID. This can be requested in the Mplus input program with the 
“save” command line (See Fig. 11.3). The first line of this command tells Mplus 
what to name the file. When naming the file, we will typically include the number of 
groups fitted in that particular model (note the name Fluency_output_2). The second 
line (save = cprob) tells Mplus to write the probability of each student belonging to a 
specific group, along with their assigned group to the data file. Next, the data file that 
contained each student’s assigned group membership from the four-group solution 
was merged into the original SPSS database. Then the variable of class membership 
is able to be used as a predictor or an outcome in any other analyses.

For our purposes, the “so what” question asked whether student reading com-
prehension scores varied as a function of the groups we identified in the LCA. This 
could be done in a number of ways, but one of the simplest is to predict later reading 
comprehension scores from the group membership variable extracted from Mplus. 
This analysis was conducted in SPSS using the General Linear Model procedure. 
We requested that the program provide Bonferroni-corrected post hoc contrasts to 
test all pair-wise comparisons between the four groups. The post hoc contrasts test 
whether the mean reading comprehension score for each group identified by the 
LCA was significantly different from each other group. Figure 11.7 contains the re-
sults of the generalized linear model (GLM) with post hoc contrasts, the four groups 
are listed in the order of their extraction, but with the names assigned to them during 
the final LCA decision-making process. All contrasts were significant ( p < .001), 
suggesting that each group identified in the LCA had a significantly different score 
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on reading comprehension. Cohen’s d effect sizes were calculated for the difference 
between each pair of groups, and those results are reported in the above diagonal 
portion of Table 11.3. The smallest effect size was .55, which is considered a medi-
um effect and corresponds to the one half standard deviation difference between the 
above average performers and advanced performers groups (Cohen, 1988). All other 
effect sizes were above the suggested benchmark for a large effect (Table 11.3).

The results of the GLM suggest that different profiles of fluency abilities at the 
beginning of Grade 1 predict later reading comprehension. Our findings converge 
with theoretical work hypothesizing that ORF may serve as an indicator of overall 
reading competence (e.g., Le Berge & Samuels, 1974), as well as the body of empiri-
cal work demonstrating the predictive relation between reading fluency and compre-
hension (e.g., Gough, Hoover and Peterson, 1996). Given that reading comprehension 
is a skill relied upon for all other academic skills in elementary school and beyond, 
understanding indicators of this skill (such as reading fluency) are of great impor-

Table 11.3  Differences in reading comprehension scores between the four groups extracted from 
the LCA 

Fig. 11.7  Reading comprehension scores for the four groups extracted by the LCA
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tance. Utilizing LCA in such endeavors, as we have done in this chapter, allows us a 
more nuanced understanding of the relation between different indicators of fluency 
and reading comprehension than variable-based methods—this is especially impor-
tant given propositions that reading fluency represents a complicated, multifaceted 
construct (Fuchs, Fuchs, Hosp, & Jenkins, 2001). In the current study, we used four 
different measures of fluency, classifying students based on how they covaried on all 
four skills simultaneously to get an estimated group membership. Had we only used 
one of our four indicators of reading fluency to investigate the relation between flu-
ency and reading comprehension, we would have been provided with information on 
individual risk or performance relevant only to one aspect of reading fluency. Based 
on Fig. 11.3, it is clear that if any one indicator had been selected it would likely ex-
clude students who struggle in a different area. Additionally, LCA provides benefits 
beyond the use of an overall fluency score, such that it allows us to also look at the 
covariance among the four indicators, without using a cut score.

LCA Considerations and Extensions

Sample Size Recommendations

A good rule of thumb for sample size in LCA is a sample size of at least 250 unique 
people, places, or things should be observed to begin to approach reliability. Still, 
some recommendations are as high as 500 unique observations to constitute best 
practices (Nylund et al., 2007). It is important to consider that LCA is essentially 
a factor analysis, and thus is subject to potential variation in the reliability of the 
estimate depending on the reliability of the constructs being measured, the means of 
the observed constructs, and the covariance among the observed constructs.

The necessary sample size will also depend on the number of observed variables 
included in the LCA. More variables mean more potential solutions will be fit to 
the data, which can increase the needed sample size to achieve good model perfor-
mance. This problem is compounded when the observed variables are continuous; 
continuous variables have more potential solutions than do categorical ones. Use 
caution when deciding to increase the number of observed variables in an LCA. 
Conducting data simulations is the most cautious and most effective way to estimate 
the number of responders needed to detect a specific effect.

Potential Problems

As hinted at in the previous paragraph, LCA can be a fickle analysis to fit. Errors in 
Mplus are indicated in the output, immediately following the iteration history. It is 
important to check for errors as they may indicate that the model has not achieved 
a viable solution. One potential error you may encounter is the idea of a local maxi-
mum. You can think of local maximum as a fake solution.
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Because LCA is a factor analysis, it is subject to the same problems that factor 
analysis is, including method variance, rater bias, and historical effects. For ex-
ample, imagine an LCA containing five observed variables: two observed variables 
that share rater bias (e.g., two rating scales filled out by the teacher) and three other 
variables that do not (e.g., measured by different trained graduate students). In this 
situation, the LCA may be likely to form clusters that always covary on the two 
observed variables that share the rater bias, merely because of the rater bias rather 
than the actual construct being assessed. Consideration of these biases should play a 
role in the decision of which variables to include as well as the interpretation of the 
groups identified in the LCA. As a result, it is a good practice to eliminate variables 
that contain these biases from inclusion in the model.

Extensions

In addition to the ways it has been used here, LCA can also be extended when 
combined with other techniques. First, LCA has an underlying assumption that all 
observed variables are uncorrelated within a class (i.e., the correlations are set to 
zero). The factor mixture model (e.g., Lubke & Muthén, 2005) relaxes that assump-
tion. By simultaneously fitting an LCA and a factor analysis, the observed variables 
are allowed to be related through a latent factor in addition to the latent class variable. 
Factor mixture analysis can also be extended to a multilevel model (e.g., Torppa et al., 
2007). Another extension of the basic LCA model is the growth mixture model (e.g., 
Kreisman, 2003), which combines LCA with a growth model. In these models, latent 
classes are estimated based on the responders’ rank order at the intercept, as well as 
how quickly they change during the measured time periods. LCA can also be used 
over time to determine whether responders stay in the same groups over repeated 
measurements. This extension is called the latent transition analysis (e.g., Compton, 
Fuchs, Fuchs, Elleman, & Gilbert, 2008; Ding, Richardson, & Schnell, 2013).

Conclusion

This chapter introduced the concept of LCA and provided a demonstration of it in 
the context of reading fluency. The LCA technique has been slow to be integrated 
into education research, despite the match between the needs of the education 
research literature and the solution that LCA provides. This may be because most 
research using the technique has been conducted in other fields, perhaps masking 
the potential benefits of the technique to those in education and reading fluency 
research. By providing examples of the many uses that LCA can have in education 
and specifically fluency research, examples of reframing variable-centered ques-
tions to person-centered questions, and the walk through of the actual process of fit-
ting a LCA model, we hope that researchers in the area of reading fluency research 
can begin to incorporate the LCA into their research.
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Chapter 12
Using Latent Change Score Analysis to Model 
Co-Development in Fluency Skills

Yaacov Petscher, Sharon Koon and Sarah Herrera

Measuring change over time is important in many contexts. It allows for a quan-
titative description of gains or losses that have occurred over time and, based on 
that evidence, future change under similar circumstances can be predicted. In an 
educational context, growth models, such as those described in Chap. 10 of this 
volume, can be used to measure individual growth over time and may utilize 
those expectations in future models to evaluate educational programs. Evalua-
tion may proceed, for example, by comparing relative increases or decreases in a 
student’s achievement to average or ambitious performance standards. Given the 
underlying importance of evaluating the development of an individual in terms of 
his or her educational and psychological outcomes, a plethora of models are read-
ily available to researchers and practitioners; so many so, in fact, that McArdle 
(2009) concluded that all “repeated measures analyses should start with the ques-
tion, ‘What is your model for change?’” (p. 601). Answers to this question are 
predicated on several facets related to one’s data, including the number of time 
points collected, the scale of measurement (e.g., ordinal or interval), and the 
distributional characteristics of the data. Having fewer time points restricts the 
classes of models to linear growth, while having more time points allows for the 
ability to model curvilinear trends with the caveat that the increased complexity 
of nonlinear models based on more time points often also requires more individu-
als. The scale of measurement for the data impacts the type of model that can be 
used to estimate one’s developmental trajectory; ordinal data have more restric-
tive conditions for the identification of growth models than interval data (Mehta, 
Neale, & Flay, 2004; O’Connell, Logan, Pentimonti, & McCoach, 2013). Though 
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ordinal data are less frequently observed with fluency outcomes, the number of 
time points and the nature of the distributions of scores are particularly germane 
to conversations about appropriate models for fluency change.

Fluency measures, such as curriculum-based measures, have established impor-
tance in educational research, especially as student growth is being studied as a 
potentially important variable for early identification of students who are at risk for 
later reading difficulties (e.g., Fletcher, Coulter, Reschly, & Vaughn, 2004). When 
attempting to model individual growth with fluency data, we typically have panel 
data that are not normally distributed. This characteristic of progress monitoring 
data may pose serious problems depending on your choice of model: (1) increased 
error rates in the identification of students using scores from universal screening as-
sessments (i.e., students may be over- or under-identified), (2) issues with predictive 
validity as forecasting later reading disabilities become confounded by the presence 
of floor effects (Catts, Petscher, Schatschneider, Bridges, & Mendoza, 2009), and 
(3) restrictions in evaluating individuals who are discrepant in both benchmark per-
formance as well as growth.

Catts et al. (2009) found that floor effects were pervasive across measures 
of initial sound fluency, letter naming fluency, phoneme segmentation fluency, 
non-word fluency (NWF), and oral reading fluency (ORF). Moreover, it was 
observed that the predictive validity of the scores to later performance was het-
eroscedastic such that weaker associations were found between the criterion and 
predictor for students who were at the lowest end of the distribution. Though 
panel data were not evaluated in the study, it is not difficult to generalize the 
presence of floor or ceiling effects or, for that matter, broader non-normality 
(e.g., bimodality), to estimates of average growth. In this chapter we discuss 
a relatively new latent variable technique, latent change score (LCS) model-
ing (McArdle, 2009), which may be useful to researchers with panel data for 
fluency. Unlike traditional individual growth curve analysis, which estimates 
an average slope for the sample of individuals, LCS models segment time into 
multiple change scores which are then used for estimating average growth and 
causal effects. The goals of this chapter are to introduce the reader to the concep-
tual and mathematical underpinnings of LCS models, present information about 
how they differ from traditional latent growth models, and provide an illustration 
as to how they may be used to better understand individual differences in change 
over time using fluency data.

Approaches to Growth Curve Modeling

Despite the fact that mean individual growth curves can be estimated from a vari-
ety of statistical models, differential interpretations will result based on the choice 
of model, which harkens back to McArdle’s (2009) question.
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When one has longitudinal data, two broad frameworks emerge as conventional 
methodologies for individual growth curve modeling, namely, multilevel regression 
and latent variable analysis. Many studies use one of these two approaches, yet as 
long as the same assumptions are met the models will yield identical results (Hox, 
2000). This observation is due to the fact that the terminology of growth mod-
els (e.g., random effects growth models, hierarchical linear growth models, latent 
growth, mixed effects growth models) obfuscates the point that the model specifi-
cation and estimation are often the same (Mehta & Neale, 2005; Branum-Martin, 
2013). Consider the traditional multilevel model for growth where time is nested 
within the individual:

where yti is the score for student i at time t on a measure y, 0iπ  and 1iπ  characterize 
the initial status (based on centering) and slope, respectively, where 00β  and 10β  
are the means corresponding to the status and slope, Xti  is a variable that describes 
time, and is coded in a way to reflect the measurement occasions (e.g., 0, 1, 2 for 
three time points centered at time 1), 0 ir  and r i1  are the random effects for the two 
parameters, and eti  is the measurement-level residual. Consider as well the specifi-
cation of the same growth model in a latent framework:

The outcomes from both specifications are the same, and the structures of the 
equations are nearly identical. Rather than initial status, slope, and random ef-
fects being represented by the π , β , and r components, as in the multilevel re-
gression, in the latent framework they are characterized with η , ν , and ζ , re-
spectively. The covariate Xti  in the multilevel regression, which denoted the 
coding of measurement occasion, is replaced by 1tλ , which represents factor 
loadings coded in the exact same way (e.g., 0, 1, 2 for three time points centered 
at time 1). 0tλ  in the model represents factor loadings for the intercept, and is 
constrained to values of 1 for each of the time points in a model. Several authors 
have demonstrated that identical results may be obtained using either the multi-
level regression or latent growth curve approach (Stoel, van Den Wittenboer, & 
Hox, 2004).

0 1 ( )ti i i ti tiy X eπ π= + +

0 00 0 i irπ β= +

1 10 1 i irπ β= +

0 0 1 1ti t i t i tiy λ η λ η ε= + +

0 0 0i iη ν ζ= +

1 1 1 .i iη ν ζ= +
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As a full measurement model, consider the latent growth model in Fig. 12.1, 
which includes latent intercept (i.e., I) and slope (i.e., S) factors, which are indicated 
by four measurement occasions (T1–T4) each with a residual error term ( iε ). Both 
of the latent factors have a mean ( 0iη  and 1iη ), a variance ( 0iψ , 1iψ ), and a covariance 
between the two ( 01iψ ). This type of model may answer the same types of questions 
as a multilevel growth model, such as:

• What is the average growth rate for a group of individuals?
• To what extent do individuals vary in their rate of change?
• What predictors explain variance in growth rate for a group of individuals?
• What is the relation between how students perform at the beginning of data col-

lection and growth over the time period of data collection?

Although such questions are readily addressed by either modeling approach, there 
are limitations to traditional multilevel regression as implemented in many conven-
tional software packages. Namely, questions concerning structural causality or mul-
tivariate longitudinal analysis cannot be directly modeled in a multilevel regression 
framework. The latent approach relaxes such constraints to allow for such questions 
to be addressed because it is able to model multivariate outcomes, whereas the mul-
tilevel framework is traditionally restricted to univariate outcomes (Muthén, 2004). 
In addition, latent variable modeling allows the constructs to be designated as either 
continuous or categorical factors, allowing for the analysis of different classes.

The flexibility of the latent framework for univariate or multivariate repeated 
measures data substantially increases the types of models that can be estimated, 

ηη

ψ

ψ ψ

ε εε ε

Fig. 12.1  Sample linear latent growth curve model
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including those that combine aspects of factor analysis, time series, and multivari-
ate analysis of variance. Beyond the questions of individual growth and predictors 
of individual differences in growth, the latent variable framework allows for the 
investigation of the determinants (i.e., causes) of individual change, as well as the 
determinants of individual differences in individual change (McArdle & Grimm, 
2010). Individual growth curve analyses are not equipped to answer these questions 
as they are fitting individual curves to the repeated measures data.

A number of classic models have been used to address questions of causality in 
longitudinal data. One of the earliest forms of testing effects of longitudinal data is 
the autoregressive (or simplex) model (Joreskog, 1970; Joreskog & Sorbom, 1979). 
This model tests a chain of multiple assessment periods, where each time point is 
regressed on the immediate preceding assessment. The inherent design of the sim-
plex model is such that the correlation between time t and t−n (where n is a preced-
ing measurement occasion) is expected to decrease as the distance between t and 
n increases. This expectation dictates that the correlation between the first and last 
time point will be the weakest association in the series of measurement occasions. 
Subsequently, the autocorrelation measures the stability of change between indi-
viduals; a coefficient near zero indicates poor stability between the measurement 
occasions, whereas larger coefficients indicate that individuals’ have maintained 
their rank ordering over time (Bollen & Curran, 2004). The simplex model may be 
specified as a univariate or multivariate model. An extension of the multivariate 
autoregressive model is the cross-lagged model (Gollob & Reichardt, 1987). The 
cross-lags represent the unique longitudinal effect of one variable on the other after 
controlling for the autoregressive effect. In general, the autoregressive model is a 
flexible framework for estimating structural causality among measures over time. 
It can easily handle observed measures of latent variables as well as univariate or 
multivariate outcomes. Although the autoregressive model is able to estimate the 
regression of time points on each other, it is unable to fit individual growth curves 
for the longitudinal data (Hertzog & Nesselroade, 1987).

Model Selection

By modeling longitudinal data in a latent framework, there is much greater flex-
ibility to estimate individual trajectories, understand determinants of change, and 
test the extent to which multivariate outcomes reciprocally relate to change. Once a 
decision has been made to utilize a latent variable framework, as opposed to tradi-
tional multilevel regression, several decisions must be made concerning the type of 
latent variable to fit to one’s data. One must initially evaluate whether the primary 
question of interest is concerned with testing causality with the panel data, or in 
estimating average change with the panel data, because latent variable models have 
typically restricted data analyses to be either of the causal nature or the type which 



Y. Petscher et al.338

estimates average change. This gives pause as to which class of latent variable mod-
els is appropriate to answer the question, given the mutually exclusive nature of 
model specification and estimation.

As an example, suppose an individual has collected monthly progress monitor-
ing data on ORF over the course of a school year. It is possible that the question 
of interest would relate to the effects of a previous assessment period on the next 
(e.g., October ORF on November ORF), in which case the simplex model may be 
best suited to the analysis. Though it would not be possible to estimate the average 
rate of growth across participants, an inherent question embedded in the autoregres-
sive model is that of stability from one measurement occasion to the next. Thus, 
while the researcher may obtain multiple estimates corresponding to the stability of 
performance from one occasion to the next, such estimates may not be as reliable 
as when leveraging all of the measurement occasions to construct the individual 
growth curve. Similarly, if the researcher also collected progress monitoring data 
on a measure of mathematics computation fluency (MCF), the simplex model of 
ORF could be extended to include MCF scores. This approach will still allow for an 
evaluation of the univariate effects of the prior fluency score on the next time point, 
but could additionally include cross-lags to estimate the effect of October ORF on 
November MCF, and October MCF on November ORF.

Conversely, should the question of interest be centered on characterizing indi-
vidual growth, individual growth curves may be used to model average growth and 
variance in a univariate dimension for just ORF, a multivariate latent growth curve 
to model simultaneous growth in ORF and MCF, as well as multivariate growth 
curve models with specific regressions to estimate the effect of ORF initial status 
on MCF growth, as well as MCF initial status on ORF growth. In these instances the 
researcher is able to characterize trends in fluency, but is unable to evaluate causal-
ity within each measure.

The Latent Change Score (LCS) Model

Given the noted limitations of both traditional structural analyses as well as longi-
tudinal models for panel data, the LCS model (McArdle, 2009; McArdle & Hama-
gami, 2001; McArdle & Nesselroade, 1994) was developed to combine causal and 
individual growth curve analysis. While traditional latent growth curve and multi-
level regression analyses are useful in yielding average estimates of change over 
time, they are limited in that causal factors cannot be modeled pertaining to growth, 
nor can growth be segmented into piecewise “chunks” of change to evaluate unique 
effects of average growth or change. It is certainly plausible in the field of CBM re-
search to observe fluency data that demonstrate differential change across extended 
progress monitoring assessment. When students differentially change, whether due 
to immediate intensive interventions, measurement sensitivity to skills develop-
ment, or individual student factors, average estimates of growth may be insufficient 
for characterizing the nature of the data. The LCS model allows one to estimate not 
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only the average growth but also the average change scores across the assessment 
periods. In this way it possible to evaluate whether students differentially change 
between any two segments of assessments within a wider data collection period.

The LCS model represents a flexible approach that simultaneously estimates 
additive change over time (i.e., the average growth across change scores; α) and 
multiplicative change (i.e., proportional change; β). Before providing model equa-
tions and explication of the underlying components to the model, it is first useful to 
picture the representation of the LCS model and understand the path and latent com-
ponents. A general path diagram of a univariate LCS model is given in Fig. 12.2. 
Similar to Fig. 12.1, there are latent factors for intercept and slope, observed mea-
sures with unique effects for the four time points, as well as means, variances and a 
covariance for the latent intercept and slope factors. The unique components of the 
LCS model include latent factors for the observed measures at each time point, au-
toregressive effects for the time-specific latent factors, LCS factors (ΔT12–ΔT34) 
with associated loadings (i.e., α), and proportional change effects (i.e., β). An un-
derlying mechanism of the LCS model lies in its origins in classical test theory, 
namely, that one’s observed score at a time point (Yti) is modeled as a function of 
an unknown latent true score (yti) and a unique score for the individual (eti), and is 
expressed as:

In Fig. 12.2, yti is expressed via the observed measures of T1–T4, Yti  is represented 
by the latent factors T1–T4, and eti are the errors 1 4i iε ε− . As it pertains to the LCS, 
recall that the simple difference score for an observed measure ( )iY∆  is calculated 
as the difference between a specific time point ( )Yti  and performance at an earlier 
time point ( )( )Y t i−1 :

This equation can be extended to a latent variable model as

 (Eq. 12.1)

or could be further rearranged to be expressed as

 (Eq. 12.2)

which expresses that a latent score y for individual i at time t (i.e., yti) is comprised 
of a latent score from a previous time point ( )( )y t i−1 , and the amount of change 
which occurs between the two points ( )tiy∆ . When considering the first two time 
points in Fig. 12.2, the autoregressive effect of T1 on T2 is fixed at 1, which yields a 
difference score estimation in Eq. 12.1 that is more simplistic in its estimation (i.e., 
uses simple subtraction; McArdle 2009). The LCS of ΔT12 is not directly measured 
(unlike T1 and T2), and may be characterized as the portion of the T2 score which 

Y y eti ti ti= + .

( 1) .ti ti t iY Y Y −∆ = −

( 1)ti ti t iy y y −∆ = −

( 1)ti t i tiy y y−= + ∆
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is not equal to T1 (McArdle & Nesselroade, 1994). A second constraint related to 
the change score involves the regression of T2 on the change score (i.e., ΔT12) be-
ing fixed at 1. This constraint serves to identify the model as well as allow for the 
estimation of the LCS mean and variance.

Equation 12.1 serves to illustrate how the individual LCSs are estimated, and 
from these allow for the growth and causal effects to be estimated. The growth por-
tion of the LCS model is based on the change score loadings (usually fixed to 1) 

ΔΔΔ

βββ

α αα

η η

ψ

ψ

ε ε ε ε

ψ

ω ω ω

Fig. 12.2  Sample univariate latent change score ( LCS) model

 



12 Using Latent Change Score Analysis to Model Co-Development … 341

associated with latent slope factor (i.e., α). Note that, different from Fig. 12.1, the 
slope is not indicated by the observed measures but rather the LCSs. The growth 
portion of the LCS model is then estimated as a function of the multiple LCSs:

  (Eq. 12.3)

Note the difference between Eqs. 12.2 and 12.3 in that Eq. 12.3 includes an es-
timated intercept term, 0iη , which denotes the individuals’ initial status based on 
centering (much like 0iη  in the latent growth model), and ( )tiyΣ ∆  represents the 
summed LCSs up to time t (Grimm, 2012). The three LCSs load on the slope factor 
with α, which are typically fixed at 1 for model estimation. The causal portion of 
the LCS model is specified by the regression of the change score on the previous 
time point, β, which is also known as the autoproportion effect, and a residual, 2ω . 
When both α and β are estimated in the LCS model, it is referred to as a dual change 
score model; dual in the sense that both constant change (i.e., average change) via 
the α coefficients, and proportional change via the β coefficients are simultaneously 
estimated. When the dual change score model is estimated, Eq. 12.1 is extended to:

  (Eq. 12.4)

which essentially states that the LCS Δy at time t for individual i is estimated as a 
function of the average latent change slope ( 1* iα η , where α =1), plus the propor-
tional change ( 1)( * )t iyβ − . The dual change score model represents the most com-
plex specification of an LCS model for a univariate outcome; however, the α  and 
β  parameters may be differentially restricted given one’s research questions. If a 
primary goal is to solely estimate constant change, the β coefficients can be fixed to 
0. This reduces the dual change model from Eq. 12.4 to what is termed a constant 
change model and is estimated with:

Conversely, when only the proportional change component of the dual change score 
model is of interest, the α coefficients are fixed to 0, as is the mean and variance of 
the latent slope, thus reducing Eq. 12.4 to:

The univariate specification of the LCS model can be extended to handle multiple 
outcomes. While one measure of fluency, such as NWF, could be modeled in the 
univariate LCS framework, individual data on non-word and ORF could be fit in 
a bivariate LCS model. Figure 12.3 illustrates a general model for a bivariate dual 
change score model, where the primary difference between it and the univariate 
specification is the inclusion of what are called coupling or cross-lag effects (i.e., 
yxγ  and xyγ ). The insertion of the coupling effect in the bivariate LCS equations 

extends Eq. 12.4 to

0 ( )ti i tiy yη= + Σ ∆

1 ( 1)* * ,ti i t iy yα η β −∆ = +

1* .ti iy α η∆ =

( 1)* .ti t iy yβ −∆ =
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 (Eq. 12.5)

As with the univariate LCS model in Eq. 12.4, Eq. 12.5 includes subscripts for 
the constant and proportional change coefficients that are specific to the outcome 
for which the LCS is estimated. Further, the insertion of the coupling effect (e.g., 

( 1)yx t ixγ − ) denotes the effect of x from a previous time point (e.g., X1 in Fig. 12.3) 
on the change score for the current time point (e.g., ΔY12). The flexibility of the bi-
variate model is such that it can be expanded to multivariate scenarios that are only 
hindered by sample size and computing power. Similar to the univariate model, the 
bivariate LCS model contains flexibility to allow the constant change, proportional 
change, or coupling effects to be freed or fixed if the question of interest does not 
require all three components to be freed for estimation.

LCS Model Development and Evaluation 

Development of the LCS model is flexible so that one may specify a fully uncon-
strained dual change model and through a set of constraints on the α , β , and γ  

( ) ( )

( ) ( )

1 1 1

1 1 1

and* *

* .*

ti y yi y yxt i t i

ti x xi x xyt i t i

y y x

x x y

α η β γ

α η β γ
− −

− −

∆ = + +

∆ = + +
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Δ Δ Δ

γ

γ

α

α

β
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Fig. 12.3  Sample bivariate dual change score model
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parameters can test the extent to which a constant change, proportional change, 
or dual change score model results in the most parsimonious model applied to 
the data. Evaluation of model parsimony for the LCS models is no different 
than conventional methods used for latent variable analyses. Criterion-based fit 
indices such as the comparative fit index (CFI), Tucker-Lewis index (TLI), root 
mean square error of approximation (RMSEA), standardized root mean residual 
(SRMR), as well as relative fit indices such as the AIC and BIC are appropriate 
for model specification.

How the LCS Model May Inform Fluency Research 

To illustrate the importance of LCS models in studying reading fluency, one can 
look at published research on reading fluency using latent growth curve analysis or 
multilevel regression models and envision how applying an LCS framework could 
further lead to comprehensive understanding of the data and, as a result, increase the 
usefulness of stated conclusions based on the data. Al Otaiba, Petscher, Pappami-
hiel, Williams, Drylund, & Connor (2009) estimated Latino students’ ORF growth 
trajectories over a 2-year period using a nonlinear, piecewise growth curve model. 
Each piece of the model estimated a growth trajectory for ORF within 1 school 
year. Differences in average growth rates were related to English proficiency levels 
as well as special education status. While knowledge of differential average growth 
rates across school years could be used to develop appropriate grade level bench-
marks for use in screening students for additional intervention, an LCS model could 
better inform the proportion of growth occurring at each time point within each 
school year to provide even more specific targets and timely intervention services.

Similarly, Kim, Petscher, Schatschneider, & Foorman (2010) estimated initial 
status and growth rates in phonological decoding skills and ORF for students in 
grades 1–3, using a linear piecewise growth curve model. Relations between initial 
status and growth rates were explored and the results revealed differential growth 
rates at the student level. Specifically, students in grade 1 with high ORF initial sta-
tus were more likely to grow faster than those with a lower fluency rate, evidenced 
by a large positive correlation between the initial status and the growth rate. This re-
lation changed in grades 2 and 3, with a negative correlation indicating that students 
with high ORF initial status tended to have slower growth over the year. Moreover, 
the authors found that the individual growth estimate was uniquely predictive of 
performance on the reading comprehension subtest of the Stanford Achievement 
Test-10th edition above that predicted by a status measure (i.e., ORF performance 
at the fall). A conclusion drawn by the authors was that growth may be an important 
factor to consider in understanding individual differences in reading comprehension 
performance in grades 1–3.

Several advantages of using the LCS model may exist when applied to the Kim 
et al. (2010) study. As an LCS (Eq. 12.4) views development over time as a func-
tion of average change plus proportion change, it is possible that two LCSs esti-
mated from a growth trajectory may differentially explain individual differences in 
an outcome. That is, a linear individual growth curve is estimated as a function of, 
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minimally, three waves of panel data. These time points could instead be chunked 
as two difference scores (i.e., T2–T1 and T3–T2). Subsequently, if the magnitude of 
change varies between the two difference scores, one may explain greater variability 
in outcomes than the other. In this way, an LCS model may not only be useful for 
better understanding student differences in growth such as in the Al Otaiba et al. 
(2009) study, but may also be useful in more comprehensively evaluating individual 
differences in proximal and distal outcomes.

An LCS approach also could inform differential ORF growth trends in the con-
text of evaluating reading instructional materials. This context was the focus of a 
study conducted by Crowe, Connor, & Petscher (2009) for the purpose of investi-
gating the effect of six core reading curricula on students’ ORF growth and whether 
this effect varied by students’ grade or SES status. Differences in average growth 
rates were found across curricula, as well as between groups of students with dif-
ferent characteristics. Expanding this analysis to an LCS framework would allow 
for identification of curricular materials that are most effective within specific time 
frames. Additional examples could be provided that would further showcase the 
importance of LCS models in studying reading fluency growth rates in particular 
and educational issues in general. However, the above examples are likely sufficient 
to demonstrate that the LCS framework is useful when there is a possibility that 
changes occur differentially over time and knowledge of the differential rates is 
important to understanding the processes or conditions leading to the change.

Applied Example

To build a better understanding of how these models may be developed and evalu-
ated to describe change over time the latent growth, constant change, proportional 
change, and dual change score models will be illustrated in the following sections. 
For all modeling applications, criterion fit indices (i.e., CFI, TLI, RMSEA) are re-
ported to evaluate the extent to which the specified model provides parsimonious 
fit to the data according to conventional thresholds. The CFI and TLI values of at 
least .95 are considered acceptable, and RMSEA up to .10 also provide evidence of 
acceptable model fit. Between-model comparisons were made by using either a 

2χ  
difference test when models were nested or using the BIC to evaluate model par-
simony when models were non-nested. Raftery (1995) demonstrated that between-
model BIC differences between 10 and 100 are sufficient to indicate a practically 
important difference in model fit.

A few notes on our approach to modeling, and the explication of model com-
parisons bear a mention. First, conventional approaches to latent growth curve 
modeling assume that the residual variances of the observed variables are the same 
over time. This is known as the assumption of homoscedasticity. More recent eval-
uation of this assumption has suggested that such a constraint does not contribute 
much to the understanding of important model estimates including latent factor 
means and variances, yet it does contribute to substantial misfit and estimation of 
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the variances and covariances of the model (see Grimm & Widaman, 2010; Sivo, 
Fan, & Witta, 2005).

Second, research which has used LCS models (e.g., Malone et al., 2004; Reyn-
olds & Turek, 2012) has typically constrained the autoproportion effects to be equal 
over time; this is done from a theoretical standpoint so that one may assume that the 
dynamic relation does not change over the observed developmental period. Though 
the relation between prior fluency performance and change over time might be ex-
pected to be static, it could also be viewed as an empirical question. Thus, in the 
context of the present application, four dual change score models were estimated 
with: (1) constrained error variances and autoproportions; (2) freed error variances 
and constrained autoproportions; (3) constrained error variance and freed autopro-
portions; and (4) freed error variances and autoproportions.

Participants

Data for the following set of examples were obtained from the Progress Monitoring 
and Reporting Network at the Florida Center for Reading Research. Students in this 
database were assessed between three and four times a year on the Dynamic Indica-
tors of Basic Early Literacy Skills (DIBELS; Good, Kaminski, Smith, Laimon, & 
Dill, 2001) assessments as part of Florida’s assessment system during the federal 
Reading First initiative which occurred from 2003 to 2009 (Foorman, Petscher, 
Lefsky, & Toste, 2010). The present data comprised 73,916 second-grade students 
who had progress monitoring data on the DIBELS NWF and ORF assessments. 
These second-grade students were administered the NWF and ORF assessments 
four times during the 2005–2006 academic year during the months of September, 
December, February, and April.

Measures

The DIBELS NWF (Good et al., 2001) is a standardized assessment designed to 
measure an individual’s ability to blend letter sounds into words. The student is pre-
sented with VC and CVC nonsense words that are randomly ordered and is asked to 
either pronounce each sound individually or to say the whole word. The student is 
given 1 min to state as many of the presented sounds as possible and the total score 
is based on the number of correct letter sounds produced within that time frame. 
Alternative form reliability is strong (.83) and is strongly correlated with DIBELS 
ORF ( r = .82; Cummings, Dewey, Latimer, & Good, 2011)

The DIBELS ORF (Good et al., 2001) is a measure that assesses oral reading rate 
and accuracy in grade-level connected text. This standardized, individually admin-
istered test was designed to identify students who may need additional instructional 
support in reading and to monitor progress toward instructional goals (Good & Ka-
minski, 2002). During a given administration of ORF, students are asked to read aloud 
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three previously unseen passages consecutively, for 1 min per passage. Students are 
given the prompt to “be sure to do your best reading” (Good et al., 2001, p. 30). Be-
tween the administration of each passage, students are given a break, in which the 
assessor simply reads the directions again before the task resumes. Words omitted, 
substituted, and hesitations of more than 3 s are scored as errors, although errors that 
are self-corrected within 3 s are scored as correct. Errors are noted by the assessor, 
and the score produced is the number of words correctly read per minute (wcpm). 
From the three passages, the median score is used for decision-making about level of 
risk and level of intervention needed. Information about how the risk levels for ORF 
benchmarks were developed and what ranges of scores correspond to various levels of 
risk are available from several technical reports by the DIBELS authors (e.g., Good, 
Wallin, Simmons, Kameenui, & Kaminski, 2002). Speece and Case (2001) reported 
parallel form reliability of .94, and research has demonstrated adequate to strong pre-
dictive validity of DIBELS ORF for reading comprehension outcomes ( r = .65–.80; 
Petscher & Kim, 2011; Roehrig, Petscher, Nettles, Hudson, & Torgesen, 2008).

Software

There are a number of software packages available which can appropriately estimate 
LCS models including LISREL (Joreskog & Van Thillo, 1972), AMOS (Arbuckle, 
2006), and Mplus (Muthén & Muthén, 1998–2012), as well as the RAMpath pack-
age (Zhiyong, McArdle, Hamagami, & Grimm, 2013) in R. For the present illustra-
tions, all statistical models were run in Mplus and figures were generated in R. Data 
scripts for each of the generated models are available from the first author.

Results

The goal of this illustration is to highlight the LCS model as well as its comparison 
to traditional latent growth curve analysis. Univariate latent growth curve models 
will first be applied to the NWF and ORF data in order to evaluate both fit as well 
as the average rates of growth. Next, a proportional change LCS model will be fit, 
followed by a constant change model, a dual change score model, and finally a 
bivariate dual change model. Given the large sample included in this example, we 
randomly selected ten students in order to highlight differences in the observed and 
estimated trends across the models.

Descriptive Statistics Sample statistics for the NWF and ORF measures across the 
four time points are provided in Table 12.1. Both measures demonstrated relatively 
normal score distributions, yet some skew and kurtosis existed for the NWF mea-
sures. Graphing the descriptive statistics as violin plots (Fig. 12.4) better displays 
the statistical summary from Table 12.1, where it may be observed that NWF was 
more likely to include scores further from the mean compared to ORF. Violin plots 
are a useful mechanism for simultaneously evaluating the distribution of scores and 
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the interquartile range of scores. The plots for both measures highlight that aver-
age performances increased across the four testing periods; however, it appeared 
that the interquartile range for NWF increased across the year whereas it remained 
relatively stable for ORF.

Growth Models Prior to fitting the growth models, it was of interest to plot the 
raw data to evaluate whether the scores for each of the measures demonstrated a 
linear or curvilinear trend. Ten students were randomly selected and their plotted 
scores for NWF and ORF are presented in Fig. 12.5. Both within and across the 
measures it is clear that individual differences in trends exist. Although some of the 
randomly selected students demonstrated a linear growth pattern, most individuals’ 
growth could be characterized as nonlinear (see Chap. 10, this volume). When the 
individual scores are grouped together in one plot for each assessment (Fig. 12.6), 
the differences in individual observed performances is more readily evaluated. Indi-
vidual differences across the time points were larger for NWF compared to ORF, 
with several students demonstrating a drop off in performance between the third 

Table 12.1  Descriptive summary for non-word fluency (NWF) and oral reading fluency (ORF) at 
each of the four assessment periods

Measure Min Max Mean S.D. Skew Kurtosis
NWF fall 0 253 65.95 31.66 0.99 1.11
NWF winter 1 0 274 80.92 37.20 0.95 1.10
NWF winter 2 0 281 87.09 38.62 0.79 0.57
NWF spring 0 300 95.35 42.37 0.66 0.29
ORF fall 0 220 56.09 31.67 0.63 0.44
ORF winter 1 0 220 69.18 31.82 0.37 0.21
ORF winter 2 0 261 81.70 34.58 0.22 0.16
ORF spring 0 248 92.70 35.25 0.06 0.28

Fig. 12.4  Violin plot for NWF and ORF raw scores
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and fourth time points. Such differences in the sample plots suggested it may be 
valuable to test a curvilinear growth model in addition to the linear latent growth 
and LCS models.

Latent Growth Models 

In Table 12.2, results are presented for the fit of the linear latent growth model for 
NWF and ORF. Across all of the indices, the linear model provided adequate fit to 
the data; however, the RMSEA and associated confidence interval was outside of 
the typically accepted upper bound (i.e., .10). Figure 12.7 presents the model coef-
ficients for each of the respective outcomes. Based on the centering of the models at 

Fig. 12.6  Grouped raw score plots of non-word fluency ( NWF) and oral reading fluency ( ORF)

 

Fig. 12.5  Individual raw score plots of non-word fluency ( NWF) and oral reading fluency ( ORF)
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time 1 (i.e., September), the average NWF performance at the beginning of second 
grade was 67 correct letter sounds per minute (cls) and the average rate of growth 
was 8.99 cls between each assessment period.

Both NWF intercept and slope factors demonstrated significant variance (796.00 
and 38.87, respectively), though considerably more was due to individual differ-
ences at the beginning of the year (95 %). The variances for both factors were statis-
tically significant indicating that individuals varied in both their September fluency 
rates as well as in their rate of growth. Given the raw score plots in Figs. 12.5 and 
12.6, this was not surprising. The positive covariance between intercept and slope 
factors indicated that students who began second grade with higher NWF scores 
grew more than individuals with lower NWF scores; however, it is often difficult 
to gauge the relative magnitude of the effect. When converted to a correlation, the 
relation between the two was estimated at r = .26, or a moderate association between 
a student’s initial status and their rate of growth.

The linear latent growth model for ORF largely mirrored that of NWF. Aver-
age ORF scores of 60 were estimated for the sample with an average growth rate 
of 17.38 wcpm per assessment period. Significant variance was observed in both 
intercept and slope factors, with 98 % of the total variance due to individual differ-
ences at the beginning of the year. When the covariance between intercept and slope 
was calculated as a correlation ( r = .04), it can be observed that there was no relation 
between initial status and slope. Data from the intercept and slope factors may be 
used to construct individual growth trajectories such as those presented in Fig. 12.8. 
When compared to the plotted observed data in Fig. 12.6, it can be seen that the 
estimated individual growth curves are not congruent to the raw data. Such a phe-
nomenon is certainly expected to occur when modeling observed versus predicted 
trajectories using a linear approach, because the linear growth model constrains 
growth to be linear, and any inherent nonlinear trend, such as in the observed data 
plots will not manifest the more restricted linear growth model.

Fig. 12.7  Linear latent growth curve models for non-word fluency ( NWF) and oral reading flu-
ency ( ORF)

 



12 Using Latent Change Score Analysis to Model Co-Development … 351

Because four time points were available, a nonlinear latent growth model al-
lowed for a more sophisticated evaluation of change in each of the fluency mea-
sures. As illustrated in Fig. 12.9 and noted in Chap. 10 of this volume, as well as in 
sources elsewhere (O’Connell & McCoach, 2008; Bowles & Montroy, 2013), the 
latent growth model may be extended to a basic nonlinear growth model by adding 
a third latent factor (i.e., the quadratic factor) to estimate the curvilinearity in the 
data. Note that the factor loadings for the quadratic factor are simply the square of 
the factor loadings from the slope factor.

Fig. 12.9  Nonlinear latent growth curve models for non-word fluency ( NWF) and oral reading 
fluency ( ORF)

 

Fig. 12.8  Grouped linear latent growth curve plots of non-word fluency ( NWF) and oral reading 
fluency ( ORF)
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The fit of the nonlinear model was superior to that of the linear model 
(Table 12.2). Note that the reduction of the χ2 from the linear to the nonlinear model 
was statistically significant for both NWF (Δχ2 = 4,910, Δdf = 4, p < .001] and ORF 
[Δχ2= 12,488, Δdf = 4, p < .001). Coefficients for the nonlinear latent growth models 
are provided in Fig. 12.9. The intercepts for both NWF and ORF are approximately 
the same as when they were estimated in the linear model, with differences attrib-
uted to the addition of another factor. The primary difference between the linear 
and nonlinear models may be seen in the estimated means of the slopes; in the 
NWF linear model the average rate of growth was 8.99 cls per assessment period 
compared with 3.84 cls in the nonlinear model. This difference is accounted for by 
the inclusion of the quadratic factor; thus, in the nonlinear model, both the slope 
and quadratic factors are required to understand growth rates in the fluency scores. 
Pertaining to NWF, the average linear rate of growth was 3.84 cls with a quadratic 
rate of change of 1.72. These two pieces of growth information indicated that not 
only did students grow positively (via the linear rate of change), but they also ac-
celerated their rate of NWF over the course of the school year (via the quadratic 
rate of change). Similarly, the growth rate for ORF was positive at 6.87 wcpm and 
accelerated at a rate of 1.35 wcpm per assessment period over the year. The effect of 
the nonlinear term on the individual growth curves can be seen in Fig. 12.10. When 
contrasting the plots with Figs. 12.6 and 12.8, it is apparent that the nonlinear ap-
proach better characterizes the data in both fit, as well as being more closely aligned 
to the trends displayed by the observed data.

LCS Models To this point, the latent growth models have highlighted the different 
growth trends which may be estimated when individual growth across all observed 
time points is modeled from a linear or nonlinear perspective. The proceeding sec-
tions now introduce examples of univariate proportional change, constant change, 
and dual change models, as well as a bivariate dual change model.

Fig. 12.10  Grouped nonlinear latent growth curve plots of non-word fluency ( NWF) and oral 
reading fluency ( ORF)
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Univariate LCS Models: 

NWF The first LCS model fit to the NWF data was the constant change model 
where the β coefficients (i.e., the proportional change coefficients) were fixed 
to 0. Resulting fit for this model (Table 12.2) from a criteria-based evaluation 
was excellent [χ2(8) = 7,822, CFI = .96, TLI = .97, RMSEA = .115 (95 % CI = .113, 
.117)]. Note that the fit for the constant change model was identical to the fit of 
the linear latent growth curve model. Because the autoproportion effects were 
not modeled, the LCS constant change model is reduced to a linear latent growth 
curve model. Following this specification, the proportional change model was 
estimated where the α coefficients (i.e., the loadings of the LCSs on the slope 
factor) were fixed to 0, as were the means and variances of the latent slope factor. 
Model fit based on the CFI and TLI met minimal thresholds for acceptable fit; 
however, a χ2 difference test indicated that the constant change model provided a 
more parsimonious fit (Δχ2 = 2,300, Δdf = 2, p < .001). A comparison of the model 
coefficients for the constant and proportional change models are provided in 
Fig. 12.11a, b, respectively. Note that the average NWF intercept is approximately 
equal across both models, as is the variance of the intercept, and the error 
variances across the four time points.

ΔΔΔ ΔΔΔ ΔΔΔ

ΔΔΔ ΔΔΔ ΔΔΔ

a

d e f

b c

Fig. 12.11  NWF a constant change, b proportional change, c dual change 1, d dual change 2, e 
dual change 3, and f dual change 4 models
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Specification of the first dual change score model (i.e., constrained autopropor-
tion and error variances; Fig. 12.11c), resulted in significantly better fit than the con-
stant change score model (Δχ2 = 3,589, Δdf = 1, p < .001), and though the BIC value 
for this model (2,754,233) was lower than the linear growth model (2,757,813), 
it was larger than the nonlinear growth model (2,752,935). Both the freed error 
variance-constrained autoproportion (i.e., dual change 2) model and the constrained 
autoproportion freed error variance model (i.e., dual change 3) provided better fit 
than the fully constrained dual change model ( p <.001; Table 12.2). When both 
error variances and autoproportion parameters were freed for estimation (i.e., dual 
change 4), this model provided the most parsimonious fit to the data and fit sig-
nificantly better than dual change 2 (Δχ2 = 1,734, Δdf = 2, p < .001). Figure 12.11c, 
f display the resulting coefficients of each of the estimated dual score models 1–4, 
respectively. When the error variances were constrained but the autoproportions 
were either constrained (Fig. 12.11c) or freed (Fig. 12.11e), it may be observed that 
the biggest impact of this differential specification was on not only the autopropor-
tion coefficients but also the covariance between the intercept and slope factors 
(i.e., −343.41 for dual change 1 and −542.06 for dual change 3) and the variance 
of the slope factor (i.e., 159.93 for dual change 1 and 364.05 for dual change 3). A 
similar phenomenon occurs when the error variances are freed and the autopropor-
tions are differentially fixed (dual change 2; Fig. 12.11d) or freed (dual change 4; 
Fig. 12.11f).

Differences in the model coefficients across the four specifications underscore 
the importance of theory relative to parameter constraints for the LCS model. Is 
the researcher most interested in the best fitting model? Does one assume that the 
error variances are the same over time, or does the nature of the assessment allow 
a relaxation of that constraint? Should there be an expectation that the dynamic 
relation is not invariant over time? As it pertains to these data, a well fitting model 
was desirable, yet at the same time, a strong theory did not exist as to why the er-
ror variances should be freed across the assessment periods. Previous research has 
shown that NWF in second grade may exhibit a slight bimodal distribution (Catts 
et al., 2009), thus, it is plausible that the dynamic relation would not be invariant 
over time. Subsequently, dual change model 3 was selected for the explication 
of coefficients. Similar to the nonlinear latent growth model, the average NWF 
score was 69 cls with an associated variance of 835.54. The mean slope for this 
model was negative at − 42.09 with a variance of 364.05. The mean of the slope 
factor should be interpreted with caution as it does not represent average growth 
in the same way that it was viewed in the linear and nonlinear growth models. 
Instead, the mean is interpreted as the average unique effect that contributed to 
the estimated LCS above the proportional change coefficient. In this model, the 
proportional coefficients were β = 0.67 ( p <.001) for the effect of time 1 NWF on 
the change score between times 1 and 2, β= 0.74 ( p < .001) for the effect of time 2 
on the second change score, and β = 0.62 ( p < .001) for the effect of time 3 on the 
third change score.
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Univariate LCS Models: 

ORF The six LCS model specifications were also applied to the ORF data; yet dif-
ferent results were obtained compared to the NWF models. Neither the proportional 
change nor constant change score models fit significantly better than the nonlinear 
latent growth models (Table 12.2), but the constant change model retained the same 
fit as the linear latent growth model. A comparison of the constant and proportional 
change model results (Fig. 12.12a, b, respectively) highlights that the specifica-
tions yielded variances around the ORF intercept which were quite discrepant (i.e., 
973.26 for constant change, 578.47 for proportional change), as well as larger resid-
ual variances for the proportional change model (111.54) compared to the constant 
change model (62.16). The four dual change score models (Table 12.2; Fig. 12.12c, 
f) showed that, of the four specifications, the freed error variance constrained auto-
proportion (dual change 2) and the freed error variance freed autoproportion (dual 
change 4) models provided the best fit when compared to the other dual change 
models, as well as when compared to the nonlinear model. When considering the 
theoretical relevance of each model, it was determined that dual change 4 would 
provide the best explication of the model to data relation. Catts et al. (2009) showed 

ΔΔΔ ΔΔΔ
ΔΔΔ

ΔΔΔ
ΔΔΔ ΔΔΔ

a

d e f

e f

b c

Fig. 12.12  ORF a constant change, b proportional change, c dual change 1, d dual change 2, e 
dual change 3, and f dual change 4 models
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that the distribution of ORF in second grade moves from a skewed distribution at 
the fall to a normal distribution at the spring; thus, it was plausible that the auto-
proportion coefficients may change over time given the nonnormality. Moreover, 
the presence of nonequivalent ORF scores may have an impact on the reliability of 
such scores. (Ardoin & Christ, 2009; Cummings, Park, & Schaper, 2013; Francis, 
Santi, Barr, Fletcher, Varisco, & Foorman, 2008; Petscher, Cummings, Biancarosa, 
& Fien, 2013). From these two potential influences on the reliability and validity of 
ORF scores, dual change model 4 was selected to describe the results.

The mean ORF score in the dual change ORF model was approximately 60 wcpm 
with an average unique slope of 28 wcpm per assessment period. The proportional 
change coefficient for this model and outcome was −0.31 for the effect at time 1  
( p <.01), −0.26 for the effect at time 2, and −0.19 for the effect at time 3.

Estimating Individual LCSs 

Resulting coefficients from the NWF and ORF LCS models can subsequently be 
used to create individual predicted LCSs using Eq. 12.4. The LCSs for NWF would 
then be estimated with:

The NWF models show that from the first time point to the second, the predicted 
LCS simultaneously decreased by 42 points and increased proportionally by 0.67 
points relative to the time 1 NWF score. The individual LCSs for ORF would be 
constructed with:

The ORF results show that across the assessment periods, students increased their 
ORF scores additively by 28.10, but decreased proportionally depending on when 
change was estimated. Moreover, the decreasing magnitude of the autoproportion 
coefficient indicated that the impact of the autoregressive effect diminishes over 
time.

Although the discrepancy between the direction of the NWF and ORF autop-
roportion effects may appear counterintuitive, suppose we take a student whose 
NWF performance at each time point was at the mean reported in Table 12.1, their 
estimated LCSs for each occasion would be:

12 1

23 2

34 3

[ ] 42.09 0.67*

[ ] 42.09 0.74*

[ ] 42.09 0.62 .*

NWF t NWF

NWF t NWF

NWF t NWF

∆ = − +
∆ = − +

∆ = − +

12 1

23 2

34 3

[ ] 28.10 0.31*

[ ] 28.10 0.2

.

6*

[ ] 28.10 0.19*

ORF t ORF

ORF t ORF

ORF t ORF

∆ = + −
∆ = + −

∆ = + −

4 28 42 09 0 67 69 21. . . * .= − +
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The predicted LCSs indicate that the greatest change in NWF was made between 
times 2 and 3 (i.e, December and February), whereas the least change occurred 
between times 1 and 2. Subsequently, an individual growth trajectory can be con-
structed from the predicted LCSs. In this example, the estimated time 1 score is 
69.21, at time 2 it is 73.49 (i.e., 69.21 + 4.28), time 3 is 85.51 (73.49 + 12.02), and 
time 4 is 95.86 (85.51 + 10.35). In the same way, if we use the mean ORF score at 
each time point, the estimated LCSs are:

which when used to calculate predicted scores for each time point, would be 61 at 
time 1, 70.19 at time 2 (61.00 + 9.19), 80.08 at time 3 (70.19 + 9.89), and 93.04 at 
time 4 (80.08 + 12.96). From these calculations, the expected LCSs are positive for 
both NWF and ORF despite the differences in the direction of the average slope 
and the autoproportion coefficients. This further underscores the earlier point that 
one must proceed with caution when interpreting the individual parameters as they 
represent unique contributions to the LCS. The grouped individual latent trajecto-
ries for the random sample of students on NWF and ORF are plotted in Fig. 12.13. 
Note that these figures appear more similar to the nonlinear growth models, yet also 

12 02 42 09 0 74 73 12. . . * .= − +

10 35 42 09 0 62 84 58. . . * . .= − +

9 19 28 10 0 31 61 00. . . * .= + −

9 89 28 10 0 26 70 03. . . * .= + −

12 96 28 10 0 19 79 71. . . * . ,= + −

Fig. 12.13  Grouped latent change plots of non-word fluency ( NWF) and oral reading fluency 
( ORF)
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retain a distinctiveness that highlights how using the coupling effects can inform the 
latent trajectory different from the non-linear growth curve.

Bivariate Dual Change Scores 

The final model illustration of the LCS models is the bivariate specification which 
incorporates lag or coupling effects on the change scores. Prior to estimating the 
bivariate dual change model, a parallel process linear growth model was estimated 
to serve as the baseline comparison. This model estimated the growth of NWF and 
ORF as well as the covariances across intercepts and slopes of both measures. Result-
ing fit for this model fell short of acceptable criteria [χ2(28) = 60,632, CFI = .93, 
TLI = .93, RMSEA = .171 (95 % CI = .170, .172), BIC = 5,120,796]. Conversely, 
the bivariate LCS model provided good fit to the data based on criterion indices 
[χ2(17) = 18,438, CFI = .98, TLI = .96, RMSEA = .121 (95 % CI = .120, .123)], and 
the BIC was lower (5,078,692) compared to the parallel process model (5,120,796) 
suggesting the former model is more parsimonious. The resulting parameters for the 
bivariate LCS model are provided in Fig. 12.14.

Δ Δ Δ

Δ Δ Δ

Fig. 12.14  Bivariate dual change score model parameters
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Similar to the univariate dual change models, the estimated parameters included 
means for the latent intercepts (68.56 and 60.91 for NWF and ORF) and slopes 
(20.49 and −113.56 for NWF and ORF) as well as the variances, covariances, and 
proportional change coefficients. The inclusion of coupling effects of NWF on ORF 
change as well as ORF on NWF change demonstrated the differential contributions 
each makes to the estimated LCSs. Model coefficients from Fig. 12.13 can be in-
serted into Eq. 12.5 to create the estimated scores for NWF and ORF as:

and

From these equations several important implications can be seen. When considering 
NWF, both the proportional change and coupling coefficients were statistically sig-
nificant, indicating that NWF was a leading indicator of NWF change, and also that 
ORF was a leading indicator (i.e., determinant) of change in NWF. The autopropor-
tion coefficients for NWF varied across the change scores, with a much larger, nega-
tive effect occurring as a function of time 1 NWF on the first change score (−.59) 
compared to the effect of time 2 NWF on the second change score (−.36). Because 
the direction of the coefficients is negative, the interpretation of the model is such 
that while students make an average gain of 20.49 between assessments, there is si-
multaneously a negative proportional effect such that students who have the lowest 
fluency scores at the previous time point changed the most. Additionally, given the 
average change and proportional change effects, the positive coefficient for ORF in-
dicated that the unique coupling effect was the strongest for individuals with higher 
ORF scores (i.e., those with higher ORF scores changed the most on NWF).

ORF as an outcome demonstrated a similar pattern of coefficients for the auto-
proportion and coupling effects. Across the change score equations, the amount of 
average change was negative, as were the autoproportion coefficients. This sug-
gested that individuals with lower ORF scores in prior assessments changed the 
most, after controlling for the average effect. Along with this coefficient, students 
with higher, previous NWF scores also experienced the greatest change in ORF at 
any time point.

As with the previously defined models, graphs are the most helpful utility to 
facilitate understanding the effects of the LCS models, yet the bivariate nature of 

12 1 1[ ] 20.49 0.59* 0.40*NWF t NWF ORF∆ = − +

∆NWF t NWF ORF[ ] . . * . *23 2 220 49 0 36 0 25= − +

∆NWF t NWF ORF[ ] . . * . *34 3 320 49 0 40 0 30= − +

∆ORF t ORF NWF[ ] . . * . *12 1 1113 56 1 35 2 99= − − +

∆ORF t ORF NWF[ ] . . * . *23 2 2113 56 0 85 2 52= − − +

34 3 3[ ] 113.56 0.39* 1.88* .ORF t ORF NWF∆ = − − +
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the model requires a slightly different mechanism to present results. In this way, 
vector field plots are advantageous in evaluating joint latent trajectories. The ar-
rows in Fig. 12.15a represent the initial values of each NWF–ORF combination, 
and the direction of the arrow shows the type of expected change to occur from 
the initial status combinations in the vector field. For example, the arrow en-
closed by the solid circle depicts the expected change in NWF and ORF where 
an individual started the year with an NWF score of approximately 100 and an 
ORF score of 70. Based on the direction of the arrow, the individual is predicted 
to grow positively in both skills, and the expectation is that greater change will 
occur for NWF compared to ORF. Conversely, the dotted circle identifies an in-
dividual who starts the year with a NWF score of approximately 60 and an ORF 
score of 90. With the arrow pointing up, the vector suggests that the predicted 
magnitude of change is much stronger for ORF, but remains rather stagnant for 
NWF. Finally, the dashed circle represents an individual who scored low on NWF 
(approximately 25 cls) relative to ORF (approximately 60 wcpm) and the direc-
tion of the vector indicates that positive change is expected for ORF while nega-
tive change is expected for NWF.

A cursory evaluation of the plot might lead one to be surprised that so many in-
dividuals have negative expected change scores, but it is important to note that the 
vector field plot provides information on expected change scores based on the mod-
el equations, yet it may not reflect how students in the sample actually performed. 
Figure 12.15b overlays a scatterplot for a random selection of 500 individuals in the 
sample. The density of the scatter can better facilitate which of the arrows in the 
vector field reflect actual observed performance. When comparing Figs. 12.15a, b, 
the implication of the scatterplot is that most students are, in fact, predicted to have 
positive LCSs for both measures, but there are certainly a number of individuals 
who are predicted to either grow positively on just one of the assessments or nega-
tively change on both.

Fig. 12.15  Vector plots of non-word fluency ( NWF) and oral reading fluency ( ORF)
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Summary

The goal of this chapter was to introduce the reader to LCS modeling and highlight 
its complexities and the information it yields in the context of traditional latent 
growth models. Modeling individual trajectories in educational research presents 
several complex issues that have previously been evaluated using either structural 
or dynamic modeling. Each has its set of distinct advantages and disadvantages, yet 
the strengths of both may be combined in the LCS model. Such a framework allows 
one to be able to understand the nature of change for a given assessment as well as 
the determinants of such change (McArdle & Grimm, 2010).

A distinct advantage to using the LCS model with fluency research is that it allows 
one to disaggregate growth into multiple change scores which can be useful in isolat-
ing where a student is most likely to change the most. The model coefficients from 
Fig. 12.13 highlight that the causal portions of the model are useful in understanding 
the effects on change. While the estimates for NWF varied slightly, a much clearer 
separation of magnitude was observed for ORF where the estimated autoproportion 
effect of time 1 was −1.35 compared with the −.39 effect on time 3. The finding of dis-
crepant effects could not have been ascertained in a traditional latent growth model.

Moreover, not only are the dynamic growth and causal portions of the model 
useful to understanding change but also the coupling effects may assist in identify-
ing which predictors yield the most useful information about change. In the current 
illustration it was found that prior NWF performance was the strongest predictor of 
change in ORF, despite the strong effect of the ORF autoproportion coefficient. This 
finding may assist in yielding new understanding about reciprocal causation when 
predicting individual differences in fluency type outcomes.

Extensions

The univariate and bivariate examples both illustrate how the LCS model can be 
applied to data when there is one measured variable per construct at each measure-
ment occasion. Researchers frequently have access to multiple measures of a given 
construct such as multiple passages for ORF, which allows a common factor to be 
estimated as a function of the shared variance across the individual passages. McAr-
dle and Prindle (2008) used a common-factor LCS model to evaluate the impact of 
cognition training on the elderly. Similarly, Calhoon and Petscher (2013) used a 
common-factor LCS model to test the impact of different reading interventions for 
middle and high school students. A notable difference between the examples pre-
sented here and the common-factor LCS model is that there is a strict requirement 
for invariance of the factor loadings across the measurement occasions (McArdle 
& Hamagami, 2001). As with many longitudinal applications of structural equa-
tion modeling (SEM) using common factors, strict invariance is often not tenable 
(Millsap, 2012), with many models meeting requirements for partial measurement 
invariance, thus it is important that one carefully evaluates the invariance of the 
loadings prior to proceeding with a common-factor LCS model.
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Additional aspects of the LCS model that may be useful for researchers working 
with fluency data are multiple-group, multilevel, and multivariate change models. 
As with many SEM models, questions about invariance of means, variances, and 
loadings are of interest when one has collected data where multiple groups are in-
volved. Several studies have used the multiple group approach to evaluate how 
different autoproportion and coupling effects differ between males and females 
(McArdle & Grimm, 2010) as well as whether an intervention had a different ef-
fect in the treatment or control groups (Calhoon & Petscher, 2013; McArdle & 
Prindle, 2008). A final extension worth noting is that the LCS model can be fit in a 
multilevel framework. The presented illustration focused on fitting the model when 
students were the unit of interest, yet it is possible to extend this model to examine 
the coefficients when considering nested structures such as students in classrooms 
or schools (e.g., Petscher, 2012).

Final Thoughts

This chapter has illustrated the LCS as a potential alternative to traditional linear and 
nonlinear growth modeling as it simultaneously models individual growth as well as 
determinants of change. Because fluency data may often retain distributional proper-
ties which may restrict individual differences, or more appropriately, may mask dif-
ferences from estimated means effects, growth models may be inefficient as capturing 
the developmental nature of change. As shown in this example, the LCS model dem-
onstrated much greater model parsimony to the data compared to the growth models, 
and displayed predicted individual growth curves from the change scores which were 
not too dissimilar from the observed fluency scores or the predicted nonlinear individ-
ual growth curves. The flexibility to fit dual change, constant change, or proportional 
change models allows for researchers with fluency panel data to potentially obtain a 
richer understanding of change over time and it is our hope that these models will al-
low users to better study individual differences in fluency development.
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Chapter 13
Conclusion: Oral Reading Fluency or Reading 
Aloud from Text: An Analysis Through a 
Unified View of Construct Validity

Christine A. Espin and Stanley L. Deno

The chapters in this book focus on the role of fluency in the measurement of per-
formance and progress within different academic areas. In this chapter, we reflect 
upon the extent to which the construct fluency plays a role in the validity of the 
scores generated by measures in academic areas. We focus specifically on the use 
of fluency measures within a Curriculum-Based Measurement (CBM) approach, 
and describe the ways in which different validity arguments reflect different pro-
posed interpretations and uses. Key to the discussion is whether fluency is the con-
struct being measured or whether it is a construct being used to create measures 
that produce technically adequate scores. To illustrate, we begin the chapter with a 
multiple-choice question.

The oral reading fluency measure (ORF):

A. produces scores that measure reading fluency
B. produces scores that measure general reading proficiency
C. produces scores that are indicators of general reading proficiency
D. should be referred to as a reading aloud measure (RA)
E. all of the above
F. none of the above

To answer this multiple choice question, one must know what the intended interpre-
tations and uses of the scores generated by ORF are. To answer this question, one 
must get at the heart of validity.
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What is Validity?

The concept of validity has slowly evolved and changed over time (Hubley & Zum-
bo, 2011; Kane, 2013; Messick, 1989b; Moss, 2007). For example, some of us may 
remember learning that validity was “the extent to which a test measures what it is 
supposed to measure,” and that there were three types of validity—content-, crite-
rion-, and construct-related validity. However, these simple definitions and descrip-
tions no longer capture current conceptions of validity.

Current thinking about validity includes the following tenets:

1. Validity is not a property of a test or measurement instrument. Validity does not 
apply to the measurement instrument itself, but to the scores produced by mea-
surement instrument. Specifically, it applies to the interpretations and proposed 
uses of the scores produced by a measurement instrument.

2. Validity is a unified concept. There are not different types of validity, but differ-
ent types of evidence that support validity. All of validity is construct validity.

3. Validity is a matter of degree. Validity is not an all or nothing affair, but a matter 
of degree. Validation is an ongoing process of scientific inquiry. Validity may 
change over time as evidence accumulates or uses change.

4. Validation should be guided by interpretation/use arguments (IUAs). The pro-
cess of validation should be guided by a coherent and complete argument outlin-
ing proposed interpretations and uses of the scores produced by the measurement 
instrument.

Validity Is Not a Property of a Test or Measurement Instrument

Validity is not a property of a test but a property of the scores produced by a test or 
measurement instrument, and it includes both the interpretations and proposed uses 
of those scores. Messick (1989b) defines validity as “an integrated evaluative judg-
ment of the degree to which empirical evidence and theoretical rationales support 
the adequacy and appropriateness of inferences and actions based on test scores 
or other modes of assessment” (italics not added; p. 13). The Standards for Educa-
tional and Psychological Testing, a document jointly developed by The American 
Educational Research Association (AERA), American Psychological Association 
(APA), and National Council on Measurement in Education (NCME) to guide the 
development and use of tests, defines validity as the “degree to which evidence and 
theory support the interpretations of test scores entailed by proposed uses of tests” 
(AERA et al., 1999, p. 9). The validity of a score, then, depends on the intended 
use of that score for decision-making, and different intended uses require different 
validity arguments to be made.
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Validity Is a Unified Concept

All of Validity Is Construct Validity There are not different types of validity, but 
different types of evidence that support validity—and all of validity is construct 
validity. The view of validity as a unified concept is perhaps one of the most sig-
nificant developments in recent conceptualizations of validity. As early as 1957, 
Loevinger described validity as a unified concept, arguing that “since predictive, 
concurrent, and content validities are all essentially ad hoc, construct validity is the 
whole of validity from a scientific point of view” (p. 636); however this view was 
not widely held at the time. Between 1954 and 1974, for example, the Standards 
for Educational and Psychological Testing described three different types of valid-
ity: content, criterion, and construct (Cizek, 2012; Moss, 2007). It was not until the 
1974 and 1985 versions that the Standards began to incorporate the view of validity 
as a unified concept (Kane, 2013; Moss, 2007).

The unified view of validity coalesced with the writings of Messick (1989a, 
1989b, 1995), who emphasized that “construct validity may ultimately be taken 
as the whole of validity in the final analysis” (Messick, 1989a, p. 21). Messick 
(1989a, 1989b) described validity in terms of both score interpretations and score 
uses. Score interpretations referred to the inferences that were to be made from the 
scores, and different types of inferences required different types of evidence. The 
types of inferences to be made depended on the potential score use. Messick (1989a, 
1989b, 1995) considered both the evidential and consequential basis of validity, ar-
guing that one had to be concerned not only with the degree of evidence supporting 
particular score interpretations and uses, but also with the potential consequences 
associated with those interpretations and uses.

Messick was not the first to refer to the process of validation as a scientific inqui-
ry, nor the first to propose that validity was a unified concept. As mentioned earlier, 
Loevinger (1957), as well as others (e.g., Anastasi, 1986; Cronbach, 1971; Cron-
bach & Meehl, 1955; Loevinger, 1957) contributed to the development of these 
ideas. However, a unique aspect of Messick’s conceptualization of validity was 
the inclusion of the consequences of score interpretations (Kane, 2013). Although 
there is some disagreement as to whether the term validity should be so broadly de-
fined (e.g., see Borsboom & Mellenbergh, 2004; Hood, 2009; Lissitz & Samuelsen, 
2007), there is widespread agreement that both the evidential and consequential ba-
sis of validity should at least be taken into account during the development and use 
of assessments (Cizek, 2012). In the following sections, we describe in more detail 
what is meant by evidential and consequential basis of validity.

Evidential Basis of Validity The evidential basis of validity refers to the vari-
ous types of evidence that might be called in to play to support validity. There are 
various sources of validity evidence possible; the sources selected depend on the 
potential score interpretations and uses (Messick, 1989a, 1989b).

The types of evidence are grouped somewhat differently from document to docu-
ment, but in general they include content, internal structure, response processes, 
and relations to other variables (Messick, 1989b; Moss, 2007; AERA et al., 1999).
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Content Evidence 

Content evidence reflects the extent to which the test content is representative of the 
content domain (Messick, 1989a, 1989b; Reynolds & Livingston, 2012). Content 
evidence is established primarily via systematic analysis and expert opinion about 
the content domain and the test items that represent that domain.

Internal Structure

Internal structure refers to the extent to which test items align with the construct the 
test is designed to measure (AERA et al., 1991; Reynolds & Livingstone, 2012). 
For example, if a construct is hypothesized to include multiple dimensions, the test 
can be examined to determine whether the internal structure of the test reflects those 
dimensions. Examination of the internal structure of a test often involves the use of 
factor analyses techniques.

Response processes

Response processes are the processes underlying item or task performance (Mes-
sick, 1989b). Evidence related to response processes reflects the fit between actual 
responses of the examinees and the construct being measured (AERA et al., 1999; 
Reynolds & Livingstone, 2012), and ties scores on the measure to the theoretical ra-
tionales underlying the construct. Examination of response processes might involve 
techniques such as protocol analysis, computer modeling, response time analysis, 
and measurements of eye movement (Messick, 1989b).

Relations to other variables

Relations to other variables refers, to the patterns of relations between scores on 
the measurement instrument and other variables (the criteria) thought to represent 
the construct being measured (AERA et al., 1999; Reynolds & Livingstone, 2012). 
Evidence of the relations to other variables reveals the extent to which scores from 
the measure fit with theoretical conceptualizations about the measure (Messick, 
1989b; AERA et al., 1999). Examples of methods for establishing evidence based 
on relations to other variables include test-criterion evidence, convergent and dis-
criminant evidence, group differences/changes over time, and responsiveness of 
scores to experimental treatment (Messick, 1989b; Reynolds & Livingstone, 2012; 
AERA et al., 1999).

Test-criterion evidence reflects the relation between scores on an instrument 
and scores on other measures representative of the construct. Test-criterion evi-
dence is developed through both concurrent and predictive studies. Concurrent 
studies examine the relation between scores when the test and criterion are ad-
ministered at the same time; predictive studies examine the relation between 
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scores when the criterion is administered later than the test (Reynolds & Living-
stone, 2012).

Convergent and discriminant evidence reflect the extent to which correlations 
between scores on the test and other measures of the same construct are larger than 
correlations between scores on the test and measures of a different construct. An 
elegant way to examine convergent and discriminant evidence simultaneously is the 
formulation of a multitrait-multimethod matrix, in which evidence about multiple 
traits measured with multiple methods is examined (Campbell & Fiske, 1959; Mes-
sick, 1989b, Reynolds & Livingston, 2012).

Studies of group differences examine whether scores for groups differ in ex-
pected directions based on theoretical understanding of the construct. For example, 
we would expect scores on a test of reading competence to be higher for students 
in grade 6 than for students in grade 2 (Messick, 1989b; Reynolds & Livingston, 
2012). In addition, longitudinal studies of score changes over time evaluate wheth-
er the scores change in expected ways based on a theoretical understanding of 
the construct (Messick, 1989b). For example, we would expect scores on a test 
of reading competence to increase for students as they move from grades 2 to 6.

Responsiveness of scores to experimental treatment refers to whether scores 
change in theoretically predictable ways in response to experimental manipulations. 
For example, we would expect that scores on a test of reading competence would 
increase for students following implementation of an effective reading intervention.

Consequential Basis of Validity The consequential basis of validity refers to con-
sideration of the consequences of test interpretation and use (Cizek, 2012; Hubley 
& Zumbo, 2011; Messick, 1989a, 1989b; Reynolds & Livingston, 2012). Messick 
(1989b) emphasized that the consequential basis of validity does not refer to the 
consequences associated with misuse of a measurement instrument, but rather to the 
consequences associated with the appropriate use of the instrument. Under conse-
quential validity, both score interpretation and score use are considered (Hubley & 
Zumbo, 2011; Messick 1989a, 1989b).

Under score interpretation, Messick (1989b) includes the values associated with 
the labels, the theories, and ideologies associated with a construct. Labels carry 
meaning, and the selection of the label bears on the consequences associated with 
use of that label. Consider, for example, potential differences in the consequences 
associated with the following labels used to describe severe reading difficulties: 
dyslexia, learning disabilities (LD), reading difficulties. Each label has a different 
set of values or connotations associated with it.

Related to the values associated with labels are the values associated with the 
theories undergirding the construct being measured. Messick (1989b) argues that 
scores are interpreted within the theoretical framework of the person viewing the 
scores. For example, a score on a reading competence test will carry different mean-
ing when interpreted from the point of view that reading difficulties are caused by 
neurological impairments rather than from the point of view that reading difficulties 
are caused by poor instruction. Such differences in interpretations might lead to dif-
ferent consequences for the examinee.

Finally, scores are interpreted within the ideologies held by the examiner. For ex-
ample, consequences of score interpretations will differ for someone who believes 
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that children with disabilities have a “right” to be educated in the same setting as 
children without disabilities than for someone who believes that children with dis-
abilities have a “right” to be educated in a special school with trained specialists.

With regard to score use, Messick (1989b) argues that the potential social con-
sequences of score use must be considered, including both intended and unintended 
consequences: “The central question is whether the proposed testing should serve as 
a means to the intended end, in light of other ends it might inadvertently serve …” 
(italics not added, p. 85). Under social consequences of testing, Messick includes 
consideration of the use of the test compared to not testing at all or to using an 
alternative approach, and the side effects and by-products associated with testing.

Suppose, for example, that a test of verbal ability consistently produces lower 
scores for males than for females. The first step is to ensure that all potential sources 
of test invalidity have been ruled out, including construct underrepresentation and 
construct irrelevant test variance (Hubley & Zumbo, 2011; Messick, 1989b; Reyn-
olds & Livingston, 2012). Construct underrepresentation occurs when a construct 
is not fully represented on the test. For example, a test in mathematics that includes 
only multiplication problems would underrepresent the construct “mathematics 
ability.” Construct irrelevant variance occurs when test scores are influenced by 
characteristics, content, or skills that are unrelated to the construct being measured. 
For example, a test of mathematics ability that requires a large amount of reading 
would produce scores that reflect not only mathematics but also reading abilities.

If potential sources of invalidity have been ruled out as an explanation for dif-
ferences in group scores, then one might assume that the scores reflect true group 
differences. The second step is then to consider the social consequences associated 
with the use of such test scores. Judgments about social consequences rely on the 
values held by society, the definition of the construct, and the potential uses of the 
scores for decision-making.

To return to our example, let us assume that scores on the test of verbal ability are 
used to make decisions about placement of students into special education. What 
are the implications for the use of such test scores for making placement decisions, 
especially if we see that males get referred more often to special education than 
females? Is such an outcome desirable? One could argue that it is a desired outcome 
because male students are getting help, and they are in greater need of such help 
than female students. On the other hand, one could argue that male students are 
unnecessarily and unfairly being placed in special education, a decision that could 
potentially affect the rest of their lives. Which answer is correct? It is probably obvi-
ous that both responses might be considered to be correct. The social consequences 
associated with the use of test scores can be seen as both positive and negative 
(Hubley & Zumbo, 2011).

The example of the test of verbal ability illustrates the reciprocal relation be-
tween the evidential and consequential basis of validity. The social consequences 
associated with the use of test scores both rely on and influence the evidential basis 
of validity. It is this reciprocal relation that led Messick (1989b) to argue for a uni-
fied concept of validity: “The value implications of score interpretation are not just 
a part of score meaning, but a socially relevant part that often triggers score-based 
actions and serves to link the construct measured to questions of social policy” 
(Messick, 1989b, p. 63).
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Validity Is a Matter of Degree

Validity is not an all or nothing affair. It is a matter of degree. Validation is an ongo-
ing process of scientific inquiry. Thus, it is not appropriate to claim that a test score 
is valid or not valid, but only to describe the extent to which the existing data sup-
port the interpretations of the test score for particular uses (Messick, 1989a, 1989b; 
AERA et al., 1999). It is important to make an integrated, evaluative judgment of 
the degree to which the evidence supports score interpretation and use, and the po-
tential consequences of such score interpretation and use (Messick, 1989a, 1989b). 
Each score interpretation and use must be validated (Reynolds & Livingston, 2012; 
Kane, 2013). Judgment about the validity of a score is made in part by comparing 
use of that score to the use of scores produced by other instruments, or to use of no 
at all (Messick, 1989b).

Accumulating evidence may support or call into question the validity of particu-
lar score interpretations and uses. If support is not found, then either the assessment 
instrument or the theory underlying the assessment instrument must change.

Validation Should be Guided: Interpretation/Use Arguments (IUAs)

The process of validation should be guided by a coherent and complete argument 
that lays out the proposed interpretations and uses of the scores (Cronbach, 1988; 
Kane, 1992, 2006, 2013). An argument-based approach to validation provides a 
framework for organizing and evaluating the claims made about test scores and 
uses (Cronbach, 1988; Kane, 2013). Kane (2013) states that the core idea of an 
argument-based approach to validation is “to state the proposed interpretation and 
use explicitly and in some detail, and then to evaluate the plausibility of these pro-
posals” (p. 1). An argument-based approach to validation includes two steps: first 
state the claims, and second evaluate those claims (Kane, 2013). Validation, then, 
can be seen as an “empirical evaluation of the meaning and consequences of mea-
surement” (Messick, 1995, p. 747). As interpretation/uses of scores change over 
time, validity changes over time. New arguments must be built, and new evalua-
tions of the evidence must be made (Kane, 2013). The more ambitious the proposed 
interpretations/and uses the greater the empirical evidence needed to support those 
intepretations and uses (Kane, 2013).

Validity of Scores from Measures Involving Fluent Reading

In the first part of the chapter, we outlined four tenets that capture current think-
ing about the concept of validity. In the second section of the chapter, we focus 
on scores from two specific fluency-based measures, both used to monitor student 
progress in reading within a curriculum-based measurement (CBM) system: read-
ing aloud and maze selection. For reading aloud, students read aloud from a text for 
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1 min and the number of correctly read words is tallied. We refer to this score as 
words read correctly (WRC). In maze selection, students read silently from a text in 
which every 7th word is deleted and replaced with a multiple-choice item. Students 
read for 1 to 3 min selecting words as they read, and the number of correct choices 
is tallied. We refer to this score as correct maze choices (CMC).

In a CBM system, students are measured frequently (e.g., weekly) over time 
using reading aloud or maze passages. WRC or CMC scores are placed on a graph 
to represent growth and progress in general reading proficiency. Data are used to 
evaluate the effects of instruction on student progress. If the data reveal a lack of 
progress, it is a signal that instruction needs to be changed (Deno, 1985; Deno & 
Fuchs, 1987).

Over the years, much of the research on CBM in reading has focused on ex-
amining the reliability and validity of scores produced by the reading aloud and 
maze selection measures (Wayman, Wallace, Wiley, Tichá, & Espin, 2007). In the 
sections that follow we illustrate how each tenet of validity applies to these two 
scores. Our intent is not to provide a comprehensive review of the CBM literature 
on reading (for reviews, see Espin & Tindal, 1998; Marston, 1989; Reschly, Busch, 
Betts, Deno, & Long, 2009; Stecker, Fuchs, & Fuchs, 2005; Wayman et al., 2007; 
Yeo, 2010, 2011), but merely to reflect upon the research within the framework of 
current thinking about validity.

Validation of WRC and CMC Scores Should be Guided by IUAs

The building of an interpretation and use argument (IUA) comes both at the begin-
ning and the end of the validation process. By stating the IUA at the beginning of 
the validation process, one has a framework against which to judge the extent to 
which the data support the validity of the scores for a particular interpretation and 
use. While the original IUA for developing CBM reading scores was laid out by 
Deno (1985), more recent IUAs for CBM are more often implied than specified. It 
would be beneficial for CBM researchers and test developers to lay out the specific 
arguments for various interpretations and uses of CBM scores in order to allow for 
a systematic evaluation of the degree of empirical support for such interpretations 
and uses. We return to the IUA again at the end of this section.

Validity Is Not a Property of Reading Aloud or Maze Selection 
Measures but of the Scores (WRC and CMC) Produced 
by the Measures

Validity is not a property of the measure, but of the scores produced by the measure. 
It is not the validity of the reading aloud or maze selection measures, but the valid-
ity of WRC and CMC—the scores produced by the measures—that is of interest. 
Moreover, it is not the scores themselves, but the interpretations and uses of the 
scores that are of concern in a validity argument.
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With regard to score interpretation, within a CBM context WRC is not interpret-
ed as an indicator of the construct reading fluency, but rather the construct general 
reading proficiency (Deno & Marston, 2006). Likewise, CMC is not interpreted as 
an indicator of the construct reading comprehension, but rather the construct gen-
eral reading proficiency. If one follows this logic, then the use of the term ORF is 
somewhat of a misnomer for the CBM reading aloud score because it implies that 
score interpretation relates to the construct reading fluency. Granted, the number of 
WRC in 1 min could be used as an indicator of the construct reading fluency, but 
then the interpretation and use argument built around the scores would need to be 
different (e.g., see Valencia, Smith, Reece, Li, Wixson, & Newman, 2010). Within 
a CBM context, however, WRC and CMC are used as indicators of general reading 
proficiency; thus, interpretation/use arguments are built around the extent to which 
the measures relate to broad measures of reading proficiency. Such measures in-
clude both fluency and comprehension.

With regard to score use, the way in which CBM reading scores have been, and 
are being, used has changed considerably over time. CBM was originally designed 
to be used in a formative assessment approach by special teachers to systematically 
evaluate the effects of their instruction with students who had reading disabilities 
(Deno, 1985; Deno & Fuchs, 1987). Most recently it has been used as a part of 
a response-to-intervention (RTI) approach to identify students with learning dis-
abilities (LD) and to make placement decisions for those students. (e.g., see Fuchs, 
Mock, Morgan, & Young, 2003; Jimerson, Burns, & VanDerHeyden, 2007; Mar-
ston, Muyskens, Lau, & Canter, 2003; Speece, Case, & Molloy, 2003). Although 
the interpretation of CBM scores remains somewhat similar across these two uses 
(the scores are meant to reflect general reading proficiency for both uses), the use 
of the scores, and the values and consequences associated with the interpretations 
and uses, vary dramatically. Each set of uses and interpretations requires a differ-
ent IUA, and each IUA requires different sources and standards of evidence (for 
examples of types of evidence specific to RTI see Fuchs & Deshler, 2007; Fuchs, 
2003; Jimerson et al., 2007; Vaughn, Fletcher, Francis, Denton, Wanzek, Wexler, 
Cirino, Barth, & Romain, 2008; Vaughn & Fuchs, 2003; VanDerHeyden, 2011).

If one considers the original intent of CBM, that is use as a formative as-
sessment approach to inform and influence the instructional behavior of special 
education teachers, then the focus of the IUA is on the interpretation and use of 
the scores as a reflection of student performance and progress in reading profi-
ciency, and on the effects (the consequences) of score interpretation and use on 
teacher instruction and student performance. The evidential basis for score inter-
pretation and use focuses on the technical adequacy of the scores as indicators 
of performance and progress in reading, and includes questions such as: (1) Do 
scores reflect general reading proficiency? (2) Do scores increase with improve-
ments in general reading proficiency? (3) If scores for an individual student do 
not increase, do teachers respond to the scores by making instructional changes 
for that student? The consequential basis for score interpretation and use focuses 
on the values and social consequences associated with use of the measures, and 
includes questions such as: (1) Do instructional changes lead to improved read-
ing proficiency, and is improved reading proficiency a desired social outcome? 
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(2) Do the improvements in reading proficiency justify the time, cost, and effort 
needed to effect such gains? (3) What are the consequences for the school, teach-
ers, and students associated with implementation of a CBM system of progress 
monitoring for decision-making?

If one considers the use of CBM reading measures within an RTI framework, 
the focus of the IUA is much different. First, the IUA focuses on the interpretation 
and use of the CBM scores as potential indicators of the construct LD in reading. 
Although the evidential basis for score interpretation and use might include the 
questions mentioned earlier, new questions emerge such as: (1) Do performance 
and progress on the CBM reading scores adequately differentiate students with and 
without LD? (2) Do performance and progress on the CBM reading scores ade-
quately identify students in need of different types or intensity of instruction? (3) 
Does the use of CBM scores within an RTI system lead to better decision-making 
for identifying students with LD than use of existing procedures? Additional ques-
tions also emerge with regard to the consequential basis of score validity, such as: 
(1) What are the values associated with the label “LD” when it is assigned on the 
basis of CBM scores within an RTI framework as opposed to when it is assigned 
using a different approach? (2) What are the social consequences for schools, teach-
ers, students, and families associated with using CBM reading scores to identify 
students as LD within an RTI system? Serving as a background for each of these 
questions are the ideologies, values, and beliefs of various stakeholders surrounding 
the construct of LD.

As can be seen from this brief illustration, the standards and sources of evi-
dence needed to support the validity of score interpretation and use within an RTI 
framework are different from, and arguably more stringent than, those needed to 
support the validity of score interpretation and use within a formative assessment 
framework. The values and consequences associated with the interpretation and use 
of the scores within a formative evaluation framework relate to teachers modifying 
instruction to effect higher rates of improvement. The values and consequences as-
sociated with interpretation and use of the scores within an RTI framework relate 
to students receiving a label and being assigned to a particular level or type of in-
struction. Within both frameworks, the costs of score use and interpretation must be 
weighed against the benefits to determine the extent to which the scores are “valid 
enough” to be used to in making each set of decisions.

Validity Is a Unified Concept: Both the Evidential and 
Consequential Basis of Interpretation and Use of WRC and CMC 
Need to be Considered

One needs to simultaneously consider both the evidential and consequential basis of 
the scores produced by the reading aloud and maze selection measures. The selection 
of which type of evidence and which consequences to examine depends on the de-
sired interpretation and use of the scores outlined in the IUA, as described in the pre-
vious section. To illustrate the unified concept of validity, we focus on the traditional 
interpretation and use of CBM scores within a formative assessment framework.
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Evidential Basis for WRC and CMC Recall that there are different types of evi-
dence that support the validity of scores, and that it is important to select which 
types of evidence are most important for the proposed interpretations and uses 
(Kane, 2013; Messick 1989a, 1989b). Potential sources of evidence include content, 
internal structure, response processes, and relations to other variables.

CBM measures are meant to serve as brief indicators of performance and prog-
ress in a broad domain; thus, traditionally there has been less interest in and research 
on content, internal structure, and response processes of the measures, and more 
on the relations between CBM scores and other variables that represent reading 
proficiency. However, as will be argued later, examination of the content, internal 
structure, and response processes might be fruitful and important areas for future 
research.

An IUA for WRC or CMC is illustrated in Fig. 13.1. The figure resembles a 
nomological network, as described by Cronbach and Meehl (1955). Cronbach and 
Meehl (1955) laid the groundwork for a scientific approach to construct validity 
when they claimed that 

“Construct validation takes place when an investigator believes that his instrument reflects 
a particular construct, to which are attached certain meanings. The proposed interpretation 
generates specific testable hypotheses which are a means of confirming or disconfirming 
the claim” (p. 290). 

A nomological network lays out the hypothesized set of relations between the scores 
on the measurement instrument and the construct.

Figure 13.1 expands upon the concept of nomological networks as described by 
Cronbach and Meehl (1955) to reflect the view of validity as a unified concept that 
takes into account both the evidential and consequential basis of score interpretation 
and use. The solid lines in the figure represent empirical relations, and have arrows 
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scores on common reading assessment (i.e., oral reading fluency and maze) and the construct of 
proficient reading
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at both ends to represent the bidirectional association among scores on the various 
measures. The dotted lines represent inferences that are made about the relations 
between the scores and the construct. The box on the left-hand side of the figure 
represents the consequences of test use and interpretation, indicating that conse-
quences and evidence interact to form the whole of construct validity.

With regard to the evidential basis of CBM score validity, the figure illustrates 
that, based on assumptions about the theory underlying measure interpretation and 
use, there are a set of hypothesized relations that can be tested to examine the valid-
ity of scores generated from the CBM reading measures. For example, if the WRC 
and CMC scores are indicators of general reading proficiency, they should relate 
in expected ways to selected criterion, such as scores on other measures of reading 
proficiency. In addition, they should reflect differences in scores by group (e.g., 
older and younger students, students in higher or lower reading groups, and students 
with and without LD), and should change in response to effective reading inter-
ventions. Their use should produce relevant outcomes, such as better instructional 
decisions that lead to improved reading performance. Finally, the structure of the 
measures and response processes used to complete the tasks should fit theoretical 
rationales underlying the construct of reading proficiency.

In general, there is a fairly large body of research supporting validity claims 
related to the pattern of relations between the CBM reading scores and scores on 
other indicators of reading proficiency, and also a fair amount of research demon-
strating that scores change in response to interventions (see O’Connor, Gutierrez, 
Teague, Checca, Sun, & Ho, 2013 and reviews by Marston, 1989; Reschly et al., 
2009; Stecker et al., 2005; Wayman et al., 2007). However, there are other sources 
of evidence that have only infrequently been tapped in the CBM research, but that 
could provide fruitful areas of research for future study. In addition, there are areas 
of concern that are in need of additional research.

Sources of evidence that have been examined infrequently are response processes 
and the structure/content of the reading aloud and maze selection measures. These 
sources reflect the relation between scores and the theoretical rationales underlying 
the scores; that is, the meaning of scores within a theoretical framework of reading 
proficiency (e.g., see Fuchs, Fuchs, Hosp, & Jenkins, 2001). Examples of these 
types of studies include: (1) a study by Kranzler, Brownell, and Miller (1998), who 
examined the relative roles of general cognitive ability, speed and efficiency of cog-
nitive processing, and reading aloud in the prediction of reading comprehension; (2) 
a study by Kendeou and Papadopoulos (2012), who examined the degree to which 
different cognitive and language skills (e.g., phonological skills, rapid automatized 
naming (RAN), orthographic skills, and reading fluency) explained unique variance 
in scores on the maze selection task; and (3) a study by Shinn, Good, Knutson, Tilly, 
and Collins (1992), who used confirmatory factor analysis to examine the relation 
of WRC to the reading process from a theoretical perspective for 3rd- and 5th-grade 
students. Studies such as these serve to increase our conceptual understanding of 
CBM scores and the relations between the scores and other variables. In addition, 
such studies can lead to hypotheses regarding how to improve the CBM measures.

More work on the examination of WRC and CMC within cognitive and theoreti-
cal frameworks needs to be done (see for example, van den Broek & White, 2012). 
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Specifically, studies of students’ response processes when completing a reading 
aloud or maze selection task could be conducted. As an example, in a pilot study 
conducted at Leiden University last year, we (Espin and colleagues) examined the 
eye-tracking movements of college-age readers during completion of a maze selec-
tion task. We were interested in whether readers looked more often and longer at 
the correct choices than at the incorrect choices. We conjectured that if readers were 
building a coherent representation of the text (see van den Broek & White, 2012) 
while completing the maze task, they would jump more often to and focus lon-
ger on the correct choice than on the incorrect choices. The results of a controlled 
eye-tracking study such as the one just described might help us to understand why 
scores from the maze and reading aloud function differently for older and younger 
students (see Espin, Wallace, Lembke, Campbell, & Long, 2010; Tichá, Espin, & 
Wayman, 2009). The increased availability of technology, such as eye-tracking, 
response-time software, and magnetic resonance imaging (MRI), allows for closer 
examination of the response processes involved in completion of CBM measures 
than was possible 30 years ago.

Not only are there new sources of evidence that could be tapped but also there 
are areas of concern in the CBM research that have not yet sufficiently been ad-
dressed. First, with regard to the patterns of relations, more work is needed to exam-
ine whether validity results apply equally well to various populations of students, 
for example, students of different ages, sex, and ethnic/language backgrounds (see 
Wayman et al., 2007). Some work has been done to examine generalizability of score 
interpretations and uses to younger (e.g., Dion, Dubé, Roux, Landry, & Bergeron, 
2012; Good, Kaminski, Fien, Powell-Smith, & Cummings, 2012) and older stu-
dents (e.g., Espin & Campbell, 2012), to students of different ethnic and language 
backgrounds (e.g., Deno & Marston, 2006; Robinson, Robinson, & Blatchley, 2012; 
Yeo, Fearrington, & Christ, 2011), to different disability groups (e.g., Wallace & 
Tichá, 2012), and even to students from different countries (e.g, Linan-Thompson, 
2012; Shin, 2012), but more work is needed in each of these areas.

Second, a worrisome source of construct-irrelevant variance is the within-indi-
vidual variability in CBM scores resulting from repeated measurements over time, 
and the resulting large errors associated with slope estimates (Ardoin & Christ, 
2009; Fuchs, 2004; Fuchs & Fuchs, 1992; Ardoin, Christ, Morena, Cormier, & 
Klingbeil, 2013; Wayman et al., 2007). A related concern is the sensitivity of slope 
to passage set and passage order effects (Ardoin & Christ, 2009; Francis, Santi, 
Barr, Fletcher, Varisco, & Foorman, 2008). Simply put, scores for individuals on 
“parallel passages” vary a great deal, introducing error into the growth rates pro-
duced by CBM measures (Ardoin et al., 2013; Dunn and Eckert, 2002). A reliable 
and valid slope (rate of growth) for an individual is important if teachers are to make 
adequate decisions regarding the effects of instruction on student progress. (It is 
imperative if growth rates are used as a part of RTI decision-making.)

There have been various proposals for ways to deal with within-individual vari-
ability, for example, using statistical methods to equate scores (Francis et al., 2008), 
increasing the number of data points used to calculate slope (Ardoin & Christ, 2009; 
Christ, 2006), using passage sets that produce less within individual variability (Ar-
doin & Chris, 2009; Hintze & Christ, 2004), and using generalizability theory to 
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study sources of error variance (Hintze, Owen, Shapiro, & Daly, 2000). An ad-
ditional option not often discussed in the literature would be to graph the moving 
median data rather than raw data.

Another approach that might be used to address the problem of within-individual 
variability would be to examine the content and structure of the text materials used 
in CBM. For example, with regard to reading aloud, research in reading compre-
hension reveals that understanding of a text is influenced by the causal structure 
of the text (van den Broek & White, 2012). Perhaps passage equivalence could be 
increased, and variability decreased, if passages were written to reflect a similar 
causal structure. With regard to maze, consideration of the methods used to select 
and insert choices into the text might be useful. Maze choices are typically inserted 
every seventh word and replaced by the correct choice and two distracters, which 
are within one letter in length of the correct choice (Fuchs & Fuchs, 1992). The 
correct choice is clearly correct and the incorrect choices clearly incorrect. Little re-
search has been conducted to examine whether the placement or selection of choices 
influences the validity, reliability, or variability of maze scores (for exceptions see 
Ketterlin-Geller, McCoy, Twyman, & Tindal, 2006; Parker, Hasbrouck, & Tindal, 
1992). Perhaps placement and distracter selection influence passage variability, and 
could thus be manipulated to reduce variability.

Thus, although there has been a large amount of research addressing issues re-
lated to the validity of the scores produced by reading aloud and maze selection 
measures, as the use of the measures develops and changes, as our knowledge of 
reading grows and changes, and as our statistical methodologies become more ad-
vanced, new questions will arise that can be addressed in new ways. Validity is an 
ongoing process which brings us to our last point: Validity is a matter of degree.

Validity Is a Matter of Degree

Validity is a matter of degree. As Messick (1989b) asserts, “validity is an evolving 
property and validation is a continuing process” (p. 13). Because evidence is always 
incomplete, validation is essentially a matter of making the most reasonable case 
possible to guide interpretation and use of test scores (Messick, 1989b). Over time, 
“the existing evidence becomes enhanced (or contravened) by new findings” (Mes-
sick, 1989b, p. 13).

Viewing validation as ongoing process brings us back to the first point, the 
need for an interpretive/use argument to guide the validation process. Kane 
(2013) points out that validity changes over time as the interpretations and uses 
develop, and as new evidence accumulates. If evidence contradicts the argu-
ments laid out in the original IUA, it does not necessarily imply that the scores 
produced by the measure are invalid; however, it does signal a need to consider 
potential reasons for the contradictory evidence. Messick (1989b) argues that 
negative evidence can be interpreted in different ways: The test might not cap-
ture the construct very well, the theory underlying the construct might be faulty, 
the testable hypotheses laid out in the IUA might be faulty, the experimental con-
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ditions might not allow for appropriate evaluation of the hypotheses, or a com-
bination of these. Potential responses to contradictory evidence include modify-
ing the measures, modifying the theory underlying the measures, or modifying 
and testing different hypotheses to explain the contradictory results (Messick, 
1989b).

Returning to the example provided earlier—the problem of within-individual 
variability in scores over repeated measurements and the potential impact this can 
have on the interpretation and use of CBM reading scores—it is important to dis-
cuss and scrutinize the problem (e.g., Ardoin et al., 2013; Wayman et al., 2007). 
However, it is also important to consider what the implications are for the IUA. Is 
it possible to modify the measures or the scores in the ways described previously 
to correct the problem? Does the theory underlying the scores need to be changed? 
Should scores from the measures be interpreted or used in different ways, and what 
are the implications associated with such revised interpretations and uses?

Given that research demonstrates that when teachers use individual progress data 
to inform instructional decisions, performance improves (see review by Stecker & 
Fuchs, 2000; Stecker et al., 2005), it would seem worthwhile to further examine the 
issues related to interpretation and use of slope for decision-making. In what ways 
are the data driving and influencing teachers’ decision-making? How much error in 
slope can be tolerated? (For example, is it the exact slope value that drives decisions 
or a general pattern of positive or negative growth?) What is the active ingredient 
leading to student achievement gains: the data, teachers’ response to the data, teach-
ers’ persistence in striving toward achievement gains, teachers’ increased sense of 
control over the learning trajectories of their students?

All of these questions, and probably more, should be considered in addressing 
the issue of slope because validity is a matter of degree. It is not possible to say that 
the WRC and CMC scores are or are not valid—only that the evidence accumulated 
to date does or does not support particular interpretations and use. If evidence ap-
pears that does not support the original interpretations and use, it is incumbent upon 
the researchers to try and understand these findings and continue the process of 
validation.

Conclusion

In conclusion, in this chapter we review current conceptualizations of validity and 
describe four tenets of validity: validity is a property of a score, not a test instrument; 
validity is a unified concept; validity is matter of degree; and validation should be 
guided by interpretation and use arguments. We consider these tenets with respect 
to scores from two measures that involve fluent reading, reading aloud from text 
and maze selection, and describe each tenet within a CBM context. We highlight the 
need for future researchers in the area to be guided by a clear conception of validity 
with particular regard for clearly stated interpretation and use of the scores.
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To conclude, we return to the question posed at the beginning of the chapter: The 
oral reading fluency measure (ORF):

A. produces scores that measure reading fluency
B. produces scores that measure general reading proficiency
C. produces scores that are indicators of general reading proficiency
D. should be referred to as a reading aloud measure (RA)
E. all of the above
F. none of the above

As we have hopefully illustrated in this chapter, the answer to the question depends 
on the construct that is being tapped and on the potential interpretations and uses 
of the scores produced by measures. If we were to answer the question within a 
CBM context, we would select answer D: Within CBM, an “oral reading fluency” 
measure is better referred to as a “reading aloud” measure because scores from the 
measure are used to reflect reading proficiency, not reading fluency. If the ques-
tion were worded in such a way to ask about the reading aloud measure, then, we 
would select choice C: The CBM reading aloud measure produces scores that are 
indicators of general reading proficiency. Note the scores do not measure general 
reading proficiency. The construct general reading proficiency is most closely 
measured, or represented by, scores on a host of different measures, as illustrated 
in Fig. 13.1. The CBM scores are intended to be brief indicators of the construct. 
They are designed to be administered repeatedly to produce scores that, when put 
on a graph, create a picture of a student’s reading growth over time (Deno, 1985). 
Through an ongoing and ever-changing process of validation, we can make judg-
ments about whether the existing evidence for and potential consequences of score 
interpretation and use support our claims about the validity of these CBM scores.
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