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A plot of the magnetic field (the white curves) around a rapidly rotating black hole (the blue disk)
in a 3-D MHD numerical simulation called “KDJ” that is discussed in detail in Chapter 11 (at time
step 10,000 M in geometrized units). The false color contour plot depicts the density of turbulent
accreting gas. This is an expanded view of the cover illustration (in the inset) that highlights the
large scale relativistic bipolar jets that are driven by the gravitohydromagnetic dynamo. The low
pitch angle magnetic helices in the outer regions of the nested set of field lines correspond to
the regions of strongest Poynting (electromagnetic energy) flux in the jet. A strong flare is just
beginning in the Southern hemisphere. Note that the North and South poles in the Paraview plot
are reversed relative to the plots in Chapter 11. This plot was provided courtesy of Shigenobu
Hirose.



Preface

“Black hole gravitohydromagnetics,” or simply black hole GHM, is the study of
the physical interactions of highly magnetized plasmas in the context of the dif-
ferential spacetime rotation (known colloquially as the dragging of inertial frames)
that is induced by the gravitational field of a rapidly rotating (Kerr) black hole. The
strong large-scale magnetic field limit is essential for the external Universe to be
significantly coupled to the black hole. In fact, it allows for a physical realization of
the Christodoulou/Ruffini or Penrose/Floyd conceptualizations of black hole energy
extraction. This is a concept that is often abused in the astrophysical community as
most processes that torque a black hole only do so if the internal energy of the black
hole is increased as well. A true “Penrose process” actually decreases the internal
energy of the black hole. This tight constraint on the inflowing plasma state is fun-
damental to black hole GHM. It is the ability of GHM to describe the underlying
physics behind the extraction of rotational inertia from a black hole that is of in-
terest in astronomy. Specifically, the relevance of supermassive black hole central
engines in powerful extragalactic radio sources is strongly suggested by the most
modern observational evidence that is presented in Chapters 1 and 10. The theory
is likely applicable to galactic black holes and “collapsars” in certain circumstances
that have yet to be explored.

The main advances in the study of GHM since the first edition of this book are
the advent of perfect magnetohydrodynamic simulations of black hole magneto-
spheres. Chapter 11 is a study of numerical simulations performed during the last
seven years that are relevant to GHM. All theoretical treatments of black hole driven
jets of plasma are predicated on certain assumptions. The most significant of these is
the poloidal magnetic field distribution in the black magnetosphere. The bottom line
on this topic is that we still know very little about what the magnetic field “usually”
looks like around a supermassive black hole in an active galactic nucleus. For ex-
ample, the ergospheric disk in Chapter 8 of this book assumes a large scale vertical
magnetic flux in the equatorial plane near the black hole event horizon in the ergo-
sphere. So far, no simulation has shown this to occur; however, only a very small
subset of the astrophysically possible magnetospheric environments have been ex-
plored to date. The simulations can teach us about new possibilities that were not
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viii Preface

previously envisioned. For example, it was surprising to see that a strong GHM inter-
action in 3-D simulations drives powerful, episodic flares of relativistic plasma from
the ergospheric accretion flow near the equatorial plane. In a time averaged sense,
the GHM driven flares mimic many of the fundamental features of the idealized er-
gospheric disk. The flares of electromagnetic energy flux are coincident with flares
in vertical magnetic flux that permeate the inner regions of the ergospheric equato-
rial accretion flow. The random local plasma physics that produces these flares in
vertical flux is the ultimate trigger for the GHM driven jets. In summary, the simu-
lations teach us about field configurations that were never before visualized. Since
the poloidal magnetic flux distribution near a supermassive black hole is not known,
this is fertile ground for expanding our understanding of black hole driven jets. It is
likely that this will be the focal point of most numerical work in the near future.

A massive endeavor like the second edition of this book does not happen in iso-
lation. I wish to thank Jean-Pierre DeVilliers, John Hawley and Julian Krolik for
sharing their state of the art 3-D simulations of black hole accretion flows. These
were extensive supercomputing efforts involving many hundreds of CPUs. I would
never have been able to generate one of these complex numerical simulations and I
am lucky that they were generous with their knowledge and data. I am also indebted
to Vladimir Semenov and Sergey Dyadechkin who, working tirelessly with a small
2 GHz processor, generated the beautiful movies of the GHM interaction and subse-
quent jet production for Science magazine. These results are summarized in Section
11.2. Finally, this effort was facilitated by the support of ICRANET over the years.
They have supported the page charges for the numerous peer reviewed papers that
led to this second edition. The intellectual support and friendship of Remo Ruffini
has been instrumental in the long-term pursuit of these topics.

Los Angeles, July 2008 Brian Punsly
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Chapter 1
Introduction

1.1 Introductory Physical Perspective

The importance of magnetized plasma in astrophysical objects manifests itself in a
wide range of phenomena from solar flares and the Aurora Borealis to pulsar winds
and extragalactic radio jets. It is now widely accepted that 1–20M� black holes
populate the galaxies that fill the Universe. Furthermore, water maser mappings
with the VLBA (Very Long Baseline Array) and kinematical gas analysis with HST
(The Hubble Space Telescope) make a convincing argument that central black holes
in galaxies are commonplace with masses of 105 M� to more than 109 M� (for a
good review of these data see [1,2]). Thus, one expects that the interactions of mag-
netized plasma with the gravitational fields of black holes permeate the Universe
and the astrophysical consequences should be spectacular. This monograph is the
first text designed to be a formal study of this new branch of physics which is such
a fundamental part of our Universe.

Why a new branch of physics? Fluid mechanics is well described by hydrody-
namics. However, the introduction of magnetic fields into the flow of fluids, gases
and plasmas creates forces unknown to hydrodynamics. This produces a much
higher level of complexity requiring the development of a new subject, magneto-
hydrodynamics (MHD), or as it is sometimes called, hydromagnetics. Similarly,
plasmas interacting with both magnetic fields and the near field gravitational forces
of a black hole are an order of magnitude more complex than pure MHD flows.
Consequently, a new formalism is required that synthesizes general relativity and
plasma physics. In particular, we are interested in plasma effects induced by black
hole gravity that cannot be found in more commonly studied astrophysical envi-
ronments. For example, accretion disks could be found around any compact object.
The combination of both magnetic and gravitational interactions with plasma flows
is encompassed in the expression gravitohydromagnetics (GHM).

This is neither an easy subject to present nor to be absorbed by the student or
reader. The interaction is reasonably complex by physical standards; however, the
real impediment is that the subject spans two disparate areas of physics. Relativists
are typically uncomfortable with the sophisticated plasma physics required to

B. Punsly, Black Hole Gravitohydromagnetics, 2nd. ed., 1
Astrophysics and Space Science Library 355, doi: 10/1007/978-3-540-76957-6 1,
c© Springer-Verlag Berlin Hiedelberg 2008
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describe the dynamical response of a magneto-fluid to the immense gravitational
force applied by a black hole. Similarly, astrophysicists, who are well versed in
standard plasma calculations, are generally unfamiliar with the advanced level of
relativistic formalism necessary to probe the underlying physical interaction. This
book unfortunately compromises on the review of background material for the sake
of cogency. As such, a reader who has not taken a course in general relativity most
likely will be overwhelmed and may never appreciate the rigorous nature of many
of the basic physical concepts presented.

In spite of historical efforts to simplify the subject, the dynamics of accreting
plasma in strong magnetic fields near a black hole are far from trivial. The existence
of two strong forces (electromagnetic and gravitational) is incompatible with a sim-
ple description of either the plasma being in a perfect MHD state (vanishing proper
electric field) everywhere or flowing along geodesic trajectories of the gravitational
field. This incompatibility is manifest in the notion that an accreting flow that is
dominated by strong magnetic fields (perfect MHD) in the vicinity of the hole must
eventually transition to a flow state determined entirely by the gravitational field as
it propagates even closer to the event horizon. This dramatic change in character
of the flow does not happen gracefully and it is likely to be one of the most intense
interactions attainable in the known Universe. The goal of this treatment is to supply
the tools (black hole GHM) necessary for developing an intuition for the role of the
black hole in this significant astrophysical context. Astrophysically, the most inter-
esting consequence of black hole GHM is the possibility that a wind of magnetized
plasma (a jet) can be driven by the interaction of the black hole gravitational field
and a plasma filled magnetosphere. The main purpose of this book is to illustrate,
through simplified models, the fundamental physical process that allows a rotating
black hole to power a magnetized wind.

1.2 Evidence for Astrophysical Black Holes

A black hole has never been seen directly by definition. Yet, it is commonly accepted
that astrophysical black holes exist. Black holes are “seen” only indirectly through
their interactions with nearby matter. Because the gravitational field of a black hole
is the most intense of any compact object, one expects unique signatures of their ef-
fects on the surrounding environment. For more than two decades, astronomers have
been detecting what appears to be the physical manifestations of these theoretically
predicted effects.

The most basic reasoning suggests that there is no known subatomic physics
that can prevent a large enough mass from catastrophically collapsing to a black
hole. The discovery of asymptotic freedom in Quantum Chromodynamics showed
that as baryonic matter becomes more compressed, the interaction between con-
stituent quarks becomes weaker (they essentially become Feynman’s partons). Thus,
our most advanced knowledge of particle physics implies the inevitability of catas-
trophic collapse through an event horizon if the gravitationally bound mass is large
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enough in a collapsing star. Of course, there could be unknown physics that could
provide a positive pressure in condensed matter, halting the collapse, but it does not
show up in experiments to date.

Based on this, the first evidence for black holes was a direct consequence of
the maximum mass allowable for neutron stars (values ∼2–3M� are typically es-
timated). Beyond this maximum mass, a stellar remnant cannot be supported by
degeneracy pressure and collapse to a black hole is inevitable. Thus, the discov-
ery of invisible companions in binary stellar systems with dynamical masses (mass
functions) greater than 3M� was the first evidence for black holes. To date, approx-
imately two dozen black hole candidates are known in binary systems [3, 4].

Clearly, the most famous black hole candidate is Cygnus X-1. It possesses the
first predicted indirect feature of a black hole’s interaction with surrounding gas. As
gas is sucked into a black hole from far away, it gets crammed into smaller volumes.
The viscous friction of the accreting gas should produce large amounts of heating
and thermal radiation, as modified by electron scattering (see [5] for a discussion of
Schwarzschild black holes and [6] for a discussion that includes Kerr black holes).
For a black hole of a few solar masses, the thermal temperature of the accreting gas
should be very high compared to O-stars. In fact, Cygnus X-1 was discovered by
detecting this predicted X-ray emission.

In order to differentiate the spectrum of radiation emanating from accretion as to
whether it originates near a black hole or neutron star requires the subjective para-
metric modeling of the flow. A more convincing argument that differentiates black
hole accretion from neutron star accretion has been provided in the context of com-
pact sources that are transient emitters of X-rays and γ-rays. Differences have been
noted in quiescent states produced by advection dominated accretion [7]. For a black
hole, the accreting gas must eventually approach the event horizon. Thus, the ther-
mal energy is trapped in the advection dominated flow and becomes redshifted away
and the flare ends in a whimper. For a neutron star, the accretion flow terminates on
the stellar surface. Thus, the flare can end in a bang of thermonuclear burning or, at
a minimum, the thermal energy in the advection dominated flow must be radiated
from the heated up star. Consequently, the post flare quiescent states in black holes
(transients from compact objects with masses >3M�) have been observed to be
much fainter than for neutron stars [7].

The next strongest circumstantial case for black holes is in the nuclei of galax-
ies. By observing the kinematics of nuclear gas and stars (by means of the Doppler
shift), one can find evidence of simple Keplerian motion in some objects. This pro-
vides a straightforward dynamical estimate of the central mass [1]. The greater the
spatial resolution, the more convincing the central black hole estimate. The greatest
resolution is with high frequency very long baseline interferometry (VLBI). Water
maser mappings at 22 GHz with the VLBA resolve subparsec scale structures or-
biting the nuclei of nearby galaxies. A handful of mass estimates have been made
for central black holes in nearby galaxies [2]. Most of these have insufficient data
or an ambiguous interpretation. One measurement is clearly representative of a thin
disk with a small warp. Molecular gas appears to be spiralling about a 4.2×107 M�
black hole in NGC 4258.
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Table 1.1 Dynamically estimated central black hole masses

Source Type MBH (M�) Method

Milky Way Sbc 2.8×106 SD = stellar dynamics
NGC 0221 (M 32) E2 3.4×106 SD
NGC 0224 (M 31) Sb 3.0×107 SD
NGC 3115 S0 2.0×109 SD
NGC 3377 E5 1.8×108 SD
NGC 3379 (M 105) E1 6.7×107 SD
NGC 4342 S0 3.0×108 SD
NGC 4486B E1 5.7×108 SD
NGC 4594 (M 104) Sa 1.0×109 SD
NGC 4374 (M 84) E1 1.4×109 GD = gas dynamics
NGC 4486 (M 87) E0 3.3×109 GD
NGC 4261 E2 4.5×108 GD
NGC 7052 E4 3.3×108 GD
NGC 6251a E2 4.8×108 GD
NGC 1068 (M 77) Sb 1.0×107 MD = maser dynamics
NGC 4258 (M 106) Sbc 4.2×107 MD
NGC 4945 Scd 1.4×106 MD

a Data from [8]; all other data from [2]

A cruder but similar kinematical analysis involves studying the motion of ionized
gas with HST. Clear examples of central disks of gas on the order of 100 pc across
have been observed in a few galaxies and numerous black hole masses have been
estimated from 105–109 M�. Table 1.1 lists various black hole masses determined
in nearby galaxies [2] including NGC 6251 [8].

Figure 1.1 shows an HST image of the nucleus of NGC 4261, an E2 galaxy. Note
the light from the active nucleus penetrating the center of the disk. Inserts (Fig. 1.2)
show a radio jet emanating from the active nucleus. A similar HST image of the
central disk in NGC 7052, an E4 radio galaxy, is shown in Fig. 1.3. Note that the jet
axes are tied to a central engine axis that is not the same as the axis of the disk of
orbiting gas.

The earliest indirect evidence for supermassive black holes in galactic nuclei
came from the study of active galactic nuclei (AGN). As with galactic black holes
in binary systems, the rapid accretion of gas onto the central black hole in a galaxy
will have viscous dissipation and a thermal spectrum as modified by electron scat-
tering, a “modified black body” spectrum. Due to the much larger size of the nuclear
black holes, the viscous dissipation occurs on much larger scales, producing more
radiation with most of the energy emitted at lower frequency (optical/UV as opposed
to X-rays). Based on simplified accretion disk models [6, 9], a blue/UV excess was
found in Seyfert I galaxy and quasar spectra indicating accretion onto supermassive
black holes [10]. This blue/UV excess or “big blue bump” is an ubiquitous property
of quasar spectra. In [11], a sample of Seyfert galaxy and quasar spectra were fit
by the emission from accretion disks about central black holes with masses ranging
from 107 M� to 109 M� (compare to the dynamical masses in Table 1.1).
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Fig. 1.1 An HST image of the central disk in the elliptical galaxy NGC 4261. Note the bright
central feature, possibly accretion disk radiation from the region of the active nucleus shining
through the dusty gaseous disk (alternatively, it could be the high frequency tail of the synchrotron
emission form the base of the jet that is shown in Fig. 1.2). The disk is approximately 250 pc across
and a gas kinematical estimate of the central black hole mass is 4.5×108 M�. Photograph provided
courtesy of Laura Ferrarese

To this point we have talked about evidence for black holes through their effect
on the nearby environment. In no instance was there cause to invoke magnetized
plasma interactions near the hole to explain the data. An interesting case is the class
of AGN that are giant elliptical galaxies, often residing at the center of a cluster.
These have the most massive central black holes measured to date, ∼109 M� (see
Table 1.1). They also seem to be the hosts of the radio loud class of AGN as in-
dicated in the examples in Figs. 1.1–1.3 (this seems to hold true for more distant
quasars as well [12, 13]). The best studied source of this type is M87, long sus-
pected of harboring a supermassive central black hole. It is not a particularly strong
radio source intrinsically, but it is so nearby (in a cosmological sense) that its ra-
dio emission can be well studied. It is one of the few radio sources that emits a jet
that is optically detected as well. HST images reveal a jet propagating off axis from
the center of a disk of nuclear gas on the order of 20 pc in diameter (see Fig. 1.4).
Doppler measurements of the disk emission yield a dynamical estimate of a cen-
tral black hole mass (see Table 1.1). Optically, it appears that the jet is emerging
from the environs of the black hole, a finding that is supported by higher resolu-
tion radio data as well. The emission from the jet is nonthermal in origin and is
well described by synchrotron radiation from hot plasma in a magnetic field that
permeates the jet. This is an ubiquitous characteristic of extragalactic radio sources.
Astrophysics requires an explanation as to how a jet of magnetized plasma can be
generated by the environs of a black hole. The principal application of black hole
GHM is the physical explanation of the central engines of extragalactic radio source
that it provides.
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Fig. 1.2 Inserts of the large scale FR I radio structure of NGC 4261 and the small parsec scale
VLBA jet that appears to emanate from the bright spot in the center of the disk (which is featured
more prominently in Fig. 1.1). Photograph provided courtesy of Laura Ferrarese

1.3 Extragalactic Radio Sources

The most powerful extragalactic radio sources are associated with AGN that pro-
duce quasar emission. As stated in the last section, the bright nuclei in AGN are
commonly believed to be the light produced by viscous dissipation of an accretion
flow onto a black hole. The highest accretion rates produce quasar emission in galac-
tic nuclei. It is estimated in [11] that black holes in quasars accrete mass at a rate
sufficient to produce a disk luminosity LD > 0.1LEdd , where LEdd is the Eddington
luminosity at which radiation pressure balances gravity. Seyfert galaxies have accre-
tion rates that are lower, LD ∼ 0.01LEdd , with the most luminous Seyfert galaxies
having LD ∼ 0.1− 0.2LEdd . All of this is model dependent, but it is supported by
the few known dynamical black hole mass estimates of AGN as well [14].

A magnetized accretion disk can exist, in principle, around the central black hole
of either a Seyfert galaxy or quasar. Theoretically, electrodynamic luminosity (a
possible energy source for a jet) is associated with large scale torques applied by
a magnetic field and is independent of the gas dynamical viscous losses producing
the optical/UV excess comprising the bulk of LD. Thus, if a magnetized accretion



1.3 Extragalactic Radio Sources 7

Fig. 1.3 The central disk of the elliptical galaxy NGC 7052 is revealed in this HST image. The disk
is 1,000 pc in diameter and the orbital kinematics imply a central black hole mass of 3×108 M�.
Notice the bright central region that shines through the disk as in NGC 4261. This is a weak radio
source and the VLA jet is misaligned with the symmetry axis of the disk, as in NGC 4261. The
photograph is provided courtesy of Roeland van der Marel

Fig. 1.4 The optical jet is
emanating from the cen-
ter of the inner disk in this
deep HST image of M87.
The disk is 20 pc across and
the orbital motion indicates
a central black hole mass
of 3×109 M�. The photo-
graph is provided courtesy of
Holland Ford

disk powers the jet there is no reason why the strongest radio sources should be
associated with the highest viscous losses in a flow, quasars.

However, if the quasar phenomenon is associated with the largest influx of angu-
lar momentum (largest accretion rates) then one would expect nuclear black holes in
quasars to rotate more rapidly in quasars than in Seyfert galaxies or normal galax-
ies. It is the rotational energy that makes a black hole alive as there is extractable
energy or reducible mass [15, 16] (see Sect. 1.4 for a discussion). This suggests the
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relevance of rapidly rotating black holes in the central engines of strong extragalac-
tic radio sources.

Furthermore, the accretion flow alone does not seem to power the radio emission
as 90% of quasars are radio quiet. The energy radiated from the central engine to the
radio lobes can equal or exceed the optical/UV luminosity of a quasar. If accretion
powers the radio lobes, then one would expect radio loud quasars to have highly
modified accretion with a different optical/UV character than radio quiet quasars.
This is contrary to observation. Radio loud quasars have indistinguishable UV broad
emission lines, optical/UV luminosities and optical/UV continuum spectra from ra-
dio quiet quasars [17,18]. Note, we did not include all of the optical broad emission
lines because of an apparent difference in the optical Fe II complex between radio
quiet quasars and lobe dominated radio loud quasars [19]. This strongly suggests
that a central engine other than accretion seems to power FR II radio jets and lobes.
This is strong circumstantial evidence supporting the hypothesis that black hole en-
ergy extraction and GHM is important in these objects.

It seems plausible that the large reducible mass of central black holes in quasars
is the reason that the strongest radio sources are powered by the central engine
in quasars. Thus, it is the ability of magnetized plasma interactions to extract the
rotational energy of a rapidly rotating black hole that is an important application of
black hole GHM.

1.3.1 Unified Scheme for Radio Loud AGN

Diagnostics of the central engine can be ascertained by understanding the con-
nections amongst various types of radio loud AGNs. Before the mid-1980s, there
appeared to be a zoo of unrelated radio loud AGN morphological types. The inter-
pretation of radio loud AGNs within a unified scheme [20–22] revolutionized our
perspective of the central engine (see [23] for a comprehensive review).

Powerful extragalactic radio sources generally occur in one of six categories:

1. FR I (Fanaroff–Riley Type I) radio galaxies
2. FR II radio galaxies
3. Lobe dominated radio loud (FR II) quasars
4. Core dominated radio loud quasars
5. Steep spectrum compact radio cores
6. BL Lac objects

In this section we will briefly describe each class and note its place in the unified
scheme.

1.3.1.1 FR I Radio Galaxies

FR I radio galaxies have intrinsic extended radio luminosities (integrated from
10 MHz to 250 GHz in the galaxy’s rest frame) less than ∼1043 ergs s−1 (assum-
ing H0 = 55 km s−1 Mpc−1 and q0 = 0 which are used throughout the text un-
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Fig. 1.5 A 5 GHz deep VLA image of a prototypical FR I radio source 3C 296. The jets are very
bright compared to the diffuse lobe emission. Image provided courtesy of Alan Bridle

less otherwise stated). The luminosity is distributed in diffuse plume-like structures
extended over a few hundred kiloparsecs. Although there is a wide range of mor-
phologies for FR I radio sources [24], a classical example is given by 3C 296 (see
Fig. 1.5). The radio structures in FR I sources do not have concentrated regions of
emission called knots and the radio lobes are “edge darkened.”

1.3.1.2 FR II Radio Sources

FR II radio galaxies have extended radio luminosities ranging from 1043 to
1047 ergs s−1. The jets feeding the lobes are more collimated than FR I radio
jets on kiloparsec scales. Also, by contrast, most of the radio luminosity emanates
from knots in the jet or particularly strong knots in the lobes (called “hot spots”)
that produce an “edge brightened” appearance. Radio lobes can be separated by
distances as large as a few Mpc, implying enormous amounts of stored energy.

Lobe dominated radio loud quasars have lobe and jet luminosities similar to these
radio galaxies and are classified as FR II radio sources. Compare the deep VLA
maps of the nearby radio galaxy Cygnus A (Fig. 1.6) and the radio loud quasar 3C
175 (Fig. 1.7); the morphology is very similar. FR II quasar counterjet/jet luminosity
ratios are significantly less than for FR II radio galaxies. Only one jet is detectable
in general, even for the deepest VLA maps (see [25] for a very detailed study). The
strongest 3C catalog radio sources tend to be quasars rather than radio galaxies. The
main distinction from FR II radio galaxies is the quasar optical/UV emission and
broad emission lines from the nucleus. Host galaxy identifications of both FR II
radio galaxies and radio loud lobe dominated quasars are always elliptical galaxies
or irregular shaped interacting galaxies [13]. This is illustrated in Fig. 1.8 for the FR
II radio galaxy 3C 219. Note the strong knot at the base of the counter jet.
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Fig. 1.6 A deep VLA image of Cygnus A at 5 GHz. The lobes are separated by 180 kpc (H0 =
55 km s−1 Mpc−1, q0 = 0). Notice the strong hot spots at the end of each lobe where most of the
luminosity resides. A highly collimated low surface brightness jet extends into the eastern lobe
from a faint radio core. There are suggestions of a counter jet in the image. The counter jet is more
pronounced in Fig. 1.10. The VLA image was provided courtesy of Rick Perley
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Fig. 1.7 A deep 5 GHz VLA image of the radio loud quasar 3C 175. Notice the morphological
similarity to Cygnus A. The jet is more pronounced relative to the lobe emission than Cygnus
A, and there is no hint of a counter jet. This is anecdotal evidence for mildly relativistic flows in
kiloparsec scale jets. Image provided courtesy of Alan Bridle

Fig. 1.8 This deep 5 GHz VLA image of the FR II radio galaxy 3C 219 shows a strong jet and a
knot in a counter jet. It is overlaid on the diffuse (blue) optical image of the host elliptical galaxy.
Image provided courtesy of Alan Bridle
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1.3.1.3 Core Dominated Quasars

Certain quasars have very strong radio cores that appear more dominant at high
radio frequency (i.e., 5 GHz or above). The cores are merely unresolved radio jets.
Current VLBI imaging at high frequency, 43 and 86 GHz, resolves jets to a fraction
of a milliarcsecond. The jets look very similar on all scales from an arcsecond down.
Higher resolution always reveals more knots of radio emission in the jet. Most of
these core dominated quasars have microwave spectral indices that are much flatter
than the steep spectral emission found in lobes. If one defines the spectral flux,
Fν , then a power law often approximates the spectrum in a band of frequencies,
Fν = F0ν−α . For lobes, α ≈ 1.0, and kiloparsec jets have α ≈ 0.65, while core
dominated quasars generally have radio core spectral indices of α < 0.5 (in the
frequency band 1–5GHz). The spectral flux of the radio core typically turns over
(steepens) between 50 and 250 GHz in the quasar rest frame [26, 27]. The radio
emission from the flat spectrum radio core is often variable.

The spectral energy distribution, νFν , of the radio core typically peaks in the
mid-infrared [28]. The high frequency optical tail is steep spectrum, variable and
polarized. Radio loud quasars, whether core or lobe dominated, seem to have broad
emission line regions similar to those in radio quiet quasars. Furthermore, subtract-
ing any optical/UV emission from the high energy tail of the core spectra yields
spectra and luminosities similar to radio quiet quasars.

1.3.1.4 Compact Radio Cores

There is also a panoply of compact radio sources (i.e., the total emission at 5 GHz
is dominated by a “core” of radio emission that is radiated from a region less than
10 kpc across) that includes both flat and steep spectrum galaxies and quasars. The
most common are compact steep spectrum quasars typically with emission on the
order of 1 kpc in a twisted jet. Some of these objects have an inverted spectrum
that peaks around 1 GHz and are referred to as “Gigahertz Peaked Radio Sources.”
Compact steep spectrum quasars rarely have significant emission on the scale of
100 kpc. The quasars 3C 286, 3C 287, and 3C 298 are well-known representatives of
powerful, compact, steep spectrum objects with virtually no extended luminosity. The
significant extended emission in 3C 380 is very unusual. Radio maps of compact steep
spectrum cores can be found in [29] and a deep map of 3C 380 is published in [22].

Given sufficient resolution, a flat spectrum radio core usually can be found buried
at the base of the jet within a steep spectrum radio core. This is consistent with
a synchrotron radiation source of jet emission that becomes self-absorbed in the
more compact inner regions. Every indication is that these sources have jets whose
propagation is blocked by a dense intergalactic medium, or they are young radio
sources with jets in the process of blasting out of the galaxy and will eventually
become FR II radio sources.
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1.3.1.5 BL Lac Objects

BL Lac objects have strong flat spectrum radio cores and are extremely core dom-
inated. However, they produce very weak signals of accretion phenomena. Their
broad emission lines are intrinsically weaker than core dominated quasars. The op-
tical luminosity is dominated by the high frequency tail of the radiation from the
unresolved jet comprising the core. The optical luminosity is highly variable, steep
spectrum, and polarized. Subtracting the optical/UV emission from the high fre-
quency tail of the jet in a quiescent state of core emission leaves a residual luminos-
ity too weak to be considered a quasar (i.e., the accretion disk luminosity is weak).
BL Lac objects are more common at low redshift than core dominated quasars and
the opposite is true at high redshifts.

1.3.1.6 Unification

A deep connection between the various classes of objects emerged when the VLA
(Very Large Array) was put into complete operation in the early 1980s. Many BL
Lac objects were then shown to have diffuse halos in the high dynamic range VLA
images at 1.4 GHz [21]. Later, it was shown even more conclusively that BL Lacs
usually have a halo that resembles an FR I radio lobe viewed face on (i.e., same
lobe luminosity and a morphology that is plume-like with no knots) [22,30]. In fact,
it was shown that most BL Lacs are FR I radio galaxies viewed along the axis of
the jet [21]. The radio cores of BL Lacs reveal themselves in VLBI maps to be the
relativistic subkiloparsec base of jets seen nearly end on and are therefore Doppler
enhanced.

Similarly, the core dominated quasars are FR II quasars seen nearly end on (i.e.,
looking down the jet axis) [21, 22]. The radio core is the relativistic subkiloparsec
scale jet approaching the earth. Furthermore, it was argued statistically that FR II
radio galaxies are actually radio loud quasars in which the quasar emission is ob-
scured by a surrounding dusty molecular torus [20] (see Fig. 1.9). This is supported
by the morphological similarity of the radio galaxy Cygnus A (Fig. 1.7) and the
quasar 3C 175 (Fig. 1.8). Often, the obscuring dusty molecular gas is assumed to
have a toroidal distribution, but it need not be in such a symmetric, ordered configu-
ration for the argument to hold. An equatorial obscuring torus is consistent with the
fact that FR II radio galaxies have lower jet speeds than FR II quasar jets observed
with the VLBI [31]. In the unified scheme, the jets in radio galaxies are more in the
sky plane than the jets in quasars, and therefore they have lower Doppler factors.
Direct evidence of obscured quasars in FR II radio galaxies is sparse as only a few
objects show a hidden broad line region that is characteristic of a quasar in scattered
(polarized) light.

One should note that the idea that radio loud quasars are physically distinct from
radio quiet quasars is statistically robust. Efforts to construct a unified scheme in
which radio loud quasars are just quasars seen from a preferred angle (i.e., pole
on) assume all quasars are strong radio emitters. The fundamental flaw with this
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Fig. 1.9 The “standard” unified model of FR II radio sources. An accretion disk orbits a central
black hole with a fiducial mass of 109 M�. The optical/UV emission can be obscured by a large
scale distribution of dusty molecular gas (the dusty torus) for certain lines of sight; these objects
are known as FR II radio galaxies. The broad emission line region (BELR) is a distribution of
clouds that are photoionized by accretion disk radiation. The dusty torus also attenuates the BELR
emission in FRII radio galaxies. By contrast, in FR II quasars the line of sight reveals both the
accretion disk and the BELR. Core dominated radio loud quasars are viewed along lines of sight
almost colinear with the radio jet axis

idea in that the radio lobe emission is at most mildly Doppler shifted (as exempli-
fied by 3C 175 in Fig. 1.7). The lobe emission is essentially isotropic. When core
dominated quasars are observed with high dynamic range, lobe emission is usually
detected [22]. In this model, radio quiet quasars are those viewed off axis. There-
fore, in a single quasar population model, we should usually see the isotropic lobe
emission when a quasar is viewed off axis. Thus, most quasars should be (steep
spectrum) radio loud on the basis of their extended structures. However, only ∼10%
of quasars have detectable radio lobes. Furthermore, the distribution of radio lumi-
nosities in quasars is very close to being bimodal. Consequently the statistics of
radio emissivity of quasars implied by such a unified scheme was shown to conflict
strongly with observation [23].

1.3.1.7 The Central Engine in the Unified Scheme

The unified scheme for extragalactic radio sources implies that the intrinsically
weaker radio sources, FR I radio galaxies (or BL Lac objects when viewed end
on), also have lower accretion rates (small thermal optical/UV emission). The most



1.3 Extragalactic Radio Sources 15

luminous radio sources, quasars with FR II morphology (which appear as core dom-
inated quasars when viewed end on, or FR II radio galaxies when viewed near the
equatorial plane), are associated with large accretion rates. This is interesting in the
context of black hole central engines (as accretion does not seem to power strong
FR II radio emission in accord with the bimodal distribution of quasar radio lu-
minosities noted above) as it implies that rapidly rotating black holes, spun up by
rapid accretion, drive the most powerful jet/lobe emission in AGNs. This makes
sense from a basic principle that the amount of reducible mass (extractable energy)
scales with the rotational inertia of a black hole (see Sect. 1.4).

The physics of extragalactic radio source central engines is the primary motiva-
tion for studying black hole GHM. In general it is impossible to extract the rotational
energy of a black hole in any type of reasonable physical process unless there is a
black hole magnetosphere. The dynamics of such a magnetosphere are governed by
GHM.

The numbers are suggestive of black hole rotation as a central engine as well.
Take the example of the only nearby powerful FR II radio source, Cygnus A (to
be discussed in detail in the next section). The data are still somewhat debatable
as to whether a hidden quasar has been found [32]. The energy supplied to the
lobes in particles and fields is on the order of �1046 ergs s−1, (see 1.23). Cygnus A
emanates from a large elliptical galaxy as is typical of radio loud AGN. Dynamical
estimates of central black hole masses in nearby weaker radio loud AGN in elliptical
galaxies are typically ∼108M�–109M� (see Table 1.1). It will be shown in this
monograph that electrodynamically ∼ 10% of the mass–energy of a black hole is
extractable. Thus, a black hole in an large elliptical galaxy could power Cygnus A
for ∼108 years, if it were initially rapidly rotating and a significant magnetosphere
were present.

1.3.2 Quantifying the Power of Extragalactic Radio Sources

In order to interpret the central engine in radio loud AGNs as supermassive black
holes, one needs to quantify the power supplied to the extended radio structures.
Although this is not a problem in relativistic astrophysics (as is the spirit of this
book), it is of great significance for understanding the enormous power generated
by the central engine and it is often not fully appreciated.

The power transported by the radio jets into the radio lobes usually far exceeds
the radio luminosity. In this section, we describe the physical justification of this
statement and estimate the power emitted by the central engine in Cygnus A. The
observed synchrotron emission from the lobes requires both hot particles and mag-
netic fields. These particles and fields are advected outward as the lobes propagate
into the intracluster medium and this is the dominant component of the energy sup-
plied by the central engine. The ram pressure of the intracluster medium passing
through the expanding boundary of the lobe is in balance with the internal pressure
of the hot spot at the end of the lobe. This relation allows one to determine the lobe
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advance speed if the density of the intracluster medium is known from X-ray obser-
vations. In turn, the size of the lobes, the internal pressures and lobe advance speed
yield the kinematical power of the lobe.

The synchrotron spectral luminosity is a function of the magnetic field strength
and the thermal energy spectrum of the radiating electrons. There is a component of
energy density from both the magnetic field and the particles. A minimum value of
the total energy for a given spectral luminosity can be estimated from the radio spec-
tra and radio maps (which give the volume of the emitting region), Emin. Pressure
balance near the hot spots in the lobes, yields the lobe advance speed and therefore
the minimum energy flux supplied by the central engine, Qmin = d/dt Emin. When
radio spectra, deep radio maps, and X-ray spectra are available, good estimates of
Qmin can be made, and such is the case for Cygnus A.

One can obtain an improved estimate of lobe energy compared to assuming a
minimum energy plasma by studying the variation in the radio spectrum as a func-
tion of position within the lobe. This gradient in spectral index is known as “spectral
aging.” Spectral aging is a reference to the curvature that a power law spectrum at-
tains over time because the high energy electrons radiate away their thermal energy
faster than the low energy electrons. Thus, the high energy emission diminishes be-
fore the low energy emission causing a frequency dependent steepening (curvature)
of the spectrum at high frequencies. Often the lobe advance speed disagrees with
estimates derived from a spectral aging analysis that assumes a minimum energy
configuration. The advantage of considering the spectral aging data in conjunction
with X-ray observations of the intracluster medium is that it allows one to estimate
how much the lobe energy exceeds the minimum energy value.

The power spectrum of a thermal electron gyrating in a magnetic field, B, sim-
plifies for ultrarelativistic particles [33],

P(ν) =
4
√

3π
3c

e2γ−2ν
∫ ∞

ν/ fc
K5/3 (y) dyergs s−1 Hz−1; (1.1)

where the electron cyclotron frequency is

νB =
eB

2πmec
, (1.2a)

the critical frequency is
fc = (3/2)νBγ2, (1.2b)

K5/3(y) is a modified Bessel function and γ is the thermal Lorentz factor.
Consider a power law energy distribution of electrons in which the total number

of electrons in the source Ne is given by

Ne =
∫ ∫

N0γ−n dγ dV . (1.3)
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Combining (1.1) and (1.3) and assuming an isotropic distribution of pitch angles,
one finds an emissivity of

j(ν) =
(

8π2N0e2

c

)
νB a(n)

(
3νB

2ν

)α
ergscm−3 s−1 , (1.4)

where α is the spectral index of the radiation,

α =
n−1

2
, (1.5)

and

a(n) =

(
2

n−1
2
√

3
)
Γ
( 3n−1

12

)
Γ
( 3n+19

12

)
Γ
( n+5

4

)
8
√
π(n+1)Γ

( n+7
4

) . (1.6)

For a uniform source in a volume, V , the total number of particles contributing to
the synchrotron radiation in the frequency interval ν1 ≤ ν ≤ ν2 is found from (1.3)
to be

Nr = N0V
∫ γ2

γ1
γ−n dγ , (1.7)

and the energy content stored in electrons is

Ue = mec2N0V
∫ γ2

γ1
γ (1−n) dγ . (1.8)

It has been shown [34] that by integrating the modified Bessel function spectrum of
the individual electrons over the energy distribution in (1.3), that it is accurate to use
(1.4) to within 10% if one chooses

γ1 =
[

2ν1 y1(n)
3νB

] 1
2
, (1.9a)

γ2 =
[

2ν2 y2(n)
3νB

] 1
2
, (1.9b)

where

y1(n) = 2.2, y2(n) = 0.10, n = 2.5, (1.9c)
y1(n) = 2.7, y2(n) = 0.18, n = 3.0. (1.9d)

Then, integrating j(ν) in (1.4) over frequency we find, in terms of the spectral
luminosity; L(ν) =

∫
dV j(ν), values of the total number of electrons in the source

and total electron energy from (1.7) and (1.8),
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Nr ≈
6×1020L(ν1)B

−1

(n−1)a(n)
[y1(n)]

n−1
2

[
1−
(

y2(n)ν1

y1(n)ν2

) n−1
2
]

, (1.10)

Ue ≈
2×1011B− 3

2

a(n)(n−2)
L(ν1)ν

1
2

1 [y1(n)]
n−1

2

×
[

1−
(

y2(n)ν1

y1(n)ν2

) n−1
2
]

. (1.11)

The total magnetic energy density is

UB =
∫ B2

8π
dV . (1.12)

and there is also energy stored in protonic matter, Uprot . Most of the energy is prob-
ably contained in cool protons, however this is probably entrained matter and is not
related to the subject of the energy flux from the central engine. We expect charge
neutrality so Np ≈ Ne. Most of the electrons are probably cool in a steep power law,
as in (1.3), with γ � 1. Low energy electrons radiate below 10 MHz so their emission
is not measured by radio telescopes. Secondly, even if it were measured, it would
be highly suppressed due to absorption by thermal galactic gas as evidenced by the
spectral turnover below 20 MHz in Cygnus A [35]. The energy content in protonic
matter is often described by the parametric relation Uprot ≈ aUe [36]. So the total
energy density is

UTOT ≈UB +(a+1)Ue . (1.13a)

Typical values of “a” used in the past are of the order of 100 based on cosmic ray
energies [36]. However, all of the data described below is interpretable with a = 0.
If one assumes that Uprot scales with Ue, minimizing UTOT in (1.13a) with respect
to B, implies by (1.11) and (1.12) that

UB = 3/4(a+1)Ue . (1.13b)

This is commonly known as the minimum energy state and is close to equipartition
if a = 0.

1.3.2.1 The Radio Lobes of Cygnus A

Now consider the case of Cygnus A. The spatial dimensions of the radio lobes in
Cygnus A are approximately 45 kpc by 25 kpc in each lobe. Thus, the total lobe
volume is 5×1069 cm3. The spectral index is α = 0.66 from 38 to 750 MHz and the
two point spectral index from 38 MHz to 5 GHz is α = 0.84 [37]. For simplicity,
we choose a homogeneous volume, even though the emissivity of the hot spots at
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the end of the lobes in Fig. 1.6 is greatly enhanced (we treat the hot spots separately
in the next section). The integrated radio luminosity is PE ≈ 1045 ergs s−1, below
100 GHz. Again, for simplicity, we choose a single power law, α = 0.84, or n = 2.68
in the electron energy distribution according to (1.5). We assume that most of the
electrons are cool, so γmin � 1. Thus, from (1.9)

ν1 ≈ 3.6νB . (1.14)

Notice that the average electron thermal Lorentz factor of the ensemble is

γ̄ =
α−1
α−2

= 2.5 . (1.15)

Setting Emin = (a+ 7
4 )Ue minimizes the energy in the lobes according to (1.13).

Using (1.11) for Ue, one can solve for B in the minimum energy state. We require an
expression for L(ν1) in (1.11) which is defined through the value of ν1 in (1.14) and
this value must agree with our final computed value of B (see 1.2). Anticipating a
final value of B ≈ 10−4 G, from (1.14) we get ν1 ≈ 104 Hz. As we mentioned above,
the low frequency emission is not detected at earth, so we really don’t know the
actual value of ν1. The spectral luminosity is therefore approximated as

L(ν) = 3×1042ν−0.84ergss−1 Hz−1 , 104Hz < ν < 1011Hz . (1.16)

Combining, (1.11)–(1.13) with (1.17) the minimum energy magnetic field strength
in the lobes is

B ≈ (1+a)2/7 7.5×10−5G . (1.17)

Similarly, the total energy in the lobes is found from (1.13),

Emin = 2.5×1060ergs , (1.18)

where we take a = 0 in the remainder of the discussion.
This number makes sense as a minimum value based on the X-ray data on the

thermal bremsstrahlung emission from the enveloping intracluster gas. It was found
in [39] that ne ≈ 10−2cm−3 and T ≈ 4× 107 ◦K in the gas surrounding the lobes.
In order to inflate the lobes into the intracluster medium requires P∆V work. If we
take the properties of the intracluster medium from the X-ray data above, P∆V ≈
3×1059ergs. Thus, (1.18) exceeds the minimum requirement that there needs to be
at least enough internal energy to inflate the radio lobes against the pressure of the
enveloping medium.

1.3.2.2 The Hot Spots in Cygnus A

The jets in Cygnus A apparently terminate in luminous hot spots at the end of the
radio lobes as indicated in Fig. 1.6. The radio luminosity of the hot spots is emitted
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primarily from two disjoint regions that are roughly spherical with a diameter of
3.5 kpc (see Fig. 1.6, noting that the overall length of the source is about 170 kpc).
Therefore, the combined volume of the hot spots is only about 1066 cm3, yet the total
hot spot radio luminosity is on the order of 5×1044 ergss−1 [40]. The radio spectrum
radiated from the hot spots has a spectral index of approximately α = 0.6 [38].
Thus, we very crudely estimate the spectral luminosity of the hot spots as we did
for the radio lobes (anticipating a final computed magnetic field strength of roughly
2×10−4G):

L(ν) = 8×1039ν−0.6 ergss−1 Hz−1 , 2×104 Hz < ν < 1011 Hz , (1.19a)
L(ν1) = 3.2×1037 ergss−1 Hz−1 . (1.19b)

Combining (1.11)–(1.13) with the value of L(ν1) in (1.19b), we find the minimum
energy magnetic field strength in the lobes,

B ≈ 2.3×10−4G . (1.20)

This value agrees with the soft X-ray, ROSAT, observations of the lobes that is
consistent with a scenario in which the hot spot material is in a minimum energy
state. The radio synchrotron emission is considered to be upscattered to X-ray fre-
quencies through inverse Compton scattering by the same hot electron population
that produced the seed synchrotron radio luminosity (this is known as an SSC pro-
cess and is discussed at length in Chaps. 10 and 11). It was deduced in [41] that the
broadband radio to X-ray spectrum of the hot spots is consistent with the SSC spec-
trum of a minimum energy hot electron plasma that is characterized by a magnetic
field strength of approximately 2×10−4 G as was found in (1.20).

1.3.2.3 The Lobe Advance Speed and Spectral Aging in Cygnus A

Inspection of Fig. 1.6 reveals that the highly collimated jet enters the lobe where it
becomes destabilized and begins to decollimate. A reduced jet pressure necessarily
results from this expansion. This makes the jet susceptible to the forces of the ex-
ternal gas pressure of the intracluster medium. The flaring jet terminates in a shock
at the end of the lobe that energizes the hot spots. The terminus of the jet forms a
working surface that clears out the intracluster medium replacing it with lobe ma-
terial. Apparently, the flow of jet material does not disappear at the hot spot, but
creates a diffuse back flow that is the radio lobe. The strongest evidence for this
circumstance is spectral aging. The farther that the lobe gas is from the hot spot, the
longer it has been since it exited the jet at the hot spot and was diverted into this
back flow. Thus, the back flow has a correspondingly longer time to radiate away
thermal energy as synchrotron photons the farther one is from the hot spot. This
creates a correlation between the depletion of high energy electrons and distance
within the lobe from the hot spot. Thus, the high frequency spectral turnover that
this paucity of high energy electrons produces is found to occur at lower and lower
frequencies the farther from the hot spots that one observes the lobe. This is known
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as spectral aging. The phenomenon is clearly exemplified by the fact that the 70 kpc
gap between the two radio lobes seen in the 5 GHz image in Fig. 1.6 is filled in at
low frequency (327 MHz) making for a continuous ovaloid of radio emission [38].
In this subsection, we describe the dynamics of the working surface at the hot spots
and incorporate our knowledge of spectral aging in the lobes to estimate the age of
Cygnus A.

Pressure balance at the working surface of the lobe/intracluster medium interface
yields

ρintv2
adv = P ≥ Pmin ≈

[
UB +Ue

3

]
, (1.21)

where ρint is the value of the mass density of the intracluster medium adjacent to the
lobes and vadv is the speed at which the lobes propagate into the intracluster medium.
Using the previously quoted value from [39] of ρint ≈ 10−2 mp cm−3, (1.21) can be
evaluated in conjunction with (1.13) and (1.20) to yield a lower bound on vadv,

vadv ≥ 0.0095c . (1.22)

Spectral aging in the minimum energy magnetic fields in the lobes yields an
estimate of lobe age, tsa ≈ 1.8× 1014 s [38, 40]. Compare this with the lobe sep-
aration time based on vadv in (1.22), tsep ≤ 9× 1014s. Thus, the two numbers are
consistent if either vadv has slowed over time or the lobes are not in the minimum
energy state. Consider, the first possibility that implies that tsa is the relevant age of
the radio source. Combining this age with the minimum energy stored in the lobes
from (1.18) and the radio luminosity, PE , yields a lower bound on the energy flux
supplied by the central engine, Q,

Q ≥ dEmin

dt
≈ 1.5×1046ergss−1 . (1.23a)

Alternatively, [38] find that one can equate tsa and tsep if B is less than its mini-
mum energy value within the lobes. To see how this occurs, note that a relativisti-
cally hot electron radiates most of its energy near the critical frequency, νm = 2

3 fc
(where fc was defined in 1.2b). Thus, for a given magnetic field strength, particles
of thermal Lorentz factor, γ , radiate predominantly at a frequency ν = νm(γ). When
a break in the radio spectrum occurs at ν = νm(γ), then the implication is that the
plasma has existed for a sufficient length of time within the lobe for particles of
thermal Lorentz factor, γ , to have radiated away their energy. This synchrotron ra-
diation time scale is given by tsy = (γmec2)/P, where the synchrotron power, P, can
be found by integrating (1.1) over frequency. From [33] we have (using cgs units)

tsy(γ) =
5×1011

√
νm B

3
2

s . (1.23b)

Thus, tsep will agree with tsa in the lobe if B is decreased by a factor of about three
in the lobes below its equipartition value. From (1.11), this will increase the electron
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thermal energy by a factor of about 5 and the magnetic energy will decrease by a
factor of 9 as a consequence of (1.12). Thus, the energy stored in the lobes, Estored
will increase by a factor of three over its minimum energy value given by (1.18),

Estored ≈ 7.5×1060ergs . (1.23c)

We want to estimate the total energy delivered by the central engine, so we must
also consider the prodigious radiation losses during the lifetime of the source:

PE tsep ≈ 9×1059ergs . (1.23d)

Secondly, we must also determine the bulk kinetic energy of the protons passing
through the hot spots. From the average thermal Lorentz factor of the electrons in
(1.15) and the lobe advance speed in (1.22), the bulk kinetic energy of the protons
represents 7% of the total energy flux provided by the central engine. Combining
this with (1.23cd) we can estimate the total energy flux delivered by the central
engine, Q, in this nonequipartition scenario,

Q = 1.07
(

Estored +PEtsep

tsep

)
� 1046ergss−1 . (1.23e)

1.3.2.4 The Central Engine of Cygnus A

There is only one large sample of estimates of Qmin for radio loud AGN [42]. We
compare Qmin with the extended luminosity, PE , for the stronger radio galaxies
in their sample in Table 1.2. Notice how the value of Qmin � 10PE computed for
Cygnus A in (1.23a) is typical of the results contained in Table 1.2.

Furthermore, these estimates ignore the contribution from hot protons (i.e., a	 0
in (1.13)). If hot protons contribute to the internal energy of the lobes then the values
of Qmin in (1.23a) and Table 1.2 are under estimated.

Table 1.2 Kinetic powers of FR II radio galaxies

Source Qmin (ergs s−1) PE (ergs s−1)

3C 33 9×1044 1×1043

3C 42 3×1045 3×1044

3C 79 6×1045 2×1044

3C 109 6×1045 2×1044

3C 123 5×1045 1×1045

3C 173.1 5×1045 2×1044

3C 219 1×1045 8×1043

3C 244.1 3×1045 5×1044

3C 295 7×1045 3×1045

3C 300 1×1045 1×1044

3C 341 2×1046 3×1044

3C 438 3×1045 7×1044
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According to the calculations of the last subsection and (1.23e), in particular,
the central engine has already delivered at least 1061ergs ≈ 5× 106 M�c2 to the
radio lobes during the past lifetime of Cygnus A. The future lifetime of the source
and past source evolution can only increase the total energy supplied by the central
engine. Combining this with the fact that no known physically reasonable process
(we dismiss annihilation energy as a reasonable choice for the central engine that
produces a steady long term source of collimated energy flux in the radio band with
no measurable γ-rays) is close to converting 100% of its rest mass to energy and we
have only a minimum energy bound for Q, we conclude that the mass of the central
engine in Cygnus A 	 107 M�.

The reason for studying Cygnus A in such detail, as opposed to another strong
radio galaxy from Table 1.2, is that Cygnus A is a much stronger radio source (as
measured at earth) due to its cosmological proximity. This allows high resolution
(high frequency) VLBA detection of the radio jet that provides an upper bound to
the physical size of the central engine. We cannot attain as tight a constraint on
more distant, fainter, strong FR II radio sources. Consider the VLBI data on Cygnus
A in Fig. 1.10 [43]. The 43 GHz VLBA map shows the jet emanating from a region
less than one light year across. This upper limit is almost certainly not physical, but
would decrease with increasing resolution. Considering that we estimated the mass
of the central engine to be 	107 M�, it is hard to understand how anything except a
black hole could exist with such a large mass in such a small volume. A discussion
as to how such a mass concentration would have to coalesce to form a black hole
can be found in [44] and references therein. Similar arguments have been made for
the central mass concentration in the Milky Way in [45], where it was found that
coalescence to a black hole would occur in less than 107 years, which is less than
the lifetime of the radio source in Cygnus A.

1.3.3 Summary of Evidence of a Black Hole Central Engine
in Radio Loud AGN

It was demonstrated in Sect. 1.3.2, through a very crude analysis, that the central
engine of a radio loud AGN supplies far more power to the radio lobes than is indi-
cated directly from the radio luminosity. The large volume from which the radiation
is emitted requires enormous amounts of hot particles and magnetic flux. The stored
energy, Emin ∼V 3/7 in the minimum energy analysis of (1.13). The total energy sup-
plied to a powerful FR II radio source (a quasar, “hidden” or otherwise in the unified
scheme) would require the complete conversion of 106–109 M� of rest mass to en-
ergy in the lobes (see maps [25] and repeat the analysis of Sect. 1.3.2 to see that 3C
9 requires more than 108 M�c2 of energy to power the radio source). VLBA maps
show that radio jets emerge from regions smaller than one light year. The fact that
at least ∼108 M� exists in a central engine less than one light year across yields the
unavoidable conclusion that a supermassive black hole resides in the central engine.
This leaves two possible energy sources, the black hole or the accretion flow onto
the black hole.
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Fig. 1.10 The jet in Cygnus A is mapped from scales on the order of 50 kpc down to less than a
light year in this series of inserts. The VLBI maps indicate that the central engine is less than a
light year in diameter. The images are from Krichbaum et al. 1998
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The bimodal distribution of quasar radio luminosity and the lack of strong
Doppler beaming in the lobes (as discussed in Sect. 1.3.1) implies that radio loud-
ness is not primarily a consequence of line of sight effects relative to the intrinsic
geometry of the quasar. Radio loud quasars seem to be physically different than
most quasars. Even when there is more power radiated into the large scale radio
structures than is released from viscous dissipation in the accretion flow (optical/UV
luminosity) the broad UV emission line profiles as well as the optical/UV contin-
uum spectrum and luminosity are indistinguishable from those found in the radio
quiet quasar population. Thus, the accretion flow does not seem to power FR II ra-
dio emission, otherwise these extremely powerful radio sources would have distinct
optical/UV signatures due to their vastly different dissipation mechanisms.

The strongest radio sources in the unified scheme are associated with quasar
activity. The quasar in the host galaxy is now commonly believed to be the result
of large viscous losses in an accretion flow that scales with the accretion rate. Thus,
within the radio loud population, large accretion rates yield strong radio structures;
yet these are not powered by accretion. However, large accretion rates tend to spin
up the central black hole. The central engines of strong FR II radio sources would
seem to be rapidly rotating supermassive black holes.

The conclusion of this section is currently the subject of debate in the astrophys-
ical community. However, at the time of publication, rapidly rotating supermassive
black holes are the most viable known power sources for explaining all of the prop-
erties of the radio loud AGN population.

1.4 Extracting Energy from a Black Hole

In the last section, it was demonstrated that based on our current knowledge of
physics that supermassive black holes are located in the central engines of extra-
galactic radio sources. Furthermore, comparing the radio loud and radio quiet quasar
populations implies that accretion flows yield the quasar emission and the physical
state of the central black hole is determinant for the existence of bipolar radio jets.
Yet, the signature of a black hole is the manner in which it sucks mass–energy in-
escapably toward the event horizon. Thus, how can energy be extracted from the
central black holes of radio loud AGN?

Mathematically it has been shown that rotating or charged black holes are “alive”
and that some of their energy is extractable [15]. However, no practical physical
realization of an efficient process has been available to theorists until the advent of
black hole GHM.

The most general electro-vac black hole solution is that of Kerr–Newman. The
axisymmetric, time stationary space–time metric is uniquely determined by three
quantities, M,a, and Q, the mass, angular momentum per unit mass, and the charge
of the hole respectively. In this book we treat the physics as occurring on a back-
ground Kerr–Newman space–time (i.e., the energy density of external plasma and
fields are too small to affect the metric). In Boyer–Lindquist coordinates the metric,
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gµν , is given by the line element

ds2 ≡ gµν dxµdxν = −
(

1− 2Mr−Q2

ρ2

)
dt2 +ρ2dθ 2 +

(
ρ2

∆

)
dr2

− (4Mr−2Q2)a
ρ2 sin2 θ dφ dt +

[
(r2 +a2)+

(2Mr−Q2)a2

ρ2 sin2 θ
]

sin2 θ dφ 2 ,

(1.24a)

where

ρ2 = r2 +a2 cos2 θ , (1.24b)
∆ = r2 −2Mr +a2 +Q2 ≡ (r− r+)(r− r−) . (1.24c)

There are two event horizons given by the roots of the equation ∆ = 0. The outer
horizon at r+ is of physical interest

r+ = M +
√

M2 −Q2 −a2 . (1.25)

The surface area of the event horizon, A, is given by

A = 4π(r2
+ +a2) = 16πM2

ir , (1.26)

where Mir is identified as the irreducible or rest mass of the hole [15]. Combining
(1.25) and (1.26), the mass of the black hole decomposes into its rest mass, the
electromagnetic energy and the rotational energy as follows:

M2 =
(

Mir +
Q2

4Mir

)2

+
(

Ma
2Mir

)2

. (1.27)

Now consider the variation of Mir,δMir in (1.26) from the capture of a particle
of energy, E , angular momentum about symmetry axis of the hole, Lφ and electric
charge, q,

δMir

Mir
=

1√
M2 −a2 −Q2

[
E − ΩH

c
Lφ
]

. (1.28)

In (1.28) the generalized four momentum πµ = Pµ + q/cAµ is used to define E
and Lφ . The mechanical four momentum is Pµ and Aµ is the Kerr–Newman vector
potential. In Boyer–Lindquist coordinates ΩH is the angular velocity of the horizon
as viewed from asymptotic infinity (r → +∞),

ΩH =
a

r2
+ +a2 , (1.29)

E ≡ −π ·∂/∂ t , (1.30a)
Lφ ≡ π ·∂/∂φ . (1.30b)
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The values of E and Lφ cannot be assigned arbitrarily to a particle near the event
horizon. Namely, in a physical frame near the horizon (i.e., one with a time-like
world line defined through the four velocity normalization, u ·u = −1) at fixed “r”
coordinate, the velocity of the particle must be inward at almost the speed of light.
This will be proven rigorously in Chap. 3, but it follows from the defining charac-
teristic of the event horizon. Light cannot escape outward through the horizon, thus
massive particles must move inward with a divergently large four velocity relative
to a noninertial observer at fixed coordinate r � r+. In this frame π0 is therefore
dominated by the inertial piece, P0, from the inward ultrarelativistic motion.

Consider such a frame at fixed radial coordinate, given by the Zero Angular
Momentum Observers (ZAMOs) with four velocity,

uµ =
1√

gtt −gφφ (gφ t)2

[
∂
∂ t

− gφ t

gφφ

∂
∂φ

]
, (1.31)

where gµν are the Boyer–Lindquist metric coefficients of (1.24) and u · u = −1. In
this frame, π0 = −π · u. Noting that in the expression for the ZAMO four velocity
in (1.31),

lim
r→r+

(
−gφ t/gφφ

)
=ΩH , (1.32)

we can simplify the expression for δMir/Mir in (1.28):

δMir

Mir
= lim

r→r+

[√
gtt −gφφ (gφ t)2

(
π0/√M2 −a2 −Q2

)]
, (1.33a)

≈ lim
r→r+

[√
2(r− r+)1/2P0 sinθ

(gφφ )1/2

]
> 0 . (1.33b)

The mechanical energy of the particle is necessarily positive, P0 > 0, in the physical
ZAMO frame and outside the horizon, r > r+, thus δMir > 0 in (1.33b). In fact
it will be shown in Chap. 3 that (r− r+)1/2P0 is a positive constant in the vicinity
of the horizon. The inequality in (1.33) proves the result that the irreducible mass
of a black hole must always increase when a classical particle is absorbed by the
horizon.

Differentiating (1.27) yields the first law of black hole thermodynamics.

dM =
κ
8π

dA+ΩH d(Ma)+
(

At −
ΩH

c
Aφ

)
dQ , (1.34)

where κ is the surface gravity at the horizon,

κ =

√
M2 −a2 −Q2

r2
+ +a2 . (1.35)

In an astrophysical context it is difficult to get a charge on the hole large enough
so that |Q| ∼ M. Note that this upper bound (Q2 � M2) does not preclude charges
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and their fields that would be enormous even by astrophysical standards (see the
discussion of Chap. 11 for example). Thus, in order to understand the consequences
of the first law of black hole thermodynamics in an astrophysical context, we can
ignore the charge on the hole in (1.34). In analogy to (1.30a) and (1.30b) consider
the absorption of a particle with mechanical energy, ω , and angular momentum, m;

ω = −P ·∂/∂ t , (1.36a)
m = P ·∂/∂φ . (1.36b)

Because δMir > 0 during the absorption of a classical particle, dA > 0 in (1.34).
This is known as the second law of black hole thermodynamics. The second law
and (1.34) imply that for a particle to be absorbed by the horizon,

ω− ΩH

c
m > 0 . (1.37)

From (1.30) this also ensures that P0 > 0 in the ZAMO frames as required for a
physical particle.

Consider the case ω < 0 (negative energy as viewed from asymptotic infinity)
and m < 0 for particle capture in the context of the condition (1.37). The surface
area of the horizon will increase according to the second law of black hole thermo-
dynamics, requiring |ω| < |(ΩH /c)m|. Such states do not exist as r → +∞ since
ω < 0; however, these particles need not have originated far from the hole at large
“r” coordinate. Near the horizon such states exist because the locally measured en-
ergy is positive, P0 > 0, in the ZAMO frames by (1.30) and (1.37). The locally
measured energy by any other physical observer (i.e., with a four velocity satis-
fying, u · u = −1) at the same “r” coordinate as the ZAMO is related by a local
Lorentz transformation. Thus P0 > 0 in the ZAMO frame is a necessary and suf-
ficient condition to prove positive energy as measured by all observers near the
horizon. This is an allowed absorption process of physically well-defined particles
that has dM = ω < 0 and d(Ma) = m < 0. The absorption decreases the energy and
angular momentum (in the decomposition of (1.27)) of the black hole and increases
the surface area of the horizon in the process, Mir. Essentially it is a process that
extracts the rotational energy of the hole.

The available extractable energy is the reducible mass,

Mred = M−Mir = M− 1
2

√
r2
+ +a2 . (1.38)

For a Schwarzschild black hole Mred = 0. For a maximally rotating black hole

Mred = M(1−
√

2) = 0.29M, a = M. (1.39)

In high accretion systems such as a quasar, a � M seems unavoidable. However,
in practice it is unrealistic to extract the maximum theoretical value of 29% of the
black hole rest mass.

The process by which the reducible mass is extracted required the absorption of
a particle with ω < 0. Clearly there are no such particles at infinity. In Kerr black
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holes, ω < 0 states can exist in the ergosphere, yet these particles do not come from
asymptotic infinity; they must be created within the ergosphere. Any process that
extracts energy from the hole must rely on E < 0 states, where in all generality Aµ

can include contributions from electromagnetic sources outside the horizon.
It has been shown mathematically how the rotational energy of a black hole

can be tapped using E < 0 states of matter. However, we still know nothing about
whether there is any realizable physical process that can extract Mred in an astro-
physical context. Our interest is to apply this concept to the central engines of radio
loud AGN. The biggest clue that we have is that the jets in FR II radio sources are
highly collimated. The radio image of Cygnus A has a jet with an opening angle
of ≤1.5◦ over ∼35 kpc in length [47]. First consider that the intracluster medium is
not pressurized enough nor sufficiently uniform to collimate the jet over this length.
This is verified by the expansion at the end of the jet into the intracluster medium
as an expanding lobe. Secondly, consider a fluid that contains both gas pressure
and pressure from a tangled local magnetic field. The jet would be describable as
a hydrodynamic fluid. Consider a hypersonic under-expanded jet emanating from a
nozzle with a half opening angle φe and exit velocity ue. The opening angle of the
jet, φ , is accurately calculated to be [14]:

tanφ ≈
[ue

u

]Γ+1
2

√
2

Γ −1
1

Me
,

×
[

M2
e

2
(
tan2 φe

)
(Γ −1)2 +1−

(
R
/

Re
)−2(Γ−1)

]1/2

, (1.40a)

where Γ is the gas adiabatic constant, u is the axial velocity of the jet, R its cross-
sectional radius, and Re the same at the nozzle exit. For large exit Mach numbers,
Me, in a decelerating jet

tanφ ≈
[ue

u

]Γ+1
2

tanφe , M2
e
(
tan2 φe

)
	 2

(Γ −1)2 . (1.40b)

For an accelerating jet,

tanφ ≈ tanφe , M2
e
(
tan2 φe

)
	 2

(Γ −1)2 . (1.40c)

In the limit of tanφe = 0, a decelerating jet asymptotically approaches an opening
half angle,

tanφ ≈
[ue

u

]Γ+1
2

√
2

Γ −1
M−1

e , (1.40d)

and an accelerating jet has an opening half angle given by

tanφ ≈
√

2
Γ −1

M−1
e . (1.40e)



30 1 Introduction

Equations (1.40d) and (1.40e) reveal the physics of collimation of an under-
expanded jet in relation to (1.40). The jet is kinematically collimated. It is
over-pressurized relative to the ambient medium, so it expands as fast as it can,
sonically. Thus, the opening angle is approximately the ratio of the axial speed to
the sonic speed (as a result of free expansion) ∼M−1

e .
For all values of φe and equations of state, (1.40) implies a very large Mach

number in a hydrodynamic jet model of the kiloparsec scale jet in Cygnus A. The
Mach number would have to be so large that the jet would be highly relativis-
tic, 1− u2

/
c2 � 1. There is no evidence to support the existence of this type of

jet velocity on scales ∼50 kpc in any FR II source [25, 46]. It is most likely, al-
though not rigorously verified, that kiloparsec scale jets are only mildly relativistic.
If the kiloparsec scale jets were highly relativistic, it would be difficult to explain
the high surface brightness jets seen in some FR II radio galaxies such as 3C 219
(see Fig. 1.9). Even at smaller scales, the VLBI maps of Cygnus A [43] indicate jet
speeds of <0.7c on ∼100 pc from the central engine. A similar result is obtained
in [48].

The large scale collimation of the jet in Cygnus A can be accomplished by hoop
stresses from a large scale toroidal magnetic field [49]. No one has ever successfully
modeled such an electrodynamically collimated jet [50, 51]. However, a real jet re-
quires dissipation (magnetic induction) for closure currents to flow [52]. Jet models
to date have utilized only the perfect MHD assumption, and this is inconsistent with
the physics of a jet. It seems unavoidable that toroidal magnetic fields collimate FR
II radio jets and we simply have not developed the computational and theoretical
ability to model the global plasma state of a real jet. In spite of this, the 3-D simu-
lation of [53] shows some striking resemblance to the jet in Cygnus A. This model
has a substantial toroidal magnetic field.

The prominent role of magnetic fields (collimation and synchrotron emission)
in radio jets suggests that large scale poloidal magnetic flux links the jets to the
central engine. In the context of radio loud AGNs, we are compelled to explore
the possibility of somehow indirectly applying a large scale magnetic torque to a
rapidly rotating supermassive black hole (there is no surface to torque directly as
in a star). This process requires an understanding of GHM in the ergosphere where
E < 0 states can exist. Ostensibly, we are looking for a GHM interaction in which a
relativistic jet is driven outward and E < 0 plasma is simultaneously created in the
ergosphere that taps the rotational energy of the hole. In a global energy conserva-
tion context, the rotational energy of the hole (reducible mass) is powering the jet.
Extracting the rotational energy of the hole is consistent with the notion that large
accretion systems (AGNs with the quasar phenomena, “hidden” or otherwise) have
central black holes that rotate the fastest and have the most powerful radio jets (as
evidenced by the powerful FR II radio lobes they support).
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1.5 Historical Perspective

The discovery of apparent superluminal motion in radio loud quasars and BL Lac
objects on subkiloparsec scales with VLBI in the 1970s changed our perspective on
radio loud AGN. Superluminal motion and associated rapid flux variability were ob-
served and shown to be a consequence of relativistic apparition due to the jet point-
ing almost directly toward earth (see [54] for a sophisticated discussion). Typical
values of subkiloparsec scale jet Lorentz factors in radio loud quasars are inferred
to be, γ ∼ 5−25, see [31] and [55] for example. Thus, even though the plasma flows
mildly relativistically in a kiloparsec scale jet and subrelativistically ∼100 kpc away
in the lobes [25, 46], it is ejected from the central engine as a relativistic jet. For a
large sample of superluminal sources see [56].

The existence of relativistic jets on parsec scales is an important constraint on
possible central engines. Early attempts to drive the jets in radio loud quasars with
radiation pressure in the steep accretion vortex at the center of a very thick accretion
disk, radiating at super Eddington luminosity, were popular in the late 1970s. How-
ever, the constraint of both high collimation (by the shape of the funnel, see (1.40b)),
and the need for relativistic velocity are incompatible. Only mildly relativistic jets
are attainable [57, 58].

The other place that astrophysicists suspect that relativistic jets reside is in the
pulsars. The spindown rate of a pulsar is generally attributed to radiation losses
from the neutron star in the form of a tenuous, magnetically dominated plasma wind
[59]. There is a convincing argument in [60] and [61] that the Crab Nebula is likely
to be powered by the relativistic wind from the central pulsar. The pulsar wind is
magnetically slung due to the strong neutron star magnetic field and is therefore
far more relativistic than the solar wind that is initiated with far weaker magnetic
stresses [62].

This connection with pulsar winds led to the idea of making a flat pulsar from
the accretion disk in AGNs by introducing a large scale poloidal magnetic flux. This
line of theoretical research began in the 1970s [63, 64]. This is still currently the
most popular type of model, primarily because the astrophysicist does not really
encounter any complicating effects of general relativity. In spite of the ∼100 pa-
pers on this subject, they still do not address many important issues. The accretion
flow of a radio loud quasar radiates indistinguishably in the optical/UV from a ra-
dio quiet quasar even though in one case the effective viscosity is applied primarily
by a large scale magnetic torque (i.e., in a powerful radio loud quasar), and in the
other case the viscous dissipation is microscopic in origin. If one invokes complete
independence of the two torquing effects then the scenario does not explain why
low viscous loss systems are anticorrelated with strong FR II radio sources (unified
scheme). Furthermore, these models ignore the role of magnetic flux in the ergo-
sphere which is likely to dominate the energetics in rapidly rotating systems, as the
accretion disk is not a sink for magnetic flux, but a pathway toward the hole (see
Chap. 10 for a complete discussion). For these reasons, the perspective of this text is
that magnetized accretion disks are not the primary component of the central engine
of radio loud quasars.
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At the same time, the idea of using the extractable rotational energy (reducible
mass) of a rotating black hole to power a wind was being examined [65]. These
authors showed through a simplified model that it was possible to power an outflow
with an accreting plasma permeated by a large scale magnetic field near a rotating
black hole. The inflow part of the problem was solved in the weak magnetic field
limit, thus any paired outgoing wind that was driven would have to be very weak.
This limit allowed the authors to treat the plasma motion as geodesic.

A few years later, a preliminary investigation was made into the opposite limit
in which the magnetic filed dominates the dynamics in both the inflow and out-
flow [66]. Such a model is more compatible with a relativistic outflow. The authors
found a mathematical model in which the black hole behaved analogously to the
neutron star in a pulsar. In particular, the Poynting flux and poloidal currents appear
to emanate from the event horizon as seen by a global observer (like the surface
of the central neutron star in a pulsar). There is no significant plasma interaction
anywhere in the flow. In fact, the solution exists and was discovered in the limit of
no plasma interaction or inertia (the force-free limit, J×B = 0). The mathematical
solution has no causal structure and therefore one is free to impose a magnetically
dominated solution everywhere. This conflicts with the fundamental notion of a
black hole that all accretion flows are inertially dominated near the event horizon.
This expedience circumvents the necessity to introduce black hole GHM. As such,
the solution is very amenable to usage by those not versed in the relevant details of
general relativity.

Unfortunately, by studying the causal structure of the Blandford–Znajek mech-
anism [66], this author along with Coroniti noticed that this solution is merely a
mathematical exercise and is not physical [67]. The fundamental physics of electro-
dynamic extraction proposed in [66] with a super-radiant magnetic field (see [68]
for a discussion of super-radiance), i.e., a field that “rotates” slower than the event
horizon, was very novel and was not invalidated by the arguments of [67]. The point
of [67] was that since the method of solution was not causal, the solution was not
unique and the detailed plasma physics in the black hole magnetosphere replete
with its physical boundary plasma will ultimately determine the amount of energy
extracted from the black hole, including the electrodynamic contribution. One needs
to introduce a plasma interaction with the magnetic field near the black hole. It is
unavoidably a complicated plasma physics problem that requires a full development
of black hole GHM.

1.6 Black Hole GHM

In order to understand how the rotational energy of a black hole can be tapped
by the existence of a magnetosphere, one must explore black hole GHM. There
is no surface to a black hole as there is in a neutron star powered pulsar. So any
putative interaction region “hovers” outside the hole. This ill-defined region involves
magnetized plasma dynamics in curved space–time that can create E < 0 plasma in
the ergosphere.
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It is clear that any attempt to describe the ergospheric interaction must rely heav-
ily on the properties of relativistic plasmas. In particular, the structure of the inter-
action region will be causally determined by relativistic plasma waves. Chapter 2
is a review of (not so well known) relativistic plasma physics with special atten-
tion to the waves that can be propagated in the plasma. This is a crucial chapter
and is imperative to an understanding of the physics of black hole GHM. As such
the treatment is unique in that it caters to a physicist’s need to see results derived
in a straightforward manner as opposed to treating this as a mathematical physics
exercise in quasi-linear, hyperbolic systems as it appears elsewhere [69, 70]. The
structure of relativistic waves is discussed for the first time with a particular em-
phasis on the differences between Alfvén and fast modes. One of the major sources
of problems with the development of the Blandford–Znajek model was that the fast
and Alfvén waves were treated as modes that propagate similar information with
different wave speeds. This is a very inaccurate representation; the information con-
tent of an Alfvén wave packet and a fast wave packet are distinctly defined by the
plasma.

The next basic concept is to understand particle motion in the ergosphere.
Chapter 3 develops this concept including a description of negative energy plasma
states and the horizon boundary condition of inertial dominance.

At this point, we are ready to introduce electromagnetism on the curved space–
time background. The next four chapters (Chaps. 4–7) are a formulation of the
physics of the GHM interaction in the ergosphere of a black hole that can create rel-
ativistic outgoing winds of magnetized plasma. The exposition of black hole GHM
begins with vacuum electrodynamics that reveals the properties of Maxwell’s equa-
tions on the Kerr space–time background. This treatment provides the fundamental
underpinnings of the plasma physics in the ergosphere developed in Chaps. 5–7.

Chapters 8 and 9 are applications of GHM to two model ergospheric dynamos
that drive large scale magnetized winds. These two models have very different mag-
netic flux plasma distributions, yet the fundamental physics governing GHM are
virtually identical. This lends support to the claim of commonality of physics for all
ergospheric dynamos as described in Chap. 7.

Chapter 10 is an attempt to incorporate the theory of winds from magnetized
black holes into the theory of radio loud AGN. Even though this interpretation is
not yet commonly accepted as the central engine of radio loud AGN, it certainly
seems capable of consistently describing many more properties of extragalactic ra-
dio sources than any other existing theory.

The final chapter is dedicated to the fast growing field of numerical simulations
of black hole magnetospheres that initiated around the time that the first edition
went to press. There are some interesting 3-D simulations that show GHM at work.
When the GHM dynamo is triggered, the output power is enormous as expected
from theoretical considerations. However, in order to truly understand the relevance
of GHM to astrophysics will require the long term development of more sophisti-
cated simulations.



Chapter 2
Relativistic Plasma Physics

2.1 Introduction

Black hole GHM is essentially plasma physics in the magnetosphere near a black
hole. Consequently, a deep understanding of plasmas in a relativistic context is es-
sential before delineating the particulars on a black hole background. In a plasma-
filled magnetosphere, information can be transmitted from one region to another
only by means of the modes of propagation allowed by the plasma state. For exam-
ple, a plasma distribution in the ergosphere can induce currents to flow in a wind
far from the hole if, and only if, a wave packet carrying the appropriate information
requiring the current flow is transmitted from the ergospheric plasma and received
by the wind plasma far from the hole. The relativistic structure of plasma waves is
the prime emphasis of this chapter.

Unfortunately, there is no existing treatment of relativistic plasma waves in the
literature that elaborates on the properties of the wave modes, nor derives the sim-
plest results (i.e., waves speeds in a perfect MHD plasma) in a manner accessible to
theorists. Relativistic plasmas in the context of mathematical physics are described
in two monographs [69, 70]. It is difficult for a physicist even to find perfect MHD
wave speeds in these books, let alone more substantial results. Although these treat-
ments are excellent for understanding the solution space for the quasilinear hyper-
bolic set of equations and the formulation of strong shocks in general relativity, they
are of limited value for understanding the basic structure of simple plasma waves,
even in perfect MHD.

Consequently, we take this opportunity to spell out the structure of waves in an
MHD plasma in a manner that parallels standard texts on nonrelativistic plasma
physics. The results are derived in a straightforward manner using only special rel-
ativity. This is still of great value as we will exploit the equivalence principle later
on when we study black hole magnetospheres. A special relativistic treatment in
a freely falling coordinate patch at any point of space–time can be used to study
the plasma modes as long as the wavelength is much less than the radius of curva-
ture of space–time (∼1014 cm for an astrophysical black hole). In the freely falling
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frame, the connection terms are small in the covariant derivatives on scales much
less than the radius of curvature [71]. This is not overly restrictive as perturbations
to an equilibrium situation should be interpretable in terms of local discontinuities
propagating within the plasma. Considering the discussion above, it is not surprising
that the Kerr background introduces nothing that changes the basic character of the
short wavelength modes or the step discontinuities. As a verification (in Chap. 6),
we actually compute the structure of very long wavelength modes. This is a very
difficult calculation, but it is necessary to show that no mysterious physics is hidden
in this limit.

We will not restrict ourselves to perfect MHD, low frequency waves. The ef-
fects of a finite, but small, resistivity are derived and the charge separation in high
frequency waves is considered as well. The long section, 2.9, on the plasma-filled
cylindrical waveguide is very important. This example (which could be fabricated)
is a laboratory example of the physics of a relativistic MHD wind from a magne-
tized star. The causal structure is clearly definable and is one of the few intellectual
tools that allow us to make comparisons and contrasts between a black hole magne-
tosphere and something we could actually experience on earth.

2.2 The Equations of Perfect MHD Plasmas

The existence of a perfect MHD plasma is defined in terms of the vanishing of the
proper electric field (i.e., the electric field in the rest of the frame of the plasma).
If uα is the bulk four velocity of the plasma and Fµν is the Maxwell tensor, this
condition is mathematically expressed as

Fµνuν = 0 ∀µ . (2.1)

Locally, the vanishing of the proper electric field is ensured if the constituent parti-
cles can remain threaded onto the magnetic field in their gyro-orbits. Consequently,
this condition is equivalent to the magnetic field being frozen into the plasma and
is also called the frozen-in condition. If the gyro-frequency or Larmor frequency
ΩL 	 νc, where νc is the collision frequency, one expects perfect MHD to hold
based on local considerations (see Sect. 2.10),

ΩL =
eB
mc

. (2.2)

However, globally this condition requires a more profound analysis. Global con-
straints can produce a νc that is not a kinetic term from the Boltzmann or Fokker–
Planck equations. The effective collision frequency can be induced from plasma
wave-plasma wave scattering that result from the global properties of the flow (this
actually occurs in black hole magnetospheres).
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Equation (2.1) is equivalent to the vanishing of the electric field component par-
allel to the magnetic field. Relativistically, this is stated

∗FµνFµν = 0 , (2.3)

where ∗Fµν is the Maxwell dual tensor defined by

∗Fµν =
1
2
εµναβFαβ . (2.4)

Similarly, there is another relativistic invariant besides (2.3) that is constrained by a
perfect MHD plasma state

FαβFαβ ≥ 0 . (2.5)

Equation (2.5) implies that the field is magnetic (i.e., B2 −E2 ≥ 0).
The first law of thermodynamics for a relativistic fluid is the law of mass–energy

conservation for a fluid element.

dρ =
(ρ+P)dn

n
+nT dS , (2.6)

where ρ is the mass–energy density, P is the pressure, T is the temperature, n is the
particle number density, and S is the entropy per baryon. The local rate of entropy
of production in the fluid Sµ ;µ can be expressed in terms of the heat flow vector qµ

as [72]

Sµ ;µ =
−qµaµ

T
− T ,µ

T 2 qµ , (2.7)

where aµ is the four acceleration,

aµ = uµ ;ν uν , (2.8)

and Sµ is the entropy four vector,

Sµ = nSuµ +
qµ

T
. (2.9)

The perfect MHD condition (2.1) implies that there is no Ohmic heating in the
plasma,

uµFµνJν = 0 , (2.10)

where Jν is the four current density. Consequently, there is no heat flow, qµ , or by
(2.7) any entropy generation, so the first law of thermodynamics becomes

dρ
dτ

= µ
dn
dτ

, (2.11)
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where d
/

dτ is the convective derivative (i.e., derivative with respect to proper time)

d
dτ

≡ uα
∂
∂xα

, (2.12)

and the specific enthalpy is

µ =
ρ+P

n
. (2.13)

Equations (2.1) and (2.10) allow us to write the momentum equations as that of
a perfect fluid

nµuαuβ ;α =
FβνJν

c
+
(
gβµ +uβuµ

) ∂
∂xµ

P , (2.14)

where gβµ is the metric tensor.
The first law of thermodynamics (2.11), the momentum equation (2.14), mass

conservation (2.15),

(nuµ) ;µ = 0 , (2.15)

and Maxwell’s equations (2.16),

Fµν ;ν =
4πJµ

c
, (2.16a)

Fαβ ;γ +Fγα;β +Fβγ ;α = 0 . (2.16b)

form the coupled set of perfect MHD equations. For a discussion of the set of cir-
cumstances that are required to establish this hydromagnetic description of the fluid,
see [73] Chap. 3.

2.3 Perfect MHD Wave Speeds in a Warm Plasma

We examine low frequency waves in a warm plasma with no dissipative effects.
Our basic equations are (2.11)–(2.16) in the limit that the oscillatory frequency, ω ,
is much less than the cyclotron frequency of a proton, Ωi as defined in (2.2). For a
positronic plasma, this relation becomes ω�Ωe whereΩe is the electron cyclotron
frequency. In this first treatment of waves we also assume ω2 � ω2

pi in a protonic
plasma and ω2 � ω2

pein a positronic plasma. The plasma frequency ωp is defined
for each species as

ω2
p =

4πne2

µ
. (2.17)
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Three independent low frequency modes exist in a plasma. The longitudinal hydro-
dynamic sonic mode is coupled to the two independent transverse electromagnetic
vacuum modes.

In order to simplify the analysis, consider a freely falling frame initially at rest
with respect to the fluid. In this frame, the connection is zero at the origin of the
coordinate patch and Maxwell’s equations become as in flat space–time,

∇×B =
1
c
∂E
∂ t

+
4π
c

J , (2.18a)

∇×E = −1
c
∂B
∂ t

. (2.18b)

In (2.18), t is the time (the covector dual to the four velocity) of the local freely
falling observer and the electromagnetic field components are,

E ≡ Eα = Fαµuµ , (2.19a)
B = Bα = ∗Fαµuµ . (2.19b)

Equations (2.18ab) can be combined to get the second order Maxwell’s’ equation

∇2E−∇(∇ ·E) =
1
c2
∂ 2E
∂ t2 +

4π
c2
∂J
∂ t

. (2.20)

We simplify the momentum equation for a linear perturbation analysis. The
waves are chosen in a plane wave representation to have an oscillatory behavior
exp [i(k · r−ωt)]. We define the x direction to be parallel to k, so all perturbed quan-
tities are Fourier analyzed in (x, t) space. For example, the four velocity is

uµ = uµ0 + ei(kx−ωt)δuµ (2.21a)

= ei(kx−ωt)δuµ . (2.21b)

The unperturbed value of the four velocity, uµ0 , vanishes identically by our choice
of frame. This simplifies the momentum equation (2.14) tremendously. The next
approximation is that the waves vary on much smaller scales than the background
fields. Thus, we consider the magnetic field of the unperturbed state to be a constant.

∂
∂xα

B0 = 0 . (2.22)

Ignoring gradients in B0 is the same as ignoring the currents in (2.18). Thus, we
ignore the J0 × δB forces in the perturbed momentum to the first order. Thus, the
perturbed momentum equation becomes

−iωµδu = −ikδP+
δJ×B0

c
. (2.23)
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Maxwell’s equation (2.20) becomes with the aid of (2.1) and (2.19a) an equation of
perturbed quantities only

k2δE−k(k ·δE) =
ω2

c2 δE+
i4πω

c2 δJ . (2.24)

The perturbed frozen-in condition is

δE+
δu×B0

c
= 0 . (2.25)

In order to perturb the thermodynamic quantities, note that the sound speed, cS
is given by

c2
S =

∂P
∂ρ
∣∣
S=constant . (2.26)

For the adiabatic version of the first law of thermodynamics (2.11), we have an
adiabatic gas law with adiabatic constant, Γ ,

Pn−Γ = constant , c2
S =

ΓP
nµ

. (2.27)

Thus, we find after linear perturbation

∇δP
P0

= Γ
∇δn
n0

. (2.28)

The linearized continuity equation (2.15) yields

δn =
(k ·δu)
ω

n0 , (2.29a)

or

∇δn = ik
(k ·δu)
ω

n0 . (2.29b)

Equations (2.26)–(2.29) allow us to rewrite the pressure gradient force in the
perturbed momentum equation (2.23) as

ikδP =
in0µ0c2

S (k ·δu)
ω

k . (2.30)

The momentum equation (2.23) of the perturbed plasma can be rewritten in terms
of (2.30) as

δu =
(k ·δu)
ω2 c2

Sk+ i
δJ×B0

cωn0µ0
. (2.31)
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At this point we explicitly write out the components of the perturbed equations
in a local Cartesian basis. The x-axis was previously defined to be parallel to k and
we define the z-axis such that B0 always lies in the x–z plane. The components of
Maxwell’s equation, (2.24), become

δEy =
4πiω

(c2k2 −ω2)
δJy , (2.32a)

δEz =
4πiω

(c2k2 −ω2)
δJz , (2.32b)

δEx = −4πi
ω

δJx . (2.32c)

Similarly, the perturbed frozen-in condition (2.25) becomes

δEx = −δuy

c
B0 cosθ , (2.33a)

δEy = −δux

c
B0 cosθ +

δuz

c
B0 sinθ , (2.33b)

δEz =
δuy

c
B0 sinθ , (2.33c)

where θ is the angle between the propagation vector and the magnetic field. This
can be defined covariantly as

cos2 θ =

(
uµ ∗Fµνkν

)2

[
kα −uα

(
uµkµ

)]
[kα −uα (uνkν)]

(
FµνFµν

) . (2.34)

In (2.34), kµ is the wave propagation four vector and the spatial three vector in the
free falling frame instantaneously at rest with respect to the fluid, k, is

k = kα −uα
(
uµkµ

)
. (2.35)

Expanding the momentum equation (2.31) into components

δux =
iB0δJy sinθ

cωn0µ0
(
1− k2c2

S

/
ω2
) , (2.36a)

δuy =
iB0

cωn0µ0
(δJz cosθ −δJx sinθ) , (2.36b)

δuz = − iB0

cωn0µ0
(δJy cosθ) . (2.36c)

Substituting (2.36) and (2.32) into the frozen-in condition (2.33) eliminates
δE and δu to give an expression entirely in terms of perturbed currents. The
z-equation is
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[
4πω2

c2k2 −ω2 − B0 cos2 θ
c2n0µ0

]
δJz +

B2
0 sinθ cosθ

cn0µ0
δJx = 0 , (2.37a)

The y component of the frozen-in equation becomes
[

4πiω2

c2k2 −ω2 − B2
0

c2n0µ0

(
cos2 θ +

sin2 θ
1− k2c2

S

/
ω2

)]
δJy = 0 , (2.37b)

The x -component is
[

1+
B2

0 sin2 θ
4πn0µ0

]
δJx −

[
B2

0 sinθ cosθ
4πn0µ0

]
δJz = 0 . (2.37c)

Equation (2.37c) shows that the perturbed currents δJx and δJz in the k, B plane are
proportional to each other. Using this fact in (2.37a) yields an equation in δJz alone

[
4πω2

c2k2 −ω2 − B2
0 cos2 θ

c2n0µ0
(
1+B2

0 sin2 θ
/

4πn0µ0
)
]
δJz = 0 . (2.38)

There are three solutions to the two independent equations (2.37b) and (2.38).
These are the dispersion relations for the phase velocities of the waves. In a rela-
tivistic formalism we write the phase velocity, vϕ , as

v2
ϕ =

ω2

|k|2 =

(
uµkµ

)2

[
kµ −uα

(
uµkµ

)][
kα −uα

(
uµkµ

)] , (2.39)

and the phase four velocity uϕ is

u2
ϕ

c2 =

(
uµkµ

)2

kµkµ
=

ω2

c2k2 −ω2 . (2.40)

The first solution to the set of equations (2.37b) and (2.38) is found by setting
δJy = 0 to solve (2.37b). Then (2.38) yields the phase four-velocity defined in (2.40)

u2
ϕ =

B0 cos2 θ
4πn0µ0

(
1+B2

0 sin2 θ
/

4πn0µ0c2
) = U2

I . (2.41)

The wave propagation three speed is the group velocity vg = dω
/

dk. For nondis-
persive wave ug = uϕ and vg = vϕ . Equation (2.41) represents nondispersive waves
associated with the shear Alfvén mode or simply the Alfvén wave. The four speed
UI of this mode is often called the intermediate speed. From (2.41) the intermediate
three speed vI is

v2
I =

B2
0 cos2 θ(

4πn0µ0c2 +B2
0

)c2 . (2.42)
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slow wave

fast wave

Alfven wave

Fig. 2.1 The Friedrichs or phase polar diagram of the three plasma wave phase velocities. The
polar diagram plots the velocities in the case the B2

0 = 16πnµ0c2
S. Note that UF ≥UI ≥USL

Figure 2.1 is a Friedrichs diagram that is a polar coordinate plot of the three
velocity as a function of angle of propagation relative to the magnetic field. The
intermediate speed goes to zero when the wave propagates perpendicular to the field
and is faster for parallel propagation.

The other solutions to the system of equations (2.37b) and (2.38) are found by
setting δJz = 0 in (2.38). Equation (2.37b) can be expanded to yield a dispersion
relation for the three speeds of the two remaining waves,
(

1+
B2

0
4πn0µ0c2

)
v4

F,SL − v2
F,SL

(
c2

S +
B2

0
4πn0µ0

+
c2

SB2
0 cos2 θ

4πn0µ0c2

)
+

B2
0 cos2 θ c2

S
4πn0µ0

= 0.

(2.43)

The two wave speed vF and vSL in (2.43) represent the compressional Alfvén wave
or fast wave and slow wave propagation speeds, respectively. Due to the coupling to
the sound speed these are often referred to as the two magneto-acoustic modes. Their
three velocities are plotted in the polar plot of Fig. 2.1 as a function of propagation
angle. The slow wave does not propagate perpendicular to the magnetic field and
propagates fastest parallel to the magnetic field direction as for the Alfvén mode.
The fast wave propagates at virtually the same speed in all directions with a small
increase due to the sound speed for perpendicular propagation.
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Equation (2.43) can be used to compute the four speed dispersion relation

U4
F,SL −U2

F,SL

[
c2c2

S

c2 − c2
S

+
B2

0
4πn0µ0

cos2 θ +
c2

c2 − c2
S

B2
0 sin2 θ

4πn0µ0

]

+
B2

0
4πn0µ0

c2c2
S

c2 − c2
S

cos2 θ = 0 . (2.44)

Equations (2.44) and (2.41) and Fig. 2.1 indicate the well-known result, U2
SL ≤

U2
I ≤U2

F .

2.4 Covariant Formulation of the Plasma Wave Speeds

It is of mathematical interest to rewrite the four speed dispersion relations for the
plasma modes in a covariant form (with the customary choice of setting c = 1). For
the Alfvén mode, we expand (2.42) with the covariant definitions (2.39) and (2.34)
to find (note B2

0 = 1
2 FµνFµν ),

n0µ0

(
1+

FµνFµν

8πn0µ0

)(
uµkµ

)2 − 1
4π
(
uµ ∗Fµνkν

)2 = 0 . (2.45)

Alternatively, one can describe the wave propagation vector as the derivative of the
phase, φ , of the wave

kλ = φ,λ . (2.46)

Then (2.45) can be written as
[

n0µ0

(
1+

FµνFµν

8πn0µ0

)
uαuβ − 1

4π
uµ ∗Fµαuν ∗Fνβ

]
φ ,αφ ,β = 0 . (2.47)

The surfaces φ = constant defined by (2.47) are the characteristic surfaces of the
quasi-linear hyperbolic partial differential equations [74]. Equation (2.45) parallels
the mathematical physics treatment of [70], Chap. 6.

Similarly for the magneto-acoustic modes we expand (2.43) with the covariant
definitions (2.34) and (2.39):

[
1− c2

S
][

uµkµ
]4 +

[
c2

S +
FµνFµν

8πn0µ0

][
uµkµ

][
kµkµ

]
+

c2
S

[
uµ ∗Fµνkν

]
4πn0µ0

kµkµ = 0 .

(2.48)

In deriving (2.48) we used

|k|2 = kµkµ +
(
uµkµ

)2 =
(

gλµ +uλuµ
)

kλ kµ . (2.49)
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Expanding (2.48) with (2.49) and the definition (2.46), we can get an expression for
the characteristic surfaces φ = constant:

{(
1− c2

S
)

uµuλuνuδ −
[

c2
S +

FµνFµν

8πn0µ0

]
uµuλgνδ

+
c2

S
4πn0µ0

(
uα ∗Fαµ uβ ∗Fβλgνδ

)}
φ ,µφ ,λ φ ,νφ ,g = 0 . (2.50)

Equation (2.48) reproduces the results of [70], Chap. 6. The expressions in this sec-
tion are not very useful from a physical point of view, but are included for mathe-
matical rigor.

A very useful concept is a four velocity vector for a propagating wave constructed
from the four speeds (2.41) and (2.44). Note that the group four velocity (2.41) and
(2.44) is a function of θ ,ug(θ). We define

uαg =
√

u2
g(θ)+1

[
uα +

ug(θ)
u2

g(θ)+1

(
kα

|k| −ug(θ)uα
)]

. (2.51)

2.5 The Perfect MHD Alfvén Mode

Equations (2.41) and (2.42) are the four and three velocities of the shear Alfvén
wave. It is of substantial interest to know what information is carried by this mode.
Recall that the wave speeds were found by setting δJy = 0 in the set of equations
formed by (2.37b) and (2.38),

δJy = 0 . (2.52a)

The component of current density along the propagation vector, δJx, is proportional
to δJz by (2.37ac),

δJx �= 0 , θ �= 0, π and δJz �= 0, θ �= π . (2.52b)

The current density vanishes at θ = π because the Alfvén wave does not propagate
perpendicular to the magnetic field. In general, from (2.52b) and (2.37c)

k ·δJ �= 0 , θ �= 0, π , (2.52c)

B ·δJ = δJzB0 sinθ

[
B2

0 +4πn0µ0c2

B2
0 sin2 θ +4πn0µ0c2

]
. (2.52d)

In a practical sense, the only Alfvén waves of physical relevance are oblique Alfvén
waves; parallel propagation is of textbook value only as a simple illustrative example
of waves. Because k ·B0 �= 0, in general, (2.52cd) imply that the oblique Alfvén wave
can propagate field aligned currents.
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From (2.52a), (2.36a) and (2.36b)

δux = δuz = 0, δuy �= 0 , (2.53a)
k ·δu = 0 . (2.53b)

From (2.53b) we see that the Alfvén mode is mechanically transverse.
Inserting (2.53b) into (2.30) and the mass conservation law (2.29a), one finds that

the Alfvén mode is noncompressive and is decoupled from the sonic mode

δP = 0 , (2.54a)
δn = 0 . (2.54b)

From (2.52) and (2.32) one finds that

δEy = 0 , (2.55a)
δEx �= 0, θ �= 0,π and δEz �= 0 , θ �= π . (2.55b)

Equation (2.55b) implies that for oblique Alfvén waves

k ·δE �= 0 . (2.56a)

Then, using Gauss’s Law for the charge density in the wave, ρe, and performing a
linear perturbation, yields

∇ ·E = 4πρe , (2.56b)
ik ·δE = 4πδρe . (2.56c)

Equation (2.56) states that the oblique Alfvén wave carries a charge density and has
a significant electrostatic polarization.

Consider the induction equation

1
c
∂B
∂ t

= −∇×E , (2.57a)

and its linearized perturbation

ω
c
δB = k×E . (2.57b)

Applying (2.55) to (2.57b) yields for the Alfvén mode

δBx = 0 , δBz = 0 , δBy �= 0 . (2.57c)

The fact that k · δB = 0 is simply the perturbed ∇ ·B = 0 equation. In general, one
can not conclude that these results must be true for wavelengths on the order of the
field line curvature as a consequence of the assumption in (2.22).
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2.6 The Magneto-Acoustic Waves in a Perfect MHD Plasma

The magneto-acoustic wave speeds were derived from the coupled set of (2.37b)
and (2.38) by setting δJz = 0. From (2.37c) for magneto-acoustic waves

δJx = δJz = 0 , δJy �= 0 , (2.58a)
k ·J = 0 . (2.58b)

Because B0 is in the x−z plane, magneto-acoustic waves carry no current along the
magnetic field direction.

Equation (2.58) combined with (2.36) implies

δuy = 0 , δux �= 0 , δuz �= 0 , (2.59a)

Thus the waves have a longitudinal mechanical component

k ·δu �= 0 . (2.59b)

Inserting (2.59b) into (2.30) and the mass conservation law (2.29a) shows that
the magneto-acoustic waves are compressive and coupled to the sonic mode

δρ �= 0 , (2.60a)
δn �= 0 . (2.60b)

Consequently, there exist both compression and rarefaction fast and slow waves.
Inserting (2.58) into (2.32) yields

δEx = δEz = 0 , δEy �= 0 . (2.61a)

Thus, for magneto-acoustic waves from (2.56c)

k ·E = 0 , δρe = 0 . (2.61b)

Equation (2.61b) states that the magneto-acoustic waves carry no charge density
and have no electrostatic polarization. Again, one cannot conclude that these results
are true for wavelengths on the order of the field line curvature as a consequence of
the assumption in (2.22).

The induction equation, (2.57), combined with (2.61a) gives the perturbed mag-
netic fields in a magneto-acoustic wave,

δBx = 0 , δBy = 0 , δBz �= 0 . (2.62)

The fast and slow modes have different compressional properties. Writing the
induction equation in terms of the phase velocity, one has

δEy =
vϕ
c
δBz . (2.63)
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Combining (2.32a), (2.36a) and (2.63)

B0δux

δBz
=

vϕ
c2

[
B2

0 sinθ
4πn0µ0

][
c2 − v2

ϕ

v2
ϕ − c2

S

]
. (2.64)

From the linearized continuity equation (2.29a) applied to (2.64)

δn
δBz

=
[

B0 sinθ
4πµ0c2

][
c2 − v2

ϕ

v2
ϕ − c2

S

]
. (2.65)

For the nondispersive magneto-acoustic speeds in (2.43), c2 > v2
ϕ . Thus, the sign

of δn
/
δBz depends on the sign of v2

ϕ − c2
S. For a slow wave, (2.43) implies vϕ < cS,

and for a fast wave, vϕ > cS (see Fig. 2.1). Thus, δn
/
δBz < 0 for slow waves, and

δn
/
δBz > 0 for fast waves. The magnetic field decreases (increases) across slow

compression (rarefaction) waves. The magnetic field increases (decreases) across
fast compression (rarefaction) waves. These defining properties persist even in the
nonlinear large amplitude versions of these waves (including shock waves).

2.7 MHD Waves in a Resistive Medium

In order to get a qualitative feel for the effects of resistivity on MHD wave propa-
gation, we consider a scalar electrical conductivity, σ . In reality, a tensorial conduc-
tivity is important especially in the interesting case in which a strong magnetic field
is present and the cross-field conduction is highly suppressed (see Sect. 2.10). We
illustrate (using the simplified scalar conductivity case) that the main effect of finite
conductivity is to attenuate the waves and decrease the propagation speeds.

The linearly perturbed plasma equations (2.32), (2.25) and (2.36) are the same as
before except the frozen-in equation (2.25) is replaced by Ohm’s law

δJ = σ
(
δE+

δu×B0

c

)
. (2.66)

Inserting (2.32) and (2.36) into (2.66) yields three equations in analogy to (2.37),

δJx

[
1+σ i

(
4π
ω

+
B2

0 sin2 θ
c2ωn0µ0

)]
= − σ i

c2ωn0µ0
B2

0 sinθ cosθ δJz, (2.67a)

δJy

[
1− 4πσ iω

c2k2 −ω2 − iσB2
0

c2ωn0µ0
×
(

cos2 θ +
sin2 θ

1− k2c2
S

/
ω2

)]
= 0 , (2.67b)

δJz

[
1−σ

(
4πiω

c2k2 −ω2 +
iB2

0 cos2 θ
c2ωn0µ0

)]
+

iσB2
0

c2ωn0µ0
sinθ cosθ δJx = 0 . (2.67c)
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Equation (2.67b) can be solved with δJx = δJz = 0 to give the phase velocities of
the magneto-acoustic modes

{
1+

B2
0

4πn0µ0c2
[
1+ i(k2c2 −ω2)

/
4πωσ

]
}

v4
F,SL

= v2
F,SL

{
c2

S +
B2

0
(
c2 + c2

S cos2 θ
)

4πn0µ0c2
[
1+ i(k2c2 −ω2)

/
4πωσ

]
}

(2.68)

− B2
0c2

S cos2 θ
4πn0µ0

[
1+ i(k2c2 −ω2)

/
4πωσ

] .

Defining the dimensionless pure Alfvén four speed, UA, by

U2
A =

B2
0

4πnµ0c2 . (2.69)

Then the dispersion relation (2.68) is the same as the perfect MHD magneto-
acoustic relation (2.43) with the substitution U2

A →U2
A:

U2
A =

U2
A

1+ i(k2c2 −ω2)
/

4πωσ
. (2.70)

Setting δJy = 0 and combining (2.67a) and (2.67c) yields the dispersion relation
for resistive Alfvén waves

U2
I

c2 =
U2

A cos2 θ
1+U2

A sin2 θ +ωi
/

4πσ
. (2.71)

Compare this with the perfect MHD analog in (2.41)

U2
I

c2 =
U2

A cos2 θ
1+U2

A sin2 θ
. (2.72)

Equation (2.71) for Alfvén waves can be rewritten for large conductivities with the
aid of (2.42) as

k ≈ ω
vI

+
iω2c2

8πσv3
I

[
U2

A +1
]−1
(

1+
v2

I
c2 U2

A sin2 θ
)

. (2.73)

Thus, the imaginary part of the propagation vector, k, implies that the waves are
attenuated. For smaller conductivities, the attenuation increases.

Similarly for the subrelativistic velocities, (2.71) approximates to

ω =

√
k2v2

I −
η2k4

4
− ik2η

2
, (2.74)
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where η is the magnetic diffusivity

η ≡ c2

4πσ
. (2.75)

Relation (2.74) shows that the resistivity slows down the waves and damps them as
well. In the limit of large resistivity the slow and Alfvén waves do not propagate
and the fast wave speed approaches the sound speed. Equation (2.71) represents
the dispersive character of resistive Alfvén waves. For large conductivities, (2.73)
shows these effects to be small and vg ≈ vϕ . A deeper discussion of resistive effects
in MHD waves as well as the effects of viscosity and thermal conduction appear
in [75].

As in a perfect MHD plasma, only the Alfvén mode can carry field aligned cur-
rents and only the Alfvén mode propagates a net electric charge.

2.8 High Frequency Waves in a Perfect MHD Plasma

In order to study the effects induced by high frequency oscillations, we need to
decompose the plasma into the dynamics of the individual species. For the sake of
simplification, we restrict this discussion to a positronic plasma as the difference in
mass between the electron and proton causes added complexity (see Sect. 2.11).

Equation (2.14) is replaced by the pair of perturbed momentum equation of the
individual species,

(n0)+ µ
d
dt
δu+ +∇δP = −

e(n0)+
c

(
δE+

δu+ ×B0

c

)
, (2.76a)

(n0)− µ
d
dt
δu− +∇δP = +

e(n0)−
c

(
δE+

δu−×B0

c

)
. (2.76b)

Adding (2.76a) with (2.76b) gives the bulk flow momentum equation (2.23). Sub-
tracting (2.76b) from (2.76a) yields a generalized Ohm’s law that replaces the
frozen-in condition (2.25)

dJ
dt

=
e2n0

µ0c

[
δE+

δu
c

× B0

]
, (2.77a)

where

δu =
δu+ +δu−

2
. (2.77b)

The magneto-acoustic dispersion relation is found in Sect. 2.3,
[
ω2 − k2c2

S
][
ω4 −ω2 (c2k2 +ω2

p
)
−ω2

pU2
A
(
ω2 − c2k2)cos2 θ

]
= ω2ω2

pU2
A
(
ω2 − c2k2)sin2 θ , (2.78a)
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and the Alfvén mode dispersion relation becomes
[

1−
ω2

p

ω2

][
1+

c2k2 +ω2
p

ω2

]
−
ω2

pU2
A sin2 θ
ω2

[
1−

c2k2 +ω2
p

ω2

]

=

[
1−

ω2
p

ω2

][
ω2

pU2
A cos2 θ
ω2

][
1− c2k2

ω2

]
. (2.78b)

The plasma waves become dispersive and they are slowed down at high frequency.
Now consider the interesting properties of the waves. Combining the generalized

Ohm’s law (2.77a) with Maxwell’s equations (2.24) and (2.56c), the charge density
in the waves is

δρe = −
ω2

pk

4π
[
ω2

p −ω2
]
[
δuy

c
B0 sinθ

]
. (2.79)

For high frequency waves, the Alfvén mode is the only wave that can carry field
aligned currents and have an electrostatic polarization. (Note δuy �= 0 for Alfvén
waves and δuy = 0 for magneto-acoustic waves as in the low frequency case).

2.9 The Cylindrical Plasma-Filled Waveguide

In this lengthy section we discuss an instructive example of a cylindrical waveguide
filled with plasma that is threaded by a uniform axial magnetic field supported by
an external solenoid. The wave properties of this configuration have been discussed
in the nonrelativistic limit in Stix [76, 77]. As with [77], for simplicity we consider
a cold pressureless fluid. By contrast, we are concerned with relativistic waves. The
importance of this example is that it creates a laboratory environment in which the
physics of a relativistic magnetosphere about a compact object can be studied. For
instance, we will discuss how attaching a rotating disk at the end of a semi-infinite
magnetized cylindrical plasma-filled waveguide creates an outgoing plasma wave-
front. This outgoing wave carries an energy flux associated with the Poynting vector.
This is an excellent laboratory analog of the relativistic wind driven by a neutron star
in the MHD theory of pulsar magnetospheres. Different variants of this configura-
tion can be compared and contrasted with a black hole magnetosphere. The analysis
greatly elucidates the role of the event horizon in black hole GHM.

2.9.1 Plasma Waves in a Cylindrical Waveguide

The discussion requires a different coordinate system than the last seven sections.
Before, we singled out k as the unique direction and denoted its unit normal as êx.



52 2 Relativistic Plasma Physics

In this section, the axial direction is unique and we define

B0 = B0êz (2.80)

We decompose the wave vector, k, into an axial component, kz, and a radial wave
number

ν ≡ k⊥ =
(
k2

x + k2
y
)1/2

. (2.81)

For simplicity, we consider a cold plasma, thus there is no slow mode, since
cS → 0. From (2.42) and (2.34) the dispersion relation for shear Alfvén waves is

ω2 =
c2k2

z B2
0

4πn0µ0c2 +B2
0

. (2.82)

Similarly from (2.43) and (2.34), the dispersion relation for the fast compressive
mode is

ω2 =
c2
(
k2

z +ν2
)

B2
0

4πn0µ0c2 +B2
0

(2.83)

In order to compute the wave solutions in the waveguide, we introduce cylindri-
cal coordinates (ρ,φ ,z). The momentum equation (2.31) in the cold plasma limit
becomes

δu =
iδJ×B0

cωn0µ0
. (2.84)

Consider the Fourier decomposition in cylindrical coordinates, for example

δE(ω,kz,m,ρ,φ ,z, t) ≡ ei[kzz+mφ−ωt]δE . (2.85)

Combining the frozen-in condition (2.25) with (2.84) we find that

δEρ =
4πiU2

A
ω

δJρ , (2.86a)

δEφ =
4πiU2

A
ω

δJφ , (2.86b)

δEz = 0 . (2.86c)

Maxwell’s equation (2.20) is complicated in cylindrical coordinates,

(∇×∇ × δE)ρ =
im
ρ2

∂
∂ρ
(
ρ δEφ

)
+
(

m2

ρ2 + k2
z

)
δEρ

=
−ω2

c2 δEρ − 4πiω
c

δJρ , (2.87a)
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(∇×∇×δE)φ = k2
z δEφ − ∂

∂ρ

[
1
ρ
∂
∂ρ
(
ρ δEφ

)]
− im

∂
∂ρ

(
δEρ

ρ

)

=
−ω2

c2 δEφ − 4πiω
c

δJφ . (2.87b)

Since (2.87a) and (2.87b) are coupled, we must consider the various cases individ-
ually in order to solve them.

2.9.2 Fast Waves

Fast waves carry no charge density (see 2.61b). Thus,

∇ ·δE = 0 , (2.88a)

or in cylindrical coordinates

∂
∂ρ
(
ρ δEρ

)
+ imδEφ = 0 . (2.88b)

First consider m = 0 waves. Then the divergenceless condition (2.88b) implies

ρ δEρ = constant, m = 0 . (2.88c)

By the regularity of Eρ at ρ = 0, (2.88c) implies

δEρ = 0 , m = 0 . (2.88d)

In the axisymmetric case m = 0, the “φ” component of Maxwell’s equation
(2.87b) is independent of Eρ . Combining (2.87b) with (2.86b) to eliminate δJφ ,
one obtains Bessel’s equation and

δEφ = AJ1(νρ)+BY1(νρ) , m = 0 , (2.89a)

where J1 is the cylindrical Bessel function and Y1 is the Neumann function [74]. The
wave number “ν” is defined through the dispersion relation (2.83)

ν2 =
[
1+U−2

A

] ω2

c2 − k2
z . (2.89b)

At the cylinder boundary, ρ = R, the tangential electric field, Eφ , must vanish in the
cylindrical conductor. Thus A and B satisfy

δEφ (ρ = R) = AJ1(νR)+BY1(νR) = 0 , m = 0 . (2.89c)

Consider m �= 0 fast waves. Substitute the divergenceless condition (2.88b) into
(2.87a) to eliminate δEφ in Maxwell’s equation. Then substitute (2.86a) in the
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resulting equation to eliminate δJρ in order to obtain Bessel’s equation for ρ δEρ ,

δEρ =
A
ρ

Jm(νρ)+
B
ρ

Ym(νρ) �= 0 . (2.90a)

From the divergenceless condition (2.88b) and the conductor boundary condition,

δEφ =
i
m

∂
∂ρ
(
ρ δEρ

)
, δEφ (ρ = R) = 0 . (2.90b)

Note that the fast mode does not propagate as ω→ 0 since there is a cutoff in the
dispersion relation (2.83).

2.9.3 Alfvén Waves

Combining the dispersion relation (2.82) with Maxwell’s equation (2.87) yields

im
ρ2

∂
∂ρ
(
ρ δEφ

)
− m2

ρ2 δEφ = 0 , (2.91a)

− ∂
∂ρ

[
1
ρ
∂
∂ρ
(
ρ δEφ

)]
− im

∂
∂ρ

δEρ
ρ

= 0 . (2.91b)

From (2.57c), δB is orthogonal to the plane containing k and B0, so

δBz = 0 . (2.92a)

From the induction equation (2.57b), it follows that

(∇ × δE)z = 0 , (2.92b)

which is (2.91a). Also, note that the partial derivative of (2.91a) with respect to ρ is
(2.91b). Thus, there is only one independent equation.

When m = 0, (2.91b), along with the conductor boundary condition, Eφ (ρ = R) =
0, implies that

δEφ = 0 , m = 0 . (2.93a)

There is no equation restricting δEρ as it depends entirely on the charge distribution
on the boundaries,

δEρ = arbitrary , m = 0 . (2.93b)

When m �= 0, we have our one independent relation

δBz = 0 , (∇ × δE)z = 0 , δEφ (ρ = R) = 0 , m �= 0 . (2.94)



2.9 The Cylindrical Plasma-Filled Waveguide 55

For the m = 0 mode, from the frozen-in relation for δEρ

δu = δuφ êφ . (2.95)

From the “φ” component of the induction equation (2.57a)

δB = δBφ êφ . (2.96)

We also note that for a general value of “m” we can compute the field aligned current
from the “z” component of Maxwell’s equation (2.20) using (2.86c)

(∇×∇ × δE)z =
−4πiω

c
δJz , (2.97a)

δJz =
c2

vI
δρe , vI ≡ ω

/
kz . (2.97b)

2.9.4 The Faraday Wheel

It is very instructive to attach a Faraday wheel or unipolar inductor to the end of
a semi-infinite plasma-filled waveguide. We will show that the Faraday wheel is a
piston for Alfvén waves in analogy to the piston for magneto-acoustic waves [78].
It is also demonstrated how the waveguide is analogous to a MHD pulsar wind and
that the Faraday wheel is the analog of the neutron star. The parallels allow us to
explore the fundamental role of the unipolar inductor in the relativistic MHD wind
theory. The main insight that this discussion provides is that the event horizon of a
Kerr black hole behaves like a Faraday wheel that is disconnected (i.e., separated
from the end of the waveguide by an electrical insulator) from the plasma-filled
waveguide. This lack of unipolar induction associated with the space–time near the
event horizon is discussed in detail in this context in Chap. 4.

2.9.4.1 The Faraday Wheel Terminated Transmission Line

To begin with, we describe the notion of a Faraday wheel or unipolar inductor. Con-
sider a conductive disk rotating with an angular velocity, ΩD, about the symmetry
axis (z-axis) in Fig. 2.2. The disk is immersed in the uniform magnetic field of an
aligned infinite solenoid. In the laboratory frame, there is an electric field in the disk
as a consequence of the frozen-in condition.

Eρ =
−ΩDρ

c
B0 . (2.98)

This electric field is established because the rotationally induced Lorentz force sep-
arates charge. Gauss’s law applied to (2.98) yields a charge density

ρe =
−ΩDB0

2πc
. (2.99)



56 2 Relativistic Plasma Physics

E
E

B

long solenoid

rotating disk 

+ + + + + + ++ + + +++
++
++
+
++
+
+++ + + + + + ++ + + +++

ΩD

Fig. 2.2 The electrostatic field of a conducting disk rotating in a uniform magnetic field. The
expanded view of the end shows the surface charge distribution

An electrostatic equilibrium is established as electrons are pushed toward the center
of the disk by the Lorentz force, leaving a residual positive surface charge density at
the outer edge of the disk. The resulting electrostatic field is shown in Fig. 2.2. The
electrostatic force within the disk balances the rotationally induced EMF creating
an equilibrium.

In order to make the rotating disk an active element, we insert it between two
semi-infinite coaxial transmission lines as indicated in Fig. 2.3. The center conduc-
tor can be supported by a thin low-loss dielectric webbing such as teflon. This is
known commercially as spline coaxial cable. The whole configuration is immersed
inside an infinite solenoid so that a uniform axial magnetic field threads the trans-
mission line. The vacuum electrostatic field lines are drawn as dashed curves in
Fig. 2.3. When the center conductor and the outer conductor first touch the disk, the
negative (positive) surface charge on the disk induces an incoming (outgoing) cur-
rent in the conductors at the center (outer edge) as shown in Fig. 2.3. The presence
of conduction paths at the center and edge of the disk allows charges to flow from
above and below the disk that will instantaneously partially neutralize the surface
charge density. This, in turn, disrupts the balance of electrostatic force with the ro-
tationally induced EMF in the disk. This small excess EMF drives charges in an
effort to replenish the lost surface charge density. However, the surface charge is
again partially neutralized by electron motion in the inner and outer conductors of
the transmission line, and so on. The EMF remains unbalanced and no electrostatic
equilibrium can be attained. The rotational EMF drives a surface current outward
radially that requires electrons to be drawn from the outer conductor and pumped
outward along the center conductor. The Faraday wheel is a unipolar generator of
electrical current in the transmission line circuit.
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Fig. 2.3 The electrostatic field of a conducting disk rotating in a uniform magnetic field

Associated with the current flow generated by the Faraday wheel is a toroidal
magnetic field, Bφ , as a consequence of Ampere’s Law. The time stationary state of
the transmission line has an electric field given by

∮
E ·d� = 0 . (2.100a)

In the disk, from (2.98), the voltage drop from ∆V , is

∆V = −
∫ R

0
E ·d� =

+ΩDR2

2c
B0 . (2.100b)

By (2.100a), the voltage drop between the center conductor to the outer conductor of
the transmission line is ∆V as well. Inside the transmission line ρe = 0, so Gauss’s
law implies Eρ = E0

/
ρ where E0 is a constant. Combining this with (2.100b) yields

Eρ =
−ΩDR2

2c
B0

ln
(
R
/

a
) 1
ρ

, (2.100c)
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where “a” is the radius of the inner conductor. Note that Eρ in the transmission
line (2.100c) does not equal Eρ in the disk (2.98) even though E‖ is continuous at
the surface of a conductor. The fringing fields on the disk that transition (2.98) to
(2.100c) are in the form of nonpropagating TM and TE modes in the transmission
line [79]. The electromagnetic field in the transmission line is the ω→ 0 limit of the
TEM mode.

The Faraday wheel radiates a poloidal Poynting flux, SP into the transmis-
sion line.

SP =
c

4π
(E×B) =

c
4π

EρBφ . (2.101)

Similarly, an angular momentum flux, SP
L , is associated with the TEM wave

SP
L = − c

4π
ρBφBz > 0 . (2.102)

In order to understand the magnitude and nature of SP and SP
L in a time stationary

problem, note that in reality the disk was attached to the transmission line at the
same time t = t0. Thus, there are a pair of TEM wave fronts propagating along
the two semi-infinite transmission lines. The electric field in (2.100c) in the +z
transmission line in the actual time dependent problem is

Eρ =
−ΩDR2B0

2c ln
(
R
/

a
) 1
ρ
Θ [c(t − t0)− z] , (2.103)

where Θ is the Heaviside step function. The wave front has propagated a distance
c(t − t0) along the z axis at time “t” (waves propagate at the speed of light in a
transmission line with perfectly conducting walls and center conductors). The step
function is an approximation to this complicated interface that involves fringing
fields (see the appendix to this chapter). A displacement current flows at the wave
front,

JρD =
−ΩDR2B0

8π ln
(
R
/

a
) 1
ρ
δ [c(t − t0)− z] (2.104)

Applying Ampere’s law to (2.104) at the flow front,

Bφ =
−ΩDR2B0

2c ln
(
R
/

a
) 1
ρ
Θ [c(t − t0)− z] . (2.105)

Note that one can write a fictitious Ohm’s law at the flow front. Define a fictitious
surface current at the flow front (a surface displacement current), J ρ

D , by integrating
the displacement current across the flow front,

J ρ
D = lim

ε→0

∫ c(t−t0)+ε

c(t−t0)−ε
JρDdz . (2.106a)
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Then define a fictitious impedance of the flow front, ZD, empirically as

ZDJ ρ
D ≡ Eρ . (2.106b)

From (2.103), (2.104) and (2.106b)

ZD = 4π
/

c . (2.106c)

This impedance is fictitious and is defined to elucidate the surface impedance of
4π
/

c of the event horizon in the membrane paradigm [80] in future discussions.
The Faraday wheel at the end of a transmission line radiates physical TEM modes

of the electromagnetic field in the limit of ω → 0 (step waves). From (2.101) and
(2.102), the radiation carries off energy and angular momentum. This will continue
until J×B forces in the disk torque it to zero angular velocity. The Faraday wheel
converts mechanical inertia into electromagnetic radiation. Note that (2.106c) im-
plies that these radiation losses are equivalent mathematically to pumping currents
through a surface impedance of 4π

/
c at infinity in a time stationary transmission

line circuit.
The voltage drop across the magnetic field lines is given by (2.100b) as

∆V =
−ΦΩD

2πc
, (2.107)

where Φ is the magnetic flux through the disk and ΩD the disk angular velocity.
∆V is a function of disk parameters only and is determined by the Faraday wheel.
Similarly, the total current flowing along the center conductor can be found from
(2.105) and Ampere’s law

I =
−ΦΩD

2π ln
(
R
/

a
) . (2.108)

The current depends only on disk parameters and is determined causally by micro-
scopic forces within the Faraday wheel. Microscopic physics within the Faraday
wheel is the causative agent producing I and ∆V in the transmission line.

2.9.4.2 The Faraday Wheel Terminated Plasma-Filled Waveguide

Consider a pair of plasma-filled, semi-infinite, cylindrical waveguides connected to
a Faraday wheel as shown in Fig. 2.4. The waveguides are inside an infinite solenoid,
so a uniform axial magnetic field exists within the plasma. The plasma provides a
conduction path for return current, so no electrostatic equilibrium is achievable in
the Faraday wheel, as was the case for the transmission line circuit. The unbalanced
EMF in the Faraday wheel makes it a unipolar generator of electrical current in
the waveguide circuit. The return current now flows throughout the plasma as op-
posed to being concentrated along the symmetry axis in the center conductor of a
transmission line.
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Fig. 2.4 When a rotating disk is sandwiched between two semi-infinite plasma-filled cylindrical
waveguides in the presence of a uniform magnetic field, it behaves as a unipolar inductor. The
Faraday wheel drives current in the waveguide wall and a distributed return current flows in the
plasma (indicated by the broad arrows labeled I). The current supports a toroidal magnetic field,
Bφ , in a ω→ 0 shear Alfvén wave. The Faraday wheel radiates Alfvén waves in this configuration

In the plasma, Eρ and ρe are given by (2.98) and (2.99) respectively, just as in
the Faraday wheel. As with the transmission line circuit, current closure is accom-
plished by displacement current at the flow front as depicted in Fig. 2.5. In general,
vz, the velocity of the flow front, is not a constant, but depends on plasma parame-
ters. Thus we have

JρD =
−ΩDρ

4πc
B0vzδ

[∫ t

t0
vzdt − z

]
. (2.109)

Note that the m = 0 fast waves do not propagate in the cylinder as ω → 0 as
discussed in Sect. 2.9.2. The Alfvén wave by contrast, exists as ω → 0 from the
dispersion relation (2.82) and by (2.93b) and (2.96) it carries an Eρ and Bφ . The flow
can be interpreted as a step Alfvén wave in the ω → 0 limit. A formal construction
of the wind as a Fourier composition of oscillatory Alfvén waves, in the extremely
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Fig. 2.5 The circuit in Fig. 2.4 closes primarily with displacement current at the flow front. In order
to see this, note that the disk was attached to the pair of plasma-filled waveguides at some time,
t = t0 (say t = 0 for simplicity). At this time, the Faraday wheel begins to radiate shear Alfvén
waves into the waveguides. The wave fronts propagate with a velocity vz. At a time, t, a wave
front is

∫ t
0 vzdt displaced from the Faraday wheel.The change in Eρ across the flow front creates a

displacement current, JρD

magnetically dominated limit, is given in the appendix to this chapter. However, it
is important to note that the wind-front is complicated by fringing fields and inertial
terms. Thus, the wind-front requires a fast wave precursor in order to achieve all
the boundary and jump conditions. This illustrates a general principle that both the
compressive modes and the Alfvén mode polarizations are required to propagate
electromagnetic information in a plasma [78].

In order to solve for Bφ exactly in the cylinder is complicated by the effects of
plasma inertia. The flow front is not purely electrodynamic, but has inertia as well.
An inertial current exists in the flow front that torques the static plasma ahead of
the flow to achieve the value of uφ in the step wave downstream. We can solve the
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azimuthal momentum equation at the flow front to get the inertial current density,

Jρ = −cnµuφuz

B0
δ
[∫ t

t0
vzdt − z

]
. (2.110)

Using (2.98) and the conservation of current equation,

∇ ·J = − 1
4π

∂
∂ t

(∇ ·E) , (2.111a)

we have

∂Jz

∂ z
+

1
ρ
∂
∂ρ

(ρJρ) = −ΩDB0

2πc
vzδ
[∫ t

t0
vzdt − z

]
. (2.111b)

Note that the term on the right hand side of (2.111a) is the divergence of the dis-
placement current in (2.109). Inserting (2.110) into (2.111b) and integrating across
the flow front implies that

lim
z→vz(t−t0)

Jz = − 1
ρ
∂
∂ρ

(
ρnµuφuzc

B0
+
ΩDρ2

4πc
B0vz

)
, (2.112)

where vz =
(
uz
/

u0
)

. Ampere’s law applied to (2.112) yields

Bφ = −
(

4πnµuφuz

B0
+
ΩDρ

c
B0

vz

c

)
. (2.113)

The frozen-in condition can be written with the definition, vφ =
(
uφ
/

u0
)
, as

Bφ =
vφ −ΩDρ

vz
B0 . (2.114)

Solving (2.113) and (2.114) simultaneously yields at the flow front,

lim
z→vz(t−t0)

vφ =

(
1− v2

z
)
ΩDρ

M2 +1
, (2.115)

where M2 is the pure Alfvén number

M2 ≡ u2
z

U2
Ac2 ≡ 4πnµu2

z

B2
0

, and (2.116a)

U2
A ≡ B2

0
4πnµc2 . (2.116b)

Inserting this value of vφ back into (2.113) gives the toroidal magnetic field just
downstream of the wave front:
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lim
z→vz(t−t0)

Bφ = −ΩDρB0vz

c2

[
U2

Ac2 +u2
0

U2
Ac2 +u2

z

]

= Eρ
vz

c

[
U2

Ac2 +u2
0

U2
Ac2 +u2

z

]
. (2.117)

Equation (2.117) can be understood in the magnetically dominated case, U2
A 	 1.

The wind front moves at the intermediate speed of the plasma ahead of the wave
front (note, Bφ = 0 ahead of the wave front, so UI = cUA). Thus, by (2.82) and
(2.41) u2

z = c2U2
A at the flow front. Expanding (2.117) with u2

z
/

c2 	 1, at large
distances from the Faraday wheel we have

Bφ ≈ Eρ
vz

c

[
1+

c2 +u2
φ

2u2
z

]
≈ Eρc

vz
. (2.118)

This is the same result as in a split monopole MHD wind from a neutron star near
the equator [67]. The field aligned poloidal current far from the Faraday wheel in
(2.112) becomes

Jz = − 1
ρ
ΩDB0

4π
∂
∂ρ

[
U2

Ac2 +u2
0

U2
Ac2 +u2

z
ρ2 vz

c

]
≈ c2

vz
ρe . (2.119)

Equation (2.119) holds in the split monopolar pulsar wind near the equator as well
[67]. The charge density, ρe, in the waveguide is the analog of the Goldreich–Julian
[81] charge density, ρG−J , of pulsar physics. Similarly (2.119) is the same axial
current to charge ratio found for Alfvén waves in the cylinder (see 2.97b). This
strengthens the perception that the flow is a step Alfvén wave.

Integrating (2.119) over radius yields the total axial current in the waveguide

I = −ΩDB0R2

2
vz

c

[
U2

Ac2 +u2
0

U2
Ac2 +u2

z

]
≈−ΩDΦ

2π
c
vz

. (2.120)

The voltage drop across the magnetic field lines is the same as for the transmission
line

∆V = −ΦΩD

2πc
. (2.121)

Again, the Faraday wheel establishes the global potential, ∆V , and the current, (as
slightly modified by the

[
1−
(
vz
/

c
)2
](

c
/

vz
)

component from plasma inertia). This
close analogy to an MHD pulsar establishes the essential role of a unipolar inductor
in determining the current and the electrostatic potential in the wind by means of
Alfvén waves emitted from the stellar surface. It also illustrates how current clo-
sure is accomplished at the flow front primarily with displacement current with a
small amount of inertial current. The analogy to the pulsar magnetosphere requires
a source of plasma injection in order to be complete, since plasma flows axially as a
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result of Jρ êρ×Bφ êφ forces. As plasma flows away from the disk, it must be replen-
ished. The details of this mechanism determine the flow velocity at the disk surface
and is a boundary condition necessary for solving the axial momentum equation.

2.9.4.3 The Open Circuited Transmission Line

Consider a Faraday wheel that has been disconnected from the end of a coaxial
transmission line (spline) as indicated in the top view in Fig. 2.6. The circuit is open
and no current flows. The electrostatic field from the surface charge on the disk
terminates on the surfaces of the transmission line conductors. The voltage drop
from

∮
E ·d� = 0 exists entirely in the gap between the conductors and the disk,

∆Vgap = −ΩDΦ
2π

. (2.122)
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Fig. 2.6 The top of the figure shows a Faraday wheel that is physically disconnected from the pair
of semi-infinite transmission lines in Fig. 2.3. An electrostatic equilibrium forms. The static charge
distribution is indicated by the plus and minus signs on the conductors. Even though there is a
voltage drop across the magnetic field lines at the surface of the disk, no current flows. This is the
electrodynamic analog of an event horizon of a rotating black hole. At the bottom of the figure, the
gap is decreased and Egap ∼ 1

/
d. Eventually, for small enough d, Egap is large enough to create

sparking. The sparks represent electron motion in the gap in the direction of the arrows adjacent to
the e−s. The current in the spark gaps flows in the opposite direction to the arrows. This closes the
circuit and the Faraday wheel radiates ω → 0 TEM modes
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There is a voltage drop across the magnetic field lines at the disk surface of the
given by (2.100b), yet no current flows (i.e., a voltage drop across magnetic field
lines does not imply current flow). This situation will be shown in Chap. 4 to be
analogous to the electrodynamics of the event horizon.

Now let the transmission line approach the Faraday wheel as shown in the bottom
of Fig. 2.6. The electric field in the gap grows inversely with the gap height, d,

Egap = −ΩDΦ
2πd

. (2.123)

As the gap closes one expects arcing to occur as the electrostatic force will even-
tually overcome the forces that hold the electrons to the conductor. The spark gaps
close the circuit allowing current and TEM waves to be emitted from the unipolar
inductor as indicated in the bottom of Fig. 2.6.

2.9.4.4 The Open Circuited Plasma-Filled Waveguide

In analogy to the last section, we disconnect the Faraday from the plasma-filled
waveguide as illustrated at the top of Fig. 2.7. We hold the plasma within the waveg-
uide by a thin, low-loss dielectric sheet, such as a teflon sheet. Again, the voltage
drop occurs entirely within the gap and is given by (2.122). There is a voltage across
the magnetic field lines at the surface of the disk given by (2.100b). Yet, no current
flows, the circuit is open. We will show in Chap. 6 that the event horizon behaves
analogously to the Faraday wheel in this context. For incoming winds the horizon
can have a voltage drop across the magnetic field lines, but it is not a “battery-like
EMF” as it drives no current.

As the gap closes, as indicated at the bottom of Fig. 2.7, the electric field grows,
as in (2.123). Eventually, for small “d” spark gaps form and the circuit is completed.
This allows the Faraday wheel to behave as unipolar inductor and radiate Alfvén
waves into the plasma-filled cylinder. In Chap. 4, this will be contrasted to the event
horizon in which Egap stays well behaved.

2.10 Anisotropic Electrical Conductivity in Strong Magnetic
Fields

The plasma in black hole GHM are relativistic because they exist in magneti-
cally dominated magnetospheres. In the strong magnetic field domain of plasmas
(U2

A 	 1), the electromagnetic field can inject very strong forces per unit mass in
the tenuous plasma. This creates a potential for relativistic motion and waves in the
magnetosphere.

An important aspect of strong magnetic fields in a highly conductive tenuous
plasma is the anisotropic electrical conductivity tensor. The individual particles tend
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Fig. 2.7 The top of the figure shows a Faraday wheel that is physically isolated from the pair
of semi-infinite plasma-filled waveguides in Fig. 2.4. An electrostatic equilibrium is established.
Even though there is a voltage drop across B at the surface of the disk, no current flows. This is the
analog of the event horizon of a rotating black hole in the context of MHD winds. At the bottom
of the figure, the gap is decreased and Egap ∼ 1

/
d. Eventually, for small enough d, Egap is large

enough to create spark gaps. This closes the circuit and the Faraday wheel radiates ω → 0 Alfvén
waves. This property contrasts a laboratory conductor with the event horizon

to be threaded on the magnetic field lines in their gyro-orbits. They can slide along
the magnetic field lines freely and thus the electrical conductivity in this direction,
σ‖, is the same as for a nonmagnetized plasma. In the cross-field direction, it takes
particle collisions to knock the charges out of their gyro-orbits in order for a current
stream to cross the magnetic field. By the tenuous plasma/strong magnetic field
assumption, these collisions occur at a rate, νc, that is always much less than the
gyro-frequency:

ΩL =
qB
µc

, νc � |ΩL| , (2.124)

where q is the charge of the particle. Consequently, electrical conduction in the
cross-field direction, σ⊥, is greatly impeded. We demonstrate this for both positronic
and protonic plasmas in a two-fluid analysis.

We analyze the response of a resistive plasma to an imposed electric field in the
rest frame (i.e., a frame moving with the bulk velocity of the flow) of the plasma.
The analysis is performed with the aid of the equations of motion of the individual
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species of charge. We introduce electrical conductivity through a phenomenological
collision term n0νcµvD in the momentum equation, where vD is the drift velocity
between the two species,

vD ≡ v+ − v−
2

. (2.125)

Because of collisions, the proper electric field, E, is no longer exactly zero. Thus,
momentum equations become (compare to (2.76)),

n+µ+
d

dτ
u+ +∇P+ =

e
c

n+

[
E+

(v+ ×B)
c

]
−n+νcµvD , (2.126a)

n−µ−
d

dτ
u− +∇P− = −e

c
n−

[
E+

(v−×B)
c

]
+n−νcµvD . (2.126b)

In order to evaluate electrical conductivity, we ignore the ∇P term. Note that “e” is
the charge of a positron, or proton.

We can consider the current due to the motion of positive charges obtained from
the equation of motion (2.126a). Let z be along the magnetic field axis; then (2.126a)
yields the following matrix differential equation for the positive charge component
of current density, J+⎛

⎜⎜⎝
J̇x

J̇y

J̇z

⎞
⎟⎟⎠

+

=
(ωp)

2
+

4π

⎛
⎜⎜⎝

Ex

Ey

Ez

⎞
⎟⎟⎠+

⎛
⎜⎜⎝

−νc −Ω+
L 0

Ω+
L −νc 0

0 0 −νc

⎞
⎟⎟⎠

⎛
⎜⎜⎝

Jx

Jy

Jz

⎞
⎟⎟⎠

+

, (2.127a)

where (ωp)+ is the plasma frequency of the positive charges. The gyro frequency
Ω+

L is given by (2.124) where q is the positronic charge “e”. Similarly, the negative
charges produce a current density J− obtained from (2.126b),

⎛
⎜⎜⎝

J̇x

J̇y

J̇z

⎞
⎟⎟⎠

−

=
(ωp)

2
−

4π

⎛
⎜⎜⎝

Ex

Ey

Ez

⎞
⎟⎟⎠+

⎛
⎜⎜⎝

−νc −Ω−
L 0

Ω−
L −νc 0

0 0 −νc

⎞
⎟⎟⎠

⎛
⎜⎜⎝

Jx

Jy

Jz

⎞
⎟⎟⎠

−

. (2.127b)

The gyro frequency, Ω−
L , is given by (2.124) where q is now the electronic charge

“−e”.
Solving (2.127a) by matrix techniques yields the following expressions:

J+
x (τ) =

(
ω2

p
)
+

4π
[
ν2

c +
(
Ω+

L

)2
] {[νc + e−νcτ

(
Ω+

L sinΩ+
L τ−ν cosΩ+

L τ
)]

Ex

+
[
−Ω+

L + e−νcτ
(
Ω+

L cosΩ+
L τ+νc sinΩ+

L τ
)]

Ey
}

, (2.128a)
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J+
y (τ) =

(
ω2

p
)
+

4π
[
ν2

c +
(
Ω+

L

)2
] {[Ω+

L − e−νcτ
(
Ω+

L cosΩ+
L τ+ν sinΩ+

L τ
)]

Ex

+
[
νc + e−νcτ

(
Ω+

L sinΩ+
L τ−νc cosΩ+

L τ
)]

Ey
}

, (2.128b)

J+
z (τ) =

(
ω2

p
)
+

4πνc

[
1− e−νcτ

]
. (2.128c)

At late times (τ → ∞) a steady state current flow is attained in the plasma as a
consequence of (2.128), from the motion of positive charge. This can be written as
an Ohm’s law for positive charge,

Ji
+ = σ ik

+ Ek , (2.129a)

σ ik
+ =

(
ω2

p
)
+

4π
[(
Ω+

L

)2 +ν2
c

]

⎡
⎢⎢⎢⎣

νc −Ω+
L 0

Ω+
L νc 0

0 0
[(
Ω+

L

)2 +ν2
c

]/
νc

⎤
⎥⎥⎥⎦ . (2.129b)

Similarly, one finds from integrating (2.127b) as τ→∞, a current contribution from
negative charges

Ji
− = σ ik

−Ek , (2.129c)

σ ik
− =

(
ω2

p
)
−

4π
[(
Ω−

L

)
+ν2

c
]

⎡
⎢⎢⎢⎣

νc −Ω−
L 0

Ω−
L νc 0

0 0
[(
Ω−

L

)2 +ν2
c

]/
νc

⎤
⎥⎥⎥⎦ . (2.129d)

The off diagonal terms represent currents due to the charges being in gyro-orbits.
Note that the positive and negative charges orbit in the opposite sense, so these
currents are of opposite sign.

The total current density is given by

J = J+ +J− , (2.130a)

and the total conductivity tensor is therefore

σ ik = σ ik
+ +σ ik

− . (2.130b)

From (2.129), for a positronic plasma, the conductivity tensor is
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σ ik =
(ωpe)

2

4πνc

⎡
⎢⎢⎣

[
1+Ω 2

e
/
ν2

c
]−1 0 0

0
[
1+Ω 2

e
/
ν2

c
]−1 0

0 0 1

⎤
⎥⎥⎦ , (2.130c)

Ωe ≡−Ω−
L (2.130d)

Note that due to the equal electron and positron masses, the contribution to the
currents from the gyro-motion cancel. For a protonic MHD plasma, the current is
carried primarily by the lighter electrons, so (2.129) and (2.130b) imply

σ ik ≈

(ωpe)
2

4πνc

⎡
⎢⎢⎢⎢⎣

[
1+Ω 2

e
/
ν2

c
]−1 +

(
Ωe
/
νc
)[

1+Ω 2
e
/
ν2

c
]−1 0

−
(
Ωe
/
νc
)[

1+Ω 2
e
/
ν2

c
]−1 [

1+Ω 2
e
/
ν2

c
]−1 0

0 0 1

⎤
⎥⎥⎥⎥⎦ .

(2.130e)

Note that the parallel conductivity along a magnetic field line is the same as in a
nonmagnetic plasma,

σ‖ =
(ωpe)

2

4πνc
, (2.131)

where ωpe is the electron plasma frequency,

(ωpe)
2 =

4πnee2

µe
. (2.132)

The electrical conductivity across the magnetic field is given by (2.130) as

σ⊥ =
(ωpe)

2 νc

4π (ν2
c +Ω 2

e )
=

σ‖[
1+Ω 2

e
/
ν2

c
] . (2.133)

For a tenuous plasma in a strong magnetic field ν2
c � (Ωe)

2, so σ⊥ � σ‖.
In order to illustrate the poor electrical conductivity in the cross-field direction

in a strong magnetosphere filled with tenuous plasma, we can maximize σ⊥ with
respect to νc (in cgs units),

νc =Ωe , (2.134a)

σ⊥(max) =
(ωpe)

2

8πΩe
=

1
2

neec
B

≈ 7
ne

B
. (2.134b)
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The magnetically dominated assumption requires

U2
A =

(Ωe)
2

(ωpe)
2 	 1, positronic plasma; (2.135a)

U2
A =

(Ωe)
2

(ωpi)
2 	 1, protonic plasma , (2.135b)

where ωpi is the proton plasma frequency defined as in (2.132). Given that the max-
imum magnetic field strengths in a plasma-filled magnetosphere around a 109 M�
black hole are � 104 G in an astrophysical context (see Chap. 10 for a discussion),
(2.134) and (2.135) imply that

σ⊥(max) � 1010s−1 (positronic plasma), (2.136a)
σ⊥(max) � 107s−1 (protonic plasma). (2.136b)

The value in (2.136b) is smaller because the magnetically dominated condition low-
ers n in a protonic plasma by three orders of magnitude. The maximal achievable
σ⊥ in a black hole magnetosphere is similar to that of pure germanium or silicon
at room temperature. Thus, the magnetic field acts like an insulator for electrical
currents in the cross-field direction.

This is an important aspect of magnetically dominated magnetospheres that is
a large distinction to the unipolar induction of the Faraday wheel described in the
last section. The magnetic field does not allow strong cross-field currents to flow in a
near perfect MHD plasma. Strong cross-field currents can flow in a unipolar inductor
because the large number densities in the conductive medium reverse the inequality
in (2.135b). This also allows νc 	 (Ωe)

2 and σ⊥ ≈ σ‖ as given by (2.131). A large
ne implies large values of (ωpe)

2 in (2.132), which allows σ‖ to be large.
In order for even a modest cross-field current to flow in a magnetically domi-

nated magnetosphere requires strong dissipation. In order to see this, note that the
effective collision frequency, νc, can be increased in a tenuous plasma by plasma
wave scattering produced in a dissipative plasma. A larger value of νc increases
σ⊥ as noted in (2.134). Secondly, dissipation increases µe which is essentially the
relativistic inertia of the plasma. This makes the flow less magnetically dominated
through (2.135) since (ωpe)

2/(Ωe)
2 ∼ µe

/
me. This also increases σ⊥ in (2.133) as

the “heavier” plasma can cross the magnetic field more easily as the large collision
frequency, νc knocks the plasma out of its gyro-orbits. The current can flow, but
σ⊥ is still much less than σ‖ and this is not like the small Ohmic dissipation in a
Faraday wheel.

2.11 High Frequency Waves in Protonic Plasmas

In Sect. 2.8 we restricted the discussion of high frequency waves to positronic plas-
mas. In this section, we justify the generality of the results of Sect. 2.8 to protonic
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plasmas in the range of frequencies that are relevant to the causal structure of the
GHM black hole magnetospheres. In particular we show that unless ω ∼ Ωi, (the
protonic gyro frequency).

Ωi =
eB

mpc
, (2.137)

then the fast magnetoacoustic wave has negligible electrostatic polarization.
In order to modify the analysis of the positronic two fluid analysis to protonic

fluids we must substitute the Ohm’s law of (2.77a) with the more complicated sum
of (2.127a) and (2.127b) in the limit νc → 0 (i.e., σ‖ →∞). The single fluid approx-
imation breaks down at high frequencies because protons respond differently to an
electric field than electrons because of their larger inertia. At “high frequencies”
collisions are not frequent enough to couple the electrons and protons and charge
neutrality cannot be maintained. A charge separation can occur in the magneto-
acoustic waves and an analysis is required to describe quantitatively what is meant
by “high frequency.”

We proceed as in Sects. 2.3 and 2.8 using the Ohm’s law in (2.127). This is ex-
panded as in Sect. 2.3 with the aid of (2.32) and (2.36) which are valid in a warm
plasma. We get a very complicated dispersion relation in (2.138k),

Ai jE j = 0 , (2.138a)

Axx =

(
ω2
/
ωpe
)2 −1−U2

A sin2 θ[
1− c2k2

/
ω2
] , (2.138b)

Axy = − iωU2
A sinθ
Ωi

, (2.138c)

Axz = U2
A sinθ cosθ , (2.138d)

Ayx =
iωU2

A sinθ
Ωi

, (2.138e)

Ayy =
ω2

(ωpe)
2 +

ω2

c2k2 −ω2 −U2
A

[
cos2 θ +

sin2 θ
1− c2

Sk2
/
ω2

]
, (2.138f)

Ayz = − iωU2
A cosθ
Ωi

, (2.138g)

Azx =
U2

A sinθ cosθ[
1− c2k2

/
ω2
] , (2.138h)

Azy =
iωU2

A cosθ
Ωi

, (2.138i)

Azz =
ω2

(ωpe)
2 +

ω2

c2k2 −ω2 −U2
A cos2 θ , (2.138j)

detA = 0 . (2.138k)
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Note that in the limit ω
/
Ωi → 0, (2.138) yields the positronic high frequency

dispersion relation (2.78). Also in the subrelativistic limit, U2
A � 1,ω2

/
c2k2 � 1,

with (ωpe)
2 	 ω2, one finds the well known dispersion relation from (2.138), [73],

[
ω4

k4 − ω2

k2

(
c2

S + c2U2
A
)
+ c2

Sc2U2
A cos2 θ ]

][
ω2

k2 − c2U2
A cos2 θ

]

−
[
ωU2

A
Ωi

]2 [ω2

k2 − c2
S

]
c4 cos2 θ = 0 . (2.139)

The charge density in the wave ∼ k ·E∼ Ex. The imaginary, off diagonal terms in
(2.138) couple the magneto-acoustic modes to Ex and hence create an electrostatic
polarization. However, these terms ∼

(
ω
/
Ωi
)
. Consider the typical black hole mag-

netospheric parameters for an AGN central engine model (as discussed in relation to
(2.136) and detailed in Chap. 10), M ≈ 109 M�,B∼ 103 G−104 G. This implies that

Ωi > 3x107 s−1 , (2.140a)
ΩH ∼ 10−4 s−1 . (2.140b)

We discussed in Sect. 2.9 that the charge separation in a magnetosphere is related to
the rotation rate of the magnetic field (see (2.121) for example). The relevant rotation
rates for a black hole magnetosphere are less than ΩH and therefore we expect
that low frequency modes ω ∼ ΩH are needed to establish the global electrostatic
potential. For these modes (ω

/
Ωi) ∼ 10−12. Consequently, even though a charge

separation can exist in a high frequency protonic fast wave, these modes play no
part in determining the electrostatic potential in a black hole magnetosphere.

The analysis in this section is largely pedantic as it is generally assumed that
positronic plasmas are common in the high energy environment of the black hole
central engine of an AGN. This brief discussion of high frequency waves in protonic
plasmas was included mainly for completeness and to strengthen our understanding
MHD causality in later chapters.

2.12 Longitudinal Polarized MHD Discontinuities

To this point, the discussion of wave properties has been restricted to short wave-
length 1-D waves in a homogeneous media. As such, the conclusions drawn do
not necessarily follow for long wavelength modes in an inhomogeneous magneto-
sphere, nor for higher dimensional wavefronts. A more general technique that is
valid irrespective of spatial inhomogeneities involves the propagation of abrupt dis-
continuities of MHD parameters, or step waves. These are the basic building blocks
of perfect MHD simulations that are based on Riemann solvers. In this section, we
show that one result from the oscillatory solutions remains valid: the Alfvén mode,
alone, is responsible for charge propagation in the magnetically dominated limit. In
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this limit, it is equivalent to a pure charge discontinuity that propagates parallel to
the magnetic field at the pure Alfvén speed, UA.

Perfect MHD discontinuities are solved for by considering the continuity of the
stress–energy tensor, T µν , across the wavefront. Since ultimately, we are interested
in the magnetically dominated regime and relativistic waves in the context of black
hole magnetospheres, the calculation is performed in the cold limit of perfect MHD
(thermal energy density is small compared to the magnetic energy density). The
calculations are performed in the frame of reference of the propagating wavefront.
Let x be the local normal coordinate to the wavefront and the upstream magnetic
field, B is in the x-y plane and z lies in the wavefront surface. All that needs to
be considered in order to determine the desired results is mass conservation, the
frozen-in condition, which are

nuxu0 = constant , E+
1
c

v×B = 0 , (2.141)

the antisymmetric components of Maxwell’s equations

Fαβ;γ +Fγα;β +Fβγ;α = 0 , (2.142)

and the continuity of one component of the stress–energy tensor, T xz,

nµuxuz − 1
4π

(ExEz +Bx
uBz) = 0 , (2.143)

in which all of the quantities are evaluated downstream unless there is a subscript
“u” and µ is the specific enthalpy (note that by (2.141), Ex

u = 0). The continuity
of Bx used in (2.143) follows from the ∇ ·B = 0 condition in (2.142). A tremen-
dous simplification occurs in (2.142) at the step wavefront, since to lowest order, all
the singular terms must cancel (surface terms like delta functions), thus the nor-
mal covariant derivative does not depend on the connection coefficients and one has
continuity of Ey and Ez at the wavefront, or

∂Ey

∂x
=
∂Ez

∂x
= 0 , (2.144)

across the wavefront. Inserting (2.141) and (2.144) into (2.142), one gets
(

(ux)2
u

[
nu

n
+

(by
u)2

4πnuµc2

]
− (bx

u)
2

4πnuµ

)
Ex = 0 , (2.145)

written in terms of the field in the plasma rest frame, b. For nu = n, ux
u is the Alfvén

or intermediate wave speed of (2.41). Taking the limit of zero mass density, (2.145)
has two solutions,

v ≡ ux
u

u0
u

= c cosθ ,or Ex = 0 , (2.146)
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where θ is the angle between b and the wave normal in the plasma rest frame and v is
the force-free value of the Alfvén speed in a proper frame, i.e., the zero mass limit
of (2.42). Thus by (2.146), in the magnetically dominated limit, a perfect MHD
discontinuity either travels at the Alfvén speed and transports E‖, or it carries no
longitudinal polarization, E‖, or surface charge. In the magnetically dominated limit,
only the Alfvén discontinuity can transport electric charge in a magnetosphere.

2.13 What is Important About This Chapter?

The primary result of this chapter is that the Alfvén wave has an electrostatic po-
larization and can propagate field aligned currents. The simple fast wave has no
electrostatic polarization and cannot propagate field aligned currents. This result
was derived for both high and low frequency waves in a perfect MHD plasma as
well as in a resistive plasma. The conclusions drawn from these simple wave cal-
culations were overstated in the first edition of this book. The properties of the fast
mode do not necessarily follow in higher dimensions and in inhomogeneous media.
In general, nonlinear fast waves in magnetically dominated magnetospheres, such
as an abrupt strong discontinuity, might in principle transport current changes, but
not physical charge discontinuities as shown in Sect. 2.12. They do not carry any
information on the longitudinal polarization. If one is looking to more complicated
geometries as an alternative to the simple wave analysis in this chapter, then the
wavefronts are complicated and all the polarizations of the electromagnetic field
are required to propagate changes in the current and the charge density. The im-
portant point is that in general both the compressive and the Alfvén MHD modes
are required. The conclusion that the fast mode was not involved in establishing
the Goldreich–Julian charge density and field aligned currents in an MHD magne-
tosphere was overstated and was off the point in the first edition. The point of this
chapter is not that fast waves are incapable of affecting the wind parameters. Con-
versely, the causality arguments in this chapter are based on the notion that Alfvén
mode must figure prominently in the determination of the global electrostatic po-
tential and the field aligned poloidal currents that are created in a black hole driven
plasma wind. The key role of the Alfven mode in the determination of the electro-
magnetic parameters in a relativistic jet, dominated by Poynting flux is demonstrated
numerically in the simulations that are described in Sect. 11.2. In those simulations,
a relativistic jet is driven from the environs of the black hole entirely with Alfvén
and slow modes, no fast modes.

To illustrate the relevance of these calculations and discussions to magneto-
spheric physics, an example of a plasma-filled waveguide terminated by a unipolar
inductor was introduced in Sect. 2.9. This example is used to illustrate the role of
a unipolar inductor in a relativistic pulsar MHD wind theory. The wind equations
cannot be used to determine the wind constants such as the electrostatic potential
and field aligned current. These are established by Alfvén wave radiation from a
neutron star that behaves as a unipolar inductor. By contrast, we use the example of
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a Faraday wheel that is disconnected from the end of a plasma-filled waveguide to
elucidate the electrodynamic properties of the event horizon in the context of MHD
winds.

2.14 Appendix. The Role of the Alfvén Wave in the Plasma-Filled
Waveguide

In this appendix, it is shown by explicit construction that the propagating plasma
discontinuity in the Faraday wheel terminated plasma-filled waveguide of Sect. 2.9.4
can be described almost entirely as a pure Alfvén wave packet in the magnetically
dominated limit. This proof is accomplished by means of the well known Fourier
decomposition of a step wave as a superposition of oscillatory waves It is found
that the Alfvén wave packet does indeed transport field aligned currents and charge,
not just oscillatory perturbations. In the first subsection, we compare and contrast
a wave packet (a step wave) created from a linear superposition of the previously
calculated oscillatory Alfvén modes in Sect. 2.9.3 to the radiation emanating from
the Faraday wheel (the nature of this radiation was derived previously in terms of a
formal MHD wind solution in the waveguide in Sect. 2.9.4). Finally, it is noted that
the depiction of the wind as a pure Alfvén step wave becomes increasingly more
accurate as one passes to the force-free limit.

2.14.1 Constructing Wave Packets

We can construct wave packets of the oscillatory solutions in Sect. 2.9.3 by taking
Fourier integrals. First we need to explicitly construct the Alfvén wave oscillatory
solutions.

2.14.1.1 The Electric Field

From (2.93b), the radial electric field in an axisymmetric Alfvén wave that is
propagating within a cylindrical waveguide is arbitrary and is determined by the
boundaries (the field lines can shear relative to each other, hence these modes
are often called “shear Alfvén waves”). Considering the frozen-in condition within
the Faraday wheel and the continuity of the tangential electric field at the Faraday
wheel/plasma interface let us choose the radial electric field in the Alfvén wave to
be given by (2.98):

Eρ = −ΩDρ
c

B0ei(kzz−ωt) , (2.147)
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i.e., the Faraday wheel boundary determines Eρ . The other electric field components
are given by (2.86c) and (2.93a) as

Eφ = 0 , (2.148)
Ez = 0 . (2.149)

2.14.1.2 The Currents

From (2.141)–(2.143) and Gauss’ law, the charge density is;

ρe = −ΩDB0

2πc
ei(kzz−ωt) . (2.150)

From the Alfvén wave dispersion relation, (2.82), and the frozen-in form of the
momentum equation, (2.86a), the cross-field current density is

Jρ = i
vIkzΩDρ
4πU2

Ac
B0ei(kzz−ωt) , (2.151)

where vI is the intermediate three speed and UA is the pure Alfven speed. From the
law of current conservation,

∂ρe

∂ t
+∇ ·J = 0 , (2.152)

combined with (2.150) and (2.151) yields the axial current density:

Jz =
ρe

vI
c2 = −ΩDB0c

2πvI
ei(kzz−ωt) . (2.153)

2.14.1.3 The Magnetic Field

Using the value of the axial current in (2.152) in Ampere’s law yields the toroidal
magnetic field strength:

Bφ = −B0ΩDρ
vI

ei(kzz−ωt) . (2.154)

The other components are given by (2.92a) and (2.96):

Bz = 0 , (2.155)
Bρ = 0 . (2.156)

2.14.1.4 The Step Wave

We are interested in the step wave. For the Alfvén wave, one can use the dispersion
relation (2.82) in the cylinder to write,

ei(kzz−ωt) = e−ikz(vIt−z) . (2.157)
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The step function is given by,

Θ(vIt − z) = − 1
2πi

∫ +∞

−∞

e−ikz(vIt−z)dkz

kz + iε
. (2.158)

We construct a wave packet of Alfvén waves,Ψ , with a spectral amplitude, A(kz),

Ψ =
∫ +∞

−∞
A(kz)ψ(kz)dkz , (2.159)

A(kz) = − 1
(2πi)(kz + iε)

, (2.160)

where ψ(kz) is one of the oscillatory m = 0 wave function components in (2.147)–
(2.156) and ε is an arbitrarily small positive number in the usual sense. The wave
packet of oscillatory solutions with field and current components given by (2.147)–
(2.156) and spectral amplitude given by (2.160) has the following field and current
distributions (for the sake of demonstrating equivalence, the corresponding equa-
tion number from Sect. 2.9.4 that were derived by the MHD wind calculation in the
cylinder is placed on the right hand side of the equals sign in these relations):

Eρ = −ΩDρ
c

B0Θ(vIt − z) = (2.98) , (2.161)

Eφ = 0 , (2.162)

Ez = 0 , (2.163)

ρe = −ΩDB0

2πc
Θ(vIt − z) = (2.99) , (2.164)

Jρ =
vIΩDρ
4πU2

Ac
B0δ (vIt − z) , (2.165)

Jz =
ρe

vI
c2 = −ΩDB0c

2πvI
Θ(vIt − z) = (2.119) , (2.166)

Bφ = −B0ΩDρ
vI

Θ(vIt − z) = (2.118) , (2.167)

Bz = 0 , (2.168)

Bρ = 0 . (2.169)

These quantities agree with the downstream state of the plasma that was found near
the flow front in Sect. 2.9.4 in the limit that vz = vI . Notice that Jρ vanishes down-
stream of the wavefront and only has a surface component on the wavefront as it
does in (2.110).
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2.14.2 Physical Discussion

From (2.164) and (2.166), the Alfvén wave packet actually transports changes in
the charge and field aligned current. The solution is not exact. There are errors as-
sociated with the small inertial terms in the magnetically dominated limit. At the
wavefront, the relativistic MHD shock equations do not solve exactly. These equa-
tions are the conservation of the axial components of the stress energy tensor across
the discontinuity in the frame of the wavefront. Pressure balance (magnetic pressure
from the toroidal magnetic field in the frame of the wavefront) can not be achieved
because the Alfvén wave, unlike the fast wave, has no compressive properties. The
errors in the stress–energy balance can be found in the frame of the propagating
discontinuity by using (2.161) and (2.167) to compute the proper toroidal magnetic
field. The errors in the shock equations are on the order of (ΩDρU−1

A )2. This is
biquadratic in two small quantities: ΩDρ/c � 1 by construction and by the mag-
netically dominated condition, cU−1

A � 1. The violation of the shock relations are
therefore a very small second order effect in the magnetically dominated limit. No-
tice that the errors vanish completely in the force-free limit as the Alfvén three
speed approaches the speed of light. In magnetically dominated perfect MHD, these
small errors are accounted for by a fast switch-on shock that creates a Bρ and an Eφ

downstream of the shock front. This is an MHD precursor, an infinitesimal distance
upstream, to the Alfvén rotational discontinuity at the terminus of the Alfvén step
wave. As demonstrated by explicit construction above, it is the Alfvén rotational
discontinuity that imprints the charge and field aligned current on the waveguide
plasma. The interpretation of the waveguide wind solution as an Alfvén wave is
exact in the force-free limit and is extremely accurate to first order in the magnet-
ically dominated MHD limit. However, in relativistic MHD it is important to note
that both fast and Alfvén modes are typically required to match all the jump and
boundary conditions at an electromagnetic discontinuity [78].



Chapter 3
Particle Trajectories in the Ergosphere

3.1 Motivation

We discussed in Sect. 1.4 that any energy extraction process involving a rotating
black hole requires the absorption of matter with a negative energy, ω , as measured
from asymptotic infinity. The preparation of ω < 0 matter must occur within the
ergosphere. This is related to the fact that the outer boundary of the ergosphere, the
stationary limit at r = rs occurs when ∂/∂ t changes from a timelike vector field to
a spacelike vector field (see definition of ω in (1.36a)). This change happens when
gtt switches sign. By (1.24a) this condition is

rs = M +
√

M2 −a2 cos2 θ . (3.1)

Since any energy extracting process creates negative energy matter in the
ergosphere, it is important to understand particle trajectories in this region with
or without applied forces.

3.2 Coordinate Systems and Frames

It is useful to have different methods to describe the dynamics in general relativity
in order to elucidate the physical meaning. For example, a global coordinate system
such as the Boyer–Lindquist coordinates is invaluable for defining conserved quanti-
ties and the global energetics of an interaction. The Boyer–Lindquist coordinates are
particularly natural because as r → +∞ they reduce to standard Minkowski space–
time spherical coordinates. Thus, they represent how a distant observer would view
the black hole. They are not very useful for understanding the nature of the physical
interaction since they are not orthonormal or even orthogonal because of space–time
curvature. Furthermore, the four velocity of the distant observers, ∂/∂ t, is spacelike
within the ergosphere. This makes interpretations within standard physics of the
earth very confusing.

B. Punsly, Black Hole Gravitohydromagnetics, 2nd. ed., 79
Astrophysics and Space Science Library 355, doi: 10/1007/978-3-540-76957-6 3,
c© Springer-Verlag Berlin Hiedelberg 2008



80 3 Particle Trajectories in the Ergosphere

In practice, it is more useful to calculate in an orthonormal frame and then piece
together the global geometry. The power of this is that one can exploit the equiva-
lence principle and use Lorentz boosts to transform to and from freely falling frames
where the physics is simplified because the connection coefficients vanish at the
origin of these local frames. In order to fully capitalize on this property of psuedo-
Riemannian manifolds, we want to find a global orthonormal frame field that has
a timelike direction that is hypersurface orthogonal. Mathematically, this condition
for a frame field, ê0, êi (i = 1,2,3) can be expressed in terms of the basis covectors
ω0, ω i by dω ∧ω = 0. This is equivalent to being able to find a time coordinate
ω0 orthogonal to a spacelike 3-surface spanned by ê1, ê2, and ê3. This procedure
is known as foliating space–time with a family of 3 dimensional spacelike hyper-
surfaces. Thus, the local physics in an orthonormal frame can be pieced together to
give the global physics in Boyer–Lindquist coordinates. The calculational process
goes as follows:

1. Compute special relativistic physics in a frame (that is sometimes chosen to be
instantaneously at rest with respect to a local orthonormal frame).

2. Use special relativistic transformations to find physics in local orthonormal
frames.

3. Using the foliation of space–time in the orthonormal frame field yields physics
in the global Boyer–Lindquist coordinates.

For most physical processes the calculational scenario in steps 1-3 is justified and
will be exploited throughout the text.

The most useful hypersurface orthogonal frames are clearly ones defined at a
constant r coordinate. An example of such a frame field are the ZAMO frames
introduced in Sect. 1.4. They have zero angular momentum about the symmetry
axis of the hole, m, as defined in (1.36b). They are the analog of static frames in the
Schwarzschild geometry. The zero angular momentum condition requires that they
rotate with an angular velocity as viewed from asymptotic infinity, Ω , given by

dφ/dt =Ω = −gφ t/gφφ . (3.2)

The ZAMO basis vectors are determined by the transformation
[

ê0

êφ

]
=

[ ∣∣gtt −Ω 2gφφ
∣∣−1/2 Ω

∣∣gtt −Ω 2gφφ
∣∣−1/2

0 1/
√gφφ

][
ẽt

ẽφ

]
, (3.3a)

êr =
(
∆
ρ2

)1/2

ẽr =

(
∆ 1/2

ρ2

)
∂
∂ r

, (3.3b)

êθ =
(

1
ρ

)
ẽθ =

(
1
ρ

)
∂
∂θ

, (3.3c)

where we will designate Boyer–Lindquist evaluated quantities by tildes throughout
the remainder of the text.
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The basis covectors are[
ω0

ωφ

]
=

[ ∣∣gtt −Ω 2gφφ
∣∣1/2 0

−Ω√gφφ
√gφφ

][
dt

dφ

]
, (3.4a)

ωr =
(
ρ2

∆

)1/2

dr ,

ωθ = ρ dθ . (3.4b)

The gravitational redshift of the ZAMO frames as viewed from asymptotic infin-
ity is a very useful quantity, α , called the lapse function in [80]:

α =
∣∣gtt −Ω 2gφφ

∣∣1/2
=
∆ 1/2 sinθ
√gφφ

. (3.5a)

Note that

lim
r→∞

α = +1 , (3.5b)

lim
r→r+

α = 0 . (3.5c)

Consequently, α is a valuable dimensionless parameter for expanding quantities in
the vicinity of the event horizon, α � 0.

The ZAMOs are not inertial observers (otherwise the space–time would be flat).
The acceleration, aµ , is found in [72] to be

aµ =
1
α

∂
∂Xµ (α) . (3.6)

One of the computational advantages of the ZAMO orthonormal frame is that it
is defined only up to a rotation in the (r,θ) plane. In the study of winds it is useful
to define a rotated ZAMO basis in which the unit vector ê1 is parallel to the poloidal
component of the magnetic field, BP. In terms of the Maxwell tensor in the ZAMO
frames,

B1 ≡ BP = F2φ , and B2 = Fφ1 = 0 . (3.7)

The basis vectors in the (r,θ) plane become
[

ê1

ê2

]
=

1
|BP|

[
Fθφ Fφr

−Fφr Fθφ

][
êr

êθ

]
. (3.8a)

Using Br = Fθφ , and Bθ = Fφr the basis covectors in the rotated ZAMO frame are

(note: BP =
√

(Bθ )2 +(Br)2 )
[
ω1

ω2

]
=

1
|BP|

[
Br Bθ

−Bθ Br

][
ωr

ωθ

]
. (3.8b)

This basis essentially reduces the dimensionality by one in many calculations.
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3.3 Geodesic Motion

It is of interest to understand the concept of the natural timelike trajectories of the
Kerr space–time background (the geodesics) in order to understand the effects of
external forces. Carter in [82] solved the geodesic equation in the Kerr space–time,

uαuβ ;α = 0 . (3.9)

He found four constants of motion, ω and m, the rest mass µ defined in terms of
the four momentum,

PµPµ = −µ2 , (3.10)

and a fourth constant K called “Carter’s fourth constant of motion,” a general rela-
tivistic analog of the total angular momentum of the trajectory. Defining the affine
parameter, λ , in terms of proper time τ as τ = µλ , Carter’s equations are

ρ2
(

dt
dλ

)
= −a

(
ωasin2 θ −m

)
+
[

r2 +a2

∆

]
P , (3.11a)

ρ2
(

dr
dλ

)
= ±

√
R , (3.11b)

ρ2
(

dφ
dλ

)
= −a

(
ωa−m/sin2 θ

)
+aP/∆ , (3.11c)

ρ2
(

dθ
dλ

)
= ±Θ , (3.11d)

Note that

P = ω
(
r2 +a2)−ma , (3.11e)

R = P2 −∆
(
µ2r2 +K

)
, (3.11f)

Θ = K− (ωa−m)2 − cos2 θ
[
a2 (µ2 −ω2)+m2/sin2 θ

]
. (3.11g)

The signs chosen for (3.11b) and (3.11d) are independent.
In general, (3.11) is not of much interest in terms of an interaction of significance

in the ergosphere. However, geodesics can be used to approximate any trajectory lo-
cally (i.e., like approximating a curve in Euclidean space by many short segments).
Alternatively, one can describe a trajectory by (3.11) with ω , m, and K functions in-
stead of constants. The timelike geodesic equations (3.11) can be used to understand
non-geodesic accelerating trajectories.

Note that if ω �= ΩHm/c, one can approximate the geodesics near the horizon
to O(α2) in terms of the ZAMO four momentum using (3.11). Using geometrized
units and c = 1 in the following as r → r+, an ingoing trajectory has
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P0 ≈
[
ω
(
r2 +a2

)
ρ∆ 1/2

][
1− ∆a2 sin2 θ

2(r2 +a2)2

]

−
[

ma
ρ∆ 1/2

][
1−

∆
(
ρ2 +(1/2)a2 sin2 θ

)
(r2 +a2)2

]
, (3.12a)

Pr ≈− 1
ρ∆ 1/2

[
ω
(
r2 +a2)−ma−

∆
(
K2 +µ2r2

+
)

2
[
ω
(
r2
+ +a2

)
−ma

]
]

, (3.12b)

Pφ ≈ mρ
(r2 +a2)sinθ

, (3.12c)

Pθ ≈ 1
ρ

P̃θ . (3.12d)

The last equation is merely a consequence of the value of Carter’s fourth constant
of motion,

K =
(

P̃θ
)2

+(ωasinθ −m/sinθ)2 +µ2a2 cos2 θ . (3.13)

The restriction ω �= mΩH/c is not really a restriction for geodesic motion since
by (3.8) and (1.26)

u0 =
(ω−Ωm/c)

α
, (3.14a)

uφ = m/
√

gφφ , (3.14b)

βφ =
uφ

u0 =
cα

(ΩH −Ω)√gφφ
, if ω = mΩH/c . (3.14c)

Expanding Ω , using the definition (3.2) and the metric (1.24a), gives

Ω ≈
[

a
r2 +a2

][
1− ∆ρ2

(r2 +a2)2

]
=ΩH

(
1+O(α2)

)
. (3.15)

Using this expansion in (3.14c) yields

βφ ∼ α−1 , if ω = mΩH/c . (3.16)

Yet
∣∣βφ ∣∣< 1 since u ·u = −1 for timelike trajectories. Thus, the restriction ω �=

mΩH/c does not affect the asymptotic trajectories near the horizon in (3.12).
Similarly, Carter’s equations (3.11) imply the completely general ingoing

geodesic three-velocity near the horizon evaluated in the stationary frames is given
by

dr
dt

≈ −∆
r2 +a2

[
1+

∆
(
ωa2 sin2 θ −ma

)
P(r2 +a2)

−
∆
(
K+µ2r2

+
)

2P2

]
, (3.17a)
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dφ
dt

≈ a
r2 +a2

[
1−

∆
(
ωρ2 −masin2 θ

)
P(r2 +a2)

]
=ΩH

(
1+O(α2)

)
, (3.17b)

dθ
dt

≈ ±
√
ΘP∆

r2 +a2 , (3.17c)

dt
dτ

∼ α−2 . (3.17d)

Note that we can consider the physical absurdity of an outgoing particle trajec-
tory near the horizon by evaluating the energy in a freely falling frame. Define the
freely falling frame to have quantum numbers:

ω̄ = µ , (3.18a)

m̄ = 0 , (3.18b)

K = ω̄a2 sin2 θ +µ2a2 cos2 θ = µ2a2 , (3.18c)

ūµ = α−1
(

ê0 +
√

1−α2êr

)
, (3.18d)

then (3.11) defines a particle falling inward from rest at infinity along radial trajec-
tories. The four velocity tangent to this trajectory is ūµ . The energy of a particle as
viewed in this frame is Pu = ūµPµ . For an outgoing trajectory near the horizon, the
proper frame energy is

Pu ∼r→r+
2(ω−mΩH)

α2 . (3.19)

Thus, it requires a divergently large energy in a proper frame near the horizon for a
particle to appear outgoing globally.

An interesting consequence of (3.11) is (3.17b), all ingoing geodesics approach
the angular velocity of the horizon as r → r+. This is shown in the results of Johnston
and Ruffini [83] that are reproduced in Figs. 3.1 and 3.2. The geodesics rotate faster
and faster in the sense of the hole as the horizon is approached, namely as dφ/dt
increases from 0 to ΩH . Most of the increase occurs close to the hole in the ergo-
sphere. This is a manifestation of the dragging of inertial frames and is an important
concept for understanding the ergospheric interaction in a plasma-filled magneto-
sphere. The natural state of an inflowing plasma (geodesic motion) is to rotate faster
and faster until dφ/dt →ΩH near the horizon.

3.4 The Momentum Equations of a Magneto-Fluid

In this section a tractable version of the momentum equations of a fluid is motivated.
It would be desirable to find the four velocity in complete generality in the ergo-
sphere for all possible plasma states. However, many plasma interactions are highly
nonlinear kinetic effects that produce phenomena such as turbulence that are not
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Fig. 3.1 Motion of an uncharged cloud of particles around a black hole with a = M. The constants
of motion are ω = µ,m = 0,Q ≡K− (m−ωa)2 = 10µ2. Initially Θ̇ > 0. The figure is from [82]
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Fig. 3.2 Motion of an uncharged cloud of particles around a Kerr black hole with a = M. The
constants of motion are ω = µ,m = 0,Q = 10µ2. Initially Θ̇ < 0. The figure is from [82]

describable by a bulk four velocity. For simplicity we assume that the nonlinear
discrete elements are captured within some type of bulk property of the flow, a
component of internal energy for example, that is advected with an average bulk
velocity, uµ .

The next best approach would be a two-fluid analysis as is Sect. 2.9. Such an
analysis yields a magneto-fluid with J ×B forces when the equations of motion
for the species are added (see (2.76) for example), yet for the individual species
there is a Lorentz force. The following analysis assumes that a magneto-fluid can be
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described by a bulk flow four momentum

Pα ≡ µuα =
µ+n+uα+ +µ−n−uα−

n
, (3.20a)

n = n+ +n− . (3.20b)

The “+” and “−” subscripts refer to the positive and negative species where n and
µ are the proper density and enthalpy per particle.

To model the stress-energy tensor of the fluid we note that viscous terms are
very complicated in curved space–times due to their higher derivative nature. Fur-
thermore, we are interested in plasmas in strong magnetospheric fields so we ex-
pect electromagnetic interactions to dominate the dynamics, torque and dissipation.
Thus, we ignore fluid viscosity in the fluid stress-energy tensor:

Tαβf = ρuα ⊗uβ +hαβP , (3.21)

where P is an isotropic pressure (both gas and radiation) in the plasma rest frame
and hαβ is the projection tensor

hαβ = gαβ +uα ⊗uβ . (3.22)

The electromagnetic stress-energy tensor is

TαβEM =
1

4π
FµαFαν −

1
8π

gµνFγδFγδ . (3.23)

The equations of motion are

Tαβf ;β +TαβEM ;β +Tαβr ;β = 0 , (3.24)

where Tαβr is the stress-energy tensor of the radiation field that includes Compton
drag, radiation resistance and heat flow. We could have separated out the heat flow
tensor as is often done, but this is not very illustrative as it leaves everything reex-
pressed in terms of an unknown heat flow vector. Tαβr generally has a complicated
form that is very specific to the situation under analysis, so we leave it in abstract
form and expand it out when needed in the text.

In order to expand out the differential equation in (3.24) we note the correspon-
dence between the ZAMO basis vectors and a basis of tangent vectors ∂/∂Xi at a
point of the Kerr space–time is given by

ê0 =
∂
∂X0 = α−1

(
∂
∂ t

+
Ω
c
∂
∂φ

)
, (3.25a)

êφ =
∂
∂Xφ

=
1

√gφφ

(
∂
∂φ

)
, (3.25b)
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êr =
∂
∂Xr =

∆ 1/2

ρ
∂
∂ r

, (3.25c)

êθ =
∂
∂Xθ

=
1
ρ
∂
∂θ

. (3.25d)

The connection coefficients, Γ αβγ , are found by solving the structure equations:

dωα = ωαβ ∧ωβ , (3.26)

ωαβ = Γ αβγωγ . (3.27)

The connection can be expressed with the help of (3.25) as [84]

ω 0r = − 1
α

∂
∂Xr (α)ω0 −

√gφφ
2α

∂
∂Xr (Ω)ωφ , (3.28a)

ω 0θ = − 1
α

∂
∂Xθ

(α)ω0 −
√gφφ

2α
∂
∂Xθ

(Ω)ωφ , (3.28b)

ω 0φ = −
√gφφ

2α
∂
∂Xr (Ω)ωr −

√gφφ
2α

∂
∂Xθ

(Ω)ωθ , (3.28c)

ω rθ =
∆ 1/2

ρ
∂
∂Xθ

( ρ
∆ 1/2

)
ωr − 1

ρ
∂
∂Xr (ρ)ωθ , (3.28d)

ω rφ = −√
gφφ

∂
∂Xr

(√
gφφ
)
ωφ +

√gφφ
2α

∂
∂Xr (Ω)ω0 , (3.28e)

ω θφ = − 1
√gφφ

∂
∂Xθ

(√
gφφ
)
ω0 +

√gφφ
2α

∂
∂Xθ

(Ω)ω0 . (3.28f)

The remaining connection forms are found by the antisymmetry condition,
ωαβ = −ωβα .

From (3.27) and (3.28) the connection coefficients in the ZAMO frame are

Γ r
00 =

[
M
{[(

r2 +a2)(r4 −a4 cos2 θ +a2r2 sin2 θ
)]

− 4Ma2r3 sin2 θ
}]

×ρ3 [(r2 +a2)ρ2 +2Mra2 sin2 θ
](

r2 +a2 −2Mr
)1/2

, (3.29a)

Γ θ 00 = −
2Mra2

(
r2 +a2

)
sinθ cosθ

ρ3
[
(r2 +a2)ρ2 +2Mra2 sin2 θ

] , (3.29b)

Γ r
0φ = − Masinθ

ρ3
[
(r2 +a2)ρ2 +2Mra2 sin2 θ

] × [(r2 −a2)a2 cos2 θ + r2 (3r2 +a2)] ,

(3.29c)

Γ φ θ0 = −2Mra3 sin4 θ cosθ
ρ5gφφ

(
r2 +a2 −2Mr

)1/2
, (3.29d)
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Γ r
φφ = −

(
r2 +a2 −2Mr

)1/2

ρ3
[
ρ2 (r2 +a2)+2Mra2 sin2 θ

]

×
{

r
[(

r2 +a2 cos2 θ
)2 − rMa2 sin2 θ

]
+

Ma4

4
sin2 2θ

}
, (3.29e)

Γ θ φφ = − cosθ
ρ3
[
ρ2 (r2 +a2)+2Mra2 sin2 θ

]
sinθ

×
{
ρ4 (r2 +a2)+2Mra2 sin2 θ

[
2r2 +a2 (1+ cos2 θ

)]}
, (3.29f)

Γ r
θθ = −

r
(
r2 +a2 −2Mr

)1/2

ρ3 , (3.29g)

Γ r
θr = −a2 sinθ cosθ

ρ3 . (3.29h)

The remaining connection coefficients are found by the antisymmetry in the con-
nection forms and (3.27)

Γ(αβ )γ = 0 . (3.30)

One of the main advantages of the ZAMO basis is the ability to write equations
in the rotated ZAMO basis (3.8) in which êi is aligned with the poloidal magnetic
field. Connection coefficients do not transform like tensors. The transformation law
from a frame with legs labeled by xi to one with legs x̄i contains an inhomogeneous
term:

Γ̄ k
rl =

∂x t

∂ x̄r
∂x n

∂ x̄ l
∂ x̄ k

∂x mΓ
m

tn −
∂x t

∂ x̄ r
∂x s

∂ x̄ l
∂ 2x̄ k

∂x s∂x t . (3.31)

Because of time stationarity and axisymmetry of the metric, the more interest-
ing connection coefficients transform without an inhomogenous term. From (3.8),
(3.29) and (3.31) the connection in the rotated ZAMO basis is given by

Γ 1
00 = α−1 ∂

∂X1 (α) , (3.32a)

Γ 2
00 = α−1 ∂

∂X2 (α) , (3.32b)

Γ φ 1φ =
1

√gφφ

∂
∂X1

√
gφφ , (3.32c)

Γ φ 2φ =
1

√gφφ

∂
∂X2

√
gφφ , (3.32d)

Γ 1
φ0 =

√gφφ
2α

∂
∂X1 (Ω) , (3.32e)

Γ 2
φ0 =

√gφφ
2α

∂
∂X2 (Ω) . (3.32f)
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Partial derivatives in the rotated ZAMO basis are found from (3.8a) to be

∂
∂X1 =

Br

|BP|
∂
∂Xr −

Bθ

|BP|
∂
∂Xθ

, (3.33a)

∂
∂X2 =

Bθ

|BP|
∂
∂Xr +

Br

|BP|
∂
∂Xθ

. (3.33b)

The simplified from of the poloidal connection in the rotated ZAMO basis (3.32),
is the essence of the clarification and simplicity in formulating the dynamics in the
rotated ZAMO basis.

The law of mass conservation is

(nuα);α = 0 . (3.34a)

Expanding this out yields

∂
∂Xα

(nuα)+Γ βαβuα = 0 . (3.34b)

From (3.29) we have

Γ r
θr =

1
√

grr

∂
∂Xθ

√
grr , (3.35a)

Γ θ rθ =
1

√
gθθ

∂
∂Xr

√
gθθ . (3.35b)

Combining these connection coefficients with the results of (3.32) and the substitu-
tions 1 → r and 2 → θ , the mass conservation equation (3.34) becomes

∂
∂X0

(
nu0) +

∂
∂Xφ

(
nuφ
)

+

1
α√grrgφφ

∂
∂Xθ

(
nuθα√grrgφφ

)
+

1
α√gθθgφφ

∂
∂Xr

(
nurα√gθθgφφ

)
= 0 . (3.36a)

In terms of a source function, S, we have

S ≡ α ∂
∂X0

(
nu0)= ∇(3) · (αnu) , (3.36b)

where∇(3) is the covariant derivative with respect to the connection on the spacelike
hypersurface orthogonal to the ZAMO four velocity, ê0. (i.e., the metric is ds2 =
ωr ⊗ωr +ωθ ⊗ωθ +ωφ ⊗ωφ ).

Contracting the four velocity of the plasma flow into (3.24) and retaining the
source term in the mass conservation law (3.36b) to account for the pair creation,
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we get
dρ
dτ

+µS−µ dn
dτ

−u ·∇Tr +u ·F · J = 0 . (3.37)

This looks more like a thermodynamic relation in the entropy S and temperature T
if we write the equation for entropy generation as

nT
dS

dτ
= −µS−u ·F · J +u ·∇Tr . (3.38)

Taking the projection (3.22) of (3.24) and implementing the thermodynamic re-
lation (3.37), we get an equation for the bulk motion of the fluid:

nuβ
∂
∂Xβ

(µuα)+nµΓ αµνuµuν +
∂
∂Xα

(P) =

µuαS +
FµνJν

c
+(Tαν ;ν)r . (3.39)

Consider the poloidal momentum equation along the magnetic field lines in
(3.39):

n
[
∂
∂τ
(
µu1)+µ (u0)2

(
Γ 1

00 +2βφΓ 1
0φ +

(
βφ
)2Γ 1

φφ

)]

+
∂
∂X1 (P) = µu1S +

F12J2

c
+
(
T 1ν

;ν
)

r . (3.40)

We can define an effective gravity “g” in the ZAMO frames as

g ≡
(
u0)2

(
Γ 1

00 +2βφΓ 1
0φ +

(
βφ
)2Γ 1

φφ

)
. (3.41)

This expression has a straightforward physical interpretation. The poloidal pull of
gravity is Γ 1

00 in the ZAMO frames. From the definition of Γ 1
0φ in (3.32e), the

second term is a Coriolis force in the rotating ZAMO frame and the last term is a
centrifugal force.

3.5 Frame Dragging and Negative Energy States

The ZAMO frames are a natural format for elucidating the effects of frame dragging
in the ergosphere. Consider a particle rotating with an angular velocity Ωp = dφ/dt
as viewed from asymptotic infinity. The azimuthal three velocity in the ZAMO
frames is found from (3.8):

βφ =
uφ

u0 =
(Ωp −Ω)√gφφ

αc
. (3.42)



3.5 Frame Dragging and Negative Energy States 91

Since −1 ≤ βφ ≤ 1, we have from (3.42),

Ωmin ≤Ωp ≤Ωmax , (3.43a)
Ωmin =Ω − cα/

√
gφφ , (3.43b)

Ωmax =Ω + cα/
√

gφφ . (3.43c)

From (3.5b) and (3.15),

lim
r→r+

Ωmin =ΩH , lim
r→r+

Ωmax =ΩH . (3.44)

Thus, all particles must corotate with the horizon as they approach it as seen glob-
ally. This is illustrated in Figs. 3.1 and 3.2 and (3.17b).

Similarly, from (3.5b) and (1.24a) we have a purely geometrical effect of the
curvilinear coordinates:

lim
r sinθ→∞

Ωmin = 0 , lim
r sinθ→∞

Ωmax = 0 . (3.45)

More importantly, near the black hole Ωmin = 0 when Ω = cα/
√gφφ . Inserting

(3.5a) and (3.2), the definitions of α and Ω into (3.43), this constraint yields

Ωmin = 0 ⇒ gtt = 0 . (3.46)

This is the well known result that all timelike trajectories must rotate in the same
sense as the horizon inside of the stationary limit at rs (given by (3.1)) as viewed by
distant observers.

Similarly, let us consider where ω < 0 states exist in terms of the −1 ≤ βφ ≤ 1
condition. From (3.14) we can express βφ in terms of m and ω as

βφ =
uφ

u0 =
αm/

√gφφ
ω− (Ω/c)m

. (3.47)

If ω < 0, since u0 > 0 for a timelike trajectory, by (3.14) m < 0. Thus, we are
interested in the condition 0 ≥ βφ ≥−1 in (3.47), or

ω− (Ω/c)m ≥−αm/
√

gφφ , ω < 0, m < 0. (3.48a)

Rearranging (3.48a) we have

−(Ω/c)m ≥−αm/
√

gφφ −ω ≥−αm/
√

gφφ , (3.48b)

or
Ω/c ≥ α/

√
gφφ , (3.48c)

which by the definition of Ωmin in (3.43b), is equivalent to the condition Ωmin ≥ 0.
We showed in (3.46) that Ωmin ≥ 0 is the definition of the ergosphere. The globally
defined ω < 0 negative energy states can only occur in the region r < rs.
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It is instructive to invert (3.14) to get an expression for ω , the redshifted energy
as viewed from asymptotic infinity:

ω = µu0
[
Ωmin

c
√

gφφ −
(
1+βφ

) Ω
c
√

gφφ

]
. (3.49)

The derivation of (3.48c) shows the connection between local counter rotation,
m < 0, βφ ≈ −1, and the negative energy states, ω < 0. Anticipating the signifi-
cance of these relativistic counter rotating states, note that

ω < 0 if βφ < − αc
Ω√gφφ

and lim
βφ→−1

ω = −µu0Ωmin

c
√

gφφ . (3.50)

As βφ → −1, u0 becomes very large (since u · u = −1). Thus, (3.50) shows that
counter rotation in the ergosphere can create huge values of negative global specific
energy, ω , if βφ ≈−1. If βφ ≈−1 when a negative energy particle is created at rc
such that r+ < rc < rs, then

ω ≈ Ωmin (rc)m
c

< 0 . (3.51)

If such a particle is created in the ergosphere and free falls into the hole, it will
change the mass, M, and angular momentum, Ma, of the hole in the first law of
black hole thermodynamics (1.34)

δM = ω =
Ωmin (rc)m

c
< 0 , δ (Ma) = m < 0 ; (3.52a)

δA =
8π
κ

(
Ωmin

c
− ΩH

c

)
m > 0 . (3.52b)

The inequality in (3.52b) is established by the fact that Ωmin/c < ΩH/c if r > r+.
Thus, (3.52b) shows that the absorption of the negative energy matter obeys the
second law of black hole thermodynamics and rotational energy is extracted by the
hole.

The creation of βφ ≈−1 states of plasma in the ergosphere is precisely the rele-
vant physics that occurs in black hole GMH processes that extract rotational energy
from a black hole.

3.6 Maxwell’s Equations

We expand out Maxwell’s equations (2.16) in the ZAMO basis for future use with
the aid of (3.28) and (3.29):
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Fθα ;α =
4πJθ

c
, (3.53a)

∂
∂X0 Fθ0 +

∂
∂Xφ

Fθφ +
1

α√gφφ

∂
∂Xr

[
α√gφφFθr

]
=

4πJθ

c
. (3.53b)

Fθr ;0 +Fr0;θ +F0θ ;r = 0 , (3.54a)

∂
∂X0 Fθr +

1
α√gθθ

∂
∂Xr

[
α
√

gθθFθ0
]
− 1
α√grr

∂
∂Xθ

[
α
√

grrF r0]

+2
(
Γ φ r0 Fθφ +Γ φ θ0Fφr

)
= 0 . (3.54b)

Fθr ;φ +Frφ ;θ +Fφθ ;r = 0 , (3.55a)

∂
∂Xφ

Fθr +
1

√gφφgrr

∂
∂Xθ

[√
gφφgrrFrφ ]+ 1

√gφφgθθ

∂
∂Xr

[√
gφφgθθFφθ

]
= 0 .

(3.55b)

Frα
;α =

4πJr

c
, (3.56a)

∂
∂X0 Fr0 +

∂
∂Xφ

Frφ +
1

α√gφφ

∂
∂Xθ

[
α√gφφFrθ

]
=

4πJr

c
. (3.56b)

Fθ0;φ +F0φ ;θ +Fφθ ;0 = 0 , (3.57a)

∂
∂Xφ

Fθ0 − ∂
∂X0 Fφθ − 1

α√gφφ

∂
∂Xθ

[
α√gφφFφ0]= 0 . (3.57b)

Fφr ;0 +Fr0;φ +F0φ ;r = 0 , (3.58a)

∂
∂X0 Fφr − ∂

∂Xφ
Fr0 +

1
α√gφφ

∂
∂Xr

[
α√gφφFφ0]= 0 . (3.58b)

F0α
;α =

4πJ0

c
, (3.59a)

∂
∂Xφ

F0φ +
1

√gφφgθθ

∂
∂Xr

[√
gφφgθθF0r]

+
1

√gφφgrr

∂
∂Xθ

[√
gφφgrrF0θ

]
=

4πJ0

c
. (3.59b)
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Fφα ;α =
4πJφ

c
, (3.60a)

∂
∂X0 Fφ0 +

1
α√gθθ

∂
∂Xr

[
α
√

gθθFφr]+ 1
α√grr

∂
∂Xθ

[
α
√

grrFφθ
]

+2
(
Γ φ 0rF0r +Γ φ 0θF0θ

)
=

4πJφ

c
. (3.60b)

Because of the simple form of the connection in the rotated ZAMO basis of
(3.32), Ampere’s law is surprisingly simple in this useful frame field:

F2α
;α =

4πJ2

c
, (3.61a)

∂
∂X0 F20 +

∂
∂Xφ

F2φ +
1

α√gφφ

∂
∂X1

(
α√gφφF21)=

4πJ2

c
, (3.61b)

F1α
;α =

4πJ1

c
, (3.62a)

∂
∂X0 F10 +

1
α√gφφ

∂
∂X2

(
α√gφφF12)=

4πJ1

c
. (3.62b)

Note that (3.8) implies
F12 = Frθ . (3.63)

We will also need Maxwell’s equations in the stationary frames from time to
time:

1√−g̃
∂
∂ X̃α

(√
−g̃F̃βα

)
=

4π J̃β

c
, (3.64a)

F̃αβ ,γ + F̃βγ ,α + F̃γα ,β = 0 . (3.64b)

Note that ordinary derivatives occur in (3.64b), a simplification of using a coordinate
basis. Also g̃ is the determinant of the metric in (3.64a) as given by (1.24a) in Boyer–
Lindquist coordinates:

−g̃ = ρ4 sin2 θ . (3.64c)

3.7 Inviscid Hydromagnetic Horizon Boundary Conditions

In this section we examine the state of matter near the event horizon in terms of
the momentum equations. We find that the plasma is always inertially dominated
near the horizon, i.e., gravitational forces are the largest forces in the poloidal mo-
mentum equation (3.40). There are no quasi-stationary equilibria near the horizon.
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Even when external forces are present the plasma flow approaches the asymptotic
geodesic trajectories found in (3.12) and (3.17).

Note the asymptotic form of the connection in the ZAMO frames, (3.29), near
the horizon. When a �= M,

Γ r
00 ∼ α−1 , Γ θ 00 ∼ α0 , Γ r

φ0 = Γ r
0φ ∼ α0 ,

Γ r
θθ ∼ α1 , Γ r

φφ ∼ α1 , Γ θ φ0 = Γ θ 0φ ∼ α1 ,

Γ θ φφ ∼ α0 , Γ θ rr ∼ α0 , (3.65)

and Γ r
00 ∼ α−1 when a = M except in the equatorial plane, where Γ r

00 ∼ α0.
Consequently, as α→ 0, the radial gravity dominates in the effective ZAMO gravity,
g, in (3.41):

g ≈
(
u0)2Γ r

00, α → 0 . (3.66)

We will show that g always exceeds other forces near the horizon.
For geodesic motion ω �= (ΩH/c)m as shown in (3.14), the existence of an

approximate force balance in the poloidal momentum equation, (3.40), (i.e., a quasi-
stationary equilibrium), requires ω → (ΩH/c)m in (3.12). We explore the possibil-
ity that external forces can alter ω and m so that

lim
r→r+

ω =
ΩH

c
m . (3.67)

We can express the general functional form of ω − (ΩH/c)m, by noting that a
physical trajectory must have finite changes in global energy, ω , and angular mo-
mentum, m, over finite proper distances:

1
√

grr

∂
∂ r

[
ω− ΩH

c
m
]

< ∞ . (3.68)

Consequently, (3.68) and the condition for quasi-stationary equilibrium (3.67)
imply that

lim
r→r+

ω =
Ω
c

m+α
[

f0 (θ)+ f̄ (r,θ)
]

, (3.69a)

lim
r→r+

f̄ (r,θ) = 0 , (3.69b)

where f0 (θ) is a well-behaved function of θ . We will show that such a conjectured
equilibrium can not be maintained near the horizon. Note that the functional form
(3.69) for ω when inserted into (3.14) yields βφ ∼ α0, so a timelike trajectory ex-
ists near the horizon with ω → (ΩH/c)m as long as it is not geodesic (see 3.16).
However, the trajectory is highly unstable to radial perturbations. We explore this in-
stability in the next subsections by comparing ZAMO gravity g with external forces
in the poloidal momentum as the equilibrium is perturbed inward. In the process the
horizon boundary condition is derived.
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3.7.1 Electromagnetic Forces

In order to assess the feasibility for the nongeodesic quasi-stationary equilibrium
condition (3.67), we first look at the implied force balance that would be required
of electromagnetic forces in (3.41). By (3.65) and (3.66) the effective gravity in the
poloidal momentum equation scales near the horizon as

g ∼
(
u0)2α−1 . (3.70)

We now compare electromagnetic forces to g as α → 0.
Consider the electromagnetic force term in (3.41) as α → 0,

Fr0J0 +FrφJφ +Frθ Jθ = FrαJα . (3.71)

The poloidal force (3.71) is analyzed term by term near the horizon.

3.7.1.1 The Fr0J0 Force in Equilibrium

Note that the electric flux through a surface element of the horizon is expressed in
terms of ZAMO covectors as

ΦE =
∫

F0rωθ ∧ωφ ≡
∫

F0rdXθ ∧dXφ =
∫

F0r√gθθ
√

grrdθdφ . (3.72)

Since ΦE is coordinate independent and must be regular on the horizon, F0r must
be finite on the horizon:

F0r ∼ α0 . (3.73)

Now consider the current decomposition into particle drifts:

J0 = e
(
n−u0

−−n+u0
+
)

. (3.74)

The bulk flow velocity is defined in terms of the constituent species four velocities
as well as the specific enthalpies which are proper frame quantities (i.e., they scale
as α0 near the horizon) in (3.20). The equilibrium condition (3.67) combined with
(3.14) imply that

u0 ∼ α0 . (3.75a)

Thus, (3.75a) and the decomposition of (3.20a) in quasi-stationary equilibrium
imply

u0
+ ∼ α0 and u0

− ∼ α0 . (3.75b)

Combining (3.75b) with (3.74) yields

J0 ∼ α0 . (3.76)
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Then (3.76) and (3.73) provides the scaling on electromagnetic force:

F0rJ0 ∼ α0 . (3.77a)

Therefore, by (3.70),

F0rJ0

cnµg
∼ α . (3.77b)

3.7.1.2 The FrφJφ and FrθJθ Forces in Equilibrium

In order to study this term in the poloidal momentum equation we analyze
Maxwell’s equation (Ampere’s law), (3.56b). Decomposing the radial current into
particle drifts yields

Jr = −e(n+ur
+ −n−ur

−) . (3.78)

From either (3.14a) or (3.12b) with variable ω and m, one has in quasi-stationary
equilibrium by virtue of (3.67) that

ur ∼ α0 , (3.79)

and by (3.20), this implies

ur
+ ∼ α0 and ur

− ∼ α0 . (3.80)

Inserting (3.80) into (3.78) yields the asymptotic scaling,

Jr ∼ α0 . (3.81)

To analyze the time derivative in (3.56b), we note that the convective derivative
of Fr0 is well behaved in a freely falling frame near the horizon. By (3.12a), for a
freely falling observer,

u0 ≡ dX0

dτ
∼ α−1 , (3.82a)

so

dX0 ∼ α−1dτ . (3.82b)

Both the ZAMO frame and the coordinate frame of the freely falling observer re-
stricted to its world line are orthonormal. Thus, the natural isomorphism between
vectors and covectors (when restricted to the world line) trivially states

〈dX0,
∂
∂X0 〉 = 1 , (3.83a)
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so

〈dτ, ∂
∂τ

〉 = 1 . (3.83b)

which implies with the aid of (3.82b) that

∂
∂X0 ∼ α ∂

∂τ
. (3.84)

Combining this with (3.73) gives the desired scaling as r → r+,

∂
∂X0 Fr0 ∼ α . (3.85)

Equation (3.85) implies that there are three possible scalings of Bθ and Bφ with
lapse function that can satisfy Ampere’s law (3.56b) with the restricted form of the
quasi-stationary equilibrium current Jr in (3.81):

Frφ ∼ α0 , Frθ ∼ αn , n > 0, nonaxisymmetric, (3.86a)
Frφ ∼ Frθ ∼ αn , n < 0, nonaxisymmetric, (3.86b)
Frφ ∼ α , Frθ ∼ α0 , axisymmetric, (3.86c)

The scaling on Frφ does not come from Ampere’s law (3.56b) in the axisym-
metric case, where it does not appear. The scaling on Bθ in (3.86c) comes from the
axisymmetric form of the divergence equation (3.55b), where the regularity of Fθφ

on the horizon is needed. The scaling of Fθφ is found by computing the magnetic
flux through any finite area element arbitrarily near the horizon, ΦB. This must be a
well behaved quantity:

ΦB =
∫

FθφdXθ ∧dXφ ∼ α0 . (3.87a)

Therefore,

Fθφ ∼ α0 . (3.87b)

Expanding the current densities Jθ and Jφ as in (3.74) and (3.78) gives

Jθ ∼ α0 and Jφ ∼ α0 . (3.88a)

Thus, the scaling (3.86a) and (3.86c) yield forces in the poloidal momentum equa-
tion that are dominated by radial gravity:

Frθ Jθ +FrφJφ
nµcg

∼ α . (3.88b)
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3.7.1.3 The Ingoing Wave Fields of Condition

In order to explore the scalings (3.86b) we require n = −1 for an electromagnetic
balancing of gravity in the poloidal momentum equation by (3.88a) and (3.70):

Frφ ∼ Frθ ∼ α−1 , nonaxisymmetric. (3.89)

We will show that a quasi-stationary equilibrium that depends on relation (3.89)
cannot self consistently describe the state of the plasma through the momentum
equations.

Note that (3.89) would imply proper magnetic and electric fields that diverge as
α−2 (through (3.12)) unless one also has electric fields of similar magnitude:

Fθ0 = −Fθr [1+O(α2)
]
∼ α−1 , (3.90a)

Fφ0 = −Fφr [1+O(α2)
]
∼ α−1 , nonaxisymmetric. (3.90b)

These are essentially the electromagnetic fields of an ingoing wave polarized in
the θ -φ plane. Note that near the horizon the fields in the ZAMO frames manifest
themselves as waves if there is no axisymmetry. The ZAMOs see a time variation,
∂/∂X0, since they orbit at approximately the angular velocity of the horizon and
see a different field strength at different φ coordinates. Note that in general any non-
zero magnetic fields as measured in the θ–φ plane by a freely falling observer will
result in the fields (3.90) in the ZAMO frames near the horizon. In the axisymmetric
case the fields in (3.90b) vanish.

Intuitively, the idea of balancing gravitational forces with proper fields in a freely
falling frame near the horizon seems flawed. To see this requires introducing the
energy equation and the zero component of momentum equation near the horizon:

−nµΓ r
00uru0 ≈

[
F0θ Jθ +F0φJφ

]
[1+O(α)] . (3.91a)

Expanding out the radial momentum one more time yields

nµΓ r
00u0u0 =

[
Frθ Jθ +FrφJφ

]
[1+O(α)] . (3.91b)

Combining (3.91) with the wave condition (3.90) yields a value of the ZAMO radial
three velocity vr,

vr

c
= −1 [1+O(α)] . (3.92)

Yet, this violates (3.67) and the quasi-stationary equilibrium assumption. The fields
of an ingoing plasma or fluid can not balance gravity nor can ingoing electromag-
netic waves balance gravity near the horizon. Equation (3.92) is the condition nec-
essary to keep the electric fields well behaved in the fluid frame.
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3.7.1.4 Electromagnetically Induced Equilibrium

The results (3.77b) and (3.88b) show that any equilibrium near the horizon induced
by electromagnetic forces is highly unstable. Any finite inward perturbation pro-
duces a radial gravitational force that increases without bound. The equations of
radial motion and energy quickly transition for a fluid, inward of the equilibrium
position, to

dur

dτ
+Γ r

00
(
u0)2 ≈ 0 , (3.93a)

du0

dτ
−Γ r

00u0ur ≈ 0 . (3.93b)

These equations integrate to give the asymptotic velocities in (3.12) and (3.17), the
same as a geodesic. Namely, in the ZAMO frames,

u0 ∼ α−1 , (3.94a)

vr =
ur

u0 ∼−1+O(α2) , (3.94b)

vφ =
uφ

u0 ∼ α , (3.94c)

vθ =
uθ

u0 ∼ α . (3.94d)

In the stationary frames,

ũt ∼ α−2 , (3.95a)

dφ
dt

=ΩH
[
1+O(α2)

]
, (3.95b)

dr
dt

= − ∆
r+2 +a2

[
1+O(α2)

]
. (3.95c)

Furthermore, it was shown above that there are no equilibria near the horizon
associated with forces induced by the ingoing wave condition Frθ ∼ Frφ ∼ α−1.
The equations of motion of the plasma were over constrained.

Note that due to the current decomposition, in (3.74) and (3.78) for example,
into drifts between species the above analysis holds for charged separated plasmas
as well in which the J ×B force is replaced by the Lorentz force in the equation
of motion (3.39). At small enough lapse function the horizon boundary conditions
(3.94) and (3.95) hold for a charge separated plasma. The details of the calculation
parallel the treatment above for a fluid and are left as an exercise for the reader.
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3.7.2 Radiative Forces

Next we look at forces which derive from the radiation term in the equation of
motion (3.40). One might suspect that Compton drag is capable of achieving a bal-
ance with gravity. Photons that appear outgoing in a global sense can transfer a
component of radial momentum that also appears outgoing in a global sense to a
fluid. However, the only possible sources for outgoing radiation are currents (mov-
ing charges) in the θ–φ plane between the point of observation and the horizon (this
follows from Ampere’s law (3.56b) and (3.60b)). Near the hole, one can compute a
bound on the total current, I‖, in the θ–φ plane between the horizon and a ZAMO
located at Boyer–Lindquist coordinate r � r+ (this is the source of radiation mea-
sured by a ZAMO or, therefore, a fluid in quasi-stationary equilibrium without any
additional factors of α):

I‖ =
∫ r

rmin

√
grrJ‖dr

≈ 2J‖ (r+ − r−)−1/2
[
(r− r+)1/2 − (rmin − r+)1/2

]
ρ+

<
2J‖ (r− r−)1/2

(r+ − r−)
ρ+ ∼ α (r) . (3.96)

In (3.96), rmin is the minimum radial coordinate of the current distribution, r− is
defined in (1.24c) and we used the current density scalings found in (3.88).

In summary, as the horizon is approached, by Ampere’s law and gravitational red-
shifting, the flux of globally outgoing classical electromagnetic radiation becomes
more feeble (it scales with lapse function), but gravity in (3.70) keeps increasing in
strength. Thus, even though it is possible for there to be a Compton drag in a local
inertial frame, the whole frame moves toward the horizon under the force of grav-
ity. Near the horizon, radiation pressure will not halt the global infall of the fluid as
viewed by external observers.

Another effect in the ∇ · Tr term is radiation resistance. But this is either a re-
sult of inertia dragging a plasma across magnetic field lines (a gravity dominated
flow by definition) or accelerations in an electric field. Since we already showed in
Sect. 3.7.1 that electromagnetic forces can not compete with gravity near the hori-
zon, then certainly the induced backreaction through radiation will not either.

3.7.3 Other Possible Forces in the Equation of Motion

Note that n and µ are rest-frame-evaluated quantities so that they are well behaved
and do not scale with lapse function. The pressure P is rest-frame-evaluated as well,
so ∂P/∂Xr can not balance the gravity term in (3.40) with any stability:

lim
r→r+

(∂P/∂Xr)
nµcg

∼ α2 (u0)
−2 . (3.97)
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If an anisotropic pressure tensor were chosen in (3.40), the result would be the same
since the force terms that would be introduced are of a similar nature to the isotropic
case.

Quantum electrodyanmic processes can induce pair creation which induces a
term in the poloidal momentum equation. But, these can be discounted from pre-
venting inertial dominance near the horizon since this is just a redistribution or cre-
ation of inertia.

It should be noted that the results of this section are more general than the title
indicates since viscous forces are macroscopic models of microphysical processing
involving electromagnetic interactions. The electromagnetic analysis of Sect. 3.7.1
is equally valid for microscopic as well as macroscopic fields. Thus, it follows that
viscous forces will not impede the asymptotic flow.

Equations (3.94) and (3.95) are the horizon boundary conditions for classical
matter in any state or form. Recall that outgoing matter states near the horizon are
unphysical by (3.19). Equilibria near the horizon are unphysical when one explores
the momentum equations of the charges that source the magnetic field as implied
by the analysis of Sect. 1.3.7. In summary, all flows are inertially dominated near
the horizon as evidenced by the boundary conditions (3.94) and (3.95) that depend
only on the metric. Obviously, in in-falling coordinates such as ingoing Kerr–Schild
coordinates this effect is obscured by construction: they the natural coordinates of
observers in a state of relativistic in-fall relative to asymptotic infinity, near the
horizon.

More applications of the horizon boundary condition that prevents stable equi-
libria outside of the horizon can be found in [85]. This section is based primarily on
that article.



Chapter 4
Vacuum Electrodynamics

4.1 Motivation

The study of vacuum electromagnetic fields of sources for Maxwell’s equations
near the horizon is a fundamental starting point for understanding GHM in the
ergosphere. It addresses two core issues that can determine the global flow.
Firstly, Maxwell’s equations can be used to determine the electrodynamic na-
ture of space–time near the event horizon. For example, if the event horizon can
impose meaningful boundary conditions electrodynamically, the GHM coupling
in the ergosphere would be largely a consequence of these constraints. It will be
demonstrated that contrary to many popular early treatments of black hole magneto-
spheres that the event horizon is an asymptotic infinity for accreting charge neutral
electromagnetic sources. This is essentially a manifestation of a “no hair” theorem
that is proven for rotating black holes. In particular, we show in Sect. 4.7 that the
space–time near the horizon has no unipolar inductive properties like a Faraday
wheel has at the end of a plasma-filled waveguide or transmission line (as discussed
in Sect. 2.10). Thus, the event horizon plays no role in any GHM interaction except
for being an effective sink for mass influx.

The second issue addressed by Maxwell’s equations in vacuum are the structure
of large scale fields near the hole and any long range interactions that are associated
with electromagnetic fields. We find that the rotating geometry mixes electric and
magnetic fields. All magnetic field solutions near the hole have a frame dragging in-
duced electric field that can not be eliminated by a global coordinate transformation
(∗FµνFµν �= 0). As plasma is introduced in an effort to short out this electric field,
the black hole attains a net charge. Therefore, the net electromagnetic field has a
component due to the Kerr–Newman black hole that results from charge accretion.
The fields from the charged black hole can be substantial when a ≈ M.

We restrict our discussion mainly to the case of axisymmetric externally imposed
sources. A natural place to look for electromagnetic sources would be an accretion
disk around a black hole and the accretion flow falling in from the inner edge. The
black hole GHM interactions can occur on the background of the seed fields created

B. Punsly, Black Hole Gravitohydromagnetics, 2nd. ed., 103
Astrophysics and Space Science Library 355, doi: 10/1007/978-3-540-76957-6 4,
c© Springer-Verlag Berlin Hiedelberg 2008
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by the equatorial accreting sources and they modify the fields in the process. We
expect the inner regions of the accretion disk to experience Lens–Thirring torques
and be aligned perpendicular to the rotation axis of the hole: the Bardeen–Petterson
effect. A detailed examination of this issue can be found in [80] wherein it is shown
that the accretion disk within r = 100M is likely to have a symmetry axis aligned
with that of the hole. For low accretion systems a poloidal magnetic field sourced
in a disk will torque the disk into alignment with the hole’s rotation axis [86]. Thus,
we expect in astrophysical situations that axisymmetric fields should yield the first
order effects of ergospheric vacuum electrodynamics. Furthermore, for high accre-
tion rates as in AGN, we expect rapid neutralization of electric fields. Thus, charge
neutral axisymmetric sources are of prime interest.

Even with the simplification of charge neutrality and axisymmetry, Maxwell’s
equations in Sect. 3.6 are very complicated. This is true in any basis of evaluation.
Even though the ZAMO basis has the advantage of an integral form of Maxwell’s
equations due to hypersurface orthogonality (this is known as the 3 + 1 split [80]),
it is well known that the integral form of Ampere’s law can only be used to find the
magnetic field distribution in the very few cases of extreme symmetry. Furthermore,
there is no Biot–Savart law in the 3 + 1 split to facilitate calculation numerically.
Maxwell’s equations in Sect. 3.6 are intractable in a global sense because different
field components are coupled in the differential equations. Thus, we can not expand
the field components in an infinite series of special functions as is done in electro-
statics and magnetostatics [87]. Amazingly, if the spinorial decomposition of the
Maxwell tensor into Newman–Penrose coefficients [88] is performed, one finds that
two of the three spin coefficients have separable differential equations [89]. The
third spin coefficient is found by integrating a first order differential equation. Thus,
one has the ability to solve for the Maxwell tensor as a linear combination of special
functions combined with the corresponding solutions of a radial equation. The big
breakthrough in the study of vacuum electrodynamics was obtained in [90] wherein
the elaborate formalism of [89], designed for electromagnetic waves, was used to
study the simpler case of stationary electromagnetic test fields around Kerr black
holes. This chapter is primarily an exposition of this technique and the implications
of the results.

4.2 Maxwell’s Equations in the Newman–Penrose Formalism

There is an isomorphism between Pauli spinors, ψ =
(
δ
η

)
, and null vectors, Xµ ,

in Minkowski space–time:

Xµ =
1√
2
ψ̄σµψ , (4.1a)

XµXµ =
1
2

[(
δ δ̄+ηη̄

)2−
(
δ η̄+ηδ̄

)2
+
(
δ η̄−ηδ̄

)2−
(
δ δ̄−ηη̄

)2
]

= 0. (4.1b)
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where “ ¯ ” means complex conjugate and σµ is a Pauli spin matrix with σ0 ≡ I.
In [91], it is shown how this relation creates a future directed null vector Xµ that is
defined up to a phase. Inverting (4.1a) by multiplying through by σµ and summing
yields

1√
2

(
X0 +X3 X1 + iX2

X1 − iX2 X0 −X3

)
=

(
δ δ̄ δ η̄

ηδ̄ ηη̄

)
=

(
δ

η

) (
δ̄ η̄

)
≡ ψAψA′

. (4.1c)

where ψA =
(
δ
η

)
and ψA′

=
(
δ̄ η̄

)
transforms as a conjugate spinor. Note that

(
X0
)2 − (X1)

2 − (X2)
2 − (X3)

2 = δ δ̄ηη̄ − ηδ̄δ η̄ = 0. Thus, a null vector Xµ is
represented by a bispinor ψAψA′

. This is a spinor of rank (1,1).
Based on the isomorphism between null vectors and 2-spinors, it is useful to

decompose tensors in a null tetrad, ei
(a). There are four legs to the tetrad labeled by

the subscript a. These are four independent vector fields at each point of space–time.
The superscript i indicates the component representation of the vector field e(a) in
some coordinate system. Motivated by the isomorphism (4.1) we find a tetrad of two
real and two complex null vector fields. In order to generate this frame field using
the isomorphism (4.1) requires more spinor degrees of freedom. We thus define a
two dimensional spinorial basis with a symplectic metric:

εAB = −εBA , εABεCB = δ
C

A . (4.2a)

The basis spinors satisfy the normalization condition

ψAξ
A = εABψAξ

B
= 1 , (4.2b)

ψAψ
A = ξAξ

A = 0 . (4.2c)

We use the spinor basis to define the null tetrad in analogy to (4.1c):

lα = ψAψA′
, (4.3a)

nα = ξAξA′
, (4.3b)

mα = ψAξA′
, (4.3c)

m̄α = ξAψA′
. (4.3d)

This also implies the relations

X0 =
1√
2

(
ψAψA′

+ξAξA′)
, (4.3e)

X1 =
1√
2

(
ψAξA′

+ξAψA′)
, (4.3f)
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X2 =
1√
2

(
ψAξA′ −ξAψA′)

, (4.3g)

X3 =
1√
2

(
ψAψA′ −ξAξA′)

. (4.3h)

We can generalize (4.3) to represent 4-vectors (not necessarily null) by spinors
of rank (1,1), XAB′

:

Xν = −1
2
σν AB′XAB′

, XAB′
= Xµσµ AB′

, (4.4a)

Xν = −1
2
σν AB′

XAB′ , XAB′ = Xµσµ AB′ , (4.4b)

σµ AB′ = ηµνσν CD′
εCAεD′B′ . (4.4c)

where ηµν is the Minkowski metric. Similarly, a tensor such as the Maxwell tensor
decomposes as

FAB′CD′ = σν AB′σµ CD′Fµν , (4.4d)

Fµν =
1
4

(
σµ AB′

σν CD′)
FAB′CD′ . (4.4e)

Since Fµν is real and antisymmetric, we can expand the Maxwell tensor in terms of
a symmetric rank 2 spinor φAB,

FAB′CD′ = φACεB′D′ + εACφ̄B′D′ . (4.4f)

The null tetrad in (4.3) obeys the orthogonality condition

l ·m = l · m̄ = n ·m = n · m̄ =

l · l = n ·n = m ·m = m̄ · m̄ = 0 , (4.5a)

and the normalization condition

l ·n = 1 , and m · m̄ = −1 . (4.5b)

Using the metric in the tetrad basis (4.5ab) we can write

e(1)
µ = lµ , e(2)

µ = nµ , e(3)
µ = mµ , e(4)

µ = m̄µ , (4.5c)

e(1) µ = e(2)
µ = nµ , e(2) µ = e(1)

µ = lµ ,

e(3) µ = −e(4)
µ = −m̄µ , e(4) µ = −e(3)

µ = −mµ . (4.5d)

The advantage of a null tetrad is the possibility of simplifying the connection
(see 4.12).
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The covariant derivatives of the tetrad are expressed in terms of Ricci rotation
coefficients, γ(c)(a)(b), as

e(a)k;i = e(c)
k γ(c)(a)(b) e(b)

i , (4.6a)

γ(c)(a)(b) = e(c)
k e(a)k;i e(b)

i , (4.6b)

γ(c)(a)(b) = −γ(a)(c)(b) . (4.6c)

The spin coefficients are defined in terms of the Ricci rotation coefficients [88]:

κ = γ131 = lµ;νmµ lν ,

π = −γ241 = −nµ;ν m̄µ lν ,

ε =
1
2

(γ121 − γ341) =
1
2
(
lµ;νnµ lν −mµ;ν m̄µ lν

)
,

ρ̃ = γ134 = lµ;νmµ m̄ν ,

λ = −γ244 = −nµ;ν m̄µ m̄ν ,

α =
1
2

(γ124 − γ344) =
1
2
(
lµ;νnµ m̄ν −mµ;ν m̄µ m̄ν

)
,

σ = γ133 = lµ;νmµmν , (4.7)

µ = −γ243 = −nµ;ν m̄µmν ,

β =
1
2

(γ123 − γ343) =
1
2
(
lµ;νnµmν −mµ;ν m̄µmν

)
,

τ = γ132 = lµ;νmµnν ,

ν = −γ242 = −nµ;ν m̄µnν ,

γ =
1
2

(γ122 − γ342) =
1
2
(
lµ;νnµnν −mµ;ν m̄µnν

)
.

Maxwell’s equations in spinorial form are [91]

∇A′BφA
B = 2πJAA′

, JAA′
= J̄AA′

, (4.8a)

∇A′B =
(
σµ
)A′B∇µ , (4.8b)

where ∇µ is the covariant derivative in the tetrad basis. It is more instructive to
rewrite (4.8a) using the symplectic spinor metric as

1
2
εBC [σµ CD′∇µφAB −σµ BD′∇µφAC

]
= 2πJAD′ . (4.8c)
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Using (4.4f) and (4.5d), the three independent components of the Maxwell 2-spinor
are defined as [89]

φ0 ≡ φ00 = F13 = Fi jlim j , (4.9a)

φ1 ≡ φ10 = φ01 =
1
2

(F12 +F43) =
1
2

Fi j
(
lin j + m̄im j) , (4.9b)

φ2 ≡ φ11 = F42 = Fi jm̄in j . (4.9c)

These equations invert to give

Fµν = 2
[
φ1

(
n[µ l ν ] +m[µ m̄ ν ]

)
+φ2 l[µ m ν ] +φ0m̄[µ n ν ]

]
+ c.c. . (4.9d)

Equation (4.8c) contains covariant derivatives with respect to the tetrad defined by

(4.9e)∇(b)A(a) = ei
(a)Ai; je

j
(b) = A(a),(b)−G(n)(m)γ(n)(a)(b)A(m) ,

where G(n)(m) is the metric in the tetrad basis given by (4.5)

G(a)(b) = G(a)(b) =

⎡
⎢⎢⎢⎣

0 1 0 0
1 0 0 0
0 0 0 −1
0 0 −1 0

⎤
⎥⎥⎥⎦ . (4.9f)

Writing out the components of (4.8c), we have the spinorial Maxwell’s equations in
the tetrad basis:

∇(1)φ1 −∇(4)φ0 = 2πJ(1) ,

∇(1)φ2 −∇(4)φ1 = 2πJ(4) ,

∇(3)φ1 −∇(2)φ0 = 2πJ(3) ,

∇(3)φ2 −∇(2)φ1 = 2πJ(2) . (4.9g)

Expanding the intrinsic derivatives as in [92] using (4.7) and (4.9abc), one has

∇(1)φ1 =
1
2

[F12,1 −Gnm (γn11Fm2 + γn21F1m)

+F43,1 −Gnm (γn41Fm3 + γn31F4m)]

= φ1,1 − (γ131F42 − γ241F13)

= lµ
∂
∂Xµ φ1 +κφ2 −πφ0 . (4.9h)

The other intrinsic derivatives in Maxwell’s equations (2.9g) have a similar form.
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One can explicitly expand (4.9d) in Boyer–Lindquist coordinates as in [93]:

F̃tr = Re
{

r2 +a2

ρ2 φ1 +
iaρ̃∗ sinθ√

2

(
φ2 −

ρ̃2∆φ0

2

)}
, (4.10a)

F̃tθ = Re

{
iasinθ
ρ2 φ1 −

(
r2 +a2

)
√

2
ρ̃
∆

(
φ2 −

ρ̃2∆φ0

2

)}
, (4.10b)

F̃tφ = Re
{
− iρ̃ρ2

2
√

2∆ sinθ

(
φ2 +

ρ̃2∆φ0

2

)}
, (4.10c)

F̃rθ = Re
{
− ρ̃∗

2
√

2

(
φ2 +

ρ̃2∆φ0

2

)}
, (4.10d)

F̃rφ = Re
{
− a
ρ2 φ1 −

iρ̃∗√
2sinθ

(
φ2 −

ρ̃2∆φ0

2

)}
, (4.10e)

F̃θφ = Re
{
− i
ρ2 sinθ

φ1 +
aρ̃∗√

2∆

(
φ2 −

ρ̃2∆φ0

2

)}
, (4.10f)

where the spin coefficient ρ̃ is given by

ρ̃ =
−1

r− iacosθ
. (4.11)

A tetrad was found by Kinnersley [94] in which the spin coefficients of (4.7) are
simplified since the legs lµ and nν are along the principal null directions of the Kerr
space–time,

κ = σ = ν = γ = ε = 0 . (4.12)

The legs of the tetrad are given in (t,r,θ ,φ) Boyer–Lindquist coordinates as

lµ =

[(
r2 +a2

)
∆

,1,0,
a
∆

]
, (4.13a)

nµ =
[(

r2 +a2) ,−∆ ,0,a
]
/2ρ2 , (4.13b)

mµ =
[

iasinθ ,0,1,
i

sinθ

]
/
[√

2(r + iacosθ)
]

. (4.13c)

It is shown in [89] that (4.9e) combined with (4.12) yields Maxwell’s equations,
(4.9g), in terms of the spin coefficients in the Kinnersley tetrad:

(D−2ρ)φ1 − (δ ∗ +π−2α)φ0 = 2πJl , (4.14a)

(δ −2τ)φ1 − (∆ +µ−2λ )φ0 = 2πJm , (4.14b)

(D−ρ)φ2 − (δ ∗ +2π)φ1 = 2πJm̄ , (4.14c)

(δ − τ+2β )φ2 − (∆ +2µ)φ1 = 2πJn . (4.14d)
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The differential operators in (4.14) are defined with respect to the null tetrad as

D = lµ
∂
∂Xµ , (4.15a)

∆ = nµ
∂
∂Xµ , (4.15b)

δ = mµ ∂
∂Xµ . (4.15c)

The spin coefficients are tabulated in the Kinnersley tetrad in [89] and [93]:

ρ̃ = − 1
r− iacosθ

,

β = − ρ̃
∗ cotθ
2
√

2
,

π =
iaρ̃2 sinθ√

2
, (4.16)

τ = − iaρ̃ ρ̃∗ sinθ√
2

,

µ = ρ̃2ρ̃∗
∆
2

,

γ = µ+ ρ̃ ρ̃∗
(r−M)

2
,

α = π−β ∗ .

The current sources in (4.14) are

Jl = Jµ lµ , (4.17a)

Jn = Jµnµ , (4.17b)

Jm = Jµmµ , (4.17c)

Jm̄ = Jµ m̄µ . (4.17d)

A second order equation for φ0 can be created by operating on (4.14b) with D−
2ρ̃− ρ̃∗ and (4.14a) with δ −β −α∗ −2τ+π∗ and subtracting one equation from
another [89]. This procedure yields

[(D−2ρ̃− ρ̃∗)(∆ +µ−2γ)

−(δ −β −α∗ −2τ+π∗)(δ ∗ +π−2α)]φ0 = 2πJ0 , (4.18)

J0 = (δ −β −α∗ −2τ+π∗)Jl − (D−2ρ̃− ρ̃∗)Jm . (4.19)
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Similarly, operating on (4.14c) and (4.14d), Teukolsky [89] found a decoupled equa-
tion for φ2 :

[(∆ + γ− γ∗ +2µ+µ∗)(D− ρ̃)
−(δ ∗ +α+β ∗ +2π− τ∗)(δ − τ+2β )]φ2 = 2πJ2 , (4.20)

J2 = (∆ + γ− γ∗ +2µ+µ∗)Jm̄ − (δ ∗ +α+β ∗ +2π− τ∗)Jn . (4.21)

Teukolsky identified spin weighted components of the Maxwell tensor:

φ+1 = φ0 , (4.22a)

φ−1 = ρ̃−2φ2 . (4.22b)

These components have separable solutions to (4.18) and (4.20) respectively:

φ+1 = e−iωteimφ
+1Sm

l(θ)R+1(r) , (4.23a)
φ−1 = e−iωteimφ

−1Sm
l(θ)R−1(r) , (4.23b)

where R and S satisfy (in vacuum G±1(r) = 0)

∆−1 d
dr

(
∆ 2 dR+1

dr

)
+
(

P2 −2i(r−M)P
∆

+4iωr−k+

)
R+1 = G+1(r) , (4.23c)

∆+1 d2

d2r
R−1 +

(
P2 +2i(r−M)P

∆
−4iωr−k−

)
R−1 = G−1(r) , (4.23d)

1
sinθ

d
dθ

(
sinθ

d
dθ

(+1Sm
l)
)

+
(
ω2a2 cos2ω− m2

sin2 θ

−2ωacosθ − 2mcosθ
sin2 θ

− cot2 θ +1+A
)

+1Sm
l = 0 , (4.23e)

1
sinθ

d
dθ

(
sinθ

d
dθ

(−1Sm
l)
)

+
(
ω2a2 cos2ω− m2

sin2 θ

+2ωacosθ +
2mcosθ

sin2 θ
− cot2 θ −1+A

)
−1Sm

l = 0 , (4.23f)

where A ≡ ±1Am
l(ωa) are separation constants and

P ≡ ω
(
r2 +a2)−ma , (4.23g)

k± = A+ω2a2 −2maω− (1±1) . (4.23h)

The functions ±1Sm
l(θ) are spin weighted spheroidal harmonics. When ωa = 0

these reduce to spin weighted spherical harmonics.
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When sources are present in Maxwell’s equations we have

φ±1 =
∫

dω∑
l,m

R±1(r) ±1Sm
l(θ)eimφe−iωt . (4.24)

where the source terms in the radial equations G±1(r) are given by (4.19) and
(4.21) as

4πρ2J0 =
∫

dω∑
l,m

G+1(r) +1Sm
l(θ)eimφe−iωt , (4.25a)

4πρ2J2

(r− iacosθ)2 =
∫

dω∑
l,m

G−1(r) −1Sm
l(θ)eimφe−iωt . (4.25b)

A decoupling of the equations for φ1 is found in [95], but the resulting differen-
tial equation does not lend itself to separation of variables in the Kerr space–time.
In general one solves the second order differential equations (4.18) and (4.20) to
compute φ0 and φ2 . This allows one to integrate the first order coupled differential
equations (4.14) to find φ1 .

4.3 Poisson’s Equations in the Kerr Space–Time

The Newman–Penrose formulation of Maxwell’s equations was developed to in-
vestigate time dependent perturbations of a black hole and the proof of the no hair
theorem that the most general electro-vac black hole solution is described by Q, M,
and a (the Kerr–Newman black hole). A clever idea was to use those same equations
to study time stationary electromagnetic test fields on the background of the Kerr
metric [90, 93, 96, 97]. There is a tremendous simplification over the results of the
last section: one derivative is eliminated and since ωa = 0, the angular functions
simplify from spin weighted spheroidal harmonics to spin weighted spherical har-
monics. The treatment in [90] is particularly well developed and forms the basis for
calculation throughout most of this chapter.

The spin coefficients of (4.9) are redefined in [90] as

Φ0 = φ0 ,

Φ1 =
(r− iacosθ)2

(
r+ − r−

)2 φ1 , (4.26)

Φ2 =
r− iacosθ(

r+ − r−
)2 φ2 .

Setting the time derivatives equal to zero in the first order Maxwell’s equations
(4.14) one has
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√
2
(
r+ − r−

)2
(
∂
∂ r

+
a
∆
∂
∂φ

)
Φ1

−(r− iacosθ)
(
∂
∂θ

+ cotθ − i
sinθ

∂
∂φ

)
Φ0 + iasinθΦ0

=
√

2(r− iacosθ)2 2πJl , (4.27a)

√
2
(
r+ − r−

)2
(
∂
∂θ

+
i

sinθ
∂
∂φ

)
Φ1

+(r− iacosθ)
(
∂
∂ r

− a
∆
∂
∂φ

)
∆Φ0 −∆Φ0

=
√

2(r− iacosθ)ρ22πJm , (4.27b)

1√
2

(
∂
∂θ

− i
sinθ

∂
∂φ

)
Φ1

−(r− iacosθ)
(
∂
∂ r

+
a
∆
∂
∂φ

)
Φ2 +Φ2

= −
√

2
(r− iacosθ)2

(
r+ − r−

)2 2πJm̄ , (4.27c)

1√
2

(
∂
∂ r

− a
∆
∂
∂φ

)
Φ1

+(r− iacosθ)
(
∂
∂θ

+ cotθ +
i

sinθ
∂
∂φ

)
Φ2

∆
− (iasinθ)

∆
Φ2

= −
√

2
∆
ρ2 (r− iacosθ)(

r+ − r−
)2 2πJn . (4.27d)

The clever aspect of the analysis in [90] is to acknowledge the conclusion of
the study of the second order Maxwell’s equations presented in (4.23), namely
that the solutions for Φ0 and Φ2 are separable; then, insert the general expansion
into the simpler first order equations (4.27):

Φ0 =
∞

∑
l=1

l

∑
m=−l

0Rlm(r) +1Ylm(θ ,φ) ≡∑
l,m

0Rlm(r) +1Ylm(θ ,φ) , (4.28a)

Φ2 =∑
l,m

2Rlm(r) −1Ylm(θ ,φ) . (4.28b)
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The functions ±1Ylm are spin weighted spherical harmonics [87, 91] and the radial
equation for 2Rlm(r) is found from (4.23d) and (4.25b) to be

(
r2 −2Mr +a2) d2

(
2Rlm

)
dr2

+
[

a2m2 −2iam(r−M)
r2 −2Mr +a2 − l(l +1)

]( 2Rlm
)

= −4π
( 2Jlm

)
. (4.29)

The current source 2Jlm(r) is found in terms of J2 in (4.21):

2Jlm(r) =
∫ 2π

0

∫ π

0

(r− iacosθ)2

(
r+ − r−

)2 ρ2J2 (−1Ȳlm(θ ,φ))sinθdθdφ . (4.30)

Using (4.21) and the Kinnersley tetrad (4.13), we expand J2 as

J2 =
−∆

2
√

2ρ2 (r− iacosθ)2

[√
2
(
∂
∂ r

− a
∆
∂
∂φ

+
1

r− iacosθ

)
(r− iacosθ)Jm̄

+2
(
∂
∂θ

− i
sinθ

∂
∂φ

+
iasinθ

r− iacosθ

)
ρ2 (r− iacosθ)

∆
Jn

]
. (4.31)

4.4 Laplace’s Equations in the Kerr Space–Time

The radial equation (4.29) can be solved when 2Jlm(r) = 0 in terms of hypergeo-
metric functions as can be seen by the substitution

2Rlm(X) =
(

1− 1
X

)−iZm ( 2ylm(X)
)

, (4.32a)

X ≡ r− r−
r+ − r−

, Zm ≡ ma
r+ − r−

. (4.32b)

Equations (4.29) reduces to a hypergeometric equation:

X(X −1)
(2y′′lm

)
−2i

(2y′lm
)
− l(l +1)

(2ylm
)

= 0 . (4.33)

There are two linearly independent solutions in terms of hypergeometric
functions, F ,

2y(I)
lm =

(
1− 1

X

)2iZm

X(X −1)F(l +2,1− l,2−2iZm;X) , (4.34a)

2y(II)
lm = (−X)−l F(l, l +1−2iZm,2l +2;X−1) . (4.34b)

It is shown in [90] how to determine 0Rlm from 2Rlm in (4.32) and (4.34) as well
as solve for Φ1 in vacuum, i.e., Laplace’s equation. Apply the operator ∂/∂θ −
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(i/sinθ)∂/∂φ to (4.27a) and ∂/∂ r + (a/∆)∂/∂φ to (4.27c) with the expansions
for Φ0 and Φ2 in (4.28) and Jl = Jm̄ = 0. This yields

0Rlm =
2
(
r+ − r−

)2

l(l +1)

(
d
dr

+
iam
∆

)(
d
dr

+
iam
∆

)
2Rlm . (4.35)

From (4.32a) this implies that

0Rlm(X) =
(

1− 1
X

)−iZm [ 2
l(l +1)

]
d2

dX2

[2ylm
]

. (4.36a)

From [98], one can show that

d2

dX2

[
2y(I)

lm

]
= 2iZm (2iZm −1)

(
1− 1

X

)2iZm

[X(X −1)]−1

×F(l,−l −1,−2iZm;X) , for Zm �= 0 , (4.36b)

d2

dX2

[
2y(I)

lm

]
= l(l +1)F(l +2,1− l,2;X) , for Zm = 0 , (4.36c)

d2

dX2

[
2y(II)

lm

]
= l(l +1)(−X)−l−2 F(l +2, l +1−2iZm,2l +2;X−1) . (4.36d)

Solving forΦ1 is more difficult. By the axial symmetry of the metric we have the
following expansion:

Φ1(X ,θ ,φ) =
∞

∑
m=−∞

(
1− 1

X

)−iZm

eimφ Φ1m(X ,θ) . (4.37)

Integrating (4.27a) with Jl = 0 and Φ0 given by (4.28) and (4.36) yields an ex-
pression for Φ1 up to an undetermined function fm(θ):

Φ1 =
√

2(
r+ − r−

)∑
l,m

[l(l +1)]−1
(

1− 1
X

)−iZm{
[l(l +1)]1/2

×
[
(r− iacosθ)

d
dX

( 2ylm
)
−
(
r+ − r−

)( 2ylm
)]

0Ylm(θ ,φ)

−iasinθ
d

dX

( 2ylm
)

+1Ylm(θ ,φ)
}

+
∞

∑
m=−∞

fm(θ)eimφ
(

1− 1
X

)−iZm

. (4.38)

Combining the X derivative of (4.33) with (4.27b) and, Jm = 0 and the expansion
for Φ1 in (4.38), yields
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[
∂
∂θ

− m
sinθ

]
fm(θ) = 0 . (4.39a)

Similarly, (4.27c) with Jm̄ = 0 implies
[
∂
∂θ

+
m

sinθ

]
fm(θ) = 0 . (4.39b)

Combining (4.39b) with (4.39a) yields

fm(θ) = Cδm0 , (4.39c)

where C is a constant. It is noted in [90] that (4.27d) with Jn = 0 is automatically
satisfied by this solution.

To complete the solution (4.38) requires the following relations from [98]
and [90]:

d
dX

[
2y(I)

lm

]
= (2iZm −1)

(
1− 1

X

)2iZm

F(l +1,−l,1−2iZm;X) , (4.40a)

d
dX

[
2y(II)

lm

]
= l(−X)−l−1F(l +1, l +1−2iZm,2l +2;X−1) . (4.40b)

The general solution to Laplace’s equation in the Kerr space–time is found from
(4.28), (4.32), (4.34), (4.36), (4.38) and (4.39). Consider a source located between
r1 and r2, with r+ < r1 < r2 < ∞. In the region between the source and the horizon,
we use the asymptotic form of the hypergeometric function and regularity at the
horizon to find the spin components in the region r+ < r < r1:

Φ0 =∑
l,m

alm 2[l(l +1)]−1
(

1− 1
X

)−iZm d2

dX2

[
2y(I)

lm

]
+1Ylm(θ ,φ) , (4.41a)

Φ1 =

√
2
(
r+ − r−

)
(r− iacosθ)2∑

l,m
alm [l(l +1)]−1

(
1− 1

X

)−iZm {
[l(l +1)]1/2

×
[
(r− iacosθ)

d
dX

(
2y(I)

lm

)
−
(
r+ − r−

)( 2y(I)
lm

)]
0Ylm(θ ,φ)

−iasinθ
d

dX

(
2y(I)

lm

)
+1Ylm(θ ,φ)

}
+

Ea

(r− iacosθ)2 , (4.41b)

Φ2 =

(
r+ − r−

)2

(r− iacosθ)2∑
l,m

alm

(
1− 1

X

)−iZm (
2y(I)

lm

)
−1Ylm(θ ,φ) . (4.41c)

The solutions of most interest to black hole GHM are those at r > r2. Again, we
require regularity at r → +∞.
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Φ0 =∑
l,m

blm 2[l(l +1)]−1
(

1− 1
X

)−iZm d2

dX2

[
2y(II)

lm

]
+1Ylm(θ ,φ) ,

(4.42a)

Φ1 =

√
2
(
r+ − r−

)
(r− iacosθ)2∑

l,m
blm [l(l +1)]−1

(
1− 1

X

)−iZm {
[l(l +1)]1/2

×
[
(r− iacosθ)

d
dX

(
2y(II)

lm

)
−
(
r+ − r−

)( 2y(II)
lm

)]
0Ylm(θ ,φ)

−iasinθ
d

dX

(
2y(II)

lm

)
+1Ylm(θ ,φ)

}
+

Eb

(r− iacosθ)2 , (4.42b)

Φ2 =

(
r+ − r−

)2

(r− iacosθ)2∑
l,m

blm

(
1− 1

X

)−iZm (
2y(II)

lm

)
−1Ylm(θ ,φ) . (4.42c)

The constants alm, blm, Ea, and Eb are determined by the nature of the source.
The solutions for 2R(I)

lm and 2R(II)
lm found in (4.32) and (4.34) are the solution to the

homogeneous radial equation (4.29). The solution to the inhomogeneous equation
with 2Jlm(r) �= 0 is therefore

2Rlm(r) = 2R(I)
lm (X)

∫ 4π
(

2Jlm(ξ )
)(

2R(II)
lm (ξ )

)

ξ (ξ −1)W
[(

2R(I)
lm

)
,
(

2R(II)
lm

)
,ξ
]dξ

− 2R(II)
lm (X)

∫ 4π
(

2Jlm(ξ )
)(

2R(I)
lm (ξ )

)

ξ (ξ −1)W
[(

2R(I)
lm

)
,
(

2R(II)
lm

)
,ξ
]dξ . (4.43)

where W
[(

2R(I)
lm

)
,
(

2R(II)
lm

)
,ξ
]

is the Wronskian of 2R(I)
lm and 2R(II)

lm at the point ξ .
Considering the finite support of the sources between X1 and X2 and regularity of
the expression (4.41) and (4.42) at the horizon and infinity, respectively, and the
constant value of the Wronskian computed asymptotically as X → ∞, we can solve
for alm and blm:

W
[(

2R(I)
lm

)
,
(

2R(II)
lm

)
,ξ
]

=
(2l +1)! Γ (2−2iZm)

(l +1)! Γ (l +1−2iZm)
. (4.44)

alm = −4π(l +1)! Γ (l +1−2iZm)
(2l +1)! Γ (2−2iZm)

∫ X2+ε

X1−ε

(
2Jlm(ξ )

)(
2R(II)

lm (ξ )
)

ξ (ξ −1)
dξ , (4.45a)

blm = −4π(l +1)! Γ (l +1−2iZm)
(2l +1)! Γ (2−2iZm)

∫ X2+ε

X1−ε

(
2Jlm(ξ )

)(
2R(I)

lm (ξ )
)

ξ (ξ −1)
dξ , (4.45b)
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where ε is arbitrarily small and positive.
To solve for Ea, and Eb in (4.41b) and (4.42b) we compute Gauss’ law in Boyer–

Lindquist coordinates for a sphere of radius r0 with a charge of Q(r0) enclosed
within, ∫ 2π

0

∫ π

0

√
−g̃F̃trdθdφ = 4πQ(r0) . (4.46)

Combining (4.10a) to express F̃tr in terms of spin coefficients, with (4.41) and
(4.42), one finds

Ea + Ēa = Q(r0) , r0 < r1 ; (4.47a)
Eb + Ēb = Q(r0) , r0 > r2 . (4.47b)

Thus, Ea = 1/2Q where Q is the charge on the hole and Eb = 1/2(Q + e) where e
is the total charge of the sources.

4.5 The Electrodynamics of the Event Horizon

The electrodynamic properties of the event horizon and the space–time near the
horizon are determined by looking at sources of Poisson’s equations at small lapse
function, α → 0 (i.e., r → r+). Poisson’s and Laplace’s equation, as described in
Sects. 4.3 and 4.4, do not determine the electrodynamic properties of the horizon.
As we learned in the study of quasi-stationary equilibria (and lack thereof) near the
horizon (see Chap. 3), one must incorporate both Maxwell’s equations as well as the
momentum equations of the charges that source Maxwell’s equation. Similarly, it is
the implementation of the momentum equations for the constituent species near the
horizon that reveals the electrodynamic nature of the horizon. Since particle motion
is not arbitrary near the horizon (see (3.94) and (3.95)), the currents in Poisson’s
equation are not either. For example, all particles must be corotating with the hori-
zon to O(α2), as seen by external observers. Thus, an arbitrary azimuthal particle
drift can not be achieved between species, and the azimuthal current is restricted.
Thus, we need to explore the four current density and its tetrad components near the
horizon.

4.5.1 Electromagnetic Sources of Poisson’s Equations Near
the Horizon

The source of the spinorial Poisson’s equations is the current J2 in (4.31). This
is a first order differential equation in Jm̄ and Jn that we expand in terms of
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Boyer–Lindquist current density J̃µ , using (4.13) and (4.17):

Jm̄ = m̄µ J̃µ =
[√

2(r− iacosθ)
]−1

×
[
−iacosθ J̃t −ρ2J̃θ + i(r2 +a2)sinθ J̃φ

]
, (4.48a)

Jn = nµ J̃µ =
1
2

[
∆
ρ2 J̃t + J̃r − a∆

ρ2 sin2 θ J̃φ
]

. (4.48b)

The decomposition of tetrad currents in Boyer–Lindquist components is useful
because each species of charge satisfies the asymptotic (space–time near the hori-
zon) boundary conditions (3.95). Expanding the Boyer–Lindquist current density as
we did for the ZAMO current density in (3.74) and (3.78) yields

J̃µ = n+(−e)ũµ+ +n−(e)ũµ− , (4.49)

where n+ and n− are number densities in the frames of the fluids moving with four
velocities ũµ+ and ũµ− , respectively. From (3.95a), the expansion (4.49) implies

lim
α→0

J̃t = α−2 [Jt
0(θ ,φ)+ jt(r,θ ,φ)

]
, (4.50a)

where

∂
∂ r

Jt
0(θ ,φ) = 0 , (4.50b)

lim
α→0

jt(r,θ ,φ) = 0 . (4.50c)

Similarly, (3.95b) applied to the expansion (4.49) implies

lim
α→0

J̃φ = a
r2
++a2 J̃t

[
1+O

(
α2
)]

+ Jφ0 (θ ,φ)+ jφ (r,θ ,φ) , (4.51a)

where

∂
∂ r Jφ0 (θ ,φ) = 0 , (4.51b)

lim
α→0

jφ (r,θ ,φ) = 0 . (4.51c)

The first term represents the bulk motion of charge corotating with the horizon, since

ΩH = a
r2
++a2 . (4.51d)

The second and third terms include the effects of particle drifts between species.
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The radial current density decomposes similarly with the aid of (3.95c)

lim
α→0

J̃ r = − ∆
r2 +a2 J̃ t [1+O

(
α2)]

+α2 [Jr
0(θ ,φ)+ jr(r,θ ,φ)] , (4.52a)

where

∂
∂ r

Jr
0(θ ,φ) = 0 , (4.52b)

lim
α→0

jr(r,θ ,φ) = 0 . (4.52c)

Using (3.17c) and (3.95a), J̃ θ is asymptotically given by

lim
α→0

J̃ θ = Jθ0 (θ ,φ)+ jθ (r,θ ,φ) , (4.53a)

where

∂
∂ r

Jθ0 (θ ,φ) = 0 , (4.53b)

lim
α→0

jθ (r,θ ,φ) = 0 . (4.53c)

Inserting (4.50)–(4.53) into (4.48) reveals how the horizon boundary condition
(3.95) on the constituent charges restricts the asymptotic form of the tetrad cur-
rents near the horizon. We write, in anticipation of inserting these expressions into
the spinorial source term J2 of (4.31), the asymptotic tetrad current Jm̄ as

lim
α→0

(r− iacosθ)Jm̄ = J0
m(θ ,φ)+ jm(r,θ ,φ) , (4.54a)

where,

∂
∂ r

J0
m(θ ,φ) = 0 , (4.54b)

lim
α→0

jm(r,θ ,φ) = 0 , (4.54c)

and the tetrad current, Jn, as

ρ2 (r− iacosθ)
∆

Jn = J0
n (θ ,φ)+ jn(r,θ ,φ) , (4.55a)

where,

∂
∂ r

J0
n (θ ,φ) = 0 , (4.55b)

lim
α→0

jn(r,θ ,φ) = 0 , (4.55c)
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Equations (4.54) and (4.55) can be used to evaluate the asymptotic form of the
source of the spinorial Maxwell’s equations, J2, in (4.31). At this point we will
differentiate between axisymmetric fields and nonaxisymmetric fields (m �= 0). This
is motivated by the discussion in Sect. 3.7.1 that m �= 0 fields, even in the stationary
(∂/∂ t = 0) case, appear as waves to observers near the horizon since they must
rotate with the horizon. Consequently, the physical interpretation is very different.
Thus, we keep the two types of solutions (m = 0 and m �= 0) separate for physical
clarity.

There is only one complicated step in the substitution of (4.54) and (4.55) into
(4.31). Namely, the (∂/∂ r)jn(r,θ ,φ) term. Expand this term as

lim
r→r+

∆
∂
∂ r

jn(r,θ ,φ) =

lim
r→r+

(
r− r−

)(
r− r+

)[
lim
r→r′

jn(r,θ ,φ)− jn(r′,θ ,φ)
r− r′

]
. (4.56a)

Thus (r′ → r+ and r → r+ with r > r′) we have

lim
r→r+

∆
∂
∂ r

jn(r,θ ,φ) =
(
r+ − r−

)[
jn(r,θ ,φ)− jn(r′,θ ,φ)

]
=
(
r+ − r−

)
jn(r,θ ,φ) , (4.56b)

where the last term is a consequence of (4.55c).
Consider a distribution of sources to Poisson’s equations with an ingoing flow

front at r1 � r+ . Then, from (4.54)–(4.56) applied to (4.31), we get

lim
α→0

J2 =

[
∞

∑
k=0
α2kJk(θ ,φ)

]
j2(r,θ ,φ)Θ (r− r1) , (4.57a)

where

∂
∂ r

Jk(θ ,φ) = 0 , (4.57b)

lim
α→0

j2(r,θ ,φ) = 0 , m = 0 (4.57c)

lim
α→0

j2(r,θ ,φ) ∼ α0 , m �= 0 (4.57d)

andΘ is the Heaviside step function.
Similarly, the integrated source term of the radial equation (4.29), the quantity

2Jlm(r) defined in (4.30), can be expanded near the event horizon in terms of the
radial coordinate X of (4.32b) as

lim
X→1

2Jlm =

[
∞

∑
k=0

J0
lm(θ ,φ)(X −1)k

]
jlm(X ,θ ,φ)Θ (X −X1) , (4.58a)
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where

∂
∂ r

J0
lm(θ ,φ) =

∂
∂X

J0
lm(θ ,φ) = 0 , (4.58b)

lim
X→1

jlm(X ,θ ,φ) = 0 , when m = 0 (4.58c)

lim
X→1

jlm(X ,θ ,φ) ∼ X0 , when m �= 0 (4.58d)

lim
α→0

X = 1 . (4.58e)

In the axisymmetric case the source term 2Jlm actually goes to zero near the
horizon. When m �= 0 it goes to a constant. However, this is not the whole story
since the expansion coefficients for external fields in (4.42), blm, also depend on
the limits of integration in (4.45b), X1 and X2. When this effect is incorporated into
the analysis, one introduces gravitational redshift into the physics by means of the
freezing of the flow near the horizon.

4.5.2 External Fields From Electromagnetic Sources Near
the Horizon

4.5.2.1 The Freezing of the Flow

Consider a distribution of electromagnetic sources with a finite proper radial thick-
ness that accretes toward a black hole. We can keep track of the innermost and out-
ermost radial coordinates r1 and r2, respectively, during accretion. Equation (3.95c)
can be integrated at small lapse function to show that at late times

lim
t→∞

(
r− r+

)
= constant× e−2κt , (4.59)

where κ is the surface gravity of the hole defined in (1.35). Thus,

lim
t→∞

(r2 − r1) = constant× e−2κt , (4.60a)

lim
t→∞

(X2 −X1) = constant× e−2κt . (4.60b)

The constant time cross section of space–time constructed by an external observer
makes the radial thickness of an electromagnetic source shrink exponentially in time
as it nears the horizon. By (4.59) no external observer ever “sees” any particle or
source actually reach horizon. This is known as the “freezing of the flow.” Often
in wave scattering problems one changes coordinates (see, for example, [99] and
[68]) to

dr∗ =
r2 +a2

∆
dr . (4.61)
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In this “tortoise coordinate” it appears as if the flow is approaching an infinity at
r∗ = −∞ instead of stagnating at r+ in corotation with the hole.

4.5.2.2 No Hair Theorem

The result above will help explain the asymptotic form of the expansion coefficients
blm(t) in (4.42) for sources approaching the hole. Since the sources approach the
hole exponentially in the time coordinate by (4.59) as α → 0, we can use Poisson’s
equations to show the how the fields of an accreting source die off near the hole (i.e.,
the time derivatives are negligible in Maxwell’s equations near the hole in Boyer–
Lindquist coordinates). In order to evaluate (4.45b) for blm(t), we need the asymp-
totic form of the radial function. From the asymptotic form of the hypergeometric
function 2y(I)

lm in (4.34a) as given in [98] and (4.32a)

lim
X→1

2R(I)
lm = (X −1)

[
R0 + R̃(X)

]
, (4.62a)

where,

∂
∂X

R0 = 0 , (4.62b)

lim
X→1

R̃(X) = 0 . (4.62c)

Inserting (4.62) and the asymptotic form of the current source 2Jlm(X) in (4.58) and
(4.54b), we find

lim
X→1

blm(t) =

−4π(l +1)! Γ (l +1)
(2l +1)! Γ (2)

J (X2)
[
(X2 −X1)+O

(
(X2 −X1)

2
)]

,

(4.63a)

where

lim
X2→1

J (X2) = 0 , m = 0 (4.63b)

lim
X2→1

J (X2) ∼ X2
0 . m �= 0 (4.63c)

Using the gravitational redshift effect in (4.60b), we know that X2 → X1 for any
accreting finite source. Thus, (4.63) shows that an accreting source that is charge
neutral (i.e., Eb = 0 in (4.42b)) produces fields that die off as (X2 −X1) in general
and even faster in the astrophysically interesting case of axisymmetry:

lim
t→∞

blm(t) ∼ e−κt . (4.64)
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Equation (4.64) captures the essential physics. However, it shown in [100] and
[101] that the full time dependent problem in Schwarzschild geometry is more com-
plicated. There is a second order effect due to backscattering of the radiated fields by
the curvature potential of space–time that peaks at r ≈ 3M. The outgoing waves are
not free to radiate to infinity, but backscatter off this centrifuge-like barrier. Thus,
the multipole moments die off slower than exponentially. In the Kerr space–time we
would expect that blm(t) ∼ t−2l+2 as in Schwarzschild space–time. However, this
extremely complicated analysis provides no further insight into (4.64) so it is not
pursued here.

The result (4.64) is essentially a proof of a no hair theorem for charge neutral
(l �= 0) perturbations of a Kerr black hole. The accretion of the l = 0 moment adds
to the charge in the Kerr–Newman solution.

4.5.2.3 Electromagnetic “Bootstrapping”

In this section we show that a charge neutral electromagnetic source near the hori-
zon can not communicate information through electromagnetic characteristics by
a “bootstrap” effect. Namely, we explore the question: as a source approaches the
horizon, even though its l �= 0 fields are dying off, can the innermost source still
affect a source slightly upstream and in turn can this source effect a third source at a
slightly larger r coordinate and so on, until a signal escapes to infinity? The answer
is no since the l = 0 fields die off over smaller and smaller proper distances as the
hole is approached.

We will show this result by introducing a third coordinate X3. As before, X1
and X2 represent the inner and outer coordinate of the electromagnetic source. An
infalling probe at X3 falls in behind the source, X3 > X2 > X1, and monitors the
fields. Thus, X3 experiences the solutions to Laplace’s equations (4.42) as X3 → 1.
Again, using the asymptotic form of the hypergeometric function from [98] and
(4.36)

lim
X3→1

0R(II)
lm (X3) ∼ (X3 −1)−1 . (4.65a)

Similarly, from (4.34b) and (4.32a),

lim
X3→1

2R(II)
lm (X3) ∼ X3

0 , (4.65b)

and using (4.40b),

lim
X3→1

d
dX

(
2y(II)

lm

)
∼ ln(X3 −1) . (4.65c)

Inserting the asymptotic expressions (4.63) and (4.65) into the solution of
Laplace’s equations (4.42) for l �= 0 multipole moments of the fields yields
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lim
X3→1

Φ0 (X3) ∼ (X2 −X1)(X3 −1)−1J (X2) , (4.66a)

lim
X3→1

Φ1 (X3) ∼ (X2 −X1) ln(X3 −1)J (X2) , (4.66b)

lim
X3→1

Φ2 (X3) ∼ (X2 −X1)J (X2) . (4.66c)

The Boyer–Lindquist Maxwell tensor components can be found from the spin
coefficients in (4.26) and the expansions of (4.10). Using the asymptotic expressions
(4.66), we have

lim
X3→1

F̃tr (X3) ∼ (X2 −X1) ln(X3 −1)J (X2) , (4.67a)

lim
X3→1

F̃tθ (X3) ∼ (X2 −X1)(X3 −1)−1J (X2) , (4.67b)

lim
X3→1

F̃tφ (X3) ∼ (X2 −X1)(X3 −1)−1J (X2) , (4.67c)

lim
X3→1

F̃rφ (X3) ∼ (X2 −X1) ln(X3 −1)J (X2) , (4.67d)

lim
X3→1

F̃rθ (X3) ∼ (X2 −X1)J (X2) , (4.67e)

lim
X3→1

F̃θφ (X3) ∼ (X2 −X1)(X3 −1)−1J (X2) . (4.67f)

It is not straightforward to interpret the results in (4.67) since the coordinates
are not orthonormal, i.e., F̃tr �= F̃tr. The physical significance of these quantities is
revealed by computing the coordinate independent fluxes.

First consider the electric fluxes defined by the relation

ΦE ≡
∫

∗F̃αβ dXα ∧dXβ . (4.68)

The radial electric flux through a surface at X3 is

ΦE (F̃rt) =
∫ φ2

φ1

∫ θ2

θ1

F̃tr
√

−g̃ dθ ∧dφ . (4.69a)

The asymptotic expression in (4.67a) inserted into (4.69a) implies

lim
X3→1

ΦE (F̃rt) ∼ (X2 −X1) ln(X3 −1)J (X2) → 0 ,

X3 > X2 > X1 > 1 . (4.69b)

The amount of flux through an arbitrary surface from the radial electric field,
ΦE (F̃rt), goes to zero as the infalling probe approaches the horizon. Clearly, the
fields from the electromagnetic sources are dying off over smaller and smaller
proper distances as X1 → 1.
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Now consider the azimuthal electric flux in the region between the infalling
source and the infalling probe near the horizon, ΦE (F̃φ t),

ΦE (F̃φ t) =
∫ θ2

θ1

∫ r3

r2

F̃φ t
√

−g̃ dr∧dθ . (4.70a)

The flux in (4.71a) is evaluated through an arbitrary surface at a constant φ coordi-
nate. From (4.67c)

lim
X3→1

ΦE (F̃φ t) ∼ (X2 −X1) ln(X3 −X2)J (X2) → 0 ,

X3 > X2 > X1 > 1 . (4.70b)

Since the flux between the source and the probe is decreasing by (4.70b) we con-
clude that the electromagnetic fields are dying off over smaller and smaller proper
distances.

Similarly, we compute the electric flux ΦE (F̃θ t),

ΦE (F̃θ t) =
∫ φ2

φ1

∫ r3

r2

F̃θ t
√

−g̃ dr∧dφ . (4.71a)

lim
X3→1

ΦE (F̃θ t) ∼ (X2 −X1) ln(X3 −X2)J (X2) → 0 ,

X3 > X2 > X1 > 1 . (4.71b)

All of the electric fields in Maxwell’s equations are dying off faster and faster as the
sources approach the horizon. In general, one can write from (4.64) to (4.71) using
(4.60b), for the flux evaluated at X3, ΦE (X3),

lim
t→∞

ΦE (X3) ∼ constant× (t − t0)e−κt . (4.72)

Now consider the magnetic flux ΦB defined by

ΦB ≡
∫

F̃αβ dXα ∧dXβ . (4.73)

From (4.67e) and (1.24) we have

F̃rθ ∼ (X2 −X1)(X3 −1)−1J (X2) . (4.74a)

Computing the azimuthal magnetic flux as in (4.70a)

ΦB(F̃rθ ) =
∫ θ2

θ1

∫ r3

r2

F̃rθ dr∧dθ , (4.74b)

lim
X3→1

ΦB(F̃rθ ) ∼ (X2 −X1) ln(X3 −X2)J (X2) → 0 ,

X3 > X2 > X1 > 1 . (4.74c)
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In order to compute the poloidal magnetic flux we need the covariant components
of the Maxwell field, F̃θφ and F̃rφ as indicated in (4.73). These are linear combina-
tions of contravariant electric and magnetic fields in (4.67). We can greatly facilitate
this calculation if we note that (4.10), (4.42) and (4.63) imply

lim
X3→1

F̃φθ (X3)
F̃θ t(X3)

∼ F̃φr(X3)
F̃rt(X3)

=ΩH +O [(X2 −X1) ln(X3 −1)J (X2)] . (4.75a)

Thus, (1.24) and (4.67) imply

F̃θφ ∼ F̃rφ ∼ (X2 −X1) ln(X3 −1)J (X2) . (4.75b)

We can compute the radial magnetic flux in analogy to (4.69a),

ΦB(F̃θφ ) =
∫ φ2

φ1

∫ θ2

θ1

F̃θφ dθ ∧dφ , (4.76a)

lim
X3→1

ΦB(F̃φθ ) ∼ (X2 −X1) ln(X3 −1)J (X2) ,

X3 > X2 > X1 > 1 . (4.76b)

Similarly

lim
X3→1

ΦB(F̃rφ ) ∼ (X2 −X1) ln(X3 −1)J (X2) ,

X3 > X2 > X1 > 1 . (4.77a)

It is instructive to incorporate the results (4.74), (4.76) and (4.77) into one ex-
pression as we did in (4.72). The magnetic flux at X3 decays in time as

lim
t→∞

ΦB(X3) ∼ constant× (t − t0)e−κt . (4.78)

Equations (4.72) and (4.78) imply that l �= 0 moments of the Maxwell field die off
over smaller and smaller proper distances as an electromagnetic source approaches
the horizon. Thus, even in a continuous flow, sources near the horizon can not initiate
a chain reaction upstream (the “bootstrap” effect) to communicate a signal upstream.
The sources are causally disconnected from the asymptotic region of space–time at
r 	 r+ . Equations (4.72) and (4.78) indicate that the event horizon is an asymptotic
infinity to charge neutral (l �= 0) electromagnetic sources. This is substantiated by
the freezing of the flow condition (4.60) where external observers see sources always
approaching but never reaching the horizon. In the language of (4.61), the sources
are approaching an infinity at r∗ = −∞. As they approach this asymptotic infinity,
the fields they produce die off according to (4.72) and (4.73). This is the relevant
(causal) horizon electromagnetic boundary condition.

The analysis can be extended to the case of a = M. This causes a confluence
of singular points as r− → r+ . This solution is more of mathematical interest than
physical interest since maximal rotation, a = M, is never attained in practice. The
appropriate radial functions and spin components of the Maxwell field are solved
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in [90] and [102]. The freezing of the flow condition (4.59) changes as well into
(r − r+) ∼ 1/(t − t0). However, the physics of the no hair theorem is the same as
when a �= M.

4.6 Simple Solutions to Laplace’s Equations

4.6.1 The Kerr Newman Solution

The l = 0 moment of the electromagnetic field is the Kerr–Newman field. In (4.47b),
it was shown that the accretion of a source with charge e made the constant Eb =
(1/2)e in the vacuum solution (4.42). As the charge at r1 approaches the horizon for
r > r1 � r+ , by (4.63), (4.64) and (4.42)

lim
r1→r+

Φ0(r) = 0 , r > r1 (4.79a)

lim
r1→r+

Φ1(r) =
1
2

e
(r− iacosθ)2 , r > r1 (4.79b)

lim
r1→r+

Φ2(r) = 0 , r > r1 . (4.79c)

Inserting (4.79) into (4.10) and using the metric (1.24)

F̃µν = eρ−4 (r2 −a2 cos2 θ
)

dr∧
[
dt −asin2 θ dφ

]
−2eρ−4ar cosθ sinθ dθ ∧

[
a dt −

(
r2 +a2)dφ

]
. (4.80)

Using (3.3) we transform the Maxwell tensor components into the orthonormal
ZAMO frame

Er =
e
(
r2 +a2

)(
r2 −a2 cos2 θ

)

ρ4
[
(r2 +a2)2 −a2∆ sin2 θ

]1/2 , (4.81a)

Eθ = − 2ea2r∆ 1/2 cosθ sinθ

ρ4
[
(r2 +a2)2 −a2∆ sin2 θ

]1/2 , (4.81b)

Eφ = 0 , (4.81c)

Br =
2ear cosθ

(
r2 +a2

)

ρ4
[
(r2 +a2)2 −a2∆ sin2 θ

]1/2 , (4.81d)

Bθ =
ea∆ 1/2

(
r2 −a2 cos2 θ

)
sinθ

ρ4
[
(r2 +a2)2 −a2∆ sin2 θ

]1/2 , (4.81e)

Bφ = 0 . (4.81f)
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The lines of force can be found in the ZAMO frames are given in [103] in terms
of the ZAMO four velocity, uµ ,

dXµ

dλ
= −∗Fµ νuν , magnetic (4.82a)

dXµ

dλ
= Fµ νuν , electric. (4.82b)

The lines of force in the ZAMO frame can be found from (4.81) and (4.82). The
electric lines of force are given by

(
r2 −a2 cos2 θ

)(
r2 +a2) dθ +2a2r cosθ sinθ dr = 0 , (4.83a)

and the magnetic lines of force are parameterized by

2r cosθ
(
r2 +a2) dθ −

(
r2 −a2 cos2 θ

)
sinθ dr = 0 . (4.83b)

These lines of force are tangent to the local magnetic and electric field at every
point and are lines of constant flux [104, 105]. The lines of force were plotted in
[106] and are reproduced here in Fig. 4.1. Asymptotically, the electromagnetic field
is that of an electric monopole and a magnetic dipole. Even though the vacuum
field solutions in (4.42) were derived for a Kerr black hole background, they can
be applied to Kerr–Newman backgrounds as well, even for substantial charge Q
on the hole. In essence, we can ignore the effects of space–time curvature induced
by the stress-energy tensor of the Maxwell field (i.e., ignore the right hand side of
Einstein’s equations) even for huge astronomical charges. Inspection of the metric in
(1.24) shows that for a 10M� black hole, a polar magnetic field strength of 1015 G at
the horizon of a rapidly rotating black hole, a2 � M2, produces changes to the Kerr
metric on the order of Q2/M2 ≈ 10−6. Thus, the results of Sect. 4.5 are unchanged
for astrophysically reasonable charges on the hole and the fields in (4.42) differ from
the Kerr case in that Eb = (Q + e)/2, i.e., only the Kerr–Newman (l = 0) moment
of the fields differs from the Kerr case.

4.6.2 The Wald Solution

The next simplest solution is the l = 0, m = 0 solution found originally by Wald
[107]. This field is uniform, magnetic and aligned with the rotation axis of the hole
at infinity. The electromagnetic field in the ZAMO frames is

Br =
B0

A
1
2 ρ4

{(
r2 +a2)[(r2 −a2)(r2 −a2 cos2 θ

)

+2a2r(r−M)
(
1+ cos2 θ

)]
−a2∆ρ2 sin2 θ

}
cosθ , (4.84a)
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B E

Black
Hole

H
Ω

Fig. 4.1 The electric and magnetic field lines of a Kerr–Newman black hole adapted from [104],
equivalently this is the l = 0, m = 0 moment of the electromagnetic field in the Kerr space–time.
Asymptotically, the field is that of an electric monopole and a magnetic dipole. The polar magnetic
field lines are obscured by the overlapping polar electric field lines. Note the ubiquitous condition
∗FµνFµν �= 0 that is found in vacuum solutions to Maxwell’s equations in the Kerr space–time

Bθ = −B0∆
1
2

A
1
2 ρ4

{
a2 [2r

(
r2 −a2)cos2 θ

−(r−M)
(
r2 −a2 cos2 θ

)(
1+ cos2 θ

)]
+
(
r2 +a2)ρ2r

}
sinθ , (4.84b)

Er = − B0a

A
1
2 ρ4

{(
r2 +a2)[2r

(
r2 −a2)cos2 θ

−(r−M)
(
r2 −a2 cos2 θ

)(
1+ cos2 θ

)]
+r∆ρ2 sin2 θ

}
, (4.84c)

Eθ = −B0a∆ 1
2

A
1
2 ρ4

[(
r2 −a2)(r2 −a2 cos2 θ

)

+2a2r(r−M)
(
1+ cos2 θ

)
−
(
r2 +a2)ρ2]cosθ sinθ , (4.84d)
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Bφ = Eφ = 0 , (4.84e)

A =
(
r2 +a2)2 −∆a2 sin2 θ , (4.84f)

where B0 is the strength of the uniform magnetic field at infinity.
The solution bears a superficial resemblance to the vacuum electromagnetic

field of a conductive sphere rotating in a uniform magnetic field [108]. Firstly,
∗FµνFµν �= 0, i.e., there is a component of the electric field parallel to the mag-
netic field. Secondly, there is a voltage drop across the magnetic field lines. The
voltage drop is a global concept so this needs to be evaluated in a global coordinate
system. In the stationary frames (Boyer–Lindquist coordinates) this voltage drop at
the horizon is manifested by the relation

lim
r→r+

F̃tθ =
ΩH

c
lim

r→r+
F̃φθ . (4.85)

The voltage drop across the magnetic field at the horizon, ∆V+ , is given in terms of
the magnetic flux at the horizon, Φ+ , as defined by (4.73) and (4.85),

∆V+ (θ2,θ1) =
ΩH

c

[
Φ+ (θ2)−Φ+ (θ1)

]
. (4.86)

The voltage drop between θ2 and θ1 depends on the amount of flux threading the
horizon between θ2 and θ1,Φ+ (θ2)−Φ+ (θ1). In the same spirit, Thorne, Price and
Macdonald [80] make the analogy of the event horizon with a rotating conductor
by suggesting that one could terminate the radial electric field at the horizon with a
fictitious quadrupolar surface charge density on the horizon, σ+ . (Clearly, there can
be no physical charges on the horizon which is a null hypersurface).

σ+ =
B0ar+

(
r+ −M

)
4π

r+ sin4 θ −2M cos2 θ
(
1+ cos2 θ

)
(
r+ +a2 cos2 θ

)2 . (4.87)

The Wald electric and magnetic field lines in Boyer–Lindquist coordinates are
indicated diagrammatically in Fig. 4.2. From (4.84c), the electric field dies off with
radius as 1/r2 instead of 1/r4 as in a flat space quadrupole:

lim
r→∞

Er = −B0(Ma)
r2

(
3cos2 θ −1

)
. (4.88)

This indicates that there is a fundamental difference between the induced (by frame
dragging of the magnetic field) electric field of the Wald solution and the electro-
statically sourced quadrupole field from a rotating conductor.

Before leading too much credence to the analogy of a conductor and an event
horizon, we critique this idea in the next section. Clearly, a conductor boundary
condition is generally inconsistent with the vacuum infinity aspect of the horizon in
the no hair theorem.
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Black
Hole

B E
HΩ

Fig. 4.2 The electromagnetic field associated with the magnetic flux threading the event horizon
of a Kerr black hole, in the � = 1, m = 0 moment of the electromagnetic field. The field lines are
indicated in Boyer–Lindquist coordinates, dash (solid) lines represent the electric (magnetic) field.
The black hole rotates about the vertical axis [112]

One should note that the Wald field is the unique stationary axisymmetric solu-
tion of Maxwell’s equations that is well behaved on both the horizon and asymptotic
infinity [96]. From (4.21), (4.34) and (4.36) we have the following asymptotic forms
of the radial functions

lim
X→1

2R(I)
lm ∼ (X −1)

[
1− 1

X

]iZm

, (4.89a)

lim
X→1

0R(I)
lm ∼ (X −1)−1

[
1− 1

X

]iZm

, m �= 0 (4.89b)

lim
X→1

0R(I)
lm ∼ constant , m = 0 (4.89c)

lim
X→1

2R(II)
lm ∼ constant , (4.89d)
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lim
X→1

0R(II)
lm ∼ (X −1)−1

[
1− 1

X

]iZm

, (4.89e)

lim
X→∞

2R(I)
lm ∼ Xl+1 , (4.89f)

lim
X→∞

0R(I)
lm ∼ Xl−1 , (4.89g)

lim
X→∞

2R(II)
lm ∼ X−l , (4.89h)

lim
X→∞

0R(II)
lm ∼ X−l−2 . (4.89i)

To keep the magnetic flux at the horizon finite (see (4.73)), we requireΦ1 ∼ (X −1)
and Φ0 ∼ (constant) by (4.10f) and the metric (1.24). Thus, only the solutions
R(I)

lm are allowable at the horizon. The only asymptotic multipole of this solution
at X → ∞ that does not diverge is l = 1 in (4.89g), the Wald field. Consequently,
this regularity condition implies that external axisymmetric sources create predom-
inately the l = 1 moment of the electromagnetic field near the horizon [96].

4.6.3 Axisymmetric Time Stationary Fields

The m = 0 approximation creates some simplification to the solutions of Laplace’s
equation. Using m = 0 in (4.33), which defines the radial functions used in the so-
lutions to Laplace’s equation, (4.42), yields

φ0 = − 2
∆(r− iacosθ)2 φ2 , m = 0 . (4.90a)

Inserting this result into the Boyer–Lindquist field expansion (4.10) implies

F̃tφ = F̃rθ = 0 , m = 0 . (4.90b)

Thus, there can be no poloidal Poynting flux in the field. Therefore, axisymmetric
vacuum solutions to Laplace’s equation do not extract energy from a rotating black
hole.

One can also compute the magnetic flux through a hemisphere of the event hori-
zon using (4.73). We noted in the last section that setting l = 1 and m = 0 will yield
the dominant field component at the horizon. Performing the integral using (4.84a)
for Br of the Wald field gives

ΦB(hemisphere) = πr2
+B0

[
1−
(
a/r+

)4
]

. (4.90c)

Rapidly rotating black holes exclude axisymmetric magnetic flux. The same is not
true of nonaxisymmetric magnetic flux [102].
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4.7 The Horizon Electromagnetic Boundary Condition

4.7.1 Displacement Currents at the Ingoing Flow Front

Consider the ingoing wave and flow boundary conditions near the horizon as given
by (3.94) and (3.95). Combining this result with the “freezing of flow” conditions
(4.59), we conclude that all fields and particles appear to be approaching the horizon
exponentially slowly as if it were an asymptotic infinity for all external observers.
Thus, there is always a flow front or wave front just outside of the horizon as viewed
globally. There is a change in field strengths across the inward propagating flow
front, hence there is displacement current at the head of the inflow.

The magnetic field is well behaved in the frame of the ingoing particles, which
requires that (3.90) hold (i.e., the ingoing wave condition). Using (3.90) in Ampere’s
law (3.53b) and (3.60b)

∂
∂Xr

(
α√gφφFθr

)
≈− ∂

∂X0

(
α√gφφFθ0

)
, (4.91a)

∂
∂Xr

(
α
√

gθθFφr)≈− ∂
∂X0

(
α
√

gθθFφ0) . (4.91b)

Therefore, the magnetic field near the horizon in the ZAMO frames is created by
displacement currents, not physical currents, as a result of the inward ultrarelativistic
boundary condition (3.94).

We expand (4.91) as we did for the semi-infinite Faraday wheel terminated trans-
mission line in Sect. 2.9.4 in terms of step functions and the functions RBφ , REθ ,
RBθ and REφ that are independent of the coordinates X0 and Xr to O

(
α2
)
:

α√gφφFθr ≡ RBφ Θ
[
V X0 −Xr] , (4.92a)

α√gφφFθ0 ≡ REθ Θ
[
V X0 −Xr] , (4.92b)

α
√

gθθFφr ≡ RBθ Θ
[
V X0 −Xr] , (4.92c)

α
√

gθθFφ0 ≡ REφ Θ
[
V X0 −Xr] , (4.92d)

where V ≡ dXr/dX0 = ωr/ω0 as a result of (3.94b). We evaluate (4.92) as the flow
front passes by the ZAMO. At an instant later, we can define accurately for small
displacements

Xr ≡
∫

dXr ≡
∫
ωr , (4.93a)

X0 ≡
∫

dX0 ≡
∫
ω0 . (4.93b)

Equations (4.93ab) represent a local coordinate system. The basis vectors of the
coordinate system are aligned with the legs of the ZAMO tetrad at a point near
the flow front. The origin of time is chosen so that the flow front passes this point
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at X0 = 0. We examine the flow an instant after it passes this point. Clearly, for
small enough times, X0, the flow front will be contained in an open set in which
the legs of this coordinate system can be considered orthonormal to an excellent
approximation. Denote differential operators in the coordinate system by the same
symbols used in (3.25). One has the coordinate vector field condition

[
∂
∂Xi ,

∂
∂X j

]
= 0 , ∀i, j , (4.94)

since the coefficients of ∂/∂ r, ∂/∂φ , ∂/∂θ and ∂/∂ t in (3.25) are chosen to be
constants on the open set. By choosing X0 small enough, any desired accuracy in
Ampere’s law, (3.53) and (3.60), can be achieved. With the mathematical rigor now
established, we insert the expression (4.92) into (4.91) to find the displacement cur-
rent at the flow front

Jθ
D

= − c
4π

Fθrδ
(
V X0 −Xr) , (4.95a)

Jφ
D

= − c
4π

Fφrδ
(
V X0 −Xr) . (4.95b)

This is the source of the poloidal magnetic field in the flow front.
As in (2.106a) we define a surface displacement current by integrating across the

flow front

J µ
D

= lim
ε→0

∫ V X0−ε

V X0+ε
Jµ

D
dXr . (4.96)

Then, using (3.90) and (4.95a) inserted into (4.96), we obtain

4π
c
J i

D
= Ei . (4.97)

Thus, we can associate with the vacuum a surface impedance for displacement
currents,

ZD =
4π
c

, (4.98)

the same value as in (2.106c). Since a vacuum space–time has the same electrody-
namic structure regardless of location, it is not surprising that the equivalence prin-
ciple yields the same result here as it does in the distant vacuum of the semi-infinite
transmission line discussed in Sect. 2.9.4. Displacement current at an asymptotic
flow front is not a causative agent for global physics and is not of much physical
significance in a dynamical sense. One could use I Z2

D
power to describe a vacuum

infinity as a resistor. However, this just represents Poynting flux radiation to infinity
by a relativistic flow or light wave using Ampere’s law. Representing a nonconduc-
tive vacuum space–time infinity as an imperfect conductor is not very useful and is
in fact misleading. Many authors ([80, 109, 110]) have tried to describe the horizon
as an imperfect conductor with a surface impedance of Z = 4π/c. However, this
is clearly inconsistent with the no hair theorem calculated in Sect. 4.5 which states
that the horizon is formally a vacuum infinity to charge neutral electromagnetic
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sources. The horizon can not radiate l �= 0 moments of the Maxwell field as can a
true conductor. The Faraday wheel at the end of a semi-infinite transmission line
was discussed in detail in Sect. 2.9.4 precisely to make this contrast.

4.7.2 The Horizon as a Circuit Element

In this section we strengthen the analogy of the horizon to an infinity in a transmis-
sion line circuit. Consider a generalized battery as shown in Fig. 4.3. The battery
pumps charges toward the horizon. The charges are allowed to free fall inward.
To simplify matters, one can choose an electron–positron plasma in this gedanken
experiment. Given a high enough plasma density in a positronic plasma, a four cur-
rent can be generated by particle drifts where the difference in injected constants

Black
Hole

Battery
– ++

X+ = actual horizon

X2 = stretched horizonX1 (t) = f low front

X1 (t) =
flow front

vacuumvacuum

Jp

Jp

Jp

B φ.Bφ

Fig. 4.3 The event horizon as a hypothetical circuit element. A generalized battery pumps electro-
magnetic sources from large “r” coordinate towards the black hole. External observers never see
the flows pumped by the battery ever reach the event horizon. The horizon is physically discon-
nected from any electrical contact that one tries to make. The horizon is also causally disconnected
and is electrodynamically equivalent to an infinity in a transmission line in the hypothetical circuit
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of motion (see Sect. 3.3) is virtually the same for each species. Thus, the inflow
can maintain an essentially charge neutral character as the two species spiral inward
along virtually identical trajectories (as in Figs. 3.1 and 3.2).

The battery has two terminals. The central terminal pumps charges toward the
pole. The outer terminal is cylindrical and these charges spiral inward as in Figs. 3.1
and 3.2. They approach the horizon with a small spread in latitude just above the
equator. The outer cylindrical current path is seen in cross section in Fig. 4.3. The
generalized battery concept is quite versatile. For example, by choosing an alternat-
ing array of positron and electron guns, a drift entirely in the azimuthal direction
can be created within the plasma, (i.e., Jφ �= 0; all other components equal zero;
Jµ = 0 for µ �= φ ). This current ring can be allowed to accrete intact as the quantum
numbers of the flow can be chosen to be virtually the same for both species for large
number densities.

Consider the simplest experiment as shown in Fig. 4.3. Two oppositely directed
equal magnitude poloidal currents, JP, flow from the battery terminals. The density
decreases along the inflows as gravity accelerates the particles. This is indicated by
the shading intensity decreasing inward of the battery. Near the horizon, the shading
intensity increases due to the freezing of the flow. The radial currents create a Bφ

in the vacuum all the way to the flow front at X1(t) where the displacement current
switches off Bφ (see 4.95a). In the “membrane paradigm” [80], the displacement
current is replaced by a fictitious surface current on a spacelike stretched horizon,
X2 > X1(t). The vacuum infinity approach and the conductive membrane approach
agree when the horizon is passively accepting information.

It is interesting to note that by the no hair theorem, Bφ is sourced near the hori-
zon by inward and sideways directed vacuum electromagnetic characteristics from
the current source JP, not by the displacement current which carries only ingoing
information.

It is also instructive to realize that the battery deposits one sign of charge near
the pole and the other near the equator. The Kerr–Newman l = 0 moment of the
field manifests itself the same whether it is accreted at the pole or θ �= 0. Thus,
between X1(t) and X+ there is a radial electrical field. Outside of X1(t), however,
the Kerr–Newman pieces from the two electrodes cancel.

4.7.3 The Horizon is not a Conductor

A superficial resemblance to a rotating conductor in a uniform magnetic field was
noted in connection with the fictitious quadrupolar horizon surface charge density
on the horizon in (4.87) for the Wald field. We show that this is a poor analogy in
this section.

Consider a battery attached to a spherical laboratory conductor with axisymmet-
ric electrodes at θ1 and θ2. A current Jθ flows between θ1 and θ2 on the conductor.
This current Jθ is a source for Bφ by the Biot–Savart law. In the black hole case
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consider a large amount of Jθ deposited inside of a stretched horizon. No matter
how large we make Jθ , it is not a source for an external Bφ by the no hair theorem.

Of more significance astrophysically, consider a spherical shell of magnetized
gas that accretes onto a star. The shell contains an azimuthal current Jφ that supports
the magnetic field. The stellar surface is a good conductor (particle drifts in the solar
corona can persist for the lifetime of the Sun based solely on its high conductivity
and ignoring plasma instabilities). When the shell reaches the star, the magnetic
flux does not die off as long as the particle drifts exist between species on the stellar
surface.

Now consider an azimuthal current source created by the generalized battery in
Fig. 4.3 as described in the last section. Note that we only need one terminal of the
battery to accomplish this. After a finite time the battery is turned off.

At late times, there will always be a particle drift between species in the plasma,
uφ

D
, as a consequence of (3.94ac),

uφ
D

= uφ+ −uφ− ∼ α . (4.99)

However, there is no detectable magnetic field upstream as a result of the no hair
theorem as given by (4.79). Thus, the horizon does not behave like a good conductor.

Ascribing a surface impedance of 4π/c to the horizon does not tell one if it is a
good conductor or a poor conductor. We contrast the horizon with a poor conduc-
tor. In this instance particle collisions quickly absorb any differences in momenta
between the species, killing off particle drifts in the accreting plasma. This property
of a poor conductor contradicts (4.99).

The astrophysically interesting property of a conductor is that it supports l �= 0
moments of the electromagnetic field. This is precisely what the horizon can not do,
so the conductor analogy is misleading in cases of actual interest.

4.7.4 The Absence of Unipolar Induction Near the Horizon

Astrophysically, the most interesting electrodynamic question of the space–time
near the event horizon is whether or not it can behave as a unipolar inductor of
Faraday wheel. The authors of [80] have tried to make such a comparison in an
effort to physically justify the Blandford–Znajek [66] mechanism. Clearly, by the
no hair theorem there is no such analogy to a unipolar inductor. Yet, it is instruc-
tive to understand the flaws in the reasoning in [80] in order to elucidate the role of
black hole GHM near the horizon. The long discussion of the Faraday wheel at the
end of a transmission line or plasma filled waveguide in Sect. 2.9.4 was prepared to
explicitly contrast the horizon with a rotating conductor.

Consider a rotating black hole immersed in the Wald field of Sect. 4.6.2. There is
a voltage drop across the magnetic field lines as given by (4.86). In [80], this is called
a “battery-like EMF.” Even though no physical electrical lead can actually touch the
horizon, the claim is made in [80] that if no current flows in the leads, a spark gap
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Fig. 4.4 The electrostatic equilibrium of conductive leads (shaded) that connect to a hypothetical
circuit near the event horizon of a black hole that is rotating in the Wald magnetic field [112]

forms as in the Faraday wheel slightly detached from the end of a transmission line
or plasma filled waveguide (Figs. 2.6 and 2.7). The voltage near the horizon in (4.86)
is dropped across the gap, driving a global circuit. The mistake in [80] is that they
ignore the horizon boundary condition on the flow (3.94) and (3.95) for the charges
that create the electromagnetic fields. The inaccuracy of utilizing only Maxwell’s
equations or only the momentum equations in studying equilibria near the horizon
was stressed in Chap. 3. When the ends of the leads are no longer held stationary
arbitrarily close to the horizon, but flow inward and rotate according to (3.94) and
(3.95), the voltage drop across the magnetic field lines becomes associated with an
ingoing wave front by Faraday’s law (Bφ ≈ −Eθ ) and the voltage drop in the gap
remains small as for the detached rotating disk at the end of a transmission line
with a large gap. There is a voltage drop across the magnetic field, but no current
flows as in the open circuited transmission line. In terms of the no hair theorem, as
far as the electromagnetic characteristics are concerned, the horizon is always “far
away” in a global context. As with the open circuited transmission line, we expect
an electrostatic equilibrium to be achieved at the ends of the leads (Fig. 4.4). We
justify these statements by direct calculation in the remainder of this section.

4.7.4.1 Attaching the Leads

It is no trivial matter to connect perfectly conductive leads to the horizon from large
distances as posited in the gedanken experiments of [80, 109]. This expedience
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assumes away all of the relevant physics. In fact we will show in the remaining
chapters that significant black hole GHM interaction must occur within the leads.

Noting that the leads will interact with the magnetic field requires a very careful
statement of the problem in order to isolate any putative unipolar properties of the
near horizon space–time and the unipolar properties of the leads themselves. Clearly,
an equatorial conductive disk as used in [80] is the most difficult choice since the
plasma must cross the Wald field to reach the hole. A simpler choice is to just slide
two azimuthally symmetric plasma flows down the Wald magnetic field lines in
Fig. 4.2, so the flows resemble those in the circuit of Fig. 4.3. Near the hole, the
leads are shown in Fig. 4.5. It is unreasonable to assume that the flow can proceed
down the field lines at θ > 0 from infinity to near the equator of the horizon and
satisfy perfect MHD. We do not require such a circumstance in our analysis. The
voltage drop and dissipation in the external circuit is arbitrary. We only require that
the tips of the leads obey perfect MHD.
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Fig. 4.5 The contour of integration ∂S that bounds the surface S used in the analysis of Faraday’s
law near the event horizon. The curve is broken into four pieces. The curves B and D are integral
curves of ∂

/
∂ r and the curves A and C are integral curves of ∂

/
∂θ [112]
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4.7.4.2 Faraday’s Law in the 3+++1 Splitting of Space–Time

Hypersurface orthogonality of the ZAMO four velocity was used in [80] to rewrite
Maxwell’s equations in a 3+1 splitting of space–time. The advantage of this is that
Maxwell’s equations, (3.53)–(3.60), can be written in integral form with ZAMO
evaluated fields. Faraday’s law is

∮
∂S
α
[
E+

v
c
×B
]
·dl = −1

c
d
dt
ΦB = −1

c
d
dt

∫
S

B ·dΣ , (4.100)

where v is the velocity of the boundary of integration as viewed by a ZAMO. The
magnetic flux is evaluated through a surface, S, with surface area element, dΣ . We
consider the contour of integration, ∂S, in the following to consist of four pieces: A,
B, C, and D as shown in Fig. 4.5. We pick a contour of integration that is stationary
with respect to infinity. Thus, by (3.42),

v = −Ω
α

√
gφφ êφ . (4.101)

The curve C in Fig. 4.5 is close enough to the horizon that the fields associated with
the leads have yet to be propagated to such a small lapse function. Thus, the fields
along C can be described by the background Wald field. The curves B and D just
barely penetrate the tips of the perfectly conductive leads. The curves B and D are
integral curves of the vector field ∂/∂ r, and the curves C and D are integral curves
of the vector field ∂/∂θ . This contour of integration is used in the next two sections.

4.7.4.3 Proof by Induction that the Near Horizon is not a Unipolar Generator

Construct a pair of perfect MHD conductive leads near the horizon as indicated
in the cross sectional image in Fig. 4.5. These leads are attached to some global
circuit that possibly does not obey perfect MHD everywhere. The proof by induction
that there is no unipolar induction in the space–time near the horizon hinges on
the fact that if the tips of the leads (i.e., the portion of the leads in the asymptotic
region of space–time near the horizon which obey perfect MHD by assumption) are
introduced with zero current flow, I = 0, then no large electric fields are created by
the near horizon space–time to disturb electrostatic equilibrium and drive currents
in the ends of the leads. Thus, I remains zero and perfect MHD is maintained in the
tips of the leads.

The Wald electric field Er ∼ α0 in (4.84c). Thus, a well behaved finite surface
charge can shield the Wald electric field at the tips of the leads, σtip ∼ α0. The
surface charges on the leads greatly modifies the electric field from the background
Wald field. The resulting Eθ has a contribution from the Wald field that scales as α1

(see 4.84d) and another contribution from the surface charges at the tip, σtip. Thus,
a finite amount of electric flux is terminated on the sides of the leads when I = 0
and α→ 0. The surface charge density that shields the sides of the leads is therefore
well behaved, σsides ∼ α0.
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Fig. 4.6 The contributions to Faraday’s law from each piece of the contour of integration in
Fig. 4.5. The dynamical nature of space–time assures that any voltage drop across the magnetic
field lines at the tips of the leads is a consequence of toroidal magnetic flux advected with the
inflow in Faraday’s law

We now compute the integrals in Faraday’s law for the surface, S, drawn in
Fig. 4.5. The contributions to each piece of the curve are indicated in Fig. 4.6. As
the surface charge moves inward according to the horizon boundary condition (3.94)
and (3.95), a toroidal magnetic field, Frθ , is created by Ampere’s law (3.56b). Since
σ ∼ α0, Jr ∼ α0 in the vacuum between the leads, and

Frθ ≈ Fθ0 ∼ α0 . (4.102)
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Equation (4.102) follows from the axisymmetric Ampere’s law, (3.56b) and (3.53b),
and represents an ingoing wave condition similar to (3.90). Expanding out (4.100)
gives the following terms:

∫
B
α
(

E+
v
c
×B
)
·dl =

∫
B
αE ·dl = −

α2
A
(θ = 0)
2κ

Er
B

, (4.103a)

where Er
B

is the electric field strength in the gap and κ is the surface gravity.
Similarly,

∫
D
α
(

E+
v
c
×B
)
·dl =

α2
A
(θ = θ2)

2κ
Er

D

−ΩH

c

∫
D

√
gφφgrrBθ

[
1+O

(
α2

A

)]
dr , (4.103b)

where θ2 is the latitude at which the tip of the lead approaches the horizon and Er
D

is the electric field in the gap. Along curve C one has
∫

C
α
(

E+
v
c
×B
)
·dl =

∫
C
α
(v

c
×B
)
·dl =

−ΩH

c

∫ θ2

0

(√
gφφgθθ

)
+

Br
+

[
1+O

(
α2

C

)]
dθ , (4.103c)

where “+” means to evaluate at the horizon. The Eθ term was ignored because
Eθ ∼ α in the background Wald field ahead of the electromagnetic wave front car-
ried by the leads. Finally,

∫
A
α
(

E+
v
c
×B
)
·dl = −1

c

[
∂
∂ t
ΦB

][
1+O

(
α2

A

)]

+
ΩH

c

∫ θ2

0

(√
gφφgθθ

)
+

Br
+

[
1+O

(
α2

A

)]
dθ . (4.103d)

The line integral
∫

Aα (E ·dl) is equal to the rate that flux is deposited into S as
the leads propagate inward as indicated in (4.104d). As the surface charge moves
inward, the poloidal current it makes deposits more toroidal flux close to the hori-
zon. The ingoing wave condition (4.102) assures cancelation in (4.100) to O

(
α2

A

)
.

From the divergence equation (3.55b) for an axisymmetric field in the gap D and
the regularity of the poloidal flux near the horizon (4.73), we have

Bθ
D
∼ α . (4.104)

Thus, an electrostatic equilibrium is established in the tips of the leads as a conse-
quence of (4.103) substituted into Faraday’s law (4.100):

Er
D
∼ Er

B
∼ α0 . (4.105)
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These are well behaved fields in the gap and there is no reason why a conductor
could not be shielded from these fields. If the tips of the leads were in a perfect
MHD state at t = 0 they should remain so. Furthermore, if I = 0 initially, then I = 0
at later times. There is no current generation or unipolar induction near the horizon,
just a surface charge density that is virtually static in global time t. �

Let us contrast this with the open circuited transmission line in Sect. 2.9.4. In
electrostatics Bφ = 0, so the voltage drop across B in the first term of (4.103d)
can not be balanced by a change in flux on the right hand side of Faraday’s law
(4.100). Thus, the entire voltage drop is in the gaps B and D, so we have Er ∼ d−1

in the disconnected transmission line. Similarly, [80] ignore the influx of toroidal
magnetic field by holding the leads fixed just outside of the horizon in contradiction
to the horizon boundary condition (3.94) and (3.95). Thus, there is no magnetic
flux change on the right hand side of Faraday’s law (4.100) to balance the voltage
drop across the magnetic field lines. Consequently, they find Er

D
∼ Er

B
∼ α−2

A
and

charges are ripped out of the leads driving a current. This is the assumed physics of
the membrane paradigm that simulates a unipolar inductor in the Blandford–Znajek
[66] mechanism. However, the analysis does not consider the equations of motion
of the charges in the leads, only Maxwell’s equations, hence, it gives the wrong
answer. One concludes that the near horizon voltage drop does not drive currents.
The horizon and near horizon space–time is like the space in the gap between the
rotating disk and the open circuited transmission line of Sect. 2.9.4 as depicted in the
top views of Figs. 2.6 and 2.7. The fictitious horizon surface currents (displacement
currents at the ingoing flow front) are not equivalent to the physical currents in a
Faraday wheel that terminates a semi-infinite transmission line.

4.7.4.4 The Near Horizon Passively Accepts All Voltage Drops

Assume as in the last section that a pair of perfect MHD leads exist near the horizon
and they are attached to some global circuit that need not have infinite conductivity.
We further assume that an arbitrary current I = I0 flows in the leads. We show that
independent of the value of I0, the space–time near the horizon never reacts back
on the leads to alter the current, consistent with the no hair theorem. By Ampere’s
law (3.62b), the toroidal magnetic field in the vacuum region between the leads in
Fig. 4.5 is a function of the current I, Frθ = Frθ (I). The law of current conservation
in the ZAMO frames Jµ ;µ = 0 is derived in the same manner as the mass flux
conservation law (3.66b):

α
∂
∂X0

(
J0)= ∇(3) · (αJ) . (4.106)

Thus, a finite current I = I0 in the leads corresponds to an asymptotic poloidal cur-
rent density that scales as

JP ∼ α−1 . (4.107)
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The scaling (4.107) also follows from the horizon boundary condition on the in-
dividual species (3.94ab) that ur ∼ α−1. Combining (4.107) with Ampere’s law
(3.56b) and the regularity of the magnetic field in a surface layer of the infalling
conductive lead (proper frame) reproduces the ingoing wave condition (3.90a). By
(3.4) and the definition of the voltage drop in the stationary frames,

F̃tθ = −αρFθ0 +
Ω√gφφ

c
ρFθφ ≈ αρFrθ +

Ω√gφφ
c

ρFθφ , (4.108a)

∆V =
∫ θ2

θ1

F̃tθdθ . (4.108b)

Near the horizon (4.108) implies that ∆V = ∆V (I = I0) which is a function of the
current as well (for a given poloidal magnetic flux). Consider an imposed value of I0
(and therefore ∆V (I0)) in the leads near the horizon. At the tips of the leads, only the
Wald radial electric field, Er ∼ α0, needs to be shielded as was the case in the last
section with I = 0, σtip ∼ α0. However, by (3.90a), Eθ ∼ α−1, thus σside ∼ α−1 in
order to shield the conductor from Eθ . Even though the surface charge on the sides
of the conductor scales as α−1, it is well behaved in the proper frame and the α−1

scaling is from a Lorentz contraction as observed in the ZAMO frame, ur ∼ α−1.
This surface charge density is the analog of the Goldreich–Julian charge density
from pulsar physics discussed in the plasma filled waveguide analysis of Sect. 2.9.4.
The new question in this scenario is whether the charges needed to supply σside(V )
are equivalent to a unipolar current? The value of the voltage drop between the leads
V (I0) is a constant in the region where the leads obey perfect MHD as a consequence
of Ampere’s law (4.100) with no dΦB/dt term. However, if one applies (4.100) to
the contour of integration in Fig. 4.6, the only difference from the last section is
that the ingoing wave condition (4.102) is replaced by the ingoing wave condition
(3.90a). Thus, all of the calculation is identical to (4.103) and we again find that

Er
D
∼ Er

B
∼ α0 . (4.109)

This implies that the near horizon space–time never reacts back to change ∆V (I0)
near the ends of the leads by creating a large Er to drive current. This result is inde-
pendent of I0. The near horizon passively accepts any value of ∆V or I. By contrast,
a unipolar inductor imposes ∆V and I in a transmission line circuit (see (2.107) and
(2.108)) or in a plasma filled waveguide circuit (see (2.120) and (2.121)). The causal
nature of σside(V ) is clear. This is the charge necessary to support the ingoing wave.
The currents, charges and the waves they create are generated upstream and radi-
ated toward the hole. The amount of charge in the asymptotic region near infinity
(the near horizon space–time) grows in time as long as the source of plasma keeps
radiating inward.
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4.7.5 The Horizon is an Electrodynamic Infinity

As the flow front of infalling leads (or any charge neutral electrodynamic source)
approaches the horizon, the poloidal voltage drop between the flow front and asymp-
totic infinity (the horizon), ∆Vr dies off by (4.103ab), (4.105) and (4.109):

lim
α→0

∆Vr ∼ α2 . (4.110a)

This compares to an outgoing electrodynamic flow propagating toward infinity:

lim
r→∞

∆Vr ∼
1
r

. (4.110b)

This contrasts to a rotating conductor detached from the end of a transmission line
or plasma filled waveguide. As the Faraday wheel approaches the end of a trans-
mission line or waveguide, ∆V = constant (see Figs. 2.6 and 2.7). The near horizon
space–time passively accepts any voltage drop across the magnetic field lines and
any poloidal currents as does asymptotic infinity at r → ∞. A unipolar inductor,
by contrast, imposes a voltage drop and poloidal current in a circuit. Electrostatic
equilibrium is achieved at a flow front as it approaches the horizon as occurs for an
outgoing flow at r → ∞. By contrast, electrostatic equilibrium breaks down at the
end of a transmission line or plasma filled waveguide as they approach a Faraday
wheel (see Sects. 2.9.4 and bottom of Figs. 2.6 and 2.7). Clearly, the space–time near
the event horizon behaves as an asymptotic infinity to charge neutral flows and not
like a conductor. The imperfect conductor interpretation is valid when the horizon
passively accepts information and the impedance of the vacuum of 4π/c is assigned.
Treating the vacuum like a conductor is not a particularly useful physical construct
and is quite misleading.

4.8 The Charge of a Rotating Black Hole

Consider the nonvanishing electromagnetic invariant, E ·B, of the Wald field (4.84):

∗FµνFµν =
B2

0acosθ
ρ4

{
∆rρ2 sin2 θ +

[(
r2 −a2)(r2 −a2 cos2 θ

)

+2a2r(r−M)
(
1+ cos2 θ

)][
2r
(
r2 −a2)cos2 θ

−(r−M)
(
r2 −a2 cos2 θ

)(
1+ cos2 θ

)]}
. (4.111)

By (4.87), the component of E parallel to B, E‖ , changes sign with latitude on the
horizon (see Fig. 4.2). For α ≈ 0 the sign changes at θ ≈ 35◦ and when α ≈ M it
changes at θ ≈ 29◦ [96]. The change of sign in E‖ led Phinney [111] to suggest
that these vacuum electric fields can drive a charge-starved and therefore charge
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separated current system as in the early models of pulsars [59]. However, this does
not work for black holes for the same reason that is does not work for pulsars: the
“Goldreich–Julian conundrum” [67]. Inspection of the global field in Fig. 4.2 shows
no problem with attracting the positrons in a tenuous pair plasma inward along the
magnetic field lines at the poles. The problem occurs at lower latitudes where E‖
changes signs and the putative return current flows. In these flux tubes, even though
E‖ < 0 near the horizon, E‖ > 0 a few black hole radii away. Thus, E‖ can not drive
a charge separated tenuous plasma. The plasma being tenuous must flow along the
magnetic field lines, yet in a charge separated plasma, currents can only be made by
the bulk motion of charge, so J‖ and E‖ have the same sign in a semi-vacuum magne-
tosphere. Without a unipolar inductor (like the neutron star in a pulsar) the currents
can only be driven by E‖ in the semi-vacuum magnetosphere. Consequently, since
E‖ switches signs in the putative return current path, the magnetosphere is open
circuited. However, charges can still be accreted along the polar field lines and the
result is not a current system, but a net charge on the hole. Wald [107] pointed out
that the change in electromagnetic energy ε for a charge accreting down the polar
field lines is found in terms of the vector potential (see (1.30b)):

ε = e
(
Ãt|horizon − Ãt|∞

)
. (4.112)

Because of the dragging of interial frames, the E and B components are mixed in the
Kerr background space–time. Thus, the minimum electrostatic energy a particle can
experience occurs when some of this electric field is canceled by the l = 0 field com-
ponent. Anticipating this consequence, Pettersen [93] realized that the minimum en-
ergy state of a plasma filled magnetosphere required charge on the hole and charge
neutrality would therefore require an equal but opposite charge in the axisymmet-
ric magnetosphere. Thus, he considered a charged current ring as the source of the
Wald field, with current I and charge q at a radial coordinate r0 from the hole:

J̃ t =
q

2πr2
0
δ (r− r0) δ (cosθ) , (4.113a)

J̃ r = J̃θ = 0 , (4.113b)

J̃ φ =
I

2πr2
0
δ (r− r0) δ (cosθ) . (4.113c)

It is shown in [93] that the change in electrostatic energy for polar accretion in the
presence of the charged current ring (4.112) is

ε = e

[
− Q

2M
+

aI
(
r2

0 +a2
)
−qa2

2r0
(
r2

0 +a2
)
]

. (4.114)



148 4 Vacuum Electrodynamics

Since a conduction path only exists along the polar field lines, charges will accrete
at the pole until the change in electrostatic energy vanishes in (4.114). Thus, setting
ε = 0 and Q = −q in steady state gives

Q = aMI

[ (
r2

0 +a2
)

r0
(
r2

0 +a2
)
−a2M

]
. (4.115)

A real magnetosphere is clearly more complicated than a charged current ring and
a tenuous plasma. However, the mixing of E and B occurs and a minimum energy
state would almost certainly require a net charge on the hole. For a≈M, the poloidal
magnetic field from the l = 0 moment (the Kerr–Newman field) can be comparable
to the Wald magnetic field. For reasonable magnetic field values (Q2/M2) � 1 in
(4.115) and the metric is essentially the Kerr metric. Therefore, the Kerr–Newman
electromagnetic field is essentially a test field. We acknowledge that the hole can be
a significant source of magnetic flux in general, but we will not discuss the Kerr–
Newman field explicitly except in Chapter 11. In most of the book, the l = 0 moment
is just considered a second order source of poloidal magnetic flux around the black
hole.

4.9 The Example of Axisymmetric Current Loops

The details of the no hair theorem can be illustrated by the behavior of the fields of
uncharged axisymmetric current loops in the equatorial plane near the event horizon.
The contents of this section are computer generated solutions of Laplace’s equations
that were created by Tomas Ledvinka expressly for the purposes of this book.

4.9.1 Magnetic Flux Exclusion From Rapid Rotators

The first thing that we illustrate is the exclusion of magnetic flux as the rotation rate
of a black hole increases. Figure 4.7 shows the magnetic field of an axisymmetric
current loop at r = 1.5r+ near a black hole with a/M = 0.9. Figure 4.8 is the same
current loop at r = 1.5r+ near a very rapidly spinning black hole with a/M = 0.995.
Notice how there is less flux threading the horizon when a/M = 0.995 as pointed
out in (4.90c).

4.9.2 The No Hair Theorem

Next we illustrate the no hair theorem through a current loop that is adiabatically
contracted onto the black hole. We take the current loop from Fig. 4.7 near a black
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Black
Hole

Fig. 4.7 The magnetic field of an axisymmetric current loop with a radius of r = 1.5r+, α = 0.43,
centered about a black hole with a/M = 0.9

Black
Hole

Fig. 4.8 The magnetic field of an axisymmetric current loop with a radius of r = 1.5r+, α = 0.29,
centered about a black hole with a/M = 0.995

hole with a/M = 0.9 and contract it to a radius r = 1.05r+ and then to r = 1.001r+
in Figs. 4.9 and 4.10, respectively. Comparison of Figs. 4.7, 4.9 and 4.10 shows the
large scale magnetic flux dying off as the loop contracts toward the horizon.
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Black
Hole

Fig. 4.9 The magnetic field of an axisymmetric current loop with a radius of r = 1.05r+, α =
0.124, centered about a black hole with a/M = 0.9

Black
Hole

Fig. 4.10 The magnetic field of an axisymmetric current loop with a radius of r = 1.001r+,
α = 0.017, centered about a black hole with a/M = 0.9

4.9.3 Magnetic Field Line Reconnection Near the Event Horizon

The computer calculation depicted in Fig. 4.11 is of two axisymmetric concentric
current loops carrying the same total azimuthal current (as measured in the local
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Fig. 4.11 The magnetic field of two concentric axisymmetric current loops centered about a black
hole with a/M = 0.9. The inner loop is at a radial coordinate r = 1.05r+, α = 0.124, and the
outer loop is a proper distance 0.7M farther out, at a lapse function of α = 0.24. The image is
a high resolution depiction of the near field region. Notice the X-point forming between the two
current rings

ZAMO frames) near the event horizon of a black hole with a/M = 0.9. The inner
loop in Fig. 4.11 is at r = 1.05r+ as in Fig. 4.9 and the outer loop is located a proper
distance 0.7M farther out. Fig. 4.11 illustrates the “no electromagnetic bootstrap-
ping” effect that was discussed in Sect. 4.5.2. The magnetic field of the inner loop is
dying off much faster than the magnetic field of the outer loop as the pair of current
loops approach the event horizon. The net effect is the formation of an X-point in the
near field structure in the high resolution image of Fig. 4.11. The result is of great
importance in bridging the gap between vacuum solutions and a continuous plasma
flow. This insight is crucial for the correct implementation of the horizon boundary
condition on magnetic flux accretion which is essential for the analysis of Chap. 8.

4.9.4 The Physical Interpretation of the Results

The computer calculations described in this section do not capture the entire phys-
ical foundation of the no hair theorem. These results represent the effects of the
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redshifting of vacuum electromagnetic characteristics in the curved space–time for
sources near the event horizon. There are also frame dragging effects associated
with the no hair theorem that arise from the horizon boundary conditions (3.94c)
and (3.95b). These are particularly significant for charge neutral current loops near
the event horizon. More specifically, all inflowing sources of Maxwell’s equations
must corotate with the event horizon to O(α2) as seen globally. Consequently, the
azimuthal drift between particle species dies off in current loops near the event hori-
zon. Alternatively stated, the event horizon boundary condition makes the azimuthal
current in a current loop turn off as O(α2) near the event horizon, as seen globally.
For more details see Sect. 8.1 and (8.3).

Thus, our choice of keeping the current in the loop a constant as the horizon is
approached in the computer simulations is artificial. One expects that current loops
in the interval 1.001r+ < r < 1.05r+ are almost certainly in the asymptotic zone of
space–time and the azimuthal ZAMO evaluated current in the loops should be scal-
ing (dying off) with lapse function as in (8.3a). With these frame dragging effects
taken into account, one would expect that the ZAMO evaluated current in the loop
depicted in Fig. 4.10 should equal 0.017/0.124 = 0.137 of the ZAMO evaluated
current in the current loop in Fig. 4.9. Hence, frame dragging contributions to the
no hair theorem make the magnetic field of a contracting current loop die off much
faster near the event horizon than is depicted in Figs. 4.9 and 4.10. Similarly, frame
dragging effects make the formation of the X-point in the field topology of Fig. 4.11
more pronounced and occur farther from the event horizon.

4.10 The Implications of Vacuum Electrodynamics to GHM

The most important aspect of vacuum electrodynamics to black hole GHM is that
there is no meaningful electrodynamic boundary condition associated with the event
horizon. Unfortunately, the popular notion that the space–time near the event hori-
zon is electrodynamically equivalent to a unipolar inductor has masked the actual
physics of black hole GHM. The space–time near the horizon passively accepts
any electrodynamic parameters imposed on it. The event horizon is an asymptotic
infinity to charge neutral accretion flows. The horizon boundary condition is that
the space–time near the horizon has no relevance electrodynamically in any global
plasma flow. The only importance of the horizon is that it is a sink for inflowing
plasma. Consequently, one needs to look outside of the asymptotic space–time to
find a significant ergospheric GHM interaction. We showed that axisymmetric vac-
uum fields can not extract energy from a black hole. In the remainder of the book,
we explore plasma filled magnetospheres and GHM in the ergosphere. Two other
interesting results are that the hole is likely to have a net charge and that mag-
netic flux is excluded from rapidly rotating black holes. Most of this chapter is
from [112]. Some additional analysis of idealized vacuum electrodynamic problems
can be found in that reference.



Chapter 5
Magnetically Dominated Time Stationary
Perfect MHD Winds

In Chap. 4, the solutions of Maxwell’s equations demonstrate that no axisymmet-
ric vacuum electromagnetic field can extract energy from a rotating black hole (see
4.90b). Yet, based on Lens–Thirring torques we expect an external source of mag-
netic flux (as well as the field of the hole itself which has m = 0) to be axisymmetric
to first order (as discussed in the introduction to Chap. 4). Therefore, plasma must
exist in a black hole magnetosphere if an effective energy extraction method exists.
Furthermore, a charge starved magnetosphere is open circuited by the Goldreich–
Julian conundrum of axisymmetric pulsar magnetospheres: the vacuum electric field
switches sign in the magnetic flux tubes that are potential return current paths. Since
there is no unipolar inductor associated with the horizon, this is a fatal flaw of the
charge starved scenario as there is nothing to drive the return current (see Sect. 4.8).
Thus, we expect that enough plasma is present in any viable energy extracting
scheme so that any memory of the background vacuum electric field is erased from
the magnetosphere. Locally, this condition is given by the Goldreich–Julian charge
density [81]. In a black hole magnetosphere, we crudely estimate the Goldreich–
Julian charge density for a 109 M� black hole,

ρG−J ∼
ΩH B
2πce

∼ 1
(

B
104 G

)
cm−3 . (5.1)

Where the value of B ∼ 104 G will provide enough magnetic pressure to stop ac-
cretion onto a 109 M� black hole and therefore a field larger than this at the horizon
cannot be supported by external sources (see Chap. 10). Clearly by (5.1), for mag-
netospheres that contain strong magnetic fields, even a very tenuous plasma can
support ne > ρG−J and short out the vacuum electric field. The simplest descrip-
tion of flows from a highly magnetized magnetosphere are time stationary perfect
axisymmetric MHD winds in the magnetically dominated limit. The language of rel-
ativistically wind theory will permeate the remainder of the text and we introduce
the nomenclature in this chapter.

The theory of magnetized winds began with the study of the solar wind [62]. Rel-
ativistic pulsar winds in the context of a split monopole geometry were discussed
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Black
Hole

Accretion Disk

Azimuthally Symmetric
Magnetic Flux Tube

δΦ Φ

Fig. 5.1 The hatched region is an azimuthally symmetric flux tube that encircles a magnetic flux
Φ and contains a magnetic flux δΦ

in [113]. The relativistic wind theory of [113] has been extended to more general
magnetic field configurations in [114, 115]. By the frozen-in condition and the def-
inition of the rotated ZAMO basis in (3.8), there is flow only along the magnetic
field lines,

uP = u1, u2 = 0, Fµνuν = ∀µ . (5.2)

Thus, each axisymmetric flux tube can be considered to have its own MHD flow
(see Fig. 5.1). The formalism of relativistic winds was introduced into black hole
magnetospheres in [111, 116].

5.1 The Perfect MHD Wind Equations

The perfect MHD wind equations are the momentum equations (3.39) with no
dissipation,

n
d

dτ
(µuα)+nµ

[
Γ αµνuµuν

]
+

∂
∂xα

(P) =
FµνJν

c
, (5.3)
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Maxwell’s equations of Sect. 3.6, with the subsidiary condition (5.2) and the law of
mass conservation (3.36b). The combined system of equations essentially contain
four pieces of information. The first two pieces of information are simple conser-
vation laws. The time component of the momentum equations corresponds to the
law of energy conservation in an azimuthally symmetric magnetic flux tube. The
azimuthal momentum equation similarly represents angular momentum flux con-
servation in each azimuthally symmetric magnetic flux tube.

A third component of the wind solution is the field aligned poloidal momentum
equation for the plasma in the ê1 direction (see 3.8a and 3.40), known as the wind
equation. The wind equation can also be found algebraically using the normalization
condition of the plasma four velocity u ·u = −1 and the conservation of energy and
angular momentum (remember u2 = 0 in perfect MHD) relations in an azimuthally
symmetric flux tube (this is done in 5.24). If one specifies the constants of motion of
the flow within an azimuthally symmetric flux tube, then the solutions of the wind
equation reveal which regions of spacetime can be linked by a perfect MHD flow
with those particular constants of the flow. The constants of motion are injected into
the flux tube and the wind equation gives no information as to what are physically
reasonable constants of motion. There is a large history of the wind equations be-
ing used to determine the constants of motion. However, constants of motion by
definition are not created within the perfect MHD regime of the flow. Remember
that in the Faraday wheel terminated plasma-filled waveguide of Sect. 2.9.4, that the
Faraday wheel injected the constants of motion into the wind zone. Similarly, the
neutron star injects the constants of motion into an MHD pulsar wind and the sun
into the solar wind.

The seven constants of motion are: Φ = the amount of magnetic flux encapsu-
lated by an azimuthal magnetic flux tube (see Fig. 5.1), k = the mass flux per unit
magnetic flux in a flux tube, δΦ = the amount of magnetic flux within the flux tube
(see Fig. 5.1), ∆V =the voltage drop across the magnetic field in the flux tube, ke =
the energy flux in the flux tube, k� = the angular momentum flux in the flux tube,
and S = the specific entropy flux within the magnetic flux tube.

The fourth equation is the poloidal momentum equation in the trans-field (ê2 di-
rection). This is known as the Grad–Shafranov equation. It determines the magnetic
flux distribution in the wind. It is the most complex equation of the four and typi-
cally can be solved only in the force free limit. It is discussed briefly in Sect. 5.7.

5.2 Constants of Motion within a Flux Tube

In this section, we elaborate on the seven constants of motion. Firstly, since the
frozen-in condition (5.2) implies that plasma does not cross the magnetic field lines
(u2 = 0), the amount of flux contained within cylindrical radii less than that of the
flux tube,Φ , is conserved. Sometimes this flux is labeled by the stream function,Ψ ,
in wind theory, whereΨ is a constant along each stream line (flux tube),

Φ =Φ(Ψ). (5.4)
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Since the Maxwell tensor derives from the vector potential,

Fµν = Aµ;ν −Aν ;µ , (5.5)

BP = F2φ =
1

√gφφ

∂
∂X2

(√
gφφAφ

)
, (5.6)

where we used (3.32d) to write (5.6) in the rotated ZAMO basis. By definition,
B2 = F1φ = 0 (see 3.7), therefore (3.32c) and (5.5) imply that

∂
∂X1

(√
gφφ Aφ

)
= 0 . (5.7)

Thus, the stream function is

Ψ
2π

=
√

gφφ Aφ = Ãφ . (5.8)

Similarly, we find that the flux contained within the magnetic flux tube is a con-
stant, δΦ ,

δΦ =
∫

F2φ dX2 ∧dXφ . (5.9)

The quantity dX2 ∧ dXφ = ω2 ∧ωφ by (3.8b), and it is the cross sectional area
element in an azimuthally symmetric flux tube, dA⊥ ,

dA⊥ = dX2 ∧dXφ . (5.10)

The third constant of motion is found by integrating the mass conservation law
(3.36b) with the source term S = 0, and uP = u1:

∫
nαuPdX2 ∧dXφ = constant . (5.11)

Taking the ratio of (5.11) and (5.9) in the limit A⊥ → 0 yields the third constant of
motion, the mass flux per unit magnetic flux, k,

k =
nαuP

BP ,
∂
∂X1 (k) = 0 (5.12)

It is instructive to define a frame that corotates with the magnetic field at a fixed
radial coordinate “r.” The “corotating frame” has a four velocity uµ . The frozen-in
condition in this frame becomes

F20u0 +F2φuφ = 0 . (5.13a)

The azimuthal velocity of the field as viewed by a ZAMO is

βφ
F

=
u φ
u 0 , (5.13b)
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F20 = βφ
F

BP . (5.13c)

One can define a field line angular velocity, ΩF , as viewed from asymptotic infinity
implicitly from (3.42)

βφ
F

=
(
ΩF −Ω

cα

)
√

gφφ . (5.14)

Since Ω → 0 as r → ∞ and Ω →ΩH as r → r+ in a flux tube, βφ
F
→ +∞ as r → ∞

and βφ
F
→−∞ as r → r+ , if 0 <ΩF <ΩH .

We see from (5.13c) that βφ
F

is associated with the cross-field electric potential.
Using the time stationary Faraday’s law in the 3 + 1 splitting of spacetime (4.100),
the voltage drop across the magnetic field is given by (5.13c) and (5.14) as

∆V = −
∫

E ·dl = −
∫ ΩF

√gφφ
c

BPdX2 . (5.15a)

Since F10 = 0, by the frozen-in condition, (5.15a) implies ∆V = constant in a flux
tube. Thus it follows from (5.9) that

∆V = − ΩF

2πc
δΦ = constant . (5.15b)

Thus, ΩF is a constant in a flux tube that is related to the electrostatic potential.
In the rotated ZAMO basis, the frozen-in condition becomes one relation for the

toroidal magnetic field, F12 = Frθ :

F20u0 +F21u1 +F2φuφ = 0 , (5.16a)

F12 =

(
βφ −βφ

F

)
β P BP , (5.16b)

where βφ and β P
are the azimuthal and poloidal three velocities of the plasma in

the ZAMO frame, respectively. In terms of conservation laws, it is more desirable
to define the Boyer–Lindquist toroidal magnetic field density, BT

BT =
√

−g̃ F̃rθ = α√gφφ F12 . (5.17)

Boyer–Lindquist coordinates are suitable for global conservation laws because the
metric is independent of the coordinates “t” and “φ” (∂/∂ t and ∂/∂φ are Killing
vectors). Thus, the “t” and “φ” components of the stress-energy tensor are as-
sociated with conserved quantities. In the absence of plasma inertia, the stress-
energy tensor is given by the electromagnetic term (3.23). The conserved quantities
are called the poloidal redshifted Poynting and angular momentum fluxes [117].
The total redshifted Poynting flux in a magnetic flux tube is found from (3.23) in
Boyer–Lindquist coordinates using (5.13), (5.14) and (5.17) to be

∫
αSPdA⊥ = −ΩF

4π

∫
BT F2φ dX2 ∧dXφ . (5.18)
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Similarly, the poloidal angular momentum flux, SP
L

, is given by T̃φP in (3.23) and
the total angular momentum flux about the symmetry axis of the black hole in a flux
tube is

∫
αSP

L
dA⊥ = − c

4π

∫
BT F2φ dX2 ∧dXφ . (5.19)

The fifth and sixth constants of motion are the energy and angular momentum fluxes,
ke and k�, respectively. Including the plasma stress-energy tensor in (3.21) and the
conserved mass flux (5.12), the conserved specific energy can be found from (5.18)
and (3.7) to be

e = ω− ΩF BT

4πk
. (5.20)

Similarly, the conserved specific angular momentum is found from (3.21) and
(5.19),

� = m− cBT

4πk
. (5.21)

This result is also shown in the derivation of (5.48). The specific mechanical energy
and angular momentum (ω and m, respectively) were defined in (1.36). Note that
this “m” is not the same quantity as the multipole moment of the electromagnetic
field discussed in Chap. 4.

The seventh constant of motion is the entropy per unit magnetic flux S. For warm
plasmas that are not relativistically hot, the entropy does not strongly affect the
dynamics of a magnetically dominated wind.

5.3 The Wind Equations

The wind equations can be described as a set of algebraic relations for the four
velocity. From (3.14), (5.16), (5.20), and (5.21) one finds,

uφ =

α�√gφφ

[
M2 +

(
βφ

F

)2
]
−βφ

F

(
e− Ω�

c

)

αµ
[

M2 +
(
βφF
)2

−1
] , (5.22a)

u0 =

(
M2 −1

)(
e− Ω�

c

)
+
αβφF �√gφφ

αµ
[

M2 +
(
βφF
)2

−1
] , (5.22b)
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F12 =
4πncuP

[
βφ

F

(
e− Ω�

c

)
− α�√gφφ

]

αBP

[
M2 +

(
βφF
)2

−1
] . (5.22c)

In (5.22) we used the pure Mach number defined in terms of the pure Alfvén
speed

M2 ≡
(
uP
)2

U2
A

c2 , (5.23a)

U2
A

=

(
BP
)2

4πnµc2 . (5.23b)

Combining (5.22a,b) with the normalization condition on the bulk four velocity,
u ·u = −1, yields the wind equation:

(
uP)2 +1 =

M4
[

e− Ωmin
c �

][
e− Ωmax

c �

]
−
[
2M2 −1+

(
βφ

F

)2
][

e−
ΩF �

c

]

α2µ2

[
M2 −1+

(
βφF
)2
]2 ,

(5.24)

where Ωmin and Ωmax are defined in (3.43).

5.4 The Critical Surfaces

When the plasma bulk velocity uP exceeds the group velocity of a plasma wave
propagating in a flux tube along the poloidal field lines, then no plasma waves of
this type can be propagated in the antiflow direction as seen globally. This condition
is satisfied at and beyond a critical surface for each wave mode. There are potentially
three critical wave surfaces, corresponding to the slow, Alfvén, and fast waves. At
the critical surface, a wave radiated opposite to the poloidal flow direction stagnates.
This condition is given by the vanishing of the poloidal component of the group four
velocity for that mode, uP

g = 0, as given by (2.51). Expression (2.51) is not trivial
since ug is a function of θ . The critical surface condition uP

g = 0 is defined by the
value of uP in the flow through (2.51) and in this section we solve for uP at the
critical surface.

Since the antidirected wave stagnates at the critical surface, the poloidal compo-
nent of the wave vector becomes infinite (i.e., the wavelength of oscillation goes to
zero):

|k|P → ∞ ,
kP

|k| ≈ ±1 . (5.25)
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The positive (negative) sign in (5.25) corresponds to outgoing (ingoing) waves in
an ingoing (outgoing) wind. Inserting the condition (5.25) into (2.51) and setting
uP

g = 0 yields the expected result

uP = |ug (θ) | . (5.26a)

Similarly, (5.25) applied to (2.40) yields the phase velocity at the critical surface,

u2
ϕ ≈

(
uP
)2 (kP

)2

(kP)2 =
(
uP)2

. (5.26b)

Consequently we must determine ug(θ) in order to find the poloidal flow velocity
at the critical surface.

First we consider the four velocity of an axisymmetric flux tube. From (5.13) we
write the four velocity of the corotating frame as

Fµ =
∂
∂X0 +βφ

F

∂
∂Xφ

. (5.27)

We do not bother with normalizing (5.27) since Fµ is not necessarily timelike as∣∣βφ
F

∣∣> 1 is an allowed value as discussed below (5.14).
The magnetic four vector can be simplified in terms of Fµ [111]. The magnetic

four vector, Bµ , is of interest because we need it to find the angle of propagation
relative to the magnetic field in the expression for ug(θ) that is required to evaluate
(5.26). Expanding Bµ in the orthonormal rotated ZAMO basis,

Bµ = ∗Fµνuν =
(
u0 u1 u2 uφ

)
⎛
⎜⎜⎜⎜⎜⎝

0 −BP 0 −Bφ

BP 0 0 −E2

0 0 0 0

Bφ E2 0 0

⎞
⎟⎟⎟⎟⎟⎠

. (5.28)

We find from (5.27) that

Bµ =
BP

uP

[
−Fµ −

(
Fµuµ

)
uµ
]

. (5.29)

Noting that

uµFµ = −u0 [1−βφβφ
F

]
, (5.30)

(5.29) becomes

Bµ =
BP

uP

[
−Fµ +u0uµ

(
1−βφβφ

F

)]
. (5.31)
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Substituting (5.29) and (5.31) into expression (2.34) for cosθ and applying the
definition of phase velocity in (2.39) we have

1
2

FµνFµν cos2 θ =
(

BP

uP

)2 [
−Fµkµ

|k| + vϕu0 (1−βφβφ
F

)]2

, (5.32a)

where k is defined in (2.35). Using (5.25) and (5.27)

lim
|kP|→∞

Fµkµ
|k| = 0 . (5.32b)

At the critical surface
(
vϕu0

)2 =
(
uP
)2 by (5.26). Thus, (5.32) reduces to

1
2

FµνFµν cos2 θ =
(
1−βφβφ

F

)2 (
BP)2

. (5.33)

In order to find uP at the Alfvén critical surface, we rewrite (2.41) as

u2
P

= U2
I

=
FµνFµν
8πnµ

[(
U2

I

c2 +1

)
cos2 θ −

U2
I

c2

]
. (5.34)

In the rotated ZAMO basis, the proper magnetic field is very simple using the
frozen-in condition (5.13c) and (5.16)

1
2

FµνFµν =
[
1−
(
βφ

F

)2
](

BP
)2 +(F12)

2 =

[
1−
(
βφ

F

)2 +

(
βφ −βφ

F

)2

(
β P)2

](
BP
)2

.

(5.35)

Using expressions (5.33) and (5.35) in (5.34) at the Alfvén critical surface, the
poloidal four velocity satisfies

(
uP)2 = U2

I
=
[
1−
(
βφ

F

)2
] (BP

)2

4πnµ
. (5.36)

Similarly to (5.34), we can write the magnetic-acoustic four speed dispersion
relation (2.44) as

U4
F,SL

−U2
F,SL

[
U2

S
+

FµνFµν
8πnµ

]
+
[(

c2 +U2
F,SL

)
cos2 θ −U2

F,SL

]U2
S

FµνFµν
8πnµc2 = 0 .

(5.37)

Again, we substitute (5.35) and (5.33) to reduce the last term in (5.37) to get the
magneto-acoustic critical surface conditions with UF,SL = |uP|:
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U4
F,SL

−U2
F,SL

[
U2

S
+

FµνFµν
8πnµ

]
+

[
1−
(
βφ

F

)2
]

4πnµ
(
BP)2

U2
S

= 0 . (5.38)

The critical surfaces play a role in the poloidal momentum equation, or wind
equation (5.3). This has been explored through the algebraic wind equation (5.24).
From (5.24), Beskin [118] computed ∂

/
∂x a (Mα) where a = r,θ and b = r,θ in the

expressions to follow. First, he notes that

∂
∂Xα

µ =
c2

S

c2 − c2
S

µ

⎡
⎣2

∂
∂Xα k

k
−

∂
∂Xα (Mα)2

M2α2

⎤
⎦

+
c2

c2 − c2
S

[
1

nmp

(
∂P
∂S

)
n
+T
]
∂
∂Xα

S , (5.39)

where S is the entropy. Then he finds from (5.24) that one can write

∂
∂Xa

(
M2α2)=

Na

D
. (5.40a)

Note that (5.40a) is the differential part of the wind equation (5.3). Using the stream
functionΨ of (5.8)

Na =
α2
[
1−
(
β 2

F

)2 −M2
]

(∇Ψ) · (∇Ψ)

[
∇bΨ∇a∇bΨ +

1
2
∇′

a [(∇Ψ) · (∇Ψ)]
]

, (5.40b)

where ∇′
a acts on all quantities except M2 and

D =

[
1−
(
βφ

F

)2 −M2
]

M2 +

(
F12
)2

M2 (BP)2 −
c2

(uP)2

[
1−
(
βφ

F

)2 −M2
]

M2

c2
S

c2 −nc2
S

. (5.40c)

The denominator, D, vanishes when (5.38) is satisfied with |uP| = UF,SL . Thus, the
magneto-acoustic critical surfaces are singular points of the poloidal momentum
equation.

Similarly in [119], this result is generated by taking ∂/∂X1
[
ln
(
uP
)]

, where uP

is given by the algebraic relation (5.24). However, the dispersion relation they find
involves unnatural definitions of magnetic field components as a result of using
Boyer–Lindquist (nonorthonormal) coordinates. Thus, it is difficult to interpret the
wave speeds. The important consequence of computing the plasma wave speeds in
Chap. 2 is that it is not at all obvious that (5.36) and (5.38) represent the appropriate
plasma wave speeds at the critical surfaces. The plasma wave speeds depend on
the angle of propagation and the value of cosθ from (5.33) and (5.35) is not at all
intuitive,
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cos2 θ =

(
1−βφβφ

F

)2
(
β P
)2

[
1−
(
βφF
)2
](
β P)2 +

(
βφ −βφF

)2
. (5.41)

Note that the algebraic relations (5.22) and the algebraic wind equation (5.24)
all have a singularity at the intermediate speed, by (5.36), since the denominator
vanishes. The only way that the flow can proceed smoothly through the Alfvén
critical surface is if the numerators in (5.22) and (5.24) vanish as well. This reduces
to a single constraint

(
βφ

F

)
A

(
e− Ω�

c

)
A

=
αA�(√gφφ
)

A

, (5.42a)

or alternatively written,

e− ΩF �

c
=
[
1−
(
βφ

F

)2
]

A

(
e− Ω�

c

)
A

. (5.42b)

5.5 The Topology of the Outgoing MHD Wind Solution Space

Kennel et al. [113] published the first treatment of MHD wind theory that suc-
cessfully clarified the critical point structure of outgoing magnetized winds. The
critical points are mathematical singularities in the combined set of differential
equations comprised of Maxwell’s equations and the momentum equations of the
wind plasma. Physically, the critical points represent points at which the flow ex-
ceeds one of the MHD plasma wave speeds (slow, intermediate, and fast speeds
or waves). Once beyond the critical point, the corresponding wave cannot be an-
tidirected to the bulk flow. Wind solutions pass successively through the slow and
intermediate critical points if they propagate beyond the light cylinder (i.e., the sur-
face at which the magnetic field lines rotate at the speed of light) as depicted in
Fig. 5.2. There is a solution that also passes through the fast critical point on its
way towards asymptotic infinity, the critical solution or minimum torque solution.
For every value of ΩF there is one value of conserved energy, ECR , that defines this
solution, where ΩF is the field line angular velocity. Even though the analysis was
carried out in a monopolar magnetic field geometry, the results are qualitatively cor-
rect for winds in axisymmetric flux tubes [113]. This is adequate for our purposes
as the winds considered in this book are really nested sets of axisymmetric winds
(i.e., a unique wind for each flux tube).

We consider the solution space topology through Figs. 6, 7, and 10 of [113].
We have a particular emphasis on the finite temperature wind solution space of
their Fig. 10. The results are modified slightly for our situation in Fig. 5.2. Notice
that there are two critical solutions (one physical and one unphysical) defined by E
(the conserved energy) equal to ECR (the critical energy) for a given value of ΩF .
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Fig. 5.2 The topology of the outgoing MHD wind solution space as derived in [111]. The vertical
axis is the logarithm of the poloidal four velocity of a sample wind divided by the speed of light,
logUr . The displacement from the source is measured in terms of the logarithm of the field line
rotational three velocity divided by the speed of light, logβφ

F
. There are six classes of solutions

considered in the text. Regions I and VI of the solution space are occupied by subcritical solutions.
Curves II (physical) and III (unphysical) are the minimum torque solutions for the given value of
the field line angular velocity, ΩF . Regions IV (physical) and V (unphysical) contain supercritical
wind solutions

There are six disjoint regions of solution spaces labeled I–VI in the figure; these are
described below.

I There is a two-dimensional subset of solution space that is comprised of sub-
critical solutions, E < ECR . A subcritical solution extends just beyond the light
cylinder then turns back towards the source, even though the poloidal four
velocity, Ur, is positive. These solutions are clearly unphysical beyond the
turnaround point. The subcritical solutions join onto the vertical degenerate so-
lution, commonly called the unphysical branch of the minimum torque solution
(i.e., the nearly vertical solid line in Fig. 5.2).

II There is a singular (i.e., one-dimensional set in solution space), physical min-
imum torque solution that connects the source to asymptotic infinity with
E = ECR . The solution accelerates all the way out and asymptotes to a maxi-
mum flow speed that exceeds the fast magnetosonic speed.

III The unphysical branch of the minimum torque solution, E = ECR , does not con-
nect to the source. The solution is singular (i.e., a one-dimensional set in solu-
tion space) and extends inward only to vertical solution at the light cylinder. For
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cold winds, the unphysical branch asymptotes to the physical branch of the min-
imum torque solution at asymptotic infinity. However, for the case of more in-
terest with finite temperature, the two branches of the minimum torque solution
cross at the fast point. It is the self-intersecting nature of the one-dimensional set
of minimum torque solutions that creates the nontrivial topology of the MHD
solution space.

IV A supercritical subset of solution space is defined by E > ECR . These solutions
connect the source to asymptotic infinity. The solutions are accelerated to just
beyond the light cylinder where they begin to slow down to an asymptotic speed.
The flow speed is always less than the fast speed.

V There is also a set of supercritical solutions, E > ECR , that are unphysical. These
solutions connect asymptotic infinity to the degenerate vertical solution at the
light cylinder.

VI In the finite temperature case, there exists a set of subcritical solutions that
connect asymptotic infinity to itself with a turnaround point outside the light
cylinder.

One should note that there is a breeze solution that emanates from the source
and never crosses the light cylinder. However, it does not appear in Fig. 5.2 be-
cause the range of coordinates on the axes that were chosen do not provide adequate
resolution.

Figure 5.2 shows that the fast critical point is an X-type critical point in the wind
equation since solutions cross at this point. The slow critical point is of X-type
as well, but does not occur when the winds injected above the slow wave group
velocity.

5.6 The Minimum Torque Solution

The critical solution in Fig. 5.2 is of particular physical interest because it is the
solution that extracts the minimum energy and angular momentum from the central
engine (i.e., a neutron star or black hole). We are interested in the magnetically
dominated limit of this solution, i.e., U2

A
	 1. Thus, (2.44) implies that U2

F
	 1, and

the outgoing wind is relativistic β P ≈ +1.
Michel [120] showed that this wind obeys the relation (recall the definition of

conserved quantities in 5.20 and 5.21),

e ≈ mec2 +
ΩF �

c
, (5.43)

where the use of me for the plasma mass implies a positronic wind. The frozen-in
condition (5.16b) can be written in terms of BT , using (5.17)

BT =
(Ωp −ΩF )

cβ P BPgφφ , (5.44)
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where Ωp = dφ
/

dt is the angular velocity of the plasma as viewed from asymptotic
infinity. Integrating, the time stationary version of Ampere’s law (3.62b) and inte-
grating the time stationary current conservation law (4.106) as was done in (5.11)
yields

BT =
2
c

∫
αJ1dX2 ∧dXφ ≡ 2I1

c
, (5.45)

where I1 is the total field aligned current at cylindrical radii inside the azimuthal
flux tube. Inspection of the azimuthal momentum equation,

n
[

uP ∂
∂X1

(
µuφ
)
+µuPuφΓ 1

φφ

]
= −J2BP

c
, (5.46)

points out that in the magnetically dominated limit J2 is negligibly small in a wind.
The cross-field current J2 is known as the inertial current as it is driven by the inertial
loading of the field lines and breaks the force-free condition. Applying Ampere’s
law (3.61b) and the expansion of the connection (3.32c) to the azimuthal momentum
equation yields

nαuP

BP
1

√gφφ

∂
∂X1

(
µuφ

√
gφφ
)

=
c

4π√gφφ

∂
∂X1

(
BT ) . (5.47)

Then by (5.12)

∂
∂X1

(
kµuφgφφ −

cBT

4π

)
= 0 , (5.48)

which is just the conservation of angular momentum equation (5.21). Equations
(5.46), (5.48) and (5.45) show that BT ≈ constant and I1 ≈ constant in a magneti-
cally dominated wind. The wind is almost pure Poynting flux with very little inertial
loading, thus the minimum torque condition (5.43) is satisfied by (5.20) and (5.21)
in this limit.

As r → ∞, βφ < 1 and we must therefore have

lim
r→∞

Ωp = 0 . (5.49)

Consequently, for the relativistic minimum torque wind we have an approximately
constant toroidal magnetic field density given by the asymptotic form of the frozen-
in condition (5.44), BT

∞

BT ≈ BT
∞ ≈−ΩF BP

cgφφ
, (5.50a)

BT
∞ ≡−ΩFΦ

ckF

. (5.50b)
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where kF is a geometrical factor. If asymptotically, the wind collimates as in Cygnus
A and is uniform as well, kF ≈ π . Note that the Poynting flux is also approximately
constant in the flux tube by (5.20) and (5.21).

∫
SPdA⊥ = 4π

Ω 2
F

c2 k
Φ
kF

δΦ . (5.51)

In general from (5.20), (5.21) and the asymptotic frozen-in condition (5.44) with the
constraint as r → ∞ of (5.49), one has

∫
SP
∞dA⊥ =

ΩF

c

∫ (
SP

L

)
∞ dA⊥ =

4π
c
Ω 2

F

c2
Φ
kF

k
δΦ
β P . (5.52)

Thus, by (5.52), for five given constants of motion in a flux tube, Φ ,δΦ ,k,ΩF and
S, the conserved energy and angular momentum fluxes in a magnetically dominated
wind are minimized as β P → 1. Hence, the critical solution is the minimum energy
and minimum torque solution for all possible winds in a flux tube withΦ ,δΦ ,k,ΩF

and S given as initial conditions (see Fig. 5.2). Note that this solution implies that
two of the constants, k and S, are completely negligible.

5.7 The Grad–Shafranov Equation

So far we have analyzed the flow in isolated azimuthally symmetric flux tubes. In
order to study a global wind problem, we need to study the shape and distribution of
the flux tubes. This is determined by the trans-field poloidal momentum equation.
Since the seven constants of motion are unique in each flux tube and the flux tubes
can be labeled by the value of the stream function (Ψ = a constant in each flux
tube), the constants in the global wind are not functions of coordinate, but functions
ofΨ . When the trans-field poloidal momentum equation is rewritten as an equation
of the constants of motion that are differentiated with respect toΨ , it is known as
the Grad–Shafranov equation. We have avoided discussion of this so far because the
equation is intractable in practice, even within the perfect MHD assumption.

Nitta et al. [121] have derived the Grad–Shafranov equation in the cold plasma
limit in Boyer–Lindquist coordinates. In Boyer–Lindquist coordinates the trans-field
momentum equation is given by

F̃A
φ

F̃Bφ F̃Bφ

(
µnũβ ũA;β − F̃Aβ J̃β

)
= 0 , A,B = r,θ . (5.53)

Defining

B̃2
P

= F̃Bφ F̃B
φ , A,B = r,θ , (5.54)
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the transfield momentum equation (5.53) can be rewritten using u ·u = −1 as

F̃A
φ

B̃2
p

{
µn
[
−ũB (ũB;A − ũA;B

)
− ũt∂A ũt − ũφ ∂A ũφ

]
−F̃AB J̃B − F̃Aφ J̃φ − F̃A t J̃t}= 0 .

(5.55)

We will rewrite (5.55) in terms of J̃φ since we have a second equation in J̃φ

from Maxwell’s equations. After elimination of J̃φ from the two equations, we can
obtain the Grad–Shafranov equation. Using the frozen-in condition and (3.64a) for
Ampere’s law

J̃φ = − 1
4π

√−g̃

[
∂r

[√−g̃
grr

(
gtt +gtφΩF

α2gφφ

)
∂rΨ
]

+∂θ
[√−g̃

gφφ

(
gtt +gtφΩF

α2gφφ

)
(∂θΨ)

]]
= 0 . (5.56)

Nitta et al. [121] introduce the direction derivative along a field line

∂Ψ =

(
F̃A

φ

B̃2
p

)
∂A (5.57)

Using this definition, they rewrite the transfield momentum equation, (5.55), in four
pieces as follows:

−µnF̃A
φ ũB

B̃2
P

(
ũB;A − ũA;B

)
=

α2M2

gtt +gtφ ΩF

J̃φ +
µkB2

P

gtt +gtφ ΩF

∂Ψ

[
k(

gtt +gtφ ΩF

)
n

]
,

(5.58a)

− µn
B̃2

P

F̃A
φ
(
ũt∂A ũt + ũφ ∂A ũφ

)
= −µn

(
ũt∂Ψ ũt + ũφ ∂Ψ ũφ

)
, (5.58b)

− F̃A
φ

B̃2
P

(
F̃AB J̃B + F̃Aφ J̃φ

)
= −J̃φ − F̃rθ

4π
√−g̃

∂Ψ
(√

−g̃F̃rθ
)

, (5.58c)

− F̃A
φ

B̃2
P

F̃At J̃ t = −ΩF

gtφ +gφφ ΩF

gtt +gtφ ΩF

J̃φ − ΩF

4π
B2

P

gtt +gtφ ΩF

∂Ψ
[

gtφ +gφφ ΩF

gtt +gtφ ΩF

]
,

(5.58d)
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where the following definition was used:

B2
P
≡−

(
gtt +gtφ ΩF

)2

α2gφφ

[
grr (∂rΨ)2 +gθθ (∂θΨ)2

]

= −
(
gtt +gtφ ΩF

)2

α2gφφ
(∇Ψ ·∇Ψ) . (5.58e)

Inserting the expansion (5.58) back into the transfield poloidal momentum equa-
tion (5.55) yields

α2
[
1−
(
βφ

F

)2 −M2
]

gtt +gtφ ΩF

J̃φ = −µn
(
ũt∂Ψ ũt + ũφ ∂Ψ ũφ

)
− F̃rθ

4π
√−g̃

∂Ψ
(√

−̃gF̃rθ
)

+
µkB2

P

gtt +gtφΩF

∂Ψ

[
k(

gtt +gtφΩF

)
n

]

−ΩF

4π
B2

P

gtt +gtφΩF

∂Ψ
[

gtφ +gφφΩF

gtt +gtφΩF

]
(5.59)

We can express the first two terms in (5.59) as derivatives of constants of motion
with respect toΨ by using (5.20) and (5.21),

∂Ψ
(

e− ΩF �

c

)
= µ

(
∂Ψ ũt +ΩF ∂Ψ ũφ + ũφ ∂ΨΩF

)
, (5.60)

∂Ψ � = −µ∂Ψ ũφ +
1

4πk
∂Ψ
(√

−g̃F̃rθ
)

+
√−g̃
4π

F̃rθ ∂Ψ
(

1
k

)
. (5.61)

Combining (5.59), (5.60) and (5.61) yields

α2
[
1−
(
βφ

F

)
−M2

]
gtt +gtφ ΩF

J̃φ = −nũt∂Ψ
(

e− ΩF �

c

)
+µnũt ũφ ∂ΨΩF

+
kBT

α2gφφ
∂Ψ �+

k
(
BT
)2

4πα2gφφ
∂Ψ
(

1
k

)

+
µkB2

P

gtt +gtφΩF

∂Ψ

[
k(

gtt +gtφΩF

)
n

]

−ΩF

4π
B2

P

gtt +gtφΩF

∂Ψ

[
gtφ +gφφΩF

gtt +gtφΩF

]
. (5.62)

Eliminating J̃φ from (5.62) using Ampere’s law (5.56) yields the cold plasma
limit of the Grad–Shafranov equation in the Kerr spacetime:
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−
α4
[
1−
(
βφ

F

)2 −M2
]

4π
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gφφ

⎡
⎣∂r
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⎣
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(
1−
(
βφ

F

)2 −M2
)
∂rΨ
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where the prime denotes derivative with respect toΨ .
Beskin [118] gives the Grad–Shafranov equation in the warm plasma limit in

more compact form as
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Beskin [118] shows that the Grad–Shafranov equation has singular points at the
fast, Alfvén and slow critical surfaces, as does the wind equation. Nitta et al. [121]
show that the regularity conditions at the Alfvén surface reduce to those of the wind
equation in (5.42).

The only somewhat tractable version of the Grad–Shafranov equation is in the
cold force-free limit of (5.64):

1
α
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α

gφφ
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]
∇kΨ

}
+

βφ
F

α√gφφ
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dΩF

dΨ
+

4π2

α2gφφ
BT dBT

dΨ
= 0 .

(5.65)
In the limit of the flat space and rigid rotation with a star, gφφ becomes the cylin-
drical radius and dΩF

/
dΨ = 0, ΩF =Ωstar and (5.65) becomes the “pulsar” equa-

tion [122].
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Equation (5.65) is not very useful in the ergosphere since the boundary condi-
tion at the horizon given by Sect. 3.7 is the opposite of force-free, the plasma is
inertially dominated at the horizon. Consequently, we will never explicitly solve for
the distribution of flux in the magnetosphere of a black hole as the Grad–Shafranov
equation in a realistic circumstance is far too complicated. Furthermore, it will be
discussed in Chap. 9 that dissipative (Fµνuν �= 0) regions are likely to bound the
perfect MHD portion of the magnetosphere. The solutions of the Grad–Shafranov
equation are very sensitive to boundary conditions. These dissipative regions do
not obey the perfect MHD Grad–Shafranov equation. Thus, it is difficult to know
what boundary conditions exist on the perfect MHD distribution of magnetic flux
in the magnetosphere. Unfortunately, physical reality renders the discussion of the
Grad–Shafranov equation probably no more than a mere pedantic exercise. The dis-
tribution of magnetic flux near the black hole is still an unsolved problem in realistic
plasma-filled magnetospheres.



Chapter 6
Perfect MHD Winds and Waves
in the Ergosphere

In this chapter, we discuss the nature of ingoing perfect MHD winds in the
ergosphere. It is illustrated in Sect. 6.3 that the spacetime near the event hori-
zon is an asymptotic infinity to MHD winds and waves similar to the infinity of the
semi-infinite plasma filled waveguide of Sect. 2.9.4. As we found in the study of
electrodynamics of black holes in Chap. 4, the spacetime near the event horizon has
no significance for the determination of a global flow (e.g., the constants of motion
in a magnetic flux tube), except that it is a sink for mass influx. Most of this chapter
is concerned with the MHD causal structure of black hole GHM. We continue to
emphasize the differences between oblique Alfvén waves and fast waves beyond
just the wave speeds.

Section 6.4 is a very long calculation of the structure of fast waves that propagate
outward from the inner ergosphere. This analysis has important implications that
mandate the application of the spacetime near the horizon as a causal MHD bound-
ary as physically inappropriate (Sect. 6.5). Although this is evident by the fact that
fast waves do not carry field aligned currents or charge (see 2.58), it is possible as
in a dipolar magnetic field that modal characteristics of the Alfvén wave become
mixed with those of the fast wave [123] due to the curvature of the magnetic field
lines. The curvature of the dipolar field lines induces the most significant changes
in long wavelength modes. Recall that the derivations of MHD wave properties in
Chap. 2 were predicated on the assumption that the waves varied on length scales
much shorter than those of the background field variations. These long wavelength
hybrid modes represent deviations from the short wavelength approximation and
were not addressed in Chap. 2. The situation in the black hole magnetosphere is
ostensibly exacerbated since there are curvature effects in both the field and the
background spacetime. This raises the question as to whether the hybrid modes in
the inner region of the black hole magnetosphere can significantly alter the wave
properties investigated in Chap. 2 and therefore the causal structure of the MHD
wind system. In order to resolve this issue, we quantify the effects of hybridization
of outgoing fast waves near the horizon due to curvature effects in Sect. 6.4. This
laborious calculation is a necessary technical difficulty that is required to complete
the picture of the causal structure of black hole GHM developed in this book.
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Section 6.4 is a detailed computation of the structure of globally outgoing fast
waves in the inner ergosphere in both the long and short wavelength limits. It is
found that the deviations from the local analysis of fast waves are negligible in this
context; we show that these fast waves carry predominantly cross-field poloidal cur-
rents and they can not change the electrostatic potential. The second of these two
wave properties is a consequence of the magnetically dominated condition of BT ≈
constant. We actually show that outgoing fast waves in the inner ergosphere can not
affect significant global changes in BT in a magnetic flux tube. From the frozen-in
condition for BT , and the horizon boundary conditions Ωp ≈ΩH and β P ≈−1 (see
3.95 and 3.94, respectively), the inability to change BT is equivalent to the ineffec-
tiveness of these waves to alter the global value ofΩF or equivalently, by (5.15b), the
cross-field potential that is set by the Goldreich–Julian charge density. This result
adds to the depth of our knowledge of the causal structure of black hole GHM, but
it is learned at great calculational expense; we need to describe the electromagnetic
field structure of the MHD wave equations in the full time dependent version of the
Newman–Penrose formalism for Maxwell’s equation.

The calculation in Sect. 6.4 is very complex and yields a null result. Namely, out-
going fast waves near the horizon in the long wavelength limit are no different from
other fast waves in the magnetosphere in the sense that they can not significantly
alter the causal structure of MHD winds. The causality of MHD winds in a black
hole magnetosphere is determined primarily by Alfvén waves as inferred by the re-
sults of Chap. 2. For this reason, some readers might prefer to skip Sect. 6.4 (without
much loss of content for understanding black hole GHM) the first time through the
book.

6.1 Paired MHD Winds

Consider a magnetic flux tube that threads the ergosphere. In the ergospheric region
the flow will be a magnetized accretion flow and if there is an outward energy flux
to infinity, an outgoing wind of magnetized plasma will exist at large r coordinate.
Thus, there are two new aspects to this theory that do not occur in relativistic stellar
wind theory. First, the flow must divide into an accretion flow and an outgoing wind.
Thus, there is a source of mass flux in the magnetic flux tube itself, with some of the
mass accreting toward the hole and some driven to infinity. The mass flux constant,
k, in (5.12), is not conserved because the source function, S, in the mass conservation
law (3.36b) is significant in some region of the flux tube. The second new aspect for
the accretion flow is that the mass flux is anti-directed to the energy flux. Since
the equations of perfect MHD were written in the ZAMO frames in Chap. 5, they
are equally valid near the hole or at asymptotic infinity. Consequently, the same
formalism can be used to describe the perfect MHD regime of the accretion flow
and the outgoing wind. We will therefore refer to this as a paired wind system. The
ingoing wind is the accretion flow and the outgoing wind is of astrophysical interest.
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The ingoing wind has interesting black hole GHM properties in the ergosphere and
is potentially capable of extracting energy from the hole.

The details of the plasma injection process has been discussed by various au-
thors. Charged starved vacuum gap models were discussed in [66] and [124] in
analogy to models of pulsars. However, unlike pulsars there is likely to be a signif-
icant luminosity of background γ-rays from equatorial accretion disks and coronae
in AGN. As will be shown below, γ+ γ → e+ + e− scattering will almost certainly
short out the vacuum electric fields making any semi-vacuum pair creation process
irrelevant. A crucial distinction from pulsars is that the scale lengths are at ∼ 108

larger for astrophysical black holes. Even though the voltage drops along vacuum
field lines are sufficient for vacuum or semi-vacuum pair creation, the Goldreich–
Julian charge density is only ∼1 cm−3 for a 109M� black hole magnetosphere, since
it is proportional to the magnetic field strength (which is ∼10−8 of BP of a pulsar)
and the field line angular velocity (which is ∼10−5 that of a pulsar). Thus, if a pair
creation process greatly exceeds the Goldreich–Julian density in a stationary state
then the electric fields will vanish locally and perfect MHD will be established by
local dynamics, and the memory of the vacuum fields will be erased. This concept
was first noted by Phinney [125]. He crudely estimated the stationary pair density
by balancing the infall (free-fall) rate with the pair creation rate yielding

n ∼
(

mp

me

)(
LC

LEdd

)2

1013M−1
8 cm−3 , (6.1)

where LC is the luminosity of γ-rays > 1 MeV from the accretion disk and corona,
and M8 is the mass of the black hole in units of 108 M�. For a 109M� central black
hole, (6.1) implies that

n > 10ρG−J , Lc > 1041 ergs/sec . (6.2)

EGRET measurements of γ-rays from AGN can only detect LC > 1046 ergs/sec for
the nearest radio loud quasars and LC > 1045 ergs/sec for the nearest radio galax-
ies [126]. Thus, it is still likely that AGN accretion disks have a value of LC > 1041

ergs/sec which is sufficient to short out the strongest magnetospheres of black holes.
Taking a nominal value of LC = 1043 ergs/sec in a radio loud quasar (from the ac-
cretion flow alone, not including jet emission which is far away and beamed away
from the black hole) would yield stationary pair densities of

n ∼ 105 −106 cm−3 . (6.3)

Phinney [125] also introduced the useful concept of a particle creation zone. This
construct is based on the assumption that the flux tube is long enough so that one
can consider most of the particles to have been created in a finite segment of the flux
tube. Outside of this region, the effects of particle creation are negligible. In terms
of the mass conservation law (3.36b), we note that S � (nuP/r) in the wind zones
because n has been built up in a long length of pair creation in the flux tube upstream.
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The flow beyond the particle creation zone can be considered to emanate as perfect
MHD with conserved values of k, � and e (see Fig. 6.1). The outflow is initiated
by thermal expansion and centrifugal forces. In the inflow, the effective gravity of
(3.41) is inward directed since the centrifugal force cannot balance radial gravity.
We expect that a geometry similar to Fig. 6.1 can feed magnetized pair plasma into
the ergosphere.
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Fig. 6.1 Plasma can be created on large scale magnetic field lines that thread the ergosphere. Pair
creation in the γ-ray field of an AGN is the most likely source of plasma. Far from the black hole,
centrifugal forces and thermal expansion can initiate an outgoing wind that can be magnetically
slung to infinity. Closer to the black hole centrifugal forces can not balance gravity and thermal
expansion resulting in an ingoing wind (a magnetized accretion flow). The bulk of the particle
creation can be considered to exist in a finite section of magnetic flux tube, the particle creation
zone. The process of pair creation injects energy and angular momentum flux into the axisym-
metric magnetic flux tube, (ke)in j and (k�)in j, respectively. The ingoing and outgoing winds can
be considered to result from the integration of the MHD wave equations away from the boundary
surfaces, I− and I+, respectively. The constants of motion for each wind are given by the initial
data on these surfaces
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6.2 Ingoing Perfect MHD Ergospheric Winds

We specialize the wind analysis of Chap. 5 that was formulated in the ZAMO frames
to the ingoing wind. The critical surfaces defined by (5.36) and (5.38) are expressed
in terms of rest frame evaluated quantities. Since the asymptotic horizon boundary
condition is uP ∼ α−1 (see 3.94), any MHD wind must pass sequentially through
the slow, Alfvén and fast critical surfaces. This is a trivial result since light waves
can not escape the gravitational pull at the horizon, so no subluminal wave such as
a plasma wave can escape the horizon either.

By (5.36) for either the ingoing or outgoing wind, the flow goes super Alfvénic
before reaching the light cylinder. Consider the interesting case of 0 < ΩF < ΩH

in which the magnetosphere transports an outward directed angular momentum flux
(see 6.8 below). The light cylinder of the ingoing wind is a result of the dragging of
inertial frames, βφ

F
=−1. This is in contrast to an outgoing wind in which βφ

F
= +1.

For the ingoing wind,
ΩF =Ωmin

[
rL.C.(θ)

]
, (6.4)

and for the outgoing wind,

ΩF =Ωmax
[
rL.C.(θ)

]
, (6.5)

where rL.C. is the radial coordinate parameterization of the speed of light surface,
i.e., the “light cylinder.”

We are particularly interested in magnetically dominated winds in AGN. From
(6.3) we expect values of the pure Alfvén speed of UA ∼ 103 −104 to be typical in
the ergosphere. Thus, the Alfvén point occurs just before the inner light cylinder.
By (5.36),

(βφ
F
)A � −1 . (6.6)

Since the ZAMOs are a physical frame, the energy of the plasma E > 0 (see 3.14),

E =
e− Ω�

c
α

> 0 . (6.7)

Combining (6.7) and (6.6) with the Alfvén point condition (5.42a) yields a con-
straint on the angular momentum if a flow reaches the Alfvén point,

� < 0 , 0 <ΩF <ΩH . (6.8a)

Similarly, the Alfvén point condition combined with (6.6) and (6.7) yields the fol-
lowing conditions for inner Alfvén point accessibility with perfect MHD:

e ≈ ΩF �

c
< 0 , 0 <ΩF <ΩH , (6.8b)

e− ΩF �

c
> 0 . (6.8c)
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For inflow, k < 0, thus the energy and angular momentum fluxes, ke and k�, are
outward directed even though the flow is inward directed. The fact that the specific
energy and angular momentum are negative is reminiscent of the energy extracting
processes discussed in Sect. 3.5. This is not coincidental and the fact that a connec-
tion between field line angular velocity and negative energy states is established as
far out as the Alfvén surface is not coincidental either. Remember, in a magnetically
dominated wind or paired wind system the current flowing parallel to the field and
the field line angular velocity are essentially constant from the source to asymptotic
infinity. The field line angular velocity is equivalent to the electrostatic potential
drop across the magnetic field by (5.15b) which is supported by the Goldreich–
Julian charge density by Gauss’ law (3.59). Field aligned poloidal currents and a
charge separation (as is needed to support ∆V ) can only be transported by Alfvén
waves, not fast waves as shown in (2.56) and (2.58), respectively. The nature of the
time dependent waves is imprinted into the elliptic time stationary wind equations
through these Alfvén point relations and their global causal significance.

Note that for 0 <ΩF �ΩH , the Alfvén point is just inside of the stationary limit.
For ΩF ∼ (1/2)ΩH , αA ∼ 0.1 and as ΩF → ΩH the Alfvén point goes toward the
event horizon.

If one writes the fast critical surface condition (5.38) and divides through by
u2

1
= U2

F
, one has

U2
F

=
(

FµνFµν
8πnµ

+U2
S

)
+

U2
S

nα2
[
1−
(
βφ

F

)2
]

k2µ
. (6.9)

In the magnetically dominated case the sound speed, U2
S

, is just a second order
correction to U2

F
. When ΩF ∼ ΩH , the fast speed at the critical surface is ∼ U2

A
by

(5.35) and (6.9). In this case the fast surface is near the horizon. By contrast, when
0 < ΩF � ΩH , the toroidal magnetic field near the inner light cylinder is small∣∣F12

∣∣� B
P
, if the outgoing wind satisfies the minimum torque condition (5.50).

Then by (5.35) and (6.9), U2
F

� U2
I

and the fast critical surface is near the light
cylinder.

6.3 The Horizon is an Asymptotic Infinity to MHD Winds

We elucidate the nature of the asymptotic spacetime near the horizon by studying an
ingoing perfect MHD wind front at late times. By (4.59) and (3.95c) the wind front
is always approaching, but never reaches the event horizon as viewed by external
observers. Alternatively, by (4.61), the wind is approaching r∗ = −∞.

Introduce the local coordinate system of (4.94) in an arbitrarily small open set
about the ingoing wind front. Take ∂/∂X2 of Ampere’s law (3.61b) and combine
with ∂/∂X1 of Ampere’s law (3.62b) to obtain the current conservation law on the
open set:
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∂
∂X2

[
α√gφφ

∂
∂X0 F20

]
=

∂
∂X2

[
4πJ2α√gφφ

c

]
+

∂
∂X1

[
4πJ1α√gφφ

c

]
. (6.10)

Next, consider the azimuthal momentum equation (5.46) and note that dynamical
quantities on the left hand side can be expressed in terms of Heaviside step functions
near the wind front. For example, if X̄1 is the position of the flow front in local
coordinates, then β P

= dX̄1/dX0 and

µuφ = µ(r,θ)uφ (r,θ)Θ

[
X̄1 −

∫ X0

0
β

P
dX0

]
. (6.11)

Then writing the left hand side of the azimuthal momentum equation as in (5.47),

J2 = −
{[

ncu1

BP√gφφ

∂
∂X1

(√
gφφ µuφ

)]
(r,θ)

}
Θ
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X̄1 − c

∫ X0
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P
dX0

]
. (6.12)

Noting that ∂k/∂X1 = 0 in (5.12), we can rewrite (6.12) as

J2 = −
{[

c
α√gφφ
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∂X1

(
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nµuφu1
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P
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(6.13)
Similarly, near the flow front, the frozen-in condition (5.13) implies

F20 = βφ
F

BPΘ

[
X̄1 − c

∫ X0

0
β

P
dX0

]
. (6.14)

This approximation notes that tangential fringing fields near the flow front will be
Lorentz contracted into a very thin layer ∼ α−1 as viewed in a local ZAMO basis.

Combining Maxwell’s equation (6.10) which is essentially the law of current
conservation with the expansions (6.13) and (6.14), the field aligned current that
sinks at the flow front is

J1 = −
{

1
α√gφφ

∂
∂X2

[(
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β Pβφ
F

cBP

4π

)
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β

P
dX0

]
. (6.15)

Inserting (6.15) into Ampere’s law (3.62b), one finds that

F12 = −
{[

β Pβφ
F

cBP

4π
+

nµu1uφc
BP

]
(r,θ)

}
Θ

[
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∫ X0

0
β

P
dX0

]
. (6.16)
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Comparing this expression to the frozen-in condition (5.16b) yields βφ in the wind,

βφ =
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⎩
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[
1− (β P
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0
β

P
dX0

]
, (6.17)

where M is the pure Alfvénic Mach number defined in (5.23a). Equation (6.17) can
be used to write an expression for uφ as α(X̄1) → 0. Combining (6.17), the horizon
boundary condition, (3.95), and u ·u = −1 gives

uφ =

{[
βφ

F

u0(1+M2)

]
(r,θ)

}
Θ

[
X̄1 − c

∫ X0

0
β

P
dX0

][
1+O(α2)

]
. (6.18)

Thus, from (6.18), (6.15) and (6.10), current closure at the ingoing wind front
is accomplished primarily with displacement current. The expression (6.18) is the
same as that found from pulsar winds [67, 113]. Substituting (6.18) into the expres-
sion for the field aligned current (6.15) yields

J1 =

{
1

α√gφφ

∂
∂X2

[(
α√gφφcBPβ Pβφ

F

4π

[
1+M2(β P
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}

×Θ
[

X̄1 − c
∫ X0

0
β

P
dX0

]
. (6.19)

We can show that J1 is almost purely electrodynamic in nature. From the axisym-
metric version of the divergence equation (3.55b), we have the limiting form,

lim
α→0

BP = Br [1+O(α2)
]

, (6.20a)

as well as,
√

gφφ ≈
(

r2 +a2

ρ2

)[
1− ∆a2 sin2 θ

2(r2 +a2)

]
sinθ . (6.20b)

Since β P ≈−1 (it is constant to O(α2)), (6.19) can be written at small lapse function
as

J1 ≈
{[

1
β P sinθ

∂
∂θ

(
sinθβφ

F
BP

4π

)]
(r,θ)

}
Θ

[
X̄1 − c

∫ X0

0
β

P
dX0

]
. (6.21)

Gauss’ law (3.59b) can be approximated near the event horizon to find the
Goldreich–Julian charge density, ρG−J ,

ρG−J ≡ J0 ≈ c
4π

1
√gφφgrr

∂
∂X0

[√
gφφgrrF0θ

]
. (6.22)
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Comparing (6.22) to (6.21) we find, as for asymptotic pulsar winds [67],

J1 ≈
cρG−J

β P . (6.23)

The current is purely electrodynamic up to a correction equal to
[
1− (β P

)2
]

J1.
Note that this expression is the same as the asymptotic field aligned current in a
plasma filled waveguide terminated by a Faraday wheel (see 2.119). It is also the
same relation found to be characteristic of Alfvén waves in a cylindrical plasma.
We conclude that the ingoing perfect MHD wave front is an Alfvén wave advected
with the bulk plasma flow velocity and it must be radiated inward by something
equivalent to a Faraday wheel upstream. The event horizon seems analogous to the
vacuum infinity of a plasma filled waveguide.

Next we explore the radial electric field in the gap between the horizon and the
wind front as we did for the idealized circuits in Sect. 4.7.4. We use the same contour
of integration that was used in Figs. 4.5 and 4.6 except it now barely penetrates
the wind zone as opposed to the leads (see Fig. 6.2). From the frozen-in condition
(5.16b) and (5.13c), the ingoing wave condition of (3.90a) holds. The various pieces
of the contour integration of Faraday’s law in (4.100) are identical to those in Fig. 4.6
and (4.103). There is a voltage drop across the magnetic field lines near the horizon
in the wind, yet this is canceled to O(α2) in Faraday’s law by the inflow of toroidal
magnetic flux through S, and again we find Er ∼ α0 in the gap between the wind
and the horizon. The voltage drop across the magnetic field is not a “battery-like”
EMF.

This result is independent of the value of ΩF . The spacetime near the event hori-
zon passively accepts any voltage drop (or ΩF as given by (5.15b)) or current from
an MHD wind. It never reacts back on the incoming flow by creating a large Er to
break the electrostatic equilibrium at the flow front and therefore alter the current
flow in the wind. The MHD wind plasma is easily shielded from the electric field in
the gap by a well behaved charge density on the surface of the wind front. Again,
as in Chap. 4, we find that the voltage drop between the wind front and the horizon,
∆Vr, obeys

lim
α→0

∆Vr ∼ α2 , (6.24)

as would be expected for an asymptotic infinity. The spacetime near the event hori-
zon behaves like an electrically disconnected Faraday wheel at the end of a plasma-
filled waveguide as shown in the top view of Fig. 2.7. The contrast to a laboratory
conductor that approaches the end of a plasma filled waveguide, is that the effective
length for electromagnetic characteristics becomes infinitely long near the horizon
at an ever increasing rate as the horizon is approached as shown in Sect. 4.5.2.

The spacetime near the event horizon has no relevance to MHD flows in the
ergosphere and is completely characterized as a vacuum infinity to perfect MHD
flows.
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Fig. 6.2 Faraday’s law can be applied at an ingoing perfect MHD wind front in order to show that
the radial electric field in the gap between the wind zone and the event horizon is well behaved. The
dashed contour, ABCD, is used to evaluate Faraday’s law in (4.100). The piecewise contributions
to the line integrals are identical to those indicated in Fig. 4.6. The contour ABCD bound a surface,
S, that contains a toroidal magnetic flux that increases in time with the advance of the ingoing
MHD wind front. As in vacuum electrodynamics (Chap. 4), this cancels the voltage drop across
the magnetic field lines near the event horizon to O(α2) in Faraday’s law. The MHD wind zone is
indicated by the shaded region in the figure and it is threaded by a large scale poloidal magnetic flux

6.4 Outgoing Fast Waves Near the Horizon

In this book, we have emphasized the Alfvén waves ability to transport electric
charge and field aligned currents and the lack of such an ability for fast waves to
do the same. Similarly, outgoing and ingoing wind fronts of strongly magnetized
MHD winds have been shown to be step Alfvén waves. However, motivated by
the concerns expressed in the introductory comments to this chapter, we need to
address the issue of hybrid modes resulting from curvature effects to complete our
GHM understanding of the causal structure of black hole magnetospheres. In this
section, we explore the possibility that such effects can increase the relevance of fast
waves as participants in the causal structure of the paired wind systems.



6.4 Outgoing Fast Waves Near the Horizon 183

We noted in Sect. 6.2 that ifΩF ∼ΩH then the inner fast point is near the horizon.
In this section, we look at the electrodynamic structure of globally outgoing fast
waves emitted from ergospheric plasma near the horizon when ΩF ∼ ΩH . We will
demonstrate that such waves are very inefficient modes for propagating torsional
magnetic stresses, i.e., the perturbed toroidal magnetic field, δBT ∼ α2

0
, where α0 is

the lapse function at the point of emission. We will also confirm the result of (2.58)
that the poloidal current in a fast wave is orthogonal to the magnetic field.

There are two classes of fast waves that appear outgoing globally near the hori-
zon. Firstly, most of the momentum space of such waves have very large energies
as measured in the proper frame of the plasma and can be treated in the short wave-
length approximation as was done in [129]. For these waves, hybrid effects are
negligible since the wavelengths are much less than the radii of curvature of both
spacetime and the magnetic field. Thus, the assumptions and results of the locally
covariant analysis in Chap. 2 are valid. However, outgoing waves emitted from near
the fast point appear to stagnate (i.e., they propagate globally outward very slowly),
even in the short wavelength limit. This phenomenon is unique to a magnetosphere
and therefore requires a new comprehensive analysis. This long calculation is per-
formed in Sects. 6.4.6–6.4.8.

Secondly, there are long wavelength outgoing fast waves (i.e., wavelengths com-
parable to the radii of curvature of spacetime and the magnetic field) near the event
horizon that need to be explored. The existence of such waves requires a fine tuning
of the wave parameters since most waves that are capable of overcoming the intense
gravitational redshift near the event horizon are very high energy (short wavelength)
modes. These long wavelength solutions require a full relativistic treatment using
the Newman–Penrose formalism introduced in Chap. 4. The calculation is very long
and is broken up into many subsections, beginning with background material in
Sects. 6.4.1–6.4.4 and culminating with the main calculation in Sect. 6.4.5. The re-
sults of all of these calculations are summarized in tabular form in Sect. 6.4.10.

6.4.1 The Vacuum Electrodyanmic Equations

In this chapter we are interested in causality and wave phenomena, so we need the
time dependent solutions to Maxwell’s equations as given by the set of equations
(4.23). Following Chandrasekhar [92] we redefine the Newman–Penrose field com-
ponents as

Φ̃0 ≡ φ0 , (6.25a)

Φ̃1 ≡− φ1√
2ρ̃

, (6.25b)

Φ̃2 ≡
φ2

2ρ̃2 . (6.25c)
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Chandrasekhar [127] finds the separated solutions of (4.23) to be

Φ̃0(r,θ ,φ , t) = e−iωte−imφ R+1(r)+1Sk
m(θ) , (6.26a)

Φ̃2(r,θ ,φ , t) = e−iωte−imφ B ρ̃2 R−1(r)−1Sk
m(θ) , (6.26b)

B2 = (A+ω2a2 +2aωm)2 −4a2ω2 −4aωm . (6.26c)

Power series solutions to the vacuum Maxwell’s equations given by (4.23) with
G±1(r) = 0, were found in [128] near the horizon. There are two independent solu-
tions for each radial equation of the form,

R
+
(r− r+) =

∣∣r− r+

∣∣λ+
∞

∑
n=0

an(r− r+)n , (6.27a)

R
−
(r− r+) =

∣∣r− r+

∣∣λ− ∞

∑
n=0

an(r− r+)n . (6.27b)

Solving the indicial equations for λ by the method of Frobenius yields

(
λ+1

)
± = −1

4
∓ 1

4
∓ iP+

2
√

M2 −a2
, (6.28a)

(
λ−1

)
± =

1
4
± 1

4
∓ iP+

2
√

M2 −a2
, (6.28b)

where P+ is P of (4.23g) evaluated at the horizon. For ingoing vacuum electromag-
netic waves near the horizon (6.27) and (6.28) imply that one has the simplification
that R+1/R−1 ∼ α−2, so the R−1 solution is negligible. For the outgoing modes
of interest R+1/R−1 ∼ α0, and by (4.10), both Newman–Penrose components are
needed in general to describe the field near the horizon.

Solutions that are very accurate near the event horizon are obtained in [128],

R+1 ∼r→r+
exp
[

i
∫ r
[

P
∆

+ c+1

]
dr′
[
1+O(α2)

]]
, (6.29a)

R−1 ∼r→r+
exp
[

i
∫ r
[

P
∆

+ c−1

]
dr′
[
1+O(α2)

]]
, (6.29b)

where c±1 are constants in the free field solutions. When we study fast waves c±1
are functions in general.

Substituting (6.29) into (4.23) yields in the source free case,

c+1 =
P+k+ −12ωr+

√
M2 −a2 − i

(
6ωr+P+ +2k+

√
M2 −a2

)

2P+
2 +8(M2 −a2)

,

c−1 = −
(
k− +2iωr

)
P+

. (6.30a)
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One can write (6.29) as

R±1(r)∼r→r+
exp
[

i
∫ r

kr(r′)dr′
]

, (6.31)

where the difference in the small corrections c+1 and c−1can be factored out as a
slowly varying complex amplitude. This phase function, kr(r), appears like a wave
momentum in the WKB approximation.

6.4.2 Current Sources Near the Horizon

We now look at the restriction of the sources of Maxwell’s equations near the hori-
zon resulting from the horizon boundary condition (3.95) as we did for Poisson’s
equations in Sect. 4.5.1. The sources are more complicated than (4.31) because we
now must include time derivatives in (4.19) and (4.21). These are the currents that
support the electromagnetic fields in outgoing fast waves:

J0 =

{
−ρ̃∗√

2

[
iasinθ

(
∂
∂ t

)
+
(
∂
∂θ

)
+

1
sinθ

(
∂
∂φ

)]
+

√
2ia
ρ2 sinθ

}
Jl

−
{[

r2 +a2

∆

(
∂
∂ t

)
+
(
∂
∂ r

)
+

a
∆

(
∂
∂φ

)]
−2ρ̃− ρ̃∗

}
Jm , (6.32a)

J2 =
∆ρ̃2

2
√

2ρ2

{√
2
[

r2 +a2

∆

(
∂
∂ t

)
−
(
∂
∂ r

)
+

a
∆

(
∂
∂φ

)
− ρ̃
]
ρ̃−2Jm̄

+2
[
−iasinθ

(
∂
∂ t

)
+
(
∂
∂θ

)
− i

sinθ

(
∂
∂φ

)
− iaρ̃ sinθ

]
ρ2

ρ̃∆
Jn

}
.

(6.32b)

In order to use the asymptotic form of the Boyer–Lindquist current density from
Sect. 4.5.1 in the Newman–Penrose expression for sources of Maxwell’s equations
(6.32), we write the perturbed current density as in (4.25a) using the general expres-
sion in (6.31),

δ J̃ µ =
∫

dω ∑
s,k,m

J̃ µ0 e−iωte−imφei
∫

kr(r)dr
sSm

k (θ) , (6.33)

where J̃ µ0 is a function given by the expansions in Sect. 4.5.1. From (4.15),
(4.50)–(4.53) and (6.33) we find the asymptotic form of the sources of Maxwell’s
equations as restricted by the horizon boundary condition (3.95):
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δJ0 ∼α→0

∫
dω∑

k,m

{
(J+1)0 + J+1(r,θ)− i [(Jm)0 + Jm(r,θ)]

×
[

P
∆
− kr(r)

]}
e−iωte−imφei

∫
kr(r)dr

+1Sm
k (θ), (6.34a)

δJ2 ∼α→0

∫
dω∑

k,m

{
(J−1)0 + J−1(r,θ)+ i [(Jm̄)0 + Jm̄(r,θ)]

×
[

P+∆kr(r)
2ρ2

]}
e−iωte−imφei

∫
kr(r)dr

−1Sm
k (θ) , (6.34b)

where
∂
∂ r

(J+1)0 =
∂
∂ r

(Jm)0 =
∂
∂ r

(J−1)0 =
∂
∂ r

(Jm̄)0 = 0 , (6.34c)

and

lim
α→0

J+1(r,θ) = lim
α→0

Jm(r,θ) = lim
α→0

J−1(r,θ) = lim
α→0

Jm̄(r,θ) = 0 . (6.34d)

We note that by (6.29) and (6.31), the second term in (6.34a) acts as a “feedback”
term and can be very significant for outgoing fast waves near the event horizon.

The asymptotic expression for the current in (6.34) can be used in (4.23) and
(4.25) with the expansions (6.29)–(6.31) that define c±1 to yield the asymptotic
sources to the radial equations in (4.23):

lim
r→r+

G+1(r) = −(G+1)0 − Ḡ+1(r,θ)− ic+1

[
(J+1)0 + J̄+1(r,θ)

]

≡−G+1 − iJ+1c+1 , (6.35a)

lim
r→r+

G−1(r) = −(G−1)0 − Ḡ−1(r,θ)+ i∆ c−1

[
(J−1)0 + J̄−1(r,θ)

]

≡−G−1 + i∆ J−1c−1 , (6.35b)

where

∂
∂ r

(G+1)0 =
∂
∂ r

(J+1)0 =
∂
∂ r

(J−1)0 =
∂
∂ r

(G−1)0 = 0 , (6.35c)

and

lim
α→0

Ḡ+1(r,θ) = lim
α→0

J̄+1(r,θ) = lim
α→0

J̄−1(r,θ) = lim
α→0

Ḡ−1(r,θ) = 0 . (6.35d)

Equation (6.35) represents the relevant form of the sources of the inhomogeneous
Maxwell’s equations near the horizon as restricted by the horizon boundary condi-
tion (3.95). In the next subsection we look at solutions near the horizon, but outside
of the inner fast critical surface, rF (θ).
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6.4.3 Solutions of the Inhomogeneous Maxwell’s Equations
Near the Horizon

The reason for writing the vacuum solutions as in (6.29) was in anticipation of the
more general wave structure in which c±1 are functions. We are interested in the
wave equation at radial coordinate r > rF � r+ , where globally outgoing fast waves
can be generated. Substitution of (6.35) for the sources and (6.29) for the general
solution into the radial equations (4.23cd) yield equations for the correction terms
c±1 . The resulting pair of equations have analytic coefficients when r > rF . Thus,
solutions exist for the Ricatti equations in (6.36) if r > rF ,

i
d
dr

c+1 −
2P−4i(r−M)

∆
c+1 +

(6iωr− k+)
∆

− c2
+1

=
G+1

∆
+

ic+1J+1

∆
, (6.36a)

i
d
dr

c−1 −
2P
∆

c−1 −
(2iωr + k−)

∆
− c2

−1
=

G−1

∆
− ic−1J−1 . (6.36b)

If one makes the substitution c ≡ [iy−1(dy/dr)] then y satisfies a second order
ordinary differential equation with regular singular points at r+ and r− . Thus, solu-
tions for c±1 can be found in terms of power series. In equation (6.36) a third regular
singular point occurs at rF from the source term G±1 (see (6.94)).

When c±1 is a small correction to (6.29) we have from (6.36) a solution that is
accurate to O(α4):

c+1 ≈
6iωr− k+ −G+1

2P−4i
√

M2 −a2 + iJ+1
, ω ≈/ m

Ω
H

c
, (6.37a)

c−1 ≈
−2iωr− k− −G−1

2P
, ω ≈/ m

Ω
H

c
. (6.37b)

For example these solutions are valid when 1 	 α2 −α2
F
	 α2

F
, as occurs for ΩF ∼

ΩH in a magnetically dominated wind with U2
A

≫ 1. The fast point can be driven
arbitrarily close to the horizon for the approximately force free magnetospheres
considered in [66,80]. Thus, as long as the fast wave radiated outward from deep in
the ergosphere does not originate near the fast point, (6.37) and (6.29) are accurate
expressions for the radial wave function. In this regime the oscillatory nature of
the short wavelength fast waves (and ingoing waves for that matter) are determined
primarily by the spacetime geometry. The current terms only modify the second
order vacuum term (compare (6.30) and (6.37)). Near the fast point, the singular
nature of G±1 dominates the dynamics and c±1 is no longer a small correction.

6.4.4 Outgoing Fast Waves Near the Fast Point

The solutions given by (6.37) and (6.29) are valid as long as 1 	 α2 −α2
F
	 α2

F
.

However, for r− rF small enough, i.e., r− rF ∼ rF − r+, this condition is not true.
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Thus, we extend our discussion to globally outgoing waves originating from very
close to the fast point. We will find two types of solutions: those in which wave
variations are manifested on scales small compared to the radius of curvature in the
proper frame of the plasma and long wavelength solutions in which curvature terms
in the local plasma wave equations cannot be dropped (they do not resemble plane
waves locally). The first types of solutions are essentially more accurate versions
of the short wavelength modes discussed in [129]. The long wavelength modes re-
quire the tight constraint ω ≈ mΩH /c and are referred to as singular solutions due
to the approximate three dimensional support for these solutions in four dimen-
sional momentum space (as a consequence of the aforementioned relation between
ω and m).

6.4.4.1 Short Wavelength Modes Near the Fast Point

If we have short wavelength solutions then the radial component of the momen-
tum vector is well defined in Boyer–Lindquist coordinates by (6.31) as k̃r ≡ kr(r).
We find the dispersion relation for fast waves by transforming the fast wave disper-
sion relation (5.34) in the proper frame by a relativistic boost to the rotated ZAMO
frame. Then the basis transformation (3.3) - (3.8) can be used to write the dispersion
relation in the stationary frames.

The transformation from the rotated ZAMO basis, êα , to the proper basis, ēα , is
given by [72]

⎡
⎢⎢⎢⎢⎢⎢⎣

ēu

ēφ

ēρ

⎤
⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

u0 uφ u
1

uφ√
1+u2

1

u0√
1+u2

1

0

u0u
1

√
1+u2

1

uφu
1

u0
√

1+u2
1

√
1+u2

1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎣

ê0

êφ

ê1

⎤
⎥⎥⎥⎥⎥⎥⎦

, (6.38a)

and the inverse transformation is

⎡
⎢⎢⎢⎢⎢⎢⎣

ê0

êφ

ê1

⎤
⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

u0 − uφ√
1+u2

1

− u0u
1

√
1+u2

1

−uφ
u0√

1+u2
1

uφu
1

u0
√

1+u2
1

−u
1

0
√

1+u2
1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎣

ēu

ēφ

ēρ

⎤
⎥⎥⎥⎥⎥⎥⎦

. (6.38b)
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The unit vector, ēu, is the bulk four velocity of the plasma. As noted in Sect. 5.4,
the fast critical surface is defined in terms of purely poloidally propagating waves.
Thus, we write the fast speed in the proper frame as

vF =
k̄u

k̄ρ
. (6.39)

Using the horizon boundary conditions (3.94) and the transformation from the ro-
tated ZAMO basis (3.4)-(3.8) to Boyer–Lindquist coordinates, (6.38) and (6.39)
imply (with the definition βF = vF /c):

k̃r

k̃t
=

ρ2

r2 +a2

⎧⎨
⎩

[
βF −

√
1+(uP)−2

][
1+O(α2)

]
1−βF

√
1+(uP)−2 +O(α2)O(k̄φ/k̄ρ )

⎫⎬
⎭ . (6.40)

Expanding (6.40) about the fast point using the asymptotic expressions from (3.94)
and (3.4) (see 6.85a, for example), one finds from (3.11a) an expression that elimi-
nates k̃t in terms of ω and m in (6.40),

k̃r =
∆F +∆
∆ −∆F

(
r2 +a2

∆

)[
ω− mΩH

c
+O(α2)

]
, ω ≈/ mΩH

c
, (6.41)

where the subscript “F” means to evaluate at the fast point.
The transformation (6.38) combined with the asymptotic bulk flow poloidal ve-

locity from the horizon boundary condition, (3.94), and the fast speed in (6.39)
yields a blueshift effect in the proper frame for outgoing fast waves near the critical
surface,

P̄u ∼r→rF

βF

α2 −α2
F

(
ω− Ω

c
m
)

, (6.42a)

P̄ρ ∼r→rF

1
α2 −α2

F

(
ω− Ω

c
m
)

. (6.42b)

The blueshift effect in (6.42) justifies the short wavelength approximation if
ω ≈/ m(Ω/c). Compare (6.42) to the similar expression for light waves in (3.19).
Note that k̃r → ∞ at the fast point.

6.4.5 The Singular Set of Long Wavelength Solutions

Both the solution (6.37) and the dispersion relation (6.41) depend on the fact that
α/[ω − m(Ω/c)] is a small parameter. When ω ≈ m(Ω/c) this approximation
breaks down and one has long wavelength modes and these must be discussed in
terms of the Newman–Penrose formalism. If w 	ΩH then the gradient in Ω causes
α/[ω−m(Ω/c)] to transition to a small parameter over very short proper distances
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deep in the ergosphere. Thus, the long wavelength solution transitions to a short
wavelength solution almost immediately. However, for ω ∼ ΩH one can have a le-
gitimate long wavelength solution deep in the ergosphere in the limit of small values
of the parameter α/[ω−m(Ω/c)].

Consider the situation in which the high frequency, short wavelength condition,
(6.42), does not hold in the proper frame near the fast point. These local long wave-
length solutions in the proper frame are characterized by the conditions,

k̃ρ ∼r→rF
α0 , (6.43a)

k̄u ∼r→rF
α0 . (6.43b)

In order to understand the global behavior of these modes requires the evaluation of
the Boyer–Lindquist components of the propagation vector. To obtain this informa-
tion, first note that (6.42) implies the long wavelength condition near the fast point
for an outgoing mode emitted form a point, r0 , just outside the fast critical surface,
r0 � rF , (

ω−m
Ω
c

)
∼r0→rF

r− rF , r− r0 � r0 − r+ . (6.44a)

With the aid of (3.11a), or equivalently the inverse metric in (6.90e), (6.44a) can be
transformed to the Boyer–Lindquist contravariant wave vector scaling near the fast
point,

k̃ t ∼r0→r(F)+

r− rF

r− r+

, r− r0 � r0 − r+ . (6.44b)

Similarly, one can consider the more general case of a long wavelength mode emit-
ted from a point, r0 , satisfying the condition, 1 	 α2

0
(i.e., it is radiated from deep in

the ergosphere, but not necessarily “near” the fast point). In this instance, the wave
function (6.29) implies the following parameter constraint on long wavelength out-
going fast modes deep within the ergosphere at the point of emission:

k̃ t (r0

)
=
ω−m

Ω0
c

α2
0

= ε � 0 , (6.44c)

where the subscript “0” means that the corresponding quantity is evaluated at r0
and ε is a very small positive constant. Note that even with the small ε constraint
that a wave emitted from very deep in the ergosphere can eventually transition to a
short wavelength solution farther out at a lapse function, 1	α2 	α2

0
. We consider

a long wavelength solution to be one that can propagate outward a proper distance
that is a significant fraction of the radius of curvature of either spacetime (∼ M) or
the magnetic field before the solution transitions to a short wavelength mode. Thus,
we have the long wavelength condition,

ε � ω , if ω ∼ΩH . (6.44d)
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Recall that ω ≈ m(ΩH /c) is not allowed for massive particles deep in the ergo-
sphere, which are dispersive waves, since βφ ∼ α−1 (see (3.16)). However, by con-
trast, fast waves are nondispersive and this restriction yields a well behaved group
velocity.

Note that (6.44d) implies that the quantity P of (4.23g) is negative at r0 ,

P0 =
ρ2

0
(ε−ω)
2Mr0

∆
(
r0

)
, (6.45a)

and this circumstance has profound implications for the wave functions in (6.29).
Secondly, expanding P about P0 ,

P = P0 +ω
(
r2 − r2

0

)
, (6.45b)

one can see that P vanishes at a coordinate value of r given by

r2 = r2
0
+
∆
(
r0

)
[ω− ε]ρ2

0

2Mr0ω
, P = 0 . (6.45c)

Combining (6.45b) and (6.45c) we get the highly restrictive bound on P in the
ergosphere,

|P| < α2r+

ω
ΩH

, r > r0 , α2 � 1 . (6.45d)

Thus, we have the small dimensionless parameter in the ergosphere,

|P|
r+ − r−

� 1 , ∀ α2 � 1 . (6.45e)

The fact that P ≈ 0 near r+ implies that c−1 can not be considered a small cor-
rection to (6.29) as was the case in (6.37b). In the Ricatti equation (6.36b), the
coefficient of c−1 is small near r+ , thus the solution of (6.37b) is no longer justi-
fied. We can solve (6.36b) at small lapse function in terms of our small parameter in
(6.45) using the asymptotic form of the current sources in (6.35),

c−1 =
−i− 2P

r+−r−
r− r+

+ i
J−1

2
− i

2
(
r+ − r−

) [2iωr + k− +G−1
]
+O
(

P
r+−r−

)
,

α2
0
� 1 , ω−m

Ω0

c
≈ 0 , ω ∼ΩH . (6.46a)

It was implicitly assumed in the derivation of (6.46a) that the current sources of
(6.35) do not have a singularity in the ergosphere. This is demonstrated explicitly for
the long wavelength modes in Sect. 6.4.8 (see 6.92). Inserting (6.46a) into (6.29b)
yields an expression for Φ̃2,

Φ̃2(r) ∼r0→r+
r− r+ , ω−m

Ω0

c
≈ 0 , ω ∼ΩH . (6.46b)
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There exists another disjoint class of singular solution that is also of the long
wavelength that is axisymmetric, m = 0. However, a long wavelength solution in
this instance requires that ω is very small,

ω ∼ α2
0
ΩH . (6.47a)

For a central black hole in an AGN this corresponds to frequencies less than
10−7sec−1! Note that in this branch of the singular solution space, ε	ω , in contrast
to the other long wavelength solutions that obey the opposite constraint, (6.44d). The
quantity P never vanishes for these waves, but is very small at the point of emission,

P0 ∼ α2
0

r+ � r+ − r− . (6.47b)

Thus, (6.45b) and (6.47ab) imply the global ergospheric parameter constraint,

P
r+ − r−

� 1 ,∀ α2 � 1 . (6.47c)

Acknowledging this small parameter, we can solve (6.36b) at small lapse function,
finding the solution (6.46a) again,

c−1 =
−i− 2P

r+−r−
r− r+

+ i
J−1

2
− i

2
(
r+ − r−

) [2iωr + k− +G−1
]

+O
(

P
r+−r−

)
, m = 0 , ω � 0 . (6.47d)

Inserting the wave solution of (6.47d) into the general wave form of (6.29b) for Φ̃2
we find,

Φ̃2 ∼r→r+
α2 , m = 0 , ω � 0 . (6.47e)

Not surprisingly, this result is similar to the vacuum electrodynamic results found
in Sect. 4.5 that were used to prove the no-hair theorem. The small ω waves are in
essence a DC limit to the general fast wave phenomenon. Note that such waves are
not governed by the notions of fast speed and fast critical surfaces which are derived
in the short wavelength limit. The electromagnetic properties of these hybrid waves
were derived near the event horizon without regard to any properties associated with
fast waves.

By contrast, notice that φ0 is well behaved and does not scale with lapse func-
tion as r0 → r+ because P ∼ α2

F
is just a small correction to the denominator of

c+1 in (6.37a). Consequently, one can combine the wave function information from
(6.37a), (6.46) and (6.47) to find the asymptotic amplitudes of the spin components
of the electromagnetic field carried by outgoing long wavelength fast waves in the
ergosphere. In particular, using these amplitudes with (4.10) and (5.17), we can find
the toroidal magnetic field density transported by outgoing long wavelength solu-
tions emitted near the event horizon, at a value of lapse function, α0 ≡ α

(
r0

)
,
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δBT ∼r0→r+

ρ̃2∆
2
φ0 + φ2 ∼r0→r+

α2
0

, ω−m
Ω0

c
≈ 0 . (6.48)

In the next subsection we find that this result is independent of wavelength.

6.4.6 The Linearized Perturbation Equations for Short
Wavelength Modes

In this subsection, we study the complement of the singular solutions in the outgoing
fast wave parameter space, ω ≈/ m(ΩH /c). The existence of solutions to the Ricatti
equations (6.36a,b) and the general form of the solutions (6.29) allow us to express
perturbed Boyer–Lindquist field components δ F̃µν(r,θ ,φ , t) in terms of complex
amplitudes, δ F̃µν , as

δ F̃µν(r,θ ,φ , t) =
∫

dω ∑
s,k,m

δ F̃µνe−iωte−imφei
∫

kr(r)dr
sSk

m(θ). (6.49)

The dispersion relation (6.41) implies that we need to know more than the asymp-
totic currents near the horizon, we also need the linearized momentum equations
of the fluid in order to understand behavior near the fast point. In contrast, if
1 	 α2 −α2

F
	 α2

F
, the dispersion relation (6.41) yields the result of (6.29) and

(6.37) that the wave function is determined by the spacetime metric,

k̃r ≈
P
∆
[
O(1+α2)

]
. (6.50)

Consequently, there is clearly some type of singular behavior of the current sources
near the fast point. The nature of this singular behavior and its implications are
elucidated in the calculations of the next three subsections.

At this juncture it is worth commenting on the use of “short wavelength” in the
title to this subsection in the context of the general form of the wave expansion in
(6.49). According to the dispersion relation (6.41), once the condition, ω ≈mΩH/c,
is violated (as is the assumption of the analysis to follow), the radial wavelength
becomes very small. Even though the variations orthogonal to the radial direction
can take place on large distance scales (the waves are linear combinations of spin
weighted spheroidal harmonics), these are short wavelength modes in the radial
direction.

In this section, we perform a full linearized perturbation in Boyer–Lindquist co-
ordinates following [129] in order to find the wave behavior for α2 −α2

F
∼ α2

F
. It is

worth contrasting the more general present analysis to the exponential “plane wave”
type short wavelength solutions of [129]. Firstly, (6.49) implies that the waves are
not merely simple exponential functions of imaginary argument in the θ coordinate.
Furthermore, by (6.41), near the fast point, the radial wavelength is rapidly varying.
This is not like plane wave behavior. The wavefronts are compressed together as the
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wave propagates away from the spacetime near the inner fast point and the wave-
lengths get more and more stretched out the farther that the wave propagates away
from the horizon and inner fast critical surface. The WKB type radial wave func-
tions of (6.31) that are implemented in the wave expansions of (6.49) are accurate
descriptions of this type of wavelength variation phenomena.

The calculations of this subsection incorporate the effects of magnetic field line
curvature, since the current does not vanish in the black hole magnetosphere (zero
current flow is assumed in the calculations of Chap. 2). Secondly, the curvature of
spacetime is reflected in the use of spin weighted spheroidal harmonics and the ra-
dial wave functions in (6.49). Strictly speaking, the calculations of this section are
the most accurate in the simple exponential, “plane wave” limit of [129]. The solu-
tions derived in this subsection are only approximate when there is additional wave
behavior associated with θ variations. The integrity of the approximate calculations
can be verified by comparison with the last subsection. All of the relevant results
are identical to the limiting case of the longest wavelength solutions (the singu-
lar solutions), implying that no physical content has been lost by our mathematical
expediences.

6.4.6.1 The Perturbed Electromagnetic Field

Consider the linearized Maxwell’s equations (3.64b) using (6.49) for a wave with
quantum numbers m, ω , and k:

−iδ F̃tr,θ −ω δ F̃rθ + kr δ F̃θ t = 0 , (6.51a)

mδ F̃rθ + kr δ F̃rφ − iδ F̃φr,θ = 0 , (6.51b)

mδ F̃tr −ω δ F̃rφ + kr δ F̃φ t = 0 , (6.51c)

mδ F̃tθ −ω δ F̃θφ − iδ F̃φ t,θ = 0 . (6.51d)

One can define perturbed poloidal field components as in [129],

ε‖ =
1
ũP

[
ũr δ F̃rt + ũθ δ F̃θ t

]
, (6.52a)

ε⊥ =
1
ũP

1
√

grrgθθ

[
ũθ δ F̃rt − ũr δ F̃θ t

]
, (6.52b)

b‖ =
1
ũP

[
ũr δ F̃θφ − ũθ δ F̃rφ

]
, (6.52c)

b⊥ =
1
ũP

√
grrgθθ

[
ũθ δ F̃θφ + ũr δ F̃rφ

]
, (6.52d)

(
ũ

P
)2

=
[

grr (ũr)2 +gθθ
(

ũθ
)2
]

. (6.52e)
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The perturbed frozen-in condition is

δ F̃φ t ũt + F̃φr δ ũr + F̃φθ δ ũθ −b⊥α√gφφ ũ
P

= 0 , (6.53a)

F̃rt δ ũt +δ F̃rt ũt + F̃rφ δ ũφ +δ F̃rφ ũφ + F̃rθ δ ũθ +δ F̃rθ ũθ = 0 , (6.53b)

F̃θ t δ ũt +δ F̃θ t ũt + F̃θφ δ ũφ +δ F̃θφ ũφ + F̃θr δ ũr +δ F̃θrũr = 0 , (6.53c)

δ F̃tφ ũφ + F̃tr δ ũr + F̃tθ δ ũθ + ε‖ũ
P

= 0 , (6.53d)

ΩF = − F̃rφ

F̃rt
= − F̃θφ

F̃θ t
. (6.53e)

Next we express δ F̃αβ in terms of δ F̃φ t and δ F̃rθ . We define

bT ≡ δ F̃rθ , (6.54a)

and

ikθ ≡
δ F̃φ t,θ

δ F̃φ t
, (6.54b)

where kθ is not a component of a propagation vector since δ F̃µν in (6.49) is not a
plane wave, but a spin weighted spheroidal harmonic. Multiply ũr by (6.51c) and ũθ

by (6.51d); add then substitute into (6.53a), (6.53d) and (6.53e) to yield

ε‖ =

(
ω−

mΩF
c

)
ũφ +ΩF ũµkµ

(
ω−

mΩF
c

)
ũP

δ F̃tφ . (6.55a)

Similarly, multiply ũr by (6.51c) and ũθ by (6.51d); add then substitute into (6.53a)
and (6.53c) to get

b⊥ =

(
ω−

mΩF
c

)
ũt + ũµkµ

(
ω−

mΩF
c

)
α√gφφ ũP

δ F̃tφ . (6.55b)

We can decompose the propagation vector into components parallel and perpen-
dicular to the field,

k‖ =
k̃rũr + k̃θ ũθ

ũP , (6.56a)

k⊥ =
1

√
grrgθθ ũP

[
k̃rũθ − k̃θ ũr

]
. (6.56b)

As α → 0, we have from (6.41),

lim
α→0

k‖ ≈
k̃rũr

ũP

[
1+O(α2)

]
, (6.57a)
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and
lim
α→0

k⊥ ∼ αk‖ . (6.57b)

We can crudely approximate k⊥ when we don’t have a plane wave by setting kθ of
(6.54b) equal to k̃θ in (6.56b), or ignoring all θ variations except when α2 � α2

F
,

i.e., set k̃θ = 0 in (6.56b). Either will give an inaccurate expression for k⊥ , but by
(6.57b) this will not affect the final results which depend primarily on k‖ .

Setting kθ = k̃θ in (6.56), these expressions become

ũ
P
k‖ =

[
k̃rũr − iδ F̃φ t,θ

δ F̃φ t
ũθ
]

, (6.58a)

ũ
P
k⊥ =

[
k̃rũθ +

iδ F̃φ t,θ

δ F̃φ t
ũr

]
. (6.58b)

Inverting these expressions yields

− iδ F̃φ t,θ

δ F̃φ t
=

[
k‖ ũθ −

√
grrgθθ ũrk⊥

]

ũP , (6.59a)

k̃r =

[
k‖ ũr +

√
grrgθθ k⊥ ũθ

]

ũP . (6.59b)

Similarly, the perturbed electric field decomposes as

δ F̃θ t =

[
ε‖ũθ −

√
grrgθθ ũrε⊥

]
ũP , (6.60a)

δ F̃rt =

[
ε‖ũr +

√
grrgθθ ε⊥ũθ

]
ũP . (6.60b)

Define
∆0 ≡ kθ δ F̃rt − iδ F̃rt,θ , (6.61a)

then (6.59), (6.60) and (6.54a) substituted into (6.51a) yields

ε⊥ =

[
ω
(

ũφ −
ΩF

c ũt
)

+ΩF ũ
P
k‖

]
k⊥ δ F̃tφ

(
ω−

mΩF
c

)
ũP k‖

−
ω√grrgθθ bT +∆0

k‖
. (6.61b)

The quantity ∆0 represents a deviation from plane wave behavior by the general
wave form in (6.49). Multiplying ũθ by (6.51c) and subtracting the product of ũr
and (6.51d) yields

−mε⊥ +ωα√gφφ b‖ = k⊥ δ F̃tφ . (6.62)
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Inserting (6.62) into (6.61) gives

b‖ =
1

α√gφφ

{[
m
(

ũφ − ΩF

c
ũt
)

+ ũPk‖

]
k⊥ δ F̃tφ −

m
√

grrgθθ bT + m
ω ∆0

k‖

}
.

(6.63)

6.4.6.2 The Perturbed Fluid Equations

Next we express δ ũφ and δ ũt in terms of bT and δ F̃tφ . We perturb the azimuthal
momentum equation in Boyer–Lindquist coordinates in the cold plasma limit,

nµ
[
δ
(

d
dt

)
ũφ +

d
dτ
δ ũφ

]
=
δ F̃φα J̃α

c
+

F̃φα δ J̃α

c
. (6.64)

Inserting (6.33) into Ampere’s law (3.64a), one can eliminate the perturbed currents
in (6.64) in favor of perturbed field strengths. Then note that k̃β δ F̃βα/(∂δ F̃θα/∂θ)
∼ O(1/k̃rM) and (by 6.41), k̃rM 	 1, to create an approximate perturbed azimuthal
momentum equation:

nµ k̃µ ũµ δ ũφ ≈
ik̃β
[
F̃φ r δ F̃β r + F̃φ θ δ F̃βθ

]
c

+
δ F̃φ t J̃t

c
. (6.65)

Similarly, the time component of the perturbed momentum equation is

nµ k̃µ ũµ δ ũt ≈
ik̃β
[
F̃t

r δ F̃β r + F̃t
θ δ F̃βθ

]
+δ F̃tφ J̃φ

c
. (6.66)

Combining (6.65) and (6.66) with the frozen-in equation (6.53f) yields

δ ũt +
ΩF

c
δ ũφ ≈

δ F̃φ t
c

[
J̃φ −

ΩF
c J̃t

]

nµ k̃µ ũµ
≈ O(α2)δ ũφ . (6.67a)

This leads directly to the very simple approximate relation

δ ũt +
ΩF

c
δ ũφ ≈ 0 . (6.67b)

Expanding out (6.65) yields

δ ũφ ≈
1

4πµk
α√gφφ
ũµ k̃µk‖

⎡
⎢⎢⎣

(
ũφ −

ΩF
c ũt

)(
kµkµ + k2

⊥

)
k‖ f

(
ω−

mΩF
c

) k⊥ δ F̃tφ

+
(
kµkµ + k2

⊥

)
ũ

P
(
√

grrgθθ bT +
∆0

ω

)
⎤
⎥⎥⎦ , (6.68a)
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f ≡ ũ
P
(

k̃φ − ΩF

c
k̃t
)

+ k‖

(
ũφ − ΩF

c
ũt
)

. (6.68b)

6.4.6.3 Eliminating δ F̃tφ

We eliminate δ F̃tφ in the expressions above by finding a second relation for δ ũφ
using u ·u = −1. Perturbing the normalization condition gives

ũµ δ ũµ = −ũ
P
δ ũ‖ + ũt δ ũt + ũφ δ ũφ = 0 , (6.69)

where the parallel component of the poloidal velocity is given by

δ ũ‖ =
δ ũr ũr +δ ũθ ũθ

ũP =
δ ũr ũr +δ ũθ ũθ

ũP . (6.70)

Multiplying ũθ by (6.53b) and subtracting ũr times (6.53c) yields

δu‖F̃rθ = −ε⊥√grrgθθ ũt + B̃
P
[
δ ũφ − ΩF

c
δ ũt
]

+ũ
P
δ F̃rθ +b‖ũφ , (6.71)

where (
B̃

P
)2

≡ grr

[
F̃θφ√−g̃

]2

+gθθ

[
F̃φr√−g̃

]2

. (6.72)

Note that (the components of the inverse metric can be found in 6.90e, but are not
explicitly required at this point)

δ ũφ − ΩF

c
δ ũt =

[
gφφ −2

ΩF

c
gφ t +

Ω 2
F

c2 gtt

]
δ ũφ . (6.73)

Equations (6.67b) and (6.70) imply that

δu‖ ≈ −δ ũφ

[
ũφ −

ΩF
c δ ũt

]

ũP . (6.74)

Combining (6.71)–(6.74) and noting that

F̃µν F̃µν(
B̃P)2 = grrgθθ

⎡
⎢⎢⎢⎣gφφ −2

ΩF

c
gφ t +

Ω 2
F

c2 gtt +

(
ũφ −

ΩF
c ũt

)2

(
ũP)2

⎤
⎥⎥⎥⎦ , (6.75)
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we find using expression (5.38) for the fast speed in the cold plasma limit,

δ ũφ =
1

4πµk
α√gφφ ũµ k̃µ

U2
F

k‖

⎡
⎢⎣ ũφ −

ΩF
c ũt

ω−
mΩF

c

k⊥ δ F̃tφ + ũ
P√

grrgθθ

(
bT +

∆0

ω

)⎤⎥⎦ .

(6.76)

Combining (6.76) and (6.68) we find,
{(

ũφ − ΩF

c
ũt
)[(

kµuµ
)2 +U2

F

(
kµkµ + k2

⊥

)]
+U2

F
k‖ f
}

k⊥ δ F̃tφ

= −
(
ω− ΩF

c

)[(
kµuµ

)2 +U2
F

(
kµkµ + k2

⊥

)][
ũ

P√
grrgθθ

(
bT +

∆0

ω

)]
. (6.77)

Using the covariant expression for the propagation vector for fast waves (2.40)
in (6.77) gives

δ F̃tφ ≈−
ũ

P
(
√

grrgθθ bT +
∆0
ω

)(
ω−

mΩF
c

)
k⊥[

k2
⊥

(
ũφ −

ΩF
c ũt

)
+ k‖ f

] . (6.78)

6.4.6.4 Solving For δbT Near the Fast Point

Combining (6.74), (6.76) and (6.78) gives an expression for poloidal velocity
variation,

δu‖

ũP =
α2gφφ ũµ k̃µ

(
ũφ −

ΩF
c ũt

)2

f

U2
F

M2
A
ũP

[(
ũφ −

ΩF
c ũt

)
k2
⊥ + k‖ f

]

(
bT +

∆0
ω

√
grrgθθ

)

F̃rθ , (6.79)

where we used the frozen-in condition to write

k = −

√−g̃n
(

ũφ −
ΩF

c ũt
)

F̃rθ
, (6.80)

and pure Alfvén Mach number was expressed as

M2
A
≡ 4πµk2

n
. (6.81)
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Using the dispersion relation (6.41) and the near the horizon approximation, α2 � 1,
and a long algebraic manipulation, we find

lim
α→0

δu‖

ũP ≈ δ ũr

ũr ≈ 2∆ 2 (ũt)2 sin2 θ [ΩH −ΩF ]2

U2
F

M2
A
(∆F +∆)

bT

F̃rθ . (6.82)

By (3.95) ũt ∼ α−2, and U2
F
∼ α0 since it is a proper frame evaluated quantity and

M2
A
∼ α0 as a result of (6.81). Consolidating this information, we rewrite (6.82) as

δur

ur
0

= F (θ ,ΩF ,ω,m)
(
α2

F
+α2)−1 δBT

BT
0

, (6.83)

where the subscript “0” represents unperturbed quantities. F is a well behaved func-
tion that scales as α0 near the horizon, and ur is a ZAMO evaluated velocity as a
consequence of the defining relation (6.52e) and (3.3) in the limit as α → 0. Math-
ematically we have

ur ≡ ur
0
+δur , ur < 0 , (6.84a)

BT ≡ BT
0

+δBT , BT < 0 , BT
0

< 0 . (6.84b)

The condition BT < 0 and δBT < 0 is the necessary condition to extract angular mo-
mentum from the hole (see (5.21)) when BP > 0 in the northern hemisphere. From
(3.94), we have the asymptotic form of the four velocity in terms of the constant, U ,

ur
0
∼r→r+

−α−1U , U > 0 , (6.85a)

U < αUF , (6.85b)

where (6.85b) is the subfast condition. For a wave to be emitted upstream we require
−ur < UF , or from (6.84) and (6.85),

δur

ur
0

<
αUF −U

U
. (6.86)

Combining (6.86) with (6.83) gives

δBT

BT
0

<
α2

F
+α2

F (θ ,ΩF ,ω,m)
αUF −U

U
. (6.87)

Thus, δBT is bounded by a constant times α2
F

+α2 for an outgoing fast wave. We
find the same result in the parameter space, ω ≈/ m(ΩH /c), that we found in the
long wavelength singular solution, (6.48):

δBT ∼r→r+
α2

F
+α2 . (6.88)
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6.4.7 Outgoing Magnetic Stresses Carried Fast Waves
Near the Horizon

We verify that the δBT ∼ α2 condition is equivalent globally to weak magnetic
stresses in the wave. Consider a closed surface, S0, just outside the horizon with
α0(θ ,φ) � 1 and a second closed surface at infinity S∞. Compute the integral law
of angular momentum conservation in the 3 + 1 split of [80] of a fast wave emit-
ted outward from just inside S0. Computing time averaged fluxes and letting the
boundary surface be stationary with respect to infinity gives

∫
S0

αSL ·dA = Re
[∫

S0

√−g̃
4π

(
δ F̃rθ δ F̃∗

θφ +δ F̃rtδ F̃∗
tφ

)
dθdφ

]
=

∫
S∞
αSL ·dA = Re

[∫
S∞

√−g̃
4π

(
δ F̃rθ δ F̃∗

θφ +δ F̃rtδ F̃∗
tφ

)
dθdφ

]
. (6.89)

We list the relevant scalings near S0 of perturbed quantities in (6.89) below.
From (6.88), (6.78), the definition of f in (6.68b) and the horizon boundary con-
ditions (3.94),

δ F̃rθ ∼r→rF
α2

0
+α2

F
, (6.90a)

δ F̃tφ ∼r→rF
α2

0

(
α2

0
+α2

F

)
. (6.90b)

Equations (6.55b) and (6.63) can be applied to (6.52c) and (6.52d) to get

δ F̃θφ ∼r→rF
α2

0
+α2

F
, (6.90c)

δ F̃rφ ∼r→rF
α2

0

(
α2

0
+α2

F

)
. (6.90d)

Equations (6.55a), (6.60b), (6.61) and (6.90d) combined with the inverse metric in
(6.90e),

gµν = − 1
∆ρ2

[(
r2 +a2) ∂

∂ t
+a

∂
∂φ

]2

+
1

ρ2 sin2 θ

[
∂
∂φ

+asin2 θ
∂
∂ t

]2

+
∆
ρ2

(
∂
∂ r

)2

+
1
ρ2

(
∂
∂θ

)2

, (6.90e)

yields the final perturbed field scaling from the perturbed frozen-in condition (6.53),

δ F̃rt = − 1
ρ4

[(
r2 +a2

)2 −∆a2 sin2 θ
c

ΩF −2Mra

]
δ F̃rφ , (6.90f)

δ F̃rt ∼r→rF
α0

(
α2

0
+α2

F

)
. (6.90g)
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Inserting the scalings of (6.90) into the angular momentum conservation law of
an outgoing fast wave emitted from near the horizon, (6.89), yields

∫
S∞
αSL ·dA ≈ Re

[∫
S∞

√−g̃
4π

(
δ F̃rθ δ F̃∗

θφ

)
dθdφ

]
∼r→rF

α4
0
+α4

F
. (6.91)

Consequently, (6.91) shows that fast waves emitted at small values of lapse function
in either the long or short wavelength regimes transport negligible torsional elec-
tromagnetic stresses outward to infinity. This results from the vanishing of the Φ̃2
component of the electromagnetic field in the short wavelength limit (see 6.95j).
Note that this is also the case for the outgoing long wavelength solutions emitted
from small values of lapse function (see 6.46b and 6.47e). The net result, at a physi-
cal level, is that fast waves become ever more feeble at propagating poloidal angular
momentum flux outward as α→ 0. The effective redshifting of the poloidal angular
momentum flux carried by fast modes is consistent with the interpretation that the
spacetime near the event horizon is an asymptotic infinity for MHD waves.

6.4.8 The Singular Point Structure of the Wave Equation
Near the Fast Critical Surface

In order to see the singular point structure of the radial wave equation in (6.36), we
elucidate the singular structure of δ J̃ θ near the fast point. Ampere’s law (3.64a)
implies that

δ J̃ θ =
i

4π

[
−ωδ F̃θ t +mδ F̃θφ + k̃rδ F̃θr

]
. (6.92a)

From the dispersion relation (6.41), near the fast point, and (5.17) we have an ap-
proximate version of the perturbed Ampere’s law above,

δ J̃ θ ≈− i
4π

k̃r
δBT
√−g̃

. (6.92b)

From (6.88) and (6.41), near the fast point, (6.92b) scales like

δ J̃ θ ∼r→rF

(∆F +∆)2

∆ (∆ −∆F )
∼r→rF

∆
∆ −∆F

∼r→rF

α2

α2 −α2
F

. (6.93a)

Therefore, in the somewhat extended region 1 	 α2 −α2
F

, (6.92a) can be expressed
asymptotically as in (6.90) in the form

δ J̃ θ ∼α0→0 J
α2

0

α2
0
−α2

F

+V
α2

0

α2
0
+α2

F

, (6.93b)
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where V and J are constants. It follows from (6.92b) that there is no singular point in
the current sources associated with the long wavelength modes that were discussed
in Sect. 6.4.5, since k̃r is well behaved in these solutions by definition.

Equation (6.93a) implies that there is a singular point at rF in (6.32), the defining
relations for J0 and J2, since they are functions of δ J̃θ . The singularity in the spino-
rial current sources translates into a singular point in the radial equations (4.23c,d).
In order to see the nature of the singular point, note that there is both an imaginary
and real component of the source expansion for Maxwell’s equations in (6.35) at the
fast point. Inserting the expansion for δ J̃θ , (6.93b), into (6.32a) and (6.35), the real
part of the source term in (4.25a) is given primarily by the following expansion near
the fast point:

Ḡ+1 ∼r→rF

Aα2

(r− rF )2 , (6.94a)

where A is a constant. Note that in accordance with the expansions in (6.35), (6.94a)
has the limiting form near the horizon,

lim
α→0

Ḡ+1 = 0 , (6.94b)

as required by the horizon boundary conditions (3.94) and (3.95). The imaginary
part of the singular current at r = rF is given primarily by the ic+1J+1 term in
(6.35a). The singular nature is partially absorbed in the functional dependence of
c+1 that results from the dispersion relation, (6.41), applied to the wave function,
(6.29):

lim
r→rF

c+1 =
2∆F P

∆ (∆ −∆F )
+β+1

∆ +∆F

∆ −∆F

+ iγ+1 , (6.95a)

lim
r→rF

β+1 �
|P|
∆F

. (6.95b)

The functions β and γ are well behaved and their general properties are described
in [130]. The function β transitions the singular wave function near the fast point
in (6.95a) to the small correction term, (6.37a), upstream. Substituting (6.95a) into
the Ricatti equation (6.36a), yields the imaginary part of the spinorial current source
according to the decomposition of (6.35a):

(J+1)0
= −2

√
M2 −a2 +4iP+ , (6.95c)

J̄+1 (r, θ) ∼r→rF

Cα2

(r− rF )
+O
[
(r− rF )0

]
, (6.95d)

where C is a constant and the complete expression for J̄+1 (r, θ) is very long and
can be found in [130]. The current source J̄+1(r, θ) vanishes at the event horizon as
required by the horizon boundary conditions as expressed through (6.35). Further-
more, note that this functional form is consistent with the expansion for δ J̃θ near
the fast point, (6.93b), inserted into (6.32a). Substitution of c+1 ≡ iy−1(dy/dr) into
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the Ricatti equation (6.36a) along with the functional forms of the current source in
(6.94) and (6.95b,c) yields a second order ordinary differential equation with vari-
able coefficients that has a regular singular point at rF .

It is instructive to perform the same analysis on the negative spin wave function
in the short wavelength limit, near the fast point, that was performed above for the
positive spin wave function. Note, by (6.32), the current source of the negative spin
wave has the same radial derivative of δ J̃θ as the positive spin current source. Thus,
the current source has the same singular point structure that was described in (6.94)
and (6.95b,c),

Ḡ−1 ∼r→rF

Aα4

(r− rF )2 , (6.95e)

J̄−1 (r, θ)∼r→rF

Cα2

(r− rF )
+O
[
(r− rF )0

]
. (6.95f)

There is an additional multiplicative factor of α2 in (6.32b) that damps both the
“feedback effect” as well as the current source G−1 for the negative spin component
of the electromagnetic field transported by outgoing fast waves. Note that the lapse
function scaling was absorbed in our definition of J−1 in (6.35) that is transcribed
over into the Ricatti equation, (6.36b). The scaling of the “feedback current” with α2

and G−1 with α4 significantly modifies the solution from that found in (6.95a). In
order to see this, first note that the solution (6.95a) is valid near the fast point because
the leading order divergence in the imaginary part of (6.36a) is O[(r− rF )−2] and
one has the asymptotic equality,

Im
[
(r− rF )2 i

d
dr

c+1

]
=
[
(r− rF )2 c+1 Re(J+1)+ Im(G+1)

∆

]
+O(r− rF ) .

(6.95g)

Similarly, the leading order divergence at the fast point of the real part of the wave
equation is satisfied by the balancing of the terms,

Re
[
(r− rF )2 c2

+1

]
=
[
(r− rF )2 c+1 Im(J+1)−Re(G+1)

∆

]
+O(r− rF ) . (6.95h)

The extra α2 multiplicative factor on the negative spin current source in (6.36b) that
appears in (6.95e,f) does not allow an asymptotic solution of the leading order real
and imaginary divergences near the singular point as in (6.95g,h). In view of the
asymptotic form of the currents in (6.95e,f), the only solution to (6.36b) near the
fast point is,

lim
r→rF

c−1 =
−i

r− rF

[
1−J−1 (r− rF )+

G−1

∆F

(r− rF )2 +O
(
α4
)]

+
i
3

[
PF

∆F

]2

(r− rF )− PF

∆F

+O
(

r−rF
r−r+

)
. (6.95i)
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This expression is significantly different from the wave function in (6.95a) due to
the suppressed current source. The wave solution is long wavelength with a damped
amplitude as opposed to the short wavelength undamped oscillations of the posi-
tive spin component wave function in (6.95a). The ergospheric geometry presents a
birefringent medium for high frequency outgoing fast waves. Note the similarity of
(6.95i) to the long wavelength solutions for the negative spin component that were
derived in (6.46a) and (6.47d). The low frequency solutions (6.46a) and (6.47d) van-
ish at the event horizon. The solutions in (6.95i) vanish at the fast point, since it is
the relevant singular point when (6.36b) is evaluated at high frequencies. The wave
function in (6.95i), inserted into (6.29) yields the following asymptotic form of the
negative spin component of the Maxwell field for outgoing “short wavelength” fast
modes near the inner fast point,

Φ̃2 ∼r→rF
α2 −α2

F
, ω−m

Ω
c

≈/ 0 . (6.95j)

Note that (6.95j) implies that one could combine the wave functions given by
(6.95a,i) with (4.10) and (5.17) to derive the asymptotic scaling, (6.88), of the per-
turbed toroidal magnetic field density for outgoing fast waves emitted from just
beyond the inner fast point.

6.4.9 Comparison to the Locally Covariant Calculation
of Chapter 2

In this subsection we compare and contrast the wave properties of the globally out-
going fast waves in the inner ergosphere derived in this chapter with the locally
covariant (special relativistic) wave properties found in Chap. 2. To begin with, we
compute the ratio of cross-field poloidal current to field aligned poloidal current in
the outgoing fast waves at small lapse function.

From Ampere’s law in Boyer–Lindquist coordinates, (3.64a), and the field
strength scalings in (6.90), we have

δ J̃r =
i

4π
k̃µδ F̃rµ ∼r→rF

α0

(
α2

0
+α2

F

)
. (6.96)

From the transformation to the rotated ZAMO basis, (3.3)-(3.8), as α → 0 and the
asymptotic expressions for the Boyer–Lindquist current densities, (6.93) and (6.96),
the asymptotic ratio of ZAMO current densities in a fast wave scales as

lim
α0→0

J2

J1 ∼ 1
α2

0
−α2

F

. (6.97a)
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As was discussed in relation to (5.45), the total field aligned current that appears in
the global current conservation law near the event horizon is

lim
α0→0

I1 ∼ α0 J1 . (6.97b)

Combining (6.97a) and (6.97b), we can find the asymptotic behavior of the ratio
of the total cross-field poloidal current to the total field aligned poloidal current in
outgoing fast waves radiated from near the event horizon

lim
α0→0

I2

I1 ∼ 1
α0

(
α2

0
−α2

F

) . (6.97c)

Thus, the poloidal current is predominantly in the cross-field direction in outgoing
fast waves that are emitted from small values of lapse function. This is consistent
with the results of the locally Lorentz covariant calculations given in (2.58) that
fast waves can only transport field aligned currents. Equation (6.97) includes the
effects of the curvature of the magnetic field lines deep in the ergosphere that can,
in principle, couple the properties of the oblique Alfvén and fast modes as occurs in
dipolar geometry [123]. The long calculation of this section shows that the mixing
of these characteristics is negligible deep in the ergosphere.

In order to understand the electrostatic polarization properties of fast waves emit-
ted from deep in the ergosphere in a perfect MHD plasma requires a global per-
spective if we are concerned with hybrid wave properties resulting from curvature
effects. Thus, we discuss these fast waves in the context of the paired wind system
of Fig. 6.1. First, consider the constraints on δBT of (6.48) and (6.88) carried by out-
going fast waves as α0 → 0. The frozen-in condition reduces the functional form of
the toroidal magnetic field near the event horizon as a consequence of the plasma
boundary conditions (3.94) and (3.95),

lim
α→0

BT =
ΩF −ΩH

c
BPgφφ . (6.98)

Since BT ≈ constant in a paired magnetically dominated perfect MHD wind sys-
tem and ΩF is a constant in a magnetic flux tube, (6.98) implies that the afore-
mentioned inability of outgoing fast modes radiated from deep in the ergosphere to
significantly change BT in the paired wind system is equivalent to the fast waves
inability to affect a significant change in the global value of ΩF . Thus, by (5.15b),
fast waves radiated outward from deep in the ergosphere can not alter the global
cross-field electrostatic potential in the magnetic flux tubes (i.e.,they can not alter
the Goldreich–Julian charge density in any significant way). Thus, to an excellent
approximation this agrees with the local covariant result of (2.61) that fast waves do
not transport electric charge.

Including curvature effects in both the magnetic field and spacetime near the
event horizon does not introduce hybrid wave characteristics that allow fast waves
from deep in the ergosphere to be a causative agent in determining the global wind
constants of a paired MHD wind system.
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6.4.10 Summary of Results

In this section, we have computed the properties of outgoing fast waves deep in the
ergosphere under a variety of physical circumstances. In Table 6.1, we summarize
these results and indicate where the reader can find the relevant expressions. In order
to compactify the notation in the table, we describe the parameter space in terms of
the ZAMO evaluated propagation vector. In particular,

αk0 = ω−m
Ω
c

, (6.99)

where αk0
+ means to evaluate near the event horizon at the point of wave emission.

Column (1) of Table 6.1 indicates the region of momentum space that is occupied by
the particular class of outgoing fast mode deep in the ergosphere in terms of the no-
tation of (6.99). The second column is the location of the point of emission in terms
of lapse function. The next two columns of the table show where in the text that the
wave function for the two spin components are found. The value in parenthesis is the
equation of relevance and the subsection in which the discussion appears is located
directly to the right (no parenthesis). Note that (6.29) was not included in order to
save space since it is the common general expression for all wave functions. The
last column indicates the equation that expresses the toroidal magnetic field scaling
transported by the outgoing wave. The last two regions of parameter space represent
short wavelength modes that are not near a singular point. Thus, the curvature of the
magnetic field and the background spacetime are not sensed by these modes and the
locally covariant calculations of Chap. 2 should be very accurate. This is reflected
in the entry of (2.61b) in the last column. In order to understand the reference to

Table 6.1 Summary of fast wave properties deep in the ergosphere

Wave parameters Location Φ̃0 Φ̃2 δBT

αk0
+ ≈ 0 , ω ∼ΩH 1 	 α2 � α2

F
(6.37a) 6.4.5 (6.46) 6.4.5 (6.48)

m = 0 , ω �ΩH 1 	 α2 � α2
F

(6.37a) 6.4.5 (6.47) 6.4.5 (6.48)

αk0
+ ≈ 0 , ω 	ΩH 1 	 α2 � α2

F
(6.95a) 6.4.5 (6.95i) 6.4.5 (6.88)

αk0
+ ≈/ 0 1 	 α2 � α2

F
(6.95a) 6.4.8 (6.95i) 6.4.8 (6.88)

αk0
+ ≈ 0 , ω ∼ΩH 1 	 α2 	 α2

F
(6.37a) 6.4.5 (6.46) 6.4.5 (6.48)

m = 0 , ω �ΩH 1 	 α2 	 α2
F

(6.37a) 6.4.5 (6.47) 6.4.5 (6.48)

αk0
+ ≈ 0 , ω 	ΩH 1 	 α2 	 α2

F
(6.37a) 6.4.3 (6.37b) 6.4.3 (2.61b)

αk0
+ ≈/ 0 1 	 α2 	 α2

F
(6.37a) 6.4.3 (6.37b) 6.4.3 (2.61b)
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(2.61b), one needs to recall the discussion of (6.98) concerning the fact that the
electrostatic potential and the toroidal magnetic field contain redundant information
in a perfect MHD magnetically dominated magnetosphere.

The most important aspect of Table 6.1 is that regardless of the momentum space
description of the outgoing fast wave, the transport of toroidal magnetic field (mag-
netic stresses) is negligible for MHD waves originating deep within the ergosphere.

Finally, it is useful to comment on the coupling of the ergospheric geometry
to the Maxwell spin components that is common to all of the wave solutions in
Table 6.1. There is a feedback term in (6.34a) that allows the outgoing fast wave
to modify the pure geometrically induced properties of the current source at small
lapse function (as discussed in the derivation of the no-hair theorem in Chap. 4).
This feedback current source manifests itself in the Ricatti equation, (6.36a), in the
term, ic+1J+1/∆ . In the language of the discussion of Sect. 6.4.8, this feedback ef-
fect allows J0 through its dependence on δ J̃ θ to be modified form its geometrically
induced asymptotic form as a consequence of the back reaction of the wave func-
tion. In particular, this feedback is most pronounced at small lapse function near the
fast point due to the singular nature of the current source as described in Sect. 6.4.8.
This allows the sources for Φ̃0 to be significant near the fast point. By contrast,
the feedback term is very small in (6.34b) and (6.36b). Thus, the electromagnetic
fields carried by fast waves do not have the ability to induce the currents that are
required to support the Φ̃2 component of the field near the fast point. This is in con-
trast to short wavelength outgoing pure electromagnetic waves which are capable of
transporting a significant field component, Φ̃2, from the inner ergosphere. Similarly,
we found that outgoing long wavelength solutions were incapable of supporting the
currents required to create a substantial Φ̃2 near the event horizon. There appears
to be an angular momentum coupling of the wave to the geometry that inhibits the
outward propagation of the negative spin current sources in plasma waves near the
event horizon.

In essence the calculation of toroidal magnetic fields carried by waves emitted
from the vicinity of the horizon mirrors the calculation of the no-hair theorem in
Chap. 4. The same redshifting of electromagnetic characteristics is fundamental to
both. In the fast wave calculation this information is captured in the restricted form
of the current sources near the event horizon in (6.35). The lack of a “bootstrap
effect” near the horizon was computed in Sect. 4.5. This is the underlying physics
behind the inability of a continuous plasma near the horizon to modify the electro-
dynamic infinity of the spacetime near the event horizon. It truly is an infinity.

6.5 Causality and the Blandford–Znajek Horizon Boundary
Condition

Early treatments of black hole magnetospheres [66, 117] determined the rate of
global energy extraction from a black hole by a paired wind system by invoking the
force-free condition at the event horizon, (6.98). The same boundary condition was



6.5 Causality and the Blandford–Znajek Horizon Boundary Condition 209

obtained in [111] using the frozen-in condition at the event horizon. The boundary
condition, (6.98), allowed them to determine ΩF and in the magnetically dominated
limit that they assume, this quantity also determines the energy and angular mo-
mentum fluxes (see 5.20 and 5.21), if one also assumes a minimum torque outgoing
wind (see Sect. 5.6). As was discussed in Sect. 5.6, such a magnetically dominated
wind system has a virtually constant field aligned poloidal current, I1, and toroidal
magnetic field density, BT , in each azimuthally symmetric magnetic flux tube.

The use of the force-free condition at the event horizon is the opposite of the
actual horizon boundary condition proved in Chap. 3: all plasma flows are inertially
dominated, in a global sense, near the event horizon (i.e., gravity overpowers all
other astrophysical forces near the event horizon). The use of the force-free bound-
ary condition on the magnetically dominated paired wind system allows the event
horizon to behave implicitly like a unipolar inductor since field aligned poloidal
currents appear to emanate from the event horizon and there is no significant source
of poloidal current anywhere within the wind zone. Similarly, the frozen-in condi-
tion that is implemented at the horizon in order to determine ΩF in [111] makes the
spacetime near the event horizon appear as the causative agent for the charge sep-
aration necessary to support the global potential (or equivalently, ΩF as discussed
in 5.15b), as well as the poloidal current, I1. This conflicts at the most fundamental
level with the demonstration in Sect. 6.3 that the spacetime near the event horizon is
an asymptotic infinity for MHD winds that passively accepts any externally imposed
value of ΩF and I1.

In an attempt to justify the causal nature of the horizon boundary condition
and the field aligned poloidal current system in these models [131] noted that for
ΩF ∼ΩH , the fast critical surface is very close to the event horizon. The claim was
that this surface can behave as the effective causal boundary surface for the wind
system. Plasma near the inner fast point therefore rotates with an angular veloc-
ity, dφ/dt ≈ ΩH , and it was conjectured that this plasma can radiate information
upstream through the fast mode that determines BT (or effectively, I1) and ΩF (or
equivalently, the charge separation). However, this argument ignores the properties
of the fast wave other than the wave speed. It was shown in (2.58) that the short
wavelength fast wave does not carry field aligned current or charge. In (2.146), it
wa shown that the fast step wave does not transport electric charge. Thus, the fast
mode seems incapable of transporting the appropriate information along charac-
teristics of the MHD wave equation from the putative “causal boundary” that can
establish the constants of motion in the paired wind system. However, it still needed
to be checked if very long wavelength, higher dimensional fast waves could possibly
transport charge and field aligned current changes. Thus, a very long calculation was
developed in this chapter. In Sect. 6.4, it was shown, in the curved spacetime of the
black hole magnetosphere, that fast waves radiated outward from near the putative
“causal boundary” carry very weak poloidal angular momentum fluxes ∼ α4

0
+α4

F
(see 6.91), and predominantly cross-field poloidal currents (see 6.97).

This discussion reaffirms that the spacetime near the event horizon is nothing
more than an asymptotic infinity to the paired wind system. The wind solution
of [66] is a valid solution to the time stationary, elliptic MHD wind equations.
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However, such solutions need not be physical and do not necessarily arise from
causal time dependent MHD evolution. The spacetime near the event horizon is
unstable to any perturbation of ΩF made upstream since it can not react back on
the flow (i.e., it does not have Alfvén radiation at its disposal). Thus, in general, a
paired wind system does not have the physical capabilities to evolve to the value of
ΩF given by [66]. In particular in an astrophysical environment, strong MHD waves
will be created by accreting gas and high temperature coronal gas. These waves can
in principle perturb the black hole magnetosphere. The black hole magnetosphere
will not be driven back to the [66] wind parameters by the putative event horizon
unipolar inductor. Instead, it simply adapts to the newly imposed parameters that
are injected by active the boundary surfaces. The spacetime near the event horizon
passively accepts these changes to the black hole magnetosphere. The 3-D numer-
ical simulations that are discussed in detail in Sect. 11.4 clearly show that this is
indeed the case. The 3-D simulations indicate that highly nonstationary flaring phe-
nomena near the boundary of the black hole magnetosphere seems to be the norm,
not the exception in an astrophysical environment. Thus, these causal comments are
particularly relevant and not just a pedantic argument.

It should be stressed that the acauslity of the method of solution in [66, 111]
does not invalidate the central concept of electrodynamic energy extraction if
0 < ΩF < ΩH . Although, in a highly turbulent environment, it is not clear that a
stationary value of ΩF has much physical significance. The most general electro-
dynamic energy extraction method is likely a mix of the large scale field concept
in [66] and the wave concept of super-radiant scattering.

As a point of clarification, if one assumes

• Magnetically dominated perfect MHD everywhere with a relativistic outflow
• or equivalently a force-free magnetosphere,
• and boundaries that are passive mathematical sources in Maxwell’s equations for

the electromagnetic field

then there is only one solution, the [66, 111] solution, by definition. However, this
is a highly restrictive class of solutions by astrophysical standards. Even if a per-
fect MHD, magnetically dominated magnetosphere were established near a black
hole, the physical nature of the boundaries that create the poloidal flux and carry the
poloidal current source would unlikely be trivial. It was assumed in [66,80,111] that
the electrodynamic properties of the horizon would induce the poloidal current flow
and the surface charge on the boundary surfaces. But, in reality, these boundary sur-
faces are likely to be turbulent dense accretion flows. The dynamics of these flows
are determined by inertial forces that drive large scale current systems. The numer-
ical simulations in Sect. 11.4 show that these inertially driven currents persist right
up to the boundary between the accreting gas and the black hole magnetosphere.
Hence, these time dependent boundary surfaces are the initial data for the time evo-
lution of the system of perfect MHD partial differential equations in the black hole
magnetosphere. In Sect. 11.4, the numerical simulations show that these perturba-
tions to the [66, 111] solution can range anywhere form same order of magnitude
changes to the wind solution, to completely erasing any imprint of the [66, 111]
wind parameters.
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In summary, there is no meaningful boundary condition that can be imposed near
the event horizon except that the black hole is a sink for mass flux. Therefore, there
is no unique electrodynamic solution. Besides the [111] solution, there are the solu-
tions found in the simulations of Chap. 11 that are driven by the lateral boundaries
of the event horizon magnetosphere. Even if the lateral boundaries are passive, there
are perfect MHD solutions in which the outgoing wind is subrelativistic, i.e., it is a
supercritical wind as discussed in Sect. 5.5 and Fig. 5.2 [136]. In general, one must
actually deal with the inertial physics of the bounding plasma and GHM in the black
hole ergosphere in order to understand the electrodynamic energy extracting mecha-
nism that can realize the Christodoulou/Ruffini energy extracting process described
in Sect. 1.4.



Chapter 7
Ergosphere Driven Winds

This is by far the shortest chapter in the book, yet it is the most important as it
synthesizes the fundamental physics of all ergospheric dynamos that create and sus-
tain a toroidal magnetic flux (and the currents that support it). The content is not
more than a typical section of the book, but is broken off into its own chapter for
emphasis.

In this chapter, we describe an internally self-consistent physical process that
allows magnetically dominated winds to be driven by the gravitational field of a
black hole. It will be demonstrated that it is the coupling of the gravitational field to
the plasma in the ergosphere through the dragging of inertial frames (see Sect. 3.5)
that is responsible for driving the global poloidal current system (i.e., the dynamo
for the toroidal magnetic field). Since there is no boundary condition in which to
sink the ergospheric physics (see Sect. 6.5), we need to understand the microscopic
forces in the ergosphere that can drive the macroscopic currents.

7.1 Analogy to the Physics of the Faraday Wheel

In Sect. 2.9.4, we learned that a unipolar inductor drives current because the rota-
tionally induced EMF is unbalanced by the electrostatic force in a Faraday wheel.
This rotational inertia is converted to Poynting flux through FµνJν forces. The key
piece of physics is to isolate the unbalanced source of EMF in the black hole mag-
netosphere. In analogy to the Faraday wheel, we find that a dynamo for the toroidal
magnetic flux results from a rotationally induced EMF that is created by the drag-
ging of inertial frames. This process converts the relativistic rotational inertia im-
parted to the plasma by the gravitational field into Poynting flux.
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7.2 Causal Determination of the Constants of Motion

Consider a paired wind system as depicted in cross section in Fig. 6.1. The constants
of motion δΦ and Φ (see Fig. 5.1) are considered to be made primarily by exter-
nal sources and Φ can be altered by azimuthal currents in the flux tubes through
the Grad–Shafranov equation (see Sect. 5.7). The mass flux constants in the out-
going and ingoing winds, k+ and k− , respectively, are created by the plasma injec-
tion mechanism. It is assumed that the plasma is not relativistically hot, so we set
S+ = S− = 0, without loss of physical content outside of the particle creation re-
gion. We assume that a tenuous pair plasma exists in the strong magnetic field of
a black hole magnetosphere. Since the plasma inertia is relatively small, the dissi-
pation associated with the pair injection mechanism is therefore negligible (a full
theoretical treatment can be found in Chap. 9). Thus, (ke)+ ≈ (ke)− , (k�)+ ≈ (k�)−
and (ΩF )+ ≈ (ΩF )− . Consequently, the paired wind solution in this limit requires
the designation of three constants of motion as given by the discussion of Sect. 5.2,
ke, k� and ΩF . From (5.20) and (5.21), the dynamo for BT determines ke and k�
for a given value of ΩF . The physics that determines BT and k� is a manifestation
of a torsional “tug of war” between ingoing ergospheric plasma and the outgoing
magnetically dominated wind. In Chap. 8, we will consider an example where Ω

F
is determined by the ergospheric dynamo. By contrast, in Chaps. 9 and 10 we will
look at models in which ΩF is determined by dynamics external to the dynamo and
the analogy to the Faraday wheel is somewhat weaker than for the models discussed
in Chap. 8.

In order to uncover the ergospheric physics of the dynamo and understand the
causal structure of the global “tug of war,” we keep an open mind and list all the po-
tential sources of dynamo-like dynamics. The dynamo might be the result of one of
the following agents:

1. Axisymmetric vacuum electromagnetic fields,
2. The gravitational field,
3. Light waves,
4. Perfect MHD waves,
5. MHD waves as modified by small dissipation,
6. Waves in a highly dissipative medium.

7.2.1 Axisymmetric Vacuum Electromagnetic Fields

We showed in Sect. 4.6.3 that axisymmetric vacuum electromagnetic fields do not
torque Kerr black holes (see 4.90b), nor do they extract energy. However, the drag-
ging of inertial frames can induce an electric field with a component parallel elec-
tric field that can potentially attract charges toward the black hole in a semivacuum
magnetosphere. The resulting poloidal current system superficially appears to be
sustainable and would create a BT by Ampere’s law. However, recall the discussion
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of Sect. 4.8 that demonstrated that such a magnetosphere is open circuited in the
low latitude magnetic flux tubes that carry any putative return current, since E×B
changes sign in these flux tubes and currents can only flow as a result of bulk motion
of charge in this scenario. This is the well known Goldreich–Julian conundrum of
charge-nstarved pulsar magnetospheres. The pulsar is still viable because the unipo-
lar induction of the neutron star can drive MHD currents that do not depend on the
vacuum field properties. By contrast, the semi-vacuum ergosphere has no unipo-
lar induction near the horizon, so the physics of current generation still requires an
explanation, if it exists.

7.2.2 The Gravitational Field

The problem with invoking the gravitational field to drive a global current system is
that gravity couples to mass-energy not electric charge. Thus, gravity cannot drive
currents directly nor establish the charge separation in the magnetosphere associ-
ated with the global potential and ΩF . Trivially, the gravitational field alters plasma
trajectories through the dependence of the momentum of the flow on the metric.
However, there needs to be an intermediate step that couples to the electric charge
and can also be communicated upstream to the plasma source and the current system
in the outgoing wind. It is the physics of this facet of the interaction that determines
the causal structure of the paired wind system.

The solution of [66] relies on the gravitational field to determine the wind con-
stants. As such, the strong inertial effects (“the intermediate step,” mentioned above)
are hidden within the boundary surfaces near the equatorial plane. This claim is jus-
tified by the 3-D simulations that are discussed in Sect. 11.4. In those simulations,
a black hole magnetosphere similar to the [66, 111] solution is set up by strong
inertially dominated transients (GHM transients) that create and maintain the cur-
rents that are the source for Φ and k�. If these strong inertial forces in the bounding
plasma mysteriously shutoff then indeed a [66, 111] type solution can be sustained
in a metastable equilibrium. This equilibrium is essentially maintained by the gravi-
tational field. However, more realistically, the inertial forces in the bounding plasma
do not die off mysteriously and persist as in the simulations of Sect. 11.4. The values
of ke and k� are constantly changing in response to inertial effects in the bounding
plasma.

7.2.3 Light Waves and Waves in a Highly Dissipative Medium

The results of Sect. 2.7 demonstrate that in a highly resistive (dissipative) medium
that the slow and Alfvén do not propagate and the fast mode becomes the sonic mode
[75]. There exist a second class of propagating plasma waves in a hot resistive that
are not manifested in cool plasmas. These electrostatic modes are the generalization
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of the simple MHD longitudinal Langmuir modes. As such they can couple to elec-
tric charge and are possibly integral to the causal structure of a dynamo. The myr-
iad of potential plasma modes extant at high temperature are a consequence of a
panoply of kinetic effects such as temperature differentials between the constituent
species and plasma inhomogeneities. As such they tend to propagate at the thermal
speed which is very similar to the sonic speed associated with the fast mode in this
limit. The most interesting example of these modes for the present treatment are
the electrostatic waves in a magnetic field (Bernstein modes) which we will need
to describe the microphysics of the resistive dissipation of the dynamo discussed
in Chap. 9. The existence of the magnetic field makes the analysis of the Bernstein
modes far more complicated than the treatment of Langmuir waves (for detailed
discussions of the variety of high temperature wave phenomena see [77] which is
devoted almost entirely to this subject). In summary, the only propagating modes
in a highly dissipative medium that can couple to electric charge are light waves, a
variety of longitudinal electrostatic modes and the fast mode that all propagate on
the order of the sonic speed.

Both electrostatic waves and light waves have a dispersion relation with a cutoff
frequency at the electron plasma frequency, ωpe [73,77]. For an astrophysical black
hole with a mass on the order of 109 M� one expects that the magnetospheric plasma
in the ergosphere to be characterized by 105 sec−1 < ωpe < 1012 sec−1. By contrast,
we also know from (5.18) and (5.44) that an energy extracting paired wind system
is characterized by ΩF < ΩH ∼ 10−4 sec−1. This is significant since the relevant
light waves and electrostatic waves that could possibly influence the determination
of global potential must have frequencies somewhere in the neighborhood of ΩF .
Therefore, the causally relevant waves are characterized by ω � ωpe. These waves
are deep in the reactive range of the dispersion relation and are highly attenuated.
Furthermore, the plasma inflow speed is most likely supersonic in the ergosphere,
rendering a highly dissipative plasma incapable of radiating fast waves upstream
to the plasma source and outgoing wind. We conclude that neither light waves nor
plasma waves in a highly dissipative medium can propagate a global value of the
electric potential or affect the transport angular momentum and energy fluxes from
the black hole magnetosphere.

7.2.4 Perfect MHD Waves and Mildly Dissipative MHD Waves

From the discussions of the previous subsections, we deduce that if there is any
dynamo for toroidal magnetic flux then it is causally determined by MHD waves
with at most mild dissipation. These waves establish ΩF , ∆V , BT and I1 in ergo-
sphere driven paired wind systems. For magnetically dominated winds we know that
Alfvén wave radiation is determinant for establishing the global charge separation
and field aligned poloidal current systems that constitute the paired winds (see 2.52,
2.56, 2.58 and 2.61 as well as Sect. 6.4). This is reminiscent of the Alfvén wave radi-
ation from the Faraday wheel at the end of a semi-infinite, plasma-filled waveguide
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of Sect. 2.9.4 that establishes ΩF , ∆V , BT and I1 in the waveguide. These MHD
waves constitute the missing intermediate step that was inferred in the discussion of
Sect. 7.2.2 concerning the role of the gravitational field in the dynamo dynamics.

7.3 The Causal Structure of the Dynamo

From the analysis of Sect. 7.2.4, we expect that the ergospheric dynamo occupies a
region of spacetime upstream of the fast critical surface of the ingoing wind. Fur-
thermore, the field aligned current system and Goldreich – Julian charge density
is radiated at or upstream of the Alfvén critical surface. Thus, the outer boundary
surface of the dynamo region resides upstream or coincident with the inner Alfvén
critical surface. This establishes a causal relationship through Alfvén waves be-
tween the dynamo and the plasma source and outgoing wind. By Ampere’s law,
within the dynamo region, strong cross-field poloidal currents must flow to support
the toroidal magnetic field upstream. These must be causally established within the
dynamo region by MHD waves. Note that this does not preclude a contribution from
standing fast waves and evanescent Alfvén modes in the spacetime between the fast
and Alfvén critical surfaces (see Chap. 9).

The microphysics of the interaction within the dynamo occurs through the fol-
lowing causal set of steps:

1. Gravity couples to mass-energy (not electric charge).
2. Plasma is dragged across the magnetic field lines by black hole gravity. This

breaks the perfect MHD condition since u⊥ = 0 by (5.2) in perfect MHD.
3. Each species of charge experiences an opposite qv×B Lorentz force.
4. This creates particle drifts between the species and therefore a current density J.
5. The final stage of the coupling of the black hole to the magnetosphere is through

J ×B forces on the plasma and the fields that J produces as a consequence of
Ampere’s law. This is essentially a plasma wave interaction.

In the following subsections we look at potential gravitational forces that can pro-
duce step “2” above, i.e., drag plasma across a strong magnetic field. Then we relate
the underlying force to the causal structure of MHD waves. This is the microscopic
force that produces an unbalanced EMF, as in the laboratory unipolar inductor, that
can drive a global current system from the ergosphere.

We note that the black hole gravitational field can be described by two types of
“potentials” [92]. In [80] these are designated as “lapse” and “shift.” In any decom-
position that one uses, one effect is radial gravity and the other is the dragging of
inertial frames. Frame dragging is the dominant physical effect just inside of the sta-
tionary limit (see 3.46). Radial gravity dominates the dynamics at α � 1 as given
by the horizon boundary condition (3.94) that equates to the inertial dominance of
the flow.
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7.3.1 Radial Gravity

Firstly, we look at the relevance that radial gravity has in the putative microphysics
of current generation in the ergosphere through its ability to drag plasma across
magnetic field lines, step “2” above. Radial gravity induces a vP, so plasma would
be dragged across the magnetic field lines in the poloidal direction. This can create
qvP ×BP Lorentz forces that can generate a Jφ . However, this current relates to the
poloidal magnetic flux in the Grad–Shafranov equation (see Sect. 5.7) and is not
directly related to the dynamo for BT .

To first order, vP × (BT êφ ) = 0 in an axisymmetric vacuum magnetosphere into
which the tenuous plasma has been injected (see 4.90b). However, consider a cir-
cumstance in which some other physical process has seeded the magnetosphere with
a small BT . It is of interest to investigate the possibility that radial gravity can create
a perturbation δBT by dragging plasma across the seed BT . If this δBT were to grow
unstably and can be radiated upstream into the outgoing wind then this would be a
possible ergospheric dynamo for BT .

Choose BP > 0 in the northern hemisphere, as usual, then by (5.20) and (5.21)
the angular momentum and energy extracting conditions require δBT < 0. Radial
gravity can pull plasma inward creating a vr across the seed BT . The qvrBT êr ×
êφ Lorentz force induced by this dynamic (step “3” above) creates a Jθ directed
poleward in step “4” above. By Ampere’s law, Jθ switches off δBT upstream in step
“5” above. Thus, the induced current damps the instability. We conclude that there is
no dynamical mechanism in which qvrBT êr × êφ forces can drive currents to create
a growing BT upstream in the outgoing wind.

Radial gravity cannot be the force creating an unbalanced EMF in the ergospheric
dynamo for BT . One should also note that by the time that the inflow is dominated
by the force of radial gravity, it is probably already propagating inward supermag-
netosonically and is therefore out of causal contact with the outgoing wind.

7.3.2 The Dragging of Inertial Frames

Frame dragging can pull plasma across the poloidal magnetic field in the +êφ di-
rection relative to black hole rotation. The azimuthal velocity of the plasma relative
to the magnetic field lines created by this component of the gravitational force pro-
duces a qvφBPêφ × ê1 Lorentz force in step “2” above. This in turn generates a
cross-field poloidal current, J⊥ = J2, directed equatorward. By Ampere’s law, if the
flow is submagnetosonic, this creates a BT < 0 upstream as required for outgoing en-
ergy and angular momentum fluxes from the ergosphere (see 5.20 and 5.21). This is
the same microphysics that occurs in the Faraday wheel, i.e., there is an unbalanced
vφ êφ ×BP EMF.

Current generation can occur in the outer ergosphere where frame dragging is
strong and the flow is yet to go supermagnetosonic. Note that the generation of
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J⊥ is crucial to the dynamics and there is no purely field aligned poloidal current
generation mechanism associated with the microphysics of the ergospheric plasma.

The fact that this behavior can exist in the outer ergosphere is significant. We
know that the constants of motion are propagated into the outgoing wind primarily
by Alfvén waves, since they can create charge separation and transport poloidal
field aligned currents. This is critical because Goldreich – Julian charge is advected
away with the outgoing wind and must be replenished by the dynamo. This is a
manifestation of the fact that the asymptotic outgoing wind zone is essentially an
Alfvén wave front (see Sect. 6.3). As we saw in (6.6), the Alfvén critical surface of
an ingoing magnetically dominated wind is determined by the dragging of inertial
frames that creates the inner speed of light surface. Thus, the Alfvén critical surface
is always within the ergosphere, even when 0 <ΩF �ΩH . We will find in Chaps. 8
and 9 that the field line azimuthal velocity condition at the inner Alfvén critical
surface, (βφ

F
)A �−1, is fundamental as it connects the outgoing Alfvén mode to the

negative energy states of plasma through (3.50).

7.4 The Torsional Tug of War

Consider a large scale magnetic flux tube that threads the ergosphere and also ex-
tends to large distances from the black hole. Assume that there is a tenuous plasma
frozen onto the magnetic field lines in gyro-orbits both in the ergosphere and far
from the hole as depicted in Fig. 7.1. Far from the hole, by (3.45) the plasma rotates
with an angular velocity

lim
r→∞

Ωp ≈ 0. (7.1)

Similarly, in the ergosphere by (3.44) and (3.46) the angular velocity of the plasma
is bounded from below:

Ωp >Ωmin > 0, (7.2a)
lim

r→r+
Ωmin =ΩH . (7.2b)

As discussed in the text below (5.15b), the value of ΩF is a constant in a perfect
MHD flux tube and as a consequence of (7.1) and (7.2), the plasma cannot corotate
globally with the magnetic flux tube no matter what value of ΩF is chosen.

The only global resolution is that there must exist a toroidal magnetic field, BT ,
so that the plasma can slide azimuthally with respect to the corotating frame of
the magnetic field and remain frozen-in globally. The existence of BT , as plasma
is introduced globally on vacuum axisymmetric poloidal field lines is a result of a
torsional tug of war between plasma at r → ∞ and plasma in the ergosphere. The
plasma at r → ∞ sends torsional Alfvén waves inward that communicate condition
(7.1), i.e., it tells plasma and the field near the black hole not to rotate so fast. Sim-
ilarly, plasma in the ergosphere sends torsional Alfvén upstream telling the plasma
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Fig. 7.1 The source of large scale torque in a magnetic flux tube that threads the ergosphere and
extends to large distance from the hole. Due to the dragging of inertial frames, plasma cannot
corotate global with the field lines and they are consequently twisted by a torsional tug of war
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and the field at r → ∞ to rotate in the positive sense as reflected in (7.2a). Plasma
“near” the event horizon plays no role in the torsional tug of war since it is out of
Alfvén wave communication with asymptotic infinity. The only component that can
yield in this scenario is the poloidal magnetic field which gets bent azimuthally.

Implicitly, this dynamic requires a region in the flux tube in which plasma inertia
actually accomplishes this bending of the magnetic field. At first glance this seems
paradoxical for a paired magnetically dominated system (i.e., a strong magnetic field
and a tenuous plasma). However, we know that one cannot impose the magnetically
dominated constraint globally on the ingoing wind because of the horizon boundary
condition of inertial dominance given by (3.94) and (3.95). So, it follows that if the
tenuous plasma is to attain a large inertia from relativistic effects (as required to bend
the magnetic field lines azimuthally) then this must occur in the ingoing wind. The
natural place to look is where the rotational effects of frame dragging can bend the
field lines, namely approximate corotation of the plasma with the magnetic field near
the inner light cylinder. Not only does this keep the putative dynamo plasma within
Alfvén wave communication with plasma at r → ∞ by (6.6), but it also prepares
plasma on negative energy trajectories through (3.50), a necessary occurrence in
any physical realization of the Christodoulou/Ruffini energy extraction mechanism
(see Sect. 1.4). The frame dragging force is very large near the inner light cylinder
if the plasma is close to corotating with the magnetic field. In order for the magnetic
field to keep the plasma in corotation near the inner light cylinder it must essentially
battle the entire rotational inertia of the black hole as evidenced by the divergently
large values of ω found in (3.50) under such a circumstance. Thus, the black hole
always wins the torsional tug of war in the ergosphere. The force grows rapidly as
the inner Alfvén critical surface is approached, eventually ripping plasma off the
field lines in the positive azimuthal direction. This physical interaction is consistent
with dynamo behavior near the inner light cylinder with the causal structure deduced
from general principles in Sect. 7.3.2.

The ergospheric dynamo represents a transition from a magnetically dominated
inflow to an inertial dominated inflow. The frame dragging effects of black hole
gravity in the ergosphere eventually overwhelm the electromagnetic forces. This
abrupt change cannot happen gracefully. One should note from the discussion of
Sect. 2.10 that cross-field poloidal current flow is greatly impeded by the anisotropic
electrical conductivity of the tenuous plasma-filled magnetosphere. Thus, the ergo-
spheric dynamo is comprised of highly dissipative cross-field currents(see 2.136).
In Chaps. 8 and 9, we will see that this Ohmic heating creates a relativistically hot
flow downstream of the dynamo. This torsional tug of war is a very intense interac-
tion between two powerful forces, perhaps the most extreme in the known Universe
(as indicated by the incredible radiative losses in radio loud AGN, this is quantified
in Chap. 10). The plasma is a mere pawn in this violent struggle as evidenced by
its exotic nature: negative energy, relativistically hot, and rotating backwards at the
speed of light.

An important aspect of the discussion of Fig. 7.1 is that a GHM driven jet does not
require ordered, time stationary poloidal magnetic fields. Any local poloidal field
structure that connects the inner ergosphere to a region of tenuous plasma more than
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1 M away should causally connect (via MHD plasma waves) two regions of plasma
with a large differential in angular velocity, dφ/dt. Thus, large magnetic stresses
will be transported between the regions via MHD waves: the GHM interaction. The
general implication is that any poloidal field structure, >1 M, that is strong enough
to impede the inflow of ergospheric plasma, allows the ergospheric plasma “enough
time” to twist up the poloidal field in this semi-suspended state, thereby driving an
outward Poynting flux (even in a transient state). In a general turbulent astrophysical
environment, ordered field structures are more likely the exception rather than the
rule. The numerical simulations in Chap. 11 show that the high efficiency of the
GHM dynamo in disordered, transient poloidal magnetic fields renders it a likely
mechanism for jet production in astrophysical environments.



Chapter 8
Ergospheric Disk Dynamos

Since there is no unipolar induction associated with the event horizon, in order to
elucidate the details of the ergospheric dynamo one can look at the GHM interac-
tion of flux tubes that thread the equatorial plane of the ergosphere and therefore
not the horizon. In this chapter we look at a highly idealized model in which a disk
of ergospheric plasma is the dynamo (see Fig. 8.1). This has two simplifying fea-
tures. Firstly, the equatorial disk acts as an MHD piston and thus it is essentially
a boundary surface for the paired MHD wind system. Secondly, there is a direct
analogy between the ergospheric disk and the Faraday wheel. The model has the
same causal structure that was outlined in Chap. 7. This example clearly illustrates
how the rotational energy of the hole powers the outgoing wind. The solution em-
phasizes the crucial role of the Alfvén wave radiation from the dynamo and strong
dissipative cross-field currents in the dynamo region. It must be stressed that this is
an over-idealize analytical model that is designed to show GHM in its purest and
most powerful form.

8.1 Fate of Accreted Magnetic Flux

Before we describe the global flow structure, we derive another horizon boundary
condition that is relevant to equatorial flows in the ergosphere. In essence it is a
restatement of the no hair theorem for charge neutral sources in the limit of a con-
tinuous inflow. Accreting charge neutral plasma cannot approach the event horizon
and stay frozen onto large scale poloidal magnetic flux. The black hole “wants” the
plasma and it “does not want” the magnetic field. The plasma must disconnect from
the large scale poloidal flux before reaching the horizon. We show how this occurs
through reconnection of the magnetic field lines at small lapse function. It should
be pointed out that this boundary condition does not hold if the accreting plasma
attains a charge. However, in a realistic resistive plasma it is likely that the recon-
nection will occur before the charge separation accumulates. The horizon boundary
condition posited is not completely general and it is an assumption of this chapter.
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Fig. 8.1 The northern hemisphere of the magnetosphere of the equatorial plane in the ergosphere.
A large poloidal magnetic flux, BP

M
, can in principle exist between the accretion disk and the event

horizon, since neither is a sink for magnetic flux. The accretion disk is a pathway for flux accreting
toward the hole and the event horizon cannot accept magnetic flux advected with charge neutral
plasma. Thus, an ergospheric disk can be highly magnetized with trapped flux [153]

We can understand this phenomenon by breaking up the accretion flow and its
electromagnetic sources into a series of axisymmetric current rings (see Fig. 8.2).
The azimuthal current rings are the discrete elements that approximate the continu-
ous current flow. The dynamics of a contracting current ring is well understood from
the calculations of Chap. 4. The most important aspect of that analysis is found in
Sect. 4.5.2. In that section, it was shown that the large scale fields from a charge
neutral source (such as the current ring which is explored in more detail in Sect. 4.9)
not only die off as the source nears the horizon, but die off over smaller and smaller
proper distances. This is the physics underlying the reconnection of the field.

In order to understand the global field topology, we describe the field of a current
ring as it contracts towards the horizon. We need a frame independent way of quan-
tifying “the size” of the current ring as it contracts towards the hole. For example,
the total azimuthal current depends on the frame of reference and scales with lapse
function, except in the proper frame. The most natural measure is the total number
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Fig. 8.2 The azimuthal current sheet in the disk supports a radial magnetic field above the disk.
There is an approximate balance from the Jφ êφ ×BP force that is associated with the current and
radial gravity. The plasma at the inner edge of the disk slowly advances toward the hole. The
current sheet is approximated by a series of current-carrying, concentric circular wires that are
centered about the rotation axis of the black hole [132]

of particles, N, in the loop which is frame independent. We describe this in terms of
a line density, ρ̃ ,

N = 2πρ̃√gφφ . (8.1)

The advantage of the line density description of N is that the azimuthal current takes
on the simple form for a charge neutral ring,

Iφ =
ρ̃
2
(
vφ+ − vφ−

)
, (8.2)

where vφ+ and vφ− are the three velocities of the two species of charge.
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The asymptotic form of Iφ is easily found from (8.2) and the horizon bound-
ary conditions. From the boundary condition (3.94c), the azimuthal current in the
ZAMO frame asymptotically scales as

Iφ ∼α→0 α . (8.3a)

In the stationary frames by (3.95b) we see that globally the current appears to be
turning off as α → 0,

Ĩφ ∼α→0 α
2 . (8.3b)

Note that by (6.38) and (8.3a), the time dilation seen in the ZAMO frame implies
that Iφ is approximately constant near the horizon in the proper frame of the infalling
ring as expected.

We are not just interested in the horizon boundary condition on an isolated cur-
rent ring, but a continuous equatorial flow. Since the poloidal magnetic field of the
ring dies off as the horizon is reached (see 4.77 and 4.78; note that 8.3b gives
the leading order behavior in 4.77), the current ring that was once connected to
the global flow eventually is causally disconnected. It is of physical interest to un-
derstand how this process is manifested on global scales.

First consider the quasi-equilibrium that is indicated in Fig. 8.2. Radial mag-
netic curvature stresses push outward and are in approximate balance with radial
gravity. The radial stress is a consequence of the curved poloidal magnetic field
near the equator from the component of Br that is created as radial gravity slowly
pulls plasma inward bending the frozen-in field in the process. This is represented
by a Jφ êφ × BP force directed outward. We know from Chap. 3 that this quasi-
equilibrium is impossible as α → 0. The magnetic flux accretion process depends
not only on Maxwell’s equations, but on the momentum equation of the current
rings as well. We show how the breakdown of the quasi-equilibrium as α → 0 is
manifested in the magnetic flux accretion process.

We explore an intermediate zone where the ring is at small lapse function, yet far
enough from the hole that the boundary conditions (8.3) have not been established.
This region is the transition from the equilibrium in Fig. 8.2 to the α → 0 boundary
condition.

In this region (3.94) and (3.95) have not been established and by definition of a
quasi-equilibrium |vr| � c in the ZAMO frame. In order to obtain an approximate
balance in the radial momentum equation, the azimuthal current cannot die off. If
the ZAMO azimuthal current does not die off, vφ ∼ α0 in this intermediate zone.
By (3.14) this implies a constraint:

ω− ΩH

c
m ∼ αm

√
gφφ . (8.4)

In the radial momentum equation we now have Pr ∼ α0 and u0 ∼ α0. Radial gravity
and the magnetic stresses scale from (3.65) as

(
u0)2Γ r

00 ∼ α−1 , a < M , (8.5a)(
Jφ êφ ×BP) · êr ∼ α0 , a < M . (8.5b)
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By (8.5), the
(
Jφ êφ ×BP) forces will eventually be overwhelmed by gravity and vφ

must decrease as α . The case a = M is also considered in [132].
This intermediate zone is represented by the innermost current loop in Fig. 8.2.

It is also indicated by the third to fifth current loops in Fig. 8.3, that is a higher
resolution depiction of the flow at a time later than that of Fig. 8.2. The innermost
current loop in Fig. 8.3 is in the asymptotic zone, vφ ∼α+1,u0 ∼α−1, and ur ∼α−1.
In this region, the forces in the poloidal momentum equation (8.5) scale differently,

(
u0)2Γ r

00 ∼ α−3 , (8.6a)(
Jφ êφ ×BP) · êr ∼ α0 . (8.6b)

Equation (8.6) implies that the electromagnetic forces are totally negligible com-
pared to radial gravity and the current ring is essentially in free fall. Thus, by (8.3)
Iφ is dying off very quickly. Note the X-point in Fig. 8.3 that is forming between the
innermost and second current loops. This is a consequence of (4.78) that shows that
the magnetic flux from the innermost loop seems to be dying off exponentially in
time as viewed in the frame of the second loop. Reconnection of the magnetic field
takes place at the X-point [133].

Current

Black Hole

Fig. 8.3 As the inner edge of the current sheet slowly advances toward the hole, the sources in
the innermost “circular wire” are redshifted as seen by observers who are farther out in the current
sheet. It appears that the contribution of this wire to the global poloidal magnetic field is diminish-
ing. The redshift effect causes the global field, including the contribution from this innermost wire,
to develop an X-point between the first and second current rings. Reconnection takes place at the
X-point [132]
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Current

Black Hole

Fig. 8.4 At a time that is later than that of Fig. 8.3, the field from the innermost wire has been dis-
connected from the large-scale magnetic field. The wire is now a set of O-points, where magnetic
flux can be destroyed. The magnetic field loops from this wire contract back into the wire as the
current ring is attracted toward the hole by gravity. It is as if the current in this innermost wire is
gradually being turned off as viewed globally [132]

At a slightly later time, the field from the innermost current ring has disconnected
from the large scale poloidal magnetic field as depicted in Fig. 8.4. The ring is now
in the asymptotic zone where BP dies off faster than α2 (see 4.77) and the field
topology becomes a collection of O-points where magnetic flux can be destroyed.
As the innermost current ring approaches the horizon, it eventually encounters new
large scale magnetic field lines. The plasma plows through these field lines (since
it is inertially dominant by 8.6), by pulling and stretching them toward the horizon
until the lines of force reconnect. Reconnection proceeds very quickly since BP from
the ring dies off ever more rapidly (since α is smaller, see 4.77), and the ring keeps
contracting toward the horizon. Notice the continuity of the process in Fig. 8.4 as an
X-point has developed between the second and third loops of the current sheet. The
continual reconnection process allows the hole to accrete plasma without acquiring
the poloidal magnetic flux.

The preceding analysis allows one to understand the time evolution of a magnetic
flux tube frozen into a magnetic plasma ring that accretes toward the hole. The
physics that is captured in Figs. 8.2–8.4 is illustrated for a single flux tube in Fig. 8.5.
Reconnection occurs between frames “c” and “d” of Fig. 8.5. The plasma is stripped
from the flux tube in frame “d” at which time the flux tube becomes buoyant (i.e.,
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Fig. 8.5 The accretion history of an axisymmetric magnetized plasma ring. A poloidal magnetic
field is supported by the azimuthal current in the ring. (a) The ring is nearing the hole with poloidal
component, uP, of the four velocity. The shaded region indicates where most of the accreting
plasma is located. The time sequence shows the reconnection process. (c) A circular ring (seen in
cross section) of X-type reconnection sites is about to form. (e) The large-scale flux is buoyant and
moves outward, completely decoupled from the plasma ring. The accreting plasma ring becomes
a circular set of O-points (seen in cross section) at which magnetic loops are destroyed before the
plasma reaches the horizon [153]
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there are no inertial forces to balance pressure). The buoyant flux tube is no longer
connected to the accretion flow and is driven outward by magnetic pressure in the
magnetosphere. The physics depicted in Figs. 8.2–8.5 describes the relevant horizon
boundary condition for the accretion of magnetic flux in the equatorial plane.

8.2 The Global Structure of the Flow

The horizon boundary condition on the accretion of magnetic flux naturally pro-
duces buoyant flux tube that will be temporally trapped by surface currents on the
edge of the highly conductive accretion disk. This is a complicated time-dependent
scenario, but it does suggest that the existence of large scale magnetic flux inside the
accretion disk and outside the horizon is a likely consequence of a magnetized ac-
cretion flow in the equatorial plane (see Sect. 11.5.7 for 3-D numerical results that
support this posited evolution of accreted flux). In this section, we are interested
only in the ergospheric dynamo behavior on these flux tubes. Thus, for simplicity
we choose as initial configuration a background field that is sourced by azimuthal
currents at the inner edge of the disk that are constant in time (see Fig. 8.1). For
conceptual clarity, we do not consider the disk to be accreting but only a source of
magnetic flux. We will discuss the effects of accretion and the relevance of this treat-
ment in Chap. 10. Since no accretion is not physically likely, the model discussed in
this section is more of a gedanken experiment.

We consider the source of plasma to be pair creation in a γ-ray field as discussed
in Sect. 6.1. We then expect a paired wind system as in Fig. 6.1 in both hemispheres.
Note that the existence of a γ-ray field is hard to reconcile with no accretion.

8.2.1 Poynting Flux and Disk Formation

From the discussion of Sect. 7.4, large scale magnetic flux tubes anchored in a disk
of ergospheric plasma must have an outgoing angular momentum flux due to the
torsional “tug of war.” Since the field lines are frozen into the conductive ergospheric
disk plasma, by (3.46), the field lines must rotate withΩF > 0. Therefore (5.20) and
(5.21) imply that there is an outgoing Poynting flux in the flux tube.

The field line rotation is imposed by the structure of the ergospheric disk that
must form in the equatorial plane, since there is no sink for the inflow of the created
pairs as occurs on flux tubes that thread the horizon. The flux tubes have a compo-
nent along the radial direction. Radial gravity, Γ r

00
(
u0
)2, initiates the ingoing wind

and pulls plasma toward the hole. In the Kerr geometry, there is also a component of
gravity orthogonal to this given by Γ θ 00

(
u0
)2 that pulls the flow toward the equa-

torial plane. Thus, there are two flows toward the equatorial plane along a flux tube,
one from each hemisphere. If the flux tube is symmetric about the equatorial plane,
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the magnetic field is vertical at the equator (orthogonal to the radial direction). Since
vertical gravity, Γ θ 00

(
u0
)2 vanishes at the equator by (3.29b), the antidirected in-

flows from the two hemispheres should establish a final stationary state of a disk
condensate. Initially, the plasma oscillates about the equator with a restoring force
that is proportional to the displacement from the equator, Rθ 0θ 0 δXθ (where Rθ 0θ0

is a component of the Riemann curvature tensor). The oscillation will eventually
damp via plasma instabilities, or perhaps through radiation damping.

Whatever the damping mechanism turns out to be, the final state should be a
highly conductive disk and atmosphere. The high conductivity of the disk implies
that Ωp ≈ ΩF at the base of the flux tube at the equator. Since Ωp > Ωmin > 0,
the field must rotate and a Poynting flux must propagate to asymptotic infinity. The
ergospheric disk condensate and its relation toΩF is analogous to the Faraday wheel
in a waveguide circuit that was discussed in Sect. 2.9.4.

8.2.2 The Slow Shock and Disk Atmosphere

The function of the atmosphere is to slow the incoming wind to the small poloidal
velocity of the accreting disk plasma, in spite of the gravitational acceleration toward
the disk. The disk acts like a piston that drives MHD waves upstream to signal the
incoming wind that it is approaching a boundary. As discussed in Chap. 2, the two
MHD modes that can decelerate the flow are the compressive fast and slow waves.
In order to determine which of these waves is dominant, recall the discussion of
2.65 that differentiates the two magneto-acoustic modes in terms of the change in
the transverse magnetic field across the wave. First note that BT < 0 in the northern
hemisphere and BT > 0 in the southern hemisphere; thus BT = 0 at the equator.
This is consistent with the interpretation that the ergospheric disk is the source of
Poynting flux in the paired wind system. Thus, BT is switched off in the atmosphere
and upper regions of the disk. The transverse magnetic field increases across a fast
compression wave and decreases across a slow compression wave. This implies that
the signal that brakes the incoming flow is predominantly a compressive slow wave.

The disk is distinguishable from the incoming wind and the atmosphere by its
larger rest frame particle number density. Therefore the annihilation rate in the disk
is larger as well. The steady state disk must balance the rate at which matter accretes
onto the surface with the rate that matter annihilates in the interior. If the disk is
to maintain its number density and height, the accreting pair plasma must slowly
drift toward the center to replenish the annihilating plasma. The poloidal velocity of
the disk plasma, β P

D
, has a nonvanishing vertical velocity until the flow reaches the

middle of the disk (see Fig. 8.6).
The disk plasma is highly conductive, so the frozen-in condition should hold in

the middle of the disk near the equator. The dynamics of the atmosphere and the up-
per regions of the disk are the following: A perfect MHD flow comes in on one side
(the ingoing wind) passes through a region where BT is switched off and a perfect
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Fig. 8.6 The global energetics of an ergospheric disk dynamo in an azimuthal flux tube. A thin
disk (shaded) is bounded from above by a slow switch-off shock front at which the energy flux,
ke, is transformed from mechanical form to Poynting flux radiated from the disk surface. Plasma is
dragged azimuthally across the poloidal magnetic field lines in the shock by the dragging of inertial
frames. This is the force driving the cross-field dynamo current in the shock front. The enhanced
current flow in the shock layer is indicated by the thick arrowed line. Plasma is resistively heated
by u ·F · J dissipation in the shock. A relativistically hot flow exits the shock and settles into the
disk on negative energy trajectories (plasma is rotating at nearly the negative speed of light in the
ZAMO frames). The strong “headlight effect” associated with this ultarelativistic motion beams
the synchrotron and annihilation radiation from the plasma onto negative energy trajectories. These
superradiant photons spin down the black hole. The influx of these negative energy photons can be
considered the outflow of energy flux, ke, that allows the black hole to power the dynamo [132]

MHD plasma flows out toward the center of the disk. In MHD, these flow conditions
are satisfied by a switch off slow shock. The slow waves responsible for the change
in BT must coalesce into a thin shock front as opposed to being distributed through-
out the disk because on the downstream side of a slow compressive wave the slow
wave speed is increased and all slow waves downstream will overtake the leading
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wave front (see [75,78]). Thus, in steady state the switch off region is always a thin
shock front in MHD. Furthermore, a slow shock is a switch off shock if, and only if,
the incoming flow reaches the shock front at the intermediate speed [134]. Thus, the
ergospheric disk can communicate Alfvén waves to the plasma source and outgoing
wind as required by the causality considerations of Chap. 7.

8.2.3 Some General Disk Structure

Since the plasma in the disk has an enhanced value of (nµc), the force of radial
gravity will be strong in the equatorial plane which causes the field lines to bend
(Fig. 8.6) so that the

(
JφBθ

)
êr force will approximate balance gravity. The poloidal

velocity of the disk plasma will in general have a component in the radial direction,
β P

D
· êr �= 0. However, the approximate force balance ensures that the plasma radial

infall time is much longer than the annihilation time scale. The plasma, for the most
part, annihilates in the disk and never enters the hole. The plasma exists long enough
in the disk so that the disk can actually be considered to be anchoring the magnetic
field like a neutron star in an MHD pulsar model.

There is a wide range of values of ΩF for the flux tubes that thread the equator in
the ergosphere. ΩF varies from approximately ΩH for the disk lapse functions, αD ,
that are mush less than unity to approximately zero near the stationary limit. Most of
the analysis in this chapter is confined to αD ∼ 0.1 where most of the proper surface
area of the disk resides. In this region ΩF ∼ΩH .

8.3 The Rankine–Hugoniot Relations

This section describes the flow at the downstream side of the shock at the top of
the ergospheric disk. The paired outgoing wind is the minimum torque solution of
Sect. 5.6. On the downstream side of the switch-off shock F12 = 0 and all of the
energy and angular momentum are in mechanical form. Thus, in the ZAMO frames
on the downstream side of the shock one has

µu0 =
e− Ω�

c
α

. (8.7)

Combining this with (5.22b) for a frozen-in plasma

βφ
F

(
e− Ω�

c

)
=

α�
√gφφ

. (8.8)

Note that (8.8) is the Alfvén point condition (5.24a).
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8.3.1 The Field Line Angular Velocity

Balancing the angular momentum flux of the minimum torque wind (5.50) with the
mechanical redshifted angular momentum flux downstream of the shock

mk− =
ΩFΦ
4πkF

= − c
4π

BT
∞ , (8.9)

where k− is the mass flux parameter for the ingoing wind and k+ is the same for the
outgoing wind (see Fig. 6.1). Integrating the mass conservation law (3.36b) across
the thin shock yields

(
nαuP)

u =
(
nαuP)

d , (8.10a)

(k−)u = (k−)d , (8.10b)

where the subscript “u” refers to upstream quantities and “d” refers to downstream
quantities. Equation (8.10b) follows from (8.10a) since BP is constant through the
thin shock layer.

Just downstream of the shock F12 = 0, so by the frozen-in condition (5.16b)

βφ = βφ
F

, (8.11)

the magnetic field is anchored into the disk plasma. Combining (8.8), (8.9) and
(8.11) yields the following useful relation in terms of downstream evaluated
quantities

1−
(
βφ

F

)2
=

4πk−

(
e−

ΩF �

c

)
βφ

F
kF

αΦΩF

√
gφφ (8.12)

A switch-off shock exists if and only if the incoming flow is at the Alfvén speed.
From (5.36) we can rewrite the Alfvén point condition as

1−
(
βφ

F

)2
=

(k−)2 (BP
)2

c2 (nu)
2 (UA)2α2

, (8.13)

where the pure Alfvén speed, UA , is evaluated upstream. Combining (8.13) and
(8.12) we find two new relationships

k−
α

=

⎡
⎢⎢⎣

4πkFβφF

(
e−

ΩF �

c

)

zΦΩH

⎤
⎥⎥⎦
[

c2n2
uU2

A

(BP)2

]
√

gφφ , (8.14)
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1−
(
βφ

F

)2
=

c2k2
F

(
βφ

F

)2

z2U2
A

k2
S
Ω 2

H
gφφ

⎛
⎜⎝e−

ΩF �

c
mec2

⎞
⎟⎠ , (8.15)

where the following definitions are made:

z ≡ ΩF

ΩH

, (8.16)

and the analog of kF at the shock front is

kS ≡
Φ(

gφφ
)

S
BP

S

, (8.17)

where the subscript “S” means to evaluate at the shock front.
The expression (8.15) can be used to estimate how close βφ

F
is to −1. The quan-

tity e−ΩF �/c for a plasma that has not been heated to ultrarelativistic temperatures,
as in the warm incoming wind, is on the order of mec2 from (5.20) and (5.21). For
a magnetically dominated flow UA 	 1. Furthermore, by (8.11) ΩF > Ωmin in the
disk, thus for αD ∼ 0.1,ΩF ∼ ΩH and z ∼ 1 in (8.16). For a cylindrical asymptotic
field geometry kF ∼ π . Applying all of these estimates to (8.15) yields the desired
result at the shock

1−
(
βφ

F

)2 � 1 . (8.18)

From (8.11), (3.50) and (8.18) we know that the ergosphere disk plasma has a large
relativistic inertia and is of negative energy as viewed from asymptotic infinity. Fur-
thermore, by (8.18) and (3.43) βφ

F
≈−1 yields the field line angular velocity on the

disk

ΩF (r) �Ωmin (r) . (8.19)

Note that the creation of the negative energy plasma in the ergospheric disk by the
slow switch-off shock is exactly the physical process necessary for extracting the
rotational energy of the hole as deduced in Sect. 1.4.

Combining (8.15) with the general expression for the intermediate speed of the
ingoing wind (5.36), at the shock front

U2
I
≈

c2k2
F

z2k2
S
Ω 2

H
gφφ

≈
c2k2

F

k2
S
(Ωmin)

2 gφφ
. (8.20)

8.3.2 The Specific Enthalpy of the Post Shock Gas

The second Rankine–Hugoniot relation is energy flux conservation along the flux
tube

(
T 0P
)

u =
(
T 0P
)

d , where T µν is the total stress-energy tensor obtained from
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combining the fluid and electromagnetic contributions of (3.21) and (3.23)

(
nµcuPu0)

d +
c

4π
(E×B)P

d =
(
nµcuPu0)

u +
c

4π
(E×B)P

u . (8.21a)

Using the frozen-in condition (5.13) and (8.10), (8.21a) can be expressed as

k−BP
(
µc2
)

d γd

α
− c

4π
βφ

F
BPF12

d =
k−BP

(
µc2
)

u γu

α
− c

4π
βφ

F
BPF12

u . (8.21b)

For a magnetically dominated flow into a switch-off shock, (8.21b) implies that the
Lorentz γ-factor downstream (with F12 ≡ F12

u ) is

γd ≈−
αβφ

F
F12

4πk− (µc)d
≈ αF12

4πk− (µc)d
(8.21c)

We can use (8.21c) to make an estimate of the thermal inertia
(
µc2
)

d . The key

point is that we can approximate γ−2
d

≈ 1−
(
βφ

F

)2. In order to demonstrate this, we
note that the outflow downstream of a slow shock must emerge subslowly, otherwise
slow waves could not propagate upstream, steepen and then coalesce to form the
shock front. This is shown mathematically in [75]. Thus we have

(
uP)2

d < U2
S

. (8.22a)

Dropping the subscript “d,” (8.22a) expands out as

(
β

P
)2
[

1−
(
βφ
)2 −

(
β

P
)2
]−1

< U2
S

. (8.22b)

Therefore, we have the inequality

(
β

P
)2 [

1−
(
βφ
)2
]−1

<
(
β

P
)2
[

1−
(
β

P
)2

−
(
βφ
)2
]−1

< U2
S

, (8.22c)

or (
β

P
)2

< U2
S

[
1−
(
βφ
)2
]

. (8.22d)

Equation (8.22d) yields the following inequality:

γ−2 >
[
1−U2

S

][
1−
(
βφ
)2
]

. (8.22e)

Since γ2 >
[
1−
(
βφ
)2
]−1

and U2
S
≤ 1

2 , (8.22e) implies the constraint:

[
1−
(
βφ
)2
]−1

< γ 2 < 2
[
1−
(
βφ
)2
]−1

. (8.22f)
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By (8.11) and (8.18),
[
1−
(
βφ
)2
]−1

=
[
1−
(
βφ

F

)2
]−1

	 1 just downstream of the
shock. Thus (8.22f) implies that setting

γ 2
d
≈
[
1−
(
βφ

F

)2
]−1

	 1 , (8.23)

is accurate to within a factor of 2, which is a good estimate by astrophysical
standards.

From the definition of the Alfvén speed in (5.36) and (8.23)

UI ≈ γ−1
d

UA c . (8.24)

Using (8.24) to rewrite the mass flux parameter at the Alfvén point in (8.21c), we can
estimate the thermal inertia to within a factor of 2 in terms of upstream parameters,

(
µc2)

d ≈ F21BP

4πnuUA

≈ mec2
(

F21

BP

)
UA . (8.25)

8.3.3 The Density of the Post Shock Gas

The conservation of poloidal momentum across the shock reduces to the relativistic
version of pressure balance. The Rankine–Hugoniot relation for poloidal momen-
tum conservation is found using (5.35), (3.21) and (3.23).

[(
uP)2 µn

]
d
+Pd +

(
F12
)2

d
8π

−

[
1−
(
βφ

F

)2
](

BP
)2

8π

≈
[(

uP)2 µn
]

u
+Pu +

(
F12
)2

u
8π

−

[
1−
(
βφ

F

)2
](

BP
)2

8π
, (8.26)

where P is the pressure (combined gas and radiation) evaluated in the rest frame of
the plasma. Since the incoming wind is magnetically dominated, the upstream gas
pressure and ram pressure can be neglected. For a switch-off shock equation (8.26)
then approximates to the following:

Pd ≈
(
F12
)2

8π
−

k−BP
(
uPµ
)

d
α

. (8.27a)

Using (8.21c) to express k− (µ)d , (8.27a) reduces to

Pd ≈
(
F12
)2

8π
−

BPβ P

d
F12

4π
. (8.27b)
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Since the flow downstream is subslow and by (8.23), γ 2
d
	 1, we can ignore the

second term in (8.27b) and to an excellent approximation the law of pressure balance
across the shock is (

F12
)2

8π
≈ Pd = nd kB T , (8.27c)

where kB is the Boltzman constant.
The enthalpy of a gas with adiabatic constant Γ satisfies

nd

(
µc2)

d = nd mec2 +
Γ

Γ −1
(
nd kB T

)
. (8.28a)

Since most of the disk resides at lapse functions αS < 1/2, (8.25) combined with the
value of BT of the minimum torque solution (5.50) and the defining relation (5.17)
implies that the downstream plasma is relativistically hot,

(
µc2)

d 	 mec2 . (8.28b)

Combining this fact with the pressure balance (8.27c) and (8.25) yields an approxi-
mate expression (to within a factor of 2) for the downstream number density,

nd ≈ nuuA

Γ
2(Γ −1)

(
F21

BP

)
. (8.28c)

8.3.4 The Downstream Poloidal Velocity

Using the value of nd from (8.28c) and the definition of k− in (5.12) yields

(
uP)

d =
2(Γ −1)

Γ

(
k−
α

) (
BP
)2

nuuA F21 . (8.29)

Eliminating γd and
(
µc2
)

d using (8.21c) and (8.25) we can get an approximate
expression for the poloidal three velocity downstream of the shock from (8.29),

(
β

P
)

d
≈ 8π

(
Γ −1
Γ

)(
k−
αc

)2(mec2BP

nuF12

)
, (8.30a)

≈ 8π
(
Γ −1
Γ

)
⎡
⎢⎢⎢⎢⎢⎣

(
numec2

)(U2
I

c2

)

F12BP

⎤
⎥⎥⎥⎥⎥⎦

. (8.30b)

Thus | β P

d
|� 1 as shown in (8.22).
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8.4 A Parametric Realization of Shock Parameters

Consider a black hole with a rest mass � 109 M� and a magnetic field strength in
the magnetosphere of the ergospheric disk, BP

M
∼ 104G as shown in Fig. 8.1. Then

by (8.19) and (3.44) we can take an average value of ΩF ∼ΩH /2. Using (5.20) and
(5.50), the Poynting flux driven by the ergospheric disk when a/M = 0.9 is∫

αSPdA ∼ 1046ergs/sec . (8.31)

It is instructive to analyze the structure of the disk not only theoretically, but also
numerically. Thus, as we derive theoretical expressions, we will also plug in param-
eters from this test model to quantify disk properties.

Consider a copious supply of disk and coronal γ-rays above 1 MeV, Lc � 1043

ergs/sec. Thus,
Lc

LEdd
∼ 10−4 , (8.32a)

and from (6.1), we expect
nu ∼ 107cm−3 . (8.32b)

From (5.23b), a value of BP ∼ 104G combined with (8.32b) yields

U2
A
∼ 106 , (8.32c)

and using (8.28c) this implies
nd ∼ 1010cm−3 . (8.32d)

8.5 The Dynamics and Structure of the Disk

In this section we examine the structure and dynamics of the downstream pair
plasma as it settles toward the equatorial plane. Since the pairs are prevented from
falling into the hole by magnetic curvature stresses (see Fig. 8.6), every particle that
enters the disk can be considered to be eventually annihilated to first approximation.
According to (8.25), the plasma is relativistically hot so that synchrotron emission
is an important radiative mechanism. Hence, the vertical structure of the disk is
determined by the relative rates of synchrotron cooling and pair annihilation.

The particle collision time, τc, in the rest frame of the plasma is

τc =
1

nσurel
, (8.33)

where σ is the collision cross section and urel is the average relative four-velocity
between the pairs, which by (8.25), is going to be relativistic. First note that

urel =
[(

u2
0
−1
)]1/2

rel
. (8.34a)
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The relative Lorentz γ-factor between the two species is, γrel ≡ u0
rel,

−γrel =
(
upos
)
µ (uelec)

µ . (8.34b)

We can express the four velocities of the two species, uµpos and uµelec, in terms of
the thermal Lorentz factor, γth, as

uµpos = γth (1,βp) , (8.34c)

uµelec = γth (1,βe) . (8.34d)

The three velocity β in the frame of the plasma is primarily due to random thermal
velocity although there is a non-random second order effect due to the magnetic
field (gyro-orbits).

Since we are interested in order of magnitude estimates, we take the average of
the inner product of the random velocities to vanish,

β e ·β p ≈ 0 , −upos ·uelec = γ2
th

(
1+βe ·βp

)
≈ γ2

th . (8.34e)

Because the motion is not entirely random due to the magnetic field as noted above,
a Maxwellian distribution may not be representative of plasma in the disk. To find
γ2

th, instead of using the Maxwellian distribution, one can use (8.28a) to get

γ th ≈
(
µc2

mec2

)
. (8.34f)

Thus, by (8.34a), (8.34b) and (8.34f) for γrel 	 1

urel ≈
(
µc2

mec2

)2

. (8.34g)

Using (8.34g) in the expression for τc in (8.33),

τc ≈
1

nσ

(
mec2

µc2

)2

. (8.35)

The cross section for high energy annihilation is given by [135] as

σ ≈
πr2

0

γrel
[ln(2γrel)−1] , (8.36)

where r0 is the classical electron radius. Combining (8.34) - (8.36) the pair annihi-
lation lifetime is

τa ≈
1

nπr2
0
χc

, (8.37a)

χ ≡ ln

[
2
(
µc2

mec2

)2
]
−1 . (8.37b)
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The synchrotron lifetime on the other hand in a frame where the electric field
vanishes, such as the plasma rest frame is given by [33] as

τS =
3×108

γ thβ 2
th sin2α B2

c

sec = 9 γ−1
th

(
108G2

FµνFµν

)
sec . (8.38)

During a synchrotron lifetime B2
c = 1/2FµνFµν can be approximated by using

F12 = 0 in (5.35). One can simplify the magnetic field strength in (8.38) using (8.20)
and (5.36) computed from (5.35) with F12 = 0,

B2
c ≈
(

kF

kS

)2( c2

Ω 2
F

gφφ

)
U2

A

(
BP)2 = 4π

(
kF

kS

)2

numec2
(

c2

Ω 2
F

gφφ

)
. (8.39a)

We can express the thermal Lorentz factor in (8.38) using upstream evaluated quan-
tities for the specific enthalpy in (8.34f). Expression (8.25) for the specific enthalpy
simplifies if we describe the toroidal magnetic field ahead of the shock using (5.50),
(8.17) and (5.17),

F21 ≈ α−1
[ΩF

√gφφ
c

][
kS

kF

]
BP . (8.39b)

Inserting (8.25), (8.39b) into (8.34f) to find the thermal Lorentz factor and using this
result with (8.39a) for the synchrotron lifetime in (8.38) we have

τS ≈
9
2
α
(

kS

kF

)[ΩF
√gφφ
c

]
UA

[
104G
(BP)

]2

. (8.40)

If one sets Γ = 4/3 in the relativistic plasma, (8.40) and (8.37) yield the ratio of
synchrotron to annihilation time scales in the relativistic plasma just downstream of
the slow shock,

τS

τa
≈

9ndπr2
0
χ

2
α
(

kS

kF

)[ΩF
√gφφ
c

]
UA

[
104G
(BP)

]2

. (8.41)

Eliminate the downstream parameters in (8.41) by writing nd in (8.28) with the aid
of (8.39b) for the toroidal field as

nd ≈ nuUA

[
Γ

2(Γ −1)

]
α−1

[ΩF
√gφφ
c

][
kS

kF

]
. (8.42)

Inserting (8.42) back into (8.41) yields the ratio of synchrotron to annihilation life-
times just downstream of the switch-off shock in terms of upstream parameters,

τS

τa
≈ 0.69

(
kS

kF

)2
[
Ω 2

F
gφφ

c2

]
χ . (8.43)
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Thus, τS ∼ τa and in the test model of Sect. 8.4, τS ∼ 103 s. It is interesting that
(8.43) depends on the parameters of the incoming flow only mildly through χ which
varies logarithmically.

As the plasma settles toward the center of the disk, it synchrotron cools. In the
plasma rest frame, most of the synchrotron photons are emitted near the peak fre-
quency, ν , [33]

ν =
(

3×106
)

Bc γ2
th Hz

≈
(

3×106
)[

1−
(
βφ

F

)2
]1/2

BP
(
µc2

mec2

)2

Hz , (8.44)

where we used (8.34f) and F12 = 0 in (5.35) to simplify Bc as before. In the ZAMO
frame, the frequencies of the synchrotron photons appear to be clustered about νZ ,
where using (8.23) this can be expressed from (8.44) as

νZ = γν ≈
(

3×106
)( µc2

mec2

)2

BP . (8.45a)

From (8.25) and (8.39b) we find

νZ ≈
(

3×106
)

U2
A
·BP
(

kS

kF

)2

α−2

[
Ω 2

F
gφφ

c2

]
. (8.45b)

For the test model of Sect. 8.4,(8.45b) corresponds to synchrotron radiation in the
soft X-ray band as viewed by ZAMOs (of course this frequency band designation
is observer dependent). From (8.43) we expect roughly equal energy fluxes in soft
X-rays (synchrotron) and γ-rays (annihilation) coming from the disk.

The height of the disk can be estimated by balancing the particle flux through
the shock front with the total annihilation rate in the disk. Since the disk has spatial
extent, this balance must be evaluated in a coordinate system, not just a frame. The
disk is very thin compared to the radius of curvature of spacetime, so we can choose
a coordinate system with basis vectors coincident with those of the ZAMOs at the
shock front and these will be approximately orthonormal over a set that includes
the height of the disk. Define the annihilation time scale in the ZAMO frame (and
therefore this coordinate system) and the ZAMO number density, as in (8.45b)

τZ = γτa , (8.46a)
nZ = γn . (8.46b)

Balancing the inflow rate through the surface area of the disk, A⊥ , with the annihi-
lation rate in a disk of height, h, we obtain from (3.36b),

nd |
(
uP)

d | A⊥ ≈ A⊥h
(
τ−1

Z

)
(nZ )d . (8.47a)
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Solving (8.47a) for h using (8.46) and (8.37),

h ≈ | k− | BP

αnd

τa =
| k− | BP

n2
d
πr2

0

χ−1 . (8.47b)

Applying (8.14), (8.17) and (8.42) we can get a rough estimate of the disk height in
terms of upstream parameters

h ≈
(
3×1024

)
α2

nuU2
A

(
kF

kS

)3
[

c
ΩF

√gφφ

]3

cm . (8.48)

For the test model of Sect. 8.4, from (8.48), the disk ranges in thickness from ≈1011

cm in the main body of the disk to �108 cm near the inner edge. This is a very thin
disk and is almost an electrodynamic current sheet, h/M ∼ 10−6 −10−3.

8.6 The Global Energetics of the Disk

The global energetics of the flow are manifested through the radiative coupling be-
tween the hole and the ergospheric disk. From (5.50) and (5.20), the Poynting flux
per unit magnetic flux that is generated by the disk is approximately

ke ≈
Ω 2

D
Φ

4πckF

, (8.49)

where ΩD is the angular velocity of the disk as viewed from asymptotic infinity. In
Sect. 8.3.1 and (8.19) we found that

ΩF ≈ΩD �Ωmin . (8.50)

At small lapse function, near the inner edge of the disk Ωmin � ΩH and near the
stationary limit Ωmin ≈ 0. Thus, by (8.49) and (8.50) the innermost flux tubes carry
the largest Poynting fluxes.

Although the gravitational field forces the disk plasma to rotate, which in turn
drives the wind, the conversion of black hole angular momentum to wind Poynting
flux needs to be elucidated. The connection is made by the fate of the disk photons.
The switch-off cross-field current in the slow shock torques the incoming plasma by
J⊥ê2 ×BP forces onto trajectories that appear to rotate backwards with respect to
the black hole as viewed by ZAMOs according to (8.11) and (8.18). Since this is a
strong current driven in the low conductivity direction across the magnetic field, it
is highly dissipative and heats the plasma according to (8.25) to relativistic temper-
atures (see Fig. 8.6). From (3.50) the shock has prepared the disk plasma to be on
negative energy trajectories as viewed form asymptotic infinity. It also has negative



244 8 Ergospheric Disk Dynamos

angular momentum about the z-axis and is extremely hot. This is the most extreme
of plasma states.

Since the plasma is moving relativistically in the −êφ direction, βφ ≈ −1, the
annihilation and synchrotron radiation will experience a strong relativistic “head-
light effect” that distorts the angular distribution of photons [87]. For this very
pronounced “headlight effect” virtually all of the radiated photons will be beamed
in the −êφ direction. In terms of the four momentum of the photon field Pµph, we
have in the ZAMO frame

Pφph ≈−P0
ph . (8.51)

The relation (8.51) is true for virtually all photons radiated by the ergospheric disk.
We can define the analog of the mechanical quantities m and ω , �ph and ωph from
(1.36),

�ph =
√

gφφ Pφ , (8.52a)

ωph = −P0
[
Ωmin

c
√

gφφ −
(

1+
Pφ

P0

)
Ω
c
√

gφφ

]
. (8.52b)

The grouping of terms in (8.52b) is an intentional effort to make the expression look
like (3.44). Inserting (8.51) into (8.52) and noting the positivity of photon energy in
the physical, timelike ZAMO frame, P0 > 0, we have

�ph < 0 , (8.53a)

ωph ≈−P0ΩF

c
√

gφφ < 0 , (8.53b)

ωph ≈
ΩF

c
�ph . (8.53c)

One concludes that the photons are radiated from the pair plasma condensate on
trajectories that are of negative energy as viewed from asymptotic infinity.

Negative energy trajectories never leave the ergosphere and will eventually be
captured by the hole. This can be seen from the effective gravity term in (3.41),
for βφ ≈ −1, the Coriolis forces always counteract the centrifugal force, leaving
the poloidal gravity extremely dominant. The negative energy photon orbits are pre-
cisely the superradiant modes of the electromagnetic wave equation [68]. The con-
dition for superradiance is 0 < ωph/�ph < ΩH which is satisfied by (8.53c) since
ΩF = Ωmin < ΩH . In summary, the disk radiates away the bulk of its inertia in an
intense two-component (γ-ray annihilation and soft X-ray synchrotron) superradi-
ant field toward the hole. The photon field spins down and extracts energy from
the black hole. Ultimately, it is the rotational energy of the black hole that powers
the magnetically dominated outgoing wind through this radiative coupling of the
ergospheric dynamo to the hole. The global energetics are indicated in Fig. 8.6.
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8.7 Near the Stationary Limit

So far we have concentrated on the main body of the ergospheric disk defined by
αS ∼ 0.1. As “r” increases, Ωmin decreases and αS becomes comparable to unity.
Near the stationary limitΩF �ΩH . Although these flux tubes must also be torqued,
since they thread the ergosphere, by (8.49) their Poynting flux is negligible.

In the outer regions of the ergosphere, the disk plasma requires a smaller Lorentz
factor in order to have enough inertia to anchor the field, this follows from (8.23) and
(8.15) evaluated with the small values of z ≡ ΩF /ΩH . Very close to the stationary
limit, Ωmin � ΩH and ΩF ceases to equal Ωmin, since from (8.15) βφ

F
≈/− 1 near

the stationary limit, but is given by

βφ
F
≈−

[ΩF
√gφφ
c

]
UA

(
kS

kF

)⎛⎜⎝e−
ΩF �

c
mec2

⎞
⎟⎠ ,

[ΩF
√gφφ
c

]
≪ 1 . (8.54)

In this regime, the Poynting flux is so weak that the rest-mass inertia of the light
pair plasma (with no Lorentz γ-factors) and its angular momentum help to power
the flow. By (3.49), when βφ ≈/−1 (as is the case near the stationary limit) the disk
particles are at most just barely on negative energy trajectories. The annihilation
photons have a very small spin-down effect (if any) on the hole.

For the ingoing wind near the stationary limit, the particle poloidal energy flux
can be larger than the Poynting flux. A switch-off shock is still needed to slow the
flow before it settles through the surface of the disk. Since the flow comes in almost
parallel to the poloidal field (F21 � BP), the shock is similar to a hydrodynamic
shock. The disk plasma is heated by the kinetic energy of the incoming wind, al-
though not much energy is extractable from the shock dissipation and the disk is
not relativistically hot. Therefore, synchrotron radiation from this region is small
compared with the annihilation radiation.

8.8 The Inner Edge of the Disk

The strong radial component of gravity at small lapse functions limits how close to
the event horizon that a disk can exist. Consider the plasma that flows down a flux
tube that crosses the equatorial plane at an extremely small lapse function, αe ≪ 1.
Since the flow in this flux tube experiences a radial acceleration due to gravity over
a long length of flux tube that is accentuated just above the equatorial plane for
α� 1, the flow will pass successively through the Alfvén and fast critical surfaces.
When this occurs, the plasma can no longer send MHD waves upstream to slow the
flow.

If the plasma goes supermagnetosonic before reaching the equator, no disk will
form. When the flow goes super fast, the plasma inertia dominates the magnetic field
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energy density. Hence, the magnetic pressure is insufficient to balance the ram pres-
sure imparted to the plasma by the radial attraction of gravity. Magnetic stresses
cannot force the flow to approach the equatorial plane vertically as in the ergo-
spheric disk. By contrast, these flux tubes resemble those that thread the horizon in
an electrodynamic sense.

As the plasma advances radially inward toward the hole, the field lines are
stretched and pulled toward the hole by plasma inertia. However, as discussed in
Sect. 8.1, the no hair theorem does not allow a charge neutral plasma flow to drag
poloidal magnetic flux into the hole. The field lines must reconnect, allowing the
plasma to enter the hole, without magnetic flux as discussed in Sect. 8.1.

8.9 Summary

The ergospheric disk described in this chapter is a useful tool for understanding
ergospheric dynamo behavior. The biggest simplification is that the slow shock iso-
lates the GHM interaction into a small region. Furthermore, we never needed to
understand the plasma physics of the shock in order to find the global interaction.
This simplicity is lost when one looks at the flux tubes that thread the event horizon.

The essence of the simplification is that the ergospheric disk stays in causal con-
tact with the plasma source and the outgoing wind. The nonzero values of α mean
that βφ

F
stays finite and the flow never reaches the inner light cylinder or crosses the

Alfvén critical surface. This allows Alfvén waves to be radiated upstream and, as
has been stressed throughout the book, and Chap. 7 in particular, this is a necessary
condition for the causative agent driving the outgoing wind. Consequently, the ergo-
spheric disk is a piston for both Alfvén and fast waves, hence it is a causal boundary
for MHD paired winds. This circumstance does not occur on flux tubes that thread
the event horizon as all winds go supermagnetosonic since uP ∼ α−1 is the horizon
boundary condition.

It was noted in Sect. 8.6 that it is the rotational energy of the black hole that
powers the wind. This is in contrast to magnetized accretion disks in which it is
the energy of the accreting plasma that powers the wind. The extreme dynamics
of the GHM interaction in the ergospheric disk was noted in Sect. 8.6. The exotic
state of the plasma necessary for the black hole to power the wind is a consequence
of a torsional tug of war between two very strong forces. The poloidal magnetic
field is virtually rigid relative to the tenuous pair plasma energy density, U2

A
	 1.

However, because of the dragging of the inertial frames associated with the large
rotational inertia of the black hole, the gravitational field has the capacity to make
plasma rotate relative to infinity no matter what external forces are imposed. The
only constraint on this condition is that the energy density of the imposed field
makes negligible corrections to the Kerr metric, i.e.,

(
BP
)2

8π

(
GM
c2

)3

� Mc2 . (8.55)
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This is not much of a constraint as an astrophysical field of 1011G around a 109 M�
is not very realistic. Therefore, in practice the black hole has essentially a near
infinite potential energy that can be imparted to the plasma as relativistic inertia.
This is manifested both by the frame dragging conditionΩmin > 0 in the ergosphere
and the horizon boundary condition (3.94). The result of the battle between the two
forces is a compromise. The field yields by the creation of toroidal flux, but only
enough to allow the plasma to rotate forward at its minimum angular velocity,Ωmin.
This pushes the plasma onto βφ ≈−1, ultrarelativistic, negative energy trajectories.
This cannot happen easily and occurs only at the expense of strong dissipation as a
poloidal current is driven in the low conductivity cross-field direction. The existence
of dissipation (entropy generation) is consistent with energy generation (Poynting
flux) by the disk from the second law of thermodynamics. Since the two opposing
forces are large, the plasma is relativistically hot. Consequently the pair plasma in
the ergospheric disk is likely to be in the most extreme state of any matter in the
Universe since the Big Bang.

We will show that these dynamics are universal in ergospheric dynamos for
toroidal magnetic fields after we study flux tubes that thread the event horizon in
Chap. 9. It is worth commenting as to why the ergospheric disk is potentially of great
relevance astrophysically. From (1.38), rapidly rotating black holes with a≈M have
the most extractable energy. Thus we are interested in these as power sources for ra-
dio loud AGN. However, by (4.90c) theses holes exclude magnetic flux from the
horizon (unless the hole is charged which is probably a second order effect in large
accretion systems such as a quasar, see Sect. 4.8). By contrast, the a � M condition
yields the largest ergospheres that can contain the largest amounts of poloidal mag-
netic flux. We will discuss in Chap. 10 the possibility that strong FR II radio sources
are associated with ergospheric dynamos on field lines that thread the equatorial
plane.

More details on the current structure of winds driven from the ergospheric disk
can be found in [132].



Chapter 9
Winds From Event Horizon Magnetospheres

In this chapter we consider paired wind solutions driven by ergospheric dynamos on
flux tubes that thread the event horizon. This is a more complicated flow problem
than the ergospheric disk magnetosphere, since the flux tubes are doubly open ended
(see Fig. 9.1). We showed in Chap. 6, in explicit detail, how there can be no mean-
ingful MHD boundary condition near the horizon. The event horizon is completely
describable in terms of an MHD asymptotic infinity. Thus, we no longer have the
ergospheric disk or any boundary conditions that fix the field line angular velocity.
There is no “solid” surface to anchor the magnetic flux tubes that thread the empty
vacuum spacetime of the horizon. These are free floating magnetic flux tubes and
the determination of the field line angular velocity is far from trivial. Thus, ΩF can
be estimated only by utilizing a deep understanding of the GHM causality of ergo-
spheric dynamos as described in Chap. 7 and elucidated by the example of Chap. 8.
The GHM solution is relevant in the limit that the plasma radiation time scale is
much shorter than the MHD wave crossing time over a black hole scale length, i.e.,
perfect MHD can be grossly violated for certain initial conditions. Alternatively, if
perfect MHD is an absolute restriction to the plasma state everywhere, ΩF , and k�
can be determined by the boundary conditions (current sources in the dense bound-
ing plasma) imposed by the accretion flow, combined with electrodynamic effects
as indicated by the 3-D perfect MHD simulations described in Sect. 11.4.

9.1 Time Dependent Dissipative Winds

The study of winds from event horizon magnetospheres requires more tools than the
perfect MHD, time stationary wind formalism of Chap. 5. We know from Chaps. 7
and 8 that the ergospheric dynamo involves strong cross-field currents driven by
frame dragging. Since plasma is not free to flow across magnetic field lines in mag-
netically dominated perfect MHD winds, such large currents driven through such a
low conductivity path require significant dissipation (see the detailed discussion in
Sect. 2.10). In anticipation of this eventuality, we drop the perfect MHD assumption
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Fig. 9.1 The cross-section
of an azimuthally symmetric
flux tube that threads the event
horizon of a rotating black
hole. Most of the plasma
injection occurs in a finite
length of flux tube known as
the particle creation zone. The
flow divides in this region
into an ingoing accretion flow
(the ingoing wind) and an
outgoing wind that is initiated
by centrifugal force as well as
being magnetically slung by
JP ×Bφ êφ forces
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in our wind formalism. Furthermore, we can no longer hide these dissipative ef-
fects in a thin shock layer (as in Chap. 8) since there is no piston for compressive
magneto-acoustic waves associated with the vacuum spacetime infinity of the event
horizon. In order to understand the physical determination of ΩF , we need to
describe some time dependent gedanken experiments that capture the essential
GHM causality. Thus, we also drop the time stationarity condition. We keep only
the axisymmetry assumption.
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We begin the modification to perfect MHD wind theory by defining a field line
angular velocity in the general case. To this end, we introduce a frame that “coro-
tates” with the magnetic field in analogy to (5.13c):

F20 ≡ βφF BP , (9.1)

where βφF is the “rotational velocity” of the field as viewed in the ZAMO frames.
The field line angular velocity is then defined implicitly through (5.14). The voltage
drop across the magnetic field lines as viewed in the stationary frames at asymptotic
infinity is still the same as (5.15a),

∆V = −
∫ ΩF

√gφφ
c

BPdX2 . (9.2)

Relation (9.2) is the reason that the definition of ΩF through (9.1) and (5.14) is still
useful in the general case. However, ΩF is no longer a constant in a flux tube as it is
in the time stationary theory of perfect MHD winds, i.e., there can be voltage drops
along the field lines.

The frozen-in condition (5.16b) is replaced by an expression for the poloidal
component of the electric field in the rest frame of the plasma that is perpendicular
to the ZAMO poloidal magnetic field, E2′ ,

E2′ = F20u0 +F2φuφ +F21u1 . (9.3)

The proper electric field, E2′ , is the force that drives the cross-field current in the
ergospheric dynamo. Thus, it is the fundamental quantity of interest. It represents
the unbalanced rotationally induced EMF in the ergosphere that is the microscopic
origin of dynamo behavior.

Similarly, the frozen-in condition can be rewritten as an expression for the
toroidal magnetic field in the ZAMO frames,

F12 =

[
βφ −βφ

F

]
BP

β P − cE2′

u1 . (9.4)

We must also suitably modify the definition of the MHD wave critical surfaces
discussed in Sect. 5.4. For a mildly dissipative plasma, ∗FµνFµν � FµνFµν , we can
use the MHD wave speeds in a resistive plasma found in Sect. 2.7. Using (2.68) for
the fast speed in a resistive plasma, we can rewrite it using (5.37) and (5.38) then
substitute (5.35) and (5.38) as we did in Sect. 5.4. Then dividing by

(
uP
)2 = U2

F
,

we have

u2
p = U2

F
=

FµνFµν

8πnµ
[

1+ ik2c2ω
4πσ

] +U2
S

⎧⎪⎪⎨
⎪⎪⎩

1+
nα2
[
1−
(
βφ

F

)2
]

k2µ
[

1+ ik2c2−ω2

4πσω

]
⎫⎪⎪⎬
⎪⎪⎭

, (9.5)

where σ is the scalar electrical conductivity (compare to 6.9).
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Similarly, using (2.71) for the intermediate speed in a resistive plasma and re-
grouping as in (5.34) and expanding using (5.35), the Alfvén critical surface is de-
fined by

u2
p = U2

I
=

[
1−
(
βφ

F

)2
](

BP
)2

4πnµ+
iωnµ
σ

−
i
[
k2c2 −ω2

][
1−βφβφ

F

](
BP
)2

4πnµ
[

4πσω+ ω2−k2c2

4πσ + ik2c2

] . (9.6)

As in Sect. 2.7, the lesson of this calculation is that as dissipation sets in, the
wave speeds decrease. The resistivity impedes the current flow that is needed to
support the electromagnetic fields in the waves. In terms of wind theory, it affects a
displacement of the critical surfaces away from asymptotic infinity. Thus the Alfvén
and fast surfaces are farther away from the event horizon than in perfect MHD.

In Sect. 2.7 we noted that for large σ (which is equivalent to the ∗FµνFµν �
FµνFµν condition used in this discussion) that the dispersive effects on the waves
were of second order. Thus, we equated the phase velocities to the group velocities
of the waves and that inaccuracy is carried over to the critical surface conditions
(9.5) and (9.6) above. Even so, these relations still show dispersive effects and,
unlike the nondispersive case, the location of the critical surface now depends on ω
and k.

9.2 The Causal Determination of ΩF

Finding the field line angular velocity is equivalent to determining the cross-field
electrostatic potential by (9.2) and by Gauss’s law also determines the Goldreich–
Julian charge density in the magnetosphere. Since the oblique Alfvén wave is the
mode associated with charge propagation in MHD wave theory (in perfect MHD,
Sect. 2.5; resistive plasmas, Sect. 2.7, as well as high frequency waves in a pair
plasma, Sect. 2.8), we expect that ΩF is determined primarily by torsional Alfvén
waves. In relativistic MHD wind theory, this is normally established by torsional
Alfvén waves emitted by a unipolar inductor (e.g., the neutron star in an MHD
pulsar, or the ergospheric disk of Chap. 6). The unipolar inductor is a tremendous
simplification because it is a causal MHD boundary that sets ΩF equal to angular
velocity of the unipolar inductor at the point that the field line enters the conductor,
i.e., it anchors the rotating the magnetic field. However, we showed in Chaps. 4 and
6 that there is no unipolar inductor on the free floating field lines that thread the
event horizon.

We will show that ΩF is determined to a large extent by the magnetic stresses
associated with the plasma injection mechanism on magnetic flux tubes that thread
the event horizon. In order to see this effect, consider the pair plasma injection
mechanism, γ+γ→ e+ +e−, discussed in Sect. 6.1. Imagine that plasma is injected
on perfectly straight field lines (i.e., BP 	 F21). The center of mass frame of the
pairs moves with an azimuthal velocity, βφcm, that is in general different than the
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azimuthal velocity of the field, βφ
F

, defined in (9.1). By (9.3), the injected pairs
experience a Lorentz force,

qE2′ =
q
c

(
u0)

cm

[
βφcm −βφ

F

]
BP . (9.7)

The straight field line approximation, F21 � BP, allows us to ignore qF21 (u1)cm
forces in (9.7). The Lorentz force in (9.7) accelerates electrons and positrons in
opposite directions. This charge separation forms a macroscopic cross-field current,
J2. The particle acceleration in the ê2 direction creates an equal and opposite cross-
field velocity, v2, for the species that has an important second order effect. The
(qv2/c)ê2 ×BP force is the same for both species of charge and the resulting torque
exists until the pairs rotate with the E×B drift of the plasma (i.e., this sets βφcm = βφ

F
in (9.7), which makes the Lorentz force vanish). Physically, this shows how torsional
stresses of the injected plasma can act to torque a flux tube.

The pair plasma is created with a distribution of azimuthal velocities. Clearly,
this distribution and its mean azimuthal velocity is a strong function of the distance
from the horizon to the location of the pair plasma injection. Thus, all of the created
plasma cannot corotate with the magnetic field. Each fluid element of pair plasma
injected into the flux tube creates a local J2ê2 ×BP force associated with the mi-
croscopic Lorentz force in (9.7). The J2ê2 ×BP forces are communicated up and
down the magnetic flux tube primarily by torsional Alfvén waves. The MHD waves
radiated from each element of freshly injected pair plasma are essentially a back
reaction on the field as the plasma tries to minimize the stress it experiences, i.e.,
charges flow to cancel the proper electric fields, such as the one in (9.7), in a con-
ductive medium. The torsional Alfvén wave communication up and down the flux
tube equates to a global version of this phenomenon. The injected plasma spins up
the free floating flux tubes in an effort to minimize the magnetic stresses in the sys-
tem within the constraints of the system (MHD causality). Thus, the plasma spins
up the magnetic flux tubes so it is as close as possible to corotation with the created
pairs in this “average sense.”

There also can be strong magnetic stresses experienced by plasma in the dynamo
region as we expect this plasma to have a relativistic inertia imparted to it by the
dragging of inertial frames as we found in Chap. 8. However, unlike the ergospheric
disk there is very little plasma in this region that is in Alfvén wave contact with
the upstream flow. There is no compressive MHD piston associated with the event
horizon, however black hole gravity can act as a rarefaction piston for the MHD
flow. The dynamo of the ergospheric disk is a slow compression wave. By contrast,
in the event horizon magnetosphere, the dynamo has the MHD structure of a fast
rarefaction wave (this is shown formally in Sect. 9.6). Thus, the flow passes out of
Alfvén wave communication with the plasma source just outside the light cylinder
as shown in (9.6). Large relativistic inertial effects initiate in the region of spacetime
near the light cylinder as well. Thus, there is very little ultrarelativistic plasma near
the light cylinder that is also in Alfvén wave contact with the plasma source. The
total magnetic stresses associated with this thin layer ahead of the light cylinder is
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only a second order correction to the total magnetic stresses associated with the long
lengths of flux tube in the plasma injection region. This is a fundamental distinction
from the ergospheric disk in which all of the plasma downstream of the dynamo
(the slow shock) is still within Alfvén wave contact with the plasma source and the
upstream paired wind system.

For the sake of illustration we very crudely estimate ΩF on flux tubes that thread
the event horizon of a supermassive black hole in a radio loud extragalactic radio
source. A more rigorous derivation of ΩF in a charge starved Kerr–Newman mag-
netosphere is given in Chap. 11. Consider the γ-ray field to be sourced by the corona
of an accretion disk about a rapidly rotating black hole, a � M. Most of the plasma
that is created on a flux tube is made at distances r > 5M from the hole if the main
source of coronal γ-ray activity is at r ∼ 10M from the hole (see Fig. 9.2). Plasma
created in the magnetic flux tube communicates torsional stresses to the field. If the
created plasma is outside the inner critical surfaces defined by (9.5) and (9.6) this
stress can be communicated to plasma upstream. The plasma exchanges torsional
Alfvén waves up and down the flux tube and this process determines how rapidly
the free floating flux tubes rotate.

In order to understand the causal structure of this process, consider that the coro-
nal γ-rays at r ∼ 10M are suddenly turned on and pair creation begins on the vacuum
Wald field of Sect. 4.6.2. The existence of the critical surfaces in the time dependent
scenario through (9.5) and (9.6) plays a large role in the causal structure. The freshly
created plasma sets up a local value of ΩF in the flux tubes through (9.2). This ini-
tial value can then be subsequently affected by torsional Alfvén waves coming from
upstream and downstream. Since the initial value of ΩF is approximately dφ/dt of
the pair producing corpuscular γ-rays, by frame dragging effects and angular mo-
mentum conservation, Alfvén waves arriving from downstream tend to spin up the
local initial value ofΩF and Alfvén waves arriving from upstream tend to spin down
the local field rotation rate. Most of the plasma at r > 5M creates initial values of
ΩF � ΩH in the magnetic flux tube and the plasma near the horizon has a local
initial value of ΩF ≈ΩH .

Plasma near the event horizon has little effect in this time dependent tug of war.
Firstly, we expect all outgoing plasma waves near the horizon to be highly red-
shifted as was found in Sect. 6.4. Globally, they would propagate outward slowly
and carry extremely small torsional magnetic stresses. Thus, in the initial stages
of the gedanken experiment, the plasma at r > 5M has internally exchanged many
Alfvén wave signals as the first Alfvén wave trains approach from the near horizon
plasma. The plasma at r > 5M starts to “agree” on a local value of ΩF and sends
this information inward in the form of Alfvén waves. Associated with this value
of ΩF there is a light cylinder and by (9.6), the Alfvén critical surface is nearby.
For ΩF � ΩH , we expect F21 � BP in the strong field limit and the fast criti-
cal surface defined by (9.5) is close to the light cylinder as well. The bulk of the
plasma upstream establishes MHD critical surfaces just inside the stationary limit,
causally decoupling the downstream plasma. Furthermore, note from the geometry
in Fig. 9.2, that we expect a very small percentage of the freshly created pair plasma
to be injected into the flux tubes within the ergosphere. At this stage, plasma waves
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Fig. 9.2 A possible plasma injection geometry on an azimuthally symmetric magnetic flux tube as
seen in cross section. Gamma rays are emitted from the hot corona of an accretion disk. The γ-ray
field pair creates on the magnetic field background via the scattering process γ + γ → e+ + e−.
Each fluid element of positronic plasma tries to communicate its local rotational velocity (that is
transferred from the local γ-ray field) to other plasma upstream and downstream in the flux tube
by means of torsional Alfvén waves (represented by the helices with arrows). The resulting field
line angular velocity,ΩF is an “average” value of these locally determined angular velocities in the
sense that final global value of ΩF adjusts to minimize the total magnetic stresses in the flux tube
between the inner and outer Alfvén points. For the geometry as drawn and a � M, ΩF ≈ 1/30ΩH
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emitted from near the horizon can no longer reach the plasma at r > 5M because it
is downstream of the MHD critical surfaces. In summary, we expect the bulk of the
plasma that resides upstream to establish critical surfaces before the near horizon
plasma has much to say in the matter.

Next we make a crude estimate of ΩF by assuming that the γ-rays are created
in the equatorial plane at r ∼ 10M and are emitted from a Keplerian disk with (see
Fig. 9.2)

(
dφ
dt

)
0
≈ΩKep ≈

c
M

[
M
r0

]3/2

, r0 ≈ 10M . (9.8)

The angular momentum of the γ-rays, �ph, is conserved as they propagate from the
corona. For r > 10M, we can approximate this conservation law as

�ph ≈
dφ
dt

(
gφφ
)
�0 = constant , �0 = constant . (9.9)

Combining (9.8) and (9.9), the angular velocity of a corpuscular γ-ray is

dφ
dt

≈ΩKep

(
gφφ
)

0

gφφ
≈ c

M

[
M
r0

]3/2 r2
0

gφφ
=

c
√

Mr0

gφφ
. (9.10)

If the average location of a created pair on the flux tube is at √gφφ = 15M, we could
expect from (9.10) when a � M,

ΩF ≈ dφ
dt

≈ 1
30
ΩH . (9.11)

Clearly, the result (9.11) is extremely model dependent. The only reason for gen-
erating this crude result is to suggest that ΩF � ΩH seems likely for free floating
flux tubes that thread the event horizon. From the geometry in Fig. 9.2, we expect
the field line angular velocity to vary from flux tube to flux tube. It seems that
0.01ΩH <ΩF < 0.1ΩH is a reasonable range of plausible field line angular veloci-
ties for flux tubes threading the horizon of a rapidly rotating black hole at the center
of an extragalactic radio source. We will use ΩF = (1/30)ΩH as a fiducial value in
the following.

9.3 The Ergospheric Dynamo in Free Floating Flux Tubes

In this section we describe the microphysics of the dynamo for toroidal magnetic
field on flux tubes that thread the event horizon. We have already seen a stark con-
trast to a unipolar inductor in that ΩF is not determined to first order by the dy-
namo region, but by plasma source. The plasma wave exchanges along the flux
tube upstream of the inner critical surfaces that determine ΩF (as discussed in the
last section and illustrated in Fig. 9.2), also simultaneously determines the dynamo
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physics. As the MHD wave front from the bulk of the particle injection region at
r > 5M propagates inward, it transports the global potential (equivalently ΩF ) and
the charge density (Goldreich–Julian charge density) necessary to support it. From
Chap. 2, we know that this is primarily an Alfvén wave. The dynamo results from the
reflection of the Alfvén wave off the rotating magnetosphere. The reflected Alfvén
wave must be radiated at or beyond the inner Alfvén surface. In this section we de-
scribe the reflection process, the amplification of the reflected wave and compare
and contrast the resulting dynamo with the ergospheric disk.

We explore the fundamental dynamo physics through a time dependent gedanken
experiment similar to that of the last section. The basic components are verified
through explicit model calculations in Sects. 9.4–9.7.

Recall the main results of Sect. 9.2 that motivate this discussion. The bulk of
the plasma inertia is created within a particle creation zone (see Fig. 9.1). If one
suddenly turns on the γ-ray source in the presence of Wald-like magnetic field lines,
the pair creation process establishes a value of ΩF on the field lines. The value of
ΩF is largely determined by plasma wave communications in the region where the
bulk of the injected plasma resides, the particle creation zone. Before the portion
of the flux tube above the light cylinder decouples from the near horizon plasma,
MHD waves from downstream slowly increase ΩF and change the position of the
light cylinder. However, this is a second order effect and at later times the inner
ergospheric plasma can no longer affect the determination of the global potential.
Thus, we consider the approximate dynamics that ignores the slow evolution of
the position of the light cylinder, before causal decoupling occurs, and consider a
column of tenuous plasma extending far from the hole that has been created on
Wald-like field lines at a time t = t0 in Fig. 9.3. A steady source of plasma is created
with dφ/dt � ΩH . We assume that all plasma is created with the same angular
velocity and the plasma injection occurs only above some inner boundary surface
that is located just below the flow division point associated with this value of ΩF

(i.e., gravity is larger than centrifugal forces). Then, the plasma is allowed to accrete
for times t > t0 .

We begin by determining the initial state of the plasma at t = t0 just before ac-
cretion begins. Since the inertia of the plasma is small, nµc2 �

(
BP
)2, one expects

initially that BT ≈ 0. Clearly, there will be some angular momentum transfer from
the plasma to the field when the created plasma becomes threaded by the magnetic
field. However, it is still an excellent approximation to (5.20) and (5.21) if we ex-
press the initial conditions at t = t0 in the particle creation zone as

k� ≈ km , (9.12a)
ke ≈ kω , (9.12b)

ke ≈ ΩF

c
k� , (9.12c)

ΩH gφφBP

c
	 |k�| . (9.12d)
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Fig. 9.3 The time evolution of the accretion of a tenuous plasma on strong magnetic field lines that
thread the horizon. The accretion process can be thought of as an incident Alfvén wave propagated
from the particle creation zone. The enhanced angular momentum flux, k�, in frame (c) compared to
frame (a) represents a reflected Alfvén wave. The reflected wave is enhanced and as such represents
superradiant scattering. The dynamo that supports the Poynting flux in the wave is a distributed
flow of cross-field poloidal current that is strongly concentrated near the inner light cylinder [138]

At times t > t0 , an Alfvén waves propagates inward transporting the global cross-
field associated with ΩF of the particle creation zone through (9.2). There are two
components of the electrodynamic currents that flow parallel to the poloidal field.
Firstly, there is the advection of the Goldreich–Julian charge associated with the
cross-field potential that we have already encountered in the plasma-filled waveg-
uide (Sect. 2.9.4) and ingoing MHD winds (Sect. 6.3). Secondly, this is not a pure
Alfvén wave, as a surface charge density, σ , exists at the flow front in order to shield
the plasma from the Wald vacuum electric field (see Sect. 4.6.2). Since dσ/dτ �= 0,
a field aligned current system must flow in the plasma to supply the surface charge.
However, this flow front will eventually propagate inside the critical surfaces so that
at late times it can have no effect on the global current system driven by a dynamo.
These electrodynamic field aligned currents are inherently different than the inertial
current that flows cross-field in the dynamo. In this analysis we ignore the contribu-
tions of these electrodynamic components of the current in Ampere’s law for BT , so
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as to separate out the dynamo behavior. This approximation is a good one as long
as the Goldreich–Julian charge flows inward subrelativistically.

Once the flow begins to propagate inward (frame (b) of Fig. 9.3), we no longer
have time stationarity, and ΩF is a constant in the poloidal coordinate along the
plasma-filled regions of a flux tube in this time dependent scenario, as long as perfect
MHD can be maintained. Since 0 <ΩF <ΩH , by (5.14) and (6.4), there will be an
inner light cylinder where βφ

F
= −1. This is where our perfect MHD assumption

will no longer be valid. However, by (9.2) the voltage drop across a thin azimuthally
symmetric flux tube is the same as (5.15b). This combined with perfect MHD allows
us to time evolve the flow with a constant value of ΩF = −2π∆V c/δΦ until just
before it reaches the light cylinder.

We see the dynamo physics immediately in a subtle effect at a time t = t1 just
after t0 , t1 � t0 , when the plasma starts to accrete from the particle creation zone
by the force of gravity (see Fig. 9.3b). The plasma is inertially so light that it will
flow parallel to the field with, dφ/dt ≡Ωp ≈ΩF . By contrast, in free fall an ingoing
geodesic (m = constant, ω = constant) has a value of Ωp that keeps increasing (see
Figs. 3.1 and 3.2). Consequently, in order to keep Ωp ≈ΩF during the inflow, there
must be an electromagnetic force

(
J2ê2 ×BP) that decreases the angular momen-

tum, m, of the plasma. This cross-field current is indicated in Fig. 9.3b. Ampere’s
law (3.61b) indicates that this cross-field current, J2, creates a BT upstream. Conse-
quently, the current that flows to keep plasma corotating with the field is torsional
Alfvén wave radiation (the reflected Alfvén wave we are looking for). It is an Alfvén
wave as opposed to a fast wave since field aligned currents must flow upstream in
order to support BT by Ampere’s law (3.62b). Note that the J2ê2 ×BP torque and the
associated radiated Alfvén wave are manifestations of the torsional tug of war dis-
cussed in Chap. 7. Furthermore, it is frame dragging effects that drive the cross-field
current.

Clearly, at a time t = t1 , |BT | � BP√gφφ , since the plasma has very little inertia,
and is therefore ineffective at bending the strong magnetic field. The radiated Alfvén
wave transports positive angular momentum

(
BT < 0

)
and energy up the flux tube

into the particle creation zone. Thus, the quantum numbers ke and k� of the plasma in
the particle creation zone at time t > t1 are different than they were at t = t0 because
of the new value of BT from current sources downstream. As the flow approaches
the inner light cylinder, more and more cross-field current, J2 is generated. Thus,
−BT keeps increasing in the particle creation zone as well.

Since the plasma source is steady, one expects that the plasma flow approaches
a steady state above the inner light cylinder. We can get an idea of what the steady
flow from the particle creation zone to the inner light cylinder is like by extending
the previous discussion. First note that just above the inner light cylinder, Ωp �
ΩF �Ωmin. The quantity Ωp must be larger than ΩF since gravity (the dragging of
inertial frames) is always trying to increase Ωp even though electromagnetic forces
keep it close toΩF (the torsional “tug of war”). At this point of the flow, the angular
momentum about the symmetry axis of the hole is much less than zero, and we have
the following plasma state:
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βφ � −1 , (9.13a)
u0 	 1 , (9.13b)
m � 0 , (9.13c)
mk 	 0 . (9.13d)

Similarly, since Ωp � ΩF and β P
< 0, BT < 0 from the frozen-in condition

(5.44). Combining this with (9.13) in the expression for the total angular momen-
tum, k� 	 0 near the inner light cylinder and in the steady state perfect MHD wind
above the inner light cylinder, k� is a constant in a flux tube,

lim
t→∞

(k�)
P.C.

= lim
t→∞

(k�)
L.C.

	 0 . (9.14)

where the subscript “P.C.” means to evaluate in the particle creation zone and “L.C.”
means to evaluate just ahead of the light cylinder.

Consider what (9.14) means physically in the context of the global flow between
the particle creation zone and the inner light cylinder. There is a cross-field current
flow, J2, associated with keeping the plasma in approximate corotation with the
magnetic field ahead of the inner light cylinder. The current density has a strongly
peaked maximum in the region near the light cylinder where the plasma starts to
gain inertia (see 9.13) through rotation induced Lorentz γ-factors (see Fig. 9.3c).
All of this cross-field poloidal current makes a BT upstream such that the steady
state quantum numbers have changed from (9.12),

k� ≈− c
4π
(
BT )

P.C.
	 |km|P.C. , (9.15a)

ke ≈−ΩF

4π
(
BT )

P.C.
	 |kω|P.C. . (9.15b)

The direction of J2 indicates through Ampere’s law (3.61b) that |BT | decreases
as one moves down the flux tube. Dynamically, this can be understood through the
frozen-in expression (5.44) for BT . As one moves down the flux tube Ωp −ΩF

increases only slightly (since the plasma has very little inertia) and is very small,
i.e., Ωp −ΩF �ΩF . On the other hand, |β P | increases drastically since the plasma
is accelerated toward the hole by the J2F21 force in (3.40) and the effective gravity
“g” of (3.41) is inward directed and strong (especially for βφ ≈ −1). This raises
the interesting question of how small |BT | becomes in the flux tube. This relates
back to causality; there is some causal physical process that creates BT in the paired
wind system. From our knowledge of plasma waves in Chap. 2, we know that the
Alfvén wave is primarily responsible for transporting torsional stresses throughout
the paired wind. Furthermore, causality dictates that all of the cross-field current
that supports BT in the paired wind system must be created before the wind passes
through the wind critical surfaces. As we discussed in Sect. 6.2 (and this also follows
from (9.5) and (9.6) in time dependent dissipative winds) forΩF �ΩH , the fast and
Alfvén critical surfaces of an ingoing magnetically dominated wind are located near
the inner light cylinder. Thus, causality considerations demand that BT = 0 at some
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point in the flow at or above the fast critical surface. We call this the anchor point in
the flux tube (the topic of Sect. 9.6.2) defined by

(
BT )

anc ≡ 0 . (9.16)

We can learn even more from this simple gedanken experiment. Note that the
magnetically dominated inflow attains significant relativistic inertia imparted by ap-
proximate corotation with the field only when it is extremely close to the light cylin-
der. The change in uφ corresponds to a proper acceleration aφ of the plasma near
the light cylinder. Note that pure corotation implies

lim
βφF →−1

aφ = −∞ , lim
βφF →−1

uφ = −∞ . (9.17)

Thus, the acceleration can grow very abruptly near the light cylinder and large radia-
tion losses are expected even though pure corotation will never occur due to plasma
inertial effects. Large radiation losses equate to a dissipative plasma and a break-
down of perfect MHD. This is expected from the second law of thermodynamics.
The strong cross-field currents (in the low conductivity direction of the plasma) re-
quires strong dissipation, as we found in the study of the slow shock bounding the
ergospheric disk in Chap. 8. Dissipation is a fundamental property of ergospheric
dynamos.

We explore the inertial effects that prevent corotation and the dissipative plasma
physics at the light cylinder and inward in the remainder of the chapter.

9.4 Perfect MHD Paired Outgoing Minimum Torque Winds:
ΩF �ΩH

In this section, we model a paired wind system on an azimuthally symmetric flux
tube that threads the event horizon as depicted in Fig. 9.1. The plasma injection
mechanism sets ΩF = (1/30)ΩH as in (9.11). We consider the outgoing wind to be
the minimum torque solution described in Sect. 5.6. The perfect MHD assumption is
imposed everywhere. The calculation shows that there is no paired ingoing perfect
MHD wind that can connect the particle creation zone to the asymptotic horizon
infinity for this value of ΩF . This ingoing perfect MHD solution is the analog of
the subcritical outgoing wind solution described in Sect. 5.5 and Fig. 5.2. In the
magnetically dominated winds of interest from (5.20) and (5.21) the energy and
angular momentum fluxes are virtually purely electromagnetic,

ke ≈−ΩF BT

4π
, (9.18a)

k� ≈−cBT

4π
. (9.18b)
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The ingoing wind is subcritical by (9.18) (i.e., k� and ke are less than a minimum
value required to connect the plasma source and outgoing wind to the horizon infin-
ity) since |BT | is “too small” in the wind.

In this section, we demonstrate and discuss whether the ingoing wind is ex-
tendible beyond the environs of the light cylinder. We make strong connections to
the gedanken experiment of Fig. 9.3. It is the dissipative physics near the light cylin-
der as perfect MHD breaks down that allows large cross-field poloidal currents to
flow in the ergospheric dynamo. The fact that |BT | is “too small” to allow smooth
passage through the environs of the inner light cylinder is of fundamental physical
significance. This circumstance was central to the discussion of the plasma accre-
tion on the initially purely poloidal field in Sect. 9.3. Thus, the gedanken experiment
was a preview of the relevant physics near the light cylinder.

9.4.1 Mathematical Formulation of Paired Wind as a Boundary
Value Problem

Consider the axisymmetric, time stationary, paired winds emanating from the parti-
cle creation zone as indicated in Fig. 6.1. Each wind can be represented mathemat-
ically as being integrated from the initial surfaces I+ and I− . Formally, as discussed
in Sect. 5.1, there are seven constants of motion for each wind. In this section, we
choose an arbitrary flux tube and ignore the Grad–Shafranov equation discussed in
Sect. 5.7. Thus, Φ and δΦ are arbitrary and equal in both the outgoing and ingoing
winds. This reduces the total number of constants from 14 to 10 that need to be
specified on the disjoint union, I− ∪ I+ .

Added simplification occurs due to the magnetically dominated condition. By
(9.7) there is dissipation, J2′ · E2′ , associated with the plasma injection mecha-
nism. Since J2 scales with the number of created particles and U2

A
	 1, J2′ ·E2′ �(

BP
)2

/r. Consequently, we can ignore the dissipation in the particle creation zone
and we implement the perfect MHD condition

(ΩF )
+
≈ (ΩF )− ≡ΩF =

ΩH

30
, (9.19)

where the subscripts “+” and “−” refer to the outgoing and ingoing winds, respec-
tively.

The winds to be considered are warm winds with a specific enthalpy µ ∼ me.
In the magnetically dominated perfect MHD winds to be considered, the entropy
generation has a negligible effect of the wind dynamics. Thus, we simply take

S+ ≈ S− . (9.20)

Recall from Sect. 6.1 that the winds that propagate away from I+ and I− (the bound-
ary of the particle creation zone) will initiate as perfect MHD flows since the
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number density will exceed the Goldreich–Julian charge density by many orders
of magnitude.

The laws of conservation of angular momentum and energy, (5.21) and (5.20), in
the particle creation zone are (see Fig. 6.1)

(k�)− = (k�)
+

+(k�)in j , (9.21a)
(ke)− = (ke)

+
+(ke)in j , (9.21b)

where (k�)in j and (ke)in j are the mechanical angular momentum and energy fluxes,
respectively, of the created pairs that are injected into the particle creation zone.
Note that the magnetically dominated condition requires (as shown in the time
evolved gedanken experiment of Sect. 9.3)

(k�)− ≈ (k�)
+

, |k�|− 	 |k�|in j , (9.22a)
(ke)− ≈ (ke)

+
, |ke| 	 |ke|in j . (9.22b)

Consequently, the paired wind system is determined by seven constants:
ΩF , (ke)in j , (ke)+ , (k�)in j , (k�)+ , k−, and k+. Five of the constants ΩF , k+, k−,
(ke)in j and (k�)in j are determined by the plasma injection mechanism.

9.4.2 The Outgoing Minimum Torque Wind

Choosing the outgoing minimum torque wind is consistent with the principal im-
plemented in Sect. 9.2 to determine ΩF , that the system will adjust to minimize
magnetic torsional stresses. The minimum stress is given by the minimum toroidal
magnetic field which typifies the minimum torque solution as discussed in Sect. 5.6.
From (5.50) and (9.18), the angular momentum and energy fluxes in a magnetic flux
tube that supports a minimum torque outgoing wind satisfy

(ke)+ ≈
Ω 2

F
Φ

4πckF

, (9.23a)

(k�)
+
≈ ΩFΦ

4πkF

. (9.23b)

From the discussion at the end of the last section, the plasma injection mechanism
determines five and the outgoing minimum torque wind determines two (through
9.23) of the seven constants of motion necessary to determine a paired, warm mag-
netically dominated wind system. Thus we can proceed to designate a complete set
of initial conditions on I− ∪ I+ , as the boundary conditions on the injection surface
of the ingoing wind, I− , are constrained by the wind constants of the outgoing min-
imum torque solution through (9.21).
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At this point we are ready to parameterize an actual paired wind model on a flux
tube that threads the event horizon. We assume a 2×109 M� central black hole and
a magnetic flux,

Φ = 1034 G− cm2 , (9.24)

which corresponds to a horizon magnetic field BP
H
≈ 104 G. We choose Lc ≈ 1044

ergs/sec in (6.1), thus

n ∼ 107 −108cm−3 . (9.25)

We assume an initial velocity on I+ of 0.1c. Then by (9.25) and (5.12),

k+ = 3×1013cm−2 sec−1 G−1 . (9.26)

In relativistic wind theory it is customary to define the magnetization parameter,
σ , the ratio of electromagnetic energy flux to inertial flux [113]. From (9.24)–(9.26),
we can express σ in parametric form,

σ ≈ 104

(
BP

H

)
4(k+

c

)
3

, (9.27)

where the poloidal magnetic field strength near the horizon,
(
BP

H

)
4, is measured in

units of 104 G and the mass flux parameter divided by the speed of light, (k+/c)3,
is measured in units of 103 cm−1 G−1.

It has been shown [113] that the magnetization parameter is useful for describing
the asymptotic wind

uP
∞ = σ1/3c ≈ 104/3c , (9.28a)

m∞ =
σ1/3

ΩF

mec3 ≈ 104/3 mec3

ΩF

, (9.28b)

where the subscript “∞” means to evaluate at asymptotic infinity, r → ∞. More de-
tails on the outgoing wind can be found in [136].

9.4.3 Initial Data for the Ingoing Wind

From (9.19)–(9.23) the initial data on I− for the ingoing wind on the azimuthally
symmetric flux tube is
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(k�)− = (k�)in j + k+m∞+
ΩFΦ
4πkF

, (9.29a)

(ke)− = (ke)in j + k+ω∞+
Ω 2

F
Φ

4πkF

, (9.29b)

ΩF =
ΩH

30
, (9.29c)

Φ = 1034G− cm2 , (9.29d)
δΦ = arbitrary and small, δΦ �Φ , (9.29e)
S− ≈ 0 . (9.29f)

The remaining parameter is the mass flux parameter, k− . Note that k− is independent
from k+ . Considering the geometry in Fig. 9.2, the pair producing γ-rays from the
disk have a net outward momentum, thus |k+ | > |k−|. The final physical results are
fairly insensitive to the value of k− as long as the magnetically dominated condition
holds. So we arbitrarily impose |k+ | = 2|k−|,

k− = −1.5×1013cm−2 sec−1 G−1 . (9.29g)

Relations (9.29) provide a complete set of initial data for the inward integration of
the wind. Note that the Grad–Shafranov equation can change Φ in a self consistent
solution since it describes how inertial stresses create Jφ and hence a BP. The initial
data, (9.29), assumes that the Grad–Shafranov equation has already been solved and
the resulting Φ value is given by (9.29d).

9.4.4 The Force Free Limit of the Ingoing Wind

In this section we illustrate the fundamental physics that does not allow the perfect
MHD assumption to be satisfied with the conservation laws of energy and angular
momentum in the ingoing wind deep in the ergosphere. Consider the force free limit
that plasma inertia is negligible in the MHD wind equations. We still assume that
there are enough charges to short out the proper electric fields in the ingoing wind
zone, so perfect MHD relations still apply. These assumptions reduce to the exact
equality (as opposed to “approximate equality” that can incorporate plasma inertia
and the cross-field inertial currents that can slightly modify BT for nonzero plasma
inertia),

BT = BT
∞ = constant . (9.30)

In analogy to the definition kF in (5.50b) we define a geometrical factor that is a
function along the flux tube, ki,

ki ≡ ki (r, θ) ≡ Φ
BPgφφ

. (9.31)
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For the ingoing wind, we expect ki/kF ∼ 1 for well behaved field topologies. At this
point, we introduce the quantity Z that describes the global cross-field electrostatic
potential. This parameter is surprisingly fundamental for characterizing the ingoing
wind,

Z ≡
ΩF

√gφφ
αc

[
ki

kF

]
. (9.32)

Using the definition of Z in the force free condition (9.30), with BT
∞ from (5.50b)

and the frozen-in condition (5.16b), we have in the force free limit,

βφ −βφ
F

β P = −Z . (9.33)

One can also rewrite this expression in terms of Boyer–Lindquist angular velocities
as in the frozen-in condition (5.44),

Ωp −ΩF = −β P
ΩF

(
ki

kF

)
. (9.34)

The ergospheric physics applies to (9.34) through the dragging of inertial frames
in (3.43),

Ωmin <Ωp =ΩF

[
1+
∣∣∣β P
∣∣∣
[

ki

kF

]]
. (9.35)

However, combining (3.44) and (9.29c) with Figs. 9.4 and 9.5 we have

lim
r→r+

Ωmin 	ΩF . (9.36)

Thus, there is a difficulty in satisfying (9.35) for physical trajectories. In order to
make this more precise we try to keep Ωp > Ωmin as close to the hole as possible,
so that both the frame dragging condition (3.43) and the force free condition (9.34)
are satisfied. The tendency is for the frozen-in value of Ωp to be less than Ωmin as
r → r+ . Thus, as the violation of (9.35) is approached, Ωp �Ωmin or βφ � −1, and
therefore one must have |β P | � 1, since β 2 < 1. Thus,

ΩF

[
1+
∣∣∣β P
∣∣∣
(

ki

kF

)]
�ΩH . (9.37)

Clearly, the inequalities (9.37) and (9.35) are incompatible with (3.44) deep in the
ergosphere. There is no value of plasma four velocity (equivalently the pair Ωp and
β P

) that can satisfy the BT = constant condition as r → r+ .
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Fig. 9.4 The minimum allowed angular velocity of a physical particle as viewed from asymptotic
infinity, Ωmin, as a function of lapse function, α . The value of Ωmin represents the effects of the
dragging of inertial frames associated with a rotating black hole. In the ergosphere, Ωmin > 0
and this is the region plotted above for a black hole rotating with a/M = 0.90 and along a radial
trajectory defined by θ = 45◦. This plot can be used to determine the lapse function at the inner
light cylinder for a given value of ΩF , since ΩF =Ωmin at the light cylinder

We elaborate on this ubiquitous condition for ingoing magnetically dominated
winds along flux tubes that thread the horizon. Equation (9.37), the equality on the
right hand side of (9.35), Figs. 9.4, and 9.5 imply that the value of Ωp needed to
maintain perfect MHD, (Ωp)MHD

, at small values of “r− r+” satisfies (Ωp)MHD
�

Ωmin, r−r+ � r+ . This constraint onΩp violates the definition ofΩmin imposed by
the dragging of inertial frames through (3.43). The angular velocity of the plasma
will eventually become too large as the flow proceeds inward (i.e., Ωp > (Ωp)MHD

)
to satisfy both the frozen-in condition (5.44) and the angular momentum conser-
vation condition (9.30). If ΩF were larger, or equivalently by (5.50b) if

∣∣BT
∣∣ were

larger, there would be no such contradiction above because ΩF ∼ Ωmin and (9.37)
would no longer be true. In terms of the wind formalism of Sect. 5.5, the wind does
not have a large enough angular momentum,

∣∣BT
∣∣, to reach the horizon as a perfect

MHD flow.
Surprisingly including finite plasma inertia makes the contradiction more ex-

treme as we will see in the remainder of Sect. 9.4. The cross-field inertial currents
described in the gedanken experiment of Sect. 9.3 and illustrated in Fig. 9.3 actually
switch off BT ahead of the flow, exacerbating the situation.
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Fig. 9.5 The minimum allowed angular velocity of a physical particle as viewed from asymptotic
infinity, Ωmin, as a function of proper distance L =

∫ √
grr dr, from the event horizon. Ωmin is

plotted in the ergosphere for a black hole rotating with a/M = 0.90 along a radial trajectory at
θ = 45◦. This plot can be used to determine the proper distance from the horizon to the inner light
cylinder

9.4.5 The Poloidal Equation of Motion of the Ingoing Wind

In order to explore the effects of plasma inertia on the conservation equations,
we compute a useful equation of motion for β P

. This relation can be used to in-
tegrate the perfect MHD solution in the physically interesting environs of the light
cylinder.
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From the energy and angular momentum conservation laws for the ingoing wind,
(5.20) and (5.21), the initial data on I− , (9.29) and the frozen-in relation (5.16b), we
have an expression for the ZAMO four velocity defined by the plasma source and
outgoing wind,

k−u0 =
βφ

F
Φ

µ√gφφ

[
ΩF

4πkF c
+

(
βφ −βφ

F

)
α

4π√gφφ kiβ P

]

+
k+

[
ω∞− Ωc m∞

]

µαc
+

(ke)inj −
Ω
c (k�)inj

µαc
, (9.38a)

k−uφ =
Φ

µ√gφφ

[
ΩF

4πkF c
+

(
βφ −βφ

F

)
α

4π√gφφ kiβP

]
+

k+m∞
µc√gφφ

+
(k�)inj

µc√gφφ
.

(9.38b)

Note that the force free condition, BT = constant, of (9.30) is equivalent to the
vanishing of the quantity inside the bracket in the first term on the right hand side of
(9.38ab).

Combining (9.38a) and (9.38b) we get the desired expression in terms of the
parameter defined in (9.32),

β
P

=
(
βφ −βφ

F

)
×

⎧⎪⎪⎨
⎪⎪⎩

−Z +
4π

α2βφF BPc

⎡
⎢⎢⎣k+

(
ω∞−

Ωm∞
c

)

+
[
(ke)inj −

Ω
c

(k�)inj

]
−

k−

[
e−

ΩF �

c

]
(

1−βφβφF
)
⎤
⎥⎥⎦

⎫⎪⎪⎬
⎪⎪⎭

−1

. (9.39)

For the values of ω∞ and m∞ from the minimum torque solution found in (9.28), we
have from the definition, (9.32), from the inner light cylinder outward,

|Z| 	
∣∣∣∣∣

4π
α2βφF BPc

{
−k+

(
ω∞−

(
Ω
c

)
m∞

)}∣∣∣∣∣ . (9.40a)

From the magnetically dominated condition we have,

|Z| 	
∣∣∣∣∣

4π
α2βφF BPc

[
(ke)inj −

Ω
c

(k�)inj

]∣∣∣∣∣ , (9.40b)

and

|Z| 	
∣∣∣∣∣

4πk−

α2βφF BPc

[
e− ΩF �

c

]∣∣∣∣∣ . (9.40c)
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From (9.40) and (9.39) as long as 1 − βφβφ
F

≈/ 0, we recover the force free
condition (9.33),

β
P ≈

(
βφ −βφ

F

)
Z

, 1−βφβφ
F

≈/ 0 . (9.41)

We can use (9.41) to integrate the poloidal trajectory as long as the condition,
1−βφβφ

F
≈/ 0, is satisfied.

9.4.6 Numerically Quantifying the Wind Near the Inner Light
Cylinder

The most important quantity for integrating the trajectory given by (9.39) near the
inner light cylinder is “Z.” In order to determine Z we need to accurately compute
the metric coefficients. We take a/M = 0.9 for the 2× 109 M� black hole and its
metric is given by (1.24). Take a characteristic magnetic flux tube to be located at a
Boyer–Lindquist coordinate θ = 45◦ at its inner light cylinder. Then by (9.32) and
(9.29),

Z = 4.63×10−2
[

ki

kF

]
, θ = 45◦ . (9.42a)

Consider a second flux tube with θ = 30◦ at its light cylinder, then

Z = 4.15×10−2
[

ki

kF

]
, θ = 30◦ . (9.42b)

The quantities (9.42a) and (9.42b) are very similar. This suggests that typical Z
values at the light cylinder for the initial data (9.29) are given by a flux tube at
θ = 45◦.

We do not know Z because the Grad–Shafranov equation has not been solved
to determine ki and kF . We can get an idea of what ki is from the two following
examples. From the axisymmetric divergence equation (3.55b) we know that BP →
Br near the horizon. We can compute the flux through the horizon for two interesting
configurations and then compute ki with (9.31). The total flux of course vanishes,
but we can compute the flux through a hemisphere or a portion of a hemisphere.
Since BP → Br, it is suggestive to look at a split monopole magnetic field (i.e., Br is
independent of θ and φ ) in the ZAMO frame,

ΦB =
∫

BPdXθ ∧dXφ = 2π
∫

BP√gφφ
√

gθθ dθ . (9.43a)

One might argue that you cannot compute flux at the horizon in the ZAMO frames
since they are pathological at the horizon. However, F̃θφ = √gφφ

√
gθθ Fθφ ≡
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√gφφ
√

gθθ BP by (3.4) and (3.7), so (9.43a) can be written equivalently as in (4.73)
in the well behaved Boyer–Lindquist coordinates,

ΦB =
∫

F̃θφ dθ dφ . (9.43b)

Thus, (9.43a) is well-defined and we insert the expression into (9.31) with BP a
constant to get

ki
(
r+ , θ0

)
=

2π
∫ θ0

0
√gφφ

√
gθθ dθ

gφφ
(
r+ , θ0

)

= 2π

[
r2
+ +a2 cos2 θ0(

r2
+ +a2

)
(1+ cosθ)

]
. (9.43c)

For a rapidly rotating hole r2
+ � a2 and (9.43c) implies for a split monopole just

outside the horizon,

ki (r, θ) ≈ 1+ cos2 θ
(1+ cosθ)

π . (9.43d)

The function ki (r, θ) has a minimum at θ = 65◦ and maxima at θ = 0 and θ = π/2.

0.84π < ki (r, θ) < π ,
∂
∂θ

BP = 0 . (9.43e)

Next consider the Wald magnetic field of Sect. 9.6.2. From (4.84a) at the horizon

Br (r = r+

)
=

B0

(
r4
+ −a4

)
[
r2
+ +a2 cos2 θ

]2 cosθ . (9.44a)

The magnetic flux in a hemispherical cap above latitude θ near the event horizon is

Φ (θ) =
πB0

(
r4
+ −a4

)
r2
+ +a2 cos2 θ

sin2 θ . (9.44b)

For r2
+ � a2, from (9.44b) and (9.31)

ki
(
r+ , θ

)
≈ π

2

(
1+ cos2 θ

)2

cosθ
. (9.44c)

By (9.44b), 90% of the flux is concentrated between 0 < θ < 70◦ in each hemi-
sphere. In this range of latitude

1.5π < ki
(
r+ , θ

)
< 2π , 0 < θ < 70◦ . (9.44d)
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Note that ki = 1.59π at the horizon in the Wald field at θ = 45◦ and ki = 0.88π in
the split monopole under similar conditions.

Asymptotically, we expect a cylindrical wind with kF ≈ π based on the desired
high collimation that is observed. Thus (9.44d) and (9.43e) combined with (9.42a)
and (9.42b) suggest

0.01 < Z2 < 0.001 , r = rL.C. (9.45)

We use these values of Z to numerically order the parameters in (9.39). From
the outgoing minimum torque wind described in Sect. 9.4.2 defined by σ = 104, we
have at the light cylinder,∣∣∣∣∣

4π
α2βφF BPc

[
−k+

(
ω∞−

Ωm∞
c

)]∣∣∣∣∣= 4.98×10−3 , (9.46a)

∣∣∣∣∣
4π

α2βφF BPc
k−

[
e− ΩF �

c

]∣∣∣∣∣= 5.48×10−6 . (9.46b)

Thus, (9.45) and (9.46ab) yield the following ordering of parameters near the light
cylinder at θ = 45◦,

1 >> |Z| >>

∣∣∣∣∣
4π

α2βφF BPc

[
k+

(
ω∞−

Ωm∞
c

)]∣∣∣∣∣>>

∣∣∣∣∣
4πk−

α2βφF BPc

(
e− ΩF �

c

)∣∣∣∣∣ .

(9.47)

Equations (9.46a) and (9.46b) demonstrate that the poloidal equation of motion
(9.39) reduces to the force free relation (9.41) as long as

1−βφβφ
F

>>
5.84×10−6

Z
. (9.48)

9.4.7 Accessibility of the Inner Alfvén Point

As was found in Sect. 9.3, the flow obeys the force free poloidal velocity law (9.41)
until it nears the light cylinder. The main interest of this chapter is to analyze the
flow in this region where dynamically interesting effects appear. By (5.36), just
before the light cylinder, the flow will cross the Alfvén critical surface as a perfect
MHD wind and if it does what are the effects of plasma inertia?

From the Alfvén speed (5.36) and the Alfvén point condition (5.42b), one has

(UI )A
= − c

α
(
βφF
)

A

ZA

(
mc
µ

)
. (9.49)
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where the subscript “A” means to evaluate at the Alfvén critical surface in the
flux tube.

Note that at the light cylinder the lapse function α
(
rL.C.

)
is (see Fig. 9.4)

α
(
rL.C.

)
= 0.296 . (9.50)

By (5.42b), we have
(
βφ

F

)
A
≈−1 and therefore

(UI )A
≈
{

33.78c , Z2 = 10−2

106.7c , Z2 = 10−3 . (9.51a)

As in the analysis of [113] and Fig. 5.2, it is convenient to describe the location of
the Alfvén critical surface by treating βφ

F
as a variable that indicates poloidal dis-

placement along the flux tube. From (9.49), (5.36) and the definition of k in (5.12),

[
1−
(
βφ

F

)2
]

A
≈ 4πk−nmec

α2BPβφF Z
. (9.52)

In the numerical model being considered, (9.52) implies
[
1−
(
βφ

F

)2
]

A
≈
{

5.61×10−5 , Z2 = 10−2

1.78×10−4 , Z2 = 10−3 , (9.53a)

(
βφ

F

)
A

=
{
−0.999972 , Z2 = 10−2

−0.999911 , Z2 = 10−3 . (9.53b)

Combining (9.53a), (9.51) and the definition of the Alfvén speed at the critical sur-
face, (5.36), we find the pure Alfvén speed,

UA =
{

4.52×103 , Z2 = 10−2

8.09×103 , Z2 = 10−3 , (9.53c)

at the Alfvén point.
We can get an expression for β P

analogous to (9.39) that is valid only at the
Alfvén critical surface by multiplying (9.38a) by β P

and setting uP = UI in (5.36),

(
β

P
)

A
=
[
1−βφβφ

F

]
A
×
{(
βφ

F

)
A

ZA +
4π

BP
A
α2

A
c

{[
k+ω∞+(ke)inj

]

−ΩA

c

[
k+m∞+(k�)inj

]}}−1

. (9.54)

Using the scalings in (9.47), we have the approximate simplified version of (9.59),

(
β

P
)

A
≈
[
1−βφβφ

F

]
A(

βφF
)

A
ZA

. (9.55)
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The normalization condition, u ·u =−1, can be used to eliminate βφ in (9.55) at the
Alfvén point. We find that

(
β

P
)

A
=

U2
I

c2βφF
×

⎡
⎣Z ±

√
Z2 −

(UI
c

)−2

− (1+Z2)
[

1−
(
βφF
)2
] ⎤
⎦

1+(1+Z2)
(UI

c

)2 ,

(9.56)

where all quantities are to be evaluated at the Alfvén point. The negative root in
(9.56) is incompatible with the frozen-in condition (5.16b) and F12 < 0 that requires
βφ > βφ

F
. Taking the positive root in (9.56) and using (9.51) and (9.53a), we have

an approximate accurate expression for
(
β P
)

A
,

(
β

P
)

A
≈ 2ZA(

βφF
)

A

[
1+Z2

A

] , (9.57)

and in the numerical model,

(
β

P
)

A
≈
{

−0.2 , Z2 = 10−2

−0.063 , Z2 = 10−3 . (9.58)

Inserting the value
(
β P
)

A
of (9.50) into the value of the poloidal four velocity in

(9.51), we have the Lorentz factor at the Alfvén point,

u0
A

=
{

169c , Z2 = 10−2

1,690c , Z2 = 10−3 . (9.59)

The parameter “1−βφβφ
F

” is very useful for describing the flow near the Alfvén
point and beyond, downstream of the light cylinder. From the Alfvén point condition
(5.42b) and (5.36) along with the positivity of ZAMO energy, we know that

e− ΩF �

c
> 0 . (9.60)

Expanding the wind constant in (9.60) and implementing the conservation laws
(5.20) and (5.21), we have

1−βφβφ
F

=
e−

ΩF �

c
µu0αc

≈ c
αu0 , (9.61a)

Equation (9.61a) establishes the positive definite condition,

1−βφβφ
F

> 0 , (9.61b)
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in perfect MHD and is very accurate for warm wind initial conditions created within
the particle creation zone (i.e., rotational inertia is negligible to rest mass when the
injected plasma is threaded onto the field lines in the particle creation zone).

Using (9.59) in (9.61a), in the numerical model we have

[
1−βφβφ

F

]
A
≈
{

2.00×10−2 , Z2 = 10−2

2.00×10−3 , Z2 = 10−3 . (9.62)

From (9.48), the plasma inertia is negligible and the force free equation of motion
(9.41) is applicable. Using the value of

(
βφ

F

)
A

in (9.53b) we can determine the final
unknown parameter in the wind at the Alfvén point,

(
βφ
)

A
≈
{

−0.98 , Z2 = 10−2

−0.998 , Z2 = 10−3 . (9.63)

The value of u0 in (9.59) shows that special relativistic effects are important
near the Alfvén point. The large Lorentz factor is attributed to the plasma being in
approximate corotation with the field as evidenced by (9.63). Relation (9.48) and the
values of 1−βφβφ

F
in (9.62) shows that the plasma at the Alfvén point, even with

this relativistic Lorentz factor, does not have enough inertia to bend the field lines
azimuthally a significant amount. Thus, there is not enough toroidal magnetic field
to allow the plasma to slide forward relative to the (corotating frame of) magnetic
field near the light cylinder and thus avoid relativistic rotation velocities. The flow
downstream of the Alfvén point has similar properties.

9.4.8 Accessibility of the Inner Fast Point

It was shown in Sect. 6.2 that when 0 < ΩF � ΩH , the inner fast point is near the
light cylinder as well (see Fig. 9.6). We can get an expression for the poloidal three
velocity at the fast point (designated by a subscript “ f ” in this section to distinguish
it from the corotating frame of the magnetic field designated by the subscript “F”),(
β P
)

f
, by multiplying (9.38a) by β P

and using (6.9) for the poloidal velocity at the

fast point. First note that, in the magnetically dominated limit,

U2
F
≈
{[

1−
(
βφ

F

)2
]
+ Z̄2

}
U2

A
, (9.64)

Z̄ ≡ F12

BP =
βφ

F
−βφ

β P , (9.65)

where we made use of (5.35) and U2
A
	 U2

S
in (9.64). The identification of Z̄ is

made to look like Z defined in (9.32), since Z = Z̄ in a force free wind and Z̄ ≈ Z
throughout a magnetically dominated perfect MHD wind. Proceeding as described
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Fig. 9.6 The plots of uP/c (the dashed curves) and UF /c (the solid curves) as a function of the
field line azimuthal velocity, βφ

F
, are given in logarithmic units for the model perfect MHD flow

discussed in Sect. 9.4. The poloidal four velocity, uP, is approximated by a power law fit between
the Alfvén and fast critical surface. This expedience should be fairly accurate since the two critical
surfaces almost coalesce for ΩF � ΩH . The fast speed UF /c is plotted, based on this value of uP

(since by mass conservation, uP determines the proper number density in the expression (9.64)
for UF ). The fast critical surface is defined by the intersection of uP and UF . Both uP and UF are
plotted for the two values of Z2 (Z2 = 10−2 is in bold and Z2 = 10−3 is in normal font) used in the
text. Note that UF →US just beyond the inner light cylinder when ΩF �ΩH . The plot is also used
to determine the location of the onset of the radiative instability described in Sect. 9.5. By (9.109)
we expect δ (k�)ph � |kδm| as perfect MHD begins to break down. Thus, by (9.121) and (9.111b)
we expect the linear leading edge of the radiative instability to initiate when u2

1
≈ 1

2 U2
F

above, using the approximate form of (6.9) as expressed in (9.64) we find

(
β

P
)

f
≈
[
1−βφβφ

F
+ Z̄2]×

{(
βφ

F

)
f Z f + 4π

BP
f α

2
f c

{[
k+ω∞+(ke)inj

]

−
Ω f
c

[
k+m∞+(k�)inj

]}}−1

. (9.66)

We can numerically estimate the inertial terms in the denominator of (9.66) near the
fast point by noting that at the light cylinder,
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Ω ≈ 0.212c
M

, r = rL.C. , (9.67a)

ΩF =
1

30
ΩH = 1.09×10−n2 c

M
. (9.67b)

Furthermore, by writing the pure Alfvén speed as

U2
A

=
α
(

uP

c

)
BP

4π
k−
c µ

, (9.67c)

then, using (9.53c) and (9.51) at the Alfvén point,

BP ≈ 1.13×104G , r = rL.C. . (9.67d)

Noting the values of m∞ and ω∞ in (9.28) and k+ and k− in (9.26) and (9.29g)
for a warm injected plasma, (ke)inj ≈

[
|k+ |+ |k−|

]
mec2, and using the values from

(9.67), we have the good approximation to (9.66),

βφ
F
β

P ≈
Z̄2 +

(
1−βφβφ

F

)
Z +4.8×10−3 . (9.68)

Combining (9.64) and (9.67c) we have

(
uP

c

)
f
=

[
1−
(
βφ

F

)
+ Z̄2

]
BPα

4π
(k−

c

)
mec2

. (9.69a)

From (9.29g) and (9.67d) we can rewrite (9.69) as
(

uP

c

)
f
≈ 6.44×105

[
1−
(
βφ

F

)2
+ Z̄2

]
. (9.69b)

Combining (9.66) for β P
and (9.61a) for u0 and inserting these expressions into

(9.69a) for
(
uP
)

f , we get

Z̄2
f

1−βφβφF
≈ α f

[
Z f +

4π
BP

fα2
f c

{[
k+ω∞+(ke)inj

]

−Ω f

c

[
k+m∞+(k�)inj

]}]
×
[
1−
(
βφ

F

)2
f + Z̄2

f

]
−1 .

(9.70a)

or in approximate form with α f = 0.293 (as solved self consistently with α = 0.296
at the Alfvén point)
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Z̄2
f

1−βφβφF
=

⎧⎪⎪⎨
⎪⎪⎩

6.9×103
[
1−
(
βφ

F

)2
f + Z̄2

f

]
−1 , Z2 = 10−2

2.04×104
[
1−
(
βφ

F

)2
F + Z̄2

f

]
−1 , Z2 = 10−3

, (9.70b)

where Z is evaluated at the light cylinder (Z evaluated at the fast point is slightly
larger).

Using u ·u = −1, (9.68) for β P
and (9.61a) for u0, we get a second equation:

α2 (1−βφβφ
F

)2
= 1−

(
βφ
)2

f −

[
Z̄2

f +
(
1−βφβφ

F

)]2

[Z +4.8×10−3]2
(9.71)

We have three equations (9.65), (9.70b) and (9.71) that must be solved simulta-
neously for three quantities, βφ , βφ

F
and β P

at the fast point.
First consider the case Z = 0.1 at the light cylinder. We find a solution for the

fast critical surface just inside the light cylinder. Expanding geometrical quantities
about the light cylinder we solve self consistently, (9.65), (9.70b) and (9.71):

Z f = 0.103 , (9.72a)

Z̄ f = 0.104 , (9.72b)(
1−βφβφ

F

)
f = 2.2×10−3 , (9.72c)

[
1−
(
βφ

F

)2
]

f
= −1.05×10−2 , (9.72d)

(
βφ

F

)
f = −1.00524 , (9.72e)

(
UF

c

)
f
= 187 , (9.72f)

(
u0

c

)
f
= 1,551 , (9.72g)

(
β

P
)

f
= −0.1205 , (9.72h)

(
βφ
)

f = −0.9927 . (9.72i)

Next consider our other example with Z2 = 10−3, we self consistently solve
(9.65), (9.70b) and (9.71) as

(
Z̄
Z

)
f
= 0.94 , (9.73a)

(
1−βφβφ

F

)
f = 8.3×10−4 , (9.73b)[

1−
(
βφ

F

)2
]

= 5.79×10−4 , (9.73c)
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(
βφ

F

)
f = −1.00029 , (9.73d)

UF

c
= 192 , (9.73e)

u0

c
= 4,112 , (9.73f)

β
P

= −0.0466 , (9.73g)
βφ = −0.9989 . (9.73h)

One can compare (9.72) and (9.73) to the same quantities evaluated at the Alfvén
point. The extreme conditions in the plasma are accentuated as it flows toward the
horizon, βφ keeps getting closer to −1, the ultrarelativistic Lorentz factors, u0, keep
increasing and the magnitude of β P

actually decreases (see Fig. 9.7). By (3.50) the
plasma at the Alfvén and fast points is on highly negative energy trajectories.
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Fig. 9.7 The ZAMO evaluated poloidal three velocity, β P
, as a function of proper distance from

the event horizon of the paired wind system that is modeled in Sect. 9.4. The Alfvén point is labeled
“A,” the fast point is labeled “F” and the terminus of the perfect MHD ingoing wind is labeled “E.”
Compare the ingoing wind to the subcritical outgoing wind in Fig. 5.2. The plot is linear in proper
distance, as opposed to logarithmic as in Fig. 5.2, in order not to further compress the interesting
structure of the ingoing wind. As a result, the fast point of the outgoing wind is far off to the right
of the figure. The three velocity, β P

, is small near the inner light cylinder since the plasma is in
approximate corotation with the magnetic field, βφ � −1, and the four velocity is normalized,
u ·u = −1
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Fig. 9.8 The inertial current system in the dynamo region of the ingoing wind. An incoming Alfvén
wave reflects from the rotating magnetosphere in the ergosphere. The incoming wave is absorbed
by the magnetosphere in an MHD skin depth between the Alfvén critical surface and the anchor
at Sanc. The MHD structure of the skin depth is a fast rarefaction wave. The strong cross-field
current flow in this region is indicative of a fast wave as discussed in Chaps. 2 and 6. A radiative
instability initiates at S+ . The flow causally decouples from the plasma source and outgoing wind
at Sanc. However, the dissipative dynamo currents continue to flow in the deflagration wind below
the anchor. The reflected Alfvén wave transports a poloidal Poynting flux SP to infinity that is
supported primarily by inertial currents flowing between the Alfvén critical surface and Sanc

Since the plasma was injected with positive angular momentum from the γ-ray
production process (the γ-rays came from a disk corona that is in a near Keplerian
orbit), the fact that βφ ≈−1 in the wind implies that significant cross-field poloidal
currents have been driven across the magnetic field ahead of the Alfvén point. These
currents are greatly enhanced between the Alfvén and fast points (see Fig. 9.8). This
is a manifestation of the “torsional tug of war” described in Chap. 7 and was fore-
shadowed in the gedanken experiment of Fig. 9.3.

Consider the large azimuthal accelerations between the Alfvén and fast point. To
quantify this value, we first evaluate the distance between the fast and Alfvén points,
∆X1, by

∂βφ
F

∂X1 ≈
∆βφ

F

∆X1 . (9.74)
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From the definition of βφ
F

in (5.14) and the connection coefficients in (3.32), we have

∂βφ
F

∂X1 = −βφ
F
Γ 1

00 −2Γ 1
0φ −βφF Γ

1
φφ , (9.75a)

∂βφ
F

∂X1 ≈ ge f f
(
βφ = −1

)
, (9.75b)

where ge f f is the poloidal gravity as defined in (3.41). Thus, if we approximate X1

by Xr, we have from (9.75a),

∂βφ
F

∂X1 ≈ 0.521(M)−1 +2(0.184)M−1 −0.131M−1 = 0.76M−1 . (9.76)

Thus, between the fast and Alfvén points we have a proper distance of

∆X1 ≈ 2.0×1012cm , Z2 = 10−2 , (9.77a)

∆X1 ≈ 1.5×1011cm , Z2 = 10−3 . (9.77b)

From (9.72), (9.73) and (9.59) we can find the proper acceleration near the light
cylinder, aφ ≈ u1∂/∂X1

(
uφ
)
,

aφ ≈ 1.17×1014cm/sec2 , Z2 = 10−2 , (9.78a)

aφ ≈ 2.79×1015cm/sec2 , Z3 = 10−3 . (9.78b)

These accelerations are enormous and we expect tremendous amounts of radiation
from the plasma. These radiation losses will cause a breakdown of the perfect MHD
assumption and this is the topic of the next section. Notice that the flow is just
starting to break the force free condition (9.48) as evidenced particularly by (9.73b).

9.4.9 The Terminus of the Perfect MHD Wind

Even ignoring the effects of radiative dissipation, the perfect MHD assumption can-
not persist very far inward of the fast point. Perfect MHD requires a vanishing proper
electric field, or FµνFµν ≥ 0. Using the expansion of the proper field in (5.35) and
the definition Z̄ in (9.65), this condition becomes

1−
(
βφ

F

)2
+ Z̄2 ≥ 0 . (9.79)

As more cross-field current is driven across the magnetic field lines (equatorward)
inside the fast point, by Ampere’s law (3.61b), Z̄ will decrease. We can approximate
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Z̄ by Z̄ f , noting that in actuality Z̄ f might be slightly larger. The end of the perfect
MHD flow can be found from (9.79),

(
βφ

F

)2
e = 1+ Z̄2

e , (9.80a)
(
βφ

F

)
e ≈−1.00539 , Z2 = 10−2 , (9.80b)

(
βφ

F

)
e ≈−1.00044 , Z2 = 10−3 . (9.80c)

Thus, the fast point is located within a short distance, ∆Xe f , of where perfect MHD
breaks down by (9.80), (9.72e), (9.73d) and (9.76),

∆Xe f � 5.9×1010cm , Z2 = 10−2 , (9.81a)

∆Xe f � 5.9×1010cm , Z2 = 10−3 . (9.81b)

We indicate the behavior of the perfect MHD wind near the inner light cylinder
in Fig. 9.7. The figure is only qualitative in that it captures the nature of the wind in
a manner that is comparable to the outgoing wind solution space that is depicted in
Fig. 5.2. The arbitrariness arises since the Grad–Shafranov equation was not solved
to find BP, thus we picked a functional dependence to reproduce the outgoing mini-
mum torque solution of Fig. 5.2 in a qualitative sense. Note that in this linear scale,
the domain of the ingoing wind is small and the structure near the light cylinder is
below the resolution of the figure (in a logarithmic scale as is used in Fig. 5.2, the
resolution would be even worse). Even so, the fast point of the outgoing wind is
way off the right side of the page (as indicated in Fig. 5.2). The important aspect of
Fig. 9.7 is that due to approximate corotation of the plasma with the magnetic field,
the dynamics change drastically near the inner light cylinder. The poloidal three ve-
locity, β P

, decreases abruptly as the plasma spirals around at relativistic velocities
(i.e., |β |2 < 1). Even though β P

decreases, uP experiences a marked increase as a
consequence of the large rotational inertia acquired by the plasma.

This solution is the analog of the subcritical outgoing MHD wind solution de-
scribed in Sect. 5.5. In the magnetically dominated limit, the energy and angular
momentum flux are given essentially by the electromagnetic terms in (5.20) and
(5.21). For a given value of ΩF , the critical solution (minimum torque solution) de-
scribed in Sect. 5.5 can be labeled by a critical value of |BT |, |BT |c. The value of
|BT |c is the minimum toroidal magnetic field that links a plasma source to asymp-
totic infinity via a perfect MHD wind. The degeneracy of (5.20) and (5.21) in the
magnetically dominated limit yields three equivalent designations for subcritical
winds:

|BT | < |BT |c , (9.82a)

|ke| < |ke|c , (9.82b)

|k�| < |k�|c . (9.82c)



9.4 Perfect MHD Paired Outgoing Minimum Torque Winds: ΩF �ΩH 283

The subcritical solutions in Fig. 5.2 proceed beyond the light cylinder until the per-
fect MHD solution becomes over constrained. This is manifested by the fact that the
extension of the subcritical solution extends beyond this region as an “unphysical
branch” where ur > 0, but dr/dt < 0 [113].

The problem encountered here is that ΩF is not established by the dynamics of
a unipolar inductor as in a star, but by plasma injection on free-floating magnetic
flux tubes. Consequently, one is not guaranteed a value of ΩF that yields a suffi-
cient toroidal magnetic field by (5.50), so that the plasma can pass uneventfully (by
sliding forward in the azimuthal direction, relative to black hole rotation, along the
field lines) through the region near the light cylinder. Mathematically, this can be
traced back to our force free analysis of (9.35) which can be satisfied all the way
to the horizon only if ΩF ∼ ΩH . The value of |BT | in the wind equates to energy
and angular momentum fluxes that are subcritical for the ingoing wind by (9.82).
By contrast, a unipolar inductor radiates an Alfvén wave that transports the appro-
priate BT into a wind and nothing eventful happens at the light cylinder. Without a
unipolar inductor, only plasma inertia can bend the magnetic field lines azimuthally
(through inertial cross-field currents) to create the proper BT for smooth passage
through the light cylinder. However, in a magnetically dominated wind, the plasma
inertia is small and it is therefore incapable of bending the magnetic field to a degree
that can substantially alter BT .

9.4.10 The Ingoing Extension of the Subcritical Solution

Consider the poloidal momentum equation (3.40) at the point of the maximal exten-
sion of the perfect MHD ingoing wind discussed in the last section (labeled “E” in
Fig. 9.7). The effective gravity “g” in (3.41) was found in (9.75) and (9.76) to equal
0.76M−1. This value of “g” represents a strong inward force of gravity on a surface
fixed at the terminus of the wind, r = rE .

Next consider the electromagnetic force in the poloidal momentum equation,
F12J2. First of all, the ZAMO energy and azimuthal momentum equations are vir-
tually identical near the inner light cylinder for these winds. The large gradient in
the specific mechanical ZAMO azimuthal momentum, uφ , and the ZAMO specific
energy, u0, illustrated in (9.78), near the terminus of the perfect MHD regime are
nearly identical

(
βφ ≈−1

)
, as a consequence of the J2ê2 ×BP and J×E = J2E2

forces, being nearly equal in this region. Thus, the rapid increase in the u0 con-
tribution to uP is essentially purely electrodynamic in nature. Near the inner light
cylinder, J2, is relatively large (see Fig. 9.8) and is directed equatorward. By Am-
pere’s law (3.61b), this cross-field current density slowly decreases F12. The current
density, J2, also torques the plasma to large values of negative angular momentum,
uφ � 0. Thus, the F12J2 force in the poloidal momentum equation is strong and
inwards directed at the terminus of the perfect MHD wind, F12J2/c � 0.

All of the forces in the poloidal momentum equation (3.40) are large and in-
ward directed. The is no slight modification of this flow that will come to rest near
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“E.” The force of gravity is going to pull the plasma inward all of the way to the
horizon. The inward force of gravity is a huge distinction from an outgoing subcrit-
ical MHD wind. Outgoing subcritical winds cannot make it to asymptotic infinity,
they are free expanding flows with insufficient energy. By contrast, the ingoing sub-
critical wind does not decelerate to a stop because the powerful force of the black
hole gravity drags it inexorably toward the horizon. This dynamic is unavoidable
and as we showed in this section the flow must proceed without the perfect MHD
constraint. This demonstrates the inequivalence of the outgoing and ingoing wind
solution spaces. The wind can proceed as a deflagration wind that we analyze in the
remainder of the chapter.

9.5 The Radiative Instability Near the Light Cylinder

One might wonder why the plasma cannot attain an arbitrarily large relativistic iner-
tia by corotating with the field near the light cylinder and therefore be able to bend
the field lines as needed (i.e., increase |BT |) to allow passage to the black hole with
mild dissipative effects from the plasma. Relativistic velocities are achieved only
very close to the light cylinder (only ∼10−3M away by 9.77). Thus, there are huge
proper accelerations associated with approximate corotation as the light cylinder
is approached (see 9.78), and large radiation losses. The radiative losses drain the
plasma of the relativistic azimuthal momentum necessary to bend the field. In fact,
this circumstance initiates an instability that accentuates the behavior near the light
cylinder seen in the perfect MHD analysis of the last section (see Fig. 9.9 at the end
of this section).

This instability is explored through a linear stationary point analysis that de-
scribes the linear leading edge. We perturb a time stationary axisymmetric wind
away from a perfect MHD initial state with radiation resistance. If the resulting
plasma state contains forces that tend to restore the perfect MHD state then the flow
is stable to radiation losses. If the perturbation creates a plasma state with forces
that tend to accentuate the deviation from perfect MHD, then the flow is unstable.
We can explore variations from perfect MHD, through the proper electric field, E′

(by definition). In particular, we are interested in E2′ . Since E2′ = 0 in the initial
state, the proper electric field exists only as a perturbation,

δE2′ ≡ E2′ = δ
(
F2νuν

)
= δF21u1 +δu1F21 +δuφF2φ

+uφ δF2φ −u0δF20 −δu0F20 . (9.83)

We can find the various terms in (9.83) by perturbing the energy and angular mo-
mentum equations of the perfect MHD fluid. The energy and angular momentum
equations are particularly simple in Boyer–Lindquist coordinates because the con-
nection terms add to zero. From (3.39) we have,
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dm
dτ

=
F̃φαJα

nc
+
(
T̃φ α ;α

)
r , (9.84a)

dω
dτ

= − F̃tαJα

nc
+
(
T̃t
α

;α
)

r , (9.84b)

d
dτ

= uα
∂
∂Xα

. (9.84c)

In the following calculations, the radiation reaction force,
(
T̃να ;α

)
r, exists only as a

perturbation to the initial perfect MHD state.

9.5.1 The Initial Unperturbed State

The initial unperturbed state is obtained from (9.84), (3.3) and (3.8) as,ω =ω0 +δω
and m = m0 +δm,

dm
dτ

= −
J2BP√gφφ

nc
, (9.85a)

dω
dτ

= −
ΩF J2BP√gφφ

nc2 . (9.85b)

The initial state, near the light cylinder, was found in the last section to be in rela-
tivistic azimuthal motion, βφ ≈−1. Thus, by (3.14) and (3.50),

ω0 ≈
Ωmin

c
m0 . (9.86a)

Since we are evaluating the instability near the inner light cylinder, ΩF ≈Ωmin, and
(9.86a) becomes

ω0 ≈
ΩF

c
m0 . (9.86b)

Finally, the perfect MHD condition requires as in (5.2),

u2
0
= 0 . (9.87)

9.5.2 The Radiation Resistance Perturbation

The radiation resistance term is obtained from special relativity [87] with the co-
variant modifications to general relativity,

(T µν ;ν)r =
2e2

3mec3

[
(Pµ ;νuν);α uα − Pµ

m2
ec2

(
Pα ;νuνPα;δuδ

)]
. (9.88)
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Note the change in sign in the second term compared to [87]. This arises because
the metric in that book is of signature (1, 3); ours is (3, 1). Normally, one would
think that for small perturbations that the first term on the right hand side of (9.88)
is dominant, since it is linear in the force and the second term is quadratic. But for
ultrarelativistic momenta, the second term is comparable (in the range of Lorentz γ-
factors that are relevant in this analysis) and for large γ-factors the second term actu-
ally becomes dominant. From the initial state (9.85) and noting that the connection
terms cancel out in Boyer–Lindquist coordinates for the “φ” and “t” components,

(
P̃φ ;νuν

)
;α uα =

e
c

d
dτ
[√

gφφ BPu2
D

]
, (9.89a)

(
P̃t;νuν

)
;α uα = −

(e
c

)(ΩF

c

)
d

dτ
[√

gφφ BPu2
D

]
, (9.89b)

where we have introduced the drift velocity between the two species,

uµ
D

=
n+uµ+ −n−uµ−

n+ +n−
. (9.90)

The inertial effects of the plasma in perfect MHD are manifested by the cross-field
drift between the species in the ê2 direction.

Combining (9.89), (9.88) and (9.86b), we have the simplifying relation,

(
T̃t
ν

;ν
)

r =
ΩF

c

(
T̃φ ν ;ν

)
r . (9.91)

9.5.3 The Perturbed Four Velocity

Perturbing the energy and angular momentum equations (9.84), using (9.86b) and
(9.91), we have

δω =
ΩF

c
δm . (9.92)

This result simplifies the perturbed quantities to follow in this section.
We take the adiabatic approximation in this linear leading edge analysis (the heat

flow only shows up as a perturbed quantity). Note that nµ = ρ+P and adiabatically
one has the relation,

dρ
dτ

= µ
dn
dτ

. (9.93)

The sound three speed is defined from

δµ
µ

= c2
S

δn
n

. (9.94)
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By the mass conservation law (3.36b),

δn
n

= −δu1

u1 . (9.95)

Combining (9.95a) and (9.94) one finds that

δu1 = −u1

c2
S

δµ
µ

. (9.96)

Noting that u ·u = −1, (9.87) implies

−u0δu0 +u1δu1 +uφ δuφ = 0 . (9.97)

Perturbing (3.14) and using (9.92),

δu0 =
βφ

F
δm

√gφφ µ
−u0 δµ

µ
, (9.98a)

δuφ =
δm

√gφφ µ
−uφ

δµ
µ

. (9.98b)

Combining (9.95)–(9.98), we find the perturbed specific enthalpy,

δµ =

⎡
⎣
(
uφ −βφ

F
u0
)

c2
S
δm

(u1)2 + c2
S

(
u2
φ −u2

0

)
⎤
⎦ . (9.99a)

Inserting (9.99a) into (9.96) and (9.98), one can compute the perturbed four-velocity,

δu1 =
u1
(
u0βφ

F
−uφ

)
δm

µ√gφφ
[
(u1)2 (1− c2

S

)
− c2

S

] , (9.99b)

δu0 =

[
δm

µ√gφφ

]⎧⎨
⎩βφF +

u0c2
S

(
u0βφ

F
−uφ

)
[
(u1)2 (1− c2

S

)
− c2

S

]
⎫⎬
⎭ , (9.99c)

δuφ =

[
δm

µ√gφφ

]⎧⎨
⎩1+

uφ c2
S

(
u0βφ

F
−uφ

)
[
(u1)2 (1− c2

S

)
− c2

S

]
⎫⎬
⎭ . (9.99d)

9.5.4 The Perturbed Field Strengths

In order to find the perturbed field strengths in (9.83), we define the following com-
ponents of the vector potential, Aµ ,
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E = −A · ∂
∂ t

, (9.100a)

L = A · ∂
∂φ

. (9.100b)

The components of the electromagnetic vector potential in the ZAMO frame can be
expressed in terms of these quantities as

Aφ =
√

gφφ L , (9.101a)

A0 = α−1
(
E − Ω

c
L
)

. (9.101b)

ZAMO evaluated fields can be derived from E and L as follows:

∂L
∂X1 =

∂
∂X1

[√
gφφ Aφ

]
=
√

gφφ

[
∂Aφ

∂X1 −Γ φ 1φAφ
]

, (9.102a)

where we used (3.32c) to define the connection. We can write (9.102a) as

∂L
∂X1 =

√
gφφ
[
Aφ ;1 −A1;φ

]
=
√

gφφ F1φ . (9.102b)

Other expressions can be derived in a similar manner,

F2φ =
√

gφφ
∂L
∂X2 , (9.102c)

F20 = α−1
[
∂E
∂X2 − Ω

c
∂L
∂X2

]
, (9.102d)

F10 = α−1
[
∂E
∂X1 − Ω

c
∂L
∂X1

]
(9.102e)

The other electric field component vanishes:

Fφ0 =
∂Aφ
∂X0 − ∂A0

∂Xφ
+Γ αφ0Aα −Γ α 0φAα = 0 , (9.103a)

by time stationary and axisymmetry combined with the connection symmetries,

Γ 2
φ0 = Γ 2

0φ , (9.103b)

Γ 1
φ0 = Γ 1

0φ , (9.103c)

and for all other values of µ , Γ µ 0φ = 0.
The frozen-in equation (5.13c) applied to (9.102d) yields

∂E
∂X2 =

ΩF

c
∂L
∂X2 . (9.104)
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The perfect MHD condition expressed as the vanishing of the proper electric field
in the “φ” and “0” direction of the ZAMO basis become

dL
dτ

= 0 , (9.105a)

dE
dτ

= 0 . (9.105b)

Consider the variation of E as a frozen-in piece E0 and a perturbation δE and
similarly for L:

E = E0 +δE , L = L0 +δL . (9.106)

From the definition of ΩF in a dissipative plasma, (9.1), it follows from (9.104) that

∂δE
∂X2 =

ΩF

c
δL (9.107)

Combining (9.107) and (9.102d), we have

−δF20u0 +δF2φuφ = uφ
(
βφ −βφ

F

)
δBP ≈ 0 . (9.108)

The approximate equality in (9.108) results from the fact that βφ ≈ βφ
F
≈−1 in the

initial state as was found in the last section. Furthermore, we expect δBP to be small
for an inertially light plasma, U2

A
	 1.

We can find the perturbed toroidal magnetic field by varying the angular momen-
tum conservation law (5.21),

δF12 =
kδm

cα√gφφ
+
δ (k�)ph

cα√gφφ
, (9.109)

where δ (k�)ph is the flux of angular momentum that is radiated into the photon field.
The plasma has βφ ≈ −1 and u0 	 1, so the radiated photons are beamed onto
negative angular momentum trajectories. These trajectories are of negative energy
globally, and always approach the horizon, thus

δ (k�)ph > 0 . (9.110)

9.5.5 The Perturbed Proper Electric Field

Inserting (9.99), (9.108) and (9.109) into the expression for E2′ in (9.83), we find
with the aid of (5.35),
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δE2′ = − nδm
BP√gφφ

u4
1
−u2

1

(
U2

S
+

FµνFµν
8πnµ

)
+

[
1−
(
βφF
)2
]
(BP)2

4πnµ U2
S

c2
[
u2

1
−U2

S

]

−
u1δ (k�)ph

c2α√gφφ
. (9.111a)

This expression reduces with the aid of the wind magneto-acoustic critical speeds
defined in (5.38) to

δE2′ = − nδm
BP√gφφ

[
u2

1
−U2

F

][
u2

1
−U2

SL

]
c2
[
u2

1
−U2

S

] −
u1δ (k�)ph

c2α√gφφ
. (9.111b)

Physically, we can understand the direction of δE2′ through the following discus-
sion. As the plasma approaching the light cylinder is torqued by cross-field inertial
currents, it radiates an outward directed angular momentum flux (see 9.110). For the
inward directed mass flux this loss of angular momentum means through (5.21) that
km is too small for the plasma to stay frozen-in, thus (remember k < 0)

δm > 0 . (9.112)

Near the light cylinder, u0/c 	 1, thus we have a supersonic flow ahead of the
fast critical surface,

UF > u1 > US > USL . (9.113)

Combining this with (9.112), the first term on the right hand side of (9.111b) is
positive ahead of the inner fast critical surface. The second term on the right hand
side of (9.111b) is positive as well, but it is on the order of (u1/UF )2 of the first term,
so is negligible until the fast point is approached. In any event, (9.110), (9.112) and
(9.113) yield the direction of E2′ (see Fig. 9.9 at the end of this section),

δE2′ > 0 . (9.114)

This proper electric field drives a current across the magnetic field lines, increas-
ing J2 in the ingoing wind. Physically, the sign of δE2′ is clear. As plasma radiates
away negative angular momentum (toward the asymptotic infinity of the event hori-
zon), it has too much angular momentum to stay frozen-in and keep E2′ = 0 (in
terms of the torsional “tug of war,” the dragging of inertial frames pulls the plasma
in the forward azimuthal direction off of the magnetic field lines). The electric field,
δE2′ , develops in order to drive the charges back into their frozen-in state by induc-
ing accelerations to make a cross-field particle drift u2

D
as in (9.90), which in turn

creates a q
(
v2ê2 ×BP) force (the torque) that is negative for both species of charge

(in terms of the torsional “tug of war” this effect is the field trying to counteract the
tug induced by the dragging of inertial frames).
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9.5.6 Stationary Point Analysis

We can use (9.111b) to analyze the stability of the wind to radiative losses as it
approaches the inner light cylinder. The relevant effect is seen in second order. The
the radiation reaction induced perturbation from perfect MHD requires δE2′ > 0 by
(9.114). The question is whether δE2′ > 0 alters the plasma state so that the second
order proper electric field,

(
δE2′

)
(2)

, is larger or smaller than δE2′ (we will denote

second order perturbed quantities by the subscript “(2)”). If δE2′ alters the plasma
so that the proper electric field decreases, the perturbation is self quenching,

δE2′ >
(
δE2′

)
(2)

: quenched . (9.115a)

If δE2′ increases in second order, the plasma flow is unstable to radiation losses,

δE2′ <
(
δE2′

)
(2)

: unstable . (9.115b)

9.5.6.1 Quenched Perturbations

Consider the case ahead of the fast point,

U2
S

< u2
1
�U2

F
. (9.116)

By (9.114) the perturbed proper electric field makes a perturbed current,

δJ2 > 0 . (9.117)

We are interested in the effect of δJ2 on the perturbed plasma state in order to find
the second order perturbation. By the expression (9.88) for the radiation resistance,
the perturbed current produces stronger electromagnetic forces than radiation reac-
tion forces,

∣∣∣∣ F̃φαJα

nc

∣∣∣∣	
∣∣(Tαφ ;α

)
r

∣∣ . (9.118)

Inserting (9.118) into the azimuthal momentum equation (9.84a), implies that the
primary effect of the perturbed cross-field current is to torque the plasma, thus

(δm)(2) < δm . (9.119)

Since (u1/UF )2 � 1 by assumption in (9.116), we have from (9.119) and (9.111b),
(
δE2′

)
(2)

< δE2′ . (9.120)

Thus, condition (9.116) yields a quenched perturbation.
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9.5.6.2 Unstable Perturbations

Consider the case where the flow is approaching the fast point in the azimuthally
symmetric flux tube,

∣∣u2
1
−U2

F

∣∣< u2
1

∣∣∣∣
δ (k�)ph

kδm

∣∣∣∣ . (9.121)

Note in (9.109) that

δF12 ≥ 0 . (9.122a)

This follows from two facts. First, we know from Sect. 9.4 that
∣∣BT
∣∣ is too small to

allow smooth passage through the environs of the light cylinder and BT < 0. Thus,
F12 is too positive for perfect MHD to hold. Secondly, δE2′ drives a current that
switches off

∣∣BT
∣∣, so

(
δF12)

(2) > δF12 ≥ 0 . (9.122b)

From (9.109) and (9.122), we have

δ (k�)ph ≥−kδm . (9.123)

Combining (9.123) and our assumed four velocity (9.121), the dominant term in
(9.111b) is now the second term and this is the distinction from the quenched per-
turbation discussed above.

As before, the cross-field current produces second order forces dominated by
electrodynamics as in (9.118), and the primary effect in the azimuthal momentum
equation, (9.84a), is to torque the plasma. Thus, again we have (9.119), which we
transcribed below,

(δm)(2) < δm . (9.124)

However, since the plasma is torqued by a larger J2 in second order, the acceleration
and Lorentz factor, u0 ≈−uφ , are larger as discussed in Sect. 9.4,

∣∣aφ +δaφ
∣∣> ∣∣aφ ∣∣ , (9.125a)∣∣u0 +δu0∣∣> ∣∣u0∣∣ . (9.125b)

In second order, (9.125) applied to (9.88) implies that
[
δ (k�)ph

]
(2)

> δ (k�)ph (9.126)

By (9.121), the second term is dominant in (9.111b), thus (9.126) yields
(
δE2′

)
(2)

> δE2′ . (9.127)
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Equations (9.127) and (9.120) show that the ingoing perfect MHD wind is stable
to radiation losses until it approaches the fast point. Unstable growth of E2′ occurs
just before the fast point. Since δF12 ≈ 0, δ (k�)ph ≈ −kδm by (9.109), until the
instability initiates. Using (9.64), (9.72f), (9.73c) and (9.51), we can approximate
the instability condition in (9.121) to find the location of the linear leading edge of
the plasma instability (see Fig. 9.6),

βφ
F
≈−1.0051 , Z2 = 10−2 , (9.128a)

βφ
F
≈−1.00021 , Z2 = 10−3 . (9.128b)

Physically, the instability can be described in terms of the torsional “tug of war.”
Near the fast point, the dragging of inertial frames drags plasma across the magnetic
field, azimuthally. An E2′ is generated and the field tries to pull the plasma back onto
the field lines with a J2ê2 ×BP force (see Fig. 9.9). However, unlike the situation
upstream, this “tug” by the magnetic field is translated largely into radiation losses,
making the J2ê2 ×BP force only marginally effective at torquing the plasma. Thus,
perfect MHD cannot be restored and E2′ grows as the flow propagates downstream,
creating more J2ê2 ×BP force and more radiation losses and so on.

The microphysics of the radiative instability that distinguishes the quenched per-
turbations from the unstable perturbations is delineated in Fig. 9.9. The four frames
on the left hand column indicate the microphysics upstream of S+ in Fig. 9.8 during
the radiation process. The flow is stable in this domain to radiation losses. This is
contrasted to the seven frames on the right hand side of Fig. 9.9 that depict the mi-
crophysics of the radiative instability below S+ . This figure summarizes the details
of the discussion of this section.

The time evolution of the plasma is defined by infinitesimal time changes,
t0 < · · · < ti < ti+1 < · · · . At t = t0 , a perfect MHD state exists with plasma on its
gyro-orbits. As the plasma flows closer to the hole, frame dragging instantaneously
perturbs the MHD state by dragging plasma across the magnetic field in the +φ
direction at t = t1 , thus creating a proper electric field, E2′ . This E2′ drives a cross-
field current, J2, and the field reacts to the frame dragging force in the torsional tug
of war by J2ê2 ×BP forces at time t = t2 . Simultaneously, this electrodynamically
torqued plasma (which is accelerated in the −φ direction) radiates. Above, S+ , the
radiative losses are small and the J2ê2 ×BP force is very effective at torquing the
plasma back onto the gyro-orbits that thread the magnetic field lines at t = t3 , as
shown at the bottom left of the figure.

Below S+ , the plasma state is defined by βφ �−1 and u0 	 1, thus the radiation
losses at t = t2 are extremely large and are beamed by the headlight effect into
the −φ direction. The loss of angular momentum to the photon field reduces the
efficiency of the J2ê2 ×BP forces to torque plasma back onto the magnetic field
lines (i.e., some of the J2ê2 ×BP force is dissipated in the photon field) at t = t3 .
Consequently, perfect MHD is not restored and E2′ > 0. Furthermore, at t = t4 , as
the plasma flows down the field lines, frame dragging forces continue to pull plasma
across the magnetic field lines. Thus, both E2′ and the azimuthal velocity relative to
the frozen-in frame, vφ , are larger than in the initial perturbation at t = t1 . The larger
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E2′ means a larger J2 at t = t5 and therefore a larger J2ê2 ×BP force. However, as
u0 keeps increasing, the radiation losses increase and more of the electrodynamic
torque is transferred to the photon field than was the case at t = t2 . Consequently,
the J2ê2 ×BP force at t = t6 is less efficient at torquing the plasma back onto the
field lines than it was at t = t3 . The plasma continues to be pulled farther and farther
across the field lines in the +φ direction due to frame dragging effects as the wind
propagates toward the hole (gravity is winning the torsional tug of war).

9.6 The Dynamo Region

Once the radiative instability is initiated, the plasma can flow more freely across the
magnetic field lines and the proper electric field, E2′ > 0, can drive much stronger
cross-field currents than occur in the perfect MHD region of the wind. This region
includes the dynamo for the toroidal magnetic field in the wind. The dynamo is
bounded from above by the location of the initiation of the instability given (9.128)
and it is bounded from below by the surface on which BT = 0. By causality, BT must
be created somewhere within the wind. We call the BT = 0 surface the anchor for the
magnetic wind. Furthermore, the anchor must occur outside the fast magnetosonic
surface for a causal global structure to be attained. By (9.5), the flow will imme-
diately go superfast once the radiative instability (a dissipative instability) initiates.
The dynamo region is therefore a thin current sheet to first approximation.

9.6.1 Resistivity and the Saturation of the Instability

The cross-field current instability will grow rapidly until a source of resistivity de-
velops that can counteract the driving forces that create the cross-field particle drift,
u2

D
. One can hypothesize radiation reaction [137], Compton drag or plasma wave

scattering as the source of Ohmic resistance. In the thin dynamo layer Compton
drag is not viable based on geometrical considerations. The plasma at this point
of the flow and downstream (as we shall see below) radiates photons on negative
energy trajectories that necessarily approach the horizon. Even though there is an
intense radiation field from the dissipative plasma, it is directed inward away from
the dynamo current layer. Thus, Compton drag is a negligible force in the momen-
tum equation for the individual species in the dynamo.

Radiation drag is only comparable to electrodynamic forces in the wind if [138]

u2
D
∼ 107

(
β

P
)−9/8

u1 . (9.129)

In a charge separated plasma, radiation drag could damp the instability; however in a
two fluid plasma, a two stream instability will be incurred long before the cross-field
plasma drift attains velocities anywhere close to those required in (9.129).
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Expressing the cross-field current in terms of u2
D

(
J2 = neu2

D

)
, in the angular mo-

mentum equation, (9.85a),

u2
D

=
uP

ΩL

∂uφ

∂X1 =
aφ

ΩL

, (9.130)

in a perfect MHD plasma, where ΩL is the Larmour frequency,

ΩL =
eBP

mec
. (9.131)

Equation (9.130) can be used to show that strong particle drifts occur in the cross-
field direction between the Alfvén and fast points. From (9.78) inserted into (9.130),
we can find the cross-field drift ahead of the fast point in the ZAMO frames,

u2
D
≈ 7.1×102cm/sec , Z2 = 10−2 , (9.132a)

u2
D
≈ 1.7×104cm/sec , Z2 = 10−3 . (9.132b)

We are interested in the cross-field drift in the proper frame of the plasma,(
β 2

D

)
proper, in order to understand the two stream instability. From time dilation

effects, we can relate the drifts in the proper and ZAMO frames:

(
β 2

D

)
proper =

u0

c
β 2

D
≈
[

u2
D

c

]
. (9.133a)

Thus, (9.132) represents the proper frame cross-field drifts ahead of the dynamo
region. In the dynamo region, J2 is enhanced so we expect u2

D
to be much larger

than the values in (9.132). Hence, we expect a two stream instability to occur in the
ê2 direction [77].

The two stream instability grows until there is enough charge separation in the
electrostatic waves to produce an electric potential which is large enough to impede
the kinetic energy of the streams which flow across the magnetic field lines. When
this particle trapping occurs, bulk kinetic energy of the streams is converted into
thermal energy in the potential well. This turbulently heated plasma will synchrotron
radiate. In steady state, the momentum which is lost to the photon field through syn-
chrotron radiation will approximately balance the electromagnetic dynamo forces
in the ê2 direction for each species, separately (i.e., ∂J2/∂ t = 0). Equivalently, the
momentum equation in the ê2 direction for the two species can be subtracted to form
an Ohm’s law in which this balance will be true as well. This can be modeled by
a contribution to ∇ ·Tr which represents the distribution of four momentum in the
synchrotron radiation field. However, one can only get this term by modeling the
streaming instability to obtain the plasma temperature. This source of dissipation
provides the resistivity in a complicated Ohm’s law.
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Another contribution to ∇ ·Tr is inverse Compton scattering. This will be impor-
tant if the photon energy density is on the order of

(
BP
)2. Until the photon emission

from turbulent heating is calculated numerically, we do not know the energy density.
Normally, resistivity is understood in terms of collisions. In this excited state of

the plasma, plasma wave scattering provides the collisions. In a normal two stream
instability analysis these collisions occur between the electrostatic or Langmuir
modes. In this analysis, one would want to model the collision using electrostatic
waves that propagate across the magnetic field, the Bernstein modes [77].

9.6.2 The Anchor Point

We consider the downstream side of the dynamo for the paired wind system, the
anchor point defined by the condition BT = 0. We can crudely estimate the exit
parameters as the flow passes through the dynamo region of the flux tube. Since we
do not model the two stream instability and radiative instability of Sect. 9.5 due to
the very complicated plasma physics involved, we use the geometrically thin aspect
of the dynamo current layer to make approximations. Firstly, since the layer is thin,
we assume that the energy of the plasma obtained from the torsional tug of war is
contained primarily in the specific enthalpy, i.e., the transit time through the layer is
so short that the plasma does not have time to synchrotron radiate away its inertia
by the time it reaches the anchor (as in the slow shock atop the ergospheric disk in
Chap. 8). Thus, even though we must drop all of our perfect MHD relations, we still
have our conservation equations (5.20), (5.21) and (5.50b).

At the anchor, all of the energy flux is in mechanical form by the BT = 0
condition,

(
µu0)

anc =

[
e− Ω�

c

]
anc

cαanc
, (9.134)

where the subscript “anc” means to evaluate at the anchor.
From (5.20) and (5.21), if all of the energy is in mechanical form as in (9.134),

1−
(
βφ
)

anc

(
βφ

F

)
anc =

e−
ΩF �

c

e− Ω�
c

, (9.135)

where ΩF is the perfect MHD value in the wind and βφ
F

is computed as in (5.14)
from this perfect MHD value at the location of the anchor. We note this clarification
because the anchor is not a perfect MHD region and we still have an actual value of
ΩF at the anchor as defined in (9.1) and (9.2). The nonMHD (actual) value of ΩF at
the anchor differs from ΩF in the wind (slightly) and we designate its value by Ω̄F .
Similarly, we compute the field line azimuthal velocity, β̄ φ

F
, from Ω̄F using (5.14).
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We have at the anchor,

βφ
F

< β̄ φ
F

< βφ . (9.136)

From the initial conditions (9.23), (9.24) and (9.26) on I− inserted in (9.135),

1−
(
βφ
)

anc

(
βφ

F

)
anc = 5.61×10−5 (9.137)

For a thin dynamo layer, we use (9.128) for βφ
F

at the anchor to find
(
βφ
)

anc = 0.9949 , Z2 = 10−2 , (9.138a)(
βφ
)

anc = 0.9997 , Z2 = 10−3 . (9.138b)

The angular momentum conservation law in a magnetic flux tube, (9.29a), im-
plies that at the anchor, one has

k−manc ≈
ΩFΦ
4πkF

. (9.139)

For βφ ≈ −1, this reduces to an expression for the Lorentz factor in the ZAMO
frames,

(
u0

c

)
anc

≈− αZ̄BP

4πk−µc
, (9.140a)

(
u0

c

)
anc

≈ 5.93×104
[

mec2

µc2

]
, Z2 = 10−2 , (9.140b)

(
u0

c

)
anc

≈ 1.76×104
[

mec2

µc2

]
, Z2 = 10−3 . (9.140c)

Using the condition u ·u = −1, (9.140) and (9.138) yield

(
β

P
)

anc
≈−0.101 , if

[(
µc2
)

anc
mec2

]2

� 3.6×107 ,Z2 = 10−2 , (9.141a)

(
β

P
)

anc
≈−0.023 , if

[(
µc2
)

anc
mec2

]2

� 1.7×104 ,Z2 = 10−3 . (9.141b)

The constraints on the specific enthalpy at the anchor in (9.141) equate to the condi-

tion 1−
(
βφ
)2 	

(
u0
)−2 or

(
β P
)2

≈ 1−
(
βφ
)2. When Z2 = 10−2 this is clearly a

good approximation, for Z2 = 10−3 it is less certain. Combining (9.140) and (9.141),
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(
uP

c

)
anc

= 5.99×103
[

mec2

µc2

]
,

[
µ
me

]2

anc
� 3.6×107 , Z2 = 10−2 , (9.142a)

(
uP

c

)
anc

= 4.11×102
[

mec2

µc2

]
,

[
µ
me

]2

anc
� 1.7×104 , Z2 = 10−3 . (9.142b)

Expressing UA as in (9.67) and using (9.142),

(UA)anc ≈ 6.08×104
[

mec2

µc2

]
,

[
µ
me

]2

anc
� 3.6×107 , Z2 = 10−2 , (9.143a)

(UA)anc ≈ 1.59×104
[

mec2

µc2

]
,

[
µ
me

]2

anc
� 1.7×104 , Z2 = 10−3 . (9.143b)

Thus, comparing (9.143) and (9.140),
(

u0

c

)
anc

≈ (UA)anc . (9.144)

Equation (9.144) shows that the ingoing wind experiences a transition from being
magnetically dominated (see 9.53c and 9.59) above the dynamo region to being
inertially dominated below the dynamo. The torsional tug of war is fought primarily
in this dynamo layer and by the time that the flow reaches the anchor point, gravity
has won the battle.

We would also like to quantify some parameters in the anchor that typify the
dissipative process such as β̄ φ

F
. From (9.3) we find an expression for β̄ φ

F
:

(
E2′
)

anc
=
(

u0

c

)
anc

[(
βφ
)

anc −
(
β̄ φ

F

)
anc

]
BP . (9.145)

Consider a small azimuthally symmetric volume, V , ahead of the anchoring
point, where the switch-off current J2 flows. The volume V is the dynamo. The
dynamo is bounded from below by a cross-sectional surface in the flux tube, Sanc,
and from above by a surface, S+ (see Fig. 9.8). In this region, energy conservation
in the ZAMO frames yields

∫
J2F02dV ≈

∫ βφ
F

F12BP

4π
dS+ . (9.146)

Approximate equality in (9.146) is achieved as a consequence of the fact that above
the surface, S+ , the wind in the flux tube carries relatively small cross-field current
densities (see 9.72ab and 9.73a).

In the volume through which the switch-off current flows, the plasma is resis-
tively heated as discussed in Sect. 9.6.1. This is primarily a consequence of cross-
field dissipative currents. In the ZAMO frame, this circumstance is represented by

∫
J2E2′dV ≈

∫ d
dX0

[
nu0µc

]
dV . (9.147)
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Considering that there is far more thermal inertia at Sanc than at S+ , for a time
stationary flow, the integral form of the energy conservation law applied to (9.147)
yields

∫
J2E2′dV ≈−

∫ [
nuPµc

]
anc dSanc . (9.148)

For a narrow flux tube, we can crudely approximate the flow as homogeneous in the
dynamo. Then using (9.1) and β̄ φ

F
≈−1, we have

∫
J2E2dV∫
J2E2′dV

≈ BP

E2′ . (9.149)

Combining (9.145), (9.146), (9.148), (9.149) and (9.140a) one obtains the relation

(
βφ
)

anc −
(
β̄ φ

F

)
anc ≈

[
4πk− (µc)anc
αZanc (BP)anc

]
≈
( c

u0

)2

anc
. (9.150)

The point of this digression is that Ohmic heating requires in our analysis that the
inequality in (9.136) holds and more specifically,

(
βφ
)

anc ≈
(
β̄ φ

F

)
anc if

(
µc2

mec2

)
< 103 . (9.151)

From (9.141) - (9.143) and (9.151) we have an interesting approximate anchor
condition for β̄ φ

F
,

(
uP)

anc ≈
[
1−
(
β̄ φ

F

)2
]1/2

anc
(UA)anc . (9.152)

9.6.3 Causal Structure of the Dynamo

We are interested in understanding the microphysics that drives the dynamo current.
By (9.3), E2′ > 0 results because there is not enough of a contribution from F21 to
make E2′ vanish (i.e.,

∣∣F12
∣∣ is too small in the subcritical wind). The F2φuφ +F21u1

term in (9.3) is the unbalanced EMF that we were looking for in the ergosphere that
drives the dynamo in analogy to the Faraday wheel. However, unlike the Faraday
wheel, the electrostatic force, F20u0 , exceeds the EMF. In a unipolar inductor, the
EMF is the causative agent and if an electrostatic equilibrium cannot be achieved
(i.e., due to the existence of an external conduction path) a current flows. By con-
trast, an incoming Alfvén wave reflects off the ergosphere, imposing a global poten-
tial and therefore F20u0 . If the plasma is incapable of creating a large enough EMF
to cancel F20u0 , a current will flow to cancel off some of the electrostatic field.

When this current flows in an effort to cancel off the surplus electrostatic force,
charges are necessarily separated to establish a modified Goldreich–Julian charge
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density. Alternatively stated the value of ΩF in the magnetic flux tube changes in
the dynamo layer, as defined by (9.2). In order for F20u0 to be decreased, (9.1)
shows that

∣∣β̄ φ
F

∣∣ must decrease. In terms of the global potential, (5.14) indicates
that ΩF must increase to be closer to Ω in the dynamo layer in this eventuality.
From (9.151), (9.138) and (9.128), the field line angular velocity changes through
the dynamo layer,

∆ΩF

ΩF

=≈×10−1 , Z2 = 10−2 , (9.153a)

∆ΩF

ΩF

≈ 1.10×10−2 , Z2 = 10−3 . (9.153b)

One can interpret the dynamo region in terms of MHD wave structure. First note
that uP increases through the dynamo layer and therefore n decreases (mass conser-
vation). In Sect. 2.6, we showed that a fast rarefaction wave decreases the magnetic
field and the density. Consequently, black hole gravity acts like a fast rarefaction
piston in the ergospheric dynamo (see Fig. 9.8). The incoming Alfvén wave from
the particle creation zone excites a fast rarefaction wave as it reflects off the ergo-
sphere. The interaction is not localized, but extends from above the Alfvén point
to the anchor. As expected, the fast rarefaction carries strong cross-field currents
as pointed out in Sect. 2.6. Above the Alfvén point, a field aligned current system
is attained which represents a reflected Alfvén wave as discussed in Sect. 2.5 (see
Fig. 9.10). One might think of the region between the Alfvén point and the anchor
(∼1011 − 1012 cm thick) as a skin depth in which the incoming MHD wave is ab-
sorbed by the ergosphere.

One should note that frame dragging is responsible for the driving force for the
dynamo, E2′ in (9.3). If uφ could be more negative (even though it is already less
than “−104c”) then E2′ could be set to zero. However, frame dragging forces attempt
to make uφ more positive.

9.6.4 The Global Energetics of the Dynamo

The gedanken experiment of Sect. 9.3 showed that the reflected Alfvén wave from
the particle creation zone has more energy flux than the incident Alfvén wave. This
is a phenomenon expected when an Alfvén wave reflects off a rotating conductor.
For a magnetically dominated Alfvén wave, the ingoing wave is primarily a trans-
verse electromagnetic disturbance. It has been shown [139] that electromagnetic
waves that reflect off a rotating conductor are amplified. In the black hole case, the
conductor is the magnetosphere inside the Alfvén point that rotates with an angu-
lar velocity, ΩF . However, the electrical conductivity is very poor in the cross-field
direction and current flow only proceeds with large dissipation.

The global energetics are exactly the same as the ergospheric disk dynamo and
are delineated in Fig. 9.11. The dynamo is located near the light cylinder associated



302 9 Winds From Event Horizon Magnetospheres

v

vv
v

v
v

v
v

v

v

v
v

v

v

v
v

v
v

v

v
v

v

v

v

v v v

v v v v

Black
Hole

Cross Section of an
Azimuthally Symmetric

Magnetic Flux Tube

Causal Decoupling
Surface

Field Aligned Poloidal
Current System of

Paired Perfect
MHD Winds

(Reflected Alfvén Wave) 

Dynamo for Perfect
MHD Winds

Causally Disconnected
Dissipative Poloidal

Current System

Deflagration Wind

ΩH

α JP B P

Fig. 9.10 The poloidal current distribution in an axisymmetric magnetic flux tube that threads
the event horizon. In the perfect MHD wind zone, the poloidal current system is virtually field
aligned as is characteristic of a magnetically dominated wind. Strong cross-field poloidal currents
exist only in the dissipative regions of the wind as a frozen-in plasma is not free to cross strong
magnetic field lines and this greatly inhibits the cross-field electrical conductivity. The dissipative
region includes the dynamo for the paired wind system and the causally decoupled deflagration
wind below the dynamo. Note how the dynamo current appears to flow in a thin skin depth in
this global view, consistent with the reflected Alfvén wave interpretation of the dynamics. Strong
dynamo currents exist throughout the deflagration wind. Note that BT increases from zero at the
beginning of the deflagration wind to a maximum at the horizon, because of the dynamo currents,
J2, and Ampere’s law. As more BT is generated, the gradients ∂BT /∂X2 become larger as well
near the horizon. Thus, J1 increases near the horizon to support the cross-field gradient in BT in
accord with Ampere’s law. This explains why the poloidal current density is purely cross-field in
nature at the top of the deflagration wind

(
BT = 0

)
, and why it transitions to being nearly field

aligned as the wind approaches the horizon
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Fig. 9.11 The global energetics of a dynamo that powers an outgoing magnetically dominated
wind in a magnetic flux tube that threads the event horizon of a rotating black hole. Plasma is
prepared hot and on negative energy trajectories in the dynamo. The hot plasma eventually radiates
away its energy in a highly beamed distribution of photons (by the headlight effect) onto negative
energy trajectories (see Sect. 8.6 to review). This negative energy photon field spins down the hole
and extracts its reducible mass. Similarly, the plasma is of negative energy as well and all of the
inertia will eventually be absorbed by the hole, spinning it down in the process. Ultimately, it is the
rotational energy of the hole that powers the outgoing MHD wind [130]

with ΩF of the ingoing perfect MHD wind. The magnetic field rotates backward,
with respect to the black hole rotation direction, at the speed of light at the inner
light cylinder as viewed by all local physical observers. The dragging of inertial
frames pulls plasma forward across the large scale magnetic field in the azimuthal
direction near the light cylinder. This ensures subluminal rotational velocities of the
plasma in this region at the expense of perfect MHD. The resulting proper electric
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field drives strong cross-field dynamo currents which support the poloidal Poynt-
ing flux, SP, in the magnetically dominated paired perfect MHD wind system. The
cross-field currents in the dynamo region affect the conversion of energy (angular
momentum) flux, ke(k�), from mechanical to electromagnetic form by J ·EP force
(J ×BP torque). The plasma in the dynamo region rotates backward at nearly the
speed of light as a consequence of approximate corotation with the magnetic field as
viewed by a ZAMO. Thus, βφ � −1 and u0 	 1. The plasma has a huge relativisti-
cally induced inertia and a highly negative angular momentum about the symmetry
axis of the black hole. Such states were shown in Chap. 3 to have a large negative
specific global energy, ω� 0, and are well defined in the ergosphere (where the dy-
namo resides). The plasma is relativistically hot, so it radiates violently. However,
since βφ � −1 for the emitting plasma, the relativistic headlight effect beams the
radiation along negative energy (ω < 0), negative angular momentum trajectories.
The influx of negative energy (angular momentum), plasma and radiation is effec-
tively an outflow of energy (angular momentum) ke(k�), from the hole. Therefore,
in a global sense, it is the rotational energy of the black hole (the reducible mass)
that powers the dynamo and outgoing wind. Notice the incredible similarity with
Fig. 8.6 describing the global energetics of the ergospheric disk. As discussed in
Chap. 7 this is not a coincidence, but is mandated by GHM.

From (9.23) and the initial data on I+ , the bipolar winds from the horizon magne-
tosphere can deliver ∼ 1043 −1044 ergs/sec in Poynting flux to asymptotic infinity.
This is two to three orders of magnitude weaker than a strong ergospheric disk wind.
The difference in energy can be thought of as arising because ingoing horizon mag-
netospheric winds go superfast before the gravitational field has a chance to get a
“good grip” on the wind and establish a large field line angular velocity ∼ΩH .

The resulting ergospheric dynamo establishes a global current system in the
paired wind system. The topology of the poloidal current system is indicated quali-
tatively in Fig. 9.12.

9.7 The Deflagration Wind

As the flow exits the anchor region of the flux tube it becomes causally decoupled
from the paired perfect MHD wind system since it passes through the dissipative
fast critical surface defined by (9.5). Even though any dynamo behavior in this dis-
sipative deflagration wind cannot be communicated to the outgoing wind, we note
some of its general properties below.

9.7.1 The Near Zone

As the wind exists the flow decoupling surface (the anchor), it becomes an ingoing
wind that is determined by initial data on this boundary surface, r (θ)anc,
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Fig. 9.12 The topology of the poloidal current system of a paired wind emanating from the horizon
magnetosphere of a rotating black hole. Note that the return current flows outside of the perfect
MHD wind zone [138]

BT = 0 , r = r (θ)anc , (9.154a)

k� = km , m � 0 , r = r (θ)anc , (9.154b)

ke = kω , ω � 0 , r = r (θ)anc , (9.154c)

Jn = 0 , r = r (θ)anc , (9.154d)

F20 < 0 , r = r (θ)anc . (9.154e)

The ingoing deflagration wind has its own current system that is causally indepen-
dent of that in the outgoing wind (see Figs. 9.8 and 9.10). The dynamo that exists
above the anchor also exists in the near zone of the deflagration wind just below
the anchor. From Ampere’s law applied to (9.154a), one knows the poloidal cur-
rent density normal to the wind decoupling surface, Jn, must vanish as indicated in
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(9.154d), note: Jn is not J1 in general. Since the frame dragging induced dynamo ef-
fects continue to operate at r � r (θ)anc, more cross-field current flows in an attempt
to cancel the electrostatic force F20u0 in (9.3). Then by Ampere’s law (3.61b),

F12 � 0 , r � r (θ)anc . (9.155)

The toroidal magnetic field actually switches sign at the onset of the ingoing defla-
gration wind.

We can see the radiative instability in full bloom in this region. Recall that even
at r � r (θ)anc, the substantial negative toroidal magnetic field was not bent enough
(not negative enough) to allow the plasma to slide forward relative to the corotating
frame of the field and avoid relativistic rotation velocities and the associated large
radiation losses. In the deflagration wind, not only is BT not negative enough, it
is of the wrong sign for the plasma to avoid relativistic rotation for r � r (θ)anc!
Furthermore, the term F21u1 in (9.3) becomes another dynamo term for the driving
force E2′ in the deflagration wind (see Fig. 9.13).

In order for the plasma to have enough inertia to cross the field lines it needs
βφ � −1 in the near zone. Since we assume that the plasma has some conductive
properties in the near zone, we expect∣∣∣E2′

∣∣∣� BP , r � r (θ)anc , (9.156a)

and from (9.4) since F12 is still small we have

βφ � −1 , r � r (θ)anc , (9.156b)
ΩF �Ωmin , r � r (θ)anc . (9.156c)

9.7.2 The Breakdown of Near Zone Physics

The approximations used to describe the near zone physics in the last section break
down because of the additional dynamo term F21u1 in (9.3). As the deflagration
wind propagates inward, its dynamo keeps pumping cross-field inertial currents, J2.
By Ampere’s law (3.61b), F21 keeps growing. As long as F21 � BP the approx-
imations in the last section are justified. As F21 → BP for r < r (θ)anc, (9.4) and
(9.156a) imply that

βφ − β̄ φ
F

< 0 , F12 	 0 , r < r (θ)anc . (9.157)

These relations are reversed from the ingoing perfect MHD wind and are opposite
to that found in Chap. 7 during the analysis of the torsional tug of war. However,
that analysis depended on βφ

F
representing the rotation rate of rigid magnetic field

lines. In the dissipative flow, there is no such interpretation of rotating magnetic field
lines. By contrast, β̄ φ

F
is merely a quantity defined implicitly by (9.1) and is related

to the electrostatic potential drop across the magnetic field lines by (5.14) and (9.2).
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Fig. 9.13 The dynamics of charge separation in the ingoing deflagration wind. The dynamo force
in the near zone of the deflagration wind is the same as in the adjacent dynamo for the paired
MHD wind system. The electrostatic field F02 is larger than the F2φ βφ , opposing EMF, in mag-
nitude since βφ is limited in magnitude to less than one (equivalently frame dragging imposes
dφ/dt > Ωmin). Charges separate to cancel the excess electrostatic field F02, as indicated in the
figure. There is a small additional dynamo driving term in this same direction, F21β P

. The charge
separation and the consequent cross-field current continues to flow downstream due to this dynamo
action. By Ampere’s law, F12 increases downstream and in the intermediate zone of the deflagra-
tion wind, F21β P ∼ F20. The existence of two dynamo forces requires that charge continue to
separate across the magnetic field lines. Eventually, the electrostatic field F02 is canceled off by
this charge separation. However, a strong F21β P

force persists in the asymptotic zone as charges
are dragged radially across the toroidal magnetic field near the horizon by the powerful force of
black hole gravity. The charge separation continues near the horizon and the electrostatic field
direction is reversed from its initial condition in the near zone, F02 < 0. As α → 0, the ingoing
wave condition F12 ≈ F20 is achieved and the sign of the Goldreich–Julian charge density, ρG−J ,
is opposite its initial value as a consequence of the ubiquitous cross-field dynamo which separates
charge across the magnetic field the entire length of the deflagration wind

The reversal in sign of (9.157) relative to the upstream ingoing wind reflects
the fact that the plasma wind which was initially magnetically dominated has been
transformed into an inertially dominated wind by black hole gravity as anticipated
in Chap. 7.
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9.7.3 The Asymptotic Wind Zone

As is typical of complicated flows, it is much easier to understand the asymptotic
zone and near zone than the intermediate zone in the region between them. From
(9.4) and the horizon boundary conditions (3.94),

lim
r→r+

F12 ≈ β̄ φ
F

BP = F20 . (9.158)

We noted in the last section that for large positive values of F12 there are two signif-
icant dynamo terms, F21u1 > 0 and F20u0 > 0. The instability generates more and
more J2, thus there is nothing to limit the growth of the F21u1 term (since Ampere’s
law keeps increasing F12 downstream in the deflagration wind). By contrast, the
charge separation proceeds under the action of E2′ in a sense that tends to negate
the electrostatic force F20u0 . Thus, we expect that eventually (see Fig. 9.13),

F21u1 > F20u0 , r � r+ . (9.159)

The dynamo effect near the horizon is dominated by the radial force of gravity
as opposed to the dragging of inertial frames. Plasma is pulled radially across the
toroidal magnetic field creating a cross-field dynamo as indicated in (9.159). The
effect of (9.159) is a dynamo that keeps increasing BT all the way to the hole with

lim
α→0

J2 ∼ +α0 . (9.160)

From the law of current conservation in time stationary form in the ZAMO frames,
as given by the divergence law in (3.36b), we can find J1 as well,

∇(3) (αJ) = 0 . (9.161)

The derivatives in (3.36) are expressed in (3.25) and (3.33). Using the asymptotic
form of the differential operators in (3.25) and (3.33) as α→ 0, we find from (9.161)
and (9.160) that

lim
α→0

J1 ≈ Jr ∼ +α−1 . (9.162)

Inserting (9.160) into Ampere’s law (3.62b) we obtain the asymptotic scaling,

lim
α→0

F12 ∼ +α−1 . (9.163)

From (9.163) and (5.17), the toroidal magnetic field density is positive at the
horizon,

lim
α→0

BT > 0 , (9.164a)

and by (9.158) and (5.14),
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lim
α→0

β̄ φ
F

= +∞ , (9.164b)

lim
α→0

ΩF >ΩH . (9.164c)

Furthermore, (9.158) and (9.163) imply that

lim
α→0

F20 = F12 > 0 . (9.165)

In the near zone of the deflagration wind and the ingoing perfect MHD, F20 was
negative. In order to understand the sign change in (9.165), note that by (9.159),
we expect the dynamo term F21u1 to dominate the dynamo forces deep in the ergo-
sphere. The net result of this force is to separate charges across the field lines that
will increase F20 (i.e., cancel off the initial value of F20 in (9.154e)). At some point,
F20 is canceled off, but at this stage the dynamo does not operate due to electrostatic
forces, but to the motion induced EMF, F21u1 . The dynamo force keeps separating
charges (irrespective of the electrostatic force) in the same sense eventually revers-
ing the direction of F20 as indicated in (9.165) and Fig. 9.13.

9.8 The Unique Physical Solution

It was shown in [136] that another paired wind solution exists for the initial data on
I+ and I− defined in Sect. 9.4.1. For that paired wind system, both the ingoing and
outgoing winds obey perfect MHD everywhere. This is the analog of the Blandford–
Znajek solution [66] forΩF = (1/30)ΩH . The outgoing wind is subrelativistic, β P ∼
0.1, and it is a supercritical wind as discussed in Sect. 5.5 and Fig. 5.2.

The paired outgoing minimum torque/ingoing deflagration wind described in this
chapter is a viable physical solution, if the accretion flow is passive and the event
horizon magnetosphere is seeded by gamma ray pair production, for three reasons:

1. It extracts the minimum energy and angular momentum from the black hole of
any paired wind system for ΩF = (1/30)ΩH (i.e., it is the minimum torque out-
going wind).

2. There is a causal structure consistent with the properties of MHD waves that
drives the current system in the ergospheric dynamo.

3. The second law of black hole thermodynamics equates the horizon surface area,
A, in (1.34) to entropy (see [80] for a proof). Thus, for the paired wind system
we can write using (5.20) and (5.21),

dSH =
kB

4�
dAH =

2πkB

κ�
[ΩF −ΩH ]d(Ma) , (9.166)

where “d(Ma)” is the angular momentum deposited into the hole, d(Ma) < 0,
and “SH ” is identified with horizon entropy in [80]. Thus, by (9.166) the min-
imum torque solution has an order of magnitude less entropy generation in the
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horizon than the paired perfect MHD wind system (see 5.52 with β P ∼ 0.1).
Consequently, in a global context, the full general relativistic theory of the paired
wind system identifies the paired outgoing minimum torque/ingoing deflagra-
tion wind as the minimum entropy generating solution (surprisingly, it is not the
“dissipation-less” paired perfect MHD winds).

Point “3” above is significant based on the “principle of minimum entropy pro-
duction.” In Chap. 35 of [140] is a textbook statement of the principle for irreversible
process such as the one described by (9.166) for ΩF < ΩH (see [15]). The steady
state of the system achieves a minimum rate of entropy production consistent with
the external constraints that prevent equilibrium (if the constraints were removed,
equilibrium is achieved and dS = 0).

Based on points 1–3 above, in certain circumstances, the paired outgoing mini-
mum torque/ingoing deflagration wind solution described in this chapter is a phys-
ical solution. More importantly, it shows that if the perfect MHD assumption is
violated in a tenuous plasma with pair production, large departures from the family
of perfect MHD solutions are indicated.



Chapter 10
Applications to the Theory of Extragalactic
Radio Sources

This chapter is the most speculative part of the book. We attempt to apply the ideal-
ized theory of black hole GHM to actual astrophysical situations. Remember, from
the Introduction, that the motivation for studying black hole GHM was to describe
radio loud AGNs. That is the intent of this chapter. One can always adjust param-
eters such as ΩH , M, a and Φ so that a dimensional analysis yields the observed
luminosity of extragalactic radio sources. However, this would not be a convincing
argument that black hole GHM has any physical relevance in radio loud AGN. We
begin the chapter with a look at evidence for a structure to the central engine in
relation to the unified scheme for radio loud AGN that was discussed in the Intro-
duction. The remainder of the chapter shows how these spectral diagnostics of the
central engines occur naturally in the black hole GHM theory of extragalactic radio
sources.

10.1 Spectral Diagnostics of Blazar Central Engines

In principle, there must be some fine structure associated with the central engines
of extragalactic radio sources since there are physically three distinct components:
the accretion disk, the ergospheric disk and the horizon magnetosphere. Each has a
unique structure replete with its unique poloidal magnetic flux and distribution of
magnetic field line angular velocities. Thus, it is hard to envision how a single jet
(single pair of bipolar jets) is driven by three distinct engines. Unfortunately, most
of the work in this field has concentrated on single jet theories of radio loud AGN.
Notable exceptions are found in [141], [142] and more recently [143]. Strong argu-
ments against the possibility of a single jet in certain sources are presented in [141]
and [142]. In particular, certain quasars detected with the Compton Gamma Ray Ob-
servatory have strict bounds on the annihilation radiation emitted from the source.
This was used to bound the number of positron-electron pairs in the jet in [141].
For quasars with strong FR II radio emission, [141] and [142] noted a problem with
the single jet theory. Specifically, the high energy gamma ray emission measured by
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the EGRET telescope in the space based observatory as well as the energy in the ex-
tended lobe emission (as discussed in Table 1.2) provide two additional independent
constraints. Combining the three constraints above, it was shown in [142] that if the
high energy γ-rays are from an external Compton scattering (ECS) process [144]
or a self synchrotron Compton (SSC) process [145] then there is not enough inter-
nal energy in the magneto-fluid in the γ-ray emitting region to support the energy
flow to the FR II radio lobes of many sources (3C 279, for example). Thus, it ap-
pears based on this analysis alone that the FR II radio structures are supported by
a jet that is largely distinct from the EGRET detected radiating plasma (which is
commonly believed to be from a relativistic jet as well).

The broadband synchrotron spectrum of magnetized jets can tell us something
about the structure of the central engine which created them, if we can quantify
how the emissivity of such jets has evolved cosmologically (i.e., how high redshift
jets differ from jets in low redshift AGNs) or if the properties of the spectrum are
correlated with other observable characteristics of AGNs. A possible breakthrough
in this regard was made in [146]. These observers were interested in making quasi-
simultaneous broadband spectral measurements of blazars (in this chapter we define
a blazar as an AGN with a strong compact radio core, i.e., strong radio emission con-
centrated in a region less than 0.25 at 5 GHz, which is the resolution of the VLA in
A-array). Since blazar emission is highly variable in the radio and submillimeter
bands, one needs simultaneous observations in order to get the detailed shape of
blazar broadband spectra. Logistically, this is very difficult and quasi-simultaneous
spectra are often sampled on time frames spanning as much as two weeks. Brown
et al [146] noted that many blazar spectra are clearly “double humped” and decom-
pose naturally into two distinct synchrotron components (see Fig. 10.1), with one
peak at cm wavelengths and the other at mm wavelengths.

This finding was pursued in [142] with a larger sample of 118 quasi-simultaneous
blazar spectra. To properly interpret the spectra one needs to note that a “double
humped” structure is the ultimate simplification of the physical phenomenon. Each
peak probably involves multiple components that are synchrotron self absorbed at
low frequencies (see [34] for a discussion of synchrotron self absorption). The two
peak simplification requires that in each of the two clusters of synchrotron com-
ponents, one component is clearly dominant. Quasi-simultaneous, VLBI measure-
ments (measurements that can resolve the 0.25 VLA radio core) at more than two
frequencies, [147–151], show that strong VLBI knots and the unresolved core (see
the jet structure in Fig. 1.10 for example) have spectral flux peaks staggered across
the microwave band (i.e., 5–40 GHz). Thus, it is likely in principle (and true in prac-
tice) that a source could have two or more peaks at centimeter wavelengths without
violating the basic concepts of the “double humped” model of a cm peak and a
mm peak.

The nearby blazar 3C 273 provides the best possibility of sampling the radio to
submillimeter band with a quasi-simultaneous spectra and a good signal to noise ra-
tio above 300 GHz. Figure 10.2 provides an excellent example of the double humped
spectra of 3C 273 [152]. The centimeter peak is identified at the frequency ν1 = 45
GHz (in the quasar rest frame) and the mm peak is identified at ν2 = 320 GHz
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Fig. 10.1 A sample of quasi-simultaneous broad band spectra of blazars from [146]. Note the
ubiquitous “double hump” structure. There is one spectral peak at centimeter wavelengths and
another at millimeter wavelengths. The two peaks were fit with synchrotron self absorbed spectra
for all of the sources [146]. Note that the optical data seems to be depicted far more accurately as
the high frequency tail of the mm peaked synchrotron component rather than the high frequency
tail of the cm peaked synchrotron component for each source. The sample includes HPQs (0420-
014, 3C 279, 3C 345 and OV 236), an FR II BL Lac (1308+326), an FR I BL Lac (OJ 287) and an
unusual LPQ (0736+017). The plots are published with the permission of Ian Robson

(in the quasar rest frame). Note that the mm peak is not necessarily a true local flux
maximum, but can appear as an inflection point in the spectral flux density (i.e., for a
strong cm peaked synchrotron component, the flux density from the high frequency
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Fig. 10.2 The best quasar compact core for obtaining a high quality quasi-simultaneous spectrum
is the nearby blazar 3C 273. Being “so close” to earth allows for a measurable flux of high fre-
quency submillimeter radiation as in this spectrum from [152]. This figure is useful for depicting
the location of the cm and mm peaks of the spectra of blazars, ν1 and ν2 , respectively due to its ex-
cellent frequency coverage. Note that as a consequence of cosmological redshifting that the AGN
rest frame frequencies, ν1 and ν2 , differ from the earth based frequencies that are used to label
the horizontal axis in the figure. The spectrum is characteristic of an LPQ with a large ∆ value of
0.48. Note that the mm peak is not necessarily a local flux maximum, but can be manifested as an
inflection point in the high frequency tail of the cm peak. This figure is printed with the permission
of Ian Robson

tail at mm wavelengths can exceed that of the mm peaked synchrotron component,
thus the superposition of the mm peak will only cause the high frequency tail of the
cm peaked synchrotron component to flatten out in the mm band). The shapes of
blazar spectra are continually changing due to flaring effects. Thus, a snapshot of a
blazar spectra at just one instance of time might not be representative. Each blazar
does seem to have a quiescent background state on which the flares are superim-
posed [153]. The quiescent background state and flaring behavior characterize the
synchrotron emissivity of the jet.

In order to quantify the flaring and quiescent behavior of the jet from a blazar
we need many quasi-simultaneous spectra and a numerical description. To this end,
[142] introduced a parameter, ∆ , that is the ratio of the flux density at the cm peak,
(Fν)cm ≡ Fν (ν1), to the flux density at the mm peak, (Fν)mm ≡ Fν (ν2),

∆ ≡ log
[

(Fν)cm

(Fν)mm

]
. (10.1)

We note some of the astoundingly strong correlations of this parameter with other
blazar properties in the remainder of the section.
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10.1.1 BL Lacs and Quasars

One of the strengths of this analysis is the clear distinction that it makes between
BL Lac objects and core dominated radio loud quasars. These two classes of objects
have very similar radio core morphologies, angular sizes and radio fluxes. However,
BL Lacs have weak or no broad emission lines and quasars have strong broad emis-
sion lines. Furthermore, quasars have a strong UV thermal component (the big blue
bump) that, by contrast, is generally much weaker in BL Lacs. Thus, it is commonly
assumed that the accretion states of BL Lacs (weak accretion systems) are vastly
different than quasars (strong accretion systems). Hence, the ∆ values of these two
classes of objects relate physically to the accretion state.

It was found in [142] that quasars have ∆ values larger than those of BL Lacs
at the 99.9997% significance level according to a Wilcoxon rank sum test (see
the histogram of Fig. 10.3). Even more significantly, one can distinguish the high
polarizations quasars, HPQs, (HPQs are defined by optical continuum polariza-
tions >3% while low polarizations quasars, LPQs, have optical continuum polar-
izations <3%) from the BL Lacs (which are also a class of high optical polarization
objects) with this same parameter. These two classes of objects are considered the
closest in characteristics of any two in the unified scheme. Yet, ∆ is larger in HPQ
spectra compared to BL Lac spectra at the 99.997% significance level according
to a Wilcoxon rank sum test [142]. Thus, ∆ is an excellent diagnostic of the fine
structure of the central engine.

0.0–0.2 1.0

∆

BL Lacs

QSOs

N
um

be
r 

of
 S

ou
rc

es
 in

 B
in

2

4

6

8

10

–0.1 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Fig. 10.3 A histogram of the distribution of BL Lacs and QSOs as a function of the parameter, ∆ ,
the logarithm of the ratio of the flux density at the cm peak to the flux density of the mm peak. The
BL Lacs are indicated in the histogram by the shaded regions [141]
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Table 10.1 Average spectral properties of core-dominated radio sources

Class logν1 logν2 %F < ∆ >

QSOs 10.46±0.28 11.68±0.20 23.3 0.490±0.213

HPQs 10.53±0.30 11.70±0.20 24.9 0.424±0.162

LPQs 10.38±0.26 11.66±0.24 21.2 0.537±0.241

BL Lacs 10.28±0.27 11.48±0.16 70.2 0.212±0.156

Table 10.1 (from [142]) delineates these distinctions further. Column (1) is the
class of object and columns (2) and (3) are the averages of the logarithm of the
cm peak and mm peak frequencies, respectively. Column (4) is the percent of the
time that the mm peak is actually a flux density local maximum as opposed to an
inflection point in the spectrum. Column (5) is the average ∆ factor for each class
of blazar. The result of the ∆ factor analysis and Table 10.1 indicate that BL Lacs
have prominent mm peaks in their spectra and core dominated radio loud quasars
have prominent cm peaks in their spectra. In an absolute sense, [142] shows that
BL Lacs are blazars with weak cm peaks in their spectra. Similarly, this infers a
correlation between accretion luminosity and the strength of the cm emission in
blazar radio cores.

10.1.2 Other Correlations

We note some other correlations of physical parameters with ∆ in blazar spectra that
were found in [142].

1. Large values of ∆ are correlated with strong extended radio emission, PE , at the
99.97% significance level (see the histogram in Fig. 10.4).

2. Large values of ∆ are correlated with large redshifts at the 99.997% significance
level, which is likely a redundancy with the correlation with radio power in “1”
(see the histogram in Fig. 10.5).

3. Small values of ∆ are correlated with high continuum optical polarization at the
99.99% significance level (see the histogram in Fig. 10.6).

4. QSOs that have been detected as γ-ray sources by EGRET have smaller ∆ values
than other core dominated QSOs at the 98.5% significance level (see the his-
togram in Fig. 10.7). However, if one just looks at the HPQ subpopulation, the
correlation is weaker with a significance level of only 92.3% (see Fig. 10.8).

We note one other important finding of [142] that was deduced from the analysis
of multi-frequency, quasi-simultaneous VLBI maps. The plasma responsible for the
cm peak is near the based of the VLBI jet or in the unresolved core (distances <10
pc from the central engine), and the mm peak-emitting plasma is buried deep inside
of the VLBI core.
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Fig. 10.4 A histogram of the logarithm of the extended radio emission, PE , for blazars with ∆ < 0.3
(the shaded regions) and ∆ ≥ 0.3 (the unshaded regions) [141]
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Fig. 10.5 A histogram of the redshift distribution for the sample of blazar cores in [142] with
∆ < 0.3 (the shaded regions) and ∆ ≥ 0.3 (the unshaded) [141]
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Fig. 10.6 A histogram of the percent continuum optical polarization for the sample of blazar cores
in [142] with ∆ < 0.4 (the shaded regions) and ∆ ≥ 0.4 (the unshaded) [141]
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Fig. 10.7 A histogram of the distribution of γ-ray loud quasars detected by EGRET (shaded) and
quasars that have never been detected as strong γ-ray emitters (unshaded) from the sample of
blazars in [142] as a function of ∆ [141]
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Fig. 10.8 A histogram of the distribution of γ-ray loud HPQs detected by EGRET (shaded) and
HPQs that have never been detected as strong γ-ray emitters (unshaded) from the sample of blazars
in [142] as a function of ∆ [141]

10.2 The Black Hole GHM Theory of the Central Engine

We describe the correlations found in Sect. 10.1 in terms of the black hole GHM dy-
namos described in Chaps. 8 and 9. This section describes a model in which the hori-
zon magnetospheric jet is nested within an ergospheric jet as it must be if they exist
(see Fig. 10.9). The horizon jet could have been chosen to be largely electrodynamic
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Fig. 10.9 The dual jet GHM
model of the blazar central en-
gine. The relativistic jet driven
by the event horizon magne-
tosphere is nested within the
jet driven by the ergospheric
equatorial plasma. The di-
versity of observed blazar
properties is associated with
the relative strengths of the
two black hole driven compo-
nents. Quasar central engines
are predominantly the ergo-
spheric jet and BL Lacs have
a prominent horizon magne-
tospheric jet. The ergospheric
jet produces a cm peaked
synchrotron self absorbed
spectrum and the horizon
jet radiates a mm peaked
synchrotron self absorbed
spectrum. This dichotomy of
jet properties allows for an
interpretation of the strong
correlations with ∆ displayed
in Figs. 10.3–10.7
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in nature as suggested in the perfect MHD solutions of [111], however this exercise
is designed to show how to parameterize all the GHM dynamo regions. There is no
justification that the GHM horizon jet is more reasonable than a perfect MHD elec-
trodynamic jet. Furthermore, the two jets are physically distinct in this dual jet sce-
nario. The horizon magnetosphere driven jet will be called the “blazar jet” since we
will empirically associate it with properties commonly used to distinguish blazars
(i.e., high optical continuum polarization, γ-ray emission and rapid variability). The
horizon magnetosphere driven jet (see Chap. 9) is identified as the main contributor
to the mm peak of the blazar spectra. A BL Lac object can be an almost naked hori-
zon jet. Quasars on the other hand are identified with rapidly rotating central black
holes which therefore have large ergospheres. The cm peaked synchrotron compo-
nent is associated with an ergospheric disk driven wind (see Chap. 8) in quasars and
this dominates the emission on VLBI (parsec) scales.
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10.2.1 The Distribution of Poloidal Magnetic Flux

The structure of the central engine depends strongly on the distribution of poloidal
magnetic flux since the energy flux in the minimum torque wind ∼ Φ2 (see 5.51).
The essential physics is that the accretion disk is a pathway for magnetic flux to-
ward the black hole, not a sink for magnetic flux. This is true for any flux created
within the disk by dynamo effects or that which is accreted from large distances.
Secondly, as discussed in Sect. 8.1, the horizon is not a likely to be an efficient
sink for magnetic flux either. However, we will discuss the possibility of magnetic
flux being temporarily trapped between the inner edge of the accretion disk and the
event horizon (see Fig. 8.1). A large uncertainty in these models is the fate of the
accreted flux in the inner ergosphere in the presence of a realistic resistive, recon-
necting plasma (see Sect. 11.5.7 for 3-D numerical results that support this posited
evolution of accreted flux).

10.2.1.1 The Horizon Boundary Condition

Figure 10.10 depicts a poloidal field distribution for an extreme case, a/M = 0.996,
with strong fields built up by substantial accretion. The figure is particularly inter-
esting because it illustrates the details of the fate of accreted flux (see Sect. 8.1) near
the horizon in a global context. The horizon boundary condition on charge neutral
flows of “attracting” the plasma and “repelling” the magnetic flux is responsible
for the magnetic field reconnection near the horizon as discussed in Sect. 8.1. This
is a consequence of the “no hair” theorem derived in Chap. 4. That theorem was
derived with the vacuum Maxwell’s equations and was extended to the case of a
plasma-filled magnetosphere in Chap. 8 as is the circumstance here. In Chap. 8, it
was stressed that this horizon boundary condition is merely an assumption and it is
not true if large charge separation occurs in the inner accretion flow. One can cast
these results in framework of the global geometry of Fig. 10.10 as well. Recall from
the discussion of Sect. 8.1 that the azimuthal current in the stationary frames, Ĩφ ∼α ,
in the intermediate zone (roughly defined by 0.55M < L < 1.0M in Fig. 10.10) and
Ĩφ ∼ α2 in the asymptotic zone (L < 0.55M in Fig. 10.10). Thus, the total azimuthal
current in the equatorial accretion flow is finite. The total Ĩφ is the source of the
l = 1 moment of the magnetic field. By (4.89) we know that all other moments of
the magnetic field must vanish at the horizon for a charge neutral accretion flow,
otherwise the poloidal magnetic field would diverge at infinity. The magnetic flux
through the event horizon is therefore given by (4.90c) and does not grow in time
for time stationary accretion flows. The dynamics that yield the frame dragging ef-
fects in the no hair theorem, Ĩφ ∼ α2, are a result of the horizon boundary conditions
(3.94) and (3.95). Thus, they exist in any magnetosphere whether it be vacuum or
plasma-filled. This is the essential physics behind the horizon boundary condition
for accreting magnetic flux described in Sect. 8.1.
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Fig. 10.10 The magnetic field structure in the environment of an extremely rapidly rotating black
hole, a/M = 0.996. For the sake of clarity, only the magnetic field lines in the northern hemisphere
are extended away from the equatorial plane. The magnetic field lines are indicated by the family
of curves with arrowheads. Notice that the magnetic field strength of the flux permeating the event
horizon is much weaker than in the ergospheric disk, BP

E
. Various points of interest that are dis-

cussed in the text are indicated by both their Boyer–Lindquist radial coordinate, r, and their proper
distance from the event horizon, L [153]

10.2.1.2 Buoyant Magnetic Flux Tubes

The reconnection process (described in Sect. 8.1) strips accreting magnetic flux
tubes of their plasma as they approach the event horizon. The flux tubes stripped
of their plasma become buoyant and are pushed outward by magnetic pressure at
the Alfvén speed (see Fig. 8.5). The buoyant flux tubes get stuck in the annular
gap (between the horizon and accretion disk) because surface currents along the
highly conductive inner edge of the accretion disk or flow prevents re-entry into
the disk for as long as diffusion timescales. As this process continues, the magnetic
field strength in the ergosphere, BP

E
, can grow substantially. Eventually, the magnetic

pressure,
(
BP

E

)2
/8π , can push the inner edge of the accretion disk out beyond the

last stable orbit at rLS .
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10.2.1.3 The Magnetosphere-Accretion Flow Interface

The radial momentum equation integrated across the boundary between the mag-
netosphere of trapped flux tubes (designated by the subscript M) and the accretion
flow (designated by the subscript D) at r ≡ rb yields the pressure balance condition,

(Pr +Pg +Pram +PB)
M

= (Pr +Pg +Pram +PB)
D

, (10.2)

where Pr, Pg, Pram and PB are the radiation, gas, ram and magnetic pressures in the
radial direction, respectively. At the boundary, we expect a fairly isotropic radiation
pressure,

(Pr)M
≈ (Pr)D

. (10.3)

Furthermore, the gas density is much smaller at r < rb than in the disk, so

(Pg)M
� (Pg)D

. (10.4)

When accretion advects predominantly the same direction of BP
D

for any length of
time, the flux trapped inside rb will continue to grow so that

(PB)
M
	 (PB)

D
. (10.5)

Equations (10.2)–(10.5) imply that a magnetized accretion flow in the equatorial
plane satisfies the approximate pressure balance at rb ,

(PB +Pram)
M
≈
(
PG +Pram

)
D

. (10.6)

The critical magnetic field strength, B
P
c , is defined through (10.6) as the magnetic

pressure necessary to choke the accretion flow, i.e., (Pram)
M

= 0:

BP
c ≡

√
8π (Pg +Pram)

1
2
D

. (10.7)

When BP
M
� BP

c , one can have an accretion disk with a well defined inner bound-
ary at rb . The interface resembles a classic Rayleigh–Taylor instability (gas pressure
balancing the effective gravity including centrifugal and Coriolis forces); a gravita-
tional instability in which the magnetic field plays a negligible role. The accretion
proceeds nonuniformly inward of the boundary as a result of instabilities, resulting
in the sporadic inflow of large plasma clouds that cross the inner boundary of the
accretion disk and fall toward the horizon.

When BP
M
≈ BP

c (as defined in 10.7), the Kruskal–Schwarzschild hydromagnetic
analog of the Rayleigh–Taylor instability is attained. Magnetic flux accretes into
the ergospheric gap in the form of flutes as in flat spacetime [77]. A full general
relativistic calculation shows that the flutes spin about their symmetry axis due to
Coriolis forces in their rest frame induced by the rotating geometry (the dragging of
inertial frames).
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10.2.1.4 The Critical Magnetic Field Strength

According to (10.7) the magnetic field strength in the ergosphere can not exceed BP
c ,

hence the term “critical magnetic field.” The most interesting point concerning BP
c is

that if the accretion of magnetic flux persists long enough for BP
M

to attain BP
c then BP

M

and BP
E

in the inner regions of the ergosphere will remain approximately constant
as more flux is accreted. In this scenario, the Kruskal–Schwarzschild interface is
dynamic as magnetic pressure pushes it farther outward and one can have rb > rLS .
Figure 10.10 is an extreme example of this circumstance. The scenario sketched
above would result from the intense accretion of a mildly magnetized plasma for
long periods of time (i.e., > 106 years), as is likely in quasar central engines. In
such a scenario there is probably no Keplerian disk with a well defined inner edge,
but a continuous accretion flow toward the horizon. Even though poloidal flux of
both signs is likely to be accreted, over long periods of time, the value of the mag-
netic field experiences stochastic variations and a substantial nonzero field in the
ergosphere can be attained. The magnetic flux in the ergosphere, ΦE , is much less
than the total magnetic flux accreted, Φacc, during the accretion history of the AGN,

Φ2
E
�
∫ d

dt
[Φacc]

2 dt . (10.8)

If ΦE becomes large in a luminous quasar, it can create enough magnetic pressure
to push the interface with the accretion flow out beyond the last stable orbit, rLS , as
shown in Fig. 10.10. Such a scenario requires large accretion of angular momentum
onto the central black hole and we expect a/M to approach its maximum value.
This is reflected in the choice of a/M = 0.996 in Fig. 10.10. The geometry in the
figure represents the most powerful central engine attainable in black hole GHM.
This extreme accretion state should be a rare occurrence in AGN.

The value of BP
c depends on the details of the accretion process. Consider an

accretion flow with a bolometric luminosity L0. The efficiency ε is defined in terms
of the mass accretion rate by

L0 ≡ εṀc2 . (10.9)

For an “α disk model” [6] (to avoid confusion with the lapse function, α of general
relativity in the discussion of accretion disks we denote this measure of viscous
dissipation as αν ), the gas pressure is small compared to the ram pressure at rb
and [154] estimates for L0 > 1045 ergs s−1,

BP
c ≈ 7.0×103

[
L46

(
0.1
ε

)]√
αν (M9)

−3/2
(

2M
rb

)3/4

G , (10.10)

where L46 is L0 in units of 1046 ergs s−1 and M9 is the black hole mass in units of
109M�. For L0 < 1045 ergs s−1, (10.10) is probably an underestimate because (Pg)D
is likely to be significant in the pressure balance at the interface given by (10.7).

For very large accretion rates, a Keplerian disk at rb is probably unrealistic and
the accretion flow across rLS is most likely continuous. For L0 � 1046 ergs s−1, the
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flow inside of rLS probably does not have centrifugal forces that can approximately
balance radial gravity, implying almost a free-fall accretion flow. Pressure balance
at the interface to the magnetosphere becomes

(
BP

c
)2

8π
≡
(
BP

M

)2

8π
≈ (Pram)

A
, (10.11)

where (Pram)
A

is the ram pressure of the accretion flow. The accretion flow can com-
press the magnetosphere of the ergospheric disk until a balance is achieved allowing
the radial momentum equation (10.2) to be satisfied. Such flows are considered in
[154] where it is found that

BP
c ≈
√

L46

(
0.2
ε

)(
β P

M
h

)
M−1

9
[
1.5×104 G

]
, (10.12)

where h is the “height” of the accretion flow at rb . For example, if the flow were to
resemble an accretion disk then h is the thickness of the disk. The value of β P

is the
poloidal velocity just upstream of the interface.

Both expressions (10.10) and (10.12) are extremely model dependent. Conse-
quently, it is not worth polluting this book with the adhoc details. What is interesting
is that the two results agree for the interesting case L0 ∼ 1047 ergs s−1 (i.e., a lumi-
nous quasar). For ε ≈ 0.2, β P

M/h ∼ 1 and M ∼ 109M�, we find in either scenario
(either 10.10 or 10.12) that

BP
c ∼ 3.5−5.0×104 G . (10.13)

10.2.2 The Structure of the Ergospheric Disk

There are two sources of plasma in the ergospheric disk. One is a pair plasma con-
densate that is present regardless of the accretion dynamics (see Chap. 8). The other
component is related to accretion. Note, as a consequence of geometrical thickness
differences most of the accretion flow passes above and below the thin ergospheric
disk (see Figs. 10.10 and 8.48). The thin equatorial flow that impacts the outer edge
of the ergospheric disk is probably braked by a shock. However, as accretion plasma
flows by the magnetic field lines above and below the ergospheric disk, a Kelvin–
Helmholtz instability develops (see [155] for the neutron star analogy). The plasma
becomes shredded into droplets. After further cycles of Kelvin–Helmholtz instabil-
ities generates smaller and smaller “cat’s eyes,” the plasma is able to diffuse onto
magnetic field lines on timescales less than the infall time to the hole. Nearly one-
tenth of the mass inflow can, in principle, become threaded on the flux tubes before
reaching the horizon. This plasma will condense into the ergospheric disk by the
same physical mechanism that draws pair plasma into the disk that was described in
Chap. 8.
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The extreme case of Fig. 10.10 is useful for elucidating the fine structure of the
ergospheric disk. The key elements are the following:

1. An interface with the accretion disk or flow at which magnetic flux accretes via
the Rayleigh–Taylor instability at rb , a proper distance L = 5.0M from the event
horizon.

2. A gap filled with buoyant flux tubes, in which there is very little power generated,
located in the region 4.1M < L < 5.0M.

3. Plasma-threaded flux tubes anchored in an ergospheric disk, extending from L �
1.0M to L = 4.1M in Fig. 10.10. Most of the energy flux is generated in this
region.

4. An intermediate zone (as discussed in Sect. 8.1) in which gravity is approxi-
mately balanced by J×B forces in the disk and BP starts dying off like α as the
flow approaches the horizon. Significant energy flux is emitted from this region
of the disk located a proper distance 0.5M to 1.0M from the horizon.

5. The vicinity of the fast critical point of the accreting ergospheric disk plasma. As
in the wind theories of Chap. 5, the plasma causally decouples from the paired
wind system inside of the fast critical point. The inner edge of the ergospheric
disk is effectively the fast point. Only plasma waves emitted from L > 0.55M
(outside of the fast point) can affect the energy flux driven by the ergospheric
disk.

6. A reconnection zone in which the large scale BP from the accreting plasma dies
off faster than α2, denoted by 0.2M < L < 0.5M.

7. An asymptotic accretion zone near the horizon in which all closed magnetic loops
from the reconnection zone are annihilated (see Fig. 8.4).

10.3 The Electromagnetic Power From the Three Component
Central Engine

The fine structure of the central engine will be described in terms of power emitted
from the three components (the horizon magnetosphere, the ergospheric disk and
the accretion disk) as a function of black hole rotation, a/M and poloidal magnetic
flux. Again, we could have also included an electrodynamic perfect MHD jet from
the horizon magnetosphere instead of the GHM jet. However, our interest here is
to give examples of GHM at work and assess the relative strengths of the various
putative dynamos. We assume axisymmetry and quasi-stationary configurations.

The two relevant physical facts are the following:

1. In Sect. 10.2 we discussed that the accretion disk is not a sink for magnetic flux
but a pathway toward the black hole. The only place where flux can be temporar-
ily captured is in the gap between the horizon and inner edge of the accretion
flow. Thus, in general, we expect the magnetic field in the disk to be much weaker
than in the ergosphere BP

D
� BP

E
(see Figs. 8.1 and 10.10).
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2. The horizon magnetosphere driven wind gets weaker with fast rotation rates due
to flux exclusion (see 4.90c and Sect. 10.2.1). By contrast, the ergosphere grows
in volume as a/M → 1, thus the ergospheric disk wind becomes much more
powerful than the horizon wind as a/M → 1. It is important to note that the
perfect MHD simulations that are described in Chap. 11 show no evidence of the
flux exclusion effect as a/M → 1.

In order to quantify the power driven by the ergospheric disk we need to model
the radial flow as was done in [154]. First, it was found that BP

E
was roughly a factor

of two larger in the main body of the disk than at the Rayleigh–Taylor interface
(see Fig. 10.10) from the relativistic Euler equation. The most important parameter
is ΩF ≈ Ωmin in the disk. This quantity is plotted for the example of a/M = 0.996
in Fig. 10.10, as a function of lapse function, α , in Fig. 10.11 and as a function of
proper distance from the horizon, L, in Fig. 10.12.

The most significant result of this section is the comparison of the electromag-
netic luminosities of the three components of the central engine as a function of
a/M that are plotted in Fig. 10.13 (based on the modelings of [154]). The one dif-
ference in this book from [154], is that the horizon magnetospheric outgoing wind
is assumed to be the minimum torque solution.
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Fig. 10.11 The energy flux in the ergospheric disk driven wind is ∝ Ω 2
F

, so the field line angular
velocity is an extremely important parameter. The theory of the ergospheric disk that was developed
in Chap. 8 sets ΩF � Ωmin. This figure is a plot of Ωmin as a function of lapse function, α , in the
equatorial plane of the geometrical configuration that is depicted in Fig. 10.10
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Fig. 10.12 The minimum angular velocity as viewed from asymptotic infinity that is allowed by
the dragging of inertial frames, Ωmin, as a function of proper distance from the event horizon, L, in
the equatorial plane of the geometrical configuration that is depicted in Fig. 10.10

The dashed curves for SP
D

represent the maximum Poynting flux from an accre-
tion disk driven wind consistent with pressure balance at the interface to the annular
gap at rb . The poloidal field in the disk, BP

D
, can not be made arbitrarily large, rela-

tive to BP
E

in the ergosphere. This is the important aspect of modeling all three cen-
tral engines simultaneously. SP

D
is plotted for two cases that were modeled in [154]

where rb = 2M and rb = 10M. However, it should be emphasized that physically one
should expect SP

D
to be much less than these upper bounds. As mentioned earlier, we

could have also included an electrodynamic jet as envisioned in [66,111] emanating
from the event horizon magnetosphere, instead of a GHM horizon jet. The strength
of the Poynting flux, SP

B−Z
, of a putative electrodynamic jet can be compared to the

other power sources in Fig. 10.13 by inspection of Fig. 11.25. The upper bound for
SP

B−Z
is the same as the upper bound for SP

D
, rb = 10M to within a factor of 1.5 for

a/M > 0.5. To understand how an ergospheric disk can coexist with the [66, 111]
electrodynamic jet, the reader should consult the numerical simulations in Chap. 11,
in particular Sect. 11.4. The bottom line is that at high spin rates the ergospheric
disk jet is ≈ 10 - 100 times as powerful as the electrodynamic jet.

The Poynting flux of the horizon driven wind, SP
H

, was calculated using ΩF =
(1/10)ΩH which is at the high end of plausible field line rotation rates (see Chap. 9).
Note the effect of flux exclusion as a/M → 1. If the perfect MHD simulations of
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Fig. 10.13 The logarithm of the luminosity, L, of the three components of the black hole central
engine as a function of the rotation rate of the black hole, a/M. The luminosity, L, has been scaled
to an ergospheric poloidal magnetic field strength of 104 G and a black hole mass of 109 M�. This
is accomplished by dividing L by

(
BP

E

)2
4 (the square of the ergospheric poloidal field strength in

units of 104 G), as well as M2
9 (the square of the black hole mass in units of 109 M�), as indicated by

the label on the vertical axis. The Poynting flux that is transported by the ergospheric disk wind is
designated by the curve labeled, SP

E
. Similarly, the wind driven by the event horizon magnetosphere

has a Poynting flux, SP
H

. The Poynting flux from the magnetized accretion disk, SP
D

, is in general
far below the upper bounds (the dashed lines) indicated in the figure (see the text for details).
Fig. 10.13 is the “Rosetta Stone” for interpreting the correlations with the parameter, ∆ , noted in
Sect. 10.1. It is interesting to compare this figure to the numerically generated data in Fig. 11.25
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Chap. 11 are any indication then the vacuum flux exclusion as a/M → 1 is not a
valid assumption when a plasma is present. It is straightforward to see the effect
of dropping this assumption in Fig. 10.13, the high spin region of SP

H
does not tail

downward, but stays approximately level as a/M → 1.
As the rotation rate increases, the size of the ergosphere increases rapidly (com-

pare Figs. 10.12 and 9.5). Consequently, since ΩH increases as well, we see a rapid
increase in the Poynting flux from the ergospheric disk, SP

E
, as a/M → 1. Note that

there are two branches to the curve describing SP
E

as a/M → 1. For a/M > 0.94, the
last stable orbit, rLS , moves inside of the ergosphere at r = 2M. Only flux rubes at
r < 2M participate in the ergospheric disk dynamics. There is no ambiguity when
a/M < 0.94. However, when a/M > 0.94, there are two possibilities. For low or
moderate magnetized accretion, the outer boundary of the ergospheric disk is at
r = rLS . However, for strong magnetized accretion as in Fig. 10.10, magnetic pres-
sures can grow in the ergosphere that push the Rayleigh–Taylor interface out beyond
rLS and r = 2M. In this situation the outer edge of the ergospheric disk is at r = 2M.
Hence, the two branches for SP

E
at the upper left corner of Fig. 10.13 corresponding

to the outer boundary of the ergospheric disk being either at r = rLS or at r ≥ 2M.
Since there is a critical magnetic field strength (or maximum BP) in the ergo-

sphere by the discussion of Sect. 10.2, there is a critical luminosity Lc ≡ (SP)max
associated with the three central engines in Fig. 10.13. For a high accretion system
with a corresponding viscous bolometric luminosity of L0 > 1046 ergs s−1, we ex-
pect the hole to be spun up to a/M � 1. In the process, BP

c can be accreted and the
inner edge of the accretion flow is likely to be pushed out beyond rLS in such a cir-
cumstance. This essentially makes ε ≈ 0.2 in the relation for the critical field (10.12)
(see [6]). Using (10.12) in conjunction with Fig. 10.13, the critical luminosity of the
ergospheric disk is

(LE )c ≈ 20L0 , L0 > 1046 ergs s−1 . (10.14)

This relation should hold in the most powerful radio loud quasars such as 3C 9 or
1318+113 which have total mechanical powers Q ∼ 1048 ergs s−1 supporting the
radio lobes (see the long discussion in Chap. 1).

The critical luminosity of the horizon magnetospheric wind requires some atten-
tion. There is both the high luminosity case, L0 > 1045, ergs s−1 and the low accre-
tion luminosity case, L0 < 1045 ergs s−1. For prolonged strong accretion, a/M � 1
and (LH )c is very small due to flux suppression as indicated in Fig. 10.13. The max-
imum of SP

H
is at a/M ≈ 0.8 in Fig. 10.13. Strong accretion for a short period of

time, moderate accretion, or electromagnetic spin down of the hole from a/M � 1
with slow accretion are three distinct ways of obtaining a/M ≈ 0.8. In the moderate
accretion scenario we pick ε ≈ 0.1 in (10.12) for BP

c , then Fig. 10.13 implies that

(LH )c ≈ 10−2L0 , L0 > 1046 ergs s−1 . (10.15)

In the low disk luminosity case as in a BL Lac object, the lower accretion rates
imply that the plasma state is in the regime known as an advected-dominated accre-
tion flow [156]. Such two temperature plasmas are inefficient radiators and much
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of the viscous dissipation stays trapped in the plasma as it accretes toward the hori-
zon. As such, low luminosity systems have strong ram pressures at the inner edge,
therefore (10.12) is still a reasonable approximation for BP

c . For BL Lac objects,
estimating L0 is a guess because it is swamped by the high frequency tail of the
synchrotron component [157]. The quiescent states seen in the long term optical
variability studies of [158] and [159] are consistent with BL Lacs having accre-
tion luminosities similar to Seyfert 1 galaxies. Thus, we pick a moderate bolometric
luminosity typical of a Seyfert 1 galaxy to compute (LH )c, L0 ≈ 1044 ergs s−1 or
L0 ≈ 10−3LEdd . The typical advection dominated accretion rate is given in [156] to
be Ṁc2 ≈ 10−1LEdd . Thus, from (10.9) we use ε ≈ 10−2 in (10.12) for the critical
field strength,

B
P

c ≈ 6.7×103M−1
9 G , L0 ≈ 1044 ergs s−1 . (10.16)

Applying (10.16) to Fig. 10.13 for advection dominated accretion, we obtain,

(LH )c ≈ 2.5×1043 ergs s−1 , L0 < 1045 ergs s−1 . (10.17)

The results of this section are extremely model dependent. The basic fact that as
a/M → 1 (if there is a substantial magnetic flux in the ergosphere), the ergospheric
disk (which is powered by black hole rotation) should be the dominant energy source
in the central engine. This fact is independent of modeling. It results from the large
ergospheric disk surface area as a/M → 1 over which large values of ΩF ≈Ωmin ∼
ΩH exist (see Fig. 10.12).

10.4 Applications of the Theory

In this section, we use the models that were constructed in Sects. 10.2 and 10.3
to describe the unified scheme for radio loud AGNs (see Chap. 1), the correlations
of physical observables with the shape of blazar broadband spectra (through the
parameter ∆ that was introduced in Sect. 10.1) and the cosmological evolution of
extragalactic radio sources.

10.4.1 Interpreting the Unified Scheme

This subsection, develops a four parameter model of AGN central engines, Ṁ (the
mass accretion rate), a/M (the black hole rotation rate), BP

E
(the magnetic field

strength near the black hole) and M (the mass of the black hole). When BP
E

is small
(i.e., less than ∼ 10G), one has a radio quiet AGN. From the discussion of black
hole masses in Chap. 1 and the association of radio loud AGNs with large ellipti-
cal host galaxies, we choose a fiducial black hole mass, M ≈ 109 M�. Also, a/M
and Ṁ are not independent. A large accretion rate implies a/M ∼ 1. The param-
eter space analysis is illustrated through Figs. 10.14 and 10.15 with M ≈ 109 M�
assumed throughout for simplicity.
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Fig. 10.14 A two parameter, (Ṁ, a/M), plot of the various classes of objects that are identified as
powerful compact extragalactic radio sources when they are observed along the jet axis. Cosmo-
logical evolution proceeds from the upper left to the lower right in the diagram [153]

10.4.1.1 FR I BL Lac Objects

The vast majority of BL Lac objects are associated with FR I radio structures. There
are a few with FR II morphologies and luminosities and we will discuss these inter-
esting objects later in this subsection. FR I jets tend to be tightly collimated within
100 pc - 1 kpc of the source and are mildly relativistic. On kiloparsec scales the jets
are subrelativistic and are loosely collimated (see Figs. 1.2 and 1.5). By contrast, FR
II jets remain tightly collimated (see Figs. 1.6–1.8) far from the central engine, on
scales ∼ 10–100 kpc, and are likely to be mildly relativistic as well. We use these
distinctions to probe the fine structure of the central engines of FR I BL Lac objects.

In order for the inn er jet in the nested jet system in Figure 10.9 to be loosely
collimated requires that the ergospheric jet be weak compared to the horizon jet.
This condition can be described in terms of the radiated powers of the two jets (see
Fig. 10.15d),

LH > LE . (10.18)
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Fig. 10.15 This figure illustrates four distinct states in the unified scheme of extragalactic radio
sources in the context of the dual jet model of black hole GHM. The strength of the ergospheric
disk jet, LE , is indicated by the density of horizontal hatches and the strength of the horizon mag-
netosphere driven jet, LH , is indicated by the intensity of the shading. The luminosity of the accre-
tion disk due to viscous dissipation, L0, is represented by the number of photons emanating from
the disk. The accretion rate, Ṁ, is directly related to L0. Cosmological evolution proceeds from
(a) to (d)
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The plots in Fig. 10.13 indicate that the condition, (10.18), is satisfied for a/M <
0.60. Note that the collimation condition is empirical and is not derived from first
principles. However, consider the following suggestive argument. If the ergospheric
disk drives tightly collimated relativistic jets then the collimation is most likely a
consequence of a toroidal magnetic field applying hoop stresses [52, 53]. Further-
more, the toroidal magnetic field is a direct measure of the Poynting flux (see 5.21
and 5.51) and therefore, LE . If LE > LH , one would expect that hoop stresses in the
enveloping ergospheric disk wind would collimate the inner horizon magnetosphere
driven jet in Fig. 10.9.

Equation (10.17) for the maximum horizon jet luminosity, (LH )c, and (10.18)
are consistent with the maximum mechanical power, Q, transported through the jet
from the central engine to the extended radio lobes in FR I radio galaxies. It was
found in [42], in analogy to the results in Table 1.2, that Q < 5× 1043 ergss−1 for
FR I radio galaxies. By setting the total power from the ergosphere equal to the
energy transported to the lobes, we have

LH +LE = Q . (10.19)

Equation (10.19) combined with (10.18) and (10.17) imply a maximum central
engine luminosity in the black hole GHM model of a BL Lac (for a black hole
rotation rate of a/M ≈ 0.6) of LE + LH ≈ 2LH ≈ 4× 1043 ergss−1. Significantly,
this is roughly the maximum energy flux transported to the lobes in an FR I radio
galaxy. Thus, it is proposed that the central engine in a BL Lac object (or FR I radio
galaxy, depending on viewing angle) is primarily an event horizon magnetosphere
driven jet.

It is possible that the accretion disk driven magnetized wind can be competitive
in luminosity with the event horizon driven wind in FR I radio galaxies. However,
this would require poloidal magnetic field strengths ∼ 500G in the accretion disk of
a strong FR I radio galaxy (see Fig. 10.13). Physically, it is hard to understand why
poloidal large scale fields of such magnitude would exist in the accretion disk.

Note that the condition (10.18) combined with Fig. 10.13 describes what is
known as the “FR I/FR II break.” The morphology of radio loud AGNs is roughly
bimodal and the segregation point is approximately given by the luminosity crite-
rion that if Q < 5× 1043 ergss−1 (or equivalently, by the results of Table 1.2 and
[42], an extended radio power of PE < 5×1042 ergss−1) then the source has an FR
I morphology and is an FR II radio source otherwise.

10.4.1.2 FR II Radio Sources (Quasars)

When a galactic nucleus experiences quasar activity, one expects large amounts of
angular momentum to be accreted toward the black hole from the luminous accre-
tion flow. This is consistent with large values of a/M and, by Fig. 10.13, a strong
ergospheric disk wind that dominates the other winds, energetically. There is a wide
range of quasar radio luminosities. If one selects radio quasars based on the core
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luminosity as in [46], one finds that the extended luminosity of these sources, if they
were viewed in the sky plane, Psky, is much smaller than what is normally selected
in low frequency radio flux-limited samples (these are the catalogs where lobe dom-
inated quasars are generally found). The point of defining Psky in [46] is to subtract
out the Doppler enhancement of the one-sided jet on VLA scales that dominates the
resolved radio power in these sources. The residual radio structure, after the subtrac-
tion of the jet contribution, represents the luminosity of the lobes. Thus, Psky, can
be used to find the energy in the lobes, Q, as in Table 1.2. Most radio loud quasars
have central engine luminosities of 5×1043 ergs s−1 < Q < 5×1044 ergs s−1 with
Q ≈ 10Psky. The strongest quasar central engines have Q ∼ 1048 ergs s−1.

We decompose this huge range of central engine strengths into different cat-
egories for illustrative purposes. First, consider the common, weak FR II radio
galaxies and quasars that were described above, 5×1043 ergs s−1 < LE < 5×1044

ergs s−1. For a “slowly rotating” black hole, Fig. 10.13 implies that,

2.85×103 G < BP
E

< 8.99×103 G ,
a
M

= 0.70 , (10.20a)

4.3×1042 ergs s−1 < LH < 4.3×1043 ergs s−1 ,
a
M

= 0.70 . (10.20b)

The magnetic field strength is near its critical value in this case.
For a rapid rotator, a weak FR II radio source requires a weaker field strength

than was found for a slow rotator as a consequence of Fig. 10.13,

4.28×102 G < BP
E

< 1.35×103 G ,
a
M

= 0.90 , (10.21a)

8.2×1040 ergs s−1 < LH < 8.2×1041 ergs s−1 ,
a
M

= 0.90 . (10.21b)

The most likely configuration is the one that requires the weakest magnetic field
strengths in the ergosphere. The hardest thing to justify physically in the model are
the existence of large poloidal magnetic field strengths in the ergosphere. A near
extreme rotator is parameterized by a/M = 0.996 as in Fig. 10.10. However, now
BP

E
� BP

c , so the outer edge of the ergospheric disk is at rLS . We find the following
parameters from Fig. 10.13,

2.87×102 G < BP
E

< 9.07×102 G ,
a
M

= 0.996 , (10.22a)

4.1×1039 ergs s−1 < LH < 4.1×1040 ergs s−1 ,
a
M

= 0.996 . (10.22b)

The typical FR II radio sources found in deep low frequency surveys have Q ∼
1045 ergs s−1. We tabulate the parameter values of these sources and the rest of the
FR II population in Table 10.2. Column (1) is the energy flux of the ergospheric disk
wind which is roughly equal to the mechanical power in the radio lobes, LE = Q.
The second column is the parameter, a/M, representing black hole rotation. Column
(3) is the power in the horizon magnetosphere driven jet, LH , and column (4) is the
poloidal magnetic field strength in the ergosphere, BP

E
.
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Table 10.2 Parameter space of FR II radio sources

LE (ergs s−1) aM−1 LH (ergs s−1) BP
E

(G) Notes

5×1043 0.70 4.3×1042 2.85×103

5×1043 0.90 8.2×1040 4.28×102

5×1043 0.996 4.1×1039 2.87×102 a
5×1044 0.70 4.3×1043 8.99×103

5×1044 0.90 8.2×1041 1.35×103

5×1044 0.996 4.1×1040 9.07×102

1045 0.75 1.9×1043 5.90×102

1045 0.996 8.3×1040 1.29×103

1046 0.85 3.6×1043 8.04×103 b
1046 0.996 8.3×1041 4.07×103

1048 0.95 6.2×1044 4.33×104 c
1048 0.996 6.3×1043 3.54×104 c

a) A highly probable configuration
b) A Cygnus A type of radio source
c) The most powerful known radio sources such as 3C 9 and 1318 + 133

The final entry in Table 10.2 is compelling evidence for the model. By (10.13),
the maximum magnetic field strength allowed in the ergosphere of a maximally
rotating black hole yields the maximum observed intrinsic power in radio sources.

10.4.1.3 Intermediate Objects

Thus far, we have described the extreme ranges of parameter space, the slow rotators
(FR I radio galaxies and BL Lacs, a/M < 0.60) and rapid rotators (FR II radio
galaxies and quasars, a/M > 0.70). However, there are interesting objects within
the transitional region 0.8 > a/M > 0.6. These include BL Lac objects with FR II
radio luminosities and morphologies and the γ-ray loud quasars detected by EGRET.

Recall the contradiction with a single jet model for EGRET sources with strong
FR II emission noted in the first section of this chapter. The stronger ergospheric
disk jet is associated with powerful radio emission. Consequently, according to the
discussion of Sect. 10.1, hard γ-rays must come from the horizon jet in these EGRET
sources. An example of such a source is 3C 279 with a mechanical power of Q ≈
2×1045 ergs s−1, in the radio lobes.

The intrinsic γ-ray luminosity, Lγ , produced by inverse Compton scattering has
the following scaling property,

Lγ ∝UrNγ2
th , (10.23)

where Ur is the radiation density, N is the pair density and γth is the Lorentz fac-
tor from thermal motion evaluated in the rest frame of the γ-ray emitting plasma.
There are many possible physical processes that can convert the Poynting flux of
the horizon jet into thermal inertia (e.g., shocks and plasma instabilities). In order
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to get most of the jet (thermal) energy released as hard γ-rays requires a strong soft
radiation source Ur in (10.23) that is inverse Compton upscattered.

There are two plausible sources of soft radiation. First, there are the synchrotron
photons from the jet itself, the SSC scenario. Second, there are disk photons (possi-
bly reprocessed in the dusty torus, accretion disk corona or broad emission line gas),
the ECS scenario discussed in Sect. 10.1. A strong Ur in the SSC scenario requires a
large BP

E
as does a strong horizon wind (i.e., the Nγ2

th factor in (10.23) represents in-
ternal energy in the jet that was created from the electromagnetic energy reserves).
The large value of BP

E
required for a strong horizon jet implies BP

E
∼ BP

c which is
much more likely for high accretion rates. However, intense accretion radiates large
soft photon fluxes and this circumstance clearly favors the ECS process as being
the dominant cooling mechanism of the horizon jet in γ-ray loud quasars. Thus, it
seems to be an unavoidable conclusion that ECS processes are the γ-ray sources in
EGRET detected quasars.

Finding the bolometric luminosity of the accretion flow in a blazar is difficult
because its IR/optical emission is masked by the high frequency synchrotron tail
of the jet. In [142], the optical/UV disk luminosity was crudely extracted from the
broadband spectrum of various blazars. To this result we add the IR and broad emis-
sion line luminosities to estimate L0 ≈ 5×1045 ergs s−1 for 3C 279. Using ε = 0.1
(in this moderate luminosity system) in (10.12) yields

BP
c ≈ 1.5×104 G . (10.24a)

According to Fig. 10.13, if BP
E
≈ BP

c and a/M � 0.70,

LE = Q ≈ 2×1045 ergs s−1 , (10.24b)

as observed for 3C 279, and

LH = 1.3×1044 ergs s−1 . (10.24c)

The apparent gamma ray luminosity of 3C 279 observed at earth averaged over
time is [142], (

Lγ
)

app � 1048 ergs s−1 . (10.25)

However, for γ-rays emitted from a Doppler enhanced knot or compact region of the
jet, the apparent luminosity is related to the intrinsic γ-ray luminosity, Lγ , by [72],

(
Lγ
)

app = δ 4Lγ . (10.26a)

The Doppler enhancement factor, δ , is given in terms of the velocity of the emitting
plasma, β , propagating at an angle θ relative to the line of sight to earth by the
equation,

δ =

√
1−β 2

1−β cosθ
. (10.26b)
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Comparing (10.26a) with (10.25) and (10.24c) implies that δ � 10 in 3C 279 is
required in the γ-ray emitting plasma by the black hole GHM model of the central
engine. (This compares favorably with most independent estimates of δ in 3C 279
[31, 160].)

Within the GHM model, γ-ray quasars are associated with the slowest rotating
black holes that are consistent with rapid accretion. This allows for a large value of
BP

E
to be established near the black hole over time (without making LE enormous, i.e,

∼1047 ergs s−1, for instance), which in turn creates a strong horizon jet according
to Fig. 10.13. The large accretion rate provides both the magnetic flux and the seed
photons that are necessary for the ECS process (see Fig. 10.15). From Table 10.2,
the extreme accretion systems at the bottom of the table are viable γ-ray sources as
well. However, these sources are very rare, especially at z < 2. Thus, there would
not be many (if any) with a γ-ray flux above EGRET threshold of sensitivity. These
sources are significant γ-ray emitters (if viewed end on by 10.26b) simply because
they are strong in every observing band.

Physically, the γ-ray quasars could be AGNs in which accretion has just increased
so that a/M is still low and a significant poloidal flux is advected in the process.
Another possibility are AGNs in which there is so much magnetic flux that the
electromagnetic torques on the black hole compete with the accretion of angular
momentum, thereby keeping a/M moderate.

An interesting class of blazars are BL Lacs with FR II luminosities and mor-
phologies [30]. They are generally at high redshift (for a BL Lac), 0.5 < z < 1.0, and
they include 0235+164, 0954+658, 1308+326, 1538+149, 1803+784 and 1823+568.
They typically have Q ≈ 1044 ergs s−1. The strongest central engine resides in
1308+326 with Q ≈ 5× 1044 ergs s−1. These objects have the largest optical po-
larizations of any class of blazar including FR I BL Lacs and HPQs [154]. Thus, we
expect very strong blazar or horizon jets within the GHM model. Since the jets are
tightly collimated, LE � LH in order to provide enough magnetic hoop stresses on
kiloparsec scales (see the related discussion in Sect. 10.4.1). Applying this observa-
tion to Fig. 10.13, we expect a/M � 0.60 in FR II BL Lac objects.

Consider an FR II BL Lac with a/M = 0.65 and a value of L0 � 1045 ergs s−1.
The Doppler boosted synchrotron emission from the horizon jet swamps this value
of L0 making it difficult to detect in the optical band. For ε � 0.05, (10.12) and
Fig. 10.13 imply,

BP
c ≈ 104 G ,

a
M

= 0.65 , (10.27a)

LE ≈ 1044 ergs s−1 ,
a
M

= 0.65 , (10.27b)

LH ≈ 5×1043 ergs s−1 ,
a
M

= 0.65 . (10.27c)

Note that LH /L0 � 5× 10−2 for typical FR II BL Lac and from (10.24), LH /L0 ≈
2.5×10−2 for 3C 279. The FR II BL Lacs have the most prominent horizon jets of
any FR II radio source, hence their high optical polarizations.
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The taxonomy of the blazar family is indicated qualitatively in the two param-
eter (Ṁ,a/M) plot in Fig. 10.14. The values of Ṁ for quasars are taken from the
estimates of [11]. The BL Lac object Ṁ values are difficult to estimate since the
accretion disk luminosity and broad emission lines are swamped by the beamed
synchrotron component from the jets. Figure 10.14 is a summary of the discussions
of this section. HPQs would be concentrated in parameter space close to where the
γ-ray quasars are found, since they require strong horizon jets to produce their op-
tical polarization. This common property of HPQs and γ-ray quasars explains why
the ∆ factors of γ-ray quasars are more similar to those of HPQs (Fig. 10.8) than
they are to the those of the core dominated quasar population as a whole (Fig. 10.7).
Note the loose correlation of Ṁ with a/M in Fig. 10.14.

The panoply of blazar classes is described within the black hole GHM theory of
extragalactic radio sources in Fig. 10.15. Frame (a) of Fig. 10.15 represents a strong
FR II quasar with a large value of Ṁ and therefore a rapid black hole rotation rate,
a/M � 1. The ergospheric disk jet is extremely powerful and LH is moderate. Frame
(b) represents a state that is typical of many γ-ray loud quasars in the black hole
GHM model. The accretion luminosity, L0, and Ṁ are at the low end of the range
for a quasar, hence a/M is at the low end of the quasar range as well. The γ-ray
luminosity from the horizon magnetosphere driven jet and LH are near maximal in
strength. An FR II BL Lac object is another intermediate radio source in the GHM
theory and this blazar state is represented by frame (c). They are similar to γ-ray loud
quasars in that LE is moderate and both Ṁ and a/M are just slightly smaller than the
typical values found for γ-ray loud quasars. The distinguishing characteristic of this
class of blazar is that LH is very large for an FR II radio source. The fourth frame
represents an FR I radio galaxy (i.e., a BL Lac object if viewed along the jet axis) in
the dual jet model. The accretion rate, Ṁ, is small, so L0, a/M and LE are small. The
horizon jet has a moderate luminosity, LH > LE . The role of the intermediate objects
in the unified scheme is highlighted in the black hole GHM theory in Fig. 10.15.
One of the strengths of the theory is the ability to describe the rare hybrid objects
such FR II BL Lacs.

10.4.2 Correlations with Blazar Spectra

In Sect. 10.1, it was pointed out that the shape of the radio to submillimeter blazar
spectrum was correlated with various observables. These results can be interpreted
within the context of the black hole GHM model in a straightforward manner. The
correlations were described in terms of the parameter, ∆ , defined in (10.1) as the
logarithm of the ratio of the flux density at the cm peak of the spectrum to the flux
density at the mm peak.

The horizon magnetosphere driven jet tends to have a spectral peak at mm wave-
lengths. It is nested within the larger ergospheric disk driven jet that tends to have
a spectral peak at cm wavelengths. Only the ergospheric disk jet is strong enough
to power FR II radio emission. The horizon magnetospheric jet is associated with
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the attributes that are commonly ascribed to the blazar phenomenon. Thus it is also
called the blazar jet. It is highly variable and can be highly polarized (>10%) in
the high frequency optical tail of the spectrum. These properties can be used to un-
derstand the correlations found in Sect. 10.1. We list these in the order presented
there.

1. QSOs and HPQs have larger values of ∆ than BL Lac objects because the lat-
ter have smaller accretion rates (as evidenced by smaller disk luminosities, L0)
and therefore smaller a/M values of the central black hole. This translates, by
Fig. 10.13, to a weak ergospheric disk wind and therefore a weak VLBI jet and
cm peak in BL Lac objects.

2. Large values of ∆ are correlated with strong extended radio emission, PE . A large
value of ∆ implies a strong cm spectral peak from the VLBI jet and unresolved
core. Since the cm peak is associated with the ergospheric disk jet, this implies
LE 	 LH . Consequently, by Fig. 10.13, a/M is large. For these black hole rotation
rates, the ergospheric disk can power strong radio luminosities.

3. Large values of ∆ are correlated with large redshift. This is explained by cosmo-
logical evolution of galactic mergers and black hole accretion rates. It is believed
that large accretion rates onto supermassive black holes were far more common
in the past as evidenced by the quasar luminosity function. At large z, accretion
was more likely to deposit large amounts of angular momentum into the black
hole (which means large values of a/M) and large magnetic fluxes into the ergo-
sphere. From Fig. 10.13, large values of BP

E
and a/M correspond to very strong

ergospheric disk winds. These power strong VLBI jets and the associated un-
resolved cores. Knots (regions of local dissipation) in the wind produce a very
strong cm peak and therefore large values of ∆ . It is important to note that the
cm peak in a quasar spectrum is not solely a function of the central engine power
but depends on the nuclear environment as well (radiation results from dissipa-
tive interactions such as shocks, that occur from jet collisions with circumnuclear
gas). Gas densities and therefore the dissipation (synchrotron radiation peaked at
cm frequencies) of the ergospheric disk wind were probably much higher in the
nuclear regions of QSOs in the distant past. The denser circumnuclear gas and
larger Ṁ values explains the correlation of ∆ with z. This correlation is essentially
the same as “2” above for PE , but is stronger because it depends on two factors
(dissipation on parsec scales and LE ) that correlate with z not just LE (99.997%
statistical significance versus 99.97% statistical significance).

4. Small values of ∆ are correlated with high optical polarization. Within the theory,
the blazar region of the horizon magnetosphere driven wind produces a copious
supply of optically polarized radiation in the high energy tail of the mm peak.
Thus a strong mm peak, and therefore small ∆ , implies a prominent horizon
magnetospheric jet compared to the ergospheric disk wind (which is assumed to
have a lower optical polarization) and high optical polarization.

5. Gamma ray quasars have smaller ∆ values than other core dominated quasars.
It was shown that it is energetically reasonable to associate the horizon jet with
γ-ray emission. A strong horizon jet has LH ≈ 1044 ergs s−1 and δ ≈ 10 yields
(Lγ)app ∼ 1048 ergs s−1. In order to obtain LH large and moderate to small FR II
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lobe energies (as observed) requires intermediate values of a/M in Fig. 10.13.
These intermediate values of a/M are at the low end of the allowed values of
a/M associated with large Ṁ and the quasar phenomenon. Thus, LH /LE is larger
than it is for most quasars, hence ∆ is smaller. Decoupling the γ-ray region from
the strong VLBI jet driven by the ergospheric disk has several theoretical ad-
vantages. First, the Doppler factor inferred for the VLBI jet by observation need
not be the same as it is in the “blazar component” : the two jet Doppler factors
are independent. Second, as discussed in Sect. 10.1, if the ergospheric disk sup-
ports the FR II level extended emission in strong γ-ray quasars then there are no
contradictions from energy constraints on the large scale wind set by the γ-ray
emitting region, since it is decoupled.

10.4.3 Radio Source Evolution

The radio source population evolves with cosmological redshift. If one looks at
the sources in the 3CR catalog [161], one can make a strong statement about the
relative evolutionary rates of the optical continuum and the extended radio emis-
sion. Consider strong FR II sources with Psky > 1044 ergs s−1. In the 3CR catalog,
for z < 1, approximately 75% of these sources are radio galaxies. By contrast, for
z > 1, approximately 60% are QSOs. The few remaining unidentified sources can
not significantly alter the magnitude of this evolutionary effect. Since these sources
are selected by their radio flux alone, this implies a strong evolution of the optical
component relative to the radio component. Note that evolution is beyond the scope
of the unified scheme of [20] which is restricted to 3CR sources with 0.5 < z < 1.0.

Secondly, [162] showed that the “blazar component” or beamed optical compo-
nent evolves more slowly than the isotropic optical component and is a necessary
modification to unification schemes for radio loud AGNs based on the beaming hy-
pothesis. This fact can not be explained by an increased boosting efficiency as z→ 0.
This can be illustrated from Doppler factor (the quantity δ of 10.26b) estimates in
BL Lac VLBI jets relative to QSO VLBI jets. BL Lac objects are more common than
radio loud quasars at low z and the opposite appears to be true at high z (although this
second point could be a result of BL Lacs being intrinsically weaker radio sources
and harder to detect at large z). The study in [31] finds δ to be smaller in BL Lac jets
than QSO jets. Similarly, using an independent determinant, [55, 163] find that the
average jet Lorentz factors, Γ̄Q and Γ̄B , are 11 and 7 for QSOs and radio-selected BL
Lac objects, respectively. Thus, the beaming efficiency appears to be diminishing
with cosmological time. Consequently, the slower evolution of the blazar compo-
nent relative to the isotropic disk emission must be a consequence of an increase in
the intrinsic jet power relative to the accretion power as z → 0.

The following ordering of evolutionary rates exists in radio loud AGNs:

1. Isotropic optical emission;
2. Steep-spectrum extended radio emission;
3. Beamed optical/radio component.
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The evolutionary sequence above is described by diagonal movement in Fig. 10.14
from the upper left corner of the diagram to the lower right corner. In the distant past,
z ∼ 1–3, large accretion rates onto black holes appears to have been more common
in this dynamic state of cosmological evolution. This equates to more quasars (as
is well known) and the tendency for AGNs to be located at the upper left corner
of Fig. 10.14. This cosmological state corresponds to the observation that 60% of
the strong FR II sources in the 3CR catalog are quasars at high redshift, z > 1. The
optical components in AGN are often so powerful due to very large Ṁ values at
z > 1 that they can be viewed as being bright enough to be classified as a quasar
from a wide range of angles between the symmetry axis of the hole and the line of
sight (θ < 65◦, as indicated in Fig. 10.16).

An important aspect of evolution in the GHM model is that the ergospheric disk
continues to operate when accretion diminishes or stops, as long as BP

E
remains

trapped in the annular gap between the black hole and accretion disk by surface cur-
rents on the inner boundary of the accretion disk. In fact, the dynamics of the ergo-
spheric disk were worked out in this limit in Chap. 8. Thus, as the Universe evolved
to z ∼ 1 and the dynamics became less conducive for galactic cannibalism and the
fueling of central black holes, Ṁ values diminished in many AGNs. However, the
ergospheric disk will continue to support FR II radio emission if BP

E
∼ 103 G. This

magnetic flux can probably be supported with nominal accretion rates consider-
ing the long re-entry times into the accretion disk for buoyant flux tubes. This
explains two evolutionary circumstances. First, the existence of FR II BL Lacs at
0.5 < z < 1.0 is explained because a/M is the relevant parameter associated with
strong extended radio power, not Ṁ. Second, at z < 1, only 25% of the strong FR II
3CR radio sources are quasars. Thus, in the unified scheme for lines of sight relative
to the black hole rotation axis of θ < 40◦ one sees a quasar, and for θ > 40◦ one sees
an FR II radio galaxy (see Fig. 10.16). Comparing this to the differentiating angle of
θ = 65◦ at z > 1, one can deduce that the isotropic optical luminosity, L0, is smaller
as z → 0 in the FR II population. Yet, the FR II radio luminosity can still be sup-
ported in low Ṁ sources that are common at z < 1, since the ergospheric disk still
operates. This is likely the case for Cygnus A, since the central engine appears to be
very weak for a quasar, L0 � 1045 ergs s−1 [32]. The GHM theory provides a natural
explanation of a/M being the dominant parameter for determining extended radio
luminosity, not Ṁ (review the strong observational evidence for this circumstance
in Sect. 1.3).

During the course of cosmological evolution, one would expect episodic accre-
tion of gas and magnetic flux in a radio loud AGN. The central black holes would
be spun up by accretion and then spun down by electromagnetic torques when large
amounts of magnetic flux are present in the ergosphere. The accretion history of
these objects are unknown, but it is reasonable to expect the following evolutionary
track. A rapidly spinning central black hole begins to be torqued down by a large
influx of accreted poloidal magnetic field. For lines of sight of less than 65◦ to the
black hole symmetry axis the accretion luminosity is observed as bright enough to
be called a quasar. At all angles of observation an FR II radio lobe structure is de-
tected (the upper left corner of Fig.10.14). Strong electromagnetic torques persist as
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Fig. 10.16 As a quasar’s luminosity increases, so does its ability to sublimate dust. If the spectral
shape of the quasar emission remains relatively constant then the dust sublimation radius (the
radius inside of which all dust grains are sublimated), rd , will scale with luminosity in a simple
way, rd ∼

√
L0. Thus, a more luminous accretion flow can photo-evaporate more dust and blow a

bigger hole out of the center of the dusty torus (this is indicated in the bottom frame relative to the
top frame, above). This provides a second order evolutionary correction to the unified scheme for
extragalactic radio sources. The figure indicates a simple explanation of the evolution found in the
3CR catalog of radio sources. For z > 1, 60% of the FR II radio sources appear to be quasars (the
bottom frame) and for 0.5 < z < 1.0, 75% of the “strong” FR II radio sources are radio galaxies
(the top frame). Even for L0 ∼ 1046 ergss−1, a/M can still be large (i.e., a/M ∼ 0.9), thus the
ergospheric disk wind can still power strong FR II radio emission in the black hole GHM theory
of extragalactic radio sources

Ṁ diminishes lowering a/M. The ergospheric disk continues to support strong FR
II radio emission. The lower Ṁ means that L0 is lower and less dust is sublimated
from the inner edge of the molecular torus (see Figs. 1.9 and 10.16), thus a quasar
will only be viewed for lines of sight less than 40◦ from the black hole symmetry



10.5 The GHM Theory of Extragalactic Radio Sources 343

axis (this is the center of Fig. 10.14, a/M ∼ 0.8). In general, the ergospheric disk
wind will start to diminish with a/M evolution, but it can lag the L0 evolution. The
source might progress through a γ-ray loud quasar or FR II BL Lac state briefly
as Ṁ diminishes. Finally, for small Ṁ, electromagnetic torques will decreases the
black hole rotation so that a/M < 0.60 and an FR I BL Lac is obtained (lower right
corner of Fig. 10.14). The evolutionary track through Fig. 10.14 increases the ratio
of LH /L0 hence the beamed optical component increases relative to the isotropic
component as observed.

Consider the time scale for such an evolutionary scheme from an FR II quasar
at a/M = 0.90 to a BL Lac object at a/M = 0.60 in Fig. 10.14. From (1.38), the
reducible mass at these two rotation rates are given for a 109M� black hole by,

Mred(a = 0.9M) = 0.152M , (10.28a)
Mred(a = 0.6M) = 0.051M . (10.28b)

The spin down time from a/M = 0.90 to a/M = 0.60 is found from (10.28) to be

tsd ≈ 0.1Mc2

LE +LH

. (10.29a)

and the corresponding redshift for this look back time is,

∆z ≈ H0tsd . (10.29b)

For LE + LH ≈ 5× 1044 ergs s−1, we find ∆z � 0.5 from (10.29). Thus, black hole
GHM provides the observed evolution in radio loud AGNs on the appropriate time
scales.

10.5 The GHM Theory of Extragalactic Radio Sources

In this chapter we applied the theory of black hole GHM to the study of extra-
galactic radio sources. It is a four parameter model: a/M, M, BP

E
and Ṁ. The model

was motivated in the Introduction by the observation that radio loud and radio quiet
quasars have indistinguishable optical/UV thermal spectra and UV broad emission
lines. If (as is commonly believed in the astrophysical community) these are pow-
ered by accretion generated viscous dissipation then it makes no sense for a quasar
with strong radio power, Q, (Q > L0) to have both the radio and UV energy coming
from accretion. Clearly in this scenario, the Q > L0 condition would modify accre-
tion dynamics significantly from the Q � L0 condition of a radio quiet quasar and
this should show up in the viscous dissipation generated emission (and it does not).
Secondly, if the radio power is a function of Ṁ, it is impossible to describe the FR
II BL Lac objects and the weak central engine in Cygnus A which is a strong FR
II radio source. A resolution to these contradictions is black hole GHM. Black hole
GHM describes radio power as primarily a function of a/M (not Ṁ), BP

E
and M,
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and its evolution can lag the Ṁ evolution significantly (PE can be decoupled from Ṁ
variations on time scales ∼ 107 −108 years). Thirdly, BP

E
is independent of the disk

magnetic field strength, BP
D

. In fact, it was argued that in general BP
D

is small (the
accretion flow is a pathway for magnetic flux) when BP

E
is large. Thus, the accretion

properties of the disk are largely unmodified even when a powerful black hole GHM
central engine exists.

The black hole GHM theory has many more successes that were described in
this chapter. Firstly, it provides a natural explanation of the “FR I/FR II break.”
For a/M > 0.6, an FR II radio structure is attained as the ergospheric disk jet be-
comes more powerful than the horizon jet (see Fig. 10.13). The maximum mechan-
ical power (extended radio luminosity), Q (Psky), at a/M = 0.6 is 5×1043 ergs s−1

(5×1042 ergs s−1) and this represents the most extreme FR I state according to black
hole GHM theory. Similarly, black hole GHM explains the maximum observed me-
chanical powers (extended radio luminosity), Q (Psky), of FR II radio sources to
be � 1048 ergs s−1 (� 1047 ergs s−1) when the quasar disk luminosity, L0 ∼ 1047

ergs s−1.
The theory was also used to explain correlations with the radio to submillimeter

spectra of compact radio cores (∆ parameter) with the physical state of the AGN.
It was shown why the ∆ parameter was strongly correlated with the BL Lac/quasar
distinction (or equivalently Ṁ), extended radio power, redshift, optical polarization
and hard γ-ray luminosity, all as a consequence of the black hole GHM theory of
the central engine.

In the process, we resolved the hard γ-ray/FR II radio luminosity conundrum of
quasars. Observations limit the energy in the jet that produces γ-ray emission to be
too small to support the FR II radio structures seen in some γ-ray loud quasars (such
as 3C 279 and 1156+295). In black hole GHM, the γ-rays arise from inverse Comp-
ton scattering in the horizon magnetosphere driven jet, and FR II radio structures
can only be supported by the ergospheric disk jet. Thus, black hole GHM decouples
the γ-ray emitting region from VLBI jet and FR II radio emission in quasars.

Black hole GHM also explains the weak correlation between the time evolution
of VLBI jets and γ-ray flares. A single jet, single central engine theory mandates
a strong correlation of these two properties in either the ECS or SSC model. How-
ever, this expected result of the single jet theory was not found in the only large
sample of time monitored parsec scale radio maps of γ-ray loud quasars [164].
Black hole GHM allows for individual flares in the horizon magnetosphere driven
jet (γ-ray flares) to be associated with time delayed flares in the radio emission from
the VLBI jet. However, the decoupling of the engines driving the two jets does not
mandate a one to one association of γ-ray and radio events. There are many physi-
cal processes that would produce large dissipation at the base of the horizon jet (the
γ-ray region), yet make only a small impact on the radio fluxes from a strong er-
gospheric jet on parsec scales. Hence, the correlation between γ-ray flares and time
delayed VLBI detections of plasmoid ejections would be only weak to moderate.
Similarly, both [164, 165] find no difference in VLBI measured apparent veloci-
ties, Doppler beaming or brightness temperature between γ-ray loud blazars and
blazars that were not detected by EGRET. Furthermore, [166] find no evidence that



10.5 The GHM Theory of Extragalactic Radio Sources 345

VLBI jet morphology such as jet bending is associated with γ-ray activity in blazars.
These observations are all explained by the black hole GHM theory since the VLBI
maps of quasars are detecting primarily emission from the ergospheric disk driven
jet and the γ-rays come from the horizon jet, thus any correlations with the above
mentioned quantities in a large sample of objects would be weak. The descriptive
power of black hole GHM with regard to the enigmatic γ-ray quasars is a major
accomplishment of the theory.

Finally, the black hole GHM theory of radio loud extragalactic radio sources
explains the cosmological evolution of the observed properties of these objects. The
theory explains why FR II radio sources are a fairly equal mix of quasars and radio
galaxies at z > 1 and are predominantly radio galaxies at z < 1. Furthermore, it
explains the lack of FR II radio sources at low redshift and the abundance of FR I
radio galaxies and BL Lacs at z < 0.5, through an evolutionary track that goes from
radio loud quasar to FR I radio galaxy as first Ṁ diminishes, then electromagnetic
torques reduce a/M. The time scale for evolution from FR II quasar to FR I BL Lac
corresponds to ∆z � 0.5. This is consistent with the cosmological evolution of the
FR II population seen in deep radio surveys.

Much of this chapter is speculative because it depends on model building and
therefore does not attain the rigor of the theoretical treatments in previous chap-
ters that are the backbone of this book. However, black hole GHM has far more
descriptive power than other theories of radio loud AGNs that currently exist. Most
importantly, many of the qualitative properties and successes of the theory described
in this section are independent of the exact model of the black hole ergosphere and
its associated magnetosphere.



Chapter 11
Numerical Results

Numerical simulations provide a virtual laboratory for investigating the theories
discussed in this book. Typically, numerical results are highly sensitive to the initial
conditions and the assumptions of the simulation. Thus, one must be cognizant of
the limitations of the assumptions and avoid the temptation of over interpreting the
results. For example, the GHM solution discussed in Chap. 9 could never be found
in a perfect MHD simulation. This condition does not allow for radiation losses of
ultra-relativistic accelerating particles nor for small proper electric fields. For ex-
ample, one could model magnetic field lines, loaded with a tenuous plasma and
threading the event horizon (the event horizon magnetosphere). If the lateral bound-
ary surfaces are passive and the particles reach large outward velocities then the
unique perfect MHD solution is the Blandford–Znajek solution by definition. Even
in such a simplified configuration, the perfect MHD assumption runs into conflict.
A charge starved black hole magnetosphere quickly attains regions of low density
in which any perfect MHD code will fail and these types of simulations always
require the artificial injection of plasma (by hand). This expedience goes directly
against one of the primary deductions of this work, the plasma injection mechanism
is not independent of the physics that is ultimately responsible for driving the jet.
Unfortunately, the only simulations at our disposal are perfect MHD and the even
more suspect force-free simulations. Even so, all simulations, no matter how sim-
plified, introduce numerical error. The biggest concern is numerical diffusion with
a magnitude and ramifications that are difficult to assess. Numerical diffusion can
over-ride realistic physics when reconnection is involved. The point of this intro-
ductory diatribe, is to caution the reader that numerical data needs to be consid-
ered judiciously. A simulation might look beautiful, but it can be irrelevant to any
astrophysical environment.

It is also difficult to measure the degree of conformance of an idealized theoret-
ical model in a simple geometry to the results of complicated accretion evolution
in a simulation. For example, the ergospheric disk described in Chap. 8 was devel-
oped in complete isolation of the enveloping accretion flow of the quasar. There are
no protons anywhere in the problem. Yet, in Chap. 10, the underlying physics was
applied to simplified accretion flows of protonic matter that might be representative
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of a quasar. The underlying physics of the ergospheric disk was assumed to sur-
vive. In this chapter, 3-D simulation are presented that are strongly supportive of
this assumption.

The dimensionality of the simulations seems to also be an important consider-
ation. It was indicated in Chap. 8 that the details of the ergospheric disk structure
depends strongly on the reconnection of poloidal magnetic flux. This is primarily
governed by a realistic resistivity for the plasma and the perfect MHD results are
going to be misleading. Also, it is clear from Chap. 8 that 3-D is necessary for a
realistic description of the ergospheric disk. The buoyant flux tubes need a pathway
to move back outward (i.e., interchange instabilities), they need displacement into
the azimuthal dimension in order to “swim” around the flux tubes that are anchored
in the ergospheric disk as they move outward.

The philosophy of this chapter is to start from the simplest manifestations of
GHM (relativistic strings) and proceed to the complicated 3-D accretion simula-
tions. The relativistic string simulations clearly show the microscopic details of
GHM at work in 3-D around a spinning black hole. The 3-D simulations allow
us to establish:

• The existence of a GHM driven ergospheric disk jet in the presence of a strong
accretion flow (the primary result of Chap. 8)

• For high spin black holes the ergospheric disk output will swamp the energy
output of the horizon magnetosphere (the primary result of Chap. 10)

• The spacetime near the event horizon is a passive acceptor of electromagnetic
information imposed by the physical boundaries of the magnetosphere and the
plasma source (the primary result of Chap. 4–6)

11.1 The Current State of Numerical Simulations

There has been tremendous progress in the development of numerical simulations
since thew first edition of this book. The seminal work was led by Shinji Koide
and collaborators, who studied the time evolution of an initial perfect MHD state
based on the Wald poloidal magnetic field (described in Chap. 4), in the presence
of a rotating black hole. The initial magnetic field was threaded with plasma at rest
with respect to the local ZAMO [167,168]. As the hole rotated, plasma accreted and
was torqued back onto negative energy trajectories, just as in GHM. Plasma was de-
pleted from localized regions as a consequence of accretion. Very low particle den-
sities appeared in short order. Since the code was adapted form hydrodynamics, the
numerical method was being used too far out of its realm of applicability. The code
generated large numerical errors and the simulation was halted before an outgoing
jet could form. Around the same time [169] ran simulations of the perfect MHD
Wald field magnetosphere from similar initial conditions. Using diagnostics that are
useful to understanding the physics, they actually kept track of the current flow.
What they found was a strong cross-field poloidal current in the equatorialplane and
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across the field lines threading the event horizon, deep in the ergosphere. These seem
to be the GHM currents for the toroidal magnetic field dynamo that were discussed
in Chap. 7.

Working independently, Serguei Komissarov began creating numerical simula-
tions based on the force-free assumption. He introduced ingoing Kerr–Schild co-
ordinates to the field instead of Boyer–Lindquist coordinates. This is conceptually
superior since there is no coordinate singularity at the horizon in these coordinates.
He also introduced the notion of using fully conserved numerical steps (i.e., the code
was evolving T µν and not the field components). These were great improvements,
but don’t lend themselves to numerical efficiency when adapted to perfect MHD
and Komissarov has been working in 2-D as a consequence. The first simulation
was of a split monopole magnetic field in the force-free limit. Since there is only
one solution that is force-free by definition, the Blandford–Znajek solution, it is not
surprising that the code found this solution [170]. This effort was criticized in [171]
as it was shown to be based on large un-physical waves emanating from near the
event horizon in the early stages of the simulation. In line with the detailed dis-
cussion of Chap. 6, it was demonstrated that such waves would cause un-physically
large accelerations of the local plasma in order to support the electromagnetic con-
tent. No real plasma could achieve these accelerations and the associated radiation
resistance would severely damp their amplitudes. Regardless, this ambitious effort
introduced important calculational tools to the field.

Komissarov then turned his attention to a much more difficult problem, the time
evolution of a force-free magnetosphere based on the Wald poloidal magnetic field
[172]. The problem is difficult to pose properly in the initial state and again one must
start from an un-physical initial condition. There are large transients in the early
stages and the simulation ultimately breaks-down due to the seeds of a very non-
force free GHM interaction in the equatorial plane in the ergosphere. The vertical
flux through the equatorial plane impedes the accretion of plasma. The inability of
an ergospheric plasma to fall freely into the black hole due to the impediment of an
externally imposed field is the fundamental ingredient of a GHM dynamo. A large
electric field develops near the equatorial plane of the ergosphere that will grow
until the electromagnetic field actually is transformed in character from magnetic to
electric, unless its growth is saturated by an ad hoc resistivity as was done in [172].
Komissarov ended up with a GHM like ergospheric disk on the field lines that thread
the equatorial plane and a Blandford–Znajek solution on the field lines that thread
the event horizon. This example is the ultimate simplification of the ergospheric
disk, a resistive equatorial current sheet in which the negative energy is associated
with Ohmic dissipation, J ·E. Presumably the created negative energy flux emerges
as a super-radiant photon field that extracts the black hole rotational energy, thereby
powering the Poynting flux.

In the same year, Komissarov adapted his conservative Kerr–Schild approach to
perfect MHD in the simplified example of a monopolar magnetic field [173]. He
was exploring the low density limit of the perfect MHD version of the Blandford–
Znajek solution as described in [111]. Thus, the same problem that confronted [168]
plagued these simulations. The density will tend to zero as plasma is accreted and
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ejected outward in certain locations, i.e., the flow division points, causing the code to
crash. This was remedied by implementing a mass floor, when the density reaches a
minimum value more mass with the same characteristics of the previously existing
mass is injected into the grid cells. Essentially all of these perfect MHD simula-
tions technically violate perfect MHD in localized regions where the mass injection
occurs. The hope is that this adhoc injection method did not alter the final state. Pre-
sumably this simulation, like the force-free version, suffered form large un-physical
transients right after the initial state, but few details were provided. The simula-
tion reached the critical solution (the Blandford–Znajek solution) similar to the
force-free result. The only other possible MHD solutions were the supercritical ones
which actually require a redistribution of poloidal flux [136]. The details of how the
poloidal field is maintained were not addressed in this monopolar solution. How-
ever, it is shown in Sect. 11.4 that if one does not assume an un-physical monopolar
source inside the horizon or an equatorial current sheet that is a pure mathematical
boundary condition then a real MHD source for the poloidal field will control the
wind parameters causing significant departures from the Blandford–Znajek solution.

The most recent contribution of Komissarov involved a low density perfect MHD
equivalent of the force-free Wald poloidal magnetic field simulation [174]. The sim-
ulation ran much longer than [168] and reached a steady state. The ergospheric disk
appeared as an early transient, but as plasma accumulated in the equatorial plane
it started dragging the field lines inward. Since, the simulation was 2-D the plasma
could not accrete by moving around islands on strong buoyant field by interchange
instabilities. The gravitational force increased with plasma accumulation until the
radial field was stretched completely radial near the equatorial plane and dragged
into the horizon (see Sect. 11.5.7 for a discussion of the contrast between simu-
lations of 2-D and 3-D vertical flux accretion). The end result is a simple radial
accretion flow along the field lines in the equatorial plane. As for the field lines
that threaded the horizon there was no mass outflow anywhere inside the outer
calculational boundary, a pure accretion flow. The stationary state is an accretion
flow, yet the Blandford–Znajek field line angular velocity mysteriously appeared,
ΩF ≈ (1/2)ΩH in contradiction to the work of [111] and the discussions in Chap. 9
that this parameter value derives in the perfect MHD version of the Blandford–
Znajek solution as a direct consequence of energy conservation and the condition
that at large distances the plasma is moving outward approximately at the speed of
light (not slowly inward).

In [175], it was shown that a thin perfect MHD magnetic flux tube evolving
in a background pressure distribution was mathematically equivalent to a relativis-
tic string. The authors proceeded to develop 3-D simulations of relativistic strings
around rotating black holes. The string approximation greatly improves the numeri-
cal efficiency. The string representation of a thin magnetic flux tube is characterized
by the slow and Alfven modes, but ignores fast mode propagation orthogonal to
the string. The advantage of this expedience is that thousands of points can be used
to characterize a single flux tube, providing much higher numerical resolution than
is achievable with fully self consistent perfect MHD numerical schemes. Thus, the
method can capture large gradients in field parameters with much less distortion due
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to numerical diffusion. In [175], these authors working without any knowledge of
the first edition of this book, independently discovered the GHM interaction that
launches a relativistic jet. These simulations were developed further in [176]. The
main virtue of this method is that the details of the jet launching are shown extremely
clearly. This will be illustrated in Sect. 11.2 in which the accretion of a magnetic flux
tube is shown to evolve into a relativistic Poynting flux dominated jet.

The most sophisticated simulations presently in existence are the 3-D fully self
consistent perfect MHD numerical work of [177–183]. Sections 11.3 and 11.4 are
dedicated to the relevance of the high spin, a/M ≥ 0.95, 3-D simulations to this
book. Section 11.3 shows the existence of powerful ergospheric disk driven jets in
the high spin simulations even in the presence of an intense equatorial accretion flow
(as discussed in Chaps. 8 and 10). Section 11.4 shows how the spacetime near the
event horizon passively accepts information flowing into the system from plasma in
the causally connected boundary plasma (the subject of Chaps. 4–6).

All of the 3-D simulations begin with a torus of gas surrounding the black hole
which would be stable if not for the ad hoc introduction of loops of poloidal mag-
netic field along the equal pressure contours. All the loops are oriented in the same
direction. The loops destabilize the torus as the shearing of the loops in the differen-
tially rotating plasma creates magnetic torques on the plasma that initiates an accre-
tion flow. The angular momentum removal by the field is sustained by the inward
flow of gas that approaches a centrifugal barrier near the black hole. This barrier
creates an “inner edge” of the accretion flow that forms a funnel roughly along the
gravitational equipotential surface. The subsequent accretion of gas is restricted pri-
marily to the equatorial plane. Magneto-rotational instabilities (MRI) permeate the
inflow and regulate the accretion rate. As the magnetic flux loops accrete, the up-
per portion gets stretched vertically by gas pressure gradients and electromagnetic
forces away from the hole and the inward part of the loop gets severely twisted
azimuthally as it approaches the horizon. The field lines become inextricably tan-
gled. Therefore, the rotating solution is not axisymmetric and this effect, in of itself,
creates a non-time stationary magnetosphere. The net result is the formation of mag-
netosphere of poloidal flux that is highly twisted azimuthally, in the region near the
black hole, restricted to the funnel. The strong transients that set up this initial state
die off by t = 2,000 M. These strong transients generate a magnetic tower that evac-
uates the funnel interior [183]. As with Komissarov’s work, the plasma density must
be controlled by an adhoc mass floor. The early time magnetic tower at t < 1,000M
is a powerful transient Poynting jet that can be thought of as a strong GHM transient
that is the long term extension of what [168] found. At t > 2,000M, a funnel filled
with trapped magnetic flux is achieved. This is the black hole magnetosphere that
supports a Poynting jet.

This final configuration resulting from simulations of magnetized tori, although
derived from first principles is strongly dependent on the initial conditions. For
example purely toroidal loops do not produce the black hole magnetosphere. Flux
loops that do not symmetrically thread the circular centerline of the torus (i.e., a
quadrupolar distribution of loops) produce a very weak poloidal field in the black
hole magnetosphere [183]. Regardless of this arbitrariness, the simulations provide
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an excellent virtual laboratory for understanding which 3-D MHD structures can
self-consistently exist around a rapidly rotating black hole.

The most promising technique for studying complicated black hole accretion sys-
tems is the method of [184, 185]. These authors begin their simulations from initial
conditions that are virtually identical to DeVilliers and Hawley except in 2-D (mag-
netized torii with all loops oriented in the same direction). This method uses the
ingoing Kerr–Schild coordinates which do not have the coordinate singularity at the
event horizon which is a concern for the Boyer–Lindquist coordinates used by DeV-
illiers and Hawley. Furthermore, the [184] method is conservative (i.e., evolves the
components of T µν ) which is aesthetically appealing, but numerically very ineffi-
cient compared to the method of DeVilliers and Hawley which evolves field compo-
nents and the plasma momentum. The 2-D expedience allows for better numerical
resolution in principle. This is true for quantities that diverge near the horizon in
Boyer–Lindquist coordinates, such as grr. Even with the dense radial grid spacing
employed by DeVilliers and Hawley the divergent metric derived quantities (evalu-
ated outside of the inner calculational boundary) are only 1/4 as resolved, deep in
the ergosphere, as the corresponding nonsingular Kerr–Schild derived quantities in
the highest resolution simulation of [184]. However, not all aspects of the numeri-
cal resolution are superior. For example, the fundamental frame dragging quantity
gφ t , or equivalently the ZAMO angular velocity, Ω , is more resolved in the DeVil-
liers and Hawley simulations by a factor of 2–3 in the ergosphere than in the high
resolution simulation in [184]. Thus, even though the inner calculational bound-
ary is placed inside of the horizon in [184], numerical diffusion has a propensity
to allow information on the local rotation rate to evolve outward (acausally) from
the horizon. For example, Ωmin (the primary driver of a strong GHM interaction),
changes by a factor of 10, in only ≈ 15 zones. By contrast, a similar variation occurs
over ≈ 40 zones in the Hawley and DeVilliers simulations. Another concern with
the 2-D simulations is that there are strong MRI modes called “channel solutions”
which are the primary driver of the accretion rate within the simulations. Conversely,
these modes are highly damped in 3-D. Secondly, the MRI dies off quickly in 2-D
(the anti-dynamo theorem). By t = 2,000 M, the MRI is negligible in contrast to
the [183] 3-D simulations in which they consider t < 2,000M to be filled with ini-
tial transients and their late time data dumps begin after t = 2,000 M. Clearly the
accretion history of the 2-D solutions needs to be viewed cautiously. Also, sampling
of data after t = 2,000 M in [184,185] should be considered judiciously. The reader
is reminded that these 2-D simulations also get depleted of mass in regions of the
black hole magnetosphere within the funnel. Perfect MHD is formally broken by
the ad hoc mass floor used to remedy this issue.

Based on the claims of [184, 185], it appears that they have found Blandford–
Znajek solutions in the funnel. The claim is based on the fact that there is outward
directed Poynting flux at the event horizon and ΩF ≈ 0.45ΩH in a time averaged
sense for a/M = 0.938, which is close to the Blandford–Znajek value [184]. How-
ever, they then proceed to show that this value ofΩF persists into the inertially dom-
inated regime, FµνFµν < 16πnµc2. This is a very curious result that does not follow
from any of the analysis of the MHD version of the Blandford–Znajek solution that
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assumes FµνFµν 	 16πnµc2. For similar spin rates, the [183] simulations produce
a time and azimuth averaged funnel value ofΩF ≈ 0.35ΩH . There are also large vari-
ations about this average, −0.5ΩH < ΩF < ΩH in the individual time and azimuth
slices. The data in [184, 185] has not been explored with the same level of scrutiny
(especially individual time slices of the high spin simulations) as the DeVilliers and
Hawley data, so the precise details of the internal physics is unclear, especially con-
sidering some of the curious particulars. There is definitely electrodynamic energy
extraction, but the role of inertial sources of Poynting flux on the funnel boundary
has not been explored in the high spin simulations. The details of the simulation are
important because it was the method of solution and the resultant field parameters
in [66, 111] that was called into question in [67], not the notion of electrodynamic
energy extraction.

There are two important physical constraints on the existing 2-D and 3-D simula-
tions of magnetized tori that limit their applicability to realistic AGN models. First
of all, there is no radiation in the accretion flow, thus much of the enthalpy genera-
tion will actually be lost to a radiation field and not all of it equates to the increase in
gas pressure. This will manifest itself in two ways at the boundary of the funnel. The
accretion disk and coronal gas will not be as pressurized so the poloidal magnetic
field pressure in the funnel will be smaller in this pressure balance. Furthermore,
radiation should fill the funnel and this will be an important component of the total
electromagnetic pressure in balance with the gas pressure at the funnel boundary.
Both effects should weaken the field strength in the funnel and therefore the total
power output. It is important to note that all these simulations increase black hole
energy. More energy is accreted than emitted in the jet, thus there really is no black
hole energy extraction. This is likely to be inconsistent with some of the powerful
jets coming from moderate and weakly accreting AGN [189, 190].

Another recent development in the field might rewrite all of the above. C. Fragile
has found that just by tilting the magnetized torus by 15◦, the inner accretion flow is
primarily deposited near the poles of the black hole as opposed to the equator [188].
The simulations are 3-D, of course, and are performed in Kerr–Schild coordinates.
These simulations also require high resolution near the polar axis. Consequently, the
numerical efficiency is extremely low and it is unlikely that simulations with high
resolution in the ergosphere will be performed in the near future.

11.2 Simulations of Relativistic Strings

The simulations of the relativistic string representation of thin poloidal flux tubes,
at the time of printing, are still the only numerical models that produce a relativistic
jet and actually extract black hole energy [176]. They use a method that exploits
the simplification that the full set of perfect MHD equations in curved spacetime
indicate that a magnetized plasma can be regarded as a fluid composed of non-
linear strings in which the strings are mathematically equivalent to thin magnetic
flux tubes [175]. In this treatment, a flux tube is thin by definition if the pressure
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variations across the flux tube are negligible compared to the total external pres-
sure (gas plus magnetic), P, that represents the effects of the enveloping magnetized
plasma (the magnetosphere). By concentrating the calculation on individual flux
tubes in a magnetosphere, one can focus the computational effort on the physical
mechanism of jet production (on all the field lines). Thus, this technique is able to
elucidate the fundamental physics of black hole driven jets without burying the re-
sults in the effort to find the external pressure function, P. The goal of the approach
is to understand the first order physics of jet production not all of the dissipative sec-
ond order effects that modify the efficiency. For these purposes, the string depiction
of perfect MHD is adequate.

Consider a vertical flux tube in which the initial velocity of the plasma is that
of the local ZAMO observer. The flux tube will begin to accrete toward the black
hole. The simulation is performed on the background spacetime of a rapidly spin-
ning black hole with a/M=0.995. The equation of state is chosen as P ∼ ρ2 and
P ∼ (r − r+)−2, where P is the total pressure, gas and magnetic. These parame-
terizations were chosen for computational simplicity. The fundamental physics of
energy extraction and jet production was found in [176] to be quite independent of
the pressure function and the initial conditions. When the flux tube first penetrates
the ergosphere it appears twisted as in Fig. 11.1.

Initially, dφ/dt = Ω0 ≡ Ω � ΩH , since the flux tube is far from the event
horizon. The flux tube accretes towards the black hole under the influence of the
gravitational force. The “natural state” of plasma motion (geodesic motion) induced
by frame dragging is to spiral inwards faster and faster as the plasma approaches
corotation with the event horizon (frame dragging). By contrast, the “natural state”
of plasma motion in a magnetic field is a helical Larmor orbit that is threaded onto
the field lines. In general, these two “natural states” of motion are in conflict near
a black hole. The torsional struggle between these two strong forces is the dynam-
ical effect that drives the simulation depicted in Figs. 11.1–11.6. The plasma far
from the hole is still rotating slowly near dφ/dt ≈Ω0 in Fig. 11.1. However, inside
the ergosphere, Ωmin is necessarily a significant fraction of ΩH , by (3.43b) and Ωp
must exceed Ω0 in short order. Thus, the ergospheric plasma gets dragged forward,
azimuthally, relative to the distance portions of the flux tube, by the gravitational
field. The back reaction of the field is an attempt to keep the plasma threaded on
the field lines (Larmor helices) by torquing the plasma back onto the field lines with
J×B forces (the cross-field current density, J, driven by this torsional struggle is
sunk within the enveloping magnetosphere). By Amperes law, the current driven by
the global torsional struggle also makes a negative azimuthal magnetic field, Bφ ,
upstream of the current flow.

The J×B back reaction forces driven by the global torsional struggle provide
a torque on the plasma in the flux tube in the ergosphere. Figures 11.1 and 11.2
show that the Bφ created in the ergosphere propagates upstream in the form of an
MHD plasma wave at later times, as more and more negative energy is created
in the ergospheric region of the flux tube. The negative energy (indicated by the
red portion of the magnetic flux tube) is the total plasma energy including both the
electromagnetic and the mechanical components of the plasma. In Figs. 11.1–11.6, a
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Fig. 11.1 The magnetic flux tube experi-
ences a torsional struggle between inertial
forces and electromagnetic forces as it enters
the ergosphere

Fig. 11.2 The red portions of the field line
indicate plasma with negative energy, as
viewed globally. The back reaction of the
field in the torsional battle torques plasma
onto negative energy trajectories while simul-
taneously creating an outgoing Poynting flux
in the jet. The details are described in the
text. The time lapse between frames, as mea-
sured by a distant stationary observer from
Fig. 11.1 to 11.2 is t = 85.7GM/c3. Note that
the flux tube rotates in the same sense as the
black hole. The bottom frame is a close-up
of the dynamo region for the toroidal flux in
the jet

jet emerges from the ergosphere. The magnetic tower created by Bφ in combination
with the poloidal field component, BP, naturally provides stable hoop stresses that
are the only known collimation mechanism for the jet morphology of quasars.
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Fig. 11.3 A jet is produced on the magnetic
flux tubes that experience the ergospheric
torsional struggle between frame dragging
forces and J×B forces. The Boyer–Lindquist
time lapse from Fig. 11.1 to 11.3 is t =
133.2GM/c3

Fig. 11.4 A well-formed jet emerges from
the horizon at late times. The Boyer–
Lindquist time lapse from Fig. 11.1 to 11.4 is
t = 265GM/c3 with a pair of jets with lengths
of over 60GM/c2. The plasma has attained an
outflow Lorentz factor of a little less than 2 in
the late stages

The dynamo region for Bφ in the ergosphere is expanded in the bottom frame of
Fig. 11.2. Since Bφ < 0 upstream of the dynamo, from the frozen-in condition ex-
pressed in (5.13c) and the transformation (5.14), there is an electromagnetic energy
flux (∼ −ΩF BφBP) and an electromagnetic angular momentum flux (∼ −BφBP)
along BP, away from the hole in the jet. The red portion of the field line indicates
the total plasma energy per particle, E < 0,

E ≈ ω+SP/k , (11.1)

downstream of the dynamo, where SP is the poloidal component of the Poynting
flux along the magnetic field, k is the poloidal particle flux downstream of the dy-
namo and the mechanical energy is ω . Since Bφ > 0 downstream of the dynamo
in Fig. 11.2, the field transports energy and angular momentum towards the hole
with the inflowing plasma. Thus, SP/k > 0 in the downstream state. Consequently,
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Fig. 11.5 A closeup view of the dynamo region at t = 265GM/c3. The hatched region is the
stationary limit surface

ω � 0 in order for E < 0, downstream. The J×B back reaction forces in the tor-
sional battle torque the plasma onto trajectories withΩp ≈Ωmin. The ingoingω� 0
plasma extracts the rotational energy of the hole since βφ ≈ −1 as noted in (3.51)
and global mechanical angular momentum of the plasma is simply expressed in the
ZAMO frames as

m = u0βφ√gφφ , (11.2)

which implies that m � 0 when βφ ≈ −1. Thus, black hole rotational inertia is
powering the jet in the simulation.

This is precisely the physics of the Penrose process [16]. Penrose envisioned that
a particle could be split into two pieces in the ergosphere. A negative energy ingo-
ing particle extracts the rotational energy of the hole and an outgoing particle goes
off to infinity. Thus, energy is extracted from the black hole. In the GHM process
the negative energy particles is the torqued plasma in the global torsional struggle.
The outgoing particle is a nonlinear MHD wave that can be almost pure Poynting
flux. A closeup of the dynamo region of the jet is shown in Fig. 11.5. The Figs. 11.4
and 11.5 illustrate the utility of this numerical method, the microphysics of rela-
tivistic jet production is clearly displayed. To see the shortcomings and limitations
of this calculational technique, one should consult the Methods section of [176]. It
is also instructive to see the entire GHM interaction in Figs. 11.1–11.3 captured in
one image as in Fig. 11.6 from [176].
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Fig. 11.6 A summary of the GHM interaction. Figures 11.1–11.3 are frames a–c above,
respectively

The physics that was found is related to the fact that the spacetime around a
black hole is essentially rotating and so are the particles. This frame dragging force
is actually very strong, to overcome it one must overwhelm the rotational inertia of
the black hole ∼0.1Mc2 (see equations (1.38) and (1.39)). Thus, the black hole can
impart a huge relativistic inertia to any plasma in order to enforce the constraints
of frame dragging, the field is overwhelmed regardless of its strength and is twisted
and spun-up, as necessary, generating the Poynting flux that powers the jet.

It is expected that a typical black hole magnetosphere would drive a jet with the
same GHM physics. The dynamics of the simulations are not a consequence of any
the simplifying assumptions used in the string formalism. The main effect of the
enveloping magnetosphere would be to compress or rarify the flux tubes and change
their inclination. Semenov and Dyadechkin have created a collection of simulations
indicating that the same basic physics of jet production exists largely independent
of flux tube inclination, the external pressure function and the value of the pure
Alfven speed, UA = BP/

√
4πnµ . For example, in the simulation of Figs. 11.1–11.6,
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the Poynting flux emerges from a region which is magnetically dominated with
UA = 12 − 13. Web links to movies of many of these simulations can be found
in [176]. Thus, the entire magnetosphere that is found by solving the transverse
force equations should be many thin flux tubes that are pieced together at various
inclination angles and with various Alfven speeds and pressures.

11.3 Ergospheric Disk Jets in 3-D MHD Accretion Flow
Simulations

In Chap. 8, the ideal ergospheric disk was described. It represents GHM in its purest
form. The ergospheric disk model was based on plasma that was purely positronic.
In Chap. 10, it was assumed that the fundamental GHM physics of black hole en-
ergy extraction still persists in the presence of accreting equatorial protonic plasma,
i.e., a quasar accretion flow. The 3-D perfect MHD simulation known as KDJ (KDJ
is distinguished by a/M =0.99) in [183] shows that this is likely the case. The dis-
covery of a powerful ergospheric disk within the enormous database of KDJ was
made in [186]. The interesting new aspect of the ergospheric disk that emerged
from the simulation was that the GHM jet did not have to be initiated on buoyant
magnetic flux tubes that thread the equator and extend to large distances from the
hole as presupposed in Chaps. 8 and 10. The simulation realized a highly turbulent
and unsteady accretion flow in which strong loops of poloidal flux with internal
magnetic pressures comparable to the ram and gas pressures of the accretion flow
get generated by MRI instabilities. The vertical flux comprising the ergospheric disk
magnetosphere is small in extent, ∼1 M–2 M and episodic. The magnetic pressure
is so high that the flux patches of twisted loops are buoyant near the upper boundary
of the equatorial accretion flow. As such, the loops tend to sporadically bubble out
of the ergospheric accretion flow into the accretion vortex. All the magnetospheric
features are very twisted by the frame dragging of spacetime and the rotating gas.
An irregular feature, such as a strong twisted loop of magnetic flux extending ver-
tical upward, will promptly be twisted up more and become inextricable tangled
with the large scale magnetic flux in the funnel. Thus, there is effectively a causal
connection between the GHM dynamo forming in the equatorial plane and large
scale plasma-filled flux tubes flux far way, i.e., a pathway that can transfer magnetic
stresses from the dynamo to the outgoing jet. This simulation indicates that realis-
tic quasars are probably not well described by homogeneous simple structures, but
are comprised of many complicated small features that are synthesized into an ac-
tive dynamo and magnetosphere. This complexity was unexpected, but somewhat
obvious in hindsight since the magnetosphere is generated by highly turbulent gas.

In this section, an ergospheric disk within the inner accretion flow in the high
spin 3-D simulations is established by exploring the following points:

1. Just as in the ergospheric disk, the Poynting flux emerges from the ergospheric
equatorial accretion flow.
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2. The GHM dynamo is triggered by the ergospheric plasma accretion towards the
black hole being impeded by a large scale poloidal magnetic flux barrier. Within
KDJ there are strong patches of vertical flux coincident with the base of the
Poynting jets.

3. For a putative Blandford–Znajek process within a magnetosphere shaped by the
accretion vortex, the field line angular velocity is, ΩF ≈ ΩH/2 (where ΩH is
the angular velocity of the horizon) near the pole and decreases with latitude
to ≈ ΩH/5 near the equatorial plane of the inner ergosphere [111]. In a GHM
ergospheric disk, since the magnetic flux is anchored by the inertia of the ac-
cretion flow in the inner ergosphere, frame dragging enforces dφ/dt ≈ΩH . One
therefore has the condition, ΩF ≈ ΩH in the inner regions of the ergosphere.
The GHM condition holds in KDJ in regions that are spatially and temporally
coincident with the base of the Poynting jet.

4. The torsional tug of war between the vertical flux and the equatorial plasma cre-
ates ergospheric disk plasma with negative mechanical energy (the Penrose pro-
cess). It is shown that this occurs as the plasma accretes through the dynamo at
the base of the Poynting jet, even in the presence of an intense bath of accreting
positive energy protonic plasma!

Perhaps the most important point arising from these simulations from an astrophys-
ical standpoint is that the ergospheric disk jet dominates the power output from the
black hole. An even more powerful ergospheric disk jet was found in the highest spin
simulation, KDE with a/M = 0.998 in [181, 187]. The KDE results are described in
Sect. 11.3.5.

Since these results are such an outstanding corroboration of the theory, it is pru-
dent to critique the numerical technique. Numerically, the problem is formulated
on a grid that is 192 x 192 x 64, spanning rin < r < 120M, 8.1◦ < θ < 171.9◦ and
0 < φ < 90◦. The inner calculational boundary, rin, is located close to, but just out-
side of the event horizon, r+, where the coordinates are singular. The φ boundary
condition is periodic and the θ boundary conditions are reflective. Zero-gradient
boundary conditions are employed on the radial boundaries, where the contents
of the active zones are copied into the neighboring ghost zones. As discussed in
Chap. 9, MHD waves propagate slower than the speed of light, therefore the gravita-
tional redshift creates a fast magneto-sonic critical surface outside of r+ from which
no MHD wave can traverse in the outward direction, even in a nonaxisymmetric,
nonstationary magnetosphere. The philosophy was to choose rin to lie inside the
fast magneto-sonic critical surface, thereby isolating it from the calculational grid.
There are also steep gradients in the metric derived quantities as r+ is approached.
This is handled by increasing the resolution of the grid near rin with a cosh distribu-
tion of radial nodes. The validity of the numerics of this method was verified, near
rin, in [177] by comparing simulations to solutions with simple analytic forms. Even
so, the simulations are closely monitored to look for unnatural boundary reflections.
We also note the 3-D simulations in Kerr–Schild coordinates (which are nonsingular
on the horizon) in [188]. To test the code, in preparation of the paper [188], they ran
simulations of magnetized tori that were initiated from identical input parameters to
those used by Hawley et al. In the words of C. Fragile (private communication), the
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results were “remarkably similar.” Even though this was only verified for a/M=0.9,
it is compelling. Consequently, for the purposes of this study it was concluded that
the numerics were reliable inside the ergosphere.

11.3.1 The Equatorial Poynting Flux Source in KDJ

The 3-D perfect MHD simulation KDJ, a/M = 0.99, is characterized by strong flares
of electromagnetic energy that originate near the equatorial plane. In order to un-
derstand the source of the strong flares of radial Poynting flux, one needs to merely
consider the conservation of global, redshifted, or equivalently the B-L coordinate
evaluated energy flux [80]. In general, the divergence of the time component of
the stress-energy tensor in a coordinate system can be expanded as (note that the
tilde notation is dropped from the Boyer–Lindquist evaluated T ν

µ in this chapter in
order to keep the expressions that are implemented later in this chapter from becom-
ing too cluttered),

T ν
t ;ν = (1/

√
−g)[∂ (

√
−gT ν

t )/∂ (xν)]+Γ µt βT β
µ . (11.3)

However, the Kerr metric has a Killing vector (the metric is time stationary) dual
to the Boyer–Lindquist time coordinate. Thus, there is a conservation law associ-
ated with the time component of the divergence of the stress-energy tensor. Conse-
quently, if one expands out the inhomogeneous connection coefficient term in the
expression above, it will equate to zero. The conservation of energy evaluated in
Boyer–Lindquist coordinates reduces to,

∂ (
√
−gT ν

t )/∂ (xν) = 0 , (11.4)

where the four-momentum −T ν
t has two components: one from the fluid,

−(T ν
t )fluid, and one from the electromagnetic field, −(T ν

t )EM. The reduction to
a homogeneous equation with only partial derivatives is the reason why the global
conservation of energy can be expressed in integral form in (3.70) of [80] (see also
equation (11.8)). It follows that the poloidal components of the redshifted Poynting
flux are

Sθ = −
√
−g(T θ

t )EM , (11.5a)
Sr = −

√
−g(T r

t )EM . (11.5b)

We can use these simple expressions to understand the primary source of the Poynt-
ing jet in KDJ. J. Krolik and J. Hawley have generously shared the data for the
last three time slices of KDJ, at t = 9,840 M, t = 9,920 M and t = 10,000 M.
Figure 11.7 show plots of Sθ (left) and Sr (right) in KDJ at t = 9,840 M, t = 9,920
M and t = 10,000 M, respectively. The inside of the inner calculational boundary
(r = 1.203 M) is black. The calculational boundary near the poles is at 8.1◦ and
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171.9◦. Each frame is the average over azimuth of each time step. This greatly re-
duces the fluctuations as the accretion vortex is a cauldron of strong MHD waves.
The individual φ = constant slices show the same dominant behavior, however it is
embedded in large MHD fluctuations. On the left hand column of Fig. 11.7 left, den-
sity contours have been superimposed on the images to indicate the location of the
equatorial accretion flow. The density is evaluated in B-L coordinates with contours
at 0.5 and 0.1 of the peak value within r < 2.5M. Notice that in Fig. 11.7 within the
left frames, Sθ is created primarily in regions of very high accretion flow density. In
all three of the right frames of Fig. 11.7, there is an enhanced Sr that emanates from
the ergosphere. There are 40 grid points between rin = 1.203M and rs at θ = π/2.
These features are well resolved, they are clearly coherent physical structures and
are not numerical artifacts and it is meaningful to discuss their origin. Notice that the
radial energy beam diminishes precipitously just outside the horizon, near the equa-
torial plane in all three time steps. The region in which Sr diminishes is adjacent to
a region of strong Sθ that originates in the inertially dominated accretion flow in the
inner ergosphere, 1.2M < r < 1.6M (this region is resolved by 28 radial grid zones).
In fact, if one looks at the conservation of energy equation, the term ∂ (Sθ )/∂θ is
sufficiently large to be the source of ∂ (Sr)/∂ r at the base of the radial beam in all
three frames. This does not preclude the transfer of energy to and from the plasma.
It merely states that the magnitude is sufficient to source Sr (in general, the hydro-
dynamic energy flux is negligible in the funnel and these terms can be ignored in a
discussion of equation (11.4) to first order). To illustrate energy conservation in the
electromagnetic field, contours of Sθ are superimposed on the color plots of Sr in
Fig. 11.7. The contour levels are chosen to be 2/3 and 1/3 of the maximum value of
Sθ emerging from the dense equatorial accretion flow. One clearly sees Sθ switching
off where Sr switches on. We conclude that a vertical Poynting flux created in the
equatorial accretion flow is the source of the strong beams of Sr. This establishes
condition 1 of the GHM interaction that drives an ergospheric disk that was noted
in the introductory remarks of this section.

11.3.2 The Vertical Flux in the Equatorial Dynamo

Figure 11.8 shows plots of Sθ (left) and the magnetic field component, Bθ ≡ F̃rφ
(right) in KDJ at t = 9,840 M, t = 9,920 M and t = 10,000 M, respectively. At
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Fig. 11.7 The source of Poynting flux. The left frame is Sθ and the right frame is Sr in KDJ,
both averaged over azimuth, at top: t = 9840 M, middle: t = 9920 M, bottom: t = 10000 M. The
relative units (based on code variables) are in a color bar to right of each plot for comparison of
magnitudes between the two plots. The contours on the Sθ plots are of the density, scaled from the
peak value within the frame at relative levels 0.5 and 0.1. The contours on the Sr plots are of Sθ

scaled from the peak within the frame at relative levels 0.67 and 0.33. Notice that any contribution
from an electrodynamic effect associated with the horizon appears minimal. The white contour is
the stationary limit surface. There is no data clipping, so plot values that exceed the limits of the
color bar appear white
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every location in which Sθ is strong in the left frames, there is a pronounced en-
hancement in Bθ in the right frames in Figs. 11.8. Recall that the sign of Sθ is not
determined by the sign of Bθ . These intense flux patches penetrate the inertially
dominated equatorial accretion flow in all three frames. The density contours indi-
cate that the regions of enhanced vertical field greatly disrupt the equatorial inflow.
As noted in Chap. 7, a GHM interaction is likely to occur when the magnetic field
impedes the inflow in the ergosphere. The regions of large Bθ are compact com-
pared to the global field configuration of the jet, only ∼1M−2M long. Considering
the turbulent, differentially rotating plasma in which they are embedded, these are
most likely highly enhanced regions of twisted magnetic loops created by the MRI.
The strength of Bθ at the base of the flares is comparable to, or exceeds the radial
magnetic field strength. The situation is clearly very unsteady and vertical flux is
constantly shifting from hemisphere to hemisphere. The time slice t = 10,000 M,
although primarily a southern hemisphere event, also has a significant contribution
in the northern hemisphere (see the blue fan-like plume of vertical Poynting flux
in the top frame of Fig. 11.8 right). The GHM interaction is provided by the ver-
tical flux that links the equatorial plasma to the relatively slowly rotating plasma
of the magnetosphere within the accretion vortex. The vertical flux transmits huge
torsional stresses from the accretion flow to the magnetosphere.

In all three time steps, a strong patch of vertical flux interacts strongly with the
equatorial accretion flow. As the accreting plasma is inhibited from flowing inward
by the magnetic pressure, torsional stresses move up and down the vertical flux
patch into the Poynting jet within the funnel: as evidenced by the strong Sθ that is
coincident both spatially and temporally with the strong vertical flux patches. This
establishes condition 2 of an ergospheric disk dynamo in the introductory remarks
to this section.

In the language of Chap. 7, the Poynting jet plasma and field is rotating slower
than the accreting plasma. Thus, this load on the vertical flux tubes provides a torque
on the accreting plasma. As a back reaction, the accreting plasma sends angular
momentum into the funnel Poynting jet in an attempt to spin it up in this torsional
tug of war.

11.3.3 The Field Line Angular Velocity

Further corroboration of this interpretation can be found by looking at the values of
ΩF in the vicinity of the Sr flares. In a non-axisymmetric, non-time stationary flow,
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Fig. 11.8 The source of Poynting flux. The left frame is Sθ and the right frame is Bθ in KDJ, both
averaged over azimuth, at top: t = 9840 M, middle: t = 9920 M, bottom: t = 10000 M. The relative
units (based on code variables) are in a color bar to right of each plot. The contours on both the
Sθ and Bθ plots are of the density, scaled from the peak value within the frame at relative levels
0.5 and 0.1. The white contour is the stationary limit surface. There is no data clipping, so plot
values that exceed the limits of the color bar appear white
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there is still a well defined notion of ΩF : the rate at which a frame of reference at
fixed r and θ would have to rotate so that the poloidal component of the electric
field, E⊥, that is orthogonal to the poloidal magnetic field, BP, vanishes. This was
demonstrated more generally in (9.1). If we expand out (9.1) and assume the frozen-
in condition, this relation can be written out in Boyer–Lindquist coordinates in terms
of the plasma three-velocity, ṽi and the Faraday tensor as

ΩF = ṽφ − F̃θr
grrṽrF̃φθ +gθθ ṽθ F̃rφ

(F̃φθ )2grr +(F̃rφ )2gθθ
. (11.6)

The right frames of Figs. 11.9 areΩF /ΩH plotted at three different time steps for
KDJ. For comparison the left frames of these figures are plots of Sr. The plots of
ΩF are very noisy because equation (11.6) is a complicated function of code vari-
ables and numerical noise propagates through the algebraic expressions, especially
through the denominator. In spite of this, there are still some clear trends that per-
meate through the strong numerical noise. Notice that each flare in Sr is enveloped
by a region of enhanced ΩF , typically 0.7ΩH < ΩF < 1.2ΩH . The regions of the
funnel outside the ergosphere that are devoid of large flares in Sr, typically have
0 <ΩF < 0.5ΩH . It seems reasonable to associate these large peak values of ΩF in
KDJ with the spatially and temporally coincident flares in Sr that occur in KDJ. Fur-
thermore, this greatly enhanced value of ΩF indicates a different physical origin for
ΩF in the flares than for the remainder of the funnel. The most straightforward inter-
pretation is that it is a direct consequence of the fact that the flares originate on mag-
netic flux that is locked into approximate corotation with the dense accreting equa-
torial plasma (i.e., the inertially dominated equatorial plasma anchors the magnetic
flux). In the inner ergosphere, frame dragging enforces 0.7ΩH < dφ/dt < 1.0ΩH

on the accretion flow and therefore the frozen-in magnetic flux. This establishes
condition 3 of the introductory remarks.

11.3.4 The Creation of Negative Energy Plasma

Finally we look at the generation of negative energy plasma in the GHM ergospheric
disk dynamo. From equation (5.20), the negative redshifted specific mechanical en-
ergy condition is

ω = µ(−ũt) < 0 . (11.7)

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
Fig. 11.9 The field line angular velocity, ΩF . The left frame is Sr and the right frame is ΩF /ΩH in
KDJ, both averaged over azimuth, at top: t = 9840 M, middle: t = 9920 M, bottom: t = 10000 M.
The relative units (based on code variables) are in a color bar to right of each plot. The contours
on the Sr plots are of Sθ scaled from the peak within the frame at relative levels 0.67 and 0.33. The
white contour is the stationary limit surface. There is no data clipping, so plot values that exceed
the limits of the color bar appear white
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Recall that when the black hole swallows negative mechanical energy the black
hole loses its rotational in energy in the Penrose effect. Note that the definition in
equation (11.7) is equivalent to the [16] condition for a Penrose process, i.e., the
accretion of particles with −ũt < 0. The most dramatic effect of the ideal GHM
torsional tug of war that is described in Chap. 7 is that outgoing Poynting flux is
made by plasma being forced onto −ũt < 0 trajectories. The advantage of using −ũt
instead of ω is that its value is not dependent on difficult to interpret code units.
Also, the color bar centered on 0 is useful for finding negative energy plasma. The
grey color indicates −ũt = 0. Slightly negative energy plasma, −ũt � 0, is light blue
which is clearly distinct from slightly positive energy plasma, −ũt � 0, which is
yellow. Recall from Chap. 3, that a value of −ũt = 1 is equivalent to the energy of a
cold particle released from rest at asymptotic infinity. The blue regions of Fig. 11.10
are a very surprising result in that they indicate the incredible power of the GHM
interaction. Note that as the plasma accretes radially inward in the dynamo region
it crosses the Poynting flux generation region and simultaneously keeps decreasing
its mechanical energy per unit enthalpy. This decrease continues as the power is
extracted electromagnetically even until the mechanical energy becomes negative.
Thus, the extracted energy is more than the energy stored in the plasma. The process
creating the Poynting jet is independent of the stored energy within the plasma and
is driven by the only other dynamic element available, frame dragging. The blue
regions of −ũt < 0 indicate that a strong GHM interaction is present. This simulation

Fig. 11.10 A close-up of the GHM dynamo. A plot of −ũt , the mechanical energy per unit enthalpy
as viewed from asymptotic infinity of the plasma in KDJ. The data is averaged over azimuth, at left:
t = 9840 M and right: t = 10000 M. The units are in a color bar to right of the plots. The contours
are of Sθ . The inside of the inner calculational boundary (r = 1.203 M) is black. The calculational
boundary near the poles is at 8.1◦ and 171.9◦. There is no data clipping, so plot values that exceed
the limits of the color bar appear white
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is a high accretion system (like a quasar) with rapid accretion driven by a strong
MRI. Thus, there is an enormous flood of positive energy plasma (the large −ũt ≈ 1
regions) approaching the vertical magnetic flux region of the dynamo. In this high
spin simulation, the GHM interaction can actually remove all this energy from the
plasma and more! Figures 11.10 clearly demonstrate that KDJ satisfies condition 4
for a GHM ergospheric disk dynamo from the introductory remarks to this section.
The corroboration of conditions 1–4 in KDJ is a robust verification of a GHM driven
ergospheric disk in operation. Furthermore, the existence of the ergospheric disk
within the strongly accreting system justifies the implementation of the ergospheric
disk in the AGN model building of Chap. 10.

11.3.5 The Simulation KDE

The simulations of DeVilliers and Hawley seem to indicate a dramatic increase in
GHM jet power as the a/M approaches 1, as predicted in Fig. 11.9 left. Consider
the very high spin simulation KDE from [181], with a/M = 0.998. The source of
Poynting flux for this simulation was studied in [187]. The energy source for the
powerful Poynting jet was explored in [187] with the aid of Fig. 11.11.

Figure 11.11 is a magnification of the inner region of Fig. 11.8 left of [181].
It is an excision of a region, 0◦ < θ < 65◦, r � r+ that is a little larger than the
ergospheric portion of the magnetically dominated funnel, 0◦ < θ < 55◦, r � r+.
It is a contour plot of Sr. The data is averaged over azimuth and over time from
2,000M < t < 8,080M. A data dump occurs every t = 80 M. Thus, 76 discrete
time slices are averaged in Fig. 11.11 after the large transients have died down. The
most striking feature in the figure is that Sr appears to switch on outside the inner
calculational boundary at r = 1.175M (and therefore the horizon at r = 1.1,063M)
in a thin layer near r = 1.3M-r = 1.5M.

The time and azimuthally averaged data in Fig. 11.11 is trivially equivalent
to a discrete sum estimate of the total radial Poynting flux emanating from
the ergosphere at t > 2,000M in the simulation (i.e., multiply the values by
(π/2)(80M)(76)). Thus, it is interesting to investigate the power source with
the aid of Poynting’s theorem using the Gaussian pillbox drawn in Fig. 11.11. This
requires converting equation (11.4) to an integral version of Poynting’s theorem by
trivial integration. The symmetry of the Gaussian pillbox simplifies the expression.
Curves 1 and 3 are semicircular arcs (r = constant). The curves 2 and 4 are radial
segments (θ = constant). Curve 4 is chosen to be at the funnel boundary. However,
without complete data to analyze, this is a bit uncertain and θ = 55◦ is a very
conservative lower bound. Looking at the data in [179] of the same simulation,
indicates that it could be as large as θ = 65◦. Employing the periodic boundary
condition on φ and integrating over azimuth and time equation (11.4) becomes,
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Fig. 11.11 A plot of Sr that is azimuthally averaged and time averaged (over 75% of the simulation
that ends at t = 8,080 M) from the simulation KDE. The figure highlights the region, 0◦ < θ <
65◦,r � r+ that is a little larger than the ergospheric portion of the magnetically dominated funnel
at r � r+ . The majority of Sr switches-on in a thin layer near r = 1.3M – r = 1.5M (the color
bar is in code units). Saturated regions are clipped, so the dark red areas of Sr are stronger than
indicated by the color bar. A Gaussian pillbox, 30◦ < θ < 55◦, is drawn as a dashed white contour
for use in Poynting’s Theorem. There are 26 grid zones between the inner boundary, r = 1.175M
and r = 1.5M. The plot is provided courtesy of John Hawley
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where dV =
√−gdrdθdφ . At the time of [187], it was not clear what the source of

Sr was since the raw data was not analyzed. However, with the knowledge gained
from studying KDJ, the situation is clear. Strong dissipation and large radiation
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losses are not allowed by the perfect MHD assumption, thus there is no GHM in-
teraction within the funnel proper. Consequently, in the evacuated funnel with the
perfect MHD assumption, the plasma (fluid) stress-energy should be negligible com-
pared to the electromagnetic contribution. Thus, equation (11.8) reduces to
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Furthermore, the amount of energy flux radiated from the ergosphere during the
course of the simulation, (π/2)

∫
3(−

√−gT r
t )EM dθdt diverges with time while

the amount of stored energy in a finite region of spacetime remains bounded,∫
(−T t

t )EM dV . Thus, after a long period of time the source term on the left hand
side of equation (11.9) is negligible. Secondly, (π/2)
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t )EM dθdt >

4× (π/2)
∫
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t )EM dθdt based on the contour plot in Fig. 11.11. However,
large values of Sr saturate due to the data clipping imposed by [181], so the red color
is deceiving and (π/2)
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relative estimate. Thus, we can approximate (11.9) as
∫
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The situation is very clear from the analogy to KDJ. Compare the vertical extension
in Sr at low latitudes in Fig. 11.11 and the similar extension in Fig. 11.7 bottom
showing Sr at t = 10,000 M in KDJ. The morphology is virtually identical and
strongly suggests an ergospheric disk origin for the vast majority of Sr radiated
from the ergosphere,

∫
3

Sr dθdt ≈
∫

4
Sθ drdt . (11.11)

Just as in KDJ virtually all of the Poynting flux in the magnetically dominated funnel
is produced by ergospheric disk. In KDE, the preponderance of energy flux from the
ergospheric disk is even more dramatic.

11.4 Source of Poynting Flux in Event Horizon Magnetospheres

There are two main concepts that are proposed in this book.

• The primary focus of this effort is the GHM mechanism that can drive powerful
jets in AGN and X-ray binaries. In particular, the ergospheric disk is the most
energetic manifestation of GHM.

• Secondly, causality arguments have been put forward to try to understand what
determines the electromagnetic power on field lines that thread the event horizon.
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The book expands on the discussion of [67] that the method of solution in
[66, 111] is fundamentally acausal. Therefore, in a realistic astrophysical cir-
cumstance, the power extracted from the black hole (even with the perfect MHD
assumption) will not be as predicted.

In the previous two sections, the first point was explored with the aid of numer-
ical simulations. In particular, it was shown that the physics conducive to an er-
gospheric disk existed in the 3-D perfect MHD simulations KDJ and KDE. The
ergospheric disk jet is launched from the plasma near the equatorial plane of the
ergosphere. The ergospheric disk jet fills the outermost portion of the accretion vor-
tex (see Fig. 11.7). Interior to the ergospheric disk jet is the event horizon mag-
netosphere (EHM) comprised of poloidal flux that threads the event horizon (see
the top frame of Fig. 11.12). The EHM is distinct from the poloidal magnetic flux
that threads the equatorial plane of the ergosphere, which forms the ergospheric
disk magnetosphere. This section explores the second point above by studying the
sources of Poynting flux in the EHM within the context of the 3-D simulations. We
continue the analysis of KDJ, a/M = 099, and begin an investigation of a third 3-D
simulation, KDH with a/M = 0.95. This analysis parallels and expands the work
of [191].

The data presented in this section demonstrates that the boundaries of the EHM
should be dynamic and are not likely to be passive boundary surfaces for the mag-
netic field. It is shown that electrodynamic energy flux can arise in the EHM as a re-
sult of sources radiating energy from the lateral boundaries. Poynting flux is injected
into the EHM from both the ergospheric disk jet as well as strong flares originat-
ing in the accretion disk corona. Even if the EHM can be construed as “force-free,”
the dynamics of the lateral boundaries are determined by strong inertial forces that
should make them strong MHD pistons. This circumstance was not anticipated in
theoretical treatments of electrodynamic jets in the EHM [66, 111]. The fact that
electromagnetic energy can enter the EHM from the side goes right to the heart of
the assumptions in the Blandford–Znajek solution. The Blandford–Znajek solution
is the perfect MHD solution in which energy conservation reduces to Poynting flux
conservation from the horizon to a relativistic wind at asymptotic infinity [111].
From this condition, the parameters of the field are uniquely determined for a given
poloidal field distribution, in particular the field line angular velocity, ΩF , and the
total electromagnetic energy output from the black hole,

∫
Sr dθdφ . However, if

there are strong sources of Poynting flux along the lateral walls of the EHM, the
spacetime near the event horizon can not adjust the system to enforce the Blandford–
Znajek field parameters within the EHM. This is a direct consequence of the fact
that the plasma near the event horizon in the EHM can not effectively react back
on the outgoing wind or jet and modify its electromagnetic properties because of
the gravitational redshifting of the MHD characteristics (see Sect. 6.4). The plasma
near the horizon in the EHM will passively accept any field parameters imposed
by the ergospheric disk and the accretion disk corona (see Sect. 6.3). As such, in a
general astrophysical context, the basic parameters such as ΩF and

∫
Sr dθdφ are

indeterminant.
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Fig. 11.12 The large scale view of the radial Poynting flux in KDJ. The color bar is in code units.
The top row is at t = 9,920 M and bottom row is t = 10,000 M. “EDJ” is an abbreviation for the
ergospheric disk jet. There is no data clipping, saturated regions are white

In order to demonstrate these points, this section is organized as follows. The first
subsection explores the propagation of the ergospheric disk jet in KDJ away from the
ergosphere. The ergospheric disk jet is comprised of strong flares of Poynting flux
that resistively diffuse to high latitudes within the EHM. By r ∼ 100M, even the po-
lar regions of the EHM are dominated by the ergospheric disk ejecta. Clearly, the
resulting power output is not determined by the Blandford–Znajek solution. In the
second subsection, the lower spin simulation KDH is investigated. KDH provides
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an interesting contrast to KDJ, because the ergospheric disk jet in the available data
slices is not nearly as powerful as it is in KDJ. Thus, weaker sources of Poynting
flux can be resolved that would otherwise be swamped by a powerful ergospheric
disk jet. It is demonstrated that coronal flares act as MHD pistons at the boundary of
the EHM that launch substantial Poynting flux. Thus, the total power is significantly
different from what one would expect from a Blandford–Znajek solution.

11.4.1 The Propagation of the Ergospheric Disk Jet

Figure 11.12 is a plot of Sr in KDJ viewed at three different levels of magnification,
at t = 9,920 M (top row) and t = 10,000 M (bottom row). Similarly, Fig. 11.13 is a
plot of Sr in KDJ viewed at three different levels of magnification, at t = 9,840 M
(top row) and t = 9,920 M (bottom row). Each frame is the average over azimuth
of each time step. This greatly reduces the fluctuations as the accretion vortex is
a cauldron of strong MHD waves. The individual φ = constant slices show the
same dominant behavior, however it is embedded in large MHD fluctuations. The
left hand columns of Figs. 11.12 and 11.13 show strong beams of Sr coming from
near the black hole. In this subsection, we turn our attention to the propagation
of individual flares from the ergospheric disk out to the outer calculational bound-
ary at r = 120M. Even though the time sampling is very coarse in the data dumps
(∆ t = 80M), we can understand the propagation of the ergospheric disk jet because
of the wide angle views available in the right hand columns of Figs. 11.12 and 11.13.
We track the EDJ evolution by identifying the strong knots or flares in Figs. 11.12
and 11.13 in consort with MHD causal constraints. As discussed in Chaps. 5 and 6,
the Sr flares in a perfect MHD flares will propagate at the speed of a perfect MHD
discontinuity as modified by the plasma bulk flow velocity. The plasma near the
edge of the vortex has accelerated to ṽr > 0.9c by r = 30 M. So the flares of Sr

should propagate radially at Vf lare � c for r > 30M. Without having the benefit of
the detailed time evolution, this upper bound is the best estimate that we can make
for Vf lare.

First, consider the strong knot, “C,” at t = 10,000 M in the bottom, right hand
frame of Fig. 11.12. Label the outer radial extent of knot C at t = 10,000 M by
r+C(t = 10,000M) = 100.9M and inner radial edge by r−C(t = 10,000M) = 65.9M.
Translating this perfect MHD discontinuity back in time to t = 9,920 M is equiva-
lent to a radial displacement

Vf lare∆ t = Vf lare(−80M/c) � −80M . (11.12)

Thus at t = 9920 M, knot “C” should extend from the ergospheric disk to r+C(t =
9,920 M) � 20.9M. The red patches in the middle frame at t = 9,920 is therefore the
early time (past) manifestation of the strong knot “C” in the EHM at t = 10,000 M.

Next consider the strong knot, “A,” at t = 9,840 M in the middle and right frames
in the top row of Fig. 11.13. Label the outer radial extent of knot “A” at t = 9,840 M
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Fig. 11.13 The large scale view of the radial Poynting flux in KDJ. The color bar is in code units.
The top row is at t = 9,840 M and bottom row is t = 9,920 M. There is no data clipping, saturated
regions are white. The interior of the inner calculational boundary (r = 1.203 M) is black. The
calculational boundaries near the poles are at 8.1◦ and 171.9◦

by, r+A(t = 9,840M) = 58.9M and inner radial edge by r−A(t = 9,840M) = 22.0M.
Time translating this feature to t = 9,920 M implies that r−A(t = 9,920M) �
102.0M, so it must be visible near the edge of the right hand frame at t = 9,920
M. Furthermore, unless the flare is propagating inordinately slowly, Vf lare < 0.75c,
r+A(t = 9,920M) will be beyond the outer boundary of the plot. There is only
one plausible feature at t = 9,920 M, hence the identification “A” in the bottom,
right frame of Fig. 11.13. Secondly, consider the strong flare “B” that is emerging
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from the ergospheric disk at t = 9,840 M in the left and middle frames in the top
row. Thus, at t = 9,920 M, some portion of the flare must be within 80 M of the
black hole, hence the knot labeled “B” in the right hand frame in the bottom row of
Fig. 11.13 is uniquely identified as the future time evolution of the ejection from the
ergospheric disk at t ∼ 9,840M .

The dynamics of the ergospheric jet propagation illustrated in Figs. 11.12 and
11.13 can be summarized as follows. At r ≈ 1.5−−2.0M, the ergospheric disk
jet enters the EHM from the periphery (left hand frames). The ergospheric disk jet
gets quickly linked into the EHM because the ergospheric disk magnetosphere in
KDJ is comprised of small patches of twisted vertical flux that become intertwined
with the large-scale flux in the EHM on scales of ∼1–2 M (see Sect. 11.3.2). After
this rapid injection, the Sr in the ergospheric disk jet keeps spreading towards the
pole as it propagates outward. At the time steps that were made available to this
author, the ergospheric disk jet is the predominant source of Sr in the EHM. By
r ≈ 100M, the ergospheric disk jet is flooding the EHM, even close to the polar
axis. Furthermore, it should be noted that in the process of Sr migrating towards
the pole that prodigious quantities of electromagnetic energy are transferred to the
plasma. Therefore the total energy flux is significantly larger than just Sr, ≈ 20% of
the total energy flux is in mechanical form in the EHM at r ≈ 100M. The relevance to
this discussion is that the EHM is inundated with Sr (and the bi-product mechanical
energy flux) that was not created on field lines that thread the horizon, but on flux
entrapped within the equatorial accreting plasma. The slow diffusion of Sr poleward
at r > 30M is most likely regulated by numerical diffusion. This might seem like a
problem from a numerical point of view, but physically this is not nearly as much
of a concern from a qualitative standpoint. Perfect MHD is just a simple tractable
method of dealing with the plasma physics. A realistic, high temperature, jet plasma
is likely to have anomalous resistivity from a variety of sources, [192, 193], and the
diffusion of field energy should naturally occur. The simulation cannot accurately
describe the diffusion rate. However, qualitatively speaking, it indicates that if the jet
propagates extremely far from the hole (r 	 120M), regardless of the exact details
of the diffusion microphysics, the ergospheric disk jet energy flux is likely to get
smeared out towards the polar region.

Clearly, KDJ is an example of an EHM magnetosphere in which the Blandford–
Znajek wind parameters are irrelevant to the total jet power from the EHM. In this
most extreme example (and in KDE), even the notion of electrodynamic energy ex-
traction, that is the fundamental concept behind the Blandford–Znajek mechanism,
is merely a weak second order correction to the total output power of the EHM. The
plasma in the spacetime near the event horizon is clearly powerless to over-ride the
wind parameters imposed on the EHM by the ergospheric disk jet.

11.4.2 The MHD Coronal Piston

J. Krolik and J. Hawley have generously shared the data for the last three time slices
of KDH (a/M = 0.95), at t = 9,840 M, t = 9,920 M and t = 10,000 M. The strength
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Fig. 11.14 The coronal MHD piston is illustrated by this plot of the Poynting flux in KDH at top
left: t = 9840 M, top right: t = 9920 M, bottom: t = 10000 M. The color bar is in code units.
There is no data clipping, saturated regions are white. The overlayed white contours represent, Pr ,
the radial momentum flux described in the text. At each coronal piston location there is a large
pressure flare. Inside of rin = 1.403M (r+ = 1.312M) is colored black

of the ergospheric disk jet is variable, it is noticeable at t = 9,840 M, but it is neg-
ligible otherwise. This circumstance allows for the detection of weaker sources of
Sr that would otherwise be swamped by a strong ergospheric disk jet. Figure 11.14
are plots of Sr for these three time slices in chronological order. Each plot is the
average over azimuth of the time step. The contours of the radial momentum flux
due to mass motion, Pr ≡

√−gρ ũrũr (where ρ is the proper mass density), are over-
layed in white in order to define the location of the “funnel wall jet,” as was done
in [178, 183]. The funnel wall jet is a shear layer between the accretion disk corona
and the Poynting jet. It is a collimated sub-relativistic flow that transports most of
the mass outflow in the jetted system. In [183], it was shown to be driven by the total
pressure (gas plus magnetic) gradient in the corona that is oblique to the funnel wall
boundary. The gas in this region is constrained from being pushed into the funnel
by the centrifugal barrier. The component of pressure gradient that is parallel to the
centrifugal barrier forces the flow to be squeezed outward as a shear layer.
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In Fig. 11.14, there is an almost one to one correspondence, between locations
where Pr of the funnel wall jet increases and sites where Sr increases at the funnel
wall boundary in the EHM. In agreement with [183], it was concluded in [191] that
it is the coronal pressure and not the Poynting jet that drives the funnel wall jet. In
a most general context this must be the case. The results of [183] in Table 4 and
Fig. 5 and the analysis in [191] show that the Poynting jet in the funnel is a factor
of 3 too weak to drive the funnel wall jet. More graphically Fig. 11.15 shows a
strong flare in the total pressure (gas plus magnetic) at t = 10,000 M. The pressure
gradient seems to provide the accelerating force that drives Pr. The flare appears to
be a high pressure loop emerging from the corona, as evidenced by the right hand
frame of Fig. 11.15. The loop location and topology are inconsistent with the high
pressure feature being injected into the corona from the funnel interior. It was also
shown in [191] that the coronal injection sites appear to be required in order to
support the large excess (>26%) of

∫
Sr dθdφ that reaches the outer calculational

boundary in the EHM compared to the amount of
∫

Sr dθdφ that is created within
the ergosphere of the EHM in the simulation KDH. Furthermore, it should be noted
that the magnetic pressure in the corona actually exceeds the magnetic pressure in
the funnel at these intermediate radii, 10M < r < 30M! Not coincidentally, this is
where the putative MHD coronal pistons are located. There is plenty of magnetic
and gas energy in this region to power the injection sites and make up the for the
deficit of

∫
Sr dθdφ leaving the ergosphere in the EHM compared to that which

reaches the outer calculational boundary.
It is instructive to detail how the total pressure gradient can drive the massive

outflow. The total pressure density of a magneto-fluid is defined in terms of the gas
pressure, Pg and the Faraday field strength tensor, Fµν as

Ptot =
√
−g(Pg +FµνFµν/16π) (11.13)

The radial momentum flux due to mass motion, Pr is linked to the pressure through
the stress-energy tensor density of the fluid,
√
−gT r

r = hPr +Ptot +
√
−g[FµνFµν/16π]urur −

√
−g[(∗Frνuν)(∗F µ

r uµ)/4π] .
(11.14)

The stress energy tensor has been expanded in this unconventional manner as in
[178, 183] because it highlights the connection between Pr and Ptot . The quantity
“h” is the enthalpy per unit mass. In [178,183] and in Figs. 11.14 and 11.15 “h” was
left out of the definition of the radial momentum flux, Pr for the following reasons
that were discussed in [183]. As pointed out in [183], h ≈ 1 in the funnel wall jet.
However, there are regions of large h in the EHM. The EHM is not force-free even
though it is magnetically dominated. There is enormous local heat dissipation as a
consequence of the fact that it is an intense cauldron of MHD waves that transfer
large amounts of energy to and from the fluid. Not only are there the coronal piston
waves discussed here, but there are large fluctuations in general, including intense
shocks that heat the plasma to relativistic temperatures [183]. This convention is
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Fig. 11.15 A closeup of the coronal piston at t = 10,000 M is depicted in these plots of the total
pressure density (gas plus magnetic). The top frame is averaged over φ and the bottom frame is at
φ = 49.2◦. The color bar is the strength of the total pressure in code units. High pressure regions
of the corona are saturated and appear white. The force associated with the pressure gradient is
indicated by the white arrows. The overlayed white contours represent, Pr , the radial momentum
flux as in Fig. 11.14 bottom and the black contours represent Sr
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maintained for the sake of clearly distinguishing the location of the larger mass flux
of funnel wall jet from hot shock heated gas inside the low density EHM. Apply-
ing the relativistic law of the conservation of radial momentum flux, T rν

;ν = 0, to
equation (11.14) shows that a decrease in Ptot (i.e., the total pressure gradient) can
affect an increase in Pr.

Next consider the increase of Sr in locations where Pr increases in Fig. 11.14
and 11.15. The corona does not directly affect an injection of Sr into the funnel
as clearly shown in Fig. 11.15. This is because the pressure gradient appears in the
radial momentum flux in equation (11.14), but not in the energy flux equation that
results from the divergence of equation (11.15) and this is the source equation for Sr.

√
−gT r

t =
√
−g(ρh)ũt ũr −Sr . (11.15)

After the plasma is accelerated radially by Ptot as a consequence of radial momentum
conservation applied to equation (11.14), the funnel wall plasma has attained signifi-
cant radial momentum. Then by the energy conservation equation, (11.4), and equa-
tion (11.15), this radial mechanical momentum can be transferred to field within the
EHM and is manifested as Sr. Hence, this intermediate step of plasma acceleration
that mediates the flow of coronal internal energy to Sr in the EHM.

We can consider the perfect MHD aspect of the radial momentum being trans-
ferred from the funnel wall jet to Poynting flux in the EHM. It has been discussed in
Chap. 2 that injecting Poynting flux into a magnetosphere requires an Alfven wave
component in addition to the compressive polarizations (slow and fast). In even the
most simplified problems, all of these modes are required to meet all the boundary
conditions. The Alfven component is particularly important to the Poynting flux be-
cause it is the mode that carries an electric charge. However, the coronal piston (via
the funnel wall jet) is injecting waves almost perpendicular to the predominantly ra-
dial magnetic field in the funnel. Thus, the Alfven speed is slow, it strictly vanishes
for perpendicular propagation (see Chap. 2). The plasma in the funnel jet is propa-
gating with a relativistic bulk velocity, so these Alfven waves get swept up in the
outgoing wind. Consequently, the coronal piston always appears to be just upstream
of the peak of the Sr and the flares in Sr should propagate outward at approximately
the bulk velocity of plasma in the EHM. This is depicted in Fig. 11.15.

One might be concerned that there are only ≈ 8–10 angular zones between the
coronal piston and the EHM and this leads to significant numerical diffusion. From
a numerics point of view this is much more of a concern than from a physical point
of view. The MHD code is just a simple approximation to any real turbulent plasma
state. The turbulent corona is likely to have an anomalous resistivity and diffusion
should occur [192, 193]. The rate of diffusion cannot be determined by this sim-
ulation. However, the qualitative idea that a strong flare in coronal energy can in
principle reach the EHM interior is strongly indicated.

In summary, KDH shows that MHD coronal pistons can inject a modest amount
of Poynting flux into the EHM. This provides a dynamic contrast to KDJ and KDE.
In KDJ (a/M = 0.99) and KDE (a/M = 0.998), the ergospheric disk jet dominates
the energy output from the ergosphere. In the EHM, at large distances from the black
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hole the jet power is determined primarily by the properties of the ergospheric disk,
not any electrodynamic properties associated with the horizon (i.e., any putative
Blandford–Znajek effects). In the lower spin simulation, KDH (a/M = 0.95), the
ergospheric disk jet is a relatively minor contributor, so the other ergospheric energy
sources are highlighted. In this case, the electrodynamic effect associated with the
putative Blandford–Znajek mechanism are pronounced with contributions of the
same order of magnitude from the coronal pistons within the funnel wall. Clearly,
the strength of this coronal piston will depend on the detailed gas dynamics of the
magnetized corona.

It should be noted that the very abrupt drop-off of ergospheric disk power with
spin, near a/M = 0.95, is a consequence of the nature of the vertical flux generation
in the equatorial plane. This result does not contradict the plots in Fig. 10.13. In that
figure, it was assumed that large scale vertical flux existed throughout the equatorial
plane of the ergosphere. Within the parameters of the simulation, the vertical flux
in the ergospheric equatorial plane is comprised of twisted loops generated in the
turbulent plasma. These loops seem to form within r < 1.5M in the context of the
simulations. The inner calculational boundary in KDH is at rin = 1.403M. Thus,
there simply is no significant equatorial surface area to support the flares in the
vertical magnetic flux. Note that if the inner boundary were truly the event horizon
instead of the inner calculational boundary then this argument would indicate that

Black Hole Jet Power

44.5
0.55 0.65 0.75 0.85 0.95 1.05

45

45.5

46

46.5

47

47.5

48

Black Hole Spin (a/M)

L
o

g
 J

et
 P

o
w

er
 (

er
g

s
/s

ec
)

Blandford-Znajek Ergospheric Disk Doubly Truncated Ergospheric Disk
KDE KDJ KDH
Singly Truncated Ergospheric Diisk

Fig. 11.16 A comparison of the jet power in the theoretical models and the 3-D computer simula-
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the ergospheric disk would likely be powerful even at a/M = 0.95 and the switch-on
would occur at a/M ≈ 0.9 (see the Fig. 11.16 and the related discussion in the next
subsection).

11.5 Discussion

It is interesting to discuss the relevance of these simulations to the theoretical anal-
ysis of this book and astronomical objects. The discrepancy between the theory and
the numerics can be used to explore the consequences of the assumptions involved
in these disparate treatments and the discrepancies with observations can highlight
limitations of the theories and the shortcomings of the numerical methods. In order
to explore these issues, it useful to compare the results of the simulations to the
quantitative predictions of the theories. Fig 11.16 is an attempt to accomplish this.
The figure is patterned after Fig. 10.13. It is assumed that (BP

E)4 = 1 and M9 = 1,
but the scalings with these parameters follows trivially with the vertical axis units in
Fig. 10.13. Before analyzing this plot, the generation of each curve and data point
in the figure is explained in detail.

11.5.1 The Ergospheric Disk Jet

The power of the ergospheric disk jet from theoretical considerations is plotted as
the solid black curve in Fig. 11.16. The plot is slightly different than the corre-
sponding plot in Fig. 10.13. The only change is that BP is considered to be constant
throughout the ergospheric disk. In the model used in Fig. 10.13, there was a build
up of BP at small radii. However, there was no evidence that this happens in the
3-D numerical simulations, so it was dropped for the sake of comparison with the
numerical results.

11.5.2 The Truncated Ergospheric Disk Jet

The doubly truncated ergospheric disk jet is shown in the dashed light blue curve.
The doubly truncated ergospheric disk represents the region of the ergospheric disk
that actually occurs in the 3-D simulations. It is terminated at the inner calculational
boundary, rin. Patches of vertical poloidal flux seem to penetrate the ergospheric
disk only at r < 1.5M, in the turbulent 3-D accretion simulations. Thus, the doubly
truncated ergospheric disk is cutoff at r � 1.5M in the calculations. The dashed
light blue curve is the based on the same theoretical calculation as the black curve.
However, only the power generated from the full ergospheric disk in the range rin <
r < 1.42M is considered in the plot of the doubly truncated disk jet. Furthermore, as
in KDJ, the jet was considered to be intermittent, operating in only one hemisphere
at a time; so the power was cut in half.
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The singly truncated ergospheric disk is the same as the doubly truncated er-
gospheric disk, except that the numerical artifact of terminating the disk at rin is
replaced by extending the inner edge of the ergospheric disk all the way to r+. The
power of the jet that is driven by the singly truncated ergospheric disk is indicated
by the solid orange curve. In the singly truncated case, the Poynting jet operates
down to a/M = 0.9.

11.5.3 The Blandford–Znajek Jet

The Blandford–Znajek jet power is the dark blue dashed curve in Fig. 11.16. The
Blandford–Znajek jet power is based on expression (5.50) for BT in a cylindrical
relativistic jet at large distances from the black hole. The total power in the jet is
determined by an integration analogous (5.51), over the whole Poynting jet. The
parameters that need to be determined are ΩF and the enclosed poloidal flux, Φ . A
split monopole is not a viable choice for these parameters because it forms a spheri-
cal relativistic wind and not a jet, so it is not relevant to astrophysics [173]. The only
Blandford–Znajek jets found in numerical simulations appear in accretion vortices.
ΩF is determined by averaging the KDH value from [183] with the [184] value,
ΩF = 0.4ΩH and is approximately constant with polar angle. In order to calculate
Φ , we consider the distribution of poloidal flux in [183]. In these simulations, the
poloidal flux, near the horizon, increases monotonically with polar angle towards
the outer boundary of the EHM, more than doubling in magnitude. The opening
angle of the Poynting jet at the event horizon is chosen as 70◦ which is an upper
limit based on the analysis of [179, 191]. Thus, the Blandford–Znajek jet power in
Fig. 11.16 is an upper limit. The peak value of BP at this outer boundary at the base
of the Poynting jet is the BP

E value referred to in Fig. 11.16 and this is also the value
of BP that appears in the ergospheric disk calculations. Notice that the total power
as a function of spin is relatively flat, not a steep power law in a/M as some authors
suggest. The reason is that (5.50) and (5.51) imply that the total jet power is

∫
SPdA⊥ ≈ 1

2π2c
Ω 2

F
Φ2 ∼ (

a(r2
+ +a2)
Mr+

)2 . (11.16)

The growth of ΩH as a/M increases is almost canceled out by the shrinking black
hole surface area in the calculation of Φ . Since the result is normalized to (BP

E)4,
the jet power vs. spin must be a relatively flat function at a/M > 0.5.

11.5.4 The KDJ Ergospheric Disk Data Point

The KDJ ergospheric disk data point is the black square in Fig. 11.16. The raw sim-
ulation data is in code units, so it is not directly interpretable in terms of physical
units. Thus, the ergospheric disk jet power must be determined relative to some other
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parameter in the simulation. The most interesting comparison for our purposes is
with the putative power from the Blandford–Znajek mechanism within the simula-
tion. The ergospheric disk jet power is calculated by assuming that the unaccounted
for electrodynamic power (non-ergospheric disk power) is a Blandford–Znajek
power (no coronal or accretion disk piston power) and that power is represented
by the theoretical, dark blue dashed curve. The three available time slices were ana-
lyzed and the ratio of the total ergospheric disk jet electromagnetic and mechanical
energy flux to the putative Blandford–Znajek power was computed. This resultant
ratio was multiplied by the a/M = 0.99 value on the dashed blue curve in order to
get the black square value. The agreement with the theoretical curve is quite good.

11.5.5 The KDE Ergospheric Disk Data Point

The KDE ergospheric jet power is indicated by the red arrow in Fig. 11.16. The
KDE data point is only a lower limit because of the saturated red colors in the
false color contour plot in Fig. 11.11, as discussed in Sect. 11.3.5. For consistency
with the Blandford–Znajek calculation above, the Poynting jet now is considered
to exist all the way to θ ≈ 65◦. The time average in Fig. 11.11 was used to obtain
a lower limit on the ratio of total ergospheric disk jet electromagnetic energy flux
to the putative Blandford–Znajek energy flux. As was done for KDJ, this resultant
ratio was multiplied by the a/M = 0.998 value on the dashed dark blue curve (the
theoretical Blandford–Znajek curve) in order to get the red arrow. The agreement
with the theoretical curve is likely better than this lower limit.

11.5.6 The KDH Ergospheric Disk Data Point

The KDH ergospheric disk data point is the brick red arrow in Fig. 11.16. It is cal-
culated by assuming that the discrepancy in the electromagnetic and mechanical
energy flux at the outer calculational boundary (discussed in Sect. 11.4 and [191])
with the Blandford–Znajek electrodynamic power that is injected into the outgoing
Poynting jet forms an upper bound to the energy budget that can be transported by
the ergospheric disk jet in KDH. Of course, the coronal piston could be the major
contributor to this deficit and this bound could be very loose. The three available
time slices were analyzed and an upper limit to the ratio of total ergospheric disk
jet electromagnetic and mechanical energy flux to the putative Blandford–Znajek
contribution was estimated. This resultant ratio was multiplied by the a/M = 0.95
value on the dashed dark blue curve (the theoretical Blandford–Znajek curve) in or-
der to get the brick red upper limit. The KDH estimate falls far below the theoretical
prediction even by moving the outer boundary of the vertical flux in from r = 1.5M
into r = 1.42M in the calculation of the truncated disk. The reason appears to be
the proximity of the inner calculation boundary. Many of the twisted vertical flux
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loops near the equatorial plane quickly disappear into the adjacent boundary, thus
the ergospheric disk power rarely propagates outward, much of it gets terminated
by the inner boundary surface.

11.5.7 Constraints Imposed by Observations

There are two striking results that stand out in Fig. 11.16. First of all, at high spin
rates the ergospheric disk jet is much more powerful than the electrodynamic power
in the EHM, even if the disk is truncated. Secondly, all of the models except an
ergospheric disk threaded by large scale flux would have trouble explaining radio
sources with a long term time averaged jet power larger than 1040 W [189,190,194].
This suggests that there might be other modes of accretion that are capable of trans-
porting vertical flux more efficiently to the ergosphere than the MRI driven accretion
form thick tori. One possibility that has been suggested is that regions of strong flux
should exist as discrete low density islands in the plasma. The plasma is inherently
an inhomogeneous two phase accretion flow [195]. In this scenario, the flux tubes
are injected into the ergosphere almost vertically in the equatorial plane and already
possess there own magneto-centrifugal outflow. They need not be pushed into the
horizon by ram pressure in this two phase medium. The plasma can accrete in 3-D
by “swimming” around the magnetic islands via interchange instabilities. As such,
a magnetosphere of vertical flux could persist in an accreting system. Another pos-
sibility is that many modes of thin disk accretion should naturally create enhanced
vertical flux distributions in the ergosphere [196].

There seems to be numerical evidence to the effect that significant vertical flux
can exist near an accreting compact object. The family of 3-D simulations in the
pseudo-Newtonian potential presented in [197] evolve from an endless supply of
equatorial gas (from the outer boundary) that is magnetized by weak vertical flux.
The flux accretes toward the inner computational boundary at r = 4M. As flux accu-
mulates in the inner regions of the accretion flow, large magnetic islands of vertical
flux form. These magnetic islands tend to exclude large mass densities and become
buoyant. They “swim” outward in the gas (against the strong inward accretion flow)
on spiral trajectories (i.e., by interchange instabilities that only exist in 3-D). As the
buoyant flux tubes propagate outward, they slowly lose flux by diffusion (numerical)
into the low magnetization surrounding gas. The stripped off flux can be dragged in-
ward again until it possibly forms new magnetic islands near the inner boundary, that
become buoyant and the process repeats. This seems very reminiscent of the buoy-
ant flux cycle posited for the ergospheric disk in Chaps. 8 and 10, even though the
fundamental physics driving the evolution of the buoyant flux might be somewhat
different. This family of simulations also included 2-D simulations that highlight
the contrast between the 3-D and 2-D assumptions. The 2-D simulations have an
entirely different poloidal flux history. The magnetic pressure, in the form of ver-
tical flux, is accreted toward the inner boundary, where it builds-up until there is
sufficient pressure to halt the accretion flow. The gas density begins to accumulate,
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by further accretion, at the interface between the strong field and the accretion flow.
This phase continues until the gravitational force of the mass overwhelms the field
pressure and pulls the field in radially in close analogy to the field evolution in [174]
for the MHD Wald field. However, this phase is short-lived (it ends, once the high
density region has accreted into the compact object). The vertical magnetic pressure
builds up again and halts the flow. The mass build up is eventually relieved by a
brief episode in which the field is pulled in radially, and so on. The contrast between
2-D and 3-D in these simulations strongly indicate the need for 3-D numerical work
in order to fully describe black hole magnetospheres.

Alternatively, if the notion that quasar accretion destroys the large scale vertical
flux as indicated in the simulations of [178,179,181,183,184] is valid in nature then
there are two consequences. First of all, there is no Poynting jet associated with
the accretion disk in Fig. 10.13. Secondly, the most powerful FR II radio sources
with a long term time averaged jet power > 1040 W, could only be explained in
terms of a truncated ergospheric disk. The realistic power output is probably some-
where in between the singly and doubly terminated ergospheric jets powers plotted
in Fig. 11.16 (i.e., because of the gravitational redshifting of information carried
along MHD characteristics, there might not be much power emitted very close to
the horizon). However, even in this case, the black hole parameter space is very
restricted, most likely to M > 109 M� and a/M > 0.99. Furthermore, the truncated
ergospheric disk has a natural switch-on mechanism at a/M � 0.95 for powerful FR
II emission. This could explain one of the mysteries of quasars, why are strong FR
II radio lobes (which equates to large time averaged powers, [190, 194]) so rare (in
about 2% of quasars)?
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quasar VLBI jets, 337
Dragging of inertial frames, 84, 218, 259,

266, 294, 303
Dynamo for the toroidal magnetic field

causal structure of, 217
ergospheric, 219–221, 223, 256, 295
resistive dissipation, 295
unbalanced EMF, 300

Eddington luminosity, 6
EGRET, 312, 316, 318, 336, 337
Electric flux

defined covariantly, 125
Gauss law in curved spacetime, 118
through horizon, 96

Electromagnetic field from sources near the
event horizon, 122

spinor components of, 108
Electromagnetic sources near the event

horizon, 118
Energy flux

conservation of redshifted (Boyer-
Lindquist evaluated), 157, 361

redshifted electromagnetic, 157
redshifted mechanical, 3

Energy stored in radio lobes
Cygnus A, 19, 20
departures from minimum energy, 16, 21
minimum energy, 16, 18, 19

Entropy, 37
Entropy four vector, 37
Entropy per unit magnetic flux, 158
Equivalence principle, 35
Ergosphere

negative energy states, 28, 90, 221, 303,
304

negative energy states are negative angular
momentum states, 92

particle trajectories, 79
stationary limit, 79

Ergosphere driven winds, 213
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Ergospheric Disks, 223
accretion of magnetic flux, 223, 320, 321
global energetics, 232, 243
height of disk, 242
inner edge, 242
near the stationary limit, 245
negative energy plasma, 244, 247, 366
Ohmic (resistive) heating, 232, 247
structure of, 230, 239, 324

Ergospheric disk driven jet, 319
associated with powerful FR II radio

emission, 333
cm peaked emission, 319
critical luminosity (maximum power) of,

329
Poynting flux power of, 328, 329
still exists when accretion stops or

diminishes, 341
in 3-D numerical simulations, 359

Event horizon, 26
angular velocity of, ΩH , 326
as a circuit element, 136
contrast to a rotating conductor, 139
electrodynamics of, 92, 118
freezing of the flow near, 122
impedance from displacement current in

the vacuum, 58, 59, 134
MHD asymptotic infinity, 178
near horizon passively accepts all voltage

drops, 144, 145, 181
surface area of, 26
vacuum infinity of spacetime, 128, 146

Evidence for black holes, 2
External Compton scattering (ECS), 312,

336
Extracting energy from a black hole

Christodoulou/Ruffni, 211
irreducible mass, 27
reducible mass, 7, 28, 343, 345
rotational energy, 92

Extragalactic radio sources
elliptical galaxy hosts, 11
evolution, 340
extended radio luminosity, PE, 317
FR I, 6, 8
FR II, 8, 9, 333
FR I/FR II break, 333
hot spots, 9, 10, 15
intermediate objects, 335, 338
kinetic (mechanical) luminosity, Q, larger

than radio luminosity, 22, 333
lobe advance speed, 16, 20
lobes, 9, 10
power of, 15, 329

sky plane luminosity, 334, 344
steep spectrum cores, 8, 12

Faradays law in integral form in the Kerr
spacetime, 142–144, 182

Faraday wheel, 55, 138, 213
as boundary condition for solving axial

momentum equation, 64, 154
Fast critical point of accretion flow, 325
Fast magneto-acoustic waves

absence of charge, 47, 50, 51, 72, 74, 206
absence of field aligned current, 45, 50,

51, 206
compression, 48
cylindrical waveguide, 53
dispersion relation, 44, 51
high frequency limit, 51
high frequency protonic plasma, 70, 72
long wavelength limit near the horizon,

183
outgoing near the horizon, 183
rarefaction, 48, 301
resistive plasma, 49
warm perfect MHD limit, 319

Field line angular velocity, 157
determination of, 252, 256, 282
determined primarily by Alfven mode,

257
as global potential, 157
relationship to plasma injection, 253–257
relationship to voltage drop, 251
in time dependent dissipative winds, 250,

302
First law of black hole thermodynamics, 27,

92
Force-free limit of MHD wind, 32

violated by inertial (loading) currents, 166
Four-acceleration, 37
4C 11.45, 37
4C 41.17, 37
4C 43.09, 37
Freely falling frames, 35, 39

constants of motion, 84
local energy of a particle, 84

Gamma ray loud quasars in the GHM theory,
335, 337, 344

flares and VLBI jets, 344
from the horizon jet, 335
slow rotating black holes for a quasar, 337

Generalized four momentum, 26
Generalized Ohms law, 51
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Geodesic motion, 82
asymptotic four momentum near the

horizon, 82
asymptotic rotation near the horizon, 82

Goldreich-Julian charge, 153, 180, 219, 263,
307

Goldreich-Julian conundrum, 147, 153, 215
Grad-Shafranov equation, 167

force-free limit, 170
Gravitational redshifting

of electromagnetic characteristics, 152
freezing of the flow, 122, 127

Historical perspective, 31
Horizon boundary conditions, 100

electrodynamic infinity, 127
inertial dominance near the horizon, 102
inviscid hydromagnetic, 94
lack of stable equilibria near the horizon,

100
magnetic flux accretion of neutral plasma,

223, 320
no relevance to MHD ergospheric flows,

182, 183
Horizon magnetosphere driven (blazar) jet,

319
associated with strong gamma ray

emission in blazars, 335
mm peak emission, 319
Poynting flux (power of), 327, 328

Hubble Space Telescope (HST), 1, 4, 5, 7
galactic central black hole mass estimates,

4
Hypergeometric functions, 114, 116

Impedance of vacuum spacetime
cylindrical waveguide, 59
event horizon, 135

Ingoing wave condition, 99
Ingoing winds, 177

Alfven critical surface, 177, 178, 234, 245,
273, 274, 276, 277

anchor point, 297
breakdown of perfect MHD wind, 281
charge separation, 308
dissipation near light cylinder, 260, 281
fast critical surface, 177, 178, 360
force-free limit, 265, 272, 281
global energetics of the dynamo, 301, 303
inertial currents, 280, 302
ingoing extension of the subcritical MHD

wind, 283
initial data for, 264
light cylinder, 177, 178, 221, 282

maximal extension of the perfect MHD
wind, 283

numerical evaluation near the light
cylinder, 270

perfect MHD poloidal equation of motion,
268, 283

poloidal current system, 302, 305
small field line angular velocity, 311
subcritical solutions, 262, 283
terminus of the perfect MHD wind zone,

281
wind front, 179–182

Inverse Compton scattering, 335

Jets, 9, 13
collimation, 29, 30
gamma rays from, 312
hypersonic under-expanded, 29
Lorentz factors of, 31, 340
Mach number, 29
magnetic hoop stress, 30, 333

Kelvin-Helmholtz instability, 324
Kerr metric, 36
Kerr-Newman black holes

electromagnetic field of, 128
metric, 25
surface gravity at the horizon, 27

Killing vectors, 157
Kruskal-Schwarzschild instability, 322

Langmuir modes, 216, 297
Laplaces equation in the Kerr spacetime, 114
Lapse function, 81
Larmor frequency, 36, 296
Last stable orbit, 321, 329
Lens-Thirring torques, 104, 153
Light cylinder

inner, 177, 259
outer, 177

Linear perturbations, 39, 193

M87, 5, 7
Magnetically dominated winds, 32, 153

conservation of angular momentum, 166
Poynting flux approximately constant, 166

Magnetic diffusivity, 50
Magnetic flux

defined covariantly, 127
exclusion from the horizon, 133, 148
fate of accreted flux in neutral plasma, 223
in MHD wind, 154
O-points, 228, 229
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reconnection in neutral plasma near the
horizon, 150, 223

through the horizon, 99
X-points, 151, 227, 228

Magnetic four-vector, 160
Magnetos-acoustic waves (see fast and slow

waves), 47
Mass conservation, 38, 89, 175
Mass flux per unit magnetic flux, k, 156, 263,

264
Mass source function, 89, 175
Maximum angular velocity, 90
Maxwell’s equations, 39

differential form in Boyer–Lindquist
coordinates, 94

differential form in rotated ZAMO basis,
94

differential form in ZAMO basis, 94
Newman-Penrose formalism, 104, 112
solutions of inhomogeneous equations

near the horizon, 187
Maxwell tensor

dual, 37
relativistic invariants derived from, 37
in terms of spinor components (Maxwell

spinor), 107
Membrane Paradigm, 59, 137, 144
Minimum angular velocity, Ωmin, 90, 235,

266–268
in the equatorial plane of the ergosphere,

326, 327
on flux tubes that thread the horizon, 268

Minimum dissipation solution, 310
Minimum entropy principle, 310
Minimum torque wind from the horizon

magnetosphere, 263
Momentum equations, 38, 84

Neutron star maximum mass, 3
Newman-Penrose formalism, 104, 110, 112,

183
decoupling of equations, 112
Maxwell’s equations, 104, 183
second order equations, 110
separated equations, 111
separation constant, 111
source term for Maxwells equations, 112

NGC, 3
NGC 4261, 4–7
NGC 7052, 4, 7
No hair theorem, 103, 123, 148

contrast to the conductor paradigm, 137
magnetic flux reconnection near the

horizon, 150

no electromagnetic bootstrapping, 124
redshifting of electromagnetic characteris-

tics near the horizon, 152
Numerical simulations

coronal piston, 376
ergospheric disk jets in 3-D simulations,

359
field line angular velocity in KDJ, 365,

366
KDE, 369
KDH, 376, 377, 380, 383, 384
KDJ, 359, 361, 373, 374, 376
negative energy plasma creation in the

GHM dynamo, 355, 357, 368
overview of the field, 348
power of central engine in 3-D simulations,

381, 382, 385
relativistic strings, 353
three dimensional simulations, 353, 385
vertical flux in the equatorial plane, 363

Outgoing plasma waves near the horizon,
182

linearized perturbation, 39
long wavelength solutions, 183, 190, 192
magnetic stresses transported by, 201, 202
near the fast critical point, 187
Ricatti equations for deviations from

vacuum solutions, 187
short wavelength limit, 183, 188, 190, 193
singular point structure of the wave

equation, 202
singular set of long wavelength solutions,

189
summary of properties, 207

Outgoing winds, 174

Pair annihilation, 240, 242, 311
Pair creation

gamma ray collisions, 175, 254–257
particle creation zone, 176, 257–260, 262

Paired MHD winds, 174, 214
field line angular velocity, WF, 214
formulated as a boundary value problem,

176, 262
from horizon magnetosphere, 249, 311
from the ergospheric disk, 230
from the horizon magnetosphere with

outgoing minimum torque solution,
261

horizon asymptotic infinity, 178
plasma injection, 175
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Pauli spinors, 104
Perfect MHD plasmas

equations of, 36
frozen-in condition, 36
relativistic invariant condition (vanishing

of the proper electric field), 36
Perfect MHD winds

Alfven critical surface, 161, 163
algebraic wind equations, 158
breeze solution, 165
constants of motion, 155
critical solution (minimum torque), 164,

165
critical surfaces, 159
differential wind equation, 162, 163
frozen-in condition, 156, 157, 166
inertial current, 166
magneto-acoustic critical surfaces, 161
proper magnetic field, 161
stream function, 155, 167
subcritical solutions, 164
topology of solution space of wind

equation, 163
Perfect MHD winds, 163181, 153
Plasma frequency, 38, 216
Plasma waves

covariant formulation of wave speeds, 44
cylindrical waveguide, 51
dispersion relations, 42
Friedrichs diagram, 43
group four velocity, 45
group velocity, 42
high frequency limit, 50
hybrid modes, 182, 192, 206
phase four velocity, 42
phase three velocity, 43
protonic plasma, 70, 72
resistive (dissipative) plasma, 48, 216
speeds, 42, 43
warm perfect MHD limit, 38, 214

Poissons equation in the Kerr spacetime, 112
electromagnetic sources near horizon, 118
separation of solutions in Newman-

Penrose formalism, 112, 113
source term, 112

Proper distance, 268
Proper electric field, 251

created by radiative instability, 284
in dynamo driving force, 306

Pulsars
asymptotic winds from, 181
charge starved, 146, 214
relativistic winds from, 154
unipolar induction of neutron star, 215

Pure Alfven Mach number, 62, 159, 180
Pure Alfven speed, 49, 159

Quasars
broad emission lines, 8, 13, 315, 336
core dominated, 8, 12, 13
gamma ray loud, 318, 335–337, 339
hidden, but seen in scattered light, 13
high optical polarization (HPQ), 315, 316,

338
lobe dominated, 8
low optical polarization (LPQ), 316
as radiation from viscous dissipation, 6
radio quiet, 8
spectra, 4

Quasi-simultaneous spectra of blazars,
312–314, 316, 317, 319

component, 314, 319
correlated with ∆, 316
correlations with ∆ explained in GHM,

338
distinguishes quasars from BL Lacs, 315
double hump, 312
mm peak, 314, 319
spectral parameter, ∆, 312, 315, 316

Radiative instability, 284
linear perturbation, 287, 288, 290
microphysics of, 294
perturbed proper electric field, 290, 294
radiation resistance, 286
saturation of, 295
stationary point analysis, 284, 292

Radio galaxies
FR I, 8
FR II, 9, 11, 13, 22

Rayleigh-Taylor instability, 322, 325
Resistive dissipation

Ohmic heating, 37, 300
plasma waves with, 50
second law of thermodynamics, 261

Rotated ZAMO basis, 80
basis covectors, 81
basis vectors, 80
connection, 87
Maxwell’s equations, 92
poloidal momentum equation, 90

Rotationally induced EMFs, 56, 213

Second law of black hole thermodynamics,
28, 92

Seyfert galaxies, 4
Slow magneto-acoustic waves

compression, 26, 48
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rarefaction, 48
warm plasma limit, 44

Slow shocks in the ergosphere, 231
Rankine-Hugoniot relations, 233
switch-off shocks, 232, 234

Sound waves
coupling to electromagnetism in plasma,

39
speed of propagation, 40

Specific enthalpy, 38, 235
Specific redshifted (Boyer-Lindquist)

mechanical angular momentum, m, 27,
28, 157, 158

Specific redshifted (Boyer-Lindquist)
mechanical energy, w, 27, 28, 157,
158, 357, 366, 368

Spectral aging, 16, 20
Spin-weighted spheroidal harmonics, 112
Spinors

conjugate representation, 105
connection, 106
decomposition of tensors, 106
normalization, 105
null vector isomorphism, 105
symplectic metric, 105

Streaming instability, 296
particle trapping, 296

Structure equations, 87
Super-radiant photons, 244
Synchrotron radiation, 17, 21, 312

high frequency tail in blazars, 336
self absorption, 312
spectral index, 17
time scale, 21, 242

Synchrotron self Compton (SSC) emission,
20, 312, 336

Tetrad formalism
connection (Ricci rotation coefficients),

107
covariant derivative, 107
Kinnersley tetrad, 109, 114
metric, 102
null, 105, 106
Spinorial Maxwells equation in tetrad

basis, 104
Thermal Lorentz factor, 16, 19, 240
Three component central engine in GHM,

325
Time dependent dissipative winds, 249

Alfven critical surface, 252
fast critical surface, 251

Torsional tug of war, 214, 219, 259, 291,
297, 354, 355

Transformation of connection coefficients,
88

Transmission line
attached Faraday wheel, 55
disconnected Faraday wheel, 64
Faraday wheel is causative agent that

produces field aligned current, 59
Faraday wheel is causative agent that

produces voltage drop, 59
fictitious Ohms law and impedance at the

wavefront, 59
outgoing radiation front, 57
Poynting flux, 58
TEM modes, 58

Unbalanced rotationally induced EMFs
in ergosphere, 213, 218, 300
in Faraday wheel, 55

Unified scheme for extragalactic radio
sources, 8, 13

dusty torus, 14, 342
in GHM, 332, 333, 337, 338

Unipolar induction
Faraday wheel, 55
lack of near the event horizon (proof), 55,

137, 138

Vacuum electrodynamics, 103, 183
Vacuum electromagnetic waves, 184

wave solutions near the horizon, 185
VLA, 9–11, 13
VLBA, 1, 6
VLBI, 3, 13

Wald solution, 129
dominant moment of axisymmetric

vacuum field near the horizon, 133
Water masers, 3

ZAMO frames, 27
angular velocity, 80
basis covectors, 81
connection, 87–89
correspondence of basis with differential

operators, 86
equations of motion, 90
four velocity of, 27
hypersurface orthogonality, 80
local coordinate basis instantaneously at

rest with respect to, 134, 178
Maxwell’s equations, 92
poloidal magnetic field, 81
toroidal magnetic field, 157, 241, 251, 306
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