Building Apps
for the Universal
Windows Platform

Explore Windows 10 Native, loT,
HoloLens, and Xamarin

Ayan Chatterjee

ApPress’

Building Apps
for the Universal
Windows Platform

Ayan Chatterjee

Apress®

Building Apps for the Universal Windows Platform

Ayan Chatterjee
Swindon, Wiltshire, United Kingdom

ISBN-13 (pbk): 978-1-4842-2628-5 ISBN-13 (electronic): 978-1-4842-2629-2
DOI10.1007/978-1-4842-2629-2

Library of Congress Control Number: 2017946340
Copyright © 2017 by Ayan Chatterjee

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole
or part of the material is concerned, specifically the rights of translation, reprinting, reuse of
illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical
way, and transmission or information storage and retrieval, electronic adaptation, computer
software, or by similar or dissimilar methodology now known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a
trademark symbol with every occurrence of a trademarked name, logo, or image we
use the names, logos, and images only in an editorial fashion and to the benefit of the
trademark owner, with no intention of infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms,
even if they are not identified as such, is not to be taken as an expression of opinion as to
whether or not they are subject to proprietary rights.

While the advice and information in this book are believed to be true and accurate at the
date of publication, neither the authors nor the editors nor the publisher can accept any
legal responsibility for any errors or omissions that may be made. The publisher makes
no warranty, express or implied, with respect to the material contained herein.

Cover image designed by Freepik.

Managing Director: Welmoed Spahr
Editorial Director: Todd Green
Acquisitions Editor: Celestin Suresh John
Development Editor: Laura Berendson
Technical Reviewer: Manish Sharma
Coordinating Editor: Sanchita Mandal
Copy Editor: Mary Behr

Compositor: SPi Global

Indexer: SPi Global

Artist: SPi Global

Distributed to the book trade worldwide by Springer Science+Business Media New York,

233 Spring Street, 6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505,
e-mail orders-ny@springer-sbm.com, or visit www. springeronline.com. Apress Media,

LLC is a California LLC and the sole member (owner) is Springer Science + Business Media
Finance Inc (SSBM Finance Inc). SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail rights@apress. com, or visit www. apress.com/
rights-permissions.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook
versions and licenses are also available for most titles. For more information, reference our
Print and eBook Bulk Sales web page at www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is
available to readers on GitHub via the book’s product page, located at waw.apress.com/978-
1-4842-2628-5. For more detailed information, please visit www.apress.com/source-code.

Printed on acid-free paper

mailto:orders-ny@springer-sbm.com
www.springeronline.com
mailto:rights@apress.com
www.apress.com/
rights-permissions
www.apress.com/
rights-permissions
www.apress.com/bulk-sales
www.apress.com/978-1-4842-2628-5
www.apress.com/978-1-4842-2628-5
www.apress.com/source-code

To all who, at some point in their lives, rebelled against every single thing
they had and dreamt of making them better.

Contents at a Glance

About the Authorcccnvsmmmis s ———— xi
About the Technical ReVIEWErcccssssesmssssmssssssmsmsssmsasssssnsassnsass Xiii
Introduction.......cccivsmnismmimmmmm s —————————— Xv
Chapter 1: Introduction to Windows Universal...........ccussseemnnnnnnnas 1
Chapter 2: Elementary Conceptscccuseermmmsssnnnssssssnssssssssssssssssnns 17
Chapter 3: The Windows 10 EXPeriencec.uccesressssnnsssssssnsnssssnns 47
Chapter 4: Windows with Mouse and Keyboard...........ccouseeenrisnies 81
Chapter 5: Windows with Touch.........ccccccmrnnnemnnmnssssnnnnnsssnnnnns 143
Chapter 6: Internet of Things (10T)ccoumssenmmssesmsssnsssssasssssnnnssns 157
Chapter 7: Wearablesccucccummmmssmmmnmmssssnanmsssssssnmsssssssnsnssssssnnnss 167
Chapter 8: Windows 10 for Advanced USErsccccussseesssssssennnnss 185
Chapter 9: Cross Platform with Xamarin..........ccccccnneeennnnsssennnnn 213
Chapter 10: Ready for the Storeccusemmnnissemnmmnssseasnnssssessnn 243
Chapter 11: Application Analyticsccciiunimmmnnnemssssnmmnsssssssnnsssnn 257
11 - 265

Contents

About the AUthOrc.ccccmmsemmmsssnsmsssesmsssssmssassssas s ssasssssnnss xi
About the Technical REVIEWETcccccssssmsmssnsssssnsssssnsssssnsssssnnssssns xiii
INtroduction........cccuccemnemmnsmmmssmnesnne s ———— Xv
Chapter 1: Introduction to Windows Universal...........ccussseemnnnnnnnas 1
Windows 10 and UWP ... 4
.NET Languages and ArchiteCturececererrersersessessessesssssessssssnssnnenns 7
Installing Visual Studio and Components............ccccceeeeeeeesnseesessensnnsnnns 8
UWP and Cross-Platform Xamarin............ccooovenrnncnnsncnesnsesessscsesnnnes 13
Setting Up @ New Projectocoecrceerscrcnnens s 14
Chapter 2: Elementary Conceptsccccvvnmmmnsmssnnnnmmmmsssssssssssnnnns 17
Object-Oriented Programingcccccceceenvernnsiesnsesssessesss s sessessssesnes 22
Function, Class, and SOIULIONcccvververrerier e ssee s 23
Conditional Statements and LOOPS.........cccvverrerierrierinerenssesesssessesssesaes 25
If-else and the Conditional OPerator...........cccecveeerererererrererrereereresesee s seseraesens 26
R e 0 T T 27

0] g X0 o 29
While (and Do-Whilg) LOOPS......ccccerrererererererereesersesersesersessssessssessesessessssessssesssesaes 29
Data TYPEScecererererir s 30
NUMDEIS ...t 31
Alphabets and Special Characters..........c.cuvererererereresenes 32
Application Life CYCIe......cceeererererrerrerre e e sse e ssesne s snssns s sss s snnnas 34

vii

CONTENTS

Sharing Code.......cccvververrerrererrrre e 34
Errors and Error Handling.........cccoeveeeecercsses s 42
Parallel Programing.........cccccceenrenessennsssssssssssssessessssesssssssessssssssssssesnas 44
Chapter 3: The Windows 10 EXPEri€nceccuseresssmsssssnsssssnsssssnnas 47
0] 1 3 - 53
LIVE TS, 59
NOIfICAtIONS ... 59

Tile NOEfICAtIONS.......cccerereetee e 60

Toast NOtfiCAtIONScoceerecirircee e 60
SELHNGS ...coeeererer e ————————— 64
R3] T2 (T 69
1 LT 0T 0] S 72
IN-App PUrChases (IAPS).......ccccciererernnesensssessesesse s ssssessesnas 77
Chapter 4: Windows with Mouse and Keyboard...........ccccceenriunnnas 81
Components of @ SOIULONcccevcrercrcr e 82
Visual Studio and BIENdcccoveeenerencnerecreseesesesesesee e 84
Designing in BIeNd ..o s 90
Triggers and ACHIONS.........cccueverrenerienense e sne e snens 94
Size Classes/Visual Statescccvoerrerenererenmnerssesesesese e 94
SCAlADIE ASSELScoveercererre e s 98
Custom CoNtrolS.........coeeiereeneiennereseseses e 100
Code BENING ..o 103
Data Binding........cccceeererenerenrereesse s sne e e eas 109
Animations and TranSitionsc.ccceeriresnsenessess s 111
Files in the File System........ccccvcevrvrrnrrrr e 119
Globalization and Localization.............ccceerirenenncnnnesesessesssesesesennas 121

viii

CONTENTS

Camera and Media Capture DEVICESccvverrerreerierserrersaesesssesseesaenns 123
Securing App Data.........ccoirciernr e 128
Print and Casting Media to DeViCesccccverrerrerrersersersessesses s 132
Windows Wheel DEVICESc.ovceereerrrmeerereese s sesessesesesseesens 136
Background ClIaSSES..........ceveererrerermseneresenesesesesessssessssssessssssesssssnens 137
Chapter 5: Windows with TOUChccccinnsssmsssnnnmnsnssnssssssns 143
GESTUIEScvreeucereeeres e e e an e nan e 144
Defining a Custom GEStUrE.........cccceveerricrsnrrcrn s 150
Working with Multi-TOUCHccocvvrverrtrcrrerer e 154
Chapter 6: Internet of Things (I0T)ccoussemmmssansmsssnsssssnsssssnssssas 157
INEPOAUCTION ... 157
WIndows 10 10T COTe.......cccocrerierrirerisire s 159
10T 0N MiICroSOft AZUFE.......coceeeeereeerrerre e snnnens 162
Introduction t0 OPENCV.........cccoierrerecrreere e 165
Chapter 7: Wearablescccmmnissemnnmmssssnnnmnssssssnmssssssssssssssssnnnas 167
K] 0 TSP 167
REAI TIME......cocireirircr e 173
Developing For Microsoft HOIOLENS..........cccvceevmiensnsesssssesessessesensens 173
Deployment and Store Ready..........cocuoceerriesernneseressesessssesesesesesssseens 181
Chapter 8: Windows 10 for Advanced USEersSccccurrssssssssnnnnnnns 185
141 [SRRSO 185
Device-Specific COdeccvvrirrrcrrrrcrr e 188
ADPP ProtoCols ..ottt 191
App-to-App CommuUNICAtioN..........cocceveereenseressre e 195
Asynchronous OPerationscccceeveeeeeresesesesesse e sse e ssessessessens 198
Multithreading and Parallel Processing...........coevverrerrerrensensessensensensens 200

ix

CONTENTS

Beyond Physical Contact...........cccocvvvvrrrvnvnrrrrcer e 203
Lo o410 1T =] T SR 206
Chapter 9: Cross Platform with Xamarin........cccccininnnnssesssnnnnn 213
Xamarin Architecture..........cccvoercrcnrcr s 214
Installing in Visual Studioccccevverercrcrcrrce e 215
Xamarin for i0S and macO0S...........coccorrirrrrr s 216
Xamarin for Android ..o 235
Deployment and Store-Readycococvereriennnennnensesnsesesessessssesnens 237
Chapter 10: Ready for the StOrec..cccusmrmmsmmsssssssssssssssnsssnns 243
ASSBLS.....ceeieiecricre e 244
MANITEST ... 245
License Management...........cccccoeeevenenesnssssssssss s sssssssessessnssnssessennens 248
Windows Store SEetings........cccvrriennserssnsessse e 249
Enterprise Readyccocvverirvmiirne e 250
Store Submission and Evaluation............ccccccoeenninnnnnennsenssesesenennns 251
Windows 10 Deployment vs. Previous Versions...........ccocueeensereesessens 255
Chapter 11: Application Analyticsucccmmmsssnmnmmsssssnssssssssnsssnsns 257
Windows Store Analytics.........ccoveerermnseresnssessnsssesssse e ssesessens 259
Visual Studio Mobile Centercccorrienrrienrniesereseseseseeseseenens 262
Actionable Data ..o 264

About the Author

Ayan Chatterjee has over four years of experience
developing for Windows Store, five years of research,
and is personally involved with Windows Store
for Business (previously known as MSADP within
Microsoft). He holds a Master of Technology in
Computer Science and has contributed to several
enterprises involved with Windows Store.

Follow Ayan on Twitter at @apphub365 or LinkedIn
atwww.linkedin.com/in/ayanprofile/.

xi

http://www.linkedin.com/in/ayanprofile/

About the Technical
Reviewer

Manish Sharma is a Senior Technology Evangelist
at Microsoft. He has 14 years of experience with
various organizations and is primarily involved in
technological enhancements.

He is an expert in data (Lucene, Solr, MongoDB,
Cassandra, DocumentDB, Elastic Search, MarkLogic,
Azure Search, etc.) and cloud (Azure, AWS, SoftLayer,
OpenStack, etc.) technologies. Most recently he
worked on .NET, UWP, client-server architecture-based
applications, SOA integration projects, and helping
ISVs (software product organizations) to optimize their
applications on Microsoft Azure.

He has expertise in telecom and has exposure with various other domains like BFSI,
commodity trading, and retail.

He is a certified Azure Solution Architect, Cloud Data Architect, .NET Solution
Developer, and PMP Certified Project Manager. He is a regular speaker at various
technical conferences organized by Microsoft (FutureDecoded, Azure Conference, and
specialized webinars) and community events (GIDS, Docker, etc.) for client-server, cloud,
and data technologies.

He is an author at Open Source For You (OSFY) magazine.

Follow Manish on Twitter at @nanisharma_ms or LinkedIn at www.1linkedin.com/in/
mannu2050/.

xiii

http://www.linkedin.com/in/mannu2050/
http://www.linkedin.com/in/mannu2050/

Introduction

When I sat down to author this book, I thought about how to make everything simple.

In my school days, the books were full of definitions and technical explanations which
made a lot of people say “I don’t speak computer” The purpose of this book is to give you
the core values and the core concepts embedded into a technology so you get a natural
flow of thought while building your application. I look at the evolution in the world of
computing and how it all fits together. The initial concern was how to make things work.
Today, the tools of the trade work behind the scenes, hiding behind the main goal of

the work and the things most important. A writer or a student should not care whether
his/her content is authored in Microsoft Word or Apple Pages or LaTeX as long as the
writing experience fits organically into the author’s flow and the document created can be
opened and read (compatible) by other people using other software. In other words, the
tools should fit seamlessly into an individual’s workflow.

UWP fits this bill in a developer’s workflow: the developed application can reach a
range of devices, be it personal devices (like Surface Laptop, Surface Pro, Surface Book)
to devices in an enterprise to the IoT, and even to other operating systems like iOS and
Android, all of them using the same language and, in most cases, the same lines of code.

This book covers the robust use and the core concepts in UWP. Explanations are
made as simple as possible, comparing concepts with real-world situations. The first two
chapters cover the most basic concepts, incrementing the level of understanding slowly
as your understanding of UWP grows with each chapter, culminating with the publication
process on the app store. This book fulfills its purpose if, by the end of your learning
process, you are able to build complex, enterprise-level applications for your school, your
job, your company, or even as a hobby.

XV

CHAPTER 1

Introduction to Windows
Universal

Any business aims to maximize profits and minimize the manufacturing costs without
compromising the quality of the product. For an application, the way to maximize profits
is through an increase in downloads. One of the ways to achieve this is by introducing
your application to more than one platform. By reusing code, you can speed up the
development process. In summary, the goal is to distribute your application to as many
platforms as possible and to reduce the hours it takes to reach this goal.

Windows Store applications are the successor to Windows Presentation Foundation
(WPF) applications. And WPF applications are the successor to Windows Forms
applications. Each succession has resulted in a new user interface. In this chapter, you
will explore some of the elements in a Windows application in brief. In later chapters, you
will take a deeper dive into components and features specific to the Universal Windows
Platform (UWP). The most common and widely used elements are

1. Button

The button is one of the most elementary controls. A Button
control is designed to be clicked. The following XAML code
demonstrates the use of a button:

<Button x:Name="ClickButton1">Click Me</Button>

In metro applications, you have the option to pick a regular
button or an app bar button whose XAML looks like

<AppBarButton Icon="Play" Label="Play Me"
Click="PlayMe_Click"/>

2. TextBlock

The text block is mainly used for headings and text otherwise
not intended for users to edit.

XAML example:

<TextBlock Name="textBlock1">Heading 1</TextBlock>

© Ayan Chatterjee 2017 1
A. Chatterjee, Building Apps for the Universal Windows Platform,
DOI 10.1007/978-1-4842-2629-2_1

CHAPTER 1 * INTRODUCTION TO WINDOWS UNIVERSAL

Tip Visual Studio and Blend have a search option whereby you may search for any control.

3. TextBox

Unlike a text block, a text box is designed for text input from
the user. It can be a single line or multiline and can perform
advanced character masking such as password inputs. A text
box can also be used for longer text that does not require
editing and input such as terms and conditions of a signup
page. To restrict editing, the IsReadOnly property is set to true.
The input text can be recovered with the Text property.

XAML example:
<TextBox x:Name="PasswordBox" />

To read the input from this TextBox, the syntax is
PasswordBox.Text.
4. Slider

Sliders are used to offer a range of values for the user to slide
such as zoom, shopping price range, feedback rating, etc.

XAML example:
<Slider Header="Volume" ValueChanged="Slider
ValueChanged"/>

5. Check Box

The check box is used to select or deselect single or multiple
items.

XAML example:
<CheckBox Content="Close all Tabs" x:Name="CloseTabs"/>

6. Radio Button

Radio buttons are used for multiple options that are mutually
exclusive (the user needs to pick only one).

XAML example:

<RadioButton Content="Male" Tag="Male" Checked="Male_
Checked"/>

<RadioButton Content="Female" Tag="Female"
Checked="Female_Checked"/>

CHAPTER 1 " INTRODUCTION TO WINDOWS UNIVERSAL

You will notice that there are two things with the same value
in this context: Content and Tag. Although not required in
this scenario, the Tag property is put in place to show its use.
A Tag has no default value but it can be used to put additional
properties in the radio button such as data binding to an
image, meaning you can put an image or even an animation
instead of just text.

Toggle Switch

The toggle switch is built to resemble a physical switch such as
turning on/off Wi-Fj, turning on/off Touch on the phone, etc.

XAML example:
<ToggleSwitch x:Name="TVSwitchToggle" Header="TV"/>

Image

An Image control represents an image and its source can be
set as a Uniform Resource Identifier (URI) from which an
image is loaded. A URI can either be a local resource or a
web resource. With Windows 10, Image now supports GIF
animations.

XAML syntax:
<Image Source="URI"/>

The Image.Stretch property determines how an image is
displayed. It can be one of the four possible choices- none,
fill, uniform, and uniform to fill. An example of assigning a
Stretch property within C# is

myImage.Stretch = Stretch.Fill;

where myImage is your image object.

None will present the content in its original size. Fill will
resize the image to fit the width and height of the image
control. Uniform will resize to the image control, keeping

the aspect ratio fixed. UniformToFill will resize to fit the
dimensions of the image control and crop the overflown
region. For instance, consider an image of 800x800 pixels and
an image control of 1000x900 pixels. None will keep the image
at 800x800, Fill will make it 1000x900, Uniform will make it
900x900, and UniformToFill will make it 1000x1000 and crop
the overflown region.

CHAPTER 1 * INTRODUCTION TO WINDOWS UNIVERSAL

9. Lists

Lists show a collection of objects such as contact list. The four
most widely used lists are list views, grid views, drop-down
lists, and list boxes.

XAML example:

<ListView>
Items
</ListView>

10. Grid

Grids are used to distribute child elements to rows and
columns inside the grid according to their row/column
arrangements.

XAML example:

<Grid>
Elements
</Grid>

11. Canvas

A canvas defines an area where you can have child elements
and position them using coordinates that are relative to the
canvas area. Prior to Windows 10 Inking, applications built for
sketching and painting were built using canvas.

XAML example:
<Canvas>

Elements
</Canvas>

Note You may notice that some elements have x:Name while others have just Name.
Note that x: is used to make the element globally available.

Windows 10 and UWP

Windows 10 was launched globally on July 29, 2015. With Windows 10, there is a union
between desktop, mobile, holographic, wearables, Xbox, and IoTs. We will be using
Microsoft Visual C# among other languages for the code behind and Extensible Markup

CHAPTER 1 © INTRODUCTION TO WINDOWS UNIVERSAL
Language (XAML) for the front end. If you are new to app development, moving forward
with C# will be of great benefit since
e Itis widely used since Windows Forms.
e Itis more type safe.
e Ithasawide range of code samples and libraries available.
e It can be reused in Xamarin to build for iOS, macOS, and Android.

Figure 1-1 shows a teenager visiting an eye clinic after sunset and getting his regular
human eyes replaced with another version of eyes that support night vision. With the
Anniversary Update on August 2016 and the Creators Update of 2017, Windows 10 gets
incremented the same way: one component at a time. To better understand this growth,
we shall take a peek into the past and see how Windows development has progressed
over the years.

Figure 1-1. Comic Demonstrating an update

We have all heard about the “One Windows” goal, or build once, deploy on all.
While that is the long-term vision, let’s understand this goal by looking at the growth in
deployment of built applications. Let’s see the history of application development.

1. One for One

Traditionally, applications and games were built in fixed
dimensions. As a developer, you would start building with
width and height, or with a constant aspect ratio. The
hardware was built accordingly by hardware manufacturers.

2. One for Many

Then came a time when we could build for multiple aspect
ratios and sizes. This gave rise to a new era of apps where we
could create a solution for one OS (phone, desktop, Xbox,
and so on) no matter the screen size. Of course, there were
limitations but we had room for further growth and flexibility.

CHAPTER 1 * INTRODUCTION TO WINDOWS UNIVERSAL

If you are familiar with the Windows 8 family of app
development and you are building for both phone and
desktop, you create one project for Windows and another for
Windows Phone. A shared component could exist where you
could write shared code. Still, this was not the ideal way to
build. Figure 1-2 shows a Windows 8.1 solution and separate
projects for Windows, Windows Phone, and the shared

components.
Y C] Quick Launch (Ctrl+Q) Pi= (a1 x
Ayan Chatterjee =
Windows 8.1
Universal Solution Solution Explorer > 0 x
@l o--ud@ =8
Search Solution Explorer (Ctrl+;) P~
21 Solution *App1' (3 projects)
. ; 4 Appl
Windows PrOJect 4 [& ﬁpp1Windows (Windows 8.1)

b M Properties
P =m References

3 Assets
= Appl1.Windows_TemporaryKey.pfx
b I MainPagexaml
Windows Phone Project Package.appxmanifest
b App1.WindowsPhone (Windows Phone 8.1)
b ¢ Appl.Shared

Shared Code

LIRSS Team Explorer Class View

Figure 1-2. Windows 8.1 universal solution

3. OneforAll

With Windows 10, you can now cross that barrier and build
one universal solution for all types of Windows 10 devices.
Instead of writing shared code, today you need to write only
once. See Figure 1-3.

CHAPTER 1 " INTRODUCTION TO WINDOWS UNIVERSAL

P o & x

Ayan Chatterjee ~

¢ T E

Windows 10 Universal
Solution olution 'App1' (1 project)

[z#] App1 (Universal Windows)

b Properties

p =B References

P

p

Windows 10 Project B Assets

Appxaml
=1 App1_Temporary
'rj Applicationinsig
I MainPagexaml
k5 Package.appxmanifest
&T project.json

Team Explorer Class View

Figure 1-3. Windows 10 universal solution

.NET Languages and Architecture

Let’s consider a class in a school. You are mentoring in a home for orphans and it
has a heterogeneous demographic. Your task is to grade some essays. You have the
essays of four of the students: Jack C, Rohan C++, Robin HTMLS5, and Lily C#. They
have each written their essay in their native language, so you have essays in four
different languages to evaluate. You can simply open a translator application and
get them translated to English. This is what happens in a .NET environment. No
matter what programming language is picked, the related compiler and linker will

get it translated to an intermediate language for processing. This is one of the major
benefits of NET.

CHAPTER 1 * INTRODUCTION TO WINDOWS UNIVERSAL

Windows 10 and Universal Windows Applications are created on a platform-
homogeneous architecture. This means a developer need not recode the application to
support different platforms of Windows 10. Presently, for UWP applications the following
four languages are widely used for code behind:

e C++
. C#
e Microsoft Visual Basic

e WinJS

Installing Visual Studio and Components

Prior to building and deploying UWP applications, it is a good practice to enable the
developer mode on your device. Windows then grants you permission to deploy locally
built applications that have not yet acquired Windows Store licenses. Just like a corporate
official needs proper identification (biometric, ID card, etc.) to enter a corporate building,
Windows checks for a license before installing an application. Among other things, it
verifies whether the app originates from a registered developer in Windows Store and that
the app meets the safety and security rules of Windows Store. Figure 1-4 shows how you
can enable developer mode from Settings.

For developers

Use developer features

These settings are Intended for developrment use ondy.
Leam mars

T Windows Update

O wangons store apps

@ Windows Detendir Oy inatal apps drom the Windows Zore
P () sideload apps

natall apps frorm othar 52 s
D Recovery

Pp—) Devatopar made
thiaton

& Finc My Device

B Fol dewlopars Enable Device Portal
By windows insicer Frogeenens Turm on remote iagaastics over bocal area netwark conmections.
&) on

Device discevery

Make Yoot device visibke b UISB connections and your local
etk

@) on

Figure 1-4. Enabling developer mode on Windows 10

CHAPTER 1 " INTRODUCTION TO WINDOWS UNIVERSAL

There are several choices to obtain Visual Studio and several editions of Visual
Studio available on the market (see Figure 1-5). The three most widely used are the
following:

e Visual Studio Community

Community is presently free and covers most of the
development essentials that one would need to build a UWP
application.

e Visual Studio Professional

Professional contains some added features such as Team
Foundation Server features and differs a bit by removing
restrictions.

e Visual Studio Enterprise

Enterprise is made for professionals who wish to collaborate
and work on a team to make incredibly complex projects.
Windows Store presently defines an enterprise organization
as having more than 250 devices or an organization that
produces greater than 1 million US dollars in annual revenue.

Visual Studio

Products
Available

‘S‘_I Visual Studic Professional 2017 4] visual Studio Community 2017

Professional developer tosly aed sendees far seall Frea, hully-fuatured

dents, epen-seutes and
teams individual cevelopars

itense term | Release notes Licerse tems | Release notes

Install Inntal

Figure 1-5. Different editions of Visual Studio 2017

Note You must have Visual Studio 2015 or later, Blend for Visual Studio, and Universal
App Development Tools installed to build applications for Windows 10.

CHAPTER 1 * INTRODUCTION TO WINDOWS UNIVERSAL

The edition you pick depends on your requirements. If you use a Macintosh
computer and not a Windows machine, you can still install Windows 10 on a virtual
machine to make use of Visual Studio. One great way to use Windows on a macOS
device is through third-party applications such as VMWare or Parallels Desktop (shown
in Figure 1-6). Another choice is Bootcamp (shown in Figure 1-7 and built by Apple); it
provides a great way to partition a macOS drive and install Windows.

Figure 1-6. Parallels Desktop Control Center post Windows installation

Introduction

Boot Camp Assistant helps install Microsoft Windows on an Intel-based Mac by downloading
the necessary support software, creating a partition on your disk for Windows, and then
starting the Windows installer. Please click the Open Boot Camp Help button for instructions to
finish installing Windows and the support software you downloaded.

IMPORTANT: Back up your disk before partitioning it or installing Windows. If you have a
portable computer, make sure the power adapter is connected.

Open Boot Camp Help Continue

Figure 1-7. Apple Boot Camp Assistant start page

Now let’s proceed with the Visual Studio installation. There are several ways to
acquire Visual Studio. If you are a Microsoft Developer Network (MSDN) subscribed
member, installation discs and ISO files of Visual Studio are readily available for
download. Those with moderate or high speed Internet may opt to download and install
Visual Studio from the installer available on the Microsoft website.

10

CHAPTER 1 " INTRODUCTION TO WINDOWS UNIVERSAL

Tip Along with Blend for Visual Studio, its predecessor, Microsoft Expression Blend,
is a Paint-like application and is powerful and useful for many occasions to create
custom-defined shapes in XAML.

The following are the steps to install Visual Studio:
1. Run the installer.

2. Make sure that Universal Windows App Development Tools
is checked (Figure 1-8 and Figure 1-9 for Visual Studio 2015
and 2017, respectively).

3. Ifyour edition supports it and you wish to expand your market
to Apple and Android devices, check Xamarin.

4. Wait until the installer completes (Figure 1-10 for Professional
edition and Figure 1-11 for Community edition). It may take several
minutes to several hours to complete. Different editions of Visual
Studio are shown in Figures 1-8 through 1-11 to show their similarity.

0q Visual Studio

Enterprise 2015

Figure 1-8. Installing Visual Studio Enterprise 2015
11

CHAPTER 1

Iastaling « Visusl St Predessienal 2017 (15 0262284y
Workloads Individual components Language pacs

Windows 3]

.- Unbrresal Winchoms Flatlom derslopmest
M Covute opsiication for the Usiremsal Waecliars Plathors with (8,
W3, JavaSesiot, o ptonally Com.

i.:] Duskicp dumiopmest vih -«

Wsual Cv = t0aiset, ATL ard optional features e MEC and .

Wb & Cloud (%)

ASENET 2ad web devebopment
Bulld web applcations using ASPNIT. ASPNIT Core HTML
Javatarict and 35

vess.drien InaSerist nuntine.

s
Location

Caprogram

Visual Studio

Products

Installed

) Visual Studic Professional 2017
Beguaning MirosofMsuaStugioMnShel Msi
o

o

Cancel

Available

) visual Studic Community 2017
Frae, fully-featured I0E for stugents. open-source and
mdividusl developers
License terms | Release notes PP

Instal

12

INTRODUCTION TO WINDOWS UNIVERSAL

NET detitop development
Buld WPF, Windows Forms and comcle applications uiing the
NET Framewarie

Azure development
Agwe SDK. tesls and projects for developing doud apes snd
orneting resouries.

Dot Lake, Hadisep o Az ML

I Biode s development) _ | Data s%orage and processing)
[sopbeptions uting Nodaje an syrchionut Camract devpics 39 tast 23t sskisions ueing SCL Sarver Asure

Figure 1-9. Installing Visual Studio Professional 2017

) Visual Studio Enterprise 2017

Micresaft Dovps selution for pradutinty and
cocrdinatian scroes teams of any size

License tesms | Resease notes 11306

Inetall

Figure 1-10. Visual Studio 2017 Professional installation process

Summary

* Visual Swidio core editor

» Universal Windows Platiorm de...

» Mabile development with NET

~ Game developrnent with Unity
Tatused

o Vel S Tosds for Usty
o CF and Viswal Basic

Opranal
I uniyetor

0 Mo 1 e et e
soense By CORENUING, YO 4150 apiee 10 IO
scrse

Il e 40756

inztall

£ =0Ox

Welcome!

We inate you £ go snling 10 hane your skl
2nd g aadiansl 10l 1 supeen Yo
derrooment worktos.

Leamn

Whether yioi e forw 10 deveiopement o an
enperienced developer, we harve you covered
wieh our htorials wdeos, and wample code.

Marketplace
Use Visual Stushs eensens 1o 200 support

for new techaoiogies, megrate wih oiner
Products and sarvicer, and fir-Turae you
parance.

@ Need soms halp?
Check out the Microsoft Developer

Commuricy where developen provide
fredback ad arqwers b many ssmmen
problerms.

Gethelp from Microsoft at Viswal Studa
Support

15300272

CHAPTER 1 " INTRODUCTION TO WINDOWS UNIVERSAL

Visual Studio

Products

Installed Welcome!
We imete you 82 g2

W visual Studic Community 2017

Cancel

Available

W) visual Studio Professional 2017

al deveiaper tools and s

Get help from Microsoft at Vises! Stucio
Somion

Figure 1-11. Visual Studio 2017 Community installation process

UWP and Cross-Platform Xamarin

You read earlier in this chapter of the positive and negative components of development.
One positive is to reduce development time. Xamarin will help you extend your app’s
audience from Windows to i0S, macOS (formally known as OS X), and Android. The
development part is covered in Chapter 9 of the book, so for now I shall only cover the
installation. Much like Visual Studio, one may download the installation components
separately and install offline or use the online installer. If you do not have high speed
Internet, I recommend using the offline method.

In earlier versions of Visual Studio 2015, if you used higher tiers of Visual Studio
such as Visual Studio Enterprise, Xamarin came with the package so you have already
installed it along with the rest of the components. For Visual Studio 2017, you can
install Xamarin straightaway on the first run. For those who do not wish to, Xamarin
Studio installer is easily available on Xamarin website. You have the option to install
Xamarin Studio on your Windows machine if you are using one, or on a Macintosh
machine; Xamarin is available for both platforms. Figure 1-12 shows the installer on a
Macintosh machine.

13

http://dx.doi.org/10.1007/978-1-4842-2629-2_9

CHAPTER 1 * INTRODUCTION TO WINDOWS UNIVERSAL

Please select products to install

T || Xamarin.Android
v | Xamarin.iOS

= Xamarin License

« Product Selection v B8 Xamarin.Mac

v HAXM |ntel® HAXM

= Summary

Continue

Figure 1-12. Xamarin Installer on macOS

Setting Up a New Project

Now that you have successfully installed Visual Studio and Windows SDK, you shall take
the first step towards the development of a fully functional application named Color
Architect. For the next couple of chapters, you shall build this application bit by bit while
learning the elements of Windows 10. The name Color Architect is inspired by architects
who design the interior and exterior of magnificent buildings. Similarly, you shall use
mathematical operations on colors in RGB to build a new color.

Before creating a new project, let’s understand the concepts of a minimum and target
version. These are coined TargetPlatformVersion and TargetPlatformMinVersionina
project’s settings. The target version is the maximum version number the application has
been tested in and the minimum target version is the minimum Windows 10 version the
application supports. They can be the same or different.

Just like TargetPlatformMinVersion specifies the minimum version of Windows 10
required to run the application, every Visual Studio solution has a MinVSVersion property
that specifies the version of Visual Studio a solution was created in and the version that
the solution can support.

Now that all of the tools have been set up, you can begin by creating a blank
application project with the following steps:

1. Open Visual Studio 2017.

2. Click New Project from the Start Page under File in menu bar
(Figure 1-13).

3. In New Project options, click Blank App (Universal
Windows) (Figure 1-14).

14

CHAPTER 1 " INTRODUCTION TO WINDOWS UNIVERSAL

4. Depending on the version of the SDK installed on your
device, it may ask for a minimum and target platform version
(Figure 1-15).

5. You are good to go!

19 et e - Marasert Vinas S ¥ &P ek Lanon e P oo =
o R R L e e e PR |
" e
e, | = Sokwtion [aghorer =
P] i
Open

TS C0GE IO .8 FEFOUE VENHON GORETDE SyseT
0 cpen sewaTung on o o Developer News

Chesens er

€1 Vi Sha3e S Savices Aroussisg NUT Core Tesis 10
Today we are sricesing MET Com Toos 1.

= £t e antig iy e am

T gen Projecr f Sokeion lenione ia the MET Cose oo, The 0oL

b At MW Tumstng Lreh T, 217

Arvouscine Hew RSPHET Core snd

SR Web Devetapment Features i Vel

Recent e s s 0
e AEANET teon, ASPMET Coom tocis, Comaine:
Mew project o, gexd farvemca . that e 1k 3 B,
e prefecs g e a Vst yeu e e WO Tumstng L , 2017
aopea hers. Seasch project Serclates 2
Redgate [ata Tools In Visuad Studio 2017
Trehmareayie 067 b1 (o8 mapeaioras 4 ot pousts Botert projodt tsmglaten. Todey charing the Wil a0 nech aeat,

cantrel prveders wil azoesr oo he seven |t of uher LA T e AT

prom———r—

" r .
[e e 4N Tawetog Wi T, ST

sencmbantion st
Mhate et g Tearn Serde/THS Resdman udiate
Bian Harrrl

cowage
gevimacett e T Hatre « Ieessied

MW Tomning. bl T, 317

Vaual Stadio 30T7: Praductanty,
Yo e

Sehrsonlapiree Taaon Sxpeorar

Figure 1-13. Visual Studio 2017 Community home page

Mew Project : =
b Recent _NET Framework 462 - | Sortby: Default Search Installed Ternplates { =
4 Installed ca ‘ .
: R] Blank App (Universal Windows) Visual C# Type: Visual C#
e ; A project for & single-page Universal
4 Visual C# Eé! Class Library (Universal Windows) Visual CG# Windows Platform app that has no

Windows Classic Desktop ‘Windows Runtime Component (Universal Windows) Visal C#

NET Standard
Android EJ Unit Test App (Universal Windows) Visual 7

predefined controls or layout.
14

Cross-Platform
b s
Test

b OS
' Visual Basic
" Visual C++
" Visual F¥
 Javaseript '
- Other Project Types “

Mot finding what you are locking for?

Open Visual Studio Installer

b Online
Mame: Appl

Location: EAApps), <] Browse... I

Solution name: Appl [Create directory for solution

] Add to Source Contral

0K Cancel

Figure 1-14. New UWP Project options

15

CHAPTER 1 * INTRODUCTION TO WINDOWS UNIVERSAL

New Universal Windows Project

Choose the target and minimum platform versions that your Universal Windows application will
support.

Target Version Windows 10 Anniversary Edition (10.0; Build 14393) ~

Minimum Version Windows 10 (10.0; Build 10586) v

Which version should | choose?

Cancel

Figure 1-15. Minimum and target version selection

EXERCISES

Exercise 1: In Visual Studio, create a new Windows Store Application.
Exercise 2: In XAML view, create a layout of a simple calculator.

Exercise 3: Explore the properties of layout controls TextBox, AppBarButton, and
ToggleSwitch.

Exercise 4: Explore the row and column definitions of a grid.

16

CHAPTER 2

Elementary Concepts

If you picked up this book, I can safely assume that you are familiar with programing.
Keeping that assumption in mind, let’s brush up on some concepts and take a look at
their implementations in Visual Studio.

When a baby (let’s say her name is Tia) sees a ball for the first time, Tia forms an
image of the object in her mind along with its properties such as circular shape, size,
color, and material. She has now established an object and its properties. Next, she will
want to name it. If Tia’s native language is not English, she shall know the ball as another
name by listening to the words of her guardians and other adults around her and call a
ball by that name. This helps others understand what she is talking about when she talks
about a ball.

Let’s now talk about identifying the different types of balls. Two different balls, such
as a baseball and a basketball, are recognized in the mind by the same characteristics,
namely size, color, texture, and purpose. We make the same distinction in a computer
program by using a concept known as decision boundary.

If you have set up a new project for Color Architect, the outcome should be as shown
in Figure 2-1. Let’s take a quick look at colors. The RGB for white is R = 255, G = 255,

B =255 and for blackis R=0, G=0, B=0. When R = G = B = some value between 0 and
255, it is a shade of grey between black and white. If the values are not equal, it moves
from greyscale to multiple colors. Some values of RGB are

Red: R=255,G=0,B=0

Green: R=0,G=255,B=0
Blue:R=0,G=0,B=255

Tomato: R=255,G=99,B="71

Orange: R =255, B=165,B=0

Brown: R =165, G =42, B =42, and so on.

© Ayan Chatterjee 2017 17
A. Chatterjee, Building Apps for the Universal Windows Platform,
DOI 10.1007/978-1-4842-2629-2_2

CHAPTER 2 " ELEMENTARY CONCEPTS

Solution Explorer
CaBd opl=R

ution ‘Color Architect' (1 project)
| Color Architect (Universal Windows)
& Properties

b
[
b
b

J A aml

= Color Architect TemporaryKey.pfx

Figure 2-1. New project for Color Architect

Mathematical combinations of such values make up beautiful palettes. Let’s make
palettes of five colors with brown and the following parameters.

18

CHAPTER 2 " ELEMENTARY CONCEPTS

BETWEEN WHITE

Color 1: Brown (165, 42, 42)

Color 2:

R =165 + ((255-165)/(5-1)) = 165 + 22.5 = 187.5 ~ 188
G =42 + ((255-42)/(5-1)) = 42 + 53.25=95.25 ~ 95
B =42 + ((255-42)/(5-1)) = 42 + 53.25 = 95.25 ~ 95
Color 3:

R=165+45=210

G=42+106.5=148.5~ 149
B=42+106.5=148.5~149

Color 4:

R =165+ 67.5=232.5 ~ 233

G =42 +159.75 = 201.75 ~ 202

B =42 +159.75 = 201.75 ~ 202

Color 5: White (255, 255, 255)

BETWEEN BLACK

Color 1: Black (0, 0, 0)

Color 2:

R =0+ ((165-0)/(5-1)) = 41.25 ~ 41
G =0+ (42-0)/(5-1)) =10.5 ~ 11
B =0+ ((42-0)/(5-1)) =10.5 ~ 11
Color 3:

R=825~83

G=21

B =21

Color 4:

R=123.75~ 124

B=315~32

G=315~32

Color 5: Brown (165, 42, 42)

19

CHAPTER 2 " ELEMENTARY CONCEPTS

BETWEEN TOMATO

1. Color 1: Tomato (255, 99, 71)
2. Color 2:
R = 255 — ((255-165)/(5-1))
G =99 —((99-42)/(5-1))
B =71-((71-42)/(5-1))
3. Color 3:
R = 255 — 2*((255-165)/(5-1))
G =99 — 2*((99-42)/(5-1))
B =71 -2%(71-42)/(5-1))
4. Color 4:
R = 255 — 3*((255-165)/(5-1))
G =99 — 3*%((99-42)/(5-1)
B =71-3%(71-42)/(5-1)
5. Color 5: Brown (165, 42, 42)

)
)

The example with white or black is called a monochromatic color palette as the
middle colors show a lighter or darker shade, respectively. In this chapter, you shall learn
to build Color Architect so that it looks like Figures 2-2 and 2-3.

Tip Try to form general mathematical equations of such color palettes.

20

CHAPTER 2 " ELEMENTARY CONCEPTS

Color Fetch

Figure 2-3. Layout of Color Architect as seen from Blend for Visual Studio

21

CHAPTER 2 " ELEMENTARY CONCEPTS

Object-Oriented Programing

While programing, friendly names for classes and functions help you or another
programmer understand the purpose of those classes or functions. It is especially
helpful when you are building a complex program with multiple function names and
you are calling the function from another class. Comments also help with debugging
as well.

Tip ltis always a good habit to keep the function and class names simple and easy to
understand.

C# provides full support for object-oriented programing including encapsulation,
inheritance, and polymorphism. They may sound like big names, but we shall look at
them one at a time.

Encapsulation is taking data and functions and putting them all together in
a capsule (in one unit). It allows for hiding of components from the outside, so
the developer needs to concern herself with working with the encapsulated
component only.

Inheritance is copying the properties of a parent class to a child class. For
example, let’s consider the age of a human being. Age is a real number but it is not
all of the real number range. A human being can live up to 110 or maybe 130 if very
lucky. For arguments sake, let’s say the maximum range is 150. In other words, the
age of a human being inherits all existing properties of real numbers with a custom-
defined range of its own.

Polymorphism is the existence of a function in several forms. Poly means many and
morphe means form. What does this mean? Let’s say you want to create a geometrical
shape of a polygon. Let’s look at some polygons with the same function name:

1. Polygon(5)

Since only one input has been provided, it means it is a square
of two equal sides.

2. Polygon(5,7)

Since two inputs have been provided, it means it is a rectangle
with width and height.

3. Polygon(5,7,3)

This polygon has three inputs, which specifies it is a three-
dimensional polygon having width, height, and depth.

You can see that the same function name may have different jobs all depending on
its input.

22

CHAPTER 2 " ELEMENTARY CONCEPTS

Function, Class, and Solution

Any sequence of actions that can be grouped together in one unit is a function. It is the
basic task of a computer. For instance, let’s say that you are going on a vacation and you
wish to take your laptop with you. The following sequence of steps will occur:

1. Ifthelaptop is on, shut down the laptop.
Close the lid.
Pick up the laptop from the desk.

Walk the steps to where your backpack is located.

o~ N

Put the laptop inside the bag in an arranged manner.

These steps put together can be called a function. Let’s look at how these steps form
a function:

function packLaptop(object laptop)

{
laptopState = laptop.isOn? Save work and shut down : do nothing;
closelLid(laptop.type of laptop);
pickUpLaptop(desk, hand);
walk(currentPosition, nearBackpack);
putLaptopInBag(type of bag);

}

Functions are of two types: built-in and custom defined. Even though both are made
the same way, they differ in the source of their creation. To better understand this, let’s
consider an elegant hotel. You wake up from a long nap and you feel hungry. If you order
food through room service, the hotel’s management certifies the food because they are
familiar with the chef and its cooking process. These are in-built functions and they come
with the package. But if you are having a pizza delivered (third party) or cooking on your
own (custom defined), the hotel’s management is not aware of the process and hence is
unable to certify the food. The benefit of reusing a built-in function is that the function
has been tested thoroughly. Any bug fixes or updates to it will improve the performance
of all associated applications using it.

A class is a group of similar functions. Let’s look at what the class algebra can consist of:

class algebra

{
function addition(numbers)
{
//code
}
function subtraction(numbers)
{
//code
}

23

CHAPTER 2 " ELEMENTARY CONCEPTS

function multiplication(numbers)

{
//code
}
function division(numbers)
{
//code
}
function percentage(numbers)
{
//code
}

Similar to classes, a solution is your entire program and consists of several classes,
functions, and other components. Let’s take a look at the solution named mathematics:

namespace mathematics

{

class algebra

class geometry

class trigonometry

class calculus

function newInventedTheorem(numbers)
}

Let’s explore namespace now. By definition, it is used to declare a scope of related
objects such as other namespaces, classes, interfaces, etc. To explain this in simple terms,
I shall use the concept of multiverse. If you are not a physics or astronomy fan, or you
haven’t read superhero comics, a multiverse is a hypothetical possibility that multiple
universes exist at the same time. The namespace declaration would be

namespace un iversel

{
class earth1
{
static void someCountry()
{
//Some code
}
}
}
namespace universe2
{

24

CHAPTER 2 " ELEMENTARY CONCEPTS

class earth2

{
static void someCountry()
{
//Some code
}
}
}
namespace universe3
{
class earth3
{
static void someCountry()
{
//Some code
}
}
}

To access earth in universel you would call universel.earthi.someCountry.
One use of namespace is to avoid conflicts between functions of the same name defined
by different teams in an organization. If you are using a simple UWP solution, you
don’t need to use a namespace. Apart from this, a UWP solution usually consists of the
following:

e Assets (images)

e Localizable strings for the application to be available in multiple
native languages

e Registration components and license information
e Adatabase

e Package manifest for registering live tile images, supported device
orientations, device capabilities the application uses such as the
Internet, and so on

e Dependencies such as third-party packages like nugget or
references

Conditional Statements and Loops

Conditional statements are a minimum of two steps, where the second step occurs due to
a certain condition of the first. For instance, the choice to purchase a new car will entirely
depend on the limit of a person’s wallet.

25

CHAPTER 2 " ELEMENTARY CONCEPTS

If-else and the Conditional Operator

To put this in a standard programing syntax

if(condition)
statement
}
else
{
Statement
}

An example of this is
if (wallet contains $$3$$)

purchase a super cool sports car;
}
else {

purchase a lame old car;
}

The condition part is a Boolean variable. This means that the condition part answers
the question “Has the condition been met?” and the response can either be true/yes
when the condition is satisfied or false/no when the condition is not satisfied. There is no
room for middle value between yes or no. When a condition is not satisfied, it goes to the
else section whose formal statement looks like

if(condition)

true statement;
}
else
{

false statement;
}

This, in programing terms, is called if-else. It is in our nature to be lazy. To honor
this laziness, we have something to replace typing if-else all the time, which is called
the conditional operator (?:). Notice the same if-else statement to purchase a car can be
reduced to one line, as in
purchase = wallet contains $$$$? super cool sports car : lame old family car;

and the formal statement looks like

result = condition? true statement : false statement;

26

CHAPTER 2 " ELEMENTARY CONCEPTS

Switch Case

To avoid layers of if-else statements, there’s something called a switch case. If you are
not using a home automation system and are used to the traditional switchboards, you'll
understand its significance right away; you walk up to the switchboard to turn on the
lights and fans you want directly. Let’s look at an extensive if else statement and how it
can be reduced by a switch:

if(time == morning)

have breakfast;

}
else if(time == way to work)
{
take away a cup of coffee;
}
else if(time == lunchbreak)
{
have lunch;
}
else if(time == afternoon)
{
have a snack with tea/coffee/chocolate milk;
}
else if(time == evening)
{
have dinner;
}
else if(time == midnight)
{
have some midnight snack;
}
All of this code can be replaced by
switch(time)
{
case morning:
breakfast;
break;

case way to work:
take away a cup of coffee;
break;
case lunchbreak:
have lunch;
break;
case afternoon:
have a snack with tea/coffee/chocolate milk;

27

CHAPTER 2 " ELEMENTARY CONCEPTS

break;
case evening:
have dinner;
break;
case midnight:
have some midnight snack;
break;
default:
it's not time to eat;

You might have noticed that there is a break in every case and a default at the end.
Note that default is an optional parameter that the switch goes to if and only if none of
the other case conditions match. If a default is not given and there is no case match, the
pointer exits the switch-case block automatically.

A switch-case block has fall down property. What this means is if there’s a case
match and the pointer enters the case, it does not stop. It executes all the lines in that
case and all other cases below it. To prevent this, you can use a break. You can use the fall
down property to your advantage as well. For instance, in the above switch-case block,
coffee is common for two cases: way to work and afternoon. If you wish to take advantage
of the fall down property, you may reduce the number of lines further. This way, when the
pointer executes the afternoon case, it executes the way to work case and gets the user the
cup of coffee.

switch(time)
{
case morning:
breakfast;
break;

case afternoon:
have a snack;
case way to work:
get a cup of coffee;
break;
case lunchbreak:
have lunch;
break;
case evening:
have dinner;
break;
case midnight:
have some midnight snack;
break;
default:
it's not time to eat;

28

CHAPTER 2 " ELEMENTARY CONCEPTS

Aloop is a set of repetitive actions. To understand its uniqueness, think of an analog
watch face. The hour hand goes from 12 to 1 to 2, circling back to 12. It goes round and
round in a circle (loop) until the watch breaks or its battery runs out. The breaking of the
analog watch to stop the loop is an exit condition. Without an exit condition, a loop would
run forever, making the program bad for the system. Such loops are called infinite loops.
We shall look at the following kinds of loops:

1. forloop
2. while (and do while) loop

For Loop

A for loop is generally used when you know the definite amount of times the loop is
supposed to run prior to its initialization. The standard statement of a for loop goes like

for (initializer, condition, iterator)

{
}

Body

The same can be rewritten for simple understanding as

for(start, finish, iterate)

{
}

Body
The initializer part is meant to initialize the control variable. If you wish to run a loop
10 times, the loop goes like

for(int I = 1; I<=10; I++)

While (and Do-While) Loops

In fact, while and do-while are similar to for loops except that they are meant for when
you do not know how many times the loop is supposed to run prior to its execution. The
statement goes like

while(condition)

Body

29

CHAPTER 2 " ELEMENTARY CONCEPTS

On the other hand, a do-while loop is meant to run the loop at least once. Thus, the
condition part comes at the end:

do

{
Body

} while(condition);

Now to play a little bit, let’s convert a for loop to a while loop:

For

for(int I = 1; I<=10; I++)

{
Body
}
While
int I =1;

while(I<=10)

Body;
I++;

Data Types

If you think about it, the types of data you use in your everyday life when talking or writing
an email are

e Numbers
e Alphabets
e Special characters

A combination of these data types makes up the entire dictionary of our language.
For a programing language, such data types are represented mainly by character and
numerical data types, each having their own individual properties. The type of data used
depends entirely on the situation. One such common property is the ability to perform
mathematical operations. Although phone numbers are generally numerical data, you
would not want to perform a mathematical operation on them, like add Dad’s number
and Mom'’s number and call some random person.

30

CHAPTER 2 " ELEMENTARY CONCEPTS

Numbers

For numbers, there are integers and floating point numbers. Integers are numbers
without decimals whereas floating point numbers consist of numbers with decimal
values. They can be signed or unsigned, meaning with or without the capability to hold
negative numbers. Even though int is most widely used, other integer types include

e byte
e short
e int
e long
And the floating point numbers include
e float
e double

e decimal

Note that double is more widely used. Since floating point numbers are real
numbers, you cannot move back and forth between integers and floating point
numbers just like that. You need to perform something known as type casting or type
conversion. Even in mathematics, when you convert integer 15 to a double, you can do
it automatically (implicit conversion) by including decimal points 15.0 but the reverse
needs some work. Let’s say you now have a double value of 15.5 and you need to make it
an integer. There comes a dilemma (explicit conversion) to decide if it should be 15 or 16,
and there is another set of rules to solve the problem.

Explicit conversion is written as

(type) data
For example,

int a = 15;

double a1 = a;

double b = 15.5;
int b1 = (int) b;

Tip Take a deeper look into Gonvert and TryParse for more detailed explicit type
casting.

31

CHAPTER 2 " ELEMENTARY CONCEPTS

Alphabets and Special Characters

To store alphabets, there are characters and string literals. Character or char holds a
single character whereas string can hold multiples such as a sentence or a paragraph.
Example:

char a = 'p';

string b = "pee";

Now that you have learned to represent a single data type, how can a school store
the names/string values of 20,000 students? Storing them in individual variable names
will take forever, not to mention the confusion when the school needs to recall the
variable name at a later time. This problem is solved using an array. An array is a lot
(homogeneous mixture) of the same datatype. To represent 20,000 students, the school
creates

String[] students = new string[20000];

Arrays start from 0, meaning that this students array consist of 20,000 numbers from
0 to 19,999. When the school needs to read or write to a particular data, the code will look
like

students[10] = "Bob";

for the 11" student in the array.

Now that you have learned the basics, let’s explore the polygon example and put it
into code. You are going to use a console application just to test out the theory. Let’s see
the C# code for it:

C#

using System;
namespace PolymorphismConsoleDemo

{

class Program
{
static void Main(string[] args)
{
int square = 5;
int[] rectangle = { 10, 5 };
int[] box = { 10, 5, 2 };
double areaSquare = polygon(square);
double areaRectangle = polygon(rectangle);
double volumeBox = polygon(box);
Console.WriteLine("Area of square is " + areaSquare);
Console.WriteLine("Area of rectangle is " + areaRectangle);
Console.WritelLine("Volume of box is " + volumeBox);

32

CHAPTER 2 " ELEMENTARY CONCEPTS

Console.ReadKey(); //to prevent the console from closing

immediately
}
private static double polygon(params int[] dimensions)
{
int len = dimensions.Length;
if(len == 1)
{
return dimensions[0] * dimensions[0];
}
if(len == 2)
{
return dimensions[0] * dimensions[1];
}
if(len == 3)
{
return dimensions[0] * dimensions[1] * dimensions[2];
}
return -1;
}
}
}
The output is shown in Figure 2-4.
B | file:///E:/Apps/PolymorphismConsoleD... = O x
Area of square is 25 ~

Area of rectangle is 50
Volume of box is 100

Figure 2-4. Output of PolymorphismConsoleDemo console application

You can see that from a single function called polygon areas of the square and
rectangle as well as the volume of a box was obtained, thus exhibiting the behaviours of
polymorphism. The params keyword in C# enables a function to take in multiple numbers
of input arguments. The function can also execute when no argument is passed to it. The
length of the params list will then be zero.

33

CHAPTER 2 " ELEMENTARY CONCEPTS

Application Life Cycle

Application life cycle is what happens and what can happen from opening the application
to closing it. For this explanation, you are going to learn about the daily cycle of a working
professional, Bob. Bob gets up early to brush his teeth, shave, take a shower, and eat a
healthy breakfast. Then he puts on a nice professional suit to head off to work. This part
of his day consists of preparations for the start of his working day. For a UWP application,
this part is handled by OnLaunched method whose syntax is

protected virtual void OnlLaunched(LaunchActivatedEventArgs args)

Now that Bob is prepared to go to work, he must take all the necessary files required
for the day and recall any meetings or presentation he has today. When he is ready, he
heads off to work. For an application, every page gets an OnNavigatedTo method to be
prepared to load anything necessary and navigation requests while preparing a page for
display. The syntax is

protected virtual void OnNavigatedTo(NavigationEventArgs e)

Similarly, during exit, the OnNavigatedFrom function is used.

Sharing Code

In the previous generation of the Windows 8 family, there was a separate project for
shared components. However, for Windows 10 and UWP, you can do it under one roof.
To share a function with another class, you need to make it globally accessible. You can
achieve that by making it public and static. For Color Architect, let’s create a defaults
class to store the option selected by a user: fetch, pick, or mix, as shown in Figure 2-5.

T P | ocklanc D P& x

T peertisen

Figure 2-5. Shared code for Color Architect

To access this from any other class in the solution, you need to first include the path
of the class at the header such as

using Color Architect.CustomCode;

and then the variable option can be called by using defaults.option or
<class name>.<static variable name>.

34

CHAPTER 2 " ELEMENTARY CONCEPTS

Note that get and set are optional parameters. They show what can be accessed
from the variable. To make it read-only (if you do not want someone else modifying the
values of the variable outside of the program) setting it private solves that issue. Let’s
compare the two:

a. public static byte option{ get; set; }
Calling it outside defaults.option gives the value.
Changing defaults.option outside writes the value.

b. public static byte option { get; private set; }
Calling it outside defaults.option gives the value.
It’s not changeable outside by calling it.

The same is true for functions. Let’s explore the same polygon example where two
pages (one for area and another for volume) are sharing the same function (Figures 2-6
through 2-9).

SharingCodeDema - (=] x SharingCodeDemo - o X

Area Volume
| | [|
[Fecng | [Fecmgesamz] [ean |
BT |

> =

Figure 2-6. Page 1 calculates area (left), Page 2 calculates volume (right)

35

CHAPTER 2

ELEMENTARY CONCEPTS

Page 1 XAML

<Page

x:Class="SharingCodeDemo.MainPage"
xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation”
xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
xmlns:local="using:SharingCodeDemo"
xmlns:d="http://schemas.microsoft.com/expression/blend/2008"
xmlns:mc="http://schemas.openxmlformats.org/markup-compatibility/2006"
mc:Ignorable="d">

<Grid Background="{ThemeResource ApplicationPageBackgroundThemeBrush}">

<TextBlock x:Name="textBlock" HorizontalAlignment="Center"
Margin="0,10,0,0" TextWrapping="Wrap" Text="Area"
VerticalAlignment="Top" FontWeight="Bold"/>

<TextBox x:Name="squareSide" TextChanged="squareSide_
TextChanged" Margin="20,0,20,150" TextWrapping="Wrap" Text=
VerticalAlignment="Center" PlaceholderText="Enter Side of
the Square" InputScope="Number" HorizontalAlignment="Center"
Width="250"/>

<TextBox x:Name="rectangleSide1" TextChanged="rectangle TextChanged"
HorizontalAlignment="Center" Margin="0,0,160,0" TextWrapping="Wrap"
Text="" VerticalAlignment="Center" Width="150" InputScope="Number"
PlaceholderText="Rectangle Side 1"/>

<TextBox x:Name="rectangleSide2" TextChanged="rectangle TextChanged"
HorizontalAlignment="Center" Margin="160,0,0,0" TextWrapping="Wrap"
Text="" VerticalAlignment="Center" Width="150" InputScope="Number"
PlaceholderText="Rectangle Side 2"/>

<TextBlock x:Name="polygonArea" HorizontalAlignment="Center"
Margin="0,0,0,150" TextWrapping="Wrap" Text=""
VerticalAlignment="Bottom"/>

<AppBarButton x:Name="volumePageButton" Click="volumePageButton_
Click" Icon="Forward" Label="Volume" Margin="0,0,0,10"
VerticalAlignment="Bottom" d:LayoutOverrides="Width"
HorizontalAlignment="Center"/>

</Grid>

</Page>

Page 1 C#

using System;

using Windows.UI.Xaml;

using Windows.UI.Xaml.Controls;
using SharingCodeDemo.sharedArea;
namespace SharingCodeDemo

{

public sealed partial class MainPage : Page

36

CHAPTER 2 " ELEMENTARY CONCEPTS

public MainPage()
{

}

private void squareSide TextChanged(object sender,
TextChangedEventArgs e)

this.InitializeComponent();

{
try
{
string sideS = squareSide.Text;
if(sideS.Length >= 1)
int side = Convert.ToInt32(sideS);
double area = sharedFunction.polygon(side);
polygonArea.Text = "Area of Square = " + area.ToString();
}
catch
{
polygonArea.Text = "Side of a square must be a numberical
value";
}
}

private void rectangle TextChanged(object sender, TextChanged
EventArgs e)

try
{
string rectS1 = rectangleSide1.Text;
string rectS2 = rectangleSide2.Text;
if (rectSi.Length >= 1 && rectS2.Length >= 1)

{
int side1l = Convert.ToInt32(rectS1);
int side2 = Convert.ToInt32(rectS2);
double area = sharedFunction.polygon(sidel, side2);
polygonArea.Text = "Area of Rectangle = " + area.
ToString();
}
}
catch
{
polygonArea.Text = "Sides of a rectangle must be numberical
value";
}

37

CHAPTER 2 " ELEMENTARY CONCEPTS

private void volumePageButton Click(object sender, RoutedEventArgs e)

{
}

this.Frame.Navigate(typeof(Page2), null); //Navigation

Page 2 XAML

<Page
x:Class="SharingCodeDemo.Page2"
xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation”
xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
xmlns:local="using:SharingCodeDemo"
xmlns:d="http://schemas.microsoft.com/expression/blend/2008"
xmlns:mc="http://schemas.openxmlformats.org/markup-compatibility/2006"
mc:Ignorable="d">

<Grid Background="{ThemeResource ApplicationPageBackgroundThemeBrush}">
<TextBlock x:Name="textBlock" Margin="0,10,0,0" TextWrapping="Wrap"
Text="Volume" VerticalAlignment="Top" d:LayoutOverrides="Width"
HorizontalAlignment="Center" FontWeight="Bold"/>
<TextBox x:Name="width" TextChanged="box_TextChanged"
HorizontalAlignment="Center" Margin="0,0,0,150" TextWrapping="Wrap"
Text="" VerticalAlignment="Center" PlaceholderText="Width"
Width="250"/>
<TextBox x:Name="height" TextChanged="box_TextChanged"
HorizontalAlignment="Center" Margin="0" TextWrapping="Wrap" Text=
VerticalAlignment="Center" PlaceholderText="Height" Width="250"/>
<TextBox x:Name="depth" TextChanged="box_TextChanged"
HorizontalAlignment="Center" Margin="0,150,0,0" TextWrapping="Wrap"
Text="" VerticalAlignment="Center" PlaceholderText="Depth"
Width="250"/>
<TextBlock x:Name="polygonVolume" Margin="0,0,0,150"
TextWrapping="Wrap" Text="" VerticalAlignment="Bottom"
d:LayoutOverrides="Width" HorizontalAlignment="Center"/>
<AppBarButton x:Name="areaPageButton" Click="areaPageButton_
Click" Icon="Back" Label="Area" Margin="0,0,0,10"
VerticalAlignment="Bottom" d:LayoutOverrides="Width"
HorizontalAlignment="Center"/>

</Grid>

</Page>

Page 2 C#
using System;

using Windows.UI.Xaml;
using Windows.UI.Xaml.Controls;

38

CHAPTER 2 " ELEMENTARY CONCEPTS

using SharingCodeDemo.sharedArea;
namespace SharingCodeDemo

{
public sealed partial class Page2 : Page
{
public Page2()
this.InitializeComponent();
}
private void box_TextChanged(object sender, TextChangedEventArgs e)
{
try
{
string w = width.Text;
string h = height.Text;
string d = depth.Text;
if(w.Length >= 1 83 h.Length >=1 &3 d.Length >= 1)
int width = Convert.ToInt32(w);
int height = Convert.ToInt32(h);
int depth = Convert.ToInt32(d);
double volume = sharedFunction.polygon(width, height,
depth);
polygonVolume.Text = "Volume of Box = " + volume.
ToString();
}
}
catch
{
polygonVolume.Text = "Please check the inputs provided";
}
private void areaPageButton Click(object sender, RoutedEventArgs e)
{
this.Frame.Navigate(typeof(MainPage), null);//Navigation
}
}
}
Shared Code

namespace SharingCodeDemo.sharedArea

{

class sharedFunction

{

public static double polygon(params int[] dimentions)

{

39

CHAPTER 2 " ELEMENTARY CONCEPTS

int len = dimentions.length;

return len == 1 ? dimentions[0] * dimentions[0] : len ==
dimentions[0] * dimentions[1] : len == 3 ? dimentions[0]
dimentions[1] * dimentions[2] : -1;

SharingCodeDemo o] X

Area

Ld |

| Rectangle Side 1 | | Rectangle Side 2 |

Area of Square = 36

%

Volume

Figure 2-7. Area output of Figure 2-6 application

40

2 !

*

?

CHAPTER 2 " ELEMENTARY CONCEPTS

SharingCodeDemo o] X

Volume

Volume of Box = 250

e

Area

Figure 2-8. Volume output of Figure 2-6 application

41

CHAPTER 2 " ELEMENTARY CONCEPTS

SharingCodeDemo -] o

Volume

Please check the inputs provided

<

Area

Figure 2-9. Error handled in Figure 2-6 application

Errors and Error Handling

Let’s say you have purchased a brand new apartment and along with it you have also
purchased insurance on it for protection. You are happy and in peace knowing that you
are secure due to that insurance. You are out of town and there’s been an earthquake,
shattering parts of your apartment. When you go to claim your insurance, the insurance
company denies it. Now you read your claim carefully, and you notice a part of the terms
that you missed initially stating that you cannot claim insurance if it is due to an act of
God (natural disasters).

This section is to prepare you for unexplained or unprecedented incidents. In a
computer program, errors can happen a lot of ways. The following examples show some
of the ways.

42

CHAPTER 2 " ELEMENTARY CONCEPTS

Error Example 1: Due to variables.

int a;
int b = a + 10;

Here, variable a has not been given a value.

Error Example 2: Due to arrays
int[] a = new int[10];
a[10] = 3;

Here, the programmer is trying to access the 11" element of the array. If you recall,
arrays start from 0 and end in n-1 (n being the number of elements in an array). These
types of errors are platform-specific. For example, in MATLAB (Matrix Laboratory)
Application arrays start from 1 to n.

Such errors can be avoided by using error prevention methods. Using try catch and
throws can do the job. Try catch is more widely used, as the developer (you) has the
option to continue running the program and handle the issue internally. The standard
statement of the block is

try
{

}
catch(exception type)

{
}
finally
{

}

Body where an exception might occur

What to do when an exception of that type occur

Option part. Continue irrespective on an exception.

Note that the catch and the finally block in a try-catch are completely optional
parameters. You use them only if you wish to do something about the errors that
occurred. The following is an example of a try-catch block while performing addition:

int add = o;
try
{
add += number;
}
catch(exception e)
{
Console.WriteLine("Number was not a valid integer");
}

43

CHAPTER 2 " ELEMENTARY CONCEPTS

Parallel Programing

Parallel programing (Figure 2-10) can be used when you have a large and complex
application. What this does is create multiple threads where each thread does a task.

Start Painting House Painted
—> Paint Room 1 Paint Room 2 Paint Room 3
1 Person

r——

Paint Room 1

r——

Start Painting House Painted
—) Paint Room 2
1 Person per Room
—

Paint Room 3

Figure 2-10. Performing tasks in two different ways

To demonstrate such a thing, let’s look at Parallel.For, which is similar to a for loop
but runs in parallel in a console application.

string[] data = { "Aa", "Bb", "Cc", "Dd", "Ee", "Ff", "Gg", "Hh", "Ii",
"J5", "Kk", "L1", "Mm", "Nn" };

int length = data.length;

for(int i = 0; i < length; i++)

{
}

Console.Writeline(data[i]);

The same for loop can be rewritten for Parallel.For as

Parallel.For(o, length, (i) =>
{

};

Console.Writeline(data[i]);

44

CHAPTER 2 " ELEMENTARY CONCEPTS

You will normally use parallel programming if the order of a computation is not
relevant to the outcome. Addition and multiplication are basic examples as result of
A +B =B+ Aand theresult of A * B =B * A. More complex parallel computations are used
in areas such as rendering of an animated scene or a movie. While parallel programming
on CPU is encouraged wherever possible, doing the same thing on a GPU increases
the performance of a complex application by a large factor. Since GPU programming
in the scope of this book and I do not think it is wise for you to jump straight into such
complexities this early but when you have finished this book completely and grasped the
concepts well, I'd recommend that you take baby steps into GPU programming by looking
at Alea GPU (aleagpu.com). Alea has taken most of the responsibility and headache out of
your hands making use of NVIDIA CUDA architecture and presented them in simple C#
syntax for you to use the power of a GPU.

While building intelligent programs, you will come across something called machine
learning. Machine learning can be supervised or unsupervised. Supervised learning is
when we have some previous data to work with, and unsupervised learning is somewhat
made up as we go along.

We know that human beings are intelligent and we have a learning process. To
clarify this, let’s consider a classroom with both children and adults in the same room.
The lecturer in the classroom asks a simple mathematical question: Is 5 divisible by 2?
The children and a few adults immediately respond “No. 5 is not divisible by 2,” which is
correct according to the level of their learning. But there were some adults who answer
“Yes. 5/2 is 2.5” to the query, which is even more accurate. While none of them answered
incorrectly, it just means that the children were not introduced to the concept of
decimals. Similarly, machine learning grows in its accuracy with more and more data. We
shall look more deeply into these concepts in a later chapter.

EXERCISES

Exercise 1: Keeping the thoughts of machine learning in mind, do you think an
unmanned helicopter is more stable flying upside down than straight up in both
normal and harsh weather conditions? (Remember, it’s unmanned so you don’t need
to consider a human pilot to sit up straight.)

Exercise 2: A standard for loop statement look like

for(i, ii, iii)

{
}

iv

where i is the initializer, ii is the condition, iii is the iterator, and iv is the body.
Keeping this in mind, state the order in which they are executed:
a. il v, iii

b. i, v, iii, i

45

www.aleagpu.com

CHAPTER 2 " ELEMENTARY CONCEPTS
c. i, ii,iii, iv
d. None of the above

Exercise 3: Write a loop to summarize the work of Santa Claus delivering Christmas
presents every year (in detail).

Exercise 4: Plot a graph to demonstrate the difference in execution time between
if-else and switch for

a. 2 conditions
b. 5 conditions
c. 10 conditions
d. 20 conditions

Exercise 5: Plot a graph to demonstrate the difference in execution time between for
and Parallel. For when you try to add

a. 5numbers
b. 50 numbers

c. 500 numbers
d. 5,000 numbers

46

CHAPTER 3

The Windows 10 Experience/

Every product and every brand is an individual. You may be confused by this statement
at first. Just like a person, brands and products do have qualities as a whole. They have
qualities, an appearance, and even ideal people for whom the products are built.

When you start building a completely new application or product, you should
list your ideal consumer first. There is a distinct difference between a customer and
consumer; a customer pays for the product and a consumer uses the product. They can
be the same or different individuals. For example, when a dad buys a toy for his kid, the
dad becomes the customer and the kid is the consumer. You, as an entrepreneur or a
developer, need to know who your customers and consumers are.

After you have made your list, jot down some of the qualities and behaviors of your
ideal consumer, such as age group, the movies the person likes, the music the person
listens to, and so on.

Tip Always know for whom you are building. List your ideal customer before you start
building.

Every cool product boils down to some form of data upon which you can perform
basic mathematics. We shall explore this idea in detail in this section and the next
chapter. But first let’s examine the animation industry and the differences between 2D
and 3D productions. Our displays (television, monitor, etc.) have a 2D screen with some
width and height. Therefore, if a game developer is building for 2D, the data that the
person needs to input are values of width and height.

When 3D was first introduced to the commercial market with 3D movies and
games, the output devices still remained 2D. It’s not like a user reached his hand into the
monitor, making a hole and breaking all the circuits along the way to get something in 3D.
Yes, the scenes and models and all the development was in 3D but ultimately the output
had to be rendered in 2D.

Tip If unfamiliar with mathematics, make an effort to learn it. It helps in the long run.

Electronic supplementary material The online version of this chapter
(doi:10.1007/978-1-4842-2629-2_3) contains supplementary material,
which is available to authorized users.

© Ayan Chatterjee 2017 47
A. Chatterjee, Building Apps for the Universal Windows Platform,
DOI 10.1007/978-1-4842-2629-2_3

http://dx.doi.org/10.1007/978-1-4842-2629-2_3

CHAPTER 3 ' THE WINDOWS 10 EXPERIENCE

Figure 3-1 (see color image in source code file) shows a photograph taken in Oxford,
England. It has the spatial dimensions of a height of 1500 pixels and a width of 2250 pixels.
I'am going to perform some operations on it. Figures 3-2 through 3-4 show the RGB layers
of the image individually extracted.

Figure 3-1. Oxford, England

Figure 3-2. Red channel of Figure 3-1

48

CHAPTER 3 * THE WINDOWS 10 EXPERIENCE

Figure 3-3. Green channel of Figure 3-1

Figure 3-4. Blue channel of Figure 3-1

49

CHAPTER 3 ' THE WINDOWS 10 EXPERIENCE

With this information, you can do the same custom-defined operations that a
professional image manipulation software performs. For practice, let’s perform an
inversion operation. A single pixel’s information in any single band is represented by an
unsigned 8-bit integer with a value ranging between 0 and 255. So, to perform inversion,
you only need to subtract as follows

Inverted value = 255 - Current Value

The output is displayed in Figure 3-5 (see color image in source code file). For the
next example, let’s make the image into two colors in each individual channel. The
mathematics performed on each of the channels of RGB is as follows

If (Current Value <= 127)
Modified Value = 0

Else

Modified Value = 255

The output of this is displayed in Figure 3-6 (see color image in source code file).

Figure 3-5. Inversion operation performed on Figure 3-1

50

CHAPTER 3 " THE WINDOWS 10 EXPERIENCE

Figure 3-6. Image converted to two values in individual RGB channels

So, if you analyze Table 3-1, the total number of possible color combinations in the
image is 8 for mathematics wizards.

Table 3-1. Possible Colors in Figure 3-6

R G B
0 0 0
0 0 255
0 255 0
0 255 255
255 0 0
255 0 255
255 255 0
255 255 255

If you have understood everything to this point, you now know how image filters are
created within simple applications to allow users to manipulate selfies as in a professional
photo editing application. But if you still have difficulty understanding, let’s take another
look at the concept. Figure 3-7 provides a summary of an RGB image file.

51

CHAPTER 3 ' THE WINDOWS 10 EXPERIENCE

RGE Coler Image

Transparency (Alpha) RGB Data

Single Valued if uniform
O
Matrix for variable transparency
30 Matrix
{height, width, 3 bands)

Red Channel
Green Channel

Elue Channel

2D Matrix
Height and Width

Figure 3-7. Summary of an RGB color image file

If you have difficulty understanding this, imagine a rather simplistic example of
something you see daily, like a layer of pancakes stacked on top of each other. Every
single pancake contains the image information of a particular wavelength. Our human
eye can only see pancakes with a wavelength between 400 and 700nm (visible spectrum),
the 400nm wavelength being violet and the 700nm wavelength being red. For RGB image
information, your camera picks out three pancakes from this visible region: information
in wavelengths within red, green, and blue. If your image consists of one single pancake
(one band), it is a grayscale image; if your image has three pancakes (three bands in RGB
wavelength) it is a color image; if your image has 10 pancake layers (tens of bands), it
is called a multispectral image; hundreds of pancakes are a hyperspectral image; and
thousands of pancakes are called a ultraspectral image. How many wavelengths and
which wavelength information you need depends on what you want to do.

52

CHAPTER 3 " THE WINDOWS 10 EXPERIENCE

Cortana

Before talking about Cortana, let’s take a step back. The very early version of human-
computer interaction was through DOS commands (similar to typing commands on
command prompt or Windows PowerShell if you have seen or used either). Then human-
computer interaction shifted to a GUI (graphical user interface) via the keyboard and
mouse. That branched out to touch. Every growth in human-computer level is an attempt
to navigate and use the OS (operating system) more completely without the constraint

of the previous level. In other words, you can completely use touch to use Windows 10
without the need for a keyboard and mouse.

Cortana is hands-free experience and an attempt to use Windows completely using
voice without the need for any other form of interaction. Presently it is in nascent stage
and will continue to mature. Previously, with the Windows 8 family, integrating Cortana
into your application was done through VCD (voice command definition). VCD is an
XML format of data storing information for use in Cortana. A VCD contains the following:

e Voice commands

The root of the XML document containing definitions and
schema

e Command set

The parent of a group of commands for a particular language
such as US English, UK English, Hindi, French, Mexican, etc.

e Child elements

Such as Command, Listen For, PhraseList, PhraseTopic, etc.
to indicate what to listen for (trigger words/phrases) and what
happens when the user says one

After defining a VCD, you need to register it to the system when a user first launches
the application. This lets Cortana know the trigger words for your application and
what happens when a user says one. If VCD doesn’t register, Cortana will not get the
information to look for and your application will not work with Cortana, as demonstrated
in Figure 3-8. To install/register, you declare it during the initialization of the application
(inside the Appp.xaml.cs file for a C# project). Let’s explore it further with an example.
The output is shown in Figure 3-8.

53

CHAPTER 3 ' THE WINDOWS 10 EXPERIENCE

Web ages Videos

Windows 10 brings Cortana to the
desktop | Ars Technica
ritps:Varstechnica.com/ Awindows-10-brngs-¢

Latest Windows 10 Build brings
Bash, dark theme, Cortana ...

itps iiwww. yahoo comitechlatest-windows-10-
bl

Nindows 10 Build
3ash, dark theme
Cortana upg

dark .

Cortana Cema set m

Ask me anything

Figure 3-8. Using voice commands in an example. Cortana fails to respond if VCD is not
registered and performs a web search (left), Cortana responds to voice commands if VCD is

registered successfully (middle), and Cortana responds to the voice command and turns the
application theme dark (right).

VCD.xml

<?xml version="1.0" encoding="utf-8" ?>
<VoiceCommands xmlns="http://schemas.microsoft.com/voicecommands/1.2">

<CommandSet xml:lang="en-us" Name="CortanaDemoVCD US">
<AppName> Cortana Demo </AppName>
<Example> Set App Theme </Example>
<Command Name="setAppTheme">
<Example> Setting the application theme </Example>
<ListenFor RequireAppName="BeforeOrAfterPhrase"> Set [my] theme
{colors}</ListenFor>
<ListenFor RequireAppName="ExplicitlySpecified"> Assign
{builtin:AppName} {colors} </ListenFor>
<Feedback> Setting the theme {colors} </Feedback>
<Navigate />
</Command>
<PhraselList Label="colors">
<Item>Light</Item>
<Item>Dark</Item>
</Phraselist>
</CommandSet>

<CommandSet xml:lang="en-gb" Name="CortanaDemoVCD_UK">
<AppName> Cortana Demo </AppName>

54

CHAPTER 3 " THE WINDOWS 10 EXPERIENCE

<Example> Set App Theme </Example>

<Command Name="setAppTheme">
<Example> Repeat what you've just said </Example>
<ListenFor RequireAppName="BeforeOrAfterPhrase"> Set [my] theme
{colors}</ListenFor>
<ListenFor RequireAppName="ExplicitlySpecified"> Assign
{builtin:AppName} {colors} </ListenFor>
<Feedback> Setting the theme {colors} </Feedback>
<Navigate/>

</Command>

<Phraselist Label="colors">
<Item>Light</Item>
<Item>Dark</Item>

</Phraselist>

</CommandSet>
</VoiceCommands>

App.xaml.cs

using System;

using Windows.ApplicationModel;

using Windows.ApplicationModel.Activation;
using Windows.UI.Xaml;

using Windows.UI.Xaml.Controls;

using Windows.UI.Xaml.Navigation;

using Windows.Storage;

namespace CortanaDemo

{
sealed partial class App : Application
{
public App()
{
this.InitializeComponent();
this.Suspending += OnSuspending;
}
protected override async void OnLaunched(LaunchActivatedEventArgs e)
{
#if DEBUG
if (System.Diagnostics.Debugger.IsAttached)
{
this.DebugSettings.EnableFrameRateCounter = true;
}
#endif

Frame rootFrame = Window.Current.Content as Frame;
if (rootFrame == null)

{

rootFrame = new Frame();

55

CHAPTER 3 ' THE WINDOWS 10 EXPERIENCE

56

}

rootFrame.NavigationFailed += OnNavigationFailed;

if (e.PreviousExecutionState == ApplicationExecutionState.

Terminated)
{
//T0DO: Load state from previously suspended application
}
Window.Current.Content = rootFrame;
}
if (e.PrelaunchActivated == false)
{
if (rootFrame.Content == null)
{
rootFrame.Navigate(typeof(MainPage), e.Arguments);
}
Window.Current.Activate();
try
{
StorageFile vcdStorageFile = await Package.Current.
InstalledLocation.GetFileAsync(@"VCD.xml");
await Windows.ApplicationModel.VoiceCommands.
VoiceCommandDefinitionManager.InstallCommandDefinitions
FromStorageFileAsync(vcdStorageFile);
}
catch (Exception ex)
{
System.Diagnostics.Debug.Writeline("Installing VCD
Failed: " + ex.ToString());
}
}

protected override void OnActivated(IActivatedEventArgs args)

{

base.OnActivated(args);
Frame rootFrame = Window.Current.Content as Frame;
if (rootFrame == null)

{
rootFrame = new Frame();
rootFrame.NavigationFailed += OnNavigationFailed;
Window.Current.Content = rootFrame;

}

if (args.Kind == ActivationKind.VoiceCommand)

{

var commandArgs = args as VoiceCommandActivatedEventArgs;
Windows .Media.SpeechRecognition.SpeechRecognitionResult
speechRecognitionResult = commandArgs.Result;

CHAPTER 3 " THE WINDOWS 10 EXPERIENCE

string textSpoken = speechRecognitionResult.Text;
if (textSpoken.Contains("light") || textSpoken.
Contains("Light"))

{

}
if(textSpoken.Contains("dark") || textSpoken.

Contains("Dark"))
{

}

rootFrame.RequestedTheme = ElementTheme.Light;

rootFrame.RequestedTheme = ElementTheme.Dark;

}

//Starting the app
rootFrame.Navigate(typeof(MainPage));
Window.Current.Activate();

}

void OnNavigationFailed(object sender, NavigationFailedEventArgs e)

{
throw new Exception("Failed to load Page " + e.SourcePageType.
FullName);

}

private void OnSuspending(object sender, SuspendingEventArgs e)

{
var deferral = e.SuspendingOperation.GetDeferral();
deferral.Complete();

}

Now that you know how to implement voice commands and use Cortana in your
native application, let’s take a deeper dive. I started with the statement that Cortana
is an attempt to use and navigate an OS with speech, meaning voice commands are
your primary medium to communicate with the OS and it is not mandatory for all
Cortana-supported devices to have a display. The devices can range from native desktop
to Windows Mobile to other mobile devices like i0OS and Android to IoT devices to
independent Cortana-powered speakers with no display at all. In the previous example,
you had the luxury of keeping your business logic embedded within your native
application but now, in order to support all of these non-native devices, your business
logic needs to move to the cloud; to be more specific, I am talking about bots. The
common steps to follow to create and deploy a Cortana skill are the following:

1. Develop your application using the Microsoft Bot Framework
(https://dev.botframework.com/).

2. Use the Language Understanding Intelligent Service (LUIS.ai)
in your bot to create a natural understanding and intent of
what the user wishes to convey.

57

https://dev.botframework.com/

CHAPTER 3 ' THE WINDOWS 10 EXPERIENCE

3. Add speech to your bot.

4. Deploy your bot application to Microsoft Azure using the
Azure Publishing Wizard in Visual Studio.

5. The wizard returns deployed details like a destination URL.

6. Register your bot with the Bot Framework (shown in
Figure 3-9).

7. Register your registered bot with Cortana skill.

8. Publish your Cortana skill (shown in Figure 3-10).

B® Microsoft Hpan

Bot Framework

Budcing 3 Cortana skill? You're in the right place. Ee sure to sign

lell us about your bot

<kill for Cortana.

Bot profile

@ g8

Figure 3-9. Registering a bot application

Dashbeard B Microsoft H B O G @
kills

Welcome to the Cortana skills developer preview

Structure of & Cortana Siall

Cortema skills are built upen the concept of . .
the user asks for the skl a its .
[1 gathes ek .

anaraa,
Duploymans ook
Futinaing ppeire

CORTAMA STILLS KIE

Heed some insciration to get started? Leam sbout

Figure 3-10. Cortana Developer dashboard

58

CHAPTER 3 " THE WINDOWS 10 EXPERIENCE

That was a brief overview of using Cortana skills to enable your bot on different
Cortana supported devices. Since this book is targeted to beginners and beginners
migrating to an intermediate level and it’s designed to offer a firm grasp of the concepts,
it is more important for you to comprehend the core components and features in UWP.
Then all of this will flow naturally. I recommend completing all the chapters of this book
before taking a deeper dive into the documentation laid out in the Cortana Dev Center
(https://docs.microsoft.com/en-us/cortana/getstarted).

Live Tiles

Live tiles (Figure 3-11) are the signature of Windows metro UlIs since Windows 8. These
are meant to inform a user of an activity within an app without opening the app. It is kind
of a summary, much similar to the peek you get when you search with Bing or open your
mail application. A few lines of summary show you what to expect.

Some good uses of a live tile implementation are to let the user stay up to date with
the current game progress, virtual game coins, a news alert, new unread message, an
upcoming event, and so on.

Live Tiles

Y

Paint 3D

Figure 3-11. Examples of live tiles: weather, news, and store tiles

The Windows 8 family introduced live tiles with some predefined layouts. The next
section explores this further.

Notifications

Now that we have discussed live tiles, let’s look at other forms that pass information. The
whole purpose is to classify the relevance of information. What I mean is, if you were
building an email application then you would divide it into something similar to Table 3-2.

59

https://docs.microsoft.com/en-us/cortana/getstarted

CHAPTER 3 ' THE WINDOWS 10 EXPERIENCE

Table 3-2. Types and Recommendations for UWP Notifications

Notification Important mail such as from
e Animmediate supervisor at an office
o Ateacher/professor at a university
o Family (parents, partner, children)
o Close friends

Live Tile Relevant yet less important
¢ Email from work
o Email from school (circulation)
o Emalil from friends, relatives, and neighbors
o Total unread email count

An individual uses several types of devices every day, such as a desktop, laptop,
tablet, watch, and there are many new and hybrid categories. All of them have a unique
notification behavior to maintain. I'll explain this with two hypothetical situations: one
where devices followed their own path and the other where the devices have an effective
learning algorithm and are synchronized together.

For example, it is raining outside and a person (say Greg) is walking home from
work wearing a smartwatch. He also has a phone in his pocket. He is a music fan and
has his headphones on. During his walk, one of his colleagues gives him a call. For the
first situation, both his watch and his phone ring and vibrate. At the same time, Cortana
makes a voice response. It’s a nightmare of too many alerts.

Now let’s examine the second situation. Greg’s phone is already aware of the person
making the phone call. Through a learning algorithm, the colleague is not categorized
as urgent. So, only a small vibration goes to his watch. His music is not interrupted and
his phone does not make any sort of response to disturb Greg in the rain. A risk of water
damage to his phone is avoided. Greg can them lift his arm and accept/reject the call
right from his wrist.

In UWP, the types of notifications are

e Tile notification

e Toast notification

Tile Notifications

Tile notifications are notifications that update on the application’s live tile. The tile sizes
available in Windows 10 are small where you only see the application icon; medium,
wide, and large tiles are the ones where you are able to update your tile.

Toast Notifications

Toast notifications are the ones peeking from the side for the desktop and peeking in from
the top in mobile devices for a while, and they show up on the Action Center.

60

CHAPTER 3 " THE WINDOWS 10 EXPERIENCE

You will now create a tile and a toast notification. To do that, you will first install the

NuGet package shown in Figure 3-12.

W e
! d Dwng Wen T T Asokor Wwoe Hep
0-0 & e ¢ asd P LocaiMuhing = B
§ T iy Marieas
g e instalied Upcates @) NuGet Package Manager NotificationsDema
T e -G D " Tectage s nupny - e
¥ Micrascft Tockit Lhwp Notifications 1

@Y Motieations oy ety o ant

X o pcms s ey o e Wi
Versom: Lo it 131 —t
(f, cobivemsnobfcations o Kuet 42 s oo

Comlans e psusomtiiern e et Teat om claiint 141

L MicessftToolkit.Usp Notifications s wi-
(irarcats tin, 20, 380 P MO e i e
Pre—————

Microaofe. Toolkit. L Notificatioma favaScript 1y
Gemeiate 130 Wb 980 L Ao K b ¥ it it o
Prp———ry

o 0 s oy 0 e Mt it

Facn parkage
P

Do nct show g sgain

Figure 3-12. Installing the notification NuGet package

XAML

<Page

x:Class="NotificationsDemo.MainPage"
xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation”
xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
xmlns:local="using:NotificationsDemo"
xmlns:d="http://schemas.microsoft.com/expression/blend/2008"
xmlns:mc="http://schemas.openxmlformats.org/markup-compatibility/2006"

mc:Ignorable="d">

<Grid Background="{ThemeResource ApplicationPageBackgroundThemeBrush}">
<Button x:Name="tileButton" Click="tileButton Click" Content="Send
Tile" Margin="0,100,100,0" VerticalAlignment="Center"

HorizontalAlignment="Center"/>

<Button x:Name="toastButton" Click="toastButton_Click" Content="Send
Toast" HorizontalAlignment="Center" Margin="100,100,0,0"

VerticalAlignment="Center"/>
</Grid>
</Page>
C#
using Windows.UI.Xaml;
using Windows.UI.Xaml.Controls;
using Windows.UI.Notifications;

using Microsoft.Toolkit.Uwp.Notifications;

61

CHAPTER 3 ' THE WINDOWS 10 EXPERIENCE

namespace NotificationsDemo

{
public sealed partial class MainPage : Page
{
public MainPage()
{
this.InitializeComponent();
}

static string title = "Title", subtitle = "Subtitle";
private void tileButton Click(object sender, RoutedEventArgs e)

{
TileNotification notification = new TileNotification(content.
GetXml());
TileUpdateManager.CreateTileUpdaterForApplication().
Update(notification);
}
private void toastButton Click(object sender, RoutedEventArgs e)
{
ToastNotification toast = new ToastNotification(toastContent.
GetXml());
ToastNotificationManager.CreateToastNotifier().Show(toast);
}
TileContent content = new TileContent()
{
Visual = new TileVisual()
{
TileMedium = new TileBinding()
{
Content = new TileBindingContentAdaptive()
{
Children =
{
new AdaptiveText()
{
Text = title,
b

new AdaptiveText()

{

62

CHAPTER 3 " THE WINDOWS 10 EXPERIENCE

Text = subtitle,
HintStyle = AdaptiveTextStyle.CaptionSubtle

}
}
}
}
}
};
ToastContent toastContent = new ToastContent()
{
Launch = "app-defined-string",
Visual = new ToastVisual()
{
BindingGeneric = new ToastBindingGeneric()
{
Children =
{
new AdaptiveText()
{
Text = title
b
new AdaptiveText()
{
Text = subtitle
}
b
}
}
Actions = new ToastActionsCustom()
{
Buttons =
{
new ToastButton("dismiss", "cancel")
}
}
b

The output is shown in Figures 3-13 and 3-14.

63

CHAPTER 3 ' THE WINDOWS 10 EXPERIENCE

Figure 3-13. A tile notification

- o = | P - B

Bhot @ Private Byies

Send Tile Send Toast

Figure 3-14. A toast notification

Settings

If you have a firm grasp of what has been covered, you have come a long way. Now you
will take a step further with settings. Let’s first analyze the purpose of settings in an
application. Settings are for those variables that are unique to an individual. When you
were growing up, people used to bomb you with questions like

64

What do you want to be when you grow up?
What is your favorite color?

When is your birthday?

What games do you like to play?

What is your favorite movie?

#Ayan Cratterjes ™

U0 UBES) SUDIONG LOANIDS

ondn Apadasd au)

CHAPTER 3 " THE WINDOWS 10 EXPERIENCE

All these questions were mainly within the process of knowing an individual. For an
application, the settings and user preferences you may want to store in an application
could be the following

Color schemes and themes of your application

User’s topics of interest for a news application
Locations to follow for a weather or tourist application
Home and work address for a cab service application

User’s favorite places and cuisines preferred for a restaurant
search application

If your application supports multiple pages, store the last page a
user was active on before closing it, so the next time they reopen
they can pick up where they left off.

You can do this in UWP using local settings and roaming settings. Local settings
are settings applicable to the particular system a user sets it in, meaning the settings are
applicable on one device only. Roaming settings are those that sync across all of the user’s
devices a user has signed in using his/her Microsoft Account. Let’s explore the concept
with an example (Figure 3-15).

SettingsDemo

X SettingsDemo o *

®) Lig O Dark Theme

oy e

Settings Done

Figure 3-15. Settings demo app home page (left) and settings options (right)

65

CHAPTER 3 ' THE WINDOWS 10 EXPERIENCE

Similar to this, you can make your application available in all sorts of color schemes
such as light, evening mode, night mode, etc. The XAML and C# for the above example
follows:

XAML

<Page
x:Class="SettingsDemo.MainPage"
xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation”
xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
xmlns:local="using:SettingsDemo"
xmlns:d="http://schemas.microsoft.com/expression/blend/2008"
xmlns:mc="http://schemas.openxmlformats.org/markup-compatibility/2006"
mc:Ignorable="d">

<Grid x:Name="mainGrid" Background="{ThemeResource
ApplicationPageBackgroundThemeBrush}" RequestedTheme="Light">
<TextBlock x:Name="nameText" Margin="0" TextWrapping="Wrap"
Text="Hi!" VerticalAlignment="Center" d:LayoutOverrides="Width" Hori
zontalAlignment="Center"/>
<AppBarButton x:Name="settingsButton" Click="settingsButton Click"
HorizontalAlignment="Center" Icon="Setting" Label="Settings"
Margin="0,0,0,10" VerticalAlignment="Bottom"/>
<Grid x:Name="settingsGrid" Margin="0" Background="{ThemeResource
AppBarBackgroundThemeBrush}" Visibility="Collapsed">
<TextBox x:Name="textBox" TextChanged="textBox_TextChanged"
Margin="10,0,10,100" TextWrapping="Wrap" Text=""
VerticalAlignment="Center" d:LayoutOverrides="Width"
PlaceholderText="Please enter your name here"/>
<RadioButton x:Name="1lightThemeRadio" Checked="1ightThemeRadio_
Checked" Content="Light Theme" HorizontalAlignment="Center"
Margin="0,100,150,0" VerticalAlignment="Center"
d:LayoutOverrides="Width" GroupName="Application Theme"/>
<RadioButton x:Name="darkThemeRadio" Checked="darkThemeRadio_
Checked" Content="Dark Theme" HorizontalAlignment="Center"
Margin="150,100,0,0" VerticalAlignment="Center"
GroupName="Application Theme"/>
<AppBarButton x:Name="settingsDoneButton"
Click="settingsDoneButton Click" HorizontalAlignment="Center"
Icon="Accept" Label="Done" Margin="0,0,0,10"
VerticalAlignment="Bottom"/>
</Grid>
</Grid>
</Page>

66

CHAPTER 3 " THE WINDOWS 10 EXPERIENCE

C#

using Windows.UI.Xaml;

using Windows.UI.Xaml.Controls;
using Windows.Storage;

using Windows.UI.Xaml.Navigation;

namespace SettingsDemo

{

public sealed partial class MainPage : Page

{
string name;
ApplicationDataContainer local = ApplicationData.Current.
LocalSettings;
ApplicationDataContainer roaming = ApplicationData.Current.
RoamingSettings;

public MainPage()

{
this.InitializeComponent();
}
protected override void OnNavigatedTo(NavigationEventArgs e)
{

var n = roaming.Values["name"];
if (n != null)

name = n.ToString();
nameText.Text = "Hi! " + name;
textBox.Text = name;

}

var t = local.Values["theme"];

if(t != null)

byte theme = System.Convert.ToByte(t.ToString());
if(theme == 1)

lightThemeRadio.IsChecked = true;
darkThemeRadio.IsChecked = false;
lightThemeRadio.IsEnabled = false;
darkThemeRadio.IsEnabled = true;
mainGrid.RequestedTheme = ElementTheme.light;

}

else

{

67

CHAPTER 3 ' THE WINDOWS 10 EXPERIENCE

darkThemeRadio.IsChecked = true;
lightThemeRadio.IsChecked = false;
darkThemeRadio.IsEnabled = false;
lightThemeRadio.IsEnabled = true;
mainGrid.RequestedTheme = ElementTheme.Dark;

}
}
else
{
darkThemeRadio.IsChecked = false;
lightThemeRadio.IsEnabled = false;
darkThemeRadio.IsEnabled = true;
mainGrid.RequestedTheme = ElementTheme.light;
}
}
private void settingsButton Click(object sender, RoutedEventArgs e)
{
settingsGrid.Visibility = Visibility.Visible;
}
private void lightThemeRadio Checked(object sender, RoutedEventArgs e)
{
darkThemeRadio.IsChecked = false;
lightThemeRadio.IsEnabled = false;
darkThemeRadio.IsEnabled = true;
mainGrid.RequestedTheme = ElementTheme.Llight;
local.Values["theme"] = 1;
}
private void darkThemeRadio Checked(object sender, RoutedEventArgs e)
{
lightThemeRadio.IsChecked = false;
darkThemeRadio.IsEnabled = false;
lightThemeRadio.IsEnabled = true;
mainGrid.RequestedTheme = ElementTheme.Dark;
local.Values["theme"] = 2;
}
private void settingsDoneButton Click(object sender, RoutedEventArgs e)
{
settingsGrid.Visibility = Visibility.Collapsed;
nameText.Text = "Hil " + name;
roaming.Values["name"] = name;
}

68

CHAPTER 3 " THE WINDOWS 10 EXPERIENCE

private void textBox TextChanged(object sender, TextChangedEventArgs e)
{

}

name = textBox.Text;

Share

Sharing data is essential for collaborative creation. Without the sharing of data, your
cellular phone call application would not be able to get the phone numbers from your
address book application. In UWP, sharing can happen in two ways:

e The actual data is shared
e Address of the application is shared (for large data)

When it’s time to share some data, the DataRequested event handler needs to be
called. When that happens, the DataRequest object is called, which contains the data
to be shared, be it text, URI, or any other type supported in UWP. Figure 3-16 shows
the types of data that can be shared and Figure 3-17 shows the output of your demo
application.

srivate void s©@ BRGNS ~ nde

[@ SetBitmap
DataTransf@ SetData ans
manager.Dag setDataProvider aRe

DataTransf
atalransTe SetHtmlFormat

Y @ SetRtf
>rivate void m¥ SetStorageltems rar
[@ SetText

DataReques @ SetUri -

data.Data. setL
t

Figure 3-16. The types of data that can be shared

69

CHAPTER 3 ' THE WINDOWS 10 EXPERIENCE

This is a sample share text

ﬁ Mad

ua OneMote

Share

Figure 3-17. Share charms for the application

XAML

<Page
x:Class="ShareDemo.MainPage"
xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation”
xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
xmlns:local="using:ShareDemo"
xmlns:d="http://schemas.microsoft.com/expression/blend/2008"
xmlns:mc="http://schemas.openxmlformats.org/markup-compatibility/2006"
mc:Ignorable="d">
<Grid Background="{ThemeResource ApplicationPageBackgroundThemeBrush}">
<TextBox x:Name="textBox" TextChanged="textBox_TextChanged"
Margin="10,10,10,300" TextWrapping="Wrap" Text=""
PlaceholderText="type your share text here"/>
<AppBarButton x:Name="shareButton" Click="shareButton_Click"
IsEnabled="False" HorizontalAlignment="Center" Icon="ReShare"
Label="Share" Margin="0,0,0,100" VerticalAlignment="Bottom"
d:LayoutOverrides="Width"/>
</Grid>
</Page>

70

CHAPTER 3 " THE WINDOWS 10 EXPERIENCE
C#
using Windows.ApplicationModel.DataTransfer;
using Windows.UI.Xaml;

using Windows.UI.Xaml.Controls;

namespace ShareDemo

{
public sealed partial class MainPage : Page
{
public MainPage()
{
this.InitializeComponent();
}
private void textBox TextChanged(object sender, TextChangedEventArgs e)
{
if(textBox.Text == "")
{
shareButton.IsEnabled = false;
}
else
{
shareButton.IsEnabled = true;
}
}
private void shareButton Click(object sender, RoutedEventArgs e)
{
DataTransferManager manager = DataTransferManager.GetFor
CurrentView();
manager.DataRequested += Manager_DataRequested;
DataTransferManager.ShowShareUI();
}
private void Manager DataRequested(DataTransferManager sender,
DataRequestedEventArgs args)
{
DataRequest data = args.Request;
data.Data.SetText(textBox.Text);
data.Data.Properties.Title = "ShareDemo Text";
}
}
}

71

CHAPTER 3 ' THE WINDOWS 10 EXPERIENCE

Navigation

Coach (Economy Class) passengers in a flight land on the ground the same time as First
Class and Business Class passengers. However, the experiences of each are completely
different. The Business Class experience is designed for business users, meaning after

a 10-hour flight the passenger is expected to land fresh and prepared for the next
business meeting. Rather than just navigating from one page to the next, you as a
developer can achieve the same kind of first class experience for your users. This can
include the following:

e Page navigation animation
e Keeping a flow from one page to the next
e Preloading data like forms and maps

e Offline experience for pages that require Internet access and if the
user’s Internet connection is slow or offline

e Storing user-typed data whenever required for unavailable
network

e Assigning user-friendly correct error messages for different kinds
of errors

In a complex application with tons of page hierarchy, you may want to design a
navigation first before implementation. Navigation design will allow you to understand
the intuitive nature of your app’s navigation. It will also let you know if there is any dead
end to the navigation structure.

To navigate from one page to the next, Frame.Navigate is used. The syntax is as
follows:

Frame.Navigate(typeof(Page), parameters)

It’s always a good practice to be prepared for any kind of errors your application
might encounter. Similarly, when navigation fails to occur, it’s a good practice to use
NavigationFailed. Let’s look at an implementation. The output is shown in Figure 3-18.

Page 1 XAML

<Page
x:Class="NavigationDemo.MainPage"
xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation”
xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
xmlns:local="using:NavigationDemo"
xmlns:d="http://schemas.microsoft.com/e xpression/blend/2008"
xmlns:mc="http://schemas.openxmlformats.org/markup-compatibility/2006"
mc:Ignorable="d">

72

CHAPTER 3 " THE WINDOWS 10 EXPERIENCE

<Grid Background="{ThemeResource ApplicationPageBackgroundThemeBrush}">
<TextBlock Text="Page 1" HorizontalAlignment="Center"
VerticalAlignment="Center" />
<AppBarButton x:Name="navigateToPage2" Click="navigateToPage2_
Click" Label="Page 2" Icon="Go" VerticalAlignment="Bottom"
HorizontalAlignment="Center" Margin="0,0,0,10" />

</Grid>

</Page>

Page 1 C#

using Windows.UI.Xaml.Controls;
namespace NavigationDemo

{
public sealed partial class MainPage : Page
{
public MainPage()
this.InitializeComponent();
}
private void navigateToPage2 Click(object sender, Windows.UI.Xaml.
RoutedEventArgs e)
{
Frame.Navigate(typeof(Page2));
}
}
}
Page 2 XAML
<Page
x:Class="NavigationDemo.Page2"
xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation”
xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
xmlns:local="using:NavigationDemo"
xmlns:d="http://schemas.microsoft.com/expression/blend/2008"
xmlns:mc="http://schemas.openxmlformats.org/markup-compatibility/2006"
mc:Ignorable="d">
<Grid Background="{ThemeResource ApplicationPageBackgroundThemeBrush}">
<TextBlock Text="Page 2" HorizontalAlignment="Center"
VerticalAlignment="Center" />
<AppBarButton x:Name="backButton" Click="backButton_
Click" Label="Back" Icon="Back" VerticalAlignment="Top"
HorizontalAlignment="Left" Margin="0" />
</Grid>
</Page>

73

CHAPTER 3 ' THE WINDOWS 10 EXPERIENCE

Page 2 C#

using Windows.UI.Xaml.Controls;
namespace NavigationDemo

{
public sealed partial class Page2 : Page
{
public Page2()
{
this.InitializeComponent();
}
private void backButton Click(object sender, Windows.UI.Xaml.Routed
EventArgs e)
Frame.Navigate(typeof(MainPage));
}
}
}
e_
Page 1 Page 2

7

Page 2

Figure 3-18. Navigating from one page to another

74

CHAPTER 3 " THE WINDOWS 10 EXPERIENCE

In the previous example, we talked about navigating between two different pages
within the same window. But sometimes your application may require multiple windows.
One good example is Mail, where you can click on a button to open the contents of your
email in a new window. You will need to create multiple windows to provide a more
dedicated experience to separate contents in your application like a UWP notepad
application where each text document is presented in a different window. Let’s take a
look at an implementation that is the same as the previous one but instead of navigating
to the second page, it is going to open a new window for the second page. Some parts of
the code may be unfamiliar to you and may confuse you but do not read too much into it.
As you proceed, you will get more and more familiar with UWP application development.
The output of this application is shown in Figure 3-19.

XAML (Main Page)

<Page
x:Class="MultipleViewDemo.MainPage"
xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation”
xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
xmlns:local="using:MultipleViewDemo"
xmlns:d="http://schemas.microsoft.com/expression/blend/2008"
xmlns:mc="http://schemas.openxmlformats.org/markup-compatibility/2006"
mc:Ignorable="d">
<Grid Background="{ThemeResource ApplicationPageBackgroundThemeBrush}">
<TextBlock HorizontalAlignment="Center" Margin="0,10,0,0"
TextWrapping="Wrap" Text="Page 1" VerticalAlignment="Top"/>
<AppBarButton x:Name="page2Button" Click="page2Button_Click"
HorizontalAlignment="Right" Icon="Go" Label="Page 2" Margin="0"
VerticalAlignment="Center"/>
</Grid>
</Page>

XAML (Page 2)

<Page
x:Class="MultipleViewDemo.Page2"
xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation”
xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
xmlns:local="using:MultipleViewDemo"
xmlns:d="http://schemas.microsoft.com/expression/blend/2008"
xmlns:mc="http://schemas.openxmlformats.org/markup-compatibility/2006"
mc:Ignorable="d">
<Grid Background="{ThemeResource ApplicationPageBackgroundThemeBrush}">
<TextBlock HorizontalAlignment="Center" Margin="0"
TextWrapping="Wrap" Text="Page 2" VerticalAlignment="Center"/>
</Grid>
</Page>

75

CHAPTER 3 THE WINDOWS 10 EXPERIENCE
C# (Main Page)

using System;

using Windows.ApplicationModel.Core;
using Windows.UI.ViewManagement;
using Windows.UI.Xaml;

using Windows.UI.Xaml.Controls;
namespace MultipleViewDemo

{
public sealed partial class MainPage : Page
{
public MainPage()
{
this.InitializeComponent();
}
private async void page2Button Click(object sender, RoutedEventArgs e)
{
CoreApplicationView page2View = CoreApplication.CreateNewView();
int page2ViewID = 0;
await page2View.Dispatcher.RunAsync(Windows.UI.Core.Core
DispatcherPriority.Normal, () =>
{
Frame newFrame = new Frame();
newFrame.Navigate(typeof(Page2), null);
Window.Current.Content = newFrame;
Window.Current.Activate();
page2ViewID = ApplicationView.GetForCurrentView().Id;
D;
await ApplicationViewSwitcher.TryShowAsStandaloneAsync
(page2viewID);
}
}
}

76

CHAPTER 3 " THE WINDOWS 10 EXPERIENCE

Page 1

A Page 2

Page 2

Figure 3-19. Output of multiple views application

In-App Purchases (IAPS)

You walk into a fast food restaurant franchise and are looking at the food/drink items
offered. Once you have decided what to have, you walk into the counter and tell the
person what you want. For instance, let’s say you have decided to have chicken fries. The
person taking your order asks you if you want the chicken spicy or non-spicy (skillfully
omitting the by-default option). These are add-ons to the menu, which will increase your
bill total and without realizing you have purchased an add-on. In other words, you have
purchased an additional option within the product, which makes it an in-app purchase.
But good news here is that with Windows IAPs we have the decency to let a user know of
the IAPs and prices before the user makes a purchase. IAPs are either

e Consumable, or
e Durable

Consumable, as the name suggests can be eaten up or consumed (like candy?!). It
is a one-time thing. An example of a consumable IAP is to purchase virtual currency
in a game in the form of game coins. A durable IAP, on the other hand, is an IAP that is
purchased and stands true for a certain amount of time, be it days, weeks, months, or
forever. An example of this is the purchase of a digital music album.

77

CHAPTER 3 ' THE WINDOWS 10 EXPERIENCE

Subscriptions are continued, durable purchases. To implement IAP in your
application, a flow should have already formed in your mind that there must be an API for
your application to communicate with Windows Store, each IAP should have their unique
ID, and there should be some kind of metadata somewhere describing your IAPs. Taking
it step by step,

1. TheWindows.Services.Store (Windows.ApplicationModel.
Store was the older one until Windows 10 version 1607 but
that'll fade away as time goes) namespace is the one that
contains all the APIs your mind thought about.

2. Step 2is to initialize your app’s license information.
There are two classes to consider: CurrentApp
and CurrentAppSimulator. As the name suggests,
CurrentAppSimulator is for you to simulate and try out if your
IAP implementation is working without actually purchasing
anything, and CurrentApp is the real thing to be used to make
purchases. The syntax is

licenseInformation = CurrentAppSimulator.License
Information;

3. Step 3 is defining your IAPs. For CurrentApp to be effective
and prior to publication on Windows Store, you need create
IAPs for your app in the developer portal and define their
metadata there. And for CurrentAppSimulator, if you are
testing before publication, you need to create an XML
document and call it during execution much like how you did
with VCD and Cortana on a local device.

4. Step 4 is to implement those IAP(s) in your application and
the regular drill follows: seeing if your IAP is active and all the
errors and warnings for failures like connection failures, user
initiates but then cancels the IAP purchase, etc.

Example:

async void BuyFeature()

{

if (!licenseInformation.ProductlLicenses["IAP1"].IsActive)

{
try
{
await CurrentApp.RequestProductPurchaseAsync("IAP1", false);
//do your stuff and check if IAP was successful

}
catch (Exception)

{

78

CHAPTER 3 " THE WINDOWS 10 EXPERIENCE

// Error handling

}
}
else
{
// User already owns this feature.
}

EXERCISES

Exercise 1: In the previous chapter, the params keyword was used in the
PolymorphismConsoleDemo application. Explain how it may or may not be correct.

Hint:

function main(args)

{
Functioni(argument 1)
Functioni(argument 1, argument 2)

}

Is it polymorphism to have two functions named Function1 or one with params?
Which one exhibits many forms?

Exercise 2: Build an application implementing a live tile and a toast notification from
code behind.

Exercise 3: Try sharing a binary data with another application.
Exercise 4: Explore the following keywords:

a. Namespace

b. Enumeration

C. Structure

d. GuID

Exercise 5: Learn how to implement skills and make use of Cortana in i0S and
Android devices.

79

CHAPTER 4

Windows with Mouse and
Keyboard

What falls under basic knowledge and what falls under advanced? In the ancient ages,
something like a catapult was considered highly advanced and yet projectile motion is
taught today in middle school physics class. So, is it a function of time? Or is it a function
of progress and advancement? In this chapter, I will take a bold step and consider
development with a mouse and keyboard part of basic knowledge.

In the previous chapter, I talked about how an image is split into RGB channels and
how we can perform mathematical operations to create something like image filters. In
this chapter, I shall take it a bit further, so you can be prepared to be a part of the next
decade of innovation.

If you have studied/are studying high school physics, you should recall that all the
colors of a rainbow come out of a white light when passed through a prism: violet to red.
An RGB color camera captures information from three wavelengths (one from the red
region, one from the green, and a third from the blue wavelength region). A single layer
of image in one wavelength is called a band. And you have also studied in high school
that there are ultraviolet and infrared regions beyond visible, which we cannot see with
our naked eye. It does not mean that we cannot capture data from those wavelengths,
however. Special cameras called image spectrometers can capture that data. How do you
think the Windows Hello camera can distinguish between your face and a photo of your
face? How do you think those heat vision goggles work in real life (you must have seen a
ton of them being substituted if you play first-person shooter games)? It is because some
of the data is captured from outside the visible region to obtain a conclusion; some may
be from absorption wavelengths and some may be from emission wavelengths.

With this information, you can create your own unique IoT (Internet of Things)
application. For instance, a lot of organic farmers are actively using it to identify healthy
crops from unhealthy ones to stay ahead in the market. A plant with more chlorophyll is
found to reflect more NIR (near infrared) energy than an unhealthy plant. Read Chapter 6
for more information on how to create an IoT application.

© Ayan Chatterjee 2017 81
A. Chatterjee, Building Apps for the Universal Windows Platform,
DOI 10.1007/978-1-4842-2629-2_4

http://dx.doi.org/10.1007/978-1-4842-2629-2_6

CHAPTER 4 © WINDOWS WITH MOUSE AND KEYBOARD

Tip Much like machine learning, all of us are learning every day. Learning is a human
nature. So, the algorithms or whatever you learn here are not absolute. It is more important
to know how things really work instead of memorizing the steps, and it's most important to
learn how you can contribute to make things better.

Components of a Solution

When you first create a new UWP application, you will see some files put in by default, as
shown in Figure 4-1. Let’s discuss what they are and what they do.

Solution 'PrintAndPlayToDemo’ (1 project)

4 (=] PrintAndPlayToDemo (Universal Windows)
{9 Connected Services
4 & Properties
€* Assemblyinfo.cs
L3 Defaultrd.xml
4 =B References
o Analyzers
@ Microsoft.NETCore.UniversalWindowsPlatform
=8 Universal Windows
b Assets
4) Appxaml
b) Appxamlcs
4 Y MainPagexaml
b T MainPagexaml.cs
k3 Package.appxmanifest
=1 PrintAndPlayToDemo_TemporaryKey.pfx

Solution Explorer Team Explorer
Figure 4-1. Components of a UWP solution

e Solution
An entire collection of projects and build settings
e Project

A single project. Think of a project as one room and a solution
as one apartment containing one or even a few rooms

82

CHAPTER 4 © WINDOWS WITH MOUSE AND KEYBOARD

Connected Services

External and third-party services that can be configured to
work with your application like Office 365 API, Azure Cloud
Storage, Azure IoT Hub, etc.

Properties
e Assembly Information

When you build an application, an equivalent executable
is created with a version number like 1.0.0.0 (the

format is <Major Version>.<Minor Version>.<Build
Number>.<Revision>). This file contains this information
related to your project.

e Default.rd.xml

An XML configuration file for your project’s runtime
directives (rd).

References

Every connected service, your UWP project, external
components, NuGet packages, and even another project you
have written can be a reference. A reference is required to
implement the containers contained in them.

Assets

Your application’s tile and other images. You do not need to
store your images in this folder but it has become a common
standard of practice among developers to store in this folder
and even create subfolders here if need be.

Default Application Class

The default application class (App.xaml and App.xaml.cs) is
the first page that is called when your application is launched.
This class also initiates the root frame and directs to your
main page.

Page

Your XMAL and its associated C# files where you do your Ul
design and back-end stuff.

Manifest

Another XML document but this one contains information
about the UWP project like the application and your identity,
tiles, device capabilities to be used, etc.

83

CHAPTER 4 © WINDOWS WITH MOUSE AND KEYBOARD

e Temporary key

Your application’s certificate file (shown in Figure 4-2) to
deploy to your device. It is required for ClickOnce deployment
and contains information such as the time stamp of your
application.

oa Certificate X

General Detais Certification Path

Show: <All> v
Field Value Lo}
~ |Version V3
| Serial number 56 80 7b 27 ed 75 66 aa 40 d4...
| signature algorithm sha256RSA
| signature hash algorithm sha256
|Issuer ayan
| valid from 01 May 2017 02:28:12 PM
|Valid to 01 May 2018 08:28:12 PM
= Suihiect AvAn v |

Copy to File...

Figure 4-2. Information stored in the temporary key certificate

Visual Studio and Blend

Figure 4-3 shows the Visual Studio window divided into three major sections. All of these
windows are resizable and can be moved in a drag and drop way.

84

CHAPTER 4 © WINDOWS WITH MOUSE AND KEYBOARD

B —
Ete [81 Yew Poet Beid [etwg T Cewge fomat Joch “mt Ageyee Wedow el
0.0 H-LEP 7T dup - w =T h o e -

Advced

s B 305 0 T o) 4 A 1 o Coms =

Figure 4-3. Visual Studio window for a blank UWP project

To explain the basic layout,

1. The workspace is where you code, build your stuff, open
multiple pages in tabs, split the screen between pages, or a
build/debug window, etc. Whatever it is that you do or like to
do, the workspace is your place to work.

2. The explorer and properties spot is where you browse/view
your project and its associated files, all the image files you
have in your assets, your team explorer, and any additional
information and properties an object may have such as
making a button pretty by adding colors and borders.

3. The menu options are where you have the menus,
preferences, and settings including build configurations and
locations from where all your external tools are called.

We have covered the use of Visual Studio in previous chapters, so let’s hop forward
to testing your functions with Unit Tests. Unit testing is a piece of code that you write to
test individual components of your application. For this example, you will create a simple
UWP application to add two numbers and create a unit test for the project. To create a
unit test, first create a unit test library or unit test application, as shown in Figure 4-4.

85

CHAPTER 4 © WINDOWS WITH MOUSE AND KEYBOARD

Add New Project ?
b Recent NET Framework 462 = | Sortby: Default -| &S) talled T 1 P-
4 Installed -c \
e hoe T ahiesal Wiadanes Visu Type: Visual C#
B] Blank App (Universal Windows) il CF
4 Visual C# <' A project to create a unit test app for
Windows Universal E.&! Class Library (Universal Windows) Visual C# Unaversal Windows Platform (UWP) apps
b3l
Windaws Classic Desktop icl
Windows Runtime Component (Universal Window Visual C#

Web
NE

NET Standard

Test App
Unit Test

are

Android

Cross-Platform
P ios
Test
P oS
WCF
Visual Basic
Visual C++
Visual Fr

SOL Server

JavaSeript

B Online

Name: UnitTestProject]
Location: EMApps\UnitTestingDema Browss._.
oK Cance!

Figure 4-4. Unit test application for UWP
After you have done that, you need to specify the project for which you are

creating. In other words, you need to add a reference to the unit test project, as shown

in Figure 4-5.

86

CHAPTER 4 © WINDOWS WITH MOUSE AND KEYBOARD

Reference Manager - unitTestAddition ?

Assemblies

4 Projects

Name:

Solution WSIBENE UnitTestingDemo

Shared Projects

* Universal Windows

Browse

_Bmv!_se.. | oK | ;_an:el

Figure 4-5. Adding a reference to a unit test project

When these two steps are done, you can start writing your unit tests. For this
demonstration, you shall create one unit test to test if two numbers are being added
correctly. For the first run (Figure 4-6), the test fails because of a silly mistake of adding
the absolute values of the numbers, and the app will produce incorrect results for
negative numbers if you distributed it to the public. When that is corrected, the test runs
fine (Figure 4-7). In this way, you can use unit tests to verify parts of your application that
may produce incorrect results.

87

CHAPTER 4 © WINDOWS WITH MOUSE AND KEYBOARD

19 riTestingDume - Microsert Vit Sk Bl £ osxianonmen P_ o =
e B Wew e Ged Demg W Rox T faae Wede Mep tyen oteree - [
e - M « | UalTtogbrna s Wiec - [Local ke - | B ¢ n
viEitis * % Unilemtoanmic & X - (R
R i . B <18 it | it BE " Ie

sy g = + T e :

e e | | reveft vissal Studic. Tast fouda . SaltTasting; & Smklic vealwd partlel closs FelPags : Page || s sty @ rcieis ~
Akt | v | P amltFaotiddieion t + B e B utTentduen Dsvenel Wik
R A 5= wallc intaeed) 2 Conies B

Lk = PR i b mepenes
B sty i =l ey i e talrialnetamansat| b ||
. : ! F anavems
» vad]) prieate vaid computeatton Click(okect tancer
w e 1estinghedis lant] : B Mosa T are Uit
" b L
a Wa ave ket Ukt Tansinghema Hair ge. adlimbe ¢ B M e
u Savert Aratqual(s1, testifasalt); TomA e { o T -
“ Tl el ez, Tt =8 UstTestogDewe
= e raled, ni).Tusty 8 Usivenel Wisdons
s ' o e
w cateh {3 [Epepe——
) boe v
PSlis wtatic deubie sdBambera(deuhia a1, coshle nz) B Stk Tesmirs i
¢ '
owbors detee{aty = Kotk Hoalud)) Sovton Bxover | Yoo gl
Frezene -
[Eg »
win - v e e '
Output ax
Sowcutae bor Tt -] E

Eruckiag weathar ~equlred Tramerks are Stedled. .
Sglateiag the asllistion 1o rue from Soeut...
" Basliywart conslete (860 6.06T). Tu1d pechnps e el T3-S Mab e ebLITE 340 o6 sebrdibdrbty

PR Ran ot Fladihedi 3 rue (0081 U] oo

Figure 4-6. Failed unit tests die because of the addition of absolute values (Test Explorer
circled)

1) GeiTestingome - Microses Vil Sacis 0 & | ouicxLancn 36 LA]
Be Bt W Paec Bed Demg Wen Bon e Auige Wedoe Hep tyen oteree - [
G0 fetag e ¢ e +| NakTeargDeno Miveersst Wi« | B Loce Nchiag = | B n
1 m Ustieis & X Uritleiasmen % - Msfegesenlo 8 X
el i ‘. B L B e il = - Ie
. T 1 1§ Cwpes UnliTartingdene
e 3 e % s
- 3 [Lrovsfe vivealstadle. TastFocls. waltTast ing; 6 Snklic sealed partlal class FalsPags : Fage
Akt | v | P H wnitTastiddition 5 A
; e . 5= wallc intaeed)
- ¢ | il
B evkgrentin T =l e | e talrialnetamansat| b 3 .
r - ik et bbb P MR E
w e istingleditiont] ¢
" by f
7 dkle Wswlt o Uit Tessiagllems fairkags. sdBumb i
u Savart heatqualic1, testiPasult}; rvart TadmAla (sl Tes 8 b
e reartTaimla{men, T 8 UatlestingDews
v ol + anbaraed, nE).Test 8 Usivenel Wisdons
b ' o A
o cateh {3 [Fpt——
1 be Ut
palic staric bl Eifimiaritanle 21, deuble n2)] st S Temporyles =
| eaaL-Cad Sevvton Brtorer | Toan bglaes
3 Prezeries -
[Eg »
wm e v e e '
Gutp rx
Sowcutae bor Tt -] E

Eruckiag weathar ~equlred Tramerks are Stedled. .
bestingAddisontopy 8 Meelitelog D alitallon 1o rur frum eyt
ACWS Delawast comalete [860/09.653]. Taid pechnos e “Hedbetd-Thch-A05 Mab e leb LD 300 06 sebrihdrtty

B e Priteo - Bideg3
e Ran s Flalihedi 3 rva 0020007, 4000615}
asiad s 0000

Figure 4-7. Successful unit test upon fixing the issue

Visual Studio 2017 introduces live unit testing, which means once you have
successfully built your unit tests, you can turn on live unit testing to run the tests as you
debug your application.

88

CHAPTER 4 © WINDOWS WITH MOUSE AND KEYBOARD

XAML

<Page
x:Class="UnitTestingDemo.MainPage"
xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation”
xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
xmlns:local="using:UnitTestingDemo"
xmlns:d="http://schemas.microsoft.com/expression/blend/2008"
xmlns:mc="http://schemas.openxmlformats.org/markup-compatibility/2006"
mc:Ignorable="d">
<Grid Background="{ThemeResource ApplicationPageBackgroundThemeBrush}">
<AppBarButton x:Name="computeButton" Click="computeButton_ Click"
HorizontalAlignment="Center" Icon="Add" Label="Compute"
Margin="0,0,0,150" VerticalAlignment="Bottom"/>
<TextBlock x:Name="result" HorizontalAlignment="Center" Margin="0,0,0,20"
TextWrapping="Wrap" Text="" VerticalAlignment="Bottom"/>
<TextBox x:Name="num1" Margin="20,100,20,0" TextWrapping="Wrap"
Text="" VerticalAlignment="Top" PlaceholderText="Number 1"/>
<TextBox x:Name="num2" Margin="20,200,20,0" TextWrapping="Wrap"
Text="" VerticalAlignment="Top" PlaceholderText="Number 2"/>
</Grid>
</Page>

C#

using System;

using Windows.UI.Xaml;

using Windows.UI.Xaml.Controls;
namespace UnitTestingDemo

{
public sealed partial class MainPage : Page
{
public MainPage()
{
this.InitializeComponent();
}
private void computeButton Click(object sender, RoutedEventArgs e)
{
try
{
double n1 = Convert.ToDouble(numi.Text);
double n2 = Convert.ToDouble(num2.Text);
result.Text = addNumbers(ni, n2).ToString();
}
catch { }
}

89

CHAPTER 4 © WINDOWS WITH MOUSE AND KEYBOARD

public static double addNumbers(double ni, double n2)

{
return n1 + n2;
}
}
}
Unit Test C#

using System;
using Microsoft.VisualStudio.TestTools.UnitTesting;
namespace unitTestAddition

{
[TestClass]
public class UnitTest1
{
[TestMethod]
public void testingAddition()
{
double testiResult = UnitTestingDemo.MainPage.addNumbers(-3, 2);
Assert.AreEqual(-1, testiResult);
}
}
}

When you click the green run button to debug and test your application, a couple of
steps occur. Of course, you can do all of them one at a time using the command line or
configure the debugging settings to suit your needs. By default, a couple of options are put
in place to make your job easier and so that you can focus on your essential algorithms
rather than worrying about libraries and build settings.

Before debugging, you will need to pick the device you wish to test your application
on. Note in the figure that the devices are shown using their device name and the version
of operating system they are using. The ones in the drop-down menu are the devices
recognized by Visual Studio. The ones that do not come up, such as IoT devices, can be
put in remote debugging settings.

Designing in Blend

Blend is for a front-end designer who is building the user interface. Blend hides all the
code behind “behind” and makes a designer really focus on the UI without worrying
about anything else. In this section, I will focus on the user interface aspects and how to
design a good Ul in Blend.

90

CHAPTER 4 © WINDOWS WITH MOUSE AND KEYBOARD

Figure 4-8 shows the default layout of Blend when you first open a page of your
application. Of course, they can be moved around to suit your needs. The following are
present in the layout (left to right, as shown in Figure 4-8):

¢ Solution Explorer
This is where you see the files for your Visual Studio solution.
e Assets

These are the assets (button, text box, etc.) as defined in the
schema for the presentation layer.

e States
Visual states of your application
e Data
Data that you may need to work with
e Objects and timeline
The XAML hierarchical structure of your UI
e Tools

These are present between the workspace and the left panel
such as the hand tool, pen tool, zoom tool, etc.

¢ Workspace of your page
e Properties

To display the available properties of a selected element

Y| & P mox

Wodew Hetp sy e - [

man. - B ()]« b
I DEE} | epars | Rmomce: o fapioser

Figure 4-8. XAML visual designer in Blend for Visual Studio

91

CHAPTER 4 © WINDOWS WITH MOUSE AND KEYBOARD

To put an element on your page, simply drag and drop it from your assets. Selecting
the asset on the workspace will display a list of properties you can modify.

Figure 4-9 shows that four ellipses and a text block were dragged and dropped onto the
scene and the color properties of the ellipses were modified. When you move the margins
of a grid around, a triangle-shaped object will appear along with a horizontal/vertical line
all the way through the grid. You can place them to separate your layout into rows and
columns. RowDefinition and ColumnDefinition are used to define your rows and columns.
If you are going to use the visual designer in Blend, you can define your rows/columns and
just drag and drop objects. But if you are going to be writing XAML, you need to first define
your rows and columns and then place your objects. For example, to create thee rows and
place two objects on the first and second row, the XAML is the following:

<Grid>
<Grid.RowDefinitions>
<RowDefinition Height="100px"/>
<RowDefinition Height="1*"/>
<RowDefinition Height="2*"/>
</Grid.RowDefinitions>
<SomeObject Grid.Row="0"/>
<AnotherObject Grid.Row="1"/>
</Grid>

In this example, the three rows are given a height of 100 pixels, 1x and 2x, respectively.
In other words, if the total height is 500 pixels, the first row gets a fixed 100 pixels, and the
remaining 400 pixels are divided by 1x + 2x = 3x or x = 400/3, thus the respective height for
the second and third rows are 400/3 and 2*400/3 pixels for that particular display. Later in
this chapter, I will go through concepts such as visual states and scalable assets and how
you can use them to better design your UWP application.

Fesey + ok a

Figure 4-9. Adding some assets to the page

92

CHAPTER 4 © WINDOWS WITH MOUSE AND KEYBOARD

If you are used to a professional design software like Adobe Illustrator or Affinity
Designer or used to drawing on drawing tablets (like the ones made by Wacom), there is a
pen tool available in Blend to draw custom vector shapes, as shown in Figure 4-10.

Fesey + ok a

Figure 4-10. Adding a custom shape with a pen tool

All of these assets are defined in the schema. If you flip to XAML code, you can see
them at the top of your XAML page:

<x:Class="CameraDemo.MainPage"
xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation”
xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
xmlns:local="using:CameraDemo"
xmlns:d="http://schemas.microsoft.com/expression/blend/2008"

xmlns :mc="http://schemas.openxmlformats.oxrg/markup-compatibility/2006"
mc:Ignorable="d"»>

In the first line, x: Class is the full qualified name of your class. The second and third
lines specify almost all types of assets and their properties. Every element on your page
has a name. The property Name is defined in line 2 (xm1ns) whereas the one with x :Name is
defined in line 3 (xmlns : x) of the above header. If you remove the line xmlns on line 2, all
your buttons and text boxes will give an error because their schema will not be defined.

W3C (World Wide Web Consortium) is an international community and their
schemas are used in many business applications worldwide. The appearance and
behaviors of your buttons and other elements that you put in your application can’t just
come out of the blue. They need to be defined somewhere and these xmlns namespaces
contain the root element and XAML definitions. To define your own custom control, you
need to have your own schema, which I will discuss later in this chapter.

93

CHAPTER 4 © WINDOWS WITH MOUSE AND KEYBOARD

Triggers and Actions

A trigger is the initiation and an action is what follows. For instance, when the user
presses a button, it is a trigger. Triggers are anything caused by the user of your
application to start an event (function/action). Some triggers are

e 0OnClick: When the user clicks something
e OnTapped: When the user taps with a finger

e OnDrop: When the user drags and drops something in the
specified area

e OnGotFocus: When the mouse moves inside the region of the
element

e OnLostFocus: When the mouse moves outside the region of the
element

In UWP, these triggers are called events and the code behind handling those events
are called event handlers. Defining events in your UIElement tells XAML what to look for,
and as soon as that event occurs (like a user clicks on a button) the OnClick event is fired
and the respective code-behind implementation executes.

Size Classes/Visual States

I have talked about how Windows 10 is meant to run on all kinds of devices. This

also means that you, as a developer, are expected to accommodate different user
interface designs depending on the size of a display. If you are migrating from an Apple
development environment, you will know them as size classes but in UWP they are
known as visual states. This lets you specify Ul design and UI elements for a particular
range of width and height values. You, as a developer, are in control of your application
and you can decide how your app should look on different sizes of devices. Let’s take a
look at an example (Figure 4-11) to implement this concept.

94

CHAPTER 4 © WINDOWS WITH MOUSE AND KEYBOARD

Debug ~ x86 = P Local Machine

1] @ =% [k

[

Solution Explorer Assets States Data

O Q€ % P &

Objects and Timeline * 0 X .

Figure 4-11. Visual states in Blend

To create a visual state, just create a visual state group and then the visual states
below it. As a developer, you only need to work with adaptive pixels. Figures 4-12, 4-13,
and 4-14 show two visual states implemented. Once you have defined a visual state in
Blend, you can just click it to make it active and design, resize, rescale, and show/hide
some components to make it best for the screen size.

B st e s Ve 803 2 T
e ESt e Pejes buld Dot T Dige Fomit Tosh Wi beip ayue crameriee - [
(= = o e+
- Fepein -ax
- ma -] M0 ek pecordeg Bon, © o M _}J 3
Tipe Senpeard
r 2

Amange by Congory =

Prov—
o
Fapassienias | 1

PR -

§ Vol s Dewe

Some Text
More Text
Some more text
lats of text

b s i
> Slheuon CITAML MIAR roprte s Toas beiw

Figure 4-12. Two visual states implemented

95

CHAPTER 4 © WINDOWS WITH MOUSE AND KEYBOARD

StateTriggerBase Collection Editor: StateTriggers

Items Properties

[0] AdaptiveTrigger

4 Miscellaneous
MinWindowH... 0
MinWindowW... 700

31| " [Add

AdaptiveTrigger

o [conel]

Figure 4-13. Adaptive trigger window

SnesDero - o X

C

Visual States Damo

Some Text
More Text
Some more text
lots of text

Some Text
More Text
Some more text
lots of text

Figure 4-14. Output of visual states demo application

96

CHAPTER 4 © WINDOWS WITH MOUSE AND KEYBOARD
XAML

<Page
x:Class="StatesDemo.MainPage"
xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation”
xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
xmlns:local="using:StatesDemo"
xmlns:d="http://schemas.microsoft.com/expression/blend/2008"
xmlns:mc="http://schemas.openxmlformats.org/markup-compatibility/2006"
mc:Ignorable="d">

<Grid Background="{ThemeResource ApplicationPageBackgroundThemeBrush}">
<VisualStateManager.VisualStateGroups>
<VisualStateGroup x:Name="VisualStateGroup">
<VisualState x:Name="Min200">
<VisualState.StateTriggers>
<AdaptiveTrigger MinWindowWidth="200"/>
</VisualState.StateTriggers>
</VisualState>
<VisualState x:Name="Min700">
<VisualState.Setters>
<Setter Target="textBlocki.(FrameworkElement.Margin)">
<Setter.Value>
<Thickness>30,20,0,0</Thickness>
</Setter.Value>
</Setter>
<Setter Target="textBlock1l.(FrameworkElement.
HorizontalAlignment)" Value="Left"/>
<Setter Target="rectangle.(FrameworkElement.Margin)">
<Setter.Value>
<Thickness>0,30,10,0</Thickness>
</Setter.Value>
</Setter>
<Setter Target="rectangle.(FrameworkElement.
HorizontalAlignment)" Value="Right"/>
</VisualState.Setters>
<VisualState.StateTriggers>
<AdaptiveTrigger MinWindowWidth="700"/>
</VisualState.StateTriggers>
</VisualState>
</VisualStateGroup>
</VisualStateManager.VisualStateGroups>
<Grid.RowDefinitions>
<RowDefinition Height="60"/>
<RowDefinition/>
</Grid.RowDefinitions>

97

CHAPTER 4 © WINDOWS WITH MOUSE AND KEYBOARD

<TextBlock x:Name="textBlock" HorizontalAlignment="Left"
Margin="10,0,0,0" TextWrapping="Wrap" Text="Visual States Demo'
VerticalAlignment="Center"/>
<Rectangle x:Name="rectangle" Fill="#FFF4F4F5"
Height="100" Margin="0,10,0,0" Grid.Row="1" Stroke="Black"
VerticalAlignment="Top" Width="200"/>
<TextBlock x:Name="textBlock1" HorizontalAlignment="Center"
Margin="0,150,0,0" Grid.Row="1" TextWrapping="Wrap"
VerticalAlignment="Top" FontSize="32">

<Run Text="Some Text"/»>

<LineBreak/»>

<Run Text="More Text"/»>

<LineBreak/>

<Run Text="Some "/>

<Run Text="more text"/»>

<LineBreak/>
<Run Text="lots of text"/>
<LineBreak/>
<Run Text="....... "/>
</TextBlock>
</Grid>
</Page>

Scalable Assets

When you take a photo with a 24-megapixel camera and view it on a 1080p display, how
does it work? How does it scale down? Or when you take a photo with an old 2-megapixel
mobile camera and view it on a gorgeous display like in Microsoft Surface Studio, how
does the image scale up? Even when you resize an app’s window, the images adjust
accordingly. First, let’s examine scaling and then move forward with scalable assets in a
UWP app.

There are several algorithms out there for scaling, such as linear and bicubic scaling.
Let’s say your output display requires a space four times larger than you have in the image.
What linear scaling will do is multiply each pixel by a factor of 4, as shown in Table 4-1.
After scaling, some sort of sharpening is often done so that the scaled-up image does not
look blurred and crappy. This is how the software zoom in camera applications works.

Table 4-1. Example of an Original 2x2 Pixels on the Left (first two columns) and Linearly
Scaled 4x4 Pixels on the Right (last four columns)

70 70 200 200
70 200 70 70 200 200
127 4 127 127 4 4

127 127 4 4

98

CHAPTER 4 © WINDOWS WITH MOUSE AND KEYBOARD

Note Animage captured from optical zoom is the actual data and an image captured
from software zoom is a scaled and sharpened version of the image captured.

This is one reason why hardware manufacturers keep putting in better lenses and
sensors: to capture more and more megapixels with your phone camera.

Now let’s come back to Universal Windows. It’s for everyone, as in variable devices
with variable output displays and variable processors. We cannot use a very high resolution,
optically zoomed-in image because scaling it down by a large factor is a problem with
low-end devices with low energy-consuming mobile processors. For instance, if you have
a 4000x4000 spatial resolution color image and you are scaling it down, the hardware is
essentially working with 4000x4000, which is 16 million pixels, and each pixel has RGB data
so0 16x3 = 48 million data values. And you can’t use a low-resolution image because digitally
scaling and sharpening an image looks terrible on high-end displays.

This has been addressed by UWP’s scalable assets. A developer puts various spatial
resolution versions of the same image and Windows picks the closest match to use
(the one that require minimum scaling). The same concept applies to your own assets
in your app as well as app icons and assets in tiles. How do you put different spatial
resolution versions of the same image? It is done in a simple step via this syntax:

<image filename>.<scale factor>.<file extension>

Example:

Tree.scale-50.png is 50% scaled.

Tree.scale-100.png is 100% scaled (this is the intended image size).
Tree.scale-200.png is 200% scaled.

Tree.scale-400.png is 400% scaled.

And you can simply call the image with <image filename>.<file extension>(ie.Tree.png).
With Visual Studio 2017, you can avoid making scalable assets for your app’s tiles
manually because an asset generator (shown in Figure 4-15) does it for you.

ile Projs i Tet Agala H
e - M U -T - Detwg - 3B = B MabileEmula « 100143990 WNGA 4 irch 1GB = 38 _
% Application Visual Assets Capabilities Declarations Content URIs Packaging
Al Wil Aty
rce
Smail Tie
Medium Tike * Asset Generator
Source
Wide T,
hest Az
arge Tie
L Sms b, Tile, Wide Tile. Larg
App lcon Scales All Scabes
#| Apply recommendec pacding
dacsh Scres
Sadge Logo
Package Loga v Display Settings

Figure 4-15. Asset generator in Visual Studio 2017

99

CHAPTER 4 © WINDOWS WITH MOUSE AND KEYBOARD

Custom Controls

You have come a long way and built your application UI But now you realize that you do
not like the default button appearance or you want all buttons and text boxes to adapt to
the look and feel of your brand, and the whole application as a whole to feel as a part of
Windows and your company/group’s ecosystem. Apart from appearance, if you are using
different behaviors for your controls, custom controls are the way to go. In summary,
custom controls are made up of basic controls such as text boxes, buttons, and so on, and
you add your own implementation such as appearances and behaviors.

To get started, you need to add a template control to your project, as shown in
Figure 4-16. This will create a Generic XAML as a ResourceDictionary and the C# .cs file
of your custom control. Then you define your controls in XAML and add the dependency
properties of your control. You can write from scratch or create one by using propdp for a
dependency property snippet, as shown in Figure 4-17.

Add New ltem - CustomControlsDeme

| aes ¥
| # Installed Sort by: Default M arch Installed Te tes (Ctr P~
g O = & e v
Cooe A blank customn cortrol with the
Data Content Dialog Visual C# appropriate default styling
General
b Web [T Resource Cictionary Visual C#
XAML o
Cress-Platform ; Templated Contral Visual CF
b Onling
L] User Control Visual C#
M
D XAML View Visual CF
M a v -
.':J Class Visual C#
|—j Forms Blank Content Page Xam| Visual C#F
=
I-LJ. Forms Blank ContentPage Visual C#
- e d s
|—j Forms Carousel Page Xam| Visual CF
.
f—j Forms Content Page Xam! Visual C#
[
cn
gJ Forms ContentView Visual C#
r-j Forms ListView Page Xami Visual C#
-
ﬁ Forms Map Page Xam| Visual C# >
Name: CustomControdl.cs
Add Cancel

Figure 4-16. Adding a new custom control

100

CHAPTER 4 © WINDOWS WITH MOUSE AND KEYBOARD

using Windows.UI.Xaml.Controls;
namespace CustomControlsDemo.CustomControls
{
public sealed class
{
public BlueButton()
i

.DefaultStyleKey = typeof(BlueButton);
H
propdd
b0 T o-ine 5 DependencyPropeny
¥ o % B e () =0 Code snippet for a property using DependencyProperty as the backing store

Note: Tab twice to insert the ‘propdp’ snippet.

Figure 4-17. Code snippet for a dependency property

A dependency property is a custom property you define; it extends the property of
your custom control and extends the CLR properties. After defining your dependency
property, you need to bind it with your XAML element using TemplateBinding. Data
binding is covered in this chapter in a later section. For this example, you will create
buttons that look like one in old Windows 95/98 or the Windows Classic look. The
output is shown in Figure 4-18.

Custom Control XAML

<ResourceDictionary
xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation”
xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
xmlns:local="using:CustomControlsDemo"
xmlns:local2="using:CustomControlsDemo.CustomControls">
<Style TargetType="local2:BlueButton" >
<Setter Property="Template">
<Setter.Value>
<ControlTemplate TargetType="local2:BlueButton">
<Button Foreground="Blue" Content="{TemplateBinding
BlueButtonText}" HorizontalAlignment="Center"
BorderBrush="Blue" BorderThickness="0, 0, 1, 1"/>
</ControlTemplate>
</Setter.Value>
</Setter>
</Style>
</ResourceDictionary>

101

CHAPTER 4 © WINDOWS WITH MOUSE AND KEYBOARD

Custom Control C#

using Windows.UI.Xaml;
using Windows.UI.Xaml.Controls;
namespace CustomControlsDemo.CustomControls

{
public sealed class BlueButton : Control
{
public BlueButton()
{
this.DefaultStyleKey = typeof(BlueButton);
}
public string BlueButtonText
{
get { return (string)GetValue(BlueButtonTextProperty); }
set { SetValue(BlueButtonTextProperty, value); }
}
public static readonly DependencyProperty BlueButtonTextProperty =
DependencyProperty.Register("BlueButtonText", typeof(string),
typeof(BlueButton), new PropertyMetadata(""));
}
}
App XAML
<Page
x:Class="CustomControlsDemo.MainPage"
xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation”
xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
xmlns:local="using:CustomControlsDemo"
xmlns:d="http://schemas.microsoft.com/expression/blend/2008"
xmlns:mc="http://schemas.openxmlformats.org/markup-compatibility/2006"
xmlns:customcontrols="using:CustomControlsDemo.CustomControls"
mc:Ignorable="d">
<Grid Background="{ThemeResource ApplicationPageBackgroundThemeBrush}">
<Grid.RowDefinitions>
<RowDefinition/>
<RowDefinition Height="100"/>
</Grid.RowDefinitions>
<customcontrols:BlueButton Grid.Row="1" BlueButtonText="My Button"
Grid.RowSpan="2" HorizontalAlignment="Right" Margin="0,0,130,0"/>
<customcontrols:BlueButton Grid.Row="1" BlueButtonText="My Button 2"
Grid.RowSpan="2" HorizontalAlignment="Right" Margin="0,0,10,0"/>
<TextBlock HorizontalAlignment="Center" Margin="0,10,0,0"
TextWrapping="Wrap" Text="Custom Controls Demo"
VerticalAlignment="Top"/>
</Grid>
</Page>

102

CHAPTER 4 © WINDOWS WITH MOUSE AND KEYBOARD

CustomControlsDemo

Custom Controls Demo

My Button My Button 2

Figure 4-18. Output of custom control application

Code Behind

Code behind is whatever you do in your back-end C# code: your business logic
implementation, variables, structures, enumeration, etc. Universal Windows Platform
applications implement the MVVM (model-view-ViewModel) architectural pattern.
The front-end XAML is the view, the code behind is the model or your business model,
and the thing connecting the model and view is the ViewModel, such as with events.
Let’s explore this concept by using a professional camera. The view would then be what
you see on the digital display or in older camera models: the dial to change modes like
aperture priority. The model is the built-in software to control the camera shutter. And
the ViewModel is the thing connecting these two and what makes the model perform
based on your shooting preference.

You saw a lot of C# code behind in the previous sections. In this section, I will cover
a bit more. In this section, you are not going to touch the front end but instead you will
work with the code behind only in order to understand some of the concepts. You are
going to implement an enum and struct. You can create an enumeration list using enum.

103

CHAPTER 4 © WINDOWS WITH MOUSE AND KEYBOARD

It is a list of distinct elements in your application. If you were building a paint application,
your enum list would contain the list of different brush textures like pencil, pen, chalk,
water ink, etc. Let’s look at the code to understand.

C#

using System.Collections.Generic;
using System.Diagnostics;

using Windows.UI.Xaml.Controls;
namespace CodeBehindDemo

{
public sealed partial class MainPage : Page
{
public MainPage()
this.InitializeComponent();
people personi = new people("Joey", month.February);
people person2 = new people("Amanda", month.June);
Debug.WritelLine(personi.name);
Debug.WritelLine(person2.name);
}
}
public enum month
{
January,
February,
March,
April,
May,
June,
July,
August,
Septeber,
October,
November,
December
}
public struct people
{
public string name;
public month birthMonth;
public people(string n, month bm)
{
name = n;
birthMonth = bm;
}
}
}

104

CHAPTER 4 © WINDOWS WITH MOUSE AND KEYBOARD

You have created an enumeration list for a month because they are definite and you
wish to narrow it down. Giving the month input as input can enable made-up month
inputs like Wordenary. And you have created a structure to store a person’s name and
birth month, the output of which is shown in Figure 4-19.

1) CodeltabinaDens Fansingt - Marsmah Vil Sindic W & | cnicu L ree - e x

e pen e~ [
@ - B » N1 o WS M. Aplotonimighn - .
edenedDemase - 1] Liecyeie Evows - L =

= (Do ook -ax
| PeCodebsbincDers Usstuge <@ waiveged | R
ML

0 1

o) wogegy

reee ¥
" §
= g
{4 Puncem Memecy Wlarct @ et Bres i
o n

» Babemry]

cth. B

Sacum et fro . - Em
Coteben brmsevn {GureCLEi GureCl AP Dimal} Lomded "L \ipps|Cmbebehmeme’ el bams Dot
Coduianindiomo aza” {LcrolLb: Gonstl U4 Umain}: Loaded “k:\Appa odsben indenstl odebas icbam oot \ntns

Iy

St Loals Wash 3 Giark Bedpain Eepianiangs Comnand adow Inmadin Wingre Dstect

Figure 4-19. Output of the code behind application demo

If that example did not clear up the concept, let’s take a look at high school chemistry.
We all know the basic elements are hydrogen, helium, lithium, and oxygen, and that they
form compounds like carbon monoxide (CO), carbon dioxide (CO,), and so on. An enum
list would consist of what is possible, the basic elements in the periodic table:

enum elements

{
}

hydrogen, helium, lithium, oxygen, carbon, magnesium, iron

And compounds would form a structure like

struct compound

{
string commonName;
elements[] composition;
int[] abundancy;
compound(string name, elements[] com, int[] mixures)
{
commonName = name;
composition = com;
abundancy = mixtures;
}
}

105

CHAPTER 4 © WINDOWS WITH MOUSE AND KEYBOARD

And all of the existing and even newly invented chemical compounds can then be
stored in an orderly fashion. Composition and abundancies are an array because there
can be more than one element making up a chemical compound. I am not a chemist, but
for explanation purposes, let’s create a chemical compound with composition He,CO,
The syntax is

compound chemistryThing = new compound("someName", [element.helium,
element.carbon, element,oxygen], [2, 1, 5]);

An interface, on the hand, does not do anything. It is more of a declaration of a standard
to follow. To explain this more, let’s take a look at an employment contract that companies
make any employee sign, be it a full-time employment agreement or a work-for-hire
agreement. Before moving to a formal statement, let’s explore the possible contents.

Interface Employee

e Name of company

e Name of employee

e Legal addresses of both parties
e Job description

e Legal domain like state and country of court they will go to for any
conflict

e Benefits like healthcare
Interface FullTime
e Additional benefits of a full-time employee
e Annualsalary
e Holidays and leave days
e Notice period to quit
Interface WorkForHire
e Deadline or termination of contract
e Periodic milestones
e Payment for the job

Now if you implement a class to include interfaces, the class is obliged by a binding
contract to implement everything declared within the interface. More than one interface
can be implemented within a class as well. For instance, a full-time employee (say Tom)
would implement

class Tom : Employee, FullTime
A temporary employee named Tim would implement

class Tim : Employee, WorkForHire

106

CHAPTER 4 © WINDOWS WITH MOUSE AND KEYBOARD

As a common custom among developers, an interface is named starting with
I to quickly identify that it is an interface. Some of them are IList, ICollection,
IEnumerable, IEnumarator, etc. Let’s try an implementation, the output of which is
shown in Figure 4-20.

Interface

using Windows.UI.Xaml.Media;
namespace InterfaceDemo.CustomStuff

{
interface IMaterial
{
double GetMaterialReflectance(materials material, double wavelength);
materialType GetMaterialType(materials material);
SolidColorBrush GetMaterialColor(materials material);
}
}

C# (Class using the interface)

using Windows.UI;
using Windows.UI.Xaml.Media;
namespace InterfaceDemo.CustomStuff

{
public enum materials
{
Iron,
Ceramic,
Grass,
Tree,
Ice,
Water,
Mud,
Aluminium
}
public enum materialType
{
solid,
liquid,
gas
}
class Definitions : IMaterial
{
public SolidColorBrush GetMaterialColor(materials material)
{
return new SolidColorBrush(Color.FromArgb(255, 165, 210, 100));
//dummy color used
}

107

CHAPTER 4 © WINDOWS WITH MOUSE AND KEYBOARD

public double GetMaterialReflectance(materials material, double wavelength)

{
return 0.9; //dummy reflectance used
}
public materialType GetMaterialType(materials material)
{
switch (material)
{
case materials.Aluminium://taking advantage of fall down property
case materials.Ceramic:
case materials.Grass:
case materials.Ice:
case materials.Iron:
case materials.Tree: return materialType.solid;
case materials.Water: return materialType.liquid;
}
return materialType.gas;
}
}
}
C# (Main Page)

using Windows.UI.Xaml.Controls;
using InterfaceDemo.CustomStuff;
using System.Diagnostics;
namespace InterfaceDemo

{
public sealed partial class MainPage : Page
{
public MainPage()
{
this.InitializeComponent();
Definitions matl = new Definitions();
Debug.Writeline(matl.CGetMaterialType(materials.Ice).ToString());
Debug.Writeline(mat1.CetMaterialType(materials.Water).ToString());
}
}
}

108

CHAPTER 4 © WINDOWS WITH MOUSE AND KEYBOARD

) 2 - P p——— P o & x

wes . R4, P Aitonimin -

v Dugeosc look =ax
| @ vairdge & R A A
Disgeamics pssan: 11 wosnch

A
"
P

4 Pagcem emvary TGt @ Piate Braes
s i

Figure 4-20. Output of the Interface application displayed in debug window

Data Binding

With data binding, as the name says, you are trying to bind or relate one element’s data
to another. The binding can be with a single object like turning the visibility on and off of
a grid to the value of a toggle or to a collection of objects like the values of a drop-down
menu. Every binding has a binding source and binding target, and can be one-time,
one-way, or two-way binding.

One-time binding occurs only once and doesn’t update during runtime. One-way
binding only updates the destination with changes in the source. Two-way binding
makes changes in both directions. You can do this both in XAML and code behind. If
you are doing this in XAML, you can use either {Binding} or {x:Bind}, or by making
a class observable in code behind using the INotifyPropertyChanged interface and
implementing the property PropertyChanged. If you recall the discussion on interfaces,
this will be simple for you. Let’s create a data binding between a grid and a toggle button
using Blend, as shown in Figures 4-21 and 4-22.

Tip Binding a lot of UIElements may slow down your application and make it
unresponsive because with every data binding definition the system allocates some
resources to wait and listen for changes.

109

CHAPTER 4 © WINDOWS WITH MOUSE AND KEYBOARD

LRSI T TV T PP

Colur ; ;
O Visibility

Marg [Custom Expre

[] Reset
Paddi

RowL

MaxV
Maxk B Convert to New Resource...
Scroll

M Create Data Binding...
Scroll

o M Bind to Element...
Usele

Appe

Opac M Go to Source
Visibi

RequestedThe... Default

Figure 4-21. Data binding options in Blend when you click the square shape at the side of
each property

110

CHAPTER 4 © WINDOWS WITH MOUSE AND KEYBOARD

Create Data Binding for colorPickGrid Visibility

Figure 4-22. Grid visibility binding with the Boolean value of Checked property of a
toggle button

Animations and Transitions

Transitions occur to reveal the elements in a page, whereas animations occur while
the page is active. Animations can be triggered automatically by the main function or
manually when triggered by a user’s action. The animations that are most often used in
UWP applications are storyboard animations. Storyboards can either be created from
code behind or via a simpler approach, through Blend. Let’s walk through the steps to
create a simple storyboard animation in Blend and also a transition in XAML.
However, let’s first discuss animations. Living in the digital age we have all seen
animations occur in films, games, apps, vlogs, news, while watching sports on television,
and pretty much everywhere. But how are they made? Creating storyboard animations
for UWP applications is not much different from how professionals animate using
applications like Adobe Animate. Let’s say there’s a circular object with a radius of 5
centimeters and in 10 seconds you want to make it 10 centimeters. To make this into an
animation, you place the circular object on the scene and define the following:

Time 0s: (called start frame in this scenario)
Radjius of circular object =5 cm
Time 10s: (called end frame in this scenario)

Radius of curricular object = 10 cm

111

CHAPTER 4 © WINDOWS WITH MOUSE AND KEYBOARD

That'’s it! The animation software fills all of the intermediate paths. So, for 1 second
the radius would have increased linearly to 5 + (10 - 5)/10 = 5.5 cm. Now let’s dive into
storyboard animations using Blend for Visual Studio. For this example, you will place
three ellipses and a text block in the scene in Blend, as shown in Figure 4-23.

¢ e F_- & x
soe crameree - [0

= Fpre -ix

R NS e

Yo0Bs0

0O Animation

s - R »
& LET -y MR reprter Lmowce: o baores

Figure 4-23. Assets placed on the workspace prior to creating an animation

To create a new storyboard, click the + button shown in Figure 4-24. This will open
up a new pop-up window where you need to enter the name of your storyboard, as
shown in Figure 4-25.

L

No Storyboard open) + v
! ITI
[Page] Storyboard Options
<3 -] 3"

Figure 4-24. Use the + button to create a new storyboard

112

CHAPTER 4 © WINDOWS WITH MOUSE AND KEYBOARD

Create Storyboard Resource ? X

Name (Key)

® | storyboardDemo

OK ‘ l Cancel

Figure 4-25. Naming the storyboard

Once you have created your storyboard, a timeline appears in Blend, as shown
in Figure 4-26. If you have worked with any 2D or 3D animation software like Adobe
Animate or Autodesk Maya, this part should be familiar to you. To create an animation,
you change the values of the start frame, end frame, and the intermediate frames where
significant changes occur; the rest are filled in automatically during runtime.

Objects and Timeline * 1 x
® storyboa... ¥ X + ~ |14 4 » »l
L [Page] s+ 000000 @B

@ a 01
4) [Page)

= TopAppBar
 BottomAppBar

4 i [Grid] >
O [Ellipse<®

O [Ellipse =

O [Ellipse<®

[¥ textBlo=®

o 0 0 o|0O

Figure 4-26. Storyboard animation timeline

With the storyboard timeline created, you should change the properties of the
elements to match Figures 4-27, 4-28, and 4-29. Thereafter, you will change the repeat
behavior of the storyboard animation (Figure 4-30) by clicking the storyboard and
changing properties.

113

CHAPTER 4 © WINDOWS WITH MOUSE AND KEYBOARD

Ooff Stoyvoshnimions - Mirinofl Bere tod Visusd Stetie

Fle BS1 Vew e Bl Dt e Desge b losk Windoe Mep

= b G M

L
son crameree - [0

K Marfetami 8 % o e i
] (W] 5" e 1220 1001 300 s - W] e [® stopberins it rondogin, *| M ok #+
| e
b = ; =)
a " Mot Gy =
- vemby Colmed R
& PaGasedThe. Detas .o
’ + Gomnas
& ot Ananan
g TacA TS a
Dutalertpet N [0
wontea ¥ X+ IR) a
2 g + oo wfE o ¥ Askomrton
® |
) &8 g oot
e o W A (HIHERVE X O
= Topappaw E
= Estiomascie - Heige Ao BAHMEL HE
LN - e s # Fow o £ RowS. 1 =
el x & & i 3
Vi = ¢ DS = @) Camm (0 T Cown 1
b poigre o CEECENCENCHN 3 . g Pnser 0 a
b g o c—m: 3 TR @* =i il
- ol
veicabige. TT[# |10 I -
Magh -n - A
L] L
v
[3
e+ (e .
£ 5 - B2 1m
wia - A ¥ - =
& b o + ODees DXL BEE] | mepntas | Rmowces o bastoser

Figure 4-27. Changing the property of an asset (hiding the text) in a timeline to create an

animation

Off Stoptoninimions - Miarinofl Bere tot Visusl Stetie

Bl §S1 Mew Bewo BeMd Deug e Dvegs Foei ok Bedow Hep

= B o Mt

Markege st # %

| 5 P (1203 20001 J00N st = W] e o

® storpbomcDers timslse rcoaiag aon.

|
) e
a
”
&
2
8
aj
vontea ¥ K+ " ap =
L el s o0 ‘{e-_m
-ass =
PP |1 BB
- Topippiar

o T

L
son crameree - [0

= Fropesies -ax
o M smp a0
Tee g
— s
Arage oy Saogory =
pe—— o
svoie | —
a(mlm B o
s O Cotr bt
LR
L[—
{1 S
Lok S
£ 8 b
v
 tprmae
Opiity) o
wimmy Vi =
Recutedthe. Deime -z
SockeMicen 1
-
4 Cemvron
FeaiigServic. s
Dewomen o |
v
b A

M -]

& b o +| ODmgs EXMA

]

b | -
MR repemes | Roowces Toam batoses

Figure 4-28. Changing the property of an asset (radius of the first circle) in the timeline to

create an animation

114

CHAPTER 4 © WINDOWS WITH MOUSE AND KEYBOARD

o) teortessaneon Mumon Bend o Vo St ol - R y— I

Ele St Wem Boed fuid [oh fem Desgs bgeat fo Medow sep e umeree < [
[B e =
Macfaceume @ % - Fopein -ax
R | 5 e (13202 10801 300 i - m N L] ® HonoucDens et eorngaon, © | Nane sbgurt [¢
= :.—!E ke Figa
- or T wr e £
a B Avanpe o Calogory
£ —
N ©
; S e—
" s am|m B o
a fonar 1 Coce Fncurcen
u | 1 M—
m| |
= q | P I
. A toon
1
e 7 8 o
(&) (4 K &
O &AL
I — sepeures
k Ty o
[e
Wt The._ Deins
SrebeThicen
v
TeaiTigternic.
Delomeen | e
i v
» Asvmasen
wis - e * o Ly
- 3 [0 V| Qo Dxae IR oo [T B

Figure 4-29. Changing the property of an asset (radius of the second circle) in the timeline
to create an animation

4
=

Properties X

Name storyboardDemo ¥
Type Storyboard

Arrange by: Category ~

4 Common
AutoReverse] o
RepeatBehavior] 1x ~(O
1x
2x
3x
Forever

Figure 4-30. Repeat behavior of your animation

115

CHAPTER 4 © WINDOWS WITH MOUSE AND KEYBOARD

You can now create beautiful storyboard animations for your application, even an
entire animated storybook for children. For those working directly with code, you may
create a storyboard directly in XAML or even in code behind. The Windows runtime
animation system for storyboards has the following common animation types applied
over a specified duration:

e DoubleAnimation: Animating values with a double property
e PointAnimation: Animating values with positions, namely x and y

e (ColorAnimation: Animating values with the Color property

XAML

<Page
x:Class="StoryboardAnimations.MainPage"
xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation”
xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
xmlns:local="using:StoryboardAnimations"
xmlns:d="http://schemas.microsoft.com/expression/blend/2008"
xmlns:mc="http://schemas.openxmlformats.org/markup-compatibility/2006"
mc:Ignorable="d">
<Page.Resources>
<Storyboard x:Name="storyboardDemo" RepeatBehavior="Forever">
<ObjectAnimationUsingKeyFrames Storyboard.TargetProperty=
"(UIElement.Visibility)" Storyboard.TargetName="textBlock">
<DiscreteObjectKeyFrame KeyTime="0">
<DiscreteObjectKeyFrame.Value>
<Visibility>Collapsed</Visibility>
</DiscreteObjectKeyFrame.Value>
</DiscreteObjectKeyFrame>
<DiscreteObjectKeyFrame KeyTime="0:0:1.2">
<DiscreteObjectKeyFrame.Value>
<Visibility>Visible</Visibility>
</DiscreteObjectKeyFrame.Value>
</DiscreteObjectKeyFrame>
<DiscreteObjectKeyFrame KeyTime="0:0:2">
<DiscreteObjectKeyFrame.Value>
<Visibility>Collapsed</Visibility>
</DiscreteObjectKeyFrame.Value>
</DiscreteObjectKeyFrame>
</ObjectAnimationUsingKeyFrames>
<DoubleAnimationUsingKeyFrames EnableDependentAnimation="True"
Storyboard.TargetProperty="(FrameworkElement.Width)" Storyboard.
TargetName="ellipse">
<EasingDoubleKeyFrame KeyTime="0" Value="50"/>
<EasingDoubleKeyFrame KeyTime="0:0:0.3" Value="80"/>
<EasingDoubleKeyFrame KeyTime="0:0:0.6" Value="50"/>
<EasingDoubleKeyFrame KeyTime="0:0:1.2" Value="30"/>

116

CHAPTER 4 © WINDOWS WITH MOUSE AND KEYBOARD

</DoubleAnimationUsingKeyFrames>
<DoubleAnimationUsingKeyFrames EnableDependentAnimation="True"
Storyboard.TargetProperty="(FrameworkElement.Width)" Storyboard.
TargetName="ellipse1">
<EasingDoubleKeyFrame KeyTime="0" Value="50"/>
<EasingDoubleKeyFrame KeyTime="0:0:0.3" Value="50"/>
<EasingDoubleKeyFrame KeyTime="0:0:0.6" Value="80"/>
<EasingDoubleKeyFrame KeyTime="0:0:0.9" Value="50"/>
<EasingDoubleKeyFrame KeyTime="0:0:1.2" Value="30"/>
</DoubleAnimationUsingKeyFrames>
<DoubleAnimationUsingKeyFrames EnableDependentAnimation="True"
Storyboard.TargetProperty="(FrameworkElement.Width)" Storyboard.
TargetName="ellipse2">
<EasingDoubleKeyFrame KeyTime="0" Value="50"/>
<EasingDoubleKeyFrame KeyTime="0:0:0.6" Value="50"/>
<EasingDoubleKeyFrame KeyTime="0:0:0.9" Value="80"/>
<EasingDoubleKeyFrame KeyTime="0:0:1.2" Value="30"/>
</DoubleAnimationUsingKeyFrames>
<DoubleAnimationUsingKeyFrames EnableDependentAnimation="True"
Storyboard.TargetProperty="(FrameworkElement.Height)"
Storyboard.TargetName="ellipse">
<EasingDoubleKeyFrame KeyTime="0" Value="50"/>
<EasingDoubleKeyFrame KeyTime="0:0:0.3" Value="80"/>
<EasingDoubleKeyFrame KeyTime="0:0:0.6" Value="50"/>
<EasingDoubleKeyFrame KeyTime="0:0:1.2" Value="30"/>
</DoubleAnimationUsingKeyFrames>
<DoubleAnimationUsingKeyFrames EnableDependentAnimation="True"
Storyboard.TargetProperty="(FrameworkElement.Height)"
Storyboard.TargetName="ellipse1">
<EasingDoubleKeyFrame KeyTime="0" Value="50"/>
<EasingDoubleKeyFrame KeyTime="0:0:0.3" Value="50"/>
<EasingDoubleKeyFrame KeyTime="0:0:0.6" Value="80"/>
<EasingDoubleKeyFrame KeyTime="0:0:0.9" Value="50"/>
<EasingDoubleKeyFrame KeyTime="0:0:1.2" Value="30"/>
</DoubleAnimationUsingKeyFrames>
<DoubleAnimationUsingKeyFrames EnableDependentAnimation="True"
Storyboard.TargetProperty="(FrameworkElement.Height)"
Storyboard.TargetName="ellipse2">
<EasingDoubleKeyFrame KeyTime="0" Value="50"/>
<EasingDoubleKeyFrame KeyTime="0:0:0.6" Value="50"/>
<EasingDoubleKeyFrame KeyTime="0:0:0.9" Value="80"/>
<EasingDoubleKeyFrame KeyTime="0:0:1.2" Value="30"/>
</DoubleAnimationUsingKeyFrames>
<ObjectAnimationUsingKeyFrames Storyboard.TargetProperty=
" (FrameworkElement.Margin)" Storyboard.TargetName="ellipse1">
<DiscreteObjectKeyFrame KeyTime="0">
<DiscreteObjectKeyFrame.Value>
<Thickness»>100,0,0,0</Thickness>

117

CHAPTER 4 © WINDOWS WITH MOUSE AND KEYBOARD

</DiscreteObjectKeyFrame.Value>
</DiscreteObjectKeyFrame>
<DiscreteObjectKeyFrame KeyTime="0:0:0.9">
<DiscreteObjectKeyFrame.Value>
<Thickness»50,0,0,0</Thickness>
</DiscreteObjectKeyFrame.Value>
</DiscreteObjectKeyFrame>
<DiscreteObjectKeyFrame KeyTime="0:0:1.2">
<DiscreteObjectKeyFrame.Value>
<Thickness>51,0,0,0</Thickness>
</DiscreteObjectKeyFrame.Value>
</DiscreteObjectKeyFrame>
</ObjectAnimationUsingKeyFrames>
<ObjectAnimationUsingKeyFrames Storyboard.TargetProperty=
" (FrameworkElement.Margin)" Storyboard.TargetName="ellipse2">
<DiscreteObjectKeyFrame KeyTime="0">
<DiscreteObjectKeyFrame.Value>
<Thickness»200,0,0,0</Thickness>
</DiscreteObjectkeyFrame.Value>
</DiscreteObjectKeyFrame>
<DiscreteObjectKeyFrame KeyTime="0:0:0.9">
<DiscreteObjectKeyFrame.Value>
<Thickness>»90,0,0,0</Thickness>
</DiscreteObjectKeyFrame.Value>
</DiscreteObjectKeyFrame>
<DiscreteObjectKeyFrame KeyTime="0:0:1.2">
<DiscreteObjectKeyFrame.Value>
<Thickness»91,0,0,0</Thickness>
</DiscreteObjectKeyFrame.Value>
</DiscreteObjectKeyFrame>
</ObjectAnimationUsingKeyFrames>
<DoubleAnimationUsingKeyFrames EnableDependentAnimation="True"
Storyboard.TargetProperty="(FrameworkElement.FocusVisualPrimaryBrush).
(Brush.Opacity)" Storyboard.TargetName="textBlock">
<EasingDoubleKeyFrame KeyTime="0" Value="1"/>
<EasingDoubleKeyFrame KeyTime="0:0:1.2" Value="1"/>
</DoubleAnimationUsingKeyFrames>
</Storyboard>
</Page.Resources>

<Grid Background="{ThemeResource ApplicationPageBackgroundThemeBrush}">
<Ellipse x:Name="ellipse" Fill="#FFF4F4F5" HorizontalAlignment=
"Left" Margin="10,0,0,0" Stroke="Black" Width="30" Height="30"
VerticalAlignment="Center"/»>
<Ellipse x:Name="ellipse1" Fill="#FFF4F4F5"
HorizontalAlignment="Left" Margin="50,0,0,0" Stroke="Black"
Width="30" Height="30" VerticalAlignment="Center"/>

118

CHAPTER 4 © WINDOWS WITH MOUSE AND KEYBOARD

<Ellipse x:Name="ellipse2" Fill="#FFF4F4F5"
HorizontalAlignment="Left" Height="30" Margin="90,0,0,0"
Stroke="Black" VerticalAlignment="Center" Width="30"/>

<TextBlock x:Name="textBlock" Margin="130,0,0,0" TextWrapping=
"Wrap" Text="Animation" d:LayoutOverrides="Width, Height"
HorizontalAlignment="Left" VerticalAlignment="Center" FontSize="40"/>

</Grid>
</Page>

C#

using Windows.UI.Xaml.Controls;
using Windows.UI.Xaml.Navigation;

namespace StoryboardAnimations

{
public sealed partial class MainPage : Page
{
public MainPage()
{
this.InitializeComponent();
storyboardDemo.Begin(); //to start the storyboard animation
}
protected override void OnNavigatingFrom(NavigatingCancelEventArgs e)
{
storyboardDemo.Stop(); //to stop the animation
}
}
}

Files in the File System

Why are there so many different file extensions? For instance, there are jpeg, png, gif,
and tiff extensions for images; obj, 3ds, and s1dprt for 3D files; mpg, avi, mp4, and mkv
for video; and the list goes on and on. Some are open and some are proprietary. But why
are there so many different options for a single thing? Wouldn't one format for an image,
one for video, and one for a 3D file make everyone’s life easier? Individual file structure,
encoding, compression, and encryption algorithms are some of the elements that play a
role in the uniqueness of a file.

Let’s take one element as an example: memory allocation. Suppose in your program
that you use 8-bit integers to store some data, while someone else (say Tim) uses the
double data type for more accuracy. While your justification may be to make your app run
faster and save memory, Tim wants accuracy and is not bothered about saving memory.
Table 4-2 shows the differences on just 16 units of data.

119

CHAPTER 4 © WINDOWS WITH MOUSE AND KEYBOARD

Table 4-2. Comparison of Outputs with Different Data Types

Data Type 8-bit integer double String

Output file Binary Binary Text

File size 16 bytes 128 bytes 41 bytes (56 bytes with spaces
added between the numbers)

Data units 16 16 16

How itlooks YE|77aA)SSTan¥l i id 48 i 48839046 221080 1060152 138 110 13 97 83 165 55 193 207 18

in Notepad

application

Because Notepad is designed to read text, others look like noise. Similarly, to
read the right data from a file, you need to know the structure and other details. Note
how changing just a data type from integer to double or string changes the file size
drastically.

Major industrial software applications store data in the same way. If you recall
the concepts like structures and arrays covered earlier, a personalized music/video
player application can store some data to make the app pick up where the user left off
with each song/playlist. The way you do it is completely your decision, but Figure 4-31
shows a way to store an audio file and playlist information. To implement Figure 4-31
and store thousands of playlists as a storage file, you can make a tabular structure or
even simply store them as a text file and put in your own file extension, so when you
search for it you know which file extension to look for. The following is an example
(let’s call it myPopSongs . playlist):

Name = "My Pop Songs"
Songs = {"D:/Music/Pop1.mp3", "D:/Music/pop2.mp3”, “D:/Music/pop3.mp3"}
LastPlayed = {2, 0:53}

Figure 4-31 shows how to design your application to be more efficient and store
simple or even complex files.

120

CHAPTER 4 © WINDOWS WITH MOUSE AND KEYBOARD

Name
Metadata
| Album
song \' Artist Array
Audio Data \—’
Composer Array
_’ Last Played Timeline \ Ownership Information
(example: 2:23) \‘
_—* Name
Song Array
—
/ (full path of the songs)
Playlist Song Index
—
Last Played (example: 4)

\. Timeline

(example: 1:27)

Figure 4-31. Example of audio file structure (top) and playlist file structure (bottom)

Globalization and Localization

You have taken the time to read this book and to build a UWP app. This shows that you
believe in your product(s). Whatever you are building is for the people to experience. If
you limit your application to one language, you are limiting your app to a certain region.
For instance, if you have written all the text boxes and text blocks and button text in
English, your audience is limited to the United States, the United Kingdom, Canada, and
some percentage of English literates in other non-English speaking countries.

121

CHAPTER 4 © WINDOWS WITH MOUSE AND KEYBOARD

If your application is not limited to a specific community speaking a single language,
you might want to consider using globalization and localization in your UWP application
to reach the rest of the world. The terms globalization and localization represents
language and cultural changes in languages. What does cultural change mean? A couple
of examples are shown below to demonstrate cultural differences within the English
language.

e Weight: Kilogram, pound, stone

e Currency: Dollar, pound

e Distance: Kilometer, mile

¢ Within school grading system: GPA, percentage, class
e Spellings: Centre, center

e Date: Day/month/year or month/day/year

There exists cultural change from region to region. Some foreign languages are read/
written from right to left. Some of them have calendars that do not follow January to
December.

To globalize your application, first define x:Uid of your UIElements, similar to how
you do it with x:Name. Then create a folder named Strings, and then folders for every
language like en-US for American English, en-GB for British English, fr-FR for French
(France), and so on, as shown in Figure 4-32. Then add a Resources file for each. In the
resources file, you put in the name-value pair data, as shown in Figure 4-33. For this
example, you will be using this book’s marketing material (title and description) because
it contains a lot of text. And to differentiate from en-US and en-GB, simply add (US) and
(GB) in the title to see which language Windows is running. The output is shown in
Figure 4-34.

Sortby Defaet

Zmace 0y emstrnar e
:»c: @ Gt Disiog Vinal CF
e O e ity -
ot [
M B vecommn wasmcs
0 o o

[resmves tie toenat Voo

Figure 4-32. Creating a resource file

122

CHAPTER 4 © WINDOWS WITH MOUSE AND KEYBOARD

1] Gisosizionden: - Mok Vimal Siia
e B0t gew Pajec Jeld Detug Teap foon Tegt Agkae Bindow Hep M’Aﬂ"mﬁ.ﬂ'n
0o H-tEW s - e b Lo 8

mecryron

0 A proece X, Rezyre Geuoace Q- -t eF -

it} bt

Paarne = e [) Sobution Tasbwistonders 1 et
. [Brvrice Wirciom 12 st cations btes 4ad mvcos el ity ming B 4 ¥ Globalustion Dures Qebrsrasl Windows)
ot e | bt Acys v the Lrbresal Wi Pt @ o Sarvices

Somnsion Bapiorer | Taaes tapianet
apartas -ax
beehTest Text Sving

ackTan et

Figure 4-33. Adding name-value pairs to resources

D T i S S S T T ——
°- cEe 2 AomEs % . P Aokt Bulkding:Apps for o Plytony £

Do Sieaaae - |HRESERESS = Caveiop Windows 10 appications faster and more aMcently
% (s % - || ing the usisersal windsws Faticem. Yoo will uge xaearin 1o
F crabe apps o macs, 108, and Androld deces.
£ Buiiding Apps for the Linwersal Windows Pacion is a compiete
5 Thrme = i “Cormet =3 = Gt evining PLS, tbdats, phonts, 3nd othar devcas sudh 36

e e et bk ens. Yo Wil use Windows 12 50 devekip apps for desktop,

e effieatly i e Liivena i | | MG, NOlographis, wearable, and ol devizes. You wil reuse
b bt es satizem. ¥ 555 platfoem aops.

w08 For a0, .

bsciTet et

Cattunce

el vk Bskponts Eneeptan Mg Command Wnd bricias Wedkow vans

Figure 4-34. Output of the globalized application for two languages

Camera and Media Capture Devices

I have talked a lot about images and what to do with them once the data is captured, but I
haven’t talked about how to capture the data. This section explores how you can capture
the data from a camera attached to your Windows device.

123

CHAPTER 4 © WINDOWS WITH MOUSE AND KEYBOARD

To enable a user’s camera, you need to declare the use of the camera and
microphone in your app’s capabilities in the manifest file. This lets the users know that
your application is using the camera. Things like location, camera, microphone, and the
Internet are very sensitive subjects in terms of user privacy. When downloading from
Windows Store, the capabilities used by an application are displayed in the Store and
even in Settings. Users can turn on/off these device capabilities for an application that
uses them from Settings.

CameraCaptureUI is the basic implementation in Windows provided by default. But
for customizations and to fetch a camera feed, you need to use MediaCapture. For this
demonstration (Figures 4-35, 4-36, and 4-37), you will use both. Let’s go through the
implementation to see how they are implemented.

Bl camernie cazhbend o v - ¥ £ oarusarmy AR=fax
Ble [t Ve Poget Beld Dotug fe Drsge foemst Toch Wi Moip dyen Cmeriee + [

= Prope -ax

e - WE] * o Meme cmiemen [#] ¢

AT

e

VOBEOw S e\ 5@

Camatapanis

s - mEIR .
o ENAML G Desgn THE

Figure 4-35. Ul of Camera Preview application

124

CHAPTER 4 © WINDOWS WITH MOUSE AND KEYBOARD

CameraDemo o =] x

MediaCapturePreview

CameraCapturel| @ =

Figure 4-36. MediaCapture implementation

MediaCapturePreview

Camers x

CameraCaplurelll

Figure 4-37. CameraCaptureUl implementation

125

CHAPTER 4 © WINDOWS WITH MOUSE AND KEYBOARD

XAML

<Page
x:Class="CameraDemo.MainPage"
xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation”
xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
xmlns:local="using:CameraDemo"
xmlns:d="http://schemas.microsoft.com/expression/blend/2008"
xmlns:mc="http://schemas.openxmlformats.org/markup-compatibility/2006"
mc:Ignorable="d">

<Grid Background="{ThemeResource ApplicationPageBackgroundThemeBrush}">
<CaptureElement x:Name="captureElement" Margin="0,80"/>
<AppBarButton x:Name="photocaptureButton" Click="photocaptureButton_
Click" Icon="Camera" Label="Photo" d:LayoutOverrides="Width"
VerticalAlignment="Bottom" HorizontalAlignment="Center"
Margin="0,0,0,10"/>
<AppBarButton x:Name="videoCaptureButton" Click="videoCaptureButton_
Click" Icon="Video" Label="Video" d:LayoutOverrides="Width"
Margin="180,0,0,10" VerticalAlignment="Bottom"
HorizontalAlignment="Center"/>
<AppBarButton x:Name="switchCameraButton" Click="switchCameraButton_
Click" Icon="Switch" Label="Switch Camera" d:LayoutOverrides="Width"
HorizontalAlignment="Right" Visibility="Collapsed"/>
<TextBlock x:Name="textBlock" HorizontalAlignment="Left"
Margin="10,46,0,0" TextWrapping="Wrap" Text="MediaCapturePreview"
VerticalAlignment="Top"/>
<TextBlock x:Name="textBlock1" HorizontalAlignment="Left"
Margin="10,0,0,30" TextWrapping="Wrap" Text="CameraCaptureUI"
VerticalAlignment="Bottom"/>

</Grid>

</Page>

C#

using System;

using Windows.Devices.Enumeration;
using Windows.Media.Capture;

using Windows.Storage;

using Windows.UI.Xaml.Controls;
namespace CameraDemo

{

public sealed partial class MainPage : Page
{
int elem = -1;
DeviceInformationCollection devices;
MediaCapture mc = new MediaCapture();
public MainPage()

126

CHAPTER 4 © WINDOWS WITH MOUSE AND KEYBOARD

{
this.InitializeComponent();
initializeCamera();
}
private async void initializeCamera()
{
devices = await DeviceInformation.FindAllAsync(DeviceClass.
VideoCapture);
if(devices.Count > 1)
{
switchCameraButton.Visibility = Windows.UI.Xaml.Visibility.Visible;
}
if(devices.Count > 0)
{
elem = 0;
MediaCaptureInitializationSettings mcSettings =
new MediaCaptureInitializationSettings { VideoDeviceld =
devices[elem].Id, StreamingCaptureMode =
StreamingCaptureMode.Video};
await mc.InitializeAsync(mcSettings);
captureElement.Source = mc;
await mc.StartPreviewAsync();
}
}

private async void photocaptureButton Click(object sender,
Windows.UI.Xaml.RoutedEventArgs e)

{
await mc.StopPreviewAsync();
CameraCaptureUI camera = new CameraCaptureUI();
camera.PhotoSettings.Format = CameraCaptureUIPhotoFormat.Jpeg;
StorageFile photo = await camera.CaptureFileAsync(CameraCapture
UIMode.Photo);
if(photo != null)
await photo.MoveAsync(KnownFolders.PicturesLibrary,
"new_photo.jpeg", NameCollisionOption.GenerateUniqueName);
await mc.StartPreviewAsync();
}

private async void videoCaptureButton Click(object sender,
Windows.UI.Xaml.RoutedEventArgs e)
{
await mc.StopPreviewAsync();
CameraCaptureUI camera = new CameraCaptureUI();
camera.VideoSettings.Format = CameraCaptureUIVideoFormat.Mp4;
StorageFile video = await camera.CaptureFileAsync(CameraCapture
UIMode.Video);
if (video != null)

127

CHAPTER 4 © WINDOWS WITH MOUSE AND KEYBOARD

await video.MoveAsync(KnownFolders.VideosLibrary,
"new_video.mp4", NameCollisionOption.GenerateUniqueName);
await mc.StartPreviewAsync();

}

private async void switchCameraButton_Click(object sender,
Windows.UI.Xaml.RoutedEventArgs e)
{
await mc.StopPreviewAsync();
mc.Dispose();
MediaCapture mcNew = new MediaCapture();
elem = elem < devices.Count - 1 ? elem + 1 : 0;
MediaCaptureInitializationSettings mcSettings = new
MediaCaptureInitializationSettings { VideoDeviceld = devices[elem].
Id, StreamingCaptureMode = StreamingCaptureMode.Video };
await mcNew.InitializeAsync(mcSettings);
captureElement.Source = mcNew;
await mcNew.StartPreviewAsync();
mc = mcNew;

Securing App Data

Let’s discuss cryptography before diving into this section. During early and sometimes
even in late teen ages, people tend to develop some kind of code among their friends.
For instance, when adults walk in on a private conversation, they may slip in the word
“pal” into a sentence, which is code for “parents are listening/” This is a something all of
these teens understand, so everyone instantly censors the conversation without making
the adult aware of it. Other code types include hand gestures or newly invented words/
phrases. Let’s look at the same concept in a diagram (Figure 4-38).

Adult listening in

Reads: Pal
Interprets: friend, buddy

Encryption Key Decryption Key
(Censor conversation ->Pal} (Pal ->Censor comversation)

Sender Receiver
(Teen 1) (Teen 2)
Encrypted message transmitting

Plain Text:Censor conversation

Plain Text:Censar conversation (Cypher text: Pal)

Figure 4-38. Explanation for encryption and decryption process

128

CHAPTER 4 © WINDOWS WITH MOUSE AND KEYBOARD

This example was to illustrate the point. For data, encryption and decryption are
done through algorithms, meaning they are mathematical equations. Let’s discuss a very
simple one at first called Caesar Cipher; it moves up or down a character by a certain
number of steps. For example, let’s move up by two steps (a -> ¢, b -> d, etc.):

Input Text = How was your day
Encrypted Text = Jqy ycu agqwt fca

The key used during encryption and decryption may be the same (called symmetric

keys) or they may be different (asymmetric keys). Table 4-3 shows the methods used in
UWP and their description.

Table 4-3. Methods for Encryption and Decryption

Method Description
ProtectAsync(Windows.Storage.Streams.IBuffer) Protects static data
UnprotectAsync(Windows.Storage.Streams.IBuffer) Unprotects static data

ProtectStreamAsync(Windows.Storage.Streams.IInputStream, Protects stream data
Windows.Storage.Streams.IOutputStream)

UnprotectStreamAsync(Windows.Storage.Streams.[InputStream, ~ Unprotects stream data
Windows.Storage.Streams.IOutputStream)

DataProtectionProvider represents the cryptographic provider for encryption. It
shows who has and can encrypt and decrypt the data. For your example, you will be using
local user. Others are local machine, and web authentication for your application to be
available in Windows Store. Enterprise users working on company accounts will use SID
or SDDL providers and will require enterprise authentication capability. Let’s implement
an application that encrypts/decrypts static data (text) and see how it is done. The output
is shown in Figure 4-39.

129

CHAPTER 4 © WINDOWS WITH MOUSE AND KEYBOARD

Secure AppOataDema o 4 Secured

How are you? Protected data has 483 byte

Encrypt Decrypt

Figure 4-39. Text before and after encryption

XAML

<Page
x:Class="SecureAppDataDemo.MainPage"
xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation”
xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
xmlns:local="using:SecureAppDataDemo"
xmlns:d="http://schemas.microsoft.com/expression/blend/2008"
xmlns:mc="http://schemas.openxmlformats.org/markup-compatibility/2006"
mc:Ignorable="d">

<Grid Background="{ThemeResource ApplicationPageBackgroundThemeBrush}">
<TextBox x:Name="plainTextBox" TextChanged="plainTextBox_TextChanged"
Margin="10,10,10,150" TextWrapping="Wrap" Text="" AcceptsReturn="True"
PlaceholderText="type your plain text here"/>
<Button x:Name="secureButton" Click="secureButton_Click" IsEnabled=
"False" Content="Encrypt" Margin="0,0,0,100" VerticalAlignment=
"Bottom" HorizontalAlignment="Center" Width="120"/>

</Grid>

</Page>

130

C#

CHAPTER 4 © WINDOWS WITH MOUSE AND KEYBOARD

using System;

using Windows.Storage.Streams;

using Windows.UI.Xaml.Controls;

using Windows.Security.Cryptography;

using Windows.Security.Cryptography.DataProtection;

namespace SecureAppDataDemo

{

public sealed partial class MainPage : Page

{

string text;

bool encrypt = true;
IBuffer protectedData;
public MainPage()

{

}
private void plainTextBox_TextChanged(object sender,
TextChangedEventArgs e)

{

this.InitializeComponent();

text = plainTextBox.Text;

secureButton.IsEnabled = (text != null || text != "") ? true : false;
}
private async void secureButton_Click(object sender, Windows.
UI.Xaml.RoutedEventArgs e)

{
if (encrypt)
{

BinaryStringEncoding encoding = BinaryStringEncoding.Utf8;
DataProtectionProvider provider = new DataProtectionProvide
r("LOCAL=user");

IBuffer message = CryptographicBuffer.ConvertStringToBinary
(text, encoding);

protectedData = await provider.ProtectAsync(message);
plainTextBox.Text = "Protected data has " + protectedData.
Length + " bytes";

secureButton.Content = "Decrypt";

plainTextBox.IsEnabled = false;

encrypt = false;

}

else

{
BinaryStringEncoding encoding = BinaryStringEncoding.Utf8;
DataProtectionProvider Provider = new DataProtectionProvider
("LOCAL=user");

131

CHAPTER 4 © WINDOWS WITH MOUSE AND KEYBOARD

IBuffer unprotectedData = await Provider.
UnprotectAsync(protectedData);

plainTextBox.Text = CryptographicBuffer.
ConvertBinaryToString(encoding, unprotectedData);
secureButton.Content = "Encrypt";
plainTextBox.IsEnabled = true;

encrypt = true;

Print and Casting Media to Devices

The PrintDocument class is used to handle interaction between your application and
PrintManager. Again, let’s trace back to the early days of computing and compare the
difference between with and without this implementation. To print a document, you'd
have to make a call to the particular printer with their individual API-the whole process.
With this, all connected printers have been put under one roof: physically connected
printers, wireless printers, cloud-connected printers, and even printing to a file format
(PDF). All you need to do now is send your print call to this one place and all the available
print options will open up.

As a user, when you click the Print button for any document (in Windows 10 or earlier),
a pop-up asks you for printer choices, the number of copies to print, print options like
color/grayscale, a preview window showing what the printed document will look like, and
so on; when everything seems right to you, you send the document for your printer to print.
In summary, the following steps are performed when printing a document:

1. Register your application for printing when the user clicks the
Print button (you need to have a Print button in your UI).

2. Prepare the document for printing and send it to a preview window.
3. Unregister for printing when the operation is concluded.

Next, let’s discuss how you can stream media (audio, video, images) to another
device and how you can receive a media stream to your application. MediaPlayerElement
already has a built-in casting button and implementation, so if you use it, you need not
worry about doing anything else. But if you want to implement casting externally, you
need to implement CastingDevicePicker from namespace Windows.Media.Casting. To
cast media from to your remote devices, you need to

e Initialize your casting picker object.
e Add filters for the media type you wish to cast (audio, pictures, video).
e Add event handlers for casting.

Let’s create an application to implement the two concepts. The output is shown in
Figure 4-40.

132

CHAPTER 4 © WINDOWS WITH MOUSE AND KEYBOARD

Figure 4-40. Printing on UWP

XAML

<Page
x:Class="PrintAndPlayToDemo.MainPage"
xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation”
xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
xmlns:local="using:PrintAndPlayToDemo"
xmlns:d="http://schemas.microsoft.com/expression/blend/2008"
xmlns:mc="http://schemas.openxmlformats.org/markup-compatibility/2006"
mc:Ignorable="d">
<Grid Background="{ThemeResource ApplicationPageBackgroundThemeBrush}">
<Grid.RowDefinitions>
<RowDefinition/>
<RowDefinition Height="120"/>
</Grid.RowDefinitions>
<Image x:Name="myPhoto" Margin="0" Source="Assets/myPhoto.JPG"/>
<AppBarButton x:Name="printImage" Click="printImage Click"
HorizontalAlignment="Center" Icon="PreviewLink" Label="Print"
Margin="0,0,100,0" Grid.Row="1" VerticalAlignment="Center"/>
<AppBarButton x:Name="streamImage" Click="streamImage Click"
HorizontalAlignment="Center" Icon="SetTile" Label="Cast"
Margin="100,0,0,0" Grid.Row="1" VerticalAlignment="Center"/>
</Grid>
</Page>

133

CHAPTER 4 © WINDOWS WITH MOUSE AND KEYBOARD

C#

using System;

using Windows.Graphics.Printing;
using Windows.Media.Casting;
using Windows.UI.Xaml;

using Windows.UI.Xaml.Controls;
using Windows.UI.Xaml.Navigation;
using Windows.UI.Xaml.Printing;
namespace PrintAndPlayToDemo

{

134

public sealed partial class MainPage : Page

{

private PrintDocument printDoc;

private PrintManager printMan;

private IPrintDocumentSource printDocSource;
public MainPage()

this.InitializeComponent();

}

protected override void OnNavigatedTo(NavigationEventArgs e)

{
printMan = PrintManager.GetForCurrentView();
printMan.PrintTaskRequested += PrintMan_PrintTaskRequested;
printDoc = new PrintDocument();
printDocSource = printDoc.DocumentSource;
printDoc.Paginate += PrintDoc_Paginate;
printDoc.GetPreviewPage += PrintDoc_GetPreviewPage;
printDoc.AddPages += PrintDoc_AddPages;

}

//Printing

private void PrintDoc_Paginate(object sender, PaginateEventArgs e)

{
}

private void PrintDoc_AddPages(object sender, AddPagesEventArgs e)
{

printDoc.SetPreviewPageCount(1, PreviewPageCountType.Final);

printDoc.AddPage (myPhoto);
printDoc.AddPagesComplete();

}

private void PrintDoc_GetPreviewPage(object sender, GetPreviewPageEventArgs e)
{

}
private void PrintMan_PrintTaskRequested(PrintManager sender,
PrintTaskRequestedEventArgs args)

{

printDoc.SetPreviewPage(e.PageNumber, myPhoto);

CHAPTER 4 © WINDOWS WITH MOUSE AND KEYBOARD

var printTask = args.Request.CreatePrintTask("Print",
PrintTaskSourceRequested);
printTask.Completed += PrintTask Completed;

}

private void PrintTaskSourceRequested(PrintTaskSourceRequestedArgs args)

{
}

private void PrintTask Completed(PrintTask sender,
PrintTaskCompletedEventArgs args)

{
}

private async void printImage Click(object sender, RoutedEventArgs e)

{

args.SetSource(printDocSource);

//Notify user that printing has completed

if (PrintManager.IsSupported())

{
await PrintManager.ShowPrintUIAsync();
}
}
//Casting

CastingDevicePicker castingPicker;

private void streamImage_Click(object sender, RoutedEventArgs e)

{
castingPicker = new CastingDevicePicker();
castingPicker.Filter.SupportsPictures = true;
if(castingPicker.Filter.SupportedCastingSources.Count == 0)

//no devices supported
}
castingPicker.CastingDeviceSelected += CastingPicker_
CastingDeviceSelected;
}
private async void CastingPicker CastingDeviceSelected(CastingDevice
Picker sender, CastingDeviceSelectedEventArgs args)

{
await Dispatcher.RunAsync(Windows.UI.Core.
CoreDispatcherPriority.Normal, async () =>
{
CastingConnection connection = args.SelectedCastingDevice.
CreateCastingConnection();
connection.ErrorOccurred += Connection ErrorOccurred; ;
connection.StateChanged += Connection_StateChanged; ;
await connection.RequestStartCastingAsync(myPhoto.
GetAsCastingSource());
1;
}

135

CHAPTER 4 © WINDOWS WITH MOUSE AND KEYBOARD

private void Connection StateChanged(CastingConnection sender, object args)

{
}

private void Connection ErrorOccurred(CastingConnection sender,
CastingConnectionErrorOccurredEventArgs args)

{
}

throw new NotImplementedException();

throw new NotImplementedException();

Windows Wheel Devices

This section will cover other devices that can be accommodated into your UWP
application, namely the Surface Dial introduced alongside Surface Studio. The
RadialController class accommodates wheel inputs for devices like the Surface Dial or
similar Windows Wheel devices. The syntax to initialize it is

RadialController myController = RadialController.CreateForCurrentView()

Further, menu items can be added to the radial controller using your own icons or
some of the known built-in icons, as shown in Figure 4-41.

b) Appx
Radia ol ownIcon.) 4a D ‘M‘ainF
& InkColor %
= InkThickness d_(a
=& NextPreviousTrack O#et
£ PenType irfac
= Ruler
= Scroll
= UndoRedo et
= Volume
& Zoom

Figure 4-41. RadialController menu of known icons

136

CHAPTER 4 © WINDOWS WITH MOUSE AND KEYBOARD

C#

using Windows.UI.Input;
using Windows.UI.Xaml.Controls;

namespace SurfaceDialDemo

{
public sealed partial class MainPage : Page
{
RadialController myController;
public MainPage()
{
this.InitializeComponent();
if (RadialController.IsSupported()) //to check if it is
supported on the machine
myController = RadialController.CreateForCurrentView();
RadialControllerMenuItem newItem =
RadialControllerMenuItem.CreateFromKnownIcon("Ink Color",
RadialControllerMenuKnownIcon.InkColor);
myController.Menu.Items.Add(newItem);
myController.ButtonClicked += MyController ButtonClicked;
myController.RotationChanged += MyController RotationChanged;
}
}
private void MyController RotationChanged(RadialController sender,
RadialControllerRotationChangedEventArgs args)
{
double rotation = myController.RotationResolutionInDegrees;
//Implement your code
}
private void MyController ButtonClicked(RadialController sender,
RadialControllerButtonClickedEventArgs args)
{
//Implement your code
}
}
}

Background Classes

Background classes are classes that keep running even after the user has exited the
application. They are meant to run all the time. Background tasks are different from your
UWP project and are added as a service reference. To add a background task, you need
to create a Windows Runtime Component (Universal Windows) by right-clicking your
solution and adding a new project. After you have done that, you need to add a reference
to your UWP project prior to implementation.

137

CHAPTER 4 © WINDOWS WITH MOUSE AND KEYBOARD

The IBackgroundTask interface provides a method to work in the background.
The background tasks are required to be lightweight for instance to update a live tile, for
push notifications, to receive a mail or a message, or to play music in the background.
Figure 4-42 shows the current background applications that are running on my machine.

@ Home Background Apps
— Lt apps rum i the backgroend
@D o

Choose which apps can run in the
A Contacts background

B0t off can hel conserve powes,

PR Aot of Empier s Care Sege & oa
= fmad A
e Aarms & Gtk & o~
0 wessaging Hﬂ Arphan & Airbcens @D on
¥ Rack
s EI Calcutater @ o
B Other devices
Cabendar & o
I feedback & dagnostics
E Camera @D on
Conmect @ o

Figure 4-42. Current background apps running

In the previous chapter, you implemented an application and Cortana was able to
activate the application to foreground and change the color theme. With a background
application deep linked to Cortana, your application window need not open at all. A well-
known example of this is your weather application. Asking “how’s the weather today?”
will cue Cortana to interact with the background application and display today’s weather
information inside Cortana’s UI space. This is displayed in a content card. If you recall
Windows 8/8.1 live tiles, they had to be done by a set of predefined templates. Similarly,
at this stage Cortana provides four different templates for content cards. They are the
following:

e Title only

e Title with up to three lines of text

e Title with image

e Title with image and up to three lines of text

Let’s explore a background application before I talk about deep linking your
background application with Cortana. The following example is from a piece of
professional software that fetches the latest news feed as an article (the Article class was
custom defined) and updates it to a live tile.

138

CHAPTER 4 © WINDOWS WITH MOUSE AND KEYBOARD

Here, I'd like you to take a moment to grasp the whole chapter. It is very important
that you understand all the concepts laid out in this chapter to move ahead.

using
using
using
using
using
using
using

System;
System.Collections.Generic;
System.Ling;

System.Net;

System.Text;
System.Threading.Tasks;
System.Xml.Ling;

using Windows.ApplicationModel.Background;
using Windows.Data.Xml.Dom;

using Windows.Storage;

using Windows.UI.Notifications;

namespace BackgroundTaskLibrary

{

public sealed class BackgroundTask : IBackgroundTask

{

List<Article> articles = new List<Article>();
async void IBackgroundTask.Run(IBackgroundTaskInstance taskInstance)
{
BackgroundTaskDeferral deferral = taskInstance.GetDeferral();
try
{
parseFeed();
createliveTile();
}
catch { }

}

public void createlLiveTile()
{
articles = articles.Where(o => o.ImageUrl != null).Tolist();
TileUpdateManager.CreateTileUpdaterForApplication().Clear();
TileUpdateManager.CreateTileUpdaterForApplication().
EnableNotificationQueue(true);
int count = 0;
foreach (Article article in articles)
{
count++;
XmlDocument squareTile = TileUpdateManager.GetTemplateConten
t(TileTemplateType.TileSquarePeekImageAndTexto4);
SetTextAndImage(squareTile, article);
XmlDocument wideTile = TileUpdateManager.GetTemplateContent(
TileTemplateType.TileWideSmallImageAndText03);
SetTextAndImage(wideTile, article);

139

CHAPTER 4 © WINDOWS WITH MOUSE AND KEYBOARD

140

}

IXmlNode visual = wideTile.ImportNode(squareTile.
GetElementsByTagName("binding").Item(0), true);

wideTile.GetElementsByTagName("visual").Item(0).
AppendChild(visual);

TileNotification tile = new TileNotification(wideTile);
TileUpdateManager.CreateTileUpdaterForApplication().Update
(tile);

if (count == 5) break;

tile.ExpirationTime = DateTime.Now.AddSeconds(3 * count);

private static void SetTextAndImage(XmlDocument tileXml, Article article)

{

}

XmlNodelList tileTextAttribute = tileXml.GetElementsByTagName
("text");
tileTextAttribute[0].AppendChild(tileXml.CreateTextNode
(article.Title));

XmlNodelList tileImageAttributes = tileXml.GetElementsByTagName
("inage");

((XmlElement)tileImageAttributes[0]).SetAttribute

("src", article.ImageUrl);

public void parseFeed()

{

string url H
string ned = ApplicationData.Current.RoamingSettings.
Values["ned"].ToString();

if (ApplicationData.Current.RoamingSettings.Values["FavoritelList"]
= null)

{
string query = ApplicationData.Current.RoamingSettings.
Values["Favoritelist"].ToString().Split('|")[0];
url = "RSS uri here” + ned + "8q=" + query;
}
else
{
url = "Put your RSS uri here=" + ned;
}

XDocument rssFeed = XDocument.Load(url);
var items = rssFeed.Root.Element("channel").Elements("item");

foreach (XElement item in items)

{

CHAPTER 4 © WINDOWS WITH MOUSE AND KEYBOARD

Article objArticle
string description

new Article();
item.Element("description").Value;

HtmlDocument html = new HtmlDocument();
html.LoadHtml(description);

try
{
objArticle.ImageUrl = "http:" + html.DocumentNode.
Descendants("img").ToList()[0].Attributes["src"].Value;
}
catch { }

objArticle.Title = WebUtility.HtmlDecode(html.DocumentNode.
Descendants("div").ToList().Single(o => o.Attributes[0].
Value == "1h").Elements("a").ToList()[0].Element("b").
InnerText);

articles.Add(objArticle);

By default, Cortana uses your 44x44 square logo from your manifest file. But you
can include icons of sizes 68x68, 68x92, and 280x140 on a Cortana canvas. To activate
a background app, you need to create a service application project under the same
solution, as shown in Figure 4-43.

e 1ot E
" TR Wesom Rt Conpuren xivns Wevkowl Vsl
: [e —— ineic
. -
2 1
Test
b oS
wer
rnat e
"
» vasir
b
s o
- 1 e
t Cantansdeme
ewarut o oo
Hons =
o
i P, = v

Figure 4-43. Creating a service application project

141

CHAPTER 4 © WINDOWS WITH MOUSE AND KEYBOARD

After you have done that, you need to add a reference to your original project
and call the namespace to your service application. Implement the IBackgroundTask
interface to your service application and add a Run method. The Run method is the
entry point for Cortana into your background application. This is how you implement
a background application with Cortana. Detailed documentation can be found at
https://docs.microsoft.com/en-us/cortana/voicecommands/interact-with-a-
background-app-in-cortana.

At this stage, we have covered quite a bit about Visual Studio and Blend, and how
to design and implement different types of controls in our application. And I think this
is the right time to talk a little bit about the Microsoft Fluent Design System introduced
with Windows 10 Fall Creators Update in 2017. Fluent Design System adds some pretty
controls to make the overall Windows experience a bit more tasteful and an opportunity
for designers to make their Store apps more beautiful. And before getting into it, we are
going to explore materials and textures. Textures are applied in one of 2 ways - from an
image directly, or from one or more combination of mathematical equations (known
as procedural texture) where even random noise in a material like a carpet is formed by
equations. We know that Signature Type Cover on Surface Pro is advertised as two-tone
style of Italian-made material known as Alcantara. If we were to develop a procedural
texture of that two-tone material, we'd have different layers for different functions - one
of which would be of the first color and the other of the second color. Other layers can
be noise, blur, etcetera to give it the realistic visual feeling of the material as seen in real
life. At the end, the API of that Alcantara texture would take in two colors as input for the
desired color of Alcantara texture wherever implemented.

Fluent Design System introduces Acrylic material that’s made of up 5 different
layers - background of whatever is in behind the material, gaussian blur of the background,
exclusion blend, a layer of color/tint, and finally a layer of noise texture. This should give
you a hint that to apply this material, you need to pass in one single color as input. All
the rest of the properties like opacity should work similar to any other Brush applied as a
background. I hope I have been able to develop your intuition of how these things are built
and implemented. You are now ready to use elements of Fluent Design System in your
application using Acrylic material, Reveal, Motion and animation, Parallax, etcetera.

EXERCISES

Exercise 1: Differentiate between interface and abstract classes.

Exercise 2: Build an application to continuously capture and store images on a local
drive at regular intervals until stopped.

Exercise 3: Build a photo capturing application and then store the image on the
user’s OneDrive.

Exercise 4: Continue exercise 3 and apply the globalization concept with Spanish
and French.

Exercise 5: Associate yourself with APIs (like Bing APIs) and learn how to fetch
images and data from XML/JSON structures.

142

https://docs.microsoft.com/en-us/cortana/voicecommands/interact-with-a-background-app-in-cortana
https://docs.microsoft.com/en-us/cortana/voicecommands/interact-with-a-background-app-in-cortana

CHAPTER 5

Windows with Touch

The last chapter covered Windows app development with the mouse and keyboard and
some of the related concepts. In this chapter, you'll take a step forward with touch.

Touch input adds a dimension to taking inputs from the user. It also suggests a
reduction to the number of input choices from physical input devices such as a mouse
and keyboard. What I mean is that with the introduction of a touch input keyboard
(on-screen keyboard) you can make the number of keys and layout of the keys flexible
depending on the current application.

In the early stages of learning about computing, you may have come across the
information about input, process, and output shown in Figure 5-1. This is formally
termed an input-process-output (IPO) model. And when the input and the output
screens are the same, you have a touch screen. The IPO model of it is shown in Figure 5-2.

Input Process Output

Figure 5-1. Input-proces-output (IPO) model

Figure 5-2. IPO model for displays with touch inputs

© Ayan Chatterjee 2017 143
A. Chatterjee, Building Apps for the Universal Windows Platform,
DOI 10.1007/978-1-4842-2629-2_5

CHAPTER 5 © WINDOWS WITH TOUCH

Touch screens are just a subset of touch input devices. When we talk of a button or a
switch, it’s either pressed/turned on or not. But when we talk about touch, there are more
variables attached to it than just pressed/turned on, namely the position of the touch.
Further dimensions of input data are dependent on the touch input hardware in use:
pressure, tilt, pen tip, and so on.

Gestures

Gestures are a fruitful outcome of touch inputs. They can be derived from a single touch
to multi-touch. Gestures are a pattern/combination of touch inputs within a small
duration of time. Previous chapters discussed in-built functions and custom-defined
functions. Similarly, Windows provides us with some in-built touch gestures that are very
common, such as tap and swipe. Figures 5-3 to 5-5 shows the gestures available in the
Microsoft View 3D application first introduced with Windows 10 Creators Update.

Mouse Touch Pen

Orbit Pan Zoom Reset

g 0 0

Figure 5-3. View 3D mouse interactions

Mouse Touch Pen

Orbit Pan Zoom Reset
+ +
(—E-> eme II @]

Figure 5-4. View 3D touch interactions

144

CHAPTER 5 © WINDOWS WITH TOUCH

Mouse Touch

Orbit Pan

vy ¥ %

Figure 5-5. View 3D pen interactions

Reset

Touch gestures require movement on touch-enabled devices. Ideally, the movement
can either be a function of space (in x-y directions), a function of pressure, a function of
tilt with respect to the surface (such as pen inputs), a function of time (example: tap and

hold), or combination of these factors depending on the touch input hardware. Some
touch gestures are described in Table 5-1.

Table 5-1. Basic Set of Touch Gestures

Gesture Description Mathematics Explanation

Tap One finger touches the screen Output: Position of touch (x, y).
and quickly lifts up.

Double tap One finger performs two taps Output: Position of two touches

Two finger tap

Press and hold

Slide

on the screen around the same
area with a very minor time
difference between both taps.

Same as double tap, except
that this is done by two
different fingers, meaning the
touch inputs occurred in
different positions, at about
the same time.

One finger touches the screen
and stays for a while before
lifting up.

One or more fingers touch the
screen and move in the same
direction.

(x1, y1), (x2, y2) where the
distance and time difference
between the points are within a
predefined maximum allowed.

Output: Position of two touches
(x1,y1), (x2, y2) where the
distance is outside of a predefined
surface area of a single point and
the time difference between the
points is within the predefined
maximum allowed.

Output: Position of touch (x, y),
and position held for time > few
milliseconds

If a straight line was drawn from
end position (x,, y,) and start
position (x,,y,), R*~ 1.

(continued)

145

CHAPTER 5 © WINDOWS WITH TOUCH

Table 5-1. (continued)

Gesture Description Mathematics Explanation

Swipe One or more fingers touch the If a straight line was drawn
screen and move in the same from end position (x,, y,) and
direction for a short distance. start position (x,,y,), R* ~ 1, and

distance ~ few pixels.

Turn Two fingers touch the screen Matrix/Array position points,
and move in a clockwise or where positions make up a
counter-clockwise direction. circumference of a circle.

Pinch Two fingers touch the screen Matrix/Array for position points,
and move closer to each other. where distance between positions

keeps decreasing.

Stretch Two fingers touch the screen Matrix/Array for position points,
and move apart. where distance between positions
keeps increasing.

Gestures like tap, double tap, and right tap can be implemented inside XAML or C#
(your preference) similar to how you implement the click of a button. To demonstrate this,
let’s create a simple application with a button and textbox, as shown in Figure 5-6. The
XAML implementation is shown in Figure 5-7. The button listens for the three basic tap
gestures and outputs on the textbox the action that has occurred, as shown in Figures 5-8
and 5-9.

146

CHAPTER 5 © WINDOWS WITH TOUCH

GestureDemo

Gestures

Tap Me

Figure 5-6. Application that listens for three basic gestures: tapped, double tapped, and
right tapped

Figure 5-7. XAML implementation of Figure 5-6

147

CHAPTER 5 © WINDOWS WITH TOUCH

Gestures

Tap Me

Double Tapped

Figure 5-8. Response when a double tapped gesture has occurred

148

CHAPTER 5 © WINDOWS WITH TOUCH

Gestures

Tap Me

Right Tapped

Figure 5-9. Response when a right tapped gesture has occurred

You can create different types of combinations with simple touch gestures. If you
have played a first-person shooter game, you have experience switching between normal
view and the view through a scope of a gun via a right mouse-button click. You can do the
same with RightTapped, while the firing of the weapon is done with left mouse button
click or Click and Tapped events.

To use GestureRecognizer you need to declare the Windows .UI.XAML. Input
namespace in your header. But why go through all the trouble to code basic gestures? The
older generation of programmers may like coding because they have been trained to use
MS-DOS and the command prompt, so typing lines of code seems familiar to them. But
you are going to move forward and take advantage of Visual Studio. You are going to add
another gesture to the program shown in Figure 5-6. The holding gesture will display how
long a user has tapped and held the button. To do so, click the button and navigate to the
event handling options (the lightning icon in the Properties section shown in Figure 5-10).

149

CHAPTER 5 © WINDOWS WITH TOUCH

Tap Me B ——— ——— W— s

Fle

Figure 5-10. Adding a Holding event listener to the program
The C# implementation of holding for Figure 5-10 is

private void tapButton Holding(object sender, HoldingRoutedEventArgs e)
{

}

tapAction.Text = "Holding Event Triggered";

Defining a Custom Gesture

In the previous section, you learned to use in-built gestures. Here, you shall expand on that
by building your own gesture. After you know how to define a custom gesture with a single
touch input source (example: finger), it will be easier for you to work with multi-touch.

To define a custom gesture, you need to know the positions from the start of the
touch input until the end of it. To explore how you can get and use touch input position
points, let’s make an example by placing a canvas on the application, as shown in
Figure 5-11. ManipulationStarted tells you when a touch input manipulation has begun
and will continue until the manipulation has exited or cancelled.

150

CHAPTER 5 © WINDOWS WITH TOUCH

-
5° Phane (1920 x 1080) 300% scale - - |i| @

3

mENH

- | BB Canvas (ostomGestuneButton)

Figure 5-11. Canvas implementation for custom gesture

Note that in Figure 5-11, I've named the canvas as customGestureButton instead of
naming it a canvas. Naming it canvas, although technically right and the compiler won'’t
show any warning or error, will confuse a person later debugging or reading your code, so
it’s better to use a descriptive name.

Now let’s execute touch inputs on the canvas step by step.

Step 1: You need variables to store X and Y positions. I have used a List of double
datatypes to be more precise. You may choose another type depending on your
requirements. The code for it is

List<double> x = new List<double>();
List<double> y = new List<double>();

Step 2: Now you must store the X and Y positions when the ManipulationDelta
event is firing inside the canvas. The code for it is

private void customGestureButton ManipulationDelta(object sender,
ManipulationDeltaRoutedEventArgs e)
{

x.Add(e.Position.X);

y.Add(e.Position.Y);

151

CHAPTER 5 © WINDOWS WITH TOUCH

Step 3: When the user manipulations are completed in the ManipulationCompleted

event, you want to use those X and Y positions and your mathematical formula to define
your custom gesture. For this instance, I wish to display the scalar distance covered by a
user while making a gesture on the canvas. Distance is calculated by the formula

distance = \/ (x —x1)2 + (y—y1)2 between points (x, y) and (x,, y,). The output is displayed

in Figure 5-12. The code for it is

private void customGestureButton ManipulationCompleted(object sender,
ManipulationCompletedRoutedEventArgs e)

152

//Converting lists to array

double[] allX = x.ToArray();

double[] allY = y.ToArray();

int length = x.Count;

double distance = 0;

for(int i = 2; i<length; i++)

{
distance += Math.Sqrt((Math.Pow(allX[i-1] - allX[i], 2)
+ Math.Pow(allY[i-1] - allY[i], 2)));

}

tapAction.Text = "Distance travelled is

"

+ distance;

//Clear All data to start a fresh gesture
x.Clear();
y.Clear();

CHAPTER 5 © WINDOWS WITH TOUCH

Gestures

Tap Me

Distance travelled is 107.357918697585

Figure 5-12. Output when a gesture is made on canvas

153

CHAPTER 5 © WINDOWS WITH TOUCH

Working with Multi-Touch

When you receive more than one touch input positions at the same time, it means you are
working with multi-touch. More than one input means more than one (x, y) coordinate
position at the same time. What do we use when we have more than one of similar data?
An array!

By now you are quite accustomed to RGB colors. To get three channels, you should
have three dimensions of inputs. For this example application, you shall assign the
following:

Red = (average of X positions / width of the canvas) * 255
Green = (average of Y positions / width of the canvas) * 255

Blue = (maximum Pythagorean distance in X and
Y / Pythagorean diagonal distance of the canvas) * 255

You are going to build a color picker using multi-touch. Figure 5-13 shows the front-
end XAML part of the application.

Figure 5-13. Front end of multi-touch example application

154

CHAPTER 5 © WINDOWS WITH TOUCH

Similar to touch input from a single input pointer as seen in the previous section, the
first step to using multi-touch is to know how many pointers are participating. To get this
information, in this example, you will use

IList<PointerPoint> p = e.GetIntermediatePoints(touchCanvas);

The PointerPoint class is defined in Windows .UI. Input. Each individual input has
its own identification, defined by PointerId, including input from the mouse pointer
and the surface pen. If you are working with a specific device, you may want to filter out
inputs from other PointerIds and you may want to filter out any PointerId duplicates in
sensitive applications. Let’s look at the C# implementation of your multi-touch example:

private void touchCanvas_PointerMoved(object sender, PointerRoutedEventArgs e)

{

}

IList<PointerPoints> p = e.GetIntermediatePoints(touchCanvas);
int count = p.Count;
double sumX = 0, sumY
if(count >= 2)

0, maxX = 0, maxY = 0;

for (int i = 0; i < count; i++)
{
PointerPoint current = p[i];
sumX += current.Position.X;
sumY += current.Position.Y;
maxX = maxX < current.Position.X ?
current.Position.X : maxX;
maxY = maxY < current.Position.Y ?
current.Position.Y : maxY;
}
double avgX = sumX / count;
double avgY = sumY / count;
byte R = Convert.ToByte(avgX * 255 / touchCanvas.
ActualWidth);
byte G = Convert.ToByte(avgY * 255 / touchCanvas.
ActualHeight);
byte B = Convert.ToByte(Math.Sqrt(Math.Pow(maxX, 2) + Math.
Pow(max¥, 2)) / Math.Sqrt(Math.Pow(touchCanvas.ActualWidth,
2) + Math.Pow(touchCanvas.ActualHeight, 2)));
touchColor.Fill = new SolidColorBrush(Windows.UI.Color.
FromArgb(255, R, G, B));

[l

title.Text = count.ToString() + " pointers";

Output from the multi-touch application is shown in Figure 5-14.

155

CHAPTER 5 © WINDOWS WITH TOUCH

2 pointers 2 pointers

-

Figure 5-14. Output from the multi-touch application

EXERCISES

Exercise 1: Build a UWP application to import an image and use pinch and zoom to
zoom in and out of the image.

Exercise 2: List the possible multi-touch gestures that come to your mind.

Exercise 3: Open the inking application you built previously and see what you can do
with multi-touch.

Exercise 4: Build photo-editing software using multi-touch gestures.

156

CHAPTER 6

Internet of Things (loT)

Before I talk about the Internet of Things, let’s talk about responsibility: your
responsibility as a developer and Microsoft’s responsibility to provide the necessary
tools. By now, you should know that application development requires four specific
actors, which I'm referring to as makers, builders, tools, and the application. The makers
are the architects and algorithm builders who design new concepts. The builders are

the application developers who use a powerful IDE like Visual Studio to get the makers’
work to a larger market. The tools are what the builder needs to quickly deliver those
solutions, the application being the end product. It is your responsibility to build
incredible solutions, keeping within the privacy and decency standards, while Microsoft’s
responsibility is to provide you the tools necessary to get the job done.

While the other chapters talk about how to use the hardware from a Windows PC,
tablets, phones, cameras, and so on, with this chapter you move on to hardware beyond
Windows devices. With IoT, you compile and use your own IoT hardware. Many of the
things discussed here like Azure IoT Hub and Azure IoT Edge are still in preview as I
am writing this chapter and things may be changed/improved, so I'll focus more on the
theoretical aspects.

Let’s take a moment to talk about the culture of this industry. We are in an industry
that does not stick with the past or the present. The sooner we can make a model obsolete
for something faster, more accurate, and improved, the better. This is great, and it
demonstrates one’s will to better oneself to reach new heights. If old is gold, we want to
get something more valuable than gold; we struggle every single day to get to priceless!

Introduction

When you wish to work with more data and hardware other than your Windows device,
you build an IoT application. Some examples of IoT applications are opening a garage
door as soon as your car comes in front of it, automatically switching on and off the lights
in your home, and so on. Or say you move from your study room to the kitchen to prepare
for dinner, and the music system stops when you walk out of your study and goes with
you as you walk to the kitchen. Or imagine a program for an university auditorium that
senses how many people are inside in order to adjust the temperature of the room. The
devices that participate in these scenarios make up the Internet of Things.

© Ayan Chatterjee 2017 157
A. Chatterjee, Building Apps for the Universal Windows Platform,
DOI 10.1007/978-1-4842-2629-2_6

CHAPTER 6 ' INTERNET OF THINGS (I0T)

A few decades ago, hardware was exclusive to big companies. As time went on, much
like open source software, open hardware was put in place to make hardware available
to everyone. However, programing for it then was incredibly complex. Arduino (an open
source electronic prototyping platform) was invented to make it simple. This was a huge
milestone in IoT history. The next notable milestone was the introduction of Raspberry Pi,
which brought down the price of these devices to a wallet-friendly amount (less than $50).

Windows IoT is a baby version of Windows 10. To get started with IoT development,
you will need a supported system on a chip (SoC). When you look at the differences
between a computer in a traditional sense and a SoC, a computer has a monitor or a
screen that displays some output, a keyboard and a mouse to get input, and a CPU. But a
SoC can be anywhere, for instance collecting data autonomously in Antarctica, on a flight,
in satellite, in military applications, and pushing the data in a cloud service like Azure to
process the data for information.

A SoC may or may not have screens displaying information to users. It’s completely
your decision based on the application you will be making. A SoC without an output
display is called headless and one with an output display is called headed.

Now let’s talk a bit about an IoT dev (development) board. Figure 6-1 shows a
Raspberry Pi IoT dev board. On first glance, you can see that there are a large number of
pins poking out, ports you may or may not recognize, and some bumps on a rectangular
shaped board. What do they do? These pins actually connect to various sensors and you
can read/write data to and from these sensors. IoT dev boards are definitely nothing new
in the world of computing but they are a growing market. The number of IoT dev boards
in use is rapidly increasing today. Therefore, instead of going into a lot of programing in
this chapter, I will focus more on what they are and how you can use them.

Figure 6-1. Raspberry PiloT dev board

158

CHAPTER 6 " INTERNET OF THINGS (I0T)

The bumps are electronic components that are part of the board’s circuit. If you wish
to learn more about how these circuits are built, I suggest taking an electronics course
to learn more about circuits, the associated physics, and components like transistors,
capacitors, resistors, and diodes.

Windows 10 loT Core

Now that you have purchased your IoT dev hardware, you need an operating system to run
it. That operating system is Windows 10 IoT Core and it is the central command of the IoT.

Before talking more about Windows 10 IoT Core, let’s discuss why you would want to
use it compared to other options like Linux. I'll try to keep an unbiased opinion but here
are some selling points:

Familiarity

Since you are reading this book and have read Chapters 1-5, I
can assume you are well familiar with the Windows Universal
Platform and the whole Windows ecosystem. The same
continues with Windows 10 IoT Core—all the concepts of
classes, structures, interface, and all of that C# syntax.

Simplicity

Writing your applications in a language like Visual C# is pretty
high level. If you do not recall what a high level language

is, it means it is closer to what we as people speak. Writing

assembly-level code can be avoided using Windows 10 IoT
Core.

On top of that, Windows 10 IoT Core allows remote
debugging. What does this mean? In your regular UWP
project, before you debug, you need to select the architecture
(ARM, x86 (32 bit), or x64 (64 bit)). Then you'll see a list of

all connected devices that support the particular selected
architecture including the local machine and even emulators
for the architecture. After that, you click the green button

to build and debug your application with breakpoints, line
by line execution, or whatever it is that you prefer to do in

the debugging process. The same concept carries over here.
With remote debugging, first you need to enter your IoT
device’s IP and port number for successful communication
to be established and then debug your application with
similar breakpoints and however you prefer to debug your
application.

159

http://dx.doi.org/10.1007/978-1-4842-2629-2_1
http://dx.doi.org/10.1007/978-1-4842-2629-2_5

CHAPTER 6 ' INTERNET OF THINGS (I0T)

e Reusability

Most of the code you have written for your UWP application
for desktop/mobile/holographic can be transferred to
Windows 10 IoT Core depending on the capabilities. The
inverse is also true. This means that it will be easier to write
an IoT application if you already have an UWP project and it
will be easier to create an UWP application if you have already
built an IoT application.

To read/write data from all those different pins and sensors requires a different kind
of API that you do not need if you are building an UWP project for a tablet or a phone. You
do not have these kinds of pins poking out of your phone. To accommodate this change,
IoT extensions for UWP apps are required. One of the most commonly used is GPIO
(General Purpose Input Qutput). GPIO is a generic pin that can be both an input and
an output depending on how you wish to use it. Think of it as a tiny USB drive where data
goes into your external hard drive and you can also read from your hard drive, but here it
can either read or write (one way) depending on how you want to use it.

To install Windows 10 IoT Core, you need to go to Windows Dashboard at
https://developer.microsoft.com/en-us/windows/iot/GetStarted, as shownin
Figure 6-2, select your board, and download and install Windows 10 IoT Core to the
microSD card you will use on your IoT dev board.

B Microsoft Technalogies Desunentation Besaces

Get Started

he setup and installation steps are different based on what hardware you have

Chaose your hardwars, instalation media, ang O verson.

@ Select your hardware
N e e chosse 8 device

Figure 6-2. Windows IoT on Windows Dev Ccenter

To create an IoT application, you create a new UWP project and add the IoT
extension to get access to those IoT APIs shown in Figure 6-3. GPIO classes, structures,
and enums are managed under the Windows .Devices.Gpio namespace. Figures 6-4
and 6-5 show how you can use them. I think you can figure out how to program an IoT
application; it’s like any other UWP application.

160

https://developer.microsoft.com/en-us/windows/iot/GetStarted

CHAPTER 6 " INTERNET OF THINGS (I0T)

o R T TP o tanch ke]
e G s | oo e et - Ak s | [FREABA L |
@ Ontag v e * W Lo Maching © B
& @ BcGOB slm g
g [T —, T SakenSokekon Exgerse V143 s
e Fikeves e S0 aps ookl 12 R TOomple Sowch iveral Winsowa P = B Soson VoTtoars 1 ot
P T ——
Wi Sl ! Mase: G Connacted Sarvces
10014 - 5 p procens
Lnatitibiatis VA General WA DS fon Uvueria Wi, 100141 U I
4 iversl 21 s q_
o - bt oty ety
Gone e R it P Mirssa RN ITGam timarsiWncomstiatiom
i Vi, Vol ek et Core try e i oot fr s
e -
G
¥ s [
PRy —
3 Facaagperavies
[et
Scbston Erpcre Taam Easomr
[-
F1
v ax
saomsetput bore
Bt o || cwmel

Figure 6-3. Adding an IoT extension to your UWP project

ﬂl loTExample - Microsoft Visual Studio
File Edit View Project Build Debug Team Tools Test Analyze Window Help

Q- B2 w9 -0 - Debug - x86 = P Llocal Machine = 30 - 5 [fE
kS
2
- [E=lloTExample = *zloTExample MainPage
§ 1 =using Windows.UI.Xaml.Controls;
% 2 _-I using Windows.Devices.Gpio;namespace IoTExample

3 {

4 [public sealed partial class MainPage : Page

5 | {

6 - public MainPage()

7 {

8 this.InitializeComponent();

9 var myGpio = GpioController.

10 -~ ¥ Equals

:; } } GetControllersAsync

GetDefault
GetDefaultAsync
ReferenceEquals

oo aal

Figure 6-4. Fetching the GPIO controller

161

CHAPTER 6 ' INTERNET OF THINGS (I0T)

Figure 6-5. Opening a GPIO pin

The number of pins is dependent on the IoT board you are using and the type/
number of sensors connected to it. You can also build an IoT application to control/
manage other connected IoT devices.

Let’s discuss data communication and how data is transferred. For binary data, the
leftmost end is the most significant bit (MSB) and the rightmost end is the least significant
bit (LSB). Why are they called so? Let’s consider the number 150, which in binary is
10010110.

Changing to MSB, 10010110 becomes 00010110, which is 22 in
decimal. The number decreased from 150 to 22 or by 85.33%.

Changing to LSB, 10010110 becomes 10010111, which is
151 in decimal. The number increased from 150 to 151 or by
0.667%.

You can see that how an accidental change in MSB can affect the data a lot. The
priority or significance of data increases from the leftmost to the rightmost bit. Cyclic
redundancy check (CRC) is an algorithm put in place to detect such accidental changes
to raw data being transferred. Data can be transferred in two ways: serial communication
and parallel communication. Depending on your port, you can perform (connect to and
transfer data) serial or parallel communication as necessary. If you have an IoT board,
I think you are ready to build applications to run on it.

loT on Microsoft Azure

In this section, I will talk about the range of services offered by Microsoft Azure. Of course,
Microsoft Azure offers a lot of services and I can’t cover everything in a single chapter so
here I will focus on those most relevant to IoT. I've talked about things; now let’s discuss
some of the Internet part. Let’s take the example of a traffic light controller.

162

CHAPTER 6 " INTERNET OF THINGS (I0T)

Scenario 1: Without Sensor

The traffic lights turn on and off at a particular scheduled time
(say every lane gets 5 minutes each). This gives cars in every
lane a fair and equal amount of time. Even if traffic from one
direction is heavy and it’s light in the other direction, both
lanes get equal time.

Scenario 2: IoT device with sensor but without Internet connectivity

Let’s say a near-infrared camera is connected to your IoT
board and you are making decisions to turn on/off traffic
lights based on a direction’s incoming traffic. The goal here is
to get everyone moving quickly to wherever they need to go.

Scenario 3: IoT device with sensor and Internet connectivity

Scenario 2 is pretty good for day-to-day activity. But with
Internet connectivity, you can connect your other IoT devices
in a network. By joining the cloud-connected IoT, your traffic
lights can be preprogrammed to change timing based on
machine learning algorithms and the expected traffic in the
next hour. On top of that, your IoT device can be prepared to
handle unexpected situations like accidents, disasters, VIP
traffic, and so on based on the design of your algorithm.

IoT Hub manages two-way communication from a device to a cloud service and
from the cloud service back to the device. With IoT Hub, you can also authenticate your
devices, manage connected devices, and perform other device management-related
tasks. The Azure IoT suite offers a range of services within Microsoft Azure for your IoT
devices. They are nothing you could not build yourself if you had the time to work on
them. In summary, you could say Azure IoT Suite is a collection of the most widely used
tasks. There are two main reasons why you need to collect data:

¢ For analytics and action

Analytics is analysis of data like the number of users per
day/week/month, the trend of use, the demographics of
people using an application, etc. An action is doing something
based on that data. Suppose your IoT device monitors the
room lights. Lights need to be turned on and off when the
owners are inside. But if your sensor detects some activity

in your home when you are on holiday/in the office, the IoT
device can alert the user or local authorities.

163

CHAPTER 6 ' INTERNET OF THINGS (I0T)

e For machine learning

Machine learning algorithms can use your sensors’ data in
real time or over a long period of time depending on how
computationally expensive your task is and the resources
allocated to your learning algorithm. I will cover learning
algorithms in Chapter 8, so for now, all you need to know is
that you can collect raw data from your IoT device, implement
a learning algorithm from the collected data, and make your
IoT device more intelligent gradually over time. To explore the
Azure IoT suite, visit www.azureiotsuite.com/.

Hitherto, I have covered the introductory details on Azure IoT Hub. However, not
all learning and fast decision making can occur in the cloud and this is where Azure
IoT Edge comes into play. Factories that use power tools and hazardous materials need
immediate responses, so the intelligence needs to run locally on the IoT devices. These
IoT devices executing intelligence locally are referred to as IoT Edge devices. Running
locally also means real-time decisions and low bandwidth costs. Azure IoT Edge uses
Azure IoT Hub for distribution of Microsoft’s own and third-party services to IoT Edge
devices.

All of them are backed by a combination of Azure Stream Analytics, Azure Machine
Learning, Azure Functions, and Cognitive Services. With a lot of data from various
devices flowing in, you need a real-time, cost effective, and detailed insight of your data.
Azure Stream Analytics (https://azure.microsoft.com/en-us/services/stream-
analytics/) does that. Azure Machine Learning (https://azure.microsoft.com/
en-us/services/machine-learning/) offers a range of machine learning algorithms like
regression analysis, clustering, and anomaly detection, and Machine Learning Studio
provides a visual studio where you can use drag and drop to build your workflow. Azure
Functions (https://azure.microsoft.com/en-us/services/functions/)let you
quickly and easily run and test small pieces of your code directly from your web browser.
Cognitive Services (https://azure.microsoft.com/en-us/services/cognitive-
services/) are a collection of intelligent algorithms like face detection, emotion
detection, and speech recognition presented as APIs for you to directly implement in your
application.

Microsoft Azure and all of these services discussed are proprietary to Microsoft and
to use them you need to have a subscription with Microsoft Azure. But why would you
want to use them? Let’s discuss emotion detection in Cognitive Services as an example. If
you were to go on your own route, you would need to first filter out and extract faces using
some algorithm like Haar-like Feature and the Gabor Filter, and then you would need
to build your own emotion-detection algorithm using information from facial features,
which is brilliant if you wish to learn and research algorithms. It can also be time-
consuming and has a risk of human error while building them. To avoid this and quickly
get to your solution, you can use all of these services.

164

http://dx.doi.org/10.1007/978-1-4842-2629-2_8
http://www.azureiotsuite.com/
https://azure.microsoft.com/en-us/services/stream-analytics/
https://azure.microsoft.com/en-us/services/stream-analytics/
https://azure.microsoft.com/en-us/services/machine-learning/
https://azure.microsoft.com/en-us/services/machine-learning/
https://azure.microsoft.com/en-us/services/functions/
https://azure.microsoft.com/en-us/services/cognitive-services/
https://azure.microsoft.com/en-us/services/cognitive-services/

CHAPTER 6 " INTERNET OF THINGS (I0T)

Introduction to OpenCV

If you have a firm grasp of what has been covered, you have come a long way. I have
talked about open hardware. Is there an open source collection of programs for various
algorithms? OpenCV is a computer vision and machine learning software library. Even
though OpenCV is older, like Azure IoT Suite, OpenCV consists of a collection of reusable
algorithms related to computer vision. They are nothing that you could not build yourself
ifyou had the time. Some of the common features that OpenCV incorporates are

¢ Image and video processing
e Object detection

e Facerecognition

e Image reconstruction

¢ 3D modelling

e Image editing

e Object tracking

The list goes on and on. The reason I have only introduced and not gone into
implementation with OpenCV is because of its depth of use and robustness in the world
of image processing. However, as I author this chapter, there is no collection of NuGet
packages for OpenCV, and incorporating them into IoT is incredibly complex. If you still
wish to learn more about OpenCYV, visit http://opencv.org/.

This chapter has been an introductory course into app development for the IoT. Now
Irecommend that you take the first step: connect your IoT device and start with the basics
like making lights blink and building a line-following robot.

165

http://opencv.org/

CHAPTER 7

Wearables

Previous chapters covered using Windows via the traditional mouse and keyboard
combo, touch gestures, and the IoT. Now let’s venture into wearable devices. Wearable
devices are devices you wear everyday-on your wrist as in fitness bands or your head as
in virtual, augmented, and mixed reality headsets. In other words, these devices attach

to your body. You will first look into 3D and how 3D works. After you have learned the
underlying principles and theories, we will discuss how to build holographic applications
using Visual Studio.

A few decades ago, if you wore something like a virtual reality, augmented reality, or
mixed reality headset and made pinching gestures on the street, people would have made
a movie about you and named you an advanced alien robot. But now we can suit up and
attach computers to our bodies. I don’t think Charles Babbage or even the great Alan
Turing imagined this possibility.

Microsoft HoloLens consists of several complex technologies and systems. It
took several creative minds to build it. Before diving into HoloLens app development,
however, let’s take a moment to understand what 3D is and how it works.

3D

It is important to understand the difference between spatial data and spectral data. You
will come across the term spatial while building HoloLens applications. Spatial data is the
geometry or x-y-z data in space or a function of (x, y, z) in a Cartesian coordinate system.
Spectral data refers to the function of a wavelength. To break it down into a much simpler
explanation, for a spherical ball, the spatial data refers to its position in space and its
shape containing a surface area of 4mr* where r is its radius. Spectral data are the digital
numbers emitted by the ball for different wavelengths (RGB for us) making it a red ball or
a blue ball or an orange ball.

If you remember the elementary aspects of 3D, a line is made by two points in space.
Three points or three lines make a surface in space (Figure 7-1). The surface has a normal
vector to know which side is pointing outward and which one is inward. So, for a closed
body (3D box) with height of 10, width of 5, depth of 2, and starting from (0, 0, 0) in a
triangular mesh, the data is as shown in Figure 7-2 and Table 7-1.

© Ayan Chatterjee 2017 167
A. Chatterjee, Building Apps for the Universal Windows Platform,
DOI 10.1007/978-1-4842-2629-2_7

CHAPTER 7 ' WEARABLES

Normal

Point 2

Point 3

Point 1

Figure 7-1. A triangular flat surface in space

//\\/

Figure 7-2. Triangular mesh of a 3D box

168

CHAPTER 7 " WEARABLES

Table 7-1. Triangular Mesh Data of a 3D Box

Points Normal
(0,0,2),(0,10,2),(5,0,2) Up
(0,10,2),(5,0,2), (5,10, 2) Up
(0,0,0),(0,0,2),(0,10,2) Side 1 (say right)
(0,0,0), (0,0,2), (0,10, 0) Side 1 (say right)
(0,0,0),(0,0,2),(0,10,2) Side 2
(0,0,0),(0,0,2),(0,10,0) Side 2
(0,0,0),(5,0,2),(5,10,2) Side 3
(0,0,0),(5,0,2),(5,10,0) Side 3
(0,0,0),(5,0,2),(5,0,0) Side 4
(0,0,2),(5,0,2),(5,0,0) Side 4
(0,0,0),(0, 10, 0), (5,0, 0) Down

(0,10,0), (5,0,0), (5,10, 0) Down

3D applications are built using this concept. File types like Wavefront Object (OBJ)
and others all store 3D model data in this way. In the real world, when a light source
emits radiance in different wavelengths, it is joined in with others emitted by other light
sources. That light travels through the atmosphere, and some of it is absorbed depending
on the concentration of gasses present in that particular region of the atmosphere at that
time. The remaining ones fall on a body (spatial data). Light then reflects, refracts, and
scatters, and the reflected light goes up to the atmosphere to be captured by a camera in
digital form or for our own eyes to see (spectral data).

What a 3D scene consists of is the environment (background and atmosphere),
players (objects in the scene), and an observer (camera or eye). Figure 7-3 shows a
window in Microsoft’s Paint 3D, released with Windows 10 Creators Update; Figure 7-4
shows a window in SolidWorks, an application used by a lot of engineers; and Figure 7-5
shows a window in Autodesk Maya, which is used by several animators. They are three
examples of a 3D modelling application.

169

CHAPTER 7 ' WEARABLES

1005, — —— /n + Aca coiee

I

Figure 7-3. Microsoft Paint 3D

i scummiones]t e e e ven ha ms e | Poar®

[Ela]sEEeBL

Feahors | Skt | Evbuate | Denipet sasw |
P —— T o
s mEiee e
B B bt L

P

shodel 5V | AT
Lerem 003m Eoie Fart

[auon)
[T ——

Figure 7-4. SolidWorks

170

CHAPTER 7 " WEARABLES

Figure 7-5. Autodesk Maya

The underlying physics and mathematics of these major applications and any other
developed in the future will remain the same. They are also used in the robotics industry.

A player or object is made up of a several mathematical equations. It may be a single
polygon or a complex combination of several polygons. They have materials and physical
properties. They can move in space, so for motion they will have some roll, pitch, and yaw
values for angular motion and x, y, and z directions for movement. Light sources have
intensity (how bright it is), position (where the light source is), elevation (how high it is
from the ground), and azimuth angle (the direction the light source is pointing to). The
camera or observer will also have a position, elevation, and azimuth angle. The angle(s)
will differ depending on whether it is a point light source, directional light source, or
some other. In a point source of light, the rays of light emit from one single point in
space. Similarly, a directional light source produces light rays coming in parallel from
one direction. In a nutshell, it represents the size and shape of the light-emitting object.
An advanced user may create an incredibly complex shape emitting light but for the
purposes of this book, you'll stick to the basics. The observer or camera will have some
properties for realistic rendering such as aperture, shutter speed, ISO, and so on. Let’s
verify this with a screenshot from Windows Holographic application shown in Figure 7-6.

171

CHAPTER 7 ' WEARABLES

Windows Holographic

Enable Simulation

g @ of

Position & Input

Body

x0 yaw: 0
y: 0

z0

Head
Default tracking

yaw: 0
pitch: 0

Left Hand: Inactive
Right Hand: In:

Figure 7-6. Information shown in the Windows Holographic application

172

CHAPTER 7 " WEARABLES

Rendering is creating a 2D image from 3D. It is basically ray tracing from sources of
light in the scene and it'll look pixel by pixel based on several factors such as the object’s
material properties, reflection, refraction, scattering, angle between source of light and
object as seen from the camera causing a Lambertian reflectance, and so on. It works
like this: light rays are first fired into space from light-emitting objects (the light source).
Sampling algorithms play a role here to select only a few light rays because you need to
think about the computational capabilities of your device. The light rays then strike the
3D objects and bounce back according to its material properties. The bounced-back
light comes to a sensor (camera) and you see the image formed on a screen (in this case,
a holographic device display). The more details you have about the physics of the scene
and the objects in it, the more realistic your rendering output, if you have the time to
render in detail.

Real Time

Real time occurs when there is no time difference between an action and a response.
To achieve true real time, the algorithm and the data needs to be ready even before the
user has pressed a button or created an action. What we look for is near real time, which
is close to the time it takes for eyelids to flicker. We wish to make our program run fast
enough that a user does not feel a sense of delay or even knows if something is processing
(i.e. At ~ 0). This near real-time experience makes a big difference in applications.
When working with UWP, especially HoloLens applications, test your application before
deploying it to the Store.

A deadline is the time when a program is expected to finish. There are three types
of real-time deadlines: hard, firm, and soft. Hard deadlines are the deadlines that,
when missed, create a total system failure; firm deadlines when missed are sometimes
tolerable; and missing a soft deadline results in a decline in the quality of service. In
other words, missing a soft, firm, and hard deadline results in not good, disastrous, and
catastrophic outcomes, respectively.

Developing For Microsoft HoloLens

To develop for HoloLens, the tools you need are Visual Studio with Windows 10 SDK,
HoloLens Emulator or the actual device, and Unity for 3D modelling. To clarify, Microsoft
HoloLens is the device by Microsoft among other devices from hardware manufacturers
employing Windows Holographic. Detailed documentation can be found at Microsoft’s
official HoloLens website at https://developer.microsoft.com/windows/holographic.

Now that you know what 3D is, you can develop for Microsoft HoloLens with ease.
Creating a new project is the same as creating a new UWP application (after all, the whole
point of UWP is to have everything in one solution). Adding HoloLens or any other Virtual
Reality headset can be added from the devices section in Windows Settings. Then you
follow the Windows Holographic application to set it up, as shown in Figures 7-7 through 7-9.
Note that Figure 7-8 requests the height of the person using it. These screenshot images
may look different on your machine by the time you read this book due to UI and other
changes. If you recall, in the 3D section, we talked about position, elevation, azimuth
angle, and where it is used.

173

https://developer.microsoft.com/windows/holographic

CHAPTER 7 ' WEARABLES

Prepare your room

make some space. Make sure you are in a safe place with no tripping
niture so you have lots of room to move around while using your

Figure 7-7. Preparing a room for wearable headsets in Windows Holographic

How tall are you?

Now, let's enter your height! This lets us calculate the distance between your eyes and the floor in VR.
This makes the experience in VR feel more realistic.

Figure 7-8. Elevation of observer request in Windows Holographic

174

CHAPTER 7 " WEARABLES

Point your headset forward

To establish floor height, hold headset at eye level in front of your PC. Press next while holding at eye
level.

Figure 7-9. Setting up the room in Windows Holographic

With regular apps, you move the mouse pointer to navigate the GUI With touch,
you make contact with the touch screen and (x, y) position points are sent accordingly.
And with HoloLens, navigation on the screen is done by tracking the person’s head
movement. With a mouse, click events are fired by left and right clicks. With touch, it is
taps and gestures. And with HoloLens, it is called air tap and it is a gesture the user makes
by pinching in the air (bringing two fingers closer to one another). You can take a closer
look at the gestures at the Microsoft support site at https://support.microsoft.com/
en-in/help/12644/hololens-use-gestures

The bloom gesture opens the Start menu in HoloLens. Gaze is the holographic
display replacement for the mouse. Gaze will allow you to click buttons and move objects
and holograms in that holographic space. Air tap is for selection. The gaze and other
gesture inputs in Microsoft HoloLens are converted into touch events. So, if your app
is built for touch inputs, you are already good to go with a 2D holographic application.
You do not need Unity 3D for a 2D holographic application. Let’s create a simple UWP
application like you normally do with a storyboard animation and see how it plays out on
HoloLens. The XAML and C# for it are as follows:

XAML

<Page
x:Class="HolographicDemo.MainPage"
xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation”
xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"

175

https://support.microsoft.com/en-in/help/12644/hololens-use-gestures
https://support.microsoft.com/en-in/help/12644/hololens-use-gestures

CHAPTER 7 ' WEARABLES

xmlns:local="using:HolographicDemo"
xmlns:d="http://schemas.microsoft.com/expression/blend/2008"
xmlns:mc="http://schemas.openxmlformats.org/markup-compatibility/2006"
mc:Ignorable="d">
<Page.Resources>
<Storyboard x:Name="RotateRectangle" AutoReverse="True"
RepeatBehavior="Forever">
<DoubleAnimationUsingKeyFrames EnableDependentAnimation="True"
Storyboard.TargetProperty="(FrameworkElement.Width)" Storyboard.
TargetName="rectangle">
<EasingDoubleKeyFrame KeyTime="0" Value="100"/>
<EasingDoubleKeyFrame KeyTime="0:0:0.5" Value="0"/>
</DoubleAnimationUsingKeyFrames>
</Storyboard>
</Page.Resources>
<Grid Background="Black" RequestedTheme="Dark">
<AppBarButton x:Name="rotateRectangleButton"
Click="rotateRectangleButton Click" HorizontalAlignment="Center"
Icon="Refresh" Label="Rotate Rectangle" Margin="0,0,0,100"
VerticalAlignment="Bottom"/>
<Rectangle x:Name="rectangle" Fill="#FFFF0606"
HorizontalAlignment="Center" Height="100" Margin="0,0,0,100"
Stroke="White" VerticalAlignment="Center" Width="100"
StrokeThickness="4"/>
</Grid>
</Page>

C#
using System;
using Windows.UI.Xaml;

using Windows.UI.Xaml.Controls;

namespace HolographicDemo

{
public sealed partial class MainPage : Page
{
public MainPage()
{
this.InitializeComponent();
}

private Boolean rectangleRotating { get; set; } = false;

private void rotateRectangleButton Click(object sender,
RoutedEventArgs e)

{

176

CHAPTER 7 " WEARABLES

if (rectangleRotating)

RotateRectangle.Stop();
rotateRectangleButton.Label = "Rotate Again";
rectangleRotating = false;

}

else

{
RotateRectangle.Begin();
rotateRectangleButton.Label = "Stop Rotation";
rectangleRotating = true;

}

It is a simple and straightforward application. Figure 7-10 shows how it looks on
a normal Windows 10 desktop or laptop and Figure 7-11 shows how it appears on a
HoloLens emulator.

HolograghicDemo 1 X

Figure 7-10. Simple UWP application

177

CHAPTER 7 ' WEARABLES

Figure 7-11. 2D UWP Holographic application

Voila! You can now prepare your UWP app for Microsoft HoloLens. For 3D, Unity
3D is the preferred application. To install Unity, simply download and install it from
the website along with Windows Store components, as shown in Figure 7-12. By now,
installations and the creation of new projects should be pretty familiar. Be sure to create a
3D project for HoloLens, as shown in Figure 7-13.

178

) Unity 5.6.0f3 Download Assistant
Choose Components

Choose which Unity components you want to download and install.

Unity 5.6.03

[[] Documentation

Standard Assets

[] Example Project

[[] Android Build Support

[[1i0S Build Support

[]tvOS Build Support

[[] Linux Build Support

%} Windows Store NET Scripting Back:

[[] Samsung TV Build Support

Windows Store IL2CPP Scripting Bac

v

CHAPTER 7 " WEARABLES

Install space required: 4.6GB

ctose >] [ot

X

Figure 7-12. Installing Unity 3D

HoloLens3D Demo

E\Apps

ayanPhD

] NEW +] OPEN

.\:m_.‘ Enable Unity Analytics (7)

Figure 7-13. Creating a new Unity 3D project

(@) wv accoumr

179

CHAPTER 7 ' WEARABLES

On creation of a new project, a couple of things need to be kept in mind. One of them
is spatial mapping. I have discussed what spatial dimension is, and you need to map the
environment to do things like place a 3D model like a cartoon character on a piece of
furniture. Without mapping the 3D environment (room) you'd be guessing the position
and might end up placing the object in an unrealistic way. To do this, you need to enable
it from project settings, as shown in Figure 7-14.

Figure 7-14. Adjusting player settings for HoloLens

Some common settings and preferences to be kept in mind are the following:

e Enable Windows Holographic under Virtual Reality SDK in Player
Settings.

e Enable device capabilities such as microphone and
InternetClientServer under Publishing Settings in Player Settings.

e Change quality settings from Fantastic to Fastest under Quality
Settings. This is hardware dependent and a personal call
depending on whether your application is computationally
expensive.

e Center the camera position and set clear flags to solid color black.
HoloLens considers black as transparent and if this is not done,
then the user won't be able to see the environment.

e Setbuild settings to Windows 10 and UWP SDK to D3D and
export your Visual Studio project, as shown in Figure 7-15.
Exporting Unity C# Projects in Build Settings will export for Visual
Studio and enable IntelliSense in your application.

CHAPTER 7 " WEARABLES

Q Unity 5.6.013 Personal (64bit) - Untitled - HoloLens3D Demao - Windows Store Apps* <DX11>
Eile Ed Build Settings

Figure 7-15. Unity 3D recommended build settings for HoloLens

You are now ready to build your scenes for Windows Holographic if you are familiar
with 3D modelling and basically familiar with Unity 3D. If not, I suggest that you learn
how to use Unity 3D first.

Deployment and Store Ready

Deploying HoloLens apps to the store is pretty straightforward. The first step, as with
a Windows Universal solution, is to create app packages for the store. This is shown in
Figures 7-16 and 7-17.

181

CHAPTER 7 ' WEARABLES

Associate App with the Store...
Create App Packages..

folll: 22

o x

&

Build

Rebuild

Deploy

Clean

View

Analyze

HockeyApp

Scope to This

New Solution Explorer View
Add

Store

Manage NuGet Packages...
Set as StartUp Project
Debug

Source Control

Cut

Remave

Rename

Unload Project

Open Folder in File Explorer
Design in Blend...

Properties

Ctrl+X

Del

Alt+Enter

Figure 7-16. Right-click the UWP project to initiate app package creation

182

CHAPTER 7 " WEARABLES

Create App Packages

m Create Your Packages

Do you want to build packages to upload to the Windows Store?

® Yes
No

Visual Studio will download the required information for the packages to be uploaded to the store. For more information, see Packaging
Universal Windows apps. You must sign into the Windows Store with a Microsoft account. You can greate an account

if you don't have one.

- e —
Previous Next | L Cancel

Figure 7-17. Building a package for the Store

Next, upload your package to your application’s dashboard on the Windows Store
developer dashboard. When you upload it, your UWP app that supports HoloLens will be

ticked. If unticked, check the checkbox and save. You should see everything as displayed
in Figure 7-18.

183

CHAPTER 7 ' WEARABLES

Device family availability

This table shows which packages will be offered to specific Windows 10 device families (and earlier 05
wersions, if applicable) in ranked order. If a device family's box is unchecked, new customers on that type of
device won't be able to acquire the app (though customers who already have the app can still use it, and will
get any updates you submit). Learn more

B Let Microsoft decide whether to make this app available to any future device families

Packages

VideoSkyDrive_2.6.0.0_x86_x64_arm_bundle.2ppxupload

v2.6.0.0,

VideoSkyDrive_2.5.0.0_AnyCPUappxupload
v350.0

VideoSkyDrive_1.0.1.2_AnyCPU.appuapload

VILOLE, neutral

PSC_Release_AnyCPUxap
VIOL0, arm

ed to this device family firs

Figure 7-18. Enabled for HoloLens on Windows Store

With these settings, submit your app for certification. After it passes certification,

your app will appear in the HoloLens store.

EXERCISES

Exercise 1: Take one of your favorite applications you have built, and optimize the 2D

application layout for a better Holographic experience.

Exercise 2: Build a basic 3D Windows Holographic application to implement audio

playing from one point in space.

Exercise 3: Build a 3D Windows Holographic application of your favorite cartoon
character and make it follow you around, jumping on objects on its path.

184

CHAPTER 8

Windows 10 for Advanced
Users

This will be a bit different but please bear with this paragraph. Imagine monkeys living

in a mostly unexplored forest where some trees are thicker and more comfortable to live
in than others. Scientist/explorer monkeys take the first jump into the unknown parts

of the forest in search of the thickest and most comfortable tree in the forest. Each team
of scientist monkeys has their own heading or direction of exploration-some search

by a planned route and some search via accidental luck. And whenever these scientist
monkeys find a tree more comfortable than the present tree where all the other monkeys
are, the scientist monkeys pass the information to the developer monkeys. It’s the job of
the developer monkeys to make a smooth transition for the other monkeys to follow from
the current tree to the more comfortable one.

In real life, researchers and scientists invent something new, and their job is to make
their hypothesis work correctly, no matter how much time it takes. But developers have a
responsibility to make their program fast and responsive enough to be distributed to the
general public. In this chapter, you will learn some of the advanced concepts of Windows 10.

Inking

Inking or pen inputs have taken a major place among the public, especially with the
Microsoft Surface brand of Windows devices. Before the arrival of the Windows 10
Anniversary update, many major applications used Canvas as their inking playground.
Every touch input to Canvas was handled by the ManipulationDelta method. But
recently InkCanvas has taken the lead when it comes to inking. For the first example, you
shall build a simple inking application. InkCanvas and InkToolbar controls have been
placed on the screen, as shown in Figure 8-1; the application is shown in Figure 8-2.

© Ayan Chatterjee 2017 185
A. Chatterjee, Building Apps for the Universal Windows Platform,
DOI 10.1007/978-1-4842-2629-2_8

CHAPTER 8 " WINDOWS 10 FOR ADVANCED USERS

Figure 8-2. Simple inking application

CHAPTER 8 © WINDOWS 10 FOR ADVANCED USERS

The XAML and code behind for this app follows:

XAML

<Page
x:Class="Inking.MainPage"
xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation”
xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
xmlns:local="using:Inking"
xmlns:d="http://schemas.microsoft.com/expression/blend/2008"
xmlns:mc="http://schemas.openxmlformats.org/markup-compatibility/2006"
mc:Ignorable="d">

<Grid Background="{ThemeResource ApplicationPageBackgroundThemeBrush}">
<InkCanvas x:Name="inkCanvas" Margin="0"/>
<InkToolbar x:Name="inkToolbar" TargetInkCanvas="{x:Bind inkCanvas}"
Margin="0" VerticalAlignment="Top" d:LayoutOverrides="Width"
HorizontalAlignment="Right"/>
</Grid>
</Page>

C#

using Windows.UI.Core;
using Windows.UI.Xaml.Controls;

namespace Inking

{
public sealed partial class MainPage : Page
{
public MainPage()
{
this.InitializeComponent();
inkCanvas.InkPresenter.InputDeviceTypes = CoreInputDeviceTypes.
Pen | CoreInputDeviceTypes.Touch | CoreInputDeviceTypes.Mouse;
}
}
}

This is all you need to create a basic inking application. For those of you using
previous versions of Visual Studio, you need to install the InkToolbar control separately
and add a reference to it in your Visual Studio Project to make it work. For those using
Visual Studio 2017, you need not worry about it.

187

CHAPTER 8 " WINDOWS 10 FOR ADVANCED USERS

Device-Specific Code

While the general idea of a universal platform makes things easier, each category of
device is unique. Mobile and ARM processors are designed for lightweight, low energy
applications. PCs and laptops can perform computationally expensive tasks. Similarly,
in your application you may want to write some device-specific code to make the most of
every device.

This can be achieved in two ways:

1. DeviceFamily-Type folder
2. DeviceFamily-Type file name

If you recall the scalable assets sections, you can use different optical scaling of the
same asset with

filename.scale-scalefactor.extension
Similarly, you can target several device families in UWP with
filename.DeviceFamily-type.extension

Presently, the device families available in Windows Universal are
e Universal device family
e Desktop device family
e Mobile device family
e IoT device family
e Xbox Live device family

For the demonstration, you shall be doing it in code behind by creating two XAML
pages and naming them MainPageDesktop and MainPageMobile for desktop and mobile
devices, respectively. The output is shown in Figure 8-3. Personally, I recommend
implementing this in the code behind because I find it is easier to customize when trying
to implement Windows 10 devices and version-specific layouts, or a change like an
implementation of a new UI for a page for a specific device family. Reverting to the old
version of the page is easier if an error occurs with the new page during runtime.

XAML (MainPageDesktop)

<Page
x:Class="DeviceSpecificDemo.MainPageDesktop"
xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation”
xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
xmlns:local="using:DeviceSpecificDemo"
xmlns:d="http://schemas.microsoft.com/expression/blend/2008"
xmlns:mc="http://schemas.openxmlformats.org/markup-compatibility/2006"
mc:Ignorable="d">

188

CHAPTER 8 © WINDOWS 10 FOR ADVANCED USERS

<Grid Background="{ThemeResource ApplicationPageBackgroundThemeBrush}">
<TextBlock Text="This is the Desktop version"
HorizontalAlignment="Center" VerticalAlignment="Bottom"
Margin="0,0,0,100" FontSize="20"/>
<Image Margin="0,100,0,150" Source="Assets/surfaceStudio.jpg"
Stretch="Uniform"/>

</Grid>

</Page>

XAML (MainPageMobile)

<Page
x:Class="DeviceSpecificDemo.MainPageMobile"
xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation”
xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
xmlns:local="using:DeviceSpecificDemo"
xmlns:d="http://schemas.microsoft.com/expression/blend/2008"
xmlns:mc="http://schemas.openxmlformats.org/markup-compatibility/2006"
mc:Ignorable="d">
<Grid Background="{ThemeResource ApplicationPageBackgroundThemeBrush}">
<TextBlock Text="This is the mobile version"
HorizontalAlignment="Center" Margin="0,120,0,0"/>
<Image Margin="0" Source="Assets/windowsPhone.jpg" Stretch="Uniform"
VerticalAlignment="Bottom"/>
</Grid>
</Page>

App.xaml.cs

using System;
using Windows.ApplicationModel;
using Windows.ApplicationModel.Activation;
using Windows.UI.Xaml;
using Windows.UI.Xaml.Controls;
using Windows.UI.Xaml.Navigation;
namespace DeviceSpecificDemo
{
sealed partial class App : Application
{
public App()
{

this.InitializeComponent();
this.Suspending += OnSuspending;
}

protected override void OnLaunched(LaunchActivatedEventArgs e)

{

189

CHAPTER 8 " WINDOWS 10 FOR ADVANCED USERS

Frame rootFrame = Window.Current.Content as Frame;
if (rootFrame == null)

{
rootFrame = new Frame();
rootFrame.NavigationFailed += OnNavigationFailed;
if (e.PreviousExecutionState == ApplicationExecutionState.
Terminated)
{
//T0DO: Load state from previously suspended application
}
Window.Current.Content = rootFrame;
}
if (e.PrelaunchActivated == false)
{
if (rootFrame.Content == null)
{
switch (Windows.System.Profile.AnalyticsInfo.
VersionInfo.DeviceFamily)
{
case "Windows.Desktop": //For Desktop Family
rootFrame.Navigate(typeof (MainPageDesktop),
e.Arguments);
break;
case "Wlindows.Mobile": //For Mobile Family
rootFrame.Navigate(typeof(MainPageMobile),
e.Arguments);
break;
default:
//1t is recommended to put a default in-case of
failure to detect device family or connected to
any other device family
break;
}
}
// Ensure the current window is active
Window.Current.Activate();
}
}
void OnNavigationFailed(object sender, NavigationFailedEventArgs e)
{
throw new Exception("Failed to load Page " + e.SourcePageType.
FullName);
}

190

CHAPTER 8 © WINDOWS 10 FOR ADVANCED USERS

private void OnSuspending(object sender, SuspendingEventArgs e)
{
var deferral = e.SuspendingOperation.GetDeferral();
deferral.Complete();

This is the mobile version

This is the Desktop version

Figure 8-3. Output of DeviceSpecificDemo application

App Protocols

When you type a web address in a browser, you start with http or https, which is the
hypertext transfer protocol and the s in https stands for secure. This is a protocol or set
of rules that governs the transfer of hypertext, be it a static or dynamic web page. Other
than that, mailto launches the default mail application with given parameters, fel makes a
phone call with default phone calling client application, and so on.

Apps can also contain protocols. For this example, you shall build a demo
application to call a Skype URI, as shown in Figures 8-4 and 8-5.

191

CHAPTER 8 " WINDOWS 10 FOR ADVANCED USERS

SkypeChatDemo

Skype Chat Demo

| Demo Used
-
% Send
Call User Message

Figure 8-4. Skype URI demo application

Calling over Skype

Are you sure you'd like to call DemoUser?

Figure 8-5. Response from Skype when the call button is pressed
192

CHAPTER 8 © WINDOWS 10 FOR ADVANCED USERS

The XAML and C# code for the application follow:

XAML

<Page
x:Class="SkypeChatDemo.MainPage"
xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation”
xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
xmlns:local="using: SkypeChatDemo"
xmlns:d="http://schemas.microsoft.com/expression/blend/2008"
xmlns:mc="http://schemas.openxmlformats.org/markup-compatibility/2006"
mc:Ignorable="d">

<Grid Background="{ThemeResource ApplicationPageBackgroundThemeBrush}">
<TextBlock x:Name="appTitle" HorizontalAlignment="Center"
Margin="0,10,0,0" TextWrapping="Wrap" Text="Skype Chat Demo"
VerticalAlignment="Top"/>
<TextBox x:Name="skypeName" Margin="0,0,0,100" TextWrapping="Wrap"
Text="" VerticalAlignment="Center" HorizontalAlignment="Center"
Width="200" PlaceholderText="Skype ID?"/>
<AppBarButton x:Name="skypeMessageButton" Click="skypeMessageButton_
Click" HorizontalAlignment="Stretch" Icon="Message" Label="Send
Message" Margin="100,0,0,20" VerticalAlignment="Bottom"/>
<AppBarButton x:Name="skypeCallButton" Click="skypeCallButton_
Click" HorizontalAlignment="Center" Icon="Phone" Label="Call User"
Margin="0,0,100,20" VerticalAlignment="Bottom"/>

</Grid>

</Page>

C#

using System;

using Windows.System;

using Windows.UI.Xaml;

using Windows.UI.Xaml.Controls;

namespace SkypeChatDemo
public sealed partial class MainPage : Page

{
public MainPage()
{
this.InitializeComponent();
}

private async void skypeCallButton Click(object sender,
RoutedEventArgs e)

{

193

CHAPTER 8 " WINDOWS 10 FOR ADVANCED USERS

if(skypeName.Text != "")

await Launcher.LaunchUriAsync(new Uri("skype:" + skypeName.
Text + "?call"));

}

private async void skypeMessageButton Click(object sender,
RoutedEventArgs e)

{
if (skypeName.Text != "")
await Launcher.LlaunchUriAsync(new Uri("skype:" + skypeName.
Text + "?chat"));
}
}

You too can have your own application’s protocol so other apps can launch from the
launcher. To create a new, unique protocol for your app, you can declare it through the
Declarations tab in the appxmanifest file of your solution (Figure 8-6).

Packngeappxmandest® € X
Application Visual Assets Capabilities Declarations Content URIs Packaging

& Declarations: Deseription:

.

Supported Declarations:

Figure 8-6. Declaring a protocol in appxmanifest

194

CHAPTER 8 © WINDOWS 10 FOR ADVANCED USERS

App-to-App Communication

How do we communicate? We humans communicate in two ways, through verbal
communication and non-verbal communication. Verbal communication includes
speaking and listening in a particular language, and non-verbal communication includes
sign language, emotional responses, and so on. A girl squeezing an adult’s little finger
(a.k.a. pinky) tightly is a sign of a heightened emotional response, which could be
excited, lonely, or afraid. In other words, it’s a signal that both the sender and the receiver
understand when passed through any medium sound waves, light waves, or transfer of
analog/digital data.

The exchange of data between apps is done in several ways. Some of them are

e Through the clipboard
e Through a shared contract

e Dragand drop

These go in pairs because you need to have a receiver for sender to send
something-copy and paste, ShareData, ReceiveData, and drag and drop. Let’s take
alook at an example (Figures 8-7 through 8-9) where you drag and drop an image
anywhere in the app window and copy it to a clipboard operation.

Figure 8-7. Drag operation being performed

195

CHAPTER 8 " WINDOWS 10 FOR ADVANCED USERS

Copy To
Clipboard

Figure 8-8. The image was successfully dropped into the application

| Untitled - Notepad

Eile Edit Format View Help
A few lines of text

rmm—'l:::rmm‘
. ‘!)

A few lines of text

Copy T
Clipboard

Figure 8-9. Text was copied to the clipboard and displayed on Notepad
196

XAML

<Page

CHAPTER 8 © WINDOWS 10 FOR ADVANCED USERS

x:Class="AppToAppCommunicationDemo.MainPage"
xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation”
xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
xmlns:local="using:AppToAppCommunicationDemo"
xmlns:d="http://schemas.microsoft.com/expression/blend/2008"

xmlns:mc=

"http://schemas.openxmlformats.org/markup-compatibility/2006"

mc:Ignorable="d">
<Grid Background="{ThemeResource ApplicationPageBackgroundThemeBrush}"
AllowDrop="True" DragOver="sharedImage DragOver" Drop="sharedImage Drop">
<Image x:Name="sharedImage" Margin="0,0,0,200"/>
<TextBox x:Name="someText" Margin="0,0,100,20" TextWrapping="Wrap"

Text=

"" VerticalAlignment="Bottom" Height="150"

PlaceholderText="write some text here"/>

<AppBarButton x:Name="clipboardCopy" Click="clipboardCopy Click"
HorizontalAlignment="Right" Icon="Copy" Label="Copy To Clipboard"
Margin="0,0,5,50" VerticalAlignment="Bottom"/>

</Grid>
</Page>

C#

using System;
using Windows
using Windows
using Windows
using Windows
using Windows

.ApplicationModel.DataTransfer;
.Storage;

.UI.Xaml;

.UI.Xaml.Controls;
.UI.Xaml.Media.Imaging;

namespace AppToAppCommunicationDemo

public sealed partial class MainPage : Page

{

public MainPage()

{

this.InitializeComponent();

}

private async void sharedImage Drop(object sender, DragEventArgs e)

{

var img = await e.DataView.GetStorageItemsAsync();
StorageFile imgFile = img[0] as StorageFile;
BitmapImage i = new BitmapImage();

i

.SetSource(await imgFile.OpenAsync(FileAccessMode.Read));

sharedImage.Source = i;

197

CHAPTER 8 " WINDOWS 10 FOR ADVANCED USERS

private void clipboardCopy Click(object sender, RoutedEventArgs e)

{
if(someText.Text.Length > 1)
{
DataPackage dataPackage = new DataPackage();
dataPackage.RequestedOperation = DataPackageOperation.Copy;
dataPackage.SetText(someText.Text);
Clipboard.SetContent(dataPackage);
}
}
private void sharedImage DragOver(object sender, DragEventArgs e)
{
e.AcceptedOperation = DataPackageOperation.Copy;
}

Asynchronous Operations

You know that a program executes one line at a time. But let’s say you are downloading a
Visual Studio update synchronously. What will happen is that UI and everything within
the application will freeze until the file is completely download to move forward with the
next line of the update program. To resolve these situations, asynchronous operations
were created. They make the program responsive, so the user doesn’t get scared that the
program is stuck and requires a reboot.

Asynchronous methods are denoted by the async keyword. This keyword is paired
with the await keyword for tasks that need to be done asynchronously. You saw async
and await in the previous section where await was used in an event wherever an
asynchronous operation took place; it specified that the block of code waited for an event.
It is generally used for a task. For this example, you shall perform two tasks to make them
wait 1000 and 500 milliseconds, respectively. The output is shown in Figure 8-10.

XAML

<Page
x:Class="AsynchronousOperationDemo.MainPage"
xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation”
xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
xmlns:local="using:AsynchronousOperationDemo"
xmlns:d="http://schemas.microsoft.com/expression/blend/2008"
xmlns:mc="http://schemas.openxmlformats.org/markup-compatibility/2006"
mc:Ignorable="d">
<Grid Background="{ThemeResource ApplicationPageBackgroundThemeBrush}">
<Grid.ColumnDefinitions>
<ColumnDefinition/>
<ColumnDefinition/>
</Grid.ColumnDefinitions>

198

CHAPTER 8 © WINDOWS 10 FOR ADVANCED USERS

<AppBarButton x:Name="task1" Click="task1_Click"
HorizontalAlignment="Center" Icon="Clock" Label="Task 1"
Margin="0,0,0,20" VerticalAlignment="Bottom"/>
<AppBarButton x:Name="task2" Click="task2_Click"
HorizontalAlignment="Center" Icon="Clock" Label="Task 2"
Margin="0,0,0,20" VerticalAlignment="Bottom" Grid.Column="1"/>
<TextBlock x:Name="resulti" Margin="10,0" TextWrapping="Wrap"
Text="" VerticalAlignment="Center" TextAlignment="Center"/»>
<TextBlock x:Name="result2" Margin="10,0" TextWrapping="Wrap"
Text="" VerticalAlignment="Center" Grid.Column="1"
TextAlignment="Center"/>
</Grid>
</Page>

C#

using System.Threading.Tasks;

using Windows.UI.Xaml;

using Windows.UI.Xaml.Controls;
namespace AsynchronousOperationDemo

public sealed partial class MainPage : Page

{
public MainPage()
this.InitializeComponent();
}
private async void taski Click(object sender, RoutedEventArgs e)
{
resulti.Text = "";
resulti.Text = await performTaski();
}
private async void task2 Click(object sender, RoutedEventArgs e)
{
result2.Text = "";
result2.Text = await performTask2();
}
private async Task<string> performTaski()
{
await Task.Delay(1000);
return "Task 1 Completed";
}
private async Task<string> performTask2()
{
await Task.Delay(500);
return "Task 2 Completed";
}
}

199

CHAPTER 8 " WINDOWS 10 FOR ADVANCED USERS

AsynchronousCOperationDemo

Task 1 Completed Task 2 Completed
Task 1 Task 2

Figure 8-10. Output of two asynchronously performed tasks

Multithreading and Parallel Processing

A thread is the smallest unit of programmed instructions managed by a scheduler. Since
this book is about simplicity, you are going to experience this concept with another
example. In this role, a scheduler is a director that manages budgets, your app is a team
leader, and all others (XAML, code behind, resource files, etc.) contribute to employees.
When you have purchased your device, a certain amount is donated to the scheduler
operating system. This is the hardware specification and it limits the maximum number
of resources available to all running programs (including Windows files running in the
background). The OS then attempts to make you run your code with the minimum
budget possible (single thread). Your app also needs to satisfy the user with a good
response time.

Squeezed by this dilemma, your app sometimes needs to request additional
employees (threads) to speed up tasks that can run independently. They are identified by
the Thread keyword.

200

CHAPTER 8 © WINDOWS 10 FOR ADVANCED USERS

Since threads are independent, their resources need to carefully watched. Consider
two employees in this example: Sam and Tim. They work in a warehouse of an Internet
gifting site. Sam is in charge of packing individual items in boxes and Tim is in charge
of providing gift wrapping paper. Sam cannot complete his job without the wrapping
paper, and Tim cannot provide the appropriate wrapping paper without knowing the
dimensions of the box Sam is using. Tim goes to Sam to ask for the dimensions, but
when he reached Sam’s office, Sam is busy with some other task, thereby halting Tim in
his workflow. In computing terms, this is referred to as a deadlock. These deadlocks can
be prevented by meeting the necessary conditions: mutual exclusion, hold and wait, no
preemption, and circular wait.

XAML

<Page
x:Class="MultithreadingDemo.MainPage"
xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation”
xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
xmlns:local="using:MultithreadingDemo"
xmlns:d="http://schemas.microsoft.com/expression/blend/2008"
xmlns:mc="http://schemas.openxmlformats.org/markup-compatibility/2006"
mc:Ignorable="d">
<Grid Background="{ThemeResource ApplicationPageBackgroundThemeBrush}">
<Grid.RowDefinitions>
<RowDefinition/>
<RowDefinition/>
<RowDefinition/>
</Grid.RowDefinitions>
<TextBox x:Name="totNums" Margin="20,0" TextWrapping="Wrap" Text=
VerticalAlignment="Center" PlaceholderText="Numbers to test with"/>
<AppBarButton x:Name="runButton" Click="runButton Click"
HorizontalAlignment="Center" Icon="Clock" Label="Execute" Margin="0"
Grid.Row="2" VerticalAlignment="Center"/>
<TextBlock x:Name="forText" HorizontalAlignment="Center"
Margin="0,0,0,50" Grid.Row="1" TextWrapping="Wrap" Text=
VerticalAlignment="Center"/>
<TextBlock x:Name="parforText" HorizontalAlignment="Center"
Margin="0,50,0,0" Grid.Row="1" TextWrapping="Wrap" Text=""
VerticalAlignment="Center"/>
</Grid>
</Page>

C#

using System;

using System.Threading.Tasks;
using Windows.UI.Xaml;

using Windows.UI.Xaml.Controls;

201

CHAPTER 8 " WINDOWS 10 FOR ADVANCED USERS

namespace MultithreadingDemo

{

202

public sealed partial class MainPage : Page

{

public MainPage()
{

}

private static int[] numbers;
private void runButton Click(object sender, RoutedEventArgs e)

{

this.InitializeComponent();

int n = Convert.ToInt32(totNums.Text);

numbers = new int[n];

Random rand = new Random();

for (int i = 0; 1 < n; i++)

{
numbers[i] = rand.Next(1, 100); //Generates random integer
between 1 and 100

}

DateTime timer = DateTime.UtcNow;

for (int i = 0; i < n; i++)

{

numbers[i]
numbers[i]

2 * numbers[i] + 3;
Convert.ToInt32((numbers[i] - 3) / 2);

}

DateTime finished = DateTime.Now;

TimeSpan timeTaken = finished - timer;

forText.Text = "For loop took " + timeTaken.Milliseconds + "
milliseconds.";

////Recreates the previous state of numbers array

numbers = new int[n];

for (int i = 0; i < n; i++)

{
numbers[i] = rand.Next(1, 100); //Generates random integer
between 1 and 100

}

timer = DateTime.UtcNow;
Parallel.For(0, n, i => {
numbers[i] = 2 * numbers[i] + 3;
numbers[i] = Convert.ToInt32((numbers[i] - 3) / 2);

1)

CHAPTER 8 © WINDOWS 10 FOR ADVANCED USERS

finished = DateTime.Now;

timeTaken = finished - timer;

parforText.Text = "Parallel for loop took " + timeTaken.
Milliseconds + " milliseconds.";

Three test run with different numbers of integers computing the equationy = 2x + 3
and reversing to the original by x = (y - 3)/2 return the output shown in Figure 8-11.

50000 | | [soooumd] 100000000

For loop took 0 milleaconds. For loop tock 3 mileconds. For loon 1ok 654 milizeconcs.

Parall for loop ook 20 millisecands. Parallel for koop 100k 2 miblecands Earaliel for |oop taok 390 miliseconds.

Figure 8-11. A parallel for loop versus a for loop in three iterations

The creation of threads is resource-consuming itself. In this case, a parallel for loop
takes more time as the content inside the for loop is basic mathematics and does not
require the use of multiple threads. It is advisable to use multithreading and parallel
processing if the process inside is a time- and resource-intensive task.

Beyond Physical Contact

You have learned about development using a mouse and keyboard, development with
touch inputs, and how to work with images. Now you’re going to learn one of the methods
to develop stuff that doesn’t require input through physical methods. Of course, face
detection, facial feature detection, emotion detection are all part of ongoing research and
improved algorithms are built continously. But let’s explore one of the methods.

You shall target human facial emotion detection because proper implementation of
it will be an advantage to your application and will add another dimension to your data:
customized feedback based on a user’s current emotion state, better targeted advertising,
and so on.

203

CHAPTER 8 " WINDOWS 10 FOR ADVANCED USERS

There are several approaches to facial emotion detection; you can take inputs
from two-dimensional images from geometric methods to a neural network to
three-dimensional recognition using Microsoft Kinect. The Viola Jones object detection
framework is quite good at facial feature extraction, namely the eyes, nose, and mouth.
Once you have extracted the facial features, you may proceed with your own algorithm to
detect emotion. Here, I shall discuss one way to do it.

The human mouth consists of the upper lip, a mouth opening, and the lower lip.
Here you shall be taking the intensities of the image and its geometric features. After
cropping the mouth region, you shall see that by taking the pixel information for every
column, there occurs a local minimum (one in case of a closed mouth, and more than
one in case of an open mouth) between the upper and lower lip, as demonstrated in
Figures 8-12 through 8-15. This occurs on every column even if the right side of the face
has been exposed to more light than the left or vice versa.

Figure 8-12. An extracted mouth region

Pixal Valus

Column

Figure 8-13. Values of every column

204

CHAPTER 8 © WINDOWS 10 FOR ADVANCED USERS

Calumn

8

Wakies adjusted with mean
g

1 1 1 1 1 1
o w0 0 0 a0 50 & 0 & ®
Calumn

Figure 8-15. Values of every column with adjusted mean

In Figure 8-15, you can see the steep dip (minima) around the center of the mouth.
Similarly, the detection and implementation of your own algorithm can take your
application to another level.

205

CHAPTER 8 " WINDOWS 10 FOR ADVANCED USERS

App Intelligence

Previously, I have discussed supervised and unsupervised methods of machine learning
in short. Let’s explore this deeper in this section. You will build an application that needs
to know a user better over time.

Let’s build an intelligent application for teens that gives a mathematics problem
every day, a “problem of the day” kind of thing. The app needs to understand an
individual teen’s math level. To do this, it needs some data to judge. The program
contains the following parts: rnd is a random number between the upper and lower
limit; ans is the expected result; firstNumber and secondNumber are two text boxes that
store the first and second number, respectively; symbol is a text block; and pageTitle is
another text block that shows the question number.

Addition

private void addition()
{
numl = rnd.Next(1limit,ulimit);
num2 = rnd.Next(1limit,ulimit);
ans = numl + num2;
firstNumber.Text = numi.ToString();
secondNumber.Text = num2.ToString();

symboll.Text = "+";
pageTitle.Text = "Question

+ (progressRecord.Value + 1).ToString();

Subtraction

private void subtraction()

{

numl = rnd.Next(1limit,ulimit);
num2 = rnd.Next(1limit,ulimit);

ans = numl - num2;

firstNumber.Text = numl.ToString();
secondNumber.Text = num2.ToString();

symboll.Text = "-";
pageTitle.Text = "Question

+ (progressRecord.Value + 1).ToString();

Multiplication

private void multiplication()

{
numl = rnd.Next(1limit,ulimit);
num2 = rnd.Next(1limit,ulimit);
ans = numl * num2;

206

CHAPTER 8 © WINDOWS 10 FOR ADVANCED USERS

firstNumber.Text = numi.ToString();
secondNumber.Text = num2.ToString();
symbol1l.Text = "X";

pageTitle.Text = "Question

+ (progressRecord.Value + 1).ToString();

Division

private void division()
{
numl = rnd.Next(1limit,ulimit);
num2 = rnd.Next(1limit,ulimit);
ans = numl / num2;
firstNumber.Text = numi.ToString();
secondNumber.Text = num2.ToString();
symbol1l.Text = "/";
pageTitle.Text = "Question " + (progressRecord.Value + 1).ToString() +
": Answer upto 2 decimal places";

Percentage

private void percentage()

{
numl = rnd.Next(1limit,ulimit);
if (lastNo == 1 || lastNo == 2)
{
num2 = rnd.Next(1,5) * 20;
else if (lastNo == 2)
{
num2 = rnd.Next(1, 9) * 10;
}
else
{
num2 = rnd.Next(1, 99);
}
ans = numl * num2 / 100;
firstNumber.Text = num2.ToString() + "%";
secondNumber.Text = numl.ToString();
symbol1l.Text = "of";
pageTitle.Text = "Question " + (progressRecord.Value + 1).ToString() +
": Answer upto 2 decimal places";
}

207

CHAPTER 8 " WINDOWS 10 FOR ADVANCED USERS

Estimation

private void estimation()

{

numl = rnd.Next(1limit,ulimit);

num2 = rnd.Next(1,1limit) * 10;

firstNumber.Text = numi.ToString();

secondNumber.Text = num2.ToString() + "s";

symboll.Text = "to the nearest";

double nhigh = Convert.ToInt32(Math.Ceiling((double)numl / num2)*num2);
double nlow = Convert.ToInt32((double)Math.Flooxr(numi / num2)*num2);
ans = (nhigh - numi) <= (numl - nlow) ? nhigh : nlow;

pageTitle.Text = "Question " + (progressRecord.Value + 1).ToString();

Discounting

private void discounting()

{

208

numl = rnd.Next(1limit,ulimit);
if (lastNo == 1 || lastNo == 2)

{
num2 = rnd.Next(1, 5) * 20;
}
else if (lastNo == 2)
{
num2 = rnd.Next(1, 9) * 10;
}
else
{
num2 = rnd.Next(1, 99);
}

no/n

firstNumber.Text = num2.ToString() + "%";

secondNumber.Text = numi.ToString();

symbol1l.Text = "off";

ans = numl - (numl * num2 / 100);

pageTitle.Text = "Question " + (progressRecord.Value + 1).ToString() +

: Answer upto 2 decimal places”;

CHAPTER 8 © WINDOWS 10 FOR ADVANCED USERS

Note that rnd is of the Random class, num1 is a randomly generated number, and num2
is the second randomly generated number between the lower and upper limits (called
11imit and ulimit, respectively). The result can be checked by matching the user
inputted result with the correct result. These are some of the possibilities to make your
application better. The variable for each mathematical section is the range of values a
user is comfortable with. For instance, someone may face difficulty multiplying three-
digit numbers while another person may find it easy. So, for the first couple of days the
app tries to vary the range of inputs and collects the users’ performance data. Once that
is done, your algorithm must segment the data into two categories, satisfactory (80%
success rate or higher) and unsatisfactory, to establish a clear boundary. The specific
algorithm you use in your application is purely your own application’s design. You may
choose to start from day 1 with an unsupervised approach or throw in random limits and
proceed with a supervised approach once you have an ample amount of data to train
your app.

A very simple unsupervised clustering algorithm is k-means. K-means clustering
aims to maximize the distance between two cluster means while minimizing the distance
between each sampled data and a single cluster mean with each iteration. For execution
of a standard k-means, we generally consider Euclidian distance and k clusters, giving the
number of cluster means.

The execution of the algorithm starts by sampling k data units from the whole
population (whole data). These are marked as mean () of the cluster. All the other data
are then mapped into k clusters by computing their distance from the means as minimize
(1 - Data). This is the first iteration of the algorithm. For the second iteration, the means
of the clustered classes are taken as an input mean for the iteration. The algorithm then
continues for a predefined N number of iterations.

To illustrate this with an example, let’s take a look at an examination grading system.
Student performance in Table 8-1 shows the actual marks earned by 10 students on a
scale of 100. If they were to be linearly scaled such that the maximum mark achieved by
the group gets scaled up to 100 and then is divided into grades A, B, and C such that A is
greater than or equal to 75, B is between 40 and 75, and C is below 40, then 5 students get
a grade of A. But with k-means clustering, only 2 students get a grade of A with centroids
at 77, 61.75, and 22.5 of the original student performance scores. So, when a new student
comes with a performance mark of 75, the student falls under

Minimum of (77-75, 75-61.75, 75-22.5)

=Minimum of (2, 13.25, 52.5) or the centroid 77 is the closest,
meaning the student gets a grade A.

209

CHAPTER 8 " WINDOWS 10 FOR ADVANCED USERS

Table 8-1. Comparison of Two Marking Models, Linearly Scaled and K-Means Clustering,
with Centroids at 77, 61.75, and 22.5

Student Grade
Performance Scaled K-Means
16 20-C

79 100-A A
31 39-C C
53 67-B B
17 22-C C
60 76-A B
26 33-C C
65 82-A B
69 87-A B
75 95-A A

This is all well and good. But one day the class decides to skip the examination,
so they all end up with the same score (0, as shown in Table 8-2). On a linearly scaled
marking model, all the students wind up with a 100. And on a k-means clustering model,
all the students wind up receiving more than one grade, which we know is not feasible.
Even if a new student comes and scores a 20, the new student will still end up with all
three grades as minimum of (20-0, 20-0, 20-0) are the same. The marking model can
therefore, in this situation, flag the examination with k-means clustering.

Table 8-2. Comparison of Two Marking Models, Linearly Scaled and K-Means Clustering,
with Centroids at 0, 0, and 0

Student Grade
Performance Scaled K-Means
0 100-A A,B,C
0 100-A A,B,C
0 100-A A,B,C
0 100-A A,B,C
0 100-A A,B,C
0 100-A A,B,C
0 100-A A,B,C
0 100-A A, B, C
0 100-A A,B,C
0 100-A A,B,C

210

CHAPTER 8 © WINDOWS 10 FOR ADVANCED USERS

Machine learning (supervised, unsupervised, or semi-supervised) is used today
to make applications more intelligent. Semi-supervised is where only a part of the
population to be used for training is labelled. A use that you may recognize is in fitness
bands. Such algorithm constantly collects and trains your data to determine and cluster
the distance and height differences between walking, running, climbing stairs, and other
activities.

EXERCISES

Exercise 1: Build an inking application for a mobile device and a traditional laptop/
desktop without touch. How would you optimize your controls for a touch screen and
on a laptop where the user is drawing using a trackpad?

Exercise 2: Using an asynchronous task, fetch images from Bing’s image search.
Exercise 3: Build two applications, a sender and a receiver, to transfer an image file.
Exercise 4: Implement a protocol for your application.

Exercise 5: Once you have grasped the concepts well, take a sound file of people
conversing in a language you do not understand as input, and cluster it into different
sound waves in spatial and frequency domains to see if you can extract phrases of a
language.

211

CHAPTER 9

Cross Platform with Xamarin/

People say that the sky’s the limit. You are going to touch the sky! You are no longer
burdened by the questions of where you should begin or where the market is trending.
No matter which mobile operating system is dominating the market, your app has
reached it already.

Xamarin is owned by Microsoft (as I am authoring this book) and is headquartered
in California, USA. Xamarin is the name of the company and also their product (a cross-
platform development platform). Of course, as company names go, Xamarin also has a
company type attached to it such as Xamarin Inc., Xamarin Ltd., and so on depending on
the laws of the countries where branches of the company are located and the type of work
(main objectives of the company) the country branch handles.

Construction professionals build buildings, but it is the responsibility of an architect
to design a masterpiece. When working with cross-platform development (or even simple
UWP for that matter), I strongly recommend that you not fuss about which programing
language to use or start building right away. What you are doing takes precedence over
how you are going to implement it. Brainstorming sessions between you and your team
prior to designing the architecture are very important.

Cross-platform development places several new challenges on your application’s
architecture. One such example is the way people/users/consumers have adapted to an
operating system’s experience. In my opinion, Macintosh users are used to a single mouse
button click rather than three (left, right, scroll wheel) on Windows. Linux users are
comparatively more relaxed using a command-line interface than Windows or Macintosh
users.

Think about your mouse and keyboard. For a right-handed person, the mouse is
placed on the right side of the keyboard. The experience for a left-handed person is
shown in Figure 9-1.

© Ayan Chatterjee 2017 213
A. Chatterjee, Building Apps for the Universal Windows Platform,
DOI 10.1007/978-1-4842-2629-2_9

CHAPTER 9 " CROSS PLATFORM WITH XAMARIN

(a)

left mouse button trigger (C)

0 O

Figure 9-1. Mouse control for a right-handed user (a) and possible mouse controls for a
left-handed user (b and c)

You can imagine the hurdles for a left-handed user to overcome if the left and right
mouse clicks are suddenly switched towards and far away from the keyboard. These are
some of the aspects to keep in mind when developing cross-platform applications. Your
application must be built to fit into someone’s life naturally.

Xamarin Architecture

With Xamarin, your application’s architecture is divided into shared elements and
platform-specific elements (Figure 9-2). The shared elements are the business logic, data
layers, service access layers; all of the compatible NuGet packages that you may have
used in UWP remain. The platform-specific elements are the UI elements, application
layer, metadata, and things specific to a platform.

Cross-Platform Development

‘Windows i0S macOS tvOS Android

Shared Elements

Figure 9-2. Cross-platform development application architecture

214

CHAPTER 9 * CROSS PLATFORM WITH XAMARIN

Installing in Visual Studio

Installing Xamarin in Visual Studio is a straightforward process. All you need to do during
your Visual Studio installation is select the Xamarin checkbox and everything will be
installed for you. Figure 9-3 shows the installation options in Visual Studio 2017. Apart
from Xamarin in Visual Studio, you also have an option to install it for your PC or your
Mac as a standalone from Xamarin’s website.

Iastalling « Visusl Sndo Prodessianal 2017 [15026228.4)
Workioads Individual components Language packs

Summary
ficesSharePeint development "
Coeate Ofize 4a ShanePont ued-ivg, ShantPoint salutions snd * Visual Studio core editor
WETO addeing uting CF, VE, and JavaSerpe. ; G
ddeing uting O, VE, and Javalerp » Universal Windows Platform de...

» Mobile development wath NET
Minhille & camsing (%} ~ Garne development with Unity
Mabile gevelopment with NET Inity
Sisls ross-plackeem spplications for (05, dndesid or Wiedows aste 20 o it ity 8 poretriel crots-patfiem
g Xamace,

Busld Android, 05 ancd WP apps waing Tooh for Apache Cordova, Buld cross-plathrm application for 105, Ancecicd or Wirdow

g €

Whaitile cevelopment with lavafeript | = Mobile devekopment with Cr-

by, Garon develpraent with Co =
G2 e the ll pmt GG 5 50 pcesionsl gous powersd by
Dty Uneadl, o Cocosld
Otieer Tootsets [3)

Location

aprogram

Figure 9-3. Installing Xamarin using Visual Studio Installer

If you recall, I covered the Windows 8 family of solutions where one universal
solution was divided into several individual projects (phone, desktop, etc.) and they
had a shared code project. Take a look at Figure 9-4; if you have grasped the previously
discussed topics, then you are already aware of how cross-platform development works
with Xamarin, apart from slight changes in development, deployment, and release. There
are individual projects for i0S, Android, and UWP with one project for shared code.

215

CHAPTER 9 " CROSS PLATFORM WITH XAMARIN

Solution Explorer

CrossPlatformDemo.Droid
CrossPlatformDemo.i0S
CrossPlatformDemo.UWP (Universal Windows)

Connected Services

M Properties

*8 References

AainPage.xaml
.appxmanifest
neric.png
project.json
™4 slideout.png
=1 Windows_TemporaryKey.pfx

Team E»

Figure 9-4. A cross-platform Xamarin solution in Visual Studio 2017

Xamarin for i0S and macQ0S

macOS and iOS are Apple’s desktop and mobile operating systems, respectively. Before
going into details with Xamarin, let’s first explore how applications are built in Apple’s
native development environment, Xcode. Swift and Objective-C are the programming
languages used in Xcode (Swift is relatively new). You will first dive into iOS app
development using Apple’s native Xcode and then move to Xamarin to compare how
similar they are.

Xcode is a development IDE (integrated development environment) for Apple’s
family of operating systems. To install Xcode on your Mac, all you need to do is go into the
Mac App Store and install Xcode like any regular app and everything’s automatically done
for you. Figure 9-5 shows the home page of Xcode where you can see the following three
options presented to you on the left-hand side:

e The Playground is where you get to code and see the output
in real time as you are programing. It is best used to quickly
implement and test a piece of code without actually going
through the process of creating a new project.

e You can create a new Xcode project from scratch using project
templates for various platforms.

¢ You can open an existing project from a repository.

216

CHAPTER 9 * CROSS PLATFORM WITH XAMARIN

% Xcode File Edit View Find Navigate Editor Product Debug Source Control Window Help

No Recent Projects

Welcome to Xcode

Get started with a playground
. Explore new ideas quickly and easily.

~ Create a new Xcode project
Create an app for iPhone, BPad, Moe, Apple Watch or Apple TV.

#1 Check out an existing project
4 Start working on something from an SCM repasitory.

Open anather project...

Figure 9-5. Xcode home page on macOS

For your purposes, you will create a new project because you wish to be familiar with
the iOS app development process in order to quickly grasp the concepts used in cross-
platform development with Xamarin. When you click the Create a new Xcode project
option, the screen shown in Figure 9-6 opens up with various project templates for iOS,
watchOS, tvOS, macOS, or cross-platform (if you wish to build an app for both iOS and
macOS platforms in one project).

217

CHAPTER 9 " CROSS PLATFORM WITH XAMARIN

& Xeode Fle Edt View Find Navigatn Editor Product Detwg Source Control Window Help § Fa %) TeddSem Q &
L] » o
o= Crooe 3 tamplace for your new project: D e
[a
Apaieatin
1 ¥ -
Sirgle Vi Gama [T — uge-Based Tabted
Anghcation appicaton Appication Asghcation
Stcker Pack Mprige
Appication Appication
Framesth & Libraty
=
7
«“ & X
Cocon Touch Cocon Tash Ml Library
Frarower Static Ubrary
Cane —
D
[Coomn oGl e
3 U Tt Cane Clans - 4 i
[y U Teas Cane Clans - & siais
BB crciererneg vt e

99- 00 AN

Figure 9-6. Xcode project templates for iOS

You are now presented with some project templates, single view application being
the simplest one because it’s a single page. Some of the others are master-detail (like the
Settings app), page-based (like the iOS home page itself), and tabbed application (like
a click app with tabs for world clock, alarm, bedtime, stopwatch, and timer). You can
start off with a single view application and add more views (pages) and arrange them
as master-detail, tabbed, or any other, and even make them nested or add your own
transition effects.

Let’s create a new single view application, as shown in Figure 9-7. You may wonder
about Core Data. You can use Core Data to locally store data as you would do with a
database, and you can use standard Objective-C or Swift code to perform operations like
fetch requests. By now, unit tests and UI tests should be familiar to you. To learn more
about Core Data and how to use it in your applications, detailed documentation can be
found on the Apple Developer website (https://developer.apple.com/reference/
coredata).

218

https://developer.apple.com/reference/coredata
https://developer.apple.com/reference/coredata

CHAPTER 9 * CROSS PLATFORM WITH XAMARIN

L3 Fle Edt View Find Navigste Edilor Product Detvg Source Control Windaw Help. 3 F A w0 Teddtem O &
m it =

O ascE=D|E Choose opeions for your new project: De

Prosuct Name: (080eme
Teww A mcount..
Organization Mams: Agin Creterjen

Orgarisation icmatilier: | Back

Langusge: St B No Selection
Donosss Wnivarsal B
wes Com Data

1 ke Uik Tesss
1 ke U1 Teuts

Cancel erevews (R
DO&o

[@ ook thse - cocme

Ul Tont ans Clann - 4 coss

et 4 o b
Unit Toas Cane Clans - 4 sinis
Frclemerang 2 e

Figure 9-7. Creating a new iOS project

If you recall the components of the solution covered in previous chapters, the
project settings shown in Figure 9-8 should look familiar to you. They consist of identity
information, signing information for developer identification, minimum target version,
supported orientations, device capabilities, and so on.

§ Mcodo Fle Edt View Find Nadgate Eior Produst Detwg Source Control Windiw Help $ T UG TweddGem QB
L B B T rhlourne: ety | Tocs a1 &30 aen E s OO0

- 0 osoems (.
B O Aoameres Gwers Cusbiffes ReswcoTgs ba BelSeegs BadPheaes BuliRues ey sad Tyme
sams 108Dems
+ e Ovwgits it ety o
Ve et N =
“"“"'"“": Dy M Pl Pt AlsersiganCidsshasat
An e e
Surele kester Beek Q1D
Laanchicrssnisrysoen Otbemsmnteprd O
T Vereen 10
e [ermy-e—
* . GSDemeTents i
» Gebemelrtent L E R -
o Pk Orgasrian Sye Cratlee
T - e
P farsage
o ing S B
204 perreL werm 4z az
6 whagires
 Dspoynert et
Depiagmert Targan -]
Devkes Lveisat B
[P]
Ueves Orieraaen @ Feees
Upine e DoO®o
O Laroicipe Lot
B Larcrcape Rign Gsona Tauch Dlass - 4 Cocos.
frarylion
S B Sy ot B
Hide iatum et U Tost Ean Cla - 4.chss
Brabe fa seroer: | T ey
g toons and Luunc Images
Unit Toas o Clans - sl
Sepions Seurtn kopsens Moy &

Figure 9-8. iOS project settings

219

CHAPTER 9 " CROSS PLATFORM WITH XAMARIN

Let’s take a deeper look at Figure 9-8 and explore the UL The left side (known as
the Navigator pane) contains your projects files and folders. The central area is your
workspace where whatever you are focusing on opens up, such as the interface builder
when you are working on your storyboard, the editor when you are working on your Swift
or Objective-C code, and so on. To the right (known as the Utility pane), you have your
preferences and asset catalog. You can show or hide these sections via the three view
buttons on the top right. And beside the view buttons to the left are the editors: Standard
Editor, Assistant Editor, and Version Editor.

The Standard Editor is the default and is what you are seeing. The Assistant Editor
will split the window into two and simultaneously show you the window that is most
suitable for your primary work document. To understand this concept from a UWP
perspective, if you are working on a XAML front end, the Assistant Editor will split the
window and open the relevant code behind the C# document. The Version Editor allows
you to switch and review different versions of your file and you can do things like go back
to an earlier version of a swift file, view changes you have made right from the start, when
and who made changes to your code if connected to a repository, and so on.

Moving on with the development process, let’s assess assets, as shown in Figure 9-9.

M Xcode Fle Edt View Find Navigste Editoe Product Detwg Source Control Windew Help $ F A ONGY TeeddTem G @
P e —— 580 iy | Toc 1 30 s A [l =][=)

Bl 8 G A & B o B [¢ 0 b omem) i 08w i Anssscens) dppeon

Apsicen e

e

Speight - 05 18

et Setiiga - 0550
S

#homs Spaticet 1Prone anc
o570 o371
acet eapt

e ot

[@ oo s o

=)
i
H
¥

H

Foa seckgn Pad hpp]
0570 5 758 s E U Ties Cana Class 4t
oo [rt | 1 bty

Show Sicing | &

Figure 9-9. Assets for an iOS project

Similar to UWP, iOS apps support scalable assets. The syntax compared to UWP is
shown in the following examples:
Example 1: 100% (original size)

UWP: filename.scale-100.fileextension
i0S: filename@1x.fileextension

220

CHAPTER 9 * CROSS PLATFORM WITH XAMARIN

Example 2: 200% (scaled up)

UWP: filename.scale-200.fileextenstion
i0S: filename@2x.fileextenstion

To summarize, the iOS scalable asset syntax is
filename@scale.fileextenstion

Plist or property list (Figure 9-10) is similar to the manifest file for UWP applications.
It specifies application details, device family, OS version details, the application’s desired
orientations, launch image, capabilities, and so on. It is a key-value pair list containing
keys that are specific to the types of systems: i0S, macOS, watchOS, cocoa, core
foundation, and app extensions like a notification widget.

% Edt View Find Navigatn Editor Product Detwg Source Control Windaw Help i T d mA TweddTem Q&

SEXTOUTAILE NAME
$PRODUCT BUNDLE IOENTIFER;

Figure 9-10. iOS project property list

This raises a very crucial point. If you are new to this and have come across content
from other sources that cover keyboard shortcuts to all kinds of menus, just ignore that.
Learning is a process and such shortcuts should come naturally after you are familiar
with the UI components. It’s just like moving to a new city. At first, you use a maps
application and try to stay on major roads. Once you get used the city, you learn to take
shortcuts through alleys and narrow paths to get to your destination faster.

Now that you have set up a project, it is time to dive in and start building it. The
Storyboard (completely different from Storyboard Animations in UWP) is where you
build your views (pages), page elements, and page flows, and where you define behaviors
such as page transitions using Interface Builder in Xcode.

221

CHAPTER 9 " CROSS PLATFORM WITH XAMARIN

Unlike Windows or Android, iOS devices are limited to a subset of Apple devices,
which means as a developer you know the devices and the hardware capabilities you are
dealing with-no more, no less. Figure 9-11 shows the layout controls of a Ul element. This
narrows down your Ul design into only a few choices, such as

e Portrait layout for iPhone
e Landscape for small and standard iPhone

e Landscape for iPhone Plus devices

e jPad
& Ocode File Edt View Find Navigate Edioe Product Debug Source Contrl Window Help 3 T A MO Twmidlam Q&
ese » A G300 B o T ey b Ay | Tocy ot a2 am + E Q [mif=]iu]

B 5 G oA S E S B | Dot o) e B o) B e 0 Wi [view [sninw) 7] ek aw) F frmrpovrssms § 03 Demon =

* [iew Conteabier Scane e

¥ Qe Cortwe . el i Tem | Fain
-

D] View s Phose 7 16 1)

Figure 9-11. Layout controls in Xcode

There are two types of UI elements: those that let you do something like press a
button and those where the code behind does something and you get the output on
a display. Action and Outlet will be discussed when we move to Xamarin but for the
time being, imagine two parties at play here: you and the code behind content. The UI
element does something only when either you or the code behind pokes it (sends some
instructions). The direction the instructions come from makes an element either an
Action or an Outlet.

User -> UI Element <- Code Behind

Figure 9-12 shows that a textbox can be both Action or Outlet or can contain an
Outlet Collection. Once you have defined an element as an Action or Outlet or both,
events are created for it by dragging and dropping the event connector to your code
behind and a window pops up to define your event (shown in Figure 9-13) and to assign a
property name to a UI element (Figure 9-14).

222

BNeode | KBSt Vew Fiod Nivigsts dior Prdect Debwg Sowc Cotd Windw Help
»> n oy G300) Prone T Plas

- I T MEE
™ [viem Contrader Soeee
¥ () Viaw Carrater
Too Lapaat Guide
Bcttom Lapsat Guids
w [e
v [l menen view
v s e

[e—y -]

Swme | ek

O View ax iPrene 7 {-C -R)

[00oon| 0.

Figure 9-12. Ul element types

& Xeode File Edt
»
[11 L B B -

v [Vi Contrater Sowes
¥ () Vo Cartroter
o Lapoat Guice

W Fret Rosoorons

e ERC I Ao
I | o eSO | 8 Prore 7 P

Editor Product

Sraek View | F Ewtesyousmene € 43

B
L4
Commacnen. | Acriom
Caisst () View Cortrater
P T Tr———
Tove | Ary =
]
Argeeris | Bander
Eancnl Eareat
_—

K] View s iPhone 74-C oA

0000000

Figure 9-13. Creating an iOS event

CHAPTER 9 * CROSS PLATFORM WITH XAMARIN

030erne: Ay | Tocisy 01 2:40 4 i
P ——— Y 3 Awterarie | i ViewConrolier it | o Salacrion Bk
“
= ¥ Viewonurelles, saift

» B - i iestem
F Creatss by kpas CraTrasiee o4 14/mITRIT
U4 Coppriget s 9817 dyss Cuatteries. All Tigts Tavsrven.
-

class VieeGomtroilar: ivisscenireller 4

ewmreloe fenc vim@ldiosaty ¢
e, vie0imean)
anp a3mitiansl satup after leasing the wiem, tysically frem

el veeserylaeniogl] [
=1

& b Audismate i ‘aeCortatunsntt | ke Sesisn

Fights Tavareed,

s

VhesSentrodler: vipetsn

it essl)
LeedipLnant

Btading the view, typically from s

Fu didfvenivemesaryarnisgl) |
.+ Alacel roboma: vear

3 T A4 MR Tedtdem G &
| gy = |

000000000000000

o

000 0

o

000000000

0DoDo

223

CHAPTER 9 " CROSS PLATFORM WITH XAMARIN

& Xcode Flle Edt View Find Navigate Editor Product Debug Source Control Window Help 3 F A > Twddfan O &
BB Ao) Prone R Ot Ry | Today 1448 o £ E s DQgna
[B stewe el - (B - 0D - Vw0 Lisel £ A3 | ER 5 dusamine | [l ViewCormote sait | R Samion + x oemol@

v I Vi Cuntrater Sanse
s ® B

M) Viewos iProne 74.C oA

000003 |0 e
-HO=00" AU

Figure 9-14. Assigning a property name to an Ul element

You have just briefly explored iOS application development. Let’s get back to
Xamarin. Xamarin on Windows currently support development for iOS (iPhone, iPad),
watchOS (Apple Watch), and tvOS (Apple TV) applications. For macOS development, you
will need to use Xamarin on a Macintosh computer. Creating a new project is as simple as
creating an UWP project in Visual Studio, as shown in Figure 9-15.

224

CHAPTER 9 * CROSS PLATFORM WITH XAMARIN

Mew Project s X
b Recent NMET Framework 452 = Sortby: Default - Search Installed Templates (Ctrl+E o -
4 Installed cn v
. E-E Blank App (05) Visual C# Type: Visual C#
4 Templates Single view application project for iPhane
4 Visual C# t Master-Detail App (i05) Visual C# and iPad. With storyboard support
4 Windows
4 Universal Metal Game (i0S) Visual C#
Helographic
b Windows 8 OpenGL Game (i05) Visual C#
Classic Desktop
Web Page Based App (i05) Visual C#
Android ;s)
Cloud 1 Scenekit Game (i0S) Visual CF
Crmthrom Single View App (105) Visual G#
i i 13u4
Extensibility e
h
22 s SpriteKit Game (I0S) Visual CF
Apple Watch
Sl Tabbed App ()0S) Visual C#
Pad
FPhone . WebView App (i05) Visual CF
Universal "
Silverlight
b Online Click here 1o go online and find templates,
Name: -OSDsmal
Location: EAApps\,
Solution name: 05Demo I Create directory for solution

L1 Add to Source Control

[ok][come
Figure 9-15. Creating a new iOS single view application in Visual Studio

However, to use Xamarin for iOS app development inside Visual Studio, you need
to connect it to a Mac due to policy, legal, business model, and other restrictions and
agreements that Xamarin has with Apple. Figures 9-16 and 9-17 show how to connect a
Mac with Xamarin Mac Agent, thus allowing Interface Builder to be accessed (Figure 9-18).
The rest of the process is straightforward and you shall build simple Xamarin iOS
application that changes background color with RGB sliders.

225

CHAPTER 9 " CROSS PLATFORM WITH XAMARIN

£4] Xamarin Mac Agent Instructions X

To use a Mac Xamarin Mac Agent, you must enable
1ote Login on your Mac

Sharing

M Aatarcr CAN SCONES YOLE COMPUI al:
Service

Screen Sharing
File Sharing

Printer Sharing

¥ Remote Login

Remote Management

[Al users

Remote Apple Events © Oniy these usere:
Internet Sharing 4
Bluetooth Sharing

, in order to allow Xamarin
ct to the Mac.

M Don't show this again

Figure 9-16. Remote access to a Mac is required for several capabilities in Xamarin for iOS

5] Xamarin Mac Agent ? X

Select a Mac to use it as a Xamarin Mac Agent: ol

g AyanMacbookPro.local

| Add Mac. Connect.. Close

Figure 9-17. Connecting to a Mac using Xamarin Mac Agent

226

CHAPTER 9 * CROSS PLATFORM WITH XAMARIN

B 00amo - Vi Vst e B & ociancniie- P - o =
e B Wew e e Dy e Rew Tl A Wwooe Wep -]
e - f-tEe Doty Foe FOmker 9, BOD D,
- olution brglorer -1x g
e ¢ aal G E-me AR |- g
amar ® - | [P —— e
57 Seiution St 1 priects
< & Wibewe
*J Frocerier
pr—
5 e coaiops
@ Coesil IS Ve Conotet 8 Niative Refeesces
FR L — Q Comprarn
© fpvien Corater 4 et
i 5 0 appluiegase
I smbond itenrcs [frenemmt pon
3 MR Coteie) GetigShn e arrs
© Tt viem Conmse oy
O Ve Contsetar * o Mo
 Contaiy 03 Muestorrtard
N o ? € Viesorratens
T Ackity edator View b
L
T Sehs : chceer Gl ew.
8 fge i [1 x
Sl b £ | 8 e
™ agrated Lot
o G 4 Srybomst Decursent z
]
B b | rogecs o -.
P T R
- Camba L Servan
O Vot e e Bl S e Lapat
O Vicusl (et Vet wich i sed Visrancy SR K.
-_— e R
N -
[) ColectonPousanie View Selait | Gumer | Pressine:
Bl Cotoctonvien A Comraltir
= =
B Coteemtinc - . [-

Figure 9-18. Xamarin iOS Designer in Visual Studio

C#

using System;
using UIKit;

namespace iOSDemo

{

public partial class ViewController : UIViewController

{
byte r = 127, g = 127, b = 127;
public ViewController(IntPtr handle) : base(handle)

{
}
public override void ViewDidLoad()
{
base.ViewDidLoad();
updateViewColor();
RedSlider.ValueChanged += RedSlider_ ValueChanged;
BlueSlider.ValueChanged += BlueSlider ValueChanged;
GreenSlider.ValueChanged += GreenSlider ValueChanged;
}

227

CHAPTER 9 " CROSS PLATFORM WITH XAMARIN

private void GreenSlider ValueChanged(object sender, EventArgs e)

{
g = Convert.ToByte(GreenSlider.Value);
}
private void BlueSlider ValueChanged(object sender, EventArgs e)
{
b = Convert.ToByte(BlueSlider.Value);
}
private void RedSlider ValueChanged(object sender, EventArgs e)
{
r = Convert.ToByte(RedSlider.Value);
updateViewColor();
}

private void updateViewColor()

{
ColorChangeView.BackgroundColor = new UIColor(red: r / 255,
green: g / 255, blue: b / 255, alpha: 1);

public override void DidReceiveMemoryWarning()
{
base.DidReceiveMemoryWarning();
// Release any cached data, images, etc that aren't in use.

Now let’s dive into Xamarin for macOS on a Macintosh machine to show how similar
they are, no matter what OS you are building on. You'll use Xamarin.Mac to bring your
Visual Studio applications to the millions of Mac users all over the world. When you
click on a new project, you get four options to create a mac app: Cocoa, SpriteKit Game,
SceneKit Game, and the most recent, Metal Game. Metal was released about the same
time the Swift programing language was released to the public. You will move forward
with Cocoa as an example (Figure 9-19).

228

CHAPTER 9 * CROSS PLATFORM WITH XAMARIN

Choose a template for your new project

& Mmultiplatform General

e |

Tests

Games
0 ios
@ SpriteKit Game
App —

Library é‘ Scenekit Game
Tests Cocoa App
@ Metal Game
= wos A basic Cocoa Mac App with storyboard
support that targets the new Unified AP1
App shared with Xamarin.i05. Requires Xcode
Library 5 or newer.

The Unified AP| supports both 32 and 64-
Android bit platforms, unlike the Classic API
which supparts only 32-bit platforms.

App
Library The Unified AP| also removes namespace
Tests prefixes to allow better code sharing
between Xamarin.Mac and Xamarin.iDS
projects.
@ Mac
Library
@ Other

Figure 9-19. New project as Cocoa app

The Cocoa application uses the model-view-controller (MVC) architecture. Model
is your business logic/code behind, view is the front-end user interface, and controller is
what links the front-end elements with the code behind.

In Figure 9-20, you enter in the app’s basic information such as name, organization
identifier (meant to be the reverse of your web URL, so if your company URL is
samplename.com, the identifier should be com.samplename), extensions (a document-
based application like a PDF reader application that can open multiple documents at
the same time, each in its own window), and minimum macOS target. Figure 9-21 shows
the additional options required for a Cocoa application like where the project is stored,
version control, etc. Figure 9-22 shows the Interface Builder for a Cocoa application.

229

CHAPTER 9 " CROSS PLATFORM WITH XAMARIN

Configure your Mac app

App Name: | MacAppDema

® MacAppDemo File Edit Format View

0 ization Identifier:
Bundle dentifier:
Dock ltem: Use a Different App Name in Dock
Extension: Create Document-Based App

MacAppDemo

Select the minimum Mac version you want to
Support.

Target: OS5 X Sierra 10,12

Cancel Previous Next

Figure 9-20. Introductory information for the Cocoa application

Configure your new project

PREVIEW
W fUsers{AyanC/Deskiop
B MacAppDemo
L] machppDema.sin
M MacAppDemo
Project Name: I] MacAppDemo.csproj

Solution Name: -Mac;\pu Demo I

Location: | /Users{AyanC/Desktap | Browse..

Create a project directory within the solution directory.

‘Version Control: Use git for version controd.

Cancel Previous Create

Figure 9-21. Additional options for the app created in Figure 9-20

230

CHAPTER 9 * CROSS PLATFORM WITH XAMARIN

Main stoeybos Api
v [Application Scene
¥ ¢ Application
» = | Main Meny
@ App Delegate
@ First Responder
» [F] Window Controller Scene

» 7] View Controller Scene

MacAppDemo File Edit Format View Window

Window Controller

[] L ‘Window

NSOboct subclass that is not
available in Interface Builder.

View Controller - & controller that
manages a view, typically loaded from
anit il

*. Storyboard Reference - Provides a
lacanoldar for a contrallar in an
external storyboard.

*.‘- Object - Provides an ins1ance of an

] = (o) fad

Figure 9-22. Interface Builder of the created Cocoa application

While building your application, you may across the two file extensions of Interface
Builder: xib and nib. Note that nib is short for NeXT Interface Builder, and xib is short
for XML Interface Builder and is more recent file structure of Interface Builder. As a
developer, you need not worry about them. You should focus on your objective only. A
writer shouldn'’t care if the work is being stored in doc, docx, pages, or any other format as
long as that work is stored somewhere and the writer is able to work with any application
of his/her choice. Getting back to the development process, similar to Figure 9-14 where
you declared elements of an iOS application, Figure 9-23 shows how to assign elements of
a Cocoa application.

231

CHAPTER 9 " CROSS PLATFORM WITH XAMARIN

v ¥ Random Number Button B8 Automatic ¢ b ViewControllerh randamNumberButton 3

/1 WARNING
T i

L he UT designer will be s ronized back
/f more complex manual changes may not transfer correctly.

#import <Foundation/Fa ion.h>

#import <AppKit/AppKit

Einterface ViewController : NSViewController {
HiTextField *randomNumberButton;
3
= (IBActien)clickMeButton: (id)sender;
@property (assign) IBOutlet NSTextField =randomNumber8utton;
Gend
Click Me
[*] ; v
i f

Figure 9-23. Declaring elements in Interface Builder

Next, you need to jump to the ViewController header file and add your outlets
(IBOutlet) and actions (IBAction) for the user interface elements, as shown in Figure 9-23.

Action: View (front end) » View Controller (code behind)
Outlet: View Controller (code behind) » View (front end)

You can think of it this way: action in Apple development refers to anything that is
provoked when a user does something like click a button or a touch event on an object,
whereas outlet is something that updates a UI element through your code. For this
example, the button is an action and the label is an outlet. So when the user clicks the
button, the code will generate a random number and output it in the label.

When you are done with the UI (xib file) in Xcode, you will go back to Xamarin to
continue writing the code behind. Xamarin will automatically create View Controller
and View Controller Designer with the UI elements for you to dive into the code. The rest
of the process is the regular C# syntax as defined in Xamarin.Mac. Figure 9-24 shows the
output of this demo application.

232

CHAPTER 9 © CROSS PLATFORM WITH XAMARIN

Click Me

Number = 466

Figure 9-24. Output of macOS demo application

View Controller Designer

using Foundation;
using System.CodeDom.Compiler;

namespace MacAppDemo

{
[Register ("ViewController")]
partial class ViewController
{
[Outlet]
AppKit.NSTextField randomNumberButton { get; set; }
[Action ("clickMeButton:")]
partial void clickMeButton (Foundation.NSObject sender);
void ReleaseDesignerOutlets ()
{
if (randomNumberButton != null) {
randomNumberButton.Dispose ();
randomNumberButton = null;
}
}
}
}

233

CHAPTER 9 " CROSS PLATFORM WITH XAMARIN

View Controller (C#)
using System;
using AppKit;

using Foundation;

namespace MacAppDemo

{
public partial class ViewController : NSViewController
{
public ViewController(IntPtr handle) : base(handle)
{
}
public override void ViewDidLoad()
{
base.ViewDidLoad();
// Do any additional setup after loading the view.
}
public override NSObject RepresentedObject
{
get
{
return base.RepresentedObject;
}
set
{
base.RepresentedObject = value;
// Update the view, if already loaded.
}
}
partial void clickMeButton(NSObject sender)
{
Random rand = new Random();
randomNumbexrButton.StringValue = "Number = " + rand.
Next(1, 1000).ToString();
}
}
}

234

CHAPTER 9 * CROSS PLATFORM WITH XAMARIN

Xamarin for Android

Visual Studio is to Windows what Xcode is to Mac. Similarly, Android Studio is Google’s
native IDE for Android application development (Figures 9-25 and 9-26).

o Tl £ [iamnmrer Fole %
B T T T p— - |
B-2wm b Atk .
:.'M Hem hrcjern T X ~ax
g b Rsent r g F o oy —— g < ;
i VisualStudio < et v Vaamice
8 Apacjectfor resting a YerasinAdreid
£ e soadcaton
R B
P
o
Vames
Vonetc
-.;J M Tew Ao Xpwrgr e s | Argrod Wil {0
BT oo oo vortcs
L= E —
Cutsd Hame A i
[— Aoion frveey - [om.]
Sebation nime: A oeiiwes] Creste diveciary lor sobitien

A 15 S Comred

o || ot

Fcriin D

Figure 9-25. Creating a new Xamarin.Android application

[3 e ——
e G e e

g Tears faow Tt deaige Widae Mep

et m e+ A B 5 R OB P e A5 AT - B B D ABDS
Tt A i
e Dwlat Trarns £ (=] - 1
§ nomucgen . [] &

N i

AndroldDama
Ly sin—
[ay—

CRTY -

Q Comporarn

Presgeess Ba: [omal)
[

S RedicButes

& maoooe
Hasgi

o Sackiar

Garnrsietagros
Phumtarihoher
Surturstrinn
Temtinn

S ook
et men

T Ve

Figure 9-26. Blank page of a newly created Xamarin.Android application

235

CHAPTER 9 " CROSS PLATFORM WITH XAMARIN

I covered iOS and macOS application development in Xamarin in detail; Android
is no different other than what is in the front end. I assume you are now familiar with
application development in Xamarin. For the Android app demo, let’s create something a
bit more complex: a paint canvas. The code below is a hint and I'll let you fill in the blanks.

Main Activity

using Android.App;

using Android.0S;

using Xamarin.Forms.Platform.Android;
namespace DrawIt.Android

{
[Activity (Label = "DrawIt.Android.Android", MainLauncher = true)]
public class MainActivity : FormsApplicationActivity
{
protected override void OnCreate (Bundle bundle)
{
base.OnCreate (bundle);
Xamarin.Forms.Forms.Init (this, bundle);
SetPage (App.GetMainPage ());
}
}
}

Image with Touch Renderer

using System;

using System.ComponentModel;

using Xamarin.Forms.Platform.Android;
using Xamarin.Forms;

using Drawlt;

using DrawIt.Android;

[assembly: ExportRenderer(typeof(ImageWithTouch), typeof(ImageWithTouchRend
erer))]

namespace DrawIt.Android

{

public class ImageWithTouchRenderer : ViewRenderer<ImageWithTouch,
DrawView>

{
protected override void OnElementChanged(ElementChangedEventArgs

<ImageWithTouch> e)

{
base.OnElementChanged(e);

236

CHAPTER 9 * CROSS PLATFORM WITH XAMARIN

if (e.OldElement == null)
{

}

SetNativeControl(new DrawView(Context));

}

protected override void OnElementPropertyChanged(object sender,
PropertyChangedEventArgs e)

base.OnElementPropertyChanged(sender, e);

if (e.PropertyName == ImageWithTouch.CurrentLineColorProperty.

PropertyName)
UpdateControl();

}
}
private void UpdateControl()
{

Control.CurrentLineColor = Element.CurrentlLineColor.ToAndroid();
}

Apart from using specific UWP, iOS, macOS, or Android templates, you could build
for all of them together using Xamarin Forms Application using XAML and C#. There is
currently a gap to fill. The gap is that Xamarin forms do not have a graphical designer;
hopefully they will build one in a future iteration. For now, if you are comfortable with
and confident enough to write XAML and C# right away, please move ahead with
Xamarin Forms.

Deployment and Store-Ready

Submitting apps to the iOS or Mac App Store requires an Apple Developer subscription.
Figure 9-27 shows the home page of Apple developer website (developer.apple.com).
Similar to the growth of Windows Store and Windows Phone store into one UWP
Windows Store, previously subscriptions for iOS and Mac developer programs were
separate, but recently all of iOS, Mac, watchOS, and tvOS have merged into one Apple
Developer Program.

237

CHAPTER 9 " CROSS PLATFORM WITH XAMARIN

& Agple Devslopsr x = k-
L B i B e BlUx| = & O -

& Pay

Developer Program
An gasier way to pay within One memsership. All Patfarms.
apps and websites.

Figure 9-27. Apple Developer website

With developer.apple.com you manage your own or your enterprise subscription,
authorized personnel on your team and their individual roles, create documentation,
and so on but your applications are managed through iTunes Connect (itunesconnect.
apple.com). You can think of iTunes Connect similar to Windows Dev Center where you
reserve app names, manage metadata, upload store icons and screenshots, manage your
app’s pricing, and receive analytics data as and when users start downloading and using
your application.

In Figures 9-28 through 9-35, you can see the publication process inside i0S, macOS,
and Android to get you familiar with them.

B Moras Sornect X i -
€ S50 | e e 15 el 0%

i
N
B e

Figure 9-28. iTunes Connect home page

238

CHAPTER 9 * CROSS PLATFORM WITH XAMARIN

- a =

sUuw =446

Ayen Cnatteniee ~

O #unca Conraat X

exCammact waa/mig/eei 108

e D 0| seene R susscaecspplacemesot,

Munes Connect My Apps - n Color Architect ~

AppStare Feswes TestFigra Actiity

App Information
S for

Fricing s Avalabiity

rmE 9f this 3pa. Ay crianges wil be released with your naxt apg versien

Localizeble Information English US]~
A0 Prepare for Sobamis Hara 7 Privacy Palicy LRL 7
Coor Architect it ffexam sl
() versicu o RaTrcay
General Information
Burde 0 7 Reghner o aew beadie . Primery Larguage 7
Coer Archvlect - com apohub85 Color-k chitect = Engfish 053
Tour Banae 1D Com appAUSIes Cokr Arch st Cetegory *
sk Frimary -
s Secortany [optional -
AgpleiD ¥
Acenates A i b N
Rsting 7
Ages = Accitionad Ratings
Figure 9-29. iOS application information metadata on iTunes Connect
e = 0D | B r S A6 Tpricing Bow =88 -
Munes Connect My Apps ~ WD color Architect v L ER Y

AppSwre Festures TestFhgd Aoty

Pricing and Availability

A Idarnstion

10 Peepme for Subrmin,

Availabiity
Avalatle in oll territories Edt

) viesicuon matsca

Velume Purchase Pragram

dutathe vl a oume dscant for sousstional m0ASE T Offeryourano ot a dsccunt to
L ‘education instituticns when they
with nt
A W TR e purcrass mustiche coples of your apc.
(3 Avedable privately s o custom B3 apo 7 For more information, see your i05
Danolopar Program Licanse Agrasmant
In Agreemants, Tax, ard Banking.

Bitcoce Auto-Recompilation

o2y

Figure 9-30. iOS application pricing and availability

239

CHAPTER 9 " CROSS PLATFORM WITH XAMARIN

15 #ures Comrant ®x I = e

R T S T T e p———— s anmsctmaa g opp TAAT BT fadddor BoHw = ME A8
iTunes Connect Iy Apps D color Architect ~ ———
ApoStom Festrse TestFlgr Aoty

m In-App Purchases
Charrns Conrito
Ercryption
Prom Codeas. o Noun first In-App Purchass must be submitied with a new apo version. Select £ from the app’s i-App Punchases section and cdlck Sobenit
Orce your your 1rss n-App coan g g, a00ional n-App PUIThases can DR SLDMted LEng the tabie
B,
In-App Purchages (0) & View Sharea Sacret
oD T At i, | T Savep | Pocyvecy | Comieile
Figure 9-31. IAP for iOS application on iTunes Connect
O fuea Comreet o+ - a8 =
‘e 3 O | Rsmenn = e e S ATt anw =¥ O
Agan Chatterjse ~ e
iTunes Connect Ly Apps ~ D color Architect ~ &

ApoStore Featwes TemFlght Actwity

i 105 Builds
_ All bk that have boen submiited for KI5, Verson numbess arg 1e Xoomk verson rumbess

Ao 5108 Versons

Rarge ana Risee

Subamit your builds using Xcode 6 or kater, or Application Loader 3.0 of late

Figure 9-32. iOS application build submission

240

CHAPTER 9 * CROSS PLATFORM WITH XAMARIN

Crverview Matrics. Bouces Rwtontion Atxad App Analts Data 7
179 0 0
mpmssion a3 Frodu Page Views Hopunes In-fpp Purthases
30 o] 0
Sales Sessiom: Acee Devices Crashes
tawintrm . anow

Figure 9-33. iOS application analytics

For Android, there is a Google Play Developer website (developer.android.com)
and Console, as shown in Figure 9-34. The remaining process is the same, from uploading
a built package to putting it live in the store (Figure 9-35).

Figure 9-34. Android Developer website

241

CHAPTER 9 " CROSS PLATFORM WITH XAMARIN

p Gocogle Play Developer Conscle ﬂ e 4=

| # o

Color Architect

AP STORE LISTING

g Koskosict RO B Englich (United fstes) - seisi | Manage tranedations. =

=
£ sevrgs l Shose Listing

Tt

Shert descripian”
Evglh [Lnten! Stes

Fudl dvnipuon
Esgih (Listee: St

Figure 9-35. Android application metadata

After reading this chapter, a thought may come across your mind. The deployment
procedure for UWP, i0OS, macOS, Android, and others are similar. All of them require
you to have a login, upload built applications, put in some metadata, go through testing
procedures, and get published in their respective stores. Then how are they different? It
boils down to the models that each company prefers for their products and their day-to-
day operating procedures, be it business model, distribution model, or licensing model.
An obvious conclusion is that Apple’s model is more controlled end-to-end whereas
Microsoft and Google have a more generous model for other companies to build their
own innovative products for the worldwide market.

EXERCISES

Exercise 1: Build sample programs that employ multithreading in both Xamarin.i0S
and Xamarin.Android.

Exercise 2: Build a mac application to capture a photo from a webcam (facetime
camera) and save it to your local disk.

Exercise 3: Experiment with biometric authentication and build a sample program for
both i0S and Android devices.

Exercise 4: Being familiar with the design and development process of cross-
platform applications, if you were in charge of designing a Ul designer for Xamarin
Forms, how would that go? Brainstorm on it.

242

CHAPTER 10

Ready for the Store

You have come all the way through the development process but this is where I request
that you take a beat and try to be cautious. If you or your company is in the early stages or
a start-up stage, I'd like to draw your attention to something that can keep you away from
potential danger. Let’s say you or your team has invented an improved bicycle wheel.

But you cannot put it in a bicycle and sell it in the market right away. This is because
even though you own the wheel, you do not own the rest of the parts of the bicycle. This
does not mean that you cannot sell them all together, but it does mean that you need

the appropriate permissions from the owners of the rest of the parts. This stage is where
partnerships, negotiations, and memorandums take place.

Intellectual property is a very important concept. It protects your rights as well as
the rights of others. The organizations who handle this will be able to provide specific
information applicable to your state/country. In my view, they are three kinds of
intellectual property:

¢ Stuff you can use without permission: This stuff might come
with additional constraints such as whatever you reuse cannot be
used for profit or you need to acknowledge the original owner(s).

¢ Stuff you need some kind of permission to use: This is mainly
corporate-owned property or inventions that have been patented.
The owned body will provide specific instructions on how to
obtain the permission.

e Stuff that are not available for reuse/release/classified: This stuff
belongs to some body of the government and may be exclusive
to that particular part of the government. This category may also
include a new idea that a researcher is working on or a new concept
that a company is experimenting within the company itself.

Tip Itis important to be informed of the intellectual property laws applicable to your region.

This chapter deals with the essentials steps required for a UWP application to be
prepared and submitted to the Windows Store for public download. If you have followed
through every chapter in this book and if you are prepared to submit your app to the
Store, let’s take a look at how.

© Ayan Chatterjee 2017 243
A. Chatterjee, Building Apps for the Universal Windows Platform,
DOI 10.1007/978-1-4842-2629-2_10

CHAPTER 10 I READY FOR THE STORE

Assets

I covered scalable assets in a previous chapter. For UWP, you need to define different
resolutions of tiles, logos, and icons in the Visual Assets section of appxmanifest, as
shown in Figure 10-1.

B Color Arcaent - Marasert Visasd Suci
e S Wew Pemc Bed Deg Wam Bk TEL daege Wede Mep

Y@ & i

o e x
ayen ateree = [

0-o i@ © Detag ¢ oAb * P Loce Maching © B
; T - [t
T —_— PR @ e-seF o el
3 Sasrch Seatin kaploret i3 o
o eptemen Vil s ezt Uettaton Comtet Uk gy m;‘;:"“":‘("“"""""’
§ Wi Sore s hnhd sut st eyt 0 @ erent esphtons, Windows irumh s s may 100 143 via s gy T section s o he et whih ae s i e rranife L s
Moeeisicmation > A
B GaswCose
Mg At ik > 0 A
Tie lropes aad Logos Sotaans 2 Cobr Aentest Tempoeanyioyplc
Sepes T g : 7 5 £ Marfagesies
S WSSbloge RS ;"“’:“D’f";”h‘:‘ (5 st
; 1wica Jout e
Wise 316150 g] Sepeve B3N Legn & praiioon
Squine I B Lage
P, Backgcund voloc vaparen
saoreoge
Setuah Saven
s Lo
St taremn Nacage oot
Seisionfaphen Tawn Frpice Cha View
Sqpuare THT! bages = i
w
L &
Skt Auats 2
Seals 400 Seals 200 Seale 100 Seale 150 Seals 125
Biaddee [0 Wrewde [O] MaTi E ot o] aw 5
cnmrrwon cemruria Rrsmruana
Scnsare 1242130 oz x

Figure 10-1. Visual assets in the Application Package Manifest

Visual Studio displays the images that you need. Figure 10-2 shows the sizes of
scale-based assets.

Scale-based assets
Category Element name At 100% scale At125% scale At 150% scale | At 200% scale At 400% scale
Small Square71x71Logo abral a9x89 107x107 142x142 284284
Medium Square150x150Logo | 150x130 188x188 225%225 300%300 600600
Wide Square310x150Logo | 310x150 388188 465x225 G20%300 1240x600
Large (desktop only) | Square310x310Logo | 310x310 388x388 465x465 B20m620 12401240
App list {icon) Squared4xddlogo Adudd 55x55 GhXG66 BEx88 176x176

Figure 10-2. Scale-based assets as shown in Windows Dev Center documentation

244

CHAPTER 10 © READY FOR THE STORE

Manifest

Application package manifest (appxmanifest) is an XML document (don’t worry; there’s
a good GUI in Visual Studio) that contains information for the system to deploy your app
seamlessly. In UWP, there are six tabs for the package manifest.

e Application

The name of your application, entry point of your application,
default language to use in your application, description,
whether or not your application requires lock screen
notifications, and live tile updates if you are updating the tile
remotely (see Figure 10-3).

ST —r— TH S ks o G
i oo e et - sk s (1 PR . |
e - ath = I Lo Maching = 50

- ebuton bagorer =ax

o by oo o e @ eRGAT o=

e

Ry - — pr—— - 9 ot o s it

[antucape) ot] barescape-pped [ratagpes
Lo KrA AL Lt e - Teeartins T

re———

Figure 10-3. Application tab in appxpmanifest

e Visual assets
I covered this in the previous section.
e Capabilities

If you require any capabilities in your application to make it
run smoothly, not enabled by default, such as user account
information, webcam, microphone, phone call, contacts, and
others, set them here (see Figure 10-4).

245

CHAPTER 10 I READY FOR THE STORE

B Color Aot - Moot Visasl Sacia TH £ | oclanonmen P o & =
He Bt P Puec Jed Dewg Rean Par Ty dphme i Hep Aen atires [
G-0 He-tWg T On - a4 -] Lok - B
¥ R - S
i‘ The aper v - . @ e-BCIF o pl=
z Sabrin tenfim b pherer O &
* - y [P —
% agpmesen Vibnal sty Capanities Decaton Comes ks g L e : =5
Ut oHiF BOg %0 53S0 rikm TR £ el TRM yinw $30 6o B P Popetiee
B on eene
> A
> o ComemCode
BT e —————p— » D Agpan
D Eelr dezntort Tomporarplovhe
PR —
B menage s i
AT wraeten
Sehuion EplerssFowe Siceer Chae Vorw
[%
[l acation.
[Mmoo 3
&
0 b i e
] otiees 33
[l rerw can
] Pcures Lty
] Provaneenmpaa (Dt . Serve
[ey
[Bersste Spiters
] Rersousi Siotage
] shared Unar Comtcates
[ey ot Inipemarions
] Lo e Lk &

Figure 10-4. Capabilities tab in appxpmanifest

e Declarations

In this section, you declare if and how your app needs to
connect outside with other applications and services such as
associating a file type to an application (see Figure 10-5).

B Color Aot - Maronet Vi S YW £ [oeaisnnmen P
e Bt Wew e Bed Deag Ren Rox T Auiae Wk Hep P |
G-o H-tw ety | at -] I Lo e - B
¥ - [t “ox
B temepee v e ty e cr B e SCAH o pla
i Sake St oo 31 -
&) Sohsion Cokr Anrwiecs” (1 pacgect)
-. = - s [e— ’ b
Z- gy Vivmal vt Leenitn ComtetuRn ctigrg P e -
tise spésil hek propeves » F Procecte
T Usehinimpe w s deuaiors s speuy hei groceien P
=

vt s B Gmswcose

== |- o —

[Rs—p——r— - B2 Color Arcitect Tempcranpivete

s ¥ D Maefootaed

e B Pcagamppnniz

Agpoanimes Prode & prawsiipen

sy Costart

Harciing Dewica

Baciguarc Tads

Cached Fie Uptuter

Schsion fapkars o el View

Fiie Cypen Pads i W

28 =

Figure 10-5. Declarations tab in appxpmanifest

246

CHAPTER 10 © READY FOR THE STORE

e Content URIs

Enables you to create a link to external websites
(see Figure 10-6).

B Color Arcate - Moot Visasl Sacia L W P o & =
e B9t Pew Popc QWd Dewg W Bes T Ageae Bie Hep Aen atiree [
G0 -t S -t oL P L B,

B57 Soution Golor Aucritect 8 puciact
4 ¥ Gk Acubibet {Uimiversal Whndoms)

Figure 10-6. Content URI tab in appxpmanifest

e Packaging

Contains the unique identity of your application on
Windows Store with information such as package name,
version information, publisher identification, and so on
(see Figure 10-7).

247

CHAPTER 10 I READY FOR THE STORE

B ol Arcats - Marone Vil S Y@ £ (ot mea [G
s ot pWd Deg g s T A Bhsae ep PR |
©-o H-tE g -t b Lo 8

57 Sotion Colon Aucrutect' 1 pecect)
9 ol Acubitet {Univetsal Whadows)

Cantees it Pactigig

L L | BT

» D g
I €l duzitoc Tomporaepiovpte

A et > D Marfagun

s eftrerates E -

Fackaze dhsiey aave: Colka Acitect
N e e

[3 e 1T ieionn

Sebaton Eaplersr Paaw Sxpicror Ol Vew

Preartier =

-

Figure 10-7. Packaging tab in appxpmanifest

License Management

License and certificate management forms an integral part of the software deployment
process. It verifies the integrity and security of the software and the identity of the
organization from which it came. For a Macintosh application, the following steps are
taken before an application is deployed from Mac App Store:

e Read-only privileges of the data layer
e Codesign of third party (registered developer/organization)

e Codesign of Apple from Apple Worldwide Relations Certifications
Authority

In UWP, an application’s identity is shown in Figure 10-8. Specific details have been
struck off from the image.

248

CHAPTER 10 © READY FOR THE STORE

App identity

our app has a unique identity, assigned by the Store. If you build your app package manually, you'll need to
inchade its identity details. (If you're using Visual Studio, this is done automatically) Learn more

Inchude these values in your package manitest:
Package/IdentityMName

Package,/ldentity/Publisher

Package/Properies/PublisherDisplayMame

Together, these elements declare the identity of your app, establishing the “package family” to which all of
its packages belong. Individual packages will have additional detaits such as architecture and version

The package family can also be expressed in calculated forrms which are not declared in the manifest:

Package Family Mame (PFM)

Package SID

Figure 10-8. An application’s identity

Windows Store Settings

Before submitting an application to the store, the appropriate application identity of the
app must match with that of a reserved application name in Windows Store. You can view
your application’s details in the manifest file and also when you edit the project file
(by unloading the project and editing, as shown in Figure 10-9).

0 L 0uma oo et S W & orian e P e x
e ret e it FRE A |
G-t @ ¥ Atsch,
- sebuton tagtoer S
; : i @ e-se pl=
i it [BPSed LT mten s dmaaPath) LS [ST | Sabecn S o
-n
P et Typet o dns (ABMICED-BE1A- 400G -S21)- SABIATOAISA] | (FATMECD- JOLF-3300-HE40-SO004S TIRFRC £/ P et T dns
cPackageCartiFicet eyt iLaseltibouHOems, Tampararsiey #ac/Packsgetenti .
Sebsion lrpleres Tra Gnr O Vi
[— =i
-
=
o
TS trasing Uricsde QTF-8)
atinghocesss o
pres “CAPrsgram Fica G icras
Syemen

parstioa) | SEFItfans)" on “Relasse|nss™=
AP a1h
INEOAS M TP rain st aatas

Figure 10-9. Editing a project

249

CHAPTER 10 I READY FOR THE STORE

If you are not sure about what you are doing, Visual Studio does it for you. Simply
right-click your project, go to Store, and click the Associate App with the Store option, as
shown in Figure 10-10. Visual Studio automatically sets it up for you.

Solution Explorer v 1 Xx
S o-5¢aB £[=
Search Sclution Explorer (Ctrl+;) P -
% Solution ‘MultitouchDemo’ (1 project)
+ o = puchDemo (Universal Windows)
24 - Build perties
Rebuild Erences
Deploy Ets
Clean £l
Tien n.Page.xamI
titouchDemo_TemporaryKey.pfx
Analyze kage.appxmanifest
HockeyApp jectjson
Scope to This
[New Solution Explorer View
Add
Store Associate App with the Store..
o4 Manage MuGet Packages... Create App Packages...
L Setas StanUp Project Br Team Explorer Class View
Debug
* 0 x
Source Control . "
no Project Properties -
& cut Crl+X
X Remove Del MultitouchDemo.csproj
[Rename EhApps\MultitouchDemo\Multite
Unload Project
c Open Folder in File Explorer
& Properties Alt+Enter
Micr

Figure 10-10. Associating your app with Windows Store

Enterprise Ready

When you select your application to be distributed to Windows Store for businesses

to make a bulk (volume) purchase, your app gets published to the Windows Store

for Business. An organizational purchaser (a person who has the authority to make a
purchase on behalf of an organization) can then purchase your application in volume
as per their requirements. The licenses of the application will naturally be owned by the
organization. The person with this authority can assign licenses to people within the
organization and even reclaim them as necessary.

250

CHAPTER 10 © READY FOR THE STORE

When the organization pays for licenses upfront, the employees browsing and
viewing the applications get them for free. Organizations can also include/disable
access to applications from the public store and only display applications assigned
to the organization’s private store. In summary, an organization’s private store may
display the following:

e Applications from the public store (Windows Store)

e Applications purchased by the organization assigned to the
private store

e An organization’s internal line-of-business (LOB) applications

To make your application available to the Windows Store for Business, all you
need to do is enable it in the organizational licensing section when you publish your
application, as shown in Figure 10-11.

Organizational licensing Hide options

‘You can allow organizations to acquire your app in volume through the options below. Note that changes
will only affect new acquisitions; anycne who already has your app will be able to continue using it.

u Make my app available to erganizations with Store ged (online) li ing and distri

Checking this box allows organizations to acquire your app in volume, App licenses will be managed
through the Store's online licensing system. Learn mare

2 alow organization-managed (offline) licensing and distribution for organizations

Checking this box allows organizations Lo acguire your apg in volume. They can then download your
package and a license which lets them install it to devices without accessing the Store's online licensing
system. Note that this option is not supported for xap packages. Learmn more

Figure 10-11. Organizational licensing in Windows Dev Center

For LOB apps, an organization who wants your product must invite you first. Once
they invite you and you accept that invitation, you can then publish for LOB distribution.
The rest of the process remains the same for the developer.

Store Submission and Evaluation

Now that you are prepared for your application to be public, it is time to submit it to

the Windows Store for certification and publication. The first step is to reserve a unique
name for your application. You must be sure that your application’s name meets all

the necessary requirements, one of which is that it does not violate someone else’s
trademark. After that, there are five things to take care of before your app moves forward:

e Pricing and availability
e Properties

e Ageratings

e Packages

e Store listings

¢ Notes for certification (optional)

251

CHAPTER 10 I READY FOR THE STORE

Under pricing and availability (Figure 10-12), you specify the price of your
application (free/paid/paid with trial); the number of markets your app should be
available in; sale pricing, if you wish to put it on sale for a certain period of time;
distribution, where you control if the app is public, LOB, or other; the organizational
license model it uses (as shown in Figure 10-11); and publication date (if you wish to
publish on a particular date or set it to publish as soon as your app passes certification).

Pricing and availability

Base price*

Free
Free trial
No free trial
Markets and custom prices Shaw options
Your app will be available in 242 of 242 markets. Learn mare
Prices will be comverted for each market into correspanding price tiers (view table).
Sale pricing

Set limited-time price reductions for your app. Learn more

Mote: Sales will only be visible to customers on Windows 10 devices.

Distribution and visibility Show options

Your app is available in the Store. Learn more W feedback

Figure 10-12. Pricing and availability for Windows Store submission

Properties (Figure 10-13) is where you define under which category your app best
fits, product declarations where you declare certain factors about your app such as
accessibility guidelines, and system requirements where you define the minimum and
recommended hardware requirements a user must have to run your application properly.

252

CHAPTER 10

Properties
Category and subcategory®
Pick the category (and subcategory, if applicable) that best describes your product. Learn maore

Education ~ Instructional tools ~

Once you publish this product, y
be al ick the Games cat

Product declarations

Check any appropriate haxes below. This may affect the way your product is displayed or whether it is
offered to certain users. Learn more

|:| This product allows users to make purchases, but does not use the Windows Store commerce system.
[This product has been tested to meet accessibility quidelines.
H Customers can install this product to alternate drives or remaovable storage.

ﬂ ‘Windows can include this product's data in automatic backups to CneDrive.

Systemn requirements

Specity any hardware features that are required or recommended in order for your app to run properly.
Learn more

The info you provide here will appear in the System requirements section of your product’s Store listing for
customers on Windows 10. If the Store detects that 2 customer is using hardware that doesn't meet the
inii i d dina on their version of Windows and the soedific reuirements vou orovided.

Figure 10-13. Properties for Windows Store submission

READY FOR THE STORE

W feedback

With age ratings (Figure 10-14), you are able to convey to the audience if they are of

appropriate age to use the application.

253

CHAPTER 10 I READY FOR THE STORE

Age ratings

The following ratings have been generated by IARC based on your answers.
If your app or metadata has changed, please retake the questionnaire to
ensure your rating is accurate.

Rating system Your app's rating Rating description
DICTQ All ages
Brazilian Advisory Rating System
Brazil

ESRB Everyone
Entertainment Software Rating Board

United States

w3

>
)
(2]
w
+

1ARC
International Age Ratings Coalition
Global

PEGI 3+
Pan European Game Information

Europe

USK

Entertainment Software Self-Regulation
Body

Germany

Everyone

< E @

Figure 10-14. Age ratings for Windows Store submission

Packages (Figure 10-15) is where you upload your app packages to the Windows
Store and specify if they are for Windows 10 Desktop, Windows 10 Mobile, Windows 10
XBOX, Windows 10 Holographic, and/or made for previous versions of Windows.

254

CHAPTER 10 © READY FOR THE STORE

Packages

If you are using Visual Studio, be sure you signed in with the same account associated with your developer
account, as some parts of the package are specific to this account. Learn more

Drag your packages here (xap, appx appxbundle, appxupload) or
browse your files.

Device family availability

This table shows which packages will be offered to specific Windows 10 device families (and earfier OS5
wersions, if applicable) in ranked order. If a device family's box is unchecked, new customers on that type of
device won't be able to acquire the app (though customers who already have the app can still use it, and will
get any updates you submit), Learn more

Let Microsoft decide whether to make this app available to any future device families

= = O 0

es Meead AT A G e fenim e st I W Feedback

Figure 10-15. Packages for Windows Store submission

Store Listings is where you input your application’s metadata such as description,
release notes, screenshots, support, and other information. This is information that
people see while browsing Windows Store. The Notes for Certification section is optional;
it’s where you share privately to people certifying your application notes about your app.
These notes may be the username and password for a test account of your application,
steps to access hidden features in your application, and so on.

Once you are done, your app will pass through the Windows Store certification
process and will get published if everything is okay.

Windows 10 Deployment vs. Previous Versions

This section is not really relevant to your development process but I thought to include it
for the knowledge and so you can see how deployment has progressed. Prior to Windows
Store’s deployment model, individual companies used to license and distribute their
application on their own. Enterprise software companies would even get software
delivered via email from their contractors. Games and applications used to be distributed
by CDs, DVDs, and other physical media. With Windows Store in the Windows 8 family,
the Windows 8 desktop store and mobile stores were separate from each other. As it grew,
Windows Store managed to come together in one distribution platform. All of this is not a
change in what you or a company builds, it is just a systematic way to do it.

255

CHAPTER 11

Application Analytics

This is a good time to look at the software development life cycle (SDLC). SDLC is a
standard procedure for how apps should be built, starting from the first step (having
an idea) to the last (entering the market). There are many SDLC models, like Agile
and waterfall, but all flow from brainstorming and planning sessions to testing and

implementation. Let’s take a look at the cycle.

1.

Initiation
It all begins when you have a new, original idea.
Software Concept Development

This is when you brainstorm on the original idea and how to
make it feasible.

Planning

You need a good project management workflow with
stakeholders, deliverables, and milestones.

Requirement Analysis

Now that you know what you are going to build, you need to
decide what hardware/software to work with, and whether to
work with UWP, Xamarin, or something else.

Design

Here, you build your application’s design and workflow with
UML diagrams.

Development

You build the first prototype of your application in Visual
Studio.

Test

You run some quality assurance tests with unit tests,
performance tests, and even human testers.

© Ayan Chatterjee 2017
A. Chatterjee, Building Apps for the Universal Windows Platform,
DOI 10.1007/978-1-4842-2629-2_11

257

CHAPTER 11 I APPLICATION ANALYTICS

8. Implementation

Your application’s first version goes live on Windows Store for
the world to use.

9. Maintenance

You perform some bug fixes and performance enhancements
on the current version.

10. Disposition

Unless you are shutting down your application and taking it
off the Store, you realize that your current version needs to

be replaced by a new one. You may add new features to the
current version or do a complete refresh, in which case you go
back to step 1.

All of the previous chapters talked about design, development, testing, and
implementation where you build your application and publish it in Windows Store or any
other store. In this chapter, I will be taking about step 9, maintenance.

Getting insight into your application’s day-to-day performance and acting upon it
to provide continuous support and updates is what keeps your application flourishing
in the market. You should test your application with performance measurement tools
in Visual Studio before submission. But there are things to do after you start getting
user’s data. Windows Dev Center documentation has laid out some of their performance
measurement responsiveness suggestions with respect to time. Table 11-1 and Figure 11-1
summarize the information.

Table 11-1. Summary (column 2 and 3 representing the respective minimum
and maximum) of User Responsiveness Performance Suggestion

Fast 100 milliseconds 200 milliseconds
Typical 300 milliseconds 500 milliseconds
Responsive 500 milliseconds 1 second
Launch 1 second 3 seconds
Continuous 500 milliseconds 5 second
Captive 500 milliseconds 10 second
Good Spot Still Okay User is bored/annoyed
I |
Os sooms 1s 5s 10s

Figure 11-1. Summary of Table 11-1

258

Windows Store Analytics

CHAPTER 11

The Windows Store developer portal provides detailed analytics of your published
application. Despite all of your unit tests and other tests, when your application performs
in the real world, there will be bugs. Windows Store Analytics is a good place to test your

application’s performance. Apart from that, you also get to know the demographics of the

users who have downloaded your application. Let’s explore Windows Store Analytics.

The Acquisitions screen tells you how many new users have downloaded your
application by market (Figures 11-2, 11-3, and 11-4). You can filter by market (country) and
the version of Windows, and by demographic (Figure 11-5) with age groups and gender.

Acquisitions

Market

All markets =)

App daily App cumulative

2

ang

Figure 11-2. Windows Store app acquisitions

Markets

Market

Q8 version

All O8 versions.

A 4 |

_Ian. 16

Acquitions

United States
India

United Kingdom
Mexica

Canada

France
Germany
Indonesia

Brazil

Spain

146

APPLICATION ANALYTICS

QS version

Windows 10 207
I ____J
‘Windows B.1 107

Windaws Phone 6.1
——

‘Windaws Phone 7.5
-

‘Windows B

-

‘Windows Phone 8
u

Downlozad L

Figure 11-3. Acquisitions by market and OS version

S8

259

CHAPTER 11 I APPLICATION ANALYTICS

Acquisitions
Date
Last 30 days T‘ Start date @ to End date i}
Device type Store client Sandbox
All devices Z| All clients &

Other
See how many people have acquired you| Volume acquisition by organizations and platform details here.
Learn more ‘Windows Phone Store (client)

Windows Phone Store (web)
Download report Windows Store (client)

‘Windows Store (web)

Figure 11-4. Windows Store Analytics filters

Customer demographic

45
40

35

30

25

2

15

0

5

v TF 251034 351049 50 or over Under 17 nkngim

BUnknown B Female Male

Figure 11-5. Customer demographic

If you have an in-app purchase model in your application, it will show up in the add-on
acquisitions section. Installs will show you how many users have recently installed your
application. Usage (Figure 11-6) will show you how many users are actively using your

application as well as the not so active ones.

260

CHAPTER 11 © APPLICATION ANALYTICS

Usage

10

00

%0 L

%0

T F

s L

- \/

0 +

30 F \/h T
“ -\’,\/‘/\/\’W/
0

° P * i ' ’ T ’ — (T — '

= User sessions = Active users

Figure 11-6. User sessions and active users

Health will display how your application is performing out there in the world. It gives
you information about the number of times the application has crashed (Figure 11-7)
including the market (country) where it occurred, the datetime, the device it occurred on
(Figure 11-8), and the function requiring attention.

Failure hits

Market

All markets =

1 i "
Febr 3 1200 AM Fels 3 1200 P31 Feb 4 1200 AW Fels 4 1200 P Feb 5 12200 AM Feb 5 1200 PM

= Crashes Hangs
4 z

Figure 11-7. All failure hits-crashes and hangs

261

CHAPTER 11 I APPLICATION ANALYTICS

L L 1 L L L ! L " L " L ;
Feb 3 12:00 AW b 3 1200 PM Feb 4 12200 AM Feb 4 1200 PM b & 12500 AM Feb 5 1200 P

Davmload &

Failure log
Dt Package version Device type Davica modal O buld Links
020472017 %29:29 PM 2.1.00 Unknown LENOVO-20266 6.2.9500 Stack trace
01/26/2017 11:33:44 AM 2100 Unkncwn Intel Corporation-Intel powered classmate PC 6.3.9600 Stack trace
01/26/2007 11:11:10 AM 21.00 Linknown Intel Corporation-intel powered classmate PC 6.3.9600 Stack trace
01/26/2017 10:27:35 AM 21.00 Unknown Intel Corporation-Intel powered classmate PC 6.2.9500 Stack trace
01/23/2017 2:50:59 AM 2.1.00 Unknown Unknown 6.2.9500 Stack trace
0162007 512208 PM £1.00 Linknown TOSHIBA-SATELUITE L10W-B-101 6.3.96500 Stack trace

Figure 11-8. Failure log

Ratings and Reviews display your application’s user ratings and user feedback,
including feedback from Windows insiders. Channels and conversions show from where
the users (who are downloading) are coming to your application. It also lets you measure
your campaign’s performance. There are other details such as advertising performance if
you have enabled in-app advertising.

Visual Studio Mobile Center

Azure is Microsoft’s suite of cloud solutions. It ranges from just hosting a website to
detailed analytics, and collection and processing large amounts of data (big data)
including Cortana Intelligence Suite. It is not restricted to UWP and Windows Solutions
but pretty much anything you can think of. So apart from basic Windows Store Analytics,
if you wish to collect more custom data or perform some machine intelligence, you do it
through Azure.

In the early days, usage and crash analytics were collected on a module in the Azure
portal. This was during the Windows 8/8.1 era. Later on, the functionality was migrated
to HockeyApp. Presently, it is being migrated to Visual Studio Mobile Center (https://
mobile.azure.com), shown in Figure 11-9. (When I say being migrated, it means at the
time of writing this book).

262

https://mobile.azure.com/
https://mobile.azure.com/

CHAPTER 11 © APPLICATION ANALYTICS

@ My Bpps
Mokbile Center s Hiall, Ay Chattariss

Figure 11-9. Visual Studio Mobile Center home page

With each iteration of analytics solutions, the functionalities keep upgrading. For
example, with HockeyApp you can distribute, manage crashes, and perform analytics on
your i0S, Android, and UWP applications. And with Xamarin Test Cloud you can run tests
on thousands of devices available in the market without owning a mobile device yourself.

Visual Studio Mobile Center is the next generation and it contains all of the previous
features combined into one bundle, including signing and distribution of your app builds
to your app testers in one place. For a single application, be it UWP, iOS, or Android, there
are the following options:

¢ Build is where you upload your coded application like the ipa file
for an i0S application.

o Testis where you test on several physical devices such as iPhone 6
running iOS 9, iPhone 6 running iOS 10, iPhone 7 running iOS 10.1,
and so on, based on your filters and the devices you wish to test on.

e Distribute is where you send successful test builds to test groups.

¢ Groups is where you assign different testers to tester groups for
your application.

e Releases, Tables, Identity, Crashes, and Analytics

All of the things you can do in the UI in Mobile Center can be done through
command line using APIs (https://docs.microsoft.com/en-us/mobile-center/).

Actionable Data

It would feel a bit incomplete without talking a bit about statistics. Although we didn’t go
deep with deep learning but I feel I've given you the foundation and intuition for you to
grow towards it. But once you have built a classifier, how are you going to evaluate it? We
know that autonomous cars use computer vision and machine learning to identify potential
vehicles in front of the car. Actually, it uses deep learning (deep is when a machine learning
algorithm has a lot of hidden layers) and artificial neural network to get the job done but we

263

https://docs.microsoft.com/en-us/mobile-center/

CHAPTER 11 I APPLICATION ANALYTICS

are not going into too much details on that in this book. Such newly developed algorithm

is first tested on known situations. For the purposes of explanation, let’s say that we have
10,000 images labelled (meaning all the objects in those images are marked). And we use
10% or 1,000 images for training a machine learning model and the rest for cross-validation.
From cross-validation, we know how many vehicles are accurately detected by the algorithm
and how many are not. This forms 4 categories of results - true positive, false positive, true
negative, false negative. Think of it as ‘condition’ and ‘known’ For true, or in other words for
the condition part, predicted result matches with the known result. So, true positive would
be vehicles that are really vehicles and the algorithm was able to successfully classify them as
vehicles. Similarly, false positive would be vehicles that are really vehicles but the algorithm
could not classify them correctly. And if you want to know answers to questions like how
many objects were incorrectly marked as vehicles? The result would be in the number of false
negatives. Statistical computations like confusion matrix, F1 score, kappa statistic, etcetera
all rely on these 4 categories for every class. Six sigma is one of the statistical techniques to
improve performance and quality. For performance improvement measurement efforts,
DPMO (defects per million opportunities) is measured. You may implement whichever

one you prefer, but Six Sigma is one of the industry standards. It was originally designed for
manufacturing industries. Table 11-2 shows the DPMO against sigma level.

Table 11-2. DPMO and Percentage Defective Against Sigma Level

Sigma Level DPMO Percentage Defective
1 691462 69%

2 308358 31%

3 66807 6.7%

4 6210 0.62%

5 233 0.023%

6 3.4 0.00034%

7 0.019 0.0000019%

You can interpret it this way: when your application performs at 5 sigma level, about
233 users are experiencing hangs and crashes among a million users. An application
works perfectly if it is performing at 6 sigma level. Taking action on this analytical data is
very essential. It tells you what you can do to make your application perform better and
increase your reach.

If a fault is occurring on a specific device, you can use device-specific code. If a
country is performing very well and another poorly for your application, you can redirect
your advertising model to target that poorly performing market and grow your sales. If
one bug is affecting 10,000 users and another is affecting 200 users, the one affecting
more users gets precedence. This is how you should handle bug fixes and maintenance
updates: systematically.

To conclude this chapter and this book, I'd like to thank you. Whether you are in
high school, or in college trying to capture the next big idea with your friends in a dorm
room, whatever it is that you do or are trying to do, the approach to solving a complicated
problem is to take it one step at a time, as professionals do.

264

Index

A Binary data, 162
Blend
Acquisitions screen, 259 designing, 90-93
Add-on acquisitions, 260 Bootcamp assistant, 10
Algebra class, 23-24 Button, 1

Alphabets, 32-33
Android Developer website, 241

Animations and transitions, 111-119 C
App intelligence C#,5
addition, 206 Camera and media capture
discounting, 208 devices, 123-124, 126-128
division, 207 CameraCaptureU], 124-125
estimation, 208 Canvas, 4, 185
k-means, 209 Character, 32
linearly scaled, 209 Check box, 2
marking models, comparison, 210 Cocoa application
multiplication, 206 additional options, 230
percentage, 207 information, 230
subtraction, 206 interface builder,
Apple Developer website, 237-238 231-232
Application life cycle, 34 new project, 229
App protocols, 191-194 Code behind, 103-109
App-to-app communication, 195-198 Cognitive Services, 164
Arduino, 158 ColorAnimation, 116
Array, 32 Color Architect
Async keyword, 198 black, 19
Asynchronous operations, 198-200 layout, 21
Await keyword, 198 new project, 17-18
Azure Machine Learning, 164 shared code, 34
Azure Functions, 164 tomato, 20
Azure IoT Edge, 164 white, 19
Azure Stream Analytics, 164 Command set, 53
Conditional statements
B if-else and conditional
operator, 26
Background classes, 137-142 switch case, 27-29
Bicubic scaling, 98 Core Data, 218
© Ayan Chatterjee 2017 265

A. Chatterjee, Building Apps for the Universal Windows Platform,
DOI 10.1007/978-1-4842-2629-2

INDEX

Cortana, 55
skills, 57-59

VCD (see Voice command definition

(VCD)
Cross-platform Xamarin
android, 235-237
architecture, 214

installing in Visual Studio, 215-216
i08S, 216, 218, 220-222, 224, 226-232,

234
macQS, 216, 218, 220-222, 224,
226-232, 234
shared elements, 214
Custom controls, 100-103
Custom gesture
canvas implementation, 151
defined, 150
touch inputs on canvas step by
step, 151-152
Cyclic redundancy check (CRC), 162

D

Data binding, 109-110
DataProtectionProvider, 129
Data types, 120
alphabets, 32-33
numbers, 31
special characters, 32-33
Deadlocks, 201
Decision boundary, 17
Defects per million opportunities
(DPMO), 264
Device-specific code
different ways, 188
Windows Universal, 188
XAML, 188-191
2D, 47
3D, 47
Autodesk Maya, 171
creating 2D image from, 173
light sources, 169, 171
Microsoft paint, 170
SolidWorks, 170
spatial data, 167
spectral data, 167
surface in space, 168

triangular mesh of 3D box, 168-169

DoubleAnimation, 116

Do-while loops, 29-30

DPMO. See Defects per million
opportunities (DPMO)

266

E

Encapsulation, 22

Encryption and decryption, 129
Errors, 42-43

Explicit conversion, 31

F

Facial emotion detection, 203-205
Files in the file system, 119-121
Firm deadlines, 173
For loop, 29
Functions

class, 23-24

steps, 23

types, 23

G

General Purpose Input Output
(GPIO), 160
Gestures, touch input
basic set, 145
double tapped, 148
right tapped, 149
simple, 149
view 3D interactions
mouse, 144
pen, 145
touch, 144
Globalization and localization,
121-123
Grids, 4
Grid visibility binding, 111

H

Hard deadlines, 173
Headed, 158
Headless, 158
HockeyApp, 262-263
HoloLens, Microsoft
2D UWP holographic
application, 178
simple UWP application, 177
store, 181-184
touch inputs, 175
Unity 3D, 178
install, 179
new project, 179
settings, 180-181

INDEX

Windows Holographic GPIO, 160-161
elevation of observer reusability, 160
request, 174 simplicity, 159
setting up room in, 175 UWP project, 161
wearable headsets in, 174 Windows Dashboard, 160
XAML, 175-176 i0S
Human-computer interaction, 53 app development process, 217
Hypertext transfer protocol (HTTP), 191 assets for, 220
create new project, 218-219
| J event creation, 223
’ project property list, 221
IAPs. See In-app purchases (IAPs) project settings, 219-220
IBackgroundTask interface, 138 Visual Studio, 225, 227
If-else, 26 Xcode, 216
Image, 3 Xcode project templates for, 218
In-app purchases (IAPs) IOT. See Internet of Things (I0T)
consumable, 77 iTunes Connect, i0OS
durable, 77 analytics, 241
model, 260 application information, 239
Windows Store, 78 build submission, 240
Infinite loops, 29 home page, 238
Inheritance, 22 IAP for, 240
InkCanvas, 185 pricing and availability, 239
Inking application
blend window, 186 K
XAML, 187
Input-process-output (IPO) model, 143 K-means, 209-210
Integers, 31
Integrated development environment L
(IDE), 216
Intellectual property, 243 Least significant bit (LSB), 162
Intelligent application License management, 248-249
addition, 206 Linearly scaled, 209-210
discounting, 208 Linear scaling, 98
division, 207 Line-of-business (LOB) applications, 251
estimation, 208 Lists, 4
k-means, 209 Live tiles, 59, 60
linearly scaled, 209 Local settings, 65
marking models, comparison, 210 Loops
multiplication, 206 for, 29
percentage, 207 infinite, 29
subtraction, 206 while and do-while, 29-30
Interface Builder, 221, 231
Internet of Things (IoT) M
introduction, 157-158
Microsoft Azure Mac App Store, 237, 248
analytics and action, 163 Machine learning, 45, 211
machine learning algorithms, 164 Machine learning algorithms, 164
traffic light controller, 162 Macintosh, 13, 213, 224, 228, 248
Windows 10 macOS
binary data, 162 Bootcamp assistant, 10
familiarity, 159 cross-platform Xamarin, 216

267

INDEX

macOS (cont.)
install Xcode, 216
Xamarin installer on, 14
Mail, 75
Marking model, 210
Mathematics class, 24
Microsoft Azure
analytics and action, 163
machine learning algorithms, 164
traffic light controller, 162
Microsoft Developer Network
(MSDN), 10
Microsoft HoloLens
2D UWP holographic application, 178
simple UWP application, 177
store, 181-184
touch inputs, 175
Unity 3D, 178
install, 179
new project, 179
settings, 180-181
Windows Holographic
elevation of observer
request, 174
setting up room in, 175
wearable headsets in, 174
XAML, 175-176
Microsoft Kinect, 204
Minimum target version, 14, 16
Model-view-controller (MVC), 229
Model-view-ViewModel (MVVM), 103
Most significant bit (MSB), 162
Mouse and keyboard
animations and transitions, 111-119
Background classes, 137-142
Blend designing, 90-93
camera and media capture
devices, 123-124, 126-128
code behind, 103-109
components of solution, 82
assembly information, 83
assets, 83
connected services, 83
default application class, 83
manifest, 83
page, 83
project, 82
properties, 83
references, 83
solution, 82
temporary key, 84

268

custom controls, 100-103
data binding, 109-110
files in the file system, 119-121
globalization and localization, 121-123
print and casting media to devices,
132-136
scalable assets, 98-99
securing app data, 128-132
size classes/visual states, 94-98
triggers and actions, 94
Visual Studio and Blend, 84-90
Windows Wheel devices, 136-137
Mouse controls, 214
Multi-touch application, 154-155

N

Namespace, 24-25
Navigation, 72-77
Navigator pane, 220
.NET, 7-8
Notifications

tile, 60

toast, 60-64

UWP, 60

(0

Object-oriented programing
encapsulation, 22
inheritance, 22
polymorphism, 22

One for all, 6

One for many, 5-6

One for one, 5

One universal solution, 215

OpenCV, 165

Open hardware, 158

Organization
license, 251
LOB apps, 251
private store, 251
purchaser, 250

Outlet, 222

Outlet Collection, 222

PQ

Parallel programing, 44-45
Params keyword, 33
Platform-homogeneous architecture, 8

PointAnimation, 116

Polygon, 22, 33

Polymorphism, 22

Print and casting media, devices, 132-136
PrintDocument class, 132

Public static byte option, 35

R

RadialController class, 136, 137

Radio buttons, 2

Raspberry Pi, 158

Real time, 173

RGB layers, 17-21, 48-52
multi-touch, 154

Roaming settings, 65

RowDefinition, 92

S

Sampling algorithms, 173
Scalable assets, 98-99
SDLC. See Software development life
cycle (SDLC)
Securing app data, 128-132
Semi-supervised method, 211
Service application project, 141
Sharing code, 34-42
Sharing data, 69-71
Single view application, 218
Six sigma, 264
Size classes/visual states, 94-98
Skype, 191-194
Sliders, 2
Soft deadline, 173
Software development life cycle (SDLC)
defined, 257
design, 257
development, 257
disposition, 258
implementation, 258
initiation, 257
maintenance, 258
planning, 257
requirement analysis, 257
software concept
development, 257
test, 257
Spatial data, 167
Spectral data, 167
Storyboard, 221

INDEX

Stretch property, 3
String, 32
Supervised learning, 45
Supervised method, 206, 209
Switch case, 27-29
System on a chip (SoC)
headed, 158
headless, 158

T

Tag, 3
Target version, 14, 16
Text block, 1
Text box, 2
Thread keyword, 200, 203
Tile notifications, 60
Toast notifications
NuGet package, 61
output, 64
XAML, 61-62
Toggle switch, 3
Touch input
defined, 143
gestures, 144-149
IPO model, 143
Triggers and actions, 94
Type casting, 31
Type conversion, 31

U

Ul element, 222, 224
Uniform Resource Identifier (URI), 3
UniformToFill, 3
Unit test application, 86
Unity 3D, 178
install, 179
new project, 179
settings, 180-181
Universal Windows Platform (UWP)
assets, 244
consists, 25
local settings, 65
manifest, 248
application, 245
capabilities, 245-246
content URIs, 247
declarations, 246
packaging, 247-248
visual assets, 245

269

INDEX

Universal Windows Platform (UWP) (cont.)
notifications, 60-64
platform-homogeneous architecture, 8
roaming settings, 65
sharing data, 69-71
Windows 4-6, 10
Xamarin, 13-14

Unsupervised learning, 45

Unsupervised methods, 206, 209

Utility pane, 220

\'

Visual Studio
asset generator, 99
and Blend, 84-90
community, 9
different editions of, 9
enterprise, 9
installation steps, 11-13
i0S, 225
professional, 9
Xamarin, 215-216
Visual Studio 2015, 11, 13
Visual Studio 2017
community home page, 15
Xamarin, 13
Visual Studio Mobile Center
build, 263
distribute, 263
groups, 263
home page, 263
test, 263
Voice command definition (VCD), 53
child elements, 53
command set, 53
registered/not registered, 53-54
voice commands, 53
xml, 54-55

w

Wearable devices, 167

while loops, 29-30

Windows 10
application development, 5-7
deployment vs. previous

versions, 255

enable developer mode, 8
human-computer level, 53

270

10T (see Internet of Things (I0T))
minimum target version, 14
platform-homogeneous
architecture, 8
universal solution, 6
and UWP, 4-7
Windows Dev Center
iTunes Connect, 238
organizational licensing, 251
scale-based assets, 244
user responsiveness performance
suggestion, 258
Windows Phone, 6, 57
Windows Presentation Foundation (WPF)
applications, 1
Windows Store
analytics, 260
acquisitions screen, 259
add-on acquisitions, 260
channels and conversions, 262
customer demographic, 260
failure log, 262
filters, 260
health, 261
installs, 260
ratings, 262
reviews, 262
usage, 260
enterprise ready, 250-251
in-app purchases, 78
listings, 255
settings, 249-250
submission and evaluation, 251-255
Windows Wheel devices, 136-137
World Wide Web Consortium (W3C), 93

XY, Z
Xamarin

Android application, 235

installation, 13

Studio, 13
Xamarin Forms Application, 237
Xamarin Mac Agent, 225-226
Xcode

home page, 216-217

i0S, 216

layout controls, 222

macOS, 216

project templates for iOS, 218

	Contents at a Glance
	Contents
	About the Author
	About the Technical Reviewer
	Introduction
	Chapter 1: Introduction to Windows Universal
	Windows 10 and UWP
	.NET Languages and Architecture
	Installing Visual Studio and Components
	UWP and Cross-Platform Xamarin
	Setting Up a New Project

	Chapter 2: Elementary Concepts
	Object-Oriented Programing
	Function, Class, and Solution
	Conditional Statements and Loops
	If-else and the Conditional Operator
	Switch Case
	For Loop
	While (and Do-While) Loops

	Data Types
	Numbers
	Alphabets and Special Characters

	Application Life Cycle
	Sharing Code
	Errors and Error Handling
	Parallel Programing

	Chapter 3: The Windows 10 Experience
	Cortana
	Live Tiles
	Notifications
	Tile Notifications
	Toast Notifications

	Settings
	Share
	Navigation
	In-App Purchases (IAPs)

	Chapter 4: Windows with Mouse and Keyboard
	Components of a Solution
	Visual Studio and Blend
	Designing in Blend
	Triggers and Actions
	Size Classes/Visual States
	Scalable Assets
	Custom Controls
	Code Behind
	Data Binding
	Animations and Transitions
	Files in the File System
	Globalization and Localization
	Camera and Media Capture Devices
	Securing App Data
	Print and Casting Media to Devices
	Windows Wheel Devices
	Background Classes

	Chapter 5: Windows with Touch
	Gestures
	Defining a Custom Gesture
	Working with Multi-Touch

	Chapter 6: Internet of Things (IoT)
	Introduction
	Windows 10 IoT Core
	IoT on Microsoft Azure
	Introduction to OpenCV

	Chapter 7: Wearables
	3D
	Real Time
	Developing For Microsoft HoloLens
	Deployment and Store Ready

	Chapter 8: Windows 10 for Advanced Users
	Inking
	Device-Specific Code
	App Protocols
	App-to-App Communication
	Asynchronous Operations
	Multithreading and Parallel Processing
	Beyond Physical Contact
	App Intelligence

	Chapter 9: Cross Platform with Xamarin
	Xamarin Architecture
	Installing in Visual Studio
	Xamarin for iOS and macOS
	Xamarin for Android
	Deployment and Store-Ready

	Chapter 10: Ready for the Store
	Assets
	Manifest
	License Management
	Windows Store Settings
	Enterprise Ready
	Store Submission and Evaluation
	Windows 10 Deployment vs. Previous Versions

	Chapter 11: Application Analytics
	Windows Store Analytics
	Visual Studio Mobile Center
	Actionable Data

	Index

