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Preface

Brain–machine interfaces (BMIs) create an artificial pathway between the brain
and the external world. BMIs have broad applications in fundamental neuroscience
research, neuroprosthetics development, neural disease treatment, and may even-
tually change the way that humans interact with the world. In the past decade,
the research and application of BMIs have received enormous attention from the
scientific community as well as the public. However, conventional medical instru-
mentation used in existing BMI research is not capable of studying the complex
and dynamically changing behavior of the brain. Moreover, many neuroscience
experiments need to be conducted on freely behaving animals during locomotion
and social interaction. The key goal of this book is to address these challenges
by the design of next-generation BMIs with innovative solutions from the neuron-
electronics interface level up to the system architecture level.

This book provides an introduction to the emerging area of BMIs, with an
emphasis on the electrical circuit and system design. This book can help electrical
engineers, bioengineers, as well as neuroscience investigators to understand the
next-generation bidirectional closed-loop BMIs. Background information, compre-
hensive surveys and reviews, and design specifications are presented, which will be
beneficial for researchers who are new to this area or readers with general interests
in this research. In addition, the in-depth discussion of circuit and system design
methods, trade-offs, practical issues, and animal experiments will also be valuable
for experienced researchers.

Design innovations have been proposed in neural recording front-end (Chap. 2),
neural feature extraction module (Chap. 3), and neural stimulator (Chap. 4).
Practical design issues of bidirectional closed-loop neural interface (Chap. 5) and
overall system integration (Chap. 6) have been carefully studied and discussed. To
the best of our knowledge, this work presents the first reported portable system
to provide all required hardware for a closed-loop sensorimotor neural interface,
the first wireless sensory encoding experiment conducted in freely swimming
animals, and the first bidirectional study of the hippocampal field potentials in freely
behaving animals. The circuit and system design details are presented with bench
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testing and animal experimental results. The methods, circuit techniques, system
topology, and experimental paradigms proposed in this work can be used in a
wide range of relevant neurophysiology research and neuroprosthetics development,
especially in experiments with freely behaving animals.

We would like to express our appreciation and gratitude to many individuals
who have contributed to this book. During this research, we collaborated closely
with Prof. Timothy H. Lucas, Dr. Andrew G. Richardson, and their team at the
Department of Neurosurgery, University of Pennsylvania. Dr. Lucas directed the
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neering and therapeutics. Dr. Richardson organized the research, especially the
design, conduction, and analysis of the animal experiments presented in Chap. 6.
Prof. Milin Zhang, former postdoc in our group, now at Tsinghua University, jointly
organized the research. Dr. Zhang supervised the overall electronics design, and
implemented the digital compressed sensing module presented in Chap. 2 and the
stimulator’s digital control module presented in Chap. 4.
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touni, Prof. Naveen Verma, Dr. Xiaotie Wu, and Dr. Matt Hongjie Zhu. We would
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Chapter 1
Introduction

1.1 Background and Motivation

Since the dawn of human civilization, people have started the attempts to study
the brain, with the hope that it will give us answers to fundamental questions like
who we are, where is the consciousness from. However, even with the science
and technology advancements nowadays, many mechanisms of brain functions
remain unclear. There are about a hundred billion neurons in a human brain
[1], approximating the number of stars estimated in our galaxy [2]. Each neuron
establishes connections with seven thousand other neurons on average, forming a
massive neural network. Interestingly, neurons represent the information in terms
of electrical signals by distributing ions with different charges [3]. This gives
electrical engineers a unique opportunity to design artificial devices for collecting
the neural signal, and more importantly, generating electrical signals imitating the
neural signal. The direct communication pathway between the brain and the external
world is named brain–machine interface (BMI), brain–computer interface (BCI) or
neural interface [4].

The first BMI experiment was conducted by Jacques Vidal from University of
California, Los Angeles in 1973 [5], for an observation and detection of brain events
in electroencephalogram (EEG). The first intracortical BMI was built by Phillip
Kennedy from Georgia Institute of Technology in 1987 [6]. The first demonstration
of controlling a physical object using EEG signal was reported by S. Bozinovski in
1988 [7]. In 1999, Yang Dan and researchers at University of California, Berkeley
decoded neuronal firings to reproduce images seen by cats [8]. The same year,
John K. Chapin and researchers from MCP Hahnemann School of Medicine and
Duke University demonstrated the first direct control of a robotic manipulator by
decoding an assembly of cortical neurons [9]. In 2000, Miguel A. Nicolelis and
his colleagues from Duke University developed BCIs that decoded brain activity
in monkeys and used the devices to reproduce monkey movements in robotic
arms [10]. The same year, Gerwin Schalk from the Wadsworth Center of New
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York State Department of Health developed a general–purpose system for BCI
research named BCI2000 [11]. In 2002, Richard A. Andersen and researchers from
California Institute of Technology demonstrated decoding high-level cognitive plans
for movement from posterior parietal cortex. In 2005, the first human trial of BMI
implant for controlling artificial hand was demonstrated by Leigh R. Hochberg
from Harvard Medical School and a few collaborating institutes. In 2012, Leigh
R. Hochberg, John Bonoghue and fellow investigators at Brown University helped
two people with tetraplegia to reach for and grasp objects in three-dimensional
space using robotic arms from decoding the motor cortex [12]. In 2016, Sharlene N.
Flesher, Andrew B. Schwartz, and researchers from University of Pittsburgh helped
a paralyzed man experience the sense of touch in his mind-controlled robotic arm
by intracortical microstimulation of the somatosensory cortex [13].

These achievements are promising and encouraging for the development of
future generation BMI systems. However, several bottlenecks still need to be
overcome before this technology can be extensively used in neuroscience experi-
mentation and clinical therapies, such as the development of a robust bidirectional
neural interface for closed-loop operation [14]. The importance and motivation of
a bidirectional closed-loop neural interface can be understood from three perspec-
tives: (1) the development of neuroprosthetic devices with sensory feedback, (2) the
treatment of neural disorders, and (3) the study of neuroscience and neurology. Each
perspective is analyzed as follows.

1. Firstly, a bidirectional closed-loop neural interface is important for the develop-
ment of the neuroprosthetic and BMI device with sensory feedback. Sensations
and actions are inextricably linked. Behavioral goals are achieved by sampling
the environment with the available sensory modalities and modifying actions
accordingly. Recent developments in hand prosthetics with motor pathway
replacement alone do not lead to the adequate use of a paralyzed hand [15].
Artificial sensation restoration is needed for this technology to meet the perfor-
mance required for clinical adoption. The sensation may be restored by direct
electrical microstimulation of the brain [16]. Figure 1.1 illustrates an envisioned
bidirectional clinical hand neuroprosthesis with motor function restored through
brain-controlled stimulation of hand muscles, and somatosensation restored
through sensor-controlled electrical stimulation of the brainstem.

2. Secondly, a bidirectional closed-loop neural interface is important for the
treatment of neural disorders. Deep brain stimulation (DBS) is an FDA approved
treatment for essential tremor, Parkinson’s disease, dystonia, and obsessive-
compulsive disorder (OCD) [17]. Despite the long history and success in
the clinical use, the underlying mechanism of DBS remains not clear [18].
However, recent research has shown that a closed-loop stimulation can achieve
a better performance than conventional open-loop treatments. In 2011, the
research conducted by B. Rosin and his colleagues from Hebrew University-
Hadassah Medical Association School of Medicine shows that the closed-loop
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Fig. 1.1 Envisioned
bidirectional clinical hand
neuroprosthesis. Motor
function is restored through
brain-controlled electrical
stimulation of hand muscles,
and somatosensation is
restored through
sensor-controlled electrical
stimulation of the brain

stimulation has a greater effect than the conventional open-loop stimulation
paradigms, and has the potential to be effective in other brain disorders [19].
A. Berenyi et al. from Rutgers University presented the closed-loop control of
epilepsy by transcranial electrical stimulation in 2012 [20]. The seizure-triggered
transcranial electrical stimulation can effectively reduce the pathological brain
pattern while leaving the other aspects of brain functions unaffected. In 2013,
J. Paz and researchers from Stanford University showed that a closed-loop
optogenetic control of thalamus can immediately interrupt electrographic and
behavioral seizures [21]. All of these successful implementations encourage the
implementation of a fully integrated closed-loop bidirectional neural interface
for clinical treatments of neural disorders.

3. Last but not least, a bidirectional closed-loop neural interface is an essential
approach for the study of neuroscience and neurology. The fundamental goal
of neuroscience research is to better understand the operational principles of the
brain. Brain activities consist of complex interactions of both internal state and
external stimuli [22]. This is reflected from a single neuron level to a recurrent
neuronal network level, and is important for both in vitro and in vivo studies [23].
Examples of studies using bidirectional BMI include bridging lost biological
connection [24], generating synaptic plasticity and strengthening weak synaptic
connections [25], reinforcing the activity that generates the stimulation [26], and
so on.
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1.2 Review of Prior Work

This section presents a comprehensive survey and review of bidirectional brain–
machine interface designs published to date. BMI systems can be categorized from
several different perspectives: (1) based on the electrodes’ location, BMI systems
can be classified into non-invasive and invasive systems; (2) based on the signal and
control flows, BMI systems can be classified into one-directional BMIs (recording
or stimulation alone) and bidirectional BMIs (both recording and stimulation);
(3) based on the study and characterization approaches, BMI systems can be
classified into open-loop and closed-loop BMIs. Figure 1.2 shows the historical
trend for the publications of BMI systems over the past 15 years. Specific categories
of BMIs including invasive studies, closed-loop studies, and bidirectional neural
interface studies are plotted for comparison. The data was retrieved from the Scopus
database [27].

Non-invasive approach doesn’t require a surgery for implanting electrodes and
thus has a significantly less safety concern. However, invasive approach gives a
more direct interaction with neurons, thus has advantages in recording resolution
and bandwidth as well as stimulation effectiveness and accuracy. This book
mainly focuses on the study of invasive BMI systems. In addition, most existing
neuroscience research and BMI circuits and system development are based on an
open-loop one-directional signal flow: either neural recording or neural stimulation.

Fig. 1.2 The historical trend for publications of BMIs over the past 15 years. Specific categories
of BMIs including invasive studies, closed-loop studies, and bidirectional studies are plotted for
comparison
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Fig. 1.3 Percentages of
closed-loop and bidirectional
designs among all BMI
publications. Second order
polynomial fitting curves are
plotted for showing the trends

Figure 1.3 illustrates the percentages of BMI research papers and designs using
bidirectional signal flow and closed-loop approach. Second order polynomial fitting
curves are plotted for showing the trend. There is a clearly increasing trend for
using closed-loop approach and bidirectional neural interface. It should be noticed
that this is based on the exponential increase of the overall publications of BMIs.
However, the overall percentage is still very low. This book mainly focuses on the
study of bidirectional closed-loop BMI systems.

In order to have a comprehensive understanding of the progress of bidirectional
BMI research, especially from the electrical engineering perspective, a survey of
bidirectional BMI designs is given below. Tables 1.1 and 1.2 list bidirectional BMI
and neural interface electronic designs with key design features. The tables include
five of the publications from the authors of this book [43, 51, 52, 57, 63]. The
selected features include recording and stimulation channel-counts, neural features,
closed-loop operation, wireless communication, target applications, and animal
experimental methods.

Among all bidirectional BMI systems, designs with high channel-counts have
been reported [34, 47, 53]. It should be noticed that most of the high channel-
count designs were for in vitro studies, which have less restraint on power
consumption. Neural feature extraction has been performed in computers [31, 32],
general–purpose microcontrollers [35–37], and application-specific integrated cir-
cuits (ASICs) [42, 48, 54, 60]. Commonly used neural features include: neural
energy in specific frequency bands [31, 33, 37, 48, 52], action potentials [28, 32, 36,
46], wavelet domain features [54, 60], entropy [35, 44], and phase synchrony [42].
Commonly used closed-loop methods include: simple trigger [28, 31, 50], linear
mapping [46, 51, 63], classifiers [35, 40, 54], PI or PID control [48, 52, 57]. Wireless
communication modules integrated in BMI systems include commercial solutions
[33, 35, 43] and ASIC designs [44, 48, 63]. Target applications of these papers
include generalized neuroscience research [39, 45, 45, 49, 55], in vitro neuronal
studies [38, 47, 53], deep brain stimulation (DBS) treatments [33, 48] especially
neural disorder control [35, 42, 54, 60], and sensory encoding studies [63]. The
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Table 1.1 Survey of bidirectional neural interface designs (Part I)

Ref. Publication Affiliation Lead author Rec. Stim.

2005 [28] J. Neurosci.
Methods

Univ. of Washington J. Mavoori 1ch 1ch

2006 [29] JSSC ETH Hoenggerberg F. Heer 128ch 128ch

2007 [30] TCAS-I Georgia Tech. R. Blum 16ch 16ch

2009 [31] TBE UC Berkeley S. Venkatraman 16ch 16ch

2009 [32] EMBC Emory Univ. J. Rolston 60ch 60ch

2010 [33] JSSC Univ. Michigan, Ann Arbor J. Lee 8ch 64ch

2010 [34] TBioCAS Univ. of Toronto F. Shahrokhi 128ch 128ch

2010 [35] EMBC National Cheng Kung Univ. S. Liang 1ch 2ch

2011 [36] TNSRE Univ. of Washington S. Zanos 3ch 3ch

2011 [37] JNE Washington Univ. A. Rouse 4ch 8ch

2011 [38] JSSC/TBE Case Western Reserve Univ. M. Azin 4ch � 2 1ch � 2

2011 [39] TBioCAS Univ. of Cagliari D. Loi 8ch 8ch

2012 [40] TNSRE Medtronic/MIT S. Stanslaski 12ch 8ch

2013 [41] ISCAS Univ. of Ulm U. Bihr 1ch 1ch

2013 [42] JSSC Univ. of Toronto K. Abdelhalim 64ch 64ch

2014 [43] ISCAS Univ. of Penn This work 4ch 2ch

2014 [44] JSSC National Chiao Tung Univ. W. Chen 8ch 1ch x2

2014 [45] CICC Case Western Reserve Univ. K. Limnuson 1ch 1ch

2014 [46] Scientific
Reports

Italian Institute of Tech. G. Angotzi 8ch 8ch

2014 [47] JSSC ETH Zurich M. Ballini 1024ch 1024ch

2014 [48] JSSC Univ. Michigan, Ann Arbor H. Rhew 4ch 8ch

2014 [49] ESSCIRC Medtronic/Washington Univ. P. Cong 8ch 32ch

2014 [50] JNE Imec T.K.T. Nguyen 32ch 1ch

2015 [51] TBioCAS Univ. of Penn This work 4ch 2ch

2015 [52] BioCAS Univ. of Penn This work 12ch 12ch

2015 [45] AICSP Case Western Reserve Univ. K. Limnuson 1ch 1ch

2015 [53] TBioCAS Univ. of Toronto R. Shulyzki 256ch 64ch

2015 [54] JSSC Masdar Inst. of Sci. Tech. M. Altaf 16ch 1ch

2015 [55] VLSI Univ. Michigan, Ann Arbor A. Mendrela 8ch 4ch

2015 [56] JSSC UC Berkeley W. Biederman 8ch 2ch

2016 [57] TBioCAS Univ. of Penn This work 16ch 16ch

2016 [58] Microele-
ctronics J

Seoul National Univ. Sci. Tech. A. Abdi 1ch 1ch

2016 [59] JSSC Univ. Michigan, Ann Arbor A. Mendrela 8ch 4ch

2016 [60] VLSI Cal Tech./ UCLA M. Shoaran 16ch 1ch

2016 [61] Sensors Wuhan Univ. Y. Su 32 ch 4 ch

2016 [62] BioCAS Univ. of Ulm M. Haas 1ch 1ch

2017 [63] ISCAS Univ. of Penn This work 16ch 16ch
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Table 1.2 Survey of bidirectional neural interface designs (Part II)

Ref. Neural feature ex. Closed-loop Wireless Application Animal exp.

2005 [28] Spike Trigger No streaming Generalized Free behaving

2006 [29] – – – Generalized –

2007 [30] – – – Generalized –

2009 [31] Energya Trigger – Generalized Awake

2009 [32] Spikea Trigger – Generalized Free behaving

2010 [33] Energy Trigger Off-chip DBS treatment Anesthetized

2010 [34] – – – Generalized Anesthetized

2010 [35] Entropy/spectrumb Classifier Zigbee Seizure ctrl. Free behaving

2011 [36] Spikeb Classifier – Generalized Free behaving

2011 [37] Energyb Classifier Generalized –

2011 [38] Spike Trigger – Neuronal study Anesthetized

2011 [39] – – – Generalized Anesthetized

2012 [40] Spectrum Classifier – Generalized Awake

2013 [41] – – – Generalized –

2013 [42] Phase synchrony Trigger UWB Seizure ctrl. Anesthetized

2014 [43] Energy/spike Trigger 2.4 GHzc Generalized Awake

2014 [44] Entropy/spectrum Trigger OOK Seizure ctrl. Awake

2014 [45] – – – Generalized –

2014 [46] Spikeb Mapping 2.4 GHzc Generalized Free behaving

2014 [47] – – – Neuronal study In Vitro

2014 [48] Energy PI ctrl. Back-scattering DBS treatment –

2014 [49] Spectrum Unknown – Generalized Awake

2014 [50] Spike Trigger – Generalized Awake

2015 [51] Spike/Energy Mappingb 2.4 GHzc Generalized Free behaving

2015 [52] Spike/Energy PID ctrl. 2.4 GHzc Generalized Free behaving

2015 [45] – – – Generalized –

2015 [53] – – – Neuronal study Anesthetized

2015 [54] Freq-time Classifier – Seizure ctrl. –

2015 [55] – Unknown – Generalized –

2015 [56] Spike Trigger – Generalized Anesthetized

2016 [57] Spike/Energy PID ctrl. 2.4 GHzc Generalized Free behaving

2016 [58] – – – Generalized –

2016 [59] – – – Generalized Anesthetized

2016 [60] Freq-time Trigger – Seizure ctrl. Free behaving

2016 [61] – – 2.4 GHzc Generalized Free behaving

2016 [62] Spectrum – – Generalized –

2017 [63] – Mapping UWB Sensory encoding Awake
aOff-chip, in computer or workstation
bOff-chip, in commercial microcontroller
cOff-the-shelf electronic solution
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animal experiments and validation methods can be categorized as: anesthetized
animals [33, 34, 42], awake but restrained animals [44, 49, 50], and freely behaving
animals [57, 60, 61]. Anesthetized and restrained awake animal experiments can
be conducted using wire connected instrumentation, which has less concerns than
those experiments conducted in completely freely behaving animals [57].

In addition to the general survey, a few key designs that can be considered as
milestones in the development of BMIs are reviewed. The selected works are from
(in an alphabetical order) Brown University, Case Western Reserve University, Duke
University, National Chiao Tung University, Medtronic Inc., Stanford University,
University of California, Berkeley, University of Michigan, Ann Arbor, University
of Toronto, University of Washington, and Washington University, St Louis. The
selected papers are focused on the design from an electrical engineering perspective.
The system architecture and circuit implementation of these papers are very helpful
in understanding bidirectional BMI designs. Major innovations and contributions
are highlighted. The first and corresponding authors with associated laboratories
mentioned in this section have years of experience in BMI development, thus are
very valuable resources for tracking the trends of BMI designs.

Stavros Zanos and Eberhard E. Fetz et al. from University of Washington
designed an autonomous head-fixed computer (the Neurochip-2) for recording and
stimulating in freely behaving monkeys in 2011 [36]. The first generation of the
device developed in this group was published in 2008 [28]. The device has three
recording and three stimulating channels. Digital filtering and action potential
discrimination can be performed in the hardware, and action potential triggered
stimulation was demonstrated. An accelerometer was integrated in the system. The
device had a wireless interface for uploading data and setting device configuration,
but real–time data streaming was not supported. An 8MB on-board memory was
used to store the recorded data. This work was among the early demonstrations of
long-term bidirectional recording and stimulation in freely behaving monkeys.

A.G. Rouse and T.J. Denison et al. from Washington University, St. Louis
and Medtronic Inc. designed a chronic generalized bidirectional BMI in 2011
[37, 40]. The system incorporated neural recording and processing subsystems
into a commercial neural stimulator. The system can perform spectral analysis,
algorithm processing, and event-based data logging. A three-axis accelerometer was
also included in the system. The prototype underwent verification testing to ensure
reliability. The system included a wireless link for data upload and configuration, but
real–time data streaming was not supported. The device integrates an 8 MB SRAM
for storing data.

Subramaniam Venkatraman and Jose M. Carmena et al. from University of
California, Berkeley designed a system for neural recording and closed-loop
intracortical microstimulation in awake rodents [31]. This work also demonstrated
the first real–time whisker tracking system. The system employed commercial
recording and stimulation instrumentation and a custom PCB interface board. An
on-board circuit was designed to reduce stimulus artifacts. This work performed
signal processing on a computer and didn’t support wireless communication.
William Biederman et al. from the same group proposed a fully integrated neu-
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romodulation SoC in 2015 [56]. This work consisted of 64 acquisition channels
and dual stimulation channels. The work also featured on-chip digital compression
and presented the lowest area and power for the highest integration complexity
achieved to the date of publication.

Meysam Azin and Pedram Mohseni et al. from Case Western Reserve University
designed a battery-powered activity-dependent intracortical microstimulation IC
in 2011 [38]. The chip consisted of two modules, each module integrated four
recording channels and one stimulating channel. The chip was designed and
fabricated in 0.35 �m CMOS technology, powered by a 1.5 V battery and provided a
stimulation voltage up to 5.05 V. This design was among the early demonstrations of
on-chip action potential discrimination and spike-triggered stimulation. Follow-up
works from the same group added an on-chip stimulation artifact rejection feature
in 2014 [45].

Farzaneh Shahrokhi and Roman Genov et al. from University of Toronto
designed a 128 channel fully differential digital integrated neural recording and
stimulation interface in 2010 [34]. The chip was designed and fabricated in 0.35 �m
CMOS technology. The same group developed a 320-channel bidirectional neural
interface chip in 2015 [53]. A seizure onset detector was implemented off-chip.

Wei-Ming Chen et al. from National Chiao Tung University, Taiwan, designed
a fully integrated closed-loop neural prosthetic CMOS SoC for real–time epileptic
seizure control in 2014 [44]. The SoC consisted of eight recording channels, one
stimulating channel, a digital seizure detection processor, and a wireless transceiver.
The SoC was fabricated in 0.18 �m CMOS technology. The developed system and
the seizure detection algorithm were verified in Long-Evans rats.

Hyo-Gyuen Rhew and Michael P. Flynn et al. from University of Michigan,
Ann Arbor designed a fully self-contained logarithmic closed-loop deep brain
stimulation SoC in 2014 [48]. This work was the first reported implantable SoC with
an on-chip closed-loop DBS algorithm. Logarithmic ADC and logarithmic filters
were used in this work. A digital PI controller was implemented as the closed-loop
controller. This work also integrated an ultra-low-power backscattering wireless
transceiver. Adam E. Mendrela et al. from the same group developed a bidirectional
neural interface circuit with active stimulation artifact cancellation in 2016 [59].
This work also featured cross-channel common-mode noise suppression.

Peng Cong and Tim Denison et al. from Medtronic Inc. and Washington
University designed a 32-channel modular bidirectional BMI with embedded DSP
for closed-loop operation in 2014 [49]. The system performed on-chip digital FFT,
and a Cortex M3-based microcontroller was used for implementing closed-loop
algorithms. The sensing performance of the developed system was demonstrated
with 2-D cursor control experiments in non-human primates.

There are also a few publications that describe custom designs for freely behav-
ing animal experiments. These papers address a lot of practical design challenges.
Krishna V. Shenoy et al. from Stanford University developed a wireless recording
system for freely behaving animals, namely Hermes system, reported in 2007 [64],
2009 [65], 2010 [66], and 2012 [67]. The most recently reported HermesE system
featured a 96-channel full data rate direct neural signal recording.
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Ming Yin and Arto V. Nurmikko et al. from Brown University developed a
wireless neurosensor for full-spectrum electrophysiology recording during free
behavior in 2014 [68]. This work supported 96 channel full-spectrum data wireless
streaming in a short distance. The wireless data rate was up to 200 Mbps. David
A. Schwarz and Miguel A.L. Nicolelis et al. from Duke University developed a
chronic wireless recording system for freely behaving monkeys in 2014 [69]. This
work featured 3-D multielectrode implants and was capable of isolating up to 1800
neurons from an animal. The design was validated in several monkeys, and the work
reported the highest number of neurons wireless recorded from freely behaving
animals to the date of publication.

1.3 Overview of the Bidirectional Closed-Loop
Brain–Machine Interface System

This section gives an overview of the developed bidirectional BMI system for
closed-loop neuroscience experiments. In general, BMI systems should be opti-
mized for safety, reliability, functionality, miniaturization, and long-term operation.
To achieve this goal, design optimizations need to be performed from the neuron–
electronics interface level up to the system architecture level. The key design
requirements are summarized as follows:

1. Safety: Tissue damage from implanted electrodes and electronics must be
minimized. This requires the design of the neural interface electronics to have
proper input and output impedances, a proper stimulation power density based on
the electrode material and surface area, a sufficient stimulation charge balancing,
and so on. In addition, the packaging and housing of the electronics and batteries
also pose important safety requirements;

2. Performance and Reliability: Both performance and reliability are critical for
BMI systems. The requirements usually include a good signal quality, a reliable
wireless data link or a local data storage, reliable signal processing and on-chip
closed-loop operation, reliable electrode connection and electronic assembling,
and so on. A dependable and robust performance in recording and stimulation is
of great importance for both neuroprosthetics and neuroscience investigation;

3. Interfaces: BMI systems should provide multiple functional interfaces for neural
signal recording, neural stimulation, and various sensing including wearable
sensors and supervision. The interfaces should also include the user interface
for researchers and investigators to use the BMI system for experiments and data
analysis;

4. Flexibility: BMI systems should have programmable configurations for record-
ing and stimulation, for example, amplifier gain, bandwidth, sampling rate, and
simulation parameters. In addition, the system may also offer programmable
neural feature extraction, machine learning, modulation algorithms to support
real–time closed-loop operation;
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5. Portable: One of the key requirements for animal behaving experiments is the
ability to record and stimulate wirelessly while the animal is freely moving,
such as locomotion and social interaction. Conventional rack-mounted medical
instrumentation doesn’t support these experiments. So custom BMI systems
should be lightweight and can be carried by the animals without disturbing their
normal behavior;

6. Low Power: A sufficient battery life is important for studying animals’ long-term
neural activities, such as during sleep. Another typical experiment is to build
plasticity, which requires a consistent closed-loop operation. For implantable
devices, low power is important to minimize the tissue damage due to the
generated heat. Usually, wireless data streaming or programming flash memory
consumes most of the power consumption in BMI devices. A high stimulation
current also demands a high peak power.

The key features and specifications of the proposed BMI system are listed in
Table 1.3. The neural recording front-end of the proposed system is designed for
invasive recording, including local field potential (LFP) and action potential (AP)
signals. Major building blocks of the recording front-end include low-noise neural
amplifiers, programmable neural filters, programmable gain amplifiers, and analog-
to-digital converters. On-line data compression, including compressed sensing and
action potential detection can be used to reduce the wireless data rate. The stimulator
back-end is designed for functional electrical stimulation (FES). A high compliance
voltage is required when using high impedance electrodes. On-chip neural feature
extraction for both local field potentials and action potentials is implemented.
Closed-loop operation is supported using the on-chip PID controller or by the off-
chip general–purpose microcontroller. Various body-area sensors are designed to
monitor animals’ behavior and sensory inputs. The battery-powered devices should

Table 1.3 Key features of the described bidirectional BMI system

Analog front-end Stimulator back-end

Channel count 16 Channel count 16

Input referred noise <5 �V Full-scale current 0–255 �A/4 mA

Bandwidth (LFP) 1–200 Hz Current resolution 6 bit

Bandwidth (AP) 300–10 kHz Pulse width 1–255 �s

Gain 1000–8000 Time interval 8 ms–2 s

ADC resolution 10–12 bit Compliance voltage <5 V

Neural feature ex. Closed-loop operation

Local field potential Energy envelope Directions rec/sensor-stim

Action potential Detection and discrim. Closed-loop controller On-chip

Amplitude-phase Matched filter Machine Learning Off-chip

Wireless Power

Wireless protocol Bluetooth/FSK Chip power <1 mW

Wireless datarate 2 Mbps System power <30 mW

Micro-SD Card FAT32 Total battery life >12 h
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Fig. 1.4 The block diagram
of the proposed generalized
closed-loop, bidirectional
BMI system

be able to support a continuous operation as the target experiment requires. The data
loss over the wireless link should be minimized, and the on-board flash memory
would need to support the data storage during the long-term recording. Other
features including custom packaging of the device are also important aspects of
the system design.

The block diagram of the proposed general–purpose bidirectional closed-loop
BMI system is illustrated in Fig. 1.4. The main building blocks of the system
include: a bidirectional BMI device, various sensors, and a computer with a user
interface. The data and control signal flows are marked in the figure. As the
core of the BMI system, the BMI device features a bidirectional neural interface
and a duplex wireless communication with the computer. The bidirectional neural
interface enables both neural signal recording and neural stimulation. The duplex
wireless communication allows the BMI device to stream data back to the computer,
and to read commands from the computer or the sensor nodes. In addition, the
BMI device can process certain neural feature extraction and some closed-loop
algorithms. Sensors are also important elements in the system. There are two types
of sensors used in this system: wearable sensors and surveillance sensors. Wearable
sensors may include a pressure sensor, flex sensor, accelerometers, goniometer, etc.
A sensor node is built using commercial sensors and a wireless transceiver. Surveil-
lance sensors include a video recorder and a motion tracking sensor. A computer
station provides a user interface for data display, device configuration, and can
also perform closed-loop algorithms in certain applications. A standard Bluetooth
module is a custom designed wireless dongle is used as the computer interface. The
graphic user interface is designed based on MATLAB. The wireless communication
between all blocks uses a customized command protocol.

It should be noticed that not all components are necessary for a certain
experiment. The system can be configured to work in various closed-loop operating
modes. Figure 1.5 shows four commonly used configurations. For example, if the
sensor is a camera, Fig. 1.5a shows the operation of the sensory augmentation
experiment presented in Sect. 6.3. In this experiment, the camera tracks the
animal, sends the location information to the computer. The computer performs
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Fig. 1.5 Various closed-loop configurations of the proposed BMI system

the mapping, then sends the stimulation commands to the wireless stimulator.
Figure 1.5b shows the operation of the bidirectional recording and stimulation
experiment in freely behaving monkeys described in Sect. 6.4. Similarly, the BMI
system can also be configured to perform the operations as illustrated in Fig. 1.5c
and d.

1.4 Outline of This Book

The book presents the design and analysis of BMI and neural interface systems,
with emphasis on bidirectional closed-loop system design. Figure 1.6 highlights the
major blocks in a typical bidirectional closed-loop BMI system. The corresponding
chapters in this book are marked in the figure.

The book is organized as follows. Chapter 2 presents the analysis and design of
neural recording front-ends. Background of neural recording and signal characteris-
tics are first introduced, followed by a review of prior work and an analysis of the key
design trade-offs. The design and testing of a general–purpose low-noise amplifier
and a low-power SAR ADC are presented. Then, a novel pre-whitening neural
front-end design is proposed. The pre-whitening amplifier design takes advantage of
neural signal’s frequency characteristic. It significantly reduces the dynamic range
requirement of the neural amplifier and the ADC resolution requirement. Detailed
analysis, simulation, and measurement results are presented. In the end, a fully
integrated neural signal acquisition system that features compressive sensing is
developed for chronic recording and BMI.
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Fig. 1.6 The building blocks of a typical bidirectional closed-loop BMI system, and the organiza-
tion of this book

Chapter 3 discusses neural feature extraction from three perspectives: local field
potential energy extraction, action potential detection, and amplitude-phase coupled
feature extraction. Several novel circuits and algorithms have been proposed to
improve the performance and power efficiency of conventional designs. A novel
natural logarithmic domain tuning scheme is proposed for energy extraction in favor
of the brain oscillation bands. An ultra low power current-mode action potential
discrimination module is designed. A matched filter is proposed to work with the
pre-whitening neural amplifier, which significantly improves the detection accuracy
in amplitude-phase coupled neural features.

Chapter 4 presents the analysis and design of high efficiency electrical neural
stimulators. Background of neural stimulation and physicochemical properties of
the electrode-electrolyte interface are reviewed, and the key design requirements are
summarized. A general–purpose neural stimulator design is presented. Next, a novel
stimulation strategy is proposed to achieve charge balancing even in existence of
irreversible electrochemical processes and unrecoverable charge injection. A high-
efficiency net-zero charge neural stimulator has been designed using the proposed
strategy. Bench testing, in vitro and in vivo experimental results are given to verify
the operation of the designed stimulator.

Chapter 5 addresses the issues in bidirectional closed-loop neural interfaces from
two perspectives: the stimulation artifacts and the closed-loop operation. A study of
stimulation artifacts in different recorder and stimulator configuration is presented
with experimental results. Design suggestions are given in different cases. Next,
the mechanisms of various closed-loop neural interface and BMI systems are
summarized. A commonly used PID controller is designed and tested. The PID
controller has been integrated in a bidirectional neural interface system-on-chip
(SoC). Experimental results are presented.

Chapter 6 presents the BMI system integration with a focus on experiments
in freely behaving animals. A general–purpose experimental platform, namely the
PennBMBI, is presented, featuring wireless recording, stimulation, and sensing
ability. A user-friendly computer interface has been developed with a custom
wireless communication protocol. Next, a watermaze experiment is designed and
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conducted for the study of augmenting perception through modulated electrical
stimulation of somatosensory cortex. A waterproofed wireless neural stimulator
and a complete animal tracking and neuromodulation experimental system have
been designed. In the end, custom BMI devices are developed and used in long-
term bidirectional experiments in freely behaving monkeys. A study of hippocampal
gamma-slow oscillation coupling using the developed system is presented.

To the best of our knowledge, this book presents the first comprehensive study
of bidirectional BMI design for freely behaving animal experiments featuring
closed-loop operation. The book gives the most complete survey of bidirectional
BMI designs published to date. The survey gives insights on the BMI systems’
development progress with emphasis on real–time feature extraction, closed-loop
operation, and validation in animal experiments. The key contributions of the book
are summarized as follows:

1. System Level: A complete wireless bidirectional BMI system capable of on-
chip neural feature extraction and closed-loop operation has been developed. This
work is the first reported portable system to provide all necessary hardware for a
closed-loop sensorimotor neural interface. The book also gives a comprehensive
study of stimulation artifacts in various BMI configurations, which is a critical
issue in bidirectional BMI design. In addition, the book presents the first review
and summary of the mechanisms for real–time closed-loop BMI operation.

2. Circuit Level: Novel circuits have been proposed to improve the cutting-edge
designs. Several innovative designs are highlighted here: a pre-whitening record-
ing front-end is proposed to improve the dynamic range of neural recording
front-end; a natural logarithmic domain neural energy extraction unit is designed
to improve the efficiency; a matched filter is proposed to improve the detection
accuracy of amplitude-phase coupled neural features; a novel net-zero charge
neural stimulator is designed for achieving a high safety and power efficiency.
Moreover, custom circuits have developed and optimized in support of the system
integration and closed-loop operation.

3. Application and Experiment Level: Research and investigation have been con-
ducted using the developed bidirectional BMI system. Novel animal experiment
paradigms and methods have been proposed and implemented. The presented
watermaze experiment is the first wireless sensory encoding experiment con-
ducted in freely swimming animal. Bidirectional neuroscience experiments have
been conducted in macaques using the developed device, including the first study
that directly compares the hippocampal field potentials in sleep and sedation.

In summary, the system architecture, design methods, circuit techniques, and
experimental paradigms presented in this book can be used in a wide range of neu-
rophysiology research and neuroprosthetics development, especially bidirectional
closed-loop experiments in freely behaving animals.



Chapter 2
Neural Recording Front-End Design

2.1 Introduction

Neural signal recording revolutionizes our understanding of the human brain. Since
the first extracellular recording pioneered by the investigators Ward and Thomas
in the 1950s [70], neural recording has revealed the fundamental structure and
organization of the brain. The number of simultaneously recorded neurons doubled
approximately every 7 years [71]. The exponential growth in the recording ability
is to a large extent driven by innovations in CMOS technology, circuits and systems
design, microelectrode fabrication, and bio-compatible packaging techniques.

The large-scale neural recording also provides a unique opportunity for the
research in brain–machine interface (BMI), which builds the interface between
brain and artificial devices [70, 72]. However, recent studies estimate that a
simultaneous invasive recording of 100,000 neurons is needed for decoding full-
body movements [69], which is beyond the recording ability of the cutting-edge
BMI devices. At the same time, multi-channel recording from freely behaving
animals in a natural environment is important for both neuroscience research and
neuroprosthetic development. However, most of the research to-date still relies on
rack-mount instrumentation with restrained cables. The requirements of recording
high bandwidth neural signal from multi-channel, in multi-brain areas, via wireless
miniature devices place a significant challenge on existing electronic technology and
design techniques. The design optimization of a fully integrated neural recording
front-end is thus highly desirable.

In the last two decades, a large number of neural recording front-end designs
have been reported with improvements from many different aspects. The major
innovations have come from novel circuit and system topologies [73–75], low-
noise design techniques [76–79], large number of channel-count [76, 80–82], energy
efficient designs [74, 76, 82], and low-power wireless interfaces including ISM band
FSK [76, 83, 84], FM [85, 86], UWB [66, 81], and backscattering [82, 87, 88].
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Fig. 2.1 The sources of the
neural signals and their
locations relative to the brain
(not drawn to scale)

In addition, several systems have been used in freely behaving animal experiments
[68, 69], and some of the prototype devices are fully integrated and are potentially
implantable [80, 82, 89].

This chapter presents the analysis and design of neural recording front-end.
Several novel circuit and system designs are proposed to improve the state-of-the-
art. The chapter is organized as follows. Section 2.1 introduces the characteristics of
the neural signal. The design specifications of neural recording circuit and systems
are summarized. Section 2.2 reviews prior work, and analyzes the key trade-offs
in the neural amplifier design, followed by a design of a general–purpose low-
noise neural amplifier. Section 2.3 proposes a novel pre-whitening neural amplifier
design, which exploits the frequency characteristics of the neural signal to relax
the dynamic range and linearity requirement of the recording front-end. Section 2.4
presents the design of a 10-bit low-power SAR ADC for neural signal digitization.
Section 2.5 presents the design of a complete neural signal acquisition front-end
with compressive sensing for long-term neural signal recording in freely behaving
animals.

2.1.1 Signal Characteristics

Neural signal can be recorded via invasive or non-invasive electrodes. Figure 2.1
shows the most common used neural signal sources and the corresponding electrode
placements [90]. The electroencephalography (EEG) is the electrical brain activity
recorded from the scalp, the electrocorticography (ECoG) is the electrical brain
activity recorded beneath the skull, and local field potential (LFP) and action
potential (AP) are electrical signals recorded within the parenchyma. The AP is
the individual neuron activity, and the LFP is the activities from multiple nearby
neurons.

Figure 2.2 illustrates the amplitude and frequency characteristics of different
types of neural signals [91]. Main noise sources are also marked in this figure,
including the thermal and flicker noise from the electrodes and electronic recording
device, and the interferences from the environment.
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Fig. 2.2 The amplitude and
frequency characteristics of
different types of neural
signals, in comparison with
noise sources

Table 2.1 Summary of
specifications for neural
recording

Requirement Range Unit

Input dynamic range 10 mVpp

Electrode offset ˙300 mV

Input impedance >10 Mohm

Common mode rejection
60, at 50–60 Hz

30, at 100–120 Hz
dB

Gain accuracy Error <10% and <˙10 �V

Gain stability over 24 h <3 %

Noise 50 �V

Crosstalk
<0.2

<5

mV

%

Timing accuracy <30 (over 24 h) s

Temporal alignment Error <20 ms

2.1.2 Design Specifications

The key specifications for a neural recording front-end include: input-referred noise,
dynamic range, input impedance, linearity, common-mode rejection ratio (CMRR)
and power-supply rejection ratio (PSRR), and so on. The minimum requirements are
listed in Table 2.1, cited from International Electro-Technical Commission (IEC)
medical electrical equipment standard 60601-2-47 [92]. It should be noticed that
the requirement for a specific application will usually be higher than the general
standard.

In addition to the requirements of the neural amplifier circuit, there are several
key requirements of a successful chronic invasive neural recording system:

1. Longevity requirement: safe electrode interface, minimum tissue damage or
infection;

2. Noise, bandwidth, and channel-count requirement for the target signal source;
3. Reliable data storage or wireless transmission;
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4. Low power for minimum heat damage and long-term recording. In addition, the
BMI research usually requires the front-end to be highly programmable, wireless
compatible with commercial equipment and sensors, and also can be easily
upgraded. All of these features together are required for a practical recording
system for neuroscience research and BMI development. A balance between the
requirements of each system block needs to be carefully considered.

Several figure-of-merits (FoM) are commonly used for evaluating and comparing
different neural recording front-end designs. The most important FoM for noise and
power performance is the noise efficiency factor (NEF). The NEF was first proposed
by M. Steyaert et al. from the Katholieke Universiteit Leuven in 1987 [93], and was
resurrected by R. Harrison et al. from the University of Utah in 2003 [73]. The NEF
is defined as:

NEF D Vni,rms

s
2Itot

�ˆt � 4kT � BW
(2.1)

where Vni,rms is the input-referred rms noise voltage of the amplifier, Itot is the
amplifier’s total supply current. For a single bipolar transistor, the input-referred
rms noise is:

Vni,rms D

s
4kTˆt

Itot
�

�BW

2
(2.2)

So, the NEF of a single bipolar transistor is 1 [73]. Paper [73, 93] predicted that
all practical circuits must have a NEF greater than 1, however, later developed
techniques overcame this limitation [44, 94].

It should be noticed that the NEF leaves the supply voltage out of the trade-off.
As a result, two amplifier designs with different supply voltages but a same supply
current and noise performance may have the same NEF. To mitigate this tissue, R.
Muller et al. from the University of California, Berkeley proposed a FoM named
power efficiency factor (PEF) in 2012 [95]. The PEF is defined as:

PEF D NEF2VDD

D
V2

ni,rms � Ptot

� � kT=q � 4kT � BW

(2.3)

The PEF gives a direct trade-off between power and noise, and two amplifiers
with the same input rms noise and power consumption should have the same PEF.
Reducing supply voltage significantly reduces the power consumption resulting a
better PEF. However, reducing supply voltage usually comes at a cost of lowering
the dynamic range. In order to compare the overall system’s efficiency, D. Han et al.
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from the Nanyang Technological University further proposed a FoM named system
efficiency factor (SEF) in 2013 [96]. The SEF is defined as:

SEF D
PEF

DRout
(2.4)

where

DRout D 10 log
V2

amp,max

2 � G2
AFEV2

ni,rms

(2.5)

where Vamp,max is the maximum voltage swing of the amplifier, and GAFE is
the voltage gain of the amplifier. SEF takes noise, power, and dynamic range
performance into account, thus is more suitable for a system level performance
comparison.

2.2 Design of a Low-Noise Neural Amplifier

2.2.1 Review of Prior Work

Numerous designs of neural amplifier have been reported in literature. The moti-
vation of this section is not to give a comprehensive survey of prior work, but
to analyze the key design trade-offs with featured examples. Review, tutorial, and
comprehensive surveys for neural amplifier designs can be found in [70, 97–99].

2.2.1.1 System Topology

Many electrical engineers are familiar with the classical instrumentation amplifier
using a 3-opamp topology. The 3-opamp instrumentation amplifier has a high
input impedance, a good CMRR, but at a low power efficiency. Commonly used
low-power CMOS neural amplifiers use capacitor and resistor elements to set the
closed-loop gain. Typical block diagrams are shown in Fig. 2.3. Using capacitive
gain elements, the design is inherently AC coupled [73]. Thus, the input common-
mode range is from ground to VDD, limited by the ESD protection circuits. The only
active component is the operational transconductance amplifier (OTA). The CMRR
is mainly limited by the mismatch of the capacitors. The input impedance is limited
by the size of the input capacitor and is usually frequency dependent. Using resistive
gain elements, the design is inherently DC coupled [100]. The input common-
mode range is less than VDD. The DC headroom is VDD/gain, which is much
smaller than the capacitive counterpart. The input impedance is limited by the
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Fig. 2.3 The block diagram of the typical neural amplifiers with (a) capacitive gain element and
(b) resistive gain element. The x1 symbol is for a unity gain buffer

Table 2.2 Comparison of
neural amplifiers with
capacitive and resistive gain
elements

Gain element Capacitive Resistive

Gain C1=C2 R2=R1

Noise PSD v2
Thermal,v

2
Flicker v2

Thermal,v
2
Flicker,v

2
R

Input impedance 1=j!C1 1=j!Cp

DC headroom VDD VDD/gain

Input CM range VDD <VDD

parasitic capacitance, which is usually much higher than the capacitive counterpart.
The CMRR is mainly limited by the mismatch of the analog buffers. Unlike the
capacitive gain elements, the resistors also contribute to the overall noise. Several
key features of the capacitive and resistive amplifiers are listed in Table 2.2 [101].
In summary, the topology using capacitive gain elements enjoys several inherent
advantages over the resistive counterpart. Although a lot of techniques have been
reported to address these problems [74, 100, 101], the capacitive gain element
topologies are the mainstream designs for neural amplifiers.

In addition to passive gain elements, active feedback topologies have also been
used to shape the frequency response [95, 102]. With an active feedback, the
large input capacitor can be replaced by a small integrating capacitor, and a high
input impedance can be achieved. However, the active feedback adds to the power
consumption, and also contributes to the overall noise of the system.

Moreover, open-loop amplifiers have also been reported in literature [103, 104].
Compared with the closed-loop topologies, open-loop amplifiers can achieve a
higher power efficiency, but usually suffer from a poor linearity. But since the neural
signal has a small amplitude, the linear input range may be good enough in certain
applications.
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2.2.1.2 Low-Noise OTA

Operational transconductance amplifier (OTA) usually serves as the core of a low-
noise neural amplifier. Commonly used OTA structures include: (a) current mirror
OTA, (b) two-stage OTA with Miller compensation, (c) folded cascode OTA, and
(d) telescopic OTA. Current mirror OTA usually has two stages with the dominant
pole located at the second stage. No compensation capacitor is required to maintain
stability. A detailed noise analysis is presented in [73]. However, the current mirror
OTA has a limited gain, and there exists a trade-off between the noise and the phase
margin. A gain boosting circuit can be used to enhance the gain of this amplifier,
which is important in low voltage design in advanced CMOS technology. Two-stage
OTA with a Miller compensation capacitor is also widely used in neural amplifiers.
A detailed design analysis can be found in [105, 106]. The folded cascode OTA can
achieve a high gain in a single stage, at the price of a higher power consumption.
Paper [77] describes the strategy in choosing the parameters in a folded cascode
OTA design for the optimal power-noise efficiency. Telescopic OTA can achieve the
highest gain in a single-stage. But telescopic OTAs have very limited input range and
voltage swing, which make the design very challenging especially in a low supply
voltage.

In summary, all circuit topologies have pros and cons. Modified and improved
versions have been widely reported. The voltage gain and input-referred noise of
different OTA topologies are derived and summarized in [98, 99]. For thermal
noise, increasing the transconductance of the input devices is usually critical.
Thus, maximizing the transconductance for a given supply current is important
for achieving an optimal power-noise efficiency. Besides, the supply current can
be programmed to optimize the power efficiency in different noise conditions [44].

2.2.1.3 Other Noise Reducing Techniques

Many circuit techniques have been proposed in the literature to reduce the noise
in the amplifier circuits. Commonly used low-noise techniques include chopping
[78, 79, 107], auto-zeroing [108], digital assisted trimming [44, 109], analog and
digital filtering, and so on.

For example, chopping is a very popular technique among neural amplifier
designs, especially for EEG recordings. Figure 2.4 illustrates the concept of chop-
ping. Before amplification, the input signal is modulated by a chopping frequency
fchop, which is much higher than the signal frequency. The modulated signal is then
located to a frequency higher than the filter noise. After the amplification, the signal
is converted back to the baseband frequency, at the same time, the flicker noise will
be up-converted to the chopping frequency, which can be removed by a lowpass
filter. Chopping technique reduces both flicker noise and DC offset, and the circuits
after the chopping switches can achieve an excellent CMRR. However, it should
be noticed that chopping also causes extra non-idealities, including offset, ripple,
charge injection, clock feed-through, switch noise, and so on. Many techniques have
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Fig. 2.4 (a) The block diagram of a chopping amplifier. (b) Illustration of the signal and noise
spectrum before and after chopping

been proposed to suppress these problems, including: chopping within the feedback
loop [78], chopping at the virtual ground [107], ripple reduction techniques [79],
input impedance compensation [110], offset cancellation [82, 111], and so on.

2.2.2 Circuit Implementation

This section presents the analysis and design of a general–purpose neural recording
front-end. Figure 2.5 shows the high-level block diagram of the proposed design.
The building blocks of neural recording front-end consist of: a low-noise neural
amplifier, a programmable gain amplifier (PGA), a multiplexer, an ADC, and a
control module. This section mainly discusses the design of the neural amplifier.

The neural amplifier uses a fully differential, capacitor feedback topology. The
input capacitors block the electrode offset and the half-cell potential from the
electrode–tissue interface. The closed-loop differential gain is set to be 40 dB by
CIN=CFB. A relative high gain is used to relieve the noise requirement of the
following stages. A large MOS pseudo-resistor is used in the feedback loop. The
highpass time constant is determined by Rpseudo � CFB. The circuit schematic of
the pseudo-resistor is shown in Fig. 2.6. Compared with the MOS-bipolar resistor
implemented in [73], this resistor has a larger linear range. Besides, setting the gate
voltage to ground can short the feedback loop and force the input gate to mid-supply.
This is a useful feature to implement a fast recovery from motion or stimulation
artifact, which will be discussed in Chap. 5. A simulation of the MOS resistor in
IBM 180 nm CMOS technology is shown in Fig. 2.7. The W=L of the MOS used in
this simulation is 2 �m/2 �m. The simulated impedance is in the order of 100 G�.
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Fig. 2.5 The block diagram of the proposed low-noise neural recording front-end

Fig. 2.6 The circuit
schematic of the MOS
pseudo-resistor

Fig. 2.7 The simulated resistance of the MOS pseudo-resistor. The left column shows the current
versus the voltage applied, and right column shows the derived resistance

A very accurate resistance usually cannot be derived from the simulation. In
practice, the highpass frequency is usually set to be much lower than the required
signal frequency band to prevent the resistor’s noise from rolling into the signal.
Additional highpass or bandpass filter can be implemented in the following stage, if
a better frequency shaping is necessary.
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Fig. 2.8 The circuit
schematic of the fully
differential low-noise OTA
with a complementary input
stage

The circuit schematic of the designed OTA is shown in Fig. 2.8. The OTA has
been designed to maximize the noise and power efficiency. A single-stage amplifier
with a high gain is used to avoid the stability compensation in two-stage structures.
The overall gain of the amplifier is given by:

Av D .gm1 C gm3/.gm5ro5ro1jjgm7ro7ro3/ (2.6)

where gmX is the transconductance of the transistor MX , and roX is the output
resistance of the transistor MX . The output thermal noise is:

i2no D 4kT�.gm1 C gm2 C gm3 C gm4/�f (2.7)

where k D 1:38 � 10�23 J/K is the Boltzmann constant. The input-referred thermal
noise is:

v2
ni D

4kT�.2gm1 C 2gm4/

.gm1 C gm3/2
�f (2.8)
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Taking the flicker noise into account, the total input-referred noise power of the OTA
can be expressed as:

v2
ni,tot D

1

.gm1 C gm3/2

�
8kT�.gm1 C gm3/

C2

�
KNgm3

Cox;NfWNLN
C

KPgm1

Cox;PfWPLP

��
�f (2.9)

The flicker noise can be reduced by increasing the size of the input transistors or
using techniques like chopping. If only thermal noise is considered in the following
design optimization, the input-referred noise voltage equals to

Vni,rms D

s
8kT�

gm1 C gm3

�

2
BW (2.10)

The noise efficiency factor (NEF) [93] for this amplifier can be derived as:

NEF D Vni,rms

s
2Itot

�ˆt � 4kT � BW

D

s
8kT�

gm1 C gm3

�

2
BW

2Itot

�ˆt � 4kT � BW

D

s
2� Itot

.gm1 C gm3/ˆt

(2.11)

Thus, a lower NEF (the lower the better) can be expected if a higher power efficiency
(gm=Itot) is achieved.

In this work, complementary input devices are used. The overall transcon-
ductance can be approximately doubled without increasing the quiescent current.
Besides, all input transistors are biased in the sub-threshold region to achieve a high
power efficiency [112]. In the conventional operation (above threshold):

gm D

r
2�Cox

W

L
ID and gm /

p
ID (2.12)

In the sub-threshold operation:

gm D
	ID

ˆt
and gm / ID (2.13)

where ˆt is the thermal voltage. Thus, sub-threshold operation gives a higher
transconductance than conventional above threshold operation in a same drain
current ID. It should be noticed that sub-threshold operation has a limited bandwidth
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due to the low biasing current and the relative large device parasitic capacitance. But
neural signal has a low bandwidth in nature, so it is usually not a limiting factor in
neural amplifier design. A simulation result shows that 98% of the noise is from the
four input transistors, and flicker noise contributes more than thermal noise in the
frequency range from 1 to 10 kHz.

Cascode transistors (M5–M8) are used to increase the voltage gain. However,
this is usually at the cost of limiting the voltage headroom, and can be a challenge
in a low-supply voltage using advanced CMOS technology. The simulation shows
an open-loop gain of 90 dB is achieved in this OTA in a biasing current of 1 �A.
The common mode feedback (CMFB) loop is merged in the main current path to
avoid additional biasing current. Pseudo-resistors are used to get the common mode
voltage without loading the amplifier. A drawback of this design is the threshold
dependence of the common mode voltage.

A high input impedance reduces the signal attenuation. In a practical neural
recording using a multi-channel electrode array, the recording electrode and the
reference electrodes are usually not the same type of electrode, and may have a
large impedance difference. Thus, even if the neural amplifier achieves a perfect
common mode rejection, it cannot reject the conversion of common-mode signal to
differential-mode due to the electrode mismatch. This problem can be relieved by
increasing the input impedance of the neural amplifier. Positive current feedback
[79] can be used to boost the input impedance by providing the driving current
required at the input stage. A post-layout simulation of the input impedance boosting
circuit is shown in Fig. 2.9.

A programmable capacitor array (CL) is put at the output of the low-noise OTA.
The bandwidth of the closed-loop amplifier is given by:

BW D
gm

CL

C2

C1

(2.14)

The CL can be programmed. The bandwidth of the OTA can also be tuned by
changing the biasing current.

Fig. 2.9 A post-layout
simulation of the effects of
the input impedance boosting
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The programmable gain amplifier (PGA) implemented in this work (2.5) is a
classical 3-opamp amplifier. The gain is set by the resistors’ ratio and can be chosen
from 7, 10, and 19. Thus, the maximum gain of a recording channel is 1900.
Additional analog buffers are added to the debugging points to drive the IO pads
directly.

2.2.3 Measurement Results

The design has been fabricated in IBM 180 nm CMOS technology. The micrograph
of the chip is shown in Fig. 2.10. The occupied silicon area of the full chip
is 4.5 � 1.5 mm2, including IO pads. One recording channel has a dimension of
400 �m � 320 �m.

Bench testing was conducted to verify the function and performance of the
fabricated chip. Figure 2.11 shows a measurement of the neural amplifier’s output
with a 1 kHz sinusoidal input signal. A resistor divider consists of a 2 k� and 1 �

was applied at the output of the function generator to scale the signal amplitude,
resulting a gain of 1/2001. The neural amplifier was configured to have the
maximum gain of 1900. The measured gain was 1892.94, which corresponds to
an absolute gain error of 0.37%.

The measured differential-mode and common-mode frequency responses of the
low-noise amplifier are shown in Fig. 2.12. The closed-loop gain is set to be 60 dB.
The highpass frequency corner is approximately 0.5 Hz. The measurement shows a
CMRR above 110 dB.

The input-referred noise spectrum is shown in Fig. 2.13. An integration under
this curve from 1 Hz to 7 kHz yields an rms noise voltage of 2.55 �V. This noise

Fig. 2.10 The microphotograph and layout of one channel of the neural recording front-end.
Major building blocks are highlighted in the layout
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Fig. 2.11 The measured response of the neural amplifier with a 1 kHz sinusoidal input signal. The
amplifier is configured with the maximum gain of 1900. The midband gain error is 0.37%

Fig. 2.12 The measured differential-mode and common-mode frequency responses of the low-
noise neural amplifier

level was measured with a closed-loop gain of 60 dB, and the inputs were shorted
using an internal switch. The noise density was calculated as:

Noise Density D
Vrmsp

BW�=2
(2.15)
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Fig. 2.13 The measured
input-referred voltage noise
spectrum. An integration
under this curve from 1 Hz to
7 kHz yields an rms noise of
2.55 �V

Table 2.3 The neural
front-end specifications
summary

Parameter Value

Process 180 nm CMOS

Supply voltage 3.3 V
LNA current 2 �A (biasing current

not included)

Closed-loop gain 40 dB

Gain error 0.37%

Bandwidth 1–7 kHz

Integrated noise 2.55 �V

Noise density 24.3 nV/rtHz

NEF (Eq. (2.1)) 1.68

PEF (Eq. (2.2)) 9.38

Input range 4 mV

CMRR >110 dB

The noise density in the 7 kHz bandwidth is 24.3 nV/rtHz. The calculated NEF is
1.68, and the PEF is 9.38.

The summarized measured specifications of the design are listed in Table 2.3.
In summary, this section presents the design of a general–purpose low-noise

neural amplifier. The design achieves a low noise floor, an accurate gain, a good
CMRR in a good power efficiency. The design was later used in in vivo neural
signal acquisition.

Table 2.4 compares the measured performance of this work with prior published
neural recording front-end design. This work achieves a comparable performance
among the state-of-the-art designs.
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Table 2.4 Comparison with prior works

Work ’03 [73] ’07 [78] ’07 [74] ’10 [107] ’13 [111] ’14 [44] ’17

Publication JSSC JSSC JSSC JSSC JSSC JSSC This work

Technology 1.5 �m 0.8 �m 0.5 �m 180 nm 180 nm 180 nm 180 nm

Noise (�V) 2.2 0.95 2.26 1.3 0.91 5.23 2.55

BW (Hz) 0.025–7.2k 0.05–100 0.5–1k 100 100 7k 1–7k

Current (�A) 16 1 11.1 3.5 NA 0.97 2

Supply (V) 5 1.8–3.3 3 1 1 1.8 3.3

NEF 4.03 4.6 9.2 9.4 5.1 1.77 1.68

PEFa 81.2 38.1 253.9 88.4 26.2 5.6 9.3
aNot provided by the author, but calculated using Eq. (2.2)

2.3 A Pre-whitening Neural Amplifier

2.3.1 Introduction

The power spectrum of electrocorticography (ECoG) and local field potential (LFP)
have a characteristic .1=f /n drop with frequency [31]. This phenomenon has been
observed in multiple species including humans [113]. At frequencies around 1Hz,
the signal amplitude can be as large as a few millivolts, and attenuates at 1=f 2 until
80 Hz, then attenuates at 1=f 4 [114]. At the same time, the noise power density of
the CMOS front-end is usually inversely proportional to the frequency [115].

V2
n D

K

CoxWL
�

1

f
(2.16)

where K is a process-dependent parameter on the order of 10�25 V2F. This suggests
that the SNR of the recording front-end improves as the frequency decreases, as
illustrated in Fig. 2.14a. Intuitively, if a wideband recording front-end is designed
to achieve the voltage swing requirement for the low-frequency signal, at the same
time preserves the SNR for the high-frequency signal, it needs to be designed with
an ultra-high dynamic range. An ultra-high dynamic range wideband low-noise
amplifier and a high-resolution ADC design are challenging and will cost a high
power consumption.

In this work, a pre-whitening amplifier is proposed to address this problem. The
basic idea of the pre-whitening processing is illustrated in Fig. 2.14b. If we reduce
the gain for the low-frequency content, a sufficient SNR may still be preserved
for the recording purpose, and the dynamic range requirement of the system can
be significantly relaxed. Since the frequency shaping processing is similar to a
whitening filter, which turns the signal into a near white signal, the amplifier is
named pre-whitening amplifier in this work. The simplest way to implement this
pre-whitening amplifier is via a highpass filter. If the cut-off frequency of the
highpass filter is known, the amplitude and phase of the original signal can be
recovered in the post-recording processing.
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Fig. 2.14 Illustration of the pre-whitening filter. (a) The neural signal displays a 1=f n power
characteristic, while the recording front-end has a 1=f noise power characteristic. (b) The pre-
whitening filter shapes the frequency response of the recording front-end to reduce the overall
dynamic range requirement, while still preserves a sufficient SNR

Fig. 2.15 A first order RC
highpass filter with noise
source

In summary, a pre-whitening neural recording front-end is proposed. In the
pre-whitening amplifier, the frequency response of the neural amplifier is shaped
according to the characteristic of the neural signal. The design significantly reduces
the dynamic range requirement of the neural amplifier and the ADC resolution
without sacrificing the signal quality. In the following sections, possible circuit
implementations of the pre-whitening neural amplifier are analyzed. The key design
trade-offs are described, and the simulation and experimental results of the proposed
design are presented.

2.3.2 Analysis of Pre-whitening Neural Amplifier Design

The thermal noise power spectral density of a resistor is given here for convenience:

VnR D
p

4kTR (2.17)

where k = 1.38 �10�23 is the Boltzmann’s constant, T is the absolute temperature in
Kelvin. If a recording electrode has an impedance of 100 k�, it should have a noise
density of 40.7 nV/

p
Hz. Assume the neural signal’s frequency band of interest is

from 1 Hz to 10 kHz, the electrode gives an integral thermal noise of 4.07 �V in this
frequency range.

Consider the simplest case of a first order RC highpass filter. Figure 2.15 shows
the circuit and the noise source.
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Fig. 2.16 Noise simulation
of RC highpass filters with
frequency corners at 10 and
100 Hz. The capacitor value
is set to be 20 pF

The equivalent output noise of the RC highpass filter is given by:

Vn;o D
1

1 C sRC
� VnR

D

p
4kTR

1 C sRC

(2.18)

While the input-referred noise of the RC highpass filter is given by:

Vn;i D
1

sRC
� VnR

D

p
4kTR

sRC

(2.19)

The input-referred noise increases with a decreasing frequency. This is an important
observation and provides some intuition for the following analysis. Figure 2.16
shows the simulation of a first order RC highpass filter. Both the output and the
input-referred noise are plotted. The capacitor value is set to be 20 pF, and the
resistor values are set to be 800 M� and 80 M�, and the cut-off frequency is 10 Hz
and 100 Hz, respectively. The input-referred noise densities at the 1 Hz are marked
in the figure. It should be noticed that using a larger capacitor value with the same
cut-off frequency can achieve a lower noise density. However, large capacitors take
a lot of silicon area, thus is not suitable for multiple channel recording front-end
integration.

In summary, a simple RC filter is not suitable for implementing the proposed
pre-whitening amplifier. In the following section, two methods of implementation
are discussed: (1) pre-whitening after a wideband LNA, and (2) pre-whitening at the
direct neural interface.
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Fig. 2.17 The block diagram
of a pre-whitening filter after
a wideband low-noise
amplifier

Fig. 2.18 The circuit
schematic of a pre-whitening
filter after a wideband
low-noise amplifier. Noise
source from the resistor is
shown

2.3.2.1 Pre-whitening After a Wideband Low-Noise Amplifier

The block diagram of a pre-whitening filter after a wideband low-noise amplifier is
shown in Fig. 2.17. Since the filtering is implemented after the wideband amplifier,
the input-referred noise from the filter will be attenuated by the gain of the wideband
amplifier. Again, assume using a simple RC filter, Fig. 2.18 shows the circuit
diagram and the noise source.

The input-referred noise of the recording front-end from the filter is then
given by:

Vi;rms D
1

A1

sZ fH

fL

V2
n;i � df

D
1

A1�C

s
kT

R

�
1

fL
�

1

fH

� (2.20)

Assume the frequency band of interest is from 1 Hz to 10 kHz, and the first stage
wideband neural amplifier has a gain A1 of 100. If we set the highpass frequency
of the second stage to be 10 Hz, the integral noise is 0.11 �V, and if we set the
highpass frequency to be 100 Hz, the integral noise is 1.14 �V. In both cases, the
integral noise is lower than the thermal noise of an electrode with an impedance of
100 k� (Sect. 2.3.1).

Several active highpass filters can achieve a lower input-referred noise than
the simple RC filter. Consider the circuit with a capacitive feedback as shown in
Fig. 2.19. The signal’s transfer function can be expressed as:

Hsig.s/ D
sRC1

sRC2 C 1

D
C1

C2

�
s

s C 1
RC2

(2.21)
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Fig. 2.19 An
implementation of an active
highpass filter. Noise sources
from the resistor and the
second stage amplifier are
shown

The midband gain of the amplifier ACL is
C1

C2

, and the highpass frequency is set

by
1

RC2

. The amplifier A2’s noise transfer function can be expressed by:

HnA.s/ D 1 C
sRC1

sRC2 C 1

D 1 C
C1

C2

�
s

s C 1
RC2

(2.22)

Since the amplifier’s noise transfer function and the signal’s transfer function

have the same highpass frequency
1

RC2

, the amplifier’s noise is shaped in the

same way as the signal. Thus, the filter won’t cause frequency dependent SNR
degradation.

Let’s look at the resistor’s noise transfer function:

Vo � VnR

R
D sC2Vo D 0 (2.23)

HnR.s/ D
1

sRC1

D
1

ACL

1

sRC2

(2.24)

where
1

RC2

is the signal’s highpass frequency, and ACL is the closed-loop gain of

the second stage. So compared with the implementation in Fig. 2.18, the noise is
further suppressed by the gain of the second stage. The overall input-referred noise
density from the resistor is given by:

VnR;i D
1

A1ACL

p
4kTR

sRC2

(2.25)

In a practical design, the sum of VnR;i and the input-referred noise of the first stage
should be lower than the noise and the SNR requirement of the recording system.
Again, assume the cut-off frequency of the pre-whitening amplifier is 10 Hz, the
capacitor C2 is 2 pF, the closed-loop gain of the first and second stage is 100 and
40, respectively. The VnR;i at 1 Hz is 28.6 nV

p
Hz, which is lower than the thermal

noise density of a 100 k� electrode (Sect. 2.3.2). If the cut-off frequency of the
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pre-whitening amplifier is 100 Hz, the noise density VnR;i at 1 Hz is 90.5 nV/
p

Hz,
which is still lower than most low-noise neural amplifier designs at 1 Hz, and is
sufficient for the SNR requirements in most intracortical neural recordings.

2.3.2.2 Low-Noise Neural Amplifier with Integrated Pre-whitening Filter

This section discusses the possible methods of integrating the pre-whitening filter
into the first stage low-noise amplifier. It is more challenging to design the pre-
whitening filter at the first stage because of the noise increase with decreasing
frequency due to the filter’s response. But there are also some advantages. The
electrode interface usually has an offset caused by half-cell potential up to several
hundred millivolts, as reviewed in Sect. 2.1. The recording amplifier will need to
reject this large offset, typically accomplished by using a highpass filter with a
cut-off frequency below 1 Hz. However, it is difficult to implement such a large
time-constant on-chip. One solution is to use MOS pseudo-resistor, as described
in Sect. 2.2.2. But the pseudo-resistors have reliability problem for the use in
implanted medical devices, and they are susceptible to electromagnetic interface
and degradation over time [31]. If the pre-whitening filter can be integrated into the
first stage amplifier, the sub-Hertz filter can be avoided.

Consider the capacitor-coupled neural amplifier in Fig. 2.20. The signal’s transfer
function is:

Hsig.s/ D
C1

C2

�
s

s C 1=RC2

(2.26)

Thus, the highpass corner frequency is determined by 1=RC2. The transfer function
of the amplifier’s noise is:

HnA.s/ D 1 C
C1

C2

�
s

s C 1=RC2

(2.27)

And the resistor noise’s transfer function is:

HnR.s/ D
1

sRC1

(2.28)

Fig. 2.20 A typical
capacitor-coupled neural
amplifier. Noise sources are
marked in the figure
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Fig. 2.21 A
capacitor-coupled
instrumentation amplifier
with a DC servo loop

The input-referred noise density from the resistor is:

VnR;i D
1

ACL

p
4kTR

sRC2

(2.29)

Compared with Eq. (2.25), the only difference is that this input-referred noise is no
longer attenuated by preamplifier. If ACL is designed to be the product of the gain of
the two stages in previous section, it can achieve the same noise performance. But
it is difficult in practical designs.

There are other circuit topologies to implement a highpass frequency response.
One method is to use a DC servo loop. A typical example is shown in Fig. 2.21.

sC1Vi.s/ C sC2Vo.s/ � sC4Vx.s/ D 0 (2.30)

Vx.s/ D �
1

sRC3

Vo.s/ (2.31)

The signal’s transfer function can be expressed as:
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The mid-band gain of this circuit is
C1

C2

. Compared with Eq. (2.26), the high-pass

frequency corner is
C4

C2

1

RC3

, where
1

RC3

is the frequency corner of the integrator in

the feedback loop.
The noise transfer function of the amplifier A1 is:

C1VnA1 D C2.Vo � VnA1/ C C4.Vx � VnA1/ (2.33)

HnA1.s/ D
C1 C C2 C C4
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�
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(2.34)
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The noise transfer function of the amplifier A2 is:

Vo � Vna2

R
D sC3.Vna2/ D sC4Vx D sC2Vo (2.35)

HnA2.s/ D
sRC3 C 1

sRC3.C2=C4/ C 1
(2.36)

The noise transfer function of the resistor is:

Vo � VnR

R
D sC3Vx (2.37)

sC4Vx D sC2Vo (2.38)

HnR.s/ D
1

1 C sRC3

C2

C4

(2.39)

The input-referred noise density from the amplifier A1 is:

VnA1;i D
C1 C C2 C C4

C1

VnA1 (2.40)

The input-referred noise density from the amplifier A2 is:
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�
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�
VnA2 (2.41)

The input-referred noise density from the resistor is:

VnR;i D
C4

sRC1C3

p
4kTR (2.42)

Compared with Eq. (2.29), the noise contribution from the resistor also depends on
the ratio of C4=C3. However, reducing the ratio of C4=C3 decreases the input voltage
headroom.

The resistor can be further replaced by a switched capacitor circuit. A simplified
circuit schematic is shown in Fig. 2.22. In the switched capacitor circuit, the time-
constant can be better controlled by the ratio of the capacitors and the switching

Fig. 2.22 A
capacitor-coupled
instrumentation amplifier
with a DC servo loop
implemented by switched
capacitor circuits
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Fig. 2.23 A
capacitor-coupled chopping
amplifier with a DC servo
loop and an input impedance
boosting loop

frequency. However, in order to achieve the required large time-constant, a large
capacitor tank is to be implemented. Several techniques have been proposed to
reduce the required capacitor size [78, 116].

If an ultra low-noise is required for the low-frequency signal component, chop-
ping technique can be combined in the pre-whitening amplifier design. An example
of a chopping pre-whitening amplifier is shown in Fig. 2.23. With chopping,
the flicker noise can be removed, and the amplifier can guarantee a good SNR for
the signal even with the lower gain at the low frequency. However, there are also
many trade-offs involved with the chopping amplifier design [79, 107, 110]. The
effects it takes may counteract the benefits from the pre-whitening.

2.3.3 Circuit Implementation

A pre-whitening amplifier using the architecture presented in Sect. 2.3.2 is designed
to demonstrate the idea. The circuit schematic of the designed pre-whitening ampli-
fier is shown in Fig. 2.24. A single-ended architecture is used in this work. A con-
ventional low-noise current mirror OTA is used in both stages [73]. A T-connected
pseudo-resistor (TPR) proposed in [44] is used as the feedback resistor in the first
stage. If the equivalent resistance of the transistor X is RX , the total equivalent
resistance of the TPR is R1+R2+R1 � R2=R3. The pseudo-resistor in the second stage
is the same as the one used in Sect. 2.2. The gate voltage can be used to tune the
resistance RB over a large range, which is used to tune the cut-off frequency of
the pre-whitening filter. The first stage has a closed-loop gain of 100, and the second
stage has a closed-loop gain of 40, which are the same as the assumptions in the
previous analysis.
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Fig. 2.24 The circuit schematic of the designed pre-whitening amplifier. The pseudo-resistors RA

and RB used in the first and second stage are shown in subplot (a) and (b), respectively

Fig. 2.25 The
microphotography and layout
of one channel of the
pre-whitening amplifier

2.3.4 Measurement Results

The design has been fabricated in IBM 180 nm CMOS technology. The micrograph
of the chip and the layout of one recording channel are shown in Fig. 2.25. The
full chip occupies a silicon area of 4.5 � 1.5 mm2, including IO pads. One recording
channel has a dimension of 550 �m�120 �m.

Bench testing was conducted to evaluate the performance of the fabricated chip.
Figure 2.26 shows both the amplitude and phase frequency response of the pre-
whitening amplifier. The simulated frequency response is also plotted in dashed
lines for comparison. With the information of the frequency response, the original
signal can be recovered from the pre-whitened recording.

Synthetic neural signal was generated using an arbitrary function generator
33521A from Agilent to the test the pre-whitening amplifier. A 1-min neural signal
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Fig. 2.26 The measured frequency response of the pre-whitening amplifier in comparison with
the simulation result

containing local field potentials was used for testing. The signal was recorded
using RZ2 workstation from Tucker-Davis Technologies. The signal was sampled at
24.4 kSps in a resolution of 24-bit. A resistor divider consisting of 2 k� and 1 � was
applied at the output of the function generator, gives a gain of 1/2001. The neural
amplifier was configured to have a maximum gain of 4000.

The designed amplifier can be configured to do both conventional wideband
recording and frequency shaping pre-whitening recording. The power spectral
density (PSD) was calculated for 24 channels of the LFP recordings. Figure 2.27
shows a comparison of the PSD of the conventional wideband recording and the
pre-whitening recording. The result clearly shows that the spectrum of the pre-
whitening recording was flattened in the low-frequency range, which saves the
voltage headroom by more than an order of magnitude. The reduction in the
dynamic range relaxes the requirement of the linear range of the low-noise amplifier
and the ADC design.

The reconstruction of the signal was performed in Matlab. Figure 2.28 shows
a comparison of a 10-s segment of the conventional recording, the pre-whitening
recording, and the reconstruction from the pre-whitening recording. Pearson corre-
lation coefficient is used here to evaluate the accuracy of the reconstruction [117].
The correlation coefficient is defined as:
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Fig. 2.27 Comparison of the
PSD of the pre-whitening
amplifier and the original
signal

Fig. 2.28 Comparison of (a) the wideband signal, (b) the measured output of the pre-whitening
amplifier, and (c) the reconstructed signal from the pre-whitening amplifier’s recording
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Fig. 2.29 Comparison of the spectrum of (a) the original signal and (b) the reconstructed signal
from the pre-whitening amplifier’s recording

where �x and �x are the mean and standard deviation of the signal x, and �y

and �y are the mean and standard deviation of the signal y. The result shows
a correlation coefficient of 97.6%, which indicates a faithful recovering of both
phase and amplitude. A high-order zero-phase digital filter of 1–200 Hz was applied
before the comparison. Even in this case, both phase and amplitude will need to be
recovered at the same time to completely reconstruct the original signal.

Power spectral density estimation was calculated by periodgram for both the
original signal and the reconstructed signal from the pre-whitening recording, as
shown in Fig. 2.29. The result clearly shows that the pre-whitening processing can
provide a faithful reconstruction of the spectrum content.

In summary, the pre-whitening amplifier design takes advantage of the charac-
teristics of the neural signal. Since the power density of the neural signal including
ECoG and LFP drops faster with frequency than the filter noise of the CMOS
recording front-end, there is an opportunity to design a recording front-end with
less gain at low frequency while preserving a sufficient SNR for the wideband
signal. The design significantly reduces the dynamic range and linearity requirement
of the low-noise amplifier and the ADC. The circuit implementation of the pre-
whitening front-end is analyzed in this section with a detailed noise analysis.
A prototype was designed and fabricated in CMOS technology. Experimental
results are presented in comparison with simulation and theoretical computation.
The proposed pre-whitening amplifier provides an opportunity to improve the
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performance of neural recording-end without a power penalty, and it can be
advantageous to integrate it into a high channel-count neural recording front-end
system.

2.4 Design of a Low-Power Analog-to-Digital Converter

2.4.1 Introduction

A low-power analog-to-digital converter (ADC) is an essential component in a
neural interface system. In a typical bidirectional neural interface system, ADCs
can be used to digitize neural signal, sensory signal, extracted neural features, and
stimulation compliance voltage. Among all ADC topologies, successive approxi-
mation register (SAR) ADCs have advantages in accuracy and power efficiency at
a moderate sampling rate. Firstly, a SAR ADC does not require a high gain and
high bandwidth opamp for high accuracy and linearity. Secondly, SAR logic mainly
consists of digital circuits, so the speed and power scales down with deep sub-
micron CMOS technologies. Thirdly, if a capacitive DAC is used, no static power
is consumed, thus the power scales with the sampling rate. Comprehensive reviews
and tutorials of SAR ADC design can be found in [118–120].

Recently, a lot of techniques for power-efficient SAR ADC designs have been
reported. Among these techniques are split capacitor array [121, 122], monotonic
capacitor switching [123], partial floating capacitor switching [124], step-charging
design [125], reference free design [126], asynchronous timing [127], and so on. In
addition to techniques for general–purpose SAR ADC designs, several techniques
have been reported to optimize the design particularly for neural or sensory signal.
Among them are:

• Adaptive resolution or dynamic range: including programming the number of
bits [128], or adding additional programmable gain amplifier before the ADC
[129]

• Data dependent or data-driven sampling: for example, combine action potential
detection and digitization together [130]. Besides, the sampling rate can also be
adapted to the activity using a continuous time level-crossing sampling [131].

• Delta difference sampling: since the neural signal has both slow and fast
oscillations over time, normal sampling during a slow activity period is not
energy efficient. So digitize only the difference [44, 132], using a bypass window
[133], or using LSB-first approach [134] can achieve a better power efficiency.

In this section, the design of a voltage-mode 10-bit SAR ADC is presented.
Specifications are analyzed, circuit design details are described, and measurement
results are presented.
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Fig. 2.30 The circuit diagram of the 10-bit voltage-mode SAR ADC

2.4.2 Circuit Implementation

The circuit diagram of the 10-bit voltage-mode SAR ADC is shown in Fig. 2.30.
The major building blocks are: (1) comparator, (2) SAR logic, (3) DAC, and (4)
sample and hold switch. Fourteen clock cycles are used to complete one conversion,
allowing four clock cycles for sampling.

A commonly used capacitive DAC is employed in this SAR ADC. Since the
required capacitor size in a conventional binary capacitor array can be very small
without compromising the ENOB, custom designed capacitors are often used to
achieve a minimum total input capacitance with an ultra low-power consumption
[123, 135]. However, these designs usually require a custom characterization for a
specific fabrication process. In this work, a split capacitor array is adopted to reduce
the total capacitance, lowering the power consumption and area. The capacitors
are realized as a standard metal-insulator-metal (MIM) structure available in the
standard PDK.

A monotonic switching procedure is applied to minimize the power consumption
from unnecessarily charging and discharging of the capacitor array [123]. In
the monotonic switching procedure, the first comparison is performed without
switching, and the total capacitance is half of the conventional capacitive SAR
ADC’s DAC array [123].

Figure 2.31 shows the circuit schematic of the SAR timing generation module.
A global reset signal is used to synchronize the start of the conversion, and
the control logic generation is cyclic. clk is the input clock, clks is the signal for
the sampling switch, clkc is the clock for the comparator, and clk[x] is for the bit[x]
of the DAC.

The sample and Hold (S/H) circuit is critical in achieving good SFDR for an ADC
design. The bootstrapped switch is commonly used since it provides a constant small
on-resistance [136]. The circuit schematic of the bootstrapped switch implemented
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Fig. 2.31 The circuit schematic of the SAR timing generation module

Fig. 2.32 The circuit
schematic of the bootstrapped
switch

in this work is shown in Fig. 2.32. The gate to source voltage of the switch transistor
is fixed at the supply voltage by the capacitor CS.

Figure 2.33 shows the circuit schematic of the comparator. The comparator
consists of a pre-amplifier and a dynamic latch. Since the input voltage has a range
from the ground to Vcm, the comparator uses a PMOS input stage. The current
source NMOS are used in parallel with the diode-connected NMOS for increasing
the gain [115]. The pre-amplifier provides moderate gain to reduce the input referred
mismatch from the latch. The latch consumes no static current. When clkc (as shown
in Fig. 2.31) is high, the outputs are reset to high. When clkc goes to low, the
regeneration latch forces one output to high and the other to low. The SAR logic
only takes the VOP and generates an inverted signal V 0

ON to avoid the metastability
problem.

A Class-AB output stage has been designed to drive the sample-hold circuits of
the following ADC stage. To digitize a single-ended signal, a single-to-differential
converter (S2D) can be integrated. An example of the S2D circuit is shown in
Fig. 2.34. The resistor values are designed to be R1=R3=R4, and the voltage gain
is 2(1+R2/R1). R2, which can be programmed by a shift register.
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Fig. 2.33 The circuit schematic of the comparator. (a) A pre-amplifier, and (b) a dynamic latch

Fig. 2.34 The circuit
schematic of a
single-to-differential
converter

2.4.3 Measurement Results

The ADC has been fabricated in IBM 180nm CMOS technology. The layout of
the 10-bit SAR ADC is shown in Fig. 2.35 with major building blocks highlighted.
The total occupied silicon area is 220 �m � 190 �m. The measurement results of
the design are presented below.

The differential nonlinearity (DNL) and integral nonlinearity (INL) of the ADC
were measured using slow ramps. The result is shown in Fig. 2.36. The peak DNL
and INL are �0.49/+0.56 LSB and �0.82/+0.77 LSB, respectively.

The SAR ADC’s dynamic performance was measured with a low-frequency
input tone and a near Nyquist frequency input tone. The output spectrums are shown
in Figs. 2.37 and 2.38, respectively.

The spurious-free dynamic range (SFDR) achieved in these tests was 76.54 dB
and 71.6 dB, respectively. The signal-to-noise and distortion ratio (SNDR) was
measured to be 56 dB and 54.6 dB, respectively. The effective number of bit (ENOB)
is defined as:



2.4 Design of a Low-Power Analog-to-Digital Converter 49

Fig. 2.35 The layout of the
10-bit SAR ADC with major
building blocks highlighted

Fig. 2.36 The measured DNL and INL of the 10-bit SAR ADC. The worst DNL is �0.49/+0.56
LSB, and the worst INL is �0.82/+0.77 LSB

ENOB D
SNDR � 1:76

6:02
(2.44)

The ENOB of the designed ADC was measured to be 9.01 and 8.77, respectively.
The figure-of-merit (FoM) is calculated using:

FoM D
Power

2ENOB � fs
(2.45)

The FoM of the ADC is 98 fJ/conv-step at 1 MSps with a supply of 1.8 V. The
measured specifications of the ADC were summarized in Table 2.5.



50 2 Neural Recording Front-End Design

Fig. 2.37 The measured FFT spectrum at 1 MS/s with an input tone of 3 kHz. The SFDR is
76.54 dB and the SNDR is 56 dB. The ENOB at 3 kHz is 9.01

Fig. 2.38 The measured FFT spectrum at 1 MS/s with an input tone of 493 kHz. The SFDR is
71.6 dB and the SNDR is 54.6 dB. The ENOB at 493 kHz is 8.77

In summary, a 10-bit SAR ADC was presented in this section. A prototype
was fabricated in 180 nm CMOS technology. The design uses an energy efficient
switching procedure and a split-capacitor array. The measurement results suc-
cessfully meet the design specifications, with a comparable performance among
the state-of-the-art ADC designs for the neural recording purposes. As a part of
the neural interface system, the power consumption of the ADC was usually not
the bottleneck. So this work didn’t seek to aggressively minimize the ADC’s power
using techniques like charge recycling [124], asynchronous timing [127], or step
charging [125]. The supply voltage was kept at 1.8V to be compatible with the
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Table 2.5 The measured
specifications of the 10-bit
SAR ADC

Specification Measurement result

Technology 180 nm

Supply voltage 1.8 V

Input range 3 Vp-p

Sampling rate 1 MSps

Active area 0.042 mm2

INL �0.82/+0.77 LSB

DNL �0.49/+0.56 LSB

SNDR 54.6 dB

SFDR 71.6 dB

ENOB 8.77

FoM 98 fJ/conv-step

neural recording front-end. The designed ADC was later integrated in a bidirectional
neural interface system-on-chip, and used in long-term recording experiments in
freely behaving animals.

2.5 A Compressed Sensing Neural Signal Acquisition System

2.5.1 Introduction

The wireless telemetry is the power bottleneck of most wireless neural recording
systems [137]. On-chip data compression is an effective solution to reduce the
power consumption by reducing the data rate. Various on-chip data compression
techniques for neural signal acquisition have been proposed. For single or multi-
units recording, action potential detection [138] or classification [139] is the most
effective way to reduce the wireless data rate, and can also be used to drive
prosthetics directly. The hardware implementation of an action potential detection
unit can be as simple as a comparator with a pre-defined threshold. A compression
ratio higher than 100� can be achieved with a minimum power consumption [51].
However, the action potential detection based compression drops most of the raw
waveform, and is vulnerable in long-time recording since the spike waveform
may change due to the electrode impedance drifting or electrode displacement.
For EEG, ECoG, or LFP, wavelet transformation is an effective solution, given
its high compression ratio and good reconstruction quality [140, 141]. However,
the hardware implementation of a wavelet transformation is non-trivial and usually
takes a considerable amount of area and power consumption. Moreover, the custom
design for a specific signal type and sampling frequency significantly limit the
applications of these recording systems.

Compressed sensing is an emerging signal processing technique that enables
sub-Nyquist sampling and near lossless reconstruction of a signal [142, 143].
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Fig. 2.39 Historical trend for publications using compressed sensing technique in biomedical
signal acquisition in the past decade. Data retrieved from Web of Science

Since its introduction in 2006 [144], the compressed sensing technique has been
successfully applied to rapid MRI [144], computational image sensors [145],
biomedical sensors [137, 146], high frequency receivers [147], and many other
applications. Compressed sensing is especially attractive to neural signal recording
given its minimum hardware cost in the front-end favoring the power constraint of
implanted devices.

Prior research shows the sparsity of neural signal in different frequency bands
[146, 148–150]. Since an on-chip transformation using a random matrix usually
achieves a sufficient incoherence with a restricted isometry property (RIP) [151],
a general–purpose recording device can be designed without the knowledge of
the target signal. In addition, the compressed sensing measurements can be used
in signal processing (e.g., machine learning classifiers) [152]. Without a full
reconstruction of the raw signal, the processing in the compressed domain can be
easily implemented in a low-power embedded system.

Figure 2.39 shows a survey of publications related to compressed sensing’s
applications in neural recording. It clearly shows that compressed sensing has a
fast growth trend, and plays an increasingly important role in the neural signal
acquisition system design. This section presents the design and analysis of a fully
integrated wireless compressed sensing neural signal acquisition system for chronic
recording and brain–machine interface. All experimental procedures used in this
study were approved by the institutional animal care and use committee (IACUC)
of the University of Pennsylvania. Some of the figures and tables presented in this
section were originally published in [153] ©IEEE. Reused, with permission.
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2.5.2 A Brief Background of Compressed Sensing

Compressive sensing (CS) is a signal processing technique that enables sub-Nyquist
sampling and near lossless reconstruction of a signal with sparsity in a certain
domain. The technique is particularly appealing for low-power high channel-count
neural signal recording. This section gives a brief introduction to the compressive
sensing theory. Detailed explanation and rigid mathematical proof can be found in
[143, 144, 151].

2.5.2.1 Compression Process

Assume the digitized signal x has a dimension of N, denoted by x 2 R
N�1. Consider

a general linear measurement process that computes y with a full row-rank matrix
denoted by ˆ 2 R

M�N , and M � N

y D ˆx (2.46)

where y is the compressive sensing data, and ˆ is the sensing matrix. It should be
noticed that the sensing matrix is known to the reconstruction algorithm. The signal
x can be expressed as:

x D

NX
iD1

si‰i (2.47)

where s is the representation of the signal in the ‰ domain. The signal x is K �

Sparse if only K of the s coefficients are non-zero. The signal is compressible if it
is K � Sparse. The y can be written as:

y D ˆ‰s (2.48)

2.5.2.2 Reconstruction Process

The signal reconstruction process is to use the M measurements in y, the measure-
ment matrix ˆ, and the basis ‰ to reconstruct the signal x, or equivalently, its sparse
representation s. Since M � N, the equation is underdetermined, which means there
are infinite x (or s) that satisfy the condition. Therefore, the signal reconstruction
process is to find out the signal’s sparse coefficient vector.

The classical approach is to find the vector in the translated null space with the
smallest `2 norm by solving:

Os D argminjjs0jj2 such that ˆ‰s0 D y (2.49)
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However, the `2 minimization usually has difficulty in finding a K-Sparse
solution. `0 norm can recover a K-Sparse signal exactly with a high probability.

Os D argminjjs0jj0 such that ˆ‰s0 D y (2.50)

Unfortunately, solving Eq. (2.50) is both numerically unstable and NP-complete.
While `1 norm can exactly recover K-Sparse signal and closely approximate the
signal with a high probability.

Os D argminjjs0jj1 such that ˆ‰s0 D y (2.51)

This is a convex optimization problem and can be conveniently reduced to a basis
pursuit problem, with a computational complexity about O.N3/.

2.5.2.3 Reconstruction Evaluation Criteria

Several numerical derivations are used to evaluate the performance of individual
reconstruction algorithms and dictionaries. The commonly used criteria include
compression ratio and signal-to-noise and distortion ratio.

The Compression Ratio (CR) is defined as:

CR D
N

M
(2.52)

The signal-to-noise and distortion ratio (SNDR) is defined as [137]:

SNDR D 20 � log
jjxjj2

jjx � Oxjj2
: (2.53)

2.5.3 System Overview

The paradigm of the hypothetical chronic wireless neural signal acquisition system
is illustrated in Fig. 2.40. The system has a dedicated implantable subsystem and
a flexible external subsystem. The implantable subsystem contains the proposed
compressed sensing neural recording SoC, an inductive charging module, and a
super capacitor. The device will need to be sealed in a biocompatible package.
The device can be placed under the skin, above the skull bone. The recording
electrode can be placed in any brain area of interest. The external subsystem
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Fig. 2.40 (a) Illustration of
the hypothetical chronic
neural signal recording
system using the fully
integrated compressed
sensing chip, and (b) the
block diagram of the system

consists of a standard wireless transceiver, a rechargeable battery, and a coil. The
external subsystem powers the implanted device and collects data back through
back-scattering.

The advantages of the proposed system are threefolds: (1) the implanted wireless
device leaves the skin intact, which reduces the risk of infection, (2) the battery
is left externally so that the device’s lifetime will not be limited by the battery’s
recharging cycles, and the toxicity associated with batteries will not be a potential
danger to the subject, (3) the external transceiver makes the system flexible and
versatile, for instance, different wireless solutions or flash memory can be used for
different applications. Upgrading the system is also much easier, since the chronic
implant can be used for years or even decades while the external digital and wireless
electronics can be upgraded easily.

A single pair of coils is used for both power delivery and data read back. A carrier
frequency of 13.56 MHz is chosen considering the trade-off between the power
transfer efficiency and the data rate. Compressed sensing reduces the data rate of
the wireless uplink, which is especially helpful for the multiple channel recordings.
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2.5.4 Circuit Implementation

2.5.4.1 Energy Efficient Analog Front-End

The block diagram of one analog recording channel is shown in Fig. 2.41. A fully
differential low-noise instrumentation amplifier (IA) is used to amplify the neural
signal. The following Gm-C based high pass filter stage (HPF) conditions the

Fig. 2.41 The circuit schematic of one analog front-end channel of the proposed system (Part
I). The signal chain includes: amplification, filtering, voltage-to-current conversion, multiplexing
and digitization. The circuit schematic of (a) the low-noise neural amplifier, (b) the OTA with an
extended linear range, and (c) the OTA with a programmable transconductance
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signal with a tunable cut-off frequency. The next stage (LFP) is an operational
transconductance amplifier (OTA) that converts the voltage signal into a current
in a programmable low-pass frequency corner.

The IA in this work is a fully differential capacitor-coupled neural amplifier,
which amplifies the weak neural signal in a wide frequency band. The input
capacitors block the large electrode offset and half-cell potential from the interface,
giving a maximum input range. The closed-loop differential gain is set to be 34 dB
to relieve the noise requirement of the following stages. The core of the IA is a low-
noise OTA, as shown in Fig. 2.41a-1. The OTA has been designed to maximize the
noise and power efficiency. Compared with the design presented in Sect. 2.2.2, a
two-stage topology is used to provide a sufficient open-loop gain. A complementary
input stage (M1–M4) is used to increase the overall transconductance without
increasing the quiescent current. The complementary input amplifier suffers from
PVT variations [110], thus additional common-mode feedback circuit, as shown in
Fig. 2.41a-2, is adopted to stabilize the DC output at half of the supply voltage.
All input transistors are biased in the sub-threshold region to achieve a high
energy efficiency. Since the complementary stage has a limited input range, a fully
differential structure is chosen. The first stage dominates the noise, and the input-
referred noise of the OTA can be expressed as:

v2
i;n;tot D

1

.gm1 C gm3/2

�
8KT�.gm1 C gm3/

C2

�
KNgm3

Cox;NfWNLN
C

KPgm1

Cox;PfWPLP

��
�f (2.54)

where gm1 (=gm2) are the transconductance of the transistor M1 (M2), and gm3

(=gm4) are the transconductance of the transistor M3 (M4). The flicker noise can
be reduced by increasing the widths and lengths of the input transistors. A biasing
current of 1 �A is used in the first stage as a trade-off between power and noise.
A biasing current of 20 nA is used in the second stage. The dominant pole is set at
the second stage, and the stability is guaranteed by adding an additional capacitive
load.

An ultra low-power programmable bandpass filter is integrated into each channel
for selecting the frequency band of interest. The first stage is a fully differential Gm-
C highpass filter. The circuit schematic of the Gm block is shown as A2 in Fig. 2.41b.
Current division and local feedback are used to achieve a low transconductance
and an extended linear input range. The cut-off frequency can be programmed by
tuning the transconductance. The second stage of the filter is a single-ended Gm-
C based lowpass filter. The circuit schematic of the Gm block is shown as A3 in
Fig. 2.41c. Source degeneration is used to achieve a high linearity. The differential
voltage signal is converted into a single-end current signal. Since a standard current
mirror load is used, no extra power is wasted for this conversion, but the single-
ended operation reduces the capacitor array size by half, which is important for
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this design to be implemented at the channel level. The lowpass frequency can be
programmed by selecting the load capacitor.

The shared part of the analog recording front-end is shown in Fig. 2.42. The
current output from each channel is multiplexed and then converted to a voltage
using a transimpedance amplifier (TIA) with a programmable gain. A single-to-
differential (S2D) converter is used to drive the differential input ADC with an

Fig. 2.42 The circuit schematic of the analog front-end of the proposed system (Part II). A current-
to-voltage conversion with a programmable gain and a 10-bit SAR ADC is used to digitize the
signal. The boxed windows show the circuit schematic of (a) the comparator and (b) the SAR
ADC
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additional programmable transimpedance. A 10-bit SAR ADC digitizes the signal.
The design details of the ADC have been presented in Sect. 2.4.

The single-ended current output from the 16 channel is selected by a multiplexer.
The single-ended signal reduces the effort in routing, and the R-I drop in the long
routing trace doesn’t corrupt the current signal, thus making it less susceptible to
noise. The following TIA stage is used to convert the current signal back to a voltage
in a programmable gain, as shown in Fig. 2.42. The gain can be set to be 5�, 6�, 7�,
8� by the compressed sensing digital processor. The gain of 2�, 4� can be easily
achieved by shifting bits in the binary digital processor, and the 3� can be achieved
from shifting the 6� signal by 1 bit.

2.5.4.2 Compressed Sensing Module

The compressed sensing processing is implemented in the digital domain. The
digitized neural signal, xin, of a single channel is fed into the digital processing
module.

y D ˆxin (2.55)

that can be written as,
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Equation (2.56) can be rewritten in the form of a sum of vector multiplications, as:
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There are two modes of operation. In the simple mode, the entries of the sampling
matrix ˆ are assigned to be 0, C1, or �1; in the high resolution mode, the entries
can be assigned to be 0; ˙ 1

8
; ˙ 2

8
; : : : ; ˙ 7

8
:

In order to avoid a large on-chip storage for the sampling matrix, a shift register
chain is used to preload the coefficients at the beginning of each sampling loop.
Figure 2.43 shows the block diagram of the compressive sensing processing unit.
Parallel output values from the ADC are fed into the digital model. A simple sign
control is applied before sending the ADC output to the adder under the simple
mode. Under the high resolution mode, the entries coefficients ˙ 3

8
, ˙ 5

8
and ˙ 7

8
are
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Fig. 2.43 The block diagram of the compressive sensing processing module. A linear congruential
pseudo random number generator is used to generate all the entries of the sampling matrix

realized by configuring the gain of the analog amplifier to 3, 5, and 7, respectively,
while shifting the ADC output by 3-bit before sending the ADC’s output to the
adder.

There are M vector multiplication units integrated in the system. The entries of ˆ

are randomly generated off-line and used for the logic control inside of each vector
multiplication unit. The output measurement y is reset after every N iteration. The
dimension of xin is controlled by the iteration times. A parallel to serial convertor is
integrated in the system for the readout of the measurements.

According to the CS theory, a dictionary for sparsifying neural signals is required
for sparse recovery. In this section, neural data recording without compression is
performed to generate a database for the algorithm analysis at the very beginning.
The database is divided into two halves, where one half is used for training signal
dependent dictionary D by an unsupervised dictionary learning algorithm [150]
and another half is used for testing the recovery performance. In the proposed CS
framework, we adopt an on-chip Bernoulli sensing matrix ˆ to compress the neural
spikes or LFP x of length N into measurements y of length M, where normally
M � N and compression ratio is defined by M

N , as in Eq. (2.5.2.3). The recovery
problem can be solved by Orthogonal Matching Pursuit [154],

min
a

jjy � ˆDajj22 s:t: jjajj0 � ˆ; (2.58)
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where a is the sparse coefficient vector and S indicates the sparse level. The
recovered signal is defined as Ox D Da and the recovery quality is quantitatively
evaluated by the SNDR, as defined in Eq. (2.5.2.3).

2.5.4.3 On-Chip Wireless Power and Data Link

A low-power backscatter based wireless transmitter is designed to communicate
with an external transceiver. The backscatter transmitter consists of a PWM encoder
and a buffered transistor for the antenna impedance modulation [48].

An active rectifier is used to achieve a high power efficiency [155]. Coupling
coils are implemented off-chip. The system clock is recovered from the power
waveform [86]. The circuitry of the clock recovery and division module is shown
in Fig. 2.44. The module consists of a Schmitt trigger and several D flip-flops.
The Schmitt trigger makes the circuit more resistant to the noise in the power
waveform. Figure 2.45 shows the circuit schematic of the Schmitt trigger [156].
The D flip-flop guarantees the clock has a 50% duty cycle. Several different clocks
can be divided from the following D flip-flops. The clock frequency selection is
configured in a register.

Fig. 2.44 The circuit schematic of the clock recovery and clock division module

Fig. 2.45 The circuit
schematic of the CMOS
Schmitt trigger
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Fig. 2.46 Inductive power management module, including active rectifier and LDOs for analog
and digital power supplies. (a) Circuit schematic of the comparator, (b) bandgap reference, and (c)
LDO (start-up circuits are not shown)

Standard bandgap reference and low drop-out (LDO) circuits are used in the
power management unit. The block diagram and the circuit schematics of the power
management module are shown in Fig. 2.46. A push-pull comparator with source
input is used to drive the active diodes. The design details of the active rectifier can
be found in references [155, 157, 158].

2.5.4.4 External Wireless Relay Board

An external wireless relay board has also been designed to demonstrate the proposed
paradigm. The external subsystem consists of a microcontroller with an integrated
wireless transceiver, envelope detection circuits for reading the backscattered signal,
power transmitter circuits, and a battery management module.

A 32-bit ARM Cortex-M0 based wireless transceiver (Nordic Semiconductor
nRF51822) is used as the central processor and the wireless transceiver. It fea-
tures a 2.4 GHz transceiver with an integrated Bluetooth 4.0 low-energy protocol
framework, which provides an easy interface to the computer or mobile devices.
A reliable wireless communication up to 5 meters was measured in normal indoor
environment. A Serial Peripheral Interface (SPI) based microSD card interface is
optional in the system to allow a long-term wireless recording without a limited
receiver range.
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A computer user interface has been developed in Matlab to configure the device
and read back the data. The signal conditioning and off-line analyses can also be
performed in the user interface.

2.5.5 Measurement Results

The proposed SoC design has been fabricated in IBM 180 nm standard CMOS
technology, occupying a silicon area of 2.1 mm � 0.8 mm, excluding the IO pads.
A microphotograph of the fabricated chip is shown in Fig. 2.47, with major building
blocks highlighted.

Bench testing was conducted to verify the functions of the chip and the
system. The measured frequency response of the low-noise amplifier is shown in
Fig. 2.48. The frequency response was measured point by point using a function
generator 33521A and an oscilloscope MSO7034B from Agilent. The phase shift
was calculated in the oscilloscope. The measured midband gain is 34.1 dB. The
measured CMRR and PSRR of the analog front-end in the frequency range of 0.5 Hz
to 7 kHz are >80 dB and >67 dB, respectively.

Fig. 2.47 The micrograph of
the fabricated fully integrated
compressed sensing neural
recording front-end chip

Fig. 2.48 The measured frequency response of the low-noise amplifier (without filtering stages)
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Fig. 2.49 The measured input-referred voltage noise spectrum

Fig. 2.50 A time-domain comparison between the uncompressed recording and the data recon-
structed from recordings in different compression ratios (CR)

The input-referred noise spectrum is shown in Fig. 2.49. The noise was measured
with the inputs shorted by an internal switch. The noise spectrum density is
200 nV/

p
Hz at 10 Hz, 49.1 nV/

p
Hz at 100 Hz, and 23 nV/

p
Hz at 1 kHz. An

integration under this curve from 1 Hz to 7 kHz yields an rms noise floor of 2.85 �V.
The total harmonic distortion of the amplifier was measured to be �63 dB, with an
input amplitude of 1 mV.

An invasive neural recording was performed in an anesthetized rat with a
tungsten microelectrode placed in its motor cortex. Action potential data was
extracted by configuring the filter with a passband of 300 Hz to 7 kHz. Different
compression ratios from 2, to 4, to 8 and to 16 have been applied, respectively.
Signal-to-noise distortion ratio (SNDR) of 3.60 dB, 9.78 dB, 30.60 dB, and 52.99 dB
are achieved for compression ratios 16, 8, 4, and 2, respectively. Dual-threshold
level-crossing action potential detection was used for both the uncompressed data
and the restored data. A near-lossless action potential detection can be achieved
while a compression ratio lower than 8 was applied.

Figure 2.50 compares the time-domain waveforms of the uncompressed and the
reconstructed local field potential (LFP) sampling data sets. And Fig. 2.51 shows
the comparison of the spectrums of the original uncompressed and reconstructed
LFP sampling data sets. The LFP exhibited rhythmic bouts of broadband power
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Fig. 2.51 A comparison of the spectrograms of (a) the uncompressed recording and (b) the data
reconstructed from the recording with a CR of 8

interleaved with low power epochs. According to Fig. 2.51, the time-frequency
content of the restored signal was very similar to the uncompressed LFP. Signal-
to-noise distortion ratio (SNDR) of 9.04 dB, 4.85 dB, and 3.78 dB were achieved
for compression ratios 4, 8, and 16, respectively.

A demonstration system was developed to show the proposed concept, as shown
in Fig. 2.52. An open cavity plastic package was used for packaging the chip,
and the size of the demonstration implantable system was limited by the package.
Commercial coils were used for the inductive power and data transfer. An additional
ceramic capacitor was used to improve the impedance matching. Two LEDs were
used only for debugging purpose. A couple of programming and debugging pads
are left (not shown). No other off-chip components were required.

In vivo evaluation of the device for a long-term operation was conducted in a
rhesus macaque. An electrode was chronically implanted in the hippocampus. The
recording device, including an external transceiver, was housed in a small chamber
that was fixed to the skull. Figure 2.53 shows the spectrogram of a 24-h continuous
recording while the monkey was freely behaving in his home cage. The recording
shows the states of hippocampal activities throughout the day. Greater power at
higher frequencies (>20 Hz) was associated with periods in which the animal was
awake and freely moving about his home cage (hours 0–7.5 and 19–24). Greater
power at low frequencies (<20 Hz) was associated with sleeping (hours 7.5–19).
Individual sleep cycles can be seen. Some broadband chewing artifacts were also
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Fig. 2.52 Photograph of an assembled demonstration system. (a) Power and data transmission
testing setup across a 5 mm plastic cap, (b) the external transceiver board, and (c) the implantable
device

Fig. 2.53 A 24-h continuous recording in the hippocampus of a rhesus macaque during free
behavior

Table 2.6 The chip specifications summary

Neural amplifier CS processor

Midband gain 34.1 dB Input channel Up to 16

Bandwidth 0.5 Hz–7 kHz CS ratio up to 8�

LNA noise 2.85 �Vrms Clock freq. 4 MHz

THD (1 mV) �63 dB Wireless power and data

NEF/PEF 1.58/4.5 Carrier freq. 13.56 MHz

CMRR >80 dB Power efficiency up to 73%

PSRR >67 dB Distance up to 10 mm

SAR ADC Power

ENOB 9.1 Analog front-end 2.5 �W (per ch.)

Sampling rate 1 MSps ADC 35 �W(@1 MSps)

INL (LSB) +0.62/�0.85 CS processor 77 �W

DNL (LSB) +0.69/�0.92 TX transmitter 27�W

FoM (fJ/step) 34.2 Total (avg.) 254 �W
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present (around hours 3–4.5 and 20–22) corresponding to the times when the animal
was fed. The overall activity pattern matches previous observations of sleep–wake
changes in neural activity. The measured specifications of the chip are summarized
in Table 2.6.

In this work, a fully integrated wireless neural signal acquisition system is
presented. A high efficiency wireless neural signal recording SoC with integrated
compressed sensing processor was designed and fabricated in 180 nm CMOS
technology. An external wireless relay was used to power the implantable SoC, read
back the data through backscattering, and transmit the data through a universal wire-
less link. The system features high energy efficiency, high flexibility, compatibility,
upgradability without compromising the signal recording quality. By performing
on-chip compressive sampling, the data rate is significantly reduced, which allows
the system to support more recording channels without a power penalty. According
to the experimental results, a compression ratio up to 8� will cause negligible loss of
the data quality and/or information contained in the data. A pre-implantable system
was assembled and successfully demonstrated the proposed paradigm. Bench testing
and in vivo experimental results are presented. Table 2.7 compares the performance
of the proposed work with prior published compressed neural signal recording
front-end designs. The system shows a promising chronic neural signal recording
paradigm for neuroscience research and BMI applications.



Chapter 3
Neural Feature Extraction

3.1 Introduction

Feature extraction, or feature learning, is an important technique to transform
the raw data input to a representation that can be effectively understood [161].
Neural feature extraction allows one to acquire the qualitative and quantitative
information from the neural signal. It has been widely used in the neuroscience and
neuroprosthetic research for pattern recognition, numerical or symbolic regression,
probability estimation, and dynamical system modeling [162]. Moreover, neural
feature extraction provides inputs to a real–time decision support system, such as
a brain–machine interface (BMI) system with machine learning for seizure on-
site detection [107]. The implementation of real–time neural feature extraction is
especially important for closed-loop BMI systems, where most processing is online.
By applying feature extraction and machine learning techniques, the BMI devices
have been successfully used in decoding motor function [163, 164], detecting
epilepsy [107, 165], Parkinson’s disease [166], depression [167], and so on.

The neural feature extraction can be performed in different domains, including:
(1) time domain, (2) frequency domain, (3) wavelet domain, (4) statistics process,
(5) information theory (e.g. entropy, mutual information), (6) fractal geometry, and
so on [162]. However, the implementation of real–time feature extraction in BMI
devices is usually limited by the hardware resources including the computation
ability, the memory size, and the power consumption [168]. As a result, an energy
efficient implementation is especially important. Some energy-efficient neural
feature extraction techniques have been reported in the literature [107, 139, 169–
172]. It should be noticed that the choice of a suitable set of neural features is
also a challenging task. The brain signal contains a large number of simultaneous
sources, and the information of interest might be overlapped with other sources in
time or frequency. There are many existing theories for feature selection, including

© Springer International Publishing AG 2018
X. Liu, J. Van der Spiegel, Brain-Machine Interface,
https://doi.org/10.1007/978-3-319-67940-2_3
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principal component analysis (PCA) [173], independent component analysis (ICA)
[174], genetic algorithm (GA) [175], sequential forward/backward selection (SFS)
[176], and so on.

Although the use of neural features varies significantly in different applications,
it is very helpful to identify the most commonly used features for real–time BMI
systems. Both field potential and action potential features have been used in real–
time, closed-loop BMI devices, as briefly summarized below:

• Field potential (FP) features

– Energy in multiple frequency bands: spectral characteristics of neural field
potentials have been used to identify, classify, and analyze brain activities
[169, 177];

– Features of different brain states: different features of field potentials can
be used to identify different brain states [178, 179];

– Synchronization between electrodes: synchronization of oscillations
between different brain areas can be used to identify different brain activities
[180, 181].

• Action potential (AP) features

– Action potential detection: action potentials reflect activities of individual
neurons, which have been widely used in BMI system for linking two brain
sites, reinforcing motor activity, generating synaptic plasticity, and so on [182,
183];

– Action potential alignment and sorting: on-line action potential sorting can
be used to identify different neurons presented on a same electrode [182, 184];

– Action potential firing rate: the action potential fire-rate presents the active-
level of an individual neuron [185, 186].

This chapter presents the analysis and design of the neural feature extraction
from three different perspectives, the field potential energy extraction, the action
potential detection, and the phase-amplitude coupled feature extraction. Several
novel techniques in the circuitry, algorithm, and system levels are proposed, with
a focus on the energy efficient implementation for closed-loop BMI systems. The
chapter is organized as follows. Section 3.1 introduces the neural features and
neural feature extraction, and summarizes the commonly used features for real–time
BMI systems. Section 3.2 describes the energy features in the LFP, and proposes a
novel extraction circuit with frequency tuning in the natural logarithmic domain.
Section 3.3 analyzes the real–time action potential detection and classification,
followed by the design of a low-power current-mode action potential circuit module.
Section 3.4 analyzes the matched filter with pre-whitening and its application in
phase-amplitude coupled neural feature extraction.
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3.2 Natural Logarithmic Domain Field Potential
Energy Extraction

3.2.1 Introduction

The field potentials reflect the summed activity of thousands to millions of neurons.
A large amount of important information regarding brain states, motor intent and
behavioral processes can be inferred from the field potential recordings [187–189].
Oscillations are particularly prominent in field potential recordings which reflect
synchronous, rhythmic changes in the activity across the neural network. As a result,
field potential energy extraction is a commonly adopted method in neuroprosthetic
applications. Some of the figures presented in this section were originally published
in [57] ©IEEE. Reused, with permission.

A variety of distinct brain oscillations exist, with center frequencies spaced
logarithmically [190], as illustrated in Fig. 3.1. Commonly used field potential
frequency bands include: delta band (1–4 Hz), theta band (4–10 Hz), beta band
(10–30 Hz), gamma band (30–80 Hz), and fast band (30–80 Hz). Neural oscillations
associated with a certain cognitive state can be in a very narrow frequency band,
especially in the low frequency range. For example, the first discovered and one of
the best-known frequency bands is the alpha activity, which is 7.5–12.5 Hz [191].
This places a big design challenge in the energy extraction circuit. If the frequency
tuning uses a fixed-step (i.e., linear tuning), a high-frequency resolution will have to
be realized. Similarly, if a Fast Fourier Transform (FFT) analysis is used, it requires
a large number of FFT points and a large memory size for buffering the data. In order
to address this problem, a natural logarithmic domain tuning is proposed in this
work, which provides a sufficient resolution for extracting the low-frequency brain
oscillations, without increasing the number of tuning steps. Figure 3.1 illustrates the
frequency bins of the conventional linear step and the proposed natural logarithmic
domain step, when they have the same number of frequency bins.

Fig. 3.1 Brain oscillation
bands are shown in the
natural logarithmic domain.
The frequency tuning bins for
energy extraction in
traditional linear steps and in
the proposed natural
logarithmic domain are
plotted for comparison. A
total of 32 steps in a
frequency range from 1 to
200 Hz is used in both cases
for illustration
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3.2.2 System and Circuits Implementation

The processing flow of the proposed LFP energy extraction circuit is shown
in Fig. 3.2. A lowpass filter with a frequency corner of 300 Hz is first used to
remove the high-frequency content in the signal. Then, two second-order stagger-
tuned biquad filters are cascaded to bandpass the signal in a programmable center
frequency and quality factor [170]. The filtered signal is then squared in a Gilbert
multiplier to find the energy. Finally, the energy integral is produced by a leaky
integrator with a tunable time-constant [192].

A prototype system that consists of 16 neural feature extraction channels is
designed in this work. Each channel can be programmed independently. The feature
extraction module in each channel can also be combined to perform spectrum
analysis for one channel as a filter bank. Figure 3.3 illustrates the configuration
of the system.

3.2.2.1 Design of the GmC Filter

Given the low frequency nature of the neural signal, filters with very large time-
constant have to be integrated on-chip. There are several methods to implement such
filters in CMOS circuits: (1) Op-amp based filters can achieve a high linearity and a

Fig. 3.2 The processing flow of the LFP energy extraction

Fig. 3.3 The diagram of the
16-channel programmable
energy extraction module,
and the configuration of the
filter bank
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Fig. 3.4 The circuit
schematic of a typical MOS
Gm block with source
degeneration

good signal-to-noise ratio (SNR), but suffer from a high power consumption, large
passive components (non-linear if MOS resistors are used instead), and difficulties
in tuning; (2) Switched capacitor filters can achieve a high linearity and a high
frequency accuracy with tunability [169], but they have limitations and design
challenges in the tunable range, the capacitor size, the non-idealities from the clocks
and mismatches; (3) Gm-C filters can realize a large time-constant in an ultra-low
power consumption and in a minimum silicon area. As a result, these filters have
been widely used in biomedical applications [170]. But Gm-C filters also have
limitations in linearity and the frequency corner accuracy. (4) Digital filters can
achieve good filter characteristics, but they require a pre-digitization of the signal,
a memory for buffering the data, and a dedicated DSP core [107]. A high-order
digital filter requires accurate coefficients and a sufficient number of bits during the
computation to prevent overflow. It should be mentioned that, with the development
of advanced CMOS technology, digital filters may surpass analog filters in both
accuracy and power consumption. However, traditional CMOS technology with
thick oxide and large gate length is sometimes preferred in analog circuit design
for a low noise profile and a low leakage current. In summary, design trade-offs
need to be carefully considered when designing filters for different applications.

In this work, a Gm-C based filter topology is chosen. The filter is designed with
a tunable transconductance in a range of two decades, with an extended linear input
range to meet the specifications. The circuit schematic of a simple MOS Gm block
is shown in Fig. 3.4. The input transistors are biased in the sub-threshold region
[193]. In the sub-threshold region, the transconductance of the transistor has a linear
relation with the biasing current [194], as expressed:

gm D
IDS

�UT
(3.1)
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Fig. 3.5 The circuit
schematic of the Gm block
with a reduced
transconductance and an
extended linear input range.
The biasing current is used to
tune the transconductance

where � is a parameter that depends on the process, and UT D kT=q. Thus, the
transconductance of the Gm block can be directly tuned by the biasing current IDS.
A local feedback is used to reduce the distortion [115]. Instead of using resistors,
dioded-connected transistors M3 and M4 are connected to the sources of the input
transistors M1 and M2. The total resistance between the sources of the input
transistors becomes 2=gm3. If a reduction factor n is defined as:

n D 1 C
gm1

gm3

(3.2)

The third-order harmonic distortion HD3 can be reduced by a factor of n2 [195].
In this work, M1 and M3 are set to have the same dimension with the same biasing
current to maximize the common mode input range [196].

Thick oxide transistors are used in this circuit for a lower transconductance and
to reduce the leakage current. The current mirrors are biased in the strong inversion
region with a large vdsat for a better matching. It should be noticed that there
is a limitation in the minimum current that can be reliably copied in the circuit.
To reduce the capacitor size in the Gm-C filter while keeping the time-constant of
the filter, the transconductance needs to be further reduced. So, a modified version
of the Gm block is implemented. The proposed circuit schematic is shown in
Fig. 3.5. The input transistors (M1�6) are also biased in the sub-threshold region.
Current division is used at the input differential pair to reduce the transconductance.
Besides the local feedback as in Fig. 3.4, a bulk degeneration [197] is used to further
enhance the linear input range. In a testing version, capacitor attenuation [198] is
used to further attenuate the input signal swing and reduce the effective overall
transconductance. The attenuator is not used in the final integration considering the
cost of the silicon area.
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Fig. 3.6 The circuit schematic of the 6-bit current-mode DAC used for generating the biasing
current for the Gm block

Fig. 3.7 The circuit schematic of the biasing current generation module. A 64-step natural
exponentially spaced biasing current can be generated

3.2.2.2 Biasing Current Generation

In the first version, a linear 6-bit current-mode DAC is integrated for generating
the biasing current for the Gm block. The circuit schematic is shown in Fig. 3.6.
Thick oxide transistors are used to reduce the leakage current and to improve the
matching in this CMOS process. The DAC has two segmentations with binary
weighted transistors. Two gating transistors M1 and M2 are used to further reduce
the current leakage and to allow a complete shutdown of the circuit.

The second version of the biasing current generation module is designed for the
proposed natural logarithmic domain tuning. Figure 3.7 shows the programmable
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biasing current generation module. A two-step 6-bit resistor ladder based DAC is
used to generate a 64-step linear tuning voltage between Vcm and Vref. A custom
designed current generation module (M1–M6) converts the linear voltage to a natural
exponentially spaced current. In the current generation module, all transistors M1–
M6 are biased in the sub-threshold region. Thick oxide devices are used. When the
VDS of a transistor biased in the sub-threshold region is higher than three or four
times of the thermal voltage UT , it is in the saturation region [112]. The equation of
the sub-threshold current in the saturation region can be simplified to:

ID D Io exp
VGS

�UT
(3.3)

In the current generation circuit, consider the transistors M1–M4. The equations for
the currents can be written as:

Iref D Ion exp
VGS1

�UT
D Iop exp

VGS3

�UT
(3.4)

Igm D Ion exp
VGS2

�UT
D Iop exp

VGS4

�UT
(3.5)

where Iref is generated by an on-chip bandgap reference, and is independent from
the temperature and the supply voltage. Equations (3.4) and (3.5) lead to:

VGS1 � VGS3 D VGS2 � VGS4 D �UT ln

�
Iop

Ion

�
(3.6)

Also, from the circuit:

VCM D VGS1 C VGS3 C VP (3.7)

VDAC D VGS2 C VGS4 C VP (3.8)

Substituting Eqs. (3.4) and (3.5) into Eqs. (3.7) and (3.8) gives:

VGS1 D
1

2

�
VCM � VP C �UT ln

�
Iop

Ion

��
(3.9)

VGS2 D
1

2

�
VDAC � VP C �UT ln

�
Iop

Ion

��
(3.10)

The generated biasing current can be expressed as:

Igm D Iref exp
VDAC � VCM

2�UT
(3.11)
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Thus, the linear spaced voltage from the DAC is converted to an exponentially
spaced biasing current. According to Eq. (3.1):

gm / ID / e.VDAC�VCM/ / ecode (3.12)

where code is the digital input of the DAC. Transistors with large gate area are used
in the current generation module to minimize the mismatch. The process variation
can be further calibrated by tuning the reference voltage Vref.

The M7 in Fig. 3.7 is a diode-connected transistor used to divide the generated
current reference. The ratio of Igm1 and Igm3 can be programmed to tune the quality
factor of the filter, which will be explained in the next section.

3.2.2.3 Design of the Biquad Filter

A staggered tuned fourth-order bandpass filter is implemented by cascading two
biquad filters [199]. A biquad filter is a second order recursive linear filter containing
two poles and two zeros [200]. Figure 3.8 shows the circuit schematic of the biquad
filter implemented in this work. The biquad filter consists of four Gm blocks. The
center frequency and the quality factor of each biquad are independently tunable.
Only two capacitors with one terminal grounded are used in each biquad, resulting
in a very compact layout. The transfer function is given by:

H.s/ D

s
gm1

C1

s2 C s
gm2

C1

C
gm3gm4

C1C2

(3.13)

Fig. 3.8 The circuit schematic of the designed biquad filter. The center frequency and the quality
factor of the filter can be tuned independently



78 3 Neural Feature Extraction

The biasing currents for the Gm blocks are designed to be Igm1 D Igm2, Igm3 D

Igm4, so that the transconductance of the Gm blocks are gm1 D gm2, gm3 D gm4. The
capacitors are set to be C1 D C2. Thus,

!C D

r
gm1gm2

C1C2

D
gm1

C1

(3.14)

If the C1 is fixed, the center frequency is a function of gm1. Also from Eqs. (3.12)
and (3.14):

!C / gm / ecode (3.15)

Thus the center frequency of the biquad can be exponentially tuned by the
digital code.

Also, the quality factor Q can be expressed as:

Q D

s
C1gm3gm4

C2g2
m2

D
gm3

gm1

(3.16)

So the quality factor can be tuned by changing the ratio of Igm1 and Igm3. As
explained in Sect. 3.2.2.2, the M7 in Fig. 3.7 is a diode-connected transistor with the
same length as the current mirrors used for copying Igm in the Gm block. The width
of the M7 can be programmed to divide the generated current reference, so the ratio
of Igm1 and Igm3 can be programmed to tune the quality factor.

3.2.2.4 Multiplier and Integrator

A Gilbert multiplier is used to square the band-passed signal. The Gilbert multiplier,
or Gilbert cell, is commonly used analog multiplier circuit introduced by B. Gilbert
in 1963 [201]. A tutorial of analog multipliers design can be found in [202]. The
circuit schematic of the Gilbert multiplier implemented in this work is shown in
Fig. 3.9. The output current of the multiplier is determined by [203]:

IO D
p

2K˛Kˇ.VIN � VREF/2 (3.17)

where K is the transconductance parameter, K˛ D K1 D K2, and Kˇ D K4 D K5 D

K6. So the gain can be tuned by the biasing current IB.
The integral of the multiplier’s output current is computed in a leaky Gm-C

integrator [170]. The circuit schematic of the Gm-C based integrator is shown in
Fig. 3.9. The integral window length can be changed by tuning the time constant of
the integrator.
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Fig. 3.9 The circuit schematic of the Gilbert multiplier and the integrator

Fig. 3.10 The microphotograph and layout of one LFP energy extraction channel. The major
building blocks are highlighted in the layout

3.2.3 Measurement Results

The design has been fabricated in 180 nm CMOS technology. Bench testing
was conducted to verify the function and performance of the fabricated design.
The microphotograph and layout of one LFP energy extraction channel are shown
in Fig. 3.10. The occupied silicon area of the design is 850 �m�115 �m.

Bench testing was conducted to verify the function and performance of the
fabricated chip. The frequency response of the natural logarithmic tuning neural
energy extraction module was measured. The measurement was conducted point
by point using a function generator 33521A and an oscilloscope MSO7034B from
Agilent. The reference voltage was calibrated to set the center frequency of the
unit programming step. Figure 3.11 shows the measurements of every four steps
out of the 64 possible steps, with a frequency ranging from 1 to 200 Hz. It should
be noticed that the measurement step and x-axis in the figure are in the natural
logarithmic domain.



80 3 Neural Feature Extraction

Fig. 3.11 The measured frequency response of the biquad filter tuning in the proposed natural
logarithmic steps. A total of 16 steps were measured

Fig. 3.12 The measured
frequency response of the
biquad filter with different
quality factors. The center
frequency is configured at
10 Hz

Similarly, the tuning of the quality factor was measured. Figure 3.12 shows the
measurement result with the center frequency of the filter configured at 10 Hz. The
quality factor can be configured at 1, 2, 4 and 8.

The biquad filter was also tested with a synthetic sinusoidal wave generated
from a function generator. The sinusoidal wave has a constant amplitude, and the
frequency was swept from 0.1 to 1 kHz logarithmically. The synthetic waveform
and the output of the biquad filter are shown in Fig. 3.13. The frequency sweeping
measurement verifies the response of the biquad filter in a straightforward manner.

The Gilbert multiplier was tested with an amplitude modulated 10 Hz sinusoidal
wave generated from a function generator. The measurement result is shown in
Fig. 3.14. The measured output of the Gilbert multiplier was plotted in comparison
with the simulation result after a gain calibration. The measurement result matches
the simulation closely.

Figure 3.15 shows the measured output of the leaky integrator with an amplitude
modulated 40 Hz sinusoidal wave as the input. The measured output is compared
with the theoretical computation of the signal’s power. The measurement matches
the computation closely.
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Fig. 3.13 The measured response of one biquad filter with a synthetic sine wave with frequency
sweeping from 0.1 Hz to 1 kHz

Fig. 3.14 The measured
output of the Gilbert
multiplier with an amplitude
modulated 10 Hz signal. The
measurement result is plotted
in comparison with the
simulation (after a gain
calibration)

Figure 3.16 shows the power spectrum of a 6-h recording from a male rhesus
macaque (Macaca mulatta) with electrodes implanted chronically in the left
hippocampus. The recording presents an awake to asleep transition of the animal’s
state. The activities from different brain oscillation bands are clearly visible in the
figure.

Figure 3.17 shows a 20-s segment of the LFP recording. The original recorded
signal is shown in the top row. The energy in four commonly used frequency bands
(solid lines) was extracted using the designed chip, including 
 band (4–10 Hz),
ˇ band (10–30 Hz), � band (30–80 Hz), and Fast band (80–200 Hz). The measured
output is compared with the theoretical computation plotted in the dashed lines after
a gain normalization. A close matching between the waveforms can be observed.



82 3 Neural Feature Extraction

Fig. 3.15 The measured
outputs of the multiplier and
the LFP energy integrator
(phase shift has been
corrected)

Fig. 3.16 The spectrum of a 6-h continuous recording using the prototype device. The animal’s
brain state changed from awake (high-frequency oscillation more active) to sleep (low-frequency
oscillation more active) during the recording

3.3 Action Potential Discrimination

3.3.1 Introduction

Monitoring neuron activity is the basis for understanding the brain mechanisms
[204]. When multiple neurons are close to one recording electrode, it is important to
discriminate the action potentials corresponding to different neurons. Even nearby
neurons have similar responses, it is important to distinguish them and observe
their individual characteristics [205]. Given the distance and orientation relative to
the recording electrode, different neurons present different waveforms. The action
potentials can then be classified into different clusters, and this process is known as
spike sorting [206].
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Fig. 3.17 In vivo recording of a Rhesus macaque using the designed chip. The extracted energy
in four brain oscillation bands (Theta, Beta, Gamma, and Fast) compared with the theoretical
computations (dashed lines)

In this section, a simplified action potential model is presented, followed by a
review of detection and classification methods. The design of an energy efficient
continuous-time current-mode action potential detection module is described. The
circuit implementation and experimental results are presented. Some of the figures
and tables presented in this section were originally published in [51, 57] ©IEEE.
Reused, with permission.

3.3.1.1 Integrate and Fire Model

A good understanding of the action potential working principle is the basis for
designing a good discrimination circuit. The Hodgkin-Huxley Model (HHM) is a
well-known model which can approximate the generation of an action potential
accurately [207]. The goal of this section is to implement the HHM Model for a
better understanding of the integrate and fire process of a single neuron. The HHM
is constructed by the membrane current as the sum of a leakage current, a delayed-
rectified KC current, and a transient NaC current [208]:

im D NgL.V � EL/ C NgKn4.V � EK/ C NgNam3h.V � ENa/ (3.18)

where n, m, and h are the gating variables. A channel controls the membrane
conductance according to the gate variables. When the neuron is depolarized, the
gate open probability increases; when the neuron is hyperpolarized, the gate open
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probability decreases. In general, n, m, h are variables of the voltage and time, and
are within 0 and 1. They can be estimated by the following equations [208]:

�n.V/
dn

dt
D n1.V/ � n (3.19)

�n.V/ D
1

.˛nV C ˇnV/
(3.20)

n1.V/ D
˛n.V/

˛n.V/ C ˇn.V/
(3.21)

where ˛n and ˇn can be found by:

˛n D
0:01.V C 55/

.1 � e�0:1.VC55//
(3.22)

ˇn D 0:125e�0:0125.VC65/ (3.23)

where m and h can be calculated in:

˛m D
0:1.V C 40/

.1 � e�0:1.VC40//
(3.24)

ˇm D
1

1 C e.�0:1.VC35//
(3.25)

˛h D 0:07e�0:05.VC65/ (3.26)

ˇh D
1

.1 C e.�0:1.VC35///
(3.27)

The above HHM model was simulated in Matlab. Runge-Kutta method was
used to find the arithmetic solution of the differential equations. The method
requires initial conditions, which was taken from the reference [208]. The membrane
potential from the simulation is shown in Fig. 3.18. HHM model can be used in the
simulation and evaluation of action potential detection method.

3.3.1.2 Review of Action Potential Discrimination Methods

Real–time action potential detection and classification methods have been widely
reported in the literature since the pioneering work in the 1920s [182]. Compre-
hensive reviews of detection and classification algorithms can be found in papers
[182, 204, 205, 209]. In summary, an effective discrimination method relies on
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Fig. 3.18 Matlab simulation of the HHM model using Runge-Kutta method for solving the
arithmetic solution

a good signal-to-noise ratio and a robust algorithm. The general steps for action
potential discrimination are:

1. Filtering: filter the raw data between around 300 Hz to 6 kHz to remove low-
frequency field potentials for the following processing;

2. Detection: detect the action potential, e.g. by applying an amplitude threshold
on the filtered signal. Artifacts or noise might be detected as action potentials in
this step;

3. Extraction: extract the relevant features of the action potential waveform;
4. Classification: apply classifier on the extracted features for action potential

discrimination.

Both action potential detection and classification have been implemented on-chip
[139, 171, 172]. A simple action potential detection can be easily performed in real–
time. The detection results can be used to either reduce data transmission rate [69]
or trigger pre-defined stimulation in a closed-loop BMI system [36, 38]. Commonly
used action potential discrimination methods are summarized here:

1. Absolute threshold detection, which uses a predefined threshold for action
potential detection [209]. The threshold can be manually set or using a weighted
(3�–5�) root mean square value of the signal;

2. Non-linear energy operator (NEO), which extracts the energy from the action
potential signal to improve the detection integrity [138]. A modification of the
NEO, named the multiresolution Teager energy operator (METO) combines
the results of NEO in different resolution scales, also shows a good performance
[210];
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3. Wavelet analysis, which projects the signal to certain wavelets domain [172].
The wavelet transform can also be considered as a bank of matched filters.
Different choices of mother wavelet have been reported for action potential
detection [211, 212].

The performance of various action potential detection algorithms has been
compared in [171, 209]. One of the conclusions is that for real–time action potential
detection in systems with limited computational resources, applying an absolute
threshold on the signal is just as effective for detecting action potentials as applying
more elaborate energy-based nonlinear operators.

Commonly used features for action potential classification include: (1) maximum
spike amplitude, (2) minimum spike amplitude, (3) spike width, and so on. It should
be noticed that choosing the features manually sometimes yields a poor separation.
One method of automatical feature choosing is principal component analysis (PCA)
[182]. PCA can find an ordered set of orthogonal basis vectors that capture the data
variation in the largest direction.

There are many methods for clustering [182], including K-means clustering,
Bayesian clustering, support vector machine (SVM), and so on. For example, K-
means clustering, or nearest-neighbor clustering is a hardware friendly classifier.
K-means clustering defines the cluster location as the mean of the data within that
cluster. An action potential signal will be classified to the cluster with a minimum
Euclidean distance. The performance of different classifiers has been compared in
[182, 204]. It should be noticed that there are other issues affecting the spike sorting
algorithms, including electrode drifting, spike overlapping, neuron bursting, and
so on. These issues should be taken into account when designing real–time BMI
system.

3.3.2 Circuit Implementation

The action potential detection can be performed in analog domain [138, 213] or in
digital domain [214]. The duration of an action potential is less than 2.5 ms [205].
For the accuracy of the classification, the digital sampling rate should be at least
10kSps, or an asynchronous sampling can be used [215]. Analog spike detection
can achieve an ultra-low power consumption, while digital domain processing can
achieve superior performance and classification accuracy.

In this work, a current-mode continuous-time action potential discrimination unit
has been designed. Current-mode circuits present a signal as a current instead of a
voltage, thus the dynamic range of the signal is not limited by the supply voltage.
This can be very useful for implementing a large dynamic range signal processing
in advanced CMOS technology, where a low supply voltage is often used. The block
diagram of the designed current-mode action potential detection module is shown
in Fig. 3.19. The overall system consists of a low-noise amplifier, a bandpass filter,
and the action potential discrimination unit. The bandpass filter is second order
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Fig. 3.19 The block diagram
of the action potential
detection module

Fig. 3.20 Illustration of the
window discriminator for
action potential detection

with a passband from 300 Hz to 6 kHz. Multiple units can be connected together
to discriminate more than one neuron per channel. In a multiple channel recording
system, this can be achieved by designing a multiplexing module among channels,
as shown in Fig. 3.19.

The working principle and timing of the action potential detection unit are shown
in Fig. 3.20. Two amplitude thresholds and time windows are used to discriminate
the action potentials from different neurons [51]. After a bandpass filter, the signal
is compared with a depolarization threshold TH1. If the signal exceeds TH1, the
comparator is then disabled for a period of ˆ1. After that, the signal is compared
with a repolarization threshold TH2 for a period of ˆ2. If the signal crosses TH2

during ˆ2, an action potential is detected. The TH1 and ˆ1, TH2 and ˆ2 are
programmable and will be set independently for each channel.

The circuit block diagram of the implemented action potential detection unit is
shown in Fig. 3.21. The unit consists of a transconductance amplifier, a current-
mode DAC, a current-mode comparator, and a digital timing and logic module. The
transistor M1 is biased in the deep triode region, and its transconductance is set by
the biasing voltage VTune. The threshold currents are generated by a 6-bit current-
mode DAC. The circuit schematic of the DAC is shown in Fig. 3.22. The DAC uses
binary weighted current mirrors. The current steering can be disabled by shorting
IOUTp to ground. Disabling the current steering reduces the power consumption
with a lower settling speed, which may not be a problem as long as the threshold
current can settle before the discrimination window starts. No additional calibration
is implemented in this work. It should be noticed that a 6-bit resolution is usually
more than sufficient for the window discrimination algorithm. A fine-tuning of the
threshold values won’t result in a better discrimination accuracy.
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Fig. 3.21 The block diagram of the proposed current-mode action potential detection unit with an
integrated programmable amplitude-window discriminator. The filtering stage is not shown in this
figure

Fig. 3.22 The circuit schematic of the 6-bit current-mode DAC

A current-mode comparator is also designed. The circuit schematic is shown in
Fig. 3.23. A current comparator usually is designed with a low input impedance with
a relatively constant input node voltage [216]. However, a capacitive input stage can
detect a low current amplitude with a much faster response [217]. But the input
node voltage cannot be well controlled. As a result, a combination of capacitive and
resistive feedback is implemented. The transistors N3 and P3 work as non-linear
feedback resistors to set the input node voltage. When the input signal is small,
the feedback loop is disabled and the comparator appears capacitive characteristic,
which ensures a high resolution and speed. It is important to minimize the input
capacitance, especially when the designed current amplitude is small. A differential
pair is used in the second stage, followed by a current starved buffer stage to give
rail-to-rail output.

The digital timing and logic module are designed with custom two wire interface
(TWI) [57]. There are four registers for the two threshold amplitudes and time
windows. Like many real–time spike detection algorithms, one drawback of this
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Fig. 3.23 The circuit schematic of the current-mode comparator

design is the false negative detection occurring right after an artifact. In this case,
the spike detection won’t be able to recover in time. A data buffer can be used
to address this problem by the re-alignment of the input data. However, an analog
buffer is difficult to implement. An alternative solution is to use multiple detection
units in parallel. A digital logic will need to be designed to properly address the
conflict by allowing one unit to process one action potential once a time.

Interestingly, with the current-mode comparator and DAC, the action potential
discrimination unit can be extended to a current-mode ADC if a SAR logic is added.
It might be beneficial to first detect the action potential in the analog domain and
then digitize the signal for the further processing.

3.3.3 Experimental Results

The designed action potential detection unit has been fabricated in 180 nm CMOS
technology. The design has a dimension of 125 �m � 25 �m. Figure 3.24 shows the
microphotograph of the fabricated chip and the layout of one channel with major
building blocks highlighted.

A couple of bench tests were conducted to verify the functions and evaluate
the performance of the designed module. The experimental results are presented
as follows. The DAC was measured with a worst INL and DNL less than 1 LSB.
The ENOB is 5.6 bit. The average power consumption of the module is 4 �W with
a supply voltage of 1 V. The clock frequency is set to be 100 kHz, which gives a
maximum latency of 10 �s.

Synthetic neural signals with different SNRs were generated using an arbitrary
function generator 33521A from Agilent to test the action potential detector. The
original signal was recorded by a custom designed recorder from an anesthetized rat
in the whisker motor cortex. A 2-min recording segment was used for testing. The
first 10-s signal is shown in Fig. 3.25 for illustration. Figure 3.25a shows the original
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Fig. 3.24 The microphotograph and layout of the designed action potential discrimination module

signal recorded from the whisker motor cortex in an anesthetized rat. The sampling
rate was 21 kSps. The recorded data has an SNR of 25.7 dB. The real action
potentials are observed by experts and are marked by red triangles in the figure.
Figure 3.25b and c shows the recorded signal with intentionally added white noise
and artifacts resulting in a SNR of 20 dB and 15 dB, respectively. The artifacts are
designed to mimic the motion and chewing effects, which commonly occur during
the neural recording in freely behaving animals. There are N real action potentials
in the recording, where N = 117 in this case. The true positive TP is defined as the
correct recognitions. The false negative FN is defined as the wrong recognitions.
The false positive FP is the missed action potentials. The evaluated performance of
the designed module is listed in Table 3.1. The ratio was calculated over the total
number of TP + FN + FP. The performance of the two-window discrimination is also
compared with the detection using only one threshold.

The experimental results suggest that with a good SNR, both a simple thresh-
olding and the window discrimination give excellent detection results. The simple
thresholding method gives a slightly better result than the window discrimination,
mainly because several action potentials fail to pass the second window due to
distortion. The performance of the simple thresholding method drops significantly
after adding artifacts. With an increased noise level, it is difficult to set the threshold
voltage, and the window discrimination clearly rejects more false detections than
the simple thresholding method. But the window discrimination also makes more
mistakes in the higher noise environment. Some artifacts are mistaken as the real
action potentials when the noises pass the second window.

A cluster analysis was performed in the microcontroller to study the real–
time action potential classification. The algorithm was programmed in the C
language. In this experiment, two neurons were captured simultaneously on the
same recording electrode. The normalized maximum and minimum amplitudes in an
action potential waveform were calculated and used as the features for the clustering
analysis. The K-means clustering was used to separate the two neurons. Figure 3.26a
illustrates the analysis result in the feature domain, which clearly shows the two



3.3 Action Potential Discrimination 91

Fig. 3.25 The action potential signal used for testing the designed module. The real action
potentials are marked by triangle markers. (a) The original signal with an SNR of 25.7 dB. (b) and
(c) are synthesized testing signal with added white noise and artifacts, the SNR is 20 dB and 15 dB,
respectively

clusters well separated. The action potentials are replotted with color coding based
on the classification results, as shown Fig. 3.26b.

In this section, the design of a real–time current-mode action potential dis-
crimination unit is presented. The design features low power consumption, robust
detection, and small silicon area, which is suitable for an integration into a high
channel count neural recording front-end or a closed-loop BMI system. A K-means
classification was implemented in the microcontroller. The experimental results
show that the system is capable of identifying multiple neurons from a single
electrode in real–time.
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Table 3.1 The measured AP
detection accuracies from
signal with different SNR

SNR Algorithm TP FN FP
25 dB Win Discrim 95.8% 4.2% 0%

Threshold 97.4% 2.6% 0%
20 dB Win Discrim 93.2% 6.8% 0%

Threshold 77.6% 2.0% 20.4%
15 dB Win Discrim 83.8% 6.2% 10.0%

Threshold 50.5% 8.0% 41.5%

Fig. 3.26 A cluster analysis
of the action potentials from
two neurons. (a) Normalized
maximum and minimum
amplitudes are calculated and
used as two features for the
analysis. (b) The action
potentials are labeled with
different colors according to
the classification results

3.4 Matched Filter for Neural Feature Extraction

3.4.1 Introduction

A matched filter is the optimal linear filter for maximizing the signal-to-noise ratio
in presence of additive stochastic noise [218]. The matched filtering is performed
by correlating a known template with the unknown input signal to detect the
presence of the desired signal [219]. Matched filters are commonly used in wireless
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communications [220], radar and sonar [221], gravitational-wave astronomy [222],
medical applications [223], and so on.

A number of studies propose to implement matched filters for action potential
detection [224–226]. In addition, the matched filter can be applied to detect phase-
amplitude coupled low-frequency neural rhythm [227]. For example, the cortical
� rhythm is an event-related desynchronization commonly used for BMI control.
However, the � rhythm’s typical frequency band is 8–12 Hz, which overlaps with
the virtual ˛ rhythm (Sect. 3.2). Thus, an energy based feature extraction method
often has difficulties in discriminating them. In this case, matched filters have the
advantage in accurately modeling the phase-coupled rhythm.

Moreover, the performance of the matched filters can be optimized by pre-
whitening the signal. This process can be achieved by implementing the pre-
whitening filter proposed in Chap. 2. By combining the phase correction filter
and matched filter, an energy efficient hardware implementation can be achieved.
By programming the coefficients of the filter, it can be used in a wide range of
applications, and is very suitable for an integration on a neural interface.

This section presents the analysis, design, and testing of a matched filter with
pre-whitening for neural signal extraction. In the end of the section, a compressive
domain matched filter is explored to further reduce the requested computation and
hardware cost.

3.4.2 Matched Filter and Pre-whitening for Optimum
Correlation Detection

The process of the matched filter is illustrated in Fig. 3.27. The input x.t/ consists
of the signal s.t/ corrupted by a white noise w.t/, which can be expressed as:

x.t/ D s.t/ C w.t/ (3.28)

where w.t/ has a zero mean and power spectral density of No=2. If the filter is linear,
the output is:

y.t/ D so.t/ C wo.t/ (3.29)

Fig. 3.27 The block diagram
of the matched filter
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The signal to noise ratio (SNR) is defined as:

SNR D
jso.T/j2

w2
o.t/

(3.30)

Assume the noise spectral density is N0=2, and the transfer function is H.f /,
Eq. (3.30) can be written as [228]:

SNR D

ˇ̌̌
ˇ
Z 1

�1

H.f /S.f /ej2� ftd df

ˇ̌̌
ˇ
2

N0

2

Z 1

1

jH.f /j2df
(3.31)

To find the maximum SNR, use the conclusion of Schwarz inequality [229]:

ˇ̌̌
ˇ
Z 1

�1

f1.x/f2.x/dx

ˇ̌̌
ˇ
2

�

Z 1

�1

jf1.x/j2df
Z 1

�1

jf2.x/j2dx (3.32)

only if

f1.x/ D kf �
2 .x/ (3.33)

Now set

f1.x/ D H.f / and f2.x/ D S.f /ej2� ftd (3.34)

So Eq. (3.32) can be rewritten as:

ˇ̌̌
ˇ
Z 1
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jH.f /j2df
Z 1

�1

jS.f /j2df (3.35)

And Eq. (3.31) can be rewritten as:

SNR D

ˇ̌̌
ˇ
Z 1

�1

H.f /S.f /ej2� ftd df
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ˇ
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jH.f /j2df
D

2

N0

Z 1

�1

jS.f /j2df

(3.36)

Thus the maximum SNR can be found using Eq. (3.36), when:

H.f / D kS�.f / (3.37)
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Fig. 3.28 The block diagram of the matched filter in combination with the pre-whitening filter for
the correlation optimization

In the time domain,

h.t/ D ks�.td � t/ (3.38)

where k is an arbitrary constant. The matched filter h.t/ is just a time-reversed
version of the signal with a gain factor.

The above analysis assumes that the noise has a white spectral density. However,
the neural signal and electronics noise both have a frequency-dependent spectral
density, as analyzed in Chap. 2. But if the noise and the background signal can
be pre-whitened, the correlation detection can still be optimized by the matched
filtering [230]. The process is illustrated in Fig. 3.28.

The generation of a rigorous pre-whitening filter requires a prior knowledge of
the noise spectrum. However, this is usually not feasible in a real–time system. The
pre-whitening filter proposed in Chap. 2 is a low-cost hardware solution to generate
a pseudo pre-whitening filter to improve the performance of the matched filter. The
following analysis and testing results verify the hypothesis.

3.4.3 Methodologies

3.4.3.1 Dataset

The dataset used in this study is a 5-min neural recording from an anesthetized rat.
The sampling rate was 24.41 kHz and was down-sampled to 2441 Hz before the
following processing. Figure 3.29a shows a 5-s recording segment from five dif-
ferent channels. Lots of 1-Hz oscillations (typically called an “up-down” state)
can be observed in the recording. The frequency analysis in Fig. 3.29b shows the
oscillation has an energy peak at 1 Hz. The oscillation also has a strong amplitude-
phase coupling [231], as shown in Fig. 3.29c.

A cycle-triggered average analysis was applied to find out these 1-Hz oscilla-
tions: (1) a total of 310 segments were detected in the recording, which were used
as the data bank in the following study; (2) these segments were all aligned on the
“down-state” peaks; (3) the average of these segments was used as the target neural
feature waveform, and is referred to as template in the following study. Figure 3.30a
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Fig. 3.29 (a) A 5-s recording segment from an anesthetized rat. (b) The power spectrum density
of the recording. (c) The phase-amplitude coupling analysis of the signal

shows the neural feature waveform (template). Clearly, the waveform has more time
in the “up-state” than the “down-state,” so it is not a single frequency sinusoid wave.
Figure 3.30b shows the frequency analysis of the template. The dominant frequency
components are from 0.6 to 1.5 Hz.

3.4.3.2 Bandpass Filter

Bandpass filters are used for comparing the detection performance with the pro-
posed matched filter. Several bandpass filters have been implemented, including
Butterworth filters, Chebyshev filters, Biquad filters, and different types of FIR
filters. Figure 3.31 shows a comparison of these filters’ frequency responses.
The hardware cost for a FIR filter to achieve such a narrow frequency band is
significantly higher than the IIR filters, especially when the sampling rate is high.
A second order Butterworth filter is used as the bandpass filter in the following
study for the comparison purpose. It can be implemented in either analog or digital
circuits. The cut-off frequencies were chosen to be 0.6 and 1.5 Hz.
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Fig. 3.30 (a) The neural feature waveform (template). The waveform has more time in the “up-
state” than the “down-state,” so it is not a single frequency sinusoid wave. (b) The frequency
analysis of the neural feature template

Fig. 3.31 A comparison of
different filters’ frequency
responses. These filters are
used in this work for
extracting the slow oscillation

3.4.3.3 Matched Filter with Pre-whitening

As derived in Eq. (3.38), the matched filtering was performed by the convolution of
the signal and the time reversed version of the template:

y.t/ D x.t/ � hm.t/ (3.39)

where x.t/ is the input signal, hm.t/ is the matched filter, and y.t/ is the output signal.
The pre-whitening filtering was implemented by a first order highpass filter, with a
corner frequency of 100 Hz. This mimics the actual hardware circuit implementation
of the pre-whitening filter proposed in Chap. 2. The template was also pre-whitened
by the same filter to compensate the phase distortion.
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y.t/ D .x.t/ � hw.t// � .hm.t/ � hw.t// (3.40)

where hw.t/ is the pre-whitening filter. It should be noticed that the hm.t/�hw.t/ can
be pre-computed to save the online computation cost.

After the filtering, the output signal was squared to find the energy. A moving
average filter with a window size of 1-s is applied to find out the envelope, and a
threshold is used to detect the event (onsite of the oscillation).

3.4.4 Experimental Results

3.4.4.1 Detection of Synthesized Signal

This section presents the testing performance in detecting synthesized signal with
different SNR. Take the 2-s template signal (noiseless) s.t/ and add random
generated pink noise n.t/ as the test signal x.t/ D s.t/Cn.t/. Since the signal power
is known, the SNR can be controlled by changing the energy of the pink noise.

SNR D
PSignal

PNoise
(3.41)

Figure 3.32 shows an example set of 16 synthesized testing signals with SNR
ranging from 0.2 to 6. Each of the 2-s synthesized signals was superimposed on a
100-s pink noise signal. Different filters were applied to the 100-s data for detecting
the target oscillation. The detection accuracy is defined as:

Accuracy D
TP

TP C FN C FP
(3.42)

Fig. 3.32 Examples of the
synthesized test signals with
SNR ranging from 0.2 to 6.
The last one is the template
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Fig. 3.33 Different filters’
accuracies in detecting
signals with different SNR
(0.2–7 in a step of 0.2). The
accuracy calculated for each
SNR step was an average of
100 trials with random pink
noise. A total of 3500 trials
were tested for each filter in
this experiment

Fig. 3.34 Examples of the
randomly selected real neural
signal segment from the data
bank. The last one is the
template

where the true positive TP is for the correct detection, the truth negative FN is for
the wrong detection, the false positive FP is for the missed ones.

Testing signals with SNR ranging from 0.2 to 7 with a step of 0.2 were generated.
100 trials were generated for each SNR step with random pink noise. So a total of
3500 trials of 100-s testing signals were used for evaluating the performance of each
filter. Figure 3.33 shows the testing results. The result shows that the matched filter
has a better accuracy than the bandpass filter for detecting this neural feature. And
the pre-whitening filter further improves the detection accuracy of the matched filter.
The experimental results verify the hypothesis.

3.4.4.2 Detection of Recorded Neural Signal

This section evaluates the detection accuracy of the real neural signals from the
data bank. 100 real neural signal segments were randomly selected from the data
bank. Figure 3.34 shows 15 examples of the segments together with the template.
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Fig. 3.35 Accuracies of different filters in detecting 100 signal segments from randomly generated
pink noise. A total of 10,000 trials were tested for each filter in this experiment. The detection
result shows that the pre-whitening filter improves the matched filter’s performance, especially in
low SNR cases

100 segments of pink noise were generated, and the 100 neural signal segments were
superimposed on these pink noise segments. So a total of 10,000 testing signals
were synthesized. The SNR for each trial was calculated. The detection results
using bandpass filter, matched filter, and matched filter with pre-whitening are
plotted in Fig. 3.35. The detection result shows that the pre-whitening filter improves
the matched filter’s performance, especially in the low SNR cases. The average
detection accuracy is lower than the first experiment, which is mainly due to
the existence of more than one oscillation in a 2-s data segment (only one true
oscillation is assumed in each trial). This experiment verifies the hypothesis that
matched filter with pre-whitening can achieve superior performance in detecting
phase-amplitude coupled neural feature.

3.4.4.3 Compressive Domain Matched Filtering

One drawback of FIR filter and matched filter is the large coefficients and the
required computation. However, most neural feature has slow oscillation period
which potentially can be used to reduce the computation. This section shows the
detection results by applying matched filter in the compressive domain. The exper-
iment setup is the same as in previous sections. The template used for the matched
filter is randomly sampled to create a sparse coefficient vector, and the incoming
signal is sampled in the same way.

y00.t/ D ..x.t/ � hw.t// � V/ � ..hm.t/ � hw.t// � V/ (3.43)
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where V is a sparse vector contains only 0 and 1. The number of ones over the total
length of the vector is the compression ratio. .hm.t/�hw.t//�V can be pre-computed
to save the computational cost.

The experimental results are shown in Fig. 3.36. The detection accuracies of
different filters with SNR ranging from 0.2 to 3 in a step of 0.4 are compared. The
results show that the matched filter with pre-whitening has the best performance,
while the conventional bandpass filter is the worst. Applying compressive matched
filter doesn’t compromise the detection accuracy up to a compression ratio of
16�. However, even with a compression ratio of 64�, the matched filter with pre-
whitening still has a better detection accuracy than the matched filters without
pre-whitening. Finally, the 64� compressive matched filter with pre-whitening
achieves a detection accuracy over 90% given an SNR of 3 dB, and over 98% given
an SNR of 6 dB. It should be noticed that all of the pre-whitening used in these
experiments is simply a highpass filtering as proposed in Chap. 2, which can be
easily implemented in hardware.

In summary, this section presents the design and testing of the matched filter
for neural feature extraction. A pre-whitening filter is used to further improve the
detection accuracy. In addition, compressive matched filter is introduced to reduce
the computational cost. The experiment was based on a dataset of a recording in
an anesthetized rat. A 1-Hz up-down state oscillation was used as the target neural
feature. The experimental results suggest that: (1) The performance of the matched
filter is better than the conventional bandpass filters in detecting this kind of features;
(2) The pre-whitening processing further improves the performance of the matched

Fig. 3.36 Comparison of different filters’ detection accuracies. The experimental results show
that the matched filter with pre-whitening has the best performance. The compressive matched
filter with pre-whitening and a compression ratio of 64� still has a better performance than the
matched filter without pre-whitening
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filter in correlation detection, especially in low SNR cases; (3) A compression of
coefficients up to 64� can be applied to the matched filter without sacrificing too
much accuracy. In conclusion, the matched filter with pre-whitening is a powerful
and promising tool for extracting amplitude-phase coupled neural features. It can be
used for a wide range of applications, and is especially useful for the integration in
a real–time closed-loop BMI system.



Chapter 4
Neural Stimulator Design

4.1 Introduction

The electrical stimulation of excitable neurons is one of the most prevalent functions
performed in implantable biomedical devices [232]. The first electrical brain
stimulation was pioneered by researchers Luigi Rolando and Pierre Flourens in the
early nineteenth-century [233], and the development of the medical stimulator began
with the early pacemaker design in the 1930s [234]. The development of electronics
engineering, especially integrated circuit technology, enables the design of accurate,
reliable, and miniature stimulators for neuroscience research and clinical treatment.
Nowadays, electrical stimulators have been widely used for deep brain stimulation
(DBS), functional electrical stimulation (FES), spinal cord stimulation (SCS), visual
and auditory neural stimulation, brain–machine interface (BMI), neuroprosthetics,
and clinical therapeutic treatments [232, 235].

The clinical adoption of the electrical stimulation requires the neural stimulator
device to be designed with a high-level of safety, reliability, and programmability, as
well as a minimum-level of power consumption and heat dissipation. In addition, a
sufficient channel-count and bandwidth, a flexible configuration, a device dimension
suitable for an implant, and a wireless communication capability are all essential
features. Lots of circuit techniques have been developed to address the challenges
in the electrical neural stimulator development.

This chapter presents the analysis and design of high efficiency electrical neural
stimulators. The design of a general–purpose neural stimulator is first reviewed
and described, and a novel stimulation strategy is proposed to address a practical
problem from the electrode–electrolyte interface. The chapter is organized as
follows. Section 4.1 introduces the background of neural stimulation and the
physicochemical properties of the electrode–electrolyte interface. Section 4.2 gives
an overview of the electrical stimulator design. The key design requirements are
summarized, and previous state-of-the-art techniques are reviewed. Section 4.3
presents a general–purpose programmable neural stimulator design. Section 4.4
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describes the novel net-zero charge neural stimulator design. The circuit implemen-
tation and the experimental results are presented. All experimental procedures used
in the studies presented in this chapter were approved by the institutional animal
care and use committee (IACUC) of the University of Pennsylvania.

4.1.1 Background of Neurostimulation

Neurostimulation is a method for modulating the nervous system’s activity using
non-invasive or invasive means [236]. The controlled electrical, magnetic [237,
238], chemical [239, 240], or optical stimulation (optogenetic modulation [241,
242]) of central or peripheral nervous systems is usually referred to as neuromod-
ulation in the medical literature [243]. The focus of this work is on the electrical
stimulation.

The mechanism of electrical neural stimulation is a consequence of the depo-
larization and hyper-polarization of excitable cell membranes from the applied
electrical currents. However, other mechanisms including thermal and neurohu-
moral effects may also involve with the process. The neuron membrane acts as a
capacitor by separating the charges lying along its interior and exterior surfaces.
The membrane conductance depends on the densities and types of the ion channels.
The channels are highly selective, allowing only a single type of ion to pass, while
maintaining a concentration difference of ions inside and outside of the neuron.
When the membrane potential of a neuron reaches a certain threshold, it will
typically fire an action potential. The relation of ion current and neuron potential
is accurately described in the Hodgkin-Huxley model (HHM), proposed by A.L.
Hodgkin and A.F. Huxley in 1952 [207].

4.1.2 Electrode and Electrolyte Interface

The essential process during an electrical stimulation includes the charge transfer
and redistribution across the electrode and electrolyte interface. It should be noticed
that in the electrode and the electrical circuits, the charges are carried by the
electrons while in the physiological medium, the charges are carried by the ions,
mainly including sodium, potassium, and chloride. Figure 4.1a illustrates the two
primary mechanisms [244]:

• Faradaic charge transfer, or non-polarizable mechanism, where electrons
transferred between the electrode and electrolyte interface cause reduction and
oxidation reactions. It should be noticed that the Faradaic reaction may be
reversible or irreversible.



4.2 Overview of Electrical Stimulator Design 105

Fig. 4.1 Illustration of the electrode and electrolyte interface. (a) The physical representation, and
(b) a simplified electrical circuit model

• Non-Faradaic charge redistribution, or polarizable mechanism, where a dou-
ble layer capacitor Cdl is formed on the surface of the electrode, and the
stimulation process involves charging and discharging the Cdl without direct
electrons transfer [244, 245].

Modeling the electrode impedance accurately, however, is a rather complicated task
[246]. A simplified linear model, modified from [244], is adopted in the analysis of
this work. The model has been widely used in neural interface studies, and proves to
be effective in estimating the electrode characteristics during neural recording and
stimulation [78, 247, 248].

To verify the model, the impedance of two types of low-cost tungsten electrodes
commonly used in this research was measured. Ten electrodes of each type were
measured in 0.9 g/100 mil Sodium Chloride. The measurement results are shown in
Fig. 4.2. The simplified linear model is used to fit the measurement results. The
electrode with a diameter of 75 �m has an average Cdl of 55 nF, RF of 7 M�,
and a spreading resistance of 12k�. The electrode with a diameter of 50 �m has
an average Cdl of 18 nF, RF of 19 M�, and a spreading resistance of 20 k�. In
general, the electrode with the smaller contact area gives a higher impedance. This
measurement result gives a good insight of the electrode characteristics, and is used
in the following studies.

4.2 Overview of Electrical Stimulator Design

A lot of electrical simulation techniques have been developed to produce the
charges needed to recruit a neural response. An ideal stimulator triggers the desired
neural response with minimum injected charges, and leaves no residue charge.
However, the ideal stimulation effect is not always achievable. When it comes to
the electronics design, the safety, the power efficiency, and the circuit function and
performance all need to be taken into consideration. The design trade-off becomes
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Fig. 4.2 The measured impedances of two types of custom-made tungsten electrodes. (a) and
(b) shows the electrode with a diameter of 75 �m and 50 �m, respectively. Each figure shows an
overlay of the measurements of ten electrodes in gray, and a fitting curve in red. The parameters
of the fitting models are given

Fig. 4.3 The design
considerations and trade-offs
of an electrical neural
stimulator. Safety,
performance, and efficiency
are the three main
considerations

more difficult for an implantable device which requires a high channel-count, a
minimum chip area, and a low power density. Figure 4.3 highlights the trade-offs
in the neural stimulator design.

Firstly, a stimulator design should take the safety as the top priority. A safe long-
term stimulation requires the stimulator to give a charge balanced stimulation with
minimum direct current injection. Prior studies show that a direct current leakage of
100 nA will cause permanent damage to the tissue [112]. Secondly, the performance
requirements of the stimulator mainly include the channel-count, the occupied
silicon area, the programmability of the stimulation parameters, the stimulation
current driving ability, and so on. The third consideration is the efficiency of the
stimulator. The overall efficiency should consider both the power efficiency of the
stimulator for generating the stimuli, and the efficiency of the generated stimuli in
triggering the desired neural response. However, the latter is usually much more
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difficult to be quantized. Among all methods for generating the stimuli, voltage,
current and charge regulation all have been reported with pros and cons. Besides,
different electrode types, stimulation waveforms and parameters will all result in
different efficiencies.

In summary, a very high power efficiency neural stimulator design may not give
the best charge-balancing performance, a sophisticated charge matching technique
may not be suitable for a high channel-count integration, while a high channel-
count design may not allow all parameters to be programmable. An aggressive
optimization on one dimension might cause drawbacks in the other two dimensions,
and eventually, makes the overall system design non-practical. There is no best
universal stimulator design, but only good designs for certain applications.

4.2.1 Methods of Stimuli Generation

In general, the neural stimuli is generated from the electronics by regulating
the voltage, the current, or the total amount of charges. Essentially, the charges
disturb the membrane equilibrium and evoke the neural response [244]. However,
different generating methods give different control levels of the charges. Of course,
a high controllability usually comes with a cost in circuit complexity and power
consumption. The pros and cons of each method are summarized as below.

4.2.1.1 Voltage-Regulated Stimulation

In a voltage-regulated stimulation, a certain stimulus voltage is applied between two
electrodes (or between one electrode and the common tissue ground). Current passes
through the electrodes depending on the tissue and electrode impedance. Since the
circuitry has no control over the total amount of injected charges, it is difficult to
achieve a charge-balanced stimulation. For clinical use, the physicians will assign a
proper stimulating voltage to achieve the desired neurophysiologic response in the
safe range.

A voltage-regulated stimulator usually gives a high overall efficiency with
simple circuitry. However, it is usually poor in the controllability in the charge
injection and thus lacking safety. It has been used in applications requiring high-
density integration like retinal implants, and power hungry clinical uses including
pacemaker and deep brain stimulator. The circuit implementation of the voltage-
regulated stimulation, and techniques for improving its safety have been reported in
literature [30, 249, 250].
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4.2.1.2 Current-Regulated Stimulation

In a current-regulated stimulation, a certain stimulus current is passed between
two electrodes (or between one electrode and the common tissue ground). The
compliance voltage between the two electrodes depends on the tissue and the
electrode impedance, and is limited by the system supply voltage and the circuit
topology. The total amount of injected charges can be controlled by the stimulus
current and the stimulating time, and a charge balanced stimulation can be well
achieved. Monophasic current stimulation [34] and biphasic current stimulation
[38, 251, 252] have been reported in literature.

The current-regulated stimulation is the most widely used method in electrical
stimulator designs, given its high controllability of charge injection and the high
safety. However, current-regulated stimulators usually have poor efficiency. The
circuit implementation of the current-regulated stimulators, and techniques for
improving its efficiency have been reported in literature [34, 38, 57, 251–253].

4.2.1.3 Charges-Regulated Stimulation

In a charges-regulated stimulation, a capacitor tank is connected to one electrode
and discharged to a reference electrode. The discharging current is used to excite the
tissue. The circuit implementation of charges-regulated stimulator has been reported
in literature [254, 255].

The charges-regulated stimulation potentially can achieve a high power effi-
ciency as well as a good controllability of the total amount of injected charges.
However, the discharge time constant is not well controlled depending on the load
impedance, and the implementation of storage capacitors takes a large silicon area
or has to be implemented off-chip.

4.2.2 Stimulation Waveform and Electrode Configuration

Various stimulation waveforms have been proposed and used in both research and
clinical treatment. Among them, the biphasic stimulation is the most commonly
used method. A typical biphasic stimulation mainly consists of a cathodic phase and
an anodic phase. The cathodic phase elicits the desired physiological effect such as
initiation of an action potential, and the anodic phase reverses the electrochemical
processes occurring during the cathodic phase to minimize the damage. A cathodic-
first order is usually preferred because the electrons move in the opposite direction
of the current. Thus pulling a cathodic current is, in fact, pushing the electrons into
the tissue.

A typical stimulation waveform is shown in Fig. 4.4, with key parameters labeled.
A constant current-regulated method is used here for illustration, but all other
methods share similar parameters. IS and IR are the amplitudes for the stimulation
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Fig. 4.4 Illustration of a typical biphasic stimulation waveform with the parameters marked. IS:
stimulation current, IR: reversal current, TS: stimulation phase time, TR: reversal phase time, TD:
discharging phase time, TP: phase interval, TI : pulse interval, TL: pulse group interval

Fig. 4.5 Illustration of (a) monopolar and (b) bipolar stimulation methods. A voltage-regulated
stimulation is used for illustration, but a current-regulated stimulation can be applied in the
same way

and the reversal phase, respectively. If the same amplitude is used for both phases,
it is referred to as a symmetrical biphasic stimulation. In some cases, a lower
amplitude and longer time are preferred in the reversal phase to reduce the damage
to the tissue, resulting in an asymmetrical stimulation. Both symmetrical [251, 252]
and asymmetrical [38] biphasic current-regulated stimulation have been reported.
TS and TR are the times for the stimulation and reversal phase, respectively. TP is
the interphasic delay between the stimulation and reversal phases. The interphasic
delay is intentionally added for achieving a better stimulation effect. A discharging
phase TD usually follows the reversal phase to remove the residue charges. In some
cases, the anodic phase is replaced by the discharging phase. In addition, TI is the
pulse interval, and TL is the interval between the pulse groups. The terminologies
are used consistently in the following study.

It should be noticed that monophasic/biphasic stimulation can be confused
with monopolar/bipolar stimulation. However, they are different terminologies and
are not directly related. In a monopolar stimulation, both cathodic and anodic
phases are generated from a single electrode. In a bipolar stimulation, the cathodic
and anodic phases are generated from a pair of electrodes. Both monopolar and
bipolar configurations can be used to perform monophasic and biphasic stimulation.
Figure 4.5 illustrates the typical electrode waveforms of the two configurations in
generating a biphasic stimulation.
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The monopolar stimulation is widely used in a high-density electrode array, in
which case it delivers stimulus with respect to a common reference electrode with
low impedance. Bipolar stimulation has a better-guided stimulus orientation than
the monopolar stimulation, at the cost of a more complicated channel selection.
The bipolar stimulation also favors a single-supply system design since it doubles
the equivalent compliance voltage range [253]. Ideally, both monopolar and bipolar
configurations can achieve a charge-balanced stimulation.

It should be noticed that even though we have been discussing rectangular
stimulation waveforms, non-rectangular waveforms have also been proposed in
literature [255–257]. Using a non-rectangular waveform, like exponential current
stimuli, may achieve a better stimulation effect or a better power efficiency. Of
course, these designs usually come with a cost of the circuit and control complexity.
More importantly, it may cause difficulties in achieving a charge balance, which will
be discussed in the following section.

4.2.3 Methods for Charge Balancing

The importance of charge balancing cannot be overemphasized. The building-up of
the excess charges, even slowly, might cause toxic effects and lead to a permanent
damage. One of the most commonly used traditional methods is to place a blocking
capacitor in series with the stimulating electrode. The blocking capacitor limits
the total charges, preventing a direct current injection. However, the capacitor
cannot be too small, otherwise it will limit the output compliance voltage. For a
typical functional electrical stimulation, these capacitors are in the order of tens of
nanofarads to a few microfarads [256, 258–260]. The physical dimension of these
capacitors is usually prohibitively big to be integrated on a silicon chip, especially
in a high channel-count design. Various techniques have been developed to achieve
the charge balance with and without the blocking capacitors. This section reviews
the pros and cons of these techniques.

4.2.3.1 Matching and Calibration

Ideally, a charge balance can be achieved if the amount of charges of the stimulation
and the reversal phases are the same. In a typical current-regulated stimulation, the
amount of charges depends on the stimulation current amplitude and pulse width.
The mismatch between the anodic and cathodic currents without calibration can be
2% even with careful matching in the layout [261]. This current mismatch might
lead to a significant charge error in a heavy-duty stimulation. For that reason,
a lot of research has been conducted with a focus on matching the stimulation
and reversal currents, in order to achieve the net-zero change. Several important
matching techniques are reviewed as follows.
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J. Sit et al. from Massachusetts Institute of Technology proposed blocking
capacitor free change-balanced stimulator design in 2007 [248]. The design used
a dynamic current balancing method to achieve a current balancing. The work paid
a special attention to the switch leakage and the loop stability in the dynamic current
mirror. The reported DC current error was 6 nA.

K. Song et al. from Korea Advanced Institute of Science and Technology
proposed a DC-balanced adaptive stimulator in 2012 [262]. The design proposed
a current source mismatch compensation method. A precise current balance was
achieved by sampling the mismatch current, and making a compensation accord-
ingly. The challenge in this work was the requirement of a large time-constant
sample and hold (S/H) circuit. The S/H circuit would need to hold the mismatch
current �I for up to 0.5 s without variation. The reported current mismatch was less
than 10 nA.

M. Monge et al. from California Institute of Technology proposed a high-density
self-calibration epiretinal prosthesis design in 2013 [263]. This work used a fully
digital calibration technique to match the biphasic currents during the stimulation.
A multi-point calibration scheme was proposed, which included a 5-point calibra-
tion process for each driving site. With the help of the full-range calibration, the
stimulation can perform arbitrary waveform stimulation. The reported mismatch
was 2.24%.

In summary, the matching technique can be implemented in either analog or
digital domains. In the analog domain, it requires a feedback or a large time-
constant storage unit. In the digital domain, it requires an on-chip memory to save
the mismatch parameter. The analog matching is attractive if only a single-point
matching is needed. If a full-scale calibration is desirable, the digital calibration is
more suitable.

4.2.3.2 Passive and Active Discharge

If the current matching is not sufficient in achieving the net-zero charge require-
ment, an additional discharge phase is used to remove the residue charges. The
discharge can be as simple as shorting the stimulation electrode to a common or
a reference electrode, which is referred to as passive discharging. However, the
disadvantage of passive discharging is that the discharge current depends on the
load and electrode impedance, which cannot be well controlled. If the impedance is
too low, the discharge current might be too large, which might damage the tissue.
Thus additional current limit circuit is required [252]. On the other hand, if the
impedance is too high, the time for discharging might be too long, and the residue
charges might not be able to clear before the next stimulus cycle. Residue charges
will accumulate in this case.

K. Sooksood et al. from the University of Ulm proposed an active charge balance
method in 2010 [264]. In the active approach, the residue charges or the electrode
potential is monitored by active circuits, and additional discharge circuits are used
to maintain the potential within a safe range in a closed-loop manner. One method
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to reduce the residue charges is by inserting short pulses after the reversal phase
[264, 265]. In addition, E. Noorsal et al. from the same group proposed to regulate
the residue charges by using DC biasing current [266]. In this work, a safe window is
defined approximately as 100 mV (for a Pt black electrode). The electrode potential
is compared with the safe windows right after the stimulation, and the biasing
current sources can be adjusted accordingly.

In summary, passive and active discharge and charge cancellation techniques can
be used to remove the residue charges after the stimulation. Passive discharging
is simple but has limited control of the discharging current and time. Active
discharging by continuously monitoring the residue charges can be more effective,
but takes dedicated circuit design and silicon area.

4.3 Design of a General–Purpose Stimulator

This section describes the design of a 16-channel general–purpose neural stimulator.
The motivation of this work is to design a fully programmable stimulator for various
applications. The stimulator can perform monopolar or bipolar, monophasic or
biphasic, symmetrical or asymmetrical constant-current, charge balanced stimula-
tion. All of the parameters for the stimulator are programmable. The output current
is from 0 to ˙255 �A in the low-current mode, and 0 to ˙2 mA in the high-current
mode. The design has been fabricated in IBM 180 nm technology, and occupies a
silicon area of 810 �m � 290 �m, excluding the IO pads. The system architecture,
circuit implementation, and experimental results are presented in this section. Some
of the figures and tables presented in this section were originally published in [57]
©IEEE. Reused, with permission.

4.3.1 Architecture of the Stimulator

The overall block diagram of the stimulator is shown in Fig. 4.6. The stimulator
includes an analog part designed in 1.8/5 V and a digital part designed in 1.8 V.
The stimulator integrates four independent driving sites. Each site includes: (1) a
DAC generating a reference for the output current; (2) a current driver consisting
of current sink and source output stages with high output impedance; (3) a 1:4
demultiplexer to support four channels and provide near-simultaneous stimulation;
and (4) level-shifters to interface the low-voltage digital control signal with high
voltage switches.

The analog part can be shut down when no stimulation is to be delivered to
save the power consumption. This is especially important for low-power design
since the stimulator output stage has high voltage and current. The digital part
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Fig. 4.6 The block diagram of the neural stimulator. The stimulator consists of an analog part and
a digital part. The stimulator integrates four independent driving sites, and each site demultiplexes
to four channels

can be configured via a custom designed two wire protocol. The parameters of the
timing generation module in each stimulator site can be programmed individually.
In addition to the regular mission modes, the stimulator can be configured to output
a continuous current in order to test the DAC and the output stage.

4.3.2 Circuit Implementation

The circuit schematic of one stimulator driving site is shown in Fig. 4.7. A 6-bit
current mode DAC is used to generate the reference for the stimulation current.
A typical binary weighted current source array is used in the DAC [267]. The
transistors are sized for a 6-bit accuracy [195]. Common-gate transistors are used to
improve the matching and increase the output impedance. The DAC is designed in
thin-oxide devices and powered at 1.8 V. A thick oxide transistor is cascaded in the
output current path to reduce the overdrive voltage stress from the following stage.
Thick oxide transistors also have a low leakage current which allows a complete
shutdown of the DAC.

The output stage is designed using thick-oxide devices with a supply voltage of
5 V. Regulating amplifiers are used to achieve a high output impedance. A PMOS
input folded-cascode amplifier is used in the current sink, and an NMOS input
folded-cascode amplifier is used in the current source. These amplifiers are disabled
when the stimulator is in the idle mode to reduce the power dissipation.

Level shifters are used to convert the low-voltage digital control signal to high
voltage switches. The circuit schematic of the level shifter is shown in Fig. 4.8. It
should be noticed that even some dynamic level shifter can achieve a high switching
frequency and a lower power consumption, the risk of undetermined state may cause
direct stimulation current leakage to the tissue, thus is not used in this design.

The command and parameter registers of the stimulator are listed in Table 4.1. An
8-byte register is used for saving the configuration. The definition of the parameters
has been introduced in Sect. 4.2.2 (Fig. 4.4). A header of 0x57 is used to verify the
start of the command in case of data loss or corruption.

To perform a monopolar stimulation, one electrode is activated at a time, and
the stimulation current is passed between the selected electrode and the ground
electrode. The timing of the monopolar stimulation and the corresponding control
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Fig. 4.7 The circuit schematic of the proposed multi-mode stimulator site. Each site consists
of: (1) a current-mode DAC which generates a reference for the output current, (2) a current
driver including current sink and source output stages with high output impedance, and (3) high
voltage switches with level-shifters. Each site demultiplexes to four channels, and provides near-
simultaneous stimulation

Fig. 4.8 The circuit
schematic of the level shifter

switches are shown in Fig. 4.9. The timing parameters are defined as in Fig. 4.4, and
the switching signals are defined as in the circuit schematic in Fig. 4.7. XXX means
the DAC can be any value, allowing the DAC to generate the reference value for
another channel.

To perform a bipolar stimulation, two electrodes selected from the 16 channels
are configured to work as the cathodic and anodic electrodes, and the stimulation
current is passed between them. The timing of the bipolar stimulation and the
corresponding control switches are shown in Fig. 4.10. The parameter definitions
are the same as in Fig. 4.9. It should be noticed that the electrode X and Y can be in
the same driving site or two different driving sites. The DAC # and DAC $ will be
the same DAC if X and Y are in the same site.
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Table 4.1 Stimulator command and parameter registers

CMD Addr. Description Value

Word 00 [0:1] Header 0x57

Word 00 [2:3] Active module position 0x00–0x11
Word 00 [4:5] Stimu mode 00—biphasic, monopolar

01—biphasic, bipolar

10—monophase
Word 00 [6] Stim. power 0—low (FS: ˙ 255 �A)

1—high (FS: ˙ 2047 �A)
Word 00 [7] Stim. on/off 0—stimulator OFF

1—stimulator ON

Word 01 [0:1] Stim. position 0x00–0x11

Word 01 [2:7] Stim. magnitude (IS) 0x01–0x3F

Word 02 [0:1] Counter position 0x00–0x11

Word 02 [2:7] Counter magnitude (IR) 0x01–0x3F

Word 03 [0:7] Stim. phase (TS) 1–256 �s

Word 04 [0:7] Reserval phase (TR) 1–256 �s

Word 05 [0:3] Phase interval (TP) 1–16 �s

Word 05 [4:7] Discharge phase (TD) 16–1024 �s

Word 06 [0:3] # of pulses 1–16

Word 06 [4:7] Pulse interval (TI) 640 �s–10 ms

Word 07 [0:7] Pulse group interval (TL) 8 ms–2 s

Fig. 4.9 The timing for generating a monopolar stimulation at the electrode X. The DAC # and
the electrode X locate in the same driving site (IS: stimulation current, IR: reversal current, TS:
stimulation phase time, TR: reversal phase time, TD: discharging phase time, TP: phase interval.
The DAC can be any value in the XXX state)

4.3.3 Measurement Results

The design has been fabricated in IBM 180 nm CMOS technology. The occupied
silicon area is 810 �m � 290�m. The microphotograph and the layout are shown in
Fig. 4.11. The major building blocks are highlighted in the figure.

Several bench tests have been conducted to verify the function and evaluate the
performance of the designed stimulator. Both static and dynamic performance are
important in a stimulator design. Figure 4.12 shows the measured output currents
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Fig. 4.10 The timing for
generating a bipolar
stimulation between the
electrode X and Y. The DAC
# and DAC $ are in the site
where the electrode X and Y
locates, respectively

Fig. 4.11 The microphotograph and the layout of the neural stimulator. The major building blocks
are highlighted in the layout

from the current sink and current source, with several digital input codes. The results
show a large compliance voltage range with a circuit overhead less than 264 mV,
corresponding to 5.28% of the supply voltage.

Figure 4.13 shows the measured output currents from the current source and
sink of the stimulator output stage. The non-linearity of the source and sink current
is 0.31% and 0.37%, respectively. The result shows a good matching between
the source and sink, which is 1.29% without calibration. No additional analog
calibration is used in this work, but a digital calibration in the digital code can be
implemented for a better matching. The discharging phase should always be used to
avoid charge accumulation in this case.
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Fig. 4.12 The measured stimulator output current versus output voltage

Fig. 4.13 The measured
output currents from the
current source and current
sink of the stimulator output
stage. The non-linearity of the
source and sink current is
0.31% and 0.37%,
respectively

The stimulation process was measured in 0.9 g/100 mil Sodium Chloride. The
measured simultaneous stimulation outputs from four independent channels are
shown in Fig. 4.14. Different pulse train interval times were intentionally used
for each channel, showing the ability for this chip to drive multiple-channel
simultaneous stimulation with different parameters.
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Fig. 4.14 The measured simultaneous stimulation output from four independent channels. The
boxed window shows the measurement of a single pulse in high resolution

4.4 An Energy Efficient Net-Zero Charge Neural Stimulator

4.4.1 Introduction

As discussed in Sect. 4.1.2, two primary mechanisms occur at the interface between
the electrode and the physiological medium during an electrical stimulation: the
direct Faradaic charge transfer and the capacitive charge redistribution [244]. The
Faradaic charge transfer usually involves reduction and oxidation processes, which
may create damaging chemical species and dissolve the electrodes. So it is critical
to avoid the onset of these reactions. A reversal phase is commonly used after the
stimulation phase to reverse the electrochemical processes. However, it is not always
possible to avoid the irreversible charge injection, resulting in a certain amount of
unrecoverable charges during the stimulation [244].

In order to achieve an overall net-zero charge, a lot of techniques have been devel-
oped, as reviewed in Sect. 4.2.3. However, previous works have been exclusively
focusing on matching the stimulation and reversal currents and charges, ignoring the
unrecoverable charge injection during the stimulating phase. This work proposes a
new stimulation strategy to achieve the net-zero charge by monitoring the residue
charges directly on an inserted capacitor. Using the proposed method, over-reversal
can be avoided. In addition, a perfect matching between the stimulation and reversal
currents is not required, and an arbitrary stimulation waveform can potentially be
performed without calibration.
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As reviewed in Sect. 4.2.1, voltage-regulated [268], charges-regulated [269],
and current-regulated [248, 262, 263] stimulation methods have been reported in
literature. In summary, the voltage-regulated stimulation method has the highest
efficiency, but it is difficult to control the amount of injected charges [251]. The
charge-regulated stimulation limits the total amount of charges by discharging a
capacitor tank, but the capacitors cost a large silicon area, and the discharging time
cannot be precisely controlled. The current-regulated stimulation has a high control-
lability of the charge injection, thus it is the most widely used method. However, the
traditional current-regulated method suffers from a low power efficiency [262]. In
this work, an adaptive driving voltage is designed with a feedback control scheme to
improve the power efficiency. The design also enables a constant low supply voltage
operation for all active circuits except the driving voltage.

The remaining of this section is organized as follows. Section 4.4.2 highlights
the innovations proposed in this work. Section 4.4.3 describes the system architec-
ture and the circuit implementation, with emphasis on the stimulator output stage
and the feed-forward compensation comparator design. Experimental results are
presented in Sect. 4.4.4. Some of the figures and tables presented in this section
were originally published in [253] ©IEEE. Reused, with permission.

4.4.2 Motivation and Innovation

4.4.2.1 Net-Zero Charges Stimulation

As discussed in Sect. 4.2.2, biphasic stimulation is the most commonly used
stimulation waveform. During a biphasic stimulation, a stimulation phase first elicits
the desired physiological effect (e.g., initiation of an action potential), and after
an optional interphase delay, a reversal phase is used to reverse electrochemical
processes [244]. The threshold current required to initiate the neural response
decreases with an increasing stimulation pulse width. The threshold and pulse width
relation, which can be experimentally quantified, is usually presented as a strength-
duration curve [270]. Although it is not a physiological requirement to design
the reversal current equals the simulation current, a same amplitude is commonly
adopted in the circuit design for an easier matching. Although high current matching
accuracies have been reported in literature [248, 262], these methods often ignore
the fact that inevitable charge diffusion. The process is illustrated in Fig. 4.15.
The traditional designs assume the ideal charge curve plotted in the dashed line,
but the practical charge curve deviates from the ideal curve due to the irreversible
reaction and the chemical products diffusion. So if taking the irreversible reaction
and the chemical products diffusion into account, even perfect matched cathodic
and anodic currents will still leave residual charges. These residual charges will
accumulate in a simulation pulse train, resulting in a more serious damage if a
discharge procedure is not properly assigned. This work addresses this problem by
monitoring the residue charges on an inserted blocking capacitor. The reversal phase
terminates when a net-zero charge point is reached, as illustrated in Fig. 4.15b. In
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Fig. 4.15 (a) The traditional charge-balancing method matches the stimulation and reversal
currents. The ideal charge curve on the electrode is plotted in a dashed line. The practical charge
curve deviates from the ideal curve due to the irreversible reaction and the chemical products
diffusion. (b) This work terminates the reversal phase based on the monitoring the net-zero charge
crossing point. �1: stimulating phase, �2: interval phase, �3: reversal phase, �4: discharge phase

Fig. 4.16 The model for simulating the effects of non-ideal charge diffusion

this way, the systematic over-reversal in traditional methods can be avoided, and a
perfect matching between the stimulation and reversal currents is no longer required.

To further illustrate the effects, a simplified linear simulation model is established
using ideal components, including the current sources. A typical single-supply
bipolar stimulation configuration is used in this simulation [256, 271]. The circuit
schematic of the simulation model is shown in Fig. 4.16. A resistor RL is used
to mimic the impedance between the stimulation location and the tissue ground.
The electrode parameters measured in vitro (Fig. 4.2) are used in this simulation.
500 k�, 1 M�, and 5 M� resistors are used as RL. It should be noticed that
electrochemical reactions are involved in practice, thus the charge reduction is more
complicated and is not linearly depending on the electrical potential. Figure 4.17
shows the simulated voltage across the blocking capacitor CB. As RL decreases, the
over-reversal is increasingly notable. Figure 4.18 shows the same simulation setup
but in a pulse train without discharging. Even with the ideal current sources with
equal amplitude and pulse width, the charges still build up on the electrode quickly.
The residual charges may cause permanent damage to the tissue in a long term.
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Fig. 4.17 The simulation of
the voltage across the
blocking capacitor CB

(Fig. 4.16) during a
symmetrical single pulse.
Ideal current sources with
equal stimulation current
amplitude and time are used.
500 k�, 1 M�, and 5 M�

resistors are used to mimic
the impedance between the
stimulation location to the
tissue ground

Fig. 4.18 The simulation of the voltage across the blocking capacitor of a stimulation pulse train
without discharging. 500 k�, 1 M�, and 5 M� resistors are used to mimic the impedance between
the stimulation location to the tissue ground. The charges build up even using the ideal current
sources with equal amplitude and pulse width

It should be noticed that a blocking capacitor is commonly used to ensure the
safety by preventing a direct current injection as well as limiting the maximum net
charges. Thus this work doesn’t require a major extra configuration change from the
conventional stimulator designs.
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4.4.2.2 Adaptive Driving Voltage

In the simplified linear model, the compliance voltage for a charge balanced biphasic
stimulation can be expressed as:

VC D 2RSIS C
ISTS

Cdl
(4.1)

In conventional designs, the supply voltage of the stimulator needs to be higher
than the peak compliance voltage with headroom to avoid cut-off. However, the
uncertainty and the drifting of the electrode impedance makes it difficult to predict
the peak compliance voltage. So the supply voltage usually needs to be over-
designed to guarantee a sufficient compliance voltage. As a result, a lot of power is
wasted in the circuitry overhead instead of on the load tissue. The overall efficiency
of the system can be expressed as:

� D
Pload

Pload C Pcircuits
D

I2
stimZTissue

.Istim C Icircuits/Vsupply
(4.2)

In this work, an adaptive driving voltage instead of a constant high supply voltage
is used for improving the power efficiency. In contrast to the conventional output
stage designs which include both current sink and source, this design only uses
a current sink. The working electrode (WE) sinks the current, and the counter
electrode (CE) only needs to generate a potential difference with respect to the
WE [256, 271]. This operation is illustrated in Fig. 4.19a. As a result, all circuits
for the WE can be designed in a low supply voltage, while only the driving voltage
of the CE needs to be boosted. In the simplified linear model, the required counter
electrode voltage VCE can be expressed as:

VCE D VWE C 2
Istim�t

Cdl
C 2

Istim�t

Cbk
C IstimRtissue (4.3)

Fig. 4.19 Illustration of the adaptive driving voltage stimulation
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where Rtissue is unknown and varies from site to site. Assume the minimum voltage
for the current sink is Vsink, so the WE’s potential should always be higher than
Vsink. This gives an opportunity to design a feedback control scheme for the driving
voltage by monitoring the WE’s potential. A boosting converter for generating the
driving voltage can be designed with continuous tuning or with several discrete
output levels. When VWE is lower than a pre-defined threshold Vth (Vth > Vsink),
a 1-bit digital signal is generated to let the boosting converter’s output increase in
one step. The process can also be understood as a typical feedback control system,
as shown in Fig. 4.19b. It should be noticed that the system is always stable if the
boosting converter’s output is set to be the minimum value at the beginning, and
only changes in one direction (increasing).

4.4.2.3 Arbitrary Channel Configuration

In order to achieve the best stimulation performance, the ability to perform
stimulation in an arbitrary location and direction from the implanted electrode
array is very helpful. It can fully take advantage of the high-density electrode
array. However, conventional stimulator design with the current source and sink
matching technique can hardly realize an arbitrary channel configuration, since
the matching is usually designed to perform between pre-defined electrode pairs.
This is illustrated in Fig. 4.20a. With the proposed stimulation technique, a perfect
matching is no longer required. Thus an arbitrary channel configuration of the
working and counter electrodes is feasible, and more precision stimulation pattern
can be generated from a limited number of electrodes, as illustrated in Fig. 4.20b.

4.4.3 Circuit Implementation

4.4.3.1 System Architecture

The block diagram of the proposed stimulator system is shown in Fig. 4.21. The
system contains six driving sites. Each site can be configured as the working
electrode driver (WE mode) or the counter electrode driver (CE mode). The

Fig. 4.20 The channel configuration of (a) the traditional stimulation, and (b) the proposed work.
Arbitrary channel configuration is feasible in the proposed work without pre-calibration
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Fig. 4.21 The block diagram of the net-zero charge neural stimulation system. The system
consists of an analog core, a digital module, and off-chip power management units

stimulation and reversal currents are generated by reversing the current path between
the WE and CE. Each site contains a current sink and a 6-bit current mode DAC.
Two comparators with different specifications are integrated into the driving site.
The low-speed comparator is used to monitor the electrode voltage. The high-speed
comparator is used to detect the zero-net charge crossing point, and to terminate
the reversal phase. The functions of the digital module include: (1) output mode
selection, (2) output stage switch control, (3) DAC and comparator configuration,
(4) supply voltage adjusting request generation, and (5) feed-forward comparator
calibration.

The working flow of the proposed stimulation strategy is shown in Fig. 4.22.
After all stimulation parameters are received, the system first enables the selected
WE and CE driving sites, and the DACs of the corresponding output stages are
configured. The stimulation phase starts first, with a timer controls the stimulation
time. The low-speed comparator monitors the compliance voltage and generates
driving voltage adjustment signal accordingly. The stimulation phase terminates by
the timer, and then the interphase timer starts. After the interphase, the reversal
phase starts. The comparators are used to detect the net-zero charge point. The low-
speed comparator first performs a coarse detection, and it triggers a high-accuracy
high-speed comparator when the voltage gets close. The reversal phase stops by the
output of the high-speed comparator. After the reversal phase, an optional discharge
phase can be used to clear the capacitor and amplify the residue voltage across
the blocking capacitor. This phase is usually used in a training mode. If the residue
voltage is beyond the safe range, a calibration value is adjusted and stored in the
register.
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Fig. 4.22 The working flow chart of the proposed stimulation strategy

4.4.3.2 Output Stage with Dynamic Element Matching

An output stage with a high voltage compliance and a high output impedance is
critical for a neural stimulator. A transconductance amplifier (OTA) with series–
series feedback can make a current generator with a high output impedance, as
shown in Fig. 4.23a. The output current can be controlled by adjusting the reference
voltage or the tail resistor. The resistor can be implemented using a transistor
biased in the linear region [271], or a batch of transistors biased in the deep triode
region [256], as shown in Fig. 4.23b and c, respectively. A voltage mode DAC is
used to bias the transistor to control the output current. However, the threshold
voltage variation appears to be a problem. Matching is especially important when
the circuits are implemented for driving a micro-electrode array contains hundreds
of channels. In this work, a current-mode DAC with dynamic element matching is
used to address this problem.
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Fig. 4.23 Circuit schematic of (a) basic current generator, (b) output stage with voltage-controlled
transistor, modified from [271], (c) output stage with digital-set DAC, modified from [256]

Fig. 4.24 (a) The proposed output stage with current set current-mode DAC. (b) The OTA used
in the work

Figure 4.24 shows the simplified circuit of the proposed output stage. A 6-bit
binary weighted DAC is used to generate the output current. The transistor M1 is
one-bit of the DAC, a dummy cell M2 is set on the side of M1. Instead of using
digital signal or voltage-mode DAC to bias M1, the gate voltage of M1 is generated
by charging M2 using a reference current IC. Thus, the gate voltage of the M2 is
given by:

VC D

s
2ICL2

�CoxW2

(4.4)
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And the drain current of M1 can be calculated as:
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where Vref is the reference voltage set by the OTA, Vth1 and Vth2 are the threshold
voltages of M1 and M2, respectively. Thus the output current only depends on the
threshold difference in the local area, which is much smaller than the variation itself.
The output current of the DAC is:

Idac D Id0 C Id1 C Id2 C Id3 C Id4 C Id5

D
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2ndn.A
p

IC C B/
(4.6)

where dn’s are input digital codes, and A, B are constants controlled by design
parameters and by Vref. A 100-run Monte-Carlo simulation including both process
corners and mismatch of the different output structures are shown in Fig. 4.25. The
result shows that even with the worst variation, the proposed current-set dynamic
element matching method reduces the output variation significantly. It should be
noticed that the Monte-Carlo simulation doesn’t take the adjacent layout placement
into account, so the variation of the proposed method should be better in practice.

4.4.3.3 Feed-Forward Error Compensation Comparator

In the output stage, two comparators are connected to the blocking capacitor. A low-
power, low-speed op-amp based continuous time comparator (LS comparator), and
a high-speed high accuracy comparator (HS comparator). Both comparators have a
shut-down option for saving the power consumption.

The HS comparator is designed with a three-stage preamplifier and a dynamic
latch. The offset of the comparator originates from the imperfect symmetrical layout
and the variation during the fabrication. The CMOS latches implemented with small
devices have larger offsets compared to the pre-amplifiers. The output offset auto-
zeroing circuits are employed for the three-stage pre-amplifier to suppress the offsets
in this work. The sources of the comparator delay include the charging time of the
blocking capacitor, the converging of the pre-amplifier and the latch, as illustrated
in Fig. 4.26.
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Fig. 4.25 100 runs Monte-Carlo simulation of the different output stage architectures with
mismatch and process variation

Fig. 4.26 Analysis of the comparator delay for determining the zero-crossing point of the blocking
capacitor

The total time error for this comparator can be expressed as:

�total D �charging C �pre-amp C �latch (4.7)

where �charging is the time it takes for the differential input voltage to meet the
resolving voltage of the comparator, which depends on the stimulating current Istim

and the size of the blocking capacitor CB.
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Fig. 4.27 The circuit schematic of the comparator consisting of a three-stage pre-amplifier and
latch. The pre-amplifier has auto-zero calibration, and the latch has a 4-bit DAC for calibration

�charging D
.˙�VOS C Vres/CB

Istim
(4.8)

With a typical size of the blocking capacitor and a typical stimulation current,
the �charging will be in tens of nanoseconds to several microseconds, which might
dominate the total time error. This, unfortunately, causes a systematic delay, which
is highly undesirable.

In order to resolve this problem, a feed-forward error compensation mechanism
is introduced. The circuit schematic for the comparator is shown in Fig. 4.27. The
comparator consists of a three-stage preamplifier with output auto-zeroing, and a
dynamic latch with a 4-bit current DAC for calibration. Neural stimulation usually
consists of stimulation pulse trains with the same amplitude and pulse width but
varies in frequency (time interval between pulses). According to Eq. 4.8, the �charging

will be the same for a train of pulses. So the delay of the comparator can be learned
during the first few pulses and used to compensate the foregoing stimulation. Two
four-bit DACs are used to calibrate the dynamic latch. The error of the comparison is
learned from the residue charges after a stimulation pulse. In the first few stimulation
pulses, an additional discharge phase is triggered after reversal phase to clear the
charges on the capacitor. A switched capacitor amplifier is used to amplify the
residue charges, and a dual threshold comparator is used to decide whether the
residue charge is within the safe range or not. The schematic of the discharge and
amplification circuit is shown in Fig. 4.28. The calibration DAC’s value is changed
according to the comparison result. The calibration DAC is designed to change 1
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Fig. 4.28 The circuit schematic of the switched capacitor circuit used to discharge the blocking
capacitor. The circuit is also used to amplify the residue voltage for the calibration purpose.
The amplified residue voltage is compared with two pre-defined safe voltage window. If the
residue charge is out of the safe window, the calibration DAC of the comparator will be changed
accordingly

Fig. 4.29 The micrograph of the fabricated stimulator chip. The occupied silicon area is
3 � 1.5 mm2

LSB each time for stability and simplicity. So in the worst case, it takes 16 cycles
to change from 0 to the full range of the DAC, which will be finished in one or two
pulse groups.

4.4.4 Experimental Results

The design has been fabricated in IBM 180 nm CMOS technology. The occupied
silicon area of the full chip is 3 � 1.5 mm2, including IO pads. One driving site
features a dimension of 700 �m � 150 �m. The micrograph of the chip and the
layout of one channel are shown in Fig. 4.29.
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Fig. 4.30 The measured
current from the output stage
versus the output voltage. The
embedded figure shows a
zoom-in plot from 0 to 0.3 V

Bench testing was conducted to verify the functions of the chip. The measured
currents from the output stage versus the output voltage are shown in Fig. 4.30. The
measurement result shows a full compliance voltage range of 3.2 V out of the 3.3 V
supply voltage at the current amplitude of 100 �A, which corresponds to 97% of
the full voltage range. This is much higher than the result achieved in the general–
purpose design presented in Sect. 4.3.3.

Both traditional digital-set method and the proposed current-set method have
been implemented in the chip for a comparison purpose. The measured INL/DNL
of the DAC using traditional digital-set method are 0.37/0.34 LSB, and are improved
to 0.19/0.17 LSB using the proposed current-set method with the dynamic threshold
variation cancellation technique. With the new technique, the charge error during a
typical 100 �A and 200 �s is less than 0.05%.

The measured generated stimulation waveform and the finite state machine are
shown in Fig. 4.31. The stimulation was measured with a high resistor load. The
driving site was disconnected from the electrode when not activated to prevent
leakage.

Another bench test was used to verify the function of the adaptive driving.
Figure 4.32a shows a measurement of the electrode voltages during the driving
voltage adjustment. Stimulation currents were measured under a load of two 10 nF
capacitors and a 10 k� resistor in series. A blocking capacitor of 100 nF was
applied. The probe placement is highlighted in the boxed figure. The boosting
converter was implemented off-chip. Figure 4.32b shows the measured current
across the load. The current maintains constant during the stimulation phase with
the driving voltage adjustment.

In vitro tests are conducted using a 75 �m tungsten electrode in 0.9 g/100 mil
Sodium Chloride. Figure 4.33 shows a comparison of the measured voltages over a
5-min continuous stimulation using a traditional method and the proposed method.
It was measured at the same driving site under a different configuration. Given the
same mismatch in the current sources, a drifting of the electrode voltage when
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Fig. 4.31 The measured generated stimulation waveforms with a high impedance load. Channel
1 and channel 2 measure the output of the WE and CE, respectively. The Math channel calculates
the difference between the two channels. Channels D3–D6 show the states of the digital module

Fig. 4.32 (a) The
measurement of a stimulation
pulse during the driving
voltage adjustment. The load
model is given with the
measurement points
highlighted. (b) The
measured stimulating and
reversal currents during the
driving voltage adjustment
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Fig. 4.33 The measurement of biphasic stimulation in the saline solution using the traditional
method (red) and the proposed method (blue). (a) shows a 5-min continuous stimulation without
discharge. (b) and (c) show an overlay of 20 measurements of the voltage across the blocking
capacitor and the derived stimulation current

using the traditional digitally set DAC without discharge is shown in Fig. 4.33a,
while the proposed method successfully resolves this problem. The measurements
of the blocking capacitor’s voltage in 20 trails are overlaid in Fig. 4.33b, and the
derived currents are plotted in Fig. 4.33c. The over-reversal in the traditional method
are shown from the test in the saline solution. The measurement results verify the
theoretical analysis and the simulation.

To demonstrate that the stimulator is capable of evoking physiological activity, an
in vivo experiment was performed in a sedated rat. Trains of biphasic stimulus pulses
(10 pulses, 5 ms interpulse interval, 0.3 ms/phase) were delivered through a pair of
insulated tungsten microwires, with a 50 �m diameter, implanted near the intrinsic
muscles that protract the mystacial vibrissae. Whisker movements, as measured by
an optical micrometer, were reliably evoked as shown in Fig. 4.34a. The stimulator
chip was programmed by a microcontroller with a wireless transceiver. Whisker
displacements were a function of current intensity as shown in Fig. 4.34b. This
experiment can be further used to implement facial reanimation for patients who
suffer from facial paralysis.

The measured performance of the chip is summarized in Table 4.2.
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Fig. 4.34 In vivo experiment performed on a sedated rat. (a) Whisker movements, as measured
by an optical micrometer, were reliably evoked by stimulation. (b) Whisker displacements were a
function of current intensity

Table 4.2 Chip specification
summary

Driving site # of sites 6

Area per site 0.1 mm2

Driving voltage 3.3 V

Compliance range 97% (typical)

Stim current <2 mA

Stim freq. 1–500 Hz

Charge error <0.05% (typical)
DAC Resolution 6-bit

INL 0.19 LSB

DNL 0.17 LSB

Full scale std <0.7%
Comparator Resolution 40 �V

Calibration Auto-zero/4-bit DAC

Speed 40 MHz
Power per site 136 �W

Coin battery 1.2 V regulator
off-chip

Efficiency 81%

4.4.5 Conclusion

In this section, a high efficiency, tissue-friendly net-zero charge stimulator is
proposed. The net-zero charge stimulation is achieved by controlling the timing
of the reversal phase based on monitoring the residual charge. An arbitrary channel
configuration is achieved without a pre- or on-the-fly calibration, which enables a
more dedicated stimulation position and pattern. Feedback control of the adaptive
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driving voltage is further proposed to improve stimulation efficiency. A novel
current-mode DAC is implemented to suppress the process variation across the
driving site array. A digital feed-forward error compensation is used to calibrate
the zero-crossing detection comparator in a continuous stimulation pulse train. Both
in vitro and in vivo experiment results are presented.



Chapter 5
Bidirectional Neural Interface
and Closed-Loop Control

5.1 Introduction

A bidirectional electronic neural interface enables simultaneous recording and
stimulation of the neural system, establishing a two-way direct communication link
between the brain and the external world [272]. The importance of a bidirectional
closed-loop neural interface can be understood from several aspects: (1) In the
development of prosthetic devices, an electrical neural stimulation can provide an
artificial sensory feedback to the user, allowing the user to perceive the movement
and the haptic interaction with external objects [273]. This is especially important
for paralyzed patients to fully control a prosthetic; (2) in the treatment of the
neural disorders, including Parkinson’s disease, the mechanism underlying the deep
brain stimulation remains not clear [18, 19]. Research shows that the application
of the closed-loop stimulation has a greater effect than the conventional open-loop
stimulation paradigms [19, 48]. (3) In the study of electrophysiology, the brain’s
response to an external stimulus is a result of various activities triggered by the
sensory stimulus itself and the brain’s internal state. Thus, the study needs more
than statistical descriptions [22], and an open-loop approach cannot fully capture
the characteristics of the brain’s response. As a result, a closed-loop approach is
critical in these studies [274].

Although the importance of the bidirectional closed-loop neural interface has
already been recognized [275], it has not been widely used in neuroscience research.
The electronics design of a bidirectional closed-loop neural interface is one of the
bottlenecks. There are two primary design challenges in a bidirectional closed-
loop neural interface system: (1) The artifacts caused by stimulating and recording
simultaneously, namely the stimulation artifacts [247, 276–278]; (2) the design
of an on-chip real–time closed-loop controller [24, 64, 279–282]. Addressing
both challenges is important for the successful implementation of a bidirectional
closed-loop neural interface. Thus the goal of this chapter is to review and analyze
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the practical issues related to the design of a bidirectional neural interface and a
closed-loop controller. Novel system-level and circuit-level designs are proposed to
improve the state-of-the-art.

The chapter is organized as follows. Section 5.2 analyzes the origins of the
stimulation artifacts in a bidirectional neural interface, reviews the prior works,
and presents a study on the stimulation artifacts. The study focuses on differ-
ent electrode configuration and circuitry topologies. Both in vitro and in vivo
experimental results are presented. Section 5.3 summarizes the mechanisms of
different closed-loop neural interface systems, and presents the design of a general–
purpose PID controller for a closed-loop neural interface system-on-chip (SoC). All
experimental procedures used in the studies presented in this chapter were approved
by the institutional animal care and use committee (IACUC) of the University of
Pennsylvania.

5.2 Stimulation Artifacts in the Bidirectional Neural
Interface

5.2.1 Introduction

The stimulation artifact is a known issue in simultaneous neural stimulation and
recording. A long-lasting stimulation artifact blanks the recording front-end and
corrupts the evoked neural response. Thus, suppressing the stimulation artifact is
critical in the design of bidirectional neural interface. Several techniques have been
proposed in the literature to cancel or attenuate the stimulation artifacts, including
using recording front-end blanking [57], symmetrical electrode placement [276],
temporary frequency shifting [247, 277, 278], real–time signal processing in the
computer [283] or on-chip [59]. However, most proposed techniques have certain
constraints, which are usually not suitable for a general–purpose neural interface
design.

The goal of this study is to find the stimulation artifacts in different cases. The
combination of different stimulator and recorder configurations, namely monopolar
and bipolar stimulation, single-ended and differential recording, with common and
separate grounds were studied. In addition, different power supply configurations
(dual-supply and single-supply), stimulator architectures (type-I and type-II) were
taken into account. To the best of our knowledge, this work presents the first
analysis of the stimulation artifacts considering both neural interface configuration
and architectures of the electronic system. The main sources of the stimulation
artifacts were first analyzed, and a testing board was designed to verify the analysis.
Both in vitro and in vivo experimental results are presented. The conclusions and
the design recommendations are given at the end of this section.
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5.2.2 Review of Prior Work

Several studies of the stimulation artifacts in bidirectional interfaces have been
reported in the literature. G.A. DeMichele et al. from Sigenics Inc. and Illinois
Institute of Technology proposed a stimulus-resistant neural amplifier in 2003 [277].
The amplifier had an artifact suppression mode, which shifted the input frequency
corner to 10Hz by a DC servo loop in the second stage. This work used a low gain
(x4) pre-amplifier, which will not be easily saturated. Many custom neural front-end
designs prefer to use a high gain in the first-stage amplifier to achieve a high overall
noise efficiency. In these cases, this artifact suppression technique cannot resolve
the long-lasting saturation from the first stage.

R.A. Blum and E.A. Brown et al. from Georgia Institute of Technology and
University of Illinois at Urbana-Champaign proposed a stimulation artifacts model
and a circuit module for removing the artifact in 2004 [247], with a follow-up work
in 2008 [278]. The model only considered a voltage-mode stimulation without a
charge balancing design, and assumed the recording and stimulation circuits are
using the same electrode. A pole-shifting technique was used in the first stage, while
the highpass pole was set at 200 Hz. A soft-switching technique was used to ensure
a smooth transition between different switch phases, which required additional
custom circuit design and optimization.

L. Rossi et al. from University of Milan proposed an artifact suppression device
for recording the local field potential during a deep brain stimulation in 2007 [276].
The work used separate grounds for the recorder and the stimulator. The recorder’s
ground was placed on the scalp, while the stimulator’s ground was placed on the
shoulder. In addition, the stimulation electrodes were placed in the middle of the
differential recording electrodes. Because the recording frequency was 2–40 Hz and
the stimulation frequency was 130 Hz, a ten-pole lowpass filter was used to filter
the stimulation artifacts. In many other applications, however, the recording and
stimulation frequency ranges have overlaps, and the stimulation electrode location
cannot be chosen in favor of the differential recording.

A.E. Mendrela et al. from University of Michigan, Ann Arbor and the University
of Minnesota, Minneapolis proposed a bidirectional neural interface circuit with
an active stimulation artifact cancellation circuit in 2016 [59]. An on-chip digital
adaptive filter was used to remove the stimulus artifacts. The proposed design
removed the stimulation artifact if the recording electrodes were not saturated or
out of the linear range.

In summary, stimulation artifact is a complex issue, which depends on the
types of the recording and stimulation electrodes, the electrical circuitry, the
configuration of the ground, the characteristics of the recording front-end’s input
stage, the methods and parameters used for the stimulation, and so on. Most existing
investigations on the stimulation artifacts are restricted for a certain application or
in a certain configuration. It is important to understand the difference between the
configurations and their effects on the stimulation artifacts, which is the goal of this
study.
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5.2.3 Analysis of Stimulation Artifacts

5.2.3.1 Origins of Stimulation Artifacts

The origins of the stimulation artifacts can be quite complicated, as reviewed in the
previous section. The analysis and models in this section are not intended to give
an accurate electrochemical description or a precise estimation of the stimulation
artifacts, but to provide insights in developing techniques for reducing or canceling
the stimulation artifacts.

	 Electrode Saturation

During the stimulation phase, a portion of the charges will be stored on the double
layer capacitors on the recording electrodes [244]. Ideally, after the reversal phase,
the charges will be removed and a charge balance will be achieved. The tissue
environment should return to the potential before the stimulation. However, this
is not always achievable. If the recording electrode’s potential is within the linear
input range of the amplifier after the reversal phase, the recorder will usually return
to the normal operating point reasonably fast. But if the electrode potential is pushed
away from the recorder’s linear input range, it might take a very long time for the
recorder to recover, since the input stage of the circuits usually has a very large time
constant needed for a high input impedance.

Due to the small amplitude of the neural signal, the neural recording amplifier
is usually designed with a linear input range in tens of millivolts, and the common
mode input range is usually limited to hundreds of millivolts, depending on the
supply voltage and the circuit architecture. Capacitively coupled instrumentation
amplifier usually has an extended input range, however, it is also limited by the
ESD circuits and breakdown voltage of the input transistors. In addition, amplifiers
employing chopping technique or DC servo loop suffer more from the voltage
headroom constraint [78]. It should be noticed that even these limitations may not
be a problem for the neural recording purpose alone, they may become a significant
problem in a bidirectional neural interface.

	 Voltage Gradients

Voltage gradients can be easily understood by considering the tissue is conductive,
and all electrodes inserted in the tissue environment are interconnected. Figure 5.1
shows the circuit model proposed to analyze the stimulus artifacts in the bidirec-
tional neural interface. A monopolar stimulation with a single-ended recording is
used for illustration.

Firstly, consider the case where the recorder and stimulator share a common
ground, as illustrated in Fig. 5.1a. Assume the electrode impedance for the stim-
ulator, the recorder, and the common ground is Z1, Z2, and Z3, respectively. The
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Fig. 5.1 The circuit model
for the bidirectional neural
interface with (a) a shared
ground and (b) separated
individual grounds

spreading resistances between the three electrodes are represented by R12, R13, and
R23. Assume that the stimulator and the ground electrodes have a low impedance,
the recording electrode has a high impedance, and the instrumentation amplifier has
a high input impedance. The stimulation artifact can be expressed as:

Vartifact �
R3

R1 C R3

Vstim

D
R23

R12 C R23

Vstim

(5.1)

If the R12 and R23 are in a comparable magnitude, the artifact can be as large as half
of the stimulation’s compliance voltage, which will easily saturate the recording
electrodes or push the instrumentation amplifier out of the linear input range.

Secondly, Fig. 5.1b shows the case where the recorder and stimulator have
separated grounds. In this case, the stimulation artifact can be expressed as:

Vartifact �
.R13R24 � R12R34/R23

Req
Vstim (5.2)

where

Req D R12R23.R13 C R34/ C R13R24.R12 C R23/

CR24R34.R12 C R13/ (5.3)
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If the recording and stimulating electrodes are well separated, R12 � R13, R23 �

R24, then the Vartifact is approximately zero. Even if the electrodes are not separated
far away, or the recording electrodes for signal and ground have significant different
impedance, the term .R13R24 �R12R34/R23 is still much smaller than Req, and Vartifact

will be a very small portion of Vstim.
From the above analysis, the stimulation artifact due to the voltage gradient can

be in the same order of the stimulating compliance voltage when the recording
and stimulation share a common ground, and the artifacts can be minimized if the
grounds are separated in the circuits and in the tissue environment.

	 Capacitive Coupling

The capacitive coupling between the stimulating and recording leads also con-
tributes to the stimulation artifact. Even though the capacitance between the leads
is usually less than 1 pF, the amplitude of the simulation voltage can be six orders
higher than the neural signal, so that the coupled stimulus may still be visible in the
recorded signal. The coupling is worse if there is no shielding on the recording and
stimulation electrodes, or the connecting wires are long.

5.2.3.2 Configuration of the Interface Circuits

The configuration of the stimulator and the recorder, and the placement of the
electrodes have a high impact on the stimulation artifacts. In this section, different
configurations of the neural recorder and the stimulator, and the related circuit
implementations are discussed.

There are two typical configurations for a multi-channel neural signal record-
ing front-end: single-ended recording and differential recording, as illustrated in
Fig. 5.2a and b, respectively. In a single-ended recording, a reference electrode and
a ground electrode are shared among all channels. The ground electrode can be used
as the reference in some cases. In a differential recording, two electrodes collect the
signal between of them, a third electrode provides the ground, and no reference
electrode is required.

It should be noticed that fully-differential is a widely used term in circuit
design. It refers to the circuit module which has both a differential input and a
differential output. However, a differential recording doesn’t necessarily require a
fully differential circuit.

Similar to the recorder, there are two typical configurations for electrical
neural stimulators: monopolar stimulation and bipolar stimulation. In a monopolar
stimulation, the electrical charges are injected from one electrode for stimulation,
and pulled from the same electrode to achieve the charge balancing (see Sect. 4.2.3).
A low impedance counter electrode provides the return path. Usually, the ground
electrode is used as the counter electrode. In a bipolar stimulation, the electrical
charges are passed between two electrodes for stimulation. An additional low
impedance ground electrode is usually connected to the tissue and provides the
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Fig. 5.2 Configuration of
typical multiple channels
neural recording front-end.
(a) Single-ended recording
configuration, and (b)
differential recording
configuration

electronic ground. However, the ground electrode is not necessarily required since
only a potential difference is needed between the bipolar electrodes to generate the
current. It should be noticed that there is a difference between a biphasic stimulation
and a bipolar stimulation. In a biphasic stimulation, a reversal phase follows the
simulation phase (see Sect. 4.2.2). Both monopolar and bipolar stimulator can
perform a biphasic stimulation.

There are two typical methods to implement a stimulator. If both a current sink
and a current source are connected to the working electrode and used to generate
the stimulation and reverse phase, the stimulator circuit is referred to as Type-
I stimulator in this work. If only a current sink or a current source is connected
and used in the working electrode, and a voltage buffer is connected to the counter
electrode, the stimulator circuit is referred to as Type-II stimulator in this work. It
should be noticed that:

• A Type-I stimulator can perform both a monopolar stimulation (Fig. 5.3a) and a
bipolar stimulation (Fig. 5.3b). In a same supply voltage, the bipolar configura-
tion gives twice the equivalent compliance voltage range for the stimulation.

• A Type-II stimulator can only be used to perform a bipolar stimulation (Fig. 5.3c
and d);

• Since only a current sink (or a current source) is implemented in a Type-II
stimulator, it saves the voltage headroom for one current source (or a current
sink), which is an advantage over the Type-I stimulator for a low-voltage and
low-power design;

• A current sink is usually easier to implement than a current source since its circuit
components are operating at a low voltage with respect to the ground. So most
of the Type-II stimulators use current sinks (Fig. 5.3c) instead of current sources
(Fig. 5.3d).
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Fig. 5.3 Typical topologies
of neural stimulators. (a)
shows a monopolar
stimulator, (b), (c), and (d)
are bipolar stimulators. (a)
and (b) are Type-I
stimulators, (c) and (d) are
Type-II stimulators

5.2.3.3 Practical Issues in Circuit Design

One of the practical design challenges is the different supply voltage requirements
in the stimulator and the recorder modules. The stimulator module usually requires
a high supply voltage for driving the high impedance electrodes. At the same
time, the recorder and the digital modules need a low supply voltage to reduce
the power consumption. Both dual-supply and single-supply are commonly used in
bidirectional neural interface system, as shown in Fig. 5.4. In a dual-supply system,
the grounds of all circuit modules are connected together. In a single-supply design,
the lowest supply in each module is connected together. The design is also limited
by the CMOS process. Dual-supply design sometimes require deep N-well or silicon
on insulator (SoI) process. A level-shifter is required if low voltage digital signals
are to be used to control high voltage stimulator switches.

The two configurations can be equivalent in the circuit design, however, when
connecting the electronics ground to the tissue ground, there is a problem in the
single-supply system. If the tissue ground is connected to the stimulator’s ground,
the DC common-mode neural signal will be much higher than the recorder’s ground,
and may be even higher than the recorder supply in many cases. So in a DC-coupled
recorder design, or designs require a DC servo loop (see Chap. 2), this configuration
is not feasible. If the tissue ground is connected to the recorder’s ground, the
tissue ground will not be centered between the highest and lowest supplies of the
stimulator. Thus, the compliance voltage of the stimulator cannot be fully used,
which will be a waste of power consumption. It should also be noticed that if the
stimulator tries to discharge the local tissue to the stimulator ground GNDH, the
potential difference between GNDH and GNDA will cause a DC current, which
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Fig. 5.4 Two typical supply
configurations for the
recorder and the stimulator:
(a) dual-supply and (b)
single-supply. In a
dual-supply system, the
grounds of all circuit modules
are connected together. In a
single-supply system, the
lowest supply in each module
is connected together. The
design is also limited by the
CMOS process

may damage the tissue. This must be avoided. Even though a single-supply design
is simpler in certain cases, especially in bulk CMOS process, a dual-supply design
is necessary for the bidirectional neural interface design.

5.2.4 Methods

A bench-test board was designed to study the stimulation artifacts in different
configurations. The block diagram of the board is shown in Fig. 5.5, and the
photograph of the assembled board is shown in Fig. 5.6.

The board is carefully designed with isolated ground for each module. The
recorder, stimulator, and digital processor have individual ground and power
management unit. The recorder and stimulator are powered by two batteries in
series. Positive and negative regulators are used to provide regulated supply voltages
of ˙6 V. The digital module is powered from a 5 V USB cable, and regulated
to 3.3 V to power the microcontroller. Optical isolators TLP292 from Toshiba
[284] are used to provide a digital control signal to the recorder and simulator
modules without connecting the ground. The isolation amplifier uses a duty cycle
modulation-demodulation technique to convert the input signal to the output in
separate grounds. A 50 kHz two-pole lowpass filter is integrated on board to remove
the ripples. The data acquisition devices and the oscilloscope share the ground with
the digital module. Using the isolation amplifier, the oscilloscope can monitor the
analog output of the recorder without connecting the mains ground to the animals.
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Fig. 5.5 The block diagram of the bench testing board. The supplies and grounds for the recorder,
the stimulator, and the digital modules are intentionally separated on the board

Fig. 5.6 The photo of the
assembled bench testing
board. The dimension is
216 mm � 171 mm

The recorder has two stages. The first stage uses a low-noise instrumentation
amplifier INA111 from Burr-Brown [285]. The amplifier has a noise density of
13 nV/rtHz at 100 Hz. The gain is set at 11 by an external resistor. The input stage
is biased by large resistors to provide a very low cut-off frequency. Switches are
integrated to be able to disconnect or blank the recording electrodes during the
stimulation. A DC servo loop is also implemented which can move the highpass
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corner frequency. The second stage provides an additional gain of 50. The recorder
can perform either a single-ended recording or a differential recording depending
on the connection of the electrodes.

The stimulator has two output stages, each has a current source, a current sink,
and two switches for shorting the electrodes to the two power lines. Additional
switches are also integrated to short the two electrodes, or short the electrode to
the stimulator ground. By controlling the timing of the switches, the stimulator
can perform a monopolar or a bipolar stimulation in either Type-I or Type-II
configuration. The amplitude of the current source and sink are programmable.
Tunable resistors are used to match the current source and sink. Another isolation
amplifier can be connected to the electrode for monitoring the compliance voltage
of the electrodes.

The digital module mainly consists of a microcontroller ATxmega128A4U from
Atmel to generate the timing and control signal for the stimulator and the recorder.
The microcontroller has an integrated USB 2.0 module. A computer user interface
is developed in Matlab, and commands are sent to the bench test board via USB.
In addition to the oscilloscope, a pre-developed data acquisition board is used to
collect the data and send to the computer for online and offline analysis.

5.2.5 Experimental Results

5.2.5.1 In Vitro Experiment

A series of in vitro studies was conducted in 0.9 g/100 mil Sodium Chloride.
The placement of the electrodes is illustrated in Fig. 5.7. A 75 �m tungsten
low impedance electrode was used as the reference electrode. A stripped copper
wire was used as the ground. A pair of electrodes were inserted in the saline
for differential recording. Similarly, a pair of electrodes were used for bipolar
stimulation. When performing a single-ended recording or a monopolar stimulation,
only one of the electrodes was selected.

Fig. 5.7 Electrode setup for
the stimulation artifacts
experiments
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Table 5.1 In vitro experiments for stimulation artifact study

Recording

Single-ended Differential

Stimulation Type-I Common GND Monopolar Fig. 5.8a Fig. 5.8b

Bipolar Fig. 5.8c Fig. 5.8d

Separate GND Monopolar Fig. 5.9a Fig. 5.9b

Bipolar Fig. 5.9c Fig. 5.9d

Type-II Common GND Bipolar (current sink) Fig. 5.10a Fig. 5.10b

Bipolar (current source) Fig. 5.10c Fig. 5.10d

Separate GND Bipolar Fig. 5.11a Fig. 5.11b

Different configurations for recording and stimulation, different types of stim-
ulators, with a common or separate grounds were explored in the in vitro study.
Table 5.1 lists the experiment configurations and the corresponding results.

Firstly, the stimulator was tested in the Type-I configuration. The stimulator was
configured to do a 10-pulse biphasic stimulation. The pulse amplitude was 100 �A,
the pulse width was 200 �s, and the pulse interval was 3 ms. The discharge time
was 1 ms, and the discharging resistor was 1 k�. The highpass frequency corner of
the amplifier was set to be 0.159 Hz by a 10 nF coupling capacitor and a 100 M�

biasing resistor. The lowpass frequency was 7.2 kHz, and the overall gain was
550. Figure 5.8 shows the recorded stimulation artifacts with the recorder and the
stimulator share a common ground. The figures in the top row show the results from
a monopolar stimulation, and the figures in the bottom row show the results from a
bipolar stimulation. The figures in the left column show the single-ended recording,
and the figures in the right column show the differential recording. In summary, a
monopolar stimulation with a single-ended recording gives the worst result, and a
bipolar stimulation with a differential recording results in the minimum artifact.

Figure 5.9 shows the recorded stimulation artifacts with the recorder and the
stimulator having separated grounds. It should be noticed that the scale in this figure
(one grid is 50 �V) is much smaller than Fig. 5.8 (one grid is 1 mV). The figures in
the top row show the measurement results from a monopolar stimulation, and the
figures in the bottom row show the measurement results from a bipolar stimulation.
The figures in the left column show the single-ended recording, and the figures in the
right column show the differential recording. In summary, a monopolar stimulation
with a single-ended recording gives the worst result, similar to the conclusion in the
common ground. However, with separated grounds, even the worst artifacts will not
saturate the recording electrodes.

Secondly, the stimulator was tested in the Type-II configuration. The amplitude
and timing of the stimulation pulses were the same as in the Type-I experiment.
Figure 5.10 shows the recorded stimulation artifacts with the recorder and the
stimulator sharing the ground. It should be noticed that the Type-II stimulator can
only perform a bipolar stimulation. The figures in the top row show the measurement
results using a current sink, and the figures in the bottom row show the measurement
results using a current source. The figures in the left column show the single-ended
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Fig. 5.8 The measured stimulation artifacts of a Type-I stimulator with a common ground
between the recorder and the stimulator. (a) Monopolar stimulation and single-ended recording,
(b) monopolar stimulation and differential recording, (c) bipolar stimulation and single-ended
recording, and (d) bipolar stimulation and differential recording

recording, and the figures in the right column show the differential recording. In
general, the Type-II stimulator using a current source gives better results than the
one using a current sink. Differential recording also gives better results than single-
ended recording.

Figure 5.11 shows the recorded stimulation artifacts with the recorder and
the stimulator having separate grounds. One grid in this figure is 200 �V. The
stimulators with current source and the current sink had a similar performance when
their grounds were separated from the recorders. It should be noticed that if the
recording amplifier is not saturated, signal processing techniques for removing the
artifacts can be applied. In general, the stimulation artifacts are minimum when the
grounds of the recorder and the stimulator are separated. When the grounds are
connected, a differential recording helps reduce the artifacts. The worst case would
be a common ground with a single-ended recording.
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Fig. 5.9 The measured stimulation artifacts from a Type-I stimulator, which has separate grounds
with the recorder. (a) Monopolar stimulation and single-ended recording, (b) monopolar stimula-
tion and differential recording, (c) bipolar stimulation and single-ended recording, and (d) bipolar
stimulation and differential recording

5.2.5.2 In Vivo Experiment

Two animal experiments were conducted to further verify the results from the in
vitro study. A female Long-Evans rat received two implants, one in the motor cortex,
the other in the sensory cortex. A ground stew was connected to the skull of the rat
to provide the ground for recording. Figure 5.12 shows the experimental setup.

A bipolar stimulation was performed in the sensory cortex while a single-ended
recording was conducted in the motor cortex. Figure 5.13a shows the recording
when the grounds of the recorder and stimulator were connected. A large stimulation
artifact appeared after the stimulation with a long recovery time. And Fig. 5.13b
shows that when the grounds are separated, the stimulus artifact was minimized and
an evoked potential was clearly visible, which is buried by the large stimulation
artifact in the top figure.
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Fig. 5.10 Stimulation artifacts from a Type-II stimulator, which has a common ground with the
recorder. The stimulator uses a current sink in (a) and (b), and a current source in (c) and (d).
Recorder is configured to do single-ended recording in (a) and (c), and differential recording in (b)
and (d)

Another bidirectional experiment was conducted in a macaque. The recording
electrodes were chronically implanted in the left hippocampus while the stimulating
electrodes in the upstream areas. The stimulation pulse train contains 10 pulses
with an amplitude of 2 mA. Figure 5.14a shows the case when the grounds of
the recorder and the stimulator were shorted together. The recording amplifier was
saturated right after the stimulation and the recovery took hundreds of milliseconds.
Figure 5.14b shows the case when the grounds were separated, and the artifacts
were minimized. Figure 5.14c shows the output of the recording with an additional
low-pass filter with a frequency corner of 200 Hz. The stimulation artifacts were
completely removed by the filter since they were out of the signal band.
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Fig. 5.11 Stimulation artifacts from a Type-II stimulator with separate grounds between the
recorder and the stimulator. Recorder is configured to do single-ended recording in (a) and
differential recording in (b)

Fig. 5.12 The photo of the in vivo experimental setup. A female Long-Evans rat received two
implants, one in the motor cortex, the other in the sensory cortex. The measurement was conducted
using the same testing board as used in Sect. 5.2.4

5.2.6 Conclusion

In this work, the stimulation artifact in a bidirectional neural interface has been
studied. Different electrode and circuit configurations were taken into account in this
study. Both in vitro and in vivo experiments were conducted. Several conclusions
are summarized as follows:
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Fig. 5.13 A bidirectional neural interface experiment in a Long-Evans rat. Local field potential
was recorded in the motor cortex while stimulating the sensory cortex. (a) When the grounds of
the recorder and stimulator were connected, there was a large artifact and a long recovery time;
(b) when the grounds were separated, the artifact is minimized. An evoked potential was clearly
visible

• Stimulation artifacts can be minimized if the grounds of the recorder and
stimulator are separated. Circuit techniques can be used to enable the isolation
even if the bidirectional interface system-on-chip (SoC) is implemented on a
single die.

• A charge balanced stimulation results in much smaller artifacts in recording than
an unbalanced stimulation. Since charge balancing is not guaranteed in a voltage
regulated stimulation, stimulation artifacts from voltage-regulated stimulator is
usually much worse than from current-regulated stimulator.

• A bipolar stimulation usually results in smaller artifacts in the recording than a
monopolar stimulation, since the stimulation is restrained in the area between
the two electrodes. However, a bipolar stimulation cannot replace a monopolar
stimulation in triggering certain physiological response.

• A differential recording usually suppresses the stimulation artifacts. However,
attention must be paid to make sure the differential electrodes are within the
linear input range of the recording amplifier. If the signal is distorted, it might
lead to wrong analysis results. The input range of the recording amplifier is
usually limited by the supply voltage and the ESD circuits. Extending the input
range of the recording amplifier is very helpful in preventing the input stage from
saturation. However, this is quite challenging in a low voltage front-end design.
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Fig. 5.14 A bidirectional experiment in a Rhesus macaque. (a) The grounds of the stimulator
and the recorder were shorted together, the stimulation artifact saturates the amplifier, and it takes
hundreds of milliseconds to recover. (b) The grounds of the stimulator and recorder were separated,
and only minor artifact appeared in the recording. (c) A 200 Hz filter was applied to the recording
in (b), which completely removed the artifacts

• There are several methods and circuit techniques which can speed up the recovery
of the input stage of the neural amplifier. One solution is to temporarily shift
the high-pass frequency corner to a higher frequency during or right after the
stimulation. However, the signal will be corrupted and cannot be recovered
without the knowledge of the exact timing, frequency and phase change.

• With a common ground, a Type-II stimulator with a current sink gives a larger
artifact than a current source. This is because with a current sink in the working
electrode, the counter the electrode will need to be connected to a high voltage
with respect to the ground, which gives a large step input to the recording
amplifier.

• Discharging the stimulation electrode might also give a step response to the
recording amplifier.

In summary, separating recording and stimulation ground is highly recommended
for a bidirectional neural interface design, especially if a monopolar stimulation and
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Table 5.2 Stimulation
artifacts with common ground

Single-ended Differential
recording recording

Monopolar � � � +

stimulation

Bipolar � ++

stimulation

a single-ended recording is necessary. If a common ground must be used, Table 5.2
gives an estimation of the stimulation artifacts (both amplitude and duration). In this
table, “+” means good and “�” means bad.

5.3 Closed-Loop Neural Interface System

5.3.1 Introduction

There are two fundamental types of control systems, open-loop control system
and closed-loop control system [286]. In an open-loop control system, the control
action signal is independent of the output of the plant under control. In a closed-
loop control system, the control action signal is dependent on the output of the
plant through the feedback loop. Figure 5.15a shows the block diagram of a typical
closed-loop control system. The system consists of a sensor, an actuator, a closed-
loop controller, and the plant under control. Ideally, the closed-loop controller
generates the control action signal for the actuator to set the output of the plant
to be the same as the reference. Closed-loop control finds its applications in almost
everywhere, not only in electrical or mechanical engineering, but also in biology,
climate science, social science, economics and finance, and other applications [287].
Figure 5.15b shows the block diagram of a bidirectional closed-loop neural interface
system, where the neural recorder works as the sensor, and the neural stimulator
works as the actuator.

There are two types of feedback, the positive feedback and the negative feedback
[287]. In a system with a positive feedback, the fed-back signal is in phase with
the signal, while in a system with a negative feedback, the fed-back signal is out
of phase with respect to the input signal. Both positive and negative feedback find
applications in circuits and system design, but negative feedback is usually more
applicable, because it improves the stability and accuracy of a system by correcting
or reducing the unwanted changes. This is especially important for a neural interface
since a positive feedback induced oscillation may cause permanent damage to the
neural system.

There are many well-established control theory and stability compensation meth-
ods [115, 288]. The most commonly used closed-loop controller is a proportional-
integral-derivative (PID) controller. More than 95% of the closed-loop industrial
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Fig. 5.15 (a) The block diagram of a typical closed-loop control system. (b) The typical block
diagram of a bidirectional closed-loop neural interface system. The neural recorder works as the
sensor, and the neural stimulator works as the actuator

processes use PID controllers [289]. The terms of a PID controller can be interpreted
as: the proportional term depends on the present error, the integral term depends on
the accumulation of past errors, and the derivative term is a prediction of future
errors, based on the current rate of change [290].

This section presents the analysis and design of closed-loop neural interface
systems. The mechanisms of different closed-loop neural interface systems are first
reviewed. Then, the design of a closed-loop neural interface with a general–purpose
PID controller is presented. Some of the figures and tables presented in this section
were originally published in [57] ©IEEE. Reused, with permission.

5.3.2 Mechanism of Closed-Loop Neural Interface System

Figure 5.16 shows typical closed-loop brain–machine interface (BMI) systems with
different control mechanisms. A BMI for prosthetic arm is used as an example
for illustration, and the PID controller represents any closed-loop controller here.
Figure 5.16a shows a basic bidirectional BMI. The electrical stimulator encodes
the sensory information in sensory cortex, and the brain generates the motor intent.
The motor intent is then decoded by the processor for controlling the actuators. In
other words, the closed-loop control policy origins from the brain. J. Liu et al. from
Michigan State University proposed an application aiming to improve the sensory
encoding capacity of the BMI in 2011 [291]. Figure 5.16b illustrates the proposed
method. The method involves an encoder mapping the sensory data acquired from
the prosthetic to the desired patterns related to the somatosensory cortex activity.
The errors between these desired patterns and those recorded in the somatosensory
cortex are used in a PID controller to update the stimulation of the sub-cortical
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Fig. 5.16 The block diagrams of different closed-loop BMI applications. The functions of the
proposed neural interface system are shown in red. (a) Standard bidirectional BMI for a prosthetic
arm. (b) Same as (a) but with improved sensory encoding method using a PID controller. (c)
Bidirectional BMI to re-animate paralyzed arm by decoding desired arm trajectory. (d) Same as
(c) but decoding motor goal and implementing arm trajectory with a PID controller

somatosensory areas in the thalamus or brainstem. This approach could elicit more
continuous, natural sensory percepts compared to those evoked by the limited set of
pre-programmed typical stimulation patterns [292].

Another closed-loop control mechanism is illustrated in Fig. 5.16c. In this case,
the BMI system uses electrical stimulation to control a paralyzed arm rather than a
prosthetic arm. Brain-controlled muscle stimulation has been proved to be a viable
method of re-animating paralyzed arms in monkeys and humans [24, 279, 280].
In these studies, the muscle stimulation, and thus the arm movement trajectory,
was entirely driven by motor cortex activity. However, prior work has shown that
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recording from pre-motor cortical areas to decode motor goals, not entire intended
trajectories, can improve performance and lower cognitive demand [64, 281]. Thus,
another potential BMI application for a closed-loop controller could be to update
the muscle stimulation based on the error between a decoded goal and the recorded
state of the re-animated arm [293], as illustrated in Fig. 5.16d.

Besides prosthetics, other examples of closed-loop bidirectional BMI applica-
tions include the deep brain stimulation (DBS) for Parkinson Disease and epilepsy.
H. Rhew et al. from the University of Michigan, Ann Arbor proposed a closed-loop
DBS system in 2014 [48]. The system detects the abnormal energy in the LFP and
adjusts the stimulation current using a PI controller. W. Chen et al. from the National
Chiao Tung University proposed a closed-loop neural prosthetic in 2014 [44]. The
proposed design detects the seizure event and delivers a deep brain stimulation with
parameters modulated from the internal brain state.

In addition, closed-loop neural interfaces are also important for electrophysio-
logical studies [294]. A. Wallach et al. from Technion proposed a neuronal response
clamp in 2011 [274]. In this work, a closed-loop technique enabling control over
the instantaneous response probability of a neuron was proposed using a PID
controller. It has been used to characterize the input–output neuronal relationship.
Sense-stimulate devices with closed-loop controllers have also been proposed for
neuromodulatory applications [40]. Moreover, closed-loop stimulation of sleep slow
oscillation has been proposed to enhance memory [282].

In summary, there are many different configurations and mechanisms for using
a closed-loop neural interface, and it is critical for a wide range of prosthetics
and neuroscience research. Thus, the design of an energy efficient real–time
bidirectional neural interface with a closed-loop controller is highly desirable.

5.3.3 Design of a Closed-Loop Neural Interface with a PID
Controller

5.3.3.1 Introduction

As reviewed in Sect. 5.3.1, the PID controller is the most commonly used control
loop feedback mechanism [290]. Brain is a highly non-linear, dynamic time-variant
system, which can hardly be accurately modeled. A PID controller needs only the
process variables and the target value, not requiring the knowledge of a system
model or the underlying process. Thus, the PID controller is suitable for a wide
range of applications in neuroscience research and neuroprosthetic development. In
this work, a programmable PID controller in the analog domain has been designed
to support a variety of closed-loop experiments.

The basic working principle of the PID controller is briefly reviewed here. A PID
controller calculates the difference between the desired reference and the measured
output of the plant under test as the error value e.t/. The output of a PID controller
u.t/ in the time domain is:
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u.t/ D Kpe.t/ C Ki

Z
e.t/dt C Kd

de.t/

dt
(5.4)

where Kp, ki, and Kd are coefficients for the proportional, integral, and derivative
terms, respectively. By tuning the three parameters of the model, a PID controller
can meet different control requirements.

There are four main characteristics of a closed-loop step response, including: (1)
rise time, which is the time it takes for the system’s output to rise to 90% of the
desired level; (2) overshoot, which is the peak level higher than the steady state,
usually normalized against the steady state; (3) settling time, which is the time it
takes for the system to converge to the steady state; and (4) steady-state (S-S) error,
which is the difference between the steady-state output and the desired output. The
effect of each controller parameter Kp, Ki, and Kd are summarized in Table 5.3 [290].
It should be noticed that the tuning process is usually more complicated in practice.

5.3.3.2 System and Circuit Implementation

The PID controller has been reported for implementation in both analog [295, 296]
and digital domains [297, 298]. The analog implementation has the advantages of
low-power consumption and compact layout, especially when the input and output
are both analog signal. In this work, the PID controller is implemented using Gm-C
blocks. The block diagram of the overall closed-loop system is shown in Fig. 5.17.
The system consists of the closed-loop controller, a neural recorder, a neural feature
extraction unit, a neural stimulator, and buffers for connecting them. In the PID
controller, the error signal is the difference between the extracted neural feature and
a pre-set reference value. The output of the PID controller is a weighted sum of the

Table 5.3 General effects of PID parameters

Parameter Rise time Overshoot Settling time S-S error Stability

KP Decrease Increase Small change Decrease Degrade

KI Decrease Increase Increase Eliminate Degrade

KD Minor change Decrease Decrease No effect Improve if
in theory Kd is small

Fig. 5.17 The block diagram
of the overall system using
the designed PID controller
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Fig. 5.18 The circuit
schematic of the designed
PID controller

proportional, the derivative, and the integral terms of the error signal. The neural
stimulator works as the actuator in the system. The output of the PID controller can
be used to modulate the stimulating current amplitude, the stimulating frequency,
or other parameters. The sensor in the system is the neural recorder and the neural
feature extraction unit. Neural features, for example, spectral energy, entropy and
action potential fire-rate, can be used as the input of the PID controller.

The circuit schematic of the PID controller is shown in Fig. 5.18. The PID
controller consists of six programmable Gm blocks and two capacitors. The circuit
schematic of the Gm block and the tunable biasing current generation module can
be found in Figs. 3.4 and 3.6 in Chap. 3, respectively. The parameters for each of
the P, I, and D components are independently programmable. The transfer function
of the PID controller is given by:

Vout.s/

Verr.s/
D

gm1

gm6

C
gm3

gm6

�
1 C

sC1

gm2

� C
gm5

gm6

�
1 C

gm4

sC2

� (5.5)

where Verr=Vref � Vin. The gain of the P, I, and D components are KP=gm1=gm6,
KI=gm3=gm6, and KD=gm5=gm6.

The basic parameter choosing and tuning of the PID controller have been
reviewed in Sect. 5.3.1. For a complex neural system where an accurate model
can hardly be achieved, the plant exploration based method can be used. The
initial estimation of the optimal operating points can be learned from the Zeigler-
Nichols tuning method [299]. The final controller parameters can be determined by
using an iterative procedure, based on the least-root-mean-square error. Considering
the requirement of a BMI system, sufficient phase margin for stability must be
guaranteed. Since an in-depth study of the control theory is not the focus of this
work, the well-established PID tuning theory will not be discussed here. Readers
can find information in references [300, 301].
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5.3.3.3 Experimental Results

The proposed design has been fabricated in IBM 180 nm CMOS technology. The
micrograph of the fabricated chip and the layout of the PID module are shown
in Fig. 5.19, with major blocks highlighted. The PID module occupies a silicon
area of 100 �m � 75�m, including digital registers. Bench testing was conducted to
evaluate the designed PID controller. In vivo bidirectional closed-loop experiments
will be discussed in the next chapter.

The basic function and tuning of the PID controller were tested with a second-
order RC ladder network, as shown in Fig. 5.20. The transfer function of the RC
network is given by:

H.s/ D

1

R1R2C1C2

s2 C s

�
1

R1C1

C
1

R2C1

C
1

R2C2

�
C

1

R1R2C1C2

(5.6)

The output of the RC ladder network is fed back to the PID controller and
compared with a preset reference signal to find the error signal. A step change
from 0.8 to 0.9 V was given at the reference. The measured transient response of the
system in different configurations is shown in Fig. 5.21. The design is programmable
over a large range, and useful in versatile closed-loop applications.

Fig. 5.19 The microphotograph and the layout of the PID controller module

Fig. 5.20 The second-order
RC ladder network used for
testing the PID controller
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Fig. 5.21 The measured transient response of the PID controller in different configurations. The
ratio of the Kp, Ki, and Kd are (a) 1-2-0, (b) 2-1-0, (c) 1-0-1, and (d) 1-1-1

In addition, a closed-loop neuronal response clamp experiment [274, 294] was
set up to test the proposed PID controller. Nervous systems’ response to the
rapidly changing sensory information is highly variable with complex dynamics.
The dynamic response is reflected from a single neuron level to a neuronal
network level. Thus, it is important to study the behavior in a closed-loop approach
with an appropriate context of realistic input–output dependency. Voltage-, and
current-clamps are well-known techniques [294] in closed-loop electrophysiology.
Recently, a dynamic neuronal response clamp technique was proposed to study the
threshold dynamics of a neuron using extracellular stimulation and recording [274].
A modified version of this technique is employed to test the proposed closed-loop
system.

The diagram of the designed testing system is illustrated in Fig. 5.22. The major
blocks used are the PID controller, a neural stimulator, an action potential detector,
a neuron model, and a lossy integrator for finding spike-rate. The integrate-and-fire
model [208] for the single neuron employed in this experiment can be expressed as:

�m
dV

dt
D Vm � V.t/ C RmIs.t/ (5.7)

where �m � 10 ms is the membrane time constant, Vm is the resting membrane
potential, V.t/ is the actual membrane potential as a function of time, Rm � 107�
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Fig. 5.22 The block diagram of the dynamic neural clamp experiment using the PID controller.
The major blocks used are the PID controller, a stimulator, an action potential detector, a neuron
model, and a lossy integrator for finding spike rate. The on-chip stimulator is configured in the test
mode to output a continuous current

and Is.t/ is the stimulation current. Once the membrane potential reaches a certain
threshold VTH, an action potential occurs and reset the potential back to its resting
membrane potential. In this test, an off-chip microcontroller (Atmel XMEGA
128A4U [302]) with integrated ADC and DAC was used to model the neuron. The
MCU is running at a sampling rate of 100 kHz, corresponding to a time resolution
of dt D 10 �s. The continuous time differential equation is simplified by a discrete
difference equation for the implementation in the MCU. The MCU’s ADC measures
the RmIsŒt�, and the DAC generates VŒt� based on the following equations:

VŒt� D

8<
:

Vm C RmIsŒt � 1� C �mVŒt � 1�

1 C �m
VŒt � 1� < VTH

Vm VŒt � 1� > VTH

(5.8)

The stimulator was reconfigured in a testing mode to output a continuous stimu-
lation current to meet the requirement of intracellular stimulation. The stimulation
current amplitude was modulated by the output voltage of the PID controller.
The neural model responded to the stimulation current, generating the membrane
potential. The action potential detector module evaluated the membrane potential
voltage with a predefined threshold voltage. The output of the detector was a PWM
wave, which was sent to the integrator and converted to a voltage proportional to the
spike rate. In this work, the spike rate was converted to a voltage in the embedded
MCU. The difference between the integrator’s output voltage and the reference
voltage was sent to the PID controller.

Figure 5.23 shows 12 test trials with different proportional-integral-derivative
parameters. Each dot indicates an action potential. The same reference was set for
all trails at the start time. The neuron responded to the stimulation current until it
settled at a constant firing rate, in a manner based on the choice of the P, I, and D
terms. At the same time, Fig. 5.24 shows 12 testing trials with different references.
The neuron settled at a relative constant firing rate proportional to the reference.
The test results showed that by programming the parameters, one can control the
behavior of the neuron without the knowledge of the exact model [294].

In summary, in this work, the importance of closed-loop control in neuroscience
study and neuroprosthetic development is analyzed, and the mechanisms of different
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Fig. 5.23 The measured
transient responses of the
dynamic neuronal clamp with
different PID parameters.
Relative values of P, I, and D
components are shown on the
right

Fig. 5.24 The measured
transient responses of the
dynamic neuronal clamp with
different references

closed-loop BMI systems are reviewed. The most commonly used closed-loop
controller, a general–purpose PID controller, is selected to be implemented in analog
integrated circuits, and integrated in a bidirectional closed-loop BMI system on chip
(SoC). The system and circuit implementation of the PID controller are presented,
and the function of the designed chip has been evaluated in bench testing. The
proposed design provides a promising solution for a wide range of neuroscience
and neural engineering investigations.



Chapter 6
System Integration and Experiments

6.1 Introduction

Behavioral and in vivo animal experiments have been used through the history of
biomedical research. Non-human animal experiments have become one of the most
important methods in modern neuroscience research, and are highly valuable for the
development of the brain–machine interface (BMI). However, most of the available
medical instruments are designed for human medical treatments, which may not
work well on animals. It is especially challenging if the designed experiment
requires monitoring of the animal’s brain activities or giving real–time stimulation
feedback while the animal is freely behaving. In addition, the study of neural
modulation and closed-loop control also requires a custom designed wearable or
implantable BMI device to perform on-chip signal processing, feature extraction,
classification, machine learning, and neuromodulation. In summary, the design of
a wireless BMI system for freely behaving animals is of great practical value and
provides a very powerful tool for neuroscience research.

Previous chapters have discussed the neural interface circuit design from several
perspectives. However, a complete system is more than a simple summing of
individual building blocks. More importantly, many practical design issues are
overlooked and underemphasized in the literature. A system that has been perfectly
characterized in bench testing may not work well in an actual animal experiment.
In this chapter, custom system integration for animal experiments, especially for
free behavior animal experiments is discussed. The methodologies and experimental
results are presented in detail.

The chapter is organized as follows. Section 6.2 presents a general–purpose
experimental platform, namely the PennBMBI. A custom designed command
and communication protocol is presented, with a user-friendly interface. Wireless
neural recording, stimulating and sensing functions have been verified in both
anesthetized and awake rats. Section 6.3 presents a custom designed watermaze
experiment for the study of augmenting perception through modulated electrical
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stimulation of somatosensory cortex. A waterproofed wireless neural stimulator
and a complete animal tracking and neuromodulation experimental system are
presented. Section 6.4 describes a bidirectional neural interface system for freely
behaving monkeys. Long-term neural stimulation and recording during monkey’s
awake, sedated, and sleeping states are presented. A study on the hippocampal
gamma-slow oscillation coupling using the developed system was also described.
All experimental procedures used in the studies presented in this chapter were
approved by the institutional animal care and use committee (IACUC) of the
University of Pennsylvania.

6.2 The PennBMBI: A General–Purpose Experimental
Platform

6.2.1 Introduction

In this section, the design of a general–purpose wireless brain-machine-brain
interface (BMBI) system is presented [43, 51]. The system integrates four battery-
powered wireless devices designed for a closed-loop sensorimotor neural interface,
including a neural signal analyzer, a neural stimulator, a body-area sensor node,
and a user-friendly graphic interface implemented on a PC. The neural signal
analyzer features a four-channel analog front-end with configurable passband, gain
stage, digitization resolution, and sampling rate. The target frequency band is
configurable from EEG band to action potential band. A noise floor of 4.69 �Vrms
is achieved over a bandwidth from 0.5 Hz to 6 kHz. Digital filtering, neural
feature extraction, spike detection, sensing-stimulating modulation, and compressed
sensing measurement are realized in a central processing unit integrated into the
analyzer. A flash memory card is also integrated into the analyzer. A two-channel
neural stimulator with a compliance voltage up to ˙12 V is included. The stimulator
is capable of delivering unipolar or bipolar, charge-balanced current pulses with
programmable pulse shape, amplitude, width, pulse train frequency and latency. The
system also includes a multi-functional sensor node, consisting of an accelerometer,
a temperature sensor, a force sensor, and a general sensor interface port. A computer
interface is designed to monitor, control, and configure all aforementioned devices
via a wireless link, using the custom designed communication protocol. Wireless
closed-loop operation between the sensory devices, neural stimulator, and neural
signal analyzer can be configured. The proposed system was designed to link two
sites in the brain, bridging the brain and external hardware, as well as creating new
sensory and motor pathways for clinical practice. Some of the figures and tables
presented in this section were originally published in [51] ©IEEE. Reused, with
permission.
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Fig. 6.1 The block diagram of the PennBMBI system. The system mainly consists of a neural
signal analyzer, a neural stimulator, a multi-functional sensor node, and a graphic user interface.
Closed-loop operation paths between devices are shown

6.2.2 System Overview

Figure 6.1 illustrates the block diagram of the PennBMBI system. In general, there
are four types of devices, including (1) neural signal analyzer, (2) neural stimulator,
(3) multi-functional sensor node, and (4) PC interface with the graphic user interface
(GUI).

The first block is a four-channel neural signal analyzer (NSA). The proposed
NSA consists of an analog front-end that is capable of recording neural signal
from the EEG band to the action potential band, with an input signal amplitude
varying from 10 �V to 1 mV. Configurable analog bandpass filters are used to
suppress the electrode offset, and to bandpass the signal in the frequency of
interest. An additional programmable gain stage and an analog-to-digital converter
(ADC) with programmable sampling rate and resolution are also integrated. Digital
filtering, neural feature extraction, action potential detection, sensing-stimulating
modulation, and compressed sensing [153] are realized in a central processing unit
integrated on board.

The second block is a dual-channel stimulator with a high driving capability
that enables a charge-balanced current stimulation up to 400 �A with a compliance
voltage of ˙12 V. The device can be wirelessly controlled to deliver current-
regulated stimulation pulses with programmable pulse shape, width, pulse train
frequency and latency.

The third block is a multi-functional body-area sensor node. The sensor enables
the communication of sensory information to the brain with sensor-controlled
wireless neural stimulation. The sensor node integrates a 3-axis accelerometer, a
temperature sensor, a force sensor, and a general–purpose analog interface port. The
port can be used with different commercial sensors, such as pressure sensor, motion
sensor [303, 304], etc.

In addition, a graphic user interface (GUI) has also been implemented for all
device configurations, data acquisition, and online and offline signal analysis. A
wireless link is implemented between all the devices for device configuration and
data transmission.
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Table 6.1 Organization of the memory bank

Bank Addr Word Addr Description Value

BANK 00 word 00 Password

BANK 01 word 00 ID—Property 00—GUI

bit[1:0] 01—Neural analyzer

10—Stimulator

11—Sensor node

word 00 ID—Serial # 0x00–0x3F

bit[7:2]

BANK 10 word 00 Bank 10 Length

word 01 Bank 11 Length

word 10-END Configuration

BANK 11 word 00-END User memory

Wireless links have been built between all devices for configuration, data transfer,
and closed-loop operation. The transceiver nRF24L01+ from Nordic Semiconductor
is used in all devices. The transceiver features a maximum on-the-air data rate
of 2 Mbps in 2.4 GHz ISM band using GFSK modulation. Embedded Enhanced
ShockBurstTM baseband protocol engine and automatic packet transaction handling
are integrated in the transceiver. Commands and data were sent with two-byte Cyclic
Redundancy Check (CRC) scheme with an acknowledgement and auto-retransmit
ability.

A customized protocol has been designed for the communication with all devices
in the system. The four devices are divided into two classes: (1) central unit, which
is realized in the PC through a wireless dongle; and (2) satellite devices, including
the NSA, the stimulators, and the sensor nodes. The memory in each satellite device
is organized in four banks, consisting of 8-bit words as illustrated in Table 6.1. A
password is saved in Bank 00 for kill and/or lock functions. Bank 01 is reserved
for device ID number and class identity. Bank 10 records all the configuration
information for online processing. Bank 11 is a user memory which can be freely
organized in any fashion depending on the application.

All of the satellite devices can be configured by the central unit via
the wireless communication channel. The commands are all organized in a
“header + argument + data” format, including (priority from high to low)

1. CMD RST. Reset commands include global reset command and local reset
command. Global reset command terminates all undergoing procedure in all
devices, while a local reset command only works on selected devices with
a matched ID in the header. Global reset command can only be sent by the
central unit, while local reset command can be sent from any host device.
Acknowledgement from the slave will report the state before the reset operation.
The slave device will enter IDLE state after the reset operation.
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2. CMD STD. Standby command is similar to the reset command. It pauses the
undergoing procedure in a target device without reset it. Acknowledgement from
the slave will report the state it stops at.

3. CMD WKP. Wake-up command is used to return a device from the IDLE state
or to continue a current procedure which was previously paused by a standby
command.

4. CMD CFG. Configure command is used for online configuration of a target
device. The specifications will be embedded in the argument section. The
translation of the argument value varies while a different target device is applied.
Table 6.2 only lists the argument section for the configuration of the NSA and
the stimulator.

5. CMD ACC. Access command is a request to get the communication channel
access. Usually data transfer is followed by this command after a proper
acknowledgement is received. Any device with an approved flag received from
an acknowledgement and the host of the acknowledgement are denoted as a
“matched pair.” The transmitting device is defined as the client device, while
the receiving device is defined as the host device.

6. CMD DTX. Data transmission command carries the repackaged memorized data
from a matched client device to a matched host device.

6.2.3 Hardware Implementation

6.2.3.1 Neural Signal Analyzer

A Neural Signal Analyzer (NSA) is designed to perform neurological signal record-
ing and analysis. The NSA integrates a four-channel analog front-end, a central
processing unit (CPU), a 2.4 GHz wireless transceiver, a removable Micro SD card,
a power management unit, and peripheral modules. Figure 6.2 shows the assembled
device. The overall dimension including the battery is 56 mm � 36 mm � 13 mm.

The analog front-end integrates four independent amplifier channels and a tissue
ground driving circuit. The circuit block diagram of the front-end circuit is shown in
Fig. 6.3. A supply voltage of 3.3 V is used. Configurable gain stages and filters are
designed to meet the requirements of recording neurological signals with different
bandwidth and amplitude levels [78]. The input signal is capacitively coupled to the
instrumentation amplifier. The input impedance is over 100 M�, which is important
when using high impedance electrodes. The highpass frequency corner is lower
than 0.5 Hz, which rejects the DC offset from the electrode polarization, and also
preserves the very low frequency signal component [90].

The gain of the first stage instrumentation amplifier is set to be 200 [305].
Resistors with a low-temperature coefficient (TC) are used to minimize the gain
drift. An integrator implemented by amplifier A4 with a configurable capacitor
is used as a DC servo loop. Amplifier A5 is used to provide an additional



Table 6.2 Organization of the customized communication command

CMD RST a Header CMD ID, 8 bit

Host ID, 8 bit

Client ID, 8 bit (0x00 for global reset)

ACK RST Header ACK ID, 8 bit

Device ID, 8 bit

Argument STATE ID

CMD STD Header CMD ID, 8 bit

Host ID, 8 bit

Client ID, 8 bit (0x00 for global pause)

ACK STD Header ACK ID, 8 bit

Device ID, 8 bit

Argument STATE ID

CMD WKP Header CMD ID, 8 bit

Host ID, 8 bit

Client ID, 8 bit (0x00 for global wake-up)

ACK WKP Header ACK ID, 8 bit

Device ID, 8 bit

Argument STATE ID

CMD CFG Header CMD ID, 8 bit

Host ID, 8 bit

Client ID, 8 bit

Argument Channel #, gain, stop frequency 1,

(Analyzer) stop frequency 2, filter gain,

and CRC, all 8 bit format

Argument Channel #, pulses #, pulse width,

(Stimulator) stimulation/reversal amplitude,

stimulation/interphasic/interval time,

pulse shape, and CRC, all 8 bit format

ACK CFG Header ACK ID, 8 bit

Device ID, 8 bit

Argument STATE ID, 8 bit

Flag, 0x01 for configuration success

CMD ACC Header CMD ID, 8 bit

Host ID, 8 bit

Client ID, 8 bit

ACK ACC Header ACK ID, 8 bit

Device ID, 8 bit

Argument Flag, 0x01 for approval

CMD DTX Header CMD ID, 8 bit

Host ID, 8 bit

Client ID, 8 bit

Data Repackaged memorized data

ACK DTX Header ACK ID, 8 bit

Device ID, 8 bit

Argument Flag, 0x01 for successful transmission

client device will resend package if failed
aArgument section and data section are not required in CMD RST
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Fig. 6.2 Photograph of the PennBMBI neural signal analyzer (NSA) in front, rear, and side view.
The wireless module and Micro SD card are not shown in the front view

Fig. 6.3 The circuit block diagram of the analog front-end. The analog front-end consists of four-
channel instrumentation amplifiers, a programmable gain amplifier, and a programmable ADC

programmable gain and a configurable lowpass frequency. An integrated 12-bit
pipeline ADC digitizes the amplified neural signal at a configurable sampling rate.
The ADC can also be configured to work in 12 bit or 8 bit. In addition, A6 and A7
are shared by the four channels to drive the tissue ground and the metal shield.

An Atmel 32-bit AVR Microcontroller AT32UC3C1512C [306] is integrated in
the NSA device. In the recording mode, a peripheral direct memory access (DMA)
controller is used for digital data acquisition, data buffering, and serial peripheral
interface (SPI) accessing. The DMA controller handshakes with peripheral inter-
faces directly, while the central processor core is in the sleep mode to save power.
The recorded data can be sent out via the wireless module or to the on-board Micro-
SD card through SPI.

Online neural signal processing is performed in the 32-bit floating point DSP core
in the microcontroller (MCU). Various functions are implemented, including:

• Digital bandpass filter: A Type-I real Finite Impulse Response (FIR) bandpass
filter implemented. Six frequency bands are predefined for different applications,
and the filter coefficients with 24 taps and 10 taps are stored in the flash memory.
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• Time-domain feature extractor: Common time-domain features, such as line-
length, area, energy, maximum/minimum, and zero-crossing, can be extracted in
real–time by a proper configuration of the sliding window length and overlay.

• Spectral energy feature extractor: 16/128-point FFT is implemented for
spectral analysis.

• Compressed sensing: Neural signal features sparsity in certain basis/dictionaries
[148], enabling a near lossless reconstruction under sub-Nyquist sampling. A
signal agnostic compressed sensing measurement is implemented in the CPU.
The input signal vector length N is set to be 512, and the measurement number
M (M<N) can be programmable to 256, 128, 64, or 32. The compressed sensing
measurement is realized as y D ˆx, where x 2 R

N�1 is the input neural
signal, y 2 R

M�1 is the measurements, and ˆ 2 R
M�N is the Pseudo-random

measurement matrixes. The ˆ is stored in the flash memory. The reconstruction
is performed on the receiver end using a convex optimization algorithm.

• Action potential detection: For action potential detection, the filters are config-
ured to first bandpass the signal in a frequency range of 300–6 kHz. An amplitude
threshold Sth is firstly used for a coarse spike detection. The value of Sth is 4� �

of the background noise. Two time-amplitude windows are used to perform the
action potential discrimination after the input signal crosses the threshold with a
positive derivative.

The NSA wireless transceiver can also be configured in different data streaming
modes, including: raw data, extracted neural features, action potential time stamps,
and compressed sensing measurements. It can also send stimulation commands
wirelessly to the stimulator, or receiving triggers from other devices.

The NSA is powered by a rechargeable 3.7 V lithium-ion battery (Ultralife
UBP002). A supply voltage of 3.3 V is used for the analog front-end, digital
microcontroller, and wireless transceiver. The quiescent current of the analog front-
end is 380 �A per channel. The CPU consumes 490 �A per MHz. A 950 mAh
battery supports the device for an overnight continuous recording.

6.2.3.2 Neural Stimulators

A dual-channel neural stimulator is designed to deliver bipolar or unipolar,
charge-balanced current pulses with programmable pulse shape, amplitude,
width, pulse train frequency and latency. The overall device has a dimension
of 43 mm � 27 mm � 8 mm, as illustrated in Fig. 6.4. The stimulator integrates a
current driving output stage, an MCU with integrated DAC and ADC, a wireless
transceiver, a power management unit, and peripheral circuits.

A dual DC–DC converter is used for boosting the voltage from the 3.7 V lithium-
ion battery to ˙12 V in order to drive the output stage with high impedance
electrodes. The converter will be switched to idle mode when no stimulation is to be
delivered to reduce power consumption. A modified Howland current source is used
as a bidirectional current driving stage, as shown in Fig. 6.5. Amplifiers A1–A4 are



6.2 The PennBMBI: A General–Purpose Experimental Platform 173

Fig. 6.4 Photograph of the
neural stimulator. The
stimulator mainly consists of
a current driving output stage,
an MCU with integrated DAC
and ADC, a wireless
transceiver, a power
management unit

Fig. 6.5 The circuit schematic of the high compliance voltage output stage. Arbitrary stimuli
waveform can be generated from a DAC. V-to-I gain is programmable

implemented using high-voltage dual supply op-amps with JFET inputs. A resistor
trimmer is used to tune the resistor network for a good common mode rejection ratio
(CMRR) and a high output impedance. A feedback capacitor is added for stability.
Different transconductances can be selected by setting the gain resistors. Amplifier
A2 is a unity-gain buffer which isolates the gain resistor from the resistor network.

The two channel DACs are used to generate differential input to the Howland
current source to minimize the offset. The DAC is shut down and both inputs are
grounded in idle mode to minimize the power consumption. A feedback integrator
A3 is enabled in the idle mode to improve the stability as well as to reduce the
current leakage [36]. The amplifier A4 is implemented for buffering the electrode’s
compliance voltage. An integrated ADC is triggered twice during the stimulation
phase to read the compliance voltage after a resistor divider. The impedance of the
electrode is calculated in the MCU. If the calculated electrode impedance is lower
than a predefined threshold, the MCU generates an alert to the user, and stops the
stimulation in order to prevent potential tissue damage from electrode shorting. A
blocking capacitor is also used in each channel to prevent direct current injection
and limits the maximum net charges.

6.2.3.3 Body Area Sensors

The designed multi-functional body area sensor node has a dimension of
31 mm � 13 mm � 8 mm, as shown in Fig. 6.6. The sensor node integrates a
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Fig. 6.6 The photograph of
the sensor node side by side
with a quarter dollar

Table 6.3 Power
consumption of the sensor
node

Microcontroller 240 �A Accelerometer [307] 23 �A

RF sleep [308] 0.9 �A Thermistor <7 �A

RF transmit 7 mA Flexiforce sensor <50 �A

Total working 321 �A Total transmit 7.3 mA

microcontroller, a 3-axis digital accelerometer, a temperature sensor, and a flexiforce
sensor.

The accelerometer interfaces with the MCU through the I2C protocol. The
outputs of the thermistor and the force sensor are analog signals, which are digitized
by an 8-bit SAR ADC integrated in the MCU. General–purpose ports are reserved
for extensions of the sensor node. The sensor node is powered by a 2.65 g, 110 mAh
rechargeable lithium battery. The power consumption of all the modules used in the
sensor node is listed in Table 6.3.

6.2.3.4 Computer Interface

The computer interface includes a custom designed wireless dongle and a graphic
user interface (GUI). The dongle integrates a microcontroller, a wireless transceiver,
and a USB 2.0 port. The microcontroller receives commands from the computer
and sends to all other devices accordingly. A Matlab-based GUI has been built
for wirelessly monitoring, controlling, and configuring all devices. The GUI is
shown in Fig. 6.7. The GUI includes seven panels, including: (1) PC configuration
panel, where the communication port can be configured. All of the configurations
(including other panels) can be exported or loaded; (2) NSA configuration panel,
where the gain, sampling rate/resolution, filter passband can be configured for each
individual channel. For the signal processing modes performed in hardware, the time
window size and threshold for spike detection can also be configured; (3) stimulator
configuration panel, where the amplitude, pulse width, pulse train number, and
time interval of the stimulation can be configured; (4) sensor configuration, where
parameters for sensor nodes can be configured; (5) signal processing configuration,
where the parameters for real–time signal processing can be configured; (6) closed-
loop configuration, where closed-loop operation between different devices can be
configured; (7) display windows, where the output from analyzers and sensor nodes
can be displayed in real-time.
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Fig. 6.7 The designed Matlab-based Graphic User Interface (GUI). Seven panels are included in
the GUI: (1) PC configuration; (2) recording device configuration; (3) stimulator configuration; (4)
body-area sensors configuration; (5) signal processing configuration; (6) closed-loop configuration;
(7) display windows

Fig. 6.8 Input referred noise spectrum of the analog front-end

6.2.4 Experimental Results

6.2.4.1 Bench Testing

Figure 6.8 shows the measured input referred noise spectrum of the analog front-
end in the NSA. The integral noise from 1 Hz to 10 kHz is 4.69 �Vrms. The
calculated noise efficiency factor [93] is 14.6. The mid-band gain error is 0.87%
and the measured CMRR at 1 kHz is 67.4 dB. The measured frequency responses
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Fig. 6.9 The measured frequency response of the analog front-end in different configurations:
bandpass from 10 to 200 Hz with a gain of 66 dB (blue), bandpass from 300 to 6 kHz with a gain
of 66 dB (red), bandpass from 10 to 200 Hz with a gain of 78 dB (magenta)

in different configurations are shown in Fig. 6.9. The selected configurations are:
bandpass from 10 to 200 Hz with a gain of 66 dB, bandpass from 300 to 6 kHz with
a gain of 66dB, and bandpass from 10 to 200 Hz with a gain of 78 dB.

The output currents of the neural stimulator were measured in different loads.
Figure 6.10a shows the standard deviation � of the output current from the anodic
and cathodic drivers with different loads. The � is calculated for each output
current in different loads. Figure 6.10b shows the average current mismatch between
the anodic and cathodic electrodes in different loads. The average mismatch with
respect to the corresponding output current is 0.75%. The stimulator was also tested
in 0.9 g/100 mil Sodium Chloride using a 75 �m tungsten electrode. Figure 6.11
shows the measured voltage across the bipolar electrodes in different stimulation
current levels. A blocking capacitor of 1 �F was used. The characteristics of the
neural signal analyzer and the neural stimulator are summarized in Table 6.4. A
bit error rate (BER) lower than 10�3 was measured using the wireless module at a
distance of 3m in a normal animal experiment environment.

Two open-loop experiments were conducted to verify the system-level operation.
In the first experiment, the NSA to stimulator pathway was tested. As shown in
Fig. 6.12a, the neural signal was firstly recorded by the NSA. Real–time action
potential detection was performed using the time-amplitude window discrimination
method, as illustrated in Fig. 6.12b. Once an action potential was detected, a CMD
CFG was wirelessly sent from the NSA to the stimulator, triggering a group of pulse
stimulation.

In the second experiment, the sensor to stimulator pathway was tested. As shown
in Fig. 6.13, the amplitude of the sensing result was mapped into the stimulation
pulse frequency. A CMD CFG command was generated from the sensor node and
wirelessly sent to the stimulator. The command argument is encoded according to
the digitized output of the sensor node.
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Fig. 6.10 The measured
output currents in different
loads (1 k�, 2 k�, . . . , 8 k�).
(a) shows the standard
deviation of the output
currents. (b) shows the
current mismatch between
anodic and cathodic
electrodes

Fig. 6.11 The measured stimulation pulses with different current amplitudes in Sodium Chloride
solution
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Table 6.4 Specifications of the PennBMBI system

Neural signal analyzer

Supply voltage 3.3 V Supply current 380 �A/ch

Input impedance >200 M� Offset tolerance 1 V

I-Amp noise floor 4.69 �Vrms I-Amp CMRR >61 dB

ADC resolution 12 bit

Neural stimulator

Output current 0–1 mA DAC resolution 6 bit

Compliance voltage ˙12 V Output impedance >100 M�

Standard deviation 1.71 �A Driver mismatch 0.75%

6.2.4.2 In Vivo Experiments

To further evaluate the PennBMBI system, several experiments of wireless neural
recording, stimulating and sensing were conducted in both anesthetized and awake
rats. The neural recording was performed in an anesthetized rat with a tungsten
microelectrode placed in the whisker motor cortex. The NSA was configured to
have a passband of 300–6 kHz, a sampling rate of 21 kSps, and a gain of 72 dB. The
recorded action potentials are shown in Fig. 6.14. The recording shows two different
neurons firing action potentials in a close succession.

In order to evaluate the quality of the recording, we did a recording session using
the PennBMBI NSA and a rack-mounted commercial medical instrumentation (RZ2
Workstation, Tucker-Davis Technologies) simultaneously. Figure 6.15 shows the
two recordings together. A close match between the two recordings can be observed,
which proves that the NSA can faithfully record the action potentials with a signal-
to-noise ratio (SNR) comparable to a commercial medical instrumentation.

To demonstrate the sensor and stimulator nodes, an awake rat with a chronically
implanted stimulating microelectrode in the lateral hypothalamus was placed in an
operant conditioning chamber with a lever press. The sensor node detected the lever
press and wirelessly sent a trigger to the stimulator worn on the rat’s back to deliver
a stimulus train (30 of 100 �A, 200 �s constant current pulses). This setup allowed
the rat to associate the lever press with the rewarding sensation of hypothalamic
stimulation. The result provides one example of how the various nodes of the
PennBMBI, in this case, the sensor and stimulator, can be flexibly combined to
enable a wide range of neuroscience and neural engineering experiments in freely
behaving animals.
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Fig. 6.12 The measured wireless closed-loop operation from the neural signal analyzer and the
stimulator. (b) is a zoomed-in view of one action potential detection process in (a)

6.3 The Watermaze

6.3.1 Introduction and Background

Sensation and perception are essential abilities for human and animals. Loss of
sensation due to nerve damage prevents even basic activities of daily living.
Even though many recently developed neutrally controlled prosthetics successfully
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Fig. 6.13 The measured wireless operation between the sensor node and the neural stimulator

Fig. 6.14 Neural signal recorded by the PennBMBI NSA. The action potentials are marked by red
triangles

replaced motor pathways, somatosensory feedback is critical for paralyzed indi-
viduals to adequately use them, which has often been underscored. Recently, there
has been an increased interest in conveying lost information through direct brain
stimulation using a neuroprosthetic device [16]. These strategies rely on the brain
learning to use the remapped or artificial stimuli to inform actions. A common
paradigm to study this learning process involves using brain stimulation to guide rats
through a maze [309]. These so-called “rat-robot” studies have mapped a number
of different navigation signals to brain stimulation [310]. All reported land-based
mazes are designed with a discrete number of actions and goal locations. A concern
with these studies is that the rats could simply memorize a few stimulus-response
contingencies rather than learn a more generalized stimulus-dependent navigation
strategy.

In this work, a new rat-robot paradigm is developed using a classic test of rodent
navigation: the Morris water maze (MWM). In the MWM, the rat swims in a
large circular tank looking for a hidden, submerged platform on which to stand
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Fig. 6.15 Comparison between recordings from the PennBMBI NSA (black) and the RZ2
Neurophysiology Workstation (red)

[311]. In our task, the submerged platform was positioned randomly on each trial
to dissociate visual cues from the platform location, and the rats navigated to the
platform using only the sensation encoded from the brain stimulation [63, 312]. The
experiment setup is illustrated in Fig. 6.16. For simplicity, the proposed experiment
system is referred to as watermaze system, and the wireless neuroprosthetic device is
referred to as watermaze stimulator. Custom hardware and software were developed
to support the watermaze experiment. The findings suggest that rats can quickly
interpret artificial percepts to guide behavior. Some of the figures and tables
presented in this section were originally published in [63] ©IEEE. Reused, with
permission.

6.3.2 System Overview

The block diagram of the watermaze system is shown in Fig. 6.17. The developed
watermaze system includes both hardware and software. The hardware system
consists of: (1) a wireless neuroprosthetic device (watermaze stimulator), and (2)
a computer interface with a tracking camera. The software system mainly includes
(1) the animal tracking and modulation algorithm, and (2) the communication
and stimulation protocol. It should be noticed that, even though the system is
developed for this experiment, it can be generalized to perform various neuroscience
experiments.

The developed watermaze experiment can also be understood as a typical closed-
loop system, as illustrated in Fig. 6.18. The wireless neuroprosthetic device works as
the actuator, the tracking image sensor finds the error signal, and the PC determines
the closed-loop algorithm.
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Fig. 6.16 Illustration of the developed perception augmentation experiment. (a) shows a rat wear-
ing the developed wireless waterproof neuroprosthetic. The electrodes are chronically implanted in
the somatosensory cortex. (b) shows the experimental setup. A rat navigates to a hidden platform
using only the perception established from the stimulation. (c) illustrates the rat’s swimming traces
with/without the simulation guidance

6.3.3 Hardware Implementation

6.3.3.1 Design of the Watermaze Stimulator

The block diagram of the watermaze stimulator is shown in Fig. 6.17. The water-
maze prosthetic consists of (1) a microcontroller for overall control and processing,
(2) a fully programmable neural stimulator with an impedance monitoring module,
(3) a wireless transceiver, and (4) a power management unit.

In this work, a microcontroller ATxmega128A4U [302] from Atmel is used as the
central processor. It communicates with a 2.4 GHz wireless transceiver from Nordic
Semiconductor nRF24L01 [308] for wireless communication, including retrieving
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Fig. 6.17 The block diagram for the watermaze system, including: (a) the PC interface with a
tracking camera, and (b) the wireless neuroprosthetic

Fig. 6.18 The typical closed-loop diagram for the developed watermaze experiment for perception
augmentation

device configuration and stimulation commands, and sending back the compliance
voltage for estimating the electrode impedance during the stimulation.

The power management unit includes a single channel LDO TPS791 [313] from
Texas Instruments for powering the microcontroller and some peripheral circuits.
The chip has a full-scale output current up to 100 mA, with a very low dropout
voltage of 38 mV. The root mean square noise is 15 �V. A dual channel DC/DC
converter LT1945 [314] from Linear Technology is used to generating a high voltage
for powering the stimulating output stages. The chip takes an input voltage as low
as 1.2 V, so potentially it can be powered by coin batteries. Regulated positive
and negative outputs can be generated up to ˙34 V, setting by feedback resistors’
ratio. The converter consumes 12 �A in the active mode and less than 1 �A in
the shutdown mode. In the first two generations of the watermaze stimulators, an
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Fig. 6.19 The circuit schematic of the first generation watermaze stimulator

inverting charge pump LTC1983 [315] from Linear Technology is used to generate
the negative supply. The chip gives a fixed �3 V with ˙4% accuracy with an
input voltage from 2.3 to 5.5 V. The full-scale output current is up to 100 mA,
with a flyback capacitor of 1 �F. The battery used in the first generation watermaze
stimulator is LP-402025 from Sounddon. A 150 mAh Lithium Ion Polymer battery
from Pkcell, which gives higher peak current, is used in the following generations.

The first generation watermaze stimulator uses three stack PCB boards, including
the transceiver with a PCB antenna. The circuit schematic for the output stage is
shown in Fig. 6.19. The core circuits are two Holland current sources (A1–A5). The
output current is determined by the input voltage across the gain resistor, which is
independent of the load impedance. A blocking capacitor C is used to block the
DC current path to the brain. The DAC integrated in the microcontroller is used
to generate the input voltage. The output range of the DAC is from ground to a
reference voltage, which is set to be VDD. The amplifier A1 works as a level shifter.
A trimming resistor is used to tune the output voltage. The DAC generates the
stimulation waveform in voltage, and the driving sites convert the voltage waveform
into a current with a programmable transimpedance determined by the gain resistor
RG. The amplifiers A2–A5 are designed using high voltage op-amps OPA2140 from
Texas Instruments [316]. These op-amps operate with dual supplies up to ˙18 V. In
this version, the supply voltages are designed to be ˙15 V in order to drive up to
300 �A stimulation current with a load impedance of 50 k�. The switches SC, SA,



6.3 The Watermaze 185

Fig. 6.20 The 3D construction of the first generation watermaze stimulator board. (a-1) and (a-2)
are the top boards, and (b-1) and (b-2) are the bottom board

Fig. 6.21 (a) The 3D construction of the first generation of the watermaze stimulator board. (b)
The photo of the assembled stimulator board. The wires are for electrodes and battery

and SD connect the output stages to the driving electrodes. Multiple stimulation
channels can be supported by adding a multiplexer without too much area and
power penalty. The only drawback is the lack of ability in driving two stimulating
sites simultaneously. However, a near simultaneous stimulation by switching the
electrodes is more than sufficient in most cases. When no stimulus is to be delivered,
the opamps are disabled to save power, and the switches SD will short the electrodes
to the ground in order to prevent current leakage. It should be noticed that since the
blocking capacitors still isolate the circuits from the tissue, there is no DC current
path even in this case.

The dimension of the final assembled devices is 36 mm � 20 mm � 19 mm. The
3D construction of the first generation watermaze stimulator is shown in Fig. 6.20.
The photo of the assembled device is shown in Fig. 6.21.

The second generation watermaze stimulator is designed on a single PCB board.
The circuit schematic is shown in Fig. 6.22. The second generation still uses two
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Fig. 6.22 The circuit schematic of the second generation watermaze stimulator

sets of dual supplies (VDDH, VSSH, VDDL, VSSL) and a Holland current source.
Two DAC channels from the microcontroller are used to set a differential input to
the Holland current source, which removes one trimming resistor, and reduces the
risk from resistor drifting caused DC stimulation current. Two stimulation channels
are designed in this version, using multiplexer ADG409 from Analog Devices. The
wireless transceiver nRF24L01, antenna and related matching circuits are soldered
directly on the PCB.

The PCB of the second generation watermaze stimulator is shown in Fig. 6.23.
The photo of the assembled device is shown in Fig. 6.24. The whole device is coated
with PDMS for waterproofing.

The third generation watermaze stimulator is designed with a goal to simplify
the design and to improve the robustness. A single high supply voltage is used
instead of dual high supplies, and the stimulation current is passed between the
bipolar electrodes alternatively to generate stimulation and reversal phases. The
circuit schematic is shown in Fig. 6.25. A1 is a regulating op-amp which is used
to produce a high output impedance. The output current is set by VDAC=RG, where
the VDAC is programmable. The opamp is powered by the low supply voltage, and
the high supply voltage is only used to drive the stimulating electrode. Switches S3

and S4 are used to purge the blocking capacitors and discharge the residue charges.
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Fig. 6.23 The PCB of the second generation watermaze stimulator board. (a) is the top view and
(b) is the bottom view

Fig. 6.24 The photo of the
assembled second generation
watermaze stimulator board.
The whole device is coated
with PDMS for waterproofing

Fig. 6.25 The circuit
schematic of the third
generation watermaze
stimulator. The tuning voltage
VDAC is generated from the
microcontroller

The PCB of the third generation watermaze stimulator is shown in Fig. 6.26. The
photo of the assembled device is shown in Fig. 6.27. The whole device is coated
with PDMS for waterproofing.

The electrodes of the stimulator are multiplexed to an ADC. The compliance
voltages of the electrodes are measured at the beginning and the end of the
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Fig. 6.26 The PCB of the third generation watermaze stimulator board. (a) is the top view and (b)
is the bottom view

Fig. 6.27 The photo of the
assembled third generation
watermaze stimulator board.
The whole device is coated
with silicon for waterproofing

Fig. 6.28 (a) The equivalent circuit model for the electrode–electrolyte interface. (b) A typical
stimulation waveform between the electrodes EA and EC. The compliance voltages at the beginning
and end of the stimulation phase are measured for estimating the impedance

stimulation phase, as shown in Fig. 6.28. The spreading resistance can be estimated
by Rs D V1=IS, where V1 is the voltage between the two electrodes at the beginning
of the stimulating phase, and IS is the stimulation current. An impedance baseline
is measured every time before an experiment. During the experiment, if V1 is much
less than the baseline compliance voltage, it indicates that the equivalent resistance
between the electrodes drops significantly, possibly because the electrodes are
shorted by water. The experiment should stop since little current is actually passing
between the electrodes. On the other hand, if V1 is much larger than the baseline,
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the electrodes may lose connection with the tissue, or a much larger current than the
designed value is passing the tissue, possibly because of an electronic failure. The
experiment must be halted in both cases to keep the animal safe from tissue damage.

6.3.3.2 Electrode and Electrode Connector

Electrodes were chronically implanted in the sensory cortex. Different electrodes
have been tested in this project, including commercial and custom-made tungsten
and stainless steel electrodes. The final selected electrode is a two-channel commer-
cial electrode with a relatively low impedance.

In practice, it takes a considerable amount of practice and time to put the
watermaze stimulator device on an awake rat every time before an experiment.
The process can be easier after the rats got used to the jacket, but it can still
be time-consuming. So a magnetic connector was used in the early stage of this
experiment, which makes the docking process much easier. However, we later found
that the magnets cannot provide a secure connection, especially when the rat is
swimming. Besides, the water may short the electrodes through the magnets. The
finally selected connector has a screw thread to secure the connection and also
prevent water from shorting the electrodes. The impedance of the electrodes should
still be checked before and during the experiment to make sure the animal receives
the stimulation without potential damage to the brain tissue.

6.3.3.3 Image Sensor and Computer Interface

The developed computer program is compatible with most USB webcams on
the market. However, there are two issues worth attention: the viewing angle
and the autofocus and exposure feature. Because the camera faces the water
all the time, many webcams have trouble in auto focusing. Moreover, webcams
often give a wrong exposure due to the light reflection on the water. Different
webcams have been tested, including a Microsoft LifeCam VX-5000, a Logitech
HD Webcam C310, a Logitech HD Webcam C615, and Microsoft Q2F-00013 USB
2.0 LifeCam. The last one was eventually chosen for this project because it gives
the programmability in focusing and exposure.

The camera was securely mounted on the ceiling above the water tank. Even
though a resolution up to 1080p is supported by the camera, a resolution of
640 � 480 is used, which is more than sufficient for the tracking purpose in this
task. A higher solution will potentially cause a processing delay.

The PC interface from the PennBMBI system was used as the wireless dongle
in this project (Sect. 6.2.3). The interface mainly consists of a 16/8-bit XMEGA
microcontroller, a 2.4 GHz wireless transceiver, and a USB 2.0 port. With the full-
speed USB, the communication delay can be minimized.
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Fig. 6.29 The flowchart of the computer program developed for the watermaze experiment

6.3.4 Software Implementation

6.3.4.1 Communication Protocol

The software on the computer side was implemented using Matlab. C language was
used in the microcontroller programming. The flowchart of the computer program
is shown in Fig. 6.29. The program mainly has three operation modes: (1) testing
mode, (2) animal training mode, and (3) experiment mode (mission mode).

The testing mode includes both wireless communication test and electrode
impedance test. Both tests need to be run every time before the animal is set into
the water for the experiment. In the animal training mode, the image sensor tracks
the rat’s swimming trace but no stimulation is delivered. The training mode helps
the animal get used to swimming in the water tank, and also learn the existence of
a hidden platform in the tank. After the rat reaches the hidden platform, it will be
rewarded to be motivated. Also, the control data is collected in this mode for analysis
and comparison purposes. In the experiment mode, the image sensor tracks the rat’s
swimming trace, and the computer maps the relative location and/or direction of
the rat into a stimulation sequence. The established mapping algorithms include:
(1) binary mapping, (2) linear mapping, and (3) Gaussian mapping. In the binary
mapping, the rat receives a simulation train only if it’s heading towards the hidden
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platform. In the linear mapping, the stimulation frequency is modulated by the
distance between the rat’s location and the hidden platform in a linear fashion, as:

fstim D ˛ �
p

.x � x0/2 C .y � y0/2 C ˇ (6.1)

where x, y indicate the location of the rat, x0, y0 indicate the location of the platform.
˛ is the gain factor, and ˇ is the offset parameter. If ˛ is positive, the rat receives a
higher frequency stimulation when it swims away from the target; if ˛ is negative,
it receives higher stimulation frequency when it swims towards the platform.
The offset ˇ should be set so that the stimulation frequency is a positive parameter in
the range from 0.5 to 300 Hz. In the Gaussian mapping, the animal’s distance to the
platform maps to the stimulation frequency according to a Gaussian distribution, as:

fstim D fmax � e
�

.x � x0/2 C .y � y0/2

2�2 (6.2)

where fmax is the designed maximum frequency, and � is the standard deviation.
Moreover, various mapping functions can be easily implemented in this program,
which is important for research and investigation purpose.

The computer program updates 10 frames per second, and sends the updated
stimulation parameters to the wireless watermaze stimulator. If the animal reaches
the hidden platform, the program stops. The user can set the radius of the target.
The program checks the load impedance every second to guarantee the safety
of the animal. The experiment stops immediately if the measured impedance or
compliance voltage is out of the safe range. In addition, an interrupt service allows
the user to halt the experiment at any time.

The flowchart of the watermaze stimulator is shown in Fig. 6.30. The program
has a main routine and an interrupt service routine. After powering on, the device
performs the initializations. The wireless module will be configured in the receiving
mode and then the CPU will be put in the sleep mode to lower the system’s power
consumption. Once an RF package is received, the device first checks if this is a
stop command. If a stop command is received, the device disconnects the output
driver from the electrodes to prevent any potential damage to the animal. Next, the
device sends a signal back to the computer indicating the stop command has been
executed. The stop command is also used for testing the wireless communication.
A wireless communication is established if the computer can successfully read back
the response from the device. The computer program retries to establish the wireless
handshake ten times before timeout.

If the received package is not a stop command, the device checks the working
mode, and proceeds accordingly. In the impedance testing mode, the device delivers
one pulse train according to the received parameters and read back the compliance
voltage. Since the impedance testing mode is a manually triggered stimulation
mode, it can also be used to test the animal’s reaction to the stimulation out of the
water. In the experiment mode, a watchdog timer first starts. The timer counts for
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Fig. 6.30 The flowchart of the program implemented in the watermaze stimulator

6 s, during which time if no new RF package is received, the stimulation stops. The
time out feature prevents an endless stimulation in case of wireless communication
failure.

The DAC’s output is set according to the stimulation amplitude, and the local
finite state machine is set according to the timing parameters. The stimulator
remains the stimulation based on the received time interval until the next command
is received. Figure 6.31 illustrates the timing of the watermaze stimulator in two
scenarios: the stimulation time interval is shorter or longer than the time per frame.
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Fig. 6.31 Illustration of the watermaze stimulator’s timing. Each red dot represents a stimulation
pulse train, and the green dot represents the current time in each subplot. (a) shows the delivered
pulses when the stimulation interval is shorter than the time per frame, and (b) shows the delivered
pulses when the stimulation interval is longer than the time per frame. The finite state machine will
correct the stimulation time interval according to the most recent command

6.3.4.2 Animal Tracking

A color based animal tracking algorithm was implemented in the Matlab program.
After acquiring the image frame from the camera, the program first extracts the
red components of the image. Since each pixel consists of R (red), G (green), and
B (blue) components, the extracted image has the same dimension as the original
image. The extracted image is then filtered by a median filter to suppress the noise
[304]. Next, the image is converted to binary using a predefined threshold. The
threshold can be used to tune how sensitive the algorithm is, and should be adjusted
according to the environmental light condition. The center of the detected area is
used as the location of the object. A drawback of this algorithm is that it won’t be
able to discriminate the animal if multiple red objects exist in the scene. This error
can be avoided by not placing other red objects in the scene. Since most part of the
scene is the water tank, the error can be avoided in practice.
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Fig. 6.32 Matlab based Graphic User Interface (GUI) for the watermaze project

6.3.4.3 User Interface

A graphic user-friendly interface has been designed for this project, as shown in
Fig. 6.32. There are mainly six panels in the GUI. The communication panel sets the
COM port used to communicate with the PC interface dongle. The target position
panel sets the location and radius of the tank, the location and radius of the hidden
platform. Initially, these positions will display NA. In the target setting mode, a
set of random locations will be generated. But the user can manually set these
parameters.

In the settings panel, there are several options of the program. Firstly, there are
options for saving the frames, saving the path, and plotting the path. Figure 6.33
shows a frame of the captured video during the experiment. The large green circle
shows the submerged platform, the yellow dot represents the start location. The red
curve shows the swimming trace. The left top corner shows the current distance to
the platform and the total path length the rat has traveled in the current trial.

In addition, there are several working modes the user needs to choose before
running the experiment. Check the “Wireless Testing Mode” box, then press
the “Start” button, the program will try to communicate with the device. If it
successfully reads back from the device, the edit window will turn green and show
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Fig. 6.33 One frame of the captured video during the experiment. The large green circle shows
the submerged platform, the yellow dot represents the start location. The red curve shows the
swimming trace. The left top corner shows the current distance to the platform and the total path
length the rat has traveled in the current trial

“Good!”. If the communication cannot be established after ten attempts, the window
will turn red and displays “Bad!”. Check the Impedance “Testing Mode box,”
then press the “Start” button. The program will send stimulation commands and
read back the compliance voltage for estimating the electrode and load impedance.
Check the “Debug without stimulation” mode box, then press the “Start” button, the
program will load the camera and start tracking the rat, but no stimulation will be
delivered. This mode can be used for training the animal and getting the control data.

In the simulation panel, several parameters for the stimulation can be set. The
parameters include: (1) number of pulse per train (8 bit), (2) pulse amplitude in �A
(8 bit), (3) pulse width in �s (8 bit), (4) time interval between pulses in �s (16 bit),
and a threshold for the electrode impedance in k�. If the detected impedance is
lower than the threshold, the impedance window panel will turn red for a warning.
All of the input numbers will be truncated to the maximum number of bits allowable
for the assigned registers in the microcontroller.

In the mapping function panel, the user can select which mapping function to use,
as explained in Sect. 6.2. The panel also includes windows for entering parameters
of the mapping functions. The established mapping functions include a binary
mapping, a linear mapping, and a Gaussian mapping. More mapping functions can
be added in the Matlab program easily.

The information panel is for displaying the tracking results and compliance
voltage readouts in real–time. If the read back impedance is lower than the user-
defined threshold, the window will turn red. If the compliance voltage cannot be
read back, the window will turn yellow and display “999,” which is the error code.
Otherwise, the window is green during normal operation.
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Fig. 6.34 A rat received an
implant in the somatosensory
cortex wearing the wireless
waterproofed stimulator
device

6.3.5 Experimental Results

The experimental results using the developed watermaze system will be presented
in this section. A pair of electrodes was implanted in the somatosensory cortex
of a Long-Evans rat. Figure 6.34 shows a rat wearing the wireless waterproofed
stimulator device. The jackets used for housing the device are dyed red for the color-
based object tracking.

A couple paradigms, modulation algorithms, and parameter combinations were
studied in this work. Initially, the rats swam in random directions until the platform
was found or the trial timed out (60 s). A typical example of the swimming
trace before the simulation is shown in Fig. 6.35a. The performance significantly
improved over the course of about 50 trials, as shown in Fig. 6.35b. The poor
performance on the catch trials, in which no stimulation was delivered, confirmed
that the learned behaviors were guided by the stimulation.

Figure 6.36 shows the stimulation pulses versus time, together with the rat’s
distance to the target platform. Each red vertical line represents a stimulus pulse.
During this experiment, the rat receives a stimulation when it swims away from
the platform. There are in total of 710 stimulus pulses delivered in this 12 s trial.
The result clearly shows that the rat learned to turn around when it received the
stimulation.

In order to give a better quantitative analysis, the platform’s locations are
restricted to one in each quadrant in the following trials. The four locations are
separated by 90ı with equal distance to the center of the tank, as illustrated in
Fig. 6.37. In each trial, the platform is randomly placed in one of the four locations.
The rat is initially set free at the center of the water tank, and it had no visual clue of
the platform’s location. A total of 139 trials were conducted in this setup, including
124 trials with stimulation and 15 catch trials without stimulation. Naturally, the
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Fig. 6.35 The in vivo experimental results. (a) and (b) are webcam captured frames during the
experiments. The small yellow and large green circles represent the start and platform locations,
respectively. These were superimposed on the video frame and not visible to the rat. (a) shows
the rat’s swimming trace without the simulation, and (b) shows the rat’s swimming trace with the
simulation guidance

Fig. 6.36 A typical trial with stimulation. The animal receives a stimulation when it swims away
from the platform. The stimulation pulses are marked by red vertical lines in this figure. It clearly
shows the animal turned the direction when it received the stimulation

chance for the rat to visit each of the four locations should be equal, since the
platform is randomly placed. Figure 6.38 compares the percentage of the trials when
the rat finds the correct location on the first visit to one of the four locations with
and without the stimulation. Without the stimulation, the percentage for the correct
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Fig. 6.37 Illustration of the
four possible platform
locations P1–4. In this
experiment setup, the
platform was randomly
placed in one of them. The rat
was initially set free at the
center of the water tank in
each trial

Fig. 6.38 In a total of 139
trials consisting of 124
stimulation trials and 15 catch
trials, the percentage of trials
in which the rat reaches the
correct platform in its first
visit is 65% with stimulation,
and 20% without stimulation

Fig. 6.39 The rat first
attempted the platform
location in the previous trail
in 17.5% trails with
stimulation, and 46.2% trails
without stimulation

visit is around 20%, while with the stimulation, the percentage is about 65%. This
result clearly indicates that the rat has learned to use the stimulation.

Figure 6.39 compares the percentages of trials when the rat’s first visited location
is the platform’s location in the previous trial with and without the stimulation. In
17.5% of the trials with stimulation, the rat’s first visited location is the platform’s
location in the previous trial, while the same scenario happens in 46.2% of the trials
without stimulation. The result clearly indicates that the rat relies mainly on its
memory to find the platform if no stimulation is presented.

Finally, Fig. 6.40 compares the total number of locations the rat visited until it
found the actual platform. The result is again the average of the 139 total trials
conducted in this setup, including 124 trials with stimulation and 15 catch trials
without stimulation. The average visit times in trials with stimulation is 1.8, while
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Fig. 6.40 The average times
of platform visits are 1.8
times with simulation, and
3.7 times without stimulation
guidance. The error bars
show the standard deviation
in the data

in trials without stimulation is 3.7. The error bars show the standard deviation of
the data. The result indicates that for the trials with the stimulation, the rat finds the
platform much faster than those trials without the stimulation.

In summary, this section has presented a custom designed wireless BMI platform
consisting of a wireless waterproof neuroprosthetic, an animal tracking system
and a user interface. The design features a failure prevention mechanism for
animal safety. A custom software framework has also been developed to support
the experiments. The experiment is the first reported wireless sensory encoding
experiment conducted in a freely swimming animal. The experimental results
indicate that animals can quickly interpret artificial percepts to guide behavior.
The result is important for the development of sensorimotor neuroprosthetics. More
importantly, with the fully programmable wireless interface to the neuroprosthetic,
the developed system can be used as a general–purpose platform for investigating
different sensory encoding experiments in freely behaving animals.

6.4 Bidirectional Neural Interface for Freely Behaving
Macaque

6.4.1 Introduction and Background

Sensations and actions are inextricably linked. Behavioral goals are achieved
by sampling the environment with the available sensory modalities and modi-
fying actions accordingly [57]. Somatosensory feedback is especially important
to the dexterous hand movement control. Hand prosthetics with motor pathway
replacement alone are not adequate enough for the use of a paralyzed hand [15].
Artificial sensation restoration is needed for this technology to meet the performance
required for clinical adoption. The sensation may be restored by a direct electrical
microstimulation of the brain [16].

Figure 6.41 illustrates the envisioned bidirectional clinical hand prosthesis with
motor function restored through brain-controlled stimulation of hand muscles,
and somatosensation restored through sensor-controlled electrical stimulation of
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Fig. 6.41 Envisioned
bidirectional clinical hand
neuroprosthesis. Motor
function is restored through
brain-controlled electrical
stimulation of hand muscles,
and somatosensation is
restored through
sensor-controlled electrical
stimulation of the brain

the brainstem [63]. The cuneate nucleus (CN) in the dorsal brainstem carries
fine touch and proprioceptive information from the upper body, and is a suitable
sensory encoding site. Besides, its compact representations may be reliably activated
artificially. Recently, our collaborators from the Translational Neuromodulation
Laboratory (TNL) at the University of Pennsylvania demonstrated the first success-
ful chronic interface to the CN of macaques [317], which allows us to investigate
the sensation encoding with CN microstimulation in monkeys [63, 318].

In this section, the design of a bidirectional BMI system for the operation in
freely behaving monkeys is presented. It has been used to explore the aforemen-
tioned sensory mapping, hippocampal oscillation during sleep and awake, and
related research. The detailed system architecture, circuit design, and the animal
experimental methods are presented. Some of the figures and tables presented in
this section were originally published in [57] ©IEEE. Reused, with permission.

6.4.2 Circuit and System Design

Figure 6.42 shows an illustration of the custom designed BMI device for experi-
ments in freely behaving monkey. The overall BMI system includes multiple custom
ICs and discrete electronic components. The detailed system configuration varies for
different experiments. The electrodes are chronically implanted, with connectors
cemented on the skull to mate with the BMI device. The custom IC performs the
noise sensitive neural signal recording, the energy-efficient neural feature extraction,
and the high safety electrical stimulation.
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Fig. 6.42 Illustration of the BMI device designed for experiments in freely behaving monkeys (not
to scale). The whole device is house in a chamber. The electrodes are chronically implanted, and the
nano-connecters are secured by dental cement (*electrode type varies with different applications)

Table 6.5 Comparison of MCUs used in this work

Features TM4C123GH6PM ATxmega128A4U nRF51822

CPU 32-bit 8/16-bit 32-bit

Voltage 3.3 V 1.6–3.6 V 1.8–3.6 V

Clock 80 MHz 32 MHz 16 MHz

Flash 256 kB 128 kB 128 kB

RAM 32 kB 8 kB 16 kB

EEPROM 2 kB 2 kB NA

UART 8� 5� 1�

SPI 4� 2� 12-bit 2�

USB USB 2.0 USB 2.0 NA

ADC 2� 12-bit 12� 12-bit 8� 10-bit

DAC NA 2� 12-bit NA

Wireless NA NA 2.4 GHz

Package LQFP 64pin TQFP 44pin QFN 48pin

A general–purpose low-power MCU is integrated into the system for: (1) the
configuration and control of the ICs, (2) handling of the data packets, and (3)
performing closed-loop algorithms. Several MCUs with different performance,
interface and features have been used in this project. Table 6.5 compares the key
features of the three selected MCUs. The 32-bit Tiva TM4C123GH6PM [319]
from Texas Instruments is the mainly used for this project. The TM4C123GH6PM
is a high-performance ARM Cortex M4 based MCU. Compared with the 32-
bit AT32UC3C0512C from Atmel, which was previously used to upgrade the
PennBMBI system, the TM4C123GH6PM is more power efficient and has more
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open source libraries. However, the AT32UC3C0512C and several DSP from
Analog Devices have better signal processing ability, which is important for heavy
duty on-chip neural feature extraction.

The ATxmega128A4U [302] from Atmel has been introduced in the previous
sections for the PennBMBI system and the watermaze project. Compared with
the TM4C123GH6PM and AT32UC3C0512C, ATxmega128A4U features a smaller
package, a lower power consumption, and a lower cost. In addition to ADC, it
also integrates a 12-bit DAC, which is useful in generating a programmable voltage
reference.

At the same time, both AT32UC3C0512C and ATxmega128A4U don’t have on-
chip wireless module, so an additional wireless module nRF24L01+ is integrated on
board for many applications in this project, including the PennBMBI system and the
watermaze project. A fully integrated wireless MCU, nRF51822 is used in a couple
of applications with severe space restraint. The wireless protocol in the nRF51822
is air compatible with the nRF24L01+. The nRF51822 also features a Bluetooth 4.0
protocol for communication with commercial workstations and mobile devices. The
nRF51822 has a 32-bit ARM Cortex M0 based core with rich hardware interfaces
including UART, SPI, and ADC. However, the processing ability is much weaker
than the AT32UC3C0512C and ATxmega128A4U. Very limited on-chip signal
processing can be performed in real–time, especially when streaming data near the
full wireless data rate.

A Micro-SD card module is integrated in the system for a low-power wireless
recording when there is no need for real–time display or processing. An FAT32
file system is implemented for the Micro-SD card. An open source Generic FAT
file system module FatFs [320] is modified for use in this work. The FatFs is a
generic FAT/exFAT file system written in ANSI C and is independent of hardware
platforms. Additional IO interface layers are written so that all MCU can use the
file system. It should be noticed that wiring into the SD card doesn’t necessarily
require a file system. However, writing data without a file system will result in
a limited sector address range. The maximum data sector range can be reached
without a filesystem is 2 GB. Moreover, no file system means no direct access from
a computer system. The reading and writing of the SD card would need a dedicated
hardware or software. In this work, the FAT32 file is implemented for easy access,
organization, and future extension. A configuration file can be easily edited and
saved on the card. The configuration and parameters of the bidirectional BMI device
can be set in the configuration file, for example, file name, file length, data buffer
size, sampling frequency, front-end gain, filter corner frequency, stimulation pulse
width, pulse interval, number of pulses per group, number of groups with different
pulse configurations, and so on. The user can easily change these settings without
programming the MCU.

The whole BMI device is powered by 3.7 V Lithium batteries. A reliable and
high-capacity battery is a key component in a wearable device. A lot of batteries are
available on the market. The Polymer Lithium batteries from Adafruit are used in
this work. These batteries are lightweight and are among the highest energy density
Lithium batteries on the market. Coin batteries and non-rechargeable batteries
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Fig. 6.43 The photograph of (a) monkey D with one of the custom designed chambers, and (b)
monkey M with two of the custom designed chambers. Each chamber has a diameter of 30 mm and
a height of 40 mm

are used in several low-power and small footprint sensor nodes in this project.
The integrated power management module consists of: (1) battery protection,
charging and management circuit, and (2) power management modules including
switching converter and LDOs. The TM4C123GH6PM, ATxmega128A4U and
AT32UC3C0512C are powered at 3.3 V, and the nRF51822 can be powered at 1.8 V.
So nRF51822 has a power advantage over the other three MCUs. But it should
be noticed that the most power-hungry components are the wireless transceiver
module (36 mW during transmitting) and the Micro-SD card module (40 mW during
writing).

Figure 6.43a shows a photograph of monkey D with one of the custom designed
chambers. In preparation of the monkey for this experiment, magnetic resonance
(MR) images of the brain were acquired with fiducial markers. A sterile surgery
was performed to implant the electrode arrays using an MR-guided neuronavigation
system. The chamber was attached to the skull with screws and acrylic. The chamber
has a diameter of 30 mm and a height of 40 mm. The cap of the chamber is
removable and secured by screws. Monkey D has three six-channel electrodes
implanted, with three connectors in the chamber. Figure 6.43b shows a photograph
of the monkey M with two of the custom designed chambers. Monkey M has four
32-channel electrode arrays implanted, with two connectors in each chamber. The
chamber has the same dimension as the one used in Monkey D.

A couple of devices have been developed in this project for several different
animal and experiments. The photographs of several developed devices are shown
in Fig. 6.44. Figure 6.44a shows a bidirectional BMI with one recording channel
and one stimulation channel. The device has an on-board Micro-SD card module
for data storage. The recording and stimulation modules have separated grounds for
stimulation artifacts suppression. Figure 6.44b shows a 32-channel wireless neural
recording device. The device features a continuous 12-h recording with real–time
data streaming. The MCU integrated is ATxmega128A4U. Figure 6.44c shows a
16-channel wireless bidirectional BMI device. The MCU integrated is nRF51822.
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Fig. 6.44 Photographs of
several assembled devices for
the chamber. (a) A
bidirectional BMI device with
a Micro-SD card module, (b)
a 32-channel wireless neural
recorder, and (c) a 16-channel
wireless bidirectional BMI

Fig. 6.45 The block diagram
of the basic version of the
bidirectional BMI ASIC

Custom designed ASIC have been integrated in these BMI devices. Figure 6.45
shows the block diagram of the basic version of the bidirectional custom IC.
The basic version ASIC only integrates the analog interface to the brain. Signal
processing can be performed in the general–purpose processor. The main building
blocks include: (1) analog front-end, (2) stimulator back-end, (3) data converters,
and (4) peripheral modules.

Figure 6.46 shows the block diagram of the advanced bidirectional neural
interface SoC with the proposed energy-efficient neural feature extraction module
and on-chip PID closed-loop controller. The SoC mainly consists of: (1) 16-channel
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Fig. 6.46 Architecture of the
bi-directional, closed-loop
brain–machine interface
system. The system includes
a custom SoC and supporting
electronics
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neural front-end with in-channel neural feature extraction unit and closed-loop
controller, (2) 16-channel independently programmable neural stimulators, (3)
voltage and current mode data converters, (4) power management, analog voltage
and current references, and peripheral circuits. The detailed circuit implementation
has been presented in Chaps. 2–5. The configuration of the SoC is stored in the
flash memory of the MCU, and it can be programmed wirelessly via the Bluetooth
link. Once the device powers up, the MCU first reads the default configuration in
the flash memory, and then configures the SoC accordingly. The interface between
the MCU and the SoC is shown in Fig. 6.47. The configuration and data readout are
through a simplified two-wire interface (TWI) module. The TWI module supports
standard I2C protocol [321], which is compatible with most off-the-shelf general–
purpose MCUs. Multiple SoCs can be used together to support more channels. The
MCU works as the master and the multiple SoCs work as the slaves. The MCU first
sends the address, and the chip with the specified address responses. Two IOs are
used to configure the address, thus, the current design setup can support up to four
chips (64 channels in total). This can be easily expanded in the future, for example,
8-bit address can support up to 128 chips. The timing for the START , STOP, and
ANSWER commands is shown in Fig. 6.47.

Inductive charging of batteries is supported in several BMI devices. T3168 and
XKT510 are used as the wireless power transmitter and receiver ICs. A switching
frequency of 125kHz is used for the power transmitter. MC73831 is used for the
battery management. MC73831 is a linear charge management controller designed
for Lithium ion batteries, which performs a constant current and a constant voltage
charging based on a predefined policy. A 3-axis accelerometer ADXL345 has
also been integrated into the system. ADXL345 is an ultra-low power digital
accelerometer with a 10-bit resolution for ˙16 g. It can be powered from 2.0 to
3.6 V, and it has a 3-wire SPI interface to the MCU. It can be used to monitor the
activity level of an animal over a long term. Multiple accelerometers can also be
used together to accurately model an animal’s gesture.

6.4.3 Experimental Results

The proposed system has been fabricated in standard printed circuit board (PCB)
and CMOS technology. The PCB process used in this project features FR-4 material,
two or four layers, a thickness of 0.8 mm, a minimum trace and spacing of 0.15 mm,
a minimum hole diameter of 0.2 mm, a minimum via diameter of 0.15 mm. The PCB
surface uses a hot air solder leveling (HASL) lead-free finishing.

The basic version of the bidirectional neural interface IC have been fabricated
in both On-Semi 0.5 �m CMOS technology and IBM 180 nm CMOS technology.
Figure 6.48a shows the micrograph of the fabricated chip in 0.5 �m CMOS tech-
nology. The major building blocks are low-noise amplifiers and neural stimulator
back-ends. The chip occupies a silicon area of 3 mm � 3 mm, including the IO pads.
The supply voltage is from 3.3 to 5 V. Figure 6.48b shows the micrograph of the
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Fig. 6.47 (a) The communication interface between the SoC and the general–purpose MCU (not
all pads are shown), (b) the communication data format. The MCU (master) writes the gray sectors

fabricated chip in 180 nm CMOS technology. The chip occupies a silicon area of
4.5 mm � 1.5 mm, including the IO pads. The major building blocks are: (1) analog
front-end, (2) stimulator back-end, (3) data converters, and (4) peripheral modules.

Figure 6.49 shows the micrographs of the advanced bidirectional neural interface
SoC with energy-efficient neural feature extraction module and PID closed-loop
controller. Figure 6.49a is the first version including 12 channels with debugging and
testing structures, and Figure 6.49b shows the second version including 16 channels.
Both chips occupy a silicon area of 4.5 mm � 1.5 mm, including the IO pads. The
major building blocks are highlighted in the figure, including: (1) neural front-end
with neural feature extraction units and closed-loop controller, (2) programmable
neural stimulators, (3) data converters, (4) power management, analog references,
and peripheral circuits. The bench testing results of each module in the bidirectional
neural interface SoC have been presented in Chaps. 2–5. Table 6.6 summarizes the
measured key specifications of the SoC.
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Fig. 6.48 The micrographs
of the basic version of the
bidirectional neural interface
SoCs in (a) On-Semi 0.5 �m
CMOS technology, and (b)
IBM 180 nm CMOS
technology. Major building
blocks are highlighted in the
figures

Fig. 6.49 The micrographs
of the bidirectional neural
interface with the proposed
energy-efficient neural feature
extraction and PID
closed-loop controller. (a)
shows the first version with
12 channels with debugging
and testing structures. (b)
shows the second version
with 16 channels. Major
building blocks are
highlighted

The developed BMI devices have been used in a few experiments with freely
behaving monkeys. The experimental results presented in the following analysis
were conducted in monkey (Macaca mulatta) O, D, and F (8–12 kg). A study of
hippocampal (HIPP) gamma-slow oscillation coupling during sedation and sleep
is presented. The slow oscillation (SO) of non-rapid eye movement sleep plays
a critical role in the consolidation of newly formed memories [322]. There is
substantial behavioral evidence linking the amount of SO activity after learning to
the strength of both procedural and declarative memories [323, 324]. These effects
of SO on HIPP activity have been studied in rodents and cats, but have not been
documented in primates. In this work, we recorded the HIPP field potentials during
sedation and during natural sleep. In addition, electrical stimulation was delivered
to HIPP afferents in the parahippocampal gyrus (PHG) during sedation and awake
to study the effects of the sleep like SO on excitability.
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Table 6.6 Key specifications of the bidirectional neural interface SoC

Analog front-end LNA gain 40 dB

LNA bandwidth 0.3 Hz–7 kHz

LNA integral noise 4.57 �V

LNA power 9 �W

LNA NEF/PEF 4.77/41.1

THD (10 mVpp input) �61 dB

CMRR/PSRR 81 dB/71 dB

PGA + filters power/ch 8 �W

Energy extraction Center frequency 1–200 Hz

Tuning steps 64 natural log

Quality factor 1–8

Window length 10–500 ms

Ex + PID power/ch 7 �W

Spike discriminator Algorithm Window discrimination

Amplitude thresholds 6-bit

Latency 10 �s

Avg. power/ch 4 �W

ADC (volt mode/curr mode) Sampling rate 1 MSps/250 kSps

ENOB 9.1/7.9

FoM (fJ/step) 34.2/10.7

Power (at 200 kSps) 7 �W/0.5 �W

Stimulator Stim. current 4 mA/200 �A

Amplitude res. 6-bit

Pulse width 1–255 �s

Total Chip power/ch 56 �W/ch

power MCU + wireless (avg) 8 mW

Figure 6.50 illustrates the implanted electrode array in the monkey’s brain.
The platinum electrode sites are shown as red boxes and the electrode trajectories
are shown as black outlined rectangles. The dimensions of the electrode sites are
indicated at the bottom. Typical MRI and CT image with the visible hippocampal
array is shown in Fig. 6.50b. Colored regions indicate different neuroanatomical
areas. Since the goal of this project is to identify potential closed-loop stimulation
paradigms for modulating memory for human patients, clinical microelectrodes
were used in this study, rather than the conventional microelectrodes. Single neurons
cannot be collected from these electrodes, but the field potentials were sufficient to
document the regionally specific SO and effective PHG-HIPP connectivity for the
objective of this study.

Figure 6.51 shows the power spectrums recorded from the three electrode arrays
in the hippocampus, entorhinal cortex, and medial septum, respectively. The signal
was recorded using the developed BMI device on a Micro-SD card. The device was
placed in the chamber during the sedation, and retrieved the next time the monkey
was brought to the lab. Different brain states, from sedation, recovery, awake and
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Fig. 6.50 (a) Illustration of the implanted depth electrode arrays. (b) MRI and CT image with the
visible hippocampal array

Fig. 6.51 The power spectrums of the long-term recordings of monkey D from the three electrode
arrays in: (a) hippocampus, (b) entorhinal cortex, and (c) medial septum
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Fig. 6.52 The recorded spectrum of the recovery process from anesthesia in (a) monkey D and
(b) monkey F

sleep can be told from the spectrums. Both time and frequency domain features and
chewing artifacts verify the reliability of the recording.

Figure 6.52 shows the recorded spectrum of the recovery process from anesthesia
in monkey D and monkey F, respectively. Both recordings show a period of an
increase of the high-frequency oscillation after the sedation, which is the effect of
the ketamine-dexmedetomidine.

Separate sessions were conducted with a focus on quantifying neural connectiv-
ity. In order to study during stimulation reversal and awake states, the developed
bidirectional BMI device was configured to deliver a single bipolar charge-balanced
pulse with an amplitude of 2 mA in every 30 s to the entorhinal cortex. The
same device recorded the evoked response in the hippocampus. In this way, the
PHG-HIPP connectivity in consistent states defined by oscillatory activity was
studied. Figure 6.53 shows a stacked plot of 278 responses, aligned by the on-
set of the stimulation. The red arrow marks the stimulation time. Thanks to the
fast artifact recovery design as presented in Chap. 5, the evoked potentials can
be clearly seen from the recording without signal corruption. The experiment was
repeated on Monkey D approximately 2 months. These results demonstrate the
reproducibility and stability of the effects. Figure 6.54 shows the average waveform
of the responses.



212 6 System Integration and Experiments

Fig. 6.53 The stacked plot of
278 stimulation triggered
evoked potentials recorded
using the developed BMI
device

Fig. 6.54 The average response waveform of the stimulation triggered evoked potentials in the
hippocampus

In the next experiment, a programmable stimulus pulse train was delivered to
the medial septum. The stimulation frequency was switched between 20 to 80 Hz
during one session. Figure 6.55 compares the evoked potentials (EP) from three
states: sedation, recovery, and awake. The plots are generated by the average of an
over 3-h recording with a stimulus pulse train delivered every 30 s. In all three states,
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Fig. 6.55 The recordings of the stimulus-evoked potentials. Stimulus trains of 40 and 60 Hz in
different brain states are shown. The plots show a triggered average over 3 h recording in total,
with stimulation every 30 s

Fig. 6.56 The time course of
EP peaks and pre-stimulus
gamma power in across three
behavioral states: sedated
(red, black circles), recovery
(gray circles), and awake
(blue circles). Gamma
(30–50 Hz) power was
calculated in a 300-ms
window preceding each
stimulus

the stimulus pulse train evoked oscillations in the hippocampus at 40 and 60 Hz. The
oscillation continues for at least one cycle after the stimulation pulse train. Due to
the high stimulation current (2 mA) and the high compliance voltage (12 V), the
battery typically lasts 3–4 h in the stimulation-recording sessions.

Figure 6.56 illustrates the Gamma-dependence of hippocampal EPs in sedated
versus awake monkeys. The time course of EP peaks and pre-stimulus gamma power
in monkey D across three behavioral states are shown: sedated (red, black circles),
recovery (gray circles), and awake (blue circles). Gamma (30–50 Hz) power was
calculated in a 300-ms window preceding each stimulus. The horizontal axis is
scaled to stimulus number, not the absolute time. PHG stimuli during sedation in
the lab were delivered every 5s by a commercial stimulator. PHG stimuli during
recovery and awake periods in the home cage were delivered every 30 s by the
custom designed BMI device. Stimulation amplitude was 0.5mA in both cases. The
reversal agent, atipamezole, was given between the sedated and recovering states. In
both monkeys, the recovery periods show a transient increase in HIPP gamma-band
activity and steady increase in the peak amplitude of the EP.
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Fig. 6.57 Mean EPs during
sedation (red, black) and
awake (blue) for (a) monkey
D and (b) monkey F. 95%
confidence intervals on the
mean are shown in gray

Fig. 6.58 (a) The power spectral density of the hippocampal recordings during recovery (gray)
and awake (blue) states in monkey F. (b) Distribution of gamma amplitude across sedated (red,
black) and awake (blue) recording sessions in monkey F

Thus, the gamma-dependence of the evoked HIPP responses was specific to the
sedated state and the responses overall were weaker than during the awake state. The
results were replicated in Monkey F using instrumentation recording. Figure 6.57
compares the EPs during sedation and awake for Monkey D and Monkey F. 95%
confidence intervals on the mean are shown in gray.

Figure 6.58a shows the power spectral density of the hippocampal recordings
during recovery (gray) and awake (blue) states in monkey F. Monkey F exhibited
a similar HIPP oscillatory activity during recovery from sedation as Monkey D,
with an increase in gamma power and a decrease in low-frequency power relative
to the awake states. Figure 6.58b shows the distribution of gamma amplitude
across sedated (red, black) and awake (blue) recording sessions in monkey F. The
sedated distribution was colored black and red to highlight its bimodal nature and
correspondence to the bimodal EP response amplitudes as in Figs. 6.56 and 6.57.
The higher mode of the sedation distribution (red) aligned with the awake gamma
amplitude distribution (blue), while the lower mode (black) was not presented in the
awake distribution.
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In summary, the study above shows that the ketamine-dexmedetomidine sedation
in primates produces phase-amplitude coupling of gamma and slow oscillations in
the PHG-HIPP network. This work presents the first study to directly compare the
macaques HIPP field potentials in sleep and sedation. The custom developed BMI
system played a key role in the presented experiment especially in freely behaving
monkeys. The study suggests that future investigations of the SO in primates would
best be conducted during natural slow-wave sleep rather than sedation, and these
studies would be best studied directly through the BMI devices as developed in this
work.

To conclude, a comparison with the recently reported designs of the bidirectional
neural interfaces is listed in Table 6.7. Compared with the state-of-the-art designs,
this work is the first reported wireless bidirectional, closed-loop BMI system used
for long-term freely behaving animal experiments and investigation. This design
shows a promising and practical solution for use in the future animal experiments
based on primate models.



Chapter 7
Conclusion and Future Direction

7.1 Summary of the Work

This book has presented the analysis and design of BMI systems. To the best of
our knowledge, this is the first work dedicated to studying bidirectional closed-loop
BMI systems. The main motivation of this work is the fact that many significantly
meaningful neuroscience experiments, especially in freely behaving animals, cannot
be conducted without custom designed bidirectional closed-loop BMIs. With the
close collaboration between neuroscientists and engineers, this work was able to
identify and address several important and practical issues in BMI systems’ design.
The developed system has been successfully used in several animal experiments,
resulting in significant new observations.

The main work and contributions of this book are summarized as follows.
In the first chapter, a brief historical review of BMI development was given. A
comprehensive survey and review with a focus on BMIs with bidirectional neural
interface were presented. Consecutively, an overview of BMI system architecture
was presented. Design considerations and key specifications were summarized. The
configurations for various closed-loop operations were illustrated.

In the following three chapters, the analysis, design, and experimental results
of the three main building blocks of a BMI system, namely the neural signal
recording module, the neural feature extraction module, and the neural stimulator
module were presented. In Chap. 2, neural recording front-end designs were
introduced. The design of a general–purpose low-noise instrumentation amplifier
and a low-power ADC were discussed. A novel pre-whitening neural amplifier
was proposed to increase the equivalent dynamic range of the front-end. The
pre-whitening processing takes advantage of the neural signal’s characteristics,
significantly relaxing the ADC design without sacrificing the signal quality. In
addition, compressive sensing technique was used to reduce the wireless data rate of
the recording front-end. A fully integrated wireless neural signal acquisition front-
end was developed for chronic neural recording and BMI applications.

© Springer International Publishing AG 2018
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In Chap. 3, commonly used neural features for real–time closed-loop BMIs
were summarized. The circuit implementation for energy-efficient feature extraction
of local field potential and action potential was presented. An energy extraction
circuit with a natural logarithmic domain tuning scheme was proposed to provide a
sufficient frequency resolution for low-frequency brain oscillations with a minimum
number of tuning steps. An ultra low-power action potential discriminator was
designed in current-mode circuits. A matched filter was proposed to extract
amplitude-phase coupled neural features. The performance of the matched filter
was further improved by using in combination with the proposed pre-whitening
amplifier. Experimental results showed that the proposed design improved the
feature detection accuracy especially in low SNR cases.

Chapter 4 presented the analysis and design of neural stimulators. The back-
ground and mechanisms of neurostimulation were first reviewed, followed by
a description of physical and electrical models of the electrode and electrolyte
interface. An overview of electrical stimulator design was given, including a review
of stimuli generation methods, stimulation waveform, and electrode configuration.
Methods for achieving charge balancing were also discussed. A general–purpose
neural stimulator was designed. In addition, a novel net-zero charge stimulation
strategy was proposed. Instead of focusing on circuit matching and residue charge
removal, this work attempts to achieve charge balancing by employing feedback.
The developed chip has been validated in both in vitro and in vivo experiments.

Chapter 5 discussed the design of bidirectional closed-loop BMIs from two
important perspectives: the stimulation artifacts and the closed-loop operation.
Stimulation artifact is a known issue in simultaneous neural stimulation and
recording. A long-lasting stimulation artifact blanks the recording front-end and
corrupts the recorded signal. Prior work proposed different methods to address this
problem, however, with constraints in their applications. In this work, stimulation
artifacts in different electrode configurations and circuit topologies were studied.
Conclusions and design recommendations were given. In addition, the mechanisms
of closed-loop operation of BMIs were reviewed, followed by the design of a
low-power general–purpose programmable PID controller. The PID controller was
integrated in a bidirectional neural interface SoC.

Chapter 6 presented the BMI system integration and animal experiments. The
design of a general–purpose experimental platform was first described. Custom
communication protocols and user-friendly interfaces were developed and used
in this work. Then, a novel watermaze experiment for the study of augmenting
perception though modulated electrical stimulation was presented. A complete
experimental system was designed, including a wearable waterproofed stimulator,
an animal tracking system, and a computer based control interface. Different
stimulation parameters and versatile neuromodulation algorithms can be configured
in the system. Moreover, the design of a bidirectional neural interface device for
the operation in a freely behaving animal was presented. Long-term experiments of
neural stimulation and recording in monkeys during awake, sedated, and sleeping
states were given. A study of hippocampal gamma-slow oscillation coupling using
the developed system was also described. The design has shown a promising and
practical solution for the future experiments in non-human primate models.
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7.2 Future Direction

A decade ago, Mikhail A. Lebedev and Miguel A.L. Nicolelis predicted that
future BMIs will have sensory feedback directly delivered to cortical or subcortical
somatosensory areas, and closed-loop BMIs would be the ideal tool to restore motor
functions [275]. This prediction has inspired this work. With the efforts of scientists
and engineers around the world, we are stepping into the future of BMIs at an
incredible pace. Nevertheless, several bottlenecks still need to be overcome.

1. Interfacing: The direct interface between the neuron and electronics remains a
challenge, preventing a safe long-term neural stimulation and recording. Novel
interfacing material and electronics still need to be developed;

2. Wireless Communication: Although a lot of efforts have been put in developing
wireless neural recorders, a reliable solution for real–time streaming of neuron
activities from high density microelectrode arrays is still highly desirable. The
ideal solution would fully consider the trade-offs between the bandwidth and
power consumption, with a minimum data corruption;

3. On-chip Processing: On-chip processing is important for reducing the wireless
data rate, and more importantly, to support real–time closed-loop operation,
which is the ultimate goal for the development of most BMI devices. The on-
chip operation is usually much more reliable than streaming the data through
a wireless link and relying on an external processing station. However, the
limited power budget and on-chip resources place a significant challenge on on-
chip neural signal processing design. With the help of artificial intelligence and
advanced machine learning techniques, on-chip neural signal processing is one
of the most promising research areas in the next few years;

4. Power Consumption: Low-power is always an important design consideration
for implantable medical devices, for both extending battery life and minimizing
the tissue damage caused by heat. Developing low-power circuit design tech-
niques as well as exploring energy harvesting opportunities would be the path to
overcome this challenge;

5. Packaging: Biocompatible packaging is critical in the developing of implantable
BMI devices. An ideal implantable device would be fully sealed with only
wireless interfaces for communication, programming, and battery recharging.

It should be noticed that aforementioned challenges and opportunities are
mainly from the electrical engineering perspective. In addition, the development
of fundamental neuroscience and neural engineering innovations has always been
the main driving force in the BMI research. The biggest opportunity is the close
collaboration between neuroscientists and electrical engineers, as well as scientists
and engineers in all related fields. With further improvements in performance,
reliability, and range of applications, the BMI technology would benefit a larger
and larger population, revolutionize our way of interacting with the external world,
and fundamentally help us better understand ourselves.
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