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Abstract

Starting from the well-known studies by Kahmenan and Tversky, researchers have
found many examples when our decision making seems to be irrational. We show
that this seemingly irrational decision making can be explained if we take into
account that human abilities to process information are limited. As a result, instead
of the exact values of different quantities, we operate with granules that con-
tain these values. Of several examples, we show that optimization under such
granularity restriction indeed leads to observed human decision making. Thus,
granularity helps explain seemingly irrational human decision making.

Similar arguments can be used to explain the success of heuristic techniques in
expert decision making. We use these explanations to predict the quality of the
resulting decisions. Finally, we explain how we can improve on the existing
heuristic techniques by formulating and solving the corresponding optimization
problems.
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Chapter 1
Human Decisions Are Often Suboptimal:
Phenomenon of Bounded Rationality

1.1 Seemingly Irrational Human Decision Making:
Formulation of the Problem

Decisions are important. One of the main objectives of science and engineering is
to help people make decisions.

For example, we try to predict weather, so that peoplewill be able to dress properly
(and take an umbrella if needed), and so that if a hurricane is coming, people can
evacuate. We analyze quantum effects in semi-conductors so that engineers can
design better computer chips. We analyze diseases so that medical doctors can select
the best treatment, etc.

In complex situations, people need help in making their decisions. In simple
situations, an average person can easily make a decision. For example, if the weather
forecast predicts rain, one should take an umbrella, otherwise one should not.

In more complex situations, however, even when we know all the possible conse-
quences of each action, it is not easy to make a decision. For example, in medicine,
many treatments come with side effects: a surgery can sometimes result in a patient’s
death, immune system suppression can result in a infectious disease, etc. In such sit-
uations, it is not easy to compare different actions, and even skilled experts would
appreciate computer-based help.

To help people make decisions, we need to analyze how people make decisions.
One of the difficulties in designing computer-based systemswhichwould help people
make decisions is that tomake such systems successful, we need to knowwhat people
want when they make decisions. Often, people cannot explain in precise terms why
they have selected this or that alternative.

In such situations, we need to analyze how people actually make decisions, and
then try to come up with formal descriptions which fit the observed behavior.

© Springer International Publishing AG 2018
J. Lorkowski and V. Kreinovich, Bounded Rationality in Decision Making
Under Uncertainty: Towards Optimal Granularity, Studies in Systems,
Decision and Control 99, DOI 10.1007/978-3-319-62214-9_1
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2 1 Human Decisions Are Often Suboptimal: Phenomenon of Bounded Rationality

In the ideal world, people should make perfect decisions. In many real-life situ-
ations, we know what is best for us, and we know the exact consequences of each
of our actions. In this case, a rational person should select an action that leads to the
best possible outcome.

This assumption underlies basic (idealized) economic models: in these models,
our decision making may hurt others but every person is interested in selecting a
decision which is the best for him/herself.

In the real world, people’s decisions are not perfect. In the perfect world, people
shouldmakeperfect decisions. It iswell known, however, that ourworld is not perfect,
and that many peoplemake decisions which are not in their own best interests. People
eat unhealthy food, fail to exercise, get drunk, smoke, take drugs, gamble, and do
many other things which—as they perfectly know—are bad for their health and bad
for their wallets.

Such imperfect decisions can still be described in optimization terms. People
engage in all kinds of unhealthy and asocial decision making because they get a
lot of positive emotions from this engagement. A drug addict may lose his money,
his family, his job, his health—but he gets so much pleasure from his drugs that he
cannot stop. A gambler may lose all his money, but the pleasure of gambling is so
high that he continues gambling (and losing) money until no money is left.

These examples of bad decisions are bad from the viewpoint of a person’s health
or wealth or social status. In all these examples, people clearly know what they
want—e.g., more pleasure from drugs or from gambling—and they select a decision
which is the “best” from this viewpoint.

On top of this well-known abnormal decision making, there are also many exam-
ples when a seemingly rational decision is actually irrational. It is well known
that people make seemingly irrational decisions as described above, i.e., that they
are optimizing objective functions which lead to their physical and ethical ruin.

Somewhat less known for the general public—but well known in psychology—is
the fact that many quite rational people, people who are not addicted to drugs or
gambling, people who normally lead a reasonably rational life, often make decisions
which, at first glance, may seem reasonable but which, on deeper analysis, are irra-
tional. This was first discovered in the studies of the Nobel Prize Winner Daniel
Kahneman and his coauthor Amos Tversky; see, e.g., [61].

What they discovered is that sometimes people behave in such a way that no
optimization can explain. Let us give a simple example. When a person is given two
alternatives A and B, the person is usually able to conclude that, e.g., to him or her,
A is better than B. We may disagree—as is the case of drug addiction—that A is an
unhealthy choice, but A is what a person prefers. In this case, if now we offer the
same person yet another alternative C, he or she may stick to A, or he or she may
switch to C—but we do not expect this person to select B (since we already know that
to this person, B is worse than another available alternative—namely, the alternative
A). We do not expect to observe such a weird choice—but in some situations, this is
exactly what has been observed; an example will be given later in this section.
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This is a relatively clear example of a seemingly irrational decision making; we
will show later that there are more subtle ones, where irrationality is not as easy to
explain—but is clearly present; see examples in the next section.

So why irrational decision making? The fact that normal, reasonable people often
make seemingly irrational decisions is puzzling.Wehumans come frombillions years
of improving evolution, we have flown to theMoon,we have discovered secrets of the
Universe, we have learned to predict weather and to cure previously fatal diseases—
this victorious image of Human Beings with a capital H does not seem to fit with
simple decision mistakes, when the same person prefers A to B and then B to A,
without even realizing that he/she is inconsistent.

Yes, we are not perfect, there are wars, crimes, and exploitations, but the common
wisdom seems to indicate that most of our problems are caused by our selfishness—a
criminal robs people because he wants to maximize his gain and he does not care if
other people get hurt; a manufacturer of unhealthy foods maximizes his profit and
does not care that people’s health deteriorates as a result, etc. In all these cases, we
blame the “evil” person for his selfish and vicious preferences, implicitly assuming
that this person looks for what is best for him/her.

We can understand a person following a bad-for-society optimization criterion,
but it is difficult to perceive a person whose decision making does not follow any
optimization at all—and often, such a person is us.

How are such examples of seemingly irrational decision making explained now:
the idea of bounded rationality. An established explanation for the seemingly
irrational decision making is that we humans have a limited ability to process
information—especially when the decision needs to be made urgently. On the quali-
tative level, this idea of bounded rationality is in good accordance with the observa-
tions; for example, usually, the more time we are given to make decisions, the more
rational our decisions become; see, e.g., [61].

The existing explanations explain the very fact of seemingly irrational decision
making, but not its observed specifics. The main limitation of the existing expla-
nation is that it explains the fact that our decisions are sometimes not rational. In
principle, under bounded resources, we can make different decisions, so we should
observe various types of seemingly irrational decision making.

In many situations, however—for example, in the two situations described
above—different decision makers exhibit the same deviations from the rational deci-
sion making. How can we explain these consistent deviations?

1.2 Examples of (Seemingly) Irrational Decision Making

Kahneman’s book Thinking, Fast and Slow [61] has many examples of seemingly
irrational decision making. In this book, we will concentrate on three examples. We
selected these examples because they are, in our opinion, the easiest to explainwithout
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getting into the details of decision making theory and mathematical optimization.
Let us describe these three examples in detail.

1.3 First Example of Seemingly Irrational Decision
Making: Compromise Effect

This example is about shopping. The first example comes from simple decisions
that most of us do very frequently: decisions on what to buy.

A customer shopping for an item usually has several choices. Some of these
choices have better quality, leading to more possibilities, etc.—but are, on the other
hand, more expensive. For example, a customer shopping for a photo camera has
plenty of choices ranging from the cheapest ones (that work only in good lighting)
to professional cameras that enable the users to make highest-quality photos even
under complex circumstances. A traveller planning to spend a night in a new city
has a choice from the cheapest motels (which provide a place to sleep) to luxurious
hotels providing all kinds of comfort, etc. A customer selects one of the alternatives
by taking into account the additional advantages of more expensive choices versus
the need to pay more money for these choices.

In many real-life situations, customers face numerous choices. As usual in sci-
ence, a good way to understand complex phenomena is to start by analyzing the
simplest cases. In line with this reasoning, researchers provided customers with two
alternatives and recorded which of these two alternatives a customer selected. In
many particular cases, these experiments helped better understand the customer’s
selections—and sometimes even predict customer selections.

Expected behavior. At first glance, it seems like such pair-wise comparisons are
all we need to know: if a customer faces several choices a1, a2, …, an , then a
customer will select an alternative ai if and only if this alternative is better in pair-
wise comparisons that all other possible choices.

An experiment. To confirm this common-sense idea, in the1990s, several researchers
asked the customers to select one of the three randomly selected alternatives.

The experimenters expected that since the three alternatives were selected at ran-
dom, a customers would:

• sometimes select the cheapest of the three alternative (of lowest quality of all
three),

• sometimes select the intermediate alternative (or intermediate quality), and
• sometimes select the most expensive of the three alternatives (of highest quality
of all three).
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Surprising results. Contrary to the expectations, the experimenters observed that in
the overwhelming majority of cases, customers selected the intermediate alternative;
see, e.g., [139, 143, 155]. In all these cases, the customer selected an alternative
which provided a compromise between the quality and cost; because of this, this
phenomenon was named compromise effect.

Why is this irrational? At first glance, selecting themiddle alternative is reasonable.
Let us show, however, that such a selection is not always rational.

For example, let us assume that we have four alternative a1 < a2 < a3 < a4
ordered in the increasing order of price and at the same time, increasing order of
quality. Then:

• if we present the user with three choices a1 < a2 < a3, in most cases, the user will
select the middle choice a2; this means, in particular, that, to the user, a2 better
than the alternative a3;

• on the other hand, if we present the user with three other choices a2 < a3 < a4, in
most cases, the same user will select the middle choice a3; but this means that, to
the user, the alternative a3 better than the alternative a2.

If in a pair-wise comparison, a2 is better, then the second choice is wrong. If in a
pair-wise comparison, the alternative a3 is better, then the first choice is wrong. In
both cases, one of the two choices is irrational.

This is not just an experimental curiosity, customers’ decisions have been manip-
ulated this way. At first glance, the above phenomena may seem like one of optical
illusions or logical paradoxes: interesting but not that critically important. Actually,
it is serious and important, since, according to anecdotal evidence, many companies
have tried to use this phenomenon to manipulate the customer’s choices: to make the
customer buy a more expensive product.

For example, if there are two possible types of a certain product, a company can
make sure that most customers select the most expensive type—simply by offering,
as the third option, an even more expensive type of the same product.

Manipulation possibility has been exaggerated, but mystery remains. Recent
research showed that manipulation is not very easy: the compromise effect only hap-
pens when a customer has no additional information—and no time (or no desire) to
collect such information. In situations when customers were given access to addi-
tional information, they selected—as expected from rational folks—one of the three
alternatives with almost equal frequency, and their pairwise selections, in most cases,
did not depend on the presence of any other alternatives; see, e.g., [148].

The new experiment shows that the compromise effect is not as critical and not as
wide-spread as it was previously believed. However, in situationwhen decisions need
to be made under major uncertainty, this effect is clearly present—and its seemingly
counterintuitive, inconsistent nature is puzzling.
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1.4 Second Example of Seemingly Irrational Decision
Making: Biased Probability Estimates

More complicated decision making situations. In the first example, we considered
situations with a simple choice, in which we have several alternatives, and we know
the exact consequences of each alternative.

In many practical cases, the situation is more complicated: for each decision,
depending on how things go, we may face different consequences. For example, if
a person invests all his retirement money in the stock market, the market may go
up—in which case, he will gain—or it may go down, in which case he will lose a
big portion of his savings. A person who takes on a potentially dangerous sport (like
car racing) will probably gain a lot of pleasure, but there is also a chance of a serious
injury.

Need to estimate probabilities. To make a decision in such complex situations,
it is important to estimate the probability of different outcomes. In some cases we
know these probabilities—e.g., in the state-run lotteries, probabilities of winning are
usually disclosed. In other cases, a person has to estimate these probabilities.

It seems reasonable to expect that people use unbiased estimates for proba-
bilities. Of course, based on the limited information, we can get only approximate
estimates of the corresponding probabilities. However, we expect that these esti-
mates are unbiased, i.e., that, on average, they should provide a reasonably accurate
estimate.

Indeed, if we systematically overestimate small probabilities, thenwewould over-
estimate our gain a lottery and, on average, lose. Similarly, ifwe systematically under-
estimate small probabilities, then, in particular, wewill underestimate the probability
of a disaster and invest in too risky stocks—and also lose on average.

Surprising observations. This is what we expect: unbiased estimates, but this is
not what we observe. What we observe is that small probabilities are routinely
overestimated, while probabilities close to 1 are routinely underestimated. This is
not just an occasional phenomenon: for each actual probability, the estimated proba-
bility is consistently different. For different actual probabilities pi , the corresponding
estimated probabilities p̃i are given in [61] (see also references therein):

pi 0 1 2 5 10 20 50 80 90 95 98 99 100
p̃i 0 5.5 8.1 13.2 18.6 26.1 42.1 60.1 71.2 79.3 87.1 91.2 100

Why biased estimates? As we have mentioned, biased estimates are contrary to
rational decision making: overestimating a small probability of success may get
a decision maker involved in risky situations where, on average (and thus, in the
long run) the decision maker will lose. On the other hand, overestimating a small
probability of a disaster will make a decision maker too cautious and prevent him/her
from making a rational risky decision.
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1.5 Third Example of Seemingly Irrational Behavior:
Average Instead of the Sum

Example.According to Chap.15, Sect. 15.1 of [61], titled “Less IsMore, Sometimes
Even in Joint Evaluation”, when pricing two large dinnerware sets,

• one consisting of 24 pieces in perfect condition, and
• the other consisting of the same 24 pieces plus 16 additional pieces, 9 of which
are broken,

most people value the second set lower.

Why this is irrational. Rationally, this makes no sense, since after buying the second
set, we can simply throw away the broken pieces, and actually end up with more
pieces.

This example is a particular case of a general phenomenon. According to [61],
this is a specific example of the following general phenomenon: when in a hurry,
people often use an arithmetic average as a substitute for the sum; see, e.g., Chap. 8,
Sect. 8.2 “Sets and Prototypes”.

For example, when people are asked to compare two pictures with multiple line
segments in each of them, and decide in which of the two pictures, the total length
of its line segments is larger, they usually select the picture with the largest average
length.

Need for an explanation. The general average-instead-sum phenomenon explains
the dinnerware sets comparison—that people compare average values of pieces in
two sets instead of comparing the overall values of these two sets: for the second set,
the average value is indeed lower.

However, what needs explaining is the phenomenon itself, i.e., why average is
used instead of the sum.

1.6 Structure of the Book

We start, in Chap.2, with explaining how bounded rationality explains the above
examples of seemingly irrational human behavior. Chapter 3 shows that bounded
rationality can also explain other aspects of human decision making. In Chap. 4, we
show that similar arguments explain the success of heuristic techniques in expert
decision making. In Chap.5, we use these explanations to predict the quality of the
resulting decisions. Finally, in Chap.6, we explain how we can improve on the exist-
ing heuristic techniques by formulating and solving the corresponding optimization
problems. The final short Chap.7 contains conclusions. Auxiliary computational
issues are analyzed in the Appendix.

http://dx.doi.org/10.1007/978-3-319-62214-9_2
http://dx.doi.org/10.1007/978-3-319-62214-9_3
http://dx.doi.org/10.1007/978-3-319-62214-9_4
http://dx.doi.org/10.1007/978-3-319-62214-9_5
http://dx.doi.org/10.1007/978-3-319-62214-9_6
http://dx.doi.org/10.1007/978-3-319-62214-9_7


Chapter 2
Towards Explaining Specific Examples
of Suboptimal (and Often Seemingly
Irrational) Human Decisions

In this chapter, we show that bounded rationality indeed explains the seemingly
irrational human decisions. Specifically, in Sect. 2.1, we briefly recall the traditional
utility-based approach to decision making. In Sect. 2.2, we describe our main idea—
of optimization under granularity. In Sect. 2.3, we show how this idea can explain
the first example of seemingly irrational decision making: the compromise effect. In
Sect. 2.4, we provide an explanation for the second example of seemingly irrational
decision making: use of bias probability estimates. Finally, in Sect. 2.5, we explain
why people use average instead of the sum.

2.1 Traditional Utility-Based Approach to Decision
Making: A Brief Reminder

Main assumption behind the traditional decision theory. Traditional approach to
decision making is based on an assumption that for each two alternatives A′ and A′′,
a user can tell:

• whether the first alternative is better for him/her; we will denote this by A′′ < A′;
• or the second alternative is better; we will denote this by A′ < A′′;
• or the two given alternatives are of equal value to the user; we will denote this by

A′ = A′′.

Towards a numerical description of preferences: the notion of utility. Under the
above assumption, we can form a natural numerical scale for describing preferences.
Namely, let us select a very bad alternative A0 and a very good alternative A1. Then,
most other alternatives are better than A0 but worse than A1.

For every probability p ∈ [0, 1], we can form a lottery L(p) in which we get A1

with probability p and A0 with probability 1 − p.

© Springer International Publishing AG 2018
J. Lorkowski and V. Kreinovich, Bounded Rationality in Decision Making
Under Uncertainty: Towards Optimal Granularity, Studies in Systems,
Decision and Control 99, DOI 10.1007/978-3-319-62214-9_2
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• When p = 0, this lottery coincides with the alternative A0: L(0) = A0.
• When p = 1, this lottery coincides with the alternative A1: L(1) = A1.

For values p between 0 and 1, the lottery is better than A0 and worse than A1. The
larger the probability p of the positive outcome increases, the better the result:

p′ < p′′ implies L(p′) < L(p′′).

Thus, we have a continuous scale of alternatives L(p) that monotonically goes from
L(0) = A0 to L(1) = A1. We will use this scale to gauge the attractiveness of each
alternative A.

Due to the above monotonicity, when p increases, we first have L(p) < A, then
we have L(p) > A, and there is a threshold separating values p for which L(p) < A
from the values p for which L(p) > A. This threshold value is called the utility of
the alternative A:

u(A)
def= sup{p : L(p) < A} = inf{p : L(p) > A}.

Then, for every ε > 0, we have

L(u(A) − ε) < A < L(u(A) + ε).

We will describe such (almost) equivalence by ≡, i.e., we will write that A ≡
L(u(A)).

How to elicit the utility from a user: a fast iterative process. Initially, we know
the values u = 0 and u = 1 such that A ≡ L(u(A)) for some u(A) ∈ [u, u].

On each stage of this iterative process, once we know values u and u for which
u(A) ∈ [u, u], we compute the midpoint umid of the interval [u, u] and ask the user
to compare A with the lottery L(umid) corresponding to this midpoint. There are two
possible outcomes of this comparison: A ≤ L(umid) and L(umid) ≤ A.

• In the first case, the comparison A ≤ L(umid) means that u(A) ≤ umid, so we can
conclude that u ∈ [u, umid].

• In the second case, the comparison L(umid) ≤ A means that umid ≤ u(A), so we
can conclude that u ∈ [umid, u].

In both cases, after an iteration, we decrease the width of the interval [u, u] by half.
So, after k iterations, we get an interval of width 2−k which contains u(A)—i.e., we
get u(A) with accuracy 2−k .

How to make a decision based on utility values. Suppose that we have found the
utilities u(A′), u(A′′),…, of the alternatives A′, A′′,…Which of these alternatives
should we choose?

By definition of utility, we have:

• A ≡ L(u(A)) for every alternative A, and
• L(p′) < L(p′′) if and only if p′ < p′′.
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We can thus conclude that A′ is preferable to A′′ if and only if u(A′) > u(A′′). In
other words, we should always select an alternative with the largest possible value
of utility. So, to find the best solution, we must solve the corresponding optimization
problem.

Before we go further: caution. We are not claiming that people estimate prob-
abilities when they make decisions: we know they often don’t. Our claim is that
when people make definite and consistent choices, these choices can be described
by probabilities. (Similarly, a falling rock does not solve equations but follows New-

ton’s equations ma = m
d2x

dt2
= −mg.) In practice, decisions are often not definite

(uncertain) and not consistent.

How to estimate utility of an action. For each action, we usually know possible
outcomes S1, . . . , Sn . We can often estimate the probabilities p1, . . . , pn of these
outcomes.

By definition of utility, each situation Si is equivalent to a lottery L(u(Si )) in
which we get:

• A1 with probability u(Si ) and
• A0 with the remaining probability 1 − u(Si ).

Thus, the original action is equivalent to a complex lottery in which:

• first, we select one of the situations Si with probability pi : P(Si ) = pi ;
• then, depending on Si , we get A1 with probability P(A1 | Si ) = u(Si ) and A0 with
probability 1 − u(Si ).

The probability of getting A1 in this complex lottery is:

P(A1) =
n∑

i=1

P(A1 | Si ) · P(Si ) =
n∑

i=1

u(Si ) · pi .

In this complex lottery, we get:

• A1 with probability u =
n∑

i=1
pi · u(Si ), and

• A0 with probability 1 − u.

So, the utility of the complex action is equal to the sum u.
From the mathematical viewpoint, the sum defining u coincides with the expected

value of the utility of an outcome. Thus, selecting the action with the largest utility
means that we should select the action with the largest value of expected utility
u = ∑

pi · u(Si ).
How uniquely determined is utility. The above definition of utility u depends on
the selection of two fixed alternatives A0 and A1.What if we use different alternatives
A′
0 and A′

1? How will the new utility u′ be related to the original utility u?
By definition of utility, every alternative A is equivalent to a lottery L(u(A))

in which we get A1 with probability u(A) and A0 with probability 1 − u(A). For
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simplicity, let us assume that A′
0 < A0 < A1 < A′

1. Then, for the utility u′, we
get A0 ≡ L ′(u′(A0)) and A1 ≡ L ′(u′(A1)). So, the alternative A is equivalent to a
complex lottery in which:

• we select A1 with probability u(A) and A0 with probability 1 − u(A);
• depending on which of the two alternatives Ai we get, we get A′

1 with probability
u′(Ai ) and A′

0 with probability 1 − u′(Ai ).

In this complex lottery, we get A′
1 with probability

u′(A) = u(A) · (u′(A1) − u′(A0)) + u′(A0).

Thus, the utility u′(A) is related with the utility u(A) by a linear transformation
u′ = a · u + b, with a > 0. In other words, utility is defined modulo a linear
transformation.

Traditional approach summarized. We assume that

• we know possible actions, and
• we know the exact consequences of each action.

Then, we should select an action with the largest value of expected utility.

2.2 Our Main Idea: Optimization Under Granularity

When we do not have enough time to take all the information into account, a natural
idea is to use partial information. For example, when a man sees an animal in the
jungle, it could be a predator, so an immediate decision needs to be made on whether
to run away or not. Ideally, we should take into account all the details of an animal
image, but there is no time for that, a reasonable reaction is to run way if an animal
is sufficiently large.

So, instead of considering each data set separately, we, in effect, combine these
data sets into “granules” corresponding to the partial information that is actually
used in decision making; see, e.g., [126]. In the above example, instead of using the
animal’s size, we only take into account whether this size is greater than a certain
threshold s0 or not. In effect, this means that we divide the set of all possible values
of size into two granules:

• a granule consisting of small animals, whose size is smaller than s0, and
• a granule consisting of large (and thus, potentially dangerous) animals, whose size
is larger than or equal to s0.

In this chapter, we show is that in many cases, if we take into account only algorithms
that process such granular information, then the observed human decision making
can be shown to be optimal among such granular algorithms—although, of course,
if we could take into account all available information, we would be able to make a
better decision.
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2.3 Explaining the First Example of Seemingly Irrational
Human Decision Making: Granularity Explains The
Compromise Effect

In this section, we show that granularity explains the first example of seemingly
irrational human decision making: the compromise effect. The results from this
section first appeared in [85, 86, 90].

Compromise effect: reminder. We have three alternative a, a′ and a′′:

• the alternative a is the cheapest—and is, correspondingly, of the lowest quality
among the given three alternatives;

• the alternative a′ is intermediate in terms of price—and is, correspondingly, inter-
mediate in terms of quality;

• finally, the alternative a′′ is the most expensive—and is, correspondingly, of the
highest quality among the given three alternatives.

We do not know the exact prices, we just know the order between them; similarly,
we do not know the exact values of quality, we just know the order between them.
In this situation, most people select an alternative a′.

Let us describe the corresponding granularity. The “utility” of each alternative
comes from two factors:

• the first factor comes from the quality: the higher the quality, the better—i.e., larger
the corresponding component u1 of the utility;

• the second factor comes fromprice: the lower the price, the better for the user—i.e.,
the larger the corresponding component u2 of the utility.

The fact that we do not know the exact value of the price means, in effect, that we
consider three possible levels of price and thus, three possible levels of the utility u1:

• low price, corresponding to high price-related utility;
• medium price, corresponding to medium price-related utility; and
• high price, corresponding to low price-related utility.

In the following text, we will denote “low” by L , “medium” by M , and “high” by H .
In these terms, the above description of each alternative by the corresponding pair
of utility values takes the following form:

• the alternative a is characterized by the pair (L , H);
• the alternative a′ is characterized by the pair (M,M); and
• the alternative a′′ is characterized by the pair (H, L).

Natural symmetries. We do not know a priori which of the two utility components
is more important. As a result, it is reasonable to treat both components equally.
In order words, the selection should be the same if we simply swap the two utility
components—i.e., we should select the same of three alternatives before and after
swap:
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• if we are selecting an alternative based on the pairs (L , H), (M,M), and (H, L),
• then we should select the exact same alternative if the pairs were swapped, i.e., if:

– the alternative a was characterized by the pair (H, L);
– the alternative a′ was characterized by the pair (M,M); and
– the alternative a′′ was characterized by the pair (L , H).

Similarly, there is no reason to a priori prefer one alternative or the other. So, the
selection should not depend on which of the alternatives we mark as a, which we
mark as a′, and which we mark as a′′. In other words, any permutation of the three
alternatives is a reasonable symmetry transformation. For example, if, in our case,
we select an alternative a which is characterized by the pair (L , H), then, after we
swap a and a′′ and get the choice of the following three alternatives:

• the alternative a which is characterized by the pair (H, L);
• the alternative a′ is characterized by the pair (M,M); and
• the alternative a′′ is characterized by the pair (L , H),

then we should select the same alternative—which is now denoted by a′′.

General comment: symmetries have been helpful in dealing with uncertainty. It
should be mentioned that in situations with major uncertainty, symmetries are often
helpful. The main idea behind using symmetries is that if the situation is invariant
with respect to some natural symmetries, then it is reasonable to select an action
which is also invariant with respect to all these symmetries.

There have been many applications of this idea, starting from the pioneering
work of N. Wiener on Cybernetics; see, e.g., [161]. It has been shown that for many
empirically successful techniques related to neural fuzzy logic, networks, and inter-
val computations, their empirical success can be explained by the fact that these
techniques can be deduced from the appropriate symmetries; see, e.g., [115]. In par-

ticular, this explains the use of a sigmoid activation function s(z) = 1

1 + exp(−z)
in neural networks, the use of the most efficient “and”-operations (t-norms) and
“or”-operations (t-conorms) in fuzzy logic, etc. [115].

Back to our situation: what we can conclude based on the corresponding sym-
metries. One can observe the following: that if we both swap u1 and u2 and swap a
and a′′, then you get the exact same characterization of all alternatives:

• the alternative a is still characterized by the pair (L , H);
• the alternative a′ is still characterized by the pair (M,M); and
• the alternative a′′ is still characterized by the pair (H, L).

The only difference is that:

• now, a indicates an alternative which was previously denoted by a′′, and
• a′′ now denotes the alternative which was previously denoted by a.

As we have mentioned, it is reasonable to conclude that:

• if in the original triple selection, we select the alternative a,
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• then in thenewselection—which is basedon the exact samepairs of utility values—
we should also select an alternative denoted by a.

But this “new” alternative a is nothing else but the old a′′. So, we conclude that:

• if we selected a,
• then we should have selected a different alternative a′′ in the original problem.

This is clearly a contradiction:

• we started by assuming that, to the user, a was better than a′′ (because otherwise
a would not have been selected in the first place), and

• we ended up concluding that to the same user, the original alternative a′′ is better
than a.

This contradiction shows that, under the symmetry approach, we cannot prefer a.
Similarly:

• if in the original problem, we preferred an alternative a′′,
• then this would mean that in the new problem, we should still select an alternative
which marked by a′′.

But this “new” a′′ is nothing else but the old a. So, this means that:

• if we originally selected a′′,
• then we should have selected a different alternative a in the original problem.

This is also a contradiction:

• we started by assuming that, to the user a′′ was better than a (because otherwise
a′′ would not have been selected in the first place), and

• we ended up concluding that to the same user, the original alternative a is better
than a′′. This contradiction shows that, under the symmetry approach, we cannot
prefer a′′.

We thus conclude that out of the three alternatives a, a′, and a′′:

• we cannot select a, and
• we cannot select a′′.

This leaves us only once choice: to select the intermediate alternative a′.
This is exactly the compromise effect that we planned to explain.

Conclusion. Experiments show when people are presented with three choices a <

a′ < a′′ of increasing price and increasing quality, and they do not have detailed
information about these choices, then in the overwhelming majority of cases, they
select the intermediate alternative a′.

This “compromise effect” is, at first glance, irrational: selecting a′ means that,
to the user, a′ is better than a′′, but in a similar situation when the user is presented
with a′ < a′′ < a′′′, the same principle would indicate that the user will select
a′′—meaning that a′′ is better than a′.

Somewhat surprisingly, a natural granularity approach explains this seemingly
irrational decision making.
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2.4 Explaining the Second Example of Seemingly Irrational
Human Decision Making: Granularity Explains Why
Our Probability Estimates Are Biased

In this section, we show that granularity explains the second example of seemingly
irrational human decision making: that in our decisions, we use biased estimates of
probabilities.

The results from this section appeared in [82, 86, 90].

Main idea. Probability of an event is estimated, from observations, as the frequency
with which this event occurs. For example, if out of 100 days of observation, rain
occurred in 40 of these days, then we estimate the probability of rain as 40%. In
general, if out of n observations, the event was observed in k of them, we estimate

the probability as the ratio
k

n
.

This ratio is, in general, different from the actual (unknown) probability. For
example, if we take a fair coin, for which the probability of head is exactly 50%, and
flip it 100 times, we may get 50 heads, but we may also get 47 heads, 52 heads, etc.
Similarly, if we have the coin fall heads 50 times out of 100, the actual probability
could be 50%, could be 47% and could be 52%. In other words, instead of the exact
value of the probability, we get a granule of possible values. (In statistics, this granule
is known as a confidence interval; see, e.g., [144].)

In other words:

• first, we estimate a probability based on the observations; as a result, instead of
the exact value, we get a granule which contains the actual (unknown) probability;
this granule is all we know about the actual probability;

• then, when a need comes to estimate the probability, we produce an estimate based
on the granule.

Let us analyze these two procedures one by one.

Probability granules: analysis of the first procedure and the resulting formulas.
It is known (see, e.g., [144]), that the expected value of the frequency is equal to p,
and that the standard deviation of this frequency is equal to

σ =
√

p · (1 − p)

n
.

It is also known that, due to the Central Limit Theorem, for large n, the distribution
of frequency is very close to the normal distribution (with the corresponding mean
p and standard deviation σ).

For normal distribution, we know that with a high certainty all the values are
located within 2–3 standard deviations from the mean, i.e., in our case, within the
interval (p − k0 · σ, p + k0 · σ), where k0 = 2 or k0 = 3: for example, for k0 = 3,
this is true with confidence 99.9%.We can thus say that the two values of probability
p and p′ are (definitely) distinguishable if the corresponding intervals of possible
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values of frequency do not intersect—and thus, we can distinguish between these
two probabilities just by observing the corresponding frequencies.

In precise terms, the probabilities p < p′ are distinguishable if

(p − k0 · σ, p + k0 · σ) ∩ (p′ − k0 · σ′, p′ + k0 · σ′) = ∅,

where

σ′ def=
√

p′ · (1 − p′)
n

,

i.e., if p′ − k0 ·σ′ ≥ p+ k0 ·σ. The smaller p′, the smaller the difference p′ − k0 ·σ′.
Thus, for a given probability p, the next distinguishable value p′ is the one for which

p′ − k0 · σ′ = p + k0 · σ.

When n is large, these value p and p′ are close to each other; therefore, σ′ ≈
σ. Substituting an approximate value σ instead of σ′ into the above equality, we
conclude that

p′ ≈ p + 2k0 · σ = p + 2k0 ·
√

p · (1 − p)

n
.

If the value p corresponds to the i-th level, then the next value p′ corresponds to
the (i + 1)-st level. Let us denote the value corresponding to the i-th level by p(i).
In these terms, the above formula takes the form

p(i + 1) − p(i) = 2k0 ·
√

p · (1 − p)

n
.

The above notation defines the value p(i) for non-negative integers i . We can
extrapolate this dependence so that it will be defined for all non-negative real values i .

When n is large, the values p(i + 1) and p(i) are close, the difference

p(i + 1) − p(i)

is small, and therefore, we can expand the expression p(i + 1) in Taylor series and
keep only linear terms in this expansion:

p(i + 1) − p(i) ≈ dp

di
.

Substituting the above expression for p(i + 1) − p(i) into this formula, we con-
clude that

dp

di
= const · √p · (1 − p).
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Moving all the terms containing p into the left-hand side and all the terms containing
i into the right-hand side, we get

dp√
p · (1 − p)

= const · di.

Integrating this expression and taking into account that p = 0 corresponds to the
lowest 0-th level—i.e., that i(0) = 0—we conclude that

i(p) = const ·
∫ p

0

dq√
q · (1 − q)

.

This integral can be easily computed if introduce a new variable t for which q =
sin2(t). In this case,

dq = 2 · sin(t) · cos(t) · dt,

1 − p = 1 − sin2(t) = cos2(t) and therefore,

√
p · (1 − p) =

√
sin2(t) · cos2(t) = sin(t) · cos(t).

The lower bound q = 0 corresponds to t = 0 and the upper bound q = p corresponds
to the value t0 for which sin2(t0) = p—i.e., sin(t0) = √

p and t0 = arcsin
(√

p
)
.

Therefore,

i(p) = const ·
∫ p

0

dq√
q · (1 − q)

= const ·
∫ t0

0

2 · sin(t) · cos(t) · dt
sin(t) · cos(t) =

∫ t0

0
2 · dt = 2 · const · t0.

We know how t0 depends on p, so we get

i(p) = 2 · const · arcsin (√
p

)
.

We can determine the constant from the condition that the largest possible probability
value p = 1 should correspond to the largest level i = m. From the condition that
i(1) = m, taking into account that

arcsin
(√

1
)

= arcsin(1) = π

2
,

we conclude that

i(p) = 2m

π
· arcsin (√

p
)
.

Thus,
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arcsin
(√

p
) = π · i

2m
,

hence √
p = sin

(
π · i
2m

)

and thus,

p(i) = sin2
(

π · i
2m

)
.

Thus, probability granules are formed by intervals [p(i), p(i+1)]. Each empirical
probability is represented by the granule i to which it belongs.

From granules to probability estimates: analysis of the second procedure. As
we have mentioned, instead of the actual probabilities, we have probability labels
corresponding to m different granules:

• the first label corresponds to the smallest certainty,
• the second label corresponds to the second smallest certainty,
• etc.,
• until we reach the last label which corresponds to the largest certainty.

We need to produce some estimates of the probability based on the granule. In other
words, for each i from 1 to m, we need to assign, to each i-th label, a value pi in
such a way that labels corresponding to higher certainty should get larger numbers:
p1 < p2 < · · · < pm .

Before we analyze how to do it, let us recall that one of the main objectives
of assigning numerical values is that we want computers to help us solve the cor-
responding decision problems, and computers are not very good in dealing with
granules; their natural language is the language of numbers. From this viewpoint, it
makes sense to consider not all theoretically possible exact real numbers, but only
computer-representable real numbers.

In a computer, real numbers from the interval [0, 1] are usually represented by
the first d digits of their binary expansion. Thus, computer-representable numbers

are 0, h
def= 2−d , 2h, 3h,…, until we reach the value 2d · h = 1.

In our analysis, we will assume that the “machine unit” h > 0 is fixed, and we
will thus assume that only multiples of this machine units are possible values of all
n probabilities pi .

For example, when h = 0.1, each probability pi takes 11 possible values: 0, 0.1,
0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, and 1.0.

In themodern computers, the valueh is extremely small; thus,whenever necessary,
we can assume that h ≈ 0—i.e., use limit case of h → 0 instead of the actual small
“machine unit” h.

For each h, we consider all possible combinations of probabilities p1 < · · · < pm
in which all the numbers pi are proportional to the selected step h, i.e., all possible
combinations of values (k1 · h, . . . , km · h) with k1 < . . . < km .
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For example, when m = 2 and h = 0.1, we consider all possible combinations
of values (k1 · h, k2 · h) with k1 < k2:

• For k1 = 0 and p1 = 0, we have 10 possible combinations (0, 0.1), (0, 0.2),…,
(0, 1).

• For k1 = 1and p1 = 0.1,wehave9possible combinations (0.1, 0.2), (0.1, 0.3),…,
(0.1, 1).

• …
• Finally, for k1 = 9 and p1 = 0.9, we have only one possible combination (0.9, 1).

For each i , for different possible combinations (p1, . . . , pm), we get, in general,
different value of the probability pi . According to the complete probability formula,
we can obtain the actual (desired) probability Pi if we combine all these value pi
with the weights proportional to the probabilities of corresponding combinations:

Pi =
∑

p1<···<pm

pi · Prob(p1, . . . , pm).

Sincewe have no reason to believe that some combinations (p1, . . . , pm) aremore
probable and some are less probable, it is thus reasonable to assume that all these
combinations are equally probable. Hence, Pi is equal to the arithmetic average of
the values pi corresponding to all possible combinations (p1, . . . , pm).

For example, form = 2 and h = 0.1, we thus estimate P1 by taking an arithmetic
average of the values p1 corresponding to all possible pairs. Specifically, we average:

• ten values p1 = 0 corresponding to ten pairs (0, 0.1),…, (0, 1);
• nine values p1 = 0.1 corresponding to nine pairs (0.1, 0.2),…, (0.1, 1);
• …
• and a single value p1 = 0.9 corresponding to the single pair (0.9, 1).

As a result, we get the value

P1 = 10 · 0.0 + 0 · 0.1 + · · · + 1 · 0.9
10 + 9 + · · · + 1

= 16.5

55
= 0.3.

Similarly, to get the value p2, we average:

• a single value p2 = 0.1 corresponding to the single pair (0, 0.1);
• two values p2 = 0.2 corresponding to two pairs (0, 0.2) and (0.1, 0.2);
• …
• ten values p2 = 1.0 corresponding to ten pairs (0, 1), …, (0.9, 1).

As a result, we get the value

P2 = 1 · 0.1 + 2 · 0.2 + · · · + 10 · 1.0
1 + 2 + · · · + 10

= 37.5

55
= 0.7.
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The probability pi of each label can take any of the equidistant values
0, h, 2h, 3h, …, with equal probability. In the limit h → 0, the resulting proba-
bility distribution tends to the uniform distribution on the interval [0, 1].

In this limit h → 0, we get the following problem:

• we start with m independent random variables v1, . . . , vm which are uniformly
distributed on the interval [0, 1];

• we then need to find, for each i , the conditional expected value

E[vi | v1 < · · · < vm]

of each variable vi under the condition that the values vi are sorted in increasing
order.

Conditional expected values are usuallymore difficult to compute than unconditional
ones. So, to solve our problem, let us reduce our problem to the problemof computing
the usual (unconditional) expectation.

Let us consider m independent random variables each of which is uniformly
distributed on the interval [0, 1]. One can easily check that for any two such variables
vi and v j , the probability that they are equal to each other is 0. Thus, without losing
generality, we can safely assume that all m random values are different. Therefore,
the whole range [0, 1]m is divided into m! sub-ranges corresponding to different
orders between vi . Each sub-range can be reduced to the sub-range corresponding
to v1 < · · · < vm by an appropriate permutation in which v1 is swapped with the
smallest v(1) of m values, v2 is swapped with the second smallest v(2), etc.

Thus, the conditional expected value of vi is equal to the (unconditional) expected
value of the i-th value v(i) in the increasing order. This value v(i) is known as an order
statistic, and for uniform distributions, the expected values of all order statistics are

known (see, e.g., [1, 4, 25]): Pi = i

m + 1
.

So, if all we know is that our degree of certainty is expressed by i-th label on an
m-label scale of granules, then it is reasonable to assign, to this case, the probability

Pi = i

m + 1
.

Let us now combine the two procedures. In the first procedure, based on the
empirical frequency p, we find a label i for which

p ≈ sin2
(

π · i
2m

)
.

Based on this label, we then estimate the probability as Pi = i

m + 1
. For largem, we

have P ≈ i

m
. Substituting P instead of

i

m
into the formula for p, we conclude that

p ≈ sin2
(π

2
· P

)
.
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Based on this formula,we can express the estimate P in terms of the actual probability
p, as

P ≈ 1

π
· arcsin(√p).

Comparing our estimates P with empirical probability estimates p̃i : first try.
Let us compare the probabilities pi , Kahneman’s empirical estimates p̃i , and the

estimates Pi = 1

π
· arcsin(√pi ) computed by using the above formula:

pi 0 1 2 5 10 20 50 80 90 95 98 99 100
p̃i 0 5.5 8.1 13.2 18.6 26.1 42.1 60.1 71.2 79.3 87.1 91.2 100
Pi 0 6.4 9.0 14.4 20.5 29.5 50.0 70.5 79.5 85.6 91.0 93.6 100

For most probabilities pi , the difference between the values P ′
i and the empirical

probability estimates p̃i is so small that it is below the accuracy with which the
empirical weights can be obtained from the experiment.

Thus, granularity ideas indeed explain Kahneman and Tversky’s observation of
biased empirical probability estimates.

Summary. Kahneman and Tversky showed that when people make decisions, then
instead of—as should be rational—weighting outcomes with weights proportional
to probabilities of different outcomes—they use biased weights, overestimating the
importance of low-probability events and underestimating the importance of high-
probability events. In this section, we show that this observable bias can be explained
if we take into account granularity—imposed by our limited rationality (i.e., our
limited ability to process information).

2.5 Explaining the Third Example of Seemingly Irrational
Human Decision Making: Using Average Instead of the
Sum

In this section, we show how to explain the third example of seemingly irrational
behavior: using average instead of the sum. The result of this section first appeared
in [76].

Using average instead of the sum: reminder. According to [61], when in a hurry,
people often use an arithmetic average as a substitute for the sum. This substitu-
tion leads to a seemingly irrational behavior. For example, when pricing two large
dinnerware sets,

• one consisting of 24 pieces in perfect condition, and
• the other consisting of the same 24 pieces plus 16 additional ones, 9 of which are
broken,
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most people value the second set lower—possibly because in the second set, the
average value of a piece is lower. This selection is irrational, since after buying the
second set, we can simply throw away the broken pieces, and actually end up with
more pieces.

Why do people use the average instead of the sum: a possible explanation. Our
explanation for the use of arithmetic averages is that the arithmetic average is much
easier to compute than, e.g., the sum.

This may sound somewhat counter-intuitive, because, at first glance, the formula

for the arithmetic average x = x1 + · · · + xn
n

looks somewhat more complex to

compute than the formulas for the sum s = x1 + · · · + xn: to compute the average,
we need to perform all the additions needed for the sum plus one additional division.

This is indeed the case if we talk about exact computations: to compute the exact
sum or the exact average, one needs to process each of n numbers at least once—if we
do not process one of the numbers, we cannot get the exact value of sum or average.
Since each elementary arithmetic operation takes at most two numerical inputs, this
means that in both cases, we need at least n/2 operations, and n/2 is O(n).

However, if we take into account that the values xi are only known approximately
and that, as a result, we only need approximate values of sum and average, then the
computational complexity changes. For the sum, we still need to count the intervals,
but to compute the approximate values of the average, we can use Monte-Carlo
techniques: namely, we can select a random sample of values and take the arithmetic
average of this sample.

According to the Large Numbers Theorem, when the sample size is large, this
random-sample-based arithmetic average provides a good approximation to the
desired exact average—and the larger the sample, the more accurate this approx-
imation; see, e.g., [144].

The required sample size—and thus, the corresponding computational complex-
ity of estimating the average this way—depends only on the desired accuracy of
estimating the average, and does not depend on the number n of original values.
Thus, for a fixed accuracy, the computational complexity of this algorithm does not
grow with n at all, it is O(1), while the complexity of computing the sum still grows
with n as O(n). Since for large n, O(1) � O(n), this explains why people use an
average as a substitute for the sum.



Chapter 3
Towards Explaining Other Aspects
of Human Decision Making

In the previous chapter, we explained how bounded rationality ideas can explain
seemingly irrational human decisions. In this chapter, we show that it can explain
other not-easy-to-explain aspects of human decision making.

As we mentioned in Sect. 2.1, the decision making theory shows that a rational
decision is the one that maximizes the expected utility. Thus, to make a decision, we
need to estimate the utilities, we need to estimate the probabilities, and we need to
make a decision based on these estimates. These aspects of human decision making
are discussed, correspondingly, in Sects. 3.1, 3.2, and 3.3.

The corresponding issues are related to individual decision making. Of course, in
real life, when we make decisions, we need to take into account the utility of others.
A general aspect of this taking-into-account is discussed in Sect. 3.4. In the last
Sect. 3.5, we pay special attention to decision making situations in which the utility
of others is the main concern: namely, the situation of education: its first subsection
deals with the “how” aspects of education, and its second subsection analyzes the
results of education.

3.1 Estimating Utility: Why Utility Grows as Square Root
of Money

Estimating utility is important. Since the optimal decision making is equivalent to
maximizing expected utility, to make good recommendations, we need to know the
utility of different outcomes.

Empirical fact. It has been experimentally determined that for situations with mon-
etary gain, utility u grows with the money amount x as u ≈ xα , with α ≈ 0.5, i.e.,
approximately as u ≈ √

x ; see, e.g., [61] and references therein.

What we do in this section. In this section, we provide another example when
granularity explains observed decision making. Namely, we explain why utility that
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describes human decision making grows approximately as square root of money
amount.

The results from this section first appeared in [90].

Main idea behind our explanation. Money is useful because one can buy goods
and services with it. The more goods and services one buys, the better. In the first
approximation, we can say that the utility increases with the increase in the number
of goods and service.

In these terms, to estimate the utility corresponding to a given amount of money,
we need to do two things:

• first, we need to estimate how many goods and services a person can buy for a
given amount of money;

• second, we need to estimate what value of utility corresponds to this number of
goods and services.

Step1: estimatinghowmanygoodsand services apersoncanbuy.Different goods
and services have different costs ci ; some are cheaper, some are more expensive. We
know that all the costs ci are bounded by some reasonable number C , so they are all
located within an interval [0,C]. Let us sort the costs of different items in increasing
order: c1 < c2 < · · · < cn .

In these terms, the smallest amount of money that we need to buy a single item is
c1. The smallest amount of money that we need to buy two items is c1 + c2, etc. In
general, the smallest amount ofmoney that we need to buy k items is c1+c2+· · ·+ck .

How does this amount depend on k? We do not know the exact costs ci , all we
know is that these costs are sorted in increasing order. Similarly to the previous
section, we can therefore consider all possible combinations c1 < · · · < cn , and
take, as an estimate Ci for ci , the average value of ci over all such combinations.

Similarly to the previous section, we can conclude that Ci = C · i

n + 1
.

In these terms, the expected amount of money needed to buy k items is equal to

C1 + C2 + · · · + Ck = C

n
· (1 + 2 + · · · + k) = C

2n
· k · (k + 1) ≈ const · k2.

Step 2: estimating the utility corresponding to k items. Let uk denote the utility
corresponding to k items. We know that all the values uk are bounded by some
reasonable number U , so they are all located within an interval [0,U ]. Clearly the
more items, the better, i.e., the larger utility. Thus, we conclude that u1 < u2 < · · · <

un .
We do not know the exact values of uk , all we know is that these utility values

are sorted in increasing order. We can thus consider all possible combinations u1 <

· · · < un , and take, as an estimate Uk for uk , the average value of uk over all
such combinations. Similarly to the previous section, we can conclude that Uk =
U · k

n + 1
= const · k.
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Let us combine these two estimates.What is the utility corresponding to the amount
of money x? To answer this question, first, we estimate the number of items k that
we can buy with this amount. According to our estimates, x = const · k2, so we
conclude that k = const · √

x . Then, we use this value k to estimate the utility
U ≈ Uk . Substituting k = const · √

x into the formula U ≈ Uk = const · k, we
conclude that U ≈ const · √

x .
Since, as we have mentioned, utility is defined modulo a linear transformation,

we can thus conclude that U ≈ √
x , which is exactly what we wanted to explain.

Summary. Thus, granularity indeed explains an interesting difficult-to-explain
empirical fact—that utility grows as square root of money amount.

3.2 Estimating Probabilities: A Justification of Sugeno
λ-Measures

To describe expert uncertainty, researchers and practitioners often go beyond (addi-
tive) probability measures and use non-additive (fuzzy) measures. One of the most
widely used classes of such measures is the class of Sugeno λ-measures. Their suc-
cess is somewhat paradoxical, since from the purely mathematical viewpoint, these
measures are—in some reasonable sense—equivalent to probabilitymeasures. In this
section, we explain this success by showing that while mathematically, it is possi-
ble to reduce Sugeno measures to probability measures, but from the computational
viewpoint, using Sugeno measures is much more efficient. We also show that among
all fuzzy measures which are equivalent to probability measures, Sugeno measures
(and a slightlymore general family ofmeasures) are the only ones with this efficiency
property.

Results from this section first appeared in [117].

Traditional approach: probability measures. Usually, uncertainty has been
described by probabilities. In mathematical terms, probabilistic information about
events from some set X of possible events is usually described in terms of a proba-
bility measure, i.e., a function p(A) that maps some sets A ⊆ X into real numbers
from the interval [0, 1].

The probability p(A) of a set A is usually interpreted as the frequency with which
events from the set A occur in real life. In this interpretation, if we have two disjoint
sets A and B with A∩B = ∅, then the frequency p(A∪B)withwhich the events from
A or B happen is equal to the sum of the frequencies p(A) and p(B) corresponding
to each of these sets.

This property of probabilities measures is known as additivity: if A∩ B = ∅, then

p(A ∪ B) = p(A) + p(B). (3.2.1)

Need to do beyond probability measures. Since the appearance of fuzzy sets (see,
e.g., [65, 120, 163]), it has been argued that to adequately describe expert knowledge,
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we often need to go beyond probabilities. In general, instead of probabilities, we have
the expert’s degree of confidence g(A) that an event from the set Awill actually occur.

Clearly, something should occur, so g(∅) = 0 and g(X) = 1. Also, it is reasonable
to take into account that the larger the set, the more confident we are that an event
from this set will occur, i.e., A ⊆ B implies g(A) ≤ g(B). Functions g(A) that
satisfy these properties are known as fuzzy measures.

Sugeno λ-measures. M. Sugeno, one of the pioneers of fuzzymeasures, introduced a
specific class of fuzzy measures which are now known as Sugeno λ-measures [151].
Measures from this class are close to the probability measures in the following
sense: similarly to the case of probability measures, if we know g(A) and g(B) for
two disjoint sets, we can still reconstruct the degree g(A ∪ B). The difference is
that this reconstructed value is no longer the sum g(A) + g(B), but a slightly more
complex expression.

To bemore precise, Sugeno λ-measures satisfy the following property: if A∩B =
∅, then

g(A ∪ B) = g(A) + g(B) + λ · g(A) · g(B), (3.2.2)

where λ > −1 is a real-valued parameter.
When λ = 0, the formula (3.2.2) corresponding to the Sugenomeasure transforms

into the additivity formula (3.2.1) corresponding to the probability measure. From
this viewpoint, the value λ describes how close the given Sugeno measure is to a
probability measure: the smaller |λ|, the closer these measures are.

Sugenoλ-measures hadmanypractical applications. Sugenomeasures are among
themost widely used fuzzymeasures; see, e.g., [12, 153, 158] and references therein.

Comment. Of course, not all expert reasoning can be described by Sugeno measures.
In many practical situations, the expert’s degree of confidence g(A∪ B) in the event
A ∪ B is not uniquely determined by the values g(A) and g(B). In such situations,
we need to consider more general classes of fuzzy measures [12, 153, 158].

Problem. This practical success is somewhat paradoxical. Indeed:

• The main point of using fuzzy measures is to go beyond probability measures.
• On the other hand, Sugeno λ-measures are, in some reasonable sense, equivalent
to probability measures (see [111] and the following text).

How can we explain this?

What we do in this section. In this section, we explain the seeming paradox of
Sugeno λ-measures as follows:

• Yes, from the purely mathematical viewpoint, Sugeno measures are indeed equiv-
alent to probability measures.

• However, from the computational viewpoint, processing Sugeno measure directly
is much more computationally efficient than using a reduction to a probability
measure.
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We also analyze which other probability-equivalent fuzzy measures have this prop-
erty: it turns out that this property holds only for Sugeno measures themselves and
for a slightly more general class of fuzzy measures.

The structure of this section is straightforward: first, following the main ideas
from [111], we describe in what sense Sugeno measure is mathematically equivalent
to a probability measure. Then, we explain why processing Sugeno measures is
more computationally efficient than using a reduction to probabilities, and finally,
we analyze what other fuzzy measures have this property.

What we mean by equivalence. According to the formula (3.2.2), if we know the
values a = g(A) and b = g(B) for disjoint sets A and B, then we can compute the
value c = g(A ∪ B) as

c = a + b + λ · a · b. (3.2.3)

We would like to find a 1-1 function f (x) for which p(A)
def= f −1(g(A)) is a

probability measure, i.e., for which, if c is obtained by the relation (3.2.3), then for
the values

a′ = f −1(a), b′ = f −1(b), and c′ = f −1(c),

we should have
c′ = a′ + b′.

Comment. As we have mentioned, A ⊆ B implies both p(A) ≤ p(B) and g(A) ≤
g(B). Thus, larger probability values should lead to larger degrees of confidence.
It is therefore reasonable to also require that the mapping f (x) that transforms the
probability p(A) into the corresponding degree of confidence g(A) = f (p(A)) be
monotonic. It should be mentioned that for continuous functions f (x), monotonicity
automatically follows from our requirement that f is a 1-1 function.

How to show that a Sugeno λ-measure with λ 
= 0 is equivalent to a probability
measure. Let us consider the auxiliary values A = 1 + λ · a, B = 1 + λ · b, and
C = 1 + λ · c. From the formula (3.2.3), we can now conclude that

C = 1 + λ · (a + b + λ · a · b) = 1 + λ · a + λ · b + λ2 · a · b. (3.2.4)

One can easily check that the right-hand side of this formula is equal to the product
A · B of the expressions A = 1 + λ · a and B = 1 + λ · b. Thus, we get

C = A · B. (3.2.5)

We have a product, we need a sum. Converting from the product to the sum is easy:
it is known that logarithm of the product is equal to the sum of logarithms. Thus, for
the values

a′ = ln(A) = ln(1 + λ · a),

b′ = ln(B) = ln(1 + λ · b),
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and
c′ = ln(C) = ln(1 + λ · c),

we get the desired formula
c′ = a′ + b′.

To get this formula, we used the inverse transformation f −1 that transforms each
value x into a new value

x ′ = ln(1 + λ · x). (3.2.6)

When λ > 0, then for x ≥ 0, we get 1 + λ · x ≥ 1 and thus, x ′ = ln(1 + λ · x) ≥ 0.
When λ < 0, then for x > 0, we have 1+λ·x < 1 and thus, x ′ = ln(1+λ·x) < 0.

However, we want to interpret the values x ′ as probabilities, and probabilities are
always non-negative. Therefore, for λ < 0, we need to change the sign and consider

x ′ = − ln(1 + λ · x). (3.2.7)

For these new values, (3.2.3) still implies that c′ = a′ + b′.
From the relations (3.2.6) and (3.2.7), we can easily find the corresponding direct

transformation x = f (x ′). Indeed, for λ > 0, by exponentiating both sides of the
formula (3.2.6), we get 1 + λ · x = exp(x ′), hence

f (x ′) = 1

λ
· (exp(x ′) − 1). (3.2.8)

For λ < 0, by exponentiating both sides of the formula (3.2.7), we get 1+λ · x =
exp(−x ′), hence

f (x ′) = 1

λ
· (exp(−x ′) − 1), (3.2.9)

i.e., equivalently,

f (x ′) = 1

|λ| · (1 − exp(−x ′)). (3.2.10)

In both cases, we can conclude that a Sugeno λ-measure is indeed equivalent to
a probability measure.

First comment: how unique is the transformation f (x)? If we have two different
functions f (x) and f ′(x) with the above property, then for each triple (a, b, c)
that satisfies the formula (3.2.3), we will have c′ = a′ + b′ and c′′ = a′′ + b′′,
where a′′ = ( f ′)−1(a), b′′ = ( f ′)−1(b), and c′′ = ( f ′)−1(c). Thus, a mapping

x ′ = h(x ′′), where h(x)
def= f −1( f ′(x)), has the property that c′′ = a′′ + b′′ implies

h(c′′) = h(a′′) + h(b′′).
It is known that the only mappings from non-negative numbers to non-negative

numbers that satisfy this property are linear functions h(k) = k · x . Thus, once we
know one such function f (x), all other functions f ′(x) satisfy the property that
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f −1( f ′(x)) = k · x . By applying the function f (x) to both sides of this equality, we
conclude that

f ′(x) = f (k · x).

In other words, all such functions can be obtained from each other by an appropriate
linear re-scaling x → k · x .
Second comment: why not also require that f (1) = 1. We are looking for a function
f (x) that transforms the probability p(A) into a fuzzy measure g(A) = f (p(A)).
For the functions (3.2.8) and (3.2.10), for x = 0, we have f (0) = 0. This equality
is in good accordance with the fact that for A = ∅, we have p(∅) = g(∅) = 0 and
thus, we should have 0 = g(∅) = f (p(∅)) = f (0).

Similarly, itmakes sense to consider A = X ; in this case,wehave p(X) = g(X) =
1 and thus, we should have 1 = g(X) = f (p(X)) = f (1), i.e., f (1) = 1. Let us
show that we can use the above non-uniqueness to satisfy this additional property.
Indeed, once we have found the function f (x), any function f ′(x) = f (k · x) also
has the desired property. We can therefore select k so that we will have the desired
property f ′(1) = f (k · 1) = 1. This equality means f (k) = 1, so we should choose
k = f −1(1).

Specifically, for λ > 0, we have f −1(x) = ln(1 + λ · x), so k = ln(1 + λ), and
thus,

f ′(x ′) = 1

λ
· (
exp(ln(1 + λ) · x ′) − 1

) = 1

λ
·
(
(1 + λ)x

′ − 1
)

.

Similarly, for λ < 0, we have f −1(x) = − ln(1− |λ| · x), so k = − ln(1− |λ|), and
thus,

f ′(x ′) = 1

|λ| · (
1 − exp(ln(1 − |λ|) · x ′)

) = 1

|λ| ·
(
1 − (1 − |λ|)x ′)

.

So why do we need Sugenomeasures? Because of the equivalence, we can view the
values of the Sugeno measure as simply re-scaling probabilities g(A) = f (p(A))

for the corresponding probability measure.
So why not just store the corresponding probability values p(A)? In other words,

why not just re-scale all the values g(A) into the corresponding probability values
p(A) = f −1(g(A))? At first glance, this would be a win-win arrangement, because
once we do this re-scaling, we can simply use known probabilistic techniques.

What we plan to do. Let us show that:

• while from the purely mathematical viewpoint, a Sugeno λ-measure is equivalent
to a probability measure,

• from the computational viewpoint, the direct use of Sugeno measures is much
more efficient.

To explain this advantage, let us clarify what we mean by direct use of Sugeno
measure and what we mean by an alternative of using a reduction to a probability
measure.
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The corresponding computational problem: abrief description.We are interested
in understanding the degree of possibility of different sets of events. These degrees
g(A) come from an expert.

Theoretically, we could ask the expert to provide us with the values g(A) corre-
sponding to all possible sets A, but this would require an unrealistically large number
of questions.

A feasible alternative is to elicit some values g(A) from the experts and then use
these values to estimate the missing values g(A). A possibility of such estimation
follows from the definition of a Sugeno λ-measure. Namely, once we know the
values g(A) and g(B) corresponding to a two disjoint sets A and B, we do not
need to additionally elicit, from this expert, the degree g(A ∪ B): this degree can be
estimated based on the known values g(A) and g(B).

Let us explain how the desired degree g(A ∪ B) can be estimated.

Estimating g(A ∪ B) by a directly use of Sugeno measure. The first alternative is
to simply estimate the degree g(A ∪ B) by applying the formula (3.2.2).

Estimating g(A ∪ B) by a reduction to a probability measure. An alternative
idea—which is likely to be used by a practitioner accustomed to the probabilistic
data processing—is to use the above-described reduction to a probability measure.
Namely:

• first, we use the known reduction to find the corresponding values of the probabil-
ities

p(A) = f −1(g(A)) and p(B) = f −1(g(B));

• then, we add these probabilities to get

p(A ∪ B) = p(A) + p(B);

• finally, we re-scale this resulting probability back into degree-of-confidence scale
by applying the function f (x) to this value p(A ∪ B), i.e., we compute

g(A ∪ B) = f (p(A ∪ B)).

Direct use of Sugeno measure is computationally more efficient. If we directly
use Sugeno measure, then all we need to do is add and multiply. Inside a computer,
both addition and multiplication are very directly hardware supported and therefore
very fast.

In contrast, the use of reduction to probability measures requires that we compute
the value of logarithm (to compute f −1(x)) and exponential function (to compute
f (x)). These computations are much slower than elementary arithmetic operations.
Thus, the direct use of Sugeno measure is definitely much more computationally

efficient.

Comment. Of course, this result does not mean that we should always use Sugeno
measures: for example, if we use the operation once and off-line, spending one
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microsecond more to compute exp and ln is not a big deal. However, in time-critical
situations, with limited computational ability—e.g., if we are embedding some AI
abilities into a control chip—saving computation time is important.

How to explain the use of Sugeno measure to a probabilist. The above argument
enables us to explain the use of Sugeno measure to a person who is either skeptical
about (or unfamiliar with) fuzzy measures. This explanation is as follows.

We are interested in expert estimates of probabilities of different sets of events.
It is known that expert estimates of the probabilities are biased (see Chap.1): the
expert’s subjective estimates g(A) of the corresponding probabilities p(A) are equal
to g(A) = f (p(A)) for an appropriate re-scaling function f (A).

In this case, a natural ideas seems to be:

• to re-scale all the estimates back into the probabilities, i.e., to estimate these prob-
abilities p(A) as

p(A) = f −1(g(A)),

and then
• to use the usual algorithms to process these probabilities.

In particular, if we know the expert’s estimates g(A) and g(B) corresponding to
two disjoint sets A and B, and we want to predict the expert’s estimate g(A ∪ B)

corresponding to their union, then we:

• first, re-scale the values g(A) and g(B) into the un-biased probability scale, i.e.,
compute

p(A) = f −1(g(A)) and p(B) = f −1(g(B));

• then, we compute
p(A ∪ B) = p(A) + p(B);

• finally, we estimate g(A∪B) by applying the corresponding biasing function f (x)
to the resulting probability:

g(A ∪ B) = f (p(A ∪ B)).

It turns out that for some biasing functions f (x), it is computationally more efficient
not to re-scale into probabilities, but to store and process the original biased values
g(A). This is, in effect, the essence of applications of a Sugeno λ-measure are about.

Which other fuzzy measures have this property? We want to describe fuzzy mea-
sures which are mathematically equivalent to probability measures, but in which
processing the fuzzy measure directly is more efficient than using the corresponding
reduction to a probability measure.

Equivalence of a fuzzy measure g(A) to a probability measure p(A) means that
g(A) = f (p(A)) for some 1-1 function f (x). For the empty set A = ∅, for both
measures, we should have zeros p(∅) = g(∅) = 0, so we should have f (0) = 0.

http://dx.doi.org/10.1007/978-3-319-62214-9_1


34 3 Towards Explaining Other Aspects of Human Decision Making

In general, for such fuzzy measures, if we know the values g(A) and g(B) corre-
sponding to two disjoint sets A and B, then we can compute the measure g(A ∪ B)

as follows:

• first, we use the known values g(A) and g(B) and the relations

g(A) = f (p(A)) and g(B) = f (p(B))

to reconstruct the corresponding probability values

p(A) = f −1(g(A)) and p(B) = f −1(g(B)),

where f −1(x) denotes the inverse function;
• then, we add the resulting values p(A) and p(B), and get

p(A ∪ B) = p(A) + p(B);

• finally, we transform this probability back into the fuzzy measure, as

g(A ∪ B) = f (p(A ∪ B)).

The resulting value can be described by an explicit expression

g(A ∪ B) = f ( f −1(g(A)) + f −1(g(B))),

i.e., an expression of the type

g(A ∪ B) = F(g(A), g(B)),

where
F(a, b)

def= f ( f −1(a) + f −1(b)) (3.2.11)

For a = b = 0, due to f (0) = 0, we get F(0, 0) = 0.
We are looking for situations inwhich the direct computation of a function F(a, b)

is more computationally efficient than using the above three-stage scheme. Thus,
we are looking for situations in which the corresponding function F(a, b) can be
computed fast. In the computer, the fastest elementary operations are the hardware-
supported ones: addition, subtraction, multiplication, and division. So, we should
be looking for the functions F(a, b) that can be computed by using only these four
arithmetic operations.

In mathematical terms, functions that can be computed from the unknowns and
constants by using only addition, subtraction, multiplication, and division are known
as rational functions (they can be always represented as ratios of two polynomials).
In these terms, we are looking for situations in which the corresponding aggregation
function is rational.
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Natural properties of the aggregation function. From the formula (3.2.11), we can
easily conclude that the operation F(a, b) is commutative: F(a, b) = F(b, a).

One can also easily check that this operation is associative. Indeed, by (3.2.11),
we have

F(F(a, b), c) = f ( f −1(F(a, b)) + f −1(c)).

From (3.2.11), we conclude that

f −1(F(a, b)) = f −1(a) + f −1(b).

Thus,
F(F(a, b), c) = f ( f −1(a) + f −1(b) + f −1(c)).

The right-hand side does not change if we change the order of the elements a, b, and
c. Thus, we have

F(a, F(b, c)) = f ( f −1(a) + f −1(b) + f −1(c)),

i.e., F(F(a, b), c) = F(a, F(b, c)). So, the operation F(a, b) is indeed associative.
Since we are looking for rational functions F(a, b) for which F(0, 0) = 0, we are

thus looking for rational commutative and associative operations F(a, b) for which
F(0, 0) = 0.

There is a known classification of all rational commutative associative binary
operations. A classification of all possible rational commutative associative oper-
ations is known; it is described in [19]. Namely, the authors of [19] show that
each such operation is “isomorphic” to either x + y or x + y + x · y, in the
sense that there exists a fractional-linear transformation a → t (a) for which either
F(a, b) = t−1(t (a) + t (b)) or F(a, b) = t−1(t (a) + t (b) + t (a) · t (b)).

In other words, F(a, b) = c means either than t (c) = t (a) + t (b) or that t (c) =
t (a) + t (b) + t (a) · t (b).
Comment. It should bementioned that the paper [19] calls this relation by a fractional-
linear transformation equivalence, not isomorphism; we changed the term since we
already use the term “equivalence” in a different sense.

Let us use this known result. Let us use this result to classify the desired operations
F(a, b). First, we want an operation for which F(0, b) = b for all b. In terms of t ,
this means that either t (b) = t (b)+ t (0) for all b, or t (b) = t (b)+ t (0)+ t (0) · t (b)
for all b. In both cases, this implies that t (0) = 0. Thus, t (a) is a fractional-linear
function for which t (0) = 0.

A general fractional-linear function has the form

t (a) = p + q · a
r + s · a .
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The fact that t (0) = 0 implies that p = 0, so we get

t (a) = q · a
r + s · a . (3.2.12)

Here, we must have r 
= 0, because otherwise, the right-hand side of this expression
is simply a constant q/s and not an invertible transformation. Since r 
= 0, we can
divide both the numerator and the denominator of this expression by r and get a
simplified formula

t (a) = A · a
1 + B · a , (3.2.13)

where we denoted
A

def= q

r
and B

def= s

r
.

For this transformation, the inverse transformation can be obtained from the fact that

a′ = A · a
1 + B · a

implies
1

a′ = 1 + B · a
A · a = 1

A · a + B

A
.

Thus,
1

A · a = 1

a′ − B

A
,

so

A · a = 1
1

a′ − B

A

and

a =
1

A
1

a′ − B

A

= a′

A − B · a′ . (3.2.14)

So, for operations equivalent to x + y, we get

c′ = a′ + b′ = t (a) + t (b) = A · a
1 + B · a + A · b

1 + B · b .

Thus,
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c = F(a, b) = t−1(c′) =
A · a

1 + B · a + A · a
1 + B · b

A − A · B · a
1 + B · a − A · B · b

1 + B · b
.

Dividing both numerator and denominator by the common factor A, we get

F(a, b) =
a

1 + B · a + b

1 + B · b
1 − B · a

1 + B · a − B · b
1 + B · b

. (3.2.15)

Bringing the sums in the numerator and in the denominator to the common denomina-
tor and taking into account that this common denominator is the same for numerator
and denominator of the expression (3.2.15), we conclude that

F(a, b) = a · (1 + B · b) + b · (1 + B · a)

(1 + B · a) · (1 + B · b) − B · a − B · b =

a + b + 2B · a · b
1 + B · a + B · b + B2 · a · b − B · a − B · b .

Finally, by cancelling equal terms in the denominator, we get the final formula

F(a, b) = a + b + 2B · a · b
1 + B2 · a · b . (3.2.16)

For operations equivalent to x + y + x · y, we similarly get

c′ = a′+b′+a′ ·b′ = t (a)+t (b)+t (a)·t (b) = A · a
1 + B · a + A · b

1 + B · b + A2 · a · b
(1 + B · a) · (1 + B · b) .

If we bring these terms to a common denominator, we get

c′ = A · a · (1 + B · b) + A · b · (1 + B · a) + A2 · x · y
(1 + B · a) · (1 + B · b) = A · (a + b + (2B + A) · a · b)

(1 + B · a) · (1 + B · b) .

Therefore,

F(a, b) = t−1(c′) =
A · (a + b + (2B + A) · a · b)

(1 + B · a) · (1 + B · b)
A − A · B · (a + b + (2B + A) · a · b)

(1 + B · a) · (1 + B · b)
.

Dividing both the numerator and the denominator of this expression by A, we con-
clude that
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F(a, b) =
a + b + (2B + A) · a · b
(1 + B · a) · (1 + B · b)

1 − B · (a + b + (2B + A) · a · b)
(1 + B · a) · (1 + B · b)

.

By bringing the difference in the denominator to the common denominator, we get

F(a, b) = N

D
,

where
N

def= a + b + (2B + A) · a · b

and

D
def= 1 + B · a + B · b + B2 · a · b − B · a − B · b − B · (2B + A) · a · b =

1 − B · (B + A) · a · b.

Thus

F(a, b) = a + b + (2B + A) · a · b
1 − B · (B + A) · a · b . (3.2.17)

Comment. Similarly to the case of Sugeno measure, we can always impose an addi-
tional requirement f (1) = 1, by replacing the original re-scaling f (x) with a mod-

ified re-scaling f ′(x) def= f (k · x) with k = f −1(1) (for which f (k) = 1).

Summary. We consider the fuzzymeasures g(A)which are equivalent to probability
measures. For such fuzzy measures, once we know the values g(A) and g(B) for
two disjoint sets A and B, we can compute the degree d(A ∪ B) as d(A ∪ B) =
F(g(A), g(B)) for the corresponding aggregation operation F(a, b).

This value g(A ∪ B) can be computed in two different ways:

• we can reduce the problem to the probability measures, i.e., compute the corre-
sponding probabilities, add them up, and use this sum p(A) + p(B) to compute
the desired value g(A ∪ B);

• alternatively, we can compute the value g(A ∪ B) directly, as F(g(A), g(B)).

We are looking for operations for which the direct use of fuzzy measures is com-
putationally faster, i.e., in precise terms, for which the aggregation operation can be
computed by using fast (hardware supported) elementary arithmetic operations. It
turns out that the only such operations are operations (3.2.16) and (3.2.17) corre-
sponding to different values of A and B.

By using these operations, we thus get a class of fuzzy measures that naturally
generalizes Sugeno λ-measures. Let us hope that fuzzy measures from this class will
be as practically successful as Sugeno λ-measures themselves.
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When do the original Sugeno λ-measures lie in this class? To understand it, let us
recall that not all arithmetic operations require the same computation time. Indeed,
addition is the simplest operation. Multiplication is, in effect, several additions, so
multiplication take somewhat longer. Division requires several iterations, so it takes
the longest time. So, any computation that does not include division is much faster.
Of our formulas (3.2.16) and (3.2.17), the only cases when we do not use division
are cases when B = 0, i.e., cases when we have F(a, b) = a + b (corresponding
to probability measures) and F(a, b) = a + b + A · a · b corresponding to Sugeno
λ-measures. From this viewpoint, Sugeno λ-measures are the ones for which the
direct use of the fuzzy measure has the largest computational advantage over the
reduction to probability measures.

Comment. Our result is similar to the known result that the only rational t-norms
and t-conorms are Hamacher operations; see, e.g., [3, 20, 64]. The difference is in
our analysis, we do not assume that the aggregation operation corresponding to the
fuzzy measure is a t-conorm: for example for the Sugeno aggregation operation,
F(1, 1) = 1+1+λ = 2+λ > 1, while for t-conorm, we always have F(1, 1) = 1.

Also, the result from [19] that we use here does not depend on the use of real
numbers, it is true for any field—e.g., for subfields of the field of real numbers
(such as the field of rational numbers) or for super-fields (such as fields that contain
infinitesimal elements).

3.3 Making a Decision Under Uncertainty: A Possible
Explanation of the Usual Safety Factor of 2

A usual decision making procedure assumes that we have complete information
about the situation. In practice, in addition to known factors, however, there are
usually unknown factors which also contribute to the uncertainty. To make proper
decisions, we need to also take these “unknown unknowns” into account. In practice,
this is usually done by multiplying the original estimate for inaccuracy by a “safety”
factor of 2. In this section, we provide an explanation for this empirical factor.

Results from this section first appeared in [83].

What is a safety factor? When engineers design an accurate measuring instrument,
they try their best to make it as accurate as possible. For this purpose, they apply
known techniques to eliminate (or at least to drastically decrease) all major sources
of error. For example:

• thermal noise can be drastically decreased by cooling,
• the effect of the outside electromagnetic fields can be drastically decreased by
barriers made of conductive or magnetic materials,

• the effect of vibration can be decreased by an appropriate suspension, etc.

Once the largest sources of inaccuracy are (largely) eliminated, we need to deal
with the next largest sources, etc. No matter how many sources of inaccuracy we
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deal with, there is always the next one. As a result, we can never fully eliminate all
possible sources of inaccuracy.

At each stage of the instrument design, we usually understand reasonably well
what is the main source of the remaining inaccuracy, and how to gauge the corre-
sponding inaccuracy. As a result, we have a good estimate for the largest possible
value Δ of the inaccuracy caused by this source.

This value Δ, however, does not provide a full description of the measurement
inaccuracy. Indeed, in addition to the “known unknown” (the known main source
of remaining inaccuracy), there are also “unknown unknowns”—smaller additional
factors that also contribute to measurement inaccuracy.

To take these “unknown unknowns” into account, practitioners usually multiply
Δ by a larger-than-one factor. This factor is known as the safety factor.

A related idea is used when we design engineering objects such as roads, bridges,
houses, etc. For example, when we design a bridge, we want to make sure that
its deformation caused by different loads does not exceed the limit after which
catastrophic changes may occur. For this purpose, we first estimate the deforma-
tion caused by the known factors, and then—to be on the safe side—multiply this
deformation by a safety factor.

Safety factor of 2 is most frequently used. In civil engineering, a usual recommen-
dation is to use the safety factor of 2; see, e.g., [156].

This value has been in use for more than 150 years: according to [150], the earliest
recorded use of this value can traced to a book published in 1858 [135].

This value is also widely used beyond standard civil engineering projects: e.g., it
was used in the design of Buran, a successful Soviet-made fully automatic pilotless
Space Shuttle [99].

Comment. It should be mentioned that in situations requiring extreme caution—e.g.,
in piloted space flights—usually, a larger value of safety factor is used, to provide
additional safety.

Open problem. The fact that the safety factor of 2 has been in use for more than 150
years shows that this value is reasonable. However, there seems to be no convincing
explanation of why this particular value is empirically reasonable.

In this section, we provide a possible theoretical explanation for this value.

Analysis of the problem. We know that in addition to the largest inaccuracy of
size Δ, there is also next largest inaccuracy of size Δ1 < Δ. Once we take that
inaccuracy into account, then we will need to take into account the next inaccuracy,
of size Δ2 < Δ1, etc. The final inaccuracy can be estimated as the sum of all these
inaccuracies, i.e., as the sum Δ + Δ1 + Δ2 + · · · , where

· · · < Δk+1 < Δk < · · · < Δ2 < Δ1 < Δ.

To estimate this sum, it is therefore necessary to estimate all the sizes Δ1, Δ2, …
Let us estimate these sizes one by one.
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Estimating Δ1. The only information that we have about the value Δ1 is that it is
larger than 0 and smaller than Δ. In other words, in principle, Δ1 can take any value
from the interval (0,Δ). We have no information about the probabilities of different
values from this interval.

Sincewe have no reason to think that some specific value from this interval ismore
probable and some other specific value is less probable, it is reasonable to assume
that all the values from this interval are equally probable. This argument—known as
Laplace principle of indifference—is widely used in statistics applications; see, e.g.,
[59, 144]

In precise terms, this means that we assume that the distribution of possible values
Δ1 on the interval (0,Δ) is uniform. For the uniform distribution on an interval, the
expected value is the interval’s midpoint. Thus, the expected value of Δ1 is equal to
Δ/2.

This expected value is what we will use as an estimate for Δ1.

Estimating Δ2, etc. Once we produced an estimate Δ1 = Δ/2, a next step is to
estimate the next inaccuracy component Δ2. The only information that we have
about the value Δ2 is that it is larger than 0 and smaller than Δ1. In other words, in
principle, Δ2 can take any value from the interval (0,Δ1). We have no information
about the probability of different values from this interval. Thus, similarly to the
previous section, it is reasonable to assume that Δ2 is uniformly distributed on the
interval (0,Δ1). In this case, the expected value ofΔ2 is equal toΔ1/2. This expected
value Δ2 = Δ1/2 is what we will use as an estimate for Δ2.

Similarly,we conclude that a reasonable estimate forΔ3 < Δ2 isΔ3 = Δ2/2, and,
in general, that for every k, a reasonable estimate for Δk+1 < Δk is Δk+1 = Δk/2.

Adding all these estimates leads to the desired explanation. From Δ1 = Δ/2 and
Δk+1 = Δk/2, we can conclude, by induction, that Δk = 2−k ·Δ. Substituting these
estimates into the formula for the overall inaccuracy δ = Δ + Δ1 + Δ2 + · · · , we
conclude that

δ = Δ + 2−1 · Δ + 2−2 · Δ + · · · = (
1 + 2−1 + 2−2 + · · · ) · Δ.

The sum of the geometric progression 1 + 2−1 + 2−2 + · · · is 2, so we get δ = 2Δ.
This is exactly the formula that we tried to explain—with a safety factor of two.

3.4 Taking into Account Interests of Others: Why Awe
Makes People More Generous

In the previous sections,we only took into account the decisionmaker’s own interests.
In practice, we also need to take into account interests of others. This is a well-studied
topic in decision making, there have many experiments explaining how people per-
form such group decision making, and there are reasonable explanations for most of
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these experiments. However, there are some recent experiments for which no reason-
able explanation has been proposed yet. In this section, we provide an explanation
of these experimental observations.

The results of this paper first appeared in [91].

Recent experiment: a brief summary. A recent experiment [129] showed that the
feeling of awe increases people’s generosity.

Recent experiment: details. To measure a person’s generosity, researchers use a
so-called Ultimatum Bargaining Game. In this game, to test a person’s generosity,
this person is pairedwith another person in a simulated situation inwhich they should
share a certain fixed amount of money given to them by the experimenter:

• the tested person announces which part of this amount he or she is willing to give
to the second person;

• if the second person agrees, each of them gets the agreed-on amount;
• if the offeredpart is too small and the secondpersondisagrees, noonegets anything.

The generosity is then measured by the amount of money that the tested person is
willing to give to his/her companion.

The gist of the experiment is that this amount increases when a tested person has
a feeling of awe, which is induced:

• either by requiring the persons to think about awe-inspiring natural scenes,
• or by explicitly showing such scenes prior to testing generosity.

Comment. It is worth mentioning that a similar increase in the transferred amount
of money was observed in a different situation, when the tested person was injected
with euphoria-inducing oxytocin [66].

How the results of this experiment are currently explained. The paper [129]
provides the following qualitative explanation of this result: that the presence of awe
leads to a feeling of smaller self. This, in turn, makes the person more social and
thus, more generous.

It is desirable to have a more quantitative explanation. The above qualitative
explanation is reasonable, but it is not necessarily fully convincing: the feeling of awe
caused by a magnificent nature scene definitely decreases the feeling of importance
of self—but it also decreases the feeling of importance of other people. It would
make perfect sense if the feeling of awe led to more donations to nature conservation
funds, but why to other people?

What we plan to do. In order to come up with a more convincing explanation of
the above experiment, we analyze this experiment in quantitative terms, by using
the standard utility-based approach to decision making; see, e.g., [35, 97, 114, 133].
Our analysis shows that indeed, within this approach, the presence of awe leads to
an increase in generosity.

Thenotionof utility: reminder. Aswehavementioned earlier, according to decision
theory, a rational person’s preferences can be described by his/her utility function,
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a function that assigns, to each alternative, a real number in such a way that out of
several alternatives, the person always selects the one whose utility is the largest.

How utility depends on the amount of money. Experiments have shown that for
situations with monetary gain, utility u grows with the money amount m as u ≈ mα ,
with α ≈ 0.5, i.e., approximately as u ≈ √

m; see, e.g., [61] and references therein.
So, if the given amount of money m is distributed between two participants, so

that the first person gets m1 and the second person gets m2 = m − m1, then:

• the utility of the first person is u1(m1) = √
m1 and

• the utility of the second person is u2(m1) = √
m2 = √

m − m1.

Comment. The specific dependence u ≈ √
m can itself be explained by utility-based

decision theory (see above).

The dependence of utility on other “units of pleasure”. It is reasonable to assume
that the formula u ≈ √

m describes not only the dependence of utility on the amount
of money, but also on the overall amount of “units of pleasure” received by a person,
be it money, material good, or feeling of awe.

So, if we denote, by a, the amount of such units corresponding to the feeling of
awe, then, if the first person also gets the amount of money m1, the overall amount
of such units is a + m1, and thus, this persons’ utility is approximately equal to
u1(m1) = √

a + m1.
By definition, awe means that the corresponding pleasure is much larger than

what one normally gets from a modest money amount, i.e., that a  m1.

Effect of empathy. A person’s preferences depend not only on what this person gets,
they also depend on what others get. Normally, this dependence is positive, i.e., we
feel happier if other people are happy.

The idea that a utility of a person depends on utilities of others was first described
in [136, 137]. It was further developed by another future Nobelist Gary Becker; see,
e.g., [9]; see also [18, 38, 55, 114, 154].

If we take empathy into account, then, instead of the original no-empathy values√
m1 and

√
m − m1, we get values

u1(m1) = √
m1 + α12 · √

m − m1

and
u2(m1) = √

m − m1 + α21 · √
m1,

where αi j > 0 are positive numbers. People participating the above experiment are
strangers to each other, so their mutual empathy is not large: αi j � 1.

In the presence of awe, we similarly get u1(m1) = √
a + m1 + α12 · √

m − m1

and u2(m1) = √
m − m1 + α21 · √

a + m1.
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How joint decisions aremade. In the UltimatumBargainingGame, two participants
need to cooperate to get money. For such cooperative situations, an optimal solution
has been discovered by the Nobelist John Nash [97, 112, 114]: a group should select
the alternative x for which the following product attains its largest possible value:

(u1(x) − u1(0)) · (u2(x) − u2(0)),

where ui (x) is the i-th person utility corresponding to the alternative x and ui (0) is
this person’s utility in the original (status quo) situation. This is known as Nash’s
bargaining solution.

The fact that Nash’s bargaining solution can be used to describe such games is
emphasized, e.g., in [67]. In our case, the status quo situation is when neither the
first nor the second participant get any money, i.e., when m1 = 0 and m2 = 0. In
the absence of a, this means u1(0) = u2(0) = 0. In the presence of awe, this means
that:

• in the first approximation, when we ignore empathy, we get u1(0) = √
a and

u2(0) = 0;
• when we take empathy into account, we get u1(0) = √

a and u2(0) = α21 · √
a.

Resulting formulation of the problem. Now, we are ready to formulate the situation
in precise terms. We compare the optimal amounts m2 = m − m1 corresponding to
two different situations.

In the first situation, there is no awe, so we select the value m1 for which the
following product attains the largest possible value:

(√
m1 + α12 · √

m − m1
) · (√

m − m1 + α21 · √
m1

)
. (3.4.1)

In the second situation, there is an awe a  m1, so we select the value a for
which the following product attains the largest possible value:

(√
a + m1 − √

a + α12 · √
m − m1

) · (√
m − m1 + α21 · (√

a + m1 − √
a

))
.

(3.4.2)
Let us estimate and compare these optimal values.

Analysis of the first (no-awe) situation. Let us startwith analyzing the first situation.
Since the values αi j are small, in the first approximation, we can safely ignore the
corresponding terms and instead maximize the simplified product

√
m1 · √m − m1.

Maximizing this product is equivalent to maximizing its square, i.e., the value
m1 · (m − m1). Differentiating this expression and equating the derivative to 0, we
conclude that themaximum is attainedwhenm1 = 0.5·m andm2 = m−m1 = 0.5·m.
This is indeed close to the observed division in the Ultimatum Bargaining Game [67,
129].

Analysis of the second (awe) situation. In the second situation, we can use another
simplifying approximation: namely, since a  x1, we can use the fact that in general,
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for a differentiable function f (x) = √
x , we have

d f

dx
= lim

h→0

f (x + h) − f (x)

h
.

Thus, for small h, we have
d f

dx
≈ f (x + h) − f (x)

h
, hence f (x+h)− f (x) ≈ d f

dx
·h.

In particular, for f (x) = √
x , we get

√
a + m1−√

a ≈ 1

2
√
a

·m1. Since the value

a is huge, the ratio
1

2
√
a
is very small, so, in the first approximation, we can safely

ignore this ratio in comparison with the term α12 ·√m − m1. Similarly, in the second
factor, we can safely ignore the term α21 · (√

a + m1 − √
a

)
which is proportional

to this ratio. Thus, in this first approximation, maximization of the product (3.4.2)
can be reduced to maximizing the following simplified product:

α12 · √
m − m1 · √

m − m1 = α12 · (m − m1).

Among all possible values m1 from the interval [0,m], the largest value of this
expression is attained when m1 = 0 and m2 = m − m1 = m, i.e., which indeed
corresponds to the maximum generosity.

Conclusion: awe does increase generosity. As we have mentioned earlier, generos-
ity is hereby measured by the amount of money m2 = m − m1 given to the second
person.

We have shown that in the first approximation:

• in the first (no-awe) situation, the amount m2 given to the second person is m2 =
0.5 · m, while

• in the second (awe) situation, the amountm2 given to the second person ism2 = m,

In this first approximation, since m > 0.5 · m, the presence of awe does increase
generosity.

Of course, there are solutions to the approximate problems, and thus, approxi-
mations to the solutions to the actual optimization problems. For the actual optimal
solutions, we will have m2 ≈ 0.5 · m in the no-awe case and m2 ≈ m in the awe
case. Thus, still, the generosity in the awe case is larger. So, the utility-based decision
theory indeed explains why awe increases generosity.

Comment. Since oxytocin also brings a large amount a of positive emotions, this
model can also explain the above-mentioned results from [66].

3.5 Education as an Example of Joint Decision Making

In the previous section, we considered situations when it is important to take into
account utility of others. An important extreme example of such process is education,
when the main objective of the teacher is to increase the utility of the student, by
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making the student more knowledgeable. In this section, we will consider decision
making problems related to education.

Specifically, in Sect. 3.5.1, wewill consider the “how” of education, i.e., decisions
related to education. In Sect. 3.5.2, we will analyze the results of these decisions.

3.5.1 The “How” of Education: Coming up with a Good
Question Is Not Easy

The ability to ask good questions is an important part of learning skills. Coming up
with a good question, a question that can really improve one’s understanding of the
topic, is not easy. In this subsection, we prove—on the example of probabilistic and
fuzzy uncertainty—that the problem of selecting a good question is indeed hard.

The results from this subsection first appeared in [94].

Asking good questions is important. Even after a very good lecture, some parts of
the material remain not perfectly clear. A natural way to clarify these parts is to ask
questions to the lecturer.

Ideally, we should be able to ask a question that immediately clarifies the desired
part of the material. Coming up with such good questions is an important part of
learning process, it is a skill that takes a long time to master.

Coming up with good questions is not easy: an empirical fact. Even for experi-
enced people, it is not easy to come up with a good question, i.e., with a question
that will maximally decrease uncertainty.

What we do in this subsection. In this subsection, we prove that the problem of
designing a good question is indeed computationally difficult (NP-hard).

Wewill show this both for probabilistic and for fuzzy uncertainty. Specifically, we
will proveNP-hardness for the simplest types of questions—for “yes”-“no” questions
for which the answer is “yes” or “no”. Since already designing such simple questions
is NP-hard, anymore general problem (allowingmore complex problems) is NP-hard
as well.

What is uncertainty: a general description. A complete knowledge about any
area—be it a physical system or an algorithm—would mean that we have the full
description of the corresponding objects. From this viewpoint, uncertainty means
that several different variants are consistent with our (partial) knowledge, and we are
not sure which of these variants is true.

In the following text, we will denote possible variants by v1, v2, . . . , vn , or, if this
does not cause any ambiguity, simply by 1, 2, . . . , n.

How to describe a “yes”-“no” question in these terms. A “yes”-‘’no” question is
a question, an answer to which eliminates possible variants. In general, this means
that after we get the answer to this question, instead of the original set {1, . . . , n} of
possible variants, we have a smaller set:
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• if the answer is “yes”, then we are limited to the set Y ⊂ {1, . . . , n} of all the
variants which are consistent with the “yes”-answer;

• if the answer is “no”, then we are limited to the set N ⊂ {1, . . . , n} of all the
variants which are consistent with the “no”-answer.

These two sets are complements to each other.

Examples. In some cases, we are almost certain about a certain variant, i.e., variant
v1. In this case, a natural question to ask if whether this understanding is correct. For
this question:

• the “yes”-set Y consists of the single variant v1, while
• the “no”-set {2, . . . , n} contains all other variants.

In other cases, we are completely unclear about the topic, e.g., we are completely
unclear what is the numerical value of a certain quantity, we are not even surewhether
this value is positive or non-positive. In this case, a natural question is to ask whether
the actual value is positive. In such situation, each of the sets Y and N contain
approximately a half of all original variants.

Probabilistic approach to describing uncertainty: a description. In the proba-
bilistic approach, we assign a probability pi ≥ 0 to each of the possible variants, so

that these probabilities add up to 1:
n∑

i=1
pi = 1. The probability pi , for example, may

describe the frequency with which the i-th variant turned out to be true in similar
previous situations.

How to quantify an amount of uncertainty: probabilistic case. In the case of
probabilistic uncertainty, there is a well-established way to gauge the amount of
uncertainty: namely, the entropy [46, 162]

S = −
n∑

i=1

pi · ln(pi ). (3.5.1)

This is a good estimate for the amount that we want to decrease by asking an appro-
priate question.

How do we select a question: idea. We would thus like to find the question that
maximally decreases the uncertainty. Since in the probabilistic case, uncertainty is
measured by entropy, we thus want to find a question that maximally decreases
entropy.

How the answer changes the entropy. Once we know the answer to our “yes”-“no”
question, the probabilities change.

If the answer was “yes”, this means that the variants from the “no”-set N are
no longer possible. For such variants i ∈ N , the new probabilities are 0s: p′

i = 0.
For variants from the “yes”-set Y , the new probability is the conditional probability
under the condition that the variant is in the “yes”-set, i.e.,
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p′
i = p(i | Y ) = pi

p(Y )
, (3.5.2)

where the probability p(Y ) of the “yes”-answer is equal to the sumof the probabilities
of all the variants that lead to the “yes”-answer:

p(Y ) =
∑

i∈Y
pi . (3.5.3)

Based on these new probabilities, we can compute the new entropy value

S′ = −
∑

i∈Y
p′
i · ln(p′

i ). (3.5.4)

On the other hand, if the answer was “no”, this means that the variants from the
“yes”-set Y are no longer possible. For such variants i ∈ Y , the new probabilities are
0s: p′′

i = 0. For variants from the “no”-set N , the new probability is the conditional
probability under the condition that the variant is in the “no”-set, i.e.,

p′′
i = p(i | N ) = pi

p(N )
, (3.5.5)

where the probability p(N ) of the “no”-answer is equal to the sumof the probabilities
of all the variants that lead to the “no”-answer:

p(N ) =
∑

i∈N
pi . (3.5.6)

Based on these new probabilities, we can compute the new entropy value

S′′ = −
∑

i∈N
p′′
i · ln(p′′

i ). (3.5.7)

In the case of the “yes” answer, the entropy decreases by the amount S − S′. In
the case of the “no”-answer, the entropy decreases by the amount S − S′′. We know
the probability p(Y ) of the “yes”-answer and we know the probability p(N ) of the
“no”-answer. Thus, we can estimate the expected decrease in uncertainty as

S(Y ) = p(Y ) · (S − S′) + p(N ) · (S − S′′). (3.5.8)

Thus, we arrive at the following formulation of the problem in precise terms.

Formulation of the problem in precise terms.

• We are given the probabilities p1, . . . , pn for which
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n∑

i=1

pi = 1.

• Weneed to find a setY ⊂ {1, . . . , n} forwhich the expected decrease in uncertainty
S(Y ) is the largest possible.

Here, S(Y ) is described by the formula (3.5.8), and the components of this formula
are described in formulas (3.5.1)–(3.5.7).

Formulation of the main probability-related result. Our main result is that the
above problem—of coming up with the best possible question—is NP-hard.

What isNP-hard: a brief reminder. Inmany real-life problems,we are looking for a
string (or for a sequence of a priori bounded numbers) that satisfies a certain property.
For example, in the subset sum problem, we are given positive integers s1, . . . , sn
representing the weights, and we need to divide these weights into two groups with
exactly the same weight. In precise terms, we need to find a set I ⊆ {1, . . . , n} for
which

∑

i∈I
si = 1

2
·
(

n∑

i=1

si

)

.

The desired set I can be described as a sequence of n 0s and 1s, in which the i-th
term is 1 if i ∈ I and 0 if i /∈ I .

In principle, we can solve each such problem by simply enumerating all possible
strings, all possible combinations of numbers, etc. For example, in the above case,
we can try all 2n possible subsets of the set {1, . . . , n}; this way, if there is a set I
with the desired property, we will find it. The problem with this approach is that for
large n, the corresponding number 2n of computational steps becomes unreasonably
large. For example, for n = 300, the resulting computation time exceeds lifetime of
the Universe.

So, a natural question is: when can we solve such problems in feasible time, i.e.,
in time that does not exceed a polynomial of the size of the input? It is not known

whether all exhaustive-search problems can be thus solved—this is the famous P
?=NP

problem. Most computer science researchers believe that some exhaustive-search
problems cannot be feasibly solved—but in general, this remains an open problem.

What is known is that some problems are the hardest (NP-hard) in the sense
that any exhaustive-search problem can be feasibly reduced to this problem. This
means that, unless all exhaustive-search problems can be feasibly solved (which
most computer scientists believe to be impossible), this particular problem cannot
be feasibly solved.

The above subset sum problem has been proven to be NP-hard, as well as many
other similar problems; see, e.g., [124].

How can we prove NP-hardness. As we have mentioned, a problem is NP-hard if
every other exhaustive-search problem Q can be reduced to it. So, if we know that
a problem P0 is NP-hard, then every Q can be reduced to it. Thus, if P0 can be
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reduced to our problem P , then, by transitivity, any problem Q can be reduced to
P , i.e.,P is indeed NP-hard.

Thus, to prove that a given problem isNP-hard, it is sufficient to reduce one known
NP-hard problem P0 to this problem P .

What we will do. To prove that the problem P of selecting a good question is
NP-hard, we will follow the above idea. Namely, we will prove that the subset sum
problem P0 (which is known to be NP-hard) can be reduced toP .

Let us simplify the expression for S(Y ). To build the desired reduction, let us
simplify the expression (3.5.8). This expression uses the entropies S′ and S′′. So, to
get the desired simplification, we will start with simplifying the expressions (3.5.4)
and (3.5.7) for S′ and S′′.

Simplifying the expression for S′. Substituting the expression (3.5.2) for p′
i into

the formula (3.5.4), we get

S′ = −
∑

i∈Y

pi
p(Y )

· ln
(

pi
p(Y )

)
.

All the terms in this sum are divided by p(Y ), so we can move this common denom-
inator outside the sum:

S′ = − 1

p(Y )
·
(

∑

i∈Y
pi · ln

(
pi

p(Y )

))

.

The logarithm of the ratio is equal to the difference of logarithms, so we get

S′ = − 1

p(Y )
·
(

∑

i∈Y
pi · (ln(pi ) − ln(p(Y ))

)

.

We can separate the terms proportional to ln(pi ) and to ln(p(Y )) into two different
sums. As a result, we get

S′ = − 1

p(Y )
·
(

∑

i∈Y
pi · ln(pi )

)

+ 1

p(Y )
·
(

∑

i∈Y
pi · ln(p(Y ))

)

. (3.5.9)

In the second sum, the factor ln(p(Y )) does not depend on i and can, thus, be moved
out of the summation:

∑

i∈Y
pi · ln(p(Y )) = ln(p(Y )) ·

∑

i∈Y
pi .

Here, the sum
∑

i∈Y
pi is simply equal to p(Y ), so
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∑

i∈Y
pi · ln(p(Y )) = ln(p(Y )) · p(Y ). (3.5.10)

Substituting the expression (3.5.10) into the formula (3.5.9), and cancelling the terms
p(Y ) in the numerator and in the denominator, we conclude that

S′ = − 1

p(Y )
·
(

∑

i∈Y
pi · ln(pi )

)

+ ln(p(Y )). (3.5.11)

Simplifying the expression for S′′. Similarly, we get

S′′ = − 1

p(N )
·
(

∑

i∈N
pi · ln(pi )

)

+ ln(p(N )). (3.5.12)

Resulting simplification of the expression for S(Y ). Since p(Y ) + p(N ) = 1, the
expression (3.5.8) for S(Y ) can be alternatively described as

S(Y ) = S − (p(Y ) · S′ + p(N ) · S′′). (3.5.13)

By using expressions (3.5.11) and (3.5.12) for S′ and S′′, we conclude that

p(Y ) · S′ + p(N ) · S′′ =

− p(Y )

p(Y )
·
⎛

⎝
∑

i∈Y
pi · ln(pi )

⎞

⎠+p(Y )·ln(p(Y ))− p(N )

p(N )
·
⎛

⎝
∑

i∈N
pi · ln(pi )

⎞

⎠+p(N )·ln(p(N )) =

−
∑

i∈Y
pi · ln(pi ) −

∑

i∈N
pi · ln(pi ) + p(Y ) · ln(p(Y )) + p(N ) · ln(p(N )). (3.5.14)

Since Y and N are complements to each other, we have

−
∑

i∈Y
pi · ln(pi ) −

∑

i∈N
pi · ln(pi ) = −

n∑

i=1

pi · ln(pi ) = S.

Thus, the formula (3.5.14) takes the form

p(Y ) · S′ + p(N ) · S′′ = S + p(Y ) · ln(p(Y )) + p(N ) · ln(p(N )).

Therefore, the expression (3.5.13) takes the form

S(Y ) = −p(Y ) · ln(p(Y )) − p(N ) · ln(p(N )). (3.5.15)
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Here, p(N ) = 1 − p(Y ), we have

S(Y ) = −p(Y ) · ln(p(Y )) − (1 − p(Y )) · ln(1 − p(Y )). (3.5.16)

Resulting reduction.Wewant to find the set Y that maximizes the expected decrease
in uncertainty, i.e., that maximizes the expression (3.5.16). Thus, we need to select
a question Y for which p(Y ) = 0.5.

Let us show that a subset sum problem can be reduced to this problem. Indeed,
let us assume that we are given n positive integers s1, . . . , sn . Then, we can form n
probabilities

pi
def= si

n∑

j=1
s j

(3.5.17)

that add to 1. For this problem, if we can find a set Y for which p(Y ) = ∑

i∈Y
pi = 0.5,

then, due to the definition (3.5.17), for the original values si , we will have

∑

i∈Y
si = 0.5 ·

n∑

j=1

s j . (3.5.18)

This is exactly the solution to the subset sum problem. Vice versa, if we have a set
Y for which the equality (3.5.18) is satisfied, then for the probabilities (3.5.17) we
get p(Y ) = 0.5.

Conclusion. The reduction shows that in the probabilistic case, the problem of com-
ing up with a good question is indeed NP-hard.

Fuzzy approach to describing uncertainty: a description. In the fuzzy approach,
we assign, to each variant i , its degree of possibility. The resulting fuzzy values are
usually normalized, so that the largest of these values if equal to 1: max

i
μi = 1; see,

e.g., [65, 120, 163].

How to quantify amount of uncertainty: fuzzy case. In the case of fuzzy uncer-
tainty, one of the most widely used ways to gauge uncertainty is to use an expression

S =
n∑

i=1

f (μi ), (3.5.19)

for some strictly increasing continuous function f (z) for which f (0) = 0; see,
e.g., [123].

This is the amount that we want to decrease by asking an appropriate question.

How do we select a question: idea. We would thus like to find the question that
maximally decreases the uncertainty. Since in the fuzzy case, uncertainty ismeasured
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by the expression (3.5.19), we thus want to find a question that maximally decreases
the value of this expression.

How the answer changes the entropy. Once we know the answer to our “yes”-“no”
question, the degrees of belief μi change.

If the answer was “yes”, this means that the variants from the “no”-set N are no
longer possible. For such variants i ∈ N , the new degrees are 0s:μ′

i = 0. For variants
from the “yes”-set Y , the new degree can be obtained by one of two different ways
(see, e.g., [5–7, 16, 17, 27–29, 50]):

• in the numerical approach, we normalize the remaining degrees so that the maxi-
mum is equal to 1, i.e., we take

μ′
i = μi

max
j∈Y μ j

; (3.5.20)

• in the ordinal approach, we raise the largest values to 1, while keeping the other
values unchanged:

μ′
i = 1 if μi = max

j∈Y μ j ; (3.5.21)

μ′
i = μi if μi < max

j∈Y μ j . (3.5.22)

Based on the new values μ′
i , we compute the new complexity value

S′ =
∑

i∈Y
f (μ′

i ). (3.5.23)

On the other hand, if the answer was “no”, this means that the variants from the
“yes”-set Y are no longer possible. For such variants i ∈ Y , the new degrees are 0s:
μ′′
i = 0. For variants from the “no”-set N , the new degree can be obtained by one of

the same two different ways as in the case of the “yes” answer:

• in the numerical approach, we normalize the remaining degree so that the maxi-
mum is equal to 1, i.e., we take

μ′′
i = μi

max
j∈N μ j

; (3.5.24)

• in the ordinal approach, we raise the largest values to 1, while keeping the other
values unchanged:

μ′′
i = 1 if μi = max

j∈N μ j ; (3.5.25)

μ′′
i = μi if μi < max

j∈N μ j . (3.5.26)
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Based on the new values μ′′
i , we compute the new complexity value

S′′ =
∑

i∈N
f (μ′′

i ). (3.5.27)

In the case of the “yes” answer, the uncertainty decreases by the amount S − S′.
In the case of the “no”-answer, the uncertainty decreases by the amount S − S′′. In
this case, we do not know the probabilities of “yes” and ’“no” answers, so we cannot
estimate the expected decrease. What we can estimate is the guaranteed decrease

S(Y ) = min(S − S′, S − S′′). (3.5.28)

This value describes how much of a decrease we can guarantee if we use the “yes”-
“no” answer corresponding to the set Y .

Thus, we arrive at the following formulation of the problem in precise terms.

Formulation of the problem in precise terms.

• We are given the degrees μ1, . . . , μn for which

max
i

μi = 1.

• Weneed to find a setY ⊂ {1, . . . , n} forwhich the expected decrease in uncertainty
S(Y ) is the largest possible.

Here, S(Y ) is described by the formula (3.5.28), and the components of this formula
are described in formulas (3.5.19)–(3.5.27).

Comment. Strictly speaking, we need to solve two optimization problems:

• the problem corresponding to the numerical approach, and
• the problem corresponding to the ordinal approach.

Formulation of the main fuzzy-related result. Our main result is that for both
approaches (numerical and ordinal) the problem of coming up with the best possible
question is NP-hard.

How we prove this result. Similarly to the probabilistic case, we prove this result
by reducing the subset sum problem to this problem.

Reduction. Let s1, . . . , sm be positive integers. To solve the corresponding subset
sumproblem, let us select a small number ε > 0 and consider the following n = m+2
degrees: μi = f −1(ε · si ) for i ≤ m and μm+1 = μm+2 = 1, where f −1(z) denotes
an inverse function to f (z): f −1(z) is the value t for which f (t) = z.

For these values, we have three possible relations between the set Y and the
variants m + 1 and m + 2:

• the first case is when the set Y contains both these variants;
• the second case is when the set Y contains none of these two variants, and
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• the third case is when the set Y contains exactly one of these two variants.

Let us show that when ε is sufficiently small, then the largest guaranteed decrease is
attained in the third case.

Indeed, one can easily check that

S(Y ) = min(S − S′, S − S′′) = S − max(S′, S′′);

Thus, the guaranteed decrease S(Y ) is the largest when the maximum

max(S′, S′′) (3.5.29)

is the smallest.
In the first case, the values μ′

i contain two 1s, hence S′ = ∑

i∈Y
f (μ′

i ) ≥ 2 f (1).

Thus, max(S′, S′′) ≥ 2 f (1).
In the second case, the valuesμ′′

i contain two 1s, hence S
′′ = ∑

i∈N
f (μ′′

i ) ≥ 2 f (1).

Thus, max(S′, S′′) ≥ 2 f (1).
In the third case, when one of the 1 s is in Y and another one is in N , both sets Y

and N contain 1s, so there is no need for normalization. Therefore, we have:

• μ′
i = μi for i ∈ Y and

• μ′′
i = μi for i ∈ N .

Thus,
S′ =

∑

i∈Y
f (μi ) = f (1) +

∑

i∈Y,i≤m

f (μi ), (3.5.30)

and
S′′ =

∑

i∈N
f (μi ) = f (1) +

∑

i∈Y,i≤m

f (μi ). (3.5.31)

Due to our selection of μi , we have f (μi ) = ε · si , so:

S′ =
∑

i∈Y
f (μi ) = f (1) +

∑

i∈Y,i≤m

ε · si = f (1) + ε ·
∑

i∈Y,i≤m

si , (3.5.32)

and

S′′ =
∑

i∈N
f (μi ) = f (1) +

∑

i∈N ,i≤m

ε · si = f (1) + ε ·
∑

i∈N ,i≤m

si . (3.5.33)

When ε ·
m∑

i=1
si < f (1), we have S′ < 2 f (1), S′′ < 2 f (1), and therefore,

max(S′, S′′) < 2 f (1). Hence, for sufficiently small ε, the smallest possible value of
the maximum (3.5.29) is indeed attained in the third case.

In this third case, due to (3.5.32) and (3.5.33), we have
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max(S′, S′′) = f (1) + ε · max

(
∑

i∈Y,i≤m

si ,
∑

i∈N ,i≤m

si

)

.

The sets Y and N are complementary to each other, hence

∑

i∈Y,i≤m

si +
∑

i∈N ,i≤m

si =
m∑

i=1

si .

If the two sums
∑

i∈Y,i≤m
si and

∑

i∈N ,i≤m
si are different, then one of them is larger

that one half of the total sum
m∑

i=1
si ; thus, themaximummax(S′, S′′) is also larger than

one half of the total sum. The only way to get the smallest possible value—exactly
one half of the total sum—is when the sums are equal to each other, i.e., when each
sum is exactly one half of the total sum:

∑

i∈Y,i≤m

si = 1

2
·
(

m∑

i=1

si

)

.

This is exactly the solution to the subset problem. Thus, we have found the reduction
of the known NP-hard subset sum problem to our problem of coming up with a good
question—which implies that our problem is also NP-hard.

Summary. The reduction shows that in both fuzzy approaches, the problem of com-
ing up with a good question is indeed NP-hard.

Need to consider interval-valued fuzzy sets. The usual [0, 1]-based fuzzy logic is
based on the assumption that an expert can describe his or her degree of uncertainty by
a number from the interval [0, 1]. In many practical situations, however, an expert is
uncertain about his/her degree of uncertainty. In such situations, it is more reasonable
to describe the expert’s degree of certainty not by a single number, but by an interval
which is a subinterval of the interval [0, 1].

Such interval-valued fuzzy techniques have indeed led to many useful applica-
tions; see, e.g., [103, 104, 115].

Theproblemof selecting a goodquestion isNP-hardunder interval-valued fuzzy
uncertainty as well. Indeed, the usual fuzzy logic is a particular case of interval-
valued fuzzy logic—when all intervals are degenerate, i.e., are of the form [a, a] for
a real number a. It is easy to prove that if a particular case of a problem is NP-hard,
the whole problem is also NP-hard.

Thus, since the problem of selecting a good question is NP-hard for the case of
usual [0, 1]-based fuzzy uncertainty, it is also NP-hard for the more general case of
interval-valued fuzzy uncertainty.
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3.5.2 The Result of Education: Justifications of Rasch Model

The more skills a student acquires, the more successful this student is with the
corresponding tasks. Empirical data shows that the success in a task grows as a
logistic function of skills; this dependence is known as the Rasch model. In this
subsection, we provide two uncertainty-based justifications for this model: the first
justification provides a simple fuzzy-based intuitive explanation for thismodel, while
the second—more complex one—explains the exact quantitative behavior of the
corresponding dependence.

The results of this subsection first appeared in [77].

Need to understand how success in a task depends on the skills level. As a student
acquiresmore skills, this student becomesmore successful in performing correspond-
ing tasks. This is how we gauge the level of the knowledge and skills acquired by a
student: by checking how well the student performs on the corresponding tasks.

For each level of student skills, the student is usually:

• very successful in solving simple problems,
• not yet successful in solving problems which are—to this student—too complex,
and

• reasonably successful in solving problems which are of the right complexity.

To design adequate tests—and to adequately use the results of these tests to gauge the
student’s skills level—it is desirable to have a good understanding of how a success
in a task depends on the student’s skill level and on the problem’s complexity.

How do we gauge success. In order to understand the desired dependence, we need
to clarify how the success is measured. This depends on the type of the corresponding
tasks.

For simple tasks, a student can either succeed in a task or not. In this case, a
good measure of success is the proportion of tasks in which the student succeeded.
In terms of uncertainty techniques, the resulting grade is simply the probability of
success.

In more complex tasks, a student may succeed in some subtasks and fail in others.
The simplest—and probably most frequent—way of gauging the student’s success
is to assign weights to different subtasks and to take, as a student’s grade, the sum
of the weights corresponding to successful subtasks. This somewhat mechanistic
way of grading is fast and easy to automate, but it often lacks nuances: for example,
it does not allow taking into account to what extent the student succeeded in each
non-fully-successful subtask. Amore adequate (andmore complex) way—used, e.g.,
in grading essays—is to ask expert graders to take into account all the specifics of
the student’s answer and to come up with an appropriate overall grade. In terms of
uncertainty techniques, this grade can be viewed as a particular case of a fuzzy degree
[65, 120, 163].

Rasch model. Empirical data shows that, no matter how we measure the success
rate, the success s in a task can be estimated by the following formula [101]:
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s = 1

1 + exp(c − �)
, (3.5.34)

where c is an (appropriately re-scaled) complexity of the task and � is an (also
appropriately re-scaled) skill level of a student.

This formulawasfirst proposed—inageneral psychological context—byG.Rasch
[138]; it is therefore known as the Rasch model [101].

The remaining challenge. While, empirically, this formula seems to work reason-
ably well, practitioners are somewhat reluctant to use it widely, since it lacks a deeper
justification.

What we do in this subsection. In this subsection, we provide two possible justi-
fications for the Rasch model. The first is a simple fuzzy-based justification which
provides a good intuitive explanation for this model and, thus, will hopefully enhance
its use in teaching practice. The second is a somewhatmore sophisticated explanation
which is less intuitive but provides a justification for the specific quantitative type of
the dependence (3.5.34).

We are looking for a dependence: reminder. For a fixed level of the task’s com-
plexity c, we need to find out how the success rate s depends on the skill level �. In
other words, we need to find a function g(�) for which s = g(�).

Skill level. In general, the skill level � can go from a very small number (practically
−∞) to a very large number (practically+∞) corresponding to an extremely skilled
person.

Monotonicity. The desired function s = g(�) that describes the dependence of the
success s on the skill level � is clearly monotonic: the more skills a student has
acquired, the larger the success in solving the tasks.

Extremecases. In the absence of skills, a student cannot succeed in the corresponding
tasks, so when � → −∞, we have s = g(�) → 0. On the other side, when a person
is very skilled, this person should have a perfect success in all the tasks, i.e., we
should have s = g(�) → 1 when � → +∞.

Smoothness. Intuitively, a very small increase in the skill level � can also result in a
very small increase in the success s. Thus, it is reasonable to assume that the desired
dependence s = g(�) is differentiable (smooth).

Let us make the problem easier. Let us use smoothness to reformulate the problem
of determining the dependence s = g(�) so that it will be easier to process in a
computer and easier to describe in directly measurable terms.

Towards making the problem easier to process in a computer. If we change the
skills � a little bit, to � + Δ, the success rate changes also a little bit. Thus, once we
know the original value s = g(�) of the success rate, and we are interested in the
new value s ′ = g(� + Δ) of the success rate, it is convenient:
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• not to describe the value by itself,
• but rather to describe the resulting small change s ′ − s = g(� + Δ�) − g(�) in the
success rate.

This difference is smaller that the original value g(� + Δ�) and thus, requires fewer
bits to record.

For small Δ�, this difference is approximately equal to

dg

d�
· Δ�.

Thus, describing such differences is equivalent to describing the corresponding deriv-
ative

dg

d�
.

How to make the problem easier to describe in directly measurable terms. In
principle, we can describe this derivative in terms of the skills level �, but since the
directly observable characteristic is the success s, it is more convenient to express
the derivative

dg

d�
= f (s) = f (g(�))

for an appropriate function f (s).
Let us now use our understanding of this problem to describe this function f (s).

Let us describe our intuition about f (s) in imprecise (“fuzzy”) terms. When
there are no skills, i.e., when � ≈ −∞ and s = g(�) ≈ 0, adding a little bit of skills
does not help much. So, when s is small, the derivative

dg

d�

is also small. In other words, the derivative

dg

d�

is reasonable if and only if s = g(�) is not small (i.e., reasonably big).
On the other hand, when s is really big, i.e., s = g(�) ≈ 1, then the student

is already able to solve the corresponding tasks, and adding skills does not change
much in this ability. So, for the derivative

dg

d�

to be reasonable, the value s = g(�) must be big, but not too big.
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From a fuzzy description to a reasonable crisp equation. The derivative is reason-
able when s is big but not too big. In this context, “but” means “and”, so the degree
to which this rule is applicable can be estimated as the degree to which s is big and
s is not too big.

How can we describe “big” in this context? The value s is from the interval [0, 1].
The value 0 is clearly not big, the value 1 is clearly big. Thus, the corresponding
membership function should be 0 when s = 0 and 1 when s = 1. The simplest such
membership function is μ(s) = s. A natural description of “not big” is thus 1− s. If
we use product for “and”—one of the most widely used “and”-operations in fuzzy
logic—we conclude that the degree to which the derivative

dg

d�

is reasonable is s · (1 − s) = g(�) · (1 − g(�)). Thus, we arrive at the equation

dg

d�
= g · (1 − g). (3.5.35)

Solving this equation leads exactly to the Rasch model. To solve the equation
(3.5.35), let us move all the terms containing the unknown function s to one side and
all other terms to another side. Thus, we get

dg

g · (1 − g)
= d�. (3.5.36)

One can easily check that the fraction

1

g · (1 − g)

can be represented as the sum

1

g · (1 − g)
= 1

g
+ 1

1 − g
.

Thus, the Eq. (3.5.36) has the form

dg

g
+ dg

1 − g
= d�. (3.5.37)

Integrating both sides, we conclude that

ln(g) − ln(1 − g) = � − c, (3.5.38)
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for some constant c. Thus, ln(1 − g) − ln(g) = c − �. Exponentiating both sides,
we get

1 − g

g
= exp(c − �),

i.e.,
1

g
− 1 = exp(c − �).

Thus,
1

g
= 1 + exp(c − �)

and

g(�) = 1

1 + exp(c − �)

for some parameter c. This is exactly the Rasch model.

Comment. What if we use a different “and”-operation, for example, min(a, b)? Let
us show that in this case, we also get a meaningful model.

Indeed, in this case, the corresponding equation takes the form

dg

d�
= min(g, 1 − g).

For s = g(�) ≤ 0.5, this leads to
dg

d�
= g,

i.e., to g(�) = C− · exp(�) for some constant C−. For s = g(�) ≥ 0.5, this formula
results in

dg

d�
= 1 − g,

i.e., in g(�) = 1 − C+ · exp(−�) for some constant C+. In particular, for C− =
0.5, the resulting function is a cumulative distribution corresponding to the Laplace
distribution, with the probability density

ρ(x) = 1

2
· exp(−|x |).

This distribution is used in many application areas—e.g., to modify the data in
large databases to promote privacy; see, e.g., [30].

Weneed aquantitative justification. In the previous text, we provided a justification
for the Rasch model, but this justification was more on the qualitative side. For
example, to get the exact formula of the Rasch model, we used the product “and”-
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operation, andwementioned that if we use a different “and”-operation—for example,
minimum—then we get a different formula (still reasonable but different).

It is therefore still necessary to provide a quantitative justification for the Rasch
model. Let us provide this justification. It will be less simple and less intuitive that the
previous qualitative justification, but it will enable us to come up with a quantitative
explanation for the Rasch model.

Assumption. Let us assume that such success s depends on how much the skills
level � exceeds the complexity c of the task, i.e., that that success s depends on the
difference � − c: s = h(� − c) for some function h(x).

Success as a measure of skills level. As we have mentioned, success in solving
problems of given time is a directly observable measure of the student’s skills. Thus,
we can use the value h(� − c) for some fixed c to gauge these skills.

As a result, we get different scales. Depending on which task complexity c we
select, we get different numerical values describing the same skills level: if c 
= c′,
then we get h(� − c) 
= h(� − c′). In other words, we have different scales for
measuring the same quantity.

This is similar to scales in physics. The fact that we have different scales for
measuring the samequantity is not surprising: in physics,we also have different scales
depending on which starting point we use for measurement and what measuring unit
we use. For example, we can measure length in inches or in centimeters, we can
measure temperature in the Celsius (C) scale or in the Fahrenheit (F) scale, etc.
These are all examples of different scales for measuring the same physical quantity.

Re-scaling in physics. In physics, if we change a measuring unit to a one which is
a times smaller, then the corresponding numerical value multiplies by a. In other
words, instead of the original numerical value x , we get a new numerical value
x ′ = a · x . For example, if we replace meters with centimeters, then all numerical
values get multiplied by 100: 2 m becomes 200cm.

Similarly, when we change a starting point to one which is b units smaller, the
numerical value is changed by the addition to b: x ′ = x + b.

In general, if we change both the measuring unit and the starting point, we get a
linear transformation x ′ = a · x + b.

Physical re-scalings form a finite-dimensional transformation group. If we first
apply one linear transformation, and after that another one, we still get a linear trans-
formation. In mathematical terms, this means that the class of linear transformations
is closed under composition.

For example, we can first change meters to centimeters, and then replace centime-
ters with inches. Then, the resulting transformation from meters to inches is still a
linear transformation.

Also, if we have a transformation, e.g., from C to F, then the “inverse” transfor-
mation from F to C is also a linear transformation. In precise terms, this means that
the class of all linear transformation is invariant under taking the inversion.
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In general, a class of transformationswhich is closed under composition and under
taking the inverse is called a transformation group. Thus, we can say that the class
of all linear transformations is a transformation group.

To describe a linear transformation, it is sufficient to provide two real-valued para-
meters, a, and b. In general, transformation groups whose elements can be uniquely
determined by a finite set of parameters are called finite-dimensional. Thus, the class
of all linear transformations is a finite-dimensional transformation group.

In our case, we need non-linear transformations. In our case, we need to describe
a transformation f (s) that transforms the original success rate s = h(� − c) into the
new value s ′ = g(� − c′): s ′ = f (s), i.e.,

h(� − c′) = f (h(� − c)).

When � → −∞, we have

s = h(� − c′) → 0

and
s = h(� − c) → 0.

Thus, for our function f (s), we must have f (0) = 0.
Similarly, when � → +∞, we have s = h(� − c′) → 1 and s = h(� − c) → 1.

Thus, for our function f (s), we must have f (1) = 1.
This immediately implies that the function f (s)must be non-linear: the only linear

function f (s) for which f (0) = 0 and f (1) = 1 is the identity function f (s) = s.
Thus, for our purpose, we need to consider non-linear re-scalings f (s).

Howcanwedescribe non-linear transformations: general case.Which non-linear
transformations are reasonable?

Similarly to physics, it is reasonable to require that if F(s) is a reasonable re-
scaling from scale A to scale B, and G(s) is a reasonable re-scaling from scale B
to scale C, then the transformation G(F(s)) from scale A directly to scale C should
also be reasonable. In other words, the class of reasonable transformations must be
closed under composition.

Also, if F(s) is a reasonable transformation from scale A to scale B, then the
inverse function F−1(s) is a reasonable transformation from scale B to scale A.
Thus, the class of reasonable transformations should be closed under inversion.

Therefore, the class of reasonable transformations should form a transformation
group.

Our goal is computations. Thus,wewant to be able to describe such transformation
in a computer. In a computer, at any given moment of time, we can only store finitely
many real-valued parameters. Thus, it is reasonable to require that the class of all
reasonable transformations is a finite-dimensional transformation group.

In general, linear transformations are also reasonable. Thus, to describe all rea-
sonable transformations, we need to describe all finite-dimensional transformation
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groups that contain all linear transformations. Under certain smoothness conditions
(and we have argued that in our case, the dependencies are smooth) such groups have
been fully described: namely, it has been proven that all the transformations from
such groups are fractionally linear, i.e., have the form

f (s) = a · s + b

c · s + d
(3.5.39)

for appropriate values a, b, c, and d; see, e.g., [48, 115, 149].

How can we describe non-linear transformations: our case. In our case, we have
two restrictions on a re-scaling transformation f (s): that f (0) = 0 and that f (1) = 1.
Substituting the expression (3.5.39) into the equality f (0) = 0, we conclude that
b = 0, thus

f (s) = a · s
c · s + d

. (3.5.40)

We cannot have d = 0, since then we would have

f (s) = a

c
= const

for all s. Thus, d 
= 0.
Since d 
= 0, we can divide both numerator and denominator by d, and get a

formula

f (s) = A · s
1 + C · s , (3.5.41)

where we denoted
A = a

d

and
C = c

d
.

Substituting the expression (3.5.41) into the equality f (1) = 1, we conclude that
A = 1 + C , so we conclude that in our case, non-linear transformations have the
form

f (s) = (1 + C) · s
1 + C · s . (3.5.42)

Resulting equation for the desired dependence s = h(� − c). The function f (s)
is a transformation that transforms, for two different values c 
= c′, the estimate s =
h(�−c) into the estimate s ′ = h(�−c′): for every �, we have h(�−c′) = f (h(�−c)).
In particular, for � = x , c = 0 and c′ = −c0, we have h(x + c0) = f (h(x)).
Substituting the expression (3.5.42) for the transformation f (s) into this formula,
we get the following equation:
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h(x + c0) = (1 + C(c0)) · h(x)

1 + C(c0) · h(x)
, (3.5.43)

for some C which, in general depends on c0. To find the desired dependence h(x),
we thus need to solve this equation.

Solving the resulting equation. Let us first simplify the Eq. (3.5.43), by taking the
reciprocal (1 over) of both sides:

1

h(x + c0)
= 1 + C(c0) · h(x)

(1 + C(c0)) · h(x)
= 1

1 + C(c0)
· 1

h(x)
+ C(c0)

1 + C(c0)
.

Subtracting 1 from both sides, we get

1

h(x + c0)
− 1 = 1

1 + C(c0)
· 1

h(x)
+ C(c0)

1 + C(c0)
− 1 =

1

1 + C(c0)
· 1

h(x)
− 1

1 + C(c0)
= 1

1 + C(c0)
·
(

1

h(x)
− 1

)
.

Thus, for

S(x)
def= 1

h(x)
− 1

and

A(c0)
def= 1

1 + C(c0)
,

we get a simplified equation

S(x + c0) = A(c0) · S(x). (3.5.44)

This equation holds for all real values x and c0.
Since the function s = h(x) is differentiable, the function S(x) is also differen-

tiable and therefore, the ratio

A(c0) = S(x + c0)

S(x)

is differentiable. Differentiating both sides of the Eq. (3.5.44) with respect to c0 and
taking c0 = 0, we get

dS

dx
= k · S,

where we denoted

k
def= d A

dx |x=0
.
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By moving all the terms related to S to one side and all other terms to another side,
we get

dS

S
= k · dx .

Integrating, we then get ln(S(x)) = k · x + c1 for some integration constant c.
Exponentiating both sides, we get S(x) = exp(k · x + c1). For

c
def= −c1

k
,

we have
S(x) = exp(k · (x − c)). (3.5.45)

From

S(x) = 1

h(x)
− 1,

we conclude that
1

h(x)
= S(x) + 1

and

h(x) = 1

1 + S(x)
,

i.e., in view of the formula (3.5.45):

h(�) = 1

1 + exp(k · (� − c))
. (3.5.46)

A final linear re-scaling leads to the desired formula. The formula (3.5.46) is
almost the formula we need, with the only difference that now we have an additional
parameter k. From the requirement that the function s = h(�) be increasing, we
conclude that k < 0, so

h(�) = 1

1 + exp(|k| · (c − �))
. (3.5.47)

We can transform the formula (3.5.47) into exactly the desired formula if we
change the measuring units for both � and c to a unit which is |k| times smaller. In
the new units, �′ = |k| · � and c′ = |k| · c, so the formula (3.5.47) takes the desired
form

s = h(�′) = 1

1 + exp(c′ − �′)
.

Thus, the Rasch model has indeed been justified.
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Summary. It has been empirically shown that, once we know the complexity c of a
task, and the skill level � of a student attempting this task, the student’s success s is
determined by the formula

s = 1

1 + exp(c − �)
.

This formula is known as the Rasch model since it was originally proposed—in a
general psychological context—by G. Rasch. In this subsection, we provided two
uncertainty-based justifications for this model:

• a simpler fuzzy-based justification that provides an intuitive semi-qualitative expla-
nation for this formula, and

• a more complex justification that provides a quantitative explanation for the Rasch
model.



Chapter 4
Towards Explaining Heuristic Techniques
(Such as Fuzzy) in Expert Decision Making

In the previous chapters, we showed that bounded rationality can explain differ-
ent aspects of human decision making, including seemingly irrational ones. In this
chapter, we show that similar arguments can explain the success of heuristic tech-
niques in expert decision making.

4.1 Discrete Heuristics: Case of Concept Analysis

In many practical situations, it is necessary to describe an image in words. From
the purely logical viewpoint, to describe the same object, we can use concepts of
different levels of abstraction: e.g., when the image is of a German Shepherd dog,
we can say that it is a dog, or that it is a mammal, or that it is a German Shepherd.
In such situations, humans usually select a concept which, to them, in the most
natural; this concept is called the basic level concept. However, the notion of a
basic level concept is difficult to describe in precise terms; as a result, computer
systems for image analysis are not very good in selecting concepts of basic level.
At first glance, since the question is how to describe human decisions, we should
use notions from a (well-developed) decision theory—such as the notion of utility.
However, in practice, a well-founded utility-based approach to selecting basic level
concepts is not as efficient as a purely heuristic “similarity” approach. In this section,
we explain this seeming contradiction by showing that the similarity approach can
be actually explained in utility terms—if we use a more accurate description of the
utility of different alternatives.

The results from this section first appeared in [95].

What are basic level concepts andwhy their are important.With the development
of new algorithms and faster hardware, computer systems are getting better and better
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in analyzing images. Computer-based systems are not yet perfect, but in many cases,
they can locate human beings in photos, select photos in which a certain person of
interest appears, and perform many other practically important tasks.

In general, computer systems are getting better and better in performing well-
defined image understanding tasks. However, such systems are much less efficient
in more open-ended tasks, e.g., when they need to describe what exactly is described
by a photo.

For example, whenwe present, to a person, a photo of a dog and ask: “What is it?”,
most people will say “It is a dog”. This answer comes natural to us, but, somewhat
surprisingly, it is very difficult to teach this answer to a computer. The problem is that
from the purely logical viewpoint, the same photo can be characterized on a more
abstract level (“an animal”, “a mammal”) or on a more concrete level (“German
shepherd”). In most situations, out of many possible concepts characterizing a given
object, concepts of different levels of generality, humans select a concept of a certain
intermediate level. Such preferred concepts are known as basic level concepts.

We need to describe basic level concepts in precise terms. Detecting basic level
concepts is very difficult for computers. The main reason for this difficulty is that
computers are algorithmic machines. So, to teach computers to recognize basic level
concepts, we need to provide an explanation of this notion in precise terms—and we
are still gaining this understanding.

Current attempts to describe basic level concepts in precise terms: a brief
description. When we see a picture, we make a decision which of the concepts
to select to describe this picture. In decision making theory, it is known that a consis-
tent decision making can be described by utility theory, in which to each alternative
A, we put into correspondence a number u(A) called its utility in such a way that a
utility of a situation in which we have alternatives Ai with probabilities pi is equal
to

∑
pi · u(Ai ); see a detailed description in Chap. 1.

Naturally, researchers tried to use utility theory to explain the notion of basic level
concepts; see, e.g., [24, 45, 169]. In this approach, researchers analyze the effect of
different selections on the person’s behavior, and come up with the utility values
that describes the resulting effects. The utility-based approach describes the basic
level concepts reasonably well, but not perfectly. Somewhat surprisingly, a differ-
ent approach—called similarity approach—seem to be more adequate in describing
basic level concepts. The idea behind this approach was proposed in informal terms
in [140] and has been described more formally in [109]. Its main idea is that in
a hierarchy of concepts characterizing a given object, a basic level concept is the
one for which the degree of similarity between elements is much higher than for
the more abstract (more general) concepts and slightly smaller than for the more
concrete (more specific) concepts. For example, we select a dog as a basic level
concept because the degree of similarity between different dogs is much larger than
similarity between different mammals—but, on the other hand, the degree of simi-
larity between different German Shepherds is not that much higher than the degree
of similarity between dogs of various breeds.

http://dx.doi.org/10.1007/978-3-319-62214-9_1
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The papers [14, 15] transformed somewhat informal psychological ideas into
a precise algorithms and showed that the resulting algorithms are indeed good in
detecting basic level concepts.

Challenging question. From the pragmatic viewpoint, that we have an approach that
works well is good news. However, from the methodological viewpoint, the fact that
a heuristic approach works better than a well-founded approach based on decision
theory—which describes rational human behavior—is a challenge.

Whatwedo in this section:main result. In this section,we show—on the qualitative
level—that the problem disappears if we describe utility more accurately: under this
more detailed description of utility, the decision-making approach leads to the above-
mentioned similarity approach.

What we do in this section: auxiliary result. It is usually more or less clear how
to define degree of similarity—or, equivalent, degree of dissimilarity (“distance”
d(x, y)) between two objects. There are several possible approaches to translate
this distance between objects into distance between concepts (classes of objects).
We can use worst-case distance d(A, B) defined as the maximum of all the values
d(x, y) for all x ∈ A and y ∈ B. Alternatively, we can use average distance as the
arithmetic average of all the corresponding values d(x, y). In [14], we compared
these alternatives; it turns out that the average distance leads to the most adequate
description of the basic level concepts.

In this section, we provide a (qualitative) explanation of this empirical fact as
well.

What is the utility associated with concepts of different levels of generality. In
the ideal world, when we make a decision in a certain situation, we should take
into account all the information about this situation, and we should select the best
decision based on this situation.

In practice, our ability to process information is limited. As a result, instead of
taking into account all possible information about the object, we use aword (concept)
to describe this notion, and then we make a decision based only on this word: e.g., a
tiger or a dog. Instead of taking into account all the details of the fur and of the face,
we decide to run away (if it is a tiger) or to wave in a friendly manner (if it is a dog).

In other words, instead of making an optimal decision for each object, we use the
same decision based on an “average” object from the corresponding class. Since we
make a decision without using all the information, based only on an approximate
information, we thus lose some utility; see, e.g., Sect. 3.2 for a precise description of
this loss.

From this viewpoint, the smaller the classes, the less utility we lose. This is what
was used in the previous utility-based approaches to selecting basic level concepts.

However, if the classes are too small, we need to store and process too much
information—and the need towaste resources (e.g., time) to process all this additional
information also decreases utility. For example, instead of coming up with strategies
corresponding to a few basic animals, we can develop separate strategies for short
tigers, medium size tigers, larger tigers, etc.—but this would take more processing

http://dx.doi.org/10.1007/978-3-319-62214-9_3
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time and use memory resources which may be more useful for other tasks. While
this is a concern, we should remember that we have billions of neurons, enough to
store and process huge amounts of information, so this concern is rather secondary
in comparison with a difference between being eaten alive (if it is a tiger) or not (if
it is a dog).

How to transform the above informal description of utility into precise formulas
and how this leads to the desired explanations. The main reason for disutility (loss
of utility) is that in a situation when we actually have an x , we use an approach
which is optimal for a similar (but slightly different) object y. For example, instead
of making a decision based on observing a very specific dog x , we ignore all the
specifics of this dog, and we make a decision based only one the fact that x is a dog,
i.e., in effect, we make a decision based on a “typical” dog y.

The larger the distanced(x, y)between the objects x and y, the larger this disutility
U . Intuitively, different objects within the corresponding class are similar to each
other— otherwise they would not be classified into the same class. Thus, the distance
d(x, y) between objects from the same class are small. We can therefore expand the
dependence of U on d(x, y) in Taylor series and keep only the first few terms in
this dependence. In general,U = a0 + a1 · d + a2 · d2 + . . .When the distance is 0,
i.e., when x = y, there is no disutility, soU = 0. Thus, a0 = 0 and the first non-zero
term in the Taylor expansion is U ≈ a1 · d(x, y).

Once we act based on the class label (“concept”), we only know that an object
belongs to the class, we do not know the exact object within the class. We may have
different objects from this class with different probabilities. By the above property
of utility, the resulting disutility of selecting a class is equal to the average value
of the disutility—and is, thus proportional to the average distance d(x, y) between
objects from a given class. This explains why average distance works better then the
worst-case distance.

When we go from a more abstract concept (i.e., from a larger class) to a more
specific concept (i.e., to a smaller class of objects), the average distance decreases—
and thus, the main part Um of disutility decreases: U ′

m < Um . However, as we have
mentioned, in addition to this main part of disutility Um , there is also an additional
secondary (smaller) part of utilityUs � Um , which increases when we go to a more
specific concept: U ′

s > Us .
On the qualitative level, this means the following: if the less general level has a

much smaller degree of similarity (i.e., a drastically smaller average distance between
the objects on this level), then selecting a concept on this less general level drastically
decreases the disutility U ′

m � Um , and this decrease Um −U ′
m � 0 overwhelms

the (inevitable) increase U ′
s −Us in the secondary part of disutility, so that U ′ =

Um +U ′
s < Um +Us = U . On the other hand, if the decrease in degree of similarity

is small (i.e.,U ′
m ≈ Um), the increase in the secondary part of disutilityU ′

s −Us can
over-stage the small decrease U ′

m −Um .
A basic level concept is a concept for which disutility U ′ is smaller than for a

more general conceptU and smaller than for a more specific conceptU ′′. In view of
the above, this means that there should be a drastic difference between the degree of
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similarityU ′
m at this level and the degree of similarityUm at the more general level—

otherwise, on the current level, we would not have smaller disutility. Similarly, there
should be a small difference between the degree of similarity at the current levelU ′

m
and the degree of similarityU ′′

m at the more specific level—otherwise, on the current
level, we would not have smaller disutility. This explains the similarity approach in
utility terms.

4.2 Continuous Heuristics: Case of Fuzzy Techniques

One of the main methods for eliciting the values of the membership function μ(x) is
to use the Likert-type scales, i.e., to ask the user to mark his or her degree of certainty
by an appropriate mark k on a scale from 0 to n and takeμ(x) = k/n. In this section,
we show how to describe this process in terms of the traditional decision making.
Our conclusion is that the resultingmembership degrees incorporate both probability
and utility information. It is therefore not surprising that fuzzy techniques often work
better than probabilistic techniques—which only take into account the probability
of different outcomes.

The results from this section appeared in [86, 87, 90].

4.2.1 Fuzzy Uncertainty: A Brief Description

Fuzzy uncertainty: a usual description. Fuzzy logic (see, e.g., [65, 120, 163]) has
been designed to describe imprecise (“fuzzy”) natural language properties like “big”,
“small”, etc. In contrast to “crisp” properties like x ≤ 10 which are either true or
false, experts are not 100% sure whether a given value x is big or small. To describe
such properties P , fuzzy logic proposes to assign, to each possible value x , a degree
μP(x) to which the value x satisfies this property:

• the degree μP(x) = 1 means that we are absolutely sure that the value x satisfies
the property P;

• the degree μP(x) = 0 means that we are absolutely sure that the value x does not
satisfy the property P; and

• intermediate degrees 0 < μP(x) < 1 mean that we have some confidence that x
satisfies the property P but we also have a certain degree of confidence that the
value x does not satisfy this property.

How do we elicit the degree μP(x) from the expert? One of the usual ways is to
use a Likert-type scale, i.e., to ask the expert to mark his or her degree of confidence
that the value x satisfies the property P by one of the marks 0, 1, . . . , n on a scale
from 0 to n. If an expert marks m on a scale from 0 to n, then we take the ratio m/n
as the desired degree μP(x). For example, if an expert marks her confidence by a
value 7 on a scale from 0 to 10, then we take μP(x) = 7/10.
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For a fixed scale from 0 to n, we only get n + 1 values this way: 0, 1/n, 2/n, …,
(n − 1)/n = 1 − 1/n, and 1. If we want a more detailed description of the expert’s
uncertainty, we can use a more detailed scale, with a larger value n.

Traditional decision making theory: a brief reminder. Decision making has been
analyzed for decades. Efficient models have been developed and tested to describe
human decision making, and the resulting tools have been effectively used in busi-
ness and in other decision areas; see, e.g., [35, 36, 63, 97, 133]. These models
are not perfect—this is one the reasons why fuzzy methods are needed—but these
tools provide a reasonable first-order approximation description of human decision
making.

Need to combine fuzzy techniques and traditional decision making techniques,
and the resulting problem that we solve in this section. Traditional decision mak-
ing tools are useful but have their limitations. Fuzzy tools are also known to be very
useful, in particular, they are known to be useful in control and in decision making
(see, e.g., [65, 120]), so a natural idea is to combine these two techniques.

To enhance this combination, it is desirable to be able to describe both techniques
in the same terms. In particular, it is desirable to describe fuzzy uncertainty in terms
of traditional decision making. To the best of our knowledge, this has not been done
before; we hope that our description will lead to useful applications in practical
decision making.

4.2.2 How to Describe Selection on a Likert-Type Scale
in Terms of Traditional Decision Making

How do we place marks on a Likert-type scale? We would like to find out how
people decide to mark some values with different labels on a Likert-type scale. To
understand this, let us recall how this marking is done. Suppose that we have Likert-
type scale with n + 1 labels 0, 1, 2, …, n, ranging from the smallest to the largest.

Then, if the actual value of the quantity x is very small, we mark label 0. At some
point, we change to label 1; let us mark this threshold point by x1. When we continue
increasing x , we first have values marked by label 1, but eventually reach a new
threshold after which values will be marked by label 2; let us denote this threshold
by x2, etc. As a result, we divide the range [X , X ] of the original variable into n + 1
intervals [x0, x1], [x1, x2], …, [xn−1, xn], [xn, xn+1], where x0 = X and xn+1 = X :

• values from the first interval [x0, x1] are marked with label 0;
• values from the second interval [x1, x2] are marked with label 1;
• …
• values from the n-th interval [xn−1, xn] are marked with label n;
• values from the (n + 1)-st interval [xn, xn+1] are marked with label n + 1.

Then, when we need to make a decision, we base this decision only on the label,
i.e., only on the interval to which x belongs. In other words, we make n different
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decisions depending on whether x belongs to the interval [x0, x1], to the interval
[x1, x2], …, or to the interval [xn, xn+1].
Decisions based on the Likert-type discretization are imperfect. Ideally, we
should take into account the exact value of the variable x . When we use Likert-
type scale, we only take into account an interval containing x and thus, we do not
take into account part of the original information. Since we only use part of the orig-
inal information about x , the resulting decision may not be as good as the decision
based on the ideal complete knowledge.

For example, an ideal office air conditioner should be able to maintain the exact
temperature at which a person feels comfortable. People are different, their temper-
ature preferences are different, so an ideal air conditioner should be able to maintain
any temperature value x within a certain range [X , X ]. In practice, some air con-
ditioners only have a finite number of settings. For example, if we have setting
corresponding to 65, 70, 75, and 80◦ then a person who prefers 72◦ will probably
select the 70 setting or the 75 setting. In both cases, this person will be somewhat
less comfortable than if there was a possibility of an ideal 72◦ setting.

How do we select a Likert-type scale: main idea. According to the general ideas
of traditional (utility-based) approach to decision making, we should select a Likert
scale for which the expected utility is the largest.

To estimate the utility of decisions based on each scale, we will take into account
the just-mentioned fact that decisions based on the Likert-type discretization are
imperfect. In utility terms, this means that the utility of the Likert-based decisions
is, in general, smaller than the utility of the ideal decision.

Which decision should we choose within each label? In the ideal situation, if we
could use the exact value of the quantity x , then for each value x , we would select
an optimal decision d(x), a decision which maximizes the person’s utility.

If we only know the label k, i.e., if we only know that the actual value x belongs to
the k-th interval [xk, xk+1], then we have to make a decision based only on this infor-
mation. In other words, we have to select one of the possible values x̃k ∈ [xk, xk+1],
and then, for all x from this interval, use the decision d (̃xk) based on this value.

Which value x̃k should we choose: idea. According to the traditional approach to
decisionmaking, we should select a value for which the expected utility is the largest.

Which value x̃k shouldwe choose: towards a precise formulation of the problem.
To find this expected utility, we need to know two things:

• we need to know the probability of different values of x ; these probabilities can
be described, e.g., by the probability density function ρ(x);

• we also need to know, for each pair of values x ′ and x , what is the utility u(x ′, x)
of using a decision d(x ′) in the situation in which the actual value is x .

In these terms, the expected utility of selecting a value x̃k can be described as

∫ xk+1

xk

ρ(x) · u(̃xk, x) dx . (4.2.1)
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Thus, for each interval [xk, xk+1], we need to select a decision d (̃xk) corresponding
to the value x̃k for which the expression (4.2.1) attains its largest possible value. The
resulting expected utility is equal to

max
x̃k

∫ xk+1

xk

ρ(x) · u(̃xk, x) dx . (4.2.2)

How to select the best Likert-type scale: general formulation of the problem.
The actual value x can belong to any of the n + 1 intervals [xk, xk+1]. Thus, to find
the overall expected utility, we need to add the values (4.2.2) corresponding to all
these intervals. In other words, we need to select the values x1, . . . , xn for which the
following expression attains its largest possible value:

n∑

k=0

max
x̃k

∫ xk+1

xk

ρ(x) · u(̃xk, x) dx . (4.2.3)

Equivalent reformulation in terms of disutility. In the ideal case, for each value x ,
we should use a decision d(x) corresponding to this value x , and gain utility u(x, x).
In practice, we have to use decisions d(x ′) corresponding to a slightly different value,
and thus, get slightly worse utility values u(x ′, x). The corresponding decrease in

utilityU (x ′, x) def= u(x, x) − u(x ′, x) is usually calleddisutility. In terms of disutility,
the function u(x ′, x) has the form

u(x ′, x) = u(x, x) −U (x ′, x),

and thus, the optimized expression (4.2.1) takes the form

∫ xk+1

xk

ρ(x) · u(x, x) dx −
∫ xk+1

xk

ρ(x) ·U (̃xk, x) dx .

The first integral does not depend on x̃k ; thus, the expression (4.2.1) attains its maxi-
mum if and only if the second integral attains its minimum. The resulting maximum
(4.2.2) thus takes the form

∫ xk+1

xk

ρ(x) · u(x, x) dx − min
x̃k

∫ xk+1

xk

ρ(x) ·U (̃xk, x) dx . (4.2.4)

Thus, the expression (4.2.3) takes the form

n∑

k=0

∫ xk+1

xk

ρ(x) · u(x, x) dx −
n∑

k=0

min
x̃k

∫ xk+1

xk

ρ(x) ·U (̃xk, x) dx .
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The first sum does not depend on selecting the thresholds. Thus, to maximize utility,
we should select the values x1, . . . , xn for which the second sum attains its smallest
possible value:

n∑

k=0

min
x̃k

∫ xk+1

xk

ρ(x) ·U (̃xk, x) dx → min . (4.2.5)

Let us recall that we are interested in the membership function. For a general
Likert-type scale, we have a complex optimization problem (4.2.5). However, we are
not interested in general Likert-type scales per se, what we are interested in is the
use of Likert-type scales to elicit the values of the membership function μ(x).

As we have mentioned in Sect. 1, in an n-valued scale:

• the smallest label 0 corresponds to the value μ(x) = 0/n,
• the next label 1 corresponds to the value μ(x) = 1/n,
• …
• the last label n corresponds to the value μ(x) = n/n = 1.

Thus, for each n:

• values from the interval [x0, x1] correspond to the value μ(x) = 0/n;
• values from the interval [x1, x2] correspond to the value μ(x) = 1/n;
• …
• values from the interval [xn, xn+1] correspond to the value μ(x) = n/n = 1.

For each n, we have finitely many possible values of μ(x). The actual real-number
value of themembership functionμ(x) corresponds to the limit when n → ∞, i.e., in
effect, to very large values of n. Thus, in our analysis, wewill assume that the number
n of labels is huge—and thus, that the width of each of n + 1 intervals [xk, xk+1] is
very small.

Let us take into account that each interval is narrow. Let us use the fact that
each interval is narrow to simplify the expression U (x ′, x) and thus, the optimized
expression (4.2.5).

In the expressionU (x ′, x), both values x ′ and x belong to the same narrow interval

and thus, the difference Δx
def= x ′ − x is small. Thus, we can expand the expression

U (x ′, x) = U (x + Δx, x) into Taylor series in Δx , and keep only the first non-zero
term in this expansion. In general, we have

U (x + Δ, x) = U0(x) +U1 · Δx +U2(x) · Δx2 + . . . ,

where

U0(x) =U (x, x), U1(x) = ∂U (x + Δx, x)

∂(Δx)
,

U2(x) = 1

2
· ∂2U (x + Δx, x)

∂2(Δx)
. (4.2.7)

http://dx.doi.org/10.1007/978-3-319-62214-9_1
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Here, by definition of disutility, we get U0(x) = U (x, x) = u(x, x) − u(x, x) = 0.
Since the utility is the largest (and thus, disutility is the smallest) when x ′ = x , i.e.,
when Δx = 0, the derivative U1(x) is also equal to 0—since the derivative of each
(differentiable) function is equal to 0 when this function attains its minimum. Thus,
the first non-trivial term corresponds to the second derivative:

U (x + Δx, x) ≈ U2(x) · Δx2,

i.e., in other words, that

U (̃xk, x) ≈ U2(x) · (̃xk − x)2.

Substituting this expression into the expression

∫ xk+1

xk

ρ(x) ·U (̃xk, x) dx

that needs to be minimized if we want to find the optimal x̃k , we conclude that we
need to minimize the integral

∫ xk+1

xk

ρ(x) ·U2(x) · (̃xk − x)2 dx . (4.2.8)

This new integral is easy to minimize: if we differentiate this expression with respect
to the unknown x̃k and equate the derivative to 0, we conclude that

∫ xk+1

xk

ρ(x) ·U2(x) · (̃xk − x) dx = 0,

i.e., that

x̃k ·
∫ xk+1

xk

ρ(x) ·U2(x) dx =
∫ xk+1

xk

x · ρ(x) ·U2(x) dx,

and thus, that

x̃k =
∫ xk+1

xk
x · ρ(x) ·U2(x) dx

∫ xk+1

xk
ρ(x) ·U2(x) dx

. (4.2.9)

This expression can also be simplified if we take into account that the intervals are

narrow. Specifically, if we denote the midpoint of the interval [xk, xk+1] by xk
def=

xk + xk+1

2
, and denote Δx

def= x − xk , then we have x = xk + Δx . Expanding the

corresponding expressions intoTaylor series in terms of a small valueΔx and keeping
only main terms in this expansion, we get

ρ(x) = ρ(xk + Δx) = ρ(xk) + ρ ′(xk) · Δx ≈ ρ(xk),
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where f ′(x) denoted the derivative of a function f (x), and

U2(x) = U2(xk + Δx) = U2(xk) +U ′
2(xk) · Δx ≈ U2(xk).

Substituting these expressions into the formula (4.2.9), we conclude that

x̃k = ρ(xk) ·U2(xk) · ∫ xk+1

xk
x dx

ρ(xk) ·U2(xk) · ∫ xk+1

xk
dx

=
∫ xk+1

xk
x dx

∫ xk+1

xk
dx

=

1

2
· (x2k+1 − x2k )

xk+1 − xk
= xk+1 + xk

2
= xk .

Substituting this midpoint value x̃k = xk into the integral (4.2.8) and taking into
account that on the k-th interval, we have ρ(x) ≈ ρ(xk) and U2(x) ≈ U2(xk), we
conclude that the integral (4.2.8) takes the form

∫ xk+1

xk
ρ(xk) ·U2(xk) · (xk − x)2 dx = ρ(xk) ·U2(xk) ·

∫ xk+1

xk
(xk − x)2 dx . (4.2.8a)

When x goes from xk to xk+1, the difference Δx = x − xk between the value x
and the interval’s midpoint xk ranges from −Δk to Δk , where Δk is the interval’s
half-width:

Δk
def= xk+1 − xk

2
.

In terms of the new variable Δx , the integral in the right-hand side of (4.2.8a) has
the form ∫ xk+1

xk

(xk − x)2 dx =
∫ Δk

−Δk

(Δx)2 d(Δx) = 2

3
· Δ3

k .

Thus, the integral (4.2.8) takes the form

2

3
· ρ(xk) ·U2(xk) · Δ3

k .

The problem (4.2.5) of selecting the Likert-type scale thus becomes the problem of
minimizing the sum (4.2.5) of such expressions (4.2.8), i.e., of the sum

2

3
·

n∑

k=0

ρ(xk) ·U2(xk) · Δ3
k . (4.2.10)



80 4 Towards Explaining Heuristic Techniques (Such as Fuzzy) …

Here, xk+1 = xk+1 + Δk+1 = (xk + Δk) + Δk+1 ≈ xk + 2Δk , so Δk = (1/2) ·
Δxk , where Δxk

def= xk+1 − xk . Thus, (4.2.10) takes the form

1

3
·

n∑

k=0

ρ(xk) ·U2(xk) · Δ2
k · Δxk . (4.2.11)

In terms of the membership function, we have μ(xk) = k/n and μ(xk+1) =
(k + 1)/n. Since the half-width Δk is small, we have

1

n
= μ(xk+1) − μ(xk) = μ(xk + 2Δk) − μ(xk) ≈ μ′(xk) · 2Δk,

thus,Δk ≈ 1

2n
· 1

μ′(xk)
.Substituting this expression into (4.2.11), we get the expres-

sion
1

3 · (2n)2
· I , where

I =
n∑

k=0

ρ(xk) ·U2(xk)

(μ′(xk))2
· Δxk . (4.2.12)

The expression I is an integral sum, so when n → ∞, this expression tends to the
corresponding integral

I =
∫

ρ(x) ·U2(x)

(μ′(x))2
dx . (4.2.11a)

Minimizing (4.2.5) is equivalent to minimizing I . With respect to the derivative

d(x)
def= μ′(x), we need to minimize the objective function

I =
∫

ρ(x) ·U2(x)

d2(x)
dx (4.2.12a)

under the constraint that

∫ X

X
d(x) dx = μ(X) − μ(X) = 1 − 0 = 1. (4.2.13)

By using the Lagrange multiplier method, we can reduce this constraint optimization
problem to the unconstrained problem of minimizing the functional

I =
∫

ρ(x) ·U2(x)

d2(x)
dx + λ ·

∫

d(x) dx, (4.2.14)
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for an appropriate Lagrangemultiplierλ. Differentiating (4.2.14)with respect to d(x)

and equating the derivative to 0, we conclude that −2 · ρ(x) ·U2(x)

d3(x)
+ λ = 0, i.e.,

that d(x) = c · (ρ(x) ·U2(x))1/3 for some constant c. Thus, μ(x) = ∫ x
X d(t) dt =

c · ∫ x
X (ρ(t) ·U2(t))1/3 dt. The constant c must be determined by the condition that

μ(X) = 1. Thus, we arrive at the following formula (4.2.15).

Resulting formula. The membership function μ(x) obtained by using Likert-type-
scale elicitation is equal to

μ(x) =
∫ x
X (ρ(t) ·U2(t))1/3 dt

∫ X
X (ρ(t) ·U2(t))1/3 dt

, (4.2.15)

where ρ(x) is the probability density describing the probabilities of different values

of x ,U2(x)
def= 1

2
· ∂2U (x + Δx, x)

∂2(Δx)
,U (x ′, x) def= u(x, x) − u(x ′, x), and u(x ′, x) is

the utility of using a decision d(x ′) corresponding to the value x ′ in the situation in
which the actual value is x .

Comment. The above formula only applies to membership functions like “large”
whose values monotonically increase with x . It is easy to write a similar formula for
membership functions like “small”which decreasewith x . Formembership functions
like “approximately 0” which first increase and then decrease, we need to separately
apply these formula to both increasing and decreasing parts.

Summary. The resulting membership degrees incorporate both probability and util-
ity information. This fact explains why fuzzy techniques often work better than prob-
abilistic techniques—because the probability techniques only take into account the
probability of different outcomes.

Extension to interval-valued case: preliminary results and future work. In this
section, we consider an ideal situation in which

• we have full information about the probabilities ρ(x), and
• the user can always definitely decide between every two alternatives.

In practice, we often only have partial information about probabilities (which can
be described by the intervals of possible values of ρ(x)) and users are often unsure
which of the two alternatives is better (which can be described by interval-valued
utilities).

For example, if we have no reason to believe that some values from the interval
[X , X ] are more probable than others and that some values are more sensitive than
others, it is natural to assume that ρ(x) = const andU2(x) = const, in which case the
above formula (4.2.15) leads to a triangular membership function. This may explain
why triangular membership functions are successfully used in many applications of
fuzzy techniques.

It is desirable to extend our formulas to the general interval-valued case.



Chapter 5
Predicting How Bounded Rationality
Will Affect the Quality of Future
Decisions: Case Study

It is known that the problems of optimal design are NP-hard—meaning that, in
general, a feasible algorithm can only produce close-to-optimal designs. The more
computations we perform, the better design we can produce. In this chapter, we
theoretically derive quantitative formulas describing how design quality improves
with the increasing computational abilities.We then empirically confirm the resulting
theoretical formula by applying it to the problem of aircraft fuel efficiency.

Results from this chapter first appeared in [80, 81].

5.1 Formulation of the Problem

Design objective is to produce an optimal design. Starting from 1980s, computers
have become ubiquitous in engineering design; see, e.g., [8, 57, 70, 100]. An impor-
tant breakthrough in computer-aided design was Boeing 777, the first commercial
airplane which was designed exclusively by using computers; see, e.g., [141].

The main objective of a computer-aided design is to come up with a design which
optimizes the corresponding objective function—e.g., fuel efficiency of an aircraft.

Optimization is, in general, NP-hard. The corresponding optimization problems
are non-linear, and non-linear optimization problems are, in general, NP-hard; see,
e.g., [69, 125]. This means that—under the belief of most computer scientists that
P �=NP—a feasible algorithm cannot always find the exact optimum; see, e.g., [42,
124]. In general, we can only find an approximate optimum.

Problem. The more computations we perform, the better the design. It is desirable
to come up with a quantitative description of how increasing computational abilities
improve the design quality.
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5.2 Analysis of the Problem and the Derivation
of the Resulting Formula

Because of NP-hardness, more computations simply means more test cases. In
principle, each design optimization problem can be solved by exhaustive search—we
can try all possible combinations of parameters, and see which combination leads to
the optimal design. This approachmaywork ifwe have a small number of parameters,
then we can indeed try all possible combinations. If, on average, we have C possible
values of each parameter, then:

• we need to compare C test cases when we have only one parameter,
• we need C2 test cases when we have two parameters,
• and we need C3 test cases when we have three parameters.

In general, when we have d parameters, we need to analyze Cd test cases. For
large systems (e.g., for an aircraft), we have thousands of possible parameters, and
for d ≈ 103, the exponential value Cd exceeds the lifetime of the Universe. As a
result, for realistic d, instead of the exhaustive search of all possible combinations
of parameters, we can only test some combinations.

NP-hardness means, crudely speaking, that we cannot expect optimization algo-
rithms to be significantly faster than this exponential time Cd . This means that, in
effect, all possible optimization algorithms boil down to trying many possible test
cases.

When computational abilities increase, we can test more cases. From this view-
point, increasing computational abilities mean that we can test more cases. Thus, by
increasing the scope of our search, we will hopefully find a better design.

How can we describe this in quantitative terms?

How to describe quality of an individual design. Since we cannot do significantly
better than with a simple search, the resulting search is not well directed, we cannot
meaningfully predict whether the next test case will be better or worse—because if
we could, we would be able to significantly decrease the search time.

The quality of the next test case—i.e., in precise terms, the value of the objective
function corresponding to the next test case—cannot be predicted and is, in this
sense, a random variable.

Many different factors affect the quality of each individual design. It is known
that, under reasonable conditions, the distribution of the resulting effect of several
independent random factors is close to Gaussian; this fact is known as the Central
Limit Theorem; see, e.g., [144]. Thus, we can conclude that the quality of a (randomly
selected) individual design is normally distributed, with some mean μ and standard
deviation σ .

What if we test n possible designs. After computation, we select the design with the
largest value of the objective function. Let n denote the number of designs that our
program tests. If xi denotes the quality of the i-th design, then the resulting quality
is equal to x = max(x1, . . . , xn). We know that the variables xi are independent and
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identically normally distributed with some mean μ and standard deviation σ . What
is the resulting probability distribution for the quality x? What is the expected value
of this quality?

To answer this question, let us first reduce this question to its simplest case of
a standard normal distribution, with μ = 0 and σ = 1. It is known that a general
normally distributed random variable xi can be represented as xi = μ+σ · yi . Since
adding μ and multiplying by a positive constant σ > 0 does not change which of
the values are larger and which are smaller, we have

x = max(x1, . . . , xn) = max(μ + σ · y1, . . . , μ + σ · yn) = μ + σ · y,

where y
def= max(y1, . . . , yn).

For large n, the max-central limit theorem [11, 26, 31, 49] (also known as Fisher-
Tippet-Gnedenko Theorem) says that the cumulative distributive function F(y) for
y is approximately equal to

F(y) ≈ FEV

(
y − μn

σn

)
,

where:
FEV (y)

def= exp(− exp(−y))

is known as the Gumbel distribution,

μn
def= Φ−1

(
1 − 1

n

)
,

σn
def= Φ−1

(
1 − 1

n
· e−1

)
− Φ−1

(
1 − 1

n

)
,

andΦ−1(t) is the inverse function to the cumulative distribution functionΦ(y) of the
standard normal distribution (with mean 0 and standard deviation 1). In other words,
the distribution of the random variable y is approximately equal to the distribution of
the variable μn +σn · ξ , where ξ is distributed according to the Gumbel distribution.

It is known that themean of theGumbel distribution is equal to the Euler’s constant
γ ≈ 0.5772. Thus, the mean value mn of y is equal to μn + γ · σn . For large n, we
get asymptotically

mn ∼ γ · √2 ln(n),

hence the mean value en of x = μ + σ · y is asymptotically equal to

en ∼ μ + σ · γ · √2 ln(n).
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Resulting formula. When we test n different cases to find the optimal design, the
quality en of the resulting design increases with n as

en ∼ μ + σ · γ · √2 ln(n).

5.3 Case Study of Aircraft Fuel Efficiency Confirms
the Theoretical Formula

Case study: brief description. As a case study, let us take the fuel efficiency of
commercial aircraft; see, e.g., [71, 127, 128]. It is known that the average energy
efficiency E changes with time T as

E = exp(a + b · ln(T )) = C · T b,

for b ≈ 0.5.

How to apply our theoretical formula to this case? The above theoretical formula
en ∼ μ + σ · γ · √

2 ln(n) describes how the quality changes with the number of
computational steps n. In the case study, we know how it changes with time T . So,
to compare these two formulas, we need to know how the number of computational
steps which can be applied to solve the design problem changes with time T . In other
words, we need to know how the computer’s computational speed—i.e., the number
of computational steps that a computer can perform in a fixed time period—changes
with time T .

This dependence follows the known Moore’s law, according to which the com-
putational speed grows exponentially with time T : n ≈ exp(c · T ) for some constant
c. Crudely speaking, the computational speed doubles every two years; [53, 106].

Applying the theoretical formula to this case study. When n ≈ exp(c · T ), we
have ln(n) ∼ T . Thus, the dependence

en ∼ μ + σ · γ · √
2 ln(n)

of quality q
def= en on time takes the form

q ≈ a + b · √
T .

This is exactly the empirical dependence that we actually observe.
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Thus, the empirical data confirm the above theoretical formula.

Comment. It is important to be cautious when testing the formula. For example, in
a seemingly similar case of cars, the driving force for their fuel efficiency is not
computer design but rather federal and state regulations which prescribe what fuel
efficiency should be. Because of this, for cars, the dependence of fuel efficiency on
time T is determined by the political will and is, thus, not as regular as for the aircraft.



Chapter 6
Decision Making Under Uncertainty
and Restrictions on Computation
Resources: From Heuristic to Optimal
Techniques

In the previous chapters, we showed that bounded rationality explains the success
of heuristic techniques in expert decision making. In this chapter, we explain how
we can improve on the existing heuristic techniques by formulating and solving the
corresponding optimization problems.

6.1 Decision Making Under Uncertainty: Towards Optimal
Decisions

A natural idea of decision making under uncertainty is to assign a fair price to
different alternatives, and then to use these fair prices to select the best alternative. In
this section, we show how to assign a fair price under different types of uncertainty.

Results from this section first appeared in [74, 83, 84, 102].

6.1.1 Decision Making Under Uncertainty: Formulation
of the Problem

In many practical situations, we have several alternatives, and we need to select one
of these alternatives. For example:

• a person saving for retirement needs to find the best way to invest money;
• a company needs to select a location for its new plant;
• a designer must select one of several possible designs for a new airplane;
• a medical doctor needs to select a treatment for a patient, etc.

© Springer International Publishing AG 2018
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Decision making is the easiest if we know the exact consequences of selecting
each alternative. Often, however, we only have an incomplete information about
consequences of different alternative, and we need to select an alternative under this
uncertainty.

Traditional decision theory (see, e.g., [97, 134]) assumes that for each alternative
a, we know the probability pi (a) of different outcomes i . It can be proven that
preferences of a rational decision maker can be described by utilities ui so that an

alternative a is better if its expected utility u(a)
def= ∑

i
pi (a) · ui is larger.

Often, we do not know the probabilities pi (a). As a result, we do not know the
exact value of the gain u corresponding to each alternative. How can we then make
a decision?

For the case when we only know the interval [u, u] containing the actual
(unknown) value of the gain u, a possible solution was proposed in the 1950s by a
future Nobelist L. Hurwicz [56, 97]: we should select an alternative that maximizes
the value αH · u(a) + (1 − αH ) · u(a). Here, the parameter αH ∈ [0, 1] described
the optimism level of a decision maker:

• αH = 1 means optimism;
• αH = 0 means pessimism;
• 0 < αH < 1 combines optimism and pessimism.

Hurwicz’s approach is widely used in decisionmaking, but it is largely a heuristic,
and it is not clear how to extend it other types of uncertainty. It is therefore desir-
able to develop more theoretically justified recommendations for decision making
under uncertainty, recommendations that would be applicable to different types of
uncertainty.

In this section, we propose such recommendations by explaining how to assign
a fair price to each alternative, so that we can select between several alternatives by
comparing their fair prices.

The structure of this section is as follows: first, we recall how to describe different
types of uncertainty; then, we describe the fair price approach; after that, we show
how the fair price approach can be applied to different types of uncertainty.

6.1.2 How to Describe Uncertainty

When we have a full information about a situation, then we can express our desir-
ability of each possible alternative by declaring a price that we are willing to pay for
this alternative. Once these prices are determined, we simply select the alternative
for which the corresponding price is the highest. In this full information case, we
know the exact gain u of selecting each alternative.

In practice, we usually only have partial information about the gain u: based on
the available information, there are several possible values of the gain u. In other
words, instead of the exact gain u, we only know a set S of possible values of the
gain.
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We usually know lower and upper bounds for this set, so this set is bounded. It is
also reasonable to assume that the set S is closed: indeed, if we have a sequence of
possible values un ∈ S that converges to a number u0, then, no matter how accurately
we measure the gain, we can never distinguish between the limit value u0 and a value
un which is sufficiently close to this limit u0. Thus, we will never be able to conclude
that the limit value u0 is not possible—and thus, it is reasonable to consider it possible,
i.e., to include the limit point u0 into the set S of possible values.

In many practical situations, if two gain values u < u′ are possible, then all inter-
mediate values u′′ ∈ (u, u′) are possible as well. In this case, the bounded closed set
S is simply an interval [u, u].

However, sometimes, some intermediate numbers u′′ cannot be possible values
of the gain. For example, if we buy an obscure lottery ticket for a simple prize-or-
no-prize lottery from a remote country, we either get the prize or lose the money. In
this case, the set of possible values of the gain consists of two values. To account for
such situations, we need to consider general bounded closed sets.

In addition to knowing which gain values are possible, we may also have an
information about which of these values are more probable and which values are less
probable. Sometimes, this information has a qualitative nature, in the sense that, in
addition to the set S of possible gain values, we also know a (closed) subset s ⊆ S
of values which are more probable (so that all the values from the difference S − s
are less probable). In many cases, the set s also contains all its intermediate values,
so it is an interval; an important particular case is when this interval s consists of a
single point. In other cases, the set s may be different from an interval.

Often, we have a quantitative information about the probability (frequency)
of different values u ∈ S. A universal way to describe a probability distribution

on the real line is to describe its cumulative distribution function (cdf) F(u)
def=

Prob(U ≤ u). In the ideal case, we know the exact cdf F(u). In practice, we usually
only know the values of the cdf with uncertainty. Typically, for every u, we may
only know the bounds F(u) and F(u) on the actual (unknown) values F(u). The
corresponding interval-valued function [F(u), F(u)] is known as a p-box [32, 34].

The above description relates to the usual passive uncertainty, uncertainty over
which we have no control. Sometimes, however, we have active uncertainty. As an
example, let us consider two situations in which we need to minimize the amount of
energy E used to heat the building. For simplicity, let us assume that cooling by 1
degree requires 1 unit of energy.

In the first situation, we simply know the interval [E, E] that contains the actual
(unknown) value of the energy E : for example, we know that E ∈ [20, 25] (and
we do not control this energy). In the second situation, we know that the outside
temperature is between 50 and 55F, and we want to maintain the temperature 75F.
In this case, we also conclude that E ∈ [20, 25], but this time, we ourselves (or,
alternatively, the heating system programmed by us) set up the appropriate amount
of energy.

The distinction between the usual (passive) uncertainty and a different (active)
type of uncertainty can be captured by considering improper intervalsfirst introduced
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by Kaucher, i.e., intervals [u, u] in which we may have u > u see, e.g., [62, 142].
For example, in terms of these Kaucher intervals, our first (passive) situation is
described by the interval [15, 20], while the second (active) situation is described by
an improper interval [20, 15].

In line with this classification of different types of uncertainty, in the follow-
ing text, we will first consider the simplest (interval) uncertainty, then the general
set-valued uncertainty, then uncertainty described by a pair of embedded sets (in
particular, by a pair of embedded intervals). After that, we consider situations with
known probability distribution, situations with a known p-box, and finally, situations
described by Kaucher intervals.

6.1.3 Fair Price Approach: Main Idea

When we have full information, we can express our desirability of each possible
situation by declaring a price that we are willing to pay to get involved in this
situation. To make decisions under uncertainty, it is therefore desirable to assign a
fair price to each uncertain situation: e.g., to assign a fair price to each interval and/or
to each set.

There are reasonable restrictions on the function that assigns the fair price to each
type of uncertainty. First, the fair price should be conservative: if we know that the
gain is always larger than or equal to u, then the fair price corresponding to this
situation should also be greater than or equal to u. Similarly, if we know that the
gain is always smaller than or equal to u, then the fair price corresponding to this
situation should also be smaller than or equal to u.

Another natural property is monotonicity: if one alternative is clearly better than
the other, then its fair price should be higher (or at least not lower).

Finally, the fair price should be additive in the following sense. Let us consider
the situation when we have two consequent independent decisions. In this case, we
can either consider two decision processes separately, or we can consider a single
decision process in which we select a pair of alternatives:

• the 1st alternative corresponding to the 1st decision, and
• the 2nd alternative corresponding to the 2nd decision.

If we are willing to pay the amount u to participate in the first process, and we are
willing to pay the amount v to participate in the second decision process, then it is
reasonable to require that we should be willing to pay u + v to participate in both
decision processes.

On the examples of the above-mentioned types of uncertainty, let us describe the
formulas for the fair price that can be derived from these requirements.
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6.1.4 Case of Interval Uncertainty

We want to assign, to each interval [u, u], a number P([u, u]) describing the fair
price of this interval. Conservativeness means that the fair price P([u, u]) should be
larger than or equal to u and smaller than or equal to u, i.e., that the fair price of an
interval should be located in this interval:

P([u, u]) ∈ [u, u].

Let us now apply monotonicity. Suppose that we keep the lower endpoint u intact
but increase the upper bound. This means that we keep all the previous possibilities,
butwe also add newpossibilities,with a higher gain. In otherwords,we are improving
the situation. In this case, it is reasonable to require that after this addition, the fair
price should either increase or remain the same, but it should definitely not decrease:

if u = v and u < v then P([u, u]) ≤ P([v, v]).

Similarly, if we dismiss some low-gain alternatives, this should increase (or at least
not decrease) the fair price:

if u < v and u = v then P([u, u]) ≤ P([v, v]).

Finally, let us apply additivity. In the case of interval uncertainty, about the gain
u from the first alternative, we only know that this (unknown) gain is in [u, u].
Similarly, about the gain v from the second alternative, we only know that this gain
belongs to the interval [v, v].

The overall gain u + v can thus take any value from the interval

[u, u] + [v, v] def= {u + v : u ∈ [u, u], v ∈ [v, v]}.

It is easy to check that (see, e.g., [60, 108]):

[u, u] + [v, v] = [u + v, u + v].

Thus, for the case of interval uncertainty, the additivity requirement about the fair
prices takes the form

P([u + v, u + v]) = P([u, u]) + P([v, v]).

So, we arrive at the following definition:
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Definition 6.1.1 By a fair price under interval uncertainty, we mean a function
P([u, u]) for which:
• u ≤ P([u, u]) ≤ u for all u and u (conservativeness);
• if u = v and u < v, then P([u, u]) ≤ P([v, v]) (monotonicity);
• (additivity) for all u, u, v, and v, we have

P([u + v, u + v]) = P([u, u]) + P([v, v]).

Proposition 6.1.1 [102] Each fair price under interval uncertainty has the form

P([u, u]) = αH · u + (1 − αH ) · u for someαH ∈ [0, 1].

Comment. We thus get a new justification of Hurwicz optimism-pessimism criterion.

Proof
1◦. Due to monotonicity, P([u, u]) = u.

2◦. Also, due to monotonicity, αH
def= P([0, 1]) ∈ [0, 1].

3◦. For [0, 1] = [0, 1/n] + · · · + [0, 1/n] (n times), additivity implies
αH = n · P([0, 1/n]), so P([0, 1/n]) = αH · (1/n).

4◦. For [0,m/n] = [0, 1/n] + · · · + [0, 1/n] (m times), additivity implies

P([0,m/n]) = αH · (m/n).

5◦. For each real number r , for each n, there is anm such thatm/n ≤ r ≤ (m + 1)/n.
Monotonicity implies

αH · (m/n) = P([0,m/n]) ≤ P([0, r ])≤ P([0, (m + 1)/n]) = αH · ((m + 1)/n).

When n → ∞, αH · (m/n) → αH · r and αH · ((m + 1)/n) → αH · r , hence
P([0, r ]) = αH · r .
6◦. For [u, u] = [u, u] + [0, u − u], additivity implies P([u, u]) = u + αH · (u − u).
The proposition is proven.

6.1.5 Case of Set-Valued Uncertainty

Intervals are a specific case of bounded closed sets. We already know how to assign
fair price to intervals. So, we arrive at the following definition.
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Definition 6.1.2 By a fair price under set-valued uncertainty, we mean a function
P that assigns, to every bounded closed set S, a real number P(S), for which:

• P([u, u]) = αH · u + (1 − αH ) · u (conservativeness);

• P(S + S′) = P(S) + P(S′), where S + S′ def= {s + s ′ : s ∈ S, s ′ ∈ S′}
(additivity).

Proposition 6.1.2 Each fair price under set uncertainty has the form P(S) =
αH · sup S + (1 − αH ) · inf S.

Proof It is easy to check that each bounded closed set S contains its infimum S
def=

inf S and supremum S
def= sup S: {S, S} ⊆ S ⊆ [S, S]. Thus,

[2S, 2S] = {S, S} + [S, S] ⊆ S + [S, S] ⊆ [S, S] + [S, S] = [2S, 2S].

So, S + [S, S] = [2S, 2S]. By additivity, we conclude that P(S) + P([S, S]) =
P([2S, 2S]). Due to conservativeness, we know the fair prices P([S, S]) and
P([2S, 2S]). Thus, we can conclude that

P(S) = P([2S, 2S]) − P([S, S]) = (αH · (2S) + (1 − αH ) · (2S)) − (αH · S + (1 − αH ) · S),

hence indeed P(S) = αH · S + (1 − αH ) · S. The proposition is proven.

6.1.6 Case of Embedded Sets

In addition to a set S of possible values of the gain u, wemay also know a subset s ⊆ S
of more probable values u. To describe a fair price assigned to such a pair (S, s),
let us start with the simplest case when the original set S is an interval S = [u, u],
and the subset s is a single “most probable” value u0 within this interval. Such pairs
are known as triples; see, e.g., [22] and references therein. For triples, addition is
defined component-wise:

([u, u], u0) + ([v, v], v0) = ([u + v, u + v], u0 + v0).

Thus, the additivity requirement about the fair prices takes the form

P([u + v, u + v], u0 + v0) = P([u, u], u0) + P([v, v], v0).
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Definition 6.1.3 By a fair price under triple uncertainty, we mean a function
P([u, u], u0) for which:
• u ≤ P([u, u], u0) ≤ u for all u ≤ u ≤ u (conservativeness);
• if u ≤ v, u0 ≤ v0, and u ≤ v, then P([u, u], u0) ≤ P([v, v], v0) (monotonicity);
• (additivity) for all u, u, u0 v, v, and v0, we have

P([u + v, u + v], u0 + v0) = P([u, u], u0) + P([v, v], v0).

Proposition 6.1.3 Each fair price under triple uncertainty has the form

P([u, u], u0) = αL · u + (1 − αL − αU ) · u0 + αU · u, whereαL , αU ∈ [0, 1].

Proof In general, we have

([u, u], u0) = ([u0, u0], u0) + ([0, u − u], 0) + ([u − u, 0], 0).

So, due to additivity:

P([u, u], u0) = P([u0, u0], u0) + P([0, u − u0], 0) + P([u − u0, 0], 0).

Due to conservativeness, P([u0, u0], u0) = u0.
Similarly to the interval case, we can prove that P([0, r ], 0) = αU · r for some

αU ∈ [0, 1], and that P([r, 0], 0) = αL · r for some αL ∈ [0, 1]. Thus,

P([u, u], u0) = αL · u + (1 − αL − αU ) · u0 + αU · u.

The proposition is proven.

The next simplest case is when both sets S and s ⊆ S are intervals, i.e., when,
inside the interval S = [u, u], instead of a “most probable” value u0, we have a “most
probable” subinterval [m,m] ⊆ [u, u]. The resulting pair of intervals is known as a
“twin interval” (see, e.g., [41, 113]).

For such twin intervals, addition is defined component-wise:

([u, u], [m,m]) + ([v, v], [n, n]) = ([u + v, u + v], [m + n,m + n]).

Thus, the additivity requirement about the fair prices takes the form

P([u + v, u + v], [m + n,m + n]) = P([u, u], [m,m]) + P([v, v], [n, n]).
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Definition 6.1.4 By a fair price under twin uncertainty, we mean a function
P([u, u], [m,m]) for which:
• u ≤ P([u, u], [m,m]) ≤ u for all u ≤ m ≤ m ≤ u (conservativeness);
• if u ≤ v, m ≤ n, m ≤ n, and u ≤ v, then P([u, u], [m,m]) ≤ P([v, v], [n, n])
(monotonicity);

• for all u ≤ m ≤ m ≤ u and v ≤ n ≤ n ≤ v, we have additivity:

P([u + v, u + v], [m + n,m + m]) = P([u, u], [m,m]) + P([v, v], [n, n]).

Proposition 6.1.4 Each fair price under twin uncertainty has the following form,
for some αL , αu, αU ∈ [0, 1]:

P([u, u], [m,m]) = m + αu · (m − m) + αU · (u − m) + αL · (u − m).

Proof In general, we have

([u, u], [m,m]) = ([m,m], [m,m]) + ([0,m − m], [0,m − m])+

([0, u − m], [0, 0]) + ([u − m, 0], [0, 0)].

So, due to additivity:

P([u, u], [m,m]) = P([m,m], [m,m]) + P([0,m − m], [0,m − m])+

P([0, u − m], [0, 0]) + P([u − m, 0], [0, 0)].

Due to conservativeness, P([m,m], [m,m]) = m. Similarly to the interval case, we
can prove that:

• P([0, r ], [0, r ]) = αu · r for some αu ∈ [0, 1],
• P([0, r ], [0, 0]) = αU · r for some αU ∈ [0, 1];
• P([r, 0], [0, 0]) = αL · r for some αL ∈ [0, 1].
Thus,

P([u, u], [m,m]) = m + αu · (m − m) + αU · (u − m) + αL · (u − m).

The proposition is proven.

Finally, let us consider the general case.
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Definition 6.1.5 By a fair price under embedded-set uncertainty, we mean a func-
tion P that assigns, to every pair of bounded closed sets (S, s) with s ⊆ S, a real
number P(S, s), for which:

• P([u, u], [m,m]) = m + αu · (m − m) + αU · (U − m) + αL · (u − m)

(conservativeness);
• P(S + S′, s + s ′) = P(S, s) + P(S′, s ′) (additivity).

Proposition 6.1.5 Each fair price under embedded-set uncertainty has the form

P(S, s) = inf s + αu · (sup s − inf s) + αU · (sup S − sup s) + αL · (inf S − inf s).

Proof Similarly to the proof of Proposition 6.1.2, we can conclude that

(S, s) + ([inf S, sup S], [inf s, sup s]) = ([2 · inf S, 2 · sup S], [2 · inf s, 2 · sup s]).

By additivity, we conclude that

P(S, s) + P([inf S, sup S], [inf s, sup s]) =

P([2 · inf S, 2 · sup S], [2 · inf s, 2 · sup s]),

hence
P(S, s) = P([2 · inf S, · sup S], [2 · inf s, 2 · sup s])−

P([inf S, sup S], [inf s, sup s]).

Due to conservativeness, we know the fair prices

P([2 · inf S, 2 · sup S], [2 · inf s, 2 · sup s]) and P([inf S, sup S], [inf s, sup s]).

Subtracting these expressions, we get the desired formula for P(S, s). The proposi-
tion is proven.

6.1.7 Cases of Probabilistic and P-Box Uncertainty

Suppose that for some financial instrument, we know the corresponding probability
distribution F(u) on the set of possible gains u. What is the fair price P for this
instrument?
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Due to additivity, the fair price for n copies of this instrument is n · P . According
to the Large Numbers Theorem, for large n, the average gain tends to the mean value
μ = ∫

u dF(u).

Thus, the fair price for n copies of the instrument is close to n · μ: n · P ≈ n · μ.
The larger n, the closer the averages. So, in the limit, we get P = μ.

So, the fair price under probabilistic uncertainty is equal to the average gain
μ = ∫

u dF(u).

Let us now consider the case of a p-box [F(u), F(u)]. For different functions
F(u) ∈ [F(u), F(u)], values of the mean μ form an interval

[
μ,μ

]
, where μ =

∫
u dF(u) and μ = ∫

u dF(u). Thus, the price of a p-box is equal to the price of an

interval
[
μ,μ

]
.

We already know that the fair price of this interval is equal to

αH · μ + (1 − αH ) · μ.

Thus, we conclude that the fair price of a p-box [F(u), F(u)] is αH · μ +
(1 − αH ) · μ, where μ = ∫

u dF(u) and μ = ∫
u dF(u).

6.1.8 Case of Kaucher (Improper) Intervals

For Kaucher intervals, addition is also defined component-wise; in particular, for all
u < u, we have

[u, u] + [u, u] = [u + u, u + u].

Thus, additivity implies that

P([u, u]) + P([u, u]) = P([u + u, u + u]).

We know that P([u, u]) = αH · u + (1 − αH ) · u and P([u + u, u + u]) = u + u.
Hence:

P([u, u]) = (u + u) − (αH · u + (1 − αH ) · u).

Thus, the fair price P([u, u]) of an improper interval [u, u], with u > u, is equal
to P([u, u]) = αH · u + (1 − αH ) · u.
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6.1.9 (Crisp) Z-Numbers, Z-Intervals, and Z-Sets: Cases
When the Probabilities Are Crisp

In the previous sections, we assumed that we are 100% certain that the actual gain is
contained in the given interval (or set). In reality, mistakes are possible, so usually,
we are only certain that u belongs to the corresponding interval or set with some
probability 0 < p < 1. In such situations, to fully describe our knowledge, we need
to describe both the interval (or set) and this probability p.

In the general context, after supplementing the information about a quantity with
the information of how certain we are about this piece of information, we get what
L. Zadeh calls a Z-number [168]. Because of this:

• we will call a pair consisting of a (crisp) number and a (crisp) probability a crisp
Z-number;

• we will call a pair consisting of an interval and a probability a Z-interval; and
• we will call a pair consisting of a set and a probability a Z-set.

In this section, we will describe fair prices for crisp Z-numbers, Z-intervals, and
Z-sets for situations when the probability p is known exactly.

How can we define operations on Z-numbers? When we have two independent
sequential decisions, and we are 100% sure that the first decision leads to gain u and
the second decision leads to gain v, then, as we havementioned earlier, the user’s total
gain is equal to the sum u + v. In this section, we consider the situation in which:

• for the first decision, our degree of confidence in the gain estimate u is described
by some probability p;

• for the second decision, our degree of confidence in the gain estimate v is described
by some probability q.

The estimate u + v is valid only if both gain estimates are correct. Since these esti-
mates are independent, the probability that they are both correct is equal to the product
p · q of the corresponding probabilities. Thus:

• for crisp Z-numbers (u, p) and (v, q), the sum is equal to (u + v, p · q);
• for Z-intervals ([u, u], p) and [v, v], q), the sum is equal to ([u + v, u + v], p · q);
• finally, for Z-sets (S, p) and (S′, q), the sum is equal to (S + S′, p · q).

Let us analyze these cases one by one.
Let us start with the case of crisp Z-numbers. Since the probability p is usually

known with some uncertainty, it makes sense to require that the fair price of a crisp
Z-number (u, p) continuously depend on p, so that small changes in p lead to small
changes in the fair price—and the closer our estimate to the actual value of the
probability, the closer the estimated fair price should be to the actual fair price.

Thus, we arrive at the following definitions.

Definition 6.1.6 By a crisp Z-number, we mean a pair (u, p) of two real numbers
such that 0 < p ≤ 1.
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Definition 6.1.7 By a fair price under crisp Z-number uncertainty, we mean a func-
tion P(u, p) that assigns, to every crisp Z-number, a real number, and which satisfies
the following properties:

• P(u, 1) = u for all u (conservativeness);
• for all u, v, p, and q, we have P(u + v, p · q) = P(u, p) + P(v, q) (additivity);
• the function P(u, p) is continuous in p (continuity).

Proposition 6.1.6 Each fair price under crisp Z-number uncertainty has the form
P(u, p) = u − k · ln(p) for some real number k.
Proof
1◦. By additivity, we have P(u, p) = P(u, 1) + P(0, p). By conservativeness, we
have P(u, 1) = u; thus, P(u, p) = u + P(0, p). So, it is clear that to find the general
expression for the fair price function P(u, p), it is sufficient to find the values P(0, p)
corresponding to u = 0.

2◦. Additivity implies that P(0, p · q) = P(0, p) + P(0, q).

3◦. Let us first consider the value p = e−1 which corresponds to ln(p) = −1. The

corresponding value of P(0, p) will be denoted by k
def= P(0, e−1). Then, for p =

e−1, we have the desired expression P(0, p) = −k · ln(p).
4◦. Let us now consider the values P(0, e−m) for positive integer values m. The
probability e−m can be represented as a product of m values e−1:

e−m = e−1 · · · · · e−1 (m times). (6.1.1)

Thus, due to additivity, we have

P(0, e−m) = P(0, e−1) + · · · + P(0, e−1) (m times) = m · k. (6.1.2)

Since for p = e−m , we have ln(p) = −m, we thus have P(0, p) = −k · ln(p) for
these values p.

5◦. Now, let us estimate the value P(0, p) for p = e−1/n , for a positive integer n.
In this case, the value e−1 can be represented as a product of n probabilities equal

to e−1/n:
e−1 = e−1/n · · · · · e−1/n (n times).

Thus, due to additivity, we have

k = P(0, e−1) = P(0, e−1/n) + · · · + P(0, e−1/n) (n times),

i.e.,
k = n · P(0, e−1/n) (6.1.3)
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and hence, P(0, e−1/n) = k

n
. Therefore, for p = e−1/n , we also have P(0, p) =

−k · ln(p).
6◦. For every two positive numbers m > 0 and n > 0, the probability e−m/n can be
represented as the product of m probabilities equal to e−1/n . Thus, due to additivity,

we have P(0, e−m/n) = m · P(0, e−1/n) = k · m
n
. Hence, for the values p = e−m/n

for which the logarithm ln(p) is a rational number, we have P(0, p) = −k · ln(p).
7◦. Every real number �

def= ln(p) can be approximated, with arbitrary accuracy,

by rational numbers �n → � for which pn
def= e−�n → e−� = p. For these rational

numbers, we have P(0, pn) = −k · ln(pn). Thus, when n → ∞ and pn → p, by
continuity, we have P(0, p) = −k · ln(p).

From Part 1, we know that P(u, p) = u + P(0, p); thus, indeed, P(u, p) = u −
k · ln(p). The proposition is proven.

Similar results hold for Z-intervals and Z-sets; in both results, we will use the fact
that we already know how to set a fair price for the case when p = 1.

Definition 6.1.8 By a Z-interval, wemean a pair ([u, u], p) consisting of an interval
[u, u] and a real number p such that 0 < p ≤ 1.

Definition 6.1.9 By a fair price under Z-interval uncertainty, we mean a function
P([u, u], p) that assigns, to every Z-interval, a real number, and which satisfies the
following properties:

• for some αH ∈ [0, 1] and for all u ≤ u, we have P([u, u], 1) = αH · u +
(1 − αH ) · u (conservativeness);

• for all u, u, v, v, p, and q, we have

P([u + v, u + v], p · q) = P([u, u], p) + P([v, v], q) (6.1.4)

(additivity).

Proposition 6.1.7 Each fair price under Z-interval uncertainty has the form
P([u, u], p) = αH · u + (1 − αH ) · u − k · ln(p) for some real numbersαH ∈ [0, 1]
and k.

Proof By additivity, we have P([u, u], p) = P([u, u], 1) + P(0, p). By conserva-
tiveness, we have

P([u, u], 1) = αH · u + (1 − αH ) · u. (6.1.5)

For P(0, p), similarly to the proof of Proposition 6.1.6, we conclude that P(0, p) =
−k · ln(p) for some real number k. The proposition is proven.
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Definition 6.1.10 By a Z-set, we mean a pair (S, p) consisting of a closed bounded
set S and a real number p such that 0 < p ≤ 1.

Definition 6.1.11 By a fair price under Z-set-valued uncertainty, we mean a func-
tion P(S, p) that assigns, to every Z-set (S, p), a real number, and which satisfies
the following properties:

• for some αH ∈ [0, 1] and for all sets S, we have

P(S, 1) = αH · sup S + (1 − αH ) · inf S (6.1.6)

(conservativeness);
• for all S, S′, p, andq, we have P(S + S′, p · q) = P(S, p) + P(S′, q) (additivity).

Proposition 6.1.8 Each fair price under Z-set-valued uncertainty has the form

P(S, p) = αH · sup S + (1 − αH ) · inf S − k · ln(p) (6.1.7)

for some real numbers αH ∈ [0, 1] and k.

Proof By additivity, we have P(S, p) = P(S, 1) + P({0}, p). By conservativeness,
we have

P(S, 1) = αH · sup S + (1 − αH ) · inf S.

For P({0}, p), similarly to the proof of Proposition 6.1.6, we conclude that P({0}, p)
= −k · ln(p) for some real number k. The proposition is proven.

6.1.10 (Crisp) Z-Numbers, Z-Intervals, and Z-Sets: Cases
When Probabilities Are Known with Interval or
Set-Valued Uncertainty

When we know the exact probabilities p and q that the corresponding estimates are
correct, then the probability that both estimates are correct is equal to the product
p · q.

Similarly to the fact that we often do not know the exact gain, we often do not

know the exact probability p. Instead, we may only know the interval
[
p, p

]
of

possible values of p, or, more generally, a setP of possible values of p. If we know
p and q with such uncertainty, what can we then conclude about the product p · q?

For positive values p and q, the function p · q is increasing as a function of both
variables: if we increase p and/or increase q, the product increases. Thus, if the only
information that we have the probability p is that this probability belongs to the
interval [p, p], and the only information that we have the probability q is that this
probability belongs to the interval [q, q], then:
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• the smallest possible value of p · q is equal to the product p · q of the smallest
values;

• the largest possible value of p · q is equal to the product p · q of the largest values;
and

• the set of all possible values p · q is the interval

[
p · q, p · q

]
.

For sets P and Q, the set of possible values p · q is the set

P · Q def= {p · q : p ∈ P and q ∈ Q}. (6.1.8)

Let us find the fair price under such uncertainty.
Let us start with the case of crisp Z-numbers under such uncertainty.

Definition 6.1.12 By a crisp Z-number under interval p-uncertainty, we mean a

pair (u, [p, p]) consisting of a real number u and an interval
[
p, p

]
⊆ (0, 1].

Definition 6.1.13 By a fair price under crisp Z-number p-interval uncertainty, we

mean a function P
(
u,

[
p, p

])
that assigns, to every crisp Z-number under interval

p-uncertainty, a real number, and which satisfies the following properties:

• for some real number k, we have

P(u, [p, p]) = u − k · ln(p) (6.1.9)

for all u and p (conservativeness);
• for all u, v, p, p, q , and q , we have

P
(
u + v,

[
p · q, p · q

])
= P

(
u,

[
p, p

])
+ P

(
v,

[
q, q

])
(6.1.10)

(additivity);

• the function P
(
u,

[
p, p

])
is continuous in p and p (continuity).

Proposition 6.1.9 Each fair price under crisp Z-number p-interval uncertainty has
the form

P
(
u,

[
p, p

])
= u − (k − β) · ln( p ) − β · ln

(
p

)
(6.1.11)

for some real numbers k and β ∈ [0, 1].
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Proof

1◦. By additivity, we have P
(
u,

[
p, p

])
= P(u, p) + P(0, [p, 1]), where p

def=
p/p. By conservativeness, we know that P(u, p) = u − k · ln( p ). Thus, P(u, p) =
u − k · ln( p ) + P(0, [p, 1]). So, to find the general expression for the fair price

function P
(
u,

[
p, p

])
, it is sufficient to find the values P(0, [p, 1]) corresponding

to u = 0 and p = 1.

2◦. For the values P(0, [p, 1]), additivity implies that

P(0, [p · q, 1]) = P(0, [p, 1]) + P(0, [q, 1]). (6.1.12)

In Part 2 of the proof of Proposition 6.1.6, we had a similar property for a continuous
function P(0, p), and we proved, in Parts 2–6 of that proof, that this property implies
that this continuous function is equal to−c · ln(p) for some real number c. Thus, we
can similarly conclude that

P(0, [p, 1]) = β · ln(p) (6.1.13)

for some real number β = −c.

3◦. From Part 1 of this proof, we know that

P
(
u,

[
p, p

])
= u − k · ln( p ) + P(0, [p, 1]); (6.1.14)

thus,
P

(
u,

[
p, p

])
= u − k · ln( p ) + β · ln(p). (6.1.15)

Substituting p = p/p into this formula and taking into account that ln(p) =
ln( p ) − ln( p ), we get the desired formula.

Definition 6.1.14 By a crisp Z-number under set-valued p-uncertainty, we mean a
pair (u,P) consisting of a real number u and a bounded closed set P ⊆ (0, 1].

Comment. One can easily show that for each closed set P ⊆ (0, 1], we have
infP > 0.

Definition 6.1.15 By a fair price under crisp Z-number p-set-valued uncertainty,
we mean a function P(u,P) that assigns, to every crisp Z-number under set-valued
p-uncertainty, a real number, and which satisfies the following properties:

• for some real numbers k and β, we have

P
(
u,

[
p, p

])
= u − (k − β) · ln( p ) − β · ln

(
p

)
(6.1.16)

for all u, p, and p (conservativeness);
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• for all u, v, P , and Q, we have

P(u + v,P · Q) = P(u,P) + P(v,Q) (6.1.17)

(additivity).

Proposition 6.1.10 Each fair price under crisp Z-number p-set-valued uncertainty
has the form

P(u,P) = u − (k − β) · ln(supP) − β · ln(infP) (6.1.18)

for some real number β ∈ [0, 1].

Proof By additivity, we have P(u,P) = P(u, {1}) + P(0,P), i.e., due to conser-
vativeness, P(u,P) = u + P(0,P). So, to find the expression for P(u,P), it is
sufficient to find the values P(0,P). Similarly to prove of Proposition 6.1.2, we can
prove that

P · [infP, supP] = [
(infP)2, (supP)2

]
. (6.1.19)

Due to additivity, this implies that

P
(
0,

[
(infP)2, (supP)2

]) = P(0,P) + P(0, [infP, supP]), (6.1.20)

hence

P(0,P) = P
(
0,

[
(infP)2, (supP)2

]) − P(0, [infP, supP]). (6.1.21)

Due to conservativeness, we know the values in the right-hand side of this equality.
Substituting these values, we get the desired formula.

Let us extend the above results to Z-sets (and to their particular case: Z-intervals).

Definition 6.1.16 By aZ-set under set-valued p-uncertainty, wemean a pair (S,P)

consisting of a bounded closed set S and a bounded closed set P ⊆ (0, 1].
Definition 6.1.17 By a fair price under Z-set p-set-valued uncertainty, we mean a
function P(S,P) that assigns, to every Z-set under set-valued p-uncertainty, a real
number, and which satisfies the following properties:

• for some real number αH ∈ [0, 1], we have

P(S, 1) = αH · sup S + (1 − αH ) · inf S (6.1.22)

for all S (conservativeness);
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• for some real numbers k and β, we have

P(u,P) = u − (k − β) · ln(supP) − β · ln(infP) (6.1.23)

for all u and P (conservativeness);
• for all S, S′, P , and Q, we have

P(S + S′,P · Q) = P(S,P) + P(Q,Q) (6.1.24)

(additivity).

Proposition 6.1.11 Each fair price under Z-set p-set-valued uncertainty has the
form

P(S,P) = αH · sup S + (1 − αH ) · inf S − (k − β) · ln( p ) − β · ln
(
p

)
. (6.1.25)

6.1.11 Case of Fuzzy Uncertainty

In the above text, we first considered situations when about each value of gain u, the
expert is either absolutely sure that this value is possible or absolutely sure that this
value is not possible. Then, we took into account the possibility that the expert is
not 100% certain about that—but we assumed that the expert either knows the exact
probability p describing his/her degree of certainty, or that the expert is absolutely
sure which probabilities can describe his/her uncertainty and which cannot.

In reality, an expert is often uncertain about the possible values, and uncertain
about possible degrees of uncertainty. To take this uncertainty into account, L. Zadeh
introduced the notion of a fuzzy set [65, 120, 163], where, to each possible value of
u, we assign a degree μ(u) ∈ [0, 1] to which this value u is possible. Similarly, a
fuzzy setμp : [0, 1] → [0, 1] can describe the degrees to which different probability
values are possible.

In this section, we restrict ourselves to fuzzy numbers s, i.e., fuzzy sets for which
the membership function is different from 0 only on a bounded set, where it first
monotonically increases until it reaches a point s at which μ(s) = 1, and then
monotonically decreases from 1–0.

Operations on fuzzy numbers are usually described in terms of Zadeh’s exten-
sion principle: if two quantities u and v are described by membership functions
μ1(u) andμ2(v), then their sum w = u + v is described by the membership function
μ(w) = max

u,v: u+v=w
min(μ1(u), μ2(v)), and their product w = u · v is described by the

membership function μ(w) = max
u,v: u·v=w

min(μ1(u), μ2(v)).
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It is known that these operations can be equivalently described in terms of
the α-cuts. An α-cut of a fuzzy number μ(u) is defined as an interval u(α) =
[u−(α), u+(α)], where

u−(α)
def= inf{u : μ(u) ≥ α} and u+(α)

def= sup{u : μ(u) ≥ α}. (6.1.26)

The α-cuts corresponding to the sum w = u + v can be described, for every α, as

[w−(α),w+(α)] = [u−(α), u+(α)] + [v−(α), v+(α)], (6.1.27)

or, equivalently, as

[w−(α),w+(α)] = [u−(α) + v−(α), u+(α) + v+(α)]. (6.1.28)

Similarly, the α-cuts corresponding to the product w = u · v can be described as

[w−(α),w+(α)] = [u−(α), u+(α)] · [v−(α), v+(α)]. (6.1.29)

If both fuzzy numbers u and v are non-negative (e.g., if they are limited to the interval
[0, 1]), then the α-cuts corresponding to the product can be described as

[w−(α),w+(α)] = [u−(α) · v−(α), u+(α) · v+(α)]. (6.1.30)

Let us use these definitions to define fair price of fuzzy numbers. Let us start with
describing the fair price of fuzzy numbers. Similarly to the interval case, a natural
requirement ismonotonicity: if for allα, we have s−(α) ≤ t−(α) and s+(α) ≤ t+(α),
then the fair price of t should be larger than or equal to the fair price of s. It is also
reasonable to require continuity: that small changes in μ(u) should lead to small
changes in the fair price.

Definition 6.1.18 By a fair price under fuzzy uncertainty, we mean a function P(s)
that assigns, to every fuzzy number s, a real number, andwhich satisfies the following
properties:

• if a fuzzy number s is located between u and u, then u ≤ P(s) ≤ u (conservative-
ness);

• if a fuzzy number w is the sum of fuzzy numbers u and v, then we have P(w) =
P(u) + P(v) (additivity);

• if for all α, we have

s−(α) ≤ t−(α) and s+(α) ≤ t+(α), (6.1.31)

then we have P(s) ≤ P(t) (monotonicity);
• if a sequence of membership functions μn uniformly converges to μ, then we
should have P(μn) → P(μ) (continuity).
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Wewill see that the fair price of a fuzzy number is described in terms of aRiemann-
Stieltjes integral. For readers who need a reminder of what this integral is, a brief
reminder is presented at the end of this section.

Proposition 6.1.12 For a fuzzy number s with a continuous membership function
μ(x), α-cuts [s−(α), s+(α)] and a point s0 at whichμ(s0) = 1, the fair price is equal
to

P(s) = s0 +
∫ 1

0
k−(α) ds−(α) −

∫ 1

0
k+(α) ds+(α), (6.1.32)

for appropriate functions k−(α) and k+(α).

Discussion. When the function g(x) is differentiable, the Riemann-Stieltjes integral
∫ b
a f (x) dg(x) is equal to the usual integral

∫ b

a
f (x) · g′(x) dx,

where g′(x) denotes the derivative. When the function f (x) is also differentiable,
we can use integration by part and get yet another equivalent form

f (b) · g(b) − f (a) · g(a) +
∫ b

a
F(x) · g(x) dx, (6.1.33)

with F(x) = − f ′(x). In general, a Stieltjes integral can be represented in a similar
form for somegeneralized function F(x) (see, e.g., [44]; generalized function are also
known as distributions; we do not use this term to avoid confusion with probability
distributions). Thus, the above general formula can be described as

P(s) =
∫ 1

0
K−(α) · s−(α) dα +

∫ 1

0
K+(α) · s+(α) dα (6.1.34)

for appropriate generalized functions K−(α) and K+(α).
Conservativeness means that for a crisp number located at s0, we should have

P(s) = s0. For the above formula, this means that

∫ 1

0
K−(α) dα +

∫ 1

0
K+(α) dα = 1. (6.1.35)

For a fuzzy number which is equal to the interval [u, u], the above formula leads to

P(s) =
(∫ 1

0
K−(α) dα

)

· u +
(∫ 1

0
K+(α) dα

)

· u. (6.1.36)
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Thus, Hurwicz optimism-pessimism coefficient αH is equal to
∫ 1
0 K+(α) dα. In this

sense, the above formula is a generalization of Hurwicz’s formula to the fuzzy case.

Proof
1◦. For every two real numbers u ≥ 0 and γ ∈ [0, 1], let us define a fuzzy number
sγ,u(x) with the following membership function: μγ,u(0) = 1, μγ,u(x) = γ for
x ∈ (0, u], and μγ,u(x) = 0 for all other x . For this fuzzy number, α-cuts have the
following form: sγ,u(α) = [0, 0] for α > γ , and sγ,u(α) = [0, u] for α ≤ γ .

Based on the α-cuts, one can easily check that sγ,u+v = sγ,u + sγ,v. Thus, due to
additivity, P(sγ,u+v) = P(sγ,u) + P(sγ,v). Due to monotonicity, the value P(sγ,u)

monotonically depends on u. Thus, similarly to the proof of Proposition 6.1.1, we
can conclude that P(sγ,u) = k+(γ ) · u for some value k+(γ ).

By definition, the fuzzy number sγ,u is located between 0 and u, so, due to con-
servativeness, we have 0 ≤ P(sγ,u) ≤ u for all u. This implies that 0 ≤ k+(γ ) ≤ 1.

2◦. Let us now consider a fuzzy number s whose membership function is equal to
0 for x < 0, jumps to 1 for x = 0, and then continuously decreases to 0. For this
fuzzy number, all α-cuts have the form [0, s+(α)] for some s+(α). By definition of
an α-cut, the value s+(α) decreases with α.

For each sequence of values

α0 = 0 < α1 < α2 < · · · < αn−1 < αn = 1,

we can define a fuzzy number sn with the following α-cuts [s−
n (α), s+

n (α)]:
• s−

n (α) = 0 for all α; and
• when α ∈ [αi , αi+1), then s+

n (α) = s+(αi ).

Since the membership function of s is continuous, when max(αi+1 − αi ) → 0, we
have sn → s, and thus, P(sn) → P(s).

One can check that the fuzzy number sn can be represented as a sum of n fuzzy
numbers

sn = sαn−1,s+(αn−1) + sαn−2,s+(αn−2)−s+(αn−1) + · · · + sα1,α1−α2 . (6.1.37)

Thus, due to additivity, we have

P(sn) = P(sαn−1,s+(αn−1) + P(sαn−2,s+(αn−2)−s+(αn−1)) + · · · + P(sα1,α1−α2). (6.1.38)

Substituting the expression for P(sγ,u) from Part 1 of this proof, we conclude that

P(sn) = k+(αn−1) · s+(αn−1) + k+(αn−2) · (s+(αn−2) − s+(αn−1)) + · · · +

k+(α1) · (α1 − α2). (6.1.39)
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The right-hand side is minus the integral sum for the Riemann-Stieltjes integral
∫ 1
0 k+(γ ) ds+(γ ). Since we have P(sn) → P(s), this means that the integral sums
always converges, the Riemann-Stieltjes integral is defined, and the limit P(s) is
equal to this integral.

3◦. Similarly, for fuzzy numbers s whose membership function μ(x) continuously
increases from 0 to 1 as x increases to 0 and is equal to 0 for x > 0, the α-cuts are
equal to [s−(α), 0], and P(s) = ∫ 1

0 k−(γ ) ds−(γ ) for an appropriate function k−(γ ).

4◦. A general fuzzy number g, with α-cuts [g−(α), g+(α)] and a point g0 at which
μ(g0) = 1, can be represented as the sum of three fuzzy numbers:

• a crisp number g0;
• a fuzzy number whose α-cuts are equal to

[0, g+(α) − g0]; and

• a fuzzy number whose α-cuts are equal to

[g0 − g−(α), 0].

By conservativeness, the fair price of the crisp number is equal to g0. The fair prices
of the second and the third fuzzy numbers can be obtained by using the formulas from
Parts 2 and 3 of this proof. By additivity, the fair price of the sum is equal to the sum of
the prices. By taking into account that for every constant g0, d(g(x) − g0) = dg(x)
and thus, ∫

f (x) d(g(x) − g0) =
∫

f (x) dg(x),

we get the desired expression.

6.1.12 Case of Z-Number Uncertainty

In this case, we have two fuzzy numbers: the fuzzy number s which describes the
values and the fuzzy number p which describes our degree of confidence in the piece
of information described by s.

Definition 6.1.19 By a fair price under Z-number uncertainty, we mean a function
P(s, p) that assigns, to every pair of two fuzzy numbers s and p such that p is
located on an interval [p0, 1] for some p0 > 0, a real number, and which satisfies the
following properties:

• if a fuzzy number s is located between u and u, then u ≤ P(s, 1) ≤ u (conserva-
tiveness);
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• if w = u + v and r = p · q, then

P(w, r) = P(u, p) + P(v, q) (6.1.40)

(additivity);
• if for all α, we have

s−(α) ≤ t−(α) and s+(α) ≤ t+(α), (6.1.41)

then we have P(s, 1) ≤ P(t, 1) (monotonicity);
• if sn → s and pn → p, then P(sn, pn) → P(s, p) (continuity).

Proposition 6.1.13 For a fuzzy number s with α-cuts [s−(α), s+(α)] and a fuzzy
number p with α-cuts [p−(α), p+(α)], we have

P(s, p) =
∫ 1

0
K−(α) · s−(α) dα +

∫ 1

0
K+(α) · s+(α) dα+

∫ 1

0
L−(α) · ln(p−(α)) dα +

∫ 1

0
L+(α) · ln(p+(α)) dα (6.1.42)

for appropriate generalized functions K±(α) and L±(α).

Proof Due to additivity, we have

P(s, p) = P(s, 1) + P(0, p).

We already know the expression for P(s, 1); we thus need to find the expression
for P(0, p). For logarithms, we have ln(p · q) = ln(p) + ln(q), so in terms of log-
arithms, additivity takes the usual form

P(0, ln(p) + ln(q)) = P(0, ln(p)) + P(0, ln(q)). (6.1.43)

Thus, similarly to the proof of Proposition 6.1.12, we conclude that

P(0, p) =
∫ 1

0
L−(α) · ln(p−(α)) dα +

∫ 1

0
L+(α) · ln(p+(α)) dα. (6.1.44)

By applying additivity to this expression and to the known expression for P(s, 1),
we get the desired formula.

Summary. In this section, for different types of uncertainty, we derive the formulas
for the fair prices under reasonable conditions of conservativeness, monotonicity,
and additivity.



6.1 Decision Making Under Uncertainty: Towards Optimal Decisions 113

In the simplest case of interval uncertainty, when we only know the interval [u, u]
of possible values of the gain u, the fair price is equal to

P([u, u]) = αH · u + (1 − αH ) · u,

for some parameter αH ∈ [0, 1]. Thus, the fair price approach provides a justifica-
tion for the formula originally proposed by a Nobelist L. Hurwicz, in which αH

describes the decision maker’s optimism degree: αH = 1 corresponds to pure opti-
mism, αH = 0 to pure pessimism, and intermediate values of αH correspond to a
realistic approach that takes into account both best-case (optimistic) and worst-case
(pessimistic) scenarios.

In a more general situation, when the set S of possible values of the gain u is not
necessarily an interval, the fair price is equal to

P(S) = αH · sup S + (1 − αH ) · inf(S).

If, in addition to the set S of possible values of the gain u, we also know a subset
s ⊆ S of “most probable” gain values, then the fair price takes the form

P(S, s) = inf s + αu · (sup s − inf s) + αU · (sup S − sup s) + αL · (inf S − inf s),

for some values αu , αL , and αU from the interval [0, 1]. In particular, when both sets
S and s are intervals, i.e., when S = [u, u] and s = [m,m], the fair price takes the
form

P([u, u], [m,m]) = m + αu · (m − m) + αU · (u − m) + αL · (u − m).

When the interval s consists of a single value u0, this formula turns into

P([u, u], u0) = αL · u + (1 − αL − αU ) · u0 + αU · u.

When, in addition to the set S, we also know the cumulative distributive function
(cdf) F(u) that describes the probability distribution of different possible values u,
then the fair price is equal to the expected value of the gain

P(F) =
∫

u dF(u).

In situations when for each u, we only know the interval [F(u), F(u)] of possible
values of the cdf F(u), then the fair price is equal to

P([F, F]) = αH ·
∫

u dF(u) + (1 − αH ) ·
∫

u dF(u).
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Finally, when uncertainty is described by an improper interval [u, u] with u > u, the
fair price is equal to

P([u, u]) = αH · u + (1 − αH ) · u.

Similar formulas are provided for the case of fuzzy uncertainty.

Riemann-Stieltjes integral—reminder. As promised, let us recall what is the
Riemann-Stieltjes integral. This integral is a natural generalization of the usual (Rie-
mann) integral.

In general, an intuitive meaning of a Riemann integral
∫ b
a f (x) dx is that it is an

area under the curve y = f (x). To compute this integral, we select points

a = x1 < x2 < · · · < xn−1 < xn = b,

and approximate the curve by a piece-wise constant function f̃ (x) = f (xi ) for
x ∈ [xi , xi+1). The subgraph of this piece-wise constant function is a union of
several rectangles, so its area is equal to the sum of the areas of these rectangles∑

f (xi ) · (xi+1 − xi ). This sum is known as the integral sum for the integral
∫ b
a f (x) dx . Riemann’s integral can be formally defined as a limit of such integral
sums when max(xi+1 − xi ) → 0.

A Riemann-Stieltjes integral
∫ b
a f (x) dg(x) is similarly defined as the limit of the

sums
∑

f (xi ) · (g(xi+1) − g(xi )) when max(xi+1 − xi ) → 0.

6.2 Decision Making Under Uncertainty and Restrictions
on Computation Resources: Educational Case Studies

In the previous section, we described the general ideas of optimal decision making
under uncertainty. In this section, we illustrate these ideas on three examples of
decisions related to education. In the first subsection, we analyze how to assign a
grade for a partially solved problem. In the second subsection, we analyze how to
to take into account a student’s degree of confidence when evaluating test results. In
the final third subsection, we analyze how to combine grades for different classes
into a single number measuring the student’s knowledge.

6.2.1 How to Assign a Grade for a Partially Solved Problem:
Decision-Making Approach to Partial Credit

When a student performed only some of the steps needed to solve a problem, this
student gets partial credit. This partial credit is usually proportional to the number
of stages that the student performed. This may sound reasonable, but in engineering
education, this leads to undesired consequences: for example, a student who did not
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solve any of the 10 problems on the test, but who successfully performed 9 out of
10 stages needed to solve each problem will still get the grade of A (“excellent”).
This may be a good evaluation of the student’s intellectual ability, but for a engi-
neering company that hires this A-level student, this will be an unexpected disaster.
In this subsection, we analyze this problem from the viewpoint of potential loss to
a company, and we show how to assign partial credit based on such loss estimates.
Our conclusion is that this loss (and thus, the resulting grade) depend on the size
of the engineering company. Thus, to better understand the student’s strengths, it is
desirable, instead of a single overall grade, to describe several grades corresponding
to different company sizes.

Results from this subsection first appeared in [93]

Need to assign partial credit.

• If on a test, a problem is solved correctly, then the student gets full credit.
• If the student did not solve this problem at all, or the proposed solution is all wrong,
the student gets no credit for this problem.

In many cases, the student correctly performed some steps that leads to the solution,
but, due tomissing steps, still did not get the solution. To distinguish these cases from
the cases when the student did not perform any steps at all, the student is usually
given partial credit for this problem.

The more steps the student performed, the more partial credit this student gets.
From the pedagogical viewpoint, partial credit is very important: it enables the student
who is learning—but who has not yet reached a perfect-knowledge stage—to see his
or her progress; see, e.g., [10, 54].

How partial credit is usually assigned. Usually, partial credit is assigned in a very
straightforward way:

• if the solution to a problem requires n steps,
• and k < n of these steps have been correctly performed,

• then we assign the fraction
k

n
of the full grade.

For example:

• if a 10-step problem is worth 100 points and
• a student performed 9 steps correctly,
• then this student gets 90 points for this problem.

For engineering education, this usual practice is sometimes a problem.

• If our objective is simply to check intellectual progress of a student, then the usual
practice of assigning partial credit makes perfect sense,

• However, in engineering education, especially in the final classes of this education,
the goal is to check howwell a student is prepared to take on real engineering tasks.

Let us show that from this viewpoint, the usual practice is not always adequate.
Let us consider a realistic situation when, out of 10 problems on the test, none of

these problems were solved by the student. However, if
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• in each of these ten problems,
• the student performed 9 stages out of 10,
• this student will get 9 points of the ten for this problem.

Thus, the overall number of points for the test is 10 · 9 = 90, and the student gets
the grade of A (“excellent”) for this test.

None of the original ten problem are solved, but still the student got an A. This
does not sound right, especially when we compare it with a different student, who:

• correctly solved 9 problems out of 10, but
• did not even start solving the tenth problem.

This second student will also get the same overall grade of 90 out of 100 for this
test. However, if we assume that this test simulates the real engineering situation, the
second student clearly performed much better.

This example shows that for engineering education, we need to come up with a
different scheme of assigning partial credit.

What we do in this subsection. In this subsection, we analyze the problem, and
come up with an appropriate scheme for assigning partial credit.

Description of the situation. To appropriately analyze the problem, let us imagine
that this student:

• has graduated and
• is working for an engineering company.

In such a situation, a natural way to gauge the student’s skill level is to estimate the
overall benefit that he or she will bring to this company.

Let us start with considering a single problemwhose solution consists of n stages.
Let us assume that the newly hired student can correctly perform k out of these n
stages. This is not a test, this is a real engineering problem, it needs to be solved, so
someone else must help to solve the remaining n − k stages.

Possible scenarios. From the viewpoint of benefit to a company, it is reasonable to
distinguish between two possible situations:

• It is possible that in this company, there are other specialists who can help with per-
forming the remaining n − k stages. In this case, the internal cost of this additional
(unplanned) help is proportional to the number of stages.

• It is also possible that no such specialists can be found within a company (this is
quite probable if we have a small company). In this case, we need to hire outside
help. In such a situation, the main part of the cost is usually the hiring itself: the
consultant needs to be brought in, and

– the cost of bringing in the consultant
– is usually much higher than the specific cost of the consultant performing the
corresponding tasks.



6.2 Decision Making Under Uncertainty and Restrictions on Computation … 117

Estimating expected loss to a company: case of a single problem. We want to
gauge the student’s grade based on the financial implication of his or her imperfect
knowledge on the company that hires this student.

We cannot exactly predict these implications, since we do not know for sure
whether the companywill have other specialists in-housewhocanfill in the stages that
the newly hired student is unable to perform. Thus, we have a situation of uncertainty.
According to decision theory (see, e.g., [35, 97, 133]), in such situations, a reasonable
decision maker should select an alternative with the largest value of expected utility.
Thus, a reasonable way to gauge the student’s effect on the company is to estimate
the expected loss caused by the student’s inability to perform some tasks.

To estimate this expected loss, we need to estimate:

• the losses corresponding to both above scenarios, and
• the probability of each of these scenarios.

As we have mentioned, in the first scenario, when all the stages are performed
in-house, the cost is proportional to the number of stages. So, if we denote the cost
of performing one stage in-house by ci (i for “in-house”), the resulting cost is equal
to ci · (n − k).

In the second scenario, when we have to seek a consultant’s help, as we also
mentioned, the cost practically does not depend on the number of stages. Let us
denote this cost by ch (h for “help”).

To complete the estimate, we need to know the probabilities of the two scenarios.
Let p denote the probability that inside the company, there is a specialist that can
help with performing a given stage. It is reasonable to assume that different stages
are independent from this viewpoint, so the overall probability that we can find inside
help for all n − k stages is equal to pn−k . Thus:

• with probability pn−k , we face the first (in-house) scenario, with the cost
ci · (n − k);

• with the remaining probability 1 − pn−k , we face the second (outside help) sce-
nario, with the cost ch .

The resulting expected loss is thus equal to

ci · pn−k · (n − k) + ch · (
1 − pn−k

)
. (6.2.1)

Estimating expected loss to a company: case of several problems. Several prob-
lems on a test usually simulate different engineering situations that may occur in
real life. We can use the formula (6.2.1) to estimate the loss caused by each of the
problems.

Namely, let n be the average number of stages of each problem. Then, if in the j-th
problem, the student can successfully solve k j out of n problems, then the expected
loss is equal to:

ci · pn−k j · (
n − k j

) + ch · (
1 − pn−k j

)
. (6.2.2)
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The overall expected loss L can be then computed as the sum of the costs corre-
sponding to all J problems, i.e., as the sum

L =
J∑

j=1

(
ci · pn−k j · (

n − k j
) + ch · (

1 − pn−k j
))

. (6.2.3)

So how should we assign partial credit. Usually, the credit is counted in such as
way that complete knowledge corresponds to 100 points, and a complete lack of
knowledge corresponds to 0 points. In this case, to assign partial credit, we should
subtract, from the ideal case of 100 point, an amount proportional to the expected
loss caused by the student’s lack of skills.

In other words, the grade g assigned to the student should be equal to

g = 100 − c · L , (6.2.4)

for an appropriate coefficient of proportionality c. The corresponding c should be
selected in such a way that for a complete absence of knowledge, we should subtract
exactly 100 points.

The complete lack of knowledge corresponds to the case when for each problem
j , the student is not able to solve any stage, i.e., when k j = 0 for all j . In this case,
the formula (6.2.3) takes the form

L = J · (ci · pn · n + ch · (1 − pn)). (6.2.5)

We want to select the coefficient of proportionality c in such a way that this worse-
case will be equal to 100: c · L = 100. From this equality, we conclude that

c = 100

L
= 100

J · (ci · pn · n + ch · (1 − pn))
. (6.2.6)

Substituting this expression and the expression (6.2.3) for L into the formula (6.2.4),
we conclude that

g = 100 − 100 ·

J∑

j=1

(
ci · pn−k j · (

n − k j
) + ch · (

1 − pn−k j
))

J · (ci · pn · n + ch · (1 − pn))
. (6.2.7)

We can simplify this expression if we divide both numerator and denominator of this
fraction by the factor ch . In this case, this factor ch disappears in terms proportional
to ch , and terms proportional to ci become now proportional to the ratio

c′
i
def= ci

ch
� 1.

As a result, we arrive at the following formula.
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How to assign partial credit: the resulting formula. Our analysis shows that for
a student who, for each j-th problem out of J , performed k j out of n stages, should
be given the following grade:

g = 100 − 100 ·

J∑

j=1

(
c′
i · pn−k j · (

n − k j
) + (

1 − pn−k j
))

J · (c′
i · pn · n + (1 − pn))

. (6.2.8)

Here c′
i is the ratio of an in-house cost of performing a stage to the cost of hiring an

outside consultant.

Different types of companies. The above formula use a parameter: namely, the
probability p that it is possible to perform a stage in-house, without hiring outside
help. We have already mentioned that the value of this parameter depends on the
company size:

• In a very big company, with many engineers of different type, this probability is
close to 1.

• On the other hand, in a small company this probability is very small.

On these two extreme cases, let us illustrate the use our formula (6.2.8).

First extreme case: a very big company. In this case, when p = 1, we have 1 −
pn−k j = 1 − pn = 0, so the formula (6.2.8) takes the simplified form

g = 100 − 100 ·

J∑

j=1
c′
i · (

n − k j
)

J · c′
i · n . (6.2.9)

Dividing both numerator and denominator by c′
i · n, we get

g = 100 − 100 ·

J∑

j=1

(

1 − k j

n

)

J
, (6.2.10)

i.e., the formula

g = 100 · 1
J

·
J∑

j=1

k j

n
. (6.2.11)

This is the usual formula for assigning partial credit—thus, this formula corresponds
to the case when a student is hired by a very big company.

Second extreme case: a very small company. In this case, p = 0, i.e., every time a
student is unable to solve the problem, the company has to hire an outside help. The
cost of outside help does not depend on how many stages the student succeeded in
solving: whether a student performed all but one stages or none, the loss is the same.
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In this case, the student gets no partial credit at all—if the answer is not correct,
there are 0 points assigned to this student.

Comment. This situation is similar to how grades are estimated on the final exams in
medicine: there, an “almost correct” (but wrong) answer can kill the patient, so such
“almost correct” answers are not valued at all.

Intermediate case: general description. In the intermediate cases, we do assign
some partial credit, but this credit is much smaller than in the traditional assignment
(which, as we have shown, corresponds to the large-company case).

Intermediate case: towards an approximate formula. We have already mentioned
that ci � ch and thus, c′

i � 1. Thus, we can safely ignore the terms proportional to
c′
i in our formula (6.2.8). As a result, we get the following approximate formula:

g = 100 ·

⎛

⎜
⎜
⎜
⎝
1 −

J∑

j=1

(
1 − pn−k j

)

J · (1 − pn)

⎞

⎟
⎟
⎟
⎠

.

If we subtract the fraction from 1, we get

g = 100 ·
J · (1 − pn) −

J∑

j=1

(
1 − pn−k j

)

J · (1 − pn)
,

i.e.,

g = 100 · 1
J

·
J∑

j=1

pn−k j − pn
1 − pn

. (6.2.12)

In other words, the overall grade for the test is equal to the average of the grades g j

for all the problems:

g = 100 · 1
J

·
J∑

j=1

g j , (6.2.13)

where

g j
def= pn−k j − pn

1 − pn
. (6.2.14)

Usually, the number of stages p is reasonably large, so pn ≈ 0, and we arrive at
the following formulas.

Intermediate case: resulting approximate formulas. The grade for the test can be
described as an average of the grades g j for individual problems, where for each
problem, if a student performed k j steps out of n, the grade is:
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g j ≈ pn−k j . (6.2.15)

Comment. A similar formula can be obtained if we consider a more general case,

when different problems j may have different stages n j . In this case, the general
formula has the form

g = 100 − 100 ·

J∑

j=1

(
ci · pn j−k j · (

n j − k j
) + ch · (

1 − pn j−k j
))

J∑

j=1

(
ci · pn j · n j + ch · (1 − pn j )

)
, (6.2.16)

and the corresponding approximate formula reduced to the average of the grades

g j ≈ pn j−k j . (6.2.17)

Sowhat dowe propose. Our analysis shows that, depending on the size of company,

we should assign partial credit differently. So maybe this is a way to go:

• instead of trying to describe the student’s knowledge by a single number,
• weuse different numbers corresponding to several different values of the parameter

p (i.e., in effect, depending on the size of the company).

For example, we can select values p = 0, p = 0.1, …, p = 0.9, and p = 1. Or,
as a start, we can select just values p = 0 and p = 1 (maybe supplemented with
p = 0.5).

We recommend that all these grades should be listed in the transcript, and each
company should look into the grade that is the best fit for their perceived value p.

Comment. In this subsection, we assumed that the student is absolutely confident
about his or her answers. In real life, the student is often not fully confident. The
corresponding degree of confidence should also be taken into account when gauging
the student’s knowledge—i.e., when assigning partial credit; possible ways to take
this uncertainty into account are described in the next subsection.

Need for an intuitive interpretation of the above formula. Our formula for partial
credit comes from a simplified—but still rather complicated—mathematical model.
Since the model is simplified, we cannot be 100% sure that a more complex model
would not lead to a different formula. Tomake this formulamore acceptable, we need
to supplement the mathematical derivation with a more intuitive explanation. Such
an explanation will be provided in this section and in the following one; specifically:

• in this section, we will show that the above formula is in good accordance with
the general well-accepted ideas of computational intelligence;

• in the following section, we show that this formula is also in good accordance with
a common sense analysis of the situation.
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Let us analyze the problemof partial credit from the viewpoint of computational
intelligence. The grade for a problem can be viewed as the instructor’s degree of
confidence that the student knows the material. The only information that we can
use to compute this degree is that:

• the student successfully performed k j stages, and
• the student did not perform the remaining n − k j stages.

Let us start our analysis with the simplest case, when the problem has only one
stage. In this case:

• if the student successfully performed this stage, then our degree of confidence in
this student’s knowledge is higher, while

• if the student did not perform this stage, our degree of confidence in this student’s
knowledge is lower.

Let D denote our degree of confidence in the student’s knowledge when the student
successfully performed the stage, and let d (d < D) be the degree of confidence
corresponding to the case when the student did not succeed in performing this stage.

In general, each of the k j successful stages add a confidence D, and each of n − k j

unsuccessful stages add a confidence degree d. The need for combining different
degrees of confidence is well-studied in fuzzy logic (see, e.g., [65, 120, 163]), where
the degree of confidence in an “and”-statement A and B is estimated by applying an
appropriate “and”-operation (a.k.a. t-norm) to the degrees of confidence in individual
statements.

The two simplest (and most widely used) “and”-operations are min and product.
Let us consider what will happen if we use each of these operations.

If we use the minimum “and”-operation, there will be no partial credit. Let us
first analyze what will happen if we use min as the “and”-operation. In this case, we
have only two possible results of applying this “and”-operation:

• if the student successfully performed all the stages of solving a problem, then the
resulting degree of confidence is equal to

min(D, . . . , D) = D;

• on the other hand, if the student did not succeed in at least one stage, then, no
matter how many stages were missed, we get

min(D, . . . , D, d, . . . , d) = d.

So, in this case, we:

• either give the student the full credit—if the student has successfully performed
all the stages,

• or, if the student failed in at least one stage of the problem, we give the student the
exact same grade as if this student failed in all the stages.
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Thus, if we use the minimum “and”-operation, we do not assign any partial credits—
and, as we have mentioned earlier, partial credit is pedagogically important.

What if we use the product “and”-operation. If we use the product “and”-
operation, then the resulting degree of confidence is equal to

μ = D · · · · · D (k j times) · d · · · · · d (n − k j times) = Dk
j · dn−k j . (6.2.18)

As usual in fuzzy techniques, it is convenient to normalize these value, i.e., to divide
all these degrees μ by the largest possible degree μ—so that after the division, the

largest of the new degrees μ′ = μ

μ
will be equal to 1.

The largest degree is clearly attained when the student has successfully performed
all n stages of solving the problem, i.e., when k j = n and, correspondingly, n − k j =
0. In this case, formula (6.2.18) leads to μ = Dn. Dividing μ by μ, we conclude that

μ′ = μ

μ
= Dk

j · dn−k j

Dn
= dn−k j

Dn−k j
= pn−k j , (6.2.19)

where we have denoted p
def= d

D
.

Conclusion: we get the exact same formula for partial credit. We can see that:

• the formula (6.2.19) that we obtained based on the ideas from computational
intelligence, and

• the formula (6.2.17) that is obtained based on our mathematical model

are identical. Thus, our formula (6.2.17) is indeed in good accordance with the
computational intelligence ideas.

Towards a commonsense interpretation of our partial credit formula. The above
justification is based on the general description of different “and”-operations. These
general descriptions have nothing to do with the specific problem of assigning partial
credit. So maybe for this specific problem we should have used a different “and”-
operation, which may lead us to different formula?

To make our formula for partial credit move convincing, it is therefore desirable
to supplement that general justification with a commonsense interpretation which
would be directly related to the problem of assigning partial credit.

Main idea behind about commonsense justification. Knowledge about each sub-
ject can be viewed as an ever-growing tree:

• We start with some very basic facts. We can say that these facts form the basic
(first) level of the knowledge tree.

• Then, based on these very basic facts, we develop some concepts of the second
level. For example, in Introduction to Computer Science, once the students under-
stood the main idea of an algorithm, they usually start describing different types
of variables: integers, real numbers, characters, strings, etc.
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• Based on the knowledge of the second level, we then further branch out into
different concepts of the third level, etc.

In the first approximation, we can assume that the branching b is the same on each
level, so that:

• we have one cluster of concepts on Level 1,
• we have b different concepts (or clusters of concepts) on Level 2,
• we have b2 different concepts or clusters of concepts on Level 3,
• …
• we have bk−1 different concepts or clusters of concepts on each Level k,
• …, and
• we have bn−1 different concepts or clusters of concepts on the highest level n.

The overall number of concepts of all levels from 1 to n is equal to the sum

1 + b + · · · + bn−1 = bn − 1

b − 1
.

For each problem, usually, each of n stages corresponds to the corresponding level:

• the first stage corresponds to Level 1,
• the second stage corresponds to Level 2, …
• the n-th stage corresponds to Level n.

From this viewpoint, when a student was able to only successfully perform k stages,
this is an indication that this student have mastered only the concepts of the first k
levels.

With this limited knowledge, out of all possible
bn − 1

b − 1
concepts, the student has

mastered only

1 + b + · · · + bk−1 = bk − 1

b − 1

of them.
A reasonable way to gauge the student’s knowledge is by estimating what is the

portion of concepts that the student learned, i.e., by computing the ratio

bk − 1

b − 1
bn − 1

b − 1

= bk − 1

bn − 1
. (6.2.20)

Here, n is reasonably large and k is also large—if k is the small, this means that
the student is failing this class anyway, so it does not matter how exactly we assign
partial credit. In this case, bn � 1 and bk � 1. So, by ignoring 1s in comparison
with bn and bk , we can come up with the following approximate formula
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bk

bn
= 1

bn−k
= pn−k, (6.2.21)

where we have denoted p
def= 1

b
.

Summary: we get the exact same formula for partial credit. We can see that:

• the formula (6.2.21) that we obtained based on our commonsense analysis if the
partial credit problem, and

• the formula (6.2.17) that is obtained based on our mathematical model

are identical. Thus, our formula (6.2.17) is indeed in good accordance with common
sense.

6.2.2 How to Take into Account a Student’s Degree
of Certainty When Evaluating Test Results

Tomore adequately gauge the student’s knowledge, it is desirable to take into account
not only whether the student’s answers on the test are correct or nor, but also how
confident the students are in their answers. For example, a situation when a student
gives a wrong answer, but understands his/her lack of knowledge on this topic, is not
as harmful as the situation when the student is absolutely confident in his/her wrong
answer. In this subsection, we use the general decision making theory to describe the
best way to take into account the student’s degree of certainty when evaluating the
test results.

Results from this subsection first appeared in [78].

Need to take into account the student’s degree of certainty. On a usual test, a
student provides answers to several questions, and the resulting grade depends on
whether these answers are correct.

However, this approach does not take into account how confident the students is
in his/her answer.

In real life situations, when a person needs to make a decision, it may happen that
a person does not know the correct answer—but it is not so bad if this person realizes
that his knowledge is weak on this subject. In this case, he/she may consult an expert
and come up with a correct decision. The situation is much worse if a decision maker
is absolutely confident in his/her wrong decision.

For example, we do not expect our medical doctor to be perfect, but what we do
expect is that when the doctor is not sure, he/she knows that his/her knowledge of this
particular medical situation is lacking, and either consults a specialist him/herself or
advises the patient to consult a specialist.

From this viewpoint, when gauging the student’s level of knowledge, it is desir-
able:
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• to explicitly ask the student how confident he/she is in the corresponding answer,
and

• to take this degree of confidence into account when evaluating the resulting grade.

Some tests already solicit these confidence degrees from the students; see, e.g.,
[96, 105, 121, 122]; see also [58].

How can we take the student’s degree of certainty into account? Once we have
the student’s degrees of confidence in different answers, how should we combine
these degrees of confidence into a single overall grade?

As of now, the existing combination rules are semi-heuristic. It is therefore desir-
able to come up with well-justified rules for such combination.

What we do in this subsection. In this subsection, we propose to use decision
making theory to come up with a combination rule that adequately describes the
effect of possible uncertainty and/or wrong answers on the possible decisions.

For that, we emulate a real-life decision making situation, when the decision
is made by a group of specialists including the current student. In this setting, we
estimate the expected contribution of this student’s knowledge to the quality of the
resulting decision.

Need to describe how decisions are made: reminder. A natural idea to gauge
student’s uncertain knowledge is to analyze how this uncertainty affects the decisions.
To be able to perform this analysis, we need to describe what is a reasonable way to
make a decision based on the opinion of several uncertain (and independent) experts.

Decision making under uncertainty: general case. According to decision theory,
decisions made by a rational agent can be described as follows:

• to each possible situation, we assign a numerical value called its utility, and
• we select an action for which the expected value of utility is the largest possible.

Let us start with the simplest simplified case. Let us start our analysis with the
simplest case, in which:

• we only have one question and
• for this question, there are only two possible alternatives A1 and A2.

Let P1 be the student’s degree of confidence in the answer A1. Since we assumed
that there are only two possible answers, the student’s degree of confidence in the
other answer A2 is equal to P2 = 1 − P1.

To gauge the effect of the student’s answer on the resulting decision, let us assume
that for each of the two alternatives A1 and A2, we know the optimal action.

For example, we have two possible medical diagnoses, and for each of these
diagnoses, we know an optimal treatment.

Let ui, j be the utility corresponding to the case when

• the actual situation is Ai and
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• we use the action which is optimal for the alternative A j .

In these terms, the fact that the action corresponding to A1 is optimal for the situation
A1 means that u1,1 > u1,2; similarly, we get u2,2 > u2,1.

If we know the probabilities p1 and p2 = 1 − p1 of both situations, then we select
the action corresponding to A1 if its expected utility is larger, i.e., if

p1 · u1,1 + (1 − p1) · u2,1 ≥ p1 · u1,2 + (1 − p1) · u2,2,

i.e., equivalently, if

p1 ≥ t
def= u2,2 − u2,1

(u1,1 − u1,2) + (u2,2 − u2,1)
. (6.2.22)

If the actual situation is A1, then the optimal action is the one corresponding to A1.
Thus, the above inequality describes when the optimal action will be applied—when
our degree of confidence in A1 exceeds the above-described threshold t .

How to estimate the probabilities of different alternatives under expert uncer-
tainty. Let us denote the number of experts by n. Let us assume that for each expert k,
we know this expert’s degree of confidence (subjective probability) p1,k in alternative
A1, and his/her degree of confidence p2,k = 1 − p1,k in alternative A2.

In general, we do not have prior reasons to believe that some experts are more
knowledgeable than others, so we assume that all n experts are equally probable to
be right:

P(k -th expert is right) = 1

n
.

Thus, by the law of complete probability, we have

p1 = Prob(A1 is the actual alternative) =
n∑

k=1

P(k -th expert is right) · P(A1 | k -th expert is right),

hence

p1 = 1

n
·

n∑

k=1

p1,k . (6.2.23)

How to estimate the student’s contribution to the correct decision. We started
with the average of the probabilities of n experts. Once we add the student as a new
expert, with probabilities p1,n+1 = P1 and p2,n+1 = P2, the probability p1 changes
to the new value
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p′
1 = 1

n + 1
·
n+1∑

k=1

p1,k = n

n + 1
· p1 + 1

n + 1
· P1. (6.2.24)

For large n, this addition is small, so inmost cases, it does not change the decision.
However:

• sometimes, the increase in the estimated probability p1 will help us switch from
the wrong decision to the correct one, and

• sometimes, vice versa, the new estimate will be smaller than the original one and
thus, because of the addition of the student’s opinion, the group will switch from
the correct to the wrong decision.

According to the general decision theory ideas, the student’s contribution can
be gauged as the expected utility cased by the corresponding change, i.e., as the
probability of the positive change times the gainminus the probability of the negative
loss times the corresponding loss.

The probability of a gain is equal to the probability that p1 < t but p′
1 ≥ t . Due

to (6.2.24), the inequality p′
1 ≥ t is equivalent to

p1 ≥ t + 1

n
· t − 1

n
· P1.

Thus, the probability of the gain is equal to the probability that the previous estimate
p1 is in the interval [

t + 1

n
· t − 1

n
· P1, t

]

.

For large n, this interval is narrow, so this probability can be estimated as the prob-
ability density ρ(t) of the probability corresponding to p1 times the width

1

n
· P1 − 1

n
· t

of this interval. Thus, this probability is a linear function of P1.
Similarly, the probability of the loss is also a linear function of P1 and hence, the

expected utility also linearly depends on P1.

How to gauge student’s knowledge: analysis of the problem. The appropriate
measure should be a linear function of the student’s degree of certainty P1. So, if we
originally assign:

• N points to a student who is absolutely confident in the correct answer and
• 0 points to a student who is absolutely confident in the wrong answer,

then the number of points assigned in general should be a linear function of P1 that
is:

• equal to N when P1 = 1, and
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• equal to 0 when P1 = 0.

One can check that the only linear function with this property is the function N · P1.
Thus, we arrive at the following recommendation:

How to gauge student’s knowledge: the resulting recommendation. When a stu-
dent supplies his/her degree of confidence P1 in the answer A1 (and, correspondingly,
the degree of confidence P2 = 1 − P1 in the answer A2), then we should give the
student:

• N · P1 points if A1 is the correct answer, and
• N · P2 points if A2 is the correct answer,

where N is the number of points that the student would get for an absolutely correct
answer with confidence 1.

Discussion. Let us show that if we follow the above recommendation, then we assign
different numbers of grades in two situations that we wanted to distinguish:

• the bad situation in which a student is absolutely confident in the wrong answer
p1 = 0 and p2 = 1, and

• a not-so-bad situation when a student is ignorant but understands his or her
ignorance and assigns the degree of confidences p1 = p2 = 0.5 to both possible
answers.

Indeed:

• In the first (bad) situation, the student gets the smallest number of points: 0.
• In the second, not-so-bad situation, the student gets N · 0.5 points, which is more
than 0.

Comment. Of course, if we assign the points this way, the fact that someone with no
knowledge can get 50% means that we need to appropriately change the thresholds
for A, B, and C grades.

What if a question has several possible answers: analysis of the problem. In
general, a question can have several possible answers corresponding to several alter-
natives. Let us denote these alternatives by A1, . . . , As .

In this case, a student assigns, to each of these alternatives Ai , his/her degree of
certainty Pi . Since we know that exactly one of the given s alternatives is true, these

probabilities should add up to 1:
s∑

i=1
Pi = 1.

How does adding this student’s knowledge change the decision of n experts?
Similarly to the previous case:

• it may be that previously, the experts selected awrong alternative, and the student’s
knowledge can help select the correct alternative A1;

• it also may be that the experts selected the correct alternative, but the addition of
the student’s statement will lead to the selection of a wrong alternative.
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Let us describe this in detail.
Similarly to the case of two alternative, we can conclude that a group of experts

selects an action corresponding to the alternative Ai0 if the corresponding expected
utility is larger than the expected utility of selecting any other action, i.e., if

⎛

⎝
s∑

j=1

p j · ui0, j
⎞

⎠ −
⎛

⎝
s∑

j=1

p j · ui, j
⎞

⎠ ≥ 0 (6.2.25)

for all i , where pi is the estimate of the probability that the i-th alternative Ai is true.
Similarly to the case of two alternatives, we conclude that

pi = 1

n
·

n∑

k=1

pi,k,

where n is the number of experts and pi,k is the estimate of the probability of the i-th
alternative Ai made by the k-th expert.

When we add, to n original experts, the student as a new expert, with pi,n+1 = Pi ,
then the probabilities pi change to new values

p′
i = 1

n + 1
·
n+1∑

k=1

pi,k = n

n + 1
· pi + 1

n + 1
· Pi .

Thus, the left-hand side of the inequality (6.2.25) has a change which is linear in
terms of the degrees P1, . . . , Ps .

For each case when the addition of the student as a new expert changes the
inequality between two expected utilities, the corresponding interval of possible
values of the difference is small and thus, the resulting utility is proportional to the
linear function of Pi—and is, thus, linear as well.

The probability of each such change is very small, so the probability that the
addition of a student can change two or more inequalities—i.e., that two changes
can occur at the same time—can be estimated as the product of these two (or more)
small numbers and can, therefore, be safely ignored.

In this approximation, the overall utility can be obtained by adding the probabil-
ities of all such cases and is, therefore, also a linear function of the probabilities Pi :

u = u0 +
s∑

i=1

ai · Pi .

Let c be the index of the correct answer, then this formula can be reformulated as

u = u0 + uc · Pc +
∑

i =c

ai · Pi . (6.2.26)
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Usually, there are no a priori reasons why one incorrect answer is better than another
incorrect answer. So, it is natural to assume that the utility ci corresponding to each
incorrect answer Ai is the same. Let us denote this common value of the utility by
f . Then, the above formula (6.2.26) takes the form

u = u0 + uc · Pc + f ·
∑

i =c

Pi . (6.2.27)

Since the degrees Pi add up to 1, we have

Pc +
∑

i =c

Pi = 1,

hence ∑

i =c

Pi = 1 − Pc,

and the formula (6.2.27) takes the form

u = u0 + uc · Pc + f · (1 − Pc).

Thus, the utility is a linear function of the student’s degree of confidence Pc in the
correct answer.

Let us denote by N the number of points that we assign to a correct answer in
which the student is fully confident (Pc = 1). Naturally, a student gets 0 points when
he or she is fully confident in the wrong answer (i.e., Pi = 1 for some i = c and thus,
Pc = 0). Thus, the desired linear function should be equal to N when Pc = 1 and to
0 when Pc = 0. There is only one such linear function: N · Pc. So, we arrive at the
following recommendation.

What if there are several possible answers: the resulting recommendation. Let
A1, . . . , As be possible answers, out of which only one answer Ac is correct. Let N
denote the number of points that a student would get for a correct answer in which
he or she is absolutely confident.

During the test, the student assigns, to each possible answer Ai , his/her degree of

confidence Pi that this answer is correct. These degrees must add up to 1:
s∑

i=1
Pi = 1.

Our analysis shows that for this, we give the student N · Pc points, where Pc is
the student’s degree of confidence in the correct answer.

How do we combine grades corresponding to different problems? In the above
text, we describe how to assign number of points to a single question. Namely:

• Our idea was to assign the number of points which is proportional to the gain
in expected utility that the student’s answer can bring in a real decision making
situation.
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• Our analysis has shown that this expected utility is proportional to the probability
P1 of the correct answer.

• Thus, our recommendation is to assign the number of points proportional to the
probability of the correct answer.

Real-life tests usually have several questions.

• In the traditional setting, a student provides answers to each of these questions.
• In the new setting, for each question, the student also provides us with his/her
degrees of confidence in different possible answers to this question.

How do we gauge the student knowledge level based on all this information?
Anatural idea is—similarly to the case of a single question—to use, as themeasure

of the student’s knowledge, the expected utility that the student’s answers can bring
in a real decision making situation. Let us show how this idea can be applied.

The general decision making situation means selecting a decision for each of the
problems. For example, on a medical exam, a student may be asked several questions
describing different patients.

Usually, different questions on the test are independent from each other. It is
known (see, e.g., [36]) that if a decision problem consists of several independent
decisions, then the utility of each combination of selections is equal to the sum of
the corresponding utilities.

We know the utility corresponding to each question—this is the value that we used
as a recommended grade for this particular question. Thus, the overall grade for the
test should be equal to the sum of the grades corresponding to individual questions.

Hence, we arrive at the following recommendation.

Resulting recommendation. Let us consider a test with T questions q1, . . . , qt , . . . ,
qT . For each question qt , a student is given several possible answers At,1, At,2,….
For each question qt , we know the number of points Nt corresponding to the answer
which is correct and for which the student has a full confidence.

The student is required, for each question qt and for each possible answer At,i , to
provide his/her degree of confidence Pt,i that this particular answer is correct. For
each question qt , these probabilities should add up to 1: Pt,1 + Pt,2 + · · · = 1.

To estimate the student’s level of knowledge, we need to know, for each question
qt , the correct answer; let us denote this correct answer by At,c(t). Then:

• for each question qt , we give the student Pt,c(t) · Nt points;
• as an overall grade g, i.e., as a measure of overall student knowledge, we take the

sum of the points given for individual problems: g =
T∑

t=1
Pt,c(t) · Nt .
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6.2.3 How to Combine Grades for Different Classes into a
Single Number: Need to Go Beyond GPA

At present, the amounts of knowledge acquired by different graduates of the same
program are usually compared by comparing their Grade Point Averages (GPAs). In
this subsection, we argue that this is not always the most adequate description: for
example, if, after completing all required classeswith the highest grade of “excellent”
(A), a student takes an additional challenging class and gets a “satisfactory” grade
(C), the amount of his/her knowledge increases, but the GPA goes down.We propose
a modification of the GPA which is free of this drawback and is, thus, more adequate
for describing the student’s knowledge. We also provide a psychological explanation
for why people cling to the traditional GPA.

The results from this subsection first appeared in [76].

How graduate’s knowledge is compared now. At present, the amounts of knowl-
edge acquired by different graduates of the same program are usually compared by
comparing their Grade Point Average (GPA). A GPA is simply an arithmetic average
of all the grades that a student got in different classes—usually weighted by the
number of credit hours corresponding to each class.

Usually, two types of GPA are considered:

• the overall GPA that counts all the classes that the student took at the university,
and

• themajorGPA, inwhich general education classes are not counted, the only classes
which are counted as classes directly related to the student’s major.

Why this is not always adequate. Let us give an example explaining why this may
not be the most adequate way of comparing the students’ knowledge.

Let us assume that we have two students; both took all the classes required for a
Computer Science degree, and both got “excellent” grades (As) in all these classes.

The first student did not take any other classes, while the second student decided
to also take an additional—very challenging—class, and got a satisfactory grade of
C in this additional class.

From the common sense viewpoint, the second student knows everything that the
first student knows, plus she also knows some additional material that she learned in
this challenging class. However, the GPA is higher for the first student, so, from the
usual GPA viewpoint, the first student is academically better.

How can we modify the GPA to make it more adequate: a proposal. To avoid
the above counterintuitive situation, we propose the following natural modification
of the GPA:

• if the student took only the classes needed for graduation, then his/her GPA is
computed in exactly the same way as usual;

• if a student took an additional class which is not related to his/her major and is not
required for his/her degree, the grade for this class should be simply ignored;
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• if for some topic needed for the major, the student took more classes than required,
then only the the required number of top grades are counted when computing the
modified GPA.

For example, if, instead of required three technical electives, a student took four
classes and got grades A, C, A, and B, then only the top three grades (two As and a
B) are counted.

Why this works. If a student, in addition to all As for required classes, gets a C for
an additional non-required technical elective, this C grade will not count towards a
newly modified GPA.

If this is a good idea, why is it not used? As we have mentioned earlier, people
often substitute average instead of the sum. From this viewpoint, when estimating
the overall knowledge of a students, they tend to use the average grade (GPA) instead
of, e.g., the sum of all the grades.

Just like, when pricing two large dinnerware sets,

• one consisting of 24 pieces in perfect condition, and
• the other consisting of the same 24 pieces plus 16 additional pieces, 8 of which
are broken,

most people value the second set lower—although we could simply throw away the
broken pieces and consider only the 24 most desirable pieces—based on the GPA,
when comparing two students:

• a student who took only the required classes and got As in all of them, and
• a student who, in additional to all these classes (for which he or she also got As),
also took an additional class for which this student received a B,

we select the first student as a better one.



Chapter 7
Conclusions and Future Work

While in general, humans behave rationally, there are many known experiments in
which humans show seemingly irrational behavior. For example, when a customer is
presented with two objects, one somewhat cheaper and another one more expensive
and of higher quality, the customer’s choice often depend on the presence of the third
object, the object that the customer will not select:

• if the third object is cheaper than either of the two, the customer will usually select
the cheaper of the two objects;

• if the third object is more expensive than the either of the two, the customer will
usually select the more expensive of the two objects.

From the rational viewpoint, the selection between the two objects should not depend
on the presence of other, less favorable, objects—but it does!

There aremany other examples of such seemingly irrational human behavior. This
phenomenon is known since the 1950s, and an explanation for this phenomenon is
alsowell known—such seemingly irrational behavior is caused by the fact that human
computational abilities are limited; in this sense, human rationality is bounded.

The idea of bounded rationality explains, on the qualitative level, why human
behavior and decision making are sometimes seemingly irrational. However, until
recently, there have been few successful attempts to use this idea to explain quantita-
tive aspects of observed human behavior. In this book, we show, on several examples,
that these quantitative aspects can be explained if we take into account that one of
the main consequences of bounded rationality is granularity.

The main idea behind granularity is that since we cannot process all the available
information,weonly processpartof it. Because of this, several different data points—
differing by the information that we do not process—are treated the same way. In
other words, instead of dealing with the original data points, we deal with granules,
each of which corresponds to several possible data points. For example, if we only
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136 7 Conclusions and Future Work

use the first binary digit x1 in the binary expansion of a number x = 0.x1x2 . . .
from the interval [0, 1], this means that, instead of the exact number x , we use two
granules corresponding to intervals [0, 0.5) (for which x1 = 0) and [0.5, 1] (for
which x1 = 1).

In this book, we have shown, on several examples (including the above cus-
tomer examples) that granularity indeed explained the observed quantitative aspects
of seemingly irrational human behavior. We also showed that similar arguments
explain other aspects of human decision making, as well as the success of heuristic
techniques in expert decision making. We then used these explanations to predict
the quality of the resulting decisions. Finally, we explained how we can improve
on the existing heuristic techniques by formulating and solving the corresponding
optimization problems.

The main remaining challenge is to provide a similar explanation for other
observed cases of seemingly irrational human behavior and decision making.



Appendix A
Computational Aspects of Decision Making
Under Uncertainty

In many practical problems, we need to estimate the range of a given expression
f (x1, . . . , xn) when each input xi belongs to a known interval [xi , xi ]—or when
each input xi is described by a known fuzzy set. It is known that this problem is easy
to solve when we have a Single Use Expression, i.e., an expression in which each
variable xi occurs only once. In this section,we show that for similarly definedDouble
Use Expressions, the corresponding range estimation problem is NP-hard. Similar
problems are analyzed for the problem of solving linear systems under interval (and
fuzzy) uncertainty.

The results of this section first appeared in [73, 79].

A.1 Importance of Interval Computations and the Role
of Single Use Expressions (SUE)

Need for data processing. In many real-life situations, we need to process data, i.e.,
use the estimated values x̃1, . . . , x̃n to estimate the value ỹ of another quantity.

Thismayhappen becausewe are interested in the value of a quantity that is difficult
or even impossible to measure directly—e.g., the amount of oil in a well or the
distance to a faraway star—but which can be estimated based on some related easier-
to-measure quantities (e.g., the angles to the star from two different telescopes).

It can be because we are trying to predict the future values of some quantities
based on the their current values and the known dynamical equations—e.g., if we
want to predict tomorrow’s weather based on today’s meteorological measurements.

In all these cases, we apply an appropriate algorithm f to the known estimates
and get the desired estimate ỹ = f (̃x1, . . . , x̃n). This algorithm can be as simple as
applying an explicit formula (to find the distance to a star) or as complex as solving
a system of partial differential equations (to predict weather).
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Need for interval data processing and taking uncertainty into account. Estimates
are never absolutely accurate: for each of the input quantities the estimate x̃i is, in
general, different from its actual (unknown) value xi . As a result, even if the algorithm
f is exact—i.e., it would have produced the exact value y = f (x1, . . . , xn) if we
plug in the exact values xi—because of the uncertainty x̃i �= xi , the value ỹ is, in
general, different from the desired value y.

It is therefore necessary to analyze how the uncertainty in estimating xi affects
the uncertainty with which we determine y.

Need for interval data processing and interval computations. When estimates
come from measurements, the difference Δi = x̃i − xi is, is called a measurement
error.

Sometimes, we know the probabilities of different values of measurement errors,
but often, the only information that we have about the measurement error Δxi is the
upper bound Δi provided by the manufacturer: |Δxi | ≤ Δi ; see, e.g., [132]. In such
situations, the only information that we have about xi is that xi belongs to the interval

xi = [̃xi − Δi , x̃i + Δi ].

Different values xi from these intervals xi lead, in general, to different values
y = f (x1, . . . , xn). So, to gauge the uncertainty in y, it is necessary to find the range
of all possible values of y:

y = [y, y] = { f (x1, . . . , xn) : x1 ∈ x1, . . . , xn ∈ xn}.

This range is usually denoted by f (x1, . . . , xn).
The problem of estimating this range based on given intervals xi constitutes the

main problem of interval computations; see e.g., [60, 108].

Need for fuzzy data processing. In many practical situations, estimates x̃i come
from experts. In this case, we do not have guaranteed upper bounds on the estimation
error Δxi = x̃i − xi . Instead, we have expert estimates of their accuracy—estimates
formulated in terms of words from natural language such as “approximately 0.1”.
One of the main ways to formalize such informal (“fuzzy”) statements is to use fuzzy
logic (see, e.g., [65, 120]), techniques specifically designed for the purpose of such
formalization.

In fuzzy logic, to describe a fuzzy property P(x) of real numbers (such as “ap-
proximately 0.1”), we assign, to every real number x , the degree μP(x) ∈ [0, 1]
which, according to an expert, the number x satisfies this property: if the expert is
absolutely sure, this degree is 1, else it takes value between 0 and 1. Once we know
the experts’ degrees d1, d2,…, of different statements S1, S2,…, we need to estimate
the degree d to which a logical combination like S1 ∨ S2 or S1 & S2 hold. In other
words, for each pair of values d1 and d2, we must select the estimate for S1 ∨ S2—
which will be denoted by f∨(d1, d2), and also an estimate for S1 & S2—which will
be denoted by f&(d1, d2), etc.
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Natural requirements—e.g., that S & S means the same as S, that S1 & S2 means
the same as S2 & S1, etc.—uniquely determine operations f&(d1, d2) = min(d1, d2)
and f∨(d1, d2) = max(d1, d2) [65, 120].

A real number y is a possible value of the desired quantity if and only if there
exist values x1, . . . , xn which are possible values of the input quantities and for which
y = f (x1, . . . , xn):

y is possible ⇔

∃x1 · · · ∃xn((x1 is possible)& · · · & (xn is possible)& y = f (x1, . . . , xn)).

Once we know the degrees μi (xi ) corresponding to the statements “xi is possible”,
we can then use the above “and”- and “or”- operations f&(d1, d2) = min(d1, d2) and
f∨(d1, d2) = max(d1, d2) (and the fact that an existential quantifier ∃ is, in effect,
an infinite “or”) to estimate the degree μ(y) to which y is possible:

μ(y) = max{min(μ1(x1), . . . , μn(xn) : y = f (x1, . . . , xn)}.

This formula was first proposed by Zadeh, the father of fuzzy logic, and is usually
called Zadeh’s extension principle.

From the computational viewpoint, fuzzy data processing can be reduced to
interval data processing. An alternative way to describe a membership function
μi (xi ) is to describe, for each possible values α ∈ [0, 1], the set of all values xi for
which the degree of possibility is at least α. This set

{xi : μi (xi ) ≥ α}

is called an alpha-cut and is denoted by Xi (α).
It is known (see, e.g., [65, 120]), that for the alpha-cuts, Zadeh’s extension prin-

ciple takes the following form: for every α, we have

R(α) = {R(x1, . . . , xn) : xi ∈ Xi (α)}.

Thus, for every α, finding the alpha-cut of the resultingmembership functionμ(R) is
equivalent to applying interval computations to the corresponding intervals X1(α),…,
Xn(α).

Because of this reduction, in the following text, we will only consider the case of
interval uncertainty.

In general, interval computations are NP-hard. In general, the main problem
of interval computations is NP-hard–meaning that, if (as most computer scientists
believe) P �=NP, no algorithm can always compute the desired range in feasible time
(i.e., in time which is bounded by a polynomial of the length of the input).

Thus, every feasible algorithm for estimating the range y sometimes leads to an
overestimation or an underestimation.
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Comment. NP-hardness of interval computations was first proven in [39, 40] by
reducing, to this problem, a known NP-hard problem of propositional satisfiability
(SAT) for propositional formulas in Conjunctive Normal Form (CNF): given an
expression of the type

(v1 ∨ ¬v2 ∨ v3)& (v1 ∨ ¬v4)& . . . ,

check whether there exist Boolean (true-false) values vi that make this formula true.
The disjunctions (v1 ∨ ¬v2 ∨ v3), (v1 ∨ ¬v4),…, are called clauses, and variables

and their negations are called literals.
An overview of related NP-hardness results is given in [69]. Later papers showed

that many simple interval computation problems are NP-hard: e.g., the problem of
computing the range of sample variance

V = 1

n
·

n
∑

i=1

(xi − E)2,

where E = 1

n
·

n
∑

i=1

xi ; see, e.g., [32, 33].

Naive (straightforward) interval computations. Historically the first algorithm
for estimating the range consists of the following. For each elementary arithmetic
operation ⊕ like addition or multiplication, due to monotonicity, we can explicitly
describe the corresponding range x1 ⊕ x2:

[x1, x1] + [x2, x2] = [x1 + x2, x1 + x2];

[x1, x1] − [x2, x2] = [x1 − x2, x1 − x2];
[x1, x1]·[x2, x2] = [min(x1 ·x2, x1 ·x2, x1 ·x2, x1 ·x2),max(x1 ·x2, x1 ·x2, x1 ·x2, x1 ·x2)];

1

[x1, x2] =
[

1

x1
,
1

x1

]

if 0 /∈ [x1, x1];

[x1, x1]
[x2, x2] = [x1, x1] · 1

[x1, x2] .

These formulas form interval arithmetic.
To estimate the range, we then parse the original algorithm f —i.e., represent it

as a sequence of elementary arithmetic operations, and then replace each operation
with numbers with the corresponding operation with intervals.

Sometimeswe thus get the exact range, but sometimes,we only get an enclosure—
i.e., an interval that contains the exact range but is different from it. For example,
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for a function f (x1) = x1 · (1 − x1) on the interval x1 = [0, 1], the actual range
is [0, 0.25], but naive interval computations return an enclosure. Specifically, the
original algorithm can be described as the sequence of the following two steps:

r1 = 1 − x1; y = x1 · r1.

Thus, the resulting naive interval computations lead to

r1 = [1, 1] − [0, 1] = [0, 1];

y = [0, 1] · [0, 1] =

[min(0 · 0, 0 · 1, 1 · 0, 1 · 1),max(0 · 0, 0 · 1, 1 · 0, 1 · 1)] = [0, 1].

Comment. It should be mentioned there exist more sophisticated algorithms for com-
puting the interval range, algorithms that produce much more accurate estimation
for the ranges, and these algorithms form the bulk of interval computations results
[60, 108].

Single Use Expressions. There is a known case when naive interval computations
lead to an exact range—case of Single Use Expressions (SUE), i.e., expressions
f (x1, . . . , xn) in which each variable occurs only once; see, e.g., [51, 60, 108].
For example, x1 · x2 + x3 is a SUE, while the above example x1 · (1 − x1) is not,

because in this expression, the variable x1 occurs twice.

Natural open problems. When can we reduce a function to the SUE form?
If this is not possible, what if we have double-use expressions, i.e., expressions in

which each variable occurs at most twice? is it possible to always compute the range
of such expressions in feasible time? If yes, then what about triple-use expressions?

These are the questions that we answer in this Appendix.

A.2 Functions Equivalent to Single Use Expressions

One of the main problems of interval computation is computing the range of a given
function on a given box. In general, computing the exact range is a computationally
difficult (NP-hard) problem, but there are important cases when a feasible algorithm
for computing such a function is possible. One of such cases is the case of singe-use
expressions (SUE), when each variable occurs only once. Because of this, practition-
ers often try to come up with a SUE expression for computing a given function. It is
therefore important to know when such a SUE expression is possible. In this section,
we consider the case of functions that can be computed by using only arithmetic
operations (addition, subtraction, multiplication, and division). We show that when
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there exists a SUE expression for computing such a function, then this function is
equal to a ratio of two multi-linear functions (although there are ratios of multi-
linear functions for which no SUE expression is possible). Thus, if for a function, no
SUE expression is possible, then we should not waste our efforts on finding a SUE
expression for computing this function.

Definition A.2.1 Let n be an integer; we will call this integer a number of inputs.

• By an arithmetic expression, we mean a sequence of formulas of the type s1 :=
u1 
1 v1, s2 := u2 
2 v2,…, sN := uN 
N vN , where:

– each ui or vi is either a rational number, or one of the inputs x j , or one of the
previous values sk , k < i ;

– each 
i is either addition +, or subtraction −, or multiplication ·, or division /.

• By the value of the expression for given inputs x1, . . . , xn , we mean the value sN

that we get after we perform all N arithmetic operations si := ui 
i vi .

Definition A.2.2 An arithmetic expression is called a single use expression (or SUE,
for short), if each variable x j and each term sk appear at most once in the right-hand
side of the rules si := ui 
i vi .

Example An expression 1/(1 + x2/x1) corresponds to the following sequence of
rules:

s1 := x2/x1; s2 := 1 + s1; s3 = 1/s2.

One can see that in this case, each x j and each sk appears at most once in the right-
hand side of the rules.

Definition A.2.3 We say that a function f (x1, . . . , xn) can be computed by an arith-
metic SUE expression if there exists an arithmetic SUE expression whose value, for
each tuple (x1, . . . , xn), is equal to f (x1, . . . , xn).

Example The function f (x1, x2) = x1
x1 + x2

is not itself SUE, but it can be computed

by the above SUE expression 1/(1 + x2/x1).

Definition A.2.4 A function f (x1, . . . , xn) is called multi-linear if it is a linear
function of each variable.

Comment. For n = 2, a general bilinear function has the form

f (x1, x2) = a0 + a1 · x1 + a2 · x2 + a1,2 · x1 · x2.

A general multi-linear function has the form f (x1, . . . , xn) = ∑

I⊆{1,...,n}
aI · ∏

i∈I
xi .

For example, if we take I = {1, 2}, then:
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• for I = ∅, we get the free term a0;
• for I = {1}, we get the term a1 · x1;
• for I = {2}, we get the term a2 · x2, and
• for I = {1, 2}, we get the term a1,2 · x1 · x2.

Proposition A.2.1 If a function can be computed by an arithmetic SUE expression,
then this function is equal to a ratio of two multi-linear functions.

Proposition A.2.2 Not every multi-linear function can be computed by an arithmetic
SUE expression.

Comment. As we will see from the proof, this auxiliary result remains valid if, in
our definition of a SUE expression, we also allow additional differential unary and
binary operations—such as computing values of special functions of one or two
variables—in addition to elementary arithmetic operations.

Proof of Proposition A.2.1 This result means, in effect, that for each arithmetic SUE
expression, the corresponding function f (x1, . . . , xn) is equal to a ratio of twomulti-
linear functions. We will prove this result by induction: we will start with n = 1, and
then we will use induction to prove this result for a general n.

1◦. Let us start with the case n = 1. Let us prove that for arithmetic SUE expressions
of one variable, in each rule si := ui 
i vi , at least one of ui and vi is a constant.

Indeed, it is known that an expression for si can be naturally represented as a tree:

• We start with si as a root, and add two branches leading to ui and vi .
• If ui or vi is an input, we stop branching, so the input will be a leaf of the tree.
• If ui or vi is an auxiliary quantity sk , i.e., a quantity that comes from the corre-
sponding rule sk := uk 
k vk , then we add two branches leading to uk and vk ,
etc.

Since each x j or si can occur only once in the right-hand side, this means that all
nodes of this tree are different. In particular, this means that there is only one node
x j . This node is either in the branch ui or in the branch vi . In both cases, one of the
terms ui and vi does not depend on x j and is, thus, a constant.

Let us show, by (secondary) induction, that all arithmetic SUE expressions with

one input are fractionally linear, i.e., have the form f (x1) = a · x1 + b

c · x1 + d
with rational

values a, b, c, and d. Indeed:

• the variable x1 and a constant are of this form, and
• one can easily show that as a result of an arithmetic operation between a fractional-
linear function f (x1) and a constant r , we also get an expression of this form, i.e.,
f (x1)+r , f (x1)−r , r− f (x1), r · f (x1), r/ f (x1), and f (x1)/r are also fractionally
linear.
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Comment. It is worth mentioning that, vice versa, each fractionally linear function

f (x1) = a · x1 + b

c · x1 + d
can be computed by an arithmetic SUE expression. Indeed, if

c = 0, then f (x1) is a linear function f (x1) = a

d
· x1 + b

d
, and is, thus, clearly SUE.

When c �= 0, then this function can be computed by using the following SUE

form: f (x1) = a

c
+

b − a · d

c
c · x1 + d

.

2◦. Let us now assume that we already proved this result for n = k, and we want to
prove it for functions of n = k +1 variables. Since this function can be computed by
an arithmetic SUE expression, we can find the first stage on which the intermediate
result depends on all n variables. This means that this result comes from applying an
arithmetic operation to two previous results both of which depended on fewer than
n variables. Each of the two previous results thus depends on < k + 1 variables, i.e.,
on ≤ k variables. Hence, we can conclude that each of these two previous results is
a ratio of two multi-linear functions.

Since this is SUE, the two privious results depend on non-intersecting sets of
variables.Without losing generality, let x1, . . . , x f be the variables used in the first of
these previous results, and x f +1, . . . , xn are the variables used in the second of these

two previous results. Then the two previous results have the form
N1(x1 . . . , x f )

D1(x1, . . . , x f )

and
N2(x f +1 . . . , xn)

D2(x f +1, . . . , xn)
, where Ni and Di are bilinear functions. For all four arithmetic

operations, we can see that the result of applying this operation is also a ratio of two
multi-linear functions. For addition, we have:

N1(x1 . . . , x f )

D1(x1, . . . , x f )
+ N2(x f +1 . . . , xn)

D2(x f +1, . . . , xn)
=

N1(x1 . . . , x f ) · D2(x f +1, . . . , xn) + D1(x1 . . . , x f ) · N2(x f +1, . . . , xn)

D1(x1 . . . , x f ) · D2(x f +1, . . . , xn)
.

For subtraction, we have:

N1(x1 . . . , x f )

D1(x1, . . . , x f )
− N2(x f +1 . . . , xn)

D2(x f +1, . . . , xn)
=

N1(x1 . . . , x f ) · D2(x f +1, . . . , xn) − D1(x1 . . . , x f ) · N2(x f +1, . . . , xn)

D1(x1 . . . , x f ) · D2(x f +1, . . . , xn)
.

For multiplication, we have:

N1(x1 . . . , x f )

D1(x1, . . . , x f )
· N2(x f +1 . . . , xn)

D2(x f +1, . . . , xn)
= N1(x1 . . . , x f ) · N2(x f +1, . . . , xn)

D1(x1 . . . , x f ) · D2(x f +1, . . . , xn)
.
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For division, we have:

(

N1(x1 . . . , x f )

D1(x1, . . . , x f )

)

:
(

N2(x f +1 . . . , xn)

D2(x f +1, . . . , xn)

)

= N1(x1 . . . , x f ) · D2(x f +1, . . . , xn)

D1(x1 . . . , x f ) · N2(x f +1, . . . , xn)
.

After that, we perform arithmetic operations between a previous result and a
constant—since neither of the n variables can be used again.

Similar to Part 1 of this proof,we can show that the result of an arithmetic operation
between a ratio f (x1, x2, . . . , xn) of two multi-linear functions and a constant r , we
also get a similar ratio.

The proposition is proven.

Proof of Proposition A.2.2 Let us prove, by contradiction, that a bilinear function
f (x1, x2, x3) = x1 · x2 + x2 · x3 + x2 · x3 cannot be computed by a SUE expression.
Indeed, suppose that there is a SUE expression that computes this function. By
definition of SUE, this means that first, we combine the values of two of these
variables, and then we combine the result of this combination with the third of
the variables. Without losing generality, we can assume that first we combine x1
and x2, and then add x3 to this combination, i.e., that our function has the form
f (x1, x2, x3) = F(a(x1, x2), x3) for some functions a(x1, x2) and F(a, x3).

The function obtained on each intermediate step is a composition of elementary
(arithmetic) operations. These elementary operations are differentiable, and thus,
their compositions a(x1, x2) and F(a, x3) are also differentiable. Differentiating the
above expression for f in terms of F and a by x1 and x2, we conclude that

∂ f

∂x1
= ∂ F

∂a
(a(x1, x2), x3) · ∂a

∂x1
(x1, x2)

and
∂ f

∂x2
= ∂ F

∂a
(a(x1, x2), x3) · ∂a

∂x2
(x1, x2).

Dividing the first of these equalities by the second one, we see that the terms
∂ F

∂a
cancel each other. Thus, the ratio of the two derivatives of f is equal to the ratio of
two derivatives of a and therefore, depends only on x1 and x2:

∂ f

∂x1
∂ f

∂x2

=
∂a

∂x1
(x1, x2)

∂a

∂x1
(x1, x2)

.
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However, for the above function f (x1, x2, x3), we have
∂ f

∂x1
= x2 + x3 and

∂ f

∂x2
= x1 + x3. The ratio

x2 + x3
x1 + x3

of these derivatives clearly depends on x3 as

well—and we showed that in the SUE case, this ratio should only depend on x1
and x2. The contradiction proves that this function cannot be computed by a SUE
expression. The proposition is proven.

A.3 From Single to Double Use Expressions

Analysis of the problem and the main result. Since the original proof of NP-
hardness of interval computations comes from reduction to SAT, let us consider the
corresponding SAT problems. Namely, we will say that

• a propositional formula of the above type is a Single-Use Expression (SUE) if in
this formula, each Boolean variable occurs only once; and

• a Double-Use Expression (DUE) if each Boolean variable occurs at most twice.

For example:

• (v1 ∨ ¬v2 ∨ v3)& (v4 & v5) is a SUE formula, and
• (v1 ∨ ¬v2 ∨ v3)& (v1 &¬v3) is a DUE formula: here v1 and v3 occur twice, and

v2 occurs once.

For propositional formulas, checking satisfiability of SUE formulas is feasible:

Proposition A.3.1 There exists a feasible algorithm for checking propositional sat-
isfiability of SUE formulas.

Comment. For reader’s convenience, all the proofs are placed at the end of this
appendix.

For DUE formulas, we have a similar result:

Proposition A.3.2 There exists a feasible algorithm for checking propositional sat-
isfiability of DUE formulas.

Onemay thus expect that the interval computations problem for DUE expressions
is also feasible. However, our result is opposite:

Proposition A.3.3 The main problem of interval computations for DUE formulas
is NP-hard.
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Systems of interval linear equations: reminder. In many cases, instead of a known
algorithm, we only have implicit relations between the inputs xi and the desired value
y. The simplest such case is when these relations are linear, i.e., when we need to
determine the desired values y1, . . . , yn from the system of equations

n
∑

j=1

ai j · y j = bi ,

where we know estimates for ai j and bi—e.g., intervals ai j and bi of possible values
of these variables.

In this case, a natural question is to find the range of all possible values y j when
ai j takes values from ai j and bi takes values from the interval bi .

Systems of interval linear equations: what is known about their computational
complexity. It is known that computing the desired ranges is an NP-hard problem;
see, e.g., [69].

However, a related problem is feasible: given a sequence of values x1, . . . , xn

check whether there exist values ai j ∈ ai j and bi ∈ bi for which the above system is
true.

This algorithm can be easily described in SUE terms: for every i , the expression
n
∑

j=1
ai j · y j is a SUE, thus, its range can be found by using naive interval computation,

as
n
∑

j=1
ai j · y j . The above equality is possible if and only if this range and the interval

bi have a non-empty intersection for every i :

⎛

⎝

n
∑

j=1

ai j · y j

⎞

⎠ ∩ bi �= ∅.

Checking whether two intervals [x1, x1] and [x2, x2] have a non-empty intersection
is easy:

[x1, x1] ∩ [x2, x2] �= ∅ ⇔ x1 ≤ x2 & x2 ≤ x1.

Thus, we indeed have a feasible algorithm; this criterion is known as theOettli-Prager
criterion [60, 108].

Parametric interval linear systems: reminder. In some cases, we have additional
constraints on the values ai j . For example, we may know that the matrix ai j is
symmetric: ai j = a ji . In this case, not all possible combinations ai j ∈ ai j are
allowed: only those for which ai j = a ji . In this case, it is sufficient to describe the
values ai j for i ≤ j , the others can be expressed in terms of these ones.

In general, we can consider a parametric system in which we have k parameters
p1, . . . , pk that take values from known intervals p1, . . . ,pk , and values ai j and bi
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are linear functions of these variables: ai j =
k

∑

�=1
ai j� · p� and bi =

k
∑

�=1
bi� · p�, for

known coefficients ai j� and bi�.

Parametric interval linear systems: what is known about their computational
complexity. This problem ismore general than the above problem of solving systems
of linear equations. Thus, since the above problem is NP-hard, this problem is NP-
hard as well.

The next natural question is: is it possible to check whether a given tuple x =
(x1, . . . , xn) is a solution to a given parametric interval linear system, i.e., whether

there exist values p� for which
n
∑

j=1
ai j · y j = bi .

The first result of this type was proven in [130, 131]. In these papers, it is shown
that if each parameter pi occurs only in one equation (even if it occurs several times
in this equation), then checking is still feasible.

The proof can also be reduced to the SUE case: indeed, in this case, it is sufficient
to consider one equation at a time—since no two equations share a parameter. For

each i , the corresponding equation
n
∑

j=1
ai j · y j = bi takes the form

n
∑

j=1

k
∑

�=1

ai j� · y j · p� =
k

∑

�=1

bi� · p�,

i.e., the (SUE) linear form
k

∑

�=1

Ai� · p� = 0,

where

Ai� =
n

∑

j=1

ai j� · y j − bi�,

and we already know that checking the solvability of such an equation is feasible.

Natural questions. What happens if we we allow each parameter to occur several
times?What if each parameter occurs only in one equation, but the dependence of ai j

and bi on the parameters can be quadratic (this question was asked by G. Alefeld):

ai j = ai j0 +
k

∑

�=1

ai j� · p� +
k

∑

�=1

k
∑

�′=1

ai j��′ · p� · p�′ ;

bi = bi0 +
k

∑

�=1

bi� · p� +
k

∑

�=1

k
∑

�=1

bi��′ · p� · p�′ .
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In this section, we provide answers to both questions.

Proposition A.3.4 When we only allow linear dependence on parameters, then there
exists a feasible algorithm that checks whether a given tuple x belongs to a solution
set of a parametric interval linear system.

Proposition A.3.5 For parametric interval linear systems with quadratic depen-
dence on parameters, the problem of checking whether a given tuple x belongs to a
solution set of a given system is NP-hard even if we only consider systems in which
each parameter occurs only on one equation.

Proof of Proposition A.3.1 This algorithm is simple because every SUE proposi-
tional formula is satisfiable. Indeed, each variable vi occurs only once.

• If it occurs as negation ¬vi , then we can set vi to false, after which ¬vi becomes
true.

• If the variable vi occurs without negation, then we set vi to be true.

In both cases, for this choice, all the literals vi or ¬vi are true, and thus, the whole
formula is true.

Proof of Proposition A.3.2 Let us show that we can “eliminate” each variable vi—
i.e., in feasible time, reduce the problem of checking satisfiability of the original
formula to the problem of checking satisfiability of a formula of the same (or smaller)
length, but with one fewer variable.

Indeed, since the formula is DUE, each variable vi occurs at most twice.
If it occurs only once as ¬vi , then the formula has the form (¬vi ∨ r)& R, where

r denotes the remaining part of the clause containing ¬vi , and R is the conjunction
of all the other literals. Let us show that the satisfiability of the original formula
is equivalent to satisfiability of a shorter formula R that does not contain vi at all.
Indeed:

• If the original formula (¬vi ∨r)& R is satisfied, this means that it is true for some
selection of variables. For this same selection of variables, R is true as well, so the
formula R is also satisfied.

• Vice versa, let us assume that R is satisfied. This means that for some selection of
variables, R is true. If we now take vi to be false, then the clause (¬vi ∨ r) will be
true as well, and thus, the whole formula (¬vi ∨ r)& R will be true.

Similarly, if the variable vi occurs once as vi , then the formula has the form
(vi ∨ r)& R, and its satisfiability is equivalent to satisfiability of a shorter formula
R that does not contain vi at all.

If the variable vi occurs twice, and both times as vi , then the formula has the form
(vi ∨ r)& (vi ∨ r ′)& R, and its satisfiability is equivalent to satisfiability of a shorter
formula R that does not contain vi at all.

If the variable vi occurs twice, and both times as ¬vi , then the formula has the
form (¬vi ∨ r)& (¬vi ∨ r ′)& R, and its satisfiability is equivalent to satisfiability
of a shorter formula R that does not contain vi at all.
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Finally, if it occurs once as vi and once as ¬vi , i.e., if it has the form two clauses
(vi ∨ r)& (¬vi ∨ r ′)& R, then its satisfiability is equivalent to the satisfiability of
the new formula (r ∨ r ′)& R (this fact is known as resolution rule). Indeed:

• If the formula (r ∨ r ′)& R is satisfied, this means that for some combination of
variables, both R and r ∨ r ′ are true. Thus, either r is true, or r ′ is true.

– In the first case, we can take vi to be false, then both vi ∨ r and ¬vi ∨ r ′ are true.
– In the second case, we can take vi to be true, then both vi ∨ r and ¬vi ∨ r ′ are
true.

Thus, in both cases, the formula (vi ∨ r)& (¬vi ∨ r ′)& R is true as well.
• Vice versa, if the original formula (vi ∨ r)& (¬vi ∨ r ′)& R is satisfied by some
selection of the values, then, in this selection, either vi is true or it is false.

– In the first case, from the fact that ¬vi ∨ r ′ is true and ¬vi is false, we conclude
that r ′ is true. Thus, the disjunction r ∨ r ′ is also true.

– In the second case, from the fact that vi ∨ r is true and vi is false, we conclude
that r is true. Thus, the disjunction r ∨ r ′ is also true.

Thus, in both cases, the formula (r ∨ r ′)& R is satisfied as well.

The proposition is proven.

Proof of Proposition A.3.3 Aswementioned, computing the range of variance under
interval uncertainty is NP-hard, but variance is a DUE:

V = x2
1 + . . . + x2

i + . . . + x2
n

n
−

(

x1 + . . . + xi + . . . + xn

n

)2

.

The proposition is proven.

Proof of Proposition A.3.4 In this case, we need to check whether there are values

p� that satisfy the system of linear equations
k

∑

�=1
Ai� · p� = 0 and linear inequalities

p
�
≤ p� ≤ p� (that describe interval constraints on p�).

It is known that checking consistency of a given system of linear equations and
inequalities is a feasible problem, a particular case of linear programming; see, e.g.,
[23]. Thus, any feasible algorithm for solving linear programming problem solves
our problem as well. The proposition is proven.

Proof of Proposition A.3.5 We have already mentioned that finding the range of a
quadratic function f (p1, . . . , pk) under interval uncertainty p� ∈ p�, is NP-hard. It
is also true (see, e.g., [69]) that checking, for a given value v0, where there exists
values p� ∈ p� for which f (p1, . . . , pk) = v0 is also NP-hard.
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We can reduce this NP-hard problem to our problem by considering a very simple
system consisting of a single equation a11 · y1 = b1, with y1 = 1, b1 = v0, and
a11 = f (p1, . . . , pk). The tuple x = (1) belongs to the solution set if and only if
there exist values p� for which f (p1, . . . , pk) = v0.

The reduction is proven, so our checking problem is indeed NP-hard.
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