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Preface

After working briefly in a management training program for a textile company,

I decided to apply to the Ph.D. program in economics at Syracuse University. I was

fortunate to obtain a research assistantship working for Jerry Miner on a project

analyzing funding for public schools in New York. In addition to being kind and

fatherly, Jerry provided me with an incredible opportunity to work on a real

research project. I gained valuable research skills including a working knowledge

of SAS programming. I also gained valuable experience maintaining and updating

the data for the funded project for rural school districts. A lot of my modest success

in academics can be traced to Jerry’s supervision and guidance.

In the early 1990s Bill Duncombe approached Jerry about using the education

data set to analyze consolidation of New York school districts. Bill did not have to

include me on the research project but did so. In addition to cleaning and providing

the data, Bill allowed me to estimate educational costs using the stochastic frontier.

At the time, I was learning the topic of efficiency measurement using data envel-

opment analysis. The project with Bill and Jerry led to my first publication. More

importantly, Bill taught me the process of research. In addition, Bill was one of the

most valuable resources for my dissertation—I thanked him because he did more

than one should reasonably expect. It took me many years to realize the profound

influence Bill had on my career. Unfortunately, I never properly thanked him for his

contributions. Bill passed away on May 11, 2013 after a brief battle with cancer.

Thank you, Bill.

My interest in data envelopment analysis arose from a search on suitable

research topics given the education data set that I maintained for my research

assistantship. At the time I was more interested in finding a dissertation topic that

would allow me to exploit my data set. Among the early papers that I found were

Data Envelopment Analysis (DEA) papers analyzing education, and were Charnes,

Cooper, and Rhodes (1981), Bessent, Bessent, Kennington, and Reagan (1982) and

Färe, Grosskopf, and Weber (1989). The New York school data was richer than the

ones used in these papers and my research topic was chosen. I obtained all of Rajiv

Banker’s working papers from Carnegie Mellon and all papers on DEA from both

the microeconomics and the operations researchers. At the time, Bill and Jerry
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obtained funding to analyze technical and scale efficiency of school districts for a

coalition of rural school districts. We used the Banker and Morey (1986) DEA

models to allow for exogenous socioeconomic factors. I began my journey into the

supporting literature on bureaucracies, including the work of Niskanen (1971,

1975) and Chubb and Moe (1990), and on educational production with Hanushek

(1979, 1986) and Cohn and Geske (1990). Eventually, all of this work was synthe-

sized in my dissertation on educational efficiency. In the process, I developed a

competing model to control for exogenous factors of production (Ruggiero, 1996a).

This was the genesis of over two decades of research on performance evaluation

which included applications to analyze educational production of New York, Ohio,

Illinois, Dutch, and Australian schools. These applications focused not only on the

measurement of technical efficiency (Ruggiero, 1996b) but also the causes of

efficiency (Duncombe, Miner, & Ruggiero, 1997), the measurement of education

costs (Duncombe, Ruggiero, & Yinger, 1996; Ruggiero, 1999), adequacy

(Ruggiero, 2007), and productivity (Johnson & Ruggiero, 2011; Brennan,

Haelermans, & Ruggiero, 2014).

After I finished my dissertation, my goals were to finish up the research I had

started on efficiency measurement and move to other applied econometric work.

Nearly 20 years after publishing my first article on efficiency, I continue to work in

this area.

I would like to acknowledge my coauthors who have written on the topic of

education (in order of publication date): Bill Duncombe, Jerry Miner, Johnny

Yinger, Stuart Bretschneider, Don Vitaliano, Lloyd Blanchard, Andy Johnson,

Sarah Estelle, Jaye Flavin, Ryan Murphy, Carla Haelermans, and Shae Brennan.

In addition to Jaye, Ryan, and Shae, Scott Knowles and Craig Letavec also

coauthored papers with me as undergraduate students. My former dean Matt

Shank encouraged me to work on scholarship with undergraduate students as part

of my additional goals as an endowed professor. The results include two research

articles (Blackburn, Brennan & Ruggiero, 2013; Brennan, Haelermans, &

Ruggiero, 2014) and this book, with more projects in progress. The experience of

working with Shae has been one of the best I have had as a professor. I would like to

thank Trevor Collier and Paul Bobrowski for allowing me to continue with these

goals; I am currently working on research projects with Nikki Mazza, Kara Colety,

Kristen Broadbent, Lesley Chilton, and Kelli Marquardt. Also, I have benefited

from useful discussions with Mariana Almeida, David Ausdenmoore, Leslie

Douglas, Paulo Henrique, Matheus Lambertucci, and Marco Mendes. And I

would be remiss not to acknowledge the support of Joyce Zanini, one of the best

workers at the University of Dayton.

Dayton, OH, USA John Ruggiero
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Chapter 1

Introduction

1.1 Education Outcome Provision

A useful starting point for viewing education as a production process was the 1966

report “Equality of Educational Opportunity” for the U.S. Department of Educa-

tion. This report, more widely referred to as the Coleman Report (1966), provided

evidence that socioeconomic factors (student socioeconomic status) are the most

important factors in determining educational outcome. While school resources and

spending per pupil can positively impact outcomes, the empirical evidence suggests

that parental background and student characteristics have a bigger effect. This

finding largely explains why equalization of spending per pupil has not removed

the large differences in test scores that are still observed.

Hanushek (1989) summarized approximately 20 years of educational production

studies and concluded that differences in school spending do not explain variations

in student performance. Family background, however, does explain the differences

in outcomes. Hanushek further finds that students with wealthier and more educated

parents perform better. Hanushek (1979, 1986) provides a useful foundation to

analyze education as a production process whereby outcomes are function of school

inputs and socioeconomic variables. In addition to Hanushek’s work, Bridge, Judd,

and Moock (1979) and Cohn and Geske (1990) provide useful discussions of the

education production process.

Bradford, Malt, and Oates (1969) provided a two-stage model to analyze public

sector production where intermediate outputs (e.g. instruction in mathematics,

reading, etc.) are determined by school resources. In a second stage, the final

outcomes of interest are functionally related to the intermediate outputs and the

socioeconomic environment. Importantly for our work, these socioeconomic fac-

tors of production are exogenous even in the long-run. For purposes of measuring

efficiency, it is important therefore to properly control for the socioeconomic

environment.

One explanation of the finding that per student spending is not strongly corre-

lated with student performance is that schools are relatively inefficient in the

V. Blackburn et al., Nonparametric Estimation of Educational Production
and Costs using Data Envelopment Analysis, DOI 10.1007/978-1-4899-7469-3_1,
© Springer Science+Business Media New York 2014
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producing outcomes. If one views education in the context of political theory, one

can find sufficient theoretical and empirical support for school inefficiency.

Leibenstein (1966), Niskanen (1971, 1975), Migué and Bélanger (1974), Chubb

and Moe (1990) and Wyckoff (1990) provide useful political frameworks for the

existence of inefficiency. Instead of profit maximizing or cost minimizing firms,

bureaucrats are inclined to either maximize their budgets (in which case we would

see overprovision of the local public good) or the excess spending which could lead

to inefficiency.

A few useful empirical tests of bureaucracy models were provided by De Borger,

Kerstens, Moesen, and Vanneste (1994), Duncombe, Miner, and Ruggiero (1997)

and Hayes, Razzolini, and Ross (1998). De Borger et al. (1994) analyzed efficiency

of Belgian municipalities and found that a larger more educated population leads to

more efficiency while wealthier municipalities tended to be less efficient.

Duncombe et al. (1997) analyzed cost efficiency of New York schools and found

similar results. The evidence suggested that efficiency was negatively related to

district size, the percent of teachers that were tenured, district wealth and positively

related to the percent of adults that were college educated. Hayes et al. (1998)

measured the efficiency of police and fire services in Illinois and found similar

results as the two previous studies; wealthier and less educated municipalities

tended to be more inefficient. In addition, they find that increased competition

does have a significant positive effect on efficiency.

1.2 Data Envelopment Analysis

With economic production theory as a basis, Farrell (1957) showed how efficiency

can be estimated relative to a piecewise linear isoquant. Overall inefficiency was

composed of technical and allocative parts. Technical inefficiency is observed

when a given production possibility is not on the isoquant. As a result, the unit is

using too many inputs to produce the observed output, leading to excess costs and

lower profits. Allocative inefficiency results when the firm uses the wrong mix of

inputs given exogenous input prices. Farrell provided the decomposition of the

overall inefficiency into technical and allocative components relative to a piecewise

linear isoquant.

Farrell and Fieldhouse (1962) extended Farrell’s earlier work by relaxing the

assumption of constant returns to scale by allowing decreasing returns. In addition,

linear programming was suggested as a methodology that could solve for ineffi-

ciency. Boles (1971) extended the models to variable returns to scale and provided

computer programs to estimate the efficiency. Afriat (1972) provided the formula-

tion for technical efficiency measurement that was consistent with data envelop-

ment analysis (DEA) with variable returns to scale and the Free Disposal Hull

model. Färe, Grosskopf, and Lovell (1994) provide a useful theoretical framework

for the production economic approach to efficiency measurement.
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DEA is the term coined in the Operations Research literature by Charnes,

Cooper, and Rhodes (1978) to measure the technical efficiency of a given observed

decision making unit (DMU) assuming constant returns to scale for a multiple

input, multiple output production correspondence. The model was extended by

Banker, Charnes, and Cooper (1984) to allow variable returns to scale and showed

that solutions to the constant returns to scale and variable returns to scale models

allowed a decomposition into technical and scale components. Theoretical exten-

sions useful for analyzing educational production were made by Banker and Morey

(1986) which allowed nondiscretionary inputs. Alternative models to control for the

socio-economic environment include Ray (1988, 1991) which used a second-stage

ordinary least squares regression. McCarty and Yaisawarng (1993) extended this by

using a Tobit regression in the second stage.1 Ruggiero (1996a, 1998) provided a

conditional technology that does not assume convexity with respect to the

nondiscretionary variables. The resulting models of Ruggiero will be the basis for

the public sector models used in this book.

1.3 Educational Production and Efficiency

While DEA can be applied to analyze any economic production environment, the

motivation for analyzing technical efficiency was public sector models where prices

were hard to obtain. In the case of education, for example, while input prices are

readily available for the discretionary inputs, the prices of the outcomes are neither

well defined nor observed. Charnes, Cooper, and Rhodes (1981) applied the constant

returns to scale model to analyze program and managerial efficiency of Program

Follow Through. Here, the authors consider two separate frontiers based recognizing

possible differences in the production technology. However, some of the variables

chosen as discretionary inputs include exogenous socio-economic characteristics

(education of the mother, highest occupation of a family member, etc.)

Bessent, Bessent, Kennington, and Reagan (1982) analyzed the 167 elementary

schools in the Houston Independent School District. Similar to the Charnes, Cooper

and Rhodes paper, this paper used a number of non-controllable correlates (for

example, percent of students paying full lunch price and percent of nonminority

students) as discretionary inputs. Smith and Mayston (1987) illustrated DEA with

English school authorities using a constant returns to scale model. The authors

properly delineate the types of inputs into discretionary factors and exogenous

environmental factors but treat them similarly within the DEA model. Färe,

Grosskopf, and Weber (1989) measured efficiency of Missouri schools and used

discretionary inputs and standardized tests. Lack of student background data

prevented a more detailed analysis. Thanassoulis and Dunstan (1994) analyze

1 Simar and Wilson (2007) criticize the two-stage models. Banker and Natarajan (2008) and

McDonald (2009) prove the consistency of the OLS estimator in the second stage.
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cohorts of students using DEA with targets for improvement. The DEA models

used a pre-test to control for prior attainment and a socio-economic variable

(percent of students not receiving free school lunches) as the discretionary inputs.

Ruggiero, Duncombe, and Miner (1995) measured the inefficiency of New York

school districts and sought to explain the causes from the bureaucratic models. This

paper incorporated the conditional convexity model developed by Ruggiero

(1996a) to measure public sector efficiency while controlling for the environment.

Ruggiero (1996b) used canonical regression to weight excess slack found in an

analysis of New York schools. The results are suggestive that the positive relation-

ship between school resources and student outcomes are clouded by inefficient

behavior.2 Ruggiero (1998) provided a cost framework whereby the cost efficiency

of school districts could be measured. With education data inputs are typically

reported at the aggregate level. In order to measure cost efficiency, the rather

herculean assumption of identical prices had to be assumed. Nonetheless, the

model allowed an analysis of expenditure data while controlling for the environ-

ment. Recognizing that learning takes place at the individual student level,

Thanassoulis (1999) provided a detailed estimates of student targeted attainment.

In addition, student role models (benchmarks) are identified. Silva Portela and

Thanassoulis (2001) extend this model to provide a richer decomposition focusing

on the factors of student underachievement. This detailed analysis allowed a

sourcing of underachievement to the student and to the school.

Ruggiero and Vitaliano (1999) provided a comparative analysis of DEA and the

stochastic frontier model applied to New York school districts. The results were

consistent achieving a rank correlation of 0.86 between the measured efficiency.

Ruggiero (2000) extended his 1996 model to allow various measures of returns to

scale. In addition to the standard notion of scale economies for a given environ-

ment, a measure of environmental harshness was defined as the distance between

two different frontiers. Sharing similarities to productivity indices, the environ-

mental harshness index is defined with continuous nondiscretionary factors and

reveals the additional resources necessary to overcome adverse socioeconomic

conditions.

Ruggiero (2001) used DEA to show estimate the based cost of providing a given

education. Previous consultants used rather simplistic methods to calculate the based

cost but did not properly control for the socioeconomic environment or account for

inefficiency. Ruggiero, Miner, and Blanchard (2002) showed that traditional public

policy analyses focusing on equity provide misleading results. Differences in spend-

ing result not only from differences in outcomes, but also differences in efficiency

and in environmental conditions. Ruggiero (2007b) extended DEA to provide a

nonparametric measure of adequacy, defined as the expenditures necessary to achieve

predefined goals.

2 Of course, as pointed out in that paper, the assumption of monotonicity requires a positive

relationship between discretionary inputs and outcomes. The results can best be considered

suggestive.
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DEA has also been extended to measure public sector productivity with appli-

cations to education. Ouellette and Vierstraete (2010), Johnson and Ruggiero

(2011), Brennan, Haelermans, and Ruggiero (2014) and Essid, Ouellete, and

Vigeant (2014) provided a Malmquist decomposition of productivity in the pres-

ence of fixed factors of production. Johnson and Ruggiero (2011) and Brennan

et al. (2014) provide a decomposition based on the conditional technology devel-

oped in Ruggiero (1996a). The latter provided a variable returns to scale decom-

position with an application to Dutch schools. Essid et al. (2014) analyzed Tunisian

schools in the presence of quasi-fixed factors and extended the technique by

bootstapping the results.

Haelermans, De Witte, and Blank (2012) and Haelermans and Ruggiero (2013)

provide recent analyses of efficiency of Dutch schools. Haelermans and De Witte

(2012), Haelermans et al. (2012) studied the allocation of resources and found that

teachers are over-utilized while support staff and administrators are under-utilized.

Haelermans and Ruggiero (2013) extended the conditional model of Ruggiero

(1996a) to decompose overall efficiency into technical and allocative components

subject to the operating environment. The results indicate that most inefficiency

arises from technical efficiency even though allocative inefficiency is a large

component.

1.4 Australian Education

Over the last two decades governments worldwide have increasingly sought to

maximize the ‘value for money’ in school education. This need has stimulated the

analysis of performance focused on measuring the efficiency and productivity of

public school educational providers. Likewise in Australia increasing attention has

been paid to the performance and public accountability of Commonwealth and

State government funds devoted to school education. The need for school efficiency

and productivity studies as measured by the academic performance of students in

relation to money spent, while considering socio-demographic variables outside the

control of schools has been recognized since 2008.

This marks the date of the introduction by the Commonwealth Government of the

“My School” website developed by the Australian Curriculum and Reporting Agency

(ACARA), NAPLAN (National Assessment Program Literacy and Numeracy),

My School Test Scores, (2010). This website reports student test scores, student

and family characteristics and financial variables for each school. This has enabled

studies to be undertaken aimed at measuring the overall performance of each school

and reporting the cost efficiency levels enhancing robust evaluations of public

school funding policy. In addition the recent Gonski Inquiry Report (Review

of Funding for Schooling-Final Report, December, 2011, Commonwealth

Government, Canberra), into the funding of Australian schools has also increased

the demand for well-constructed school efficiency, productivity and performance

studies. However there is a lack of current studies that examine the effects of school

1.4 Australian Education 5



and non-school inputs such as financial resources, teacher characteristics, family

socio-economic status, and student composition on student outcomes in the context

of Australian schools.

The school efficiency case studies in this book seek to address some of the

requirements for the future research directions into school performance assessment

as outlined in the Gonski report. The major objectives of these case studies are:

(1) to identify the factors which account for performance differentials among

schools, utilizing robust Data Envelopment Analysis (DEA) models; and (2) inves-

tigate whether there are schools that are consistently over or under performing, after

taking account of a wide range of school, environmental and regional influences.

The focus of these case studies is on New South Wales primary and secondary

schools performance utilising the ACARA My School Test Scores using the DEA

methods outlined in the recent work of Brennan, Haelermans and Ruggiero (2013).

In investigating a different schooling system, as well as informing educational

policy in New South Wales, this current study also provides an important robust-

ness check for the DEA methodology, namely application to an entirely different

country dataset.

1.4.1 New South Wales Secondary School System

NSW operates a centralised system of funding to government schools. Approxi-

mately 82.5 % of school recurrent resources are provided through the NSW

Department of Education and Communities (DEC) state wide formula allocations.

Commonwealth government allocations make up 13 %, this amount having grown

since 2009 through increased Federal funding under the “Building the Education

Revolution” and National Partnership programs (Keating, Annett, Burke, and

O’Hanlon, 2011). School derived revenue makes up about 5 % of school funding.

The expenditure that is incurred at the school level from these State and Common-

wealth allocations is met through two basic methods: (1) Central allocations of

resources (including staff) and funds that schools can utilise; and (2) direct central

payments of school based costs. This is provided through two core mechanisms,

centralised staffing allocations and via grants, which are either ‘tied’ or ‘untied’.

All staff positions are centrally allocated upon the basis of formulae, with some

capacity for variation based on negotiations between the school and the Department

of Education and Communities personnel. Schools may seek additional staff if they

have a budget surplus. Staffing constitutes about 81 % of the operational costs of a

school, and the effective budget allocations using the same formula will vary due to

the different salary steps of teachers. Low Socio Economic Status (SES) schools

also receive allocations under the Priority Schools Funding Scheme. In addition

Global funding allocations are calculated annually for each school at the beginning

of each school year and at the commencement of Semester 2 and are intended to

help schools meet operational costs.

6 1 Introduction



Special factor loadings are also additional entitlements to compensate schools

affected by specific circumstances such as urgent minor maintenance and geo-

graphic isolation, an important factor in the New South Wales environment. A

Global Funding enhancement element also operates to take account of rural loca-

tion and socio-economic considerations. Beyond the above allocations a range of

services and grants are delivered by central and regional staff including school

cleaning and maintenance and professional development programs. Additional

equity and needs allocations are also delivered to schools mainly through the

staffing formulae. The student population factors utilised include SES, English as

a Second Language (ESL) and new arrivals, Indigenous, Isolated and Disability

characteristics. School circumstances recognised include location, enrolment size

(diseconomies of scale) and complexity. The disabilities and SES dimensions

contribute the most.

1.4.2 Proposed School Funding and Staffing Reforms

As indicated above the NSW Government Primary and Secondary school system is

currently a predominately homogenous one that is mainly funded from State

Government resources across a common curriculum. Individual schools now have

a very limited degree of control over decision making, over teacher hiring and firing

and resource allocation processes. However following the election of a new State

Government in NSW in March 2011, a new policy to devolve decision making to

schools is being progressively implemented. Each school in NSW in 2015 will have

control over some 70 % of their total school budget as well as control over hiring

and firing teachers and other school personnel. This new policy called “Local

Schools, Local Decisions”, commenced in the 2013 school year with 229 schools

participating in the program with the balance of the remaining 2,000 schools being

integrated into the program of decentralised school decision making by the start of

the 2015 school year (NSW DEC, 2012).

The school efficiency and productivity case studies outlined in this book pro-

vides a platform for a series of “before” and “after” assessments to be made aimed

at measuring any significant changes in school efficiency and productivity using

robust Data Envelopment Analysis (DEA) modelling analytics. These studies will

indicate the degree of success in achieving greater ‘Value for Money’ in NSW

schooling arising from such budgetary and staffing devolutionary reforms. The

studies will also give impetus to evaluating the implementation and effectiveness of

similar school decentralisation policies across the other seven government school

systems across Australia. Likewise similar studies could be undertaken for the

non-government catholic and other independent school system authorities in the

Australian States.
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1.4.3 Budget and Staffing Decisions in Other Jurisdictions

An Independent Public Schools (IPS) initiative was launched by the West

Australian Government in 2010 allowing government school principals and boards

more power to hire staff, manage the budget and shape the curriculum. However

unlike private schools they cannot charge fees and must accept all student

enrolments. About one third of all government schools (almost 220 schools) in

2013 have the above powers. An evaluation of this scheme by the School of

Education in the University of Melbourne was commissioned by the WA Education

Department in 2012. However, this preliminary evaluation report indicated that, “in

this early phase of the IPS development there is little evidence of change to student

outcomes, such as enrolment or student achievements”, (Evaluation of the Inde-

pendent Public Schools Initiative, WA Government, May 2013). When interpreting

results the report indicated that before joining the initiative the schools involved

had better academic results than other government schools, but made no improve-

ment under the independent model.

The state of Victoria in the mid 1990’s was the first State to move to an

‘autonomous’ government school system. A recent Grattan Institute report titled

‘The Myth of Markets in school education’, (Ben Jensen et al., Grattan Institute,

Melbourne, July 2013), indicated that: “Despite this greater autonomy, Victoria’s

performance on national and international assessments is not significantly different

from NSW where school autonomy is much lower. Scores in ACARA NAPLAN

School Test Scores follow similar trends.” The remaining five government school

jurisdictions across Australia are also currently considering the devolution of

central office control of finance and staffing decisions to school principals and

school councils.

1.4.4 Implementing ‘Gonski’ School Funding Reforms

The previous Labor Commonwealth government before the 7 September 2013

Federal Election reached agreement on the Gonski reform proposals up to 2019

with only four State government school systems, (New South Wales, Victoria,

South Australia and Tasmania) and one Territory government, (ACT). The detail

of the full agreement is contained in the National Education Reform Agreement

(NERA), Council of Australian Governments (COAG, 2013). The Act to authorise

this agreement was passed into law by the Commonwealth House of Representa-

tives and the Senate with effect from 27 June 2013, (Australian Education Act,

No. 67, 2013).

After the Federal election on 7 September 2013 the newly elected Liberal/

National coalition government secured agreement of the remaining two states

(Queensland and Victoria), and the Northern Territory to their version of the

‘Gonski’ reforms covering these government sector schools, but only for the next
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4 years to 2017 of the Commonwealth Budget Forward Estimates. The

non-government Catholic and other Independent Schools across the eight

Australian jurisdictions all signed up to the Australian Education Act with the

previous Commonwealth Labor Government. This arrangement took effect from

the 2014 school year. At the time of writing this section of the book the new Federal

government has not yet elaborated on its final funding plan for school level

education in Australia, nor has it resolved the inherent conflicts between the two

groupings of State government sector schools as well as the future funding for the

non-government school sector for years 5 and 6 of the Commonwealth’s Forward

Budget Estimates.

When considering the level of school education efficiency and productivity

across Australia’s government and non-government schools, determining how to

remove conflicting school education legislation and school sector policies,

improved oversight, accountability and value for money mechanisms seems to be

an appropriate starting point. Increasing the participation of front-line school

education professionals, practitioners, and researchers in the development of pol-

icies and legislation seems to be an appropriate second step. This type of increase in

transparency, participation, and autonomy could be exchanged for increased levels

of innovation, parental involvement, and accountability.

A recent Australian Senate Inquiry into Schools lends credibility to future DEA

analyses across all Australian schools—both government and non-government

indicating that “improving our schools and the outcomes for our students is not

simply about spending more money: the way money is spent and what it is spent on

matters. Decisions must be made about how to allocate finite resources and any

increased funding must be expended strategically and directed to areas of most

need-while maintaining fairness”, (Australian Senate, Education, Employment and

Workplace Relations Reference Committee, 2013, Chapter 2, paragraph2.37, p12).

1.5 Outline of Book

This book is structured in two parts. In Chaps. 2 and 3 we provide an overview of

data envelopment analysis. We first consider the standard production technology

and provide measurement of efficiency relative to the boundaries of the input and

output sets. In our discussion, we include both input-oriented and output-oriented

models and present measures of technical, scale and allocative efficiency. The

results are illustrated with numerical examples and we provide complete SAS

programming for efficiency analysis. In Chap. 3, we present the extension to the

technologies that are conditional on environmental factors. The resulting DEA

models useful for public sector production including education are presented. The

models, complete with SAS code, are fully developed with illustrative examples.

We provide measures for technical, scale and allocative efficiency conditional on

the exogenous environment. We also present a measure of environmental harshness

that is derived from solving the conditional and unconditional models.
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The three-stage model to control for multiple exogenous factors is also

presented. It is well-known that the nonparametric measures require a relatively

large number of observations compared to the parametric models. This is exacer-

bated in the public sector models with multiple environmental factors. One solution

is a three-stage model that uses a second stage regression to decrease the dimen-

sionality by creating an overall index of environmental harshness. We present this

model and provide a simulation with SAS code for illustrative purposes.

The second part of the book provides a complete empirical analysis of the

technical, allocative and scale efficiency of the primary and secondary schools in

Australia. In Chap. 4, we analyze the input oriented models and provide estimates

not only of efficiency indices but also of educational costs. Given the availability of

input prices, we are able to derive the minimum cost of providing the observed

outcomes conditional on the socioeconomic environment. This allows us to mea-

sure the costs arising from having a relatively harsh operating environment. We

further extend this analysis by determining the cost of providing an adequate

education by finding the minimum expenditure per pupil necessary to meet

pre-defined standards. This is achieved while controlling for the socio-economic

environment.

For completeness, we provide output oriented measures of efficiency in Chap. 5.

We are able to estimate the additional improvement in outcomes that could be

possible without increasing school resources subject to the socioeconomic environ-

ment. Like the input-oriented measures, we also identify systematic improvements

that could be achieved by reallocating school resources to exploit scale economies.

In addition, we are able to identify the reduction in outcomes due to having a

relatively harsh environment. In the last chapter, we focus on productivity in

educational production by using multiple years of data. By evaluating production

across time, we are able to measure productivity and its components. The decom-

position of productivity allows us to measure changes in technical and scale

efficiency, technical and scale efficiency change and the change in the relative

harshness of the environment.
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Chapter 2

Data Envelopment Analysis

2.1 Technology

Analysis of performance has economic production theory as its foundation. Firms

employ inputs to produce output with an incentive to either maximize profits or

minimize costs. Technically inefficient firms could either increase outputs (and

therefore revenue) holding inputs constant or could decrease inputs (and hence

costs) holding outputs constant. As a result, technically inefficient firms are neither

profit maximizing nor cost minimizing. The seminal paper on technical efficiency

measurement was Farrell (1957) which provided a decomposition of inefficiency

into technical and allocative parts. From an input-oriented perspective, firms that

are not operating on the isoquant associated with observed production are techni-

cally inefficient. Farrell provided a comprehensive measure of technical efficiency

as the equiproportional reduction of all inputs holding output at current levels.

Proportional reduction in observed inputs holds the input mix constant. Cost

minimization, however, requires not only production on the isoquant but also the

appropriate mix of inputs that depends on the associated input prices. Hence, if

technically efficient firms are not using the allocatively efficient input mix they

could still lower costs by adjusting input levels accordingly.

Farrell provided the formulation to handle a single output in the case of constant

returns to scale. The paper also discussed decreasing returns to scale and the

extension to multiple outputs. Farrell and Fieldhouse (1962) extended the approach

as a linear program allowing increasing returns to scale. Afriat (1972) provided the

formulation for technical efficiency measurement that was consistent with data

envelopment analysis (DEA). The theoretical foundations of efficiency measure-

ment are provided in Färe, Grosskopf, and Lovell (1994).

DEA is the term coined in the Operations Research literature by Charnes,

Cooper, and Rhodes (1978) (CCR) to measure the technical efficiency of a given

V. Blackburn et al., Nonparametric Estimation of Educational Production
and Costs using Data Envelopment Analysis, DOI 10.1007/978-1-4899-7469-3_2,
© Springer Science+Business Media New York 2014
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observed decision making unit (DMU) assuming constant returns to scale. Their

linear programming formulation allowed multiple inputs and multiple outputs.

Banker, Charnes, and Cooper (1984) (BCC) extended the CCR model to allow

variable returns to scale and showed that solutions to both CCR and BCC allowed a

decomposition of CCR efficiency into technical and scale components.

In this section, we introduce the representation of the technology that serves as

the basis for efficiency measurement. We assume that each decision making unit

(DMU) uses a vector of m discretionary inputs X¼ (x1, . . ., xM) to produce a vector
of s outputs Y¼ (y1, . . ., yS). Inputs and outputs for DMUj ( j¼ 1, . . ., n) are given
by Xj¼ (x1j, . . ., xMj) and Yj¼ (y1j, . . ., ySj). Assuming variable returns to scale, the

empirical production possibility set is given by:

τV ¼ �
Y;Xð Þ :

Xn

i¼1

λiysi � ys, s ¼ 1, . . . , S;

Xn

i¼1

λixmi � xm, m ¼ 1, . . . ,M;

Xn

i¼1

λi ¼ 1;

λi � 0, i ¼ 1, . . . ,N
�
:

ð2:1Þ

It is assumed that each of the n observed production points is feasible

(i.e., standard measurement error and statistical noise does not exist). Further, we

assume that any convex combination of the observed points is also feasible and

outputs and inputs are freely disposable.

The technology is illustrated in Fig. 2.1, where we assume that four DMUs A –D
employ one input x1 to produce one output y1. Based on Eq. (2.1), a piecewise linear
approximation of the technology emerges. Line segment AB, obtained by convex

combinations of A and B, corresponds to increasing returns to scale; likewise, BC
(CD) allows constant (decreasing) returns to scale. The variable returns to scale

technology results by allowing only convex combinations. The shaded area in

Fig. 2.1 reveals the feasible region as defined by Eq. (2.1).

An alternative way to represent the technology is with input requirement sets and

isoquants.1 Following Lovell (1993) we define the input set as

LV Yð Þ ¼ X : Y;Xð Þ ∈ τVf g: ð2:2Þ

1 As is well known in the DEA literature, an inefficient DMU can be on the isoquant. Given that the

Farrell measure projects a production possibility to the isoquant, it is possible that the resulting

benchmark is not technically efficient. In this case, alternative projections could be used. See Färe

and Lovell (1978), Ruggiero and Bretschneider (1998) or Ruggiero (2000) for examples.
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For each output vector Y we can define the isoquant for input set LV(Y ) as

Isoq LV Yð Þ ¼ �
X : X∈LV Yð Þ, λX =2 LV Yð Þ, λ∈ �

0, 1
��

: ð2:3Þ

The isoquant of the input set shows the boundary such that any equiproportional

reduction in all inputs cannot produce the given output vector. As such, the isoquant

represents the boundary between feasible and infeasible production. The input set

and the associated isoquant are useful for illustrating the technology in input space.

Following Färe et al. (1994), we specify the input set LV(Y ) using a piecewise linear
representation:

LV Yð Þ ¼ �
X :

Xn

i¼1

λiysi � ys, s ¼ 1, . . . , S;

Xn

i¼1

λixmi � xm, m ¼ 1, . . . ,M;

Xn

i¼1

λi ¼ 1;

λi � 0, i ¼ 1, . . . ,N
�
:

ð2:4Þ

We illustrate the input set and the associated isoquant in Fig. 2.2, where we assume

that four DMUs A – D produce the same level of output Y using two inputs x1 and x2.
Using Eq. (2.4), we obtain a piecewise linear Isoq LV(Y) defined with line segments

AB, BC and CD. The resulting input set LV(Y) is shown with the shaded area.

x1

y1

A

B

C

D

tV

Fig. 2.1 Empirical

Production Possibility

Set τV
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We can also define the technology using the output set

PV Xð Þ ¼ Y : Y;Xð Þ ∈ τVf g ð2:5Þ

and its associated isoquant

Isoq PV Xð Þ ¼ �
Y : Y∈PV Xð Þ, λ�1Y =2 PV Xð Þ, λ∈ �

0, 1
��

: ð2:6Þ

The isoquant of the output set shows the boundary of the output set such that

equiproportional expansion of outputs is not feasible without additional resources.

The output set and its associated isoquant are useful for illustrating the technology

in output space. Following Färe et al. (1994), we specify the input set PV(X) using a
piecewise linear representation:

PV Xð Þ ¼ �
Y :

Xn

i¼1

λiysi � ys, s ¼ 1, . . . , S;

Xn

i¼1

λixmi � xm, m ¼ 1, . . . ,M;

Xn

i¼1

λi ¼ 1;

λi � 0, i ¼ 1, . . . ,N
�
:

ð2:7Þ

The output set and the associated isoquant are illustrated in Fig. 2.3. We assume

that four DMUs A – D use the same vector of inputs X to produce two outputs y1
and y2. Using Eq. (2.7), we obtain a piecewise linear Isoq PV(X) defined with

line segments AB, BC and CD. The resulting output set PV(X) is shown with the

shaded area.

x1

x2

A

B

C

D

LV(Y)

Isoq LV(Y)

Fig. 2.2 Input

Requirement Set LV(Y )and
Isoquant Isoq LV(Y )
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2.2 Technical Efficiency Measurement

2.2.1 Input-Orientation

Using the technologies defined in Eqs. (2.1) and (2.4) we now consider input-

oriented efficiency measures. In this subsection, we consider the Farrell (1957)

measure of technical efficiency, defined for DMUj with the following distance

function:

DI
V Yj;Xj

� � ¼ min θ : Yj, θXj

� �
∈ τV

� �
: ð2:8Þ

The Farrell measure of technical efficiency projects observed production possi-

bilities to the frontier subject to the constraint that the resulting benchmark projec-

tion is feasible, i.e. belongs to τV. Hence, efficiency is defined as the maximum

equiproportional reduction in observed inputs relative to the variable returns to

scale production technology. The technical efficiency measure DI
V(Yj,Xj) for each

DMUj ( j¼ 1, . . ., n) is obtained via the solution to the following linear program

introduced by Banker et al. (1984) for the multiple input multiple output production

correspondence:

y1

y2

D

IsoqPV(X)

C

B

A

PV(X)

Fig. 2.3 Output Set PV(X) and Isoquant Isoq PV(X)
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DI
V Yj;Xj

� � ¼ minθ
subject to

Xn

i¼1

λiysi � ysj, s ¼ 1, . . . , S;

Xn

i¼1

λixmi � θxmj, m ¼ 1, . . . ,M;

Xn

i¼1

λi ¼ 1;

λi � 0, i ¼ 1, . . . ,N:

ð2:9Þ

The technical efficiency measure is illustrated in Fig. 2.4, where we extend

Fig. 2.1 with an additional DMU F that is technically inefficient. DMU F is

observed producing y1E using an input level of x1E. We note that a convex

combination of DMUs A and B produces the same output level y1E with less input

θ*x1E. In the solution of linear program 2.9 we find DI
V(YF,XF)¼ θ*. The results

indicate that DMU F could produce its observed output level using θ* of its

observed input level. For DMUs A –D, we observe DI
V(Yj,Xj)¼ 1; DMUs A –D

are technically efficient.

x1

y1

A

B

C

D

E

x1F

y1F

tV

q*x1F

Fig. 2.4 Input-Oriented

Technical Efficiency
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Example 1 Consider the following data where we assume that six DMUs employ

one input x1 to produce one output y1. Data are presented in the following chart.

DMU x1 y1

1 8 4

2 10 10

3 15 15

4 20 17

5 12 7

6 18 15

The data for this example are illustrated in Fig. 2.5. As shown, only DMUs 1 – 4
are technically efficient. DMU 5 is observed producing 7 units of output using too

much x1. Based on the diagram, we see that DMU 5 could have produced the

observed output using 9 units of input instead of the observed 12. The benchmark is

an equally weighted convex combination of DMUs 1 and 2. As a result, the

technical efficiency DI
V Y5;X5ð Þ ¼ 9

12
¼ 0:75; DMU 5 should be able to produce

the observed 7 units of output using 75 % of the observed 12 units of input. DMU
6 is observed using 18 units of the input to produce 15 units of output. Using the

input-oriented projection, we observe that technically efficiency DMU 3 produces

the same output using only 15 units of the input. As shown, DMU 3 is the

benchmark for DMU 6 and DI
V Y6;X6ð Þ ¼ 15

18
¼ 0:8333: DMU 6 is only 83.33 %

efficient relative to DMU 3.

The SAS code used to measure technical efficiency for example 1 is as follows2:

Fig. 2.5 Input-Oriented

Technical Efficiency using

Example 1 Data

2 The SAS/OR 12.1 User’s Guide Mathematical Programming Examples provides sample DEA

code assuming constant returns to scale. The code presented in this book is similar to that code and

was provided by SAS.

2.2 Technical Efficiency Measurement 17



18 2 Data Envelopment Analysis



The above code produces the following output:
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The results are consistent with the discussion above. DMUs 1 – 4 are technically
efficient while DMU 5 (6) is only 75 (83.33) percent efficient. In addition, each

technically efficient DMU has itself as a benchmark. DMU 5’s benchmark is an

equally weighted convex combination ofDMU 1 and 2 (here labeled as dmu_ref for

DMU reference). DMU 6 is benchmarked against DMU 3.

We illustrate efficiency measure using LV(Y ) and its associated isoquant

Isoq LV(Y ) by extending Fig. 2.2 to add an inefficient DMU. In Fig. 2.6, DMU F
is assumed to produce the same level of output as DMUs A – D. Here, DMU F
belongs to the input set but is not on the isoquant.DMU F is observed producing the

output using inputs x1E and x2E. A convex combination of DMUs B and C produces

the same output level with less of both inputs, θ*x1E and θ*x2E. Importantly, the

Farrell measure seeks the maximum equiproportional reduction in both inputs. In

the solution of the linear program (Eq. (2.9)), DI
V(YE,XE)¼ θ*. The results indicate

that DMU F could produce its observed output level using θ* times as much of both

inputs. For technically efficient DMUs A –D, DI
V(Yj,Xj)¼ 1.

Example 2 For example 2, we consider a two-input one-output production process

where each of five DMUs (1 – 5) produces one unit of output. Data are presented in
the following chart. The data are shown in Fig. 2.7.

DMU x1 x2 y1

1 5 35 1

2 10 20 1

3 20 10 1

4 35 5 1

5 25 25 1

A

B

C

D

F

x1

x2

x1Fq*x1F

q*x2F

x2F

Isoq LV(Y )

LV(Y )

Fig. 2.6 Input-Oriented

Efficiency Measurement

and Isoq LV(Y)
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As illustrated, the piecewise linear unit isoquant is shown with DMUs 1 – 4

efficiently producing the observed output. DMU 5 is observed producing ineffi-

ciently producing the output with 25 units of both inputs. An equally weighted

convex combination of technically efficient DMUs 2 and 3 uses 15 units of each

input. As a result, DI
V Y5;X5ð Þ ¼ 15

25
¼ 0:60: Hence, DMU 5 is only 60 % efficient.

The SAS code to evaluate the efficiency of all DMUs is given below.

Fig. 2.7 Example 2 Data

Input-Oriented Technical

Efficiency
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The code after the data are inputted differs from the code for example 1 with the

recognition that there are two inputs instead of one (set x_num¼ 1..2;). This code

produces the following SAS output:
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2.2.2 Output-Orientation

We now consider the output-oriented Farrell (1957) measure of technical efficiency

using the technologies defined in Eqs. (2.1) and (2.7). We define output-oriented

technical efficiency for DMUj using Shephard’s distance function:

DO
V Yj;Xj

� � ¼ max θ : θYj,Xj

� �
∈ τV

� �� ��1
: ð2:10Þ

The Farrell measure of technical efficiency identifies the maximum

equiproportional expansion of outputs possible subject to feasibility defined by

the technology τV. The technical efficiency measure DO
V (Yj,Xj) for each DMUj

( j¼ 1,. . ., n) is obtained via the solution to the following linear program:

DO
V Yj;Xj

� ��1 ¼ maxθ
subject to

Xn

i¼1

λiysi � θysj, s ¼ 1, . . . , S;

Xn

i¼1

λixmi � xmj, m ¼ 1, . . . ,M;

Xn

i¼1

λi ¼ 1;

λi � 0, i ¼ 1, . . . ,N:

ð2:11Þ
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To illustrate the output-oriented measure of technical efficiency, we extend

Fig. 2.4. Technically inefficient DMU F is observed producing y1E using an input

level of x1E. Holding the input level fixed, we seek the maximum expansion in

output possible and obtain DMU C as the benchmark. DMU C uses the same input

level but produces more output θ*y1E. In the solution of the linear program

(Eq. (2.11)) we find DO
V (YE,XE)¼ (θ*)� 1. The results indicate that DMU F is

only producing (θ*)� 1 times as much output as it could be given its observed

input usage. Like the input-oriented measures,DMUs A –D are technically efficient

with DO
V (Yj,Xj) equal to unity (Fig. 2.8).

In Fig. 2.5, we illustrated the example 1 data and showed the input-oriented

projections used to define the input –oriented technical efficiency measure. Fig-

ure 2.9 reproduces the data but shows the output-oriented projections. Two DMUs
(5 and 6) are technically inefficient using the output-oriented measure of technical

efficiency. DMU 5 is observed producing only 7 units of output using 12 units of

input. The convex combination defined by λ2¼ 0.6 and λ3¼ 0.4 uses the same input

level but produces 12 units of output. Thus, the convex combination produces 1.71

times as much output. As a result, DO
V (Y5,X5)¼ 0.5833. Hence, DMU 5 is only

A

B

C

D

F

x1

y1

x1F

q*y1F

y1F

tV

Fig. 2.8 Output-Oriented

Technical Efficiency

Fig. 2.9 Output-Oriented

Technical Efficiency using

Example 1 Data
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58.33 % efficient. For DMU 6, observed producing 15 units of output while

employing 18 units of input, the relevant benchmark is defined by the convex

combination λ3¼ 0.4 and λ4¼ 0.6. Consequently, we find that DO
V (Y6,X6)¼

0.9259, implying that DMU 6 could increase its output by 8 % given its input usage.

The SAS code used to measure output-oriented efficiency using example 1 data

is provided below.
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The resulting SAS output:
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2.3 Scale Efficiency Measurement

In order to measure scale efficiency and scale economies, we must first define the

technology under the assumption of constant returns to scale. Under constant

returns to scale, the empirical production possibility set is given by:

τC ¼ �
Y;Xð Þ :

Xn

i¼1

λiysi � ys, s ¼ 1, . . . , S;

Xn

i¼1

λixmi � xm, m ¼ 1, . . . ,M;

λi � 0, i ¼ 1, . . . ,N
�
:

ð2:12Þ

Here, we obtain τC in Eq. (2.12) from τV in Eq. (2.1) by removing the convexity

constraint. Likewise, we can define the input requirement set and the output set

under constant returns to scale as

LC Yð Þ ¼ �
X :

Xn

i¼1

λiysi � ys, s ¼ 1, . . . , S;

Xn

i¼1

λixmi � xm, m ¼ 1, . . . ,M;

λi � 0, i ¼ 1, . . . ,N
�

ð2:13Þ

and

PC Xð Þ ¼ �
Y :

Xn

i¼1

λiysi � ys, s ¼ 1, . . . , S;

Xn

i¼1

λixmi � xm, m ¼ 1, . . . ,M;

λi � 0, i ¼ 1, . . . ,N
�
,

ð2:14Þ

respectively. Importantly, the frontier defined by Eq. (2.12) allows not only convex

combinations but a rescaling of inputs and outputs consistent with constant returns

to scale. Necessarily, notions of economies of scale exist only along a production

frontier. In order to insure that unit is operating on the variable returns to scale

frontier, we can apply either model 2.6 (input-oriented) or 2.11 (output-oriented) to

project units to the variable returns to scale frontier and remove any technical

inefficiency.

We illustrate the empirical production possibility set based on Eq. (2.12) in

Fig. 2.10, which provides the same data points shown in Fig. 2.1. Here, the
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technology in Eq. (2.12) allows rescaling up or down of DMU B (or DMU C) along
the ray from the origin. If the technology in fact was characterized by constant

returns to scale at any level of input usage, then the shaded area would be the

feasible region. As shown, DMUs B and C operate on the constant returns to scale

portion of the VRS frontier. As a result, both B and C are maximizing average

product. In DEA terms, B and C are scale efficient, operating at the most productive

scale size (see Banker et al., 1984).

DMUs A and D, however, are not operating at most productive scale size. DMU
A is observed operating under increasing returns to scale could reduce its input level

the furthest compared to any point on AB while maintaining observed output.

Likewise, DMU D is operating on the decreasing returns to scale portion of the

VRS frontier. Both DMUs A and D are scale inefficient.

2.3.1 Input-Orientation

In order to measure scale efficiency, we need to project a givenDMU not only to the

VRS frontier using Eq. (2.4) but also to the CRS frontier defined in Eq. (2.12).

We define the distance function projecting DMUj to the boundary of the CRS

technology with the following distance function:

DI
C Yj;Xj

� � ¼ min θ : Yj, θXj

� �
∈ τC

� �
: ð2:15Þ

x1

y1

A

B

C

D

tC

Fig. 2.10 Empirical

Production Possibility

Set τC
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This associated linear programmingmodel due to Charnes et al. (1978) is given by:

DI
C Yj;Xj

� � ¼ minθC
subject to

Xn

i¼1

λiysi � ysj, s ¼ 1, . . . , S;

Xn

i¼1

λixmi � θCxmj, m ¼ 1, . . . ,M;

λi � 0, i ¼ 1, . . . ,N:

ð2:16Þ

We use θC instead of θ to distinguish between the CRS and VRS projections.

This model is obtained from Eq. (2.4) by removing the convexity constraint. If the

true technology is characterized by variable returns to scale, Eq. (2.16) overesti-

mates true technical inefficiency by projecting to a technically infeasible point if the

relevant technically efficient benchmark is characterized by either increasing or

decreasing returns to scale. If the technically efficient benchmark is operating under

constant returns to scale, the solution of 2.16 is feasible as a solution to 2.4 and

technical efficiency is not overestimated.

Banker et al. (1984) introduce the concept of most productive scale size consis-

tent with technically efficient production on the constant returns to scale facet of the

production frontier. Technically efficiency production that occurs on increasing

(or decreasing) returns to scale facet is not most productive and hence, scale

inefficient.3 In such cases, the solution to (2.16) provides a composed measure of

technical and scale inefficiency. A measure of scale efficiency for DMUj is then

obtained as the ratio of two distance functions:

SEI Yj;Xj

� � ¼ DI
C Yj;Xj

� �

DI
V Yj;Xj

� � : ð2:17Þ

A useful interpretation is that the variable returns to scale measure (the denom-

inator) effectively removes technical inefficiency by projecting the unit to the

variable returns to scale frontier.

In Fig. 2.11, we show the projection of inefficient DMU F to the technology τC
defined by constant returns to scale. As discussed about Fig. 2.4, DMU F is

technically inefficient because it could have reduced its input to θ*x1E via the

solution to Eq. (2.4). The solution of Eq. (2.16) shows the minimum input level

θ�Cx1E necessary to produce y1E if the technology was characterized by constant

returns to scale. However, under the assumption of variable returns to scale, the

production possibility (y1E, θ*x1E) is technically efficient and operating on the

3 Panzar and Willig (1977) provide a useful discussion of returns to scale in multiple output

technologies.
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increasing returns to scale portion of the VRS frontier. The difference in inputs

(θ*� θ�C)x1E is the amount of extra inputs necessary to produce y1E given that

returns are not constant, i.e. (y1E, θ*x1E) is not most productive scale size. The

resulting scale efficiency of DMU F is SEI(YE,XE)¼ θ�C/θ*< 1.

In Fig. 2.12 we show projections from the VRS to the CRS frontiers for four

scale inefficient production possibilities. Along the increasing returns to scale

portion of the frontier AB, we observe the distance between the VRS and CRS

frontiers gets smaller as inputs increase. Along the decreasing returns portion CD
the distance gets smaller as we inputs decrease. Hence, our scale efficiency measure

increases as we get closer to most productive scale size. Along the constant returns

y1

A

B

C

D

Fy1F

x1x1Fq*
cx1F q*x1F

tC

Fig. 2.11 Input-Oriented

Projection DI
C(y1F, x1F)

x1

y1

A

B

C

D

TC

Fig. 2.12 Input Orientation

and Scale Efficiency
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to scale portion BC the distance function under CRS and VRS is the same, leading

to a scale efficiency measure of unity.

Using data from example 1, we measure the distance functions under both

constant and variable returns to scale and calculate the scale efficiency of each

unit. The SAS code follows.
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The SAS output from the above code:

The results provided by SAS are illustrated in Fig. 2.13. DMU 2 was the

benchmark for all DMUs in the projections to the CRS frontier. Given that DMU
2 is technically efficient and operating on the CRS portion of the VRS frontier, its

production is scaled down (for the increasing returns to scale DMUs) or up (for the

decreasing returns to scale DMUs). The solution, however, is not unique.
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DMU 3, which is also most productive scale size, could have been rescaled as well.

The input levels associated with CRS are determined by the line from the origin

through DMUs 2 and 3 (the 45� line y1¼ x1.)
Given the distance functions, we calculate the scale efficiency as the ratio of

the distance functions. For DMU 1, which is technically efficiency, we find

SEI(Y1,X1)¼ 0.5/1¼ 0.5. If constant returns to scale did exist, DMU 1 would be

able to produce 4 units of output using only 4 units of input. This ratio of the

distance functions is equivalent to the ratio of the input level (4) needed to

produce the observed output (4) to the technically efficient input level (8). The

results also reveal that DMUs 2 and 3 are both technically and scale efficient.

DMU 6 is technically inefficient but would have been operating at most produc-

tive scale size after technically efficiency was eliminated via the input oriented

model.

The results also provide information not only about scale efficiency but also

about the returns to scale classification. A benchmark4 is operating under constant

returns to scale using the input oriented model if SI(Yj,Xj)¼ 1. If the benchmark is

scale inefficient,
Xn

j¼1

λ�j obtained in the solution of (2.16) provides information on

the scale class; if
Xn

j¼1

λ�j < 1, the benchmark is operating on the increasing returns

to scale portion of the frontier. Here, a most productive scale size production

possibility is being scaled downward below the constant returns to scale frontier.

If
Xn

j¼1

λ�j > 1, the benchmark is operating under decreasing returns to scale because

Fig. 2.13 Input-Oriented

Scale Efficiency Using

Example 1 Data

4We refer only to the benchmark to reinforce the notion that returns to scale is not identified for

technically inefficient units.
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a most productive scale size production possibility is being rescaled beyond

constant returns to scale. The results from example 1 show that the condition on

the sum of weights only applies to the scale inefficient units. The solution of 2.16

for DMU 3 was obtained by rescaling DMU 2 up. But this solution is not unique.

DMU 3 could have served as its own benchmark while obtaining the same objective

value.

2.3.2 Output-Orientation

Alternatively, we can measure scale efficiency using the output oriented model. The

measures are similar; we need to project each DMU to both the VRS and CRS

frontiers. For completeness, we define the distance function projecting DMUj to the

boundary of the CRS technology using an output-orientation:

DO
C Yj;Xj

� � ¼ max θ : θYj,Xj

� �
∈ τC

� �� ��1
: ð2:18Þ

This associated linear programming model to estimate this distance function is:

DO
C Yj;Xj

� ��1 ¼ maxθC
subject to

Xn

i¼1

λiysi � θCysj, s ¼ 1, . . . , S;

Xn

i¼1

λixmi � xmj, m ¼ 1, . . . ,M;

λi � 0, i ¼ 1, . . . ,N:

ð2:19Þ

This model is the output-oriented equivalent model where the convexity con-

straint has been removed from Eq. (2.11). Similar to the procedure for the input-

oriented model, we can estimate scale efficiency as the ratio of distance functions:

SEO Yj;Xj

� � ¼ DO
C Yj;Xj

� �

DO
V Yj;Xj

� � : ð2:20Þ

The output-oriented projection of inefficient DMU F to the technology τC
defined by constant returns to scale is illustrated in Fig. 2.14. DMU F is technically

inefficient because it could have increased its output to θ�Cy1E (with θ
�
C > 1) holding

input at the observed level x1E in the solution to Eq. (2.19). The benchmark

projection DMU C (from the solution to Eq. (2.11)) is operating under constant

returns to scale and hence, λC¼ 1 in a solution to 2.19. Since returns to scale are
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classified on the frontier, after technical efficiency is eliminated, the resulting scale

efficiency of DMU F is SEO(YE,XE)¼ θ�C/θ
�
C ¼ 1. Also, for DMU EWe also infer

from Fig. 2.14 that SEO(Yj,Xj)< 1 for DMUs A and D and that SEO(Yj,Xj)¼ 1 for

most productive scale size DMUs B and C.
Like we showed in Fig. 2.12 for the input-oriented model, we show output-

oriented projections from the VRS to the CRS frontiers for four scale inefficient

production possibilities in Fig. 2.15. Along the increasing returns to scale portion

x1

y1
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B
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D

F

x1F

y1F

tc
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cy1F

Fig. 2.14 Output-Oriented

Projection DO
C(y1E, x1F)
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D
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Fig. 2.15 Output

Orientation and Scale

Efficiency
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of the frontier AB, we observe the distance between the VRS and CRS frontiers

gets smaller as inputs increase. Along the decreasing returns portion CD the

distance gets smaller as we inputs decrease. Hence, the scale efficiency measure

using an output-oriented projection behaves the same as it does in the

input-oriented case: scale efficiency increases as we get closer to most productive

scale size.

We measure the scale efficiency using the output-oriented projections using the

data from example 1. The SAS code to estimate the relevant distance functions, the

scale efficiency and the returns to scale class follows.
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The SAS output from the above code:

The data and projections reported in the SAS output above are illustrated in

Fig. 2.16. Like the case for the input-oriented projections, DMU 2 serves as the

benchmark for all DMUs in the projections to the CRS frontier. Based on the

projections, we see that only DMU 1 is operating under increasing returns to

scale. DMUs 2, 3 and 5 are operating under constant returns to scale. Only

DMUs 2 and 3 are technically and scale efficient. DMU 5 is technically efficient;

unlike the input-oriented projection, DMU 5 is projected to the CRS portion of the
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VRS frontier. As a result, DMU 5 is identified as technically inefficient but scale

efficient in the output oriented model. The change in classification happens with

DMU 6 as well; under the input-oriented model, it was projected to the constant

returns to scale portion of the VRS frontier. In the output-oriented models, however,

it is projected to the DRS portion.

Similar to the input projections, we note that the returns to scale classification is

obtained from the scale efficiencymeasure and the sum of the weights in the solution

of Eq. (2.19). A benchmark is operating under constant returns to scale using the

input oriented model if SO(Yj,Xj)¼ 1. If the benchmark is scale inefficient,
Xn

j¼1

λ�j

obtained in the solution of (2.19) provides information on the scale class; if
Xn

j¼1

λ�j

< 1, the benchmark is operating on the increasing returns to scale portion of the

frontier. Here, a most productive scale size production possibility is being scaled

downward below the constant returns to scale frontier. If
Xn

j¼1

λ�j > 1, the benchmark

is operating under decreasing returns to scale because a most productive scale size

production possibility is being rescaled beyond constant returns to scale.

2.4 Allocative Efficiency Measurement

To this point, we have presented DEA models employing distance functions to

measure technical efficiency and returns to scale using only quantity measures of

inputs and outputs. The Farrell measure of technical efficiency holds input and

output mixes constant by seeking equiproportional reduction (expansion) of inputs

(outputs). But a DMU that is operating technically efficiently might be choosing the

wrong mix of inputs or outputs depending on the prevailing prices. Consequently,

Fig. 2.16 Output-Oriented

Scale Efficiency Using

Example 1 Data
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the allocatively inefficient DMU is spending above minimum costs.5 Farrell (1957)

provided a decomposition of overall efficiency into technical and allocative parts.

In this section, we focus on cost efficiency when input prices are available.6

Maintaining the notation defined in Sect. 2.1, we now assume that each decision

making unit uses a vector of m discretionary inputs X¼ (x1, . . ., xM) to produce a

vector of s outputs Y¼ (y1, . . ., yS) while facing exogenous input prices P¼
( p1, . . ., pM). We represent the inputs, outputs and prices for DMUj ( j¼ 1, . . ., n)
as Xj¼ (x1j, . . ., xMj), Yj¼ (y1j, . . ., ySj) and Pj¼ ( p1j, . . ., pMj). Given the observed

input and the associated prices, observed expenditures Ej for DMUj ( j¼ 1, . . ., n)

can be calculated as Ej ¼
XM

l¼1

pljxlj: Feasibility of a production possibility is still

subject to the piecewise linear approximation defined in Sect. 2.1.

In Fig. 2.17, we consider five DMUs observed producing the same output levels.

Here, DMUs A –D are technically efficient, producing the producing output on the

isoquant Isoq LV(Y ). Projection possibility F is technically inefficient producing the

same output with DI
V(YF,XF)¼ θ*. WOLOG, assume that all of the DMUs face the

same prices PF¼ ( p1F, p2F). Given the observed prices, we show three isocost lines:

EF, E�
F and C�

F. The first isocost line EF¼ p1Fx1F+ p2Fx2F shows the observed

5Much of the material in this section (and previous sections) is formally derived by Färe

et al. (1994).
6 The extension to revenue efficiency and output orientation is similar. In our empirical applica-

tions, we do not have output prices and hence, omit this discussion. See Färe et al. (1994) for a

complete treatment.
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2.4 Allocative Efficiency Measurement 43



expenditures of DMU F. There are two sources of increased spending above the

minimum cost level. The first is due to technical inefficiency. The second isocost

line E�
F ¼ θ*( p1Fx1F + p2Fx2F)¼ θ*EF is the spending that would result if DMU F

were technically efficient, where θ* is obtained in the solution of Eq. (2.9). Finally,
the isocost line C�

F ¼ p1Fx1B+ p2Fx2B¼EB represents the minimum cost of produc-

ing the observed output given the observed prices. DMU B is the only feasible

production possibility that can produce the observed output at the cost level C�
F.

We can define the level of cost efficiency (CE) as the ratio of minimum cost to

observed expenditures. For DMU F, CE¼C�
F/EF is a measure of cost efficiency. As

shown, the cost inefficiency of F arises for two reasons; producing off of the

isoquant (technical inefficiency) and using the wrong mix of inputs (allocative

inefficiency) given the observed prices. Farrell (1957) provided a decomposition

of the overall cost inefficiency into technical and scale components.

To obtain the measure cost efficiency, we first solve the following linear

programming model for the minimum cost of producing the observed output for

DMU j as:

C�
j ¼ min

XM

m¼1

pmjxm

subject to
Xn

i¼1

λiysi � ysj, s ¼ 1, . . . , S;

Xn

i¼1

λixmi � xm, m ¼ 1, . . . ,M;

Xn

i¼1

λi ¼ 1;

λi � 0, i ¼ 1, . . . ,N:

ð2:21Þ

We assume a variable returns to scale technology with the observed convexity

constraint and obtain an optimal vector of inputs (x�1, . . ., x
�
M) for each DMU that

minimizes the costs of production. Our measure of cost efficiency is then derived as

the ratio of minimum costs to observed expenditures:

CE Yj;Xj

� � ¼ C�
j

Ej
: ð2:22Þ

Finally, given our cost efficiency measure CE(Yj,Xj) and our technical efficiency

measure DI
V(Yj,Xj) we can obtain a measure of allocative efficiency as:

AE Yj;Xj

� � ¼ CE Yj;Xj

� �

DI
V Yj;Xj

� � : ð2:23Þ
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For DMU F in Fig. 2.17, we observe AE(YF,XF)¼C�
F/E

�
F.

We extend the data in Example 2 to include input prices and observed

expenditures:

DMU x1 x2 p1 p2 y1 E

1 5 35 5 10 1 375

2 10 20 5 10 1 250

3 20 10 5 10 1 200

4 35 5 5 10 1 225

5 25 25 5 10 1 375

These data are presented in Fig. 2.18, where we focus on the technical and

allocative efficiency of DMU 5, which is observed producing the unit output with

25 units of both inputs. Given the observed prices of p1¼ 5 and p2¼ 5 DMU 5 is

observed spending $375. If DMU 5 eliminated its technical inefficiency, it could

produce on the isoquant using 15 units of both inputs at a cost of $225. This holds

the input mix x2/x1¼ 1 constant but does not minimize the cost of producing the

output. As observed from the table and the SAS output, DMU 3 serves as a

benchmark for DMU 5 (and all of the DMUs). DMU 3 produces the same output

with expenditures of $200 using an input mix of x2/x1¼ 0.5 (the ratio of the p1/p2.)
This example also illustrates the problem of using only technical efficiency as a

benchmark. DMU 1 is technically efficient in production but spends the same

amount on inputs as DMU 5. For DMU 5, we observeDI
V Y5;X5ð Þ ¼ 15

25
, CE Y5;X5ð Þ

¼ 13:33
25

¼ 0:5333 and AE(Y5,X5)¼ 0.89.

Fig. 2.18 Example 2 Data

Technical and Allocative

Efficiency

2.4 Allocative Efficiency Measurement 45



The SAS code to estimate cost and allocative efficiency for allDMUs is provided
below.
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The resulting SAS output:
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In this chapter, we defined technologies and presented the standard data envelop-

ment models using piecewise linear frontiers. Linear programming models were

developed to estimate technical, scale and allocative efficiency using an input-

oriented framework. Output-oriented technical and scale efficiency measures were

also presented. In addition, SAS code was provided for all measures and implemented

using two illustrative data sets. In the next chapter, we extend these models to allow

environmental control variables useful for public sector applications.
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Chapter 3

DEA in the Public Sector

In the previous chapter, standard DEA models analyzing the performance of DMUs

producing multiple outputs using multiple inputs were presented. These models

provide a useful starting point for analyzing educational and other public sector

production processes. One of the key distinguishing features of public sector

publication is the presence of non-discretionary environmental factors of produc-

tion that introduces heterogeneity among decision making units. It is well known,

for example, that socioeconomic factors such as income, poverty, parental educa-

tion etc. play a large role in the production of output. In fire services, the material of

the houses (brick vs. wood) determines how successful firefighters will be in putting

out fires. In health care, preexisting conditions and age of the patients could

determine the success of a particular treatment.

In this chapter, we extend the DEA models from Chap. 1 to control for the

environmental factors that are nondiscretionary. This requires a specification of

the technology that includes not only the discretionary inputs and outputs but

also the environmental factors. The models presented rely on conditional esti-

mators. In the first section, we will redefine the technology to be conditional

on the environment. The public sector DEA model developed by Ruggiero

(1996a) to measure technical efficiency assuming conditional convexity will

be presented. In applications with multiple nondiscretionary factors, this model

suffers the curse of dimensionality by overestimating technical efficiency.

Ruggiero (1998) provided a three-stage extension of this model using regression

analysis in a second stage to develop a composite measure of the

nondiscretionary factor.1

1 Estelle, Johnson, and Ruggiero (2010) compare and contrast using OLS, tobit, fractional logit and

nonparametric regression in the second stage. The results provide similar results.

V. Blackburn et al., Nonparametric Estimation of Educational Production
and Costs using Data Envelopment Analysis, DOI 10.1007/978-1-4899-7469-3_3,
© Springer Science+Business Media New York 2014
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We also present models to estimate returns to scale in the public sector. These

measures, due to Ruggiero (2000) include not only traditional measures found in

Chap. 2, but also a returns to environmental scale developed by Ruggiero (2000).

Importantly, we are able to measure the additional resources necessary to achieve

given outcomes because of a harsh environment. Alternatively, we can measure the

shortfall of outcomes attributable to environmental harshness holding discretionary

inputs constant. These models are important because it reveals that standard

measures that do not include the nondiscretionary factors lead to biased efficiency

measures that include the effect the environment has on the production process.

Finally, we present the allocative efficiency model developed by Haelermans and

Ruggiero (2013) that controls for socioeconomic variables.

3.1 Technology

We extend the representation of the technology from Chap. 2 by assuming that each

DMU uses a vector ofm discretionary inputs X¼ (x1, . . ., xM) to produce a vector of
s outputs Y¼ (y1, . . ., yS) while facing an environment represented by a continuous

variable z. Data for each DMUj ( j¼ 1, . . .,n) are given by Xj¼ (x1j, . . ., xMj),

Yj¼ (y1j, . . ., ySj) and zj. Assuming variable returns to scale, the empirical produc-

tion possibility set conditional on z is given by:

τV zð Þ ¼ ��
Y,X, z

�
:
Xn

i¼1

λiysi � ys, s ¼ 1, . . . , S;

Xn

i¼1

λixmi � xm, m ¼ 1, . . . ,M;

Xn

i¼1

λi ¼ 1;

λi ¼ 0 if zi > z, i ¼ 1, . . . ,N;

λi � 0, i ¼ 1, . . . ,N
�
:

ð3:1Þ

This technology allows variable returns to scale for any given level of

the environmental variable z. This technology is conditional on the level of the

nondiscretionary factor; if a unit has a more favorable environment represented by a

higher level of z then the unit is not allowed in the spanning of the technology.2

We illustrate the conditional technology in Fig. 3.1, where we assume one input

x1 is employed to produce one output y1 with heterogeneity introduced with

nondiscretionary variable z. All DMUs are assumed technically efficient.

2 In the multiple stage model presented later in the chapter, the assumption of a monotonically

increasing relationship between output and the environmental factors is dropped.
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WOLOG, we further assume that we only observe two levels of the

nondiscretionary variable z. DMUs A –D face the harshest environment z0 while

DMUs F –H have a more favorable environment z1. As shown, DMUs F –H are

able to produce more output for a given level of discretionary input because of its

more favorable environment. Alternatively, these DMUs can produce a given level

of output with less of the discretionary inputs. The empirical production possibility

set conditional on z0 is defined by production possibilities A –D; DMUs with a

more favorable environment are observed to be infeasible. Consequently, the

shaded area shows the feasible region for those units with the harsher environment

represented by z0.
We can also define the technology with input and output sets conditional on the

nondiscretionary factor and define the associated isoquants. The conditional input

set and its isoquant are given as

LV Y; zð Þ ¼ X : Y;X; zð Þ∈ τV zð Þf g ð3:2Þ

and

Isoq LV Y; zð Þ ¼ �
X : X∈ LV Y; zð Þ, λX =2 LV Y; zð Þ, λ∈ �

0, 1
��

: ð3:3Þ

The isoquant of the conditional input set shows the boundary such that any

equiproportional reduction in all discretionary inputs cannot produce the given

output vector with feasibility defined subject to the nondiscretionary factor. The

conditional input set and its isoquant is specified using a piecewise linear

representation:

x1
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D
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H

tv (z1)

tv (z0)

Fig. 3.1 Empirical

Production Possibility

Set τV(z)
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LV Y; zð Þ ¼ �
X :

Xn

i¼1

λiysi � ys, s ¼ 1, . . . , S;

Xn

i¼1

λixmi � xm, m ¼ 1, . . . ,M;

Xn

i¼1

λi ¼ 1;

λi ¼ 0 if zi > z, i ¼ 1, . . . ,N;

λi � 0, i ¼ 1, . . . ,N
�
:

ð3:4Þ

We illustrate the two conditional input requirement sets and the associated

isoquants in Fig. 3.2, where we assume that four DMUs A –D produce the same

level of output Y using two inputs x1 and x2 while facing the harsher environment

with nondiscretionary input level z0. DMUs F, G and H face a better environment

with z1> z0 and are able to produce the same level of output with less of both inputs.

The conditional input set for nondiscretionary input level z0 is shown with the

shaded area; the associated isoquant Isoq LV(Y, z0) is defined with line segments AB,
BC and CD. These isoquants define the appropriate projections to evaluate technical
efficiency.

We can also define the technology using the conditional output set

PV X; zð Þ ¼ Y : Y;X; zð Þ∈ τV zð Þf g ð3:5Þ

x1

x2

B

C

D

A

F

G

H

Isoq LV (Y,Z1) Isoq LV (Y,Z0)

Fig. 3.2 Conditional Input

Requirement Sets
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and its associated isoquant

Isoq PV X; zð Þ ¼ �
Y : Y∈PV X; zð Þ, λX =2PV X; zð Þ, λ∈ �

0, 1
��

: ð3:6Þ

The isoquant of the conditional output set shows the boundary of the output set

such that equiproportional expansion of outputs is not feasible without additional

resources holding fixed the nondiscretionary factor z. A piecewise linear represen-

tation for a given nondiscretionary input level z is given by:

PV X; zð Þ ¼ �
Y :

Xn

i¼1

λiysi � ys, s ¼ 1, . . . , S;

Xn

i¼1

λixmi � xm, m ¼ 1, . . . ,M;

Xn

i¼1

λi ¼ 1;

λi ¼ 0 if zi > z, i ¼ 1, . . . ,N;

λi � 0, i ¼ 1, . . . ,N
�
:

ð3:7Þ

We illustrate the two conditional output sets with their associated isoquants in

Fig. 3.3. All DMUs produce two outputs using the same amount of inputs. Similar

to the previous figures in this chapter, we assume that DMUs A –D face the harsher

y1

y2

D

C

B

A

E

F

G

Isoq PV (X1, Z0)

Isoq PV (X, Z1)

PV (X, Z1)

PV (X, Z0)

Fig. 3.3 Conditional

Output sets
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environment with nondiscretionary input level z0. DMUs F, G and H face a better

environment with z1> z0 and are therefore able to produce more of both outputs

with the same input levels. The conditional output set for nondiscretionary input

level z0 is shown with the shaded area; the associated isoquant Isoq PV(X, z0) is
defined with line segments AB, BC and CD.

3.2 Technical Efficiency Measurement

3.2.1 Input-Orientation

Using the conditional technologies defined in Eqs. (3.1) and (3.4) we can define

technical efficiency for DMUj with the distance function:

DI
V Yj;Xj; zj
� � ¼ min θ : Yj, θXj

� �
∈ τV zj

� �� �
: ð3:8Þ

The Farrell measure of technical efficiency projects observed production possi-

bilities to the conditional frontier. This measure is consistent with the measure

provided in Chap. 2 with additional restrictions to account for environmental hetero-

geneity. Ruggiero (1996a) showed that technical efficiency DI
V(Yj,Xj, zj) for each

DMUj ( j¼ 1, . . ., n) can be estimated with the following linear programming model:

DI
V Yj;Xj; zj
� � ¼ min θ

subject to

Xn

i¼1

λiysi � ysj, s ¼ 1, . . . , S;

Xn

i¼1

λixmi � θxmj, m ¼ 1, . . . ,M;

Xn

i¼1

λi ¼ 1;

λi ¼ 0 if zi > zj, i ¼ 1, . . . ,N;

λi � 0, i ¼ 1, . . . ,N:

ð3:9Þ

The technical efficiency measure is illustrated in Fig. 3.4, where we extend

Fig. 3.1 by adding technically inefficient DMU I. DMU I is observed producing

y1I using an input level of x1I while facing the harsher environment z0.
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If we ignore the nondiscretionary input and use model (2.9), we obtain a measure

of “technical efficiency” relative to benchmark DMU F. But this is not feasible
given that DMU I has nondiscretionary factor z0. Using model (3.9), we obtain a

referent benchmark defined as a convex combination of DMUs A and B, both

of whom face the same environment, and DI
V(YI,XI, z0)¼ θ*. Solving model

(3.9) for all DMUs properly identifies A – D and F – H as technically efficient

with DI
V(Yj,Xj, zj)¼ 1.

Example 1 Assume that ten DMUs employ one input x1 to produce one output y1
while facing an index of environmental harshness z. There are two levels for the

nondiscretionary variable, z¼ 1 and z¼ 2, where a higher value is associated with a

more favorable environment. Data are presented in the following chart.

DMU x1 y1 z

1 8 4 1

2 10 10 1

3 15 15 1

4 20 17 1

5 12 7 1

6 5 4 2

7 7 10 2

8 12 15 2

9 17 17 2

10 12 7 2

x1

y1

A

B

C

D

I

x1I

y1I
F

G

H

tV (z1)

tV (z0)

q*x1I

Fig. 3.4 Input-Oriented

Technical Efficiency
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The data are illustrated in Fig. 3.5 where it is assumed that DMUs 1 – 4 and 6 – 9

are technically efficient. DMUs 1 – 5 all face the same relatively harsh environment

while DMUs 6 – 10 face the better one. DMU 5 is observed producing 7 units of

output using too much x1. DMUs 6 – 9 replicate the output levels of DMUs 1 – 4 but

use an input level of three less. Finally, DMU 10 uses the same amount of

discretionary input and produces the same level of output as DMU 5 but faces the

more favorable environment.

To evaluate the inefficiency of DMU 5 we note that the relevant benchmark is an

equally weighted convex combination of DMUs 1 and 2, which produces

the observed 7 units of output using only 9 units of the discretionary input.

Hence,DI
V Y5;X5; 1ð Þ ¼ 9

12
¼ 0:75:DMU 10 on the other hand, has a more favorable

environment and hence, should be able to produce the observed 7 units of output

with only 6 units of the input. This results because the relevant benchmark for DMU

10 is an equally weighted convex combination of DMUs 6 and 7. Thus,

DI
V Y10;X10; 2ð Þ ¼ 6

12
¼ 0:5;DMU 10 should be able to produce the observed output

using half as many inputs as it is observed using.

The SAS code used to measure technical efficiency for this example is as

follows3:

0
2
4
6
8

10
12
14
16
18

0 2 4 6 8 10 12 14 16 18 20 22

y1

x1

1

2

3

4

6

5,10

7

8

9Fig. 3.5 Input-Oriented

Technical Efficiency using

Example 1 Data

3 For programming purposes, we refer to the nondiscretionary input as z1. In Sect. 3.5 we consider
the multiple stage model when there are multiple nondiscretionary variables.
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The above code produces the following output:
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The results correctly indicate that DMU 5 (10) is technically inefficient with a

benchmark defined as an equally weighted convex combination of DMUs 1 and

2 (6 and 7).

In the case of multiple inputs, we illustrate the Farrell measure of efficiency

using LV(Y, z) and its associated isoquant Isoq LV(Y, z) in Fig. 3.6 by adding

x1

A

B

C

D

I

x1I

x2I

x2

F

G

H

Isoq LV (Y, Z0)

Isoq LV (Y, Z1)

LV (Y, Z1)

LV (Y, Z0)

q*x1I

q*x2I

Fig. 3.6 Conditional Input Requirement sets
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inefficient DMU I to Fig. 3.2. We assume DMU I faces the harsher environment

with nondiscretionary factor z0< z1 and therefore must use more of the discretion-

ary inputs to achieve the given level of output. DMU I is observed using inputs (x1I,
x2I) to produce the given output level but is technically inefficient producing off of

the isoquant. Applying the conditional model (3.9), we observe that a benchmark

consisting of convex combinations of DMUs B and C produces the same output

level with less of both inputs (θ*x1I, θ*x2I) where θ*< 1 is obtained in the solution

of the linear program. The model disallows DMUs F – H from serving in the

benchmark for DMU I because each as the more favorable environment. For all

other DMUs, we observe DI
V(Yj,Xj, zj)¼ 1; each of these decision making units is

technically efficient relative to the appropriate isoquant defined by the environment.

3.2.2 Output-Orientation

The output-oriented measure of technical efficiency using the technologies defined

in Eqs. (3.1) and (3.7) is defined using the following distance function:

DO
V Yj;Xj; zj
� � ¼ max θ : θYj,Xj

� �
∈ τV zj

� �� �� ��1
: ð3:10Þ

This definition is consistent with the standard definition 2.10 but with the

inclusion of the nondiscretionary factor. Hence, the measure is consistent with the

Farrell measure identifying the maximum the maximum equiproportional

expansion of outputs possible with feasibility defined relative to the conditional

technology τV(z). The technical efficiency measure DO
V (Yj,Xj, zj) for each DMUj

( j¼ 1,. . ., n) is obtained via the solution to the following linear program:

DO
V Yj;Xj; zj
� ��1 ¼ maxθ

subject to

Xn

i¼1

λiysi � θysj, s ¼ 1, . . . , S;

Xn

i¼1

λixmi � xmj, m ¼ 1, . . . ,M;

Xn

i¼1

λi ¼ 1;

λi ¼ 0 if zi > zj, i ¼ 1, . . . ,N;

λi � 0, i ¼ 1, . . . ,N:

ð3:11Þ

Themeasure of technical efficiency is illustrated in Fig. 3.7 where we assume that

DMU I uses x1I to produce y1Iwhile facing the lower level z0 of the nondiscretionary
factor. DMU I could expand output by a factor of θ* with a convex combination of
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production possibilities B and C as shown. Additional expansion is not possible

because DMU I has a harsher environment with a nondiscretionary factor of z0.

From the solution of (3.11), we obtain DO
V (YI,XI, z0)¼ (θ*)� 1. All other DMUs are

producing on the isoquant under the assumption that DMUs A-D (F-H ) face an

environment defined by nondiscretionary input level z0 (z1). As a result, DMUs A-D

and F-H are technically efficient with DO
V (Yj,Xj, zj)¼ 1.

Returning to Example 1 data, we now consider the output oriented projections

and measures of efficiency in Fig. 3.8. Like the input-oriented counterpart, we

observe that DMUs 1 – 4 and 6 – 9 are technically efficient. DMUs 5 and

10 are observed employing 12 units of input while producing too little output

y1¼ 7. Finally, we recall that DMU 5 (10) faces the harsher (more favorable)

environment.

x1

y1

A

B

C

D

I

x1I

y1I

H

G

F

q*y1I

tV (z0)

Fig. 3.7 Output-Oriented

Technical Efficiency

Fig. 3.8 Output-Oriented

Technical Efficiency using

Example 1 Data
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To evaluate the inefficiency of DMUs 5 and 10 we seek the maximum expansion

of output consistent with the technology conditioned on the nondiscretionary

factor. For DMU 5, the relevant benchmark is a convex combination of

technically efficient production possibilities 2 and 3 with weights of 0.6 and 0.4,

respectively. This convex combination produces 5 more units of output while using

the same amount of inputs and facing the same environment. Consequently,

DO
V Y5;X5; 1ð Þ�1 ¼ 7

12
¼ 0:583, i.e., DMU 5 is only producing 58.33 % of the

efficient output level. While DMU 10 uses the same discretionary input level and

produces the same output as DMU 5, it faces the more favorable environment. The

relevant benchmark is therefore not the same as the one for DMU 5. Instead, DMU

10 would be benchmarked against DMU 8, which uses the same level of the

discretionary input while facing the same environment. DMU 8 produces 8 more

units of output. Therefore, DO
V Y10;X10; 2ð Þ ¼ 7

15
¼ 0:46: DMU 10 is observed

producing only 46.67 % of the technically efficient output level.

The SAS code used to measure output-oriented efficiency using example 1 data

is provided below.
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The resulting SAS output:

3.3 Scale Efficiency Measurement

Similar to the case without a nondiscretionary factor of production, we can define

standard measures of returns to scale for a given level of the nondiscretionary

factor. One could view this as a production process with heterogeneity even in the

long run. The conditional measures control for heterogeneity, allowing a discussion

of returns to scale for a given level of the environmental variable. In addition, useful

information is provided by the distances between any two frontiers. Ruggiero

(2000) provided a measure of the returns to environmental scale revealing the

additional discretionary resources needed to provide a given level of outputs
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because a DMU faces a harsher environment. In the output oriented case, the

measure shows the loss of output due to a harsher environment.4

First, we consider the standard returns to scale measures for a given level of the

nondiscretionary factor. We first define the empirical piecewise linear constant

returns to scale technologies conditional on the nondiscretionary factor:

τC zð Þ ¼ ��
Y,X, z

�
:
Xn

i¼1

λiysi � ys, s ¼ 1, . . . , S;

Xn

i¼1

λixmi � xm, m ¼ 1, . . . ,M;

λi ¼ 0 if zi > z, i ¼ 1, . . . ,N;

λi � 0, i ¼ 1, . . . ,N
�
:

ð3:12Þ

The constant returns to scale technology τC(z) is obtained from τV(z) in Eq. (2.1)
by removing the convexity constraint. Similarly, we obtain the input requirement

and output sets as:

LC Y; zð Þ ¼ �
X :

Xn

i¼1

λiysi � ys, s ¼ 1, . . . , S;

Xn

i¼1

λixmi � xm, m ¼ 1, . . . ,M;

λi ¼ 0 if zi > z, i ¼ 1, . . . ,N;

λi � 0, i ¼ 1, . . . ,N
�

ð3:13Þ

and

PC X; zð Þ ¼ �
Y :

Xn

i¼1

λiysi � ys, s ¼ 1, . . . , S;

Xn

i¼1

λixmi � xm, m ¼ 1, . . . ,M;

λi ¼ 0 if zi > z, i ¼ 1, . . . ,N;

λi � 0, i ¼ 1, . . . ,N
�

ð3:14Þ

respectively.

We illustrate the empirical production possibility set under the assumption of

constant returns to scale using τC(z) from Eq. (3.12) in Fig. 3.9. The shaded area

shows the empirical production possibility set τC(z0) for the harsher environment z0.
Given z0 we observe increasing returns to scale along AB, constant returns to scale

along BC and decreasing returns to scale along CD. Hence, B and C and any convex

4 The environmental scale measures can be defined using either a VRS or CRS technology. We

follow Ruggiero (2000) and only consider VRS measures.
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combination of the two are most productive scale size. With z1 only DMU G is

operating at most productive scale size; we observe increasing returns to scale along

FG and decreasing returns to scale alongGH. Interestingly, a given output level can
correspond to different returns to scale classes depending on the level of the

environment.

3.3.1 Input-Orientation

Standard measures of returns to scale using an input-orientation require projections

to the VRS technology using (3.9) and the CRS technology. The distance function

projecting DMUj to the boundary of the CRS technology conditional on the

nondiscretionary factor is given by:

DI
C Yj;Xj; zj
� � ¼ min θ : Yj, θXj

� �
∈ τC zj

� �� � ð3:15Þ

and is estimated with the following linear program for each DMUj ( j¼ 1,. . ., n):

DI
C Yj;Xj; zj
� � ¼ min θC

subject to

Xn

i¼1

λiysi � ysj, s ¼ 1, . . . , S;

Xn

i¼1

λixmi � θCxmj, m ¼ 1, . . . ,M;

λi ¼ 0 if zi > z, i ¼ 1, . . . ,N;

λi � 0, i ¼ 1, . . . ,N:

ð3:16Þ

x1

y1

A

B

C

D

F

G

Htc(z1)

tc(z0)

Fig. 3.9 Empirical

Production Possibility

Set τC(z)
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Using models (3.9) and (3.16), we obtain the standard measure of scale effi-

ciency for DMUj as the ratio of the two distance functions:

SEI Yj;Xj; zj
� � ¼ DI

C Yj;Xj; zj
� �

DI
V Yj;Xj; zj
� � : ð3:17Þ

In Fig. 3.10, we show the projection of inefficient DMU I to the technology

τC(z). DMU I is technically inefficient because it could have reduced its input to

θ*x1I under variable returns to scale. Assuming constant returns to scale and solving

Eq. (3.16), DMU I would be projected even further to an input level θ�Cx1I, which is
obtained via a rescaling of either production possibility B or C or a convex

combination of the two. As illustrated, the technically efficient benchmark (y1I, θ
*x1I) for DMU I is operating under increasing returns to scale; after controlling for

the environment, the difference in inputs (θ*� θ�C)x1E reveals the extra input level

necessary to produce y1I given that (y1I, θ*x1I) is not most productive scale size.

The resulting scale efficiency of DMU I is SEI(YI,XI, zI)¼ θ�C/θ*< 1. Given that the

projections to the VRS and CRS frontiers and the resulting measure of scale

efficiency is defined for a given environment level similarly to the case without

nondiscretionary factors, the returns to scale classification with respect to the

discretionary inputs and outputs is the same.

Following Ruggiero (2000), we can evaluate returns to environmental scale

ESI(Yj,Xj, zi) for each DMUj ( j¼ 1,. . .,n) as the ratio of two distance functions:

ESI
V Yj;Xj; zj
� � ¼ DI

V Yj;Xj

� �

DI
V Yj;Xj; zj
� � � 1, ð3:18Þ

x1I x1

y1

A

B

C

D

F

G

H

tv(z1)
tv(z0)

tc(z0)

tc(z1)

Iy1I

q*
cx1 q*x1I

Fig. 3.10 Input-Oriented

Projection DI
C(y1I, x1I, z0)
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where the numerator (denominator) is the solution to model 2.9 (3.9).5 Given that

production does depend on the environment, the numerator excludes these variables

and hence, projects a given unit to the frontier associated with the best environment.

As a result, the environmental scale measure captures the influence the environment

has on production by revealing how much each input could be proportionally

reduced if the unit under evaluation had the most favorable environment.

We show our environmental scale measure with DMU I in Fig. 3.11. Given its

environment, the technically efficient production plan for DMU I is (y1I, θ*x1I). If
we remove the nondiscretionary factor constraint and solve model 2.9, we obtain

production plan (y1I, δ*x1I), where δ*¼DI
V(YI,XI)< θ*. The results indicate that

DMU I would have been able to reduce its input level to δ*x1I if I faced the most

favorable environment. In this case, the benchmark would have been a convex

combination of DMUs F and G, both of which have the most favorable environ-

ment. This provides important policy information; in public production environ-

ments with nondiscretionary factors, we can measure the additional resources

required to achieve a given level of output for DMUs that have a harsher

environment.

The various input-oriented measures used in the public sector model are

implemented in SAS for example 1 data.

x1

y1

A

B

C

D

F

G

H

I

X1Iq*X1Iq*(X1I)

Fig. 3.11 Empirical

Production Possibility

Set Tv(z)

5 Alternatively, we could remove scale inefficiency from this measure by using the constant returns

to scale projections.
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The SAS output from the above code6:

6 The output results are modified for formatting purposes.
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Referring to Fig. 3.5 and the SAS output results we observe that only DMUs 2, 3

and 7 are operating at most productive scale size under constant returns to scale.

DMU 7 has an average product of 1.43. DMUs 2 and 3 have an average product of

1 and are also most productive scale even with a lower average product because

they have the highest average product of all units facing the harsher environment.

All other technically efficient units are scale inefficient, operating under either

increasing returns to scale (DMUs 1 and 6) or decreasing returns to scale (DMUs

4, 8 and 9.) Technically inefficient units 5 and 10 are both projected to the IRS

portion of the VRS frontiers and hence, are also scale efficient after removing

technical inefficiency.

Next, we consider the returns to environmental scale from Eq. (3.18). Production

possibilities 6 - 10 all face the best environment; consequently ESIV(Yj,Xj, 2)¼ 1 for

each. This results because adding the constraint on the environmental factor does

not change the solution. Production possibilities 1 – 5 all face the harsher environ-

ment. As a result, these DMUs have ESIV(Yj,Xj, 1)< 1 indicating that each has to

employ more of the discretionary input to achieve a given level of output. For

example, technically efficient DMU 1 is observed producing y1¼ 4 using x1¼ 8. If

DMU 1 remained efficient but had a more favorable environment, it could have

produced the same output with x1¼ 5 using DMU 6 as a benchmark. As a result,

ESIV(4, 8, 1)¼ 5/8¼ 0.625. This indicates that DMU 1 needs to use 60 % more of

the discretionary input than DMU 6 to produce four units of output given the

harsher environment.
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3.3.2 Output-Orientation

For completeness, we present the scale measures using the output oriented model.

The distance function projecting DMUj to the boundary of the CRS technology

conditional on the nondiscretionary input is given by:

DO
C Yj;Xj; zj
� � ¼ max θ : θYj,Xj

� �
∈ τC zj

� �� �� ��1 ð3:19Þ

which can be estimated with the following linear programming model:

DO
C Yj;Xj; zj
� ��1 ¼ max θC

subject to

Xn

i¼1

λiysi � θCysj, s ¼ 1, . . . , S;

Xn

i¼1

λixmi � xmj, m ¼ 1, . . . ,M;

λi ¼ 0 if zi > z, i ¼ 1, . . . ,N;

λi � 0, i ¼ 1, . . . ,N:

ð3:20Þ

We seek the maximum equiproportional increase in all outputs subject to a CRS

technology conditional on the nondiscretionary factor. Scale efficiency is then

estimated as the ratio of the constant to the variable returns to scale distance

functions:

SEO Yj;Xj; zj
� � ¼ DO

C Yj;Xj; zj
� �

DO
V Yj;Xj; zj
� � : ð3:21Þ

The output-oriented projection of inefficient DMU I to the technology τC(zI)
defined by constant returns to scale is illustrated in Fig. 3.12. DMU I is techni-

cally inefficient relative to the variable returns to scale technology because it

could have increased its output to θ�Cy1I holding input at the observed level x1I,

where θ�C ¼ DO
V (YI,XI, zI) is obtained in the solution to (3.11). If we remove the

convexity constraint and solve (3.20) we obtain θ�C ¼DO
C(YI,XI, zI). Hence, DMU

C is the benchmark under both the CRS and the VRS models. Therefore, SEO(YI,
XI, zI)¼ 1 indicating that DMU I is scale efficient and operating under constant

returns to scale after technical inefficiency is eliminated. Using the output ori-

ented projections, we observe that technically efficient DMUs A and F are scale

inefficient operating under increasing returns to scale; DMUs B, C and G are

operating under constant returns to scale while DMUs D and F are scale
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inefficient on the decreasing returns to scale portion of the frontier. As in the

input oriented case, the output level associated with most productive scale size

depends on the nondiscretionary input level.

We extend our measure of environmental scale to the output oriented model

using projections with and without the conditional constraints. For each DMUj

( j¼ 1,. . .,n), we have:

ESO
V Yj;Xj; zj
� � ¼ DO

V Yj;Xj

� �

DO
V Yj;Xj; zj
� � � 1: ð3:22Þ

In the output-oriented case, environmental scale measures the reduction in

output that can be attributed to having a less than favorable environment.

Returning to Fig. 3.12, we observe ESOV (Yj,Xj, zj)¼ 1 for DMUs F, G and

H who face the most favorable environment. If technically efficient, DMU

I would have production plan (θ�Cy1I, x1I) given that I faces the harsher

environment. If DMU I had the most favorable environment, the technically

efficient production plan would be (δ*y1I, x1I), where δ*¼ 1/DO
V (YI,XI). Hence, E

SO
V YI;XI; zIð Þ ¼ θ�C

δ� : The results indicate the shortfall in output that DMU I realizes

due to the harsher environment.

The SAS code and results for the output oriented efficiency and scale measures

is provided below.
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Fig. 3.12 Output-Oriented

Projection DO
C(y1I, x1I, z0)
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The SAS output from the above code:
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The results reported above are illustrated in Fig. 3.8. DMUs 1 – 4 and 6 – 9 are

technically efficient in the output oriented model. DMU 5 and 10 are both observed

producing 7 units of output using 12 units of input. Given the environmental

differences, DMU 10 should have produced 15 units of output and DMU 5 should

have produced 12. Because the projection for DMU 5 is the same under VRS and

CRS, it is scale efficient. We note the benchmark for DMU 5 under the CRS model

is either DMU 2 or DMU 3 or a combination of the two, all of which are on the CRS

portion of the frontier. DMU 10 is benchmarked against DMU 8 in both the CRS

and VRS models; since DMU 8 is operating under DRS with a scale efficiency of

87.5 %, so too is DMU 10.

Finally, the differences between the frontiers reveal the effect of the

nondiscretionary factor. For example, if technically efficient, DMU 5 would have

produced 12 units of output. If DMU 5 had the most favorable environment (like

DMU 10), it could produce 15 units of output. Hence, our measure of environmen-

tal scale is 0.8 (12/15); DMU 5 can only produce 80 % (12) of the output (15) of the

most favorable environment given its observed input usage.

3.4 Allocative Efficiency Measurement

In this section, we extend the Farrell decomposition of overall inefficient into

technical and allocative parts to the public sector models with nondiscretionary

inputs. We assume that each decision making unit uses a vector of m discretionary

inputs X¼ (x1, . . ., xM) to produce a vector of s outputs Y¼ (y1, . . ., yS) while

facing nondiscretionary input z and exogenous input prices P¼ ( p1, . . ., pM).
We represent the inputs, outputs and prices for DMUj ( j¼ 1, . . ., n) as

Xj¼ (x1j, . . ., xMj), zj, Yj¼ (y1j, . . ., ySj) and Pj¼ ( p1j, . . ., pMj). We also observe

expenditures Ej ¼
XM

l¼1

pljxlj for each DMU j.

84 3 DEA in the Public Sector



In Fig. 3.13, we extend the allocative efficiency analysis from the previous

chapter to include the nondiscretionary variable. Similar to Fig. 3.6, we observe

two isoquants depending on the harshness of the environment. DMUs A – D are

technically efficient producing output on the isoquant Isoq LV(Y, z0); given the

harsher environment, more inputs are required to produce the given output.

DMUs F – H are also technically efficient, producing the same output level with

a more favorable environment. The advantage of the better environment is the

ability to efficiently produce a given output level with less discretionary inputs.

For this diagram, we assume that technically inefficient DMU I faces the harsher

environment with DI
V(YI,XI, z0)< 1. Given the observed prices of DMU I, we

superimpose four isocost lines. Isocost line labeled EI shows the observed expen-

ditures of DMU I.
The second isocost line, E�

I reveals the expenditure level associated with the

technically efficient benchmark for DMU I. Holding the input mix constant, we

evaluate expenditures at the technically efficient input levels. We obtain E�
I ¼DI

V

(YI,XI, z0) x EI. This is not the minimum cost of producing the observed output

given the environment faced by DMU I unless DMU I is choosing the correct input
mix. In this case, DMU I is using too much x2 relative to x1; DMU I would achieve
allocative efficiency by using the same input mix as DMU C. The isocost line

C�
I ¼ p1Ix1C+ p2Ix2C represents the minimum cost for DMU I of producing the

observed output given the observed prices and the harsher environment. The

measure of cost efficiency (CE) is the ratio of minimum cost to observed expendi-

tures. The measure CE¼C�
I /EI reveals the amount that observed expenditures

could be reduced if DMU I simultaneously removed technical inefficiency and

used the correct input mix. The last isocost line shows the minimum cost

C� �
I ¼ p1Ix1G+ p2Ix2G of producing the observed output using the input prices

faced by DMU I assuming it had the most favorable environment. As shown,

the cost minimizing input mix (DMU G’s) depends on the harshness of the

x1

x2

A

B

C

D

I
F

G

H
Isoq Lv (Y, z1)

Isoq Lv (Y, z0)

EI

E*
I

C*
I

C**I

Fig. 3.13 Allocative

and Technical Efficiency
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environment; if DMU I faced the better environment, the cost minimizing input mix

requires more x2 relative to x1.
To obtain the measure cost efficiency, we solve the linear programming

model conditional on the nondiscretionary input to obtain minimum cost for each

DMU j as:

C�
j ¼ min

XM

m¼1

pmjxm

subject to

Xn

i¼1

λiysi � ysj, s ¼ 1, . . . , S;

Xn

i¼1

λixmi � xm, m ¼ 1, . . . ,M;

Xn

i¼1

λi ¼ 1;

λi ¼ 0 if zi > zj, i ¼ 1, . . . ,N;

λi � 0, i ¼ 1, . . . ,N:

ð3:23Þ

We assume a variable returns to scale technology with the observed convexity

constraint and obtain an optimal vector of inputs (x�1, . . ., x
�
M) for each DMU that

minimizes the costs of production. Our measure of cost efficiency is then derived as

the ratio of minimum costs to observed expenditures:

CE Yj;Xj; zj
� � ¼ C�

j

Ej
: ð3:24Þ

Given the technical and cost efficiency measures DI
V(Yj,Xj, zj) and CE(Yj,Xj, zj)

we obtain a measure of allocative efficiency as:

AE Yj;Xj; zj
� � ¼ CE Yj;Xj; zj

� �

DI
V Yj;Xj; zj
� � : ð3:25Þ

We obtain the minimum cost of producing the observed output assuming

the most favorable environment by solving the following linear program for each

DMU j:
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C��
j ¼ min

XM

m¼1

pmjxm

subject to

Xn

i¼1

λiysi � ysj, s ¼ 1, . . . , S;

Xn

i¼1

λixmi � xm, m ¼ 1, . . . ,M;

Xn

i¼1

λi ¼ 1;

λi � 0, i ¼ 1, . . . ,N:

ð3:26Þ

Model (3.26) is obtained from model (3.23) by removing the conditional con-

straint on the nondiscretionary input.7

Consider the following data where nine DMUs produce one unit of output facing

the same input prices. Output is produced using two discretionary inputs and one

nondiscretionary input. The data are illustrated in Fig. 3.14.

Fig. 3.14 Allocative and

Technical Efficiency using

Example 2 Data

7We could define an index of environmental harshness based on the ratio of minimum costs
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DMU x1 x2 z1 p1 p2 y1 E

1 5 35 1 5 10 1 375

2 10 20 1 5 10 1 250

3 20 10 1 5 10 1 200

4 35 5 1 5 10 1 225

5 25 25 1 5 10 1 375

6 5 25 2 5 10 1 275

7 10 10 2 5 10 1 150

8 15 5 2 5 10 1 125

9 30 3 2 5 10 1 180

All DMUs except DMU 5 are technically efficient. Only DMUs 3 and 8 are

allocatively efficient. DMU 3 is using the proper input mix of x2/x1¼ 0.5 and

is allocatively efficient in producing the unit output given the harsher environ-

ment. Because DMU 3 is also technically efficient, the minimum cost in this

stylized example is $200. Cost efficiency for all of the units facing the harsher

environment is then measured as $200 divided by the observed expenditures.

DMU 5 is technically inefficient with DI
V(Y5,X5, z5)¼ 0.6. If DMU 5 removed

the technical inefficiency, it could reduce observed expenditures from $375 to

$225. This is not the minimum cost because even after projecting DMU 5 to

its isoquant, it is still using the wrong input mix. The cost efficiency of DMU

5 is CE Y5;X5; z5ð Þ ¼ 200
375

¼ 0:5333, leading to AE(Y5,X5, z5)¼ 0.89. These

results are identical for the allocative efficiency example presented in the last

chapter. With the additional DMUs facing the more favorable environment, we

uncover additional information. The minimum cost of producing the unit

output is only $125 for the units facing the best environment.8 DMU 8 is

using the only allocatively efficient units Hence, the units facing the harsher

environment would need an additional $75 to compensate for the operating

conditions.

The SAS code to estimate cost and allocative efficiency for all DMUs in

public sector production characterized by a nondiscretionary input is provided

below.

8 This variable is labeled C1 in the SAS code that follows.
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The resulting SAS output:

Ruggiero (1996a) provided the basis for analyzing public sector production.

A limitation discussed in Ruggiero (1998) is the curse of dimensionality that arises

when there are multiple nondiscretionary inputs. Without a large number of DMUs,

multiple nondiscretionary factors cause efficiency estimates to be biased upward.

Ruggiero (1998) provided a three-stage model to reduce the dimensions by creating

an index of environmental harshness. In the first stage, a standard DEA model is

applied using only discretionary inputs and outputs. The resulting index will

capture not only unobserved inefficiency but also the effect the nondiscretionary

inputs have on production. In the second stage, regression is applied to provide a

weighting structure of the importance each nondiscretionary factor has. The

predicted first stage index is then used in the third stage using any of the models

discussed in this chapter. In the next section, we present the three-stage model and

illustrate it using simulated data in SAS.
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3.5 Multiple Nondiscretionary Inputs9

We extend our analysis by assuming that each decision making unit uses a vector

of m discretionary inputs X¼ (x1, . . ., xM) to produce a vector of s outputs Y¼
(y1, . . ., yS) while facing a vector of r nondiscretionary inputs Z¼ (z1, . . ., zR). We

define inputs and outputs for DMUj ( j¼ 1, . . ., n) as Xj¼ (x1j, . . ., xMj),

Zj¼ (z1j, . . ., zrj) and Yj¼ (y1j, . . ., ySj). In the first stage, we apply the standard

DEAmodel assuming variable returns to scale without the conditional constraint on

the nondiscretionary factors. For each DMUj ( j¼ 1,. . .,n) we estimate the first stage

index (FS) as the solution to the following linear program:

FSj ¼ min θ

subject to

Xn

i¼1

λiysi � ysj, s ¼ 1, . . . , S;

Xn

i¼1

λixmi � θxmj, m ¼ 1, . . . ,M;

Xn

i¼1

λi ¼ 1;

λi � 0, i ¼ 1, . . . ,N:

ð3:27Þ

This model is identical to (3.9) with the exclusion of the constraint on the

nondiscretionary inputs. The resulting index is composed of inefficiency and the

effect the nondiscretionary inputs have on the production process. In a second stage,

the following regression is applied:

FSj ¼ αþ
Xr

i¼1

βizij þ εj: ð3:28Þ

Ray (1991) introduced the (3.27) and (3.28) as a two-stage model using OLS to

estimate (3.28). Assuming that each nondiscretionary input is not correlated with

inefficiency, the residual provides a measure of technical efficiency. However, the

9 In this section, we only consider the case of measuring input-oriented technical efficiency. All

models presented in this chapter can be easily extended to handle multiple nondiscretionary

factors.
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measure is not well-suited as an efficiency index because it is mean zero.10

Ruggiero (1998) extended Ray’s model by using (3.28) to derive a predicted

index of environmental harshness:

ẑ j ¼ αþ
Xr

i¼1

βizij ð3:29Þ

which is then used in a third stage using model (3.9). Hence, the second stage

is used to provide weights of the relative importance of each nondiscretionary

factor and combines them into a single measure of environmental harshness. For

each DMU j ( j¼ 1, . . ., n) we estimate technical efficiency using the third stage

model:

DI
V Yj;Xj; zj
� � ¼ min θ

subject to

Xn

i¼1

λiysi � ysj, s ¼ 1, . . . , S;

Xn

i¼1

λixmi � θxmj, m ¼ 1, . . . ,M;

Xn

i¼1

λi ¼ 1;

λi ¼ 0 if ẑ i > ẑ j, i ¼ 1, . . . ,N;

λi � 0, i ¼ 1, . . . ,N:

ð3:30Þ

Ruggiero (1998) and Estelle et al. (2010) provide evidence using simulated data

that the three-stage model works well.

We provide a simulation to illustrate the three-stage model. We use the data

generating process found in Estelle et al. (2010) and assume that 500 DMUs use two

discretionary inputs x1 and x2 to produce one output y1 given two nondiscretionary

inputs z1 and z2. Inefficiency was generated using u ~N(0, 0.2) with e� |u| is the

measure of technical efficiency. We assume the following distributions for the

discretionary and nondiscretionary inputs: ln xi ~N(0, 1) for i¼ 1, 2 and ln zi ~N

10 Other regression procedures have been considered. For example, McCarty and Yaisawarng

(1993) used Tobit. Banker and Natarajan (2008) provided the conditions under which OLS

provided consistent parameter estimates. McDonald (2009) argued that Tobit is inappropriate

and recommend either OLS or fractional logit. Estelle et al. (2010) provided a Monte Carlo

analysis using OLS, Tobit, fractional logit and nonparametric regression. The models provided

nearly identical results. In this chapter, we only consider OLS.
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(0, 0.1) for i¼ 1, 2, respectively. Observed output was calculated assuming the

following production function:

y1 ¼ e�
��u
��
z21z

�3
2 x0:41 x0:62 : ð3:31Þ

The production function exhibits constant returns to scale with respect to the

discretionary inputs. Therefore, we use a CRS model in both the first and second

stage models. In addition, we do not assume monotonicity with respect to the

nondiscretionary inputs; increases in the second nondiscretionary input lead to

decreases in output. We use correlation and rank correlation to evaluate the

performance of the model. The SAS code to generate the data and estimate

efficiency is provided below.
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The SAS results:

The results are consistent with the Monte Carlo results in Estelle et al. (2010):

there is a relatively large (rank) correlation between true and estimated efficiency.

In the next chapter, we analyze the technical efficiency of Australian primary

and secondary schools using the input-oriented models discussed above.
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Chapter 4

Input-Oriented Efficiency Measures
in Australian Schools

In this chapter we apply the DEA models presented in Chap. 3. We focus on the

input-oriented models to measure technical, scale and input allocative efficiency of

the primary and secondary schools in Australia. In addition, we also present a

production based model of adequacy. In recent years, there has been a movement

towards measuring adequacy of educational service provision, defined by Berne

and Stiefel (1999) and Duncombe and Yinger (1999) as the minimum amount of

resources necessary for a school to meet some pre-defined absolute standard of

performance. Typically, this is defined as achieving minimum passing standards on

standardized tests. In this chapter, we measure technical, allocative and scale

efficiency of Australian schools using the models developed in Chapter 3. We

also apply a model (Ruggiero 2007b) to measure the minimum expenditure neces-

sary to provide an adequate education by projecting observations using the

predefined adequacy standards instead of the observed outcomes. We use data

from school year 2009–2010. In the following section, we discuss our data.

4.1 Data

The data for this study came from the Departmental Annual Financial Statements in

the state of New South Wales (NSW). The original dataset contained detailed

information on several inputs, outputs and socio-economic variables for all primary

and secondary schools in NSW. For outputs we have data for 2008–2010 on

standardized test scores for reading, writing, spelling, grammar, and numeracy in

the third and fifth grades for primary schools and seventh and ninth grade (lower

secondary) from the NAPLAN “My School” database—(the Commonwealth Gov-

ernment initiative from 2008 for each school in Australia). Given the high degree of

correlation between outputs, we reduce the dimensionality by averaging test scores

V. Blackburn et al., Nonparametric Estimation of Educational Production
and Costs using Data Envelopment Analysis, DOI 10.1007/978-1-4899-7469-3_4,
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in each given grade.1 Given that there is no overlap between primary and secondary

schools, we apply the models separately; for each application, we use two output

measures.

For school inputs we use the number of full-time equivalent teachers and support

personnel (SASS) and other school related expenses. Average salaries for teachers

and support personnel are the prices used for the allocative efficiency model. We

assume that the other expenses are available to all schools at the same price and

normalize the price of other expenses to unity for all schools. In addition, because

larger schools will necessary have more inputs, we measure our inputs on a per

student basis.

We also include four socio-economic variables: the Index of Community Socio-

Educational Advantage (ICSEA), the percent of students that have limited English

proficiency, the percent of students that are aboriginal and the percent of students

that require special education services. Given that we have multiple environmental

variables, we use multiple-stage models to reduce the dimensionality by creating an

aggregate index of environmental harshness. Variable descriptions are reported in

Table 4.1.

Descriptive statistics for the primary (secondary) schools are reported in

Table 4.2 (Table 4.3). We report mean and standard deviations for the variables

Table 4.1 Variable

description
Variable Description

Outcomesa

Primary schools

y1 Average third grade score

y2 Average fifth grade score

Secondary schools

y1 Average seventh grade score

y2 Average ninth grade score

Discretionary inputs

x1 Full time equivalent teachers

x2 Full time equivalent (SASS)

x3 Other expenses

Nondiscretionary inputs

z1 Index of community socio-educational advantage

z2 Percent of limited english proficiency

z3 Percent of aboriginal students

z4 Percent of special education students
aFor each grade, tests are given in Reading, Writing, Spelling,

Grammar and Numeracy. We average across tests for each grade

to obtain our outcome measures. Inputs are measured per student

in the DEA models

1 The correlations between tests scores for the primary schools for grade 3 (5) were all above 0.94

(0.92). For the secondary schools, the correlations were above 0.92 (0.90) for the seventh (ninth)

grade scores.
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used in the empirical analyses of primary schools. We also provide mean and

standard deviations by enrollment quintile. For the primary schools, we note that

the average outcomes and inputs increase as the enrollment increases from quintile

I (smallest schools) to quintile V (largest schools). In addition, the ICSEA

(a measure of school advantage) also increases on average as enrollment increases.

This suggests that larger schools tend to have a more favorable operating environ-

ment. However, we also observe that as we increase enrollment, the percent of

limited English proficiency students also increases. Similar patters emerge in

Table 4.3 for the secondary schools. In general, as the average size of the school

increases, the discretionary inputs and the ICSEA increase. This holds true for the

outcome measures as well, except for the highest enrollment quintile where there is

a slight decrease in the average scores.

In the next section we present the input-oriented models to analyze technical,

scale and allocative efficiency the primary and secondary schools.

4.2 Empirical Input-Oriented Models

4.2.1 Indexing the Socio-Economic Environment

Given that we have multiple nondiscretionary factors, we employ the multiple stage

models to reduce the dimensionality. Primary and secondary schools are analyzed

separately and provide the general models used for both. We assume that each of

the schools use three inputs (x1, x2, and x3) to produce two outcomes (y1 and y2)
given four nondiscretionary inputs (z1, z2, z3 and z4), all of which are described in

Table 4.1. For each school j inputs, outputs and nondiscretionary variables are

given by xij for (i¼ 1, 2, 3), yij for (i¼ 1, 2) and zij for (i¼ 1,.., 4). The first stage

index (FSj) for each school j is obtained as the solution to the following linear

program:

FSj Yj;Xj

� � ¼ min θ
subject to

Xn

i¼1

λiysi � ysj, s ¼ 1, 2;

Xn

i¼1

λixmi � θxmj, m ¼ 1, 2, 3;

Xn

i¼1

λi ¼ 1;

λi � 0, i ¼ 1, . . . , n:

ð4:1Þ
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In the second stage, the following regression is applied:

FSj ¼ αþ
X4

i¼1

βizij þ εj: ð4:2Þ

OLS was used to estimate the second stage regression. Our first nondiscretionary

factor, the Index of Community Socio-Educational Advantage (ICSEA) provides a

scale measuring the advantage of students in a given community. Higher values

indicate more advantage. We expect the coefficient on this variable to be positive:

higher levels of this index should lead to better outcomes for a given level of

discretionary inputs. Therefore, schools with a higher index value should be closer

to the overall best practice frontier, i.e. have a higher value of the first stage index. It

is also expected that the coefficients on the other nondiscretionary factors (percent

of limited English proficiency, percent of aboriginal students and percent of special

educations) will have a negative coefficient: increases in these variables represent a

harsher environment and hence, a lower value of the first stage index.

The regression results for primary (secondary) schools are reported in Table 4.4

(Table 4.5). For both the primary and secondary schools, the results are econom-

ically significant; the sign of the coefficients all match our expectations. Nearly half

Table 4.4 Primary school

regression resultsa

(N¼ 1,341)

Variable Coefficient

Intercept 0.361** (0.045)

z1* 0.520 (0.043)

z2 �0.081** (0.011)

z3 �0.176** (0.037)

z4 �1.016*** (0.064)

R2 0.464**

All calculations by authors
aStandard errors are reported in parentheses

*Measured in 000s

**Indicates significance at the 99 % level of confidence

***Indicates significance at the 95 % level of confidence

Table 4.5 Secondary school

regression resultsa (N¼ 371)
Variable Coefficient

Intercept 0.321** (0.100)

z1* 0.572** (0.010)

z2 �0.059** (0.020)

z3 �0.364** (0.089)

z4 �0.438*** (0.194)

R2 0.365**

All calculations by authors
aStandard errors are reported in parentheses

*Measured in 000s

**Indicates significance at the 99 % level of confidence

***Indicates significance at the 95 % level of confidence
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(46.4 %) of the variation in the first stage index can be explained by the

nondiscretionary factors for the primary schools. For the secondary schools, only

36.6 % of the variation can be explained. This implies that failure to control for the

environment will lead to biased efficiency estimates; schools with a harsher envi-

ronment will be deemed to be more inefficient than they actually are without

controlling for the environment. All of the parameters for both regressions are

significant at the 95 % level of confidence; all parameters except the coefficient on

z3 are significant at the 99 % level.

The predicted value of the first stage index captures the effect that the environ-

ment has on the production process. Importantly, the slope parameters provide

weights to evaluate the importance each nondiscretionary factor has on the produc-

tion process. For each school district, we calculate this predicted value as:

ẑ j ¼ αþ
X4

i¼1

βizij: ð4:3Þ

This index will be incorporated into the DEA models to control for the environ-

ment while estimating technical, allocative and scale efficiency.

4.2.2 Technical Efficiency

Given the overall index capturing the influence of the nondiscretionary variables on

the production process, we can now measure the technical efficiency of primary

school j with the following linear program:

DI
V Yj;Xj; ẑj
� � ¼ min θ

subject to
XN

i¼1

λiysi � ysj, s ¼ 1, 2;

XN

i¼1

λixmi � θxmj, m ¼ 1, 2, 3;

XN

i¼1

λi ¼ 1;

λi ¼ 0 if ẑ i > ẑ j, i ¼ 1, . . . ,N;
λi � 0, i ¼ 1, . . . ,N:

ð4:4Þ

The solution of Eq. (4.4) provides the maximum equiproportional reduction in

all inputs consistent with observed production conditional on the operating envi-

ronment. Further, the solutions of Eqs. (4.1) and (4.4) provide a measure of the

environmental harshness for school j, defined as the ratio of the two distance

functions:
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ESI
V Yj;Xj; zj
� � ¼ FSj Yj;Xj

� �

DI
V Yj;Xj; ẑj
� � � 1, ð4:5Þ

4.2.3 Scale Efficiency

Removing the convexity constraint from Eq. (4.4) allows us to project each primary

school j to the constant returns to scale isoquant while controlling for the aggre-

gated index of the nondiscretionary inputs:

DI
C Yj;Xj; ẑj
� � ¼ min θ

subject to
XN

i¼1

λiysi � ysj, s ¼ 1, 2;

XN

i¼1

λixmi � θxmj, m ¼ 1, 2, 3;

λi ¼ 0 if ẑ i > ẑ j, i ¼ 1, . . . ,N;
λi � 0, i ¼ 1, . . . ,N:

ð4:6Þ

From the solutions of Eqs. (4.4) and (4.6) we can calculate the scale efficiency of

each primary school j as the ratio of the distance functions:

SEI Yj;Xj; ẑj
� � ¼ DI

C Yj;Xj; ẑj
� �

DI
V Yj;Xj; ẑj
� � : ð4:7Þ

Here, the scale efficiency measure indicates the proximity each primary school is

away from most productive scale size.

4.2.4 Allocative Efficiency

For inputs x1 and x2 (teachers and support personnel) we use average prices

p1 and p2 as our price measures. Given that we use other expenses for x3 we assume

that the resources purchased are obtained competitively and that each school can

purchase these at the same price. Given this assumption, we normalize the price

p3¼ 1 for all schools. For school j we observe prices p1j, p1j and p3j and define

observed expenditures as Ej ¼
X3

l¼1

pljxlj.

To obtain the measure cost efficiency, we solve the linear programming model

conditional on the aggregate nondiscretionary input ẑ j to obtain minimum cost for

each school j as:
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C�
j ¼ min

X3

m¼1

pmjxm

subject to
XN

i¼1

λiysi � ysj, s ¼ 1, . . . , 2;

XN

i¼1

λixmi � xm, m ¼ 1, . . . , 3;

XN

i¼1

λi ¼ 1;

λi ¼ 0 if ẑ i > ẑ j, i ¼ 1, . . . ,N;
λi � 0, i ¼ 1, . . . ,N:

ð4:8Þ

From the solution of Eq. (4.8) we obtain an optimal vector of inputs (x�1j, x
�
2j, x

�
3j)

for each school j that minimizes the costs of production. We measure cost efficiency

as the ratio of minimum costs to observed expenditures:

CE Yj;Xj; ẑj
� � ¼ C�

j

Ej
: ð4:9Þ

Furthermore, given observed expenditures, we can define wasted expenditures as

the difference between observed expenditures and the minimum cost of producing

the observed outcomes:

W Yj;Xj; ẑj
� � ¼ Ej � C�

j , ð4:10Þ

which arises from technical and allocative inefficiency. Given the technical and

cost efficiency measures DI
V Yj;Xj; ẑj
� �

and CE Yj;Xj; ẑj
� �

we obtain a measure of

allocative efficiency via the Farrell decomposition as:

AE Yj;Xj; ẑj
� � ¼ CE Yj;Xj; ẑj

� �

DI
V Yj;Xj; ẑj
� � : ð4:11Þ

We obtain the minimum cost of producing the observed output assuming the

most favorable environment by solving the following linear program for each

school j:
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C��
j ¼ min

X3

m¼1

pmjxm

subject to
XN

i¼1

λiysi � ysj, s ¼ 1, . . . , 2;

XN

i¼1

λixmi � xm, m ¼ 1, . . . , 3;

XN

i¼1

λi ¼ 1;

λi � 0, i ¼ 1, . . . ,N:

ð4:12Þ

For this chapter, we define environmental costs as the difference between the

minimum cost of production with and without controlling for the environment:

Environmental Costs ¼ C��
j � C�

j ð4:13Þ

In the next section, we discuss the results for the primary schools.

4.3 Adequacy in a Production Context

Given the two outcomes selected in the empirical analysis for this chapter, we now

define the adequate output levels as YA¼ (yA1 , y
A
2 ). We note that we can define the

conditional input set and the isoquant associated with these outcome levels. For

adequacy considerations, we are concerned with feasible projections not to the

observed output isoquant but to the isoquant defined by the minimally acceptable

levels. Given that we use a variable returns to scale technology conditional on the

socio-economic environment, it is possible (and probable) that we cannot determine

the minimum inputs and spending necessary to achieve adequacy. This will arise

for schools with the harsher environments if there is a minimum environment

associated with adequate output levels.

Following Ruggiero (2007a, 2007b) we solve the following linear program to

determine the minimum expenditure (EA
j ) necessary to achieve the adequate out-

comes for school j:
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EA
j ¼ min E

subject to
Xn

i¼1

λiysi � yAs , s ¼ 1, 2;

Xn

i¼1

λiEi � E;

Xn

i¼1

λi ¼ 1;

λi ¼ 0 if ẑ i > ẑ j, i ¼ 1, . . . ,N;
λi � 0, i ¼ 1, . . . , n:

ð4:14Þ

We observe that we control for the environment using the aggregated index ẑ j
calculated in the second stage regression. As shown, the model extends the basic

DEA model by including the predefined adequate output levels instead of the

observed levels in the output constraints.

We illustrate the estimation of the expenditures necessary to achieve the ade-

quate outcomes in Fig. 4.1. Here we assume that five schools produce one outcome

y1 subject to two different operating environments. Schools A–C face the more

favorable environment ẑ 1 > ẑ 0ð Þ and can therefore produce their outcomes at lower

cost (C�
A <C�

D) than schools D, F and G can. The adequate level yA1 of the outcome

is also illustrated. We observe that schools A and D are not producing the adequate

level because spending levels are insufficient. The solution to programming model

(4.14) reveals that A would need to increase spending per pupil to E1 in order to

y1

A

B

yA
1

D

C
F

E0

E1

E C*
D C*

A

G

Fig. 4.1 Adequate

expenditures
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achieve the adequate outcome level. Schools D, F and G need to spend more

(E0>E1) given the harsher environment.

We also note that schools F and G, both of which face the harsher environment,

are producing outcome levels at or above the adequate level. School G is observed

to be inefficient, producing the adequate level of the outcome but doing so above

minimum cost. Given the assumptions about resource prices, the excess spending

observed for school G results from technical inefficiency. School F spends more

than the minimum level but this is explained by production above the adequate

level. The resulting policy implications are clear. Some schools (like A and D) need
additional resources to meet the policy objective of meeting minimum outcome

standards. Also, schools with harsher environments need additional resources to

meet these goals. And, given that we seek minimum expenditure levels associated

with the different socio-economic conditions, we have to control for inefficiency.

We arbitrarily choose the median value of the two aggregate outcome measures as

the desired adequate levels for illustrative purposes. Future adequacy analyses of

Australian schools should identify the desired minimum standards. Based on our

assumptions, we identify the adequate outcome levels (yA1 , y
A
2 )¼ (405, 488) for the

primary schools and (yA1 , y
A
2 )¼ (522, 559) for the secondary schools.

4.4 Empirical Results

In Table 4.6 we report the results for the primary schools. Focusing on all schools,

we note that the average spending per pupil was $10,766. Based on the DEA

models, we estimate that the minimum cost of providing the observed outcomes

is only $8,651 per pupil on average, leading to excess spending of over $2,100 per

pupil. We also estimate that the cost of achieving the adequate outcome levels is

$7,703 per pupil. In addition, the average school had to pay $1,381 extra to account

for the environment. These environmental costs are estimated to be less than the

waste associated with technical and allocative efficiency. The indices suggest that

on average the primary schools are only 82.5 % cost efficient. Most of the

inefficiency is due to technical inefficiency; on average schools are only 88.8 %

efficient. Schools tend to be relatively scale efficient (96.7 %), operating close to

most productive scale size. Further, schools tend to be using the relative correct of

input mix, achieving a relatively high average allocative efficiency rating of 94.5 %.

Focusing on the enrollment quintiles, we observe that the smaller schools tend to

spend more per pupil; the average school in the lowest enrollment quintile is

spending $14,127 on average, which is approximately $5,500 more per pupil than

the average school in the highest enrollment quintile. On average, these districts

need to spend twice as much than the larger schools holding outcome provision

constant. The driving factor for the environmental costs is the difference in the
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ICSEA: smaller schools are operating in less advantageous environment. However,

the differences in minimum cost are much less than the $5,500 per pupil difference

in observed spending. The smaller schools are observed wasting approximately

$4,500 per pupil; as a result, differences in average minimum costs between the

smallest and largest schools are only $1,800 per pupil. Holding outcomes at the

assumed adequate levels, we observe that the smaller schools in the lowest three

quintiles need to pay more than the two larger quintiles. We note that we were not

able to calculate adequacy results for 50 primary schools because many of the

schools with the harshest environment do not meet our adequacy standards.

We note that the larger schools tend to be more technically efficient, with the

highest quintile achieving an average technical efficiency rating of 95.4 %. The

lowest quintile has the lowest technical efficiency rating of 81.5 % on average. In

general, across all efficiency measures, we observe that smaller schools tend to be

more inefficient, not only using relatively more inputs for the given output but also

using the wrong mix of inputs given the observed input prices. The main cause of

the excess spending by the smaller schools is the larger technical inefficiency

relative to allocative efficiency.

For the secondary schools, we see similar results. We replicate the analysis in

Table 4.6 for secondary schools and report the results in Table 4.7. The average

minimum costs for all schools are nearly $11,000 per pupil, over $2,000 less than

the observed expenditures per pupil. In order to meet our adequacy standards,

schools would need to pay $9,851 per pupil on average.2 On average, the technical

efficiency of all schools is only 89.4 %. Like the primary schools, the secondary

schools tend to be scale and allocative efficient. In terms of the enrollment quintiles,

in general, we observe similar patterns. The larger schools tend to be more efficient

technically, with the average efficiency of the lower quintile only 77.2 %. The

average amount of technical efficiency increases as the quintiles increase, with the

top two quintiles being relative efficient with an average rating of approximately

96.9 %. We observe similar patterns for the scale, cost and allocative efficiency as

well. In terms of actual dollars, the smaller schools from the lowest quintile are

observed wasting over $5,000 per pupil while the larger schools average under

$800. Interestingly, the smaller schools also face the higher environmental costs,

having to spend an additional $3,000 on average due to the harsher environment. In

terms of achieving adequacy, the smaller schools need to pay over $1,000 more per

student than the larger schools.

In Tables 4.8 and 4.9 we report individual results for school 1118. In Table 4.8,

we compare the inputs, outputs, prices and efficiency results for school 1118 and the

three schools that comprise the benchmark using the technical efficiency model

under variable returns to scale.3 We note that the benchmark schools (1297, 1553

2We were unable to calculate adequacy costs for 37 secondary schools; 23 of these schools were in

the lowest enrollment quintile.
3 The inputs used in the DEA models are measured per pupil.
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and 4034) all have an aggregate nondiscretionary index ẑ that is lower than school

1118’s; as such each of these schools can serve as proper benchmarks with

environments no better than school 1118’s. This results because school 1118 has

the highest level of the ICSEA index. School 4645 has the highest weight (0.819)

and therefore has the most influence in determining the technical efficiency of

school 1118.

School 1118 is only 80.7 % technically efficient, suggesting that it could

decrease all of its inputs (measured per pupil) by nearly 20 % and still achieve

the same level of output. All benchmark schools are technically efficient. Like

school 1118, school 1553 is the only benchmark that is scale inefficient. Based on

the solutions to the linear programs, all schools are operating on the most favorable

environment.

In Table 4.9, we analyze the results of school 1118 and the two benchmark

schools (4617 and 4642) found in the solution to the cost efficiency model. We

observe that the school 1118 is not only 80.7 % technically efficient but it is also

only 95.1 % allocatively inefficient. School 1118 is primarily operating off the

frontier but is also choosing the wrong mix of inputs. The overall amount of waste is

over $2,500 per pupil. Both of the benchmark schools (4617 and 4645) are

technically, scale and allocatively efficient and have environments that are worse

than school 1118’s. Both of the benchmark schools are larger and the primary

Table 4.8 Technical efficiency analysis of school 1118

Benchmark schools

1118 1297 1553 4034

Weight – 0.164 0.018 0.819

x1 10.65 4.54 4.54 23.00

x2 2.02 1.71 1.61 3.48

x3 $507,977 $300,043 $258,548 $1,012,959

y1 414.20 423.00 382.40 443.60

y2 507.40 499.20 488.40 526.40

z1 1,109.38 1,002.77 1,001.66 1,076.40

z2 0.048 0.049 0.059 0.051

z3 0.016 0.029 0.069 0.010

z4 0.059 0.049 0.040 0.075

Enrollment 186 103 101 493

ẑ 0.858 0.818 0.818 0.828

p1 $125,269 $151,497 $129,341 $118,580

p2 $88,661 $69,204 $77,381 $117,108

Index

Tech. efficiency 0.807 1.000 1.000 1.000

Scale efficiency 0.972 1.000 0.971 1.000

Environ. Harsh. 1.000 1.000 1.000 1.000

All calculations by authors
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benchmark school 4617 (with a weight of 0.757) has a worse index of community

socio-educational advantage but produces higher outcomes with lower per pupil

levels of the school inputs. We also note that because school 1118 and its bench-

mark schools have similar environmental harshness indices the cost of achieving

adequacy is virtually identical for all three schools.

Table 4.9 Cost efficiency analysis of school 1118

Benchmark schools

Variable 1118 4617 4642

Weight – 0.757 0.243

x1 10.65 39.80 23.00

x2 2.02 4.87 3.53

x3 $507,977 $1,371,238 $672,217

y1 414.20 424.60 420.00

y2 507.40 515.80 481.20

z1 1,109.38 1,033.2 1,019.94

z2 0.048 0.041 0.077

z3 0.016 0.016 0.041

z4 0.059 0.030 0.032

Enrollment 186 811 469

ẑ 0.858 0.854 0.838

p1 $125,269 $111,670 $92,992

p2 $88,661 $84,694 $80,538

Index

Tech. efficiency 0.807 1.000 1.000

Scale efficiency 0.972 1.000 1.000

Alloc. efficiency 0.951 1.000 1.000

Cost efficiency 0.768 1.000 1.000

Environ. Harsh. 1.000 0.969 0.993

Expenditures/costs

Observed Expend. $10,865 $7,679 $6,600

Tech. Eff. Expend. $8,768 $7,679 $6,600

Minimum costs $8,340 $7,679 $6,600

Wasted Expend. $2,525 $0 $0

Environ. costs 368 383 223

Adequacy 6,640 6,640 6,642

All calculations by authors. Expenditures and minimum costs are measured per pupil
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Chapter 5

Output-Oriented Efficiency Measures
in Australian Schools

In accordance with Chap. 4, in this chapter we apply the DEA models presented in

Chap. 3. However this chapter will focus on the output-oriented models to measure

technical and scale efficiency of the primary and secondary schools in Australia.

We will again use data from school year 2009–2010 identical to the data discussed

in Chap. 4. In the following section, we present the output-oriented models.

5.1 Empirical Output-Oriented Models

5.1.1 Indexing the Socio-Economic Environment

The model below (4.1) was applied separately to both primary and secondary

schools. We use two outputs (y1 and y2) that are produced by the three inputs

(x1, x2, and x3) under four nondiscretionary inputs (z1, z2, z3 and z4), all defined in

Table 4.1. The first stage index (FSj) for each school j is found by the solution to the
following linear program Eq. (5.1). The denotations: xij for (i¼ 1, 2, 3),

yij for (i¼ 1, 2) and zij for (i¼ 1,.., 4) represent the inputs, outputs, and

nondiscretionary variables for each school.

FSj Yj;Xj

� � ¼ max θ

subject to
Xn

i¼1

λiysi � θysj, s ¼ 1, 2;

Xn

i¼1

λixmi � xmj, m ¼ 1, 2, 3;

Xn

i¼1

λi ¼ 1;

λi � 0, i ¼ 1, . . . , n:

ð5:1Þ
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In the second stage, the following OLS regression is applied:

FSj ¼ αþ
X4

i¼1

βizij þ εj: ð5:2Þ

Depending on the socio economic measurement under examination, we will

expect either positive or negative coefficients. For the Index of Community Socio-

Educational Advantage (ICSEA), just as with the input-oriented measurements, we

will expect that this will have a positive coefficient because higher levels of this

index should lead to better outcomes. Higher values indicate more advantage,

meaning the schools with higher FSI should be expected to have a higher ICSEA.

This is opposite with the other nondiscretionary factors (percent of limited English

proficiency, percent of aboriginal students and percent of special educations). When

these measurements are higher the school’s FSI should be lower, these coefficients

should be negative (reference Table 4.3).

The regression results for both primary and secondary schools are reported

above in Tables 5.1 and 5.2, respectively. Over half (0.625) of the variation in

the FSI for the primary schools can be explained by the nondiscretionary inputs.

Table 5.1 Primary school

regression resultsa

(N¼ 1,341)

Variable Coefficient

Intercept 0.326** (0.019)

z1* 0.536** (0.018)

z2 �0.004 (0.00)

z3 0.013 (0.02)

z4 �0.191** (0.03)

R2 0.625**

All calculations by authors
a Standard errors are reported in parentheses

*Measured in 000s

** Indicates significance at the 99 % level of confidence

Table 5.2 Secondary school

regression resultsa (N¼ 371)
Variable Coefficient

Intercept 0.173** (0.049)

z1* 0.652** (0.047)

z2 0.025** (0.009)

z3 0.106*** (0.043)

z4 �0.417** (0.094)

R2 0.577**

All calculations by authors
a Standard errors are reported in parentheses

*Measured in 000s

** Indicates significance at the 99 % level of confidence

*** Indicates significance at the 95 % level of confidence
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The coefficients, aside from z3, matched our predictions; making z1, z2, and z4
economically significant. This failure to be economically significant could be

contributed to z3 being highly correlated with another environmental variable.

For the regression on the secondary schools, we found that z2 and z3 were not

economically significant, while z1 and z4 were. These insignificances could also be

contributed to a high correlation with other variables. The nondiscretionary inputs

for the secondary schools also explain slightly over half (0.577) of the variation in

the FSI.

From these results we believe that without controlling for the environment some

schools with a harsher environment will have a lower efficiency measurement than

they deserve. To solve this we created the Eq. (5.3), which will be a predicted value

of the FSI that captures the effect that the environment has on the data points. We

found the ẑ j for each school district.

ẑ j ¼ αþ
X4

i¼1

βizij: ð5:3Þ

This index will be incorporated into the DEA models to control for the environ-

ment while estimating technical and scale efficiency.

5.1.2 Technical Efficiency

While using the predicted value of z, we can now use the modeling in Eq. (5.4) to

find the technical efficiency of primary school j. This model will result in a

maximum equiproportional expansion in all the inputs consistent with observed

production conditional on the operating environment.

DI
V Yj;Xj; ẑj
� � ¼ maxθ

subject to

XN

i¼1

λiysi � θysj, s ¼ 1, 2;

XN

i¼1

λixmi � xmj, m ¼ 1, 2, 3;

XN

i¼1

λi ¼ 1;

λi ¼ 0 if ẑ i > ẑ j, i ¼ 1, . . . ,N;
λi � 0, i ¼ 1, . . . ,N:

ð5:4Þ

A ratio of the results in the models shown in Eqs. (5.1) and (5.4) will produce a

measurement of the environmental harshness, shown in Eq. (5.5).
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ESI
V Yj;Xj; zj
� � ¼ FSj Yj;Xj

� �

DI
V Yj;Xj; ẑj
� � � 1, ð5:5Þ

5.1.3 Scale Efficiency

The model in Eq. (5.6) removes the convexity constraint from the Eq. (5.4). This

allows us to project the point to the constant returns to scale isoquant, while

controlling for the ẑ variable.

DI
C Yj;Xj; ẑj
� � ¼ min θ

subject to

XN

i¼1

λiysi � ysj, s ¼ 1, 2;

XN

i¼1

λixmi � θxmj, m ¼ 1, 2, 3;

λi ¼ 0 if ẑ i > ẑ j, i ¼ 1, . . . ,N;
λi � 0, i ¼ 1, . . . ,N:

ð5:6Þ

To create the scale efficiency measurement of each school j we create a ratio of

the solutions found in models Eqs. (5.4) and (5.6). The solution to function in

Eq. (5.7) is the closeness each school is to the most productive scale size. This is

shown in the following distance function:

SEI Yj;Xj; ẑj
� � ¼ DI

C Yj;Xj; ẑj
� �

DI
V Yj;Xj; ẑj
� � : ð5:7Þ

5.2 Empirical Efficiency Results

The primary schools’ efficiency data is reported in Table 5.3. This index shows that

overall the schools are 94.6 % technically efficient and operate at a 90.1 environ-

mental harshness. Most of the inefficiency can be found in the scale efficiency

measurement where the schools operate at 89.9 % efficiency to the most productive

point. The index also shows that the quintiles grow progressively more efficient in

every measurement, showing that the harsher the environment the less efficient a

school will be.

The secondary school results are found in Table 5.4. This table shows the

secondary schools having 97.1 % technical efficiency, along with 83.1 % environ-

mental harshness. The environmental harshness is where the secondary schools lack

in efficiency the most. They operate at 89.9 % scale efficiency. Just as the primary

results show, as the quintiles increase as does the efficiency. Proving again that the

harsher environment that a school has the less efficient it will be. In Table 5.5 an

assessment of school 8288 in comparison with its benchmark school 8121 is shown.
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The inputs, outputs, prices, and efficiency measurements are shown for both schools.

School 8288 is 79.9 % efficient, but most of their inefficiency is accounted for in their

38 % scale efficiency measurement. The benchmark and their school have nearly the

same environmental harshness measurement, only differing by 0.006.

Table 5.3 Primary school efficiency resultsa

Enrollment quintiles

Variable All schools I II III IV V

Index

Technical efficiency 0.946 (0.05) 0.921 (0.07) 0.937 (0.04) 0.945 (0.04) 0.958 (0.03) 0.971 (0.03)

Scale efficiency 0.899 (0.10) 0.857 (0.12) 0.870 (0.10) 0.897 (0.09) 0.922 (0.08) 0.950 (0.058)

Environ. harshness 0.901 (0.06) 0.912 (0.06) 0.891 (0.06) 0.890 (0.06) 0.899 (0.06) 0.913 (0.06)

aMean (standard deviations) are reported. Expenditures and costs are measured per pupil. All calculations by

authors

Table 5.4 Secondary school efficiency resultsa

Enrollment quintiles

Variable All schools I II III IV V

Index

Technical efficiency 0.971 (0.03) 0.968 (0.03) 0.962 (0.03) 0.966 (0.03) 0.982 (0.03) 0.977 (0.03)

Scale efficiency 0.899 (0.12) 0.758 (0.14) 0.862 (0.07) 0.921 (0.07) 0.982 (0.02) 0.976 (0.04)

Environ. harshness 0.831 (0.08) 0.755 (0.05) 0.792 (0.05) 0.840 (0.07) 0.868 (0.07) 0.904 (0.07)

aMean (standard deviations) are reported. Expenditures and costs are measured per pupil. All calculations by

authors

Table 5.5 Technical

efficiency analysis of

school 8288

Benchmark school

8288 8121

Weight – 1.000

x1 0.18 67.90

x2 0.08 15.77

x3 $6,932 $5,307,005

y1 466.20 655.60

y2 554.20 693.80

z1 1,098.88 1,066.30

z2 1.104 0.762

z3 0.000 0.003

z4 0.000 0.000

Enrollment 211 977

ẑ 0.917 0.888

p1 $110,853 $107,860

p2 $50,070 $92,695

Index

Tech. efficiency 0.799 1.000

Scale efficiency 0.380 1.000

Environ. Harsh. 0.920 0.926

All calculations by authors
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Chapter 6

Productivity Measurement

In this chapter we extend our analysis to panel data to allow us to measure

productivity changes. We analyze shifts in the frontier with distance functions to

measure productivity. The standard decomposition of the Malmquist Productivity

Index (MPI) to measure efficiency change, technical change, and scale efficiency

change. Following Brennan, Haelermans and Ruggiero (2013), we further decom-

pose the Malmquist productivity index for public sector production characterized

by the influence of environmental variables. We derive decomposed measures of

technical, efficiency, scale, and environmental change and apply this decomposi-

tion to the 2008–2009 and 2009–2010 school years for both primary and secondary

Australian public schools. In the next sections, we redefine our technology to be

time specific and present our measures of the public sector Malmquist Productivity

Index and its components. Much of the modeling and discussion in this chapter is

borrowed from Brennan, Haelermans and Ruggiero (2013).

6.1 Technology

We extend our description of the environment to be time specific. Under the

environment characterized by index zt in time t (t¼ T, T+ 1),1 we assume that each

of n production units use a vector Xt¼ (xt1, . . ., x
t
m) of m discretionary inputs

to produce a vector Yt¼ (yt1, . . ., y
t
s) of s outputs. Data for each producer j in time

t for t¼ T, T+ 1 are given by Xt
j ¼ (xt1j, . . ., x

t
mj), Ytj ¼ (yt1j, . . ., y

t
sj) and ztj.

2

1We adopt the convention of referring to specific time periods with upper case T and T+ 1and use
lower case t to generically refer to the index value.
2 Like in the two previous chapters, we assume only one nondiscretionary input in our exposition.

In the empirical analysis we use multiple nondiscretionary inputs and employ OLS in the second

stage to derive an overall index of environmental harshness.

V. Blackburn et al., Nonparametric Estimation of Educational Production
and Costs using Data Envelopment Analysis, DOI 10.1007/978-1-4899-7469-3_6,
© Springer Science+Business Media New York 2014
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The empirical production possibility set assuming variable returns to scale defined

in time t for t¼ T,T + 1 is given by:

τ tV ztð Þ ¼ ��
Yt,Xt, zt

�
:
Xn

i¼1

λiy
t
si � y ts , s ¼ 1, . . . , S;

Xn

i¼1

λix
t
mi � x tm, m ¼ 1, . . . ,M;

Xn

i¼1

λn ¼ 1;

λi ¼ 0 if z ti > zt, i ¼ 1, . . . ,N;

λi � 0, i ¼ 1, . . . ,N
�
:

ð6:1Þ

The technology is the same as the technology defined in Chap. 3 for a given time

period; in addition to variable returns to scale, the technology is conditional on the

level of the nondiscretionary input observed in time t. We continue assuming a

higher value of z implies a more favorable environment. By removing the convexity

constraint from Eq. (6.1) we are able to define the technology in each time period

t (t¼ T, T+ 1) under constant returns to scale. Equation (6.2) shows the CRS

technology:

τ tC ztð Þ ¼ ��
Yt,Xt, zt

�
:
Xn

i¼1

λiy
t
si � y ts , s ¼ 1, . . . , S;

Xn

i¼1

λix
t
mi � x tm, m ¼ 1, . . . ,M;

λi ¼ 0 if z ti > zt, i ¼ 1, . . . ,N;

λi � 0, i ¼ 1, . . . ,N
�
:

ð6:2Þ

We illustrate the VRS Eq. (6.1) and CRS Eq. (6.2) technologies in Fig. 6.1 where

we assume only one discretionary input is used in the production of the one output.3

For simplicity we also only show data point A in each time period T and T + 1,
denoted as AT and AT+ 1, respectively. We employ two vertical axes for clarity

purposes. Additionally, we show two levels (ztA and ztB) of the environmental

variable z in time t with ztA < ztB for t (t¼ T, T+ 1). The ztA and ztþ 1
A represent the

observed levels of the environmental variable for producer A, which faces a harsher
environment than producer B. We observe four variable returns to scale frontiers in

Fig. 6.1 associated with technologies τTV(z
T
A) and τTV(z

T
B) in time T and technologies

τTþ 1
V (zTþ 1

A ) and τTþ 1
V (zTþ 1

B ) in time period T + 1 for the two different observed

3 This figure is borrowed from Brennan, Haelermans and Ruggiero (2013).
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levels of z. We also represent the associated CRS frontiers τTC(z
T
A), τ

T
C

(zTB), τ
Tþ 1
C (zTþ 1

A ) and τTþ 1
C (zTþ 1

B ) with dashed lines.

We also define the best-practice technologies for the units facing the most favorable

environment, i.e., the unconditional technology that does not depend on the

nondiscretionary index. For time period t (t¼ T,T+1) under variable returns to scale:

τ tV ¼ �
Yt;Xtð Þ :

Xn

i¼1

λiy
t
si � y ts , s ¼ 1, . . . , S;

Xn

i¼1

λix
t
mi � x tm, m ¼ 1, . . . ,M;

Xn

i¼1

λi ¼ 1;

λi � 0, i ¼ 1, . . . ,N
�

ð6:3Þ

Fig. 6.1 VRS and CRS technologies across time. Reprinted from European Journal of Operational

Research, 234/3, Brennan, Shae, Carla Haelermans, John Ruggiero, Nonparametric Estimation of

Education Productivity Incorporating Nondiscretionary Inputs with an Application to Dutch

Schools, page 809–818, 2014, with permission from Elsevier
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and under constant returns to scale:

τ tC ¼ �
Yt;Xtð Þ :

Xn

i¼1

λiy
t
si � y ts , s ¼ 1, . . . , S;

Xn

i¼1

λix
t
mi � x tm, m ¼ 1, . . . ,M;

λi � 0, i ¼ 1, . . . ,N
�
:

ð6:4Þ

These technologies provide the reference to project a given production possibil-

ity assuming the unit has the most favorable environment. In Fig. 6.1, we assume

that τtV ¼ τtV(z
t
B) and τtC ¼ τtC(z

t
B) for t¼ T,T + 1.

6.2 Malmquist Productivity Index

Productivity has a long history in the economic literature; measurement using

parametric estimation of distance functions was provided by Caves et al. (1982).

This was extended using nonparametric estimation by Färe et al. (1992). The

nonparametric method allowed a further decomposition of the Malmquist Produc-

tivity Index (MPI) to analyze productivity in terms of changes in technical and scale

efficiency and actual technical progress. Separating Malmquist productivity into the

three components using the DEA approach was achieved by Fare and Grosskopf

(1992), Färe et al. (1992, 1994) and Ray and Desli (1997) using an output orien-

tation allowing variable returns to scale. Johnson and Ruggiero (2011) provided a

decomposition assuming constant returns to scale useful for the public sector that

measures how changes in the nondiscretionary operating environment impacts

productivity. Brennan, Haelermans and Ruggiero (2013) extended the public sector

decomposition to include the change in scale efficiency component. Johnson and

Ruggiero’s Environmental Malmquist Productivity Index (EMPI) is estimated

using distance functions for producer j as:

EMPI YTþ1
j ;XTþ1

j ; zTþ1
j ; Y T

j ;X
T
j ; z

T
j

� �
¼

DT
C YTþ1

j ;XTþ1
j ; zTþ1

j

� �

DT
C Y T

j ;X
T
j ; z

T
j

� �
DTþ1

C YTþ1
j ;XTþ1

j ; zTþ1
j

� �

DTþ1
C Y T

j ;X
T
j ; z

T
j

� �

2

64

3

75

1
2

:

ð6:5Þ

All distance functions in Eq. (6.5) project to the constant returns to scale

technologies defined in Eq. (6.2). We follow convention and use the geometric

mean to avoid arbitrarily choosing a particular year as the benchmark technology.

Following Brennan, Haelermans and Ruggiero (2013) the productivity index in

Eq. (6.5) can be decomposed as:
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EMPI YTþ1
j ;XTþ1

j ; zTþ1
j ; Y T

j ;X
T
j ; z

T
j

� �
¼

DTþ1
V YTþ1

j ;XTþ1
j ; zTþ1

j

� �

DT
V Y T

j ;X
T
j ; z

T
j

� �

x
DT

V Y T
j ;X

T
j ; z

T
j

� �

DTþ1
V Y T

j ;X
T
j ; z

T
j

� �
DT

V YTþ1
j ;XTþ1

j ; zTþ1
j

� �

DTþ1
V YTþ1

j ;XTþ1
j ; zTþ1

j

� �

2

64

3

75

1
2

x
SET YTþ1

j ;XTþ1
j ; zTþ1

j

� �

SET Y T
j ;X

T
j ; z

T
j

� �
SETþ1 YTþ1

j ;XTþ1
j ; zTþ1

j

� �

SETþ1 Y T
j ;X

T
j ; z

T
j

� �

2

64

3

75

1
2

:

ð6:6Þ

This productivity index consists of the product of three terms:

Technical Efficiency Change ¼
DTþ1

V YTþ1
j ;XTþ1

j ; zTþ1
j

� �

DT
V Y T

j ;X
T
j ; z

T
j

� � ; ð6:7Þ

Technical Change ¼
DT

V Y T
j ;X

T
j ; z

T
j

� �

DTþ1
V Y T

j ;X
T
j ; z

T
j

� �
DT

V YTþ1
j ;XTþ1

j ; zTþ1
j

� �

DTþ1
V YTþ1

j ;XTþ1
j ; zTþ1

j

� �

2

64

3

75

1
2

; ð6:8Þ

and

Scale Efficiency Change ¼
SET YTþ1

j ;XTþ1
j ; zTþ1

j

� �

SET Y T
j ;X

T
j ; z

T
j

� �
SETþ1 YTþ1

j ;XTþ1
j ; zTþ1

j

� �

SETþ1 Y T
j ;X

T
j ; z

T
j

� �

2

64

3

75

1
2

:

ð6:9Þ

Similar to Eq. (6.5) we use geometric means for the scale and technical change

measurements to avoid arbitrarily choosing the time period or reference

technology.

6.3 Technical Efficiency Change

The first component of the productivity index in Eq. (6.5) is the change in technical

efficiency Eq. (6.7). Technical efficiency measures have already been defined in the

previous chapters. Here, we will include definitions of the distance functions used

to incorporate the time period references. We exclusively focus on output-oriented

projections in this chapter.
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Definition. Dt
V(Y

t
j,X

t
j, z

t
j)¼ (max{θ : (θYtj,X

t
j, z

t
j) ∈ τtV(z

t
j)})

� 1 � 1 is the output-

orientedmeasure of technical efficiency for (Xt
j, Y

t
j, z

t
j) ∈ τtV(z

t
j) in time t (t¼ T,T + 1).

For each producer j in time t (t¼ T,T+ 1) we solve the following linear pro-

gramming model to obtain the measure of technical efficiency:4

Dt
V Y t

j ;X
t
j ; z

t
j

� ��1

¼ Max θ
s:t:

Xn

i¼1

λiy
t
ki
� θy tkj, k ¼ 1, . . . , s;

Xn

i¼1

λix
t
li � x tlj, l ¼ 1, . . . ,m;

Xn

i¼1

λi ¼ 1;

λi ¼ 0 if z ti > z tj , i ¼ 1, . . . , n;
λi � 0, i ¼ 1, . . . , n:

ð6:10Þ

Returning to Fig. 6.1, we find the technical efficiency of A in time T

DT
V Y T

A ;X
T
A ; z

T
A

� � ¼ a
b and in time T + 1 DTþ1

V YTþ1
A ;XTþ1

A ; zTþ1
A

� � ¼ l
m : The change

in technical efficiency is then given as the ratio
DTþ1

V YTþ1
A ;XTþ1

A ; zTþ1
A

� �

DT
V Y T

A ;X
T
A ; z

T
A

� � ¼ l

m

b

a
:

If the change in technical efficiency is greater (less) than unity, the unit became

more (less) efficient and hence, more (less) productive.

6.4 Cross-Period Distance Functions

Before we turn to the technical and scale efficiency components of productivity, we

first define the cross-period projections that are used in the calculation of both.5

We are required to project the DMUs input-output combination in one period to the

frontier in the other period. The cross-period projections are defined with the

following distance functions:

4 For each time period, model 6.10 is the same as model 3.11. The SAS code for estimation is

provided in Chap. 3.
5 Infeasibility can arise when projecting a given data point to the VRS technology in a different

period. We report our results only for those units where cross-period projections are feasible. In

addition, we only consider the shifts in the VRS frontiers for the technical change calculations.
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Dt
V Y u

j ;X
u
j ; z

u
j

� �
¼ max θ : θY u

j ,X
u
j , z

u
j

� �
∈ τ tV zuj

� �n o� ��1

for t, u ¼ T, T þ 1 and t 6¼ u;

Dt
C Y u

j ;X
u
j ; z

u
j

� �
¼ max θ : θY u

j ,X
u
j , z

u
j

� �
∈ τ tC zuj

� �n o� ��1

for t, u ¼ T, T þ 1 and t 6¼ u;

Dt
V Y u

j ;X
u
j

� �
¼ �

max
�
θ : θY u

j ,X
u
j

� �
∈ τ tV

����1 for t, u ¼ T, T þ 1 and t 6¼ u;

and

Dt
C Y u

j ;X
u
j

� �
¼ �

max
�
θ : θY u

j ,X
u
j

� �
∈ τ tC

����1 for t, u ¼ T, T þ 1 and t 6¼ u:

The linear programming formulations associated with these eight distance func-

tions for producer j in time t, u¼ T,T + 1 and t 6¼ u are as follows:

Dt
V Y u

j ;X
u
j ; z

u
j

� �h i�1

¼ Max θ

s:t:
Xn

i¼1

λiy
t
ki
� θyukj, k ¼ 1, . . . , s;

Xn

i¼1

λix
t
li � xulj , l ¼ 1, . . . ,m;

Xn

i¼1

λi ¼ 1;

λi ¼ 0 if z ti > zuj , i ¼ 1, . . . , n;

λi � 0, i ¼ 1, . . . , n;

ð6:11Þ

Dt
C Y u

j ;X
u
j ; z

u
j

� �h i�1

¼ Max θ

s:t:
Xn

i¼1

λiy
t
ki
� θyukj, k ¼ 1, . . . , s;

Xn

i¼1

λix
t
li � xulj , l ¼ 1, . . . ,m;

λi ¼ 0 if z ti > zuj , i ¼ 1, . . . , n;

λi � 0, i ¼ 1, . . . , n;

ð6:12Þ
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Dt
V Y u

j ;X
u
j

� �h i�1

¼ Max θ

s:t:
Xn

i¼1

λiy
t
ki
� θyukj, k ¼ 1, . . . , s;

Xn

i¼1

λix
t
li � xulj , l ¼ 1, . . . ,m;

Xn

i¼1

λi ¼ 1;

λi � 0, i ¼ 1, . . . , n;

ð6:13Þ

and

Dt
C Y u

j ;X
u
j

� �h i�1

¼ Max θ

s:t:
Xn

i¼1

λiy
t
ki
� θyukj, k ¼ 1, . . . , s;

Xn

i¼1

λix
t
li � xulj , l ¼ 1, . . . ,m;

λi � 0, i ¼ 1, . . . , n:

ð6:14Þ

The first two sets of distance functions (Eqs. (6.11) and (6.12)) project a given

point in one time period to the frontier conditional on the environment in the other

time period. The last two sets of distance functions (Eqs. (6.13) and (6.14)) project

each point to the other time period’s unconditional frontier. Referring to Fig. 6.1,

we observe:

DTþ1
V Y T

A ;X
T
A ; z

T
A

� � ¼ a

f

DT
V YTþ1

A ;XTþ1
A ; zTþ1

A

� � ¼ l

j

DTþ1
C Y T

A ;X
T
A ; z

T
A

� � ¼ a

g

DT
C YTþ1

A ;XTþ1
A ; zTþ1

A

� � ¼ l

k

DTþ1
V Y T

A ;X
T
A

� � ¼ a

h

DT
V YTþ1

A ;XTþ1
A

� � ¼ l

m

DTþ1
C Y T

A ;X
T
A

� � ¼ a

i

DT
C YTþ1

A ;XTþ1
A

� � ¼ l

o
:
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These measures are used in the technical change Eq. (6.8) and scale efficiency

change Eq. (6.9) components of the productivity index. We now focus on the

technical change measure.

6.5 Technical Change

Technical change measures the shift in the production frontier across time. Recog-

nizing that frontier production is conditional on the environment, we can define

technical change similar to Fare and Grosskopf (1992) as the ratio of distance

functions:

Definition. TCV Y u
j ;X

u
j ; z

u
j

� �
¼

DT
V Y u

j ;X
u
j ; z

u
j

� �

DTþ1
V Y u

j ;X
u
j ; z

u
j

� � measures technical change for

producer j observed in time u (u¼ T,T+ 1) under variable returns to scale.

For producer A in Fig. 6.1, we observe TCV yTA ; x
T
A ; z

T
A

� � ¼ f
b > 1 and

TCV yTþ1
A ; xTþ1

A ; zTþ1
A

� � ¼ n
j > 1. In our stylistic example, producer A experiences

technical progress for the data point observed in both time periods. Using the

geometric mean, we obtain the technical change component defined in Eq. (6.8).

For producer A we observe:

Technical Change ¼ DT
V Y T

A ;X
T
A ; z

T
A

� �

DTþ1
V Y T

A ;X
T
A ; z

T
A

� �
DT

V YTþ1
A ;XTþ1

A ; zTþ1
A

� �

DTþ1
V YTþ1

A ;XTþ1
A ; zTþ1

A

� �

2

4

3

5

1
2

¼ f
b
n
j

� 	1
2

> 1:

The measure indicates that producer A experienced an improvement in pro-

ductivity due to the expansion of its frontier from T to T + 1. Brennan, Haelermans

and Ruggiero (2013) provided a further decomposition of the technical change

component to include the influence of the environment. In order to do so, we

redefine the unconditional distance functions defined in Chap. 3 to include time

references.

Definition. Dt
V Y t

j ;X
t
j

� �
¼ max θ : θY t

j ,X
t
j

� �
∈ τ̂ t

V

n o� ��1

is the output-oriented

distance function projecting (Xt
j,Y

t
j, z

t
j) to the boundary of τtV in time t (t¼ T,T + 1).

The following linear programming model provides an empirical estimate of the

above distance function for producer j in time t (t¼ T, T+ 1):
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Dt
V Y t

j ;X
t
j

� �h i�1

¼ Max θ
s:t:

Xn

i¼1

λiy
k
ki
� θy tkj, k ¼ 1, . . . , s;

Xn

i¼1

λix
t
li � x tlj, l ¼ 1, . . . ,m;

Xn

i¼1

λi ¼ 1;

λi � 0, i ¼ 1, . . . , n:

ð6:14Þ

Referring to Fig. 6.1, we find DT
V yTA ; x

T
A

� � ¼ a
d and DTþ1

V yTþ1
A ; xTþ1

A

� � ¼ l
q.

Recalling our definition for environmental scale, for each time period t (t¼ T,T + 1)
we can measure environmental harshness for each producer j as

Et
V Y t

j ;X
t
j ; z

t
j

� �
¼ D t

V Y t
j ;X

t
jð Þ

D t
V Y t

j ;X
t
j ;z

t
jð Þ. Returning to Fig. 6.1, we observe ET

V yTA ; x
T
A ; z

T
A

� �

¼ b
d and ETþ1

V yTþ1
A ; xTþ1

A ; zTþ1
A

� � ¼ n
q. These measures capture the distance

between the conditional and unconditional frontiers for each time period and

represent the reduction in output that results from not having the most favorable

environment ceteris paribus.
The Brennan, Haelermans and Ruggiero (2013) decomposition of the technical

change component Eq. (6.8) is given as:

Technical Change ¼
DT

V Y T
j ;X

T
j ; z

T
j

� �

DTþ1
V Y T

j ;X
T
j ; z

T
j

� �
DT

V YTþ1
j ;XTþ1

j ; zTþ1
j

� �

DTþ1
V YTþ1

j ;XTþ1
j ; zTþ1

j

� �

2
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3

75

1
2

¼
DT

V Y T
j ;X

T
j

� �

DTþ1
V Y T

j ;X
T
j

� �
DT

V YTþ1
j ;XTþ1

j

� �
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V YTþ1

j ;XTþ1
j

� �

2
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3

75

1
2

x
ETþ1
V Y T

j ;X
T
j ; z

T
j

� �

ET
V Y T

j ;X
T
j ; z

T
j

� �
ETþ1
V YTþ1

j ;XTþ1
j ; zTþ1

j

� �

ET
V YTþ1

j ;XTþ1
j ; zTþ1

j

� �

2

64

3

75

1
2

:

ð6:15Þ

Technical change has two components according to Eq. (6.15):

Technical Change MFE ¼
DT

V Y T
j ;X

T
j

� �

DTþ1
V Y T

j ;X
T
j

� �
DT

V YTþ1
j ;XTþ1

j

� �

DTþ1
V YTþ1

j ;XTþ1
j

� �

2

64

3

75

1
2

; ð6:16Þ

134 6 Productivity Measurement



and

Change in Environmental Harshness ¼
ETþ1
V Y T

j ;X
T
j ; z

T
j

� �

ET
V Y T

j ;X
T
j ; z

T
j

� �
ETþ1
V YTþ1

j ;XTþ1
j ; zTþ1

j

� �

ET
V YTþ1

j ;XTþ1
j ; zTþ1

j

� �

2

64

3

75

1
2

:

ð6:17Þ

Consider producer A in Fig. 6.1. For the technical change assuming the most

favorable environment, we observe
DT

V Y T
A ;X

T
A

� �

DTþ1
V Y T

A ;X
T
A

� � ¼ h

d
, which indicates the

increase in output that was possible for producer A’s discretionary input-output

(in time T) combination resulting from the shift in the technology across time under

the assumption that A had the most favorable environment. Using the observed

point in time T + 1 instead, we find
DT

V YTþ1
j ;XTþ1

j

� �

DTþ1
V YTþ1

j ;XTþ1
j

� � ¼ q

m
. For the change in

environmental harshness, we observe
ETþ1
V Y T

A ;X
T
A ; z

T
A

� �

ET
V Y T

A ;X
T
A ; z

T
A

� � ¼
f=
h

b=
d

. This measure reveals

the degree to which the percentage shortfall in output due to the environment has

changed using producer A’s data from time period T. If
ETþ1
V Y T

A ;X
T
A ; z

T
A

� �

ET
V Y T

A ;X
T
A ; z

T
A

� � > 1,

then the adverse effect of the environment on A’s production has decreased from

T to T + 1 using the discretionary input level from time T. We also observe

ETþ1
V YTþ1

A ;XTþ1
A ; zTþ1

A

� �

ET
V YTþ1

A ;XTþ1
A ; zTþ1

A

� � ¼
n=q

j=
m

. If this measure is less than unity, than the environ-

ment has a larger adverse impact on A’s production using the data from time

period T + 1.

6.6 Scale Efficiency Change

The last component in the productivity index Eq. (6.5) is the change in scale

efficiency Eq. (6.9). Extending our discussion from Chaps. 2 and 3, we include

superscripts to represent each period under analysis and define the composed

measure of technical and scale efficiency as the distance function from a given

production possibility to the constant returns to scale technology conditional on the

nondiscretionary index defined in Eq. (6.2):

Definition. Dt
C(Y

t
j,X

t
j, z

t
j)¼ (max{θ : (θYtj,X

t
j, z

t
j) ∈ TtC(z

t
j)})

� 1 is the output-

oriented measure of technical and scale efficiency for (Xt
j,Y

t
j, z

t
j) ∈ TtC(z

t
j) in time

t (t¼ T, T+ 1).
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The following linear programming provides an estimate of technical and scale

efficiency for producer j in time t (t¼ T,T + 1):

Dt
C Y t

j ;X
t
j ; z

t
j

� �h i�1

¼ Max θ

s:t:
Xn

i¼1

λiy
t
ki
� θy tkj, k ¼ 1, . . . , s;

Xn

i¼1

λix
t
li � x tlj, l ¼ 1, . . . ,m;

λi ¼ 0 if z ti > z tj , i ¼ 1, . . . , n;

λi � 0, i ¼ 1, . . . , n:

ð6:18Þ

For each period t, we obtain the measure of scale efficiency as the ratio of the

distance function projecting the unit to the VRS frontier and the distance function

projecting the unit to the CRS frontier.

Definition. SEt Y t
j ;X

t
j ; z

t
j

� �
¼ D t

C Y t
j ;X

t
j ;z

t
jð Þ

D t
V Y t

j ;X
t
j ;z

t
jð Þ � 1 is the scale efficiency for

(Xt
j, Y

t
j, z

t
j) in time period t.

In Fig. 6.1 we observe SET yTA ; x
T
A ; z

T
A

� � ¼ b
c in time T and

SETþ1 yTþ1
A ; xTþ1

A ; zTþ1
A

� � ¼ n
o in time T + 1. The scale efficiency measures are

less than unity because producer A is not operating at most productive scale

size in either time period. To compute the change in scale efficiency we also

need to define the scale efficiency of each observation relative to the technology

in the other period. From Eqs. (6.11) and (6.12), we obtain SET yTþ1
A ; xTþ1

A ; zTþ1
A

� �

¼ j

k
and SETþ1 yTA ; x

T
A ; z

T
A

� � ¼ d

e
. Using the technology in time period T we

observe
SET yTþ1

A ; xTþ1
A ; zTþ1

A

� �

SET yTA ; x
T
A ; z

T
A

� � ¼ j

k

c

b
. If this measure is greater than unity,

A has chosen an input level that is closer to most productive scale size and

hence, more scale efficient. Based on Fig. 6.1 it appears that the measure is less

than unity since A moved farther away from the most productive scale size.

Using the technology in time period T+ 1 we have
SETþ1 yTþ1

A ; xTþ1
A ; zTþ1

A

� �

SETþ1 yTA ; x
T
A ; z

T
A

� � ¼
n

o

e

d
. Using this benchmark technology, it appears that there is no change in scale

efficiency. This results because the most productive scale size in time T + 1
occurs at a higher input level. Using the geometric mean, we conclude that

A has improved its scale efficiency.
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We conclude by noting that the overall public sector productivity index (EMPI)
consists of the following components: technical efficiency change, technical change

assuming the most favorable environment, change in environmental harshness, and

scale efficiency change. In the next section, we apply our measure to primary and

secondary Australian schools using data from the 2008–2009 and 2009–2010

school years.

6.7 Application to Australian Schools

The data for this chapter’s empirical analysis was described in Chap. 4. We measure

the overall productivity index and its components using the variables defined

Table 4.1. For the primary (secondary) schools, we use average third and fifth

(seventh and ninth) grade scores on five tests: Reading, Writing, Spelling, Grammar

and Numeracy. For both types of schools, we use full-time equivalent teachers and

support staff and other expenses as our three discretionary inputs. We also use four

nondiscretionary inputs: Index of Community Socio-Educational Advantage, per-

cent of limited English proficiency, percent of Aboriginal students and the percent

of special education students. Given the multiple nondiscretionary inputs, we

construct an overall index using the multiple-stage model defined in Chap. 3.

Descriptive statistics for the 2009–2010 school years for the variables used in

this analysis are reported in Tables 4.2 (primary schools) and 4.3 (secondary

schools). We report the descriptive statistics for the relevant variables for each

school year for both primary and secondary schools in Tables 6.1. The second-stage

regressions for the 2009–2010 school year were reported in Tables 5.1 (primary

schools) and 5.2 (secondary schools).6

Table 6.1 Descriptive statisticsa

Primary schools (N¼ 1,341) Secondary schools (N¼ 371)

Variable 2008–2009 2009–2010 2008–2009 2009–2010

y1 400.2 (69.9) 397.9 (69.2) 529.8 (42.7) 530.9 (42.3)

y2 479.5 (81.2) 479.6 (76.7) 570.5 (64.2) 566.4 (40.8)

x1 0.061 (0.01) 0.061 (0.01) 0.081 (0.02) 0.082 (0.02)

x2 0.014 (0.01) 0.014 (0.01) 0.018 (0.01) 0.018 (0.01)

x3 3,124.8 (1,440.8) 2,913.0 (1,412.2) 3,568.2 (2,734.2) 3,407.8 (2,214.7)

z1 0.840 (0.05) 0.852 (0.05) 0.789 (0.06) 0.807 (0.06)

Enrollment 309.40 (196.1) 310.67 (198.9) 773.70 (295.25) 776.23 (301.2)
aMean (standard deviations) are reported. Discretionary inputs are measured per student.

We report the aggregate nondiscretionary factor obtained from the second stage regression

6We use the second-stage regressions from the output oriented models (Chap. 5). The regressions

are similar for both years and omit them from our empirical analysis. We also note that the overall

indexes are highly correlated across years. This allows us to use the aggregated index across time

periods.
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The main results of our productivity analysis are reported in Tables 6.2 and 6.3

for the primary and secondary schools, respectively. We note that we do not obtain

results for approximately 15 % (206) of the primary schools and approximately

26 % (96) of the secondary schools due to infeasibilities from the variable returns to

scale cross-period programming models. For the primary and secondary schools,

we report the average results for all schools and for three categories of the

environment defined by the aggregate measure of the nondiscretionary input

(school year 2009–2010).

Focusing on the primary schools in Table 6.2, we observe that on average,

productivity increased by 2.7 % from 2008–2009 to 2009–2010. The average

productivity results for schools facing harsh to moderate environments were even

higher (approximately 3.7 % improvement in productivity.) And, on average, the

schools with the most favorable environment saw an improvement in productivity

of about 1.3 %. On average, all schools (and in each environmental harshness

category) became relatively less technically efficient. The improvement in primary

school productivity arises from technical change; on average schools are able to

realize an increase in output by approximately 3 % due to the shift in the technol-

ogy. This pattern of technical progress is observed across environmental harshness

Table 6.3 Average productivity results for secondary schools

Classification of environment

All schools Harsh Moderate Favorable

Number of schools 275 91 92 92

EMPI 1.034 1.041 1.035 1.027

Efficiency change 0.978 0.986 0.995 0.953

Technical change 1.045 1.031 1.024 1.081

Technical change MFE 1.019 1.025 1.023 1.010

Change in Env. HARSHNESS 1.026 1.005 1.001 1.070

Scale efficiency change 1.013 1.023 1.017 0.999

All calculations by authors. Schools are classified in the last three columns according to the

aggregate nondiscretionary factor from the 2009–2010 school year

Table 6.2 Average productivity results for primary schools

Classification of environment

All schools Harsh Moderate Favorable

Number of schools 1,135 378 379 378

EMPI 1.027 1.036 1.032 1.013

Efficiency change 0.988 0.979 0.996 0.989

Technical change 1.029 1.037 1.022 1.028

Technical change MFE 1.017 1.022 1.016 1.012

Change in Env. harshness 1.012 1.015 1.006 1.016

Scale efficiency change 1.010 1.019 1.014 0.997

All calculations by authors. Schools are classified in the last three columns according to the

aggregate nondiscretionary factor from the 2009–2010 school year
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categories. The results also indicate that the environment had less of adverse impact

in 2009–2010 than in 2008–2009 on average for all environmental harshness

categories. Finally, we note a small improvement in productivity for the harshest

and moderate classifications due to a movement closer to most productive scale

size. On average, the schools with the most favorable environment did not see an

improvement towards efficient scale size.

The results for the secondary schools are similar. On average, secondary schools

saw an increase in productivity of about 3.7 %. Schools with the harshest environ-

ment had the highest gains (4.1 %) while the schools with the most favorable

environment saw an improvement of only 2.7 %. On average, and across classifi-

cations, the Australian schools became less technically efficient. However, the

schools with the harsh to moderate environments tended to move closer to the

most productive scale size. In addition, technical change is the component that

tends to explain the improvement in productivity. Overall, secondary schools (like

the primary schools) are experiencing technical progress, less of an impact of the

environment and a movement closer to most productive scale size.

We report illustrative results for three randomly chosen secondary schools in

Table 6.4. School 8129 has a relatively harsh environment with an aggregate

nondiscretionary input (0.779) in the 40th percentile. The school realized an

improvement in productivity of 8.6 %. An analysis of the components reveals

that this school’s productivity improvements were achieved primarily by becoming

more scale efficient. In addition, the school experienced technical progress but did

not see any real improvements in technical efficiency nor in environmental harsh-

ness. School 8142 realized a 3 % increase in productivity, primarily due to an

improvement in its technical efficiency. This school operates in a better socioeco-

nomic environment than school 8129 with an aggregate nondiscretionary input

level (0.803) in the 60th percentile. Finally, school 8225 had relatively the most

favorable environment of the three with an aggregate index (0.854) in the 84th

percentile. This school had a large increase in productivity (17.2 %) arising from a

large improvement in technical and scale efficiency while experience technical

progress largely due to an improvement in the environmental harshness.

Table 6.4 Illustrative results School

8129 8142 8225

EMPI 1.086 1.030 1.172

Efficiency change 1.000 1.032 1.082

Technical change 1.016 1.000 1.041

Technical change MFE 1.011 1.018 0.994

Change in Env. harshness 1.006 0.983 1.047

Scale efficiency change 1.069 0.997 1.041

All calculations by authors
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Färe, R., 2, 3, 11–14, 43, 128, 133

Farrell, M.J., 2, 11, 12, 15, 23, 43, 44, 56, 61,

62, 84

conditional technology, 62

decomposition, 2, 84, 109

efficiency, 2

production possibilities, 56

Fieldhouse, M., 2, 11

G
Geske, T., 1

Grosskopf, S., 2, 3, 11, 128, 133

H
Haelermans, C., 5, 52, 125–128, 133, 134

Hanushek, E., 1

Hayes, K., 2

I
ICSEA. See Index of Community Socio-

Educational Advantage (ICSEA)

Index of Community Socio-Educational

Advantage (ICSEA)

discretionary inputs, 105

percent, students, 102

scale measure, 106

smaller schools, 114

Inefficiency

allocative, 44, 109

benchmark, 116

cost, 44

decomposition, 11

public sector

benchmarks, 61

DMU 5, 58

Farrell decomposition, 84

isoquant, 62

output-oriented projection, 77, 78

resource prices, 112

scale, 29

technical, 27, 29, 44, 45, 112

Index 147



Input-orientation, public sector

scale efficiency

benchmarks, 70

CRS, 68

discretionary inputs and outputs,69

DMU, 69

empirical production possibility, 68, 70

environmental scale measures, 70

harsher environment, 76

returns to scale, 68

SAS output, 75

VRS technology, 68

technical efficiency

benchmarks, 57, 61

conditional input, 61

convex combination, 58

DMU, 56

environmental harshness, 57

Farrell measure, 61

isoquant, 62

linear programming model, 56

production possibilities, 56

SAS code, 58

Input-oriented efficiency

allocative, 108–110

cost efficiency analysis, 116, 117

DEA models, 101

educational costs, 10

ICSEA, 102, 105

isoquant association, 11

NSW, 101

and output-oriented, 9

predefined adequacy standards, 101

primary school, 102, 103, 112, 113

SASS, 102

scale efficiency measurement, 28–36

secondary school, 102, 104, 114, 115

socio-economic environment, 105–107

systematic improvements, 10

technical, 107–108

technical efficiency measurement, 15–23

variable description, 102

Input set

definition, 12

and isoquant, 13, 110

piecewise linear, 13, 14

public sector, 53, 54

Isocost, 43–44,, 85

Isoquant

aggregated index, 108

definition, 110

feasible and infeasible production, 13

and input requirement sets, 12–13

linear, 2

and output set, 14–15

piecewise linear unit, 21

production, 2

public sector

conditional input set, 53, 54

environment, 62

output sets, 55

scale, 122

technical and allocative components, 2

J
Johnson, A., 5, 51, 128

Judd, C., 1

K
Kennington, J., 3

Kerstens, K., 2

L
Leibenstein, H., 2

Lovell, C.A.K., 2, 11, 12

M
Malmquist productivity index (MPI)

DEA approach, 128

decomposition, 128–127

and EMPI, 128

parametric estimation, 128

Malt, R., 1

Mayston, D., 3

McCarty, T., 3, 95

McDonald, J., 3, 95
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