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Foreword

This is the second book in the Research in Mathematics Education series. Since
the publication of the first edition in 1983 of The Art of Problem Posing by Brown
and Walter, there has been increased effort to incorporate problem posing into
school mathematics at different educational levels around the world. In the field of
mathematics education, problem posing has been viewed not only as a means to
understand students’ mathematical thinking but also as a means to teach mathemat-
ics with understanding. This volume has at least the following three features. First,
it presents the state of the art of research in mathematical problem posing. Readers
will be well informed about problem-posing research as a line of scientific inquiry.
The 52 authors of the 26 chapters pay careful attention to both past accomplishment
and future directions of studies. Thus, this book should be useful for graduate
courses related to mathematical problem posing and problem solving or as a foun-
dation upon which to propose lines of inquiry into problem posing. Second, this
book includes many great ideas to assist those implementing problem-posing tasks
into classrooms; many of these ideas have already been tested in classrooms. Thus,
this book can be used by mathematics teacher educators for designing and imple-
menting teacher professional development sessions for practicing teachers. Third,
this book truly has an international scope. Authors from 16 different countries have
not only used diverse conceptualizations of problem posing but also presented a
wide range of approaches for investigating issues related to problem posing.

As we indicated in the Foreword of the first book of the series, Research Trends
in Mathematics Teacher Education, we have designed the solicitation, review, and
revision process of volumes in the series to produce thematic volumes, allowing
researchers to access numerous studies on a theme in a single, peer-reviewed source.
Our intent for this series is to publish the latest research in the field in a timely fash-
ion. This design is particularly geared towards highlighting the work of promising
graduate students and junior faculty working in conjunction with senior scholars.
The audience for this monograph series consists of those in the intersection between
researchers and mathematics education leaders—people who need the highest
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quality research, methodological rigor, and potentially transformative implications
ready at hand to help them make decisions regarding the improvement of teaching,
learning, policy, and practice. With this vision, our mission of this book series is:

1. To support the sharing of critical research findings among members of the math-
ematics education community

2. To support graduate students and junior faculty and induct them into the research
community by pairing them with senior faculty in the production of the highest
quality peer-reviewed, research papers

3. To support the usefulness, and widespread adoption, of research-based
innovation

We are grateful for the support of Melissa James from Springer in developing
and publishing this book series, as well as the support for the publication of this
volume.

We thank the editors (Singer, Ellerton, and Cai) and all of the authors who have
contributed to this comprehensive and insightful book!

Jinfa Cai
James Middleton



Preface

Mathematical Problem Posing Today: A Cross-Cultural View

The era of information and communication technology creates new social envi-
ronments and needs. Living in a world where interdependency and dynamics
become main features of the global society, young generations have to face unpre-
dictable changes they should learn coping with. Consequently, education systems
all over the world support (or at least should pay attention to) a very fast process of
changing priorities. Inherently, teaching and learning strategies are influenced by
this context.

As a practice of learning and thinking, problem posing may play an essential role
in this change. Since 1970, when Paulo Freire introduced the term problem-posing
education in his book Pedagogy of the Oppressed as a metaphor for emphasizing
critical thinking, the problem-posing methodology extended to various domains of
knowledge. Within learning environments that offer a range of activities, sources for
study, opportunities for interaction, and an emphasis on exploration and application,
students can actively construct meaning in both the natural and simulated worlds, in
the classroom. Teachers and students might create knowledge together in a variety
of contexts and generate and address critical questions about the knowledge they
produce. In Freire’s vision, all these could help to develop more democratic, diverse,
critically thinking members of society.

Mathematics as a tool for rational thinking can play an important role in prepar-
ing the fluent thinkers needed in the dynamic world of today (and tomorrow). For a
long time, both the mathematics community and school practice have ranked prob-
lem solving as the top component of the mathematical domain. However, arguments
in favor of problem posing come from at least two directions: from the past, where
history shows that problem posing is the agent of change within scientific para-
digms, and from the future, where the knowledge economy and the knowledge soci-
ety trigger unprecedented demands and put enormous pressure on educational
systems all over the world. We started this book envisioning that a fresh look at

vii
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problem posing is by all means a necessary step nowadays. The aim of Mathematical
Problem Posing: From Research to Effective Practice is thus threefold: to present an
updated overview of contemporary research on problem posing; to draw attention to
successfully applied experiences; and to identify main directions for further research
and new teaching and learning practices.

In a structured way, the book starts with multiple perspectives for defining the
field of problem posing in the context of mathematics education, continues with the
place problem posing holds in the school curriculum, and concludes with problem
posing in teacher education programs and teacher professional development.

The book is multidimensional from a range of perspectives. From a conceptual
view, the papers included in this collection present different epistemological, philo-
sophical, and pedagogical approaches to problem posing. Concerning methodology,
the studies of the volume range from qualitative research to quantitative meta-
analysis. They range, with respect to the target population of students, from primary
graders to intermediate and upper secondary grades. They also range, with respect
to the target population of teachers, from preservice teachers (for all grades) to in-
service teachers working at various levels of education. However, maybe the most
important dimension of the book is its multicultural coverage. The authors come
from different geographical areas: 16 countries are listed with the authors’ affilia-
tions (Australia, Belgium, Canada, China, Czech Republic, Israel, Italy, Japan,
Malaysia, Norway, Romania, Serbia, Singapore, Sweden, the Netherlands, and the
United States of America), from 4 continents, to which we can even add the diver-
sity of backgrounds and experiences in a variety of cultural environments of many
of the authors. This cultural diversity brings into the book various representations,
expressions, knowledge, skills, and attitudes towards approaches to problem pos-
ing. The cultural diversity of authors’ backgrounds makes the multiplicity of per-
spectives presented in the book deeply authentic. It also shows that problem posing
is becoming more and more a global phenomenon.

The collection of articles in this book covers the way from research to effective
practice by offering a large gamut of ideas, critical analyses, and successful experi-
ences. The book starts with defining the field of problem posing in the context of
mathematics education. In this first part, Jinfa Cai and his colleagues come up with
a vision of problem posing as lenses for understanding and improving students’
learning of mathematics. In a more specific approach, Ragnhild Hansen and Gert
Hana show how problem posing can be emphasized in a modelling perspective,
while Jasmina Milinkovi¢ conceptualizes problem posing via transformation, and
Sergei Abramovich and Eun Kyeong Cho explain how to use digital technology for
mathematical problem posing. Further, Cinzia Bonotto and Lisa Dal Santo look at
the connection between problem posing and creativity in relation to problem solv-
ing, while Vincent Matsko and Jerald Thomas explore ways to foster creativity in
mathematics classrooms. Florence Mihaela Singer and Cristian Voica develop a
framework for using problem posing as a tool for identifying and developing math-
ematical creativity.

The second part of the book provides practical examples of using problem pos-
ing in school mathematics teaching. Here, Victor Cifarelli and Volkan Sevim relate
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reformulation and sense-making within the problem-solving process to problem
posing; Sharada Gade and Charlotta Blomqvist discuss the role of explicit media-
tion for developing problem-posing capacity of fourth and fifth graders, while Kees
Klaassen and Michiel Doorman find in problem posing good opportunities for pro-
viding students with content-specific motives. A content like statistical literacy is
seen by Lyn English and Jane Watson as a relevant opportunity for problem posing
in the elementary school. Further, Mitsunori Imaoka, Tetsu Shimomura, and Eikoh
Kanno describe effective ways of using computers for problem posing in upper
grades, a topic that is rarely addressed. From Singapore, Kwek Meek Lin proposes
a research experiment in which problem posing is used as an assessment tool in the
lower secondary school. In the final two chapters of this part of the book, from a
multicultural perspective, Xianwei Van Harpen and Norma Presmeg analyze the
outcomes of a comparative investigation of high school students’ mathematical
problem posing in the United States and China, while Limin Chen, Wim Van
Dooren, and Lieven Verschaffel come up with a design experiment for enhancing
the development of Chinese fifth graders’ problem-posing and problem-solving
abilities, beliefs, and attitudes.

From a focus on students who are involved in problem posing in the classroom,
as we have seen in second part of the book, the authors move to the (future) teacher
who is to orchestrate such activities and discuss, in the third part of the book, math-
ematics problem posing in teacher education programs and teacher professional
development. More specifically, Roslinda Rosli, Mary Margaret Capraro, and their
colleagues address the relationship between problem solving and problem posing in
a study with middle grade preservice teachers. The same relationship is addressed
by Vrunda Prabhu and Bronislaw Czarnocha in the context of an integrated teach-
ing/research methodology that has become known as Teaching-Research/New York
City (TR/NYCity) methodology. Further, Rosa Leikin explains how to teach in a
dynamic geometry environment and to use it as a tool for mathematical problem
posing and geometry investigations by using examples from a course with prospec-
tive mathematics teachers. Ilana Lavy describes studies conducted in dynamic
geometry environments that adopted “what if not” strategies. Todd Grundmeier pro-
vides details of the results of an exploratory study that incorporates problem posing
in a mathematics course for prospective elementary and middle school teachers,
where the content coverage included problem solving, data analysis and probability,
discrete mathematics, and algebraic thinking. From a different perspective, problem
posing was used as a motivational tool; this aspect is addressed by Alena HoSpesova
and Marie Tichd in a study investigating primary school teacher training. Two other
studies also explore ways in which problem posing has been investigated in preser-
vice teacher training. Thus, Michal Klinshtern, Boris Koichu, and Avi Berman find
unexpected perceptions of teachers as problem posers, while Helena Osana and
Ildiko Pelczer succeed in classifying problem posing in mathematics professional
development in a few distinct categories, despite the continuing paucity of empirical
studies. Giving prospective elementary teachers the opportunity to pose personally
and socially relevant mathematics problems is an important focus for Sandra
Crespo’s chapter. Finally, in a study with prospective and practicing middle school
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teachers, Nerida Ellerton shows how problem posing can become an integral
component of the mathematics curriculum and introduces the concept of a Pedagogy
of Problem Posing.

In the final part, we provide an overview of this book’s special contributions to
the field. We comment there how the book takes into consideration past literature,
energizes present practices, and looks towards future learning, teaching, and
research endeavors. Beyond the diversity of approaches and cultural spaces reflected
into this collection, the book brings together the visions of experienced contempo-
rary personalities who have researched and written on problem posing as well as
those of some remarkable young professionals who have embarked on promoting
this new and emerging field.

Bucharest, Romania Florence Mihaela Singer
Normal, IL, USA Nerida F. Ellerton
Newark, DE, USA Jinfa Cai

March, 2015
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Chapter 1

Problem-Posing Research in Mathematics
Education: Some Answered and Unanswered
Questions

Jinfa Cai, Stephen Hwang, Chunlian Jiang, and Steven Silber

Abstract This chapter synthesizes the current state of knowledge in problem-
posing research and suggests questions and directions for future study. We discuss
ten questions representing rich areas for problem-posing research: (a) Why is prob-
lem posing important in school mathematics? (b) Are teachers and students capable
of posing important mathematical problems? (c) Can students and teachers be effec-
tively trained to pose high-quality problems? (d) What do we know about the cogni-
tive processes of problem posing? (e) How are problem-posing skills related to
problem-solving skills? (f) Is it feasible to use problem posing as a measure of cre-
ativity and mathematical learning outcomes? (g) How are problem-posing activities
included in mathematics curricula? (h) What does a classroom look like when
students engage in problem-posing activities? (i) How can technology be used
in problem-posing activities? (j) What do we know about the impact of engaging in
problem-posing activities on student outcomes?
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Introduction

There is a long history of integrating mathematical problem solving into school
curricula (Stanic & Kilpatrick, 1988). In the past several decades, there have been
significant advances in the understanding of the affective, cognitive, and metacog-
nitive aspects of problem solving in mathematics and other disciplines (e.g., Cai,
2003; Frensch & Funke, 1995; Lester, 1994; McLeod & Adams, 1989; Schoenfeld,
1985, 1992; Silver, 1985). In contrast, problem-posing research is a relatively new
endeavor (Brown & Walter, 1993; Kilpatrick, 1987; Silver, 1994). Nevertheless,
there have been efforts to incorporate problem posing into school mathematics at
different educational levels around the world (e.g., Chinese National Ministry of
Education, Office of School Teaching Materials and Institute of Curriculum and
Teaching Materials, 1986; Hashimoto, 1987; Healy, 1993; Keil, 1964/1967;
Ministry of Education of China, 2011; National Council of Teachers of Mathematics
(NCTM), 1989; van den Brink, 1987). These efforts indicate interest among
many practitioners in making problem posing a more prominent feature of class-
room instruction.

Despite the interest in integrating mathematical problem posing into classroom
practice, our knowledge remains relatively limited about the cognitive processes
involved when solvers generate their own problems, the instructional strategies that
can effectively promote productive problem posing, and the effectiveness of engaging
students in problem-posing activities. In the discussion below, we synthesize the
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current state of knowledge in problem-posing research and suggest some directions
for future study. In particular, we discuss the following questions:

. Why is problem posing important in school mathematics?

. Are teachers and students capable of posing important mathematical problems?
. Can students and teachers be effectively trained to pose high-quality problems?
. What do we know about the cognitive processes of problem posing?

. How are problem-posing skills related to problem-solving skills?

A AW -

. Is it feasible to use problem posing as a measure of creativity and mathemat-
ical learning outcomes?

. How are problem-posing activities included in mathematics curricula?

BN

. What does a classroom look like when students engage in problem-posing
activities?

9. How can technology be used in problem-posing activities?

10. What do we know about the impact of engaging students in problem-posing
activities on student outcomes?

Each of these questions represents a rich area for problem-posing research. As we
explore each question, we begin by examining the work that has been done and by
summarizing what we know as a field. We then consider, for each overarching ques-
tion, some related questions that remain unanswered and which we feel merit
further attention from the research community.

Why is Problem Posing Important in School Mathematics?

Problem posing has long been recognized as a critically important intellectual
activity in scientific investigation. According to Einstein, the formulation of an
interesting problem is often more important than its solution (Einstein & Infeld,
1938). However, whereas the case for problem solving in school mathematics has
seemed relatively clear, the importance of problem posing in school mathematics
has required slightly more explanation. As we noted above, problem solving has
long been a fundamental part of mathematics education (Stanic & Kilpatrick, 1988).
Although 30 years ago Getzels (1979) lamented that, compared to problem solving,
problem posing was a neglected area of research, in recent years both educators and
researchers have begun to give problem posing concerted attention.

Kilpatrick (1987) observed that in real life, problems must often be created or
discovered by the solver. Thus, the onus of noticing a problem and subsequently
framing it in a productive way is squarely on the solver. Indeed, in his analysis of
invention in mathematics, the mathematician Jacques Hadamard (1945) considered
the identification and posing of good problems to be an important part of doing
high-quality mathematics. Thus, if a goal of education is to prepare students for the
kinds of thinking they will need, it seems reasonable that problem posing should be
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an important part of the curriculum. Moreover, approaches to mathematics instruc-
tion that attempt to engage students in experiences that are more authentic to inquiry
within the discipline of mathematics should provide students with opportunities to
explore, make conjectures, and pose meaningful problems (Bonotto, 2013).

Problem posing is also a critical aspect of the work of teachers, both in posing
problems for students and in helping students develop into better problem posers
(Crespo, 2003; Olson & Knott, 2013). Teachers regularly must formulate and pose
worthwhile problems for their students, even when they are working with problems
given in curriculum materials (NCTM, 1991). The problems that a teacher poses
can shape the mathematical learning in their classes and “further their mathematical
goals for the class” (NCTM, 2000, p. 53). In addition, teachers can use problem-
posing tasks to gain greater insight into their students’ understandings of mathemat-
ics (Cai et al., in press; Kotsopoulos & Cordy, 2009; Leung, 2013; Silver, 1994).

As we will discuss in greater depth below, the theoretical arguments supporting
the importance of problem posing in school mathematics are bolstered by a growing
body of empirical evidence. Researchers are actively exploring links between prob-
lem posing and other aspects of mathematical ability including conceptual under-
standing, problem solving, and creativity (e.g., Cai et al., in press; Cai & Hwang,
2002; Ellerton, 1986; Silver & Cai, 1996; Singer & Moscovici, 2008; Van Harpen
& Sriraman, 2013). Given its potential to enhance the teaching and learning of
mathematics, it is clear that problem posing is an important part of research and
practice in school mathematics.

Are Teachers and Students Capable of Posing
Important Mathematical Problems?

If we recognize problem posing as an important intellectual activity in school
mathematics, then we must determine if teachers and students are capable of posing
important and worthwhile mathematical problems. In fact, a fundamental line of
research in problem posing has been exploring the kinds of problems that teachers
and students can pose. In this line of research, researchers typically design a prob-
lem situation and ask subjects to pose problems which can be solved using the
information given in the situation. Different types of problem situations have been
used, some of which are knowledge-free and others of which are knowledge-rich
(see Figure 1.1 for four examples of such problem situations). Some situations are
quite structured (Situation 1), whereas others are relatively open (Situation 3).
Stoyanova and Ellerton (1996) classified the degree of structure in problem situa-
tions as free, semi-structured, and structured.

Mathematical problem-posing research has explored the performance of school
students, prospective teachers, and in-service teachers (e.g., Cai, 1998; Cai et al.,
in press; Cai & Hwang, 2002; Crespo, 2003; English, 1998; L. Ma, 1999; Silver & Cai,
2005; Stickles, 2011). In general, the findings have supported the claim that both
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Situation 1. Children were to pose problems based on the following statements
about Rufus the dog: Rufus managed to get into the Bradley house one
afternoon. He chewed up four of Amy's shoes, three of her toys, and six of her
socks. He also chewed up five of Brad's shoes, seven of his toys, and two of his
socks. Mrs. Smith baked two dozen biscuits. Rufus made off with twelve
biscuits. He buried eight of them before Mrs. Smith discovered him. (This
situation was used for elementary school students in English, 1998.)

Situation 2. Ann has 34 marbles, Billy has 27 marbles, and Chris has 23
marbles. Write and solve as many problems as you can that use this information.
(This situation was used for middle school students in Silver & Cai, 2005.)

Situation 3.

13 15 17 19
21 23 25 27 29

The pattern continues. I wanted to make up some problems that used this pattern
for a group of high students/college freshmen. Help me by writing as many
problems as you can in the space below. (This situation was used for prospective
secondary mathematics teachers in Cai, 2012.)

Situation 4. Imagine that you are teaching division with fractions. To make this
meaningful for kids, something that many teachers try to do is relate
mathematics to other things. Sometimes they try to come up with real-world
situations or story problems to show the application of some particular piece of
content. What would you say would be a good story or model for 134 + %2 ? (This
situation was used for in-service elementary teachers in L. Ma, 1999.)

Figure 1.1. Four sample problem situations used in research on problem posing.

students and teachers are capable of posing interesting and important mathematical
problems. For example, for Situation 2 in Figure 1.1, middle school students were
able to pose problems such as the following (Silver & Cai, 2005):

How many marbles do they have altogether?

How many more marbles does Billy have than Chris?

How many more marbles would they need to have together to have as many
marbles as Sammy, who has 103?

Can Ann give marbles to Billy and Chris so that they all have the same number?
If so, how can this be done?
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Suppose Billy gives some marbles to Chris. How many marbles should he give
Chris in order for them to have the same number of marbles?

Suppose Ann gives some marbles to Chris. How many marbles should she give
Chris in order for them to have the same number of marbles?

For Situation 3 in Figure 1.1, prospective secondary teachers were able to pose
problems such as these (Cai, 2012):

What is the first number on the nth row?

What is the number on the ith row and jth column?

What is the last number on the nth row?

What is the sum of the numbers in the nth row?

How many numbers are there in the nth row?

What is the sum of the numbers in the first n rows?

What is the pattern of each of the numbers in each diagonal line?
What is the sum of 13+23+33+4%+ ...+ (n—1)>+n3?

What is the middle number in an odd row?

And, L. Ma (1999) found that in-service elementary teachers could pose problems
in response to Situation 4 in Figure 1.1, such as:

Cut an apple into four pieces evenly. Get three pieces and put them together with
a whole apple. Given that ¥2 apple will be a serving, how many servings can
we get from the 13 apples?

A train goes back and forth between two stations. From Station A to Station B is
uphill and from Station B back to Station A is downhill. The train takes 134 hours
going from Station B to Station A. It is only %2 time of that from Station A to
Station B. How long does the train take going from Station A to Station B?

Given that we paid 1% Yuan to buy %2 of a cake, how much would a whole cake cost?

We know that the area of a rectangle is the product of length and width. Let’s say
that the area of a rectangle board is 134 square meters, its width is ¥2meters,
what is its length?

However, the ability to pose valid problems appears to be connected to other factors.
For example, in her comparison of US and Chinese elementary teachers’ understand-
ing of elementary mathematics, L. Ma (1999) found that the teachers’ abilities to
pose problems like the ones cited above for the given fraction division was associated
with their understanding of the meaning of fraction division. The US teachers in her
study were unable to produce appropriate problems, and their difficulties were rooted
in their inadequate conceptions of fraction division. In contrast, the Chinese teachers
were generally able to pose at least one problem for the given fraction division based
on one of three understandings of the concept (measurement model, partitive model,
factors, and product). Stickles (2011) also found that secondary and middle school
teachers were capable of posing problems, but that their success was partial and was
related to experience and background. Specifically, the teachers in her study were
prolific problem posers when presented with a given set of information, but struggled
with crafting valid problems. The teachers were more successful when reformulating
problems that were given to them.
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Unanswered Question 1

Even though research has shown that students and teachers are capable of posing
interesting and important mathematical problems, researchers have also found that
some students and teachers pose nonmathematical problems, unsolvable problems,
and irrelevant problems (e.g., Cai & Hwang, 2002; Silver & Cai, 1996; Silver,
Mamona-Downs, Leung, & Kenney, 1996). For example, Silver and Cai (1996)
found that nearly 30% of problems posed by middle school students were either
nonmathematical problems or simply nonproblem statements (even though the
directions clearly asked for problems). This suggests the following question: Why
do students pose nonmathematical, trivial, or otherwise suboptimal problems or
statements? Crespo and Sinclair (2008) hypothesized that these difficulties might be
related to a lack of opportunity for students to explore a problem situation ade-
quately before and during the posing process. There is clearly a need to investigate
how students and teachers interpret and parse problem situations when engaging in
problem posing.

Unanswered Question 2

Researchers have used many different types of problem situations to investigate
problem posing, ranging from simply deleting a question from a textbook problem to
very open-ended problem situations. With respect to mathematical problem-solving
research in the past several decades, researchers have explored the effects of various
task variables on students’ problem solving. For example, several classifications of
task variables related to problem solving are considered in Goldin and McClintock
(1984): syntax variables, content and context variables, structure variables, and heu-
ristic behavior variables. Syntax variables are factors dealing with how problem
statements are written. These are factors that may contribute to ease or difficulty in
reading comprehension, such as problem length and numerical and symbolic forms
within the problem. Content variables refer to the semantic elements of the problem,
such as the mathematical topic or the field of application, whereas context variables
refer to the problem representation and the format of information in the problem.
Structure variables refer to factors involved in the solution process, such as problem
complexity and factors relating to specific algorithms or solution strategies. Finally,
heuristic process variables refer to the interactions between the mental operations of
the problem solver and the task. Considering heuristic variables separately from sub-
ject variables (factors that differ between the individuals solving the problem) is
difficult, as heuristic processes involve the problem solver interacting with the task.
However, the interaction between heuristic processes and the other task variables can
have a significant impact on problem-solving ability.

Less is known about how problem situations influence students’ problem-posing
responses. How do different characteristics of problem situations affect subjects’
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problem posing? Leung and Silver (1997) developed and analyzed a Test of
Arithmetic Problem Posing (TAPP), which they then used to examine how the pres-
ence of numerical information impacted preservice teachers’ problem-posing abili-
ties. Results from the TAPP indicated that the preservice teachers performed better
on problem-posing tasks that included specific numerical information than on tasks
without specific numerical information. This result provides some insight into how
task variables can impact problem posing, yet more research must be done on the
impact of various other variables. Adapting the TAPP to examine how different
characteristics of problem situations affects subjects’ problem posing could offer a
way to study the effect of other task variables.

Can Students and Teachers Be Effectively Trained
to Pose High-Quality Problems?

Although students and teachers are able to pose problems, even when those prob-
lems are mathematically sound they are not always of high quality. Thus, some
studies have addressed the question of how to improve the abilities of teachers and
students to pose better problems. Researchers have noted the importance of oppor-
tunities for exploration of mathematical situations in developing students’ problem-
posing abilities. Crespo and Sinclair (2008) suggested that without the opportunity
to explore the limits of the mathematical situation in which students are working,
the students are limited in the types of problems they can pose. Similarly, Koichu
and Kontorovich (2013) found that the successful prospective teachers in their study
posed the most interesting problems when blending exploration and problem solv-
ing with their problem posing. It would appear that students are able to improve the
breadth and level of challenge of the problems they pose when they have experience
solving such problems, and are prompted by informal contexts such as pictures,
which may leave more room for exploration, instead of formal symbolic contexts
(Crespo, 2003; English, 1998).

Indeed, with respect to formal symbolic contexts, Isik and Kar (2012) identified
several types of difficulties experienced by prospective elementary teachers when
posing problems related to daily life situations that could be solved using given
linear equations or systems of two linear equations. These included conceptual dif-
ficulties, such as incorrectly translating the meaning of mathematical operations in
the equations into corresponding verbal problem statements or posing separate
problems for each equation in a system, contextual difficulties, such as assigning
unrealistic values to the unknowns, and violations of the conventions of word prob-
lems, such as using symbolic representations in the problems posed. These difficul-
ties suggest that, in order to pose high-quality problems that are based in formal
symbolic contexts, teachers will need to build their conceptual understanding of the
underlying mathematics (L. Ma, 1999) and their pedagogical understandings.

Some researchers have explored the characteristics of practice in the discipline
of mathematics in order to identify and propose various collections of strategies to
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facilitate high-quality problem posing. Contreras (2007) discussed how to use the
“fundamental mathematical processes” (p. 16) of proving, reversing, specializing,
generalizing, and extending to pose new problems from a given problem. Moore-
Russo and Weiss (2011) similarly described how to apply five “generative moves”
that mathematicians use in determining what could be done next to spawn new,
related geometry problems from an existing problem under consideration. The five
generative moves (strengthening/weakening hypothesis, strengthening/weakening
conclusion, generalize, specialize, consider converse) are consonant with the pro-
cesses described by Contreras.

Unanswered Question 3

It would appear to be feasible to improve the quality of problems that students
and teachers pose. Existing research suggests that strategies matter in how we train
students and teachers to pose problems. However, it is not clear which strategies are
most effective for teaching problem posing, nor is it clear which strategies are best
for problem posers to use in particular problem situations. Further exploration of
these strategies and their productiveness for problem posing in different mathemati-
cal situations is warranted. What strategies and ways of thinking are most produc-
tive for posing problems, and under what types of mathematical situations are
different strategies effective?

What Do We Know About the Cognitive Processes
of Problem Posing?

There are many potential processes involved in posing problems, and they may
vary depending on the type of problem posing under consideration. These can
involve techniques for reformulating existing problems, heuristics, or strategies for
generating problems from given situations, and processes for exploring a mathemat-
ical context and testing its boundaries to develop a “feel” for the kinds of questions
that can be asked. Researchers have worked to gain better understandings of these
processes and to document the kinds of strategies that are used in problem posing.

In their study of middle school students’ problem posing, Silver and Cai (1996)
found that many students produced responses that consisted of a series of related
problems, often generated by varying a single element, and that the complexity of the
problems tended to increase within a series. Their results suggested that there were
distinct processes that guided (and perhaps constrained) the students’ problem pos-
ing. English (1998) observed that third graders’ ability to pose multiple problems
appeared limited to tinkering with the contexts of an original problem. Cai and
Hwang (2002) suggested a potential parallel between students’ thinking when posing
and solving problems. Specifically, they observed that the sequence of pattern-based
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Figure 1.2. The recursive process of problem posing and solving proposed
by Cifarelli and Cai (2005).

problems posed by students appeared to reflect a common sequence of thought when
solving pattern problems (gathering data, analyzing the data for trends, making pre-
dictions). Thus, students might have a solution process in mind when thinking about
posing problems.

Cai and Cifarelli (2005; Cifarelli & Cai, 2005) further refined this link between
problem solving and problem posing, describing a recursive process of chains of
solving and posing (Figure 1.2). Cai and Cifarelli (2005) examined how two college
students posed and solved their own problems in an open-ended computer simula-
tion task that involved the path of a billiard ball. They identified two different levels
of reasoning strategies—hypothesis-driven and data-driven—that students appeared
to incorporate in their posing and solving processes. They observed that problem
solvers’ self-generated questions reframed the problems they were working on and
significantly changed the strategies they were using. Therefore, Cai and Cifarelli
considered the posing and solving process to be mathematical exploration. Indeed,
in a follow-up study, Cifarelli and Cai (2005) described mathematical exploration as
structured by this recursive process. This cycling and entwining of posing and solv-
ing corresponds with the observations of Christou, Mousoulides, Pittalis, and Pitta-
Pantazi (2005) about prospective teachers’ use of dynamic geometry software to
solve problems. Christou et al. found that the dynamic geometry software acted as
a mediation tool that supported the processes of modelling, conjecturing, experi-
menting, and generalizing. In using the software to explore problem situations and
extract meaning from them, the prospective teachers generated new problems as
part of their problem-solving processes. For example, in their explorations of the
figure formed by the bisectors of the interior angles of a parallelogram, the prospec-
tive teachers engaged in problem posing through experimenting with special cases
(e.g., arectangle) and making and checking conjectures based on the evidence they
were gathering.
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Pittalis, Christou, Mousoulides, and Pitta-Pantazi (2004) proposed a model of
cognitive processes involved in problem posing. The model encompasses four pro-
cesses: filtering quantitative information, translating quantitative information from
one form to another, comprehending, and organizing quantitative information by
giving it meaning or creating relations between provided information, and editing
quantitative information from the given stimuli. Based on empirical testing, Pittalis
et al. asserted that these processes correspond to different types of problem-posing
tasks, and that the filtering and editing processes were most important in posing
problems.

Christou, Mousoulides, Pittalis, Pitta-Pantazi, and Sriraman (2005) built on this
model to develop a taxonomy of problem-posing processes related to different types
of tasks. Tested with 143 sixth graders from Cyprus, their taxonomy also includes
four processes. Tasks that involve posing problems from situations without restric-
tions involve the process of editing quantitative information. Tasks that involve pos-
ing problems that have specified answers involve the process of selecting quantitative
information. Tasks that require students to pose problems corresponding to given
equations or computations involve the process of comprehending and organizing
quantitative information. And, tasks that involve posing problems from given
graphs, diagrams, or tables involve the process of translating quantitative informa-
tion from one form to another. Based on this model, the researchers found that stu-
dents were more successful when first posing problems involving comprehending,
then translation, and finally editing and selecting.

Although theories of the cognitive processes of problem posing are relatively
new, there is a longer history of attention to strategies that may be useful in posing
problems. Building on Polya’s “looking back” stage in problem solving, Brown and
Walter (1990) proposed the well-known “What if not” strategy. Along the same
lines, Abu-Elwan (2002) and Cai and Brook (2006) suggested posing problems
through a process of extending or generalizing an already-solved problem. Indeed,
Gonzales (1998) even referred to this process as a fifth step to Polya’s four-step
method. Lavy and Bershadsky (2003) described the use of the “What if not” strat-
egy for mathematical problem posing, dividing the activity into two stages. In the
first stage, all the attributes included in the statement of the original problem are
listed. In the second stage, each of the listed attributes is negated by asking “what if
not attribute k7’ and alternatives are proposed. Each of the offered alternatives cre-
ates a new problem situation.

Unanswered Question 4

Although we know that students and teachers are capable of posing mathemati-
cal problems, we have a considerably less fine-grained understanding of how they
go about posing those mathematical problems in any given situation. Some research-
ers have identified general strategies students may use to pose problems. Others
have explored some of the variables that may have an impact on students’ problem
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posing. However, there is not yet a general problem-posing analogue to well-
established general frameworks for problem solving such as Polya’s (1957) four
steps. Much more research is needed to develop a broadly applicable understanding
of the fundamental processes and strategies of problem posing.

Unanswered Question 5

A better understanding of the cognitive processes of problem posing can also
inform teaching. Ideally, the more that teachers know about their students’ thinking,
the better equipped they are to help their students develop (Cai, 2005). However,
there is much work needed to connect research-based understandings of student
cognition to teachers’ practice. Much as Cognitively Guided Instruction (CGI) has
provided a theoretical and empirical framework that has helped teachers understand
their students’ mathematical thinking and problem solving (Carpenter, Fennema, &
Franke, 1996; Fennema et al., 1996), research that illuminates cognitive models of
students’ problem posing has the potential to improve teaching. In that vein, we ask
the following question: How can an understanding of students’ problem-posing
cognition help teachers to improve student learning?

How Are Problem-Posing Skills Related
to Problem-Solving Skills?

One important direction for research on problem posing is probing the links
between problem posing and problem solving (see, e.g., Cai, 1998; Cai & Hwang,
2002; Ellerton, 1986; Kilpatrick, 1987; Silver & Cai, 1996). Kilpatrick (1987) pro-
vided a theoretical argument that the quality of the problems subjects pose might
serve as an index of how well they can solve problems. In addition to this theoretical
argument, several researchers have conducted empirical studies examining potential
connections between problem posing and problem solving. Ellerton (1986) com-
pared the mathematical problems generated by eight high-ability young children
with those generated by eight low-ability young children, asking each to pose a
mathematical problem that would be quite difficult for his or her friends to solve.
Ellerton reported that the more able students posed problems that were more com-
plex than those posed by less able students.

Silver and Cai (1996) analyzed the responses of more than 500 middle school
students to a task that asked them to pose three questions based on a driving situa-
tion. The student-posed problems were analyzed according to their type, solvability,
and complexity. In addition, Silver and Cai used eight open-ended tasks to measure
the students’ mathematical problem-solving performance. They found that problem-
solving performance was highly correlated with problem-posing performance.
Compared to less successful problem solvers, good problem solvers generated
more, and more complex, mathematical problems.
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Silver and Cai (1996) measured problem-solving performance using tasks that
were rarely related to the problem-posing tasks. In other studies, Cai and his associ-
ates (Cai, 1998; Cai & Hwang, 2002) examined Chinese and US students’ problem-
solving and problem-posing performances using closely related problem-posing
and problem-solving tasks. Cai and Hwang (2002) found differential relationships
between posing and solving for US and Chinese sixth-grade students. There was a
stronger link between problem solving and problem posing for the Chinese sample,
whereas the link was much weaker for the US sample. Posing a variety of problem
types appeared to be strongly associated with abstract strategy use in the Chinese
sample. Cai and Hwang indicated that the differential nature of the relationships for
US and Chinese students should not be interpreted as implying a lack of generality
in the link between problem solving and problem posing. Rather, the stronger link
between the variety of posed problems and problem-solving success for the Chinese
sample could be attributable to the fact that the US students almost never used
abstract strategies. Indeed, in a follow-up analysis that included data from seventh-
grade US students, Cai and Hwang (2003) identified a corresponding link between
the students’ use of abstract problem-solving strategies and their ability to pose
problems that extended beyond the given information.

Unanswered Question 6

Cross-national and cross-regional comparative studies provide unique opportuni-
ties to understand students’ mathematical thinking and reasoning. Although there is
a large body of cross-national studies of mathematical problem solving, there have
been few attempts to use problem posing in such cross-national studies (e.g., Cai,
1998; Cai & Hwang, 2002; Yuan & Sriraman, 2011). How do students in different
countries and regions pose mathematical problems? Observations of differences in
problem posing across regions, such as in the study of Cai and Hwang, may provide
fertile ground for further research. Analyzing, for example, differences in the magni-
tude of the relationship between problem solving and problem posing for students
from different regions, may offer insights into the nature of the relationship. Indeed,
in their analysis of problem posing among students from the United States and from
two distinct regions of China, Van Harpen and Sriraman (2013) have found differ-
ences that suggest a strong link between mathematical knowledge and problem-
posing success. In the future, we hope that more researchers around the world will
engage in mathematical problem-posing research in cross-cultural contexts.

Is it Feasible to Use Problem Posing as a Measure
of Creativity and Mathematical Learning Outcomes?

Student outcomes in mathematics classes are typically assessed by having the
students solve problems. However, as noted above, researchers have found that stu-
dents’ success in problem solving is associated with their problem-posing abilities
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(Cai et al., in press; Cai & Hwang, 2002; Silver & Cai, 1996). Moreover, there is
some evidence that asking students to pose problems may provide additional useful
insights into what mathematics students have learned and what students have
learned about doing mathematics. For example, in a study of prospective elemen-
tary teachers’ conceptual understanding of fractions, Tichd and HoSpesovd (2013)
used problem posing as a diagnostic tool to gauge the prospective teachers’ under-
standing. By analyzing the problems that the prospective teachers posed, Tichd and
HoSpesova were able to identify conceptual flaws and confusion that needed to be
addressed. Similarly, Kotsopoulos and Cordy (2009) made use of their seventh-
grade students’ journal records of problem posing as a type of formative assessment
to gauge the progress the students were making. This allowed these teacher-
researchers to determine whether they “were on-track with our learning objectives
for the four experiments” (p. 272).

As part of a large-scale study, Cai et al. (in press) investigated the feasibility of
using problem posing to measure curricular effects on student learning. In particu-
lar, they compared the effects of a Standards-based middle school mathematics cur-
riculum with those of more traditional curricula on students’ algebra learning. Using
parallel problem-solving and problem-posing tasks, they confirmed the association
between students’ abilities to solve and pose problems, and found that this relation-
ship held for students using both types of curriculum. In addition, by using qualita-
tive rubrics to assess different characteristics of students’ responses, Cai and his
colleagues found that students whose posed problems exhibited positive character-
istics (such as reflecting the linearity of a given graph in their posed problem or
embedding their posed problems in real-life contexts) were also strong problem
solvers. However, student performance in general was poor on the problem-posing
tasks in this study, suggesting that the students might need more experience with
problem posing in order to have broader success on posing-oriented measures.

Given the generative qualities of problem posing, one might expect that problem-
posing activities might be valid measures of students’ creativity. Indeed, Silver
(1997) has proposed a relationship between engaging students in problem posing
and their development of creative fluency, flexibility, and novelty. Studying elemen-
tary children in Taiwan, Leung (1997) developed an 18-task instrument that was
useful in measuring the students’ general problem-posing competence as well as in
highlighting their creative problem posing. Similarly, Van Harpen and Sriraman
(2013) used a problem-posing test to examine US and Chinese high school students’
problem-posing creativity along the three dimensions of fluency, flexibility, and
novelty. Generally, performance on such tests has revealed weaknesses in problem
posing. However, Voica and Singer (2012) have suggested that there are important
nuances in the relationship between problem posing and creativity. Specifically, in
their study of fourth to sixth graders’ modifications to problems, they found that
students who stayed close to the given problem’s context displayed deeper under-
standing of the mathematics than those who posed modified problems that were
ostensibly more creative because they strayed further from the original. Nevertheless,
Voica and Singer (2013) have found that, with sufficiently careful analysis of
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students’ cognition during problem modification, problem posing can provide use-
ful evidence of students’ cognitive flexibility.

Despite the theoretical feasibility of using problem-posing tasks as measures of
student outcomes, it seems that students will need further experiences and prepara-
tion in order for problem-posing measures to provide the most useful information.
The low levels of success students display may be due to a general lack of experi-
ence with problem-posing tasks. In addition, Crespo and Sinclair (2008) emphasize
the need for students to develop aesthetic criteria for judging the mathematical qual-
ity of posed problems. The development of such criteria and the disposition to apply
them may also be part of the experiences prerequisite for problem posing to be
practically feasible as an outcome measure.

Unanswered Question 7

Given the potential for problem-posing tasks to be used as measures of creativity
and other mathematical learning outcomes, it is incumbent on the mathematics
education research community to develop and validate suitable problem-posing
instruments. What kinds of problem-posing tasks best reveal students’ creativity
and their mathematical understandings and misunderstandings? Given the results of
the LieCal problem-posing assessment (Cai et al., in press), in order for problem-
posing measures to provide useful information, it will also be important for
researchers to investigate the kinds of preparation students will need to perform
adequately on them.

How Are Problem-Posing Activities Included
in Mathematics Curricula?

If problem-posing activities are to play a more central role in classrooms, they
must be more prominently represented in curricula. As noted above, researchers
have adapted several kinds of materials in order to generate problem-posing situa-
tions for research purposes. Similarly, if teachers are to engage students in problem
posing in the classroom, they must have sources for problem-posing activities. Such
sources may be supplements to curricula, as in the case of the materials developed
by Lu and Wang (2006). Lu and Wang and their associates (Lu & Wang, 2006;
Wang & Lu, 2000) launched a project focused on developing and implementing a
set of teaching materials about mathematical situations and problem-posing tasks.
The teaching materials, including mathematical situations and problem-posing
tasks, were not intended to replace textbooks; instead, they were used to supplement
regular textbook problems. By 2006, more than 300 schools in ten provinces in
China had participated in the project. Teachers received training to use mathemati-
cal situations and problem-posing tasks along with their regular curriculum.
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However, education reform movements have also recommended that
problem-posing activities be included in mathematics curricula themselves.
Internationally, school mathematics reforms have recommended that students be
able to “formulate interesting problems based on a wide variety of situations, both
within and outside of mathematics” (NCTM, 2000) and that instructional activities
should emphasize learning problem-posing skills. In the United States, the NCTM
Principles and Standards for School Mathematics (2000) emphasized the use of
problem generation activities, where problems are “posed out of a situation or expe-
rience” (Stickles, 2011).

Similarly, reforms to curriculum standards in China have increased the promi-
nence of problem posing. The 9-year compulsory education mathematics curricu-
lum standards call for providing students opportunities to pose problems, understand
problems, and apply the knowledge and skills learned to solve real-life problems
(Basic Education Curriculum Material Development Center, Chinese Ministry of
Education, 2003). Similarly, the curriculum standards for senior high school math-
ematics also call for developing students’ abilities to pose, analyze, and solve prob-
lems from mathematics and real life (Basic Education Curriculum Material
Development Center, Chinese Ministry of Education, 2003). Indeed, in the reform
standards, students are encouraged to discover and pose problems in order to pre-
pare them to think independently and be inquirers.

However, the implications for the inclusion of problem posing in the curriculum
are not necessarily clear. Ellerton (2013) has pointed out that although the Common
Core State Standards—currently the most widely accepted US standards—call for
problem-posing activities to be included in mathematics curricula, primarily the
emphasis has been on problem-solving activities. In the Common Core State
Standards, problem-posing activities are explicitly mentioned once (National
Governors Association Center for Best Practices, 2010, p. 7), whereas problem
solving is explicitly stated throughout the standards. The Common Core State
Standards do recommend emphasizing the ability to “recognize and describe situa-
tions” for third-, fifth-, sixth-, and seventh-grade mathematics, which can be inter-
preted as problem posing (National Governors Association Center for Best Practices,
2010), but do not provide any recommendations on how to incorporate such activi-
ties into teaching plans (Ellerton, 2013).

This ambivalence is reflected in the available research on problem posing and
curricula. Although reform movements have called for problem-posing activities to
be included in mathematics curricula, there has not yet been a substantial body of
research examining whether and how curricula incorporate problem posing. There
is some evidence that more recent versions of textbooks emphasize problem posing
more than previous versions. For example, an analysis of all problem-posing tasks
in two editions of the Chinese elementary mathematics textbook series published by
the People’s Education Press found that between the 1994 edition and the 2004
edition, there was an increase in the percentage of problem-posing tasks (Cai, Jiang,
Hwang, Nie, & Hu, in press). Notably, this problem-posing increase appears to have
been related to an accompanying increase in curricular focus on data and statistics.
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Unanswered Question 8

The lack of a robust body of research in this area leads us to call for greater atten-
tion to the textbooks that students and teachers actually use, not merely to the curricu-
lum frameworks on which those textbooks are based (Cai et al., in press). How do the
actual textbooks include problem posing? There are many ways to include problem
posing, and it is not clear what choices textbook writers and curriculum developers
have made in creating the existing materials. Given the emphasis on mathematical
modelling in current curriculum frameworks, it would be helpful in particular to know
what role problem posing might play in mathematical modelling tasks in textbooks.

Unanswered Question 9

If curriculum designers intend to integrate problem posing into textbooks and teach-
ing materials, what are the best ways to do so? In the analysis of Chinese elementary
mathematics textbooks mentioned above, Cai and his colleagues gave special attention
to three types of problem-posing tasks: tasks which included a sample problem, tasks
that required students to pose problems corresponding to given operations, and tasks
that required students to pose problems based on data charts (Cai et al., in press). They
found significant differences with respect to these types of tasks between the 1994 and
2004 editions of textbooks. However, it is not clear whether these shifts are reflective
of an attempt to utilize problem posing more effectively in the curriculum, and if so,
what criteria were used to make those judgments. Further work is needed to understand
the effectiveness of different ways of building problem posing into curricula.

What Does a Classroom Look Like When Students
Engage in Problem-Posing Activities?

Even when problem posing is included in textbooks and curriculum materials,
there remains the significant work of implementation in actual classrooms.
Classrooms are complex by their very nature, with students and teachers establish-
ing patterns of practice and norms that can influence student learning (Boaler, 2003;
Yackel & Cobb, 1996). Indeed, Crespo and Sinclair (2008) have pointed out that
classroom activity around problem posing will involve the negotiation of socio-
mathematical norms, such as in determining criteria for what counts as a mathemat-
ically interesting problem. Researchers must therefore consider how the intended
curriculum is realized by teachers and students and what factors influence imple-
mentation (Ball & Cohen, 1996; National Research Council, 2004). With respect to
understanding how problem posing can be enacted in classrooms, there is a need for
both theoretical frameworks and careful analyses of practice.
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To that end, Ellerton (2013) has proposed an Active Learning Framework that
situates the processes of problem posing in the broader processes of mathematics
classrooms. Arranged along a spectrum from passive student processes to active
student processes, Ellerton’s framework suggests that classrooms that do not include
problem posing, stopping instead at problem solving, cut short students’ mathemat-
ical experiences. In particular, students are deprived of opportunities to reflect, cri-
tique, and question. Thus, this framework portrays problem posing in classrooms as
a capstone activity that allows students to consolidate and think critically about the
knowledge they have gained.

Although not specifically an analysis of problem posing in classrooms, Singer
and Moscovici (2008) have described a learning cycle in constructivist instruction
that includes problem posing as an extension and application of problem solving. In
an example of instruction with ninth graders, Singer and Moscovici describe three
phases of inquiry: immersion, structuring, and applying. In the third, applying
phase, students use the patterns they have developed in earlier phases in related and
unrelated situations and create new situations that need solving. Parallel to the role
of problem posing in Ellerton’s (2013) framework, Singer and Moscovici character-
ize the role of problem posing in a constructivist approach to instruction as that of
consolidating and extending what they have learned.

Looking more specifically at the collective activities of students in classrooms,
Kontorovich, Koichu, Leikin, and Berman (2012) have proposed a theoretical
framework to help researchers handle the complexity of students’ mathematical
problem posing in small groups. This framework integrates five facets: task organi-
zation, students’ knowledge base, problem-posing heuristics and schemes, group
dynamics and interactions, and individual considerations of aptness. The last facet
refers to the posers’ comprehensions of implicit requirements of a problem-posing
task and reflects their assumptions about the relative importance of these require-
ments. Kontorovich et al. applied their framework to analyze the problem-posing
processes and decision making of two groups of high school students with similar
backgrounds who were given the same problem-posing task.

In implementing the supplementary problem-posing curriculum materials
designed in their project, Lu and Wang and their associates aimed to help teachers
learn how to develop mathematical situations and to pose problems (Lu & Wang,
2006). As supplementary material for the regular mathematics curriculum, a series
of teaching cases was developed by mathematics educators across grade levels and
across content areas. Figure 1.3 presents a sample teaching case for Making a
Billboard from Lu and Wang (2006, p. 359). The teaching materials given to teach-
ers included different problem situations together with examples of problems which
students might be expected to pose. Figure 1.3 shows a problem situation with six
such sample problems. These sample problems were given to teachers as guidelines
in much the same way as worked examples might be given in textbooks. When stu-
dents were given the problem situations, they were encouraged to pose as many
problems as they could.

After students had posed several problems, the teacher would show them how to
solve some of the posed problems. Figure 1.4 shows a sample solution to problem 3.
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Mathematics content: Linear equation with one unknown (for junior high school
students).

Situation: A factory is planning to make a billboard. A master worker and his
apprentice are employed to do the job. It will take 4 days by the master worker alone
to complete the job, but it takes 6 days for the apprentice alone to complete the job.

Students’ Task: Please create problems based on the situation. Students may add
conditions for problems they create.

Problem 1. How many days will it take the two workers to complete the job
together?

Problem 2. If the master joins the work after the apprentice has worked for 1 day,
how many additional days will it take the master and the apprentice to complete the
job together?

Problem 3. After the master has worked for 2 days, the apprentice joins the master
to complete the job. How many days in total will the master have to work to
complete the job?

Problem 4. If the master has to leave for other business after the two workers have
worked together on the job for 1 day, how many additional days will it take the
apprentice to complete the remaining part of the job?

Problem 5. If the apprentice has to leave for other business after the two workers
have worked together for 1 day, how many additional days will it take the master to
complete the remaining part of the job?

Problems 6. The master and the apprentice are paid 450 Yuan after they completed
the job. How much should the master and the apprentice each receive if each
worker’s payment is determined by the proportion of the job the worker completed?

Figure 1.3. Sample teaching case and examples of problems posed by students
in response to the task.

Suppose the two workers worked together for x days, the master worker did (x+2)
days.

l(x+2)+lx =1, and x:E;
4 6 5

So the master worked: x +2=2 +g = % days.

Figure 1.4. Solution presented by a teacher to posed problem 3 in Figure 1.3.

Once students had solved each of the posed problems, they were encouraged to pose
new problems. Additional problems posed by students are shown in Figure 1.5. The
teacher would then show students how to solve these problems.

Cai (2012) provided another example of problem posing in classroom instruction
in a study of 14 preservice teachers engaging in the problem-posing activity shown
in Situation 3 of Figure 1.1. The preservice teachers were divided into four groups
and given 30 min to pose as many problems as they could. Then the class used
another 70 min to solve the posed problems. During the process of solving the posed
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Problem 7. The apprentice started the work by himself for 1 day, and then the
master joined the effort, and they completed the remaining part of the job together.
Finally, they received 490 Yuan in total for completing the job. How much should
the master and the apprentice each receive if each worker’s payment is determined
by the proportion of the job the worker completed?

Problem 8. The master started the work by himself for 1 day, and then the
apprentice joined the effort, and they completed the remaining part of the job
together. Finally, they received 450 Yuan in total for completing the job. How much
should the master and the apprentice each receive if each worker’s payment is
determined by the proportion of the job the worker completed?

Figure 1.5. Additional problems posed by students.

problems, each preservice teacher could pose additional problems. The preservice
teachers posed a total of nine different mathematical problems after the first 30 min.
Two groups posed the same question, “What is the sum of the numbers in the first n
rows?”, and the ensuing discussion produced an unanticipated result.

The first group of students answered the question based on the fact that the sum
of the numbers in the first n rows is the “sum of the sum” of the numbers in each of
the first n rows. Since the sum of the numbers in the nth row is #n°, the sum of the
numbers in the first n rows should be 13+23+33+4%+ ...+ (n—1)*+n>. Then they
posed the following question: What is the sum of 13+23+3*+43+ ... +(n—1)*+n3?

The second group used a different approach to answer the original question.
After some observations, students realized that the first row has one odd number
which is 1, the second row has two odd numbers which are 3 and 5, the third row
has three odd numbers which are 7, 9, 11, and so on. The nth row should have n
odd numbers. Therefore, the sum of the numbers in the first n rows of the pattern
should be the sum of the first (1+2+3+4+---4+n) odd numbers. Since
143+5+---+(2m—1)=m?, the sum of the numbers in the first n rows in the pattern
should be (1+2+3+4+---+n)%

After the two groups of students presented their answers to the class, they inte-
grated their findings and realized that 13+23+33+43+ ... + (n— 1) +n3=[n(n+ 1)/2]?
because 1+2+3+4+---+n=n(n+1)/2. This was not a result that the students had
expected, nor was its development from this activity anticipated by the instructor
beforehand. This example from empirical research showed that collective problem
posing in the classroom context could lead to surprising results. Classrooms that
include problem-posing activities may therefore allow students’ voices to become
relevant in the development of the mathematics they are learning and provide spaces
to foster creativity and mathematical power.

Unanswered Question 10

Although we have discussed a few examples of classroom instruction involving
problem posing, few researchers have tried to describe carefully the dynamics of
classroom instruction where students are engaged in problem-posing activities.
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Because classroom instruction is generally complex, with many salient features that can
be investigated, researchers will need to identify those features that are most relevant for
problem posing and which may be most influenced by the introduction of problem-
posing activities. This leads to our tenth unanswered question: What are the key features
of effective problem-posing and problem-posing instruction in classrooms?

Unanswered Question 11

In addition to identifying and describing the distinctive features of classrooms in
which students engage in problem posing, it is also important to consider how
teachers might change their practice and their classroom cultures to make problem
posing an accepted practice (Leung, 2013). Indeed, the prevailing norms that shape
school mathematics teaching are rooted in both teachers’ and students’ understand-
ings of what is expected of them (Brousseau, 1984, 1997; Herbst, 2002) and in the
practical rationality (Herbst & Chazan, 2003) that guides teachers’ judgments about
what actions are appropriate in the classroom. Moore-Russo and Weiss (2011) point
out the potential difficulty in challenging and altering these norms and expectations,
asking “Is it normative to encourage students to modify a problem or to introduce
their own assumptions when solving problems?” and “Do teachers commonly
encourage students to pose their own problems?” Thus, it is important to investigate
the practical questions of whether and how problem posing can fit into the obliga-
tions teachers feel in their practice. What are the dynamics of negotiating a class-
room culture in which posing is an expected behavior, and what supports do teachers
need to be able to reposition themselves and their students for problem posing?

How Can Technology Be Used in Problem-Posing Activities?

The use of technology in the teaching and learning of mathematics has been a
topic of interest for researchers in mathematics education. In particular, the flexibil-
ity of computer-based technologies for facilitating exploration and experimentation
seems relevant to problem posing. Indeed, NCTM (1991) highlighted the promise
of technology for problem posing (and solving) “in activities that permit students to
design their own explorations and create their own mathematics” (p. 134). For
example, Cai and Cifarelli (2005) made use of a computer microworld to allow
students to explore a mathematical situation involving the motion of a billiard ball.
The microworld provided the students with relative autonomy and freedom in
exploring the relationships and boundaries of the mathematical situation. These
explorations facilitated the students’ generation of multiple questions and conjec-
tures. Thus, by increasing opportunities for students to explore a problem situation
and test its boundaries (Crespo & Sinclair, 2008), computer-based technologies may
ultimately help students to extend given problems by posing related questions
(Santos-Trigo & Diaz-Barriga, 2000) and to pose higher quality problems overall.
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Computer-based systems have been particularly well suited to providing students
with opportunities to explore dynamic visualizations of geometric situations.
Christou, Mousoulides, Pittalis, and Pitta-Pantazi (2005) found that the use of
dynamic geometry software facilitated the generation of new problems during the
problem-solving process. Students were able to use the dynamic features of the soft-
ware, and “dragging” in particular, to make and check conjectures, experiment, and
generalize. Similarly, Chazan (1990) described how teachers could use the Geometric
Supposers to increase student exploration and develop students’ inquiry skills: veri-
fying, conjecturing, generalizing, communicating, proving, and making connections.
The Supposers are software programs that facilitate geometric constructions which
can then be recorded and repeated with new initial conditions. Chazan found that the
use of these programs could help students to pose very good problems by drawing
auxiliary lines or systematically varying aspects of problems.

Although geometric situations appear to be particularly well suited to the
dynamic visualization power of computer-based tools to aid in problem posing,
some researchers have also investigated technological tools in other mathematical
contexts. For example, Abramovich and Norton (2006) described the use of graph-
ing software to explore the behavior of quadratic functions, in particular using the
locus approach to investigate questions about quadratics with varying parameters.
They posit that the use of graphing technology allows for the posing of problems
that would be too difficult or abstract for prospective secondary teachers to formu-
late or solve purely algebraically. Abramovich and Cho (2006) further extended the
range of technological tools for problem posing, investigating the use of spreadsheet-
based environments to enable elementary preservice teachers and students to pose
and solve money sharing and money changing problems. As with the geometric
environments, the spreadsheet allows problem posers to explore the consequences
of varying parameters of the problem situation. In addition, Abramovich and Cho
noted that the spreadsheet tool helped the poser to generate data that ensured the
solvability of the posed problems.

Taking advantage of the power of computers to engage students in games, Chang,
Wu, Weng, and Sung (2012) implemented a problem-posing system that asked stu-
dents to pose and refine problems which would then be presented in one of six
computer game contexts. The mathematical focus of this project was on elementary
word problems. By engaging students in this problem-posing game system, the
researchers sought to improve the students’ problem-posing and problem-solving
skills as well as their flow experience. In particular, Chang et al. found that students
using the technology-based activity were more engaged and challenged than stu-
dents receiving traditional problem-posing instruction in the control group, who
became tired of the tasks.

The recent rise of sophisticated web-based technologies has also had an impact
on mathematical problem posing. Researchers have begun to investigate how web-
based environments can facilitate the work of students and teachers to pose prob-
lems, discuss the solutions, and evaluate and improve the problems and solutions.
For example, Beal and Cohen (2012) used a web-based content-authoring and
sharing system in which middle school students posed mathematics and science
problems and solved problems authored by their peers. The system included social
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media aspects, in which students could compliment or criticize their peers’ prob-
lems. Beal and Cohen found that students were able to create problems success-
fully, generating four problems each on average. However, the students engaged in
problem-solving activities much more often than authoring new problems, despite
being given more points for posing than for solving problems. Nevertheless, both
students and teachers responded positively to the activity.

Lan and Lin (2011) developed a web-based Question-Posing Indicators Service
(QPIS) system which they used with first year college students in a programming
course. Analogous to the social elements of the system used by Beal and Cohen
(2012), the QPIS system has a question-posing module where students can pose
questions on course content or for reflective thinking, a tool module where students
can search problems posed by their peers and give comments to their peers, and an
assessment module where students/teachers can evaluate the question-posing abili-
ties of individual students. In particular, the quality of the posed questions was
evaluated in a number of ways, such as:

* Content usefulness (whether a question helps students increase their under-
standing and/or learning)

¢ Content richness (multimedia content is taken as richer than text-based mode)

* Level of thinking skills reflected by question type (lower order such as true/
false questions, intermediate order such as multiple choice questions, and
higher order such as matching and short answer questions)

¢ Self and peer assessment modules

* Expert assessment modules

Lan and Lin found that the QPIS system could serve as both a learning and assess-
ment tool in higher education by encouraging students to carry out active learning,
constructive criticism, and knowledge sharing.

Unanswered Question 12

The rapid evolution of technology means that new tools are always becoming
available. For purposes of improving educational outcomes, it can be difficult to
keep pace with these developments. Of particular concern is the tendency in educa-
tion to adopt technologies without having a clear picture of their impacts and effec-
tiveness. This raises a key and persistent unanswered question. Are particular
technological tools effective, and how do they affect students’ problem posing?
Some of the studies mentioned above (e.g., Chang et al., 2012; Lan & Lin, 2011)
have measured changes in students’ problem solving and problem posing. However,
this question is not simply about looking for improved performance on existing
tasks. As Abramovich and Norton (2006) point out, technological tools can not only
enhance the curriculum, but also change it. Thus, studies of the effects of introduc-
ing technological tools for problem posing must consider how these tools may
change the tasks and the learning goals of mathematics instruction.
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What Do We Know About the Impact of Engaging
in Problem-Posing Activities on Student Outcomes?

The ultimate goal of educational research is to improve students’ learning.
Research on problem posing is no exception. The NCTM Principles and Standards
for School Mathematics (NCTM, 2000) suggest that problem-posing activities
should be beneficial for both students and teachers, with students learning to pose
problems in both school and out-of-school contexts (Bonotto, 2013), and teachers
using problem posing to promote and challenge students’ thinking (Stickles, 2011).
Indeed, there are at least two reasons to expect that engaging students in problem-
posing activities should have a positive impact on their learning. First, problem-
posing activities are usually cognitively demanding tasks with the potential to
provide intellectual contexts for students’ rich mathematical development. Doyle
(1983) argued that tasks with different cognitive demands are likely to induce
different kinds of learning. Cognitively demanding problem-posing activities can
promote students’ conceptual understanding, foster their ability to reason and com-
municate mathematically, and capture their interest and curiosity (NCTM, 1991).
Indeed, researchers (e.g., Silver, 1994) have suggested that student-posed problems
are more likely to connect mathematics to students’ own interests, something that is
often not the case with traditional textbook problems. Second, problem-solving pro-
cesses often involve the generation and solution of subsidiary problems (Polya,
1957). Previous studies (e.g., Cai & Hwang, 2002) have suggested that the ability to
pose complex problems might be associated with more robust problem-solving
abilities. Thus, encouraging students to generate problems is not only likely to fos-
ter student understanding of problem situations, but also to nurture the development
of more advanced problem-solving strategies.

Even though theoretical arguments suggest that engaging students in problem-
posing activities in classrooms should have a positive impact on students’ learning
and problem posing, there are relatively few empirical studies that systematically
document this effect. English (1997) developed a problem-posing program and
found in her post-interview that fifth graders in the problem-posing program did, in
fact, pose quantitatively more, as well as more complex, problems. Similarly,
Crespo (2003) examined the changes in the problem-posing strategies of a group of
elementary preservice teachers as they posed problems to students. She found that,
after teachers had engaged in problem-posing activities, they were able to pose
more problems with multiple approaches and solutions, as well as pose problems
that were more open-ended, exploratory, and cognitively complex.

Given the documented association between students’ problem-solving and
problem-posing abilities (e.g., Ellerton, 1986; Silver & Cai, 1996), some research-
ers have specifically investigated the effects of engaging in problem-posing activi-
ties on problem-solving performance. Traylor (2005) used a pretest—posttest design
to compare the posing and solving performance of eighth-grade algebra students
who engaged in both types of activities for the first 9 weeks of the school year to
that of students in control classes who had not engaged in posing activities.



1 Problem-Posing Research in Mathematics Education 27

The results were mixed, with no clear benefit to engaging in problem posing.
However, Traylor suggested that these results may have been influenced by the
participants’ comparative lack of effort on the posttest, which she attributed to the
fact that the test did not “count” toward the students’ grades and that, 9 weeks into
the school year, students were no longer so eager to please their teachers.

Other researchers have found somewhat more positive effects of problem pos-
ing. Abu-Elwan (2002) conducted an experiment with 50 student—teachers, half of
whom were given opportunities to pose problems as an extension of Polya’s (1957)
fourth problem-solving step. The experimental instruction was based on the sug-
gestion of Gonzales (1994) to extend Polya’s four steps to include a fifth stage in
which students posed related problems. The control group received instruction
based only on Polya’s original four steps. Abu-Elwan found that the experimental
group performed significantly better than the control group in both problem solv-
ing and problem posing.

In a study of the effects of problem-posing instruction on Turkish 10th graders’
learning of probability, Demir (2005) found that students who had been taught using
a problem-posing approach performed significantly better on a probability achieve-
ment test. Moreover, Demir documented significant positive effects on affect.
Specifically, students who had experienced problem-posing instruction developed
more positive attitudes toward probability and mathematics.

Similarly, researchers have investigated the effect of problem posing on various
mathematics outcomes for prospective teachers. Positive impacts have been docu-
mented of problem posing on the prospective teachers’ mathematical knowledge and
understanding with respect to fraction concepts (Toluk-Ugar, 2009) and concepts
from geometry (Lavy & Shriki, 2010). In addition, problem posing has been found
to have positive impacts on other types of mathematics outcomes. For example,
Toluk-Ugar found that problem posing had a positive effect on prospective teachers’
views of understanding in mathematics, and Akay and Boz (2010) found that instruc-
tion integrated with problem posing had resulted in more positive attitudes toward
mathematics and greater mathematics self-efficacy in prospective elementary math-
ematics teachers. Lavy and Shriki noted that, in addition to the prospective teachers’
gains in geometric knowledge, problem posing was associated with gains in meta-
mathematical knowledge about definitions, argumentation, and proof.

Unanswered Question 13

Over a decade ago, English (1997) observed that, as a field, we knew little about
the relationship between students’ problem-posing abilities and their competence in
other areas of mathematics. It is clear that progress has been made on this front.
Although some of the studies described above have focused specifically on stu-
dents’ problem-posing behavior after engaging in problem-posing activities, others
have begun to explore connections between problem posing and broader student
outcomes. However, no large-scale validation or efficacy studies have been carried
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out to examine the effect of engaging problem-posing activities more generally on
students’ learning of mathematics. Thus, the next unanswered question we raise is:
What is the impact of engaging in problem-posing activities on students’ mathemat-
ics achievement?

Research in reading has shown that engaging students in problem posing can lead
to significant gains in reading comprehension. The results from one meta-analysis
showed that the effect sizes were .36 using standardized tests and .86 using researcher-
developed tests (Rosenshine, Meister, & Chapman, 1996). Although it is theoretically
sound to engage students in problem-posing activities in an attempt to understand and
improve their learning, more empirical studies are needed to demonstrate any actual
effects on mathematics learning. The research in reading can serve as a model for
systematically investigating the effect of mathematical exploration in general and
problem-posing activities in particular on students’ learning of mathematics.

Unanswered Question 14

Engaging in problem posing has the potential to influence more than just the
mathematics that students learn, but also their dispositions toward mathematics.
Silver (1994) argued that problem posing could influence students’ attitudes, affect,
and beliefs about mathematics. However, Silver carefully pointed out that, although
studies did not typically report negative student reactions to problem posing, the
influence of problem posing could be either positive or negative. The findings of
Akay and Boz (2010) and Demir (2005) do provide some evidence that problem-
posing activities may foster positive views of mathematics and greater self-efficacy.
These affective gains may also be reinforced by the use of innovative technologies
to stimulate student engagement, as in the work of Chang et al. (2012) and Beal and
Cohen (2012). Given that many students suffer from anxiety that interferes with
their achievement when solving mathematics problems (X. Ma, 1999; McLeod,
1992), problem posing may therefore offer a more approachable path to problem
solving. Yet, the research basis for such a claim remains thin, and the question
remains. How does problem posing influence affective aspects of students’ mathe-
matics learning? Systematic studies of the effects of problem posing on students’
attitudes, affect, and beliefs about mathematics are needed.

Looking to the Future

Although research on mathematical problem posing is comparatively new in the
field of mathematics education, researchers have gained some key footholds.
Current curriculum frameworks and the curriculum materials that are built on those
frameworks include problem posing, if somewhat peripherally to problem solving.
We know that students and teachers are capable of posing problems. We have



1 Problem-Posing Research in Mathematics Education 29

recognized that problem posing offers potential benefits for what mathematics
students learn and what students learn about the practice of mathematics. Although
students likely need more experiences and preparation with problem posing, it
seems reasonable to assert that problem-posing tasks can provide useful measures
of various student outcomes. Problem posing has found its way into some curricu-
lum materials and some mathematics classrooms, though much work remains to
understand how to encourage this process and produce the best results. And, there
are encouraging signs that students who engage in mathematical problem posing
seem to develop positive outcomes with respect to their mathematical understand-
ings and dispositions.

Acknowledging both the work that has been done and the many questions that
remain unanswered, we conclude our survey of the state of research on mathemati-
cal problem posing with a final, very broad unanswered question: How might we
understand problem posing? This area of research, though comparatively new
within mathematics education, has produced a number of empirical results. Yet, it
remains ripe for theoretical work that will provide a cohesive framework for under-
standing these empirical results and the overall phenomenon of problem posing.
This is not necessarily a call for a single, overarching theory of problem posing.
Indeed, researchers have focused on many potentially distinct forms of problem
posing, such as the kind of problem posing teachers do for their students and the
kind of problem posing individuals do when reflecting, and we may need multiple
frameworks to understand problem posing in all its guises. Nevertheless, there is a
clear need for more robust theory-building so that we may better understand prob-
lem posing. A journey of a thousand miles begins with a single step. The journey of
problem-posing research in mathematics has taken its first step, but many more
steps need to follow.
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Chapter 2
Problem Posing from a Modelling Perspective

Ragnhild Hansen and Gert M. Hana

Abstract In this chapter, we consider how problem posing forms an integral part
of mathematical modelling and consider its placement during modelling processes.
The problem and its formulation is an essential part of modelling, and a modelling
process is usually associated with a continual adjustment and reformulation of the
main problem. In addition, one may formulate conjectures, ask monitoring and con-
trol questions, and have a critical stance toward the model and its results. We con-
sider how the educational intention of the modelling activity and the placement in the
modelling cycle relates to the problems and questions being posed. We briefly con-
sider how problem posing may be implemented in mathematical modelling through
the use of students’ conjectures and by students acting as consultants and clients.
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Introduction

We see mathematical modelling and problem posing as promoting essential
skills necessary for involvement in a democratic society and as integral parts of a
balanced mathematics curriculum. The topics of mathematical modelling and prob-
lem posing are closely related as modelling is concerned with using mathematics to
solve or gain further insight into real-world problems. Our own experience as
teacher educators is that posing problems that make good mathematical tasks is no
trivial matter, and that student teachers often find it difficult to pose and implement
appropriate modelling tasks in their teaching practice. A further layer of difficulty
is added when one wishes pupils to take an inquiring stance, where they pose prob-
lems related to mathematical modelling. This chapter will look at problem posing
from the perspective of the pupil, but much of it will be relevant to teachers’ prob-
lem posing as well.

In this chapter, we discuss why we see modelling and problem posing as a poten-
tially fruitful combination. This will be followed by short discussions on how problem
posing relates to different perspectives on modelling and to the modelling process.!
We end by sketching some ways to implement problem posing in mathematical mod-
elling. The chapter tries to give some pointers to the many issues present in this under-
researched intersection of mathematical modelling and problem posing.

Mathematical Modelling and Problem
Posing: Possible Obstacles

An initial example will be presented to illustrate possible obstacles one can meet
when trying to combine mathematical modelling and problem posing. In this exam-
ple, a group of four student teachers were starting a lesson sequence with eighth
grade pupils based on mathematical modelling. The student teachers decided to
choose the general topic of mathematical modelling themselves. Since one of the
student teachers had experience in biology, the topic chosen was plants. In the initial
lesson, the student teachers encouraged the pupils to formulate as many questions
as possible concerning plant growth. The student teachers planned this as a pure
problem-posing lesson. A purpose of this lesson was to provide the student teachers
with ideas of authentic mathematical modelling problems to use with the pupils
within the context of plant growth, although the student teachers had not considered
how to follow-up the problems posed by the pupils. In the continuation of the lesson
sequence, the pupils’ problems were not, in fact, used. Instead, the pupils were sup-
posed to seed their own plants in small boxes in the classroom and work with
modelling and growth prediction in accordance with the schedule made by the

! Another relevant theme, which we do not pursue, is how different goals such as decision making,
system analysis and design, and trouble shooting (OECD, 2004) affect the type of problem posing
relevant for mathematical modelling.
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student teachers. The student teachers’ main mathematical focus was on the mea-
sure and prediction of plant height, using scatter plots and linear functions.
Commenting on the problem-posing stage, the student teachers noted that the prob-
lems posed by the pupils were to a large degree nonmathematical:

Student teacher A: “I have been discussing ... about ten questions like this, I think: Why a
plant is able to grow up through the asphalt, why leaves are yellow in autumn, why some plants
are poisonous, why some have thorns, why do flowers need water ... it was a lot of that.”

And that they had difficulties distinguishing appropriate problems:

Student teacher B: “Are we likely to ask then what the largest plant in the world may be?
Will that be a good enough question?”

Based on this example, we have identified five types of difficulties that the student
teachers encountered when they attempted to combine mathematical modelling and
problem posing. In particular, we will see the importance of teachers being able to
assist in the refinement and reformulation of problems so that they become manage-
able for the students. For example, a question like “Why do flowers need water?”
may be reformulated as a mathematical modelling problem, where one quantifies
growth of flowers under the influence of different external conditions.

Five Types of Difficulties

The five types of difficulties faced by the student teachers were:

1. Posing mathematically relevant problems. In most cases, the pupils posed
problems that were not mathematically relevant, i.e., the problems were stated
in such a way that using mathematics to solve them would be contrived. This
can in part be explained by the student teachers not being explicit in stating to
their pupils that they were mainly interested in problems that could be
handled using mathematics. However, we also see an underlying difficulty in
posing problems that have mathematical relevance.

Mathematical modelling is always interdisciplinary. This has several
advantages, but also the disadvantage that pupils are not necessarily able to
distinguish between problems that are mathematically relevant and problems
that are not. Being able to distinguish problems that can be mathematized and
being able to reformulate nonmathematical problems so that they can be han-
dled using mathematical tools is part of the learning process. As these are
competencies for which the pupils, and the beginning student teachers, were
not proficient, this added a level of difficulty to the problem-posing activity.

2. Posing mathematically suitable problems. The student teachers had difficul-
ties distinguishing which problems were mathematically suitable for the
pupils, i.e., which problems would be neither too easy nor too difficult for the
pupils and at the same time would enable the pupils to engage in significant
mathematical modelling. Posing problems of an appropriate level of difficulty
is, of course, a potential obstacle in any scenario, where one poses nontrivial
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problems. However, this obstacle is enhanced in mathematical modelling since
it is not always obvious from the initial problem formulation what mathe-
matics will be needed. A needed skill here is to be able to reformulate and
adjust problems in appropriate ways so that they attain a reasonable degree
of mathematical sophistication.

In mathematical modelling, it is frequently the case that first attempts at
problem posing give problems that are unmathematizable or too difficult as
stated. It is the norm that repeated adjustments and reformulations of the
problem are necessary before one arrives at a problem which is both mathe-
matizable and mathematically manageable.

. Posing problems such that the pupils feel ownership of the problems. In

this example, the student teachers encountered pupils just “going through the
motions”—that is to say, pupils just spurting out lots of similar looking prob-
lems without reflecting on them, or posing pseudo-problems for which they
did not really anticipate an answer. Here, one needs to be aware that problem
posing is an ongoing process, where reformulations and adjustments of the
problem are frequently required. This is especially the case in mathematical
modelling, where one continually refers back to the problem situation during
the modelling process.

. Making problem posing a relevant part of the learning trajectory. In this

case, the pupils’ problems were left hanging; they were not reflected upon at
the end of the lesson nor were they used in the lessons that followed. If prob-
lem posing is to be seen as a mathematically significant activity for the pupils,
it needs to be connected to other mathematical activities in the classroom.
In particular, if problem posing is to be seen as an integral part of modelling,
then the pupils should at times model problems they have posed.

. Incorporating the teaching of mathematical content with problem posing

and mathematical modelling. In this example, the student teachers wanted
the mathematical content to be connected to scatter plots and linear regres-
sion. Two main difficulties can be associated with this: First, this intent had
not been communicated to the pupils in the problem-posing lesson, and second,
there is an inherent difficulty in posing problems to an unknown or little-
known mathematical topic, especially in posing problems where the topic is
to be connected to a specific real-world situation.

Why Mathematical Modelling and Problem Posing?

Although some research has been conducted on problem posing in mathematical

modelling (e.g., Bonotto, 2010, 2011; English, 2010; English, Fox, & Watters,
2005), in general the topic of problem posing has tended to be peripheral in math-
ematical modelling research. For example, Goldstein and Pratt (2001) remarked
that problem posing “falls outside the classical modelling cycle [of mathemati-
zation, transformation, interpretation and validation]” (p. 49). There are several
remarks in the literature pointing to the importance of the problem in modelling, to
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reformulations of problems and to asking appropriate questions throughout the
modelling process, although these are mostly incidental. In particular, Ottesen
(2002) has drawn attention to the influence of working with mathematical model-
ling on the question of what makes a problem mathematical. Ottesen wrote:

[Through working with mathematical modelling] students learn to ask certain types of
questions that can only be answered by means of mathematics, as well as types of questions
that can only be posed by means of mathematics. (p. 344)

This statement was also used by Swan, Turner, Yoon, and Muller (2007) who saw
modelling as promoting “the asking and answering of mathematical questions”
(p. 281). Mousoulides, Sriraman, and Christou (2007) drew attention to the potential
of ongoing problem-posing activities throughout the modelling process:

During modeling cycles involved in model eliciting activities students are engaged in prob-
lem posing, that is, they are repeatedly revising or refining their conception of the given
problem. (p. 35)

Problem posing, in a wide sense, appears in multiple guises in modelling: posing
and reformulation of the main problem, making of conjectures, and meta-questions
(monitoring and control questions related to the mathematics and/or to the model-
ling process; or questions taking a critical stance to the model and/or its result). This
ongoing problem posing throughout the modelling process makes modelling a natu-
ral arena for students’ problem posing. According to English et al. (2005):

Modeling activities promote problem posing as well as problem solving primarily because
they evoke repeated asking of questions and posing of conjectures. ... Given a rich problem
situation, such as mathematical modelling, in which generating problems and questions
occurs naturally, numerous opportunities abound for learning by both child and teacher.
(p. 156 and p. 158)

In professional modelling, we see problem posing as an essential component that
initiates the modelling process as well as defining its parameters and goals.
Formulation and reformulation of the problem are necessary throughout the whole
modelling process. Being able to pose and adjust a problem appropriately for the
data and mathematical tools available is a vital part of using mathematics in real-
world situations. In particular, this implies that problem posing is important in the
experience of authentic modelling processes.

Several reasons have been given for including problem posing (see other chapters
in this book) and mathematical modelling (e.g., Kaiser & Sriraman, 2006; Maal,
2010) in the mathematics classroom. Potentially, having a focus on problem posing
while working on mathematical modelling will give the best from both worlds. Our
motives for considering problem posing in conjunction with teaching and learning
mathematical modelling is related to problem posing being a vital component of
experiencing authentic modelling. Problem posing is helpful in understanding the
decisions made during modelling (especially with respect to limitations and possi-
bilities offered by mathematical modelling). Problem posing is also seen as a useful
experience to help equip pupils for later engagement in modelling outside the school
environment. Finally, problem posing can give students increased ownership of their
learning environment, since it is a natural component of inquiry-oriented instruction
and is grounded in the belief of giving priority to the question over the answer.
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The Priority of the Question

One of the reasons for our interest in problem posing as a topic in mathematics
education is the priority of the question over the answer (Hana, 2012). It is questions
that drive our search for knowledge, not answers. The problems we engage in deter-
mine what knowledge and understanding it is possible to reach. To investigate or
explore, there needs to be something to investigate, some kind of problem which
lays the groundwork for the investigative and explorative activity. It may be a vague
problem of a general nature; maybe one is only somewhat curious about a phenom-
enon; it may be a specific closed problem. In any case, the problem is there and
gives us a goal and a lens through which we make and interpret our inquiries. Popper
(1963) expressed this as “It is the problem which challenges us to learn; to advance
our knowledge; to experiment; and to observe” (p. 301).

Likewise, several authors have stressed the connection between understand-
ing and the underlying problem which forms our quest for understanding. As
Gadamer (2004) wrote: “To understand meaning is to understand it as the answer
to a question” (p. 368). This is not to say that answering a question always leads
to understanding:

Understanding starts with a question; not any question, but a real question. ... [A] real ques-
tion expresses a desire to understand. This desire is what moves the questioner to pursue the
question until an answer has been made. (Bettencourt, cited in Wells, 2000, p. 64)

The importance of the question for the type of understanding one achieves is well
illustrated by Collingwood (1939):

Experience soon taught me that under these laboratory conditions one found out nothing
at all except in answer to a question; and not a vague question either, but a definite one.
That when one dug saying merely, ‘Let us see what there is here,” one learnt nothing,
except casually in so far as casual questions arose in one’s mind while digging: ‘Is that
black stuff peat or occupation soil? Is that a potsherd under your foot? Are those loose
stones a ruined wall?” That what one learnt depended not merely on what turned up in
one’s trenches but also on what questions one was asking: so that a man who was asking
questions of one kind learnt one kind of thing from a piece of digging which to another
man revealed something different, to a third something illusory, and to a fourth nothing at
all. (pp. 24-25)

To take into account the priority of the question over the answer has significant
pedagogical consequences. It implies that the goal of education should shift from
pupils being able to answer question to pupils also being able to pose questions.
To pose real problems is in general at least as difficult as answering them, for to
pose one needs to know what one wants to know and, in particular, one needs
knowledge of what one does not know (cf. Gadamer, 2004). It is an educational
goal to educate citizens who can use and develop mathematics through posing
problems which enables them to act and to further their understanding of the
world we live in.
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Problem Posing and Different Perspectives on Modelling

Within the mathematics education research community, the topic of mathemati-
cal modelling has been considered from different perspectives (Barbosa, 2006;
Kaiser & Sriraman, 2006). Barbosa (2006), extending Julie (2002), considered three
different perspectives: “modelling as content” (modelling competencies and model-
ling processes are themselves seen to be part of school mathematics); “modelling as
vehicle” (modelling is seen as a vehicle for learning and teaching mathematical
concepts and procedures); and “modelling as critic” (modelling is seen as essential
for critical reflection of mathematics in society). Though rather coarse, we have
previously found the classification of Barbosa (2006) to be a useful tool in discuss-
ing with student teachers how one’s perspective on modelling affects one’s imple-
mentation of modelling in the classroom and the type of learning one intends to
achieve (Hansen & Hana, 2012). In relation to problem posing, we noted that the
difficulties observed when student teachers posed modelling tasks were in part due
to their perspective on modelling.

Modelling as Content

From the perspective of modelling as content, insight into models and the model-
ling process is seen in itself as a legitimate goal for mathematics teaching (see, for
example, the overview of modelling competencies given in Maal}, 2006). This may
include the study of mathematical models without the requirement that the models
necessarily have to include specific mathematical concepts or techniques. Problem
posing within this perspective includes posing problems from a real-world situation
(see section ‘“Problem Posing and the Modelling Process” for more details).

Modelling as Vehicle

Another perspective is to consider modelling as a vehicle for learning mathemat-
ical content. The aim is not to construct a mathematical model, but rather to use
models as a tool to learn about mathematical themes, techniques, procedures, and
concepts. Within this perspective modelling is used for both the development and
application of mathematical content. If one wants to apply already known, or at
least partially known, mathematical content, then it seems possible to ask students
to pose problems within a real-world situation, where the specific mathematics con-
tent is applicable. If the aim is to develop new mathematical content, there is a seri-
ous obstacle in posing problems related to unknown mathematics. This comment is
mainly related to posing and reformulation of the main problem. Making conjec-
tures and posing meta-questions should still be manageable in this situation.
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Modelling as Critic

Here, one wishes to “create situations in which students are able to identify,
interpret, evaluate and critique the mathematics embedded in social and political
systems and claims” (Mousoulides et al., 2007, p. 25). A necessary skill then is to
be able to pose the questions needed to identify, interpret, evaluate, and critique. In
many cases, the mathematical models used are mathematically sophisticated and
involve mathematics that would not be accessible to the ordinary citizen. By posing
relevant questions, such as questions pertaining to the assumptions and simplifica-
tions made in the model, or to the uncertainty of the model, one may be able to
engage in meaningful discussion about the models on a meta level.

Problem Posing and the Modelling Process

There have been many descriptions of the modelling process. Here, we follow
Galbraith and Stillman (2006). They considered the following transitions as key in
the modelling process:

. From messy real-world situation to real-world problem statement
. From real-world problem statement to mathematical model
. From mathematical model to mathematical solution

. From mathematical solution to real-world meaning of solution

| S O R S R

. From real-world meaning of solution to revising model or accepting solution
(p. 144)

It is clear that the first transition is one involving problem posing. Galbraith and
Stillman (2006) identified this stage as consisting of clarifying the context of the
problem, making simplifying assumptions, identifying strategic entities and speci-
fying the correct elements of strategic entities. In educational modelling contexts,
one often starts with the modelling problem, giving little or no attention to its cre-
ation. This removes valuable experiences related to modelling assumptions and
specifications from students.

The second transition also involves problem solving. This transition hinges on
being able to reformulate a real-world problem as a mathematically manageable
problem. Problem posing in this transition is then about mathematizing problems
through refinement and reformulation. This requires an understanding of the real-
world problem and the possible ways it can be mathematized. It also involves con-
trol questions about whether the mathematization makes sense from a real-world
perspective. Crouch and Haines (2004) pointed out that students often have prob-
lems in making transitions between the real world and the mathematical model,
indicating that this transition requires more attention in educational research.
Sometimes, students and teachers jump directly to the mathematical model, not
paying attention to translation processes.
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The third transition is within a purely mathematical content area, although it also
includes asking control questions about whether the mathematical operations and
techniques used are applicable in the real-world situation.

The fourth transition is one of demathematization. If the problem has been
revised during the mathematical stages of the modelling process, this includes
demathematizing the problem and comparing it with the original problem.

In the fifth transition, a necessary skill is being able to pose critical questions to
analyze the model and solution.

Implementation of Problem Posing in Mathematical Modelling

Modelling Through Conjecturing

A proposed method of problem posing is for students to state conjectures per-
taining to a real-world situation that are to be critically examined and refined in
attempts to validate or falsify them. To make a conjecture is to move outside the
obvious and to test the limits of one’s knowledge. As such, conjecturing is a natural
way to increase understanding and knowledge of a problem area. To conjecture is to
ask “What if...?” and to sharpen one’s inquiry toward a concrete statement. In par-
ticular, the concreteness of conjectures lessens the chance of one posing vague
questions. Furthermore, in trying to validate or falsify a conjecture one necessarily
has to pose the types of critical questions which are essential in the verification and
examination of mathematical models. When working with conjectures, the focus is
automatically moved to reasoning for and against the conjecture, in contrast to the
type of problems where students are only interested in finding a numerical answer
before moving on to the next question.

As an illustration of using conjectures in modelling, we have provided an exam-
ple of three student teachers in their practice teaching. The example is related to the
“modelling as critic” perspective and is concerned with making dubious conjec-
tures. In general, we see it as beneficial for pupils to engage in making authentic
conjectures for which they really wish to determine the validity, but this exercise of
making dubious conjectures also seemed to engage the pupils in mathematics in
positive ways.

The student teachers wanted to let the eighth grade class experience being critical
of the mathematics to which pupils are exposed in society. They decided to imple-
ment this by encouraging pupils to make conjectures indicating unusual views or
arguments pertaining to real-world situations of the pupils’ own choosing. These
conjectures were to be presented to the rest of the class, together with some sort of
mathematical data and statistical model that supported the claimed conjecture. It was
expected that in the ensuing discussion of the conjectures that their fellow pupils
would make many critical comments, especially since the pupils were invited to
make conjectures that could rather easily be attacked. Through critically evaluating
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the statistical models it was hoped that the pupils would gain insight into some types
of critical questions pertaining to mathematical models and to engage in mathemati-
cal reasoning.

One group of students chose the conjecture “The local football team Brann
Bergen will beat Barcelona.” To support this conjecture, the students used an
argument based on the number of goals the two teams scored. This conjecture
resulted in a lively discussion in the classroom, where critical comments played an
important role. The pupils were invited by the student teachers to dwell on questions
such as “What is it that makes this diagram/argument so convincing/misleading?”’

The student teachers’ decision to use obviously dubious conjectures about differ-
ent real-world scenarios seemed to activate the pupils’ critical engagement in a posi-
tive manner. The phases where pupils were “inventing” mathematical models
supporting the conjectures and when they presented and compared their conjectures
seemed to inspire the pupils to pose critical questions relating to the validity of the
conjectures and the mathematical models used.

Pupils as Consultants and Clients

The type of task used in mathematical modelling is one that calls for a mathemat-
ical model to be used by an identified client (Mousoulides, 2009). This type of task
is intended to give pupils a justification for describing their thinking and consider-
ing different possible solutions. In a school-industry partnership where a class col-
laborated with an oil-valve company, and the pupils were given an authentic
consultancy task from the company, we have witnessed firsthand some of the poten-
tial inherent in pupils taking on such a role while working on mathematical model-
ling (Hana, Hansen, Johnsen-Hgines, Lilland, & Rangnes, 2011; Lilland, 2012). An
important aspect of the activity was that, effectively, the pupils had to define the
problems themselves, and that they needed to communicate with the company in
order to define the task and gather additional data.

In a similar fashion, Crespo and Sinclair (2008) wrote “there is evidence to sug-
gest that school students are able to generate less narrow and familiar types of prob-
lems ... when they are invited to pose problems to an audience outside the classroom”
(p. 396). In the example above, they were writing about an audience outside the
classroom, and it seemed that the essential component was that the students experi-
enced a genuine sense of purpose with the problem-posing task.

We propose combining these two strands of research—mathematical modelling
and problem posing. A way to implement this would be to divide a class into groups
such that every group has a dual role as a fictional company employing another
group as consultants and as consultants to another group’s company. As a fictional
company, the groups would set the scene and pose a problem for the group of con-
sultants to work on, within some parameters defined by the teacher. As a consultant,
the group would work on and refine the problem given by the company group.
During this stage, we would envisage that communication between the groups
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would be essential so that the problem could be refined and data obtained to help
refine conclusions. To conclude the activity, the company groups would critically
evaluate the solutions found by the consultancy groups.

Conclusion

Problem posing as a pedagogical tool and as an integral part of mathematical
modelling has not yet been systematically investigated. In this chapter, we have
sketched some of the different ways problem posing offers opportunities and chal-
lenges to mathematical modelling. Further work is needed in this area, especially with
respect to implementation in the classroom. All in all, we see some golden opportuni-
ties in combining problem posing and mathematical modelling in school contexts.
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Chapter 3
Conceptualizing Problem Posing
via Transformation

Jasmina Milinkovi¢

Abstract The goal of this chapter is to outline an approach for developing
teachers’ proficiency in posing problems. Reasons why it is important for a
mathematics teacher to be good problem poser are investigated. Links between
knowing mathematics and knowing how to pose problems are also discussed.
Training students in problem-solving techniques does not necessarily end in their
learning mathematics. In this chapter, problem-posing activities based on the idea
of transformation are described—two kinds of transformations are proposed and
analyzed successively. The first is transforming problems from routine to advanced
ones by changing elements in the problem space. The second is posing problems
by transformation of representation. Developing problem-posing skills, from
posing routine tasks to posing more complex mathematics problems, encourages
student—teachers to think about problem posing as a creative professional activity.
Lastly, the possibility to developing pupils’ capacity to pose problems via trans-
formation is presented.
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Introduction

An old saying states that there are no unintelligent questions but there are indeed
unintelligent answers. As our contribution, I offer a view on how to make intelligent
mathematics problems. The word question comes from the Latin word quaestio
which has the following meanings: examination, seeking, searching, research, scru-
tiny, and problem. In the words of our time, when we pose questions we are calling
for an examination of what we already know, for seeking an answer while putting
under scrutiny what we have already found, and finally, for solving the problem.

There is extensive research and professional support literature on problem solv-
ing (e.g., Bonotto, 2007; Lesh, 1981; Michalewicz & Fogel, 2004; Polya, 1973;
Schoenfeld, 1992; Wilson, Fernandez, & Hadaway, 1993). Problem posing, on the
other hand, is a comparatively new issue for the educational community. Ask your-
self, “Why is it important for mathematics educators to study problem posing? Is it
important for teachers? Is it a worthy activity for students as well?”

First, let us try to answer why it is important for mathematics teachers to be good
problem posers. An opponent to that idea may argue that we should instead teach
them where to find the best resources for problems (books, Internet sites, etc.).
Indeed, the task of finding good resources appears to be less of a challenge than ever
before. Imagine that we decide to do exactly that, so we instruct teachers how to
search through problem resources. But then a new issue comes to light. Can a
teacher decide autonomously which set of problems to give children, when to use a
particular problem, or in which order to present the problems to pupils? So, we are
back to the beginning, and in fact it starts to look easier to teach teachers how to
create problems of their own. We expect that as an additional achievement, teachers
will not only learn to pose problems but also how and when to use problems, in
which order, and how to present them. Moreover, in the course of studying how to
pose diverse problems from routine tasks to mathematics problems, we may expect,
as Schoenfeld (1992) remarked, that preservice teachers will gain deeper insight
into the structure of elementary school mathematics.

Let us try to answer the second question: Why should pupils learn how to pose
problems? There are at least two good reasons. One is that in real life we are not
dealing with textbook tasks, but rather with more or less complex situations. Then,
formulating a mathematics problem which reflects a (non)mathematical situation
becomes an important part of the modeling process which, in turn, could lead us to
a solution of a real life problem. The other reason is the well-known fact that formu-
lating a problem implies an understanding of content matter. Currently, the activity
of creating (more or less simple) problems is a part of regular activities even in tra-
ditional mathematics classes. For example, a teacher may ask young pupils to create
a textual problem which can be represented by the equation x+3 =5. A pupil might
create a problem like this: “Mark had few toy cars. When his mum gave him three
more, he had five. How many toy cars did he have before getting the present?”” Here,
we have developed a course schema for successful problem posing primarily for
teachers. To a lesser extent the same may apply for young pupils.
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The arguments supporting the significance of problem solving are relevant for
problem posing as well. Stanic and Kilpatrick (1988) identified three themes in
problem solving: (a) problem solving as context; (b) problem solving as skill; and
(c) problem solving as art. They also identified five roles that mathematics problems
play: (a) as a justification for teaching mathematics; (b) as specific motivation for
subject topics; (c) as recreation; (d) as a means of developing new skills; and (e) as
practice. Similar themes may be recognized in problem posing. Indeed, problem
posing may contribute to students’ skills or provide context for learning, but may
also be considered as an artful activity.

Proficiency in problem posing is, by some in the educational research commu-
nity, considered to be part of pedagogical knowledge, whereas for others it is closer
to subject matter knowledge. In literature which discusses possible relationships
between subject matter knowledge, pedagogical (didactical) knowledge, and cur-
ricular knowledge (see, for example, Hiebert & Carpenter, 1992; Kennedy, 1998;
Leinhardt, 1989; Peterson, 1988; Schulman, 1986), we find that problem posing is
an underestimated issue. “Subject matter knowledge consists of an understanding of
the key facts, concepts, principles and explanatory frameworks in a discipline ... as
well as the rules of evidence and proof within that discipline” (Schulman &
Grossman, 1988, cited in Brown & Borko, 1992, p. 211). Pedagogical content
knowledge, on the other hand, implies understanding of how to represent subject
matter in ways suitable to the needs and abilities of learners. Shulman pointed out
that pedagogical knowledge includes “the most useful forms of representation of
concepts, the most powerful analogies, illustrations and examples, explanations,
and demonstrations. It also includes an understanding of what makes the learning of
a specific topic easy or difficult” (Schulman, 1986, p. 9). The model of pedagogical
thinking developed by Wilson and colleagues depicts common components of
teaching: (a) comprehension; (b) transformation; (c) instruction; (d) evaluation; (e)
reflection; and (f) new comprehension (Schulman, 1986; Wilson et al., 1993;
Wilson, Shulman, & Richert, 1987). Somewhere in between is Kilpatrick’s (1987)
statement that problem formulating should be seen not only as a means of instruc-
tion but as a goal of instruction.

Educators have long recognized the importance of problem-posing activities for
children (Freudenthal, 1972; Polya, 1973). On the most global level, the OECD
framework provides a modeling schema which highlights the need for students to
work in the world of mathematics. But, the PISA framework leans toward mathemat-
ical applications and the search for solutions in real-world contexts (OECD, 2003).
In both frameworks we can identify components: concepts/processes, competences,
and contexts. In problem-posing activities, teaching competences such as fluency
and flexibility of subject matter knowledge as well as inventiveness become visible.

In addition, problem posing has important role in applied mathematics as well as
in various applications of mathematics concepts, methods, and achievements.
Therefore, it should not be neglected by either mathematics teachers or by students.
Indeed, if we glance into areas where mathematics is used as a tool (the sciences,
engineering, etc.), we will recognize the importance of problem-posing skills.
There, the process of applying mathematics begins with the recognition of a
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(mathematics) problem that one needs to answer. Pollak (1988, p. 31) identified two
types of mathematical needs in engineering practice: (a) elementary needs “to set up
the right problem, to have a good idea how big the answer should be, and to get the
right answer by any available means whatsoever-mentally, calculator, paper-and-
pencil, computer whatever”’; and (b) advanced needs: “we need employees who
know that there is a large variety of forms of mathematical thinking, and what these
various forms can do.”

Before I proceed to a description of my approach to the development of problem-
posing skills, I would like to point to a somewhat neglected link between knowing
mathematics and knowing how to pose problems (Nodding, 1992). Others have also
recognized the significance of content domain knowledge. The process of problem
posing is intertwined with each teacher’s range of skills and competences and is
influenced by the context (Figure 3.1). According to Wake (2010), the process of
developing tasks “is inevitably fuzzy as the different factors are brought to bear on
classroom experiences” (p. 7).

Context Content Competences
//\ )
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[AX XXX
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Pedagogy / learner experience

Figure 3.1. School mathematics domain (Adapted from Wake, 2010).

Is “knowing mathematics” a prerequisite for problem-posing proficiency? In
other words, connections between a teacher’s pedagogical and content knowledge
need to be explored. In a chapter on teachers’ professional development, Nodding
(1992) argued that regardless of plausibility of the importance of “knowing mathe-
matics,” evidence of the significance of subject matter knowledge for teaching was
lacking. Hiebert and Carpenter (1992) discussed important elements in helping stu-
dent—teachers implement programs designed to develop students’ understanding of
mathematics. They acknowledged intuitive and formal psychological and pedagogi-
cal content knowledge about pupils and mathematics teaching and pointed to
research findings about the lack of connections among those elements. Research on
the development of children’s addition and subtraction strategies provided a classi-
fication scheme for distinguishing among problems in terms of basic principles and
children’s strategies (Carpenter, Fennema, Franke, Levi, & Empson, 2000). Here,
the need for connecting knowledge of mathematics and knowledge of children’s
thinking is obvious. Some researchers deduced from interviews with teachers that
they fail to recognize the full complexity of concept of probability (Liu, 2005; Liu
& Thompson, 2004). Others reported that teachers often experience great difficulty
dealing with concepts of division and fraction (Ball, 1990). Similarly, researchers
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noticed that even textbook authors demonstrate a lack of proficiency in problem
posing. Nesher (1980) and Reusser (1988) have pointed out that problems found in
textbooks rarely address misconceptions related to the mathematical concept of
multiplication, and that authors do not attend to varying numbers in tasks, tending
to use only “easy” numbers which produce “clean” results. Likewise, we believe
that when someone teaches prospective teachers to be good problem posers, he or
she actually needs to ask them to reflect on their insights into mathematics. Our
claim about the importance of having a conceptual understanding in mathematics as
a prerequisite to problem-posing proficiency needs to be studied in the future.

Transformations in Problem Posing

To begin, I define the term mathematical problem. Mathematical tasks are any-
thing that requires mathematical tools to be used. What kinds of mathematical tasks
can be called problems? I distinguish between “mathematical problems” and other
“mathematical tasks” by the level of cognitive demand. Problems are mathematical
tasks whose solution is not immediately achievable for problem solver. Thus, even
the so-called routine calculation exercises may be called problems if the solver
needs to perform multiple steps in order to reach a solution. Besides, a problem at
one level of schooling may become a routine task in the next level. Thus, the iden-
tification of a “problem” is linked to the problem solver’s knowledge and abilities in
the moment of solving the problem. From now on, we will assume that we are able
to distinguish routine tasks from advanced problems, the ones for which a pathway
to a solution is not obvious or known to the problem solver.

In what follows, I will begin by defining transformations in problem posing.
Then, I will discuss examples of ranges of problems created by transformations
within the same context. Three strategies for problem posing will be discussed.
Next, I will present problem-posing techniques that are based on the transformation
of problem representations. Again I will propose an additional strategy for problem
posing based on the analysis of several examples. Each of the strategies discussed
are tools for successful problem posing.

However, before considering different strategies for problem posing based on
transformations, the concept of transformation itself, and its significance, will be
described. In their research on the ways that student—teachers develop mathematical
content knowledge within practical training, Thwaites, Huckstep, and Rowland
(2005) distinguished the “knowledge quartet”—foundation, transformation, con-
nection, and contingencies. The category “transformation” relates directly to the
issue of representations because it refers to the ability of a teacher to transform the
content knowledge into different forms. In the following pages I will explain my
ideas on how to train teachers to pose problems. I will focus on two simple ideas,
both of which are based on this process of transformation.

One of the key ideas in learning is schematization. Schematization is a process
of gradual building up of mental schemes toward formal schemes of mathematics.
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Schematization in mathematics is a result of mathematization. Treffers (1987)
distinguished two types of mathematization in the educational context: horizontal
and vertical. Horizontal mathematization involves going from the real world into
the world of mathematical symbols. In other words, students go through a process
of solving a problem from a real-life situation with mathematical tools. Vertical
mathematization is the process of building up and reorganization within the math-
ematical structure by discovering connections and relationships among concepts
and finding shortcuts. Note that a process of transformation is involved in both types
of mathematization.

I propose the need for attending to different levels of schematization in problem
posing. While students are learning mathematics, they pass through various levels
of understanding. At the beginning of the learning process they start off with simple
problem solving and the development of the ability to find informal context-
dependent solutions. Students gradually build schemes of underlying principles and
even broader relationships. The ability to reflect on previous activities signifies the
next level in the process of learning. Progressive schematization is a product of hori-
zontal and vertical mathematization. Thus, formal schemas are reached in several
consecutive stages from horizontal mathematization to vertical mathematization.

Closely related to my conception of transformation is Kilpatrick’s description
(1987) of cognitive mechanisms which might help in the production of problems
such as reasoning by analogy and Silver’s idea of reformulation of problems. Silver,
Mamona-Downs, Leung, and Kenney (1996) conducted a study on preservice and
in-service teachers’ ability to generate problems in a complex context (Billiard Ball
Mathematics). They identified groups of associated generated problems. Some of
the clusters were “chaining,” with a sequentially linked character; others had “sym-
metry” in that the goals and conditions of one problem were symmetrically
exchanged in another problem. The third cluster of problems was a group of prob-
lems in open-ended form, based on the tendency to challenge constraints. Silver
et al. suggested that there was a distinction between teachers who generated prob-
lems while keeping the given constraints (and changing goals), and teachers who
generated problems by challenging the givens. Research should reveal whether
these differences were due to difference in subject matter knowledge or due to (un)
familiarity with context.

Transformations by Changing Problem Space

Any problem can be described in terms of its context, of givens and unknown
elements, and of the relationships between the elements. Any problem is defined
within a problem space. The McGraw-Hill Science and Technology Dictionary
(2003) defines problem space in psychology as “a mental representation of a prob-
lem that contains knowledge of the initial state and the goal state of the problem as
well as possible intermediate states that must be searched in order to link up the
beginning and the end of the task.”
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PROBLEM SPACE
*Context

given
eFacts

unknown
eRelations

The givens in a problem space correspond to the answers to Polya’s questions
“What are the data?,” “What is the given?,” “What are the conditions?.” The
elements named “unknown” are those that we are asked to determine. Relationships
between the elements (given and unknown) are also parts of Polya’s “conditions.”
Finally, the context in which these elements are placed may be abstract as well as
realistic. In an investigation on problem-posing skills in children, Stoyanova and
Ellerton (1996) discussed problem-posing situations in terms of the source of ideas
such as classroom activities or textbook problems. For us, the problem-solving situ-
ation or “context” creates the boundaries of the space under scrutiny. Facts (either
given or unknown) and relationships define the structure of the problem space.
Often a problem may be read as “Find a fact.” Or in other problems, it may refer to
relationships: “Determine whether A and B are related or not” (Figure 3.2).
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Figure 3.2. Problem space.

Transforming a problem into a new one means that some (one or more) of the
elements of the problem space are changed while the others remain the same. One
of our ideas is that problems can be transformed so that they reflect a changing
mathematical structure. A new problem may be posed by changing: (a) what is
given, (b) what is searched for (unknown), or (c) the context. The transformed prob-
lem may be more or less difficult than the initial problem. Note that sometimes the
transformed problem may turn out to be unsolvable. But this is a result of the teach-
er’s subject matter knowledge or lack of it.
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Transforming Problems by Varying Unknown and Known
Elements Within the Same Problem Space

Polya (1973) argued that “simple” problems are suitable for “simple” concepts,
whereas “complex” problems serve well to examine “complex” concepts or connec-
tions between concepts, procedures, or strategies of reasoning. I believe that we can
and we should learn how to transform simple problems into complex problems in a
sequence of steps. A good example of a sequence of problems starting from the
simplest to a complex case within the same context might be found in
combinatorics.

Problem 1. How many 2-digit numbers may be written using the digits 2 and 4?
Write them down.

Problem 2. Using digits 2, 4, and 8 write all 2 digit numbers, so that no digit in
the number is repeated.

Problem 3. Write all 2 digit numbers using digits 2, 4, and 8. How many are
there?

Problem 4. Write all 3 digit numbers using digits 1 and 2. How many are there?

Problem 5. How many different four digit numbers can you get by putting digits
in place of the stars?

(a) 1¥*7 (b) **43 (c) *¥**5

Problem 6. How many 4 digit odd numbers can you get using digits 1, 2, 3,4, 5
so that no digit in the number is repeated.

The strategy of transformation works well with problems in other fields as well.
Here are three problems with tessellations.

Problem 7. The rectangle has sides of lengths 1 and 2. Divide it into two parts
which can be compiled to form a right triangle.

Problem 8. The rectangle has sides of lengths 1 and 2. Divide it into three parts
which can be compiled to form a square.

Problem 9. Divide the given figure into six equal triangles without removing the
pencil from the sheet of paper.

Erich Wittman (2005) in his work often followed the idea of transformation
(though he did not name it as such). He proposed the same context for a set of prob-
lems that can be sequenced from the easiest to the most difficult one. In an example,
the context was a game-like activity of finding missing element(s) in a special tri-
angle called an Arithmogon. Wittmann got the inspiration for the game from
Mclntosh and Quadling (described in Wittman, 2005). An Arithmogon is divided
into three distinct areas A, B, and C. The number of objects in A and in B add up to
the number X, the number of objects in B and in C add up to Y, and finally the num-
ber of objects in C and in A add up to Z (Figure 3.3).
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(D CD A+B=X
an B+C=Y
@ C+A=7

Figure 3.3. Context for a set of problems from Wittman (2005).

The missing numbers in the Arithmogon can be found by calculation (addition
and subtraction). The easiest problem would be to find one missing inside number
when two inside numbers and one outside number are given. The problem may be
transformed into a new one: to find a missing inside number if one inside and one
outside number is given. The new problem is as difficult as the first one. In later
years this problem may be transformed into a new, more difficult one: finding a
pattern for the Arithmogon instead of solving case by case. In the next level of trans-
formation, students could be asked to find a solution by solving linear equations. An
example of such a problem is in Figure 3.4.
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Figure 3.4. Arithmogon, nontrivial problem.

In the next transformation, a problem might be posed in a different context.
Instead of an Arithmogon, the student could be asked to fill in the missing numbers
in a quadrilateral (Figure 3.5). A problem in this context may have more than one
solution or no solution. Here, the teacher’s subject matter knowledge may contrib-
ute to his ability to pose a solvable problem.

<:> A+B=X

B+C=Y
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@ B | C C+D=Z
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Figure 3.5. Complex problem.

Arithmogon problems can be transformed into a general case for n-sided polygons.
Finally, it can be generalized to “arithmohedra” problems for college students.
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What can be concluded from the examples seen so far? First, the idea of teaching
teachers to transform simple tasks into more complex ones while keeping the same
context or form of problem starts to become plausible and hopefully possible.
Increased sensitivity of teachers to problem difficulty would also be expected to be
an outcome of working with transformations.

Some of the simple strategies in transforming problems used in the previous
examples were:

Strategy 1. Transform from problems with a smaller number of simpler param-
eters (e.g., “easy” numbers) to problems with more (often more complicated)
parameters (e.g., “difficult numbers”).

Strategy 2. Transform problems by adding new parameters.

Let us analyze the next example and find the strategy used for transforming the
initial problem. The problem to be discussed is a geometrical one, and it might be
judged that even the simplest problem in the cluster is intended for an advanced
class of children. The problem belongs to a group of problems dealing within
inscribing (placing figure A into figure B, where the vertices of the figure A are
located on the outer boundary of figure B).

Problem 10. Inscribe a triangle in a circle.

Problem 11. Inscribe a triangle in a square.

Problem 12. Inscribe a rhombus (equilateral parallelogram) which is not a
square in a circle.

Problem 13. Inscribe the triangle with the largest area in a given square.

Problem 14. Inscribe the triangle with the maximum area in a polygon.

The class of problems involving placing in and inscribing polygons is a good
source of the so-called extremal problems. Examples of such problems are drawing
a figure with the greatest length, area, and so on. Additionally, the class of problems
within this context is inexhaustible. Yet, teachers need to be cautious when posing
problems of this type to be sure they are giving problems with a solution. It is easy
to create an unsolvable problem in this context. For example, it is not possible to
inscribe a rhombus in a circle if it is not a square. But it is possible to inscribe a
quadrilateral in a circle. Further, a circle cannot be inscribed in a quadrilateral which
is not a rhombus. But it is possible to inscribe a circle in any rhombus. Again, the
importance of a teacher’s subject matter knowledge is self-evident.

What was the origin of this sequence of five geometric problems? We trans-
formed one problem into another with the following strategy:

Strategy 3. Transform from a case problem to a generalized one by removing
some conditions.

(Case problems are most often simpler than generalized ones.)


http://en.wikipedia.org/wiki/Rhombus#Rhombus
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Going back to the initial idea of making changes within a given problem space, we
need to consider the possibility of transforming a problem by changing its context—
mathematical modeling. However, a discussion about mathematical modeling lies
beyond the scope of this chapter. However, the following provides an example of a
transformation from a contextual to a realistic modeling task.

Problem 15. Pizzeria “Grand Roma” has a fixed price for a slice of pizza with
cheese and tomato of 1.2 euro. A side order of vegetable (tomato, mushrooms,
leek, and pepper) costs 30 cents, and of ham and sausage 40 cents. Ernie
bought three slices of pizza with mushrooms and ham. How much did he pay?

Problem 16. Create a price structure for a pizzeria.

Whereas the first problem is a traditional word problem (although not simple),
the second problem is an open task which requires a full modeling cycle during
problem solving.

At the end of this section I will suggest how the training of teachers in problem
posing might begin. A good starting point can be the transformation of games. For
example, the game of Mankala is an old African game using seeds or stones. Players
can reflect on the strategies involved in this game, and they can try to make it either
simpler or more complex.

Players have seeds and a Mankala board (Figure 3.6). First the seeds are “planted”
into alternate holes. The objective of the game is to capture more seeds than one’s
opponent, to leave the opponent with no legal move, or to finish with an empty side.
Players need to discover a winning strategy. Teachers need to play the game before
thinking about how to transform it.
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Figure 3.6. Mankala board.

By the same token, in an undergraduate course for preservice teachers called
Math Games, our students have a similar activity. They have to find a game of their
choice, and then offer a transformed game. But, they need to explain what kinds of
changes they made to the game, and why they changed the game in the ways they did.

Transforming Problems by Changing Representation

The other training route in problem posing via transformations is based on a
representational approach. The idea that representations are “tools in thinking” is
well documented in the literature (Cobb, Yackel, & Wood, 1992; Couco & Curcio
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2001; Dufour-Janvier, Bednarz, & Belanger, 1987; Janvier, 1987; Kaput, 1987,
Lesh, 1981; Michalewicz & Fogel, 2000). But, this view can be extended into the
field of problem posing. Goldin and Shteingold (2001) explained that:

Effective mathematical thinking involves understanding the relationships among different
representations of “the same” concept as well as the structural similarities (and differences)
among representational systems. (p. 9)

When mathematicians speak about different representations, they usually think about
different ways we can represent a problem. A concept somewhat close in meaning
to representations is schematizations (which have already been introduced).
“Representation” is taken to refer to the presentation of a certain problem at different
levels of abstraction. In other words, it means thinking about the problem in different
paradigms. Freudenthal (1983) stated that historical phases in the development of
mathematics signified that knowledge achieved by discovery at one moment had
been transformed by schematization (or coding) into new skills and/or understand-
ings on a higher level of abstraction. For example, a big step forward in the develop-
ment of mathematics was the introduction of symbolic (numerical) representations
of numbers. Earlier phases of development were characterized by iconic representa-
tions. Nevertheless, Freudenthal insisted that schematization should not be viewed as
a historical necessity but as humans’ psychological development in understanding
their surroundings. It would not be wrong to say that Bruner’s theory was a theory of
representations. He understood a representation as a final product of processing and
coding information. Bruner’s theory of three types of representations (active, iconic,
and symbolic) provided a flow chart of progressive schematization and formalization
that occurs in the learning process (Bruner, 1960). It should be noted that, contrary to
his initial writing, in his later work Bruner claimed that three types of representations
were not hierarchical but culturally bounded.

Knowledge of representations, as was noted earlier, is particularly important in
problem solving (Goldin & Shteingold, 2001; Polya, 1957). We believe that one
way to help students to become confident in using different representations in prob-
lem solving is to confront them with different forms of problems. Friedlander and
Tabach (2001) maintained that a teacher’s presentation of a problem situation in
different representations could encourage flexibility in students’ choice of represen-
tations, stating that “the presentation of a problem in several representations gives
legitimatization to their use in the solution process” (p. 176). Similarly, Singer,
Pelczer, and Voica (2011) emphasized that the task format underlined a sequence of
transfers from external to internal representation. Wittman (2005) introduced the
term “informal” representations to describe the presentation of abstract mathemati-
cal concepts in a “quasi-reality.” He supported the idea of using them as a mediating
tool which is more appropriate than symbolic representations. Some representations
such as counters, number line, or place value table prove to be good contexts for
posing various problems.

There is no agreement among researchers, however, regarding the benefits of
diverse representations in teaching. While some researchers oppose it, others make
strong argument for their use. On the one hand, Hiebert and Carpenter (1992)
referred to the research of Cobb (1988), Erlwanger (1973), and Lawler (1981)
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which showed how some students experienced difficulties in recognizing the
relationship between different solutions of identical problems which were presented
in different contexts.

On the other hand, there are several researchers who call for the use of various
representations in teaching. For example, extending the idea of representations as a
medium for cognition, Arcavi (2003) identified visual representations as a “cogni-
tive technology aid” (p. 216) for thinking, learning, and problem-solving activities
in technology-driven communication. He and others have highlighted the socio-
cultural value of visual representations (e.g., Arcavi, 2003). In addition, Arcavi
identified three functions of visual representations: (a) as a support and illustration
of symbolic representations; (b) as a tool for resolving conflict between intuition
and symbolic solution; and (c) as a tool to reorganize and recuperate conceptual
understanding. Arcavi went on to suggest that “seeing things” sharpens our
understanding and serves as a springboard for questions which we would not pose
otherwise. Other researchers have made similar recommendations, calling for a
range of situations to be modeled (e.g., Greer, 1992). In a similar way, Nunes (1992)
advocated that “understanding several different situations involving the same invari-
ant could lead to the abstraction and generalization of the core concept (the invari-
ant), and to the enrichment of the concept by extending the set of situations to which
it applies” (pp. 571-572).

In recent studies I have explored aspects of using representations in problem pos-
ing. First, preservice teachers’ proficiency in using representations will be dis-
cussed. Then, to conclude this chapter, details of two studies will be presented, in
which we have investigated the effects of using different representations for prob-
lem posing in school classrooms.

We studied preservice teachers’ preferences in using representations of multipli-
cation (Milinkovi¢, 2012a). The survey questions examined: (a) students’ knowl-
edge of representations of multiplication and of the commutative law; and (b)
students’ competence in using different representations in problem posing.

The request to use visual representations in problem posing proved to be a chal-
lenge for the preservice teachers. The analysis of preservice teachers’ question-
naires revealed that they preferred concrete models which supported the idea of
multiplication as repeated addition (sets and equal group representation). Students
opted for grouping representations R1, R2, and R3 (see the top row in Figure 3.7)
and simplified contexts. For example, they posed tasks of distributing flowers in
vases or describing in numbers pictures with a clown having two dark and three
white balloons in two hands, etc. Somewhat incomplete findings from a question on
problem posing pointed to possible weaknesses in preservice teachers’ readiness to
pose problems. Consequently, they were limited to using simpler contexts and unso-
phisticated choices of representations in problem posing.

Without doubt, the most common representation of a problem situation to be
modeled is through word problems. Fuson (1992) defined posing a mathematics
problem as a task of “translating from the natural language representation of a prob-
lem to the mathematical-language representation of the model” (p. 285). A compe-
tent student is able to construct an appropriate mathematical formulation as an
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Figure 3.7. Preservice teachers’ representations of multiplicative situations
(Milinkovi¢, 2012a).

intermediate representation of the situation and then to move directly to a
mathematical expression on the basis of syntactical surface tools.

Another way of representing problems is in pictures. Diagrams, graphs, or tables
are often used as ways to present data. In this case, problems are related to analyzing
pictures and understanding what the information given in pictures is telling them
and how it can be used to find a solution.

In the problem shown in Figure 3.8 students needed only to read the graph and
fill in the table. In the next problem (Figure 3.9) students needed to use the picture
to deduce whether the train should stop or proceed.

Finally, we come to the least used representation in problems: action. One excep-
tion is the relatively common practice of posing problems with counters which are
often used for representing numbers in early grades. In this context, problems can
be posed in the form of a game. Problems might be as simple as these:

Problem 17. Put two counters together. Which number did you get?
Problem 18. Create number X with three counters.
Problem 19. Create an even number with two counters.

o] ole| (oje| [o[oe]| (o|o|e| (o|e(0je| (o|e|e]e
o] ole| [o]e oleje| [o|e]e 0000
12 3 4 5 6 7 8

Problem 20. Discover what is common for all even numbers.
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Use information from the graph to fill up the table.

Vehicle | Mass 400000
in kg

300000
train 140000

ship 200000
340000

100000

2 1
T
@ m e a? @
Which vehicles are heavier than the train? <%

Figure 3.8. Reading a graph, adapted from a Fourth Grade Mathematics Textbook
(Deji¢, Milinkovi¢, & Djoki¢, 2005).
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Figure 3.9. Problem in a picture, adapted from a Fourth Grade Mathematics Textbook
(Deji¢ et al., 2005).

Another problem with an action representation comes from geometry. The “flexible
springs” (Problem 21 shown in Figure 3.10) can be used to discuss the important
idea of rigidness in geometry (Milinkovi¢ & Micic, 2008). Such problems illustrate
how (rarely used) action representations may contribute to students’ development of
mathematical understanding and skills.

AN

Figure 3.10. “Flexible springs.”
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Problem 21. (a) Can you make a triangle from any three segments?
(b) Can you make a quadrilateral from any four segments?

Manipulating strips as representations of fractions (Figure 3.11) could be a suit-
able context for posing problems at different levels of difficulty. Problems 22 and 23
may be solved by using strips representation. They are meant to be used for practic-
ing addition and subtraction of fractions.
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Figure 3.11. Fraction strips.

o=

fo [ ot [ ot | = |

N 00|

0

Problem 22. Compare 2/7 and 3/8.
Problem 23. Combine strips in 2 colors to make 5/6.

Now, when we are aware that different types of representations may provide
good contexts for defining a problem space, we can consider transformations from
one to another. Wittman (2005) with reference to Jean Piaget noted that “when it is
intuitively clear that the operations applied to a special object can be transferred to
all objects of a certain class to which the special object belongs then the relation-
ships based on these operations are recognized as generally valid” (p. 20). Examples
of representational transformation of problems will now be summarized; again we
begin with combinatorics. These examples are of obviously different problems,
with different representations, but which have the same underlying mathematical
ideas in their solutions.

Problem 24. Friends are shaking hands when they meet each other. How many
handshakes happened if there were:

(a) 2 friends (b) 3 friends (c) 4 friends (d) 5 friends?
Problem 25. How many segments can be drawn through the given points?

@ o o (1 o o (© o o (d) *



3 Conceptualizing Problem Posing via Transformation 63

Problem 26. How many two letter combinations without paying attention to
order can you make out of:
(a) 2 letters  (b) 3 letters  (c) 4 letters  (d) 5 letters?

Problem 27. Determine the number of roads connecting cities if each two cities
are connected.
(a) cities A and B (b) cities A, B, and C
(c) cities A, B, C, and D (d) cities A, B, C,D, E

A second set of example problems were designed for the Mathematics in Context
series for middle-grade students. The Patterns and Symbols unit (Romberg, 1997)
was designed to help students develop understanding of the idea of patterns. In par-
ticular, they learned how to express a pattern with mathematical symbols. In one
activity, they studied the growth pattern of a snake with red (R) and black (B) rings.
They were asked to explain her pattern of growth and to predict how she would look
like at the nth iteration.

The drawing could be studied, or students could develop a model with rings and
pose the same question. Alternatively, the problem could be posed in a symbolic
representation: “What is the nth number in a sequence of numbers 1, 2, 4, 8, ... (or
any other listed in the table for Figure 3.12)?”
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Figure 3.12. Adapted from Mathematics in Context Patterns and Symbols
(Romberg, 1997).

Another example of problems transformed by changing representations can be
taken from our research on learning probability and statistics (Milinkovi¢, 2007). In
this study, I examined how different representations of tasks might affect students’
learning of the concept of chance. Three groups of students were given different sets
of problems in an attempt to develop their initial intuitive understanding of concept
of chance. The sets of problems differed only in the dominant representation chosen
for the problems. One group of students was involved in designing, conducting, and
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analyzing results of an experiment with dice, the other group studied different picto-
rial representations. Finally, the third group focused on calculating chance by using
a given formula.

The first of the selected problems was a variation of the Piaget—Inhelder experi-
ment of choosing chips out of a box. The scenario was as follows: In front of pupils
were three boxes. The first box contains one white die and one red die; the second
contains nine white dice and one red die; the third contains two white and two red
dice (see Figure 3.13). The objectives were (a) to determine the chance of pulling a
red die out of the box without looking; and (b) to compare the chances of drawing
red dice from the first, the second, and the third boxes.

Box | Box Il Box Ill
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Figure 3.13. Three boxes with dice.

In the approach which we called the action approach, students were trying
experimentally to determine the probability of pulling out dice of a particular color
from the boxes. Each student picked out a die and wrote down the results. Then,
they summarized results collectively and represented them on the board. The stu-
dents then discussed the probability of drawing red dice, intuitively using a statisti-
cal definition of probability. The same procedure was repeated for all three boxes.
Finally, the groups compared the results. As a result of the activity, the class came
up with the concept of posterior (statistical) probability.

In the second approach, which we called the iconic approach, students were
given the results of the game played by three imaginary children in the form of a
graph analogous to the one obtained in the action approach. The class analyzed the
graph. Students first expressed their expectations and then analyzed the results
achieved. They discussed the child’s chance of drawing a red die from the box. In
this case, students also came to establish the idea of statistical probability.

In the third approach, which we called the symbolic approach, students wondered
about the following game: In the box there is a certain, known number of dice in two
colors. Pupils brainstormed about the chance of choosing a red die from each of the
boxes without any additional information. Discussion with the class led them to the
conclusion that the ratio of red dice to the total number of dice gives the answer.
In this case pupils came to the idea of a priori probability, unlike the other two groups
of students who were developing an initial understanding of posterior probability.
Thus, different representations of the problem led students to successful, although
diverse, understandings of the idea of chance.
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Pupils’ Problem Posing

Finally, I will briefly illustrate how problem posing may be more than ordinary
routine practice in the classroom for pupils. Again this involves the idea of transfor-
mation. In one recent study on the integration of mathematics with a technical edu-
cation class I observed children dealing with an ill-defined problem which emerged
to be mathematical as much as technical (Milinkovi¢, 2012b). Children were asked
to determine which one of their handmade paper planes was “the best.” Students had
to define what they meant by “the best plane” and in accordance with the meaning
they needed to transform the initial question into a new one. Learning to define
important aspects of a problem (and creating new problems as well), delineating a
path to solve them, and representing and understanding the results were all signifi-
cant stages in the activity. While attempting to resolve the initial problem, pupils
found themselves posing a new set of problems either by reformulating/transform-
ing the old one, or in some phases decomposing it. In the context of constructing
different models of their paper planes, the children needed to decide what character-
istics of paper planes were significant and to find appropriate procedures to measure
those characteristics rationally.

This was an example of what I described at the beginning of this chapter as a
genuine realistic problem. Some characteristics of genuine “problem solving activ-
ity” are that children should not think within the boundaries of a particular school
subject and that there should be no learned procedure (algorithm) for solving the
problem that could be applied in the given context. In the problem space of
constructing different models of paper planes, the children needed to decide what
characteristics of a paper plane were noteworthy and to find appropriate procedures
to measure those characteristics rationally. Negotiation between students brought a
collectively accepted procedure with a problem-solving strategy consisting of an
array of problems which appeared to be easier. Students gradually came to the
understanding that they needed to look for technical features accessible for testing
rather than appearance. The students decided to organize a competition so they
could check the performance of the paper planes. Then their problem turned into
new one: how to organize a competition. Whereas the choice of important charac-
teristics of paper models which were going to be examined fell within the domain
of technical education, the process of organizing a paper plane competition belonged
to both mathematics and technical education. Much of the time was spent on plan-
ning the competition as a part of the problem-solving algorithm (Polya’s planning
phase). The process of planning required determining different aspects: (a) struc-
tural characteristics of plane (Iength of flight, height of flight, speed of plane, time
spent in air, or something else); (b) performance characteristics; (c) method of
recording and presenting data; (d) criteria for winning (number of trials, etc.); and
(e) organization (including control).

But the activity would not have succeeded without a teacher who possessed not
only good pedagogical skills but also content knowledge in mathematics and techni-
cal education. When pupils did not have an idea about how to proceed, the teacher
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intervened. For example, the idea of graphically representing data did not emerge
until the teacher suggested it. Then pupils posed themselves a new problem regard-
ing how to make pictures of data. Further details about these activities may be found
elsewhere (Milinkovi¢, 2010, 2012b). But what we have reviewed here illustrates
how genuine problem posing involves rephrasing or transforming an initial problem
into problem(s) which can be grasped.

Conclusion

In this chapter I have outlined an approach to develop teachers’ proficiency in
posing problems via transformations. I have described series of problems linked
together by the idea of transformation. First, I defined transformations in problem
posing. Then I proposed and analyzed examples of two kinds of transformations.

The first is transforming problems by changing elements in a given problem
space. A new problem may be posed by changing what is given, what is searched
for (unknown), or the context. I discussed examples of series of problems created
by transformations within the same context and proposed three strategies for prob-
lem posing: (a) transform problems with a smaller number of (simpler) parameters
(e.g., “easy” numbers) to problems with more (often more complicated) parame-
ters (e.g., “difficult numbers”); (b) transform problems by adding new parameters;
and (c) transform problems by removing some conditions.

The second kind of transformation is posing problems by transformation of
representation. I pointed out that an important element of mathematics competence
involves understanding the relationships among different representations. I
extended the representational approach into the field of problem posing. I argued
that diverse types of representations may provide good contexts for defining a
problem space, and that brainstorming about transformation from one to another.
We provided examples of apparently different problems (because of different rep-
resentations) with the same underlying mathematics ideas in their solutions.
Putting aside word problems, I discussed three ways of representing problems:
action representations, iconic representations, and symbolic representations.
Through examples, I showed how a choice of different representations of tasks
affected students’ learning of concepts of chance. There, I briefly described a prob-
lem-based teaching experiment involving elements of probability and statistics
based on different representations.

Finally, I illustrated how problem posing may be a fruitful, out-of-the-ordinary
activity for students. My argument is that multiple representations can help
the development of flexibility of reasoning and can deepen understanding of
mathematical concepts and procedures.

One of the objectives of this chapter was to develop an appreciation of problem-
posing activities. The other objective was practical—to present a framework for
training teachers in problem posing via transformations. My perception is that the
vast majority of students as novices have great difficulty in creating problems, and
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my aim in developing this framework is to support the development of preservice
teachers’ problem-posing skills. The students should come to an understanding that
they need to attend to numerous components in designing a problem, from choosing
the content to finding an appropriate context, and then to formulating the problem.
Finding solutions(s) or predicting possible solutions is a necessary element of prob-
lem posing. With this approach, prospective teachers can gain powerful means for
helping their pupils learn mathematics. For the teacher, it is just as important to
become flexible and to be able to adapt problems into new ones as it is to recognize
the value of each particular example. The potential benefits of conceptualizing
problem posing via transformation need to be investigated.

Throughout the chapter I have pointed to a link between knowing mathematics
and knowing how to pose problems. I have repeatedly stressed how important teach-
ers’ content knowledge was in problem-posing activities, and my examples support
this conclusion. Indeed, I am convinced that there is no way that anyone can become
a good problem poser without sufficient domain knowledge.

My approach indirectly highlights the idea that mathematics is a science of pat-
terns. This program is based on the belief that we can and we should recognize that
there are patterns in the world of mathematics problems. We, as educators, need to
elicit recognition of those patterns.
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Chapter 4
Using Digital Technology for Mathematical
Problem Posing

Sergei Abramovich and Eun Kyeong Cho

Abstract This chapter demonstrates how the appropriate use of commonly available
digital technology tools can motivate and support problem-posing activities. Informed
by the authors’ work with teacher candidates, the chapter underscores the importance of
theoretical considerations associated with the use of computers in problem posing. The
theory is illustrated by cases in elementary and secondary teacher education contexts.
These cases vary in complexity from the formulation of problems for an elementary
classroom context to discovering new knowledge within a familiar secondary education
context. The use of graphing software as a medium for reciprocal problem posing is
shown to be conducive for developing rather sophisticated questions about algebraic
equations with parameters. As many traditional problems can be solved effectively by
modern technology, modifying such problems to be not directly solvable by technology
would open the whole new avenue for problem posing in the technological paradigm.
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In the real world, most of the time, an answer is easier than defining the question

(Dyson, 2012, p. 163)

Introduction

The condition of education has changed over time. Technology shapes “our
material, intellectual, and cultural environments” (Organisation for Economic
Co-operation and Development, 2011, p. 129). Modern students live in a technology-
rich environment and are apt users of technology; their ways of communicating
with teachers and peers, interacting with learning materials, and demonstrating
knowledge of mathematical concepts and skills in using them are different from
those of decades ago. Such changes in the social context of teaching and learning
call for the innovative use of technology in mathematical education. Mathematics
educators work with students in a global and digital society, which requires educa-
tors to “use their knowledge of subject matter, teaching and learning, and technol-
ogy to facilitate experiences that advance student learning, creativity, and innovation
in both face-to-face and virtual environments” (International Society for Technology
in Education, 2008, p. 1). In its most recent position statement regarding the role of
technology in the teaching and learning of mathematics, the National Council of
Teachers of Mathematics [NCTM] (2011) states the following:

It is essential that teachers and students have regular access to technologies that support
and advance mathematical sense making, reasoning, problem solving, and communica-
tion. Effective teachers optimize the potential of technology to develop students’ under-
standing, stimulate their interest, and increase their proficiency in mathematics. When
teachers use technology strategically, they can provide greater access to mathematics for
all students. (p. 1)

Seeing technology as a vehicle for success is not a new position; over two decades
ago, NCTM (1991) already argued for the use of technology in the classroom “to
enhance and extend mathematics learning and teaching” and suggested that “the
most promising [ways] are in the areas of problem posing and problem solving in
activities that permit students to design their own explorations and create their own
mathematics” (p. 134). Earlier, problem posing was referred to by the Council as
“an activity that is at the heart of doing mathematics” (NCTM, 1989, p. 138) and
over the years it has been considered by researchers to be an important tool of math-
ematical education didactics (e.g., Brown & Walter, 1983; Crespo, 2003; Hoyles &
Sutherland, 1986; Kilpatrick, 1987; Krutetskii, 1976; Noss, 1986; Silver, 1994;
Silver & Cai, 1996; Singer & Voica, 2013).
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The 1991 statement of NCTM regarding the use of technology in problem posing
can be traced back to the pioneering ideas about the role of educational technologies
in the development of new problems for mathematics education (Hoyles &
Sutherland, 1986; Kilpatrick, 1987; Noss, 1986). In particular, in the context of
teacher preparation, investigating the sources of problem formulation, Kilpatrick
(1987) argued that electronic computers can be used effectively in fostering
problem-posing skills among preservice teachers of mathematics. It is because
these digital technological tools enable one to generate numerical and pictorial pat-
terns that new problems can be created, and changes to the conceptual and syntactic
structures of an existing problem statement can be facilitated. In other words, by
using appropriately designed computer activities (such as the spreadsheet-based
environments that, among other things, the authors will present in the sections
below), many problematic situations manifesting different levels of mathematical
complexity can emerge.

Although the mathematics education field’s interest in and research on problem
posing has been active (e.g., Akay & Boz, 2010; Cai & Hwang, 2002; Ellerton,
1986; English, 1997; Kar, Ozdemir, ipek, & Albayrak, 2010; Kontorovich, Koichu,
Leikin, & Berman, 2012; Lavy & Bershadsky, 2003; Leung & Silver, 1997; Voica
& Singer, 2011), less focus has been on the study of the role of technology in facili-
tating and advancing skills in formulating problems. Further, published studies on
problem posing with technology have been not only limited in number and scope
but also in grade level. Most of the studies have been conducted at the secondary
level with the main emphasis on developing conjectures in dynamic (or partially
dynamic) geometry environments (Hoyles & Sutherland, 1986; Laborde, 1995;
Lavy & Shriki, 2010; Noss, 1986; Yerushalmy, Chazan, & Gordon, 1993). The
advent of the Internet as a pedagogical tool motivated studies on mathematical prob-
lem posing in web-based learning environments (Abu-Elwan, 2007; Hirashima,
Nakano, & Takeuchi, 2000). However, the didactical potential of mathematical
problem posing with electronic spreadsheets and computer algebra systems was not
studied in detail until recently (Abramovich, 2012; Abramovich & Cho, 2006, 2008,
2009, 2012; Abramovich & Norton, 2006).

The aim of this chapter is to demonstrate how the appropriate use of technology
can be integrated with problem-posing activities in a broad context of mathematics
education towards the development of higher-order thinking skills in teacher educa-
tion candidates as the learners of mathematics. The term fechnology refers to vari-
ous commonly available software tools including an electronic spreadsheet,
Graphing Calculator 4.0 (Avitzur, 2011), Maple (Char et al., 1991) and online com-
putational engine Wolfram Alpha (Dimiceli, Lang, & Locke, 2010). The term appro-
priate means that the tools of technology cannot be directly utilized for mathematical
problem posing but rather, such utilization requires one’s appreciation of their hid-
den educational potential and expertise in their use. It will be shown how the above-
mentioned tools of technology facilitate the development of problems ranging from
tasks for primary grades to an unsolved conjecture.

Before getting into the main body of this chapter, it will be helpful to describe the
context and processes that have led the authors to pay attention to the conceptual
aspects of problem posing. The context of problem-posing activities shared in this
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chapter consists of preservice K-12 teacher education courses. These include a
mathematics content course for preservice teachers in elementary education, a cap-
stone course for those preparing to teach secondary mathematics, and a course on
the use of spreadsheets in teaching school mathematics for both groups of preservice
teachers. While working with the preservice teachers in these courses and analyzing
the problems posed by them, the authors were given unique opportunities to identify
practical and theoretical issues in relation to problem posing with technology. Data
sources that led to such conceptual understandings, which are shared in the sections
below, include problems created by preservice teachers, observation notes of class-
room interactions among students, and follow-up discussions with the preservice
teachers. Specifically, problems posed by elementary pre-teachers were collected
through portfolios filled with completed course assignments, one of which dealt
with using a readymade spreadsheet in posing problems through the lens of didacti-
cal coherence. An initial analysis of the portfolios helped the authors develop ideas
about didactical coherence of problems posed in the technological paradigm. The
“bananas” problem posed by a preservice teacher in the context of the agent—
consumer—amplifier (ACA) framework was presented as part of the portfolio for the
course on using an electronic spreadsheet in teaching K-12 mathematics that
emphasized the potential of the software for problem posing. Problems, shown in
the section on reciprocal problem posing, were recorded by the course instructor
during a classroom interaction between two preservice teachers as part of their joint
final project for a technology-rich capstone course in secondary mathematics.
Preliminary findings of the analysis of the data (i.e., problems created by preservice
teachers and their thinking process reflected in their discussions and group
interactions) emphasize that success of the teachers with technology-enabled prob-
lem posing requires practical experience with mathematical modeling and problem
solving as well as theoretical preparation in pedagogical issues directly related to
the development of skills in formulating new problems or modifying the existing
ones. Conceptual themes identified by the authors from working with preservice
teachers will be presented in the following four sections: (a) problem posing through
the lens of didactical coherence, (b) problem posing through the lens of ACA frame-
work, (c) reciprocal problem posing, and (d) problem posing as a discovery
experience.

Problem Posing Through the Lens of Didactical Coherence

In posing a problem for their own students, that is, preparing to teach “with the
learner in mind” (Thompson, Carlson, & Silverman, 2007, p. 416), teachers need to
consider various aspects of mathematics pedagogy such as individual and group
understandings of mathematical concepts and acquisition of process skills. In their
work with preservice teachers on problem posing using technology, Abramovich
and Cho (2006, 2008, 2012) emphasize the concept of didactical coherence. Didactical
coherence of a problem refers to the problem’s formal solvability, grade-level
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appropriateness, and other pedagogical features as well as sociocultural relevance.
This section presents the concept of didactical coherence and its three interrelated,
yet distinct, subconcepts: numerical, pedagogical, and contextual coherence.
It shows that problem-posing activities need to consider didactical coherence which
is established at the intersection of the three subconcepts. Below, each of the three
subconcepts is explained using examples of problems either posed by or for (as
illustrations) preservice elementary teachers using specifically designed spread-
sheet environments within a mathematics content course (Abramovich, 2012).

Numerical Coherence

Numerical coherence of a problem refers to its “formal solvability within a given
number system.” In other words, “if the problem has a solution expressed by a num-
ber (or a set of numbers), it is numerically coherent” (Abramovich & Cho, 2008,
p. 3). Alternatively, Hirashima et al. (2000), concerned with the fact that some of the
problems posed by learners “may be wrong” (p. 745), called “adequate” (p. 746)
arithmetical word problems that have a solution. As will be shown below, the word
“adequate” as a characteristic of a problem includes more than just its formal solv-
ability. Simply altering a number in a given problem may not result in creating a
numerically coherent problem that has an answer (or a set of possible answers).
Consider the following arithmetical word problem (presented to preservice teachers
in a mathematics content course as an example of a possible use of spreadsheets in
problem posing).

Problem 1: Using 2-cent, 4-cent, and 6-cent stamps only, find all ways to make
a 25-cent postage.

In order to pose a problem such as Problem 1, one would need to select a set of
four numbers—in this case (Figure 4.1), 2 (cell G1: denomination 2 cents), 4 (cell
F1: denomination 4 cents), 6 (cell E1: denomination 6 cents), and 25 (cell Al: total
postage)—and make sure that the data selected for posing the problem would yield
an answer or a set of answers that make sense. In other words, the problem must
have numerical coherence. In thinking about the problem’s solvability, a problem
poser (i.e., a preservice teacher) would realize that problem posing is another face
of problem solving (Davis, 1985; Dunker, 1945; Kilpatrick, 1987; Silver, 1994). In
the case of using a specifically designed spreadsheet environment to pose this kind
of a problem, the preservice teacher has to know how to interpret the results of
spreadsheet modeling. The emptiness of the range D4:J10 in the spreadsheet of
Figure 4.1 (here the numbers in the ranges D3:H3 and C4:C10 are, respectively, the
possible quantities of 6-cent, 4-cent, and 2-cent stamps to make up a total of 25
cents postage) indicate that Problem 1 does not have solutions. The software counts
the number of nonempty cells in the range D4:J10 and, because all the cells in this
range are empty, displays zero in cell A7. In other words, Problem 1 does not have
the feature of numerical coherence.
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Figure 4.1. A spreadsheet environment showing a problem’s numerical incoherence.

Nonetheless, the spreadsheet environment allows one to change the numbers
involved by a single click, showing the results (solvability) instantly. Through
exploring technology-supported problem-posing environments, preservice teachers
can easily see that replacing 25 by 24 in Problem 1 (consequently, in cell A1) would
make it numerically coherent (that is, solvable) as shown in Figure 4.2. More
detailed discussion regarding this revised problem will be included later in this
chapter when the concept of pedagogical coherence is discussed. Preservice teachers
can also interpret the findings in mathematical terms; for example, the left-hand side

of the equation x, = l(x,H —1), n=1,2,3,..., is a multiple of two, its right-hand
side is not. 2

Whereas the term Diophantine equation was not included in the discourse
associated with equations of the above type, having quantities of the stamps as situ-
ational referents for the variables involved facilitated preservice teachers’ under-
standing of algebraic formalism as part of their mathematics content coursework.
Preservice teachers with such levels of mathematical understanding were able to
see the numbers involved in Problem 1 as parameters that could be changed and
tested for numerical coherence by using the spreadsheet. In this way, the spread-
sheet was designed to enable preservice teachers, in the spirit of Kilpatrick (1987),
to vary numeric data in a conceptually informed way. Moreover, this generalized
perspective helped preservice teachers develop a better understanding of how a
mathematical experiment—an activity that “involves calculating instances of some
general hypothesis” (Baker, 2008, p. 331), in our case, the solvability in integers of
a three-variable linear equation with integer coefficients—works in posing numeri-
cally coherent problems by using a spreadsheet.
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Figure 4.2. A modified problem is numerically coherent; however, too many (19)
solutions point to its pedagogical incoherence.

Contextual Coherence

Contextual coherence of a problem means its consistency with the sociocultural
background of a heterogeneous group of pupils. Teachers who pose problems for
their students need to be aware that, just like the learning of arithmetic involves the
mastery of the numeration system as a cultural tool (Cobb, 1995), arithmetical word
problems often reflect other cultural systems such as measuring units (e.g., inches
versus centimeters, gallons versus liters) and money systems (e.g., dollars, pounds,
pesos, and yens) and, therefore, should learn to pose problems that facilitate rather
than complicate students’ learning (Singer & Voica, 2013). Abramovich and Cho
(2008) explain the concept of contextual coherence (which to a larger extent is a
cultural notion) in the following way:

Generally speaking, contextual coherence of a problem is a variable attribute. Just as
without the mastery of base ten system—a cultural tool designed to support one’s
counting abilities—one cannot understand the numerical meaning of a multi-digit num-
ber, without the mastery of another cultural tool—a currency system of a particular
country—one cannot solve a problem which context does not relate well to one’s cul-
tural background. (p. 6)

For example, a word problem which contains culturally specific information such as
the names of the US coins (e.g., NCTM, 2000, p. 52) may not be well understood by
newly immigrated students from countries which use different systems. As an illustra-
tion, consider the following problem suggested by a preservice teacher for a (fictitious)
second-grade classroom using the spreadsheet in a problem-posing assignment.
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Problem 2: How many ways can one make a 35-cent postage using 10-cent,
8-cent, and 3-cent stamps?

Although this problem is numerically coherent, a second grader might argue that the
current domestic postage in the United States is not 35 cents and that, as a collector of
stamps, he has never seen an 8-cent stamp. In other words, for this student Problem 2
might not be contextually coherent. So, when posing a problem, teachers should also
pay attention to the context within which the problem is posed and to the cultural rele-
vance of the problem to individual students or to the whole class. However, any change
of context that alters the conceptual and syntactic structure of a problem is a delicate
proposition in the technological paradigm. Indeed, in order to address the issue of con-
textual coherence (revealed through the above analysis by the course instructor), the
preservice teacher, without changing numerical data, modified Problem 2 as follows:

Problem 3: Find all ways of arranging 35 marbles into boxes of 10, 8, and 3
marbles each so that all three types of boxes are used and each box is full.

As the spreadsheet of Figure 4.3 shows, it appears that there exist four integer
solutions to both problems given by the triples (0, 1, 9), (0, 4, 1), (1, 2, 3), and (2, O,
5). That is what the preservice teacher, in fact, has claimed. However, what the
teacher did not realize is the fact that these problems (i.e., Problems 2 and 3) not
only deal with context but also have different conceptual and syntactic structures
that the spreadsheet does not recognize. Requiring all three types of boxes to be
used implies that the triples with zero elements are extraneous solutions. Thus, only
the triple (1, 2, 3) satisfies the conditions of Problem 3 (requiring that the boxes may
not be empty). At the same time, being extraneous for Problem 3, the three triples
containing zero(s), that is, (0, 1, 9), (0, 4, 1), and (2, 0, 5), satisfy the conditions of
Problem 2 (allowing for not all types of the stamps to be used). Indeed, one can
make the 35-cent postage out of one 8-cent stamp and nine 3-cent stamps
(35 =1x8+9x3); four 8-cent stamps and one 3-cent stamp (35 =4x8+1x3); one
10-cent stamp, two 8-cent stamps, and three 3-cent stamps (35 =1x10+2x8+3x3);
or two 10-cent stamps and five 3-cent stamps (35 =2 x10+5x3). This example of
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Figure 4.3. A spreadsheet environment sensitive to conceptual structure of Problem 2 and 3.
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how changing context may inadvertently yield extraneous solutions, shows not only
the complexity of posing problems when using technology but also the importance
of accurate interpretation of modeling data by a problem poser, a preservice teacher
in our case. Whereas the teacher might expect students to find four solutions to
Problem 3 depending on his or her particular interpretation of modeling data, the
students, in turn, could rightly insist on the existence of one solution only as they
will not be using the spreadsheet in solving Problem 3. Familiarizing preservice
teachers with these hidden pitfalls of posing problems in a technological paradigm
elevates their mathematical and pedagogical competences to a higher level.

Pedagogical Coherence

Pedagogical coherence of a problem refers to its appropriateness for a specific
grade, developmental level, or interests of pupils. A problem with more than three
or four correct answers (recall, these problems are to be solved without technology)
may not be appropriate for young children (see the example of a problem with 19
answers shown in Figure 4.2). Therefore, pedagogical considerations dealing with
on-task behavior, interest, motivation, and discovery become important factors in
problem posing. To illustrate the notion of pedagogical coherence, consider a simi-
lar problem posed by another preservice teacher.

Problem 4: How many ways can one make 20 dollars by using 1-dollar bills,
5-dollar bills, and 10-dollar bills only?

Figure 4.4 shows the existence of nine solutions' to the problem (note: the problem
is numerically and contextually coherent). However, one may wonder: Is Problem 4
pedagogically coherent to be offered to young children? It appears that the children
would hardly become motivated to stay on-task that requires adding the numbers 1, 5,
and 10 over and over to reach 20 without “seeing light at the end of the tunnel.”

' There are mathematical methods, not studied at the pre-college level, allowing one to answer the
question “how many?” without actually finding all solutions. One such method is to calculate the
value of D(n; aay, ...,a) referred to in Comtet (1974) as the denumerant of n with respect to the
sequence di,d,, ...,a. In the case of Problem 4, one has to calculate D(20;1,5,10). Another

i i 10i
method is to find the coefficient of x* in the expansion of the product Zx x ZX x Zx . For

i=0 i=0 i=0
more information on the use of technology in calculating denumerants or coefficients in the expan-
sion of the products of geometric series, see Abramovich and Brouwer (2003).

2 A solution strategy that can be introduced to preservice teachers in the context of Problem 4 is to
reduce it to three simpler problems each of which depends on the quantity of $10 bills used. As
shown in Figure 4.4, the range for $10 bills is [0, 2] (row 3); the range for $5 bills is [0, 4] (column
C); the numbers below and to the right of these ranges represent the corresponding quantities of $1
bills. For example, using two $10 bills yields no possibilities for other bills; using one $10 bill
yields three possibilities for other bills: ten $1 bills, one $5 bill, and five $1 bills, or two $5 dollar
bills. The number of possibilities to use these $1 and $5 bills increases as the number of $10 bills
used to pay $20 decreases. The spreadsheet of Figure 4.4 shows how the number of $1 bills
decreases by five vertically (counting by five) and by ten horizontally (counting by ten).
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Figure 4.4. An example of a pedagogically incoherent problem.

A pedagogically coherent problem is one that considers individual and groups of stu-
dents’ developmental level, interests, capabilities, and strengths, which then can kin-
dle students’ interest, facilitate on-task behavior, promote systematic reasoning, and
stimulate their cognitive development. A pedagogically coherent problem can be eas-
ily created through teachers’ experimentation with numbers (parameters) enabled by
spreadsheet’s interactive computations.

Pedagogical Coherence as a Relative Concept

Another issue associated with problem posing deals with the relative nature of
pedagogical coherence. Consider a case when students ask questions about prob-
lems they pose and solve. An approach to learning mathematics through problem
solving, being a signature pedagogy of the modern mathematics classroom (Ernie,
LeDocq, Serros, & Tong, 2009), is a “pedagogy of uncertainty ... [which] render
classroom settings unpredictable and surprising” (Shulman, 2005, p. 57). This
uncertainty may lead to the emergence of the phenomenon of classroom instability
in the sense that a slight modification of a simple problem may lead to a qualita-
tively new level of mathematical complexity, something that a preservice teacher
may not be able to handle appropriately. Typically, students’ interest toward math-
ematics is supposed to be in the state of a stable equilibrium, controlled by the
teacher’s ability to provide qualified assistance when answering questions that
arise in the classroom. Thus, pedagogical coherence of a problem includes the
teacher’s awareness of the possibility that students’ interest toward mathematics
could bifurcate into a state of unstable equilibrium in the sense that once interest
and motivation are lost, these traits may not come back (Abramovich, Easton, &
Hayes, 2012).
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Teachers have to be trained in recognizing the difference between questions that
do have and do not have easy answers. A classic example of that kind is a legend
(e.g., Dunham, 1991) about Carl Friedrich Gauss who, at an early age, was able to
avoid the straightforward summation of the first 100 natural numbers (a pedagogi-
cally incoherent problem for a 10-year-old student) by recognizing a pattern that the
numbers equidistant from the beginning and the end of this sequence follow. While
such a problem without insight of genius does not have an easy solution at that
grade level, solving such problems at a higher-grade level in the age of technology
becomes so easy that now it might be difficult to motivate students to try to solve the
problem. Indeed, typing in Wolfram Alpha—an open source software tool available
on any computer with an Internet connection—the quest, “What is the sum of the
first 100 natural numbers?” yields the answer 5,050. Therefore, it is necessary to
think about reformulation of such computationally solvable problems. For example,
one may be asked to find the smallest square number, which is equal to the sum of
consecutive natural numbers starting from one as well as to the sum of consecutive
odd numbers starting from one. In that way, even if a student uses technology, the
nature of such a reformulated task has a definite mathematical flavor. Indeed, while

the answer, 36, is not difficult to obtain, the possibility of representing 36 in three
6

8
qualitatively different forms—36=6x6=>n=>"(2n—-1)—points to the very
n=1 n=1
nature of numbers, something that, through posing new mathematical inquiries and
resolving them, has stimulated the development of mathematics over the centuries.

It should also be noted that pedagogical coherence of a problem depends on the
expected method of solution. Often, as students learn to use more and more sophis-
ticated mathematical tools, a pedagogically incoherent problem for a lower-grade
level becomes pedagogically coherent for a higher-grade level. By the same token,
a pedagogically coherent problem for a lower-grade level may become pedagogi-
cally incoherent for a higher-grade level. For example, for a 6-year-old (who uses
concrete materials—a noncomputational technology—as a means of problem solv-
ing) the tasks of arranging 24 students and 25 students into four groups to do team
work are at the same level of complexity; however, for a 10-year-old the latter case
is conceptually more difficult as it requires the interpretation of the meaning of
remainder in the equality 25=4x6+1.

As shown in this section, in order for teachers to have robust problem-posing
skills when using digital technology, they need to appreciate and pay attention to the
notions of didactical coherence. The significance of paying attention to these con-
cepts for problem posing is being recognized in recent literature (e.g., Bonotto,
2010, p. 21). Didactical coherence in problem posing is achieved when all the
three types of coherences—numerical, contextual, and pedagogical—intersect
(Figure 4.5) and the issue of extraneous solutions is addressed.

Finally, given a problem, preservice teachers may be asked to decide its place in
the diagram (Figure 4.5) or to pose problems to fill in each of the seven areas formed
by the three overlapping circles. Assignments of that kind would also allow them to
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Figure 4.5. Venn diagram showing the concept of didactical coherence and its
relationship with three subconcepts.

integrate the aforementioned pedagogical ideas with basic mathematical concepts
of set theory (union, intersection, complement) and logic (Venn diagram). It is
important to note that the concepts of coherence are bound by time, place, and
learners involved; in other words, a contextually coherent problem today may not
be contextually coherent in 10 years’ time and a pedagogically coherent problem
for high school students is unlikely to be pedagogically coherent for elementary
students. In this case, technology allows users to reformulate a problem to make
it contextually and pedagogically as well as numerically coherent. However, as
seen from the example of Figure 4.3, by modifying the conceptual structure of a
problem, preservice teachers can achieve its contextual coherence yet overlook
the existence of extraneous solutions generated by a spreadsheet that served a dif-
ferent context.

Problem Posing Through the Lens
of Agent-Consumer-Amplifier Framework

Many technology-enhanced mathematical activities, including problem posing,
can be conceptualized in terms of the ACA framework (Abramovich, 2006). In what
follows, there are brief descriptions of the ACA framework and cases of applying
this framework in the context of a spreadsheet.

ACA Framework

During the first stage of the framework, technology serves as an agent of a math-
ematical activity in the sense that one’s engagement in doing mathematics is moti-
vated by the need to construct a computational environment for solving a specific
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problem. This motivation can stem from the applied nature of a mathematical
activity.’ During the second stage, technology serves as a consumer of a mathemati-
cal activity when a variety of similar problems can be posed and solved; that is, the
constructed computational environment is utilized as a problem-solving tool appli-
cable to more than one problem. It is in that sense that technology, being originally
an agent of a mathematical activity (method), turns into a consumer of the method.
During the third state, technology functions as an amplifier of a mathematical activ-
ity, which extends to a new dimension of problem posing, solving, and reformulat-
ing activities in a way that is hard to realize without the support of technology. Each
of the three functions of the ACA framework is described below, starting with the
role of technology as an agent.

One can recognize a dualism that exists between using technology as agency for
mathematics and doing mathematics to enable this agency. Indeed, whereas a prob-
lem in question can determine one’s choice of a tool in support of the required
problem-solving method, the very structure of the tool determines a method through
which the problem can be solved. Such dualism implies that any technology-
enhanced mathematical activity is underpinned by one’s expertise in the use of tech-
nology and knowledge of specific features of a particular technological tool. In the
context of a computer-supported mathematics teacher education course, there are
several directions through which the duality of mathematics and technology can be
revealed already at the first stage of the triad: the creation of a new computational
environment to enable experimentation with a particular concept, the appropriate
modification of an old environment, or the development of efficient modeling tech-
niques aimed at the sophisticated use of instructional computing.

At the second stage of the triad, once a computational environment is con-
structed, the computer can start functioning as a consumer of the mathematical
method that emerges from one’s engagement in doing mathematics and enabled
him or her to achieve the original goal, that is, to solve a problem. At this stage,
new problems can be formulated within the computational environment and solved
immediately by that environment. The consumption of the mathematical activity
(or method) that underscored the first stage of the triad comprises the creation of a
variety of new problems, which, nonetheless, could (and, often, should) be solved
without using technology. It is only for posing a new problem with a didactically
coherent structure that one uses technology as a consumer of mathematical activity.

3For example, in programming the spreadsheets shown in Figures 4.1, 4.2, 4.3, and 4.4, the follow-
ing problem can be posed: How can one make the ranges in row 3 and column C dependent on the
number in cell A1? To answer this application-oriented question, one has to use algebraic inequali-
ties for which, thereby, the need to construct a computational environment serves as an agency. For
example, when making the 24-cent postage (Figure 4.2, cell A1) the largest quantity of 6-cent and
4-cent stamps that one can use is four and six stamps, respectively. Therefore, the spreadsheet is
designed not to generate numbers greater than four in row 3 and greater than six in column C. For
more information on spreadsheet modeling as an agency for posing problems leading to the use of
algebraic inequalities see Abramovich (2006).
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Indeed, whereas all problems are expected to be numerically coherent once a math-
ematical activity has been set in a workable computational environment, the con-
textual and pedagogical aspects of new problems depend on the problem poser’s
knowledge of cognitive abilities and problem-solving skills of those for whom the
problems are designed.

Finally, at the third stage of the triad, technology plays the role of the amplifier
of the mathematical activity in the sense that it enables posing (and, typically, solv-
ing) of appropriately extended problems, something that would not be possible (or
might be too cumbersome) otherwise. The major characteristic of this stage is that
one has to reorganize the original activity by modifying the method that underscores
it. It should be noted that the tool itself does not enhance one’s cognitive efficiency;
rather, it is the combination of a computational tool and formal method that enables
such amplification. Also, the third stage contributes to the enhancement of numeri-
cal coherence of a posed problem through the design of a new tool. Such amplifica-
tion in the context of spreadsheets used to illustrate the notion of didactical coherence
may be an inquiry into using four types of stamps for a given postage, something
that leads to reorganizing a spreadsheet to work as a four-dimensional modeling
tool (Abramovich & Cho, 2008).

Application of the ACA Framework in the Context
of a Spreadsheet

To illustrate how the ACA framework can be utilized within a specific context,
consider the following well-known problem (e.g., Gardner, 1961; Pask, 1998) for-
mulated here in the simplest form. (This problem was discussed with preservice
teachers in a course on the use of spreadsheets in teaching school mathematics).

Basic “coconuts” problem

In the rainforest, two men and a monkey gather coconuts all day and then fall asleep. During
the night, each man wakes up and, after giving one coconut to the monkey, removes and
hides half of the remaining coconuts for himself. Assuming that each man wakes up only
once during the night, find the smallest number of coconuts originally gathered to allow for
the described situation to take place; in other words, to allow for the problem to be numeri-
cally coherent.

To solve this problem, one can again use a spreadsheet, this time for its remarkable
facility of recurrent counting. With this in mind, a spreadsheet can be connected to
the problem by recognizing the recursive structure of the men’s behavior during the
night—what the first man does with the original pile, the second man does exactly
the same with the remaining pile. In that way, the recursive nature of the problem
calls for a tool capable of recurrent counting. Thus, a spreadsheet becomes the tool
of choice.

Turning to mathematics, let x, be the number of coconuts sought (i.e., the number

of coconuts gathered during the day). Then the number of coconuts that the first

man leaves for the second man is x, = (xo —1)—%()(0 —1) = %(xo —1) . Likewise,
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. 1 1
the number of coconuts left by the second man is x, = (x, —1)— E(X1 -1)= E(x1 -1)-
Now, using a spreadsheet and trial-and-error in selecting x,, one can easily discover
that, along with x,, both x; and x, should be whole numbers and, therefore, it is nec-

essary (but not sufficient) that x, and x, are odd numbers. The spreadsheet pictured

| |
in Figure 4.6 shows that when x, =7 it follows that x, = 5(7 -1)=3x,= 5(3—1) =1

1 1
At the same time, choosing x, =9 yields x, = 5(9 —1)=4;yet, x, = 5(4 -1)= %
is not an integer and, thereby, indeed, it is not sufficient for numerical coherence of

the problem for x, to be just an odd number.
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Figure 4.6. Solving basic “coconuts” problem.

One can define the sequence

1
X, ZE(xH—l), n=12,3,..., “.1)
to allow for more than two men (or more than one wake-up for each man) to be
considered. However, the trial-and-error approach may not be as effective as it was
in the case of two men. As a remedy, one can rewrite recurrence (4.1) in the form

xn—l :2)Cn +1’n:1’293’---, (42)

so that, by moving backwards, one can reach x, starting from x,. Indeed, let n="7 and
x,=1. Then x,=3, x,=7, x, =15, x, =31, x, =63, x, =127, and, finally,
x, =255 (Figure 4.7). This completes the first stage of the triad when the spread-
sheet serves as an agency for utilizing the notions of recursive reasoning, trial-and-
error, necessary and sufficient conditions, and ascending and descending sequences.
These notions have been discussed with secondary teacher candidates to address the
Conference Board of the Mathematical Sciences (2001, 2012) recommendations for
teacher preparation in the context of discrete mathematics.

A 3 C D E . G H i ]

1 X, 1 3 7 15 31 63 127 255 511 1023

Figure 4.7. Using relation (4.2) in spreadsheet programming.

Now, the spreadsheet can become a consumer of the mathematical activity based
on these notions by formulating problems for a number of men (or wake-ups)
greater than two. For example, using the spreadsheet based on relation (4.2) and
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changing the number of men from two to five, if the number of coconuts left by the
fifth man is five (i.e., assuming x5 =5), one can pose a problem of finding the number
of coconuts originally gathered. The answer is in the spreadsheet of Figure 4.8 (cell
F2). Likewise, many other similar problems can be formulated. This problem-
posing activity completes the second stage of the triad.

w H fx «J*Al s

Xy X, X, X3 A Xy

s | 11 | 23 4 9% 19
—

Figure 4.8. Sharing 191 coconuts among five men and a monkey.

The third stage of the triad arises when one attempts to pose a modification of the
basic problem. For example, a possible modification would be to assume that each
man hides one-third of the available coconuts (this assumes that a generalization of
one of the inputs is possible). Thus, relations (4.1) and (4.2) should be replaced,

. 2
respectively, by x, = g(x,%1 —1) and

3
X, :Ex" +1. (4.3)
One can see (Figure 4.9) that the spreadsheet constructed for the first stage ceases to
work as the whole-number property of the right-hand side of relation (4.3) depends on
the factors of x,. So, already a slight modification of the basic problem requires a reor-
ganization of the mathematical activity used in the construction of the spreadsheet.

[ A i s B C D E

v X, 4 7 115 18.25

Figure 4.9. Numerically incoherent data.

Noting that in the case of hiding one-fourth (rather than one-third) of the avail-
. 4 .
able coconuts, relation (4.3) has to be replaced by x _, = 3 x, +1, thereby requiring

new multiplicative requirements for x,, one can pose a general problem and solve it
in order for a spreadsheet to amplify problem-posing (and, consequently, problem-
solving) opportunities. With this in mind, the following problem can be formulated.
Note that formulation of this problem arose because the course instructor had the
goal of creating a generalized problem-posing environment which could be utilized
in a course on using spreadsheets in teaching K-12 mathematics.

Generalized “coconuts” problem

In the rainforest, n men and p monkeys gather coconuts all day and then fall asleep. During
the night, each man wakes up and, after giving one coconut to each monkey, removes and
hides 1/n of the remaining coconuts for himself. Assuming that each man wakes up only
once during the night, find the smallest number of coconuts originally gathered.
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Let x, be the number of coconuts sought. Under the general conditions, one can

compute recursively in succession

and then generalize inductively that

(n—lj" l:(n—lj" (n—lj"_l (n—lﬂ

X, =|— | x,—||— | +|—| ++—||P

n n n n

Simplifying the sum in the brackets by summing the first n terms of the geometric
1Y

series g, = (n_j ,i>1, as follows,
n

leads to the formula

n

x, :(n_—lj X, —(n—l)l:l—(nT_ljn:lp 4.4)

which expresses x, in terms of xg, , and p.
Formula (4.4) can be easily proved by mathematical induction using the recur-

. . n-1 . .
sive relation x,,, = —(xn - p) for which the action of each man can serve as a

situational referent. In turn, it follows from formula (4.4) that
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X, = —(n-1)p, 4.5)

from where it follows that x, +(n—1) p should be divisible by (n—1)". In particu-
lar, when n=2 and p=1 we have x, = 4x, +3, confirming the solution to the origi-
nal “coconuts” problem (Figure 4.6). The case n=3, p=1 is computed as follows:

:2—7|:x3+2[1—£ﬂ=M-

X,
0 |n:3,p:l 8 24 8

Note that the smallest value of x; for which the sum x, +2 is divisible by 8 is equal
to 6. In that case, we have x;, =25. One can program a spreadsheet using formula
(4.5) and then pose a variety of problems for different values of n and p, something
that would be too cumbersome or too computationally involved to use pencil-and-
paper alone. In that way, a spreadsheet amplifies problem posing as a result of inte-
gration of mathematical machinery and the unique capability of the software. This
spreadsheet is shown in Figure 4.10.

B4 3| € i Jx | =(nn)(Ad+prin-10)/(n=-1)*n=(n-1)"p
== A [= D E F G H
1 n P
2 4 2
3 X Mo

78| 75 250

&

79| 76 253.16
159 156 506

160/ 157 509.16

Figure 4.10. Solving a special case of generalized “coconuts” problem.

Obviously, such a (numerically coherent) problem would not be possible to for-
mulate without using the spreadsheet of Figure 4.10 based on formula (4.5). It is in
that sense that a spreadsheet played the role of an amplifier of mathematical activity
which originated in the context of solving the basic coconuts problem.
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Problem. Four men and a monkey gather bananas

all day and then fall asleep. During the night each man
wakes up in turn and, after giving two bananas to the
monkey, he removes and hides one fourth of the pile

of bananas for himself. Assuming that each man wakes
up only once during the night, find a number of bananas
originally gathered so thaf all divisions came out in
integers and give a minimum number of remaining
bananas.

The answer to this problem would be 75 bananas.
The only other numbers that fit the conditions of the
problem are those in the set that begins with 75 and
have a difference 81 between the next closest integer.

Figure 4.11. A teacher-posed problem: modifying the original “coconuts” problem.

Analysis of a Preservice Teacher’s Problem

Figure 4.11 shows a problem posed by a preservice teacher using the spreadsheet of
Figure 4.10. The teacher provided the answer: 75 bananas. However, not only would
this problem be difficult to pose without technology, but also the problem would be
difficult to solve without using formula (4.5). In the case of n=4 and p=2 formula (4.5)
yields

X, = (%j (x,+6)-6 (4.6)

from where the values for x, and x, follow without difficulty if one notes that x, +6
should be divisible by 81 and the smallest x, =75 whence x, =250. However, the
ease of this solution is due to formula (4.5), the derivation of which requires rather
advanced algebraic skills motivated by the need to amplify problem posing. This
example, in particular, illustrates Pélya’s (1957) argument “more general problem
may be easier to solve” (p. 109).

Thus, the problem shown in Figure 4.11 may not be pedagogically coherent for
a regular secondary mathematics classroom unless it is designed with the develop-
ment of formula (4.5) in mind. One way to modify the teacher’s problem in order to
make it less challenging and solvable with paper-and-pencil would be to include the
answer 75 as a given and ask only for the number of bananas originally gathered.
Then an expected method of solution could be to write down the following four
relations

3 3 3
~(x,-2)=x, Z(x1—2)=x2, Z(x2—2)=x3, Z(x3_2):x4 “.7)



90 S. Abramovich and E.K. Cho

and, setting x, =75 in (2.7), find x, in four steps:

X, :i><75+2=102, X, =i><102+2:138,
3 3

X, :ix138+2:186, X, :ix186+2=250.
3 3

Note that until we reach 250, each of the numbers 75, 102, 138, and 186 is divisible
by three.

Likewise, the number 250 may be given (instead of 75) so that, setting x, =250
in (4.7), would allow one to reach 75 in four steps noting along the way that each of
the numbers 248, 184, 136, and 100 is divisible by four.

The preservice teacher who posed the problem in Figure 4.11 also provided a
rule for finding the quantity of all remaining bananas had it be different from 75.
The rule is that these quantities are in arithmetic progression with the first term 75
and difference 81. Although the teacher established this rule by analyzing data gen-
erated by the spreadsheet of Figure 4.10, formula (4.6)—a special case of formula
(4.5)—yields this rule immediately. The rule, in turn, makes it possible to pose
many new problems with x, € {81k—6, k =2,3,4,...} to be solved by using the
chain of relations (4.7). In that case, x, does not represent the smallest number of the
remaining bananas.

Reciprocal Problem Posing: A Case in Secondary
School Algebra

One can extend the concept of reciprocal teaching, originally introduced by
Palincsar and Brown (1984, 1988) in the context of reading instruction, to entertain
the idea of reciprocal problem posing towards the goal of developing and assessing
preservice teachers’ skills in creating didactically coherent curriculum materials.
This idea can be integrated into a technology-supported learning environment by
arranging teachers in pairs, and asking each pair, by using appropriate computa-
tional tools introduced by the instructor, to pose a problem for an associate pair.
Each pair of preservice teachers needs to solve a problem given to them using both
pencil-and-paper setting and digital technology. Note that in the elementary class-
room the idea of using reciprocity in mathematical problem posing has been used
by a number of researchers (e.g., Ellerton, 1986; Richardson & Williamson, 1982;
Van den Brink, 1987).

The instructional goal of reciprocal problem posing, besides developing and
assessing problem-posing skills and encouraging cooperative learning in a
technology-rich setting is to highlight problem posing and problem solving not as
dichotomized but as closely related mathematical activities. Through active engage-
ment in reciprocal problem posing, teachers can indeed begin viewing problem pos-
ing as “a platform from which further development proceeds” (Davis, 1985, p. 23).
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Figure 4.12. Locus of the equation x” +bx —1=0.

This development includes preservice teachers’ use of the notion of didactical
coherence with a focus on avoiding the emergence of pedagogical instability when
a posed problem turns out to be didactically incoherent due to the lack of necessary
problem-solving skills on the part of those to whom the problem was offered.
Consequently, a solution found by a problem solver might be different from the one
expected by a problem poser and this could (and should) lead to the exchange of
ideas. By experiencing reciprocity in posing problems, one can better appreciate the
notion that, whereas a problem is supposed to challenge learners to a certain extent,
it should not develop their sense of frustration with mathematics. Furthermore,
designing a problem fo be solved should eliminate any perception that there exists a
kind of dichotomy between problem posing and solving.

Finally, each pair of preservice teachers can then be asked to extend the problem
given to them, that is, to pose a closely related problem, and offer such an extension
to another pair. This process, guided by the instructor, has the potential to increase
the complexity of extended problems. It also allows for preservice teachers (work-
ing either in pairs or individually) to continue to improve their problem-posing/
problem-solving performance, and encourages the development of mathematical
ideas that are far beyond the originally posed problem. While, in general, reciprocal
problem posing does not require the use of technology, the latter allows one to ele-
vate the art of mathematical problem posing to a higher level.

As an illustration, consider the case of interaction between two secondary preser-
vice teachers, Alice and Bob, working with Graphing Calculator 4.0, computer
graphing software capable of plotting loci of two-variable equations and inequali-
ties.* Using a computer-generated graph of the equation x° +bx—1=0 in the plane
(x, b) where b is a real parameter (Figure 4.12), Alice formulated

Alice’s Problem #1: For which values of parameter b are both roots of the equa-
tion x> +bx—1=0 smaller than one?

“Note that preservice teachers had experience in exploring equations with parameters as described
by Abramovich and Norton (2006).
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Using the graph (Figure 4.12), Bob found the answer in the form of the inequality
b>0.
In turn, Bob modified Alice’s Problem #1 as follows:

Bob’s Problem #1: For which values of parameter b are both roots of the equa-
tion x> +bx—1=0 greater than negative one?

Alice solved Bob’s Problem #1 in the form b<0 (Figure 4.12) and
reciprocated with

Alice’s Problem #2: For which values of parameter b are both roots of the
equation x> +bx—1=0 smaller than two?

Bob solved Alice’s Problem #2 in the form b > —1.5 (Figure 4.13) and then posed

Bob’s Problem #2: For which values of parameter a are both roots of the equa-
tion ax* + x+2 =0 greater than negative one?

\ E:(2.00,-1350)

Figure 4.13. Posing (and solving) Alice’s Problem #2.

Figure 4.14. Locus of the equation ax” +x+2 =0 crossed by the angle bisector a=x.

This required Alice to construct a qualitatively different graph (Figure 4.14) and
then to offer the answer in the form a < -1 along with the explanation of how the
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answer was found. Consequently, Bob used the new graph (Figure 4.14) and
formulated for Alice

Bob’s Problem #3: For which values of parameter a are both roots of the equa-
tion ax* + x+2=0 greater than a?

One can see that such process of reciprocal problem posing can continue like a
never ending experimentation with computer-generated mathematical objects
through which problem posing motivates problem solving and vice versa, provided
that each problem is didactically coherent and that the teacher’s interest towards
mathematics remains in a state of stable equilibrium.

The following is a reflection by a preservice teacher produced during a secondary
mathematics education capstone course (taught by the first author) that emphasized
the value of reciprocal problem posing with technology in promoting experimental
mathematics approach (Baker, 2008):

Throughout participation and engagement in this course, I learned a significant amount
regarding experimental and theoretical knowledge regarding mathematics. The primary rela-
tionship between these categories was the natural relationship between them in terms of one
driving the other in a cyclic fashion. An individual explores a problem or situation by experi-
mental analyzing, until an experimental result is reached. This result drives theoretical math-
ematics to provide rigorous reasoning and backing to validate the conclusion. This then
opens the door to more questions and problem situations, which are subjective to experimen-
tal exploration, and so the cycle continues until the practicality or individuals’ sanity is lost.
Such a relationship embodies the explorative and discovery method of research and educa-
tional viability in the classroom in both learning and teaching itself (p. 334).

The preservice teacher’s recognition of the value of technology as a medium within
which a new problem can be born through solving an already existing problem
suggests that the approach is conducive to the development of higher-order think-
ing skills and to providing teachers with research-like experiences in experimental
mathematics methodology and pedagogy.

Problem Posing with Technology as a Discovery Experience

The use of technology in the context of education can lead to the formulation of
new problems that can be given the status of conjecture in the real mathematical
sense of this word. Put another way, by experimenting with technology one can
come across an opportunity to pose a problem for which no solution can be found
even when the problem is offered to a professional mathematician. This aspect of
problem posing with technology is very important for it has the potential, by using
an experimental mathematics approach with secondary mathematics teacher candi-
dates, to open a window to new mathematical knowledge. One such problem
(Abramovich & Leonov, 2009) can be explained in very simple terms although at
the time of writing this chapter it does not have a formal solution and remains a
technology-motivated conjecture. Therefore, this section, drawing on the ideas
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included in a capstone course for secondary pre-teachers, will demonstrate how
problem posing and discovery experiences could be connected.

A well-known mathematical structure is Pascal’s triangle (Figure 4.15), each line
of which represents coefficients in the expansion of (x+ y)" ,n=0,1,2,3,.... The
elements of Pascal’s triangle can be rearranged in a form resembling a diagonally
shaped table (the spreadsheet of Figure 4.16) in such a way that the rows of the tri-
angle are turned into the diagonals of this table as shown in Figure 4.17. Consider
now, for example, the polynomial of degree seven

P (x)=x"+13x" +66x° +165x" +210x" +126x +28x+1, (4.8)

the coefficients of which are the entries of row 13 of the spreadsheet shown in
Figure 4.16. Using Wolfram Alpha, one can discover (Figure 4.18) that this polyno-
mial has exactly seven real roots. The absence of complex roots in this polynomial
is not an isolated fact. Indeed, none of the polynomials so constructed with the

A B C D E F G H I J K L M
18 1 1 2
2 |1 2 3
3 1 3 1 5
4 | 1 &4 3 8
=8l 1 | 5 |6 |1 13
6| 1 6 10 4 21
7 1 7 1510 1 34
& |1 8 21 20 5 55
o8 1 9 | 8| 35| 15| 1 B9
01 10 3 % 35 6 144
11| 1 11 45 & 70 21 1 233
128 1 12 |55 120 126 56 7 377
12 1 13 66 165 210 126 28 1 610

Figure 4.16. Rearranged entries of Pascal’s triangle.
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1
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1
1
3
133 1] —— 3
1
4
1 46 4 1 —— 6
4
1 1
5
I 510105 | ——— 10
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1

Figure 4.17. Turning rows into diagonals.

coefficients taken from the rows of the rearranged Pascal’s triangle has complex
roots (polynomials of degree 6—rows 11, 12; polynomials of degree 5—rows 9, 10;
polynomials of degree 4—rows 7, 8; polynomials of degree 3—rows 5, 6; polyno-
mials of degree 2—rows 3, 4). These polynomials are called Fibonacci-like polyno-
mials (Abramovich & Leonov, 2009) because the sums of their coefficients are
consecutive Fibonacci numbers (Figure 4.16, column M). The polynomials can be
defined recursively as

P, (x)=x"""IP_(x)+P_,(x), B(x)=1, B (x)=x+1 (4.9)
where mod(n, 2) is the remainder of n divided by 2. The following problem can be
posed:

Problem. Prove that Fibonacci-like polynomials defined by recursive relation
(4.9) do not have complex roots.

In order to explain how this problem originated from the use of technology, note
that the roots of Fibonacci-like polynomials were found to be responsible for a
cyclic behavior of the so-called generalized Golden Ratios generated by the orbits
of a two-parametric difference equation

fian=af, +bf . fo=fi=L k=1273,.... (4.10)
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solve X7 +13x°466x° +165x* +210x° +1260° +28x+1=0

x=-1

x= ; (-3-V5) =~ -2.618033988749895

x= :l? (VS -3)= -0.3819660112501052

y= i [_o V5 -V30-6V5 ] + - 13.827090915285202
x= 1| p4vF - \I."Ims + VS | ~ -3.338261212717716

x= ;[ 9-vE +v30-6VE ] v — 1.790943073464693

1 — | —
g -9+v5 + \.'I 6(5+V5) ] = - 0.043704798532368872

Figure 4.18. All the roots of (4.8) are real.

Equation (4.10)—another example of a mathematical model mentioned in
connection with “the emerging importance of topics and methods in discrete
mathematics” (Conference Board of the Mathematical Sciences, 2001, p. 140)—
can be explored by using a spreadsheet; in the case a=b=1 it generates the cele-
brated sequence 1, 1, 2, 3, 5, 8, 13, ..., the so-called Fib(Q)nacci numbers.

Using a spreadsheet, one can also see that when % = —%, this number

being the smallest root of polynomial (4.8), the ratios f,,, / f, form cycles of period
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A B c D
!n. fﬁ'l/—fﬁ a b
1 3 -3.4376941

1 1
-0.4376941 -0.4376941
-4.75077641  10.85410197
-12.7476708  2.683281573
-21.9112963  1.718B47051

-21.9112963 1
9.590445155  -04376941
10 | 104.0956595 10.85410197
11| 279.3179921  2.683281573
12 | 480.1049063 1.718B47051
13 | 480.1049069 1

14 | -210.139086 -0.4376941
15 | -2280.87106  10.85410197
16 | -5120.2193 2.683281573
17 | -10519.7209 1.718B47051
18 | -10519.7209 1

(- IICI - R, T  ~ P I T

Figure 4.19. Ratios f,,, / f, form a5-cycle in (4.10).

five as shown in Figure 4.19. Using Maple, the family of period five cycles
corresponding to this root can be expressed as follows:

a(3+\/§—2a) a(1+\/§—2a)

3445 7 3+45-2a
—2a(—1—\/§+a+\/§a) (—1+\/§)a2
(3+\/§)(1+\/§—2a) ’ (—l—\/§+a+\/§a)

1,

One can check to see that when a =3, the 5-cycle generated by the spreadsheet of
Figure 4.19 results. This is a quite notable example when an unsolved problem
stems from the educational use of commonly available technology. For more infor-
mation on this topic and its use in a capstone course for preservice teachers of sec-
ondary mathematics, see Abramovich and Leonov (2009, 2011).

Conclusion

This chapter has described the role of modern tools of digital technology such
as an electronic spreadsheet, computer-based Graphing Calculator, Maple and
Wolfram Alpha in facilitating and advancing skills of preservice teachers in mathe-
matical problem posing. Using the cases in elementary and secondary teacher
education contexts, the chapter demonstrated the importance of theoretical
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considerations associated with the use of computers in problem posing. Problems
posed in these technological contexts can vary from the “single question-multiple
answers” word problems appropriate for primary grades to rather advanced explor-
atory tasks depending on parameters that extend mundane problems typically found
in the traditional secondary school curriculum.

Theoretical constructs such as the concept of didactical coherence of a problem
and the ACA framework for computer use in mathematics education were intro-
duced and illustrated through the analysis of a number of genuine problems posed
by preservice teachers. By paying attention to the numerical, contextual, and peda-
gogical coherence constructs when formulating problems from spreadsheet-
generated data, the teachers were able to critically interpret and appropriately
modify the computational results.

The use of graphing software as a medium for reciprocal problem posing is
shown to be conducive for developing rather sophisticated questions about alge-
braic equations with parameters. The benefits of reciprocal problem-posing
pedagogy made possible by the appropriate use of Graphing Calculator 4.0 along
with the potential of turning problem posing into discovery experiences were pre-
sented. In this respect, technology can play a dual role in problem posing: its
presence has great potential to facilitate the development of new problems, and
modern computational engines such as Wolfram Alpha can make already existing
mathematical problems somewhat outdated for they can be easily computable by
transforming a free-form question into an achievable solution. This, in turn, can
open a whole new avenue for problem posing in the technological paradigm by
replacing outdated problems by technology-immune, yet technology-enabled,
mathematical explorations.

The proposed conceptual framework and its use in the practice of teaching math-
ematics have several important implications for K-12 teaching and teacher educa-
tion. First, the use of technology in problem posing encourages open-ended
classroom pedagogy, fosters mathematical reasoning and thinking skills of preser-
vice teachers, and, consequently, has great potential to make K-12 students better
problem solvers. Second, the concept of didactical coherence of a problem has
important implication for teaching mathematics without technology. Preservice
teachers’ familiarity with the didactical coherence constructs and such notions as an
extraneous solutions and contextual/pedagogic incoherence, learned in the context
of using digital technology for problem posing, would help them during their induc-
tive years and beyond to offer problems free from what can be seen as didactic
flaws. The ability to minimize the presence of such flaws in curriculum materials
would, in turn, help K-12 students to concentrate on mathematical aspects of the
problems involved and not to be distracted by sometimes ill-designed and unimport-
ant details of the problems. With the growth of mathematical reasoning and thinking
skills, the ability of preservice teacher education students to recognize and elimi-
nate didactic flaws as nonessential elements of problem structures will develop. For
example, the ability of elementary preservice teachers to pose a mathematically
appropriate question about a situation when two whole numbers have to be com-
pared in context requires experience with the concept of didactical coherence.
Depending on the operation to be used in comparison (subtraction when comparing
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through difference and division when comparing through ratio), the very context of
comparison of two numbers can be selected in more than one way. So, experience
in posing problems through the use of technology can be helpful in nontechnological
contexts also, something that has important implications for the teaching of mathe-
matics, especially at the elementary level.

This chapter set out to demonstrate that the creative use of commonly available
digital technology tools can motivate and support problem-posing activities. In the
context of preservice teacher education, the chapter illustrated the importance of
preparing teacher candidates to be equipped with conceptual understanding of
didactic issues related to problem posing with technology, and allowing them to
participate actively in their own learning process and pose their own problems using
technology. In this way, preservice teachers will be able to have an ownership of
their learning experiences and a renewed understanding of what it means to be a
student in a mathematics classroom, as a producer not just a consumer of knowl-
edge. As noted in the beginning of this chapter, literature on problem posing with
technology and especially the scope of research in this area are still limited and
deserve more research attention both in theoretical and practical aspects. The
authors hope that their experience shared above can motivate further research on
using digital technology for mathematical problem posing.
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Chapter 5

On the Relationship Between Problem
Posing, Problem Solving, and Creativity
in the Primary School

Cinzia Bonotto and Lisa Dal Santo

Abstract Problem posing is a form of creative activity that can operate within tasks
involving semi-structured rich situations, using real-life artefacts and human inter-
actions. Several researchers have linked problem-posing skills with creativity, citing
flexibility, fluency, and originality as creativity categories. However, the nature of
this relationship still remains unclear. For this reason, the exploratory study pre-
sented here sought to begin to investigate the relationship between problem-posing
activities (supported by problem-solving activities) and creativity. The study is part
of an ongoing research project based on teaching experiments consisting of a series
of classroom activities in upper elementary school, using suitable artefacts and inter-
active teaching methods, in order to create a substantially modified teaching/learn-
ing environment. In addition, the study provides a method for analyzing the products
of problem posing that teachers could use in the classroom to identify and assess
both the activity of problem posing itself and students’ creativity in mathematics.
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Introduction

Problems have occupied a central place in the school mathematics curriculum
since antiquity. In fact, examples of mathematical and geometrical problems go
back to the ancient Egyptians, Chinese, and Greeks. A common belief was that
studying mathematics would improve one’s ability to think, to reason, and to solve
problems that one was likely to confront in the real world. Mathematics problems
were a given element of the mathematics curriculum that contributed, like all other
elements, to the development of reasoning power (Stanic & Kilpatrick, 1988).

However, traditional school word problems typically focus on the application of
operational rules that involve a mapping between the structure of the problem situ-
ation and the structure of a symbolic mathematical expression. Often, solving these
word problems is not a problem-solving activity for students; rather, it is an exercise
that relies on syntactic cues for solution, such as key words or phrases in the prob-
lem (for example, “times,” “less,” “fewer”). While not denying the importance of
these types of problems in the curriculum, they do not adequately address the math-
ematical knowledge, processes, representational fluency, and communication skills
that our students need for the twenty-first century (English, 2009).

Furthermore, many researchers have documented that the practice of solving
word problems in school mathematics actually promotes in students a suspension of
sense-making (Schoenfeld, 1991), and the exclusion of realistic considerations.
Primary and secondary school students tend to exclude relevant and plausible famil-
iar aspects of reality from their observation and reasoning.

As a kind of minimal instructional response to this bridging problem, some
scholars have made a plea for improving the quality of the word problems by mak-
ing them resemble somewhat more the real-life problems encountered out-of-
school, for example, by making the data, the question, and the contextual constraints
more authentic or realistic (see, e.g. Palm, 2006; Verschaffel, Greer, & De Corte,
2000). As an even more radical response, other researchers have argued for the
replacement of these word problems by real real-life problems that depart from
existing (problematic) descriptions of the world (Chen, Van Dooren, Chen, &
Verschaffel, 2011).

Our approach falls under the second type of response. If we want to help students
to prepare to cope with natural situations they will have to face out of school, we
need to rethink the type of problem-solving experiences we present to our
students.

Almost all of the mathematical problems a student encounters have been pro-
posed and formulated by another person—the teacher or the textbook author. In real
life outside of school, however, many problems, if not most, must be created or
discovered by the solver, who gives the problem an initial formulation (Kilpatrick,
1987).

In our opinion, the activities used to create an interplay between mathematics
classroom activities and everyday-life experiences must be replaced with more real-
istic and less stereotyped problem situations, founded on the use of materials, real
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or reproduced, which children typically meet in real-life situations (Bonotto, 2005).
In particular, we deem that classroom activities using suitable artefacts and interac-
tive teaching methods could foster a mindful approach towards realistic mathemati-
cal modelling and problem solving, as well as a positive attitude toward
problem-posing (Bonotto, 2009). In fact, we maintain that the problem-posing pro-
cess represents one of the forms of authentic mathematical inquiry which, if suit-
ably implemented in classroom activities, could move well beyond the limitations
of word problems, at least as they are typically utilized.

Kilpatrick (1987) maintained that “problem formulation is an important compan-
ion to problem solving. It has received little explicit attention, however, in the math-
ematics curriculum until a few years ago” (p. 123). In the United States, for example,
formally and for the first time “the inclusion of activities in which students generate
their own problems, in addition to solving pre-formulated examples, has been
strongly recommended by the National Council of Teachers of Mathematics”
(English, 1998, p. 83). More recently, the Chinese National Curriculum Standards
on Mathematics (Ministry of Education of Peoples’ Republic of China (NCSM),
2001) has emphasized that students must be able to “pose and understand problems
mathematically, apply basic knowledge and skills to solve problems and develop
application awareness” (p. 7). Also, a document of the Italian Mathematics Union
(UMI-CIIM, 2001) and of the Italian Ministry of Education (2007) recognized the
importance of problem posing in the mathematics curriculum.

Given the importance of problem-posing activities in school mathematics, some
researchers have started to investigate various aspects of the problem-posing pro-
cess. Several have examined thinking processes related to problem posing (e.g.
Brown & Walter, 1990; Christou, Mousoulides, Pittalis, Pitta-Pantazi, & Sriraman,
2005). In particular, Kontorovich, Koichu, Leikin, and Berman (2012) posited that
the problem-posing process is constituted by a knowledge base, heuristics and
schemes, group dynamics and interactions, individual considerations of aptness,
and task organization. Others have underlined the need to incorporate problem-
posing activities into mathematics classrooms and have reported approaches that
included it in instruction. They have provided evidence that problem posing has a
positive influence on students’ ability to solve word problems (e.g. Leung, 1996;
Silver, 1994). English (1998) asserted that problem posing improves students’
thinking, problem-solving skills, attitudes and confidence in mathematics and math-
ematical problem solving, and contributes to a broader understanding of mathemati-
cal concepts.

Furthermore, problem posing is a form of creative activity that can operate within
tasks involving structured “rich situations” in the sense of Freudenthal (1991), using
real-life artefacts and human interactions (English, 2009). Creativity, understood as
the cognitive ability to create and invent, is linked to the activity of mathematical
problem posing. In fact, problem posing is a form of mathematical creation: the
creation of mathematical problems in a specific context. In particular, Silver and
other authors (Cai & Hwang, 2002; Kontorovich, Koichu, Leikin, & Berman, 2011;
Silver, 1994, Silver & Cai, 2005; Yuan & Sriraman, 2010) have linked problem-
posing skills with creativity, citing flexibility, fluency, and originality as creativity
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categories. Moreover, some authors have suggested that students’ considerations of
whether or not the created problems are appropriate could serve as another useful
indicator of their creativity (Kontorovich et al., 2011, 2012; Mednick, 1962).

However, the nature of this relationship still remains unclear. For this reason, the
exploratory study presented here begins to investigate the relationship between
problem-posing activities (supported by problem-solving activities) and creativity.
Also, the study provides a method for analyzing the products of problem posing that
teachers could use in the classroom to identify and assess both the activity of
problem posing itself and the students’ creativity in mathematics.

Problem Posing

Students are usually asked to solve mathematical problems at school that have
been presented by teachers or textbooks (Silver, 1994). Therefore, students only
have the task of solving problems, while the teachers have to create them.

But, what is a problem? In discussing the nature of problems, Starko stated that
“problems come in various shapes, sizes, and forms, some with more potential than
others. A ‘problem’ is not necessarily difficult; it may be a shift in perspective or a
perceived opportunity” (Starko, 2010, pp. 30-31). In his studies about problems and
creative thinking, Getzels (1979) distinguished between three illustrative types of
problems or problem situations: presented problem situations, discovered problem
situations, and created problem situations. In the first type of problems, there are
three components—a formulation, a method of solution, and a solution known to
others if not yet to the problem solver. Most classroom problems are of this type.
Problems of the second type “may or may not have a known formulation, known
method of solution, or known solution” (Getzels, 1979, p. 169). In the last type of
problems, there is no presented problem and someone must invent or create it. As
explained by Starko (2010), “Type 1 problems primarily involve memory and
retrieval processes. Type 2 problems demand analysis and reasoning. Only Type 3
problems, in which the problem itself becomes a goal, necessitate problem finding”
(p- 31). And problem finding is the first step of the problem-posing process.

In mathematics education, after over a decade of studies which have focused on
problem solving, researchers have slowly begun to realize that “developing the abil-
ity to pose mathematics problems is at least as important, educationally, as develop-
ing the ability to solve them” (Stoyanova & Ellerton, 1996). Problem posing, in fact,
is of central importance in the discipline of mathematics and in the nature of math-
ematical thinking, and it is an important companion to problem solving (Kilpatrick,
1987). Kilpatrick believed that

Problem formulating should be viewed not only as a goal of instruction but also as a means
of instruction. The experience of discovering and creating one’s own mathematics problems
ought to be part of every student’s education. Instead, it is an experience few students have
today—perhaps only if they are candidates for advanced degrees in mathematics. (p. 123)
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In recent years, in recommendations for the reform of school mathematics around
the world, the results of many studies have supported the central role of problem
posing. For example, The Principles and Standards for School Mathematics in the
United States of America (National Council of Teachers of Mathematics, 2000)
called for students to “formulate interesting problems based on a wide variety of
situations, both within and outside mathematics” (p. 258) and recommended that
students should make and investigate mathematical conjectures and learn how to
generalize and extend problems by posing follow-up questions. In The Interpretation
of Mathematics Curriculum (Mathematics Curriculum Development Group of
Basic Education of Education Department, 2002) “it is pointed out that students’
abilities in problem solving and problem posing should be emphasized and students
should learn to find problems and pose problems in and out of the context of math-
ematics” (Yuan & Sriraman, 2010, p. 6).

Problem posing has been defined by researchers from different perspectives
(Silver & Cai, 1996). The term problem posing has been used to refer both to the
generation of new problems and to the reformulation of given problems (e.g.
Dunker, 1945; Silver, 1994). Silver (1994) linked problem solving and problem pos-
ing and argued that problem posing could occur:

* Prior to problem solving when problems were being generated from a par-
ticular stimulus (such as a story, a picture, a diagram, a representation, etc.);

* During problem solving when an individual intentionally changes the prob-
lem’s goals and conditions (such as in the cases of using the strategy of
“making it simpler”); and

* After solving a problem when experiences from the problem-solving context
are modified or applied to new situations.

Stoyanova and Ellerton (1996) identified three categories of problem-posing situa-
tions: free, semi-structured, or structured. In free situations, students pose problems
without restrictions: students are simply asked to make up mathematics problems
from a given situation. Semi-structured problem-posing situations refer to ones in
which students are “given an open situation and are invited to explore the structure
of that situation and to complete it by using knowledge, skills, concepts and rela-
tionships from their previous mathematical experiences” (p. 520). Finally, struc-
tured problem-posing situations refer to situations where students pose problems by
reformulating already solved problems or by varying the conditions or the questions
of given problems.

In this chapter, we shall consider mathematical problem posing as suggested by
Stoyanova and Ellerton (1996): “the process by which, on the basis of mathematical
experience, students construct personal interpretations of concrete situations and
formulate them as meaningful mathematical problems” (p. 519). In the study pre-
sented here, this process is supported by the use of suitable social or cultural arte-
facts that, according to this framework, can become a meaningful source for
problem-posing activities of the semi-structured type (Bonotto, 2013). A cultural
artefact can support a semi-structured problem-posing situation, because it can
become a concrete source for types of tasks and activities where the students are
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invited to explore the mathematical structure, find a problem, and by using knowl-
edge, skills, concepts, and relationships from their previous mathematical experi-
ences, create one or more new mathematical problems.

Problem posing, therefore, becomes an opportunity for interpretation and critical
analysis of reality since: (a) the students have to discern significant data from imma-
terial data; (b) they must discover the relations between the data; (c) they must
decide whether the information in their possession is sufficient to solve the problem;
and (d) they have to investigate if the numerical data involved is numerically and/or
contextually coherent. These activities, quite absent from today’s Italian school
context, are typical also of mathematical modelling processes and can help students
to prepare to cope with natural situations they will have to face out of school
(Bonotto, 2009).

A semi-structured situation, as well as an unstructured situation, invites the use
of creative thinking inasmuch as it stimulates student sensitivity to a problem—to
ideation (the creation of new ideas), originality, the ability to synthesize, and to
reorganize the information in a new way, analytical skills, and evaluating ability.

The advancement of mathematics requires creative imagination, which is the
result of raising new questions, new possibilities, and viewing old questions from
new angles (Ellerton & Clarkson, 1996). Silver (1997) argued that inquiry-oriented
mathematics instruction, which includes problem-solving and problem-posing tasks
and activities, could assist students to develop more creative approaches to mathe-
matics. It is claimed that through the use of such tasks teachers can increase their
students’ capacity with respect to the core dimensions of creativity, namely, fluency,
flexibility, and originality. We believe in the didactic potential of using suitable
artefacts, combined with particular teaching methods, as a source for types of tasks
and activities that encourage problem posing and creativity processes—see Bonotto
(2005, 2009) for a discussion on the use of artefacts in classroom activities.

Creativity

In the nineteenth and early twentieth centuries, creativity was identified with the
genius of a few people of remarkable intelligence who revolutionized their fields.
Therefore, early studies on creativity examined the characteristics of these outstand-
ing personalities, such as Mozart and Einstein. These studies were based on three
ideas: first, that creativity belonged to exceptional personalities; second, that a cre-
ative person was a break with the spirit of the time in which that person lived; and
third, that sudden insight was involved. However, it is interesting to note the posi-
tion of Poincaré (1908), later recaptured by Hadamard (1945), that inventing, at
least in mathematics, meant to discern and to choose.

Afterwards, the psychological study of thought addressed aspects of intelligence,
and in particular logical mathematical skills. As a result, creativity began to be iden-
tified with high intelligence. Beginning in 1950, Guilford dealt with creativity and
noted that IQ and creativity could not be overlapped. He, therefore, hypothesized
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that a person could be creative without exceptional intelligence and vice versa.
Then, Guilford hypothesized that there was a different way of thinking, subse-
quently called divergent thinking, characterized by the ability to imagine a range of
solutions to a given problem. Guilford’s ideas inspired subsequent research on cre-
ativity and the development of tests to measure people’s creativity such as the
Torrance Tests of Creative Thinking. Thus, creativity began to be recognized as an
asset, even if present in different degrees and shapes, for each person. Today, there
are many definitions and theories of creativity, each of which considers some aspect
of creative thinking.

One of the main lines of research on creativity concerns the distinction between
two types of thought proposed by Guilford (1950): productive (divergent thinking)
and reproductive (convergent) thinking. Included in the divergent thinking category
were the factors of fluency, flexibility, originality, and elaboration. Guilford saw
creative thinking as clearly involving what he categorized as divergent production
(Yuan & Sriraman, 2010) which he broke down into nine skills: sensitivity to prob-
lems, ideational fluency, flexibility of set, originality, the ability to synthesize, ana-
lytical skills, the ability to reorganize, span of ideational structure, and evaluation
ability. All these skills influence each other and represent the related aspects of a
dynamic and unified cognitive system. In particular, sensitivity to problems, flexi-
bility of approach, ability to synthesize, application of analytical skills, and the
ability to reorganize are all aspects that characterize mathematical thinking.

It is hardly surprising, therefore, that the main models used to describe the cre-
ative process emphasize the importance of sensitivity to the problems (problem
finding) and their resolution (problem solving). Problem finding, in particular, may
be associated with mathematical problem posing. Problem-posing and problem-
solving activities are therefore used by several authors to promote and evaluate
creativity (Leung, 1997; Silver, 1997; Silver & Cai, 2005; Siswono, 2010; Sriraman,
2009; Torrance, 1966). For example, in a recent study, Kontorovich et al. (2011)
used fluency, flexibility, and originality as indicators of creativity in students’ prob-
lem posing.

We must not forget that there is a distinction between mathematical creativity at
the professional level and at the school level: it is certainly feasible to expect stu-
dents to offer new insights into a mathematical problem rather than expecting works
of extraordinary creativity and innovation (Nadjafikhah, Yaftian, & Bakhashalizadeh,
2012; Sriraman, 2005).

We believe that the creative process in school mathematics may be encouraged by
the presence of semi-structured situations (defined by Stoyanova & Ellerton, 1996).
These situations are similar to those encountered by professional mathematicians
who are frequently engaged in problems which are full of vagueness and uncer-
tainty; the use of appropriate cultural artefacts can help realize these situations.

Through the use of artefacts, children can be encouraged to recognize a great
variety of situations as mathematical situations, or more precisely “mathematiz-
able” situations, by asking them: (a) to select other artefacts from their everyday
life; (b) to identify the mathematical facts associated with them; (c) to look for
analogies and differences (e.g., different number representations); or (d) to generate
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problems (e.g., discover relationships between quantities) (Bonotto, 2009). These
aspects are related to another line of research on creativity that highlights the impor-
tance of the process of association of ideas (e.g. Mednick, 1962; Starko, 2010).

In the study presented here, we focused on the analysis of the problem posing and
creativity processes. These two processes were studied using a semi-structured situ-
ation. We also began to reflect on the relationship between mathematical knowledge
and these two processes. Figure 5.1 presents possible relationships between the
variables involved in the problem posing and creativity processes at the school level.

CREATIVITY

Mathematical Knowledge | Influence Teaching

| | ABILITY TO CREATE

Assess

PROBLEM POSING |

v
ANALYSIS OF PROBLEM POSING QUALITY |

Figure 5.1. Possible relationships between problem posing and creativity.

The Study

The overall aim of this exploratory study, briefly described also in Bonotto
(2013), was to examine the relationship between problem-posing activities
(supported by problem-solving activity) and creativity, when these processes are
implemented in situations involving the use of real-life artefacts. In particular, the
study sought to continue to investigate:

* The role of suitable artefacts as sources of stimulation for the problem-posing
process in semi-structured situations; and
* Primary school students’ capacity to create and deal with mathematical prob-
lems (including open-ended problems).
Furthermore, the study sought to begin to investigate:
* The potential that these problem-posing activities have for identifying cre-
ative thinking in mathematics; and

* A method for analyzing the products of problem posing that the teacher could
use in the classroom to identify and assess both the activity of problem posing
itself and the creativity of the students.
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Participants

This exploratory study involved four fifth-grade classes (10-11 years old) from
two primary schools in northern Italy. The study was carried out by the second
author of this paper in the presence of the official logic-mathematics teacher.

The first primary school was located in an urban area situated within a few miles
of the centre of a city. This school participated in the study with two classes, one
consisting of 14 students and the other of 16. The children were already familiar
with activities using cultural artefacts, group work, and discussions.

The second primary school was located in a mountainous area. This school also
participated in the study with two classes, one consisting of 20 students and the
other of 21. The children were not already familiar with these types of activities,
even though the teacher had once proposed a problem-posing activity where the
situation was a drawing of the prices of different products in a shop.

The average marks in mathematics of the students from the two schools were
classified into three categories: high, medium, and low. On the basis of this classifi-
cation the two schools were not uniform; in particular, the second school had more
students with averages in the medium-high range in mathematics. These data were
obtained in order to make observations concerning the influence that mathematical
knowledge can have on the creativity process.

Materials

To perform the problem-posing activity a real-life artefact was used as the initial
situation. We wanted to create a semi-structured situation that was as rich and con-
textualized as possible for the students in order to permit them to use their extra-
scholastic experience in the creation and resolution of problems. Thus, the artefact
was a page of a brochure containing the special rates for groups visiting the Italian
amusement park “Mirabilandia” (Figure 5.2) and shows the menu and applicable
discounts, the cost for access to the beach, etc. This artefact was chosen with the
belief that all students were already familiar with an amusement park because they
had been to one. The page was full of information, including prices (some expressed
as decimals), percentages, and constraints on eligibility for the various offers
(Figure 5.2 shows part of the artefact). Finally, we gave pupils the individual rates.

Procedure

Assuming, for the reasons discussed previously, that problem posing can be an
activity that highlights creativity, we structured a problem-posing activity supported
by a problem-solving activity that could be evaluated with regard to creative think-
ing (in terms of fluency, flexibility, and originality). The experiment was structured
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GRUPPO MISTO (Min. 20 persone paganti) gratuiti ogni 10 ¢ sgant € 24,00
GRUPPI SCUDLE*/COLONIE® (Min. 20 persone paganti) W persone pagant € 20,00

GRUPPI PARROCCHIE'/SENIOR {OVER 60) [Min. 20 persone paganti) 1 graituita ogni 10 parsona pagant € 20,00
BAMBINI (Fino a 100 om] Gratuito
DISABILI HON AUTOSUFFICIENTI Gratuito
ACCOMPAGNATORI DI DISABILI € 20,00

- Mew LOCALE TARIFFA COMPOSITIONE :
Pizza Time Trancio di pizza farcita, patatine fritte o bibita media a scelta.
Bar del Laghetto patating fitte o bibita media a sceta.
Self Sorvice Drive in " Pasta sl pomadoro, cotoletta di pollo fritte. 121tro scqua.
Self Service Drive in Primo. sacondo caldo con con bibita, a scota.
Self Service Drive in Primo, sacondo caldo con contorno, dolce 8 bibita, a soelta.
Un'bucng pasts omagiio per ofnl gruop per el pu

* Partecipantk min. 10 persons (incluso i festegdiata)
+ Luogo della festa: Seif Service Drive in

NOTA BENE: 1L BIGUETTO DY IGRESSO DI PARTEGIPANT ALLA FESTA NON £ INGLUSO NEL PACGHETTO
ATTENTIONE:

: TUTT | BIGLIETTI DV INGRESSO -IN OMAGGIO PER L FESTEGGIATD £ A PAGAMENTO PER 6L
ALTRY PARTECIPANTI ALLA FESTA- DANNO DIRYTTO ALLA PROMOZIONE “IL GIORNO DOPO ENTRY GRATISI.

Figure 5.2. Artefact for semi-structured situation.

in three phases: (a) the presentation of the artefact used; (b) a problem-posing activ-
ity; and (c) a problem-solving activity. The activities took place on three different
days, a few days apart. The students worked individually for part 2. For part 3, they
were, at first, divided into groups of two or three students and then participated in a
collective discussion. Students could use the artefact and its summary during all
three activities.

The first phase, lasting about 2 hours, consisted of the analysis and synthesis of
the artefact. This phase was preparatory to the problem-posing activity. After pre-
senting the whole brochure, a copy of one of the pages was given to each student
and then he/she was invited to write down everything they could see on that page.
Following that, there was a discussion on the observations: the aim was to verify
their understanding of the artefact and to create a summary of the mathematical
concepts involved.
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The second phase, lasting about an hour, consisted of an individual problem-
posing activity in which the children had to create the greatest number of solvable
mathematics problems (in a maximum time of 45-50 minutes), preferably of vari-
ous degrees of difficulty, to bring to their partners in the other classroom. The chil-
dren were not informed of the time limit in order to avoid generating anxiety. Rather,
they were told that they would have plenty of time to do this activity and that prob-
lems would be collected when the majority of the students had finished. To allow for
the pupils’ self-assessment, they were given a sheet of paper for their calculations
and solutions to the problems they had created.

Then, four problems for the next problem-solving activity were selected from
among all the problems that had been created. To facilitate problem solving, prob-
lems that would have favoured a discussion among the students were chosen:

*  One Multi-step problem, for example “Francesca decided to go to Mirabilandia.
There are 15 people including 7 adults and 8 children. Each child spends 26
euro and each adult spend 31 euro. Then, they decide to go to the Mirabilandia
beach and they pay an additional 7 euro. What is the total spent?”

¢ Two Open-ended problems (problems with insufficient information), for
example “Luca and his 10 friends go to Mirabilandia to celebrate Luca’s
birthday. How much did they spend?”

* One Incorrect data problem, for example “A group of 20 people, children and
adults, decide to go to Mirabilandia. In total, they spend 480 euro. How much
will each person pay to enter?” (The total of 480 was included in the problem
by the student. It is incorrect because all of the conditions of the artefact were
not taken into consideration—in fact for every 10 entries, 1 entry was free).

For the classes at the second school, the selection criteria of the problems were the
same for the first three problems; in the fourth problem, the topic of percentage was
included because the students had not yet studied percentage problems. The modi-
fied criterion was used since we wanted to study the way in which “anticipatory
learning” (Freudenthal, 1991) can be enhanced by the use of an artefact.

The third phase, lasting about 2 hours, consisted of a problem-solving activity by
students and ended with a collective discussion. The students were asked to solve
problems, to write the procedure that they had used, and to write considerations on
the problem itself. Different solutions and ideas that emerged during the discussion
were compared and, at the end of the activity, a collective text summarizing the
students’ conclusions was written.

Methodology and Data Analysis

Data from the teaching experiment included the students’ written work, field notes
from classroom observations, and audio recordings of the collective discussions.

All of the problems created by the students were analyzed with respect to their
quantity and quality. To analyze the types of created problems, the methodology
proposed by Leung and Silver (1997) was followed; for the analysis of the text of



114 C. Bonotto and L. Dal Santo

Table 5.1

Examples of Each Category of Problem
Category Example
Non-mathematical problem Find the name of the following problem.
Implausible mathematical A group of 20 children go to Mirabilandia with the school
problem and each child pays 20 euro. The school children are 130.

How much does the school pay to go to Mirabilandia?

Plausible mathematical Giovanni goes to Mirabilandia with his dad. How much does
problem with insufficient data Giovanni spend? How much does his dad spend?
Plausible mathematical A group of 15 people enter in Pizza Time pub and every
problem with sufficient data person pays 7.50 euro. What is total spent?

the problems we referred to the research of Silver and Cai (1996) and Yuan and
Sriraman (2010).

Table 5.1 illustrates the first qualitative analysis of the created problems with an
example from each category of problem.

In this work, non-mathematical problems are texts which cannot be considered
problems or they are not solved through mathematical tools. The mathematical
problems were analyzed and divided into implausible mathematical problems and
plausible (can apparently be solved, with no discrepant information, and respects
the conditions in the artefact) mathematical problems. The plausible mathematical
problems were divided further into plausible mathematical problems with insuffi-
cient data and plausible mathematical problems with sufficient data.

Plausible mathematical problems with sufficient data were analyzed with respect
to their complexity and were assessed by two aspects: the complexity of the text of
the problem and the complexity of the solution. With regard to the complexity of the
text of the problems, plausible mathematical problems with sufficient data were
divided into problems with a question and problems with more than one question.
The latter were divided into concatenated questions and non-concatenated ques-
tions. With regard to the complexity of the solution, these mathematical problems
were divided into multi-step, one-step, and zero-step problems.

Furthermore, only the plausible mathematical problems with sufficient data were
re-analyzed to evaluate their creativity. The problems developed by children were
grouped taking into account the number and type of details extrapolated from the
artefact, the type of questions posed, and the added data included by the students.

To evaluate their creativity in mathematics, three categories were taken into con-
sideration—fluency, flexibility, and originality—as proposed by Guilford (1950) to
define creativity, and as used in the tests by Torrance and in other studies such as
that by Kontorovich et al. (2011).

When considering the fluency of a problem, the total number of problems created
by the pupils of each school in a given time period, as well as the average number of
problems created by each student, were taken into account. By contrast, flexibility
refers to the number of different and pertinent ideas created in a given time period.
In order to evaluate the flexibility of the students, the mathematical problems were
categorized considering both the number of details present in the brochure (e.g.,
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entrance fee, price of lunch, etc.) which were incorporated into the text of the prob-
lem posed, and the additional data introduced by the students (e.g., calculating the
change due after a payment). Once the problems had been categorized in the above
ways, the various types of problems that occurred in each class were counted.

The originality of the mathematical problems created by the students took into
consideration the uniqueness of the problem compared to the others posed in each
school. In order to evaluate the originality of a problem, it was considered original if
it was posed by less than 10% of the pupils in each school (Yuan & Sriraman, 2010).

Therefore, two different analyses were conducted: one for problem posing and
one for creativity. With regard to problem posing, a qualitative analysis was carried
out to evaluate students’ performance on problem posing and to analyze the struc-
ture of the texts of the problems and their solutions. Both quantitative and qualita-
tive analyses were undertaken to evaluate student creativity. The number of problems
created per student was counted, and then the texts of the problems associated with
each of the problems created by students were analyzed.

Some Results and Comments

A total of 63 students in both schools participated in the problem-posing phase
and they created a total of 189 problems. Students from the first school created 58
problems (57 were mathematical problems), while students from the second school
created 131 (all mathematical problems).

More than half of the created problems—64% of the problems created by pupils
at the first school and about 60% of those created by the pupils at the second
school—were solvable mathematical problems (plausible mathematical problems
with sufficient data). Table 5.2 shows the main quantitative results for both schools.

After analyzing these solvable mathematical problems we found that:

* 81% of the problems from the first school and 75% of the problems from the
second school were multi-step problems; and

* 78% of the problems from the first school and 73% of the problems from the
second school were problems with a question.

Table 5.2
Percentage of Problems Created in Each Category
Category First school (%)  Second school (%)
Non-mathematical problem 1.7 0
Irrelevant mathematical problem® 6.9 0
Implausible mathematical problem 19.0 29.0
Plausible mathematical problem with insufficient data 8.6 10.7
Plausible mathematical problem with sufficient data 63.8 60.3

2Note: Irrelevant mathematical problems did not use any of the information provided in the
artefact—the problems, therefore, did not relate to the artefact. The students who posed these
problems, in fact, did not understand the presentation of the task.
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For problems which involved more than one question, in the first school 62% had
concatenated questions, and in the second school, about 43%.

We concluded, from the analysis of the above data, that the first school had better
problem-posing performance because the children from first school created fewer
implausible problems, more multistep problems, and more problems with concate-
nated questions than the children from the second school.

Most of the problems created by the pupils were similar to standard problems
used in schools (for example: “A father and his son go to Mirabilandia. The adult
pays 31 euro, and the child 26. How much do they pay?” And, “How much do they
receive in change if they pay with two bills, one of 50 and one of 10 euro?”),
although there were some cases (17%, corresponding to 32 out of 189 problems) of
creative and open-ended problems.

An example of a creative problem is:

A group of 50 students go to Mirabilandia. Everyone takes a Ghiotto meal. Then, 50% of
this group decide to go to Mirabilandia beach while the other 50% remains in the park area
and goes on the rides. The day after, 24 of these students return to the amusement park and
50% of them order a Ghiotto menu while the other 50% takes the Classico menu. 25% of
this group wants to return to Mirabilandia. How much does the group pay to go to
Mirabilandia beach? And for the food? And for the entrance? And in total?

The text of this problem did not include certain information (for example the
entrance fee) because the students who created the problem knew that the other
class had the artefact. This consideration also applied to many other problems
created by the students.

As far as creativity is concerned, the second school was more successful in all
three categories used to assess performance (fluency, flexibility, and originality).
With regard to fluency, each student in the first school created two problems on
average, while each pupil of the second school created three problems on average.
With regard to flexibility, the problems created by the classes of the first school were
divided into 11 categories, those of the second school into 16 categories. In evaluat-
ing originality, it was found that three original problems were created in the first
school and ten original problems in the second school. Original problems included
inverse problems and problems involving almost all the information from the arte-
fact. Table 5.3 presents a summary of the creativity results.

In terms of the creativity indicators listed in Table 5.3 (fluency, flexibility, and
originality), the students of the second school demonstrated better performance on
the parameters used to evaluate fluency and flexibility. It should, however, be noted
that the second school had more students with averages in the medium-high range
in mathematics, as Table 5.4 shows. The results may suggest that there is a correla-
tion between creativity and performance in mathematics; this aspect deserves to be
investigated in a subsequent study.

The results obtained were consistent with those from another study we conducted
(see e.g., Bonotto, 2005, 2009) and demonstrate that an extensive use of suitable
cultural artefacts, with their associated mathematics, can play a fundamental role in



5 On the Relationship Between Problem Posing, Problem Solving, and Creativity 117

Table 5.3

Analysis of Problems for Creativity

Category
Fluency

Flexibility

Originality

Table 5.4

Method of analysis

The total number of problems created
by the pupils of each school and the

average of the problems created by each

student is taken into account

The plausible math problems with
sufficient data were categorized
according to the number and type of

information of the artefact present in the

text, the type of questions, and the

addition of information from the student.
Then, the number of categories produced

by each school was counted

The rarity of the answer was considered:

an answer was considered original if it
came from less than 10% of pupils in
that school

Results

57 mathematical problems were
created (two problems per student,
on average) in the first school, while
131 problems were created (three
problems per student on average) in
the second school

The problems created by the four
classes were divided into 18 total
categories, 11 for the first school,
and 16 for the second school

There were three original problems
in the first school and ten original
problems in the second school.
Original problems included inverse
problems and involved almost all of
the information in the artefact

Academic Performance in Mathematics of Students in the Two Schools

Pupils’ academic performance in mathematics

Category Low (%)
Students of the first school 29
Students of the second school 12

Medium (%) High (%)
40 29
51 37

bringing students’ out-of-school reasoning and experiences into play by creating a
new dialectic between school mathematics and the real world. As a paradigmatic
example, we have included below some segments from the class discussion con-
cerning the following problem:

Giovanni decides to celebrate his birthday at Mirabilandia. There are 10 people in total, 6
adults and 4 children. Every 3 children pay 26 euro and each adult pays 31 euro. Giovanni
is the birthday boy and he doesn’t pay. Also, they decide to make use of the refreshments
and they pay 10.50 euro. What is the total spent?

During the discussion, students justified their reasoning using everyday-life experi-
ences and making estimates, as illustrated in this dialogue:

Student I: This problem isn’t written well. The 10.50 euro should be what every
person pays for the refreshments, but I realize that the 10.50 euro is the total,
because what is written is: Also, they decide to make use of the refreshments
and they pay 10.50 euro.
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Student 2: But no, because what should be written—and finally all pay 10.50
euro.

Student 3: In the brochure there is written—in the pacchetto festa (party pack-
age) every person pays 10.50 euro, and not “in total.” If you read the brochure
carefully, you can understand that the price is per person.

Student I: But, if you don’t have the brochure, how can you solve the problem?

Student 3: It’s impossible that ten people pay only 10.50 euro for all the refresh-
ments! It’s more likely that the refreshments are more expensive.

[...]

Student I: It’s impossible that all the refreshments cost 105 euro ....

Student 4: If you do the count, 10 people: ten, twenty, thirty, forty [she shows the
count with her fingers] fifty, sixty, eighty, ninety, one hundred!

Student 1: For me it’s a bit too much.

Student 3: Too much ... if you see the table with all the sandwiches, drinks ...
even the tablecloth has a cost! If there are all the towels, the dishes, the drinks,
all these things, all the services cost!

Student 1: But, how can you understand all these things?

Student 5: 1 think that Martina’s considerations about 105 euro are possible. In
the brochure there are a lot of things that the children can eat!

Student 3: Then, I think that a drink costs about 3 euro. A drink is enough for two
people, because you drink a lot. Then, we image that there are five bottles,
therefore five bottles cost already 15 euro. Then there are other things, and
each person takes different things; so, it’s impossible that all costs 10.50 euro!

[...]

Student 6: Then, here the children are in Mirabilandia; it isn’t just any place!

With regard to the problem-solving phase, this appears to be important and helpful
in allowing a better understanding of the initial situation, fostering quality control
of the problems created by the students themselves, and giving them a starting point
for analyzing the structure of problems. We have included below some parts of the
class discussion concerning the “incorrect-data problem,” reported also in Bonotto
(2013). The problem presented incorrect data (480 euro) and the students, during
the problem-solving activity, found two different solutions discussed during the
collective discussion:

Student 1: We didn’t divide by 20. We divided by 18 because the Mirabilandia
brochure stated that every 10 entries, 1 entry was free. Therefore, if there were
20 people together, there would be two free entries, and so we divided by 18.

Student 2: 1 believe that reasoning is wrong because the text of the problem says
that they went to Mirabilandia and in total they spent 480 euro, but it doesn’t
specify if they paid only the entrance or if they went to other places, so the
discount is only on the entrance fee and not on the other things.

[...]

Student 3: 1 think that both solutions are right

[...]

Student 4: One of them must be wrong, because one takes off two people, while
the other does not!
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[...]

Student 3: Probably, the writer of the problem didn’t consider that every 10
entries, 1 entry was free.

Student 2: Practically, the student of the other classroom wrote this problem
without realizing that the data was wrong, so we solved it incorrectly.

By solving problems created by their peers, the students became able to analyze
them in a more detached and critical way. For example, students reflected on what
information was really important and what was not and discovered that numerical
information is not always the most important information contained in the text of a
problem, as the following problem illustrates:

It’s Giulia’s birthday and she invited 9 people to her birthday party, but she didn’t benefit
from the pacchetto festa (party package), how much did she pay for the entrance?

During the discussion, almost all of the students did not read the words of the prob-
lem question carefully, because a lot of students calculated the total and not only
Giulia’s entrance cost. In fact, the total number of people (9) in the problem was
superfluous.

Discussion

The specific artefact utilized in this study provided a particularly attractive con-
text inasmuch as it referred to an amusement park known to the children and was
desirable because it furnished conditions allowing the students to formulate hypoth-
eses regarding the various possibilities offered. Students were therefore able to cre-
ate diverse problems with various degrees of difficulty. This activity made it possible
to assess problem posing itself and creative thinking in mathematics: children cre-
ated both original and open-ended problems (in addition to the classic problems),
demonstrating that the activity of problem posing can be an environment that fosters
creative thinking.

The cultural artefact reflects the complexity of reality and so it offers a rich
setting for raising issues, asking questions and formulating hypotheses. It is inter-
esting to reflect on the fact that there were good results for students accustomed to
using cultural artefacts (the classes from the first school) as well as those who were
using them for the first time (the classes from the second school). In fact, pupils
from both schools were able to use the artefact as a context to create problems.
This indicates that an artefact provides a useful context for the creation of prob-
lems and the mathematization of reality as a result of its accessibility to all students
(Bonotto, 2013).

In order to have better performance on the problem-posing task in terms of the
greater number of plausible problems, with more complex texts and concatenated
questions, it proved to be important to structure, organize, and summarize the infor-
mation presented in the brochure. In fact, students who had previously performed
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this type of analysis outperformed the others in the problem-posing activity. With
regard to this aspect, students from the first school, who were already familiar with
this type of activity, produced fewer implausible problems and therefore appear to
have constructed a better analysis and synthesis of the artefact. Instead, about one
third of the problems produced by the second school students were implausible
problems.

Overall the students involved in the study produced some original problems (13
problems) and open problems (19 open problems). This highlights the fact that
pupils were able to deal with open-ended tasks. The problem-solving phase com-
bined with group discussions allowed students to reflect on different types of prob-
lems and explore new possibilities (e.g., suggesting that mathematical problems do
not always require a numerical answer or a unique solution, and that there are prob-
lems which are not solvable). Not only does this confirm the potential of students to
create problems, but it also demonstrates the importance of educational action to
support students in these kinds of processes.

In fact, almost all of the problems created by the pupils of both schools were
classified as mathematically relevant (98% in the case of the first school, 100% in
the case of the second school). Of these, more than half of the problems created by
the pupils were solvable (about 64% of the problems created by the pupils of the
first school and about 60% of those created by the pupils of the second school). This
indicates that, at the end of primary school, pupils are not only aware of what math-
ematical problems are, but they are also able to create appropriate problems.

Furthermore, the results of the discussion in the classroom suggest that asking
students to analyze the problems they created facilitated their critical thinking. In
this context, students seemed to feel freer to discuss the validity of a given problem,
to consider different assumptions, and to decide whether the problem had been
solved or not (Bonotto, 2013).

Teachers can assess problem-posing activities and creative thinking several times
during the year by applying the proposed method:

* Students are first engaged in problem-posing activities stimulated through a
cultural artefact, and this is supported by a problem-solving activity and col-
lective discussions.

e From all of the problems created by the students, plausible mathematical
problems with sufficient data are selected for analysis. These can be initially
analyzed, from the point of view of problem posing, with respect to complex-
ity of the text and their solutions.

* Then, these same problems can be analyzed from the point of view of creativ-
ity with respect to fluency (counting the number of problems created by each
student); flexibility (considering both the number of details present in the
artefact which were incorporated into the text of the problem posed, and any
additional data introduced by the students); and originality (uniqueness of the
problem compared to problems created by other pupils).

If these activities are periodically offered to the class, the teacher can then assess
changes and improvements over time.
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Conclusion and Open Problems

The exploratory study presented here investigated the impact of problem-posing
activities (supported by problem-solving activities) when these were implemented
in meaningful situations involving the use of suitable artefacts. These situations fall
under those defined by Stoyanova and Ellerton (1996) as semi-structured
situations.

Furthermore, this study has allowed us to investigate the potential that problem-
posing activities have for identifying critical and creative thinking in mathematics.
A method for analyzing the products of problem posing and for assessing both the
activity of problem posing itself and the creativity of the students was provided.
Furthermore, the study investigated possible relationships between students’ knowl-
edge of mathematics, their problem-posing ability, and their creativity.

Two questions arose from the results obtained that require additional research in
the future:

1. Does good academic performance in mathematics favour better performance
in the three creativity categories (fluency, flexibility, and originality)?

2. How much do teaching practices and classroom experiences influence the
creative processes?

Finally, we would like to look more deeply at how children respond over the long
term to programs designed to develop their problem-posing skills in the form
described here. In agreement with other researchers, we believe that the presence of
problem-posing activities should not emanate from a specific part of the curriculum
but should permeate the entire curriculum.
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Chapter 6
Beyond Routine: Fostering Creativity
in Mathematics Classrooms

Vincent J. Matsko and Jerald Thomas

Abstract Mathematics is a creative endeavor. However, students typically think of
mathematics as a body of knowledge used to solve well-defined problems in a
unique way. Yet virtually all problems encountered in “real life” involve ambiguity
and may not be solvable by a single approach. Expert problem solvers are original,
creative thinkers who are able to devise novel approaches to solving ill-structured or
ambiguously posed problems. Recently, research has been conducted on having
students create and solve their own problems as assignments in mathematics classes
in an attempt to give them an experience of interacting with mathematics problems
beyond the routine and mechanical. Results suggest that such experiences could
also be valuable in other disciplines at various levels, and that these experiences
encourage students to be creative. In addition to a theoretical discussion of creativ-
ity, detailed examples of student work are presented, as well as a historical back-
ground of the assignment and practical implications for teachers interested in using
the writing of original problems in their classrooms.
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Introduction

In a classic scene in the movie Apollo 13, the Apollo crew finds itself in danger
because the lunar module cannot provide sufficient lithium hydroxide to remove
carbon dioxide from the air of the module. To complicate matters further, the avail-
able lithium hydroxide designed for the command module is in canisters that are
incompatible with the sockets on the lunar module, which houses the astronauts. In
short, their survival depends on the ability to get a round canister into a square hole.

The problem (in the movie and, of course, in real life) was resolved by the inge-
nuity of the engineers on the ground. By making use of an array of available
objects—duct tape, plastic bags, hoses from the astronauts’ suits, etc.—the engi-
neers were able to rig a functional “scrubber” that provided sufficient breathable
atmosphere for the astronauts’ return to earth.

While the drama of the scene leads us to see how ingenuity can help us address
complex problems, it also poses several considerations for educators. What kinds of
skills are at work in the resolution of an ill-structured, real-life problem? Originality?
Creativity? Divergent thinking? Fluid intelligence? Each of these is evident, of
course, but where, exactly, were these skills developed in the crew of engineers? In
the current educational climate and practice, in what ways are these critical skills
cultivated? Does educational practice prepare students for ill-structured problems
with no unique “right answer?”

In this chapter, we present an approach to mathematics instruction that allows
students the opportunity to create—rather than simply solve—their own conceptual
mathematics problems. The article derives from an observation of one of Matsko’s
students (referenced in Matsko (2011)):

Anyone can write tedious, difficult problems that review core math subjects, but to write
problems in a novel, challenging, and refreshing manner, one must be imaginative. I feel
that this creative side of math is an often overlooked aspect of the field as many believe
math to be an extremely black-and-white, rigid, and boring subject.

Others have taken similar approaches (see for example, Blake, 1984; Brown &
Walter, 1988; Goldenberg & Walter, 2003), but few reports include a detailed dis-
cussion of student work and classroom practice. One purpose of this chapter is to
give a teacher potentially interested in using problem posing in the classroom a real
sense of what shape such an assignment might take.

This exploratory study originated with the contention that if students were pro-
vided the opportunity to demonstrate their conceptual understanding of mathemat-
ics concepts (as opposed to responding to conceptually related problem sets), they
would demonstrate deeper engagement, greater motivation, enhanced creativity,
and improved transfer of mathematics concepts. Over the period of several aca-
demic years, this study developed from insights drawn from classroom practice to a
solid evidence base of the efficacy of allowing students to create rather than simply
respond.
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Organizing Constructs: Creativity and Conceptual
Understanding

Silver (1997) provided the context for this inquiry and suggested that mathemat-
ics in particular presents a disparity between student perception and the possibility
for creativity and scholarly production. He wrote:

Mathematics as an intellectual domain stands at or near the top of any hierarchical list of
intellectual domains ordered according to the extent to which creativity is evident in disci-
plinary activity or production. Thus, it is ironic that for most students throughout the world,
mathematics would almost certainly be among the set of school subjects least associated
with creativity. (p. 75)

In a field that easily lends itself to creative and divergent thinking, the study of
mathematics is popularly construed as a discipline in which we are expected to
struggle to arrive at a single correct answer. But behind Silver’s (1997) assertion are
compelling questions for teachers: How might creativity be more deeply understood
and more fully developed in a mathematics classroom? How can students be led to
an understanding that mathematics is both relevant and rich with creative
possibility?

A useful heuristic for understanding creativity is Csikszentmihalyi’s (1990) dis-
tinction between little-c creativity and big-C Creativity. Little-c creativity is
expressed as the types of creative tasks that are the product of specific contexts, such
as the classroom or professional settings. Big-C creativity, however, refers to cre-
ative products that effectively alter a field or larger culture. For example, in a high
school creative writing course, a talented student might compose a prize-winning
poem that finds its way into a poetry collection or literary magazine (little-c creativ-
ity). But an eminent linguist such as E. E. Cummings is recognized for his explora-
tion of new forms and sounds and redefined the possibilities of poetry in the
twentieth century (big-C creativity).

Furthermore, according to Subotnik, Olszewwski-Kubilius, and Worrell (2011)
there is lack of agreement about whether creativity comprises generalized abilities
or whether it is domain-specific. These authors have suggested that the lack of con-
sensus exists largely because of differences between childhood creativity, which is
a person-centered trait, and adult creativity, which is often associated with products
and contexts.

The literature on creativity is in broad agreement that creativity comprises the abil-
ity to generate new and novel products or insights, but there is not, however, consensus
regarding other important conceptual relationships. For example, are creative children
more likely to become big-C creative thinkers as they grow older? Is there a relation-
ship between general intelligence and creativity? If children are creative in one domain
(music, for example) are they likely to demonstrate creativity in another, such as lan-
guage or mathematics? Does creativity necessarily first manifest itself in childhood as
a precursor to adult creativity and eminence in a particular field?
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Such questions have been explored in the research literature and provide the
context for a second important consideration in this inquiry, namely conceptual
understanding. In a widely referenced study conducted at the Harvard—Smithsonian
Center for Astrophysics, graduates of Harvard and the Massachusetts Institute of
Technology (MIT) were asked to perform several tasks that call on basic under-
standings of science. For example, one group of students was asked to light a small
light bulb using a battery and a wire, and another group was asked to explain the
earth’s four seasons. When it became evident that the graduates were having diffi-
culty answering such basic questions, a critical dimension of learning was exposed:
if students lack conceptual understanding (say, of the idea of open vs. closed circuits
in the battery and bulb problem), then all subsequent understanding was built on
faulty knowledge.

So how can teachers assess for deep conceptual understanding? Research is vir-
tually unanimous in the assertion that deep, conceptual understanding is related to
achievement and further, that it is related to cognitive transfer. But are classroom
assessments designed in such a way that students can demonstrate their conceptual
understanding of mathematics, biology, physics, or economics?

In this study, we present a form of assessment that allows students to engage in
meaningful, authentic, relevant mathematics problems and offers mathematics
teachers insight into students’ conceptual understanding as well as students’ mis-
conceptions. Further, as a departure point for future assessments in mathematics
(and, we believe, other disciplines) this assessment may, in fact, lead to a longitudi-
nal analysis of the development of creative thinking.

Finally, we note that the construct of conceptual understanding is subordinate to
the construct of creativity. As we discuss in the next section, the prompt for students
to write “conceptual” problems was intended to foster creativity. This prompt was
specific to the student population in the study (gifted and talented high school stu-
dents in a specialized mathematics and science school). Different assignments
intended to foster creative thinking might very well emphasize different organizing
constructs.

Problem Creation

What does it mean to “pose” or “create” a problem? Brown and Walter (2005)
lay the groundwork in The Art of Problem Posing:

Where do problems come from and what do we do with them once we have them? The
impression we get from much of schooling is that they come from textbooks or from teach-
ers, and that the obvious task is for students to solve them. (...) Problem posing can help
students see a standard topic in a sharper light and enable them to acquire a deeper under-
standing of it as well. (p. 1)
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With Silver’s (1997) and Matsko’s (2011) observations about mathematics instruc-
tion and assessment and Brown and Walter’s (2005) justification for problem posing
in mind, in this semester-long exploratory study, the instructor administered three
assessments in which students were asked to generate original mathematics prob-
lems in an area of interest to them. These Original Problem assignments were
administered in addition to an array of student assessments. Students included com-
prised sophomores enrolled in a three-year (sophomore through senior), residential
high school for students identified as talented in mathematics and science.

For this chapter, we use the term ‘“conceptual problem” to mean a problem
whose creation, statement, and solution demonstrate conceptual understanding.
Although it is difficult to give a precise definition of “conceptual understanding,”
it is not strictly necessary here. The significance of the prompt to write a concep-
tual problem was to emphasize that the problem should not be a routine problem
which can be solved simply by applying a known solution method, or a problem
which is simply a restatement of another existing problem with the numbers
changed, for example. The prompt was intended to encourage students to think in
novel ways. It is important to note, however, that abundant evidence suggests that
conceptual understanding of mathematics is related to higher achievement, persis-
tence, and motivation. (See Donovan & Bransford, 2005, for extensive supporting
research).

For the first assignment, some examples were presented from a previous exam to
give students an idea of what constitutes a “conceptual problem.” Examples of pre-
vious student work were intentionally not presented so as to avoid the possibility
that students would mimic a successful example rather than create something fresh.
For the Original Problem assignment, we were interested in understanding the stu-
dents’ motivation in the development of the problem, so we did not instruct them to
construct problems that they thought would be engaging or motivating to others.
Rather, we asked them the source of their motivation to create their original
problems.

In addition to the discussion of conceptual problems, the Original Problem
assignment included the following prompts:

1. Motivation: How did you come up with the problem? Was it based on a prob-
lem on the worksheets? An exam? A Problem Set? Were you doodling? Did
it come to you in a dream? In the shower? Just a sentence or two will suffice
here. But, importantly: acknowledge your source! It’s OK to look at other
problems, just cite them if you use them.

2. Problem Statement: Fairly self-explanatory. But a caution: give it to someone
else to proofread! One of the most common traps to fall into is to write a
problem which can be interpreted in more than one way. Is your problem
stated absolutely clearly, so that someone else can understand it perfectly
without needing to ask you any questions about interpretation?
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3. Problem Solution: Again, self-explanatory. But your solution should be in
paragraph form, using complete sentences! And if you only have a partial
solution, you should explain where you are stuck and those questions whose
answers could enable you to make further progress.

4. Reflection: Only a few sentences are necessary here. What did you learn?
What did you observe about yourself as a problem-writer? At the end of the
semester, you will need to write an essay about your growth as a mathemati-
cian and problem-writer, so making notes along the way would be a good idea.

Although the students who completed this assessment had been identified for their
interest and ability in mathematics, science, or both, it is important to note that the
students were not “creative producers” in mathematics (Subotnik et al., 2011).
Instead, they demonstrated a developing degree of expertise over their three years,
and we suggest that this assessment is viable across levels and abilities.

Historical Background

The subjects of this study were first-semester sophomores (entering in Fall 2011)
who placed out of the first semester of precalculus. However, the first use of the
Original Problem assignment by the instructor (Matsko) was in an Advanced
Problem Solving course in the Fall 2008 and Fall 2009 semesters. This elective
course was designed for those students intensely interested in solving more advanced
problems of all types, and so the students in this course were self-selected as having
an interest in problem solving in general.

The success of the assignment in this course motivated the instructor to use the
Original Problem assignment in other courses, beginning with an accelerated calcu-
lus sequence (Spring 2010 and Fall 2011), then the traditional calculus sequence
(Spring 2011 and Fall 2011) as well as the precalculus sequence (Fall 2011 and the
focus of the current chapter).

What surprised the instructor was that the Original Problem assignment was as
accessible and successful when given to the atypical student (self-selected in the
Advanced Problem-Solving course and the students in the accelerated calculus
sequence) as when given to the more typical student (traditional calculus and pre-
calculus students). The positive responses of students at all levels were the primary
motivation for undertaking the current study.

Analysis of Students’ Responses

We now take a detailed look at examples of student work. The purpose here is to
illustrate the broad range of problems which teachers might expect to encounter in
assigning Original Problems in their classroom, as well as give a few comments on
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assessment. Furthermore, the diversity of problems devised indicates that students
can challenge themselves in ways that the teacher cannot always anticipate, and
suggests that the writing of Original Problems is an effective way to implement dif-
ferentiation in the classroom. Several students wrote problems at a level far too
challenging to be given as assignments for the entire class.

Keep in mind that the prompt to write a conceptual problem was to encourage
students to think creatively. When encountering a road block with a prospective
problem, students were encouraged to think about altering important features of the
problem, much like the “What if not?” approach described in (Brown & Walter,
2005). Students interacted with the instructor more frequently than with a typical
assignment, and the ensuing discussions were richer.

In addition, at the end of the semester, students were asked to write a Reflection
on their problem-writing experience. They were prompted to answer the following
two questions: (a) How did you grow as a problem-writer this semester? and (b)
Was this type of assignment valuable? Why or why not? The excerpts taken from
these Reflections and the Original Problems are slightly edited to correct grammati-
cal errors.

If students had difficulty coming up with an idea for an Original Problem, they
were urged to take a concept discussed in class and extend it in a novel way, espe-
cially if there was a topic troubling them. For example, during the unit on polynomi-
als, one student found a problem in a precalculus textbook which examined the
influence of the coefficients of the polynomial fix)=x3+bx*+cx+d on its graph.
This was too much like our in-class work; a suggestion that the absolute value func-
tion be incorporated resulted in the following problem: Compare the cubic polyno-
mial f{x)=x>+bx?+ cx+d and the function g(x)=Ix+ bx*+ clxl + d with respect to the
number of points they intersect the y-axis, and the number of points they intersect
the x-axis.

The first part of the problem is trivial, while the second involves some subtleties.
What was remarkable was that the student’s analysis of the second part was not only
completely correct, but organized in a natural manner according to the number of
zeros of f{x). There was a level of sophistication in this student’s thinking that would
not have been evident in having them complete a more routine assignment.

During the unit on rational functions, one student looked at the graph of the

2
function f ( x) = —(x _ 1) (x _ 2) . This is not a rational function (as the denominator
|x[(x-1)
is not a polynomial), and we did not graph functions with |x| terms in class. But the
interesting feature of the graph of this function is that there are two distinct oblique
asymptotes, which is not possible with rational functions. Motivated by the fact that
y=arctan(x) has two horizontal asymptotes, the student commented, “I wanted to
find a function that had two oblique asymptotes!” Another student addressed the

1
—+X|.

issue of two oblique asymptotes by studying the function f (x) =
x
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(x + 3)2
X' +4x+ A4
the parameter A. The graphing utility Winplot is used in class, which allows the
creation of a “slider” so that a student can dynamically see how the graph changes
as they move the slider. Some work was done with sliders during class, but in a dif-
ferent context.

In the trigonometry unit, one student used trigonometric ideas to evaluate \/ i
Although this problem was given in an earlier problem set, with students being
prompted to use an algebraic approach, this student was interested in applying trigo-
nometry to the same problem. He did some research, found De Moivre’s Theorem,
and successfully applied it to solve the problem. We do in fact use De Moivre’s
Theorem to solve such problems, but not until the following semester. This student
was motivated to go beyond the classroom material, anticipating a topic which
would not be covered until some months later.

A few other students looked at combinations of trigonometric functions not
discussed in class. The main difference was in using function composition; two exam-
ples from student work are y=cos(tan(x)) and y=sin(3 sin(2x)). Such combinations are
too involved to be included as routine classroom exercises, and often specific features
of the graphs can only be described approximately. One student commented:

One student decided to see how the graph of f( x) changed with

Seeing as I had done poorly on the trigonometry quiz, I was eager to work on graphing
equations easily. I put a lot of thought and effort into the problem and spent even more time
on the solution. Even though I did not realize it then, just two hours of concentrated effort
on one problem had more of an impact on my graphing skills than two hours of effort on a
few worksheets.

Done thoughtfully, Original Problems can deepen an understanding of important
course concepts.

Some students used the Original Problem assignment as a means to explore
entirely new mathematical ideas—at least new to them. One student wrote:

I was able to explore topics that have never been covered in class and connect them to topics
we were covering in class. These connections made looking at my original problems and
my nightly homework was interesting because I had a bigger picture of what was
happening.

Another student commented that the assignment “rekindled my curiosity in math.”
One student explored the pentagonal numbers, illustrated in Figure 6.1.

el

Figure 6.1. Pentagonal numbers.
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The student researched the explicit formula for this sequence of numbers begin-

2 —
ning 1,5, 12,22, 35, ... namely P, = 3" —n , but was unable to derive this formula.

While such an exploration typically earns an A or A— even if the problem solution is
not complete (owing to its difficulty), the student earned a B+ on the assignment
since it was possible to derive the formula by fitting a parabola to the points (1, 1),
(2,5), and (3, 12). Since such an exercise was discussed in class earlier in the semes-
ter, the student would be expected to address this point in the problem solution.

One student was playing around with the Winplot utility and stumbled upon the
“Tube” function, which produces objects like the one shown in Figure 6.2.

i '-' ' f; _Il Ll
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Figure 6.2. An object produced by the “Tube” function.

There are many different parameters one may give to this function, and the stu-
dent explored these while creating several interesting three-dimensional graphics.

One creative problem involved exploring trigonometry at a much deeper lever
than done in class. The problem as stated is: Find the exact value of

44 22 1

icosz(K)+itan2(2K)—z 2(2K)+kzz;tan2(21()'

k=1 =1 tan

While apparently daunting, the solution involved a careful and methodical calcula-
tion of the sums involved. The sum is 44%%.

Students explored various other topics, including number theory (Euler’s totient
function) and calculus (integration by substitution and Riemann sums). One of the
students who wrote a calculus problem sat in on a friend’s calculus class, while
the other got help from his roommate. The first student earned an A— as there were
some errors in the application of calculus principles, while the second earned a B+
since he solved his problem using Wolfram Alpha rather than actually computing
the sums he had written. In any case, it is evident that given the opportunity, some
students will go far afield and explore topics well beyond the classroom material.
One student reflects, “Being able to explore whatever topics we choose, and making
it into something more complex wows me since I did not know sophomores in high
school are capable of something like this.”
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Other students approached the assignment by creating what, in their minds, are
“real-world problems.” Examples from physics were most common, as they involved
applying formulas for phenomena like gravitational attraction, projectile motion, or
refraction.

One student considered the problem of finding the optimum viewing angle, say,
of a piece of artwork in a gallery. When looking up at a painting, the viewing angle
is that angle made by the upper edge of the painting, the viewer’s eye, and the bot-
tom edge of the painting. As it happens, when walking backwards from a painting,
there is precisely one point where this angle is at its maximum. This student found
and researched this problem online.

This begs the frequently asked question of how it may be determined if a stu-
dent’s problem is truly “original,” or if the problem was culled from somewhere else
and modified. The Motivation section usually provides guidance. It is important that
a student’s problem is “original to them”—since, in general, it is very difficult to
determine whether a problem is completely original. In the case just mentioned, the
student wrote up a clear and complete solution, indicating that he thoroughly under-
stood the problem he was investigating. This type of problem is within the spirit of
exploration and application, and even though not a “new” problem, it was certainly
novel to the student.

Another student created his own mathematical model, inventing the recurrence

o, A

A
relation 4, = % + when k> 2 for the amount of toxic waste produced by an

automobile company in the year k, where k=0 corresponds to the year 2012 and
appropriate initial conditions are given. An environmental agency requires that the
total amount of toxic waste produced after January 1, 2010 not exceed a certain
limit, and the problem is to determine whether or not the company meets this guide-
line. (The actual problem statement is considerably more elaborate, but is abbrevi-
ated here).

The solution of such recurrence relations is not part of the current curriculum,
and so finding a solution was challenging in itself. Moreover, the student’s written
work was truly exceptional for a sophomore in high school—it would not have
appeared out of place in an expository mathematics journal. Such work underscores
the value of writing Original Problems for challenging especially bright students;
this level of work could never have been successfully assigned to the entire class,
but the assignment allowed this motivated student to work at a very high level.

Some students created models derived from their personal experience, as well.
One student who wrote a problem about runners on a track wrote in their Motivation
section,

The next day I was in the fitness center and I started running on the treadmill. Then about
five minutes later someone hopped on the treadmill next to me and started running at a
higher speed than I was. I kept looking over to see when he would catch up. Then I thought,
this was the perfect idea for my original problem!

The student then posed a problem about two runners, each running at different
speeds, with the faster runner behind and trying to catch up.
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Another student wrote, “It was a cold, blustery day. In a city which knows how
to keep its secrets, seven acquaintances huddled in a back room of a glorious institu-
tion, discussing what mattered in life: waffles.” This scenario did actually occur, and
the student then went on to create a problem determining how much maple syrup a
waffle could hold if an accurate and detailed description of the waffle’s geometry
was given. Prompted to be creative, some students are able to devise interesting
problems from simply looking at the world around them.

The open-ended nature of the prompt also allowed students to create problems
unrelated to course material or real-world scenarios. For example, after looking at
some mathematics problems online, a student came up with the following problem.
“There are three different rational numbers that can be expressed as: 1, A+ B and A.
Similarly, these three numbers can also be expressed as 0, B/A and B. What is the
value of 4" + B* ?” The solution is not unusually difficult (A=—1 and B=1),
but the problem statement is highly creative. The student comments, “I wanted the
numbers to be rather simple (-1, 1, 0), since that is often the case pertaining to many
challenging math problems I have encountered before.” Thus, the problem design
involved making sure the solution involved small numbers.

Another student posed the following problem (after a brief story introducing the
question): “So, given a bishop and a knight that are both placed on two different
squares randomly on a chessboard, what is the probability that one of the pieces will
threaten the other?”” The solution is very involved, and the student made one slight
calculation error (but still earned an A due to the substantive nature of the problem);
such a problem would be challenging even in an undergraduate discrete mathemat-
ics course. This student would not be aware of this, naturally—but she created a
problem which interested her (she was inspired while watching two students play
chess in the library) and proceeded to tackle it with her knowledge at hand.

It should be remarked that, in this study, there was no attempt to classify prob-
lems into different categories. Such an additional level of analysis should be the
focus of a further study whose aim is to correlate the type of problems a student
writes with their performance in class and previous mathematical knowledge.
Results of such a study could inform the use of Original Problems as a tool for
incorporating differentiation into the classroom in a more formal, organized way.

Creativity

Writing Original Problems fosters creativity in the classroom. This is sorely
needed in contemporary education, and even more so in mathematics education.
Students commented, “Never before in my life had I ever written or made up any-
thing original for math,” and “The Original Problem assignments let us use our
imagination which is not frequently used in mathematics.” Such comments illus-
trate the fact that most students do not view mathematics as a creative endeavor, but
rather a fixed body of facts and knowledge to master. One student went so far as to
write, “The Original Problem experience revolutionized my view of mathematics.”
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Why is this perspective so important? One student, in responding to the prompt
“Has the exercise of creating mathematics problems enhanced your ability to think
creatively? If so, in what ways?” wrote, “No, because I have never been creative in
the first place.” It is unfortunate that this student’s educational experience has not
allowed him to perceive himself as creative—but if education has become a matter
of memorizing facts and mastering procedures, this comes as no surprise. It is
important to note that this response was not typical, but was nonetheless
provocative.

Practical Implications for Classroom Learning

The preceding examples serve to illustrate the broad range of problems gener-
ated by an open-ended prompt. And although it is tempting to select exceptional
examples for publication purposes, it would not have been difficult to include sev-
eral more pages also filled with intriguing examples. But teachers new to this type
of assignment might consider a more restrictive prompt, such as “Write a word
problem whose solution involves solving a system of linear equations,” or “Create a
geometry problem involving triangles.” It is important that the assignment is at a
level comfortable to the instructor.

Three primary purposes of the Original Problem assignment are to have students
create, write, and reflect. There are many possible ways to accomplish these pur-
poses—and not all necessarily need to be accomplished within the same
assignment.

What about grading? Useful guidelines are: A—exceptional, B—satisfactory,
and C—lack of effort. A paper which includes all the necessary sections of the
assignment with correct mathematics typically earns a grade in the B range. A par-
ticularly creative problem, or one which stretches a student significantly, typically
earns a grade in the A range unless there are issues with correctness. An unusually
exceptional paper will earn an A+ (such as the toxic waste problem discussed ear-
lier). A paper which earns a C is often easily seen to be a last-minute effort, or a
paper which is well below a student’s potential. In other words, a problem which
one student might earn an A for writing might result in a C for another student. This
might seem problematic for some instructors, but must be considered for this type
of assignment. A student who struggles with the course material may come up with
a creative, amusing word problem and successfully solve it—even though the math-
ematics may not be at a high level. However the same problem, written by a brilliant
student, might simply indicate laziness.

Although such a system of grading—it is fairly easy to earn a B or higher—is
meant to encourage creativity, one student commented, “I feel that I would have
been much more creative in this project if I was not restricted by the fact that my
Original Problem affected my grade.” This was not a typical written response; most
students felt free to be creative. But not all students were entirely comfortable with
the idea.
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The attitude of the teacher is critical. Conveying an attitude that “This is a really
hard assignment! It’s tough to create math problems!” is very different from the
attitude that “Of course you can create an interesting math problem! Everybody’s
creative!” It is well known that students will rise to a teacher’s expectations—but it
is important to make those expectations clear.

There are a few obstacles which may be encountered with this type of assign-
ment. Foremost is the time involved—students usually ask for more help on this
type of assignment, and grading takes more time. Another is the more subjective
nature of the grading, which is not typical for mathematics assignments. Moreover,
whatever the prompt for the assignment, the instructor should have a reasonable
sense that students’ work is their own.

Reflections of the Instructor

As a mathematics teacher, I have been surprised and inspired by the creativity of
my students in writing Original Problems from the very beginning. As an avid
problem-poser, I have always imagined that writing problems must certainly
improve my ability to solve problems—and so I introduced the Original Problem
assignment when I taught Advanced Problem Solving. Perhaps my satisfaction and
surprise over the quality of students’ problems derives from an instructor’s tradi-
tional perspective of students as problem solvers. If we expect them to “create” in
writing and art classes, why not in mathematics courses?

The end-of-semester reflections of the students were revealing. Students reported
that they saw mathematics as a creative endeavor for the first time, they wrote prob-
lems they never imagined they could, and they found engaging in the creative pro-
cess highly satisfying. As an instructor, I wish I could say that the Original Problem
assignments were intended to produce these changes in attitudes—but the results
were serendipitous.

Nonetheless, they inspired me to continue experimenting with the Original
Problem assignment with students at all levels. I was continually surprised at the
success of the assignment, and am now a firm believer that such (or similar) assess-
ments can be instrumental in altering student attitudes toward mathematics.

From my perspective, the main barrier to working more with Original Problems
is the time needed both to consult with students and read their papers. As every
paper is different, there is no rhythm to the grading process (as when grading a large
stack of identical assignments or exams). However, the results of the assignment are
routinely satisfying, and there are always those few students whose work is really
inspiring—and it is rewarding to realize that I played a role in motivating them to
achieve at a level beyond my expectations.

The larger question—Does problem posing positively impact problem solv-
ing?—is difficult to answer. To study this question, the prompt for the Original
Problem would likely have to be narrowed. The results of such a study would be
interesting—yet for now, there is ample evidence of the benefits of having students
write Original Problems regardless of its impact on problem solving.
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Conclusion

Having students write Original Problems may successfully be used to foster
creativity in the mathematics classroom. Students comment everywhere from “I
really hate Original Problems,” to “I love writing Original Problems!!”—although
the majority of students think the assignment is valuable and enjoy it. Results are
often surprising—not just the problems themselves, but comments such as “I am
actually very surprised of myself of how far I have come in becoming a problem-
writer. It makes me feel really good about myself,” or “I believe that problem-
writing is probably the best way to go if one is trying to actually make their students
comprehend and improve their mathematical skills.” But more importantly, students
encounter mathematics in a different way, and as a result appreciate aspects of
mathematics they may not have encountered before in their education. Leaving
students with a deeper appreciation for and a more positive attitude toward mathe-
matics is an important step in improving mathematical literacy.

Amidst a discussion of “twenty-first century skills,” it is becoming more critical
that students develop the skills necessary to compete in a workforce with a strong
emphasis on innovation and invention. Real-world problems are now of a global
nature, and their solutions require problem solvers with flexible, fluid minds. Having
students write Original Problems, or undertake similar assignments, stimulates the
development of skills necessary for solving complex problems. Of course, not all
will become engineers for space missions, but we can certainly do more to insure
that an increasing number of our students develop a skill set which would enable
them to make such a career choice.

Prompting students to write “conceptual” problems was successful in stimulat-
ing creative thought. As remarked earlier, this prompt is by no means required, but
was well suited to a cadre of students singled out as particularly talented in mathe-
matics. What is important is that students are encouraged to go beyond the routine
and engage in the creative process (in the sense of little-c creativity). Also important
are the written and reflective components of the assignment. There is no “one size
fits all” assignment here; rather, the type of assignment must be tailored to the topic
under study, the students in the classroom, and the teacher’s background.

There is much to be done—refinement of the assignment and its assessment, and
deeper analysis of student responses, for example. Hopefully the results of our work
will encourage other educators, in both mathematics and other disciplines, to work
with assignments similar to the Original Problem assignment in their classrooms. It
is also important to see whether skills developed by having students engage in such
assignments are transferable, and to what degree. We hope that the examples of
student work shown above demonstrate that given the opportunity, students can do
creative work at a high level—a level often far beyond what might otherwise be
expected of them. Finally, we suggest that we may, rather than be surprised by the
occasional demonstration of creativity in our mathematics classrooms, expect stu-
dents to be creative as a matter of routine.
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Chapter 7
Is Problem Posing a Tool for Identifying
and Developing Mathematical Creativity?

Florence Mihaela Singer and Cristian Voica

Abstract The mathematical creativity of fourth to sixth graders, high achievers in
mathematics, is studied in relation to their problem-posing abilities. The study
reveals that in problem-posing situations, mathematically high achievers develop
cognitive frames that make them cautious in changing the parameters of their posed
problems, even when they make interesting generalizations. These students display
akind of cognitive flexibility that seems mathematically specialized, which emerges
from gradual and controlled changes in cognitive framing. More precisely, in a
problem-posing context, students’ mathematical creativity manifests itself through
a process of abstraction-generalization based on small, incremental changes of
parameters, in order to achieve synthesis and simplification. This approach results
from a tension between the students’ tendency to maintain a built-in cognitive
frame, and the possibility to overcome it, which is constrained by their need to
devise mathematical problems that are coherent and consistent.
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Introduction

Is problem posing a tool for identifying and developing mathematical creativity?
This is an intriguing question. Apparently, problem posing refers to generating
something new or to revealing something new from a set of data, therefore some-
how involving creativity. However, for a more structured answer, we have to inves-
tigate the nature of (mathematics) creativity. Consequently, we start by addressing
some related issues.

Researchers have used the term “creativity” to characterize quite different behav-
iors, and this diversity of definitions inevitably led to ambiguity and controversy.
Creativity comprises many discrete abilities that often do not correlate very much
with each other (Guilford, 1967). Although the general public commonly associates
creativity with novelty and surprise, many researchers defined creativity by high-
lighting two characteristics: originality and appropriateness (e.g., Amabile, 1989;
Baer, 1993; Sternberg & Lubart, 1999). Baer and Kaufman (2005) identified some
prerequisites that condition the ability to express creative behavior; they are intelli-
gence, motivation, and suitable environments. Creativity can be latent—and, it may
not show in the absence of an environment in which it can be nurtured and valued
(Csikszentmihalyi, 1996; Gardner, 1993, 2006).

The above-mentioned authors based their definitions of creativity on the conclu-
sions drawn from experiments/observations carried out across a variety of domains,
such as arts, genetics, physics, or journalism. The diversity of domains poses the
following important question: Is creativity domain specific, or general? This issue is
strongly related to the idea of transfer: if creativity is domain general, an adequate
training in a domain might be transferable to other domains, helping the trainees to
solve any problem more creatively. However, a large body of research suggests that
this may not be the case (e.g., Baer, 1993, 1998; Lubart & Guignard, 2004;
Nickerson, 1999). In fact, the situation is even worse; the transfer might not work
even within the same domain. For example, Baer (1996) investigated the effect of a
training course focused on divergent-thinking skills related to poetry writing for
middle school students. When after training, these students were asked to write
poems, their poems were significantly more creative than those written by their
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peers from a control group. However, when the same students were asked to write
short stories, both groups were nearly as creative. So, as the above researchers and
many others (e.g., Dow & Mayer, 2004) have shown, the transfer of creative abili-
ties does not automatically occur even within related sub-domains of the same
domain. Therefore, it does make sense to speak about mathematics-specific creativ-
ity and to try to understand its specificity as compared to general creativity.

Mathematicians and mathematics educators alike have formulated various solu-
tions to this issue over time. For example, Hadamard (1945/1954) associated cre-
ativity with an intuitive mathematical mind and believed that creative expression
requires ample time for reflection and incubation of ideas. Hadamard mainly envis-
aged the creative behavior of the expert mathematician. This option corresponds to
the idea that the essence of mathematics is what mathematicians do (Poincaré,
1913). We are equally concerned, however, with what students do when they behave
creatively within a mathematical context and what the limits of these behaviors are.
This is relevant for learning as we assume that the essence of mathematics is cre-
ative thinking, rather than just the identification of the right answer (Dreyfus &
Eisenberg, 1996; Ginsburg, 1996).

When comparing students to experts, another dilemma emerges: does mathemat-
ical creativity only occur through the discovery of a completely new result, or can it
also occur when re-discovering a fact already known by the scientific community?
In other words, we can ask what relevance “novelty” has in the students’ case.
Which aspects are specific to the mathematical creativity of students? How can this
be studied? Can creativity be developed?

The answers we arrive at in this study are strictly related to our target population:
young students 10—13 years old, proficient in mathematics. We studied their creativ-
ity by using problem posing (PP) activities. We further explain the choice of PP as
a tool in our research.

Traditionally, the context used to study student’s creativity is problem solving (PS).
Might it be the case that problem posing is more relevant than problem solving to
study creativity? According to Sternberg and Lubart (1991), creative individuals not
only solve problems, but also pose the right problems; therefore, the capacity to pose
problems might be a sign of creativity. In a series of articles on discovering problems
in art contexts, Getzels and Csikszentmihalyi highlighted differences in thinking
between the case where the starting point was an already formulated problem, com-
paredtosituationsin which the problem mustbe discovered or created (Csikszentmihalyi
& Getzels, 1971; Getzels, 1975, 1979; Getzels & Csikszentmihalyi, 1976). In these
articles, the ability to “discover” a problem was used as a primary category for analyz-
ing creative processes. Extrapolating these findings to mathematics, we can infer that
PP might be more significant than the PS in the study of mathematical creativity, even
if a common definition of mathematics refers to it as a problem-solving domain. Other
studies confirm this conclusion. For example, Smilansky (1984) showed that there is
very low correlation between the abilities of mathematical PS and PP in a group of
high school students and undergraduate students. Smilansky’s conclusion is that PP is
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a task more significant than PS for the study of creativity. Starting from Smilansky’s
findings, we offered our students a context in which they posed and/or modified prob-
lems, in order to study their creativity.

If we agree that PP is relevant for the study of creativity, a second question is
what taxonomy would be more effective to reveal creative behaviors. Typically,
mathematical creativity is studied and assessed through the lenses of: fluency, flex-
ibility, and novelty, the parameters conceptualized by Torrance (1974). We consider
that both the study and the development of school creativity should be aligned to
new scope and purpose. If in the eighth decade of the twentieth century the creativ-
ity focus was on theoretical studies, today, the knowledge society—characterized
by complex dynamics and over-information—needs individuals, and especially
leaders, able to anticipate changes and to take knowledgeable decisions under vary-
ing conditions that are hardly predictable (e.g., European Commission, 2003/2004,
2005; Hargreaves, 2003; Singer, 2006; Singer & Sarivan, 2006).

In other words, more than ever before, today’s schools should help students to
develop creative approaches as part of leadership qualities, especially in those who
are promising high achievers. Previous studies on mathematical creativity in a PP
context (Singer, 2012; Singer, Pelczer, & Voica, 2011; Singer & Voica, 2011, 2013;
Voica & Singer, 2012, 2013) have concluded that a framework highlighting social
integration and leadership could provide better information about students’ creativ-
ity in a PP context.

We have seen that the transfer of creative abilities from one domain to another is
less likely to appear spontaneously. We assume that the study of creativity in a
broader, socially-oriented framework that faces opportunities for transfer within the
training could offer more relevant data for contemporary research on creativity
development.

We support this claim based on the conclusions of a study of Yuan and Sriraman
(2011), regarding the achievements in PP activities of groups of students from the
USA and China. These students performed several types of tests, including: a math-
ematics content test; a mathematical problem-posing test; Verbal Torrance Tests of
Creative Thinking (TTCT) (where students were asked to think with words); and
Figural TTCT (where students were asked to express their ideas by drawing
pictures).

Yuan and Sriraman (2011) maintained that US students performed much better
than Chinese students from the point of view of fluency, flexibility, and originality
on the Verbal TTCT. This result is not surprising, if we relate it to the features of the
teaching practice in the two countries. US students often work in groups, are
involved in projects, and are encouraged to ask questions, to experiment, and to
provide explanations (see, for example, National Council of Teachers of
Mathematics, 2000). Therefore, US students seem more capable of expressing their
ideas in words. Conversely, in the education system in China, where typical lessons
are characterized by “order and routine” (Lim, 2007, p. 80), and teachers often
maintain control by directly teaching to the whole class (Huang & Leung, 2004), the
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communication and interaction between students are not important, and the focus is
mainly on factual knowledge. In addition, the Chinese language—based on ideo-
grams—offers support for the recourse to drawings and pictures in explaining
ideas—a hypothesis taken into account by some psychologists (e.g., Demetriou
et al., 2005).

On the other hand, Yuan and Sriraman’s study found “no significant correla-
tions” between general Torrance creativity and PP abilities for US students, while
for the students from China, PP abilities are “significantly correlated” with Verbal
TTCT scores (Yuan & Sriraman, 2011, p. 25). This lack of consistencies between
the two groups led us to two major ideas, which we will try to convey in this
chapter.

A first claim is that Torrance’s criteria do not represent the most suitable frame-
work for the study of creativity in the context of PP. It seems that parameters related
to classroom management activities and to students’ communication skills are not
highlighted enough in such tests. Therefore, we assume that a social-oriented frame-
work is more appropriate for analyzing students’ mathematical creativity.

A second claim is that mathematical creativity is of a special nature compared to
creativity in general. This is used to explain why there were no significant correla-
tions between TTCT results and PP abilities of the US students in the above-quoted
study.

Our research tries to identify this special nature of mathematical creativity in
students. Our preliminary studies led us to formulate the following hypothesis: in a
PP context, students’ mathematical creativity manifest itself through a process of
abstraction-generalization based on small, incremental changes of parameters, in
order to achieve synthesis and simplification. As a result, students expressed their
creativity by making small-scale changes of the mathematical model of a problem,
which resulted in maintaining control over the proposed problem.

In this chapter, we try to see if the above hypothesis is confirmed for our sample.
More precisely, we seek an answer to the question: How does mathematical creativ-
ity manifest in 10- to 12-year-old students? If the hypothesis can be confirmed, it
will once again result in the need for a new tool suitable for analyzing mathematical
creativity.

Theoretical Background

Given the interdisciplinary nature of this study, we will discuss the theoretical
background from four perspectives: mathematical creativity, problem posing,
connections between mathematical problem posing and creativity, and cognitive
flexibility.
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Mathematical Creativity

The topic of mathematical creativity received much attention from researchers
who focused on defining it, or on establishing criteria for its evaluation (see, for
example, Ervynck, 1991; Freiman & Sriraman, 2007; Silver, 1997; Sriraman, 2004,
2009). The literature contains a variety of definitions and characterizations (e.g.,
Balka, 1974; Evans, 1964; Getzels & Jackson, 1962; Haylock, 1987; Jensen, 1973;
Poincaré, 1948; Prouse, 1967). Earlier references to mathematical creativity came
from the work of expert mathematicians like Poincaré and Hadamard (Hadamard,
1945/1954; Poincaré, 1948). Subsequently, various studies have identified certain
behaviors that provide evidence of mathematical creativity in students. Haylock
(1987) and Singh (1988) assessed mathematical creativity based on the three charac-
teristics defined by Torrance (1974): fluency, flexibility, and novelty. The common
interpretation is that these features represent, respectively: the number of identifiable
changes in approaching a problem; the number of generated solutions; and the level
of their conventionality (e.g., Ervynck, 1991; Leikin & Lev, 2007; Silver, 1997).

Balka (1974) synthesized another line of analysis: he considered convergent
thinking—characterized by determining patterns, and divergent thinking—seen as
formulating mathematical hypotheses, evaluating unusual mathematical ideas,
sensing what is missing from the problem, and splitting general problems into spe-
cific sub-problems, as the main components of mathematical creativity. In this con-
text, Haylock (1997) insisted that one of the key elements of creativity is the ability
to overcome fixations in mathematical problem-solving (leading, for example, to
breaking away from stereotyped solutions).

Problem Posing

There are different terms that are used in reference to problem posing, such as
problem finding, problem sensing, problem formulating, creative problem-discov-
ering, problematizing, problem creating, and problem envisaging (Dillon, 1982; Jay
& Perkins, 1997). Because of this variety of meanings, different authors use differ-
ent frameworks for studying PP activities. For example, Brown and Walter
(1983/1990) looked at PP within a strategy focused on the phrase “what-if-not.”
This strategy assumes that, by discussing the significance of the problem compo-
nents and by trying to modify this, students can come up with a deeper understand-
ing of the problem, rather than just focusing on finding the solution.

Stoyanova and Ellerton defined PP as “the process by which, on the basis of
mathematical experience, students construct personal interpretations of concrete
situations and formulate them as meaningful mathematical problems” (Stoyanova
& Ellerton, 1996, p. 518). In their paper, problem-posing situations were classified
into three categories: free, structured, or semistructured (Stoyanova & Ellerton,
1996). In the present study, we adopt Silver’s (1994) less restrictive definition, in
accordance with which, problem posing refers to both the generation of new prob-
lems and the re-formulation of given problems.
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Mathematical Problem Posing and Creativity

The literature on PP shows that this activity is important from various perspec-
tives and emphasizes connections between PP and creativity. Some researchers have
reported a positive relationship between mathematics achievement and problem-
posing abilities (English, 1998; Leung & Silver, 1997). Other researchers (e.g., Cai
& Cifarelli, 2005; Singer, Ellerton, Cai, & Leung, 2011; Singer, Pelczer, & Voica,
2011) claimed that instruction that includes problem-posing tasks (problem modifi-
cation tasks included) can assist students to develop more creative approaches to
mathematics.

There are also researchers who have expressed doubts regarding the connection
between creativity and PP. For example, Yuan and Sriraman (2011) concluded that
“there might not be consistent correlations between creativity and mathematical
problem-posing abilities or at least that the correlations between creativity and
mathematical problem-posing abilities are complex” (Yuan & Sriraman, 2011,
p- 25). However, other studies, for instance Haylock (1997) and Leung (1997), who
did not agree that there is a correlation between creativity and problem posing in
mathematics, did not consider instruction. From an empirical perspective, Silver
(1997) suggested a position that supports our hypothesis: that any relationship
between creativity and problem posing might be the product of previous instruc-
tional patterns.

Cognitive Flexibility

Cognitive flexibility of a person can be defined as the dynamic activation and
modification of cognitive processes in response to changes in task demands, which
results in representations and actions that are well adapted to the altered task and
context (Dedk, 2004). In other words, cognitive flexibility addresses the readiness
with which a person’s concept system changes selectively in response to appropriate
environmental stimuli (Dedk, 2004; Scott, 1962). Pragmatically, cognitive flexibil-
ity refers to a person’s ability to adjust his or her working strategies as task demands
are modified (Krems, 1995; Spiro, Feltovich, Jacobson, & Coulson, 1992).

In an organizational context, cognitive flexibility is conceptualized as consisting
of three primary constructs: cognitive variety, cognitive novelty, and change in cog-
nitive framing (Furr, 2009). Cognitive variety refers to the diversity of mental tem-
plates for problem solving that exists in an organization (Eisenhardt, Furr, &
Bingham, 2010), or to the diversity of cognitive pathways or perspectives (Furr,
2009). Cognitive novelty refers to the concepts pertaining to the subject of study and
the overall mastery of content (Orion & Hofstein, 1994), or to the addition of exter-
nal perspectives (Furr, 2009). One’s previous experiences, particularly successful
experiences, may lead to the phenomenon called cognitive framing: it manifests
itself through a person’s persistence in trying to solve a new problem by using a
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certain strategy, previously practiced (Goncalo, Vincent, & Audia, 2010). In certain
situations, it denotes an algorithmic fixation (in terms of Haylock, 1997); in these
cases, the only possible way to overcome this is to change the thinking frame.

Methodology

Sample

The participants in this research are students in grades 4-6 (10-13 year-olds),
winners of a two-round national mathematics competition (the Kangaroo contest).
Within this competition, the participants were supposed to choose and solve 30 out
of 40 multiple-choice problems (with five possible answers, only one being cor-
rect) in 75 minutes. In the Kangaroo contest the problems are graded 3, 4, or 5
points, incorrect answers are penalized with a quarter of the score, and non-
responses are ignored. These regulations are publicly available and are reinforced
before the test session.

After the first round (involving approximately 60,000 students in grades 4-6,
which represents approximately 10% of the Romanian school population for these
grades), the top 10% of students attending the first round qualified for the second
round (where the competition regulations are the same as in the first round, but the
problems are much more difficult). The winners of the second round attended a
summer camp.

Due to the selection process, we consider that the participants in the camp (280
students from a total of 60,000) are high achievers or excelling in mathematics.
During the camp, the authors of this chapter—as invited professors—Ilaunched a
call for problems to the students. The 48 students who voluntarily responded to this
call represent our sample.

Data Collection

The 53 problems posed by the students of our sample were initially assessed by
two reviewers (other than the authors), who worked independently. They graded the
problems from 1 to 10, based on the following criteria: the statement completeness,
the correctness of the posed solution, and the novelty (expressed as the “distance”
between the proposal and the types of “usual” problems of school textbooks and
auxiliaries). Subsequently, the two experienced teachers who served as problem
reviewers shared the scores they had given and, in each case where they found sig-
nificant differences, they discussed and reached a consensus.

Following this preliminary assessment, we chose to interview 19 of the students
who responded to the call for problems; for this selection, we took into account the
scores given by the reviewers, but also some surprising or interesting aspects we had
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noted in the students’ comments and solutions. In some cases, we decided to inter-
view a certain student even if his/her proposal was not highly ranked because a
particular aspect of that proposal (e.g., an unusual context for a problem, or unusual
comments) suggested that the student showed creative potential. Briefly, we chose
the students for interviews either based on the intrinsic qualities of the highly ranked
posed problems, or based on the hints that we found in students’ proposals that
might illuminate the mental mechanisms activated in PP.

We have included the texts of the 20 problems posed by the students invited to
the interviews in the Appendix (one of the students suggested two problems). In the
following sections, we refer to these problems using the Appendix ordering num-
bers, but we also quote the problem text when this is needed to enable the reader to
follow the line of argument more easily.

Each interview lasted between 10 and 40 minutes. The interviews were video-
recorded and subsequently transcribed. Before the interviews, we asked students to
re-read the problem they initially posed. We structured the interview protocol around
questions such as: What inspired you to pose this problem? How might you change
your posed problem? Can you pose a simpler/more complicated problem? What did
you change compared to your initially posed problem? How would you proceed to
pose new variants of the problem? Therefore, during the interviews, students were
given the opportunity to pose new problems, or to modify their initially posed ones.
Thus, the interviewed students generated other 26 new problems.

We used the protocol for guidance during the interviews, but we encouraged
students to express their ideas as freely as possible. In some cases, the interview
departed from the protocol because we sought to identify students’ thinking pat-
terns. Thus, we got information about the models students used as starting points in
a PP activity (if any), their strategies for generating and correlating problem givens,
their perceptions concerning the difficulty and complexity of their posed problems,
and finally, the metacognitive processes they activated when posing and solving
problems. Based on these, we tried to outline a cognitive profile in problem posing
and solving situations for each selected student. We then compared the conclusions
formed from the interviews with the participants’ behaviors in the Kangaroo national
contest. For this, we analyzed students’ answers from the contest, obtaining infor-
mation on: series of correct/incorrect answers, types of wrong answers, types of
mistakes, types of preferred/avoided problems. We then compared the results
obtained by the students of our sample with the statistical results of all participants
in the competition. These comparisons helped us to identify possible correlations
between a student’s PP-PS cognitive profile and his/her options for posing a certain
type of problem, thus validating the identified profile over time.

Therefore, the data analyzed in this chapter come from the following sources:
students’ posed problems (initially posed problems, problems posed during the
interviews, problems obtained by modifying the initial ones), interviews, and statis-
tical databases. Each of the sources was analyzed from several perspectives.
Following this multiple-level analysis, we gathered as much information as possible
in relation to students’ creative behavior by examining students’ preferences for
particular mathematical domains, their mathematical abilities, students’ strategies
in PP and PS, and their intra- and inter-personal approaches.
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Data Analysis Framework

From our analysis of primary data, we found that, when children posed prob-
lems, they involuntarily resorted to their teacher’s model. Inevitably, large parts of
the students’ proposals were tasks that had a specific target audience (of colleagues,
friends, competitors, even taking into account different levels of competency of
those audiences). As a result, the posed problems did not just represent students’
theoretical approaches, but rather encompassed an ensemble of relationships
between the poser and potential solvers, expressing a poser’s need to feel integrated
within a structured social ensemble. This finding, observed in students of different
ages and with varying mathematical abilities, emphasizes the fact that, unlike PS,
PP activities have an important component of inter-personal interaction which can
significantly influence the quality of students’ posed problems. In addition, from the
perspective of contemporary society, we are interested in those capabilities that
enable students to manage their own learning and to be able to identify, pose, and
solve problems arising in unpredictable contexts (e.g., Singer, 2006, 2007).

For these reasons, we investigated the relationship between problem posing and
mathematical creativity in terms of cognitive flexibility in organizational contexts.
In a problem-posing context, we consider that a student exhibits cognitive flexibility
when the following three conditions are fulfilled (Pelczer, Singer, & Voica, 2013a):
the student poses different new problems starting from a given input (i.e., cognitive
variety), generates new proposals that are far from the starting item (i.e., cognitive
novelty), and he/she is able to change his/her mental frame related to the proposal,
if necessary, in generating and solving problems (i.e., change in cognitive
framing).

Criteria for Data Classification

We used the following criteria for classifying students’ posed problems: the
involved mathematical domain, the coherence, and the consistency of the problem.
Further details of these will be provided in the sections which follow.

A first classification concerns the mathematical content of these posed problems.
Within this criterion, we used the following categories:

* Numerical computing. This includes problems containing instruction(s) that
refer to numerical calculations explicitly stated in the text. It may include
percentage calculation or computation with fractions.

* Relations. Here are problems that use specific properties of sets of numbers,
for example: divisibility on N or Z, or order relation on Q.

* Equations. Problems where equation solving is essential (even if this is not
formalized) are included here. We also included here problems where
unknown data can be found using a scheme or a graphical representation.
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e Algebraic computing. Here are problems involving general features of
numbers or abstract schemas for solving, which lead to generalizations that
can be expressed by algebraic formulas.

* Change of patterns. This includes problems that need to be understood and
analyzed in their kinematic development, as they assume successive stages
and understanding transitions from one stage to another.

* Handling data. This category contains problems in which the analysis of
data sets or their distribution is relevant for the solution.

* Geometry. Here there are problems in which the students effectively used
specific geometric properties (such as parallelism, perpendicularity, and
congruency).

The next categories for clustering students’ proposals refer to the intrinsic qualities
of a posed problem. Since a problem text is expressed in a specific language, we use
two criteria—syntax and semantics—that are characteristic of language in a broad
sense and used in both natural language and in artificial languages such as computer
programming.

To characterize these two attributes, we have adopted the problem-analysis
framework used by Singer and Voica (2013). According to this framework, the text
of a problem contains, in general: a background theme, parameters, (numerical)
data, one or more operating schemes (or, simply, operators), constraints over the
data and operating schemes, and constraints that involve at least one unknown value
of the parameter(s).

Concerning the syntax, we define the coherence of a problem, which refers to the
rules and principles that govern the structure of a mathematical problem. Essentially,
these rules and principles are:

¢ The following text components—givens, operations, constraints—are present;

* The following text components—givens, operations, constraints—are recog-
nizable or identifiable;

e The givens are not redundant, or missing.

The syntax offers a formal valid shape of a problem, but does not provide any infor-
mation about the meaning of the problem or the results of its solving. The meaning
associated with a combination of text elements belongs to semantics.

Concerning the semantics, we define the consistency of a problem. This sup-
poses the existence of meaningful links among the elements of the problem. More
specifically:

e The problem data are not contradictory;
* The following text components—givens, operations, constraints are correlated,;

¢ The components of the problem text satisfy a certain assumed mathematical
model;

* The information provided leads to at least one solution of the problem (or to
the proof that there is no solution).
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Within the problems obtained by modifying a given problem, consistency also
requires that:

» At least one of the mathematical elements of the starting problem is identifi-
able in the new problem.

We specify that not all syntactically correct problems are semantically correct.
Many syntactically correct problems are nonetheless ill formed and are merely a
combination of parts obeying some rules. Such problems may result in error-prone
processing. In addition, it may not be possible to assign meaning to a syntactically
correct problem, or the wording may be false.

Results

We used the above-mentioned criteria to analyze students’ behavior in posing
and solving problems based on the students’ submitted problems and their answers
during the interview sessions.

The Students’ Posed Problems

Mathematical content. Table 7.1 presents the distribution of the 20 problems
posed by the interviewed students according to the mathematical content criterion.
(We remind the reader that the texts of these problems can be found in the Appendix.)
For space reasons, the entire classification of the sample consisting of the 53 prob-
lems initially posed by all of the students can be found only in Figure 7.1. We relate
our classification to the National Assessment of Educational Progress 2011
Framework (NAEP, 2011). The NAEP framework describes five mathematics con-
tent areas: number properties and operations, measurement, geometry, data analysis

Table 7.1
Distribution of the Problems Posed by the Interviewed Students, According
to the Mathematical Content

Problem number

Math content (from the Appendix) NAEP correspondent

I};I::L[; T:::l computing (1)’18 10 Number properties and operations
Equations 3,4,5,7,9,19

Algebraic computing 2, 12,15 Algebra

Change of patterns 13,17, 20

Handling data 1,16 Data analysis and probability

Geometry 14, 18 Geometry
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Figure 7.1. Classification of students’ posed problems based on the criteria:
coherence (mathematical syntax) and consistency (mathematical semantics).

and probability, and algebra. After analyzing students’ posed problems, we con-
cluded that the categories listed in Table 7.1, which subdivide some of the NAEP
content areas, better describe students’ proposals.

Some of the students’ posed problems can be included in several content areas.
To get a clearer picture of students’ preferences for different content subareas, we
sought to distribute the posed problems into disjoint classes. Therefore, for each
problem, we tried to identify the depth of thought involved, considering both the
wording and the problem solution. Subsequently, we checked (when necessary) if
our framing matched the student’s intention.

To illustrate the way we classified the problems according to their content, we
provide below one significant example (problem #16, posed by Mihai, grade 6):

Because the 6th grade students were the best, they received a prize consisting in one hour

free on paintball field. The field has the dimensions 80 mx 120 m, and two people are able

(and allowed) to shoot one another if they are at no more than 29 m distance. Prove that
howsoever 26 students place themselves on the ground, at least 3 get shot.

Apparently, this problem is one of geometry. At a closer look, we may find that the
essential element in its solution is to identify certain regularity in the arbitrary dis-
tribution of points inside a rectangle. Indeed, the interview revealed that Mihai has
used a grid (he decomposed the rectangle into congruent squares) and made “order
in disorder,” applying the pigeonhole principle. Therefore, we classified this prob-
lem in the category Handling data.

Syntax and semantics. In line with recent perspectives on creativity, the out-
comes of a creative process should have relevance within a community (scientific,
cultural, organizational, etc.). More precisely, not every new product means creativ-
ity, unless it is socially valued (e.g., Gardner, 1993; Gardner, Csikszentmihalyi, &
Damon, 2001). In particular, in a PP context, a creative mathematical product must
be coherent and consistent, since these are minimal conditions for conventionally
accepted “correctly formulated” problems.
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Earlier in this chapter, we presented a brief description of coherence and consis-
tency criteria; we now illustrate their application, taking as an example Problem 3
(posed by Malina, grade 4).

In Princess Rose’s jewelry box, there are sapphires, emeralds and rubies. 27 are not rubies,

31 are not emeralds and 32 are not sapphires. In total, there are 45 jewels. How many jewels
of each kind does Princess Rose have?

We found that this problem was not coherent, since one of the givens (i.e., the total
number of jewels) is redundant. On the other hand, we classified this problem as
mathematically consistent because:

* The given data in the posed problem are not contradictory: for example, the
numbers 27, 31, 32 are smaller than 45.

¢ The text elements satisfy a mathematical model: the sum of the numbers 27,
31, 32 is twice the number 45.

* The information given in the text lead to a solution of the problem: Princess
Rose has 18 rubies, 14 emeralds, and 13 sapphires.

Figure 7.1 shows the classification of the 53 initially posed problems by coherent-
consistent criteria, according to the mathematical content.

Most problems that are both coherent and consistent belong to the categories of
Algebraic computing and Handling data, and the fewest are in the categories Change
of Patterns and Geometry. (In this discussion, we did not take into account the cat-
egory Relations, containing only one problem.)

What we hold from this classification is that some content areas seem “safer” in
terms of the intrinsic qualities of the posed problems. In other words, coherent and
consistent problems occur mainly in the areas of content that require certain formalism,
precisely because this formalism provides some stability to a problem statement.

The Interviews

The analysis of the mathematical content and of the text characteristics (syntax
and semantics) of the students’ posed problems outlined a first overview of the PP
products. To have a more nuanced understanding of the quality of these problems,
we analyzed the interviews to get information on the PP processes.

Students’ metacognitive strategies in problem posing. We carefully listened
to the students’ explanations about what they did to elicit a problem. In some cases,
they were only able to explain how they had chosen the thematic context of the
problem (“My roommates were talking about candies, so I came up with a problem
about candies.”). In most cases, however, we found that the students had adopted
specific strategies for problem posing, which they managed to communicate. Two
excerpts from the interviews that exemplify this fact are included below.

When asked how she came up with her problem (#3: “In Princess Rose’s jewelry
box there are sapphires, emeralds, and rubies. 27 are not rubies, 31 are not emeralds,
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and 32 are not sapphires. In total, there are 45 jewels. How many jewels of each kind
does Princess Rose have?”), Malina explained:

Malina (grade 4): ““You must first establish the answer to the problem, and then you build
the wording. You cannot go vice versa; no problem of this type can start otherwise.”

Malina explained how she created her posed problem statement: she first decided on
the numerical answer, and then she built the givens for the wording. Malina was
very categorical in her claim probably because she was aware that the data cannot
be random, they should verify certain constraints. In addition, although as a fourth
grader she was not previously exposed to PP, she referred not only to her specific
problem, but also to an entire class of problems that can be built in that way.

Radu started similarly in posing problem #18 (Prove that any parallelogram can
be divided in 16,384 congruent parallelograms), but he went deeper into the elicit-
ing process:

Radu (grade 6): “A problem is made as follows: first we find a purpose: algebra, geometry
... anidea ... any problem must have a basic idea. After we find the idea, we develop: we
add all sorts of tricks, we polish, we re-formulate, and we look for the right numbers.
Unfortunately, we got tricks from experience: you cannot do your own problems if, in your
turn, you didn’t solve problems. We may borrow some ideas; we cannot do something
100% original.”

Compared to Malina, Radu had a different approach: he said that the wording of a
problem has to be built in successive steps, being modified by a kind of trial and
error strategy (“we re-formulate, we look for suitable numbers™). The difference in
approach might come from the age difference between the two students. Radu
(grade 6) possessed mathematical knowledge certainly more developed than
Malina’s (grade 4). Radu was confident that, during the problem-solving process, he
could anticipate constraints among the data, parameters, and operations, and that he
could amend the wording to ensure problem consistency. Indeed, Radu’s proposals
showed that he had spent a lot of time in formulating and reformulating the problem
(compared to other students in our sample). In addition, he engaged himself in qual-
itative analysis: in his problem, the choice of the number 16,384 was purpose-
oriented—it is a perfect square big enough to remove any possibility of reasoning
on a geometrical figure. The choice of this number shows that Radu actually devel-
oped a generalization (as confirmed during the interview). Radu’s behavior in prob-
lem posing was of an expert type, as described by Silver and Marshall (1989). This
was apparent also in his spontaneous development of explanations and “meta”
comments.

As we have seen in the above examples, some students spontaneously shared
their visions on what a problem should look like. These comments on the desirable
qualities of a problem led us to the conclusion that these students developed meta-
cognitive strategies, which they were able to make explicit. While expressing their
opinions concerning the problem-posing process, students revealed a complex phi-
losophy about PP. Some significant examples are included below.

Radu (grade 6): “[The posed problem] must be original. But it’s not worth to be original if
it is too easy, so we have to give it difficulty.”
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Radu asserted that, for posed problems, originality was a necessary condition and,
in addition, that a problem must have a degree of difficulty. Radu’s claim, in correla-
tion with his other assumptions, can be interpreted as an intuitive understanding of
the need for consistency in a problem.

Malina (grade 4): “Creation usually happens in an artistic composition. You can compose
also math problems, but in this case, logic occurs, you have to be very logical and exact in
explanations and calculations. It’s complicated, because you must keep in mind certain
rules of mathematics.”

Malina compared PP with an artistic act. Actually, specific literature shows that
metacognitive abilities can be related to creative thinking (e.g., Fasko, 2001).
Starting from the art comparison, Malina emphasized the differences. She was
aware that the wording of a problem must satisfy certain specific constraints that
contribute to its mathematical consistency.

These examples serve to illustrate that, in the PP process, students in our sample
frequently demonstrated metacognitive behaviors. This allowed them to look from
above on how to pose a problem; as a result, students can develop strategies for
selecting content and constraints to make the new posed problem consistent. Thus,
they become able to evolve within the cognitive frames generated by their chosen
problem models.

Students’ need for social interaction in problem posing. Some students spon-
taneously included comments for possible collocutors in their posed problems.
Others referred to such collocutors in their remarks during the interviews. This
observation outlines a need for social interaction of these children through posing
and solving problems.

For example, Cristiana (grade 6) seemed to be posing her problem (#13, the
“look-and-say sequence”) for a friend and displayed a protective role, revealed
through her careful reflection on the problem difficulty. Cristiana added in Problem
13 an indication “you must empty your mind of all other mathematical informa-
tion.” When we asked her why she did this, she said:

I thought that in this way a child would like to read so far.

Already at this step, she entered into the teacher’s role and tried to bring both
support and motivational elements to the potential solver. In that respect, she
summed up how she came to understand the look-and-say sequence herself and
tried to translate her own experiences into her proposal.

Cristiana formulated her proposals to provide some support to the solver. This
case is not unique: other students also formulated questions keeping in mind the
profile of potential solvers. The students who took into account the mathematical
skills of their colleagues as potential solvers focused not only on the problem text,
but also on how the other person was likely to decode the problem, a fact also
noticed in other studies (e.g., Lowrie, 2002).

Unlike the cases described above, other students introduced some elements
with the purpose of misleading the solver. Given some situations frequent in the
teaching practice in Romania (see, for example, Pelczer, Singer, & Voica, 2013b),
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we concluded that, through the wording of their posed problems, these students
were, in fact, mimicking their teachers’ behavior and beliefs. One significant
example of this type was Malina’s comment about her problem:

Malina (grade 4, referring to Problem 3): “Instead of saying directly that the yellow and the
red ones are 39, I have complicated it, that the children think: we eliminate the blues, and
we remain with the yellows and the reds.”

In this example, we saw that Malina infended complicating this problem to mislead
potential solvers, in contrast to those who assumed the role of “protecting” solvers
by adding some points of support (as Cristiana did). We have thus highlighted two
opposite behaviors exhibited by problem posers, with both emphasizing students’
desire for social interaction.

Many educational researchers perceive social interaction as an important factor
for stimulating mathematical creativity (e.g., Sfard, 1998; Sriraman, 2004). Most
students in our sample spontaneously made connections to social interaction when
discussing their posed problems. Their approach in this respect is an additional
argument in favor of choosing an organizational framework to study creativity. In
this way, we can capture specific aspects, especially related to the field of organiza-
tional learning, aspects that are irrelevant for other frameworks of mathematical
creativity analysis.

Discussion

Our study focused on students who excel in problem solving, winners of a
national contest. Usually, the students proficient in mathematics competitions are
specifically trained for this purpose. We were interested to see if these students
would be able to manage their own learning, and we provided them with a PP con-
text. We consider that PP is a natural and simple situation where we can separate
students’ creative behaviors from behaviors learned through systematic practice.

Correlations Between PP and PS: Exploring Cognitive Frames

In posing problems, students showed preferences that influence the types of
problems they pose. In this section, we will show that:

1. Students’ preferences in PP correlate with their strengths in dealing with a
certain mathematical content in problem-solving situations.

2. Students’ focus on their strengths suggests that personal strengths are the
main elements to build well-defined cognitive frames in PP.
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We build the argumentation around three significant examples.

Example 1. Cosma (grade 5) initially posed the following problem (# 10):

Two boys need £67 to buy a game. The price of the game decreases by 50%. If the first boy
pays three times more than the second does, how much money should each pay?

When, during the interview, we asked Cosma where the idea of the problem came
from, he said that he likes problems with fractions. To see if this comment is con-
sistent with Cosma’s problem-solving capacity, we analyzed his answer sheets
from the two rounds of the Kangaroo contest. We noticed that he formulated
responses to all 9 problems with fractions (of 80 problems). Cosma was wrong on
15 of the 60 problems he had chosen (so his proportion of mistakes is 25%), but
none of these was related to fractions. At least two of the problems with fractions
proposed in the second round and correctly solved by Cosma can be considered of
high level of difficulty, being correctly solved by less than 20% of the participants.
(We should also take into account that more than half of the co-participants were
one year older than Cosma.) These observations confirm, on the one hand, the
student’s real preference for problems with fractions, and on the other hand, his
high mathematical capacity in solving problems with this content. Therefore, his
preference strongly correlates with the mastery of solving this category of
problems.

Cosma proposed a coherent and consistent problem in which operations with
fractions appeared as the main working tool and defined his cognitive frame for this
problem. The fact that he explicitly claimed a preference for this area strengthens
the persistence in this frame. Obviously, in Cosma’s case, the cognitive frame cor-
relates with his cognitive strengths.

Example 2. An interesting case is that of Victor (grade 4), who initially posed
Problem 8. During the interview, Victor modified it, arriving at the following
problem:

Atthe “ABC” contest of numbers, each letter has received a number of points. Miss B exceeded
Mr. A with 2 points, but D has exceeded Miss B. The Letter D scored so high that only the sum
of scores obtained by A and B is equal to D’s score. But D wasn’t the best! E’s score was double
of that of D. However, F was the best. He got a score equal to the sum of the scores obtained by
E and D. Knowing that if from the score of F we subtract 20 and then divide the result by 7 we
get the half of the half of 16, how many points did each participant gain?

For both posed problems, Victor used a graphical method of solving; Figure 7.2,
shows the solution he gave to Problem 8.
When we asked him how he came to pose these problems, he said:

I didn’t have a pattern; the idea with graphics that come one after another came to me
randomly.

Even if he does not seem to be aware of this, Victor developed problems that can be
modeled with systems of equations in row echelon form, in which the solving can
be made “step by step” from the end to the beginning. For both problems, he actu-
ally used generating schemes similar to those shown in Figure 7.3. Therefore, Victor
acted within a cognitive frame that he systematically used in his posed problems.
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Figure 7.3. The problem-generating scheme used by Victor (grade 4).

Victor’s model for creating problems is one for which a high degree of generaliza-
tion is possible. However, although just a fourth grader, he was able to control the
model for different cases, which demonstrates that this approach was a strength of his.

Example 3. Mihai (grade 6) posed the problems, classified in the category
Handling data, which we analyzed at the beginning of the Results section of this
chapter. We were interested to see if there is any connection between Mihai’s prefer-
ence for this category of content and his response pattern in the Kangaroo competi-
tions. We noticed that the strategy used by Mihai (grade 6) in the competition
allowed him to give wrong answers to only 6 problems (10%) of his 60 chosen
problems (of the two rounds of the Kangaroo contest). Analysis of his pattern of
choices in the competition showed that he jumped over high-complexity problems
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whose decoding at first sight appeared to be difficult. An example is provided by the
following question, difficult to approach at a first glance (and in a relatively short
time) by a sixth grader:

On the number line, the segment between 1 and 100 is divided by points in 2011 equal parts.
Find the sum of the coordinates of these points.

A problem of this type, in which many (seemingly unrelated) parameters occur,
may generate chaos in a sixth grader’s mind because without a culture of solving
such problems, the given information could not be structured to minimize the num-
ber of independent variables. Mihai avoided this problem, and others of this type,
probably because he failed to interpret the wording so as to diminish the number of
parameters.

Mihai’s preference for structured problems, where the relationship between the
different variables of the problem were easily identifiable, is consistent with the
model he chose for his posed problem (see Problem 16)—a model in which the iden-
tification of regularity in the random distribution of points was essential for solving.

Intuitively, Mihai knew that problems which do not display an immediate structure
(or suppose a structure to which he had no access) were to be avoided in competitions.
His target was to optimize his actions—a reasoning which is similar to that of a man-
ager who analyzes his/her resources and makes the best knowledgeable decision.

As we have seen above, some students naturally displayed metacognitive abili-
ties. They were able to describe their own approaches to problem posing—they
were able to manipulate the constraints and the data, and they were successful in
following, both consciously and systematically, a certain strategy in order to get an
anticipated result. As in Mihai’s case, we see that these students also applied meta-
cognitive strategies in problem solving, in competitions where they had to solve a
large number of problems in a short time. The analysis of such metacognitive
behaviors of students confirmed our decision to use an organizational framework
for analyzing creativity. The above three cases were not isolated examples in our
study—for most of the students who posed coherent and consistent problems we
found a correlation between their assumed strengths and the cognitive frames within
which they built their problems.

The cases presented in this chapter demonstrate that, usually, students posed
problems that were associated with their preferred mathematical content areas, and
which were connected to their cognitive strengths. Thus, students intuitively felt the
need to have a deep understanding of the chosen area in order to keep some control
over the quality of their posed problems. This suggests that, when posing problems,
students typically work within a well-defined cognitive frame.

Starting Points in Problem Posing: Exploring Cognitive Novelty

In this section, we claim the following:

1. Typically, in PP activities students start from known models, thus limiting
cognitive novelty; and
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2. When students do not start from a model or when they are not familiar with
the model, their posed problems show cognitive novelty, but in most cases, at
the expense of problem coherence and consistency.

Initial analyses of the students’ posed problems suggest that, in most cases, students
seem to use problems previously encountered as support for generating new ones.
During the interviews, some students confirmed this assumption, as, for example, in
the following excerpt from an interview with Malina:

Malina (grade 4), with reference to Problem 3: “I had a similar problem in a contest in grade
2. 1 did not know how to handle it and I was very upset, because at that time I used to get
very upset when I was finding something I do not know.”

In other situations, we recognized “classical” problems, adapted and transformed.
For example, Problem 13, posed by Cristiana (grade 6), is known in the literature as
“the look-and-say sequence.” Cristiana’s contribution was to add some comments,
designed to target possible approaches to solving the problem (and a possible
collocutor).

The starting point is best visible in the problems generated during the interviews,
where the model was clear—the problem originally posed by the student. For exam-
ple, as shown in the cases presented earlier in this chapter, Mihai managed to gener-
ate new problems that did not depart significantly from his original problem, but
were coherent and consistent. The same applies to Cristiana. Her Problem 13 was a
classical one and Cristiana’s contribution was minimal. When asked to generate a
new problem, Cristiana proposed the following wording:

Maria has to solve the following problem: “311311122112, 111312112, 132112, ... What
is the next term of the string?”

Cristiana did not move away from the assumed model significantly: in the new
problem, she just reversed the order of crossing “the look-and-say sequence.”
During the interview, Cristiana affirmed her belief that every natural number that
has an even number of digits may be a term within the look-and-say sequence. Even
if this claim is not true (her condition is necessary, but not sufficient), the new posed
problem is coherent and consistent, but again, is not far from her model.

Among the posed problems, there were only a few for which we either did not
identify a possible model, or uncover it during the interview. One of these excep-
tions was Problem 17, posed by Nandor (grade 6):

Dan has a 24 hour-display digital clock that is broken: the first digit of the hours’ counter
and the last digit of the minutes’ one get switched every 5 hours. Example: if a switch
occurs at 17:42, the clock will show 24:71. The clock continues to run correctly after that,
and stops at 99:99, when it gives an error (1 hour is transformed in 100 minutes). If the
clock breaks when the correct time of the day is 10:10, what will be the time before giving
the error?

This problem indicates cognitive novelty, because it was far from those in textbooks
or school auxiliaries. Nandor’s posed problem is, however, neither coherent nor
mathematically consistent. The author himself failed to clarify the solution, saying
only that “all the numbers should be written—there are about 100.” Nandor did not
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start from a model, and his problem showed cognitive novelty but at the expense
of consistency.

We systematically asked the interviewed students to formulate new problems
starting from those they originally posed. Consequently, during the interviews, they
generated 26 new problems in total (some students posed several new problems, and
each offered at least one). For example, Mihai (grade 6) posed the following amend-
ment to his problem (#16):

Prove that if we have 801 points in a square 60 x 60, then there exists a triangle with an area
smaller than 9, determined by three of the 801 points.

To solve his new problem, Mihai used a technique similar to one he used for his
originally posed problem (#16, in the Appendix)—he determined the most dis-
persed distribution related to a square grid of 3 x3 and applied the pigeonhole prin-
ciple. Later, when he explained his solution, Mihai considerably improved his
proposal by finding an optimal version; he replaced 9 with 4.5 without any suggestion
or request from the interviewer.

These examples demonstrate that, in general, when a student modified a given
problem, she/he changed only some of the elements of that problem. We analyzed
those changes based on the problem-analysis framework of Singer and Voica (2013),
looking at changes to the following: the background theme, the parameters, (numer-
ical) data, the operating schemes, the constraints over the data and the operating
schemes, and the constraints that involve at least one unknown value of the
parameter(s). Compared to the problems initially posed, in the 26 new problems, the
students in our sample most often changed the givens (in 14 cases), or the back-
ground theme (in 8 cases). In only one case was the operating-scheme changed.

Yet, most of the students in our sample posed problems starting from an already
known model. The existence of a starting model seemed to prevent the students
from showing cognitive novelty. Thus, the vast majority of students in our sample
started from a model when they posed problems, and in most cases, the posed prob-
lems did not go far from the model. Therefore, in problem posing (and modifica-
tion) situations, cognitive novelty is limited, probably because of the students’
awareness of a predefined cognitive frame.

However, this limitation seems to be relevant beyond the creativity issue, because
it seems to ensure coherence and consistency in the new posed problems. Conversely,
students who are apparently more creative did not have or have not yet built a cogni-
tive frame, a fact that prevents them, most likely, from offering mathematically
consistent problems.

Limits and Challenges of Mathematical Creativity

Within the framework used in this chapter, cognitive flexibility is characterized
by cognitive novelty, cognitive variety, and change in cognitive framing. As we saw
above, in PP situations, cognitive novelty is limited, and the students feel the need
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to evolve within a well-defined frame, which corresponds to the outgoing model
used for posing a problem. In this section, we focus on how the students made
changes to their cognitive frame. More specifically, we present evidence to support
the following claims:

1. In PP situations, students are cautious about making major changes to the
assumed model;

2. Consequently, students adopt a strategy of “small steps” in changing the
starting model; and

3. This strategy of “small steps” seems to characterize mathematical creativity
in PP activities.

We will focus this discussion on three concluding examples.

Example 1. Malina (grade 4) originally posed Problem 3. (A discussion on this
problem appears in the results section of this chapter.) During the interview, we
wanted to see, on the one hand, if Malina could develop new problems starting from
her original problem, and on the other hand, whether she understood the mathemati-
cal tools she used for solving her problem.

First, Malina modified the numerical data of her problem by proposing the num-
bers 39, 50, 61, and 75 (=total number of jewels). She later explained us how new
wordings can be developed starting from this problem:

Malina: “If I think about marbles of more colors ... So in a box there are black, blue, red
and yellow marbles. If I say: a defined number, for example, 13, are not blue, it means that
they are yellow, red and black. Of total ... it is the same thing, only that there are more
numbers; of the total number, I subtract the sum of the three and I got exactly the needed
number...”

Malina kept the background theme and the constraints of the original problem, but
changed the givens and the number of parameters (she now considered four differ-
ent objects—i.e., marbles of different colors, instead of the three types of jewelry in
the original problem). Malina explained how she generated the new wording: she
increased the number of parameters (“I think to marbles of more colors...”) and
applied the same strategy for solving. Malina actually got to a generalization pro-
cess for the original problem (“it’s the same thing, only that there are more num-
bers”). We were interested to see if Malina was aware of the constraints on the
numerical values of the problem. The interview continued as follows:

Interviewer: So, how do we get the total number?

Malina: Oh, here comes a different kind of problem ... if you know that some are
not black, some are not blue, some are not yellow and some are not red, you
have to add these amounts and you get three times the amount exactly.

I: How is that, 3 times when there are 4 colors?

M: Well, you collect the yellow, the red, the blue [she gestures], then collect the
yellow and black and blue, then ... and then what’s left and every time you
notice that each number comes out three times.

I: And if there were 100 colors?
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M: Then we would get ... uh ... uh ..
I: Let’s not say 100, let’s say 6 colors'
M: If there were ...we would get 6 colors 6 times ... no! 5 times the amount!

It seems that Malina has activated cognitive mechanisms to verify the correctness of
this type of problem. These mechanisms allowed her to establish correlations
between the data and parameters and to verify the mathematical consistency of the
problem. In fact, the mathematical model of the problem described by Malina is a
linear system of four equations with four unknowns. As a fourth grader, Malina had
no formalized knowledge in solving mathematical systems of equations.
Nevertheless, she controlled the system and determined conditions for compatibil-
ity. She not only showed the computational strategy to solve the problem, but she
was able to generalize this method for other similar conditions, chosen at random.
Problem 3, originally posed by Malina, was classified as non-coherent (because
redundant data occurred in the wording). The explanations presented above, given
by Malina during the interview, convinced us that this redundancy of data seemed
to be rather a reassurance that the proposed data were compatible, than an expres-
sion of conceptual misunderstandings. Thus, in problem posing, Malina acted
within a well-defined cognitive frame set up for her problem.

Further, we wanted to see how far Malina might make changes in her cognitive
frame. Consequently, we asked her to pose problems as simple as possible, starting
from her initial one. Malina’s proposal was:

In a box there are 75 balls, yellow, red and blue. Of these, 39 are red and yellow, 61 are blue
and red and 50 are blue and yellow. How many balls are there in the box?

The interviewer expressed the opinion that this was, in fact, the same problem as
one of her previous reformulated problems. Her answer was: “It’s the same prob-
lem, but told differently, more clearly.” The interviewer insisted and asked Malina
to pose an even simpler problem. She needed a longer time to think, hesitated, and
then posed the following wording:

In a box there are 75 balls: red, yellow and blue. Of these, 39 are yellow and blue. Find the
number of each color.

Malina posed a new problem by reducing the number of constraints and giving up
two of the parameters. The change was now more extensive than in the previous
cases, but this led to a problem that was neither coherent nor consistent. This was
quite surprising, since we thought that Malina had showed deep understanding of
her problem’s pattern. Because she well understood the relationship between the
components of her initial problem, she succeeded in making changes to her cogni-
tive frame, and to keep control over the problems obtained by generalization or by
changing the operating scheme, but only as long as the changes were not far. When
these changes were wider, she ended up losing control, and posed problems that
kept a general pattern, but did not prove consistency and/or coherence. Continuing
the analysis, we find that Malina’s intuitive attempt to keep control over the new
posed problems limited cognitive novelty. Malina intuitively did not go too far from
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the assumed model, but when she was pushed to do so, her new problems, although
simpler, became mathematically inconsistent.

Example 2. Maria (grade 6) initially posed the following problem (#15):

A number is “special” if it can be written as both a sum of two consecutive integers and a
sum of three consecutive integers. Prove that: (a) 2,001 is special, and 3,001 is not special;
(b) the product of two special numbers is special; (c) if the product of two numbers is spe-
cial, then at least one of them is special.

Maria managed to identify equivalent characterization for her so-called “special”
numbers: a number is “special,” if and only if it is an odd number, divisible by 3.
Once she had this general characterization of algebraic nature, Maria could easily
pose some new problems:

Prove that the sum of three “special” numbers is “special.”

A number is “very special” if it is both special and perfect square. Give an example of a
very special number.

In posing the first new problem, Maria largely kept the wording and varied only the
constraints that involved at least one unknown value of the parameter (she changed
the question). For the second problem, Maria included a new constraint (the number
must also be a perfect square).

Maria worked in a well-defined cognitive frame: she transposed the problem
algebraically and used a general characterization of the “special” numbers to iden-
tify new properties of these numbers. Maria did not change her cognitive frame
associated with this problem; she always used the same initial properties and did not
explore her problem in other directions. The changes she made for her new propos-
als were minimal, although her posed problems were highly abstract.

Example 3. Radu (grade 6) originally posed Problem 18 (Prove that any paral-
lelogram can be divided in 16,384 congruent parallelograms). During the inter-
view, Radu explained that, in posing this problem, he started from the observation
that a given parallelogram can be divided into four or nine congruent parallelograms
(by dividing each side in two or three equal parts and constructing parallel sides
through the points of division). He chose the number 16,384 just to give difficulty
to the problem (“There must be a big enough number, perfect square.”). Thus, the
relatively big distance between the initial model (i.e., for the particular cases 4 and
9) and his final proposal was given by his evolution within a well-internalized
cognitive frame. For this proposal, Radu changed only one parameter (the number
of congruent parallelograms) and thus obtained a new problem, which was coherent
and consistent.

When we asked him to pose another problem of the same type, Radu made the
following comment:

I’d be a bit tempted to say that any triangle can be divided into 16,384 congruent triangles,
but I am not sure of the solution. ... Yes, I would be tempted to do again with a parallelo-
gram and to apply the same idea, just up here...
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In the new posed problem, Radu kept the background theme and numerical data,
but modified a parameter (he replaced the parallelogram with a triangle). In fact,
Radu formulated a conjecture (“a triangle can be divided into 16,348 congruent
triangles”). Radu tried to solve his new problem by completing the triangle to a
parallelogram and applying the same idea for solving. In this phase of testing, he
remained within the same cognitive frame. Analyzing some particular cases, Radu
concluded that the problem required some additional assumptions (such as, for
example, that the number of triangles must be even) and that, perhaps, the initial
solution method could not be applied. Radu returned later (after 1 day) with new
reformulations and attempted to solve this problem. Although his attempts were not
entirely correct (probably because the solving of the new problem required knowl-
edge about similarity, to which Radu had no access at that time as a sixth grader),
he concluded that it was plausible that the number of triangles must be a perfect
square. This showed that Radu was, in fact, able to reframe.

These examples, like others of a similar kind that we found in our sample, led
us to conclude that, in problem-posing situations, a student acts within a definite
cognitive frame that allows him/her to generate mathematically consistent prob-
lems. Further, some students succeed in making changes to those cognitive frames
or even to reframe. These changes were not always spectacular because students
intuitively tend to maintain coherence and consistency of the posed problems, and
changes that are more extensive prevent them from keeping control over the shape
of the problem. But when students make small-scale changes (usually by varying a
single parameter), they can understand the impact of these changes on the con-
straints of the problem text and they can choose appropriate numerical data.
Therefore, a student’s capacity to generate coherent and consistent problems in the
context of problem posing (and modifications) may indicate the existence of a
strategy of IN-OUT functional type consisting of small changes followed by
checking the outcomes, which seems specific to mathematical creativity. In more
general terms, mathematical creativity seems to emerge from changes in cognitive
framing, which express a tension between the maintenance within a frame and the
possibility of overcoming it for generalizations, possibility constrained by the need
for consistency.

Conclusions

This chapter presents an empirical study in which students in grades 4-6, with
above-average mathematics abilities, posed problems. We tried to answer the
question: How does mathematical creativity manifest in 10-13 year-old high
achievers?

The results show that in the PP process, students develop a genuine philosophy,
which refers both to practical actions—embodied in their problem-posing strate-
gies—and to the qualitative form of the posed problems. Typically, students start
from a model to which they apply certain constraints based on the philosophy they
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developed, and they then spontaneously try to get a problem that is mathematically
consistent and coherent.

We noticed that both the problems posed by the students and the behaviors pre-
sented by the students highlighted a social dimension. We have several arguments
to support this claim. On the one hand, in most cases, the background theme of the
posed problems had a civic connotation: students go to paintball as a prize because
they are in an advanced class, or some families do not pay their waste collection fee,
and so on. Other posed problems simply involved friends, classmates, or neighbors.
On the other hand, some students directly addressed some challenging areas, or
provided some support for the solver. Thus, most students took into account possi-
ble collocutors within the PP activities. The PP context allowed students to seek
ways to distort/alter the magnitude of the problem changes by adding text elements
that referred to the author’s interaction with a potential recipient of the problem.
Students succeeded both in maintaining quality control over the new posed prob-
lems and in responding to a need for social interaction.

The social dimension of the PP process revealed by these children’s options con-
firms the meaningfulness of the framework of analysis that we used in this study, in
which we discuss the relationship between problem posing and mathematical cre-
ativity in terms of cognitive flexibility in an organizational framework.

The study provides evidence that of the three components of cognitive flexibility
(i.e., cognitive variety, cognitive novelty, and change in cognitive framing), the last
seems to be the most relevant for PP situations. More specifically, the majority of
students in our sample started from a model for which they already had a well-
defined cognitive frame and posed new problems within this frame.

Students were generally able to make changes to their cognitive frames as they
succeeded in posing new problems starting from the initial ones, problems that dis-
played different approaches compared to the starting point. Yet, among these, it was
significant to study the thinking patterns of those students whose proposals, issued
either initially or during a modification process, were coherent and consistent.

In modifying a problem, students tried to vary a single parameter; the ones who
succeeded to do this could control the consequences of the changes and managed to
develop coherent and consistent mathematical problems. Their strategies revealed a
kind of cognitive variety that was relatively limited by their desire to control the
outcomes of the process. This also limited cognitive novelty.

Therefore, cognitive flexibility seems to be oriented towards finding generaliza-
tions and is constrained by the need to maintain the mathematical consistency of the
problem. Consequently, students’ approaches in the PP process seem to be of an
“in-out” functional type, with a careful check of the variations induced over the
outcomes.

The study brings evidence that this type of approach in posing/or modifying a
problem, which allows for making generalizations, seems to be specific for mathe-
matical creativity, at least for the sample analyzed in this chapter. More specifically,
we show that in PP contexts, students tend to make incremental changes to some
parameters in order to arrive at simpler and essential forms needed in generalizing
sets of data. It follows that mathematical creativity is of a special type—one which
requires abstraction and generalization. In addition, students showed awareness of
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the need for mathematical consistency, which made them persevere as they care-
fully controlled the changes.

Moreover, the interviews revealed that this awareness meant that most of the
students were able to analyze their own proposals critically and their own thinking
mechanisms in PP, thus reflecting their metacognitive skills. These metacognitive
skills helped them to be aware of their strengths and to use these strengths to rein-
force a well-defined cognitive frame for a problem.

On the basis of these conclusions, our study highlights some aspects that have
consequences for effective teaching. We briefly present these below.

First, we have seen that students have preferences for some subareas of mathe-
matics, or for some problem-solving strategies, which can be relatively easy identi-
fied through PP activities. Students’ preferences reveal the strengths on which
teachers can focus in order to develop students’ mathematical competences.

Second, our data show that students need social interaction. Surprisingly, this
need surfaced through problem posing—an individual type of activity. Our conclu-
sion is that social interaction should be part of the teaching-learning process in the
class in a consistent way, for example, by means of activities involving posing and
solving problems organized in pairs or in teams.

Third, the study shows that PP stimulates metacognitive abilities in students.
From this perspective, the use of PP in teaching is beneficial to students’ personal
development.

Finally, training for the development of mathematical creativity should include
features that distinguish it from training for the development of creativity in general.
Briefly said, while in the latter more general case, techniques are to be used for
stimulating the free development of ideas, in mathematics the variation of parame-
ters should be practiced within a variety of activities where the processes are mind-
fully controlled and oriented towards abstraction and generalization.

Appendix

Problem 1 (posed by Diana, grade 4): On the planet Zingo live several types of
aliens: with two or three eyes, with two or three ears, and with five or six hands.
They are green or red. How many aliens should shake hands with Mimo to be sure
that he shook hands with at least two of the same type?

Problem 2 (posed by Emilia, grade 4): In the Infinite king’s castle there are 43 cor-
ridors with 18 rooms each. Each room has 52 windows. At every window, there are
three princesses. How many princesses are in the Infinite king’s castle?

Problem 3 (posed by Malina, grade 4): In Princess Rose’s jewelry boxes there are
sapphires, emeralds, and rubies. 27 are not rubies, 31 are not emeralds, and 32 are
not sapphires. In total, there are 45 jewels. How many jewels of each kind does
Princess Rose have?
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Problem 4 (posed by Paul, grade 4): If a group of students sits by two at their desks,
seven students remain standing, and if they are placed by three at the same desks, seven
desks remain free. How many students and how many desks are there in the
classroom?

Problem 5 (posed by Sabina, grade 4): In the Fairies’ Glade, live 60 unicorns and
fairies. They have 160 legs in total. How many beings of each kind are there?

Problem 6 (posed by Sergiu, grade 4): One day, the plane leaves Cluj [a city in
Romania] to go to Japan. It departs at sharp hour in the morning, when the hour and
the minute hands of a clock form a right angle. The hour hand points to a number
bigger than 4. This plane travels at 60 km per hour, and the distance Cluj-Japan is
540 km. In the plane climbed three times more men than women, who are 24,484
people. The cost for a man’s tickets is the first odd number greater than 7. Women’s
tickets cost as double of 3 added with 4 and the result divided by 2. (A) When did
the plane leave Cluj? (B) When did the plane arrive in Japan? (C) How many men
boarded the plane? (D) How many women boarded the plane? How much money
did the pilot receive, if he received all the money, without 3,000 of total?

Problem 7 (posed by Tudor, grade 4): On a farm, there are two cows, some geese
and horses, a total of 86 heads and 328 feet. How many horses are there at the farm?

Problem 8 (posed by Victor, grade 4): In the world of letters, each letter represents
a number. M is two times greater than N, and the difference between these two let-
ters is equal to A. A is less than B by seven, and the sum of A and B is neither bigger
nor smaller than X. If we add two to X, we get Y. The sum of X and Y equals
Z. Knowing that Z—(A: O+P: P+Q: Q+A: R)=30, find MxN.

Problem 9 (posed by Alin, grade 5): (A poem!) If one places three cakes in each
box/There’ll be three cakes left/If one places five cakes in each box/There’ll be an
empty box left. (...) How many boxes and how many cakes/Do I put on the shelves?

Problem 10 (posed by Cosma, grade 5): Two boys need £67 to buy a game. The
price of the game decreases by 50%. If the first boy pays three times more than the
second does, how much money should each pay?

Problem 11 (posed by Andrei, grade 6): On the planet Uranus in the T316B2 city,
there are less than 101 and more than 49 aliens. 1/2 of them are red, 2/7 are green,
1/14 are yellow, and the rest are blue. How many aliens live in E94354 city, the capi-
tal of the planet, if their number is 149 times greater than the count of blue aliens
from T316B2?

Problem 12 (posed by Cosmin, grade 6): P-R-I-C-E-P-I-P-R-O-B-L-E-M-A=x.
Knowing that different letters represent different digits, find the last digit of the
number x. (He multiplies the letters meaning YOU UNDERSTAND THE PROBLEM.)

Problem 13 (posed by Cristiana, grade 6): Maria has to solve the following prob-
lem: “4, 14, 1114, 3114, 132114, 1113122114, ... What is the next term of the
sequence?” The mathematics teacher gave her some advice: “You must empty your
mind of all other mathematical information.” Can you help Maria to solve the
problem?
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Problem 14 (posed by Cristiana, grade 6): Maya the puppy has six bones. She wants
to make four equilateral triangles out of these six bones, but she forgot one essential
rule: one has to think out of the box. Can you help her?

Problem 15 (posed by Maria, grade 6): A number is “special” if it can be written as
both a sum of two consecutive integers and a sum of three consecutive integers.
Prove that: (a) 2,001 is special, and 3,001 is not special, (b) the product of two
special numbers is special, (c) if the product of two numbers is special, then at least
one of them is special.

Problem 16 (posed by Mihai, grade 6): Because the sixth-grade students were the
best, they received a prize consisting in 1 h free on paintball field. The field has the
dimensions 80 mx 120 m, and two people are able (and allowed) to shoot one
another if they are at no more than 29 m distance. Prove that howsoever 26 students
place themselves on the ground, at least 3 get shot.

Problem 17 (posed by Nandor, grade 6): Dan has a 24 hour display digital clock that
is broken: the first digit of the hours’ counter and the last digit of the minutes’ one
get switched every 5 hours. Example: if switch occurs at 17:42, the clock will show
24:71. The clock continues to run correctly after that and stops at 99:99, when it
gives an error (1 hour is transformed in 100 minutes). If the clock breaks when the
correct time of the day is 10:10, what will be the time before giving the error?

Problem 18 (posed by Radu, grade 6): Prove that any parallelogram can be divided
into 16,384 congruent parallelograms.

Problem 19 (posed by Teofil, grade 6): In 2011, 300 students went on the field trip.
Knowing that the percentage of girls was 45%, find the number of boys who
participated.

Problem 20 (posed by Vlad, grade 6): A new quarter was built near a forest. The
residents put their garbage in waste containers with a capacity of 750 kg each. At
every 10 kg of garbage throw away by the residents, 4 kg disappear, being con-
sumed by bears leaving in the forest. The residents produce 20 kg of garbage per
hour. (a) Find out how long it take to fill a waste container; (b) Knowing that in the
neighborhood live 500 families that fill 86 containers per month, that each family
should pay 7.8 euros garbage fee, but only 400 families are fair and pay, calculate
how much money is collected as garbage fees in a month.
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Chapter 8
Problem Posing as Reformulation and Sense-
Making Within Problem Solving

Victor V. Cifarelli and Volkan Sevim

Abstract This chapter examines a type of problem posing that has received little
attention in the mathematics education literature. Silver (For the Learning of
Mathematics 14:19-28, 1994) defined within-solution problem posing as “problem
formulation or reformulation [that] occurs within the process of problem solving”
(p- 19). Our analysis documents and explains the role that within-solution problem
posing plays during problem solving, focusing on episodes of students from two
grade levels: (a) Two fourth-grade students solving a multiplication task, and (b) A
mathematics education graduate student solving a number array task. Our research
examines: (a) How problem posing evolves from the students’ ongoing interpreta-
tions of problematic situations, and (b) How these posed problems contribute to the
students’ problem solving. The results provide an explanation of how problem pos-
ing and problem solving coevolve in the course of solution activity and thus indicate
the beneficial role that problem posing can play in the solution of mathematics
problems.
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Introduction

The study of mathematical problem posing has been an important area of inves-
tigation by researchers in mathematics education (Cai et al., 2012; English, 1997a,
1997b; Kilpatrick, 1987; Silver, 1994; Silver & Cai, 1996). Underlying these stud-
ies is the view that having students generate and develop their own mathematical
problems from particular situations may help them to become stronger problem
solvers as they advance their inquiry-based activity. Proponents of problem posing
advocate for their inclusion in the mathematics curriculum for several reasons.
Among the different reasons, the most important is the view that having students
make up their own problems encourages self-reflection on problem situations
(Goldin, 1987; NCTM, 2000; Schoenfeld, 1994; Thompson, 1994). Reflection on
problem situations that includes the planning of potential solution strategies has
been associated with effective problem solving in several studies of problem solv-
ing (Carlson & Bloom, 2005; Cifarelli & Cai, 2005; Goldin, 1987; Schoenfeld,
1992). Hence, posing problems is viewed by many as a useful classroom activity
that may help nurture the mathematical thinking, and particularly, the problem-solv-
ing actions of students.

Our view is that problem posing needs to be considered as occurring throughout
problem solving. As students act to solve problems, we believe that they continually
monitor the usefulness of current goals and revise or reorganize their goals and
purposes as needed to solve the problem. Problem posing is then a series of trans-
formations of the original problem, with each successive posed problem indicating
progress towards a solution as well as providing possibilities for action to expand
further the scope of the original problem.

Exemplary research on problem posing has been reported in a series of studies by
English (1997a, 1997b) and Silver and his colleagues (Cai, 1998; Silver, 1994; Silver
& Cai, 1996; Silver & Mamona, 1989; Silver & Stein, 1996). For example, English
designed a comprehensive framework for developing young children’s mathematical
problem posing (English, 1997a) and assessed the effectiveness of using problem
posing in middle-grades classrooms (English, 1997b). In addition, Silver and his col-
leagues conducted studies that encompass a range of important issues related to
problem posing, including studies of the problem-posing activities of middle-grades
students (Silver & Cai, 1996) and in-service teachers (Silver & Mamona, 1989), and
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the effectiveness of the use of problem posing in the middle-grades mathematics cur-
riculum (Silver & Stein, 1996).

While these studies have undoubtedly added to our knowledge of problem pos-
ing as a productive mathematical activity, the research is less certain concerning the
specific roles that problem posing plays in problem-solving situations. A particular
issue concerns the ways in which problem posing and problem solving interact
while a student is in the process of solving a problem. In what ways do the solver’s
initial problem formulations have an impact on his or her solution activity? This is
an important question to address since the student may view a problem in a way that
is different from what the teacher sees; and that view is likely to influence the goals
he or she sees fit to develop and pursue.

Conversely, how do students’ reflections on the results of carried-out solution
activity help them to reformulate the current problem if needed, or pose additional
problems to solve? According to Brown and Walter (1993), the process of solving a
problem presents opportunities to the solver for new questions to emerge, that “we
need not wait until after we have solved a problem to generate new questions; rather,
we are logically obligated to generate a new question or pose a new problem in order
to solve a problem in the first place” (Brown & Walter, 1993, p. 114). In this way,
problem posing and problem solving may be viewed as naturally related in the sense
that, in order to solve the original problem, the solver generates additional questions
or problems that must be addressed. Silver (1994) referred to this kind of problem
posing as “problem formulation or re-formulation [that] occurs within the process of
problem solving” (Silver, 1994, p. 19). For example, students engaged in the solution
of a problem may generate a result that, upon reflection, challenges or calls into ques-
tion their prior goals and actions. In these situations, the ways that students act to
resolve the new question often lead to a reformulation of the original problem, which
may in turn lead to progress in finding a solution. While studies of the problem-
solving actions of college students have documented this recursive property that
involves successive and ongoing reformulations of problems (Carlson & Bloom,
2005; Cifarelli & Cai, 2005), studies are needed that document and explain how
problem posing and solving interact at education levels throughout K-12 and beyond.

Theoretical Framework: Connections Between Problem
Posing and Problem Solving

Although the research literature contains few studies of the specific connections
between problem posing and problem solving as hypothesized by Brown and Walter
(1993), we found several studies that provided further rationale for our study. In
particular, we found studies that documented the structural character of problem
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solving as occurring within chunks or clusters of activity (Schoenfeld, 1985) that
are both situational and episodic in structure (Hall, Kibler, Wenger, & Truxaw,
1989) and that unfold in the course of ongoing activity (Pirie & Kieran, 1994).
These studies suggest how the solver’s problem solving may involve a series of
self-generated problematic situations within which particular goals and purposes
are pursued. For example, Schoenfeld (1985) found that solvers developed local-
ized goals and purposes within these episodes of activity and that a solver’s solution
of a task may be built upon several such episodes. Hall et al. (1989) focused on
these episodes as situational expressions that unfold as the solver becomes engaged
within the situation and begins to develop goals and purposes. Pirie and Kieran
(1994) found that solvers develop their understanding in problem situations by
unfolding their actions in the course of problem formulating and then reconstructing
their actions at increased levels of understanding as they carry out the solution.
These studies were helpful in identifying particular goals and purposes in our analy-
sis and conclusions.

Goals and Purposes

The purpose of this chapter is to examine the role that within-solution problem
posing plays as problems are solved. As educators, we know that new problems can
come up or are posed by solvers in the least expected situations, often appearing as
a surprise for the student to address and make sense of. We seldom think of problem
posing as related to the solver’s ongoing sense-making activity, either in research or
classroom settings; rather, the problems we as teachers typically ask students to
pose often correspond to particular questions that we have formulated and ask them
to consider and answer. For example, in the primary grades, children are often asked
to “make up” and solve problems about particular holidays such as Halloween and
Christmas. While these kinds of questions can serve as useful prompts to stimulate
the students’ mathematizing of a situation, studies are needed which focus on prob-
lem posing as a sustained process that occurs and may reoccur throughout the solu-
tion of a problem. Of particular interest here is to examine how the solver proceeds
from his or her initial interpretations to develop goals and purposes, and how this
process may reoccur as the solver progresses towards a solution. In this way, the
current study considered problem posing as problem formulation and reformulation
that aids the solver’s ongoing development of goals and purposes throughout prob-
lem solving. We address the following questions:

1. How does problem posing evolve from the solver’s ongoing interpretations of
a problematic situation?

2. How do these posed problems contribute to the solver’s problem-solving
activity?
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In addressing these questions, we examined episodes of students coming from a
fourth-grade mathematics classroom and a student from a graduate course in math-
ematics education. Our rationale for choosing subjects at these levels was as fol-
lows. We thought it was important to observe and explain how students at different
levels of mathematical sophistication and competence formulate and if necessary,
reformulate problems based on their interpretations of the tasks we gave them.

Students at the younger age, to the extent that they posed problems about the
situation they faced, would be expected to pose problems based on relatively simple
questions about the situation. By including in our analysis an examination of the
mathematical actions of a graduate student, we looked to illustrate and explain the
useful role that problem posing can play in more advanced problem-solving activi-
ties. Specifically, we would expect that graduate students would demonstrate more
sophisticated problem-solving activity than would younger students, particularly
with regard to planning potential solutions, self-monitoring their actions, and
reflecting on the results of their actions. So, in terms of answering the first research
question, we would expect the graduate student to pose more mathematically
sophisticated problems than the younger students in developing their solution activ-
ity. We believe that the consideration of problem posing in these different contexts
will yield a broad-based explanation of the role of problem posing in problem
solving.

We first present episodes from fourth-grade students who came from a classroom
in which the first author served as a tutor. Students were assigned a worksheet of
various multiplication problems. The tutor’s role was to circulate among the stu-
dents of the class and provide assistance as needed. The episodes we present involve
a pair of students solving a series of multiplication problems. In analyzing the
actions of the fourth graders, we focused mainly on data taken from the written
verbal transcripts generated from the videotape of the students, and the observations
and written records of the researcher who provided tutorial assistance to the
students.

We then present episodes from an interview with a student who was enrolled in
a graduate mathematics education program. During the interview, the graduate stu-
dent solved a set of open-ended mathematics problems while thinking aloud. The
data consisted of the videotaped records of the interview, the experimenters’ field
notes, and the student’s written work. Written transcripts of the student’s verbal
responses were generated from the videotapes.

In conducting the interview with the graduate student, we followed the principles
of teaching experiments established by Cobb and Steffe (1983). The interviewer’s
questions ranged from questions that asked the solver to clarify or explain an action
performed to more elaborate questions that might induce the solver to consider a
new problem. For example, the interviewer asked the solver, “what are you think-
ing?” whenever an extended period of silence was accompanied by an absence of
paper-and-pencil activity. Research on the use of verbal self-reports as data suggests
that such questions cause only minor interruption of the solver’s ongoing actions



182 V.V. Cifarelli and V. Sevim

and do not threaten the overall validity of the data (Schwarz, 1999). Moreover, these
periods of self-reflection may indicate instances where the solver is monitoring and
assessing his or her ongoing actions and thus can be seen as important indicators of
knowledge development (Cobb & Steffe, 1983).

We utilized protocol analytic techniques in the analysis (Cai, 1994; Ericsson &
Simon, 1993). Specifically, we examined the written and video protocols in order to
(a) identify examples of problem posing in the students’ actions, and (b) determine
the significance of the problem posing in making progress towards solution. The use
of videotaped records was crucial in making these determinations for the following
reasons. The use of videotape proves more effective than sole reliance on written
protocols when analyzing such diverse examples of solution activity. Second, an
interview is a social interaction in which the interviewer and the solver participate
in a dialogue. Hence, viewing videotape gives the researchers an opportunity to
“step back,” and analyze the dialogue from an observer’s perspective, and allows
for ongoing interpretation and revision of the subject’s activity in the course of the
analysis (Cobb & Steffe, 1983; Roth, 2005). Thus allows for continual communica-
tion between the theory and the data.

Results

We observed the students self-generating questions based on their initial inter-
pretations of the task with which they were presented; these observations formed
the basis for answers to the first research question. From these analyses as well as
analyses of the students’ subsequent solution activities, we answered the second
research question by tracing how their problem posing evolved into sophisticated
posing and solving. We elaborate on these results in the following sections. The first
section reports on the problem-solving episodes of two fourth graders solving a
multi-digit multiplication task; the second section reports on the episodes of a grad-
uate student solving a number array task.

Fourth-Grade Students Solving the Multiplication Task

We first present episodes of two fourth-grade students solving a traditional com-
putation task with two-digit multiplication. In preparation for an upcoming test, the
students were working in pairs, completing a set of multiplication tasks that were
presented in a standard vertical-algorithm format. Working as tutor, the first author
moved around the classroom and provided tutorial assistance where it was neces-
sary. As the students worked through this long list of exercises, it appeared that most
were not working together as was intended by the classroom teacher. Rather, their
activity took on the appearance of a sports competition, with each student racing to
get an answer before the other.
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As the tutor moved around the room, he came upon two students, Corrine and
Austin, who were working to compute the product 15x15. Like the other students in
the room, these students competed with each other, each trying to get the correct answer
before the other. Knowing that the students were familiar with, and had been practic-
ing, the standard multiplication algorithm, the tutor observed that they appeared to use
different algorithms to complete the tasks: Austin correctly solved the problem using
the standard algorithm while Corrine used a seemingly strange nontraditional algo-
rithm, which Austin stated as “magical.” Yet, she amazingly got the same correct
answer and actually finished working on the problem well ahead of Austin (Figure 8.1).

Austin Corrine
2
15 15
x 15 x 15
75 225
15
225

Figure 8.1. Austin and Corrine’s multiplication algorithms.

When Austin had finished working, he peered over at Corrine’s work and noticed
both that she had noted the same answer as he had, and also that she had written
down her answer before he had. “How did you do that?” he asked with a genuine
sense of excitement in his voice. “Oh, my dad showed me how” responded Corrine
with an air of bravado, appearing pleased by the fact that she was able to solve a
problem faster than Austin. Austin repeated his question to Corrine with a sense of
urgency, “But how did you do that?” to which Corrine replied “It’s easy, it goes like
this.” Corrine proceeded to explain her method to Austin: “You need to draw a
straight line so that these (she points to the pair of fives') line up. Then you add one
over here (crossing out the one and entering a two just above it) and just multiply
the numbers” (Figure 8.2).

x
2 = =
= [ O R
0

Figure 8.2. Corrine’s algorithm.

Austin watched Corrine and commented “Oh, I see. Let me try it.”” Austin copied the
original problem and demonstrated the rule to convince himself that the rule worked.

The tutor then asked the students if they might use the same “trick” to solve
another problem that appeared on the worksheet, 25x25. Austin hesitated, seem-
ingly unsure of replicating the algorithm, while Corrine replicated her algorithm to
get a correct answer (Figure 8.3). Austin then used the standard algorithm to verify
that Corrine’s answer was correct.

'Ttalicized comments are used to indicate the actions performed by the students as observed by the
researchers.
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Austin Corrine
3
25 215
x25 xz‘s
125 6l2 5
50
625

Figure 8.3. The students’ solutions.

“So it works!” exclaimed Corrine to which Austin replied “Now we have an easier
way to do it.” The tutor noted that: (a) Adding +1 to the tens digit had to do with num-
ber place value representation and the fact that when squaring 2-digit numbers that
end in 5, the result would always end in the number 25 (Figure 8.4); and (b) The
algorithm would not work for numbers that do not end in 5. Although such mathemat-
ical reasoning did not come into play, as expected, the students’ desire to find a better
way to solve their problems and to investigate this strange new algorithm in the solu-
tion of other problems demonstrate a level of inquiry that helped them become more
engaged with the situation and begin to develop new goals and purposes.

(10x +5)(10x +5) =100x> +100x +25
=100x(x +1)+25

Figure 8.4. A place value explanation of Corrine’s algorithm.

The students then explored additional questions. These self-generated questions,
which were based on the students’ initial interpretations of the original task, indicate
that their problem posing evolved through the applicability and efficacy of the algo-
rithm to other problems. Specifically, the students examined several other cases, some
of which were suggested by the tutor and others which they thought of themselves. As
they explored multiple problems, they continuously challenged their own understand-
ings about multiplication and how well the “new” algorithm worked for other prob-
lems. Their ability to self-generate new questions together with their ability to generate
new explorations that conformed to their questions contributed to what we inferred to
be their evolving understanding of the new “algorithm.” For example, after they had
achieved some sense of the utility of the algorithm for other problems (e.g., that it did
not work for some problems that they tried such as 11x12, but that it did appear to work
when the two numbers were the same and both ended in five), it occurred to Austin
that they might try a “much bigger problem” than those on the worksheet. He wrote
down the product 125x125 in the vertical format. The fact that he would even pro-
pose a problem was a significant step in advancing towards a solution given that the
students had not yet applied the standard multiplication algorithm to multiplying pairs
of three-digit numbers. Nevertheless, Austin and Corrine solved the problem both
ways, with the standard algorithm and with Corrine’s algorithm, with the aid of some
scratch work to compute 12x13 on the side (Figure 8.5).

In the following sections, we report the actions of a graduate student who
appeared to use problem posing to achieve substantial conceptual gains in her prob-
lem solving.
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Austin’s Standard Algorithm Corrine’s Algorithm
13
125 +2|5
x125 x12]|5
625 156125
250
125
15625 13
12
26
13

Figure 8.5. Austin and Corrine’s application to a new problem.

Mathematics Education Graduate Student Solving
the Number Array Task

The analysis of the episode with the graduate student, Sarah, will include her
posing and solving of a problem she self-generated from the array (Figure 8.6):
What is the sum of cell entries in any N by N block of numbers from the array?

Find as many relationships as possible among the numbers.

3 4 516 7 8 9 10
6 8 | 10 12 | 14 | 16 | 18 | 20
9 12 15| 18 | 21 | 24 | 27 | 30
8 | 12| 16| 20 | 24 | 28 | 32 | 36 | 40
15 20| 25|30 | 35| 40 | 45| 50
12 ] 18 | 24| 30 | 36 | 42 | 48 | 54 | 60
14 ] 21| 28| 35|42 |49 | 56 | 63 | 70
16 | 24 | 32| 40 | 48 | 56 | 64 | 72 | 80
18 | 27 | 36| 45| 54 | 63 | 72 | 81 | 90
20 | 30 | 40| 50 | 60 | 70 | 80 | 90 | 100

AN BN

O |XR QAN |WIN|—
—_
[}

—_
o

Figure 8.6. Number array task.

After exploring the array, Sarah reflected on her initial results and looked for
other relationships that involved the sums of the entries in the square blocks
(Figure 8.7).

Sarah: Let’s see ... (long reflection) ... I was wondering about those square num-
bers on the diagonal going from left to right. They seem to relate to the dimension
of the square blocks, ... I don’t know, ... Maybe they relate to the sums of these
blocks I had earlier (points to the 2x2, 3x 3, 4x4 blocks). So, let’s check it.
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1 4 9 16 25 36 49 64 8+ 100 1 144 169 196 225

tot t t t
1 1]2 1213 1234
1[2][3[4]5
2|4 21406 246 |8
246 8110
Sum of 1 x 1=1 31619 316(9 |12
Sum of 2 x 2=9 3169 12]15

Sumof3x3=36 |4 |8 |12]16

4| 8 |12 |16 | 20

Sum of 4 x 4=100 5110 |15 | 20 | 25

Sum of 5 x 5=225

Figure 8.7. Sarah’s skipping to find sums of block entries.

Sarah proceeded to examine the sum of the entries of each NxN block that con-
tained the square numbers on the diagonal and she developed an informal method to
find the sums of the entries of all NxN blocks going down the main diagonal.

Sarah: So, fora 1x 1, I get a sum of 1 (points to the sequence of square numbers
on the diagonal). For a 2x2 (points to block [1, 2:2, 4]?), 1 getasum of 9 ... but
what happened to 4? It appears to have been skipped! (several seconds of reflec-
tion). Okay, let me try this, I will write down the sequence of squares of all
numbers, all in a row (writes the following sequence of square numbers: 1,4, 9,
16,25, 36,49, 64,81, 100, 121, 144, 169, 196, 225). So, the first number, 1, tells
the sum of the very first matrix, a 1 x 1. And the first 2x2 has a sum of 9. .... So,
I skipped over 4 to get the next sum (crosses out the 4 in the sequence), going
from 1x1toa2x2,asum of 9. The 4 gets skipped? Interesting!

Sarah has a new problem here—she thinks that there should be a relationship
between the sequence of square numbers on the diagonal of the array and the suc-
cessive sums of the entries of Nx N blocks. Sarah was able to generalize her “skip”
method to generate the sequence of sums of the entries of all Nx N blocks.

Sarah: So, for the first 3x 3 (points to [1, 2, 3: 2,4, 6: 3, 6, 9]), I already did this
over here, so it is 36. So, in going from the 1x 1 to the 2x2 to the 3x3, we go
from 1, to 9, to 36—so we skipped over the 16 and the 25 (she crosses out the 16
and 25 in the square number sequence), a skip of 2 in this sequence!! So, okay,
if this is true, then it looks like we will skip over the next 3 square numbers, and
that should tell us the sum for a 4 x4 should be equal to 100 (crosses out the 49,

2We use a bracket notation that lists the top-to-bottom rows of the block being considered. For
example, the 2 x2 block is indicated by [1, 2: 2, 4], the 3x 3 block is indicated by [1, 2, 3: 2, 4, 6:
3,6,9].
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64, 81 in the square number sequence)—that is what I have over here!! Cool! So,
for a 5x5, we skip over the next 4 numbers in the sequence, (points to the
sequence 121, 144, 169, 196) and get 225—yes, I got that one earlier for the
5%5.

Sarah then looked to make sense of her method with some further exploration
(Figure 8.8).
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Figure 8.8. Sarah’s diagram of her computation of sums in a 6 x6 block.

Sarah: I wonder why this skipping works? Let’s see it another way, for the 6 x 6,
we add the entries in the rows to get 21 +42+ - +126=21(1+2+3+4+5+6)=
21x21=441. Do we get 441 by skipping the next 5 in the square sequence?
(Sarah extended her original sequence beyond 225, crossed out the correspond-
ing “skips,” and got a result of 441 as the next number in the sequence)
(Figure 8.8). But also, I notice that 21 over here (points to the factored form 21e
(I+2+3+4+5+06)) is the sum of the first 6 numbers in that first row. Yes!

Sarah tried her idea on an 8 x 8 block (Figure 8.9).

Sarah: So to find the sum of these Nx N blocks, I bet you just need to look at the
sum of 1 to N and then square that total to get the sum. Let’s try a big one, say
8% 8. So, I guess that it would be .... 1+2+---+8=36, [ don’t know why I am
adding these individual numbers since I know that the sum is (8§ x9)/2, and then
I take 36%? So that comes out to be ... 1,296. And does it check with my skipping
over here? Let’s see, so for 8 x 8, I first skip 6 over 21 to get 28 for 7x 7, and then
skip 7 more to get the one for 8 X8, ... so 7 more is 35, and the next one is 36! So
my algorithm seems to work! The algorithm is pretty efficient for larger num-
bers, beyond all of these. How about a 100x 100 grid! But I thought that the
skipping relationship was pretty cool!
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1 2 3 4 5 6 7 8 36

5 10 | 15 | 20 | 25 | 30 | 35 | 40

6 12 | 18 | 24 | 30 | 36 | 42 | 48

225 256 289 324 381 400 441 Skipnext6 784 Skip next7 = 1296
for 7x7 case for 8x8 case

52 16> 17 182 19 20% 212 282 36%

.

Figure 8.9. Sarah’s computation of the sum for the 8 x 8 block.

Conclusions

We must be careful not to infer too much from the actions of any of the students
we observed. In the case of the fourth graders, they never really came up with a
formal mathematical explanation for why the algorithm worked for some kinds of
numbers and not others. Furthermore, we need to be vigilant whenever our students
begin to see mathematics as involving tricks, rather than as an activity that is sup-
posed to make good sense to them. But two salient points to be made with respect
to the research questions are first that problems can be posed by solvers in the least
expected situations, often appearing as a surprise for the students to address, and
second, that solvers faced with surprising results are often motivated and even
driven to seeking new explanations as a resolution to the situation. While it may be
a classroom norm for teachers to challenge their students to answer questions
regarding why or how well a strategy may work, the importance of within-solution
problem posing is that it is self-directed and changes the solver’s goals and purposes
through a cycle of questioning and reflection. The students were highly motivated
to answer questions that arose from their sense of surprise in their results. For
Austin, the surprise came from seeing first that the strange new algorithm actually
worked for the problems they were given and then that it worked for other problems
as well. For Corrine, we inferred an ongoing sense of accomplishment from her
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purposeful actions to make sense of their ongoing applications of her algorithm to
see that the algorithm would work for other problems they generated. In trying to
determine why and for what kinds of multiplication problems the new algorithm
might work, the students made conjectures, systematically checked out new possi-
bilities, self-generated feedback that they then applied to their evolving ideas, and
overall demonstrated mathematical thinking actions of the kind we usually associ-
ate with upper grades students.

While it is inappropriate to conclude that the fourth graders actually transformed
their actions into a more sophisticated algorithm, they moved from working on a
traditional task to working on authentic mathematical situations that were genuinely
problematic to them. Self-generated or invoked mathematical situations, which
were genuinely problematic to the students, served as opportunities for reformula-
tion of the problem within problem solving, and thus significantly contributed to
their problem solving.

In this way, the students were able to investigate the usefulness of the rule for
other problems and thus developed some sense of efficacy of how well it worked.
While their somewhat limited mathematical sophistication prevented them from
making major conceptual gains, we were interested in seeing how a student with
more sophisticated mathematical knowledge might use problem posing as a means
to make major conceptual progress in their problem solving.

In contrast to the fourth-grade students, Sarah’s problem posing played more of
a transformative role in her solution of the number array problem: her problem
about sums of entries in simple rectangular blocks evolved into more sophisticated
problems about finding sums of entries in any Nx N square blocks which extended
beyond the actual 10x 10 array. This appeared to be an example of within-problem
posing in which the problem under consideration evolved in terms of scope and
complexity (Silver, 1994; Silver & Cai, 1996). In addition, the evolutionary aspect
of Sarah’s problem posing as well as the impact on her subsequent solution of the
problem provides some validation of Schoenfeld’s (1985) view of the structural
character of problem solving as occurring within chunks or clusters of activity.

Sarah considered several sophisticated ideas as she posed problems to solve. For
example, she posed and solved the problem of finding the sum of entries in an Nx N
block as she “moved” the block down the diagonal. In this way, Sarah formulated a
problem to solve that was quite sophisticated and which suggested a form of struc-
turing activity that has not been reported in the literature on problem posing.
Specifically, Sarah’s development of her method for computing the sums appeared
to be an example of metaphorical structuring (Sdenz-Ludlow, 2004). She found the
sums of entries in the various blocks by “skipping” through a sequence of square
numbers. In addition to her naming the method “skipping,” the term also repre-
sented for Sarah the solution process involved. In this way, she invoked the use of a
metaphor, “skipping,” to give meaning to her subsequent solution actions. This
metaphorical structuring appeared to be an example of within-solution problem
posing in that it reformulated the original problem and expanded its intended scope.

With these idiosyncratic actions, she progressed from the original problem of
finding as many relationships as possible to the problem of finding the sum of
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entries in an N x N block via a process of “skipping” or traversing through a sequence
of square numbers. In this way, she had developed an informal method. In terms of
our research questions, we see her problem posing as evolving from her informal
reasoning of the sequence of square numbers, and progressing to the posing and
investigation of more sophisticated problems. Specifically, she further developed
the meaning of her idea by checking its applicability with simple cases and then
drew upon the metaphor in her subsequent investigations. This finding is consistent
with research that identifies informal methods as playing a prominent role in the
development of formal algorithms (Cai, Moyer, & McLaughlin, 1998; Sdenz-
Ludlow, 1995).

Sarah’s subsequent development of the algorithm involved a subtle shifting of
her attention from validation and verification activities that came with carrying out
the method (demonstrating its applicability for blocks of dimension 2x2, 3x 3, and
4x4), to efficacy activities (why the method appeared to work for the cases she
generated). This shift provided for her an opportunity to unfold the process and
relate her informal method to operations on the row and column numbers. She was
able to generalize her method from skipping within a simple sequence to a formal
algorithm which was more efficient for finding the sums of entries in any NxN
block beyond the 10x 10 array. This two-phase development demonstrates general-
ization that encompasses both informal and formal solution activity, a kind of gen-
eralization we did not see in the earlier episodes with the fourth graders. She
generalized in two senses: First, in terms of moving from simple to more complex
cases (blocks ranging from 3 x 3 to 100 x 100); and second, in terms of a transforma-
tion of an informal algorithm into a formal algorithm. These subtle shifts of reflective
focus by solvers have been hypothesized by researchers (Krutetskii, 1976; Lobato,
Ellis, & Munoz, 2003; Mason, 1995), but not illustrated or explained as discussed
here. Sarah’s extension of her informal skipping activity into a more formal method
appeared indicative of a generalization that involved a conceptual jump from expla-
nation of examples of a particular kind (i.e., relating the sums of entries in the vari-
ous blocks to a sequence of square numbers) to a more mathematically sophisticated
explanation of the method that involved properties of the task structure (i.e., show-
ing how the sums of the various blocks related to the row and column dimensions).
In other words, the coevolving processes of problem solving and posing enabled
Sarah to move from a low level of generalization, typical of an inductive generaliza-
tion of a sequential pattern based on the correspondence between the sums of entries
in Nx N blocks and the square number sequence, to a higher level of generalization,
that captured the mathematical properties of the array. In Sarah’s case, her jump to
considering the row and column numbers to compute sums was based more on the
mathematics of the array than on the pattern of square numbers she generated from
consideration of the sequence of Nx N blocks.

Sarah’s use of problem posing to progress from her skipping idea to a formal rule
that gave the sums of the block entries suggests a type of generalization consistent
with Krutetskii’s (1976) distinction between inductive and scientific generaliza-
tions. According to this view, scientific generalizations are based on more formal
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mathematical properties of the concept while inductive generalizations are based on
less sophisticated similarities and differences from the learner’s actions.

Although the two cases are somewhat disparate, we nevertheless view both of
them as illustrating important ways that problem posing interacts with problem
solving. First, both cases highlighted the role that informal reasoning and idiosyn-
cratic actions can play in the formulation and subsequent solution of problems. The
fourth graders, particularly the informal questions of Austin to learn more about
Corrine’s trick to multiply the numbers, and the graduate student’s use of the meta-
phor of “skipping” applied to the square number sequence, indicate how useful
problem formulations often arise in the least expected situations. So, the solvers’
self-generated questions, often resulting from surprise and based on their ongoing
reformulation of goals and purposes, triggered subtle shifts of reflective focus that
helped increase their engagement within the problem situation. In the first case,
these shifts of reflective focus increased the two students’ overall reflective activity
on the meaning of multiplication and number relations. In the second case, these
shifts both helped the solver to expand the scope of the problem through metaphori-
cal structuring and to make conceptual gains by transforming informal methods to
formal explanations.

Theoretical Implications

One goal of this chapter was to document and explain the role that within-solu-
tion problem posing plays in problem-solving activities. Our analysis of the prob-
lem posing demonstrated by the fourth graders and the graduate student suggests
some important roles that problem posing can play in solution activity. First, prob-
lem posing performed in the solution of a problem helps to broaden the solver’s
perspective of the original problem as well as expand its scope. This expansion of
scope can further help students engage in unexpected generalizing activity that is
rooted in students’ own goals and purposes. Second, the finding that solvers make
conceptual progress by posing problems that help to extend their understandings of
the problem highlights the importance of self-generated activity. There is need for
additional studies of how the solvers’ interpretation of the problem links to planning
strategies that may lead to successful solutions.

Third, while research on problem solving has highlighted the importance of
planning strategies that anticipate potentially successful strategies (Schoenfeld,
1992), few studies have focused on how the solvers’ ideas about potential solutions
become elaborated and extrapolated as action unfolds. The results of the current
study suggest that solvers actively monitor and assess the usefulness of their ideas
as problem solving commences and actively pose new questions and problems
when initial ideas outlive their usefulness. There is need for additional studies that
shed light on different ways that solvers use results of actions to reformulate prob-
lem situations in ways that conform to their evolving ideas.
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Instructional Implications

We offer some instructional implications based on the results.

Create Rich Problem-Solving and Problem-Posing
Opportunities for Students

In addition to asking their students to pose problems as opportunities to apply
their developing conceptions within particular mathematical situations, teachers
should also look for and encourage students’ problem posing to emerge naturally
during their problem-solving activity. This can be accomplished by presenting them
with conceptually rich problem-solving tasks that provide opportunities for them to
express their knowledge and then reflect on their potential solutions.

Encourage Proactive Agency

A theme of this chapter was to view problem posing as a process that naturally
coevolves with problem solving. The results demonstrate the need for teachers to
recognize that problem posing can appear in varying degrees, as sense-making
within problem solving, as generating new questions and problems within-solution
of a problem situation, and as creating new problems to apply developing concep-
tions within a certain mathematical domain. Self-generated questions (while prob-
lem solving) can help students to place the current problem in a broader perspective
and thus expand its scope.

In addition to teachers acknowledging the overall structure of within-solution
problem posing, there is need to develop and implement teaching strategies that
help students achieve a sense of self-advocacy in their problem solving. The stu-
dents of the current study freely expressed and defended their ideas about the prob-
lems they faced. Students need opportunities to present and defend their ideas about
problem solutions prior to carrying them out. If teachers notice, allow for, and
encourage within-solution problem posing, this will help students become better
problem solvers and potentially increase their problem-solving sophistication.

Emphasize Interconnection of Problem Posing
and Problem Solving

Finally, problem posing has to be seen as integral to the problem-solving process
and needs to be emphasized by mathematics teachers at all levels accordingly.
When problem posing and solving are viewed as connected, the importance of prob-
lem posing as sense-making becomes an important goal of instructional activity.
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Chapter 9
From Problem Posing to Posing Problems via
Explicit Mediation in Grades 4 and 5

Sharada Gade and Charlotta Blomqvist

Abstract Drawing upon cultural historical activity theory (CHAT) perspectives, in
this chapter we portray a classroom practice of problem posing that evolved with a
cohort of students across Grades 4 and 5 in Sweden. In line with a language and
literacy pedagogy, the classroom practice in which students utilised textbook vocab-
ulary handed out on slips of paper (lappar in Swedish) advanced through three
distinct stages namely: formulating written questions, problem posing as dyads and
actively posing problems to one another. Mediated explicitly by lappar, such a
practice provided social and public opportunities for students to attribute personal
meaning and make conscious use of words in semiotic activity, as well as appro-
priate cultural meaning and valid norms of use. The increasing gain and display of
agency by students in this practice, informed by student(s)-acting-with-lappar-as-
mediational-means as unit of analysis, was indicative of their self-regulation, voli-
tion and independence. Developmental in approach, such classroom practice was
born through teacher—researcher collaboration.
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Introduction

As teacher and researcher we contribute to this volume by reporting a classroom
practice of problem posing with a cohort of students in Grades 4 and 5, in a Grade
4-6 school, in Sweden. The establishment of this practice was conceived as part of
a larger project correlating mathematics and communication for which the second
author sought funding for, from The Swedish National Agency for Education
(Skolverket Dnr 2009:406; http://www.skolverket.se). The practice began with
Charlotta’s students formulating written questions at their desks, in Grade 4 and
evolved to their actively posing problems to one another as they gathered beside
their teacher’s desk, in Grade 5. It was also the case that although Lotta, as Charlotta
is known, taught mathematics to her students at Grade 4; it was Cecelia their class
teacher who taught mathematics at Grade 5, since Lotta was working with The
Swedish National Agency by then. In writing this chapter, Lotta has also been able
to draw on her interviews with the same cohort of students as part of interviewing
them in their National Tests, at Grade 6.

The classroom practice which evolved from students formulating written ques-
tions to their actively posing problems to one another was established in a progres-
sive manner over time. In line with the aims of correlating mathematics and
communication in Lotta’s project, we drew upon theory of classroom talk, taking
care to train students to use talk for learning mathematics (Mercer, 2002). For
example, Lotta conducted the game of Yes and No with her students, in which they
had opportunities to guess numbers written on concealed slips of paper (lappars in
Swedish). While Lotta responded only with Yes or No to questions posed by students,
her students needed to pay attention to the place value of the digits in the numbers
being guessed in the game. Although there was ample opportunity for teacher—pupil
and pupil-pupil talk in playing this game, it was the numbers themselves on various
lappars that mediated the game and/or classroom activity. After the game of Yes and
No, we next conducted action research to rectify the faulty use of the = sign by
Lotta’s students (Gade, 2012b). The action cycle in this study was also lappar-
based, wherein lappars now contained numbers, arithmetical operations and the =
sign. As with the game of Yes and No and action research, Lotta’s classroom prac-
tice of problem posing was lappar-based where textbook vocabulary or words on
lappars mediated problem posing. While we offer details of CHAT perspectives that
underpinned our approach in the next section, we describe the manner in which the
classroom practice was established in the section thereafter.



9  From Problem Posing to Posing Problems via Explicit Mediation in Grades 4 and 5 197

Inclusive of co-authorship, it was teacher—researcher collaboration that formed a
reliable backbone to our study. While the development of our teacher-researcher
collaboration is detailed in the action research reported (Gade, 2012b), Lotta’s
co-authoring of this chapter extends this collaboration in two significant ways. First
and unlike Lotta remaining silent and anonymised as Lea in the conduct of action
research, Lotta is now theoriser lending voice to the scientific practice of research.
By this our attempts redress the unfortunate yet recognised fact that K-12 teachers
have little opportunity to contribute to theory generation, beyond merely consuming
research generated by others (Cochran-Smith & Donnell, 2006). Second and unlike
teacher and researcher talking across a theory/practice divide, our combined efforts
are in line with recent calls in mathematics education research, for teachers to become
stakeholders in university-led research, alongside researchers to become stakehold-
ers in teachers’ classroom practices (Krainer, 2011). In this way, our study provides
a working model for other practitioners to emulate, towards which end we have also
co-authored an expository article for a teacher journal (Blomqvist & Gade, 2013).

Prior problem-posing research in mathematics education, besides being relatively
new and largely cognitive in approach, outlines many issues that our CHAT-based
study can illuminate. For example, prior research draws attention to finding out who
poses problems and for whom, how problems are posed around particular situations
and whether problems posed by students are mathematical or not (Singer, Ellerton,
Cai, & Leung, 2011). There is interest also in finding how lived experiences of
students inform students’ modelling of reality in the problems they pose (Greer,
Verschaffel, Dooren, & Mykhopadyay, 2009) and investigating the extent to which
the problems students pose are mathematical and solvable (Silver & Cai, 1996). Our
study has the possibility of showing how Lotta was able to organise a problem-
posing practice in her classroom (Leung, 2013) and the pedagogical strategies she
was able to implement as teacher (Cai et al., 2013). It is towards the latter that our
study exemplifies a CHAT-based pedagogical category that Dalton and Tharp (2002)
identify as Developing language and literacy across the curriculum. While also
detailing this category in the next section we ask: In what ways did problem-posing
practice evolve across Grades 4 and 5, when students’ classroom practice was
explicitly mediated by vocabulary from their mathematics textbook?

Theoretical Framework

Two CHAT constructs which inform our problem-posing study in particular are
explicit mediation and developmental education. These constructs build on the CHAT
premise that the human mind is in a dialectical relationship with its social world, with
human consciousness neither given nor produced by nature but a product of one’s
social interactions in the material world (Leont’ev, 1981). CHAT recognises the
mediated nature of such interactions with cultural tools as well, be they spoken words
of a language which are invisible, or visible tools like a pen and protractor. It is on
basis of visibility that Wertsch (2007) makes a useful distinction between implicit and
explicit mediation. While mediation by tools like words of a language is invisible,
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deemed present by inference and implicit; mediation by tools like a pen and protrac-
tor is visible, a result of conscious action and explicit. The use of the Swedish lan-
guage by Lotta and her students would be an example of implicit mediation in our
study, just as the use of words handed out on lappars by her students to pose prob-
lems, would be an example of explicit mediation. Wertsch explains how either kind of
mediation transforms human action by altering the flow of human thought. Although
such alteration is brought about by word meaning in implicit mediation, in explicit
mediation alteration is brought about by an external agent. Lotta’s handing out text-
book vocabulary on lappars in our study was designed to alter the flow of thought and
actions that her students took. While students posed problems by utilising the words
given, Lotta had opportunities to guide their many attempts.

The classroom practice that Lotta established was based on explicit mediation
and is in line with the principles of developmental education characterised by van
Oers (2009). Exemplifying many of its features, Lotta’s classroom practice provided
opportunities for her students to make personal sense of words handed out on
lappars, while at the same time accommodating personal motives and emotions.
Participating in this practice was at the same time opportunity for her students to
critically evaluate, as well as master meanings of words accepted as standard or the
norm in wider culture. In such manner of meaningful learning (van Oers, 1996)
Lotta’s students first utilised words with their peers at their desks and later actively
posed problems under full public scrutiny. As detailed in the next section, this prac-
tice was based upon explicit rules and expectations that Lotta spelt out, enabling her,
as teacher, to reflect on the pedagogical practice she was implementing. In Lotta’s
practice, which allowed students to engage consciously with the words they were
given, her guidance made it possible to lead her students in their zones of proximal
development. Through dialogue and polylogue, both teacher and students had the
opportunity to develop their respective identities. Importantly, the semiotic activity
which the classroom practice promoted allowed for ontogenetic development of
higher psychological functioning in each student (Vygotsky, 1987). Mediated by
cultural tools in either implicit or explicit manner, the initiation of these actions was
importantly social and public in origin. Following Vygotskian CHAT perspectives,
such incidence is the basis for internalisation in Lotta’s students of cultural word
meaning, leading to self-regulation and volition that accompanied usage. The pro-
gression of Lotta’s students, from initially formulating questions at their desks to
actively posing problems to one another beside the teacher’s desk, is indicative of
the freedom and independence that accompanies human development within CHAT.

Lotta’s classroom practice, which promoted development, exemplifies many
features that Dalton and Tharp (2002) associated with their pedagogical category of
developing language and literacy across the curriculum. This category primarily
brings to fruition the premise that language proficiency in speaking, reading and
writing is key to academic achievement, an aspect that van Oers (2009) recognised
as central in his articulation of developmental education and an aspect taken into
account in Lotta’s classroom practice. Specifically and in line with Dalton and
Tharp, Lotta’s practice allowed her to listen to her students talk and to assist them
as they posed mathematical problems about the world they had modelled. This
included a complex of actions on her part like probing, praising, restating, making
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eye-contact and implementing turn-taking, as she guided the intellectual efforts of
her students while they posed mathematical problems. In order to grapple with such
complexity, our study focused on two units of analysis, allowing us to make claims
about events that transpired in Lotta’s classroom practice. The first of these is medi-
ated action which links the actions of students to cultural, institutional and historical
contexts in Lotta’s classroom. The questions posed by Lotta’s students with words
that were handed out were mediated actions. The other and related unit is that of
mediated agency which Lotta’s students gained over time (Wertsch, 1998). To deal
with the play that exists between the use of words by Lotta’s students as they
attempted to bridge personal with propositional meaning in the Brunerian (1997)
sense, Wertsch forwards reformulation of agency as a composite unit of individual(s)-
acting-with-mediational-means. In actively posing problems to one another by
Grade 5, in line with Wertsch, the agency of Lotta’s students is better conceived as
student(s)-acting-with-words-on-lappars-as-mediational-means. Such observations
extend Gade’s (2006) findings in an earlier study wherein students were speaking-
with-the-graph, speaking-with-a-formula and speaking-with-a-calculator. Wertsch’s
hyphenated expression of agency allows our study to attend to issues of power and
authority imbued in the usage of words. As our data will show, Lotta’s students had
little hesitation in making reference to FBI agents and presidential elections on one
hand, alongside tooth fairies and sausages on the other. The power perceived by her
students in using the first set of words and the authority they seemed to exhibit with
the second set were part and parcel of their personal meaning which in fact pro-
pelled them to participate or act-with-words-on-lappars-as-mediational-means.

Method

Two Vygotskin or CHAT perspectives guided our methodological arguments.
First, an experimental—genetic study of classroom practice which sought prolonged
observation of the students’ usage of words handed out by Lotta. Such engagement
enabled our study to record the qualitative transformations that accompanied
students’ actions in the course of their development (van Oers, 2009). Second, rec-
ognition of a process of double stimulation whereby both the Swedish language
spoken and the words handed out on lappars mediated the many actions that Lotta
and her students took in classroom practice. Following Wertsch (2007) both implicit
and explicit mediation contributed to a practical-theoretic view with which CHAT
perspectives both promoted and helped interpret Lotta’s classroom practice. Before
describing the separate methods we deployed in our progressive study, we here
mention four aspects pertinent to its conduct. First, Lotta obtained permission from
parents of students to conduct research. Second, the names of students we present
are pseudonyms. Third, and as with action research (Gade, 2012b), we organised
lappar-based activity for Lotta’s 22 students in pairs. Fourth, the words used in the
lappars were first selected from the textbook as in Table 9.1, to which we then
supplemented those that Lotta’s students considered as belonging to mathematics as
in Table 9.2 (matteord in Swedish). The methods we now detail correspond to the
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Table 9.1
Swedish Vocabulary (with Translation) Offered for Formulating Blue and Green Questions
mindre vilket manga (many)  plus (plus) storst minus (minus)
(less) (which) (greatest)
olika mellan mycket (many) sist (last) lang (long) far (get)
(different)  (between)
jémna fore (before)  forst (first) siffran (numeral) hur (how)  fore (before)
(even)
efter (after) samma vird (worth) kostar (costs) ar (is) niarmaste
(same) (nearest)
tal alla (all) udda (odd) bara (only) ungefar siffarsum
(numbers) (roughly)  (sum of digits)
skriv pris (price) med (with)
(write)
Table 9.2
Swedish Vocabulary (with Translation) Offered by Students on December 8, 2009
skillnad kvot grader addera subtraktion addition algorithm
(difference)  (quotient) (degrees) (add) (subtraction)  (addition)  (algorithm)
summa term (term) multiplikation tusendel tredjedel fjdrdedel siffrorna
(sum) (multiplication)  (thousands)  (one third) (aquarter)  (figures)
attondel hundratal ental (units) tiotal (tens)  hundratal tiotusental ~ mellanled
(one (hundreds) (hundreds) (ten (intermediate)
eighth) thousands)
klockan micrometer mil (mile) ljusér (light  ekvation svar
(the clock) (micrometer) years) (equation) (answer)
division product centimeter millimeter siffersumma  meter
(division) (product) (centimeter) (millimeter)  (sum of (meter)
digits)
subtrahera lika med plus (plus) minus ganger udda (odd)
(subtract) (equal to) (minus) (multiply)
jdmna kvadrat omkrets linjal (ruler) avrunda ungefir
(even) meter (perimeter) (round off) (roughly)
(square
meters)

three categories in which we present data; the same three categories will also be
used as a framework for presenting our discussion in the section that follows.

Blue and Green Questions

The conduct of problem posing began with Lotta instructing students to formu-
late blue and green questions in pairs, for which we chose the words listed in
Table 9.1. Lotta handed out two lappars to each pair of students, one having a blue
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number and a green word and the other having a green number and a blue word. In
this chapter we denote blue writing in bold and green writing in an underlined for-
mat. The purpose of using the blue and green colour was to give a blue word and
green number to one student and a green word and blue number to the other. Lotta’s
instructed her students to formulate a green and blue question, to ensure that they
worked as pairs using words and numbers from either lappar to pose mathematical
problems. Lotta’s students were then asked to write the questions they formulated
on a separate sheet of paper that was provided, from which we illustrate one
example below:

First lappar Second lappar
9876 alla (all) 8345 | ungerfir (approximately)

The blue and green questions formulated by Lotta’s students with the above pair
of lappars were Are you approximately 9876 years old? and Are all the digits
in the number 8345 odd ? Five aspects in relation to our data and discussion are
pertinent. First, we present an English translation of questions formulated in the
Swedish language. Second, after students had formulated their questions, Lotta
asked student pairs to read their questions aloud in a plenary. Third, Lotta followed
their reading aloud by asking “Is this a question?” (Ar det friga?). Rhetorical in
function, Lotta’s question was an opportunity for her students to reflect on whether
the question formulated by a peer was indeed a question or not. In line with Lotta’s
project aims, the object of this exercise was to focus on the societal norms of a
mathematical question, relegating more realistic aspects of the content of the ques-
tion such as Are you approximately 9876 years old? to the background. Fourth,
recognising the paucity of time felt by most teachers in satisfying all the require-
ments of the curriculum, we conducted our study whenever we could find
10-15 minutes of time within regular everyday instruction. Finally, in the conduct
of 11 sessions of explicit mediation beginning on October 13, 2009 and ending on
March 31, 2011, Lotta’s students formulated blue and green questions in the first
three sessions and actively posed problems to one another in the final three sessions.

Problem Posing as Dyads

Sandwiched between formulating blue and green questions and actively posing
problems to one another, our study witnessed problem posing by Lotta’s students as
dyads with active and brisk consultation visible in most pairs. We also observed one
of the two students in some pairs to take on the role of lead writer. Commencing on
December 8, 2009, Lotta first began eliciting from all her students the words they
associated with mathematics. We present in Table 9.2 a list of words that Lotta
collected on the whiteboard and mention three pertinent aspects. First, we observed
a student, Mark, who came up to the whiteboard and added the word farmer
(bonde in Swedish) to Lotta’s list (Table 9.2) only to come back and erase this word.
We took Mark’s actions to exemplify the active nature of association that the
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students were making between the words belonging to mathematics and words
belonging to the wider societal world. Second, we found words offered by Lotta’s
students (Table 9.2) to be much more extensive than those we had ourselves chosen
from the textbook (Table 9.1). We therefore decided that we would no longer high-
light words in blue and green colours, resorting to black print. Finally, we thought
that the ease and fluency with which Lotta’s students executed this stage of problem
posing was critical to their posing problems in the final stage.

Two Acts of Posing Problems

Although we collected what students wrote on separate sheets of paper through-
out our study, audio-recordings were made of the final three sessions during which
Lotta’s students made use of the whiteboard as well. Our transcribing of these
audio-recordings drew on field notes taken by the first author and our combined
insight as practitioners, besides Lotta’s experience of conducting interviews with
the same cohort of students. In response to geometry problems in National Tests at
Grade 6, Lotta observed her students “to show faith in their own ability to use words
and concepts that they developed” (Blomqvist, personal communication).

Data and Discussion

We present both our data and the discussion in three categories: (a) formulating
blue and green questions—which corresponds to the first three sessions of problem
posing; (b) problem posing as dyads—which corresponds to the next five sessions;
and (c) two acts of posing problems—which correspond to the final three sessions.
While we present English translation of questions originally posed in Swedish, we
maintain their original flavour by retaining kronor as the currency.

Formulating Blue and Green Questions

Our corpus of data leads us to present students’ formulations of blue and green
questions in two sub-categories: questions related to properties of numbers alone
and those related to their wider societal experiences. Having explained our use of
blue and green colours in the methods section, we now present data without any
embellishments below. We have, however, included in parentheses the hints and
answers that students themselves provided in the inscriptions collected from them.

A. Questions related to properties of numbers
1. What is the sum of the digits in 2673?

2. How much must one add to get 7245 if one has 7000?
3. What comes before 48617
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9.
10.
11.
12.
13.
14.

15.

Is 1008 less than 1009?

After 3129 comes 3130. 3130+ 1, what is that?

Is 6425 an odd or an even number? (Hint=same as 16)
Is 5000 minus 4345 an even number? (Answer: No)

8282 is more than 7000. How much must one add to 7000 to obtain
82827 (1282)

Before 6738 comes 6737. What comes after 6738?

Which number is closest to 1331? (a) 1001 (b) 999 (¢) 1300 (d) 1330
What number is it, if you add together 8345 and 5678?

How much is needed for 2196 to become 22007?

What digit comes first in the number 133127

The number 4831 is odd. If one adds the same amount twice and then
removes 6794, is the remaining number then odd?

4861 is approximately 4860. Can you round off 4861 to the nearest
thousand?

B. Questions related to wider societal experiences

9,1

1. Are you approximately 9876 ye