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    Abstract The four major sections in this  Third International Handbook  are con-
cerned with: (a) social, political and cultural dimensions in mathematics education; 
(b) mathematics education as a  fi eld of study; (c) technology in the mathematics 
curriculum; and (d) international perspectives on mathematics education. These 
themes are taken up by 84 internationally-recognized scholars, based in 26 different 
nations. Each of the  Handbook ’ s  four sections is structured on the basis of past, 
present and future aspects. The  fi rst chapter in a section provides historical perspec-
tives (“How did we get to where we are now?”); the middle chapters in a section 
analyze present-day key issues and themes (“Where are we now, and what recent 
events have been especially signi fi cant?”); and the  fi nal chapter in a section re fl ects 
on policy matters (“Where are we going, and what should we do?”). An overview of 
the major common recurring themes and issues in the  Handbook  is presented. It is 
argued that mathematics education research has a vitally important role to play in 
improving mathematics curricula and the teaching and learning of mathematics. As 
a result of the expertise, wisdom, and internationalism of both authors and section 
editors, this  Handbook  provides an invaluable, state-of-the-art compendium of the 
most recent, and promising, developments in the  fi eld.  

    Keywords Globalization and mathematics education • History of mathematics 
education •  International Handbook of Mathematics Education  • Mathematics 
education research • Mathematics education policy • Social turn • No Child 
Left Behind • Technology in mathematics education 

 There are a number of facts about this  Third International Handbook  that should 
be made clear at the outset. These are:

   All 31 chapters were speci fi cally written for this  • Handbook.  There is no chapter 
in this  Handbook  which appeared in either the  fi rst  International Handbook of 
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Mathematics Education  (Bishop, Clements, Keitel, Kilpatrick & Laborde,  1996 ) 
or the  Second International Handbook of Mathematics  (Bishop, Clements, 
Keitel, Kilpatrick & Leung,  2003 ).  
  Although authors were expected to pay special attention to developments in • 
scholarship, and in practice, that have occurred since the publication, in 2003, of 
the  Second International Handbook,  this  Third International Handbook  should 
not be seen merely as an update of the earlier handbooks. From the beginning, 
the editors aimed for a state-of-the-art compendium that identi fi ed and examined 
four major dimensions of contemporary mathematics education.  
  The contents of this  • Third International   Handbook  are consistent with the inclu-
sion of the word “International” in the title. Altogether, there are 84 authors who 
contributed to the 31 chapters, and at the time the chapters were written (between 
September 2010 and December 2011), the authors were working in a total of 26 
nations: Australia, Austria, Brazil, Canada, China, Colombia, Czech Republic, 
Denmark, France, Germany, Hong Kong, Iran, Israel, Italy, Japan, Malaysia, 
Mexico, New Zealand, Portugal, Singapore, Spain, Sweden, The Netherlands, 
UK, USA, and Venezuela. Although we would have liked the  Third Handbook  to 
have been even more international than it is in its outlook, we recognize that 
given that there were to be only 31 chapters, it would not have been realistic, or 
prudent, to have attempted to have more nations represented among the authors.  
  In July 2010 the editorial team met for a week to discuss the structure, likely • 
chapter emphases, and authors for the  Third Handbook.  The  fi rst decision made, 
at that time, was that there would be the following four sections:

     – Section A:  Social, Political and Cultural Dimensions in Mathematics 
Education;  
    – Section B:  Mathematics Education as a Field of Study;  
    – Section C:  Technology in the Mathematics Curriculum; and  
    – Section D:  International Perspectives on Mathematics Education.  
  We recognized that these sections did not cover all of the important areas of  –
mathematics education—but we chose these major themes after re fl ection on 
what we thought offered the best follow-up potential to the  Second Handbook , 
in terms of developments between 2003 and the present.      

   It was also agreed that each section would be structured on the basis of past, pres-• 
ent and future aspects. Thus, the  fi rst chapter in each of the four sections is con-
cerned with analyses of historical antecedents (“How did we get to where we are 
now?”); the “middle” chapters provide analyses of present-day key issues and 
themes (“Where are we now, and what events since 2003 have been especially 
signi fi cant?”); and the  fi nal chapter in each section re fl ects on policy matters 
(“Where are we going, and what should we do?”). As far as we know, this 
 Handbook  is the  fi rst major mathematics education publication to adopt, con-
sciously, this past–present–future organizational structure.  
  Each author was selected, jointly by the editors, on the basis of her or his recog-• 
nized excellence and experience in relation to the theme that needed to be 
addressed in a chapter.     
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   Major International Developments 
in Mathematics Education Since 2003 

 I have read each chapter in this  Handbook  several times. One cannot read the 
chapters carefully without beginning to recognize the pervasiveness of certain 
in fl uences on the  fi eld of mathematics education. It is not my intention here to com-
ment on each chapter in the  Handbook —the section editors will have the opportu-
nity to do that in their own introductions, placed at the beginning of the sections. 
Rather, I wish to draw attention to several major developments, and sometimes 
associated tensions, over the last decade. 

   The “Social Turn” Versus Control Groups, 
Random Assignment, and Randomized Trials 

 The  fi rst major development has been in relation to what Lerman ( 2000 ) called the 
 social turn  in mathematics education research. Many of the authors (especially of 
chapters in Sections  A  and  B  of this  Handbook ) draw attention to the increasing use 
of socio-cultural theories in the  fi eld. Some see the selection, use and re fi nement of 
such theories as the main way by which mathematics education is developing into a 
discipline in its own right. This emphasis on the social, cultural and political aspects 
of mathematics education has resulted in many of the traditional assumptions in 
mathematics education, about  who  should study  what  mathematics, and  why , being 
problematized. In relation to issues associated with the call for “mathematics for all,” 
traditional concepts of “disadvantage” have been questioned and re-de fi ned, and tra-
ditional classroom discourse patterns have been subjected to scrutiny, especially 
from vantage points offered by different theorists. Issues associated with the role of 
assessment have never been far away, and the matter of what should constitute the 
most appropriate forms of assessment in a given context is widely discussed. There 
has also been much discussion and research on the concept of teachers as research-
ers, and on what collaboration might mean in different areas of mathematics teaching 
and mathematics education research. Globalization tendencies have been, and con-
tinue to be, scrutinized from various theoretical perspectives. 

 An interesting feature of the last decade has been the roles and status of mathe-
matics education researchers in the USA, where the 2001 Federal Education initia-
tive  No Child Left Behind  (NCLB) Act heralded a series of signi fi cant reforms 
which sought to improve student, teacher, school, and system performance in math-
ematics through test-based school accountability (Learning Point Associates,  2007 ). 
The NCLB Act called for education policy to rely on a foundation of  scienti fi cally-
based research  which employed rigorous methodological designs and techniques, 
including control groups, random assignment, and randomized trials. National 
Science Foundation (NSF) grant applicants were strongly advised to strive for ran-
domized designs, and the Department of Education’s 2002–2007 strategic plan (see 
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Shavelson & Towne,  2002 ) stated that, by 2004, 75% of new research and evalua-
tion projects funded by the Department which address causal questions should use 
randomized experimental designs. Mathematicians, as well as mathematics educa-
tors, were expected to be included in mathematics education research teams. The 
tension between those requirements and the spirit of Lerman’s ( 2000 ) social turn is 
discussed in several chapters in this  Handbook .  

   Technology 

 Some of the authors in this  Third International Handbook  make it very clear that 
these days the world of mathematics education is changing very rapidly, and that 
technology is a major factor in fl uencing the directions of change. Writers in Sections 
 C  and  D  of this  Handbook  emphasize that recent technological developments are 
challenging traditional views on curriculum, teaching, learning, and assessment. 
What forms of curriculum, teaching, learning, and assessment are the most appro-
priate given the rapid technological developments? How can teachers keep up with 
developments and, simultaneously, cope with their often-too-heavy teaching loads? 
Given recent developments, what should algebra, geometry and calculus curricula 
look like in the future? What should proof in school mathematics look like? What 
technological aids should students be allowed to use in examinations, and what are 
the implications of that question for those responsible for developing policies with 
respect to assessment and evaluation? 

 Given the rapidity of ongoing technological developments, and the increasing 
reach of new technologies into even remote areas of the world, one cannot help won-
dering whether in 20 years time, say, there will be an agreed international mathemat-
ics curriculum. Many writers committed to the need to link curricula and teaching to 
social and cultural factors view such a possibility as extremely unwelcome. Issues 
associated with online and other distance forms of mathematics education are fre-
quently discussed, and there is a concern that despite the socializing potential of new 
technology, an international mathematics curriculum would result in mathematics 
education becoming even more separated from local aspects of culture than it is now.  

   Globalization and Internationalization 
of Mathematics Education 

 When the  Handbook  editors initially met to work out the  Handbook  structure, 
chapter titles, authors, etc., it was agreed that it would be wise to try to avoid unnec-
essary repetition. In particular, it was agreed that we should try to restrict, to just a 
few chapters, discussion of the in fl uence of the International Association for the 
Evaluation of Educational Achievement’s (IEA’s) “Trends in Mathematics and 
Science Study” (TIMSS), and the Organisation for Economic Co-operation and 
Development’s (OECD’s) “Programme for International Student Assessment” 
(PISA). Despite the best efforts of our editors, we failed in this regard, largely 
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because many authors recognized the huge impact that TIMSS and PISA (and other 
international studies such as the Learner’s Perspective Study—LPS) have had dur-
ing the past decade. 

 There is a concern that TIMSS, PISA, and other international testing programs 
will have a standardizing effect on school mathematics that will cramp promising 
developments arising from the “social turn” in research. But some authors have 
argued that despite this potential danger, these international studies have drawn 
attention to well-performing nations like Japan, Singapore, Hong Kong, and Finland 
and have more or less forced researchers and policy makers to face the question: 
“Why have the students in such nations performed so well—and why have students 
in some extremely well-resourced nations performed considerably less well?” This 
has given rise to additional questions like: “How can we make mathematics educa-
tion research more responsive to national needs, as those needs are perceived by 
politicians and education policy makers?” The possibility that in fl uential policy 
makers do not regard the results of much mathematics education research as useful 
has been raised.  

   Who Should Read This Handbook? 

 As I read the draft chapters of this  Third International Handbook  I often found 
myself thinking that all mathematics educators, including mathematics teachers at 
all levels, should read some or all of the chapters. Then, when teaching graduate 
classes, I often thought that all of my graduate students would bene fi t from reading 
some of the chapters. I certainly intend to use this  Handbook  as a text for my future 
graduate students and, of course, I hope that other persons teaching graduate math-
ematics education students will do the same. 

 Various  Handbook  authors have drawn attention to the tendency for much math-
ematics education research to be carried out in teams that include school teachers 
and mathematics educators normally based outside of schools. Every person 
involved in collaborative studies of this type would likely bene fi t from becoming 
aware of what authors in this  Handbook  have said. 

 Chapters in this  Handbook  can provide important insights into how teachers and 
researchers around the world are working towards providing answers to issues that 
can no longer be ignored. For example, we need to answer questions such as: “What 
can a school do if it wants to engage all of its students actively and productively in 
relevant mathematics learning?” And, “What about those outside of the normal 
school and college system (many adults, for example) who want to learn 
mathematics?—What should we be doing, for them, to facilitate top-quality, and 
satisfying mathematics learning?” 

 This  Handbook  is the most-internationalized of all mathematics education hand-
books that have been prepared thus far. Its chapters provide up-to-the-minute, state-
of-the-art reviews on major themes; invariably, there has been an attempt to make 
readers aware of the international spread of opinion, methodologies, research and 
practice. The  Handbook  provides much insight, not only from researchers in the 
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traditional European and North American nations but also from researchers in many 
other parts of the world. Throughout, any suggestion that the best mathematics edu-
cation research wisdom has largely emanated from “the West” has been problema-
tized, and basic questions—such as: “Why have Confucian-based cultures generated 
such productive forms of school mathematics?”—have been carefully considered. 
Authors charged with the responsibility of presenting historical perspectives (and 
authors of some of the other chapters, too) have deliberately argued from interna-
tional, global, vantage points rather than from distinctly Western vantage points.  

   Whither Mathematics Education? 

 I have been privileged to work on the three Springer/Kluwer international hand-
books on mathematics education. For almost all of my professional career I have 
worked in the  fi eld of mathematics education, and it has been a matter of principle 
for me to be able to say why I believe, strongly, that mathematics education is a 
crucially important  fi eld of endeavour. 

 Mathematics is one of the few areas in an individual’s life in which she or he is 
required to spend between three and  fi ve hours per week (and, in addition, more hours 
on homework or with a tutor), for between 10 and 12 years (at least) studying a curricu-
lum de fi ned by others. What a waste of everyone’s time, energy, and money, if students 
do not learn school mathematics as well as they possibly can, so that they develop an 
interest in the subject and an appreciation of its power to help them deal ef fi ciently with 
important everyday problems. Furthermore, I believe that success with the subject is 
likely to be associated with greater satisfaction in later life (because successful students 
are more likely to take up vocations of their choice, or gain entry to a wider range of 
courses in higher education institutions). From a national perspective, the bene fi t of hav-
ing a mathematically-competent citizenry is, it is often asserted, likely to result in strong 
economic performance (or, at least, stronger than would be the case if most citizens were 
not mathematically competent). Thus, it is important that research be conducted which 
will take into account students’ attitudes towards mathematics, as well as their mathe-
matical problem-solving and problem-posing performances. 

 But if mathematics education research is important, then how well are we doing in 
fostering the highest possible quality of mathematics learning as a result of our math-
ematics education research? Let us not put our heads in the sand on this matter. There 
is certainly a lot of room for improvement! The nation which has the most quali fi ed 
mathematics education researchers is probably the USA—yet, many indicators (includ-
ing results on international comparative studies) suggest that many US students fail to 
learn mathematics well. How could that be the case, considering the amount of research 
that has been conducted, and published within the USA, over so many years? 

 It is well known that many students, in most nations (perhaps all nations), experi-
ence dif fi culty in understanding fractions, the four operations with integers, and 
elementary algebra. We need to face the reality that many learners experience much 
dif fi culty in mathematizing situations for which mathematical approaches to prob-
lem solving would be informative and ef fi cient. Why has there not been a marked 
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improvement, given the large amount of mathematics education research conducted 
around the world, and over a very long period of time, with respect to such funda-
mentally important curriculum matters? Should our standard curricula and teaching 
approaches be problematized and reconceptualized? Various chapters in this  Third 
Handbook  consider issues such as these. 

 I could say much more—but perhaps, now I have succeeded in stimulating your 
interest and arousing an argumentative spirit within you. I should leave the core of 
what is said in this  Third International Handbook  to our team of very competent 
authors .  As you read each chapter, I urge you to re fl ect on the basic question: 
Whither mathematics education?   
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  Abstract   There are eight chapters in this  fi rst main section of the  Third International 
Handbook of Mathematics Education  and, altogether, there are 22 contributing 
authors, from 13 different nations. The  fi rst chapter, prepared by the  fi ve editors of 
the  Third Handbook , provides historical perspectives on how far we have progressed 
towards the goals of mathematics for all—and also on different interpretations of 
that goal—over the past 200 years. The authors of the other chapters present various 
theoretical positions that are informing mathematics education researchers as they 
strive to achieve more equitable and effective environments in which the teaching 
and learning of mathematics occurs. Cultural, social, linguistic and political factors 
that not only affect views on the nature of mathematics, but also the structuring of 
curricula and education environments, are emphasized.  

  Keywords   De fi cit models in mathematics education  •  Disadvantage in mathematics 
education  •  Equity in mathematics education  •  Language and mathematics learning  
•  Numeracy  •  Social justice in mathematics education  •  Social turn in mathematics 
education  •  Sociocultural directions in mathematics education  •  Transition between 
contexts            

 In Chapter   1    , the editors argue that historically the acceptance of reckoning or 
mathematics as something to be taught in classrooms came rather late. Although, 
immediately after the invention of printing, reckoning books for independent learning 
appeared in Europe, and early in the 16th century private reckoning schools for 
bourgeois pupils were operating in central Europe, all of this happened rather slowly. 
At  fi rst, printed arithmetics were written in Latin, but then followed vernacular 
texts—like the famous arithmetic book written, in a German language, by Adam 
Ries. But it was mainly the children of wealthy bourgeois families in cities—and 
almost always boys—who attended such schools and usually the emphasis was on 

     Part I 
  Introduction to Section A: Social, 

Political and Cultural Dimensions in 
Mathematics Education 

        Christine   Keitel      
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Freie University ,   Berlin ,  Germany   
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mechanistic, rule-based calculations. Although famous mathematicians like, for 
example, Descartes and Leibniz, were advocating that their own revolutionary 
mathematical discoveries (e.g., Descartes’ “Cartesian Geometry” and Leibniz’s 
“Calculus”) be taught in schools and universities, those who ultimately went on to 
study any form of higher mathematics were few in number. 

 High-level schools and universities were rare and expensive, and in any case, 
within such institutions mathematics was rarely regarded as a subject of educational 
value. Not only was the number of persons capable of teaching mathematics beyond 
elementary arithmetic small, but also general parental attitudes to schooling, the 
economic circumstances of most families, and social and psychological presupposi-
tions and prejudices about mathematical ability or giftedness, combined to condemn 
forms of mathematics education into a precarious position. Mathematics teaching 
was the domain of the private tutor or the barely mathematically literate teacher in 
private schools. Chapter   1     identi fi es a historical progression underlying the evolu-
tion of the current expectation that relevant and applicable mathematics education 
should be available to all people: the sequence begins with schooling for all, and 
proceeds to arithmetic for all, to mathematics for all, and to quantitative or 
mathematical literacy for all. 

 In mathematics education research and practice today there is a noticeable change 
in approaches to researching the diverse social, political and cultural dimensions of 
mathematics education. In Chapter   2    , Eva Jablonka, Margaret Walshaw and David 
Wagner provide an overview of a growing number of theories that are allowing us 
to widen our perspectives on these dimensions. Jablonka et al. identify and discuss 
theoretical trends and provide critical discussion not only of the theories themselves 
but also of the ways they are being used to discuss and critique research and prac-
tices in mathematics education. The authors successfully summarize, compare and 
exploit theories and their applications from research presented at the annual meetings 
of the International Group for the Psychology of Mathematics Education (PME). 

 Past research has largely characterized disadvantage as an individual or social 
condition that somehow impedes mathematics learning. That approach resulted in 
the marginalization of individuals whose physical, racial, ethnic, linguistic and 
social identities were different from normative identities constructed by dominant 
social groups. Recent studies have consciously avoided equating difference with 
de fi ciency and instead have sought to understand mathematics learning from the 
perspective of those whose identities are not consistent with norms constructed by 
dominant social groups. With this way of thinking, traditional concepts of “disad-
vantage” can be interpreted as having not only been socially constructed but also as 
having perpetuated disadvantage among certain types of individuals. Overcoming 
disadvantage can be achieved by analyzing how learning scenarios and teaching 
practices can be more  fi nely tuned to the needs of particular groups of learners, 
empowering them to demonstrate abilities beyond the limits generally set and 
expected within dominant discourses. 

 In Chapter   3    , Lulu Healy and Arthur Powell consider—under the heading 
“Understanding and Overcoming Disadvantages in Mathematics”—theoretical and 
methodological perspectives associated with the search for a more inclusive math-
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ematics education, one which generally perceives and conceptualizes the role of the 
teachers as active participants in the process of researching and interpreting 
students’ learning. Drawing from examples from a diverse range of learners including 
linguistic, racial and ethnic minorities, as well as deaf and blind students, the authors 
argue that by carefully studying and trying to get a much deeper understanding of the 
learning processes of such students we may not only be able to design pedagogi-
cal means to allow children to learn better, but also to better understand mathemat-
ics learning in general. 

 Cristina Frade, Nadja Acioly-Régnier and Li Jun described the aim of Chapter 
  4    —titled “Beyond De fi cit Models of Learning Mathematics: Sociocultural 
Directions for Change and Research”—as providing a theoretical exposé of the 
inherent weaknesses of de fi cit models. The identi fi cation of those weaknesses only 
came to be recognized following major paradigmatic changes in mathematics 
education research which drew attention to new perspectives on learning. Whereas, 
previously, de fi cit models were foregrounded in research designs, they have now 
been replaced by a wide variety of theoretical directions for studying diverse 
approaches to learning mathematics. This has resulted in an acceptance of the need 
for richness and variety in research practices, so that approaches can be studied, 
compared, and mutually applied and improved. Psychological and quantitative 
approaches and methods are now increasingly complemented, or even replaced, by 
new directions that rely on social and anthropological theories and methods. Rather 
than reviving ideas about de fi cit research in mathematics education, Frade et al. 
present sociocultural perspectives of learning mathematics, and show how these 
perspectives demand answers to important questions that were not even considered 
when de fi cit models of learning framed research. Having placed the main tradi-
tional markers of discrimination in school mathematics—gender, social class and 
ethnicity—within a perspective of social justice, the chapter concludes with a 
re fl ection on equality in terms of the democratic principle of meritocracy in math-
ematics education. 

 The recognition by recent researchers that learning mathematics is a culturally-
in fl uenced activity has become increasingly more apparent as research aims, tech-
nological advances, and methodological techniques have diversi fi ed, enabling more 
detailed analyses of learners and what they learn. Increased opportunities for 
studying learners in different cultural, social and political settings have also been 
provided by online access to results of international benchmark testing programs. 
The availability of data sets from large-scale quantitative studies—like, for example, 
“Trends in International Mathematics and Science Study” (TIMSS) and the 
“Program for International Student Assessment” (PISA)—and from comprehen-
sive qualitative studies—like the international “Learners’ Perspective Study” 
(LPS)—have facilitated careful investigation of research questions about learners 
and the contexts in which they learn. In Chapter   5    , “Studying Learners in Intercultural 
Contexts,” Yoshinori Shimizu and Gaye Williams point to how results and methods 
from large-scale quantitative studies have stimulated questions that demand qualita-
tive research designs for their exploration. The increasing adoption of qualitative 
research has raised awareness with respect to the importance of historical, social 
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and cultural perspectives when considering the dimensions of learning. This raises 
questions about the roles of “local” theories in investigations involving intercul-
tural analyses. 

 In Chapter   6    , “Learners in Transition Between Contexts,” Tamsin Meaney and 
Troels Lange explore conceptions of learners in transition between contexts, and 
evaluate pedagogical practices that have been advocated for such learners. 
They point out that learning occurs as learners re fl ect on their transition between 
contexts, particularly when there are differences in what content knowledge is 
valued, the relationships between participants, and how activities are undertaken. 
From this perspective, productive pedagogical practices for learners in transition are 
those that build and sustain relationships between learners and mathematics and 
between learners and others, including especially those that lead outside the math-
ematics classroom. Meaney and Lange look, for their inspiration, speci fi cally at 
examples of pedagogical practices that draw on principles associated with ethno-
mathematics and critical mathematics education. 

 Chapter   7     provides a focussed discussion of the goals and achievements of a 
movement that is concerned with adults’ mathematics education (AME) as a  fi eld of 
study and practice. Jeff Evans, Tine Wedege and Keiko Yasukawa draw attention to 
a broad range of settings for teaching and learning, as well as for research. AME, 
whose activities have developed in a dynamic context of globalization, competition, 
and social insecurity, has faced the same struggle for its justi fi cation, in terms of 
humanistic and human capital goals of education, that adult education and lifelong 
education have been facing over the last half-century. This struggle is well re fl ected 
in current AME practices, research and policy. Evans et al. formulate critical 
perspectives for examining AME in the three connected dimensions of practice, 
research, and policy, always with the intention of clarifying assumptions, concepts, 
and actions with respect to crucial areas. Thus, for example, they examine multiple 
and contested meanings of key terms like “numeracy,” and point out that de fi nitions 
vary depending on whether they seek to foreground the needs of individual learners 
or whether they are more concerned with particular economic imperatives (such as 
“needs” of the labour market). Evans et al. illuminate how variations in such 
de fi nitions can affect the experiences of AME learners and practitioners. They prob-
lematize ideas associated with “the transfer of learning” of mathematics from school 
to work, and from formal to non-formal or informal learning situations. They argue 
that because a new international survey of adults’ skills—the OECD-sponsored 
Program for International Assessment of Adult Competencies (PIAAC) is now 
being conducted—it is timely to question what such surveys can tell us about the 
development of AME as a  fi eld, and to consider which questions need to be pursued 
independently. 

 In the last chapter of Section A, Chapter   8    , on “Politics of Equity and Access in 
Teaching and Learning Mathematics,” Neil A. Pateman and Lim Chap Sam, besides 
clarifying de fi nitions of equity and access, brie fl y contrast two philosophical posi-
tions on the nature of mathematics and speculate about the consequences of these 
different positions for equity and access. They raise the question “whose mathe-
matics?” and provide a developing viewpoint on how mathematics learning depends 
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on equity and access for students. After considering the roles of mathematics 
teachers and how these are related to equity and access for students, they broaden 
their discussion to consider political in fl uences on both teachers and learners 
of mathematics. Their observations relate to the role that politics plays at different 
levels in in fl uencing access and equity for teaching and learning mathematics. 
Pateman and Lim illustrate their position through a discussion of particular 
examples, some from history, and others documenting more recent events. Finally 
they offer a brief discussion of several international cases which, they believe, 
demonstrate how a form of colonization is occurring in relation to contexts in which 
authorities insist on an “English- fi rst” policy whereby the language of instruction in 
school mathematics must be English despite the fact that English is not the pupils’ 
 fi rst language.       
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to learn mathematics. However, it was not until well into the 20th century that 
“mathematics for all” became an achievable goal. Before then, the geographical 
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ity) of teachers capable of teaching mathematics, parental attitudes to schooling, 
economic circumstances of families, and social and psychological presuppositions 
and prejudices about mathematical ability or giftedness, all in fl uenced greatly 
whether a child might have the opportunity to learn mathematics. Moreover, in 
many cultures the perceived difference between two social functions of mathemat-
ics—its utilitarian function and its capability to sharpen the mind and induce logical 
thinking—generated mathematics curricula and forms of teaching in local schools 
which did not meet the needs of some learners. This chapter identi fi es a historical 
progression towards the achievement of mathematics for all: from schooling for all, 
to arithmetic for all, to basic mathematics for all; to secondary mathematics for all; 
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 “Mathematics for all” is the kind of goal that anticipates a world in which all 
people have the opportunity to learn, and bene fi t from learning, mathematics. This 
chapter offers historical perspectives, not only on who has had the opportunity to 
learn mathematics, but also on forms of mathematics that have been embraced by 
the expression “mathematics for all.” We take that expression to mean a situation in 
which all living people, in all nations, at any particular time, will have formally 
studied, or are studying, or will be expected to study at least some form of mathe-
matics. There is also an implied additional assumption that studying mathematics 
will bring associated bene fi ts—personal, social, and political—for all. 

 Our decision to interpret “mathematics for all” in that way means that we shall 
not be focussing on higher-order mathematics as found in universities. We shall be 
more concerned with providing a historical analysis of how, gradually, during the 
19th and 20th centuries, more and more people gained the opportunity to study 
mathematics. Our decision implies that part of our analysis needs to be concerned 
with the concept of “schooling for all” because progress towards mathematics for 
all, as we are interpreting it, presupposes schooling for all. 

   Towards Mathematics for All 

 Perhaps the best-known set of statements on “mathematics for all” is a collection 
of 22 papers (Damerow, Dunkley, Nebres, & Werry,  1984  ) , published in 1984 by the 
United Nations Educational, Scienti fi c, and Cultural Organization (UNESCO   ). 
Since that publication, there have been many calls for “mathematics for all” 
(e.g., Gates & Vistro-Yu,  2003 ; Krygowska,  1984  ) , or variations or extensions of 
that theme, such as “algebra for all” (e.g., Viadero,  2009  )  and “numeracy for all” 
(e.g., Robinson,  1996  ) . 

 One of the most stimulating papers in the UNESCO    collection was jointly pre-
pared by Peter Damerow   , of the Max Planck Institute for Human Development and 
Education in Germany, and Ian Westbury   , of the University of Illinois. Damerow 
and Westbury  (  1984  )  addressed the problem of designing a mathematics curriculum 
which meets the mathematical needs of all students in a nation. They asserted that 
history had shown that in such efforts the politics of the situation inevitably led to a 
curriculum which met the needs of only a small group of students. They maintained 
that that was precisely what had happened, in many nations, during the “modern 
mathematics” era from the mid-1950s to the mid-1970s. 

 In the following passage, Damerow et al.  (  1984  )  identi fi ed a major stumbling 
block in efforts to achieve “mathematics for all”:

  Mathematics curricula were developed for an élite group of students who were expected to 
specialize in the subject, and to study mathematics subsequently at higher levels in a tertiary 
institution. As education has become increasingly universal, however, students of lesser ability 
and with more modest vocational aspirations and daily life requirements have entered the 
school system in greater numbers. A major problem results when these students are exposed 
to a curriculum designed for potential specialists. This same type of traditional curriculum 
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has frequently been transferred to developing and third world countries where, because of 
different cultural and social traditions, the inappropriateness for general mathematics education 
has only been compounded. (p. 4)   

 Notice how Damerow    et al. assumed that students have different “abilities” with 
respect to mathematics, and that a curriculum for “élite” students would not be 
suited to the needs of other students (Kamens & Benavot,  1991  ) . 

 In another paper in the 1984 collection, Ben Nebres   , of the Philippines, intro-
duced the twin concepts of vertical and horizontal curriculum relationships. He 
argued that education authorities in developing countries typically kept their eyes 
on vertical curriculum requirements in developed countries, because they not only 
wanted their élite students to be quali fi ed to study in developed countries, but they 
also wanted their own graduates to be professionally accepted for registration 
purposes in those nations. Nebres  (  1984  )  pointed out that this resulted in local 
curricula in developing countries failing to meet the needs of the majority and, 
indeed, failing to provide courses that were of interest, or suitable, for, most local 
students. 

 Historically, the numbers of students permitted to study mathematics, formally, 
have varied from community to community, from nation to nation, and from era to 
era (Gates & Vistro-Yu,  2003 ; Li & Ginsburg,  2006 ; Wu & Zhang,  2006  ) . Even 
within the same community, or the same school, at a particular time, there may not 
be agreement on which students should be allowed to study the different forms of 
mathematics that are offered. 

 If everyone is to study mathematics then should there be a “core” mathematics 
curriculum, and if so, what should that core mathematics curriculum look like? 
And, to what extent should the mathematics-for-all expectation take into account 
cultural factors and individual differences? Should “mathematics for all” mean 
that students in schools in Paris, France, be taught the same mathematics as stu-
dents in schools in the remote and mountainous regions of Vietnam? If one 
answers no, then immediately should follow the uncomfortable but important 
question, why not? H. R. W. Benjamin   ’s  (  1939  )  classic  Saber-Tooth Curriculum  
helped us recognize that there are important areas of life—like, for example, 
sports—in which it makes little sense for everyone to be asked to learn and practise 
the same skills. It may not be reasonable to require all people everywhere to learn 
the same mathematics. 

 In all societies, most adults use what Bishop  (  1988  )  called “small-m” mathematics, 
on a daily basis. They count, reason, and use concepts like “more,” “less,” “the same,” 
and so forth, to perform actions in appropriate sequences. We all estimate and mea-
sure context-relevant quantities involving money, distances, times, capacities, areas, 
and other quantities. In this chapter we take such ethnomathematical practices for 
granted and focus more on the “big-M” forms of Mathematics (Bishop,  1988  )  that 
are offered in formal education institutions. 

 The perspectives we provide in this chapter will mainly take account of develop-
ments over the past 200 years. The coverage provides a broad sweep, and it has not 
been possible to take account of changing circumstances in all nations. 
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 From our perspective, any scholarly discussion of mathematics-for-all phenomena 
ought to address the following questions:

    1.    Should all school children be expected to study mathematics, and if so what 
mathematics and for how long?  

    2.    Should different students in different cultural settings study the same 
mathematics?  

    3.    Should different students in the same nation, and even at the same school or college, 
study the same forms of mathematics?     

 Although these questions appear to be straightforward, they can be interpreted in 
different ways. 

 In this chapter we identify progress towards “mathematics for all” by providing 
commentary on the history of the development of the concepts of “schooling for all,” 
“arithmetic for all,” “basic mathematics for all,” “secondary school mathematics for 
all,” “mathematical modelling for all,” and “quantitative literacy for all” (or “numeracy 
for all”).  

   Schooling for All 

 Table  1.1 , which is adapted from the United States’ Commissioner of Education’s 
reports for 1905 and 1907, shows proportions of people, in 37 nations and states on 
6 continents, who were enrolled in schools around 1900. Entries are suggestive of 
the acceptance, or otherwise, of formal schooling in the various countries and states 
that are listed.  

 Around 1900, many school-age children, in many parts of the world, were not 
enrolled in a school. In some nations—for example, in regions now known as Bhutan 
and Brunei Darussalam—there were no formal schools, although there were small 
local temple- or mosque-related arrangements in which mainly religious knowledge 
was taught (Horwood & Clements,  2000  ) . 

 School enrolment was one thing and attendance another. Although Table  1.1  
indicates, for example, that percentages of children enrolled in schools in the USA 
were relatively high, many boys in the north-eastern and mid-western states worked 
on their parents’ farms for most of the year and attended local one-room school-
houses during winter months only (Cubberley,  1920 ; Zimmerman,  2009  ) . 
Furthermore, in the USA in 1900, “only  fi ve percent of one-room school graduates 
proceeded to urban high schools” (Grove,  2000 , p. 75). 

 More generally, at the beginning of the 20th century, school mathematics beyond 
the most elementary forms of arithmetic was not something that most people, in 
most countries, had experienced, or would experience (West, Greene, & Brownell, 
 1930  ) . In many nations, children did not attend school regularly, and often they 
received no formal instruction in mathematics at all. Thus, it would have made little 
sense at that time to try to create an international policy on “mathematics for all,” 
even if someone had thought of trying to achieve that goal. Often there was no 



111 From the Few to the Many: Historical Perspectives

school within walking distance of a child’s home; often, schools were available but 
parents did not want their children to attend them; sometimes, teachers capable of 
teaching forms of mathematics beyond the four operations and simple measurement 
were not available (Kamens & Benavot,  1991  ) . 

 Achmad Ari fi n  (  1984  ) , an Indonesian mathematician, emphasized the need for 
mathematics programs to be available in all schools in developing nations like 
Indonesia. He added, however, that such programs needed to be related to societal 
needs and cultural expectations: Although mathematical correctness in school text-
books and instruction was important, and something not to be taken for granted, 
unless there were frequent and positive interactions between schools, mathematics 
educators, and mathematicians, an acceptable mathematics-for-all agenda would be 
dif fi cult to develop and implement. But, Ari fi n argued, if well-organized school 
mathematics programs could be worked out, then this could have beyond-school 
local bene fi ts because mathematical solutions might then be applied to social 
problems. 

 Was the ideal of schooling for all achieved during the course of the 20th century? 
The short answer is no. A longer answer would elaborate on the fact that although, 
during the 20th century, schooling for all became a reality in most nations, in many 
Asian, African, and Central and South American nations it has never been achieved 
(Freire,  1996  ) . Nevertheless, in many nations, there was signi fi cant progress towards 
schooling for all. 

   Table 1.1 
  Percentage of Populations Enrolled in Schools, in Various Nations, Around 1900      

 State or 
Country 

 Approx. % 
of Population 
Enrolled in 
Schools 

 State or 
Country 

 Approx. % 
of Population 
Enrolled in 
Schools 

 State or 
Country 

 Approx. % 
of Population 
Enrolled in 
Schools 

 Ontario (Canada)  21  Sweden  14  Costa Rica  6 
 USA  21  Belgium  12  Roumania  6 
 Switzerland  20  Québec 

(Canada) 
 12  Mexico  5 

 Prince Edward Island 
(Canada) 

 20  Japan  11  Honduras  5 

 Victoria (Australia)  20  Cuba  10  Nicaragua  4 
 England and Wales  18  Cape of Good 

Hope 
 10  Portugal  4 

 Scotland  17  Argentina  9  Servia  4 
 Ireland  17  Bulgaria  9  Bombay 

(India) 
 3 

 German Empire  17  Italy  8  Russia  3 
 Norway  15  Greece  7  Egypt  2 
 The Netherlands  14  Puerto Rico  7  Burma  1 
 Austria-Hungary  14  Spain  7 
 France  14  Uruguay  6 

   Note . Data are taken from reports by the U.S. Commissioner of Education  (  1905,   1907  ) .  
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 Take, for example, the nation of Brunei Darussalam, where it was not until 1914 
that the  fi rst government-supported primary school was opened, and for many years 
even after that, most Bruneian children—and especially girls—never attended 
school (Upex,  2000  ) . It was only in the 1950s that the  fi rst government secondary 
school was opened. However, in Brunei Darussalam today, almost all children attend 
primary and secondary schools, and mathematics is a mandatory part of the curricu-
lum that they study. Likewise, in the Malaysian states of Sarawak and Sabah, which 
share their borders with Brunei Darussalam, it was not until the late 19th century 
that government-supported schools were  fi rst established, and the value and utility 
of such schools were not accepted by the majority of the local populations until well 
into the 20th century (Abu Zahari,  1977  ) . 

   Progress Towards Schooling for All 

 The principle of schooling for all was declared, con fi rmed and recon fi rmed by 
powerful organizations at various times during the 20th century. In 1948, for exam-
ple, part of the Universal Declaration of Human Rights adopted by the United 
Nations asserted that “everyone has a right to education.” In 1990, a World 
Conference on “Education for All,” held in Jomtien (Thailand), and sponsored by 
UNESCO  (  1990  ) , laid down that every person—child, youth or adult—should be 
able to bene fi t from educational opportunities designed to meet his or her basic 
learning needs. 

 The Jomtien delegates set the goal that by the year 2000 every child in every 
country should have the chance to complete at least a primary education. However, 
the goal was not reached, for in 2000 UNESCO    estimated that 16% of the world’s 
children did not attend school (Skovsmose,  2006  ) . Of those who attended school, 
about 20% failed to complete a primary school education (Bruns, Mingat, & 
Rakotomalala,  2003  ) . A World Education Forum in Dakar, Senegal, in 2000, 
reaf fi rmed the Jomtien commitment to schooling for all and added a note about the 
quality of education that should be expected in schools. The following Dakar goal 
for universal education (UNESCO,  2000  )  speci fi cally mentioned numeracy:

  Improve all aspects of the quality of education and ensure excellence of all so that recognized 
and measurable learning outcomes are achieved by all, especially in literacy, numeracy, and 
essential life skills. (Quoted in Bruns et al.,  2003 , p. 2)   

 Dakar delegates decided that strategies should be devised that would enable all 
children to receive instruction in elementary numeracy, and that this goal should be 
achieved early in the 21st century. 

 Although the Jomtien and Dakar meetings presented an optimistic face, at the 
beginning of the 21st century universal primary education was far from having been 
achieved. UNESCO   ’s  (  1998a  )   World Education Report  revealed that in some 
Southeast Asian nations (e.g., Cambodia, Indonesia and Laos) millions of children 
never attended primary school. Of those who did, many did not remain at school 
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after Grade 5 (UNESCO,  1998a,   1998b  ) . Towards the end of the century, UNESCO 
 (  1998b  )  estimated that between 100 and 140 million of the world’s primary-school-
aged children had never attended school. 

 Around 2005 there were about 860 million illiterate adults in the world, of whom 
about 60% lived in India, China, Pakistan or Bangladesh. Whereas middle-class 
families in large cities valued the processes and products of primary school arithme-
tic, that was not always the case with poor families—especially those in remote 
regions or in slum areas in large cities. Often parents of poor families found it 
dif fi cult to comprehend why their children should be required to spend many years 
in schools being drilled on “useless” facts when the children were needed at home 
or in the  fi elds (Horwood & Clements,  2000  ) . 

 Harding  (  1995  )  reported that in the 1990s well over 100 million adults aged 
between 15 and 35 were illiterate, and of these, 62% were women. Immediately 
before the  fl oods which devastated the island nation of Haiti in 2010, about 65% of 
school-age children in that nation had never attended school, and the country’s adult 
literacy rate was less than 50%. In Afghanistan, the primary-school completion rate 
dropped from 22% in 1990 to an estimated 8% in 1999 (Bruns et al.,  2003  ) . During 
the 1990s, Zambia, the Republic of Congo, Albania, Cameroon, Kenya, Madagascar, 
Qatar, Iraq, the United Arab Emirates, Bahrain, and Venezuela, made little, if any, 
progress on primary-school completion rates (Bruns et al.,  2003 ; Delors,  1996  ) . 

 Even today, many children do not get the chance to complete a primary-school 
education because they never go to school. According to data presented at a United 
Nations Summit in 2010, about 30 million school-age children in sub-Saharan 
African nations had never attended school (UNESCO,  2010  ) . In war-ravaged 
Mekong Basin nations—Cambodia and Laos, for example—many children attend 
school only spasmodically, if at all. Harding  (  1995  )  cited UNESCO data indicating 
that between 19 and 24 million children aged between 6 and 14 years in India in 
1995 had never attended school, and 60% of these were girls. According to Harding 
 (  1995  ) , almost half of the children who entered Grade 1 in India dropped out before 
they reached Grade 5, with the highest drop-out rate occurring immediately after 
Grade 1 (see also UNESCO,  1998b  ) . 

 Those who have learned to value formal education can  fi nd it dif fi cult to under-
stand why some parents avoid sending their children to school. The educated élite 
tend to think that schools provide a bridge to a better world. However, those who 
think that way have something to learn from the following comments by Ben Nebres 
 (  2006  )  on education in the Philippines:

  The  fi rst impression of a visiting mathematics educator from countries with a stronger 
mathematics education tradition in discussions with counterparts from the Philippines 
might be that of similarities in situations. As solutions begin to be discussed, however, he 
might begin to realize that beneath these similarities are greater differences. The dominant 
reality in a country like the Philippines is the scarcity of resources, both human and material. 
Five or six students have to share a textbook. Many schools lack classrooms, so classrooms 
meant for 40 children are crammed with 80 students. Or schools have double sessions, in 
some cases triple sessions, a day. Teachers are poorly trained and have to teach in very 
dif fi cult environments. (p. 278)   
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 In school education, conditions and contexts matter. 
 In the  fi rst  International Handbook of Mathematics Education , Stephen Arnold   , 

Christine Shiu    and Nerida Ellerton     (  1996  )  emphasized the potential of distance edu-
cation for improving access to mathematics learning, especially, but certainly not 
only, in geographically remote areas. For several decades, in China, India, Indonesia 
and Thailand, for example, there have been large enrolments in distance courses in 
mathematics, especially from adults seeking to qualify for professional appoint-
ments (such as teaching). Although this movement has been accelerated by develop-
ments in information and communication technologies (hereafter “ICT”), particularly 
in relation to online education, too often these developments have not given suf fi cient 
credence to local cultural and societal factors (Clements & Ellerton,  1996  ) .   

   Arithmetic for All 

   The  Abbaco  Tradition in Arithmetic 

 Modern scholarship has revealed that many aspects of current school mathematics 
curricula have descended from what has been called the  abbaco  tradition in arith-
metic (Ellerton & Clements,  2012 ; Franci,  1992 ;    Høyrup,  2005 ; Long, McGee, & 
Stahl,  2009 ; Swetz,  1987,   1992 ; Van Egmond,  1980  ) . It is likely that this tradition 
emerged from practices associated with so-called  trattati  or  libri d’abbaco , ver-
nacular Italian pedagogic manuals of commercial mathematics, accounting, and 
geometry widely used in Italian reckoning schools from the 13th century (Long 
et al.,  2009 ; Van Egmond,  1980  ) . Sharp increases in international trade and banking 
in Renaissance Europe prompted city republics to form vernacular schools in which 
commercial mathematics, accounting and writing were taught to sons of merchants 
or to apprentices with important responsibilities. 

 In Western Europe it became common for merchant-class parents to send their 
sons for two-year courses at these reckoning schools, where they learned commer-
cially-oriented  abbaco  mathematics (see, e.g., Swetz,  1987 , for details of an  abbaco  
text, the  Treviso Arithmetic , an Italian arithmetic  fi rst printed in 1478). Thus, for 
instance, in 1522, a book by Adam Ries, the noted German  rechenmeister  (reckon-
ing master), showed how the use of Hindu-Arabic numbers could simplify calcula-
tions. The language of the text was German, not Latin, and although the book was 
probably aimed at male students, Ries thought that all students should learn to use 
written methods for calculation. According to Karpinski  (  1925  ) , 40 editions of 
Ries’s arithmetics were published in the vernacular in the 16th century alone, and 
many more appeared after that. 

 According to the  abbaco  tradition, children were not expected to begin to study in 
the reckoning schools until they were about 10 years of age. Then, for several years, 
boys would prepare cyphering books in which they neatly made entries on a standard 
sequence of topics (Van Egmond,  1980  ) . They recorded rules, cases, examples and 
exercises concerned with Hindu-Arabic numeration, the four operations on numbers 
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and on quantities (e.g., distance, area, volume, capacity, time, money, angle), reduction, 
ratio and proportion tasks—usually associated with what was called the “rule of 
three”—and, perhaps, vulgar and decimal fractions and simple and compound interest 
(Ellerton & Clements,  2012 ; Fink,  1900 ; Franci,  1992 ; Høyrup,  2005  ) .  

   Pestalozzi’s Challenge to the  Abbaco  Tradition 

 In 1801 Johann Heinrich Pestalozzi, the celebrated Swiss educator, set out his 
ideas on teaching and learning in his book  How Gertrude Teaches Her Children  
(Biber,  1831 ; Holman,  1913  ) . His method was to begin with observation, to pass 
from observation to what he termed “consciousness,” and then from consciousness 
to speech. This method was applied to the teaching of reading, measuring, drawing, 
writing, numerical notation and reckoning. Pestalozzi believed that all children 
could learn arithmetic if they were provided with emotionally secure learning envi-
ronments in which instruction followed a process of human conceptualization that 
began with sensation and emphasized sensory learning. He designed object lessons 
in which children, guided by teachers, examined the shape and numerical aspects 
(such as quantity and weight) of objects, and named them. 

 Pestalozzi commented that thousands of children had to go begging in streets, 
and nobody took care of them. He thought they needed a decent job, but would only 
get one if they learned to read, to write and to do arithmetic. So, he took in as many 
“neglected” children as he could, fed and clothed them, got them helping in his 
gardens, and taught them how to spin and to weave. At the same time he taught 
them, from about the age of six, to read, to write and to do arithmetic. 

 He was not always successful, but royalty, politicians, and captains of industry 
from all over the world came to observe his efforts  fi rst hand. This meant that the 
idea of “arithmetic for all” was put squarely before early 19th-century European 
society (Holman,  1913  ) , and it would be picked up by other educators who paid 
attention to the mathematical thinking of children with special needs—including 
Edouard Séguin  (  1907  ) , the French/American educator, and Maria Montessori 
 (  1912  ) , the Italian educator (Graves,  1914  ) . 

 Pestalozzi challenged the tradition that children less than 10 years of age should 
not study arithmetic. For him, the  abbaco  tradition of delaying instruction on quan-
titative reasoning until children were about 10 years of age had resulted in many 
adults not being able to survive with dignity in a world in which quantitative rela-
tionships were important. 

 In the USA, Henry Barnard   , the  fi rst US Commissioner of Education   , was 
in fl uenced by Pestalozzi’s views (Barnard,  1859 ; MacMullen,  1991  ) , as were 
Horace Mann and the heads of the  fi rst US normal schools (Monroe,  1907  ) . 
Pestalozzi’s greatest direct in fl uence on US mathematics education, though, came 
through the writings of Warren Colburn  (  1821  ) , whose  An Arithmetic on the Plan 
of Pestalozzi with Some Improvements  persuaded many American educators that 
all children, male or female, could and should learn arithmetic from the age of six. 
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One well-regarded educator, George Emerson  (  1842  ) , described Colburn   ’s classic 
text as “the only faultless school book that we have” (p. 442). Slowly, American 
educators began to accept the premise that all elementary school children could 
learn arithmetic in meaningful ways (see, e.g., Page,  1859  ) .  

   Colonialist Assumptions 

 Primary school children who studied arithmetic at school did not always  fi nd it a 
rewarding experience. In New South Wales in the 1790s, for example, the authori-
ties at Sydney Cove, probably the most remote of all colonial outposts, re fl ected on 
how they might civilize the “ignorant and benighted heathen” who were the indig-
enous inhabitants of the great southern land formerly known as New Holland. 
Schools were established which had similar curricula to charity schools in England, 
the emphasis being on reading, writing and arithmetic. These schools failed miser-
ably because the curricula did not interest the small numbers of children who 
attended. Most Aboriginal families resisted efforts to get their children to attend 
school (Clements, Grimison, & Ellerton,  1989  ) . 

 During the 19th century an arithmetic curriculum of the  abbaco  variety was 
directly exported from England into colonies such as New South Wales, Québec, the 
Cape of Good Hope, Malaya, and India. Other countries (e.g., Spain and Portugal) 
also prescribed sequences of  abbaco -arithmetic topics in national or statewide 
arithmetic curricula (U.S. Commissioner of Education,  1891  ) . 

 After 1861, state-supported schools in England and Wales were expected to follow 
a standard arithmetic curriculum, and this expectation was reinforced by govern-
ment inspectors and a “payment-by-results” system. This same curriculum and 
payment-by-results system was translated into British colonies (Clements et al., 
1989  ; Ellerton & Clements,  1988 ; Grif fi ths,  1987 ; Horwood & Clements,  2000 ; 
Kamens & Benavot,  1991  ) , where government inspectors went from school to 
school examining children. All students in the same grade were required to be taught 
the same material to the same “standard” (Selleck,  1982  ) , but often the syllabi, the 
imported textbooks, and the modes of assessment for primary school arithmetic 
directed the teachers’, pupils’, parents’ and indeed society’s attention away from 
what was most needed by the learners (Grif fi ths,  1987  ) . 

 In the second half of the 19th century, colonial primary-school arithmetic curri-
cula emphasized the four operations on whole numbers and vulgar and decimal 
fractions, and assessment was by externally-set written examination papers which 
asked questions requiring incredibly complicated calculations. In the British colo-
nies, where payment-by-results held sway, teachers did their best to maximize their 
pupils’ examination results because the better their students’ results, the higher their 
pay. The following question, which was set by a primary school inspector in Victoria 
(Australia) in 1877, was typical:

     If 249.804 bushels of oats last 804.573 horses for 7.4 days, how many horses would 347.147 
bushels feed for the same time? (Quoted in Grif fi ths,  1987 , p. 194)   
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 This kind of arithmetic was studied in schools across the world. Even in Vietnam, 
today, there is a rigid, centralized, compulsory mathematics curriculum which origi-
nated in the French and Russian systems of education (Bessot & Comiti,  2006  ) . 
Although this curriculum can serve a good purpose in big cities, like Hanoi, it tends 
to be rejected by children and their parents in remote and mountainous provinces 
like Son La (Horwood & Clements,  2000  ) . 

 Today’s basic elementary arithmetic curriculum might be seen as the remnant of 
an  abbaco  curriculum that has been in place for many centuries— fi rst in India, then 
in Arabic nations, then in Europe and then in European colonies. By the beginning 
of the 20th century, standard textbooks setting out this kind of arithmetic, usually 
with elementary business applications, were to be found in most of the nations listed 
in Table  1.1 . Often, the language used in textbooks was not the  fi rst language for 
many learners. In the colonies, and former colonies, of European nations, textbooks 
were typically written in the dominant language of the “mother” country (Bessot & 
Comiti,  2006 ; Swetz,  1975 ; Woolman,  2001  ) . 

 Colonizing powers believed that one the most important reasons for establishing 
colonies had been to create new export markets for the motherland, and a perceived 
need to generate export income by selling school textbooks written in the home 
country to the colonies was a by-product of that kind of thinking (Swetz,  1975 ; 
Woolman,  2001  ) . Thus, for example, it was not until after the USA became an inde-
pendent nation that most textbooks used in North American schools came to be 
written by American authors (Karpinski,  1980  ) .  

   Problems that Arose in Relation to Efforts to Achieve 
“Arithmetic for All” 

 A century ago, the ideal of primary education for all was on the way to being 
achieved in some nations (e.g., in Australia, the USA, the UK, and certain Western 
European nations). In those nations, legislation had been introduced making atten-
dance at primary schools compulsory for speci fi c age-groups. Those administering 
the schools speci fi ed a curriculum for the primary school that emphasized basic 
“literacies,” and in particular, the three Rs of reading, ‘riting and ‘rithmetic. 

 In US elementary schools in the second half of the 19th century, arithmetic 
gradually became the subject which occupied the most curriculum time (Burnham, 
 1911 ; Smith,  1911 ; West et al.,  1930  ) —sometimes up to half the school day 
(   Buswell,  1930  ) . It also became “the chief source of non-promotion in the elemen-
tary school” (Buswell & Judd,  1925 , p. 7). Despite the in fl uence of Pestalozzi, 
Colburn    and Séguin   , arithmetic teaching increasingly relied on textbooks and pen-
cil-and-paper quizzes and tests (Cajori,  1907 ; Ellerton & Clements,  2012  ) . Many 
students struggled to cope with the heavy curriculum and assessment expectations, 
and young and inexperienced teachers were given daunting face-to-face teaching 
workloads. 
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 According to William Burnham  (  1911  ) , Professor of Pedagogy and School 
Hygiene at Clark University, in the USA, “a considerable ballast of unessential or 
extraneous material … crept into [arithmetic] textbooks” (p. 207). Burnham    stated 
that although it was claimed that the study of arithmetic developed “the habit of 
continuous attention,” there were “exaggerated ideas of the ef fi ciency of arithmetic 
in the cultivation of the mind” (p. 208). Some students had “little ability for work in 
mathematics,” and others were “in special danger of nervous overstrain from work 
in this subject” (p. 208). Work in arithmetic was, according to Burnham   , “a frequent 
cause of worry and interference with sleep” (p. 208). 

 Burnham  (  1911  )  called for a return to pre-Pestalozzian days when no child 
younger than 8 years would be asked to learn written arithmetic. After pointing out 
that many young children were not equal to the task of matching concrete objects 
through comparison, analysis and abstraction, he described some of the number 
relationships inherent in the standard elementary mathematics curriculum as 
“grotesque” (p. 209). Burnham    was not the  fi rst person, and certainly would not be 
the last, to introduce the concept of “ability” into discussions on whether all children 
should study the same mathematics. His comment re fl ected the fact that the concept 
of “ability” had been de fi ned and explored experimentally by the French psychologist 
Alfred Binet    (Binet, Pollack, & Brenner,  1969  ) . 

 Others argued that some children were “not interested” in arithmetic, or were 
unlikely to need to apply most of its principles in their future lives. By contrast, 
some educators (e.g., Brooks,  1904  )  maintained that since the study of mathematics 
strengthened mental faculties, all children should study it, irrespective of whether 
they liked it or would need it. These educators tended to claim that since all adults 
used arithmetic, in one form or another, all children should study it at school (see, 
e.g., Brooks,  1904 ; Page,  1859  ) . 

 The  fi nal report of the National Education Society’s  (  1895  )  “Committee of 
Fifteen,” which investigated elementary school education in the USA, included a 
well-argued section supporting the idea of “arithmetic for all.” But, the Committee 
also warned readers that requiring young children to do too much arithmetic could 
be psychologically damaging:

  Your Committee would report that the practice of teaching two lessons daily in arithmetic, 
one styled “mental” or “intellectual” and the other “written” arithmetic (because its exercises 
are written out with pencil or pen), is still continued in many schools. By this device the pupil 
is made to give twice as much time to arithmetic as to any other branch. It is contended by 
the opponents of this practice, with some show of reason, that two lessons a day in the study 
of quantity have a tendency to give the mind a bent or set in the direction of thinking 
quantitatively with a corresponding neglect of the power to observe, and to re fl ect upon, 
qualitative and causal aspects. For mathematics does not take account of causes, but only of 
equality and difference in magnitude. It is further objected that the attempt to secure what 
is called thoroughness in the branches taught in the elementary schools is often carried too 
far, in fact, to such an extent as to produce arrested development (a sort of mental paralysis) 
in the mechanical and formal stages of growth. The mind in that case loses its appetite for 
higher methods. (p. 56)   

 At the end of the 19th century, it appears that the quest for “arithmetic for all” 
had reached the point where many observers, worried about the possibility of 
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psychological damage, maintained that too much curriculum time was being given 
to arithmetic. 

 In the USA, and in many other countries, during the 20th century, the idea that 
mathematics should be “for all” was  not  meant to imply that all children should 
study exactly the  same  mathematics. The issue of who should decide which math-
ematics should be studied by which children was often debated (Reisner,  1930 ; 
West et al.,  1930  ) . During the early decades of the 20th century, universal primary 
education, and arithmetic for all, became a reality in some nations (e.g., Australia, 
Canada, France, Germany, Great Britain, and the USA). It should not be assumed, 
though, that anything like that situation was achieved in many Asian, African, and 
Central American nations. Thus, for example, in the Philippines the provisions for 
public schooling were poor, and only a tiny proportion of children attended school 
for more than 2 years. In 1905 over 700 public schools in the Philippines did not 
have an of fi cial schoolhouse (U.S. Commissioner of Education,  1907  ) . 

 It was hardly surprising that in some countries during the  fi rst decade of the 20th 
century the amount of curriculum time dedicated to arithmetic, especially mental 
arithmetic, was reduced. Nevertheless, and despite calls for change, the remnants 
of the  abbaco  curriculum—numeration, the four operations, vulgar and decimal 
fractions, percentage, and simple applications especially in the area of business 
arithmetic—remained in vogue wherever schooling occurred during the  fi rst half of 
the 20th century (Clements & Ellerton,  1996  ) . Drill-and-practice methods were in 
accord with behaviourist theories advocated by psychologists such as Ivan Pavlov 
(Todes,  1997  ) , Edward L. Thorndike  (  1921  )  and B. F. Skinner  (  1984  ) . 

 Although the value of what came to known as “basic arithmetic” would be 
challenged in the late 1950s and throughout the 1960s, at the time of the so-called 
New Mathematics (Moon,  1986  ) , it returned to centre stage in the 1970s when 
mastery learning became important (Block,  1974  ) . Then, in the last two decades of 
the 20th century, the term  numeracy  would be coined as educators sought to recreate 
a Pestalozzian approach to primary school mathematics.   

   Basic Mathematics for All 

 According to Schmidt, Cogan and McKnight  (  2010 –2011), in the 21st century 
most nations have education policies which posit that the intended mathematics 
curriculum should be the same for all primary and lower-secondary schoolchildren. 
Furthermore, after analyzing international curricula, school participation, and per-
formance data, Schmidt    et al. maintained that “even in countries that appear to be 
creating different tracks, the reality is that basic content is covered by all, with 
advanced students studying the same topics more deeply” (p. 19). They attributed 
within- and between-nation performance differences on the mathematics tests used 
in the Trends in International Mathematics and Science Study (TIMSS) mainly to 
differences in “individual student ability and effort, combined with differences in 
teacher quality” (p. 19). 
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 There can be little doubt that there were major between-nation TIMSS perfor-
mance differences, but the dif fi cult question to answer is why these differences 
occurred. It is often assumed that quality of teaching was a signi fi cant factor. In 
many developing nations, teachers were poorly trained and those brave enough to 
face the inevitable professional challenges received inadequate remuneration. 
Therefore, many capable youngsters were not attracted to teaching. 

 The availability of suitable teachers of mathematics is a problem for education 
authorities in many nations, and especially, perhaps, in some Southeast Asian 
nations and in many African nations (see, e.g., Lao Country Paper,  1996 ; Tran    Si 
Nguyen & Hoang    Van Sit,  1996  ) . According to Torres  (  1996  ) , it is paradoxical that 
the global crusade to universalize basic education and to improve its quality coin-
cided “with a notorious and global deterioration of teaching and of teachers’ condi-
tions,” which in turn led to a “massive exodus of quali fi ed and experienced teachers” 
(p. 14). It should not be imagined, however, that the quality-of-teaching factor was 
the only impediment to the achievement of basic mathematics for all. According to 
Schmidt et al.  (  2010 –2011), the relatively poor mean scores of US students on the 
International Education Association’s SIMS ( Second International Mathematics 
Study ) and TIMSS tests resulted not only from low-standard intended and imple-
mented curricula, but also from other factors such as poverty, housing, and access to 
curriculum materials. 

 It is useful to re fl ect on implications of the TIMSS results (in the mid-1990s and 
thereafter) for the mathematics-for-all objective. The TIMSS pencil-and-paper 
achievement instruments comprised questions that might be described as representing 
“core mathematics.” Most questions related to standard arithmetic or other elementary 
forms of mathematics. The fact that Asian students living in Confucian-heritage 
nations did so well on these questions suggests that most students in those nations 
learned their basic mathematical content well (or, at least, better than students in the 
nations which had lower mean scores). The implication was that if by mathematics, 
one means the kinds of basic, or core, mathematical concepts and skills tested on the 
TIMSS tests (especially those tests taken by 9- and 14-year-old students), then in 
those Confucian-heritage nations the goal of basic mathematics for all was well on 
the way to being achieved (Shin, Lee, & Kim,  2009 ; Stevenson,  1992  ) . 

 Wong  (  2006,   2008  )  distinguished between attitudes to school mathematics in 
East Asian nations that had the strongest Confucian in fl uence (he speci fi cally men-
tioned China, Japan, Korea, and Vietnam) and those in East Asian nations which 
had what he called “a gentler, Buddhist approach to life”—he speci fi cally included 
Laos and Cambodia, and might also have included Thailand in this latter category. 
Students from Confucian-heritage nations tended to perform uniformly well on 
pencil-and-paper mathematics tests, but those from more strongly Buddhist-tradition 
nations did less well. 

 Much research aimed at investigating and explaining this phenomenon has been 
conducted during the period 1980–2012. Variables such as approaches to learning, 
teaching methods, mathematics teacher education, conceptions of mathematics and 
mathematical problem solving, roles of memorization and repetitive learning, teacher–
student relationships, achievement-orientation, especially in relation to mathematics 
examinations, collectivism, values, high expectations of parents, and attributions of 
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success to effort, have been studied (e.g., Bishop,  1999 ; Bishop & Seah,  2008 ; Clarkson, 
Bishop, & Seah,  2010 ; Leu & Wu,  2006 ; Schmidt, Blömeke, & Tatto,  2011  ) . 

 Ramakrishnan Menon  (  2000  ) , who had much experience working as a mathe-
matics educator in both Southeast Asia and North America, asked whether American 
families would be prepared to change their patterns of living in order that their chil-
dren might do better at school mathematics. He pointedly asked whether American 
parents, and students, would, for example, be prepared to forego regular participation 
in sporting events so that there would be suf fi cient time for students to participate 
fully in after-school mathematics tutorial sessions. 

 Yet, Asian-American students participating in largely decentralized systems of 
education across the USA perform at levels comparable to those of high-performing 
students in Asian nations. After making this point, Clarke et al.  (  2006  )  commented 
that “this single illustration suggests that differences on particular measures of 
mathematical performance are at least as attributable to the cultural af fi liation of the 
students as to the particular school system attended” (p. 354). 

 From another perspective, there are data gathered within Confucian-heritage 
nations that suggest that students’ attitudes towards mathematics in those nations 
leave something to be desired. For example, in the TIMSS 1999 Repeat Study, the 
rank-order correlation for nations’ mean-performance scores and mean-attitude 
scores was an amazing, and challenging, –.74 (Ellerton & Clements,  2010  ) . There is 
also plenty of evidence, both quantitative and qualitative, that across the wide span 
of nations and cultures—from Aboriginal Australia, to Germany, to Hong Kong—
many school students do not enjoy mathematics lessons (Harris,  1984 ; Jablonka & 
Keitel,  2006  ) . 

 Leung  (  2006  )  conjectured that Confucian-heritage students’ relatively low self 
concepts in mathematics, and their apparently negative attitudes to mathematics, 
may have something to do with their having been brought up “not to be boastful” 
(p. 40). Also, high expectations for student achievement, coupled with relatively 
low achievement when compared with peers, may have resulted in “a large number 
of students classi fi ed as failures in their system, and these repeated experiences of a 
sense of failure may have further reinforced this lack of con fi dence” (p. 40). 
Furthermore, Leung    argued, “over-con fi dence may lower students’ incentive to 
learn further and cause them to put very little effort into their studying, and hence 
result in low achievement” (p. 42). Thus, Leung    conjectured, the negative correla-
tion between Confucian-heritage students’ con fi dence in mathematics and their 
achievement was something to be expected, and was not necessarily a bad thing.  

   Mathematics Beyond Arithmetic: For a Minority, 
or for the Majority? 

 It could be argued that in many nations, school curricula have been colonized so 
that they serve the needs of an élite minority, whose social backgrounds, living con-
ditions, and education privileges have often made it appear that their children are 
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“gifted” with respect to mathematics, when, in fact, they are not. On the other hand, 
there are many adults, at all levels of society, who, while agreeing that such privilege 
should not be allowed to dominate education opportunities, believe that all children 
should be taught mathematics in classes in which an uncompromised, rigorous 
traditional mathematics curriculum is followed. Some in fl uential groups—including 
many mathematicians in colleges and universities—tend to have little patience with 
educators and others who try to develop more “democratic” mathematics curricula. 

 Keitel  (  2000  )  raised the associated issue in a challenging way:

  As long as we continue to be mainly interested in the few “gifted” students, the negative 
experiences of the majority will remain. Although negative presuppositions are already 
brought into mathematics and science classrooms, they are reinforced by contradictory 
goals and by a one-sided organisation of teaching and learning. But can we still indulge or 
afford to conceptualise mathematics and science education as a special form of education 
for a few, and yet still make it compulsory for all? Should we remain reconciled to a situa-
tion in which the common learning of many students is hindered or even blocked by anxiety 
and frustration? (p. 300)   

 Until 1900, most people who studied mathematics did so mainly in primary, or 
elementary, schools. During the 20th century, however, there was an explosion in 
secondary and technical school enrolments, and in the numbers of adults attending 
mathematics classes. It was inevitable that the question of what mathematics was 
most needed in such programs would be raised. 

   Zoltan Dienes    and Abstract Mathematics for All 

 During the 20th century the idea that almost all children could pro fi tably follow 
the same mathematics curriculum was put forward from time to time. Sometimes 
this viewpoint was justi fi ed by the argument that in the past many had struggled to 
learn mathematics because of unsatisfactory curricular offerings, or because of poor 
teaching. Those who argued this way tended to believe that if teachers could be 
trained to teach rigorous forms of mathematics well, then the subject would be 
understood by all learners. This was the point of view put forward by Zoltan Paul 
Dienes  (  1960,   1964  ) . 

 Dienes    was born in Hungary in 1916 and gained a PhD in mathematics from the 
University of London in 1939. During the 1960s and 1970s he became known for 
his advocacy of the view that an uncompromising form of mathematics, which 
emphasized algebraic structures, could, if well taught, revolutionize the teaching 
and learning of mathematics for  all  children (Clements & Ellerton,  1996 ; Dienes, 
 1960  ) . Dienes   , who worked with Jerome Bruner at Harvard University in 1960 and 
1961, was given the opportunity to put his mathematics-for-all views to the test 
when, in the 1960s, he accepted a UNESCO    invitation to implement his ideas in the 
community schools of Papua New Guinea (PNG). 

 Dienes    maintained that  all  primary schoolchildren could be taught to reason 
logically, and that good teaching could accelerate that process. He himself was a 
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master teacher. Bruner  (  1963  )  wrote that those “who had been privileged to see 
Dr Dienes    at work with children” were astonished “to behold how quickly and surely 
his mathematical embodiments lead to insights that are at  fi rst intuitive and concrete 
and then more disciplined and rigorous” (p. xi). It was a matter of intense interest, 
then, from both theoretical and practical points of view, whether PNG community 
school children and teachers would be able to cope with Dienes   ’s program. 

 To cut a long story short, the implementation of the Dienes    program in PNG was 
unsuccessful. The teachers found it dif fi cult to cope with the mathematics, and the 
community school children, who were expected to learn mathematics in classrooms 
in which English was the language of instruction (but was not their  fi rst language), 
made little progress mathematically. Only a few “gifted” children did well. John 
Hayter  (  1982  )  concluded that Dienes   ’s curriculum and its associated teaching 
approaches were not in harmony with the cultures and levels of mathematical readi-
ness of either the children or the teachers.   

   Secondary School Mathematics for All 

 In 1900 the meaning of the term  secondary school  varied from nation to nation. 
One de fi nition was the type of schooling provided in schools that followed primary 
or elementary education. Another was the form of education offered to children aged 
between 12 and about 18 years. A third de fi nition associated secondary education 
with courses taken in agricultural schools or manual arts colleges (Monroe,  1913  ) . 

 At the beginning of the 20th century, most school students did not study mathe-
matics beyond primary school. In some nations, though—for example, Austria, 
France and Germany (Smith,  1911  ) —a substantial core of students studied mathe-
matics beyond arithmetic in the higher classes of primary schools and in secondary 
schools. Overall, though, only a small proportion of the world’s population had 
formally studied either algebra or geometry. Less than one percent of people living 
at the beginning of the 20th century had studied, or were studying, or would ever 
study calculus (Clements & Ellerton,  1996  ) . 

 Regulations set out by the Board of Education in England in 1904 speci fi ed the 
following minimum curriculum requirements for “secondary schools”:

  The course should provide for instruction in the English language and literature, at least one 
language other than English, Geography, History, Mathematics, Science and Drawing, with due 
provision for manual work and physical exercises, and, in a girls’ school, for housewifery. 
Not less than 4½ hours per week must be allotted to English, Geography and History; not 
less than 3½ to the language, where one is taken, or less than 6 hours, where two are taken; 
and not less than 7½ hours to Science and Mathematics, of which 3 must be for Science. 
(quoted in Maclure,  1971 , p. 159)   

 Although in some nations—in France, for example—curricular sequences for 
post-primary education had been carefully de fi ned by central authorities, at the 
beginning of the 20th century in most nations there were relatively few schools 
other than primary schools. Even in France and Germany, less than 10% of those 
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who began their primary schooling stayed on to complete a secondary education, 
and in the USA, England, and Australia, the percentage of those who stayed on was 
much less than that (Stanic,  1986  ) . 

   The Curriculum Revolution at the Beginning of the 20th Century 

 During the early years of the 20th century, many nations were prepared to reshape 
their education institutions in ways that would have been entertained by only a van-
guard of reformers during the last few decades of the 19th century. The question 
“what school subjects should be studied by whom?” was a by-product of this inter-
national tendency to reform and liberalize curricula to meet the demands of a new 
century in which more and more students were not only attending school, but were 
also staying at school for more than just a few years. 

 In mathematics education, this international tendency towards reform expressed 
itself in the preparation of a series of national reports on school mathematics pub-
lished by the International Commission on Mathematical Instruction (ICMI) (Reeve, 
 1929 ; Schubring,  2008  ) . Among the national reports to appear were papers on 
school mathematics in Australia, Austria, Czechoslovakia, France, Germany, 
Holland, Hungary, Italy, Japan, Russia, the Scandinavian countries, the UK, and the 
USA. As can be seen from that list, most—but not all—of the reports were prepared 
in European nations. 

 Mathematics educators were not the only ones who, between 1900 and 1915, sought 
to create a better world through improved school curricula, instruction, and learning 
environments. The following seven threads could be found woven into the international 
curriculum revolution of the period (Dewey,  1896,   1976 ; McMurry,  1906  ) :

    1.    Educators began to think that children of all ages should be introduced to the best 
literature from their own, and other, lands. Closely allied with this trend were 
calls for greater attention to history, and to the biographies of leading authors, 
poets, artists, monarchs, statesmen, pioneers, religious teachers, scholars, and 
scientists.  

    2.    Many educators, in many nations, believed that nature study warranted a greater 
place in school curricula. Thus, for example, it was argued that children would 
bene fi t from actively investigating insects, birds, animals, and trees within their 
own environments.  

    3.    The virtues of manual training and agricultural education were increasingly 
advocated, for all levels of schooling.  

    4.    A demand for systematic physical training of children was increasingly expressed 
and funds for gymnasia and equipment were requested.  

    5.    The view that more curriculum attention should be devoted to  fi ne arts and music 
was often put forward.  

    6.    Primary-school educators thought that many kindergarten activities would be 
better placed in primary grades and, at the other end of the primary school, 
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algebra, geometry, modern languages, and even Latin might be offered in higher 
primary grades.  

    7.    Many primary school teachers believed that more curriculum time should be 
devoted to reading, writing, and speaking, and correspondingly less time to 
arithmetic.     

 The idea was that in each school the curriculum should cover the full range of 
human thought and experience (Dewey,  1976 ; Kilpatrick,  1992  ) . 

 With respect to US school mathematics in the early years of the 20th century, 
Stanic  (  1986  )  identi fi ed four groups with different attitudes on the issue of what 
mathematics ought to be taught to students. He referred to these as (a) the  human-
ists , who defended traditional rigorous mathematics, but believed that not everyone 
could learn it effectively; (b) the  developmentalists , for whom all subject matter was 
of secondary importance because the focus of the implemented curriculum ought to 
be on individual learners; (c) the  social ef fi ciency educators , who believed that the 
study of secondary-school mathematics should be con fi ned to those who would 
obviously need mathematics in their future employment; and (d) the  social meliorists , 
who wanted all learners to have an equal chance to learn all areas of mathematics, 
but did not believe that everyone needed to study the same mathematics to the same 
level. Interestingly, all four groups thought that all students should study arithmetic, 
but that was the extent of their agreement as far as mathematics education was 
concerned (Stanic,  1986  ) . 

 Around 1900, there was much confusion in the Western world with respect to 
theoretical bases for debate on issues concerning curriculum and pedagogy. 
Adherents to faculty psychology believed that the muscles of the mind needed to 
be exercised, and that arithmetic and elementary algebra were well suited to this 
purpose (Brooks,  1904  ) . Kindergartners, on the other hand, wanted the kind of inte-
grated curriculum that had been advocated by Friedrich Froebel. 

 In Europe, England, the USA, and Australia, Herbartianist philosophical and 
pedagogical ideas had gained at least the same level of popularity as Pestalozzian 
viewpoints (Connell,  1980  ) . Herbartianists believed that the associationist psychol-
ogy of Johann Friedrich Herbart (1776–1841) held the keys to quality education. 
But other educators preferred to reject both Pestalozzian and Herbartian thinking, 
and to adopt a social Darwinian perspective (Spencer,  1861  ) . 

 At the beginning of the 20th century, Herbartianists greatly in fl uenced education 
policy in Germany and in numerous other nations, including Australia, Bulgaria, 
Canada, Chile, Finland, Japan, Mexico, Roumania, Russia, South Africa, Sweden, 
the UK, and the USA (Connell,  1980  ) . Selleck  (  1968  )  stated that whatever reserva-
tions commentators might have had about Herbart’s theories, his work had a com-
plexity, subtlety and coherence which made it “more impressive than the writings of 
comparative amateurs such as Froebel or Pestalozzi” (p. 227). During the period 
1880–1900, educators from all over the world  fl ocked to Germany to study 
Herbartianist theory. One of the key tenets in Herbartianist theory was the need for a 
“correlated” curriculum (McMurry,  1906  ) , and the view that mathematics should not 
be a separate entity in school curricula was always strong among Herbartianists. 
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 Harold Dunkel   ’s  (  1970  )   Herbart and Herbartianism: An Educational Ghost 
Story  traced the in fl uence of Herbartianism beyond Germany, and sought to explain 
why Herbartianism “blazed up like a meteor and meteorlike was extinguished” 
(p. 4). Even non-Herbartianists, like John Dewey  (  1896  ) , were in fl uenced by Herbartian 
theory. Although, in the early years of the 20th century, Herbartianism quickly lost 
any in fl uence it had on those with the power to change school mathematics, the idea 
that perhaps mathematics should not be a separate entity in school curricula would 
never disappear entirely. For example, in  1984  Jan de Lange, a Dutch mathematics 
educator, debated the proposition that all mathematical instruction should be 
integrated into other related disciplines. He concluded, controversially, that “the 
ultimate mathematics for all is no mathematics—as a separate discipline—at all” 
(de Lange,  1984 , p. 71).  

   The View that All Students Should Take the Same Rigorous 
School Mathematics Course 

 At the time of the new math(s) there was considerable optimism, especially 
among mathematicians, that school mathematics could be brought into line with 
modern developments in higher mathematics. In the USA, for example, the School 
Mathematics Study Group (SMSG) prepared texts that were intended to be appropri-
ate for all students in Grades K through 9. SMSG had a panel whose major task was 
to prepare suitable mathematics texts for non-college-bound students in Grades 7 and 
8 (“Introduction to Secondary-School Mathematics”) and in Grade 9 (“Introduction 
to Algebra”). The assumption was that by slowing the texts down—taking 2 years 
rather than 1—the same material could be learned by less-advanced and less-well-
prepared students (Begle,  1971  ) . 

 Like Dienes   ’s over-optimistic efforts with community school children in Papua 
New Guinea, SMSG’s efforts to get the same mathematics learned by all students 
were not entirely successful. Although given more time to learn, so-called slow 
learners were able to learn more mathematics, SMSG’s approach did nothing to 
address the ways in which tracking students in mathematics guarantees that they 
will have different curriculum experiences. In all these efforts, the mathematics may 
not have been suited to the needs and interests of many students, and many teachers 
were undoubtedly not ready to teach what they were expected to teach.  

   Applicable Mathematics and Modelling for All 

 Most contemporary mathematics educators believe that the mathematics-for-all 
concept should extend beyond basic skills and elementary numeracy to include non-
trivial mathematical modelling (Westwood   ,  2008 ; Wu,  2006  ) . In 19th-century 
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France and Germany there were numerous attempts to make school mathematics 
curricula more “practical,” on the one hand, or more “pure,” on the other (Glas, 
 1989  ) , and throughout the 20th century many attempts were made, around the world, 
to give school mathematics a stronger practical orientation. We consider just three 
of these attempts: Perryism, the Mathematics Applicable Project, and Realistic 
Mathematics Education. 

 As a result of ICT developments, mathematics has come to be seen, in recent 
decades, as providing one of the most potent means for “planning, optimizing, 
steering, representing and communicating social affairs” (Keitel,  2006a , p. 11). The 
practical and theoretical power of ICT working in tandem with mathematics has 
meant that models can be created which maximize the educational power, and prac-
ticality, of mathematics. 

 What is not so well known is that democratization as a result of developments in 
technology is not a recent phenomenon. The 19th century, for example, witnessed 
the greater availability of paper—and therefore textbooks, exercise books, and graph 
paper—lead pencils, pens, slates, blackboards, electricity, mechanical calculating 
machines, and personal slide rules. These developments made it easier for all people, 
including those living in remote areas, not only to gain access to, but also to learn 
and to apply, mathematics (Ellerton & Clements,  2012 ; Kidwell, Ackerberg-
Hastings, & Roberts,  2008  ) .  

   John Perry   , Perryism, and David Eugene Smith    

 Around 1900, some scholars believed that there was no reason why all children 
should not learn a form of mathematics that had structures similar to the mathematics 
employed by professional applied mathematicians. One of the leading proponents 
of this point of view was John Perry   , an Irish-born engineer and applied mathemati-
cian. When working as a mathematics instructor in Japan between 1876 and 1879, 
Perry    developed the concept of mathematics laboratories in which problem-based 
approaches to mathematics teaching and learning took advantage of technological 
developments associated with graphical analyses and the use of personal slide rules 
(Brock,  1981  ) . On returning to England, Perry    achieved considerable in fl uence over 
a period of 25 years as Professor of Mathematics and Mechanics at the Royal 
College of Science, in South Kensington, London. He worked hard to popularize 
a form of school and college mathematics education that emphasized links between 
mathematics, the physical sciences, engineering, architecture, and manual work 
(Perry,  1899,   1902,   1912  ) . 

 Perry    envisaged a form of mathematics education in which students from all 
levels of society constantly gathered data in laboratory sessions, graphed them, and 
interpreted results. He urged the regular use of squared paper, with the mathematical 
concept of function providing the key integrating theme (Brock & Price,  1980 ; 
Price,  1986,   1994  ) . Much of his teaching was to artisans studying mathematics in 
evening classes. 
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 In 1901, Perry    delivered a major address on the teaching of mathematics to a 
meeting of the British Association held in Glasgow (Perry,  1902  ) , and in 1902 his 
ideas were advocated in the USA by Professor E. H. Moore, of the University of 
Chicago—in Moore’s retiring address as President of the American Mathematical 
Society (Moore,  1903 ; Roberts,  1993,   2001  ) . During the early years of the 20th 
century,  Perryism  became a cause célèbre among many Chicago-based mathemati-
cians and mathematics educators (Moore,  1903,   1906 ; Roberts,  2001  ) . 

 Perryism was supported by groups of mathematicians and educators who saw 
Perry   ’s approaches as bringing life and relevance to school mathematics. But its 
in fl uence declined rapidly during the period 1910–1920, both in England and in 
the United States (Young,  1914  ) . David Eugene Smith  (  1905,   1913  )  described 
Perryism as an extreme position held by an in fl uential minority in England and in 
the midwestern states of the USA. He maintained that educators in the eastern states 
of the USA, in cities like New York, Philadelphia and Boston, regarded Perry   ’s 
ideas as an aberration in the education process. 

 Smith  (  1905  )  summarized the attitudes to Perryism of teachers in the eastern 
states in the following way:

    1.    Any effort to introduce physical experiments into the classes in mathematics has no 
support whatever from either the teachers of mathematics or those of physics. …  

    2.    Any effort to seek the applications of mathematics chie fl y in physics or in 
science generally, has not met with favor, and is not likely to  fi nd advocates. 
The consensus of opinion is that the number of applications of algebra to physics, 
for example, is exceedingly small, those to business being considerably larger, 
even though these are not numerous. …  

    3.    The attempt to have algebra and geometry appear to the pupil as having any 
considerable application to science or to business aside from a few special prop-
ositions will not be made. (p. 207)     

 Smith    added that teachers in the eastern states not only wanted their students “to 
love mathematics for its own sake” (p. 208), but also wanted them to be well pre-
pared for the rigid system of public examinations. He saw no inherent contradiction 
in those aims. According to Smith   , teachers in the Eastern states would disagree 
strongly with the proposition that “no equation should be given without a genuine 
application, that no problem be assigned without a genuine application, that no 
problem should be assigned without a physical context, that no topic shall be con-
sidered save as it bears upon life” (p. 208). Smith    added that teachers in the eastern 
states wanted to develop “pure mathematics” laboratories in which pupil activity 
took place in the mind rather than with physical apparatus. 

 Despite the fact that Smith    was closely aligned with Felix Klein, the German 
mathematician who strongly advocated a function approach to algebra (Donoghue, 
 2008 ; Tobies,  1989 ; Young,  1914  ) , he did little to incorporate functions fully into 
the numerous textbooks he wrote on school mathematics. For example,  Academic 
Algebra,  which he co-authored (Beman & Smith,  1902  ) , contained no graphs and 
no discussion of functions, despite the fact that the preface claimed that the book 
would prepare students for college mathematics. 
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 Smith  (  1905  )  said that eastern-states teachers wanted to see how much of the 
spirit of German gymnasium mathematics, with its pure, as opposed to applied, 
mathematical tradition (Jahnke,  1983  ) , could be transplanted into American schools. 
He acknowledged that his position was essentially a conservative one, but empha-
sized that that was the position favoured by teachers of mathematics in the eastern 
states. For them, improving school mathematics was synonymous with writing 
pure mathematics textbooks that would better prepare students for examinations so 
that the best students would be well prepared to proceed to higher studies in 
mathematics. 

 This emphasis on written examinations for sorting students was, at least in Western 
nations, a 19th-century development (Ellerton & Clements,  2012 ; Keitel,  2006a, 
  2006b ; Kilpatrick,  1992  ) . Although it could be argued that it provided “bright” 
children in poor families with a means of accessing higher mathematics, it could 
also be interpreted as providing an “objective” means by which children from 
mainly well-to-do families would be selected for higher mathematical studies. In that 
sense, the bias in favour of an élite based on social class was replaced by a different, 
but highly related, bias based on “readiness to learn,” or “giftedness” (Hansen,  2009  ) . 
Expressions such as “ability to learn” came to be used to justify procedures whereby 
the study of higher mathematics was preserved for the few (Clements,  1992  ) . 

 In London, Perry    succeeded in persuading examining boards in England to offer 
alternative forms of examinations in which problems linked to laboratory methods 
were asked, and by 1910 these examinations were widely used by schools. After 
Perry   ’s retirement in 1914, however, the alternative examinations were dropped. 

 Thus ended, at least for the moment, a promising movement in mathematics 
education that had begun in Japan, blossomed in the UK, and spread its wings as far 
as the USA, France, Italy, and Australia (Borel,  1904 ; Clements,  1992 ; Giacardi, 
 2009,   2010 ; Ruthven,  2008  ) . The preferred approach to school mathematics across 
the world was, at that time, in the balance—and some thought it was tilting in the 
direction of applied mathematics by which most, if not all, students would become 
acquainted with real-world problem solving. Conservative mathematics education 
leaders, like David Eugene Smith   , rejected this view as extreme and supported the 
growing in fl uence of written examinations and printed textbooks. That in fl uence 
spread quickly across the world, even to nations like Japan (Ueno,  2006  ) , so that 
“mathematics for all” was increasingly interpreted as preparing all students for 
externally-set tests and examinations.  

   Christopher Ormell    and the Mathematics Applicable Project 

 Like Perryism, the Mathematics Applicable Project, which operated in the UK 
between 1969 and 1978, was based on the assumption that mathematics education 
should take advantage of the potential of mathematics to model real-world applica-
tions (Ormell,  1972,   1991  ) . Christopher Ormell   , who led the Project, held to a con-
cept of “applicable mathematics” that was linked with Wittgenstein’s philosophy 
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which accepted the idea that mathematical models can simulate real possibilities and 
thus enable situations to be explored without physical interventions (Ormell,  1972  ) . 

 In the 1970s, Ormell    managed to get a Mathematics Applicable examination 
accepted as an alternative to standard examinations for the  fi nal years of secondary 
school mathematics. Mathematical Applicable examinations required students to 
use modelling to explore possible real-world scenarios. If a candidate got “stuck,” 
then he or she could take a “hint,” but that would lead to a reduction in the mark that 
could be obtained. 

 Like Perryism, the Mathematics Applicable Project began promisingly but ulti-
mately failed to win general acceptance from schools and examination boards. Yet, 
its rise and fall in the 1970s suggested that the need to make school mathematics 
more applicable, rather than be based purely on book learning, had never gone away 
during the 20th century.  

   Realistic Mathematics Education 

 The underlying philosophy of the Realistic Mathematics Education (often 
denoted by RME) program was originally put forward in the Netherlands in the 
1960s and 1970s by Hans Freudenthal  (  1978  ) . That philosophy has subsequently 
been re fi ned and popularized by scholars attached to the Freudenthal    Institute in the 
Netherlands (see, e.g., Gravemeijer, Lehrer, van Oers, & Verschaffel,  2002  ) . 

 According to Gravemeijer  (  2002  ) , the basic tenets of RME are as follows:

    1.    Instruction should start by introducing students to experientially-real contexts.  
    2.    Initial informal mathematical activities should encourage students to abstract 

and construct sophisticated mathematical conceptions.  
    3.    Increasingly, students should create and elaborate symbolic models such as 

drawings, diagrams, or tables.  
    4.    The instructional method should allow for much interaction, not only between 

the teacher and students, but also between the students. All present should strive 
to justify and improve their own solutions and those of others.  

    5.    Mathematical structures and concepts which manifest themselves within inter-
twining learning strands are to be sought after, identi fi ed, and analyzed.     

 RME emphasizes the concept of an  emergent model —a  model of  some problem 
situation evolves so that it becomes a  model for  mathematical reasoning (Gravemeijer 
& Stephan,  2002  ) . According to Gravemeijer and Doorman  (  1999  ) , modelling and 
symbolizing are “an integral part of an organizing activity that aims at coming to 
grips with a problem situation” (p. 119). Emergent models are grounded in students’ 
understandings of paradigmatic, experientially-real settings, and emerge more 
clearly as reasoning loses its dependence on situation-speci fi c imagery, so that pro-
gressively the models become more rei fi ed (Gravemeijer,  2002  ) . The RME curricu-
lum is intended for  all  students (Van den Heuvel-Panhuizen & Becker,  2003  ) . Thus, 
we have arrived at a point where a mathematics curriculum based on a modelling 
approach is no longer seen as an extreme, but as something “for all.” 
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 There have been numerous other mathematics educators who have assisted 
“mathematical modelling for all” to move from something regarded as an extreme 
to something that can form the basis of a worldwide curriculum phenomenon. Two 
such  fi gures were Henry Pollak   , a distinguished applied mathematician with a dem-
onstrated interest in mathematics education (see Karp,  2007 ; Pollak,  2003  ) , and 
John Mason, the Canadian-British mathematics educator whose textbook,  Modelling 
with Mathematics in Primary and Secondary Schools,  written two decades ago 
(Mason & Davis,  1991  ) , showed how mathematical modelling might become the 
basis for curricula for primary and secondary schools.   

   Numeracy for All 

 Over the past two decades the concept of quantitative literacy, or numeracy, has 
been championed by governments (Westwood,  2008  )  and by scholars like Lynn 
Arthur Steen   .  Numeracy , which Steen  (  2001  )  de fi ned as “the quantitative and math-
ematical requirements for contemporary work and responsible citizenship” (p. xi), 
is a politically powerful word because of its association with “literacy.” For research-
ers seeking funding for projects, it is also an attractive word, because everyone 
recognizes the need for citizens to become “quantitatively literate.” 

 Patricia Cline Cohen  (  2001  )  wrote that the case for quantitative literacy advanced 
thinking in at least four ways:

  It identi fi es various components … of this style of thinking that together give us a compre-
hensive and appropriately complex de fi nition of quantitative literacy. It then gives a multi-
tude of examples of actions and behaviors … occurring in daily life that call for this kind of 
thinking, from the simple to the esoteric. It next distinguishes the bundle of skills that con-
stitute quantitative literacy as an academic subject. And  fi nally, … [it] makes clear that 
quantitative literacy and mathematics are really two quite different things. (p. 23)   

 But, as White and Southwell  (  2008  )  observed, different de fi nitions of numeracy 
abound. Indeed, Clements  (  2008  )  argued that it is not a unidimensional, culture-
free, or context-free concept, and wondered whether it should continue to be 
employed as a catch-all term. Nevertheless, the ill-de fi ned concept of numeracy has 
provided a convenient vehicle in which governments can move to improve the quan-
titative literacy of citizens without having to embrace, strongly, the mathematical 
side of quantitative literacy. It allows the call for “mathematics for all” to be modi fi ed 
to “numeracy for all” (Steen,  2001  ) . 

 It is an irony that in the USA between about 1910 and 1955, during what became 
known as the “progressive era,” many elementary school mathematics textbooks 
(e.g., Buswell, Brownell, & Sauble,  1955 ; Stone,  1931  )  featured what might be 
regarded as a quantitative literacy approach to school mathematics. Attractively 
illustrated story shells relating to everyday situations were presented, and a series 
of quantitative questions relating to the story shells were asked. That approach 
gave way to the new math(s) period, when mathematically dense questions, not 
obviously related to everyday life, became the order of the day. Then followed 
the back-to-the-basics period of the 1970s, when teachers once again focussed 
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on helping their students get correct answers, but often mainly for context-free, 
mechanical tasks. 

 The concept of numeracy has gradually been extended beyond purely arithmeti-
cal skills to embrace not only other elementary mathematical skills but also affec-
tive characteristics such as attitudes and con fi dence (Westwood,  2008  ) . Whereas 
TIMSS pencil-and-paper performance instruments have been widely seen as testing 
basic skills, instruments developed for the Programme for International Student 
Assessment (PISA), which is conducted by the Organisation for Economic 
Co-operation and Development    (OECD), are thought to be more concerned with 
numeracy or quantitative literacy skills. PISA aims at measuring how well students 
can choose and apply elementary mathematical—as opposed to strictly numerical—
concepts in everyday situations (OECD,  2004 ; Pinxten & François,  2011  ) .  

   Concluding Comments 

 At the beginning of the 20th century, some educators still believed that the formal 
study of mathematics did not stimulate higher-order thinking as much as did the 
study of the ancient classics, especially Latin. That kind of thinking almost disap-
peared during the 20th century, as many educators debated the role that mathemat-
ics should have in the curricula of primary, secondary, technical and adult forms of 
education. Today, most people think that everyone needs to learn mathematics in 
some form. The question remains: Which form? 

 In this chapter we have surveyed what might be called progress with respect to the 
development of meaning for “mathematics for all.” Our analysis has revealed, how-
ever, that there is still much fuzziness about what  progress  might mean so far as 
“mathematics for all” is concerned. Even more serious than that, perhaps, is the devel-
opment by which mathematics education is now in danger of being colonized by 
education administrators, politicians, literacy experts, and psychometricians, who—it 
could be argued—wish to exploit the term  numeracy  for their own purposes. 

 Given the amazingly rapid development of sophisticated online facilities for 
teaching and learning, there are some who believe that the world is poised to take 
steps that will implement mathematically and educationally sound mathematics-
for-all programs (Arnold et al.,  1996  ) . However, the challenge is for mathematics 
educators and mathematicians to lift their eyes to the hills and be willing to work 
collaboratively with those who have the cultural backgrounds and professional and 
technical skills to give “mathematics for all” a chance. In such efforts, it will be 
important that “outside experts” do not seek to impose their “solutions” on the 
“developing” world: The expertise needs to be developed  within  groups of  local  
educators (Clements & Ellerton,  1996  ) , for only those groups are in a position to 
energize, monitor, and sustain progress. 

 It is important that mathematics educators take the high ground in their efforts 
to make mathematics something which everyone can study with bene fi t. That said, 
we need to make sure that the kind of mathematics put forward as suitable for 



331 From the Few to the Many: Historical Perspectives

everyone  is  indeed suitable for everyone. Lessons from the new math(s) era, and 
from experiments like the failed Dienes    program in Papua New Guinea, need to be 
noted. Mathematics is a cultural phenomenon (Bishop,  1988  ) , and “mathematics for 
all” should generate forms of mathematics that arise out of, and are obviously 
related to, the needs of learners and the societies in which they live.      
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  Abstract   In mathematics education research and practice today we notice a change 
in the multiplicity of approaches that allow us to widen our perspectives on diverse 
social, political and cultural dimensions of mathematics education. This chapter 
provides an overview of trends and a critical discussion of the use of theories to 
approach, discuss and critique research and practices in mathematics education, 
particularly with attention to social, political and cultural dimensions.      

   Introduction 

 All research is built around a set of assumptions about the world and how it 
should be understood and studied. Researchers who study the social, political and 
cultural dimensions of mathematics education ground their work in a range of 
assumptions about the nature of knowledge and truth (epistemology) and being 
(ontology). These understandings are typically implicit, yet they inform the over-
arching stance of the researcher. Researchers, whether or not they acknowledge or 
discuss their stance, choose theories that are appropriate to their own view of the 
world and these, in turn, in fl uence the kinds of projects the researchers undertake. 
Each perspective allows us to enrich our understandings of the diverse social, politi-
cal and cultural dimensions of mathematics education. How those dimensions are 
conceptualized in contemporary research is the focus of this chapter. 
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 The word “theory” carries with it various meanings, all of which take theory as 
something one sees or recognizes. The Greek roots of the word connect it to seeing. 
A description of a researcher’s theoretical perspective, then, recognizes that the 
researcher looks at the researched situation from a particular vantage point. Clearly, 
certain vantage points that may be available to others will not be available to us. 
As researchers, we can choose from various vantage points and thus, ultimately, work 
to initiate change in what we see in the researched situation. Frameworks and models 
refer to conceptualizations of classes of situations, which we may compare to a situa-
tion we see in a researched situation. Thus the frameworks and models we bring with 
us as researchers affect the locus of our attention and affect what we see in a research 
context. Jablonka and Bergsten  (  2010  )  illustrate different strategies of theorizing in 
mathematics education in terms of their intertextuality, that is, engagement with and 
reference to previous work, and “relational density,” that is, the extent to which rela-
tions between key concepts are established. They distinguish “ad-hoc constructions,” 
“theory conglomerates” and “local models” from proper theories. For this chapter, we 
will subsume such frameworks and models that refer to previous research and make 
explicit their intellectual roots under the word “theory,” though we are aware that there 
are differences among the various ways of thinking about theory. 

 What our exploration in this chapter seeks to do is offer an assemblage of theo-
retical vantage points that have been used by researchers in mathematics education 
in contemporary times. Arguably, among the differing perspectives, “incommensu-
rability” (Cobb,  2007  )  will be a feature, which will prevent us from “providing 
warrants for our  fi eld’s identity and intellectual autonomy within apparently broader 
 fi elds such as education, psychology, or mathematics” (Silver & Herbst,  2007 , p. 
60). We begin from the position that the wide range of theories, characteristic of the 
research  fi eld today, does not symbolize a  fi eld marked by disarray, tensions and 
contradictions. Rather, what we wish to portray is a vibrant and diverse  fi eld, com-
prising in fl uential perspectives, all of which have important things to tell us about 
the shape and character of mathematics education. Each perspective allows mathe-
matics education to develop a vision of what to work toward. 

 Our concern, initially, is to investigate the potential of theories that have their 
intellectual roots outside the  fi eld of mathematics education to advance our perspec-
tives on diverse social, political and cultural dimensions of mathematics education. 
We are also interested in the ways our researchers use them. In the  fi rst part of this 
chapter we locate trends in theorizing in mathematics education in relation to a 
widening of perspectives that call our attention to social, political and cultural 
dimensions. In locating such trends, we focus our attention on well-established 
theories that have been developed outside the  fi eld of mathematics education and 
their adoption, assimilation and potentials that are hoped for. In the second part of 
the chapter we review some of the work in mathematics education that has advanced 
our knowledge of social, political and cultural dimensions. Again, we look at work 
that has made use of theories developed in other  fi elds, in particular in social lin-
guistics and sociology as well as in postmodern analyses. We support the view of 
Sriraman and English  (  2010  )  to the effect that advancement in the  fi eld has often 
been initiated by adoption and assimilation of new theoretical vantage points that 
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have their intellectual roots outside the  fi eld of mathematics education. However, as 
discussed in the third part of the chapter, there are important theories developed 
within mathematics education. 

 It becomes clear from our overview that mathematics education is no longer 
only concerned with the technologies of learning and teaching in institutionalized 
pedagogic settings. It includes researching mathematics education in sites beyond 
the classroom (e.g., local communities and families, workplaces, policy making, 
the media, textbook production) and research activities that describe and theorize 
these practices, including research that is directed towards studying the social, 
economic and political conditions and consequences of those practices.  

   Trends and Advances in Theorizing 

   Trends 

 Mathematics education is at the intersection of many disciplines including 
socio-cultural disciplines, language, mathematics, and politics. There is a smorgas-
bord of theories that researchers might draw upon productively from these disci-
plines, because each discipline also carries a variety of theories. With this diversity 
at our disposal, it is instructive to note which disciplines and which theories are 
being taken up. Tsatsaroni, Lerman, and Xu  (  2003  ) , when reporting their investiga-
tion of theories in mathematics education, noticed a social turn. They noted that 
where once inspiration for researchers was drawn primarily from psychology, a turn 
to the social enabled the exploration of a broader range of research questions and 
issues. New perspectives, topics and methodologies arose, and in fl uential journals 
(e.g.,  Educational Studies in Mathematics;  the  Journal of Mathematics Teacher 
Education;  and the  Journal for Research in Mathematics Education ) were notice-
ably now more inclusive of non-traditional frames. These non-traditional frames 
had enabled researchers to attend to previously unseen aspects of practice. 

 In addition to traditional psychological and mathematics theories, a growing 
variety of psycho-social, sociological, socio-cultural, (social) linguistic and semi-
otic theories have been referred to in conference proceedings and journal articles. 
Also, reference to recent broader theoretical currents, such as feminism and post-
structuralism has been made in the more recent publications (since the time of 
Tsatsaroni, Lerman and Xu’s analysis). During the same period the total numbers of 
traditional psychological and mathematical papers did not decrease, and Jablonka 
and Bergsten  (  2010  )  have referred to the addition of a “social branch” rather than a 
social turn. Sub- fi elds of mathematics education grow in parallel and eventually 
constitute their own discourses, without one dominating or being privileged. 

 Inspired by Tsatsaroni et al.’s  (  2003  )  investigation, we identify expansions of 
theorizing in the proceedings of four recent annual conferences of the International 
Group for the Psychology of Mathematics Education (PME), 2007, 2008, 2009 
and 2010. While three of these conferences had no special theme, PME 2009 was 
subtitled “In Search for Theories in Mathematics Education.” We have chosen 
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PME principally because this is the most established organization that organizes 
regular conferences and thus re fl ects changes in what is to be considered as main-
stream. We did not anticipate that all innovations in theorizing would emerge 
within this context, as we are well aware that such innovations take seed in edited 
volumes, anthologies as well as at conferences that are speci fi cally devoted to 
exchanging and developing alternative views. In relation to investigating the 
social and political dimensions of mathematics education, the Mathematics 
Education and Society conferences provide such forums (see, for example, Gellert, 
Jablonka, & Morgan,  2010 ; Matos, Valero, & Yasukawa,  2008  ) . 

 We compiled a list of names of theories, frameworks and authors associated with 
socio-linguistic, socio-cultural, sociological and postmodern theories and searched 
proceedings by using a global document search function. Raw numbers from this 
search are shown in Tables  2.1 ,  2.2 , and  2.3 . If a search term only occurred in the 
reference list, the paper was not included in the count. For some searches we used 
word roots in order to capture variations. For example, Vygotsk’ captures “Vygotsky” 
and “Vygotskian.” Similarly, sociol’ captures “sociological,” “sociology,” and other 
variations. We are aware of other classi fi cations of theories from those used to con-
struct the tables.    

   Table 2.1 
  Number of PME Papers Mentioning Vygotskian and neo-Vygotskian Theories   

 Search Terms for Vygotskian and Neo-Vygotskian Theories  PME 
 2007 

 PME 
 2008 

 PME 
 2009 

 PME 
 2010 

 Vygotsk [y]  14  18  34  15 
 [Jean] Lave  7  8  15  9 
 [Etienne] Wenger  14  12  12  10 
 [Barbara] Rogoff  2  2  3 
 Psycholinguist [ics] 
 Activity theory  2  3  12  13 
 [Yrjö] Engeström  7 

   Table 2.2 
  Number of PME Papers Mentioning Sociological Theories   

 Search Terms for Sociology  PME 
 2007 

 PME 
 2008 

 PME 
2009 

 PME 
 2010 

 Sociol [ogy/ogical]  3  33  16  8 

  Intellectual Roots of Contemporary Sociological Theories, by Authors:  
 [Émile] Durkheim  1 
 [Karl] Marx  1  3  3 
 [Max] Weber  1  1 

(continued)
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 Search Terms for Sociology  PME 
 2007 

 PME 
 2008 

 PME 
2009 

 PME 
 2010 

 [Edmund] Husserl  1  1  2 
 [Alfred] Schütz  2 
 [Talcott] Parson, [Louis] Althusser, [Antonio] Gramsci, [Eric 

Olin] Wright, [Georg] Simmel, [George Herbert] Mead, 
[Herbert] Blumer, [Erving] Goffmann, [Harold] Gar fi nkel 

  Neofunctionalism:  
 [Niklas] Luhmann  1 
 Neofunctionalis [m/t] 

  Critical Theory and Con fl ict Theory:  
 Critical Theor [y]  2 
 Con fl ict Theor [y]  1  1 
 Frankfurt School  1 
 [Max] Horkheimer  1 
 [Theodor] Adorno  1 
 [Herbert] Marcuse  1 
 [Erich] Fromm  1 
 [Charles Wright] Mills 
 [Pierre] Bourdieu  2  1  7  5 

  Analytic Sociology of Con fl ict:  
 [Analytic] Sociology of Con fl ict, [Ralf] Dahrendorf, [Randall] 

Collins 

  Theories of Evolution, Modernity and Globalization:  
 [Anthony] Giddens  1 
 Structuration Theory 
 [Jürgen] Habermas  1  5  1 
 [Theory of] Communicative [Action]  12 
 [Ulrich Beck] 
 [Re fl exive] Modernization  1 
 Risk Society  1 

  Symbolic Interactionism and Phenomenology:  
 Symbolic Interactionism  3  2  1 
 [Patricia Hill] Collins, [Dorothy E.] Smith 
 Phenomenology  2  8  5  3 
 [Peter] Berger  1  1 
 [Thomas] Luckmann  1 
 [Max Van] Manen  1 
 Rational Choice [Theories] 

  Sociology of Education, of Mathematics Education:  
 [Michael] Young 
 [Michael] Apple  1 
 [Basil] Bernstein  1  2  6  1 
 [Paul] Dowling  1  1  1 

Table 2.2
(continued)
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 There are a number of limitations we need to make explicit with respect to our 
use of PME proceedings. Although annual PME conferences are recognized as 
important international conferences for mathematics education researchers, they do 
not fully capture the research being undertaken by mathematics educators world-
wide. Papers provided by researchers from non-English-speaking countries are pub-
lished less frequently in PME proceedings relative to those of English-speaking 
researchers. In addition, the kinds of classrooms depicted in research reported in 
PME proceedings tend to re fl ect a prototypical mathematics classroom which is not 
representative of classrooms throughout the world. Skovsmose  (  2006  )  has suggested 
that 90% of mathematics classroom research represents only ten per cent of the class-
rooms in the world. 

 It is important for us to clarify that in our analysis of the PME volumes we were 
not seeking to identify papers that failed to make explicit the theory that under-
pinned the work. Rather, we wondered if it is possible to characterize, without 
explicit reference to any intellectual tradition, some research in mathematics educa-
tion as adopting a sociological, political or postmodern perspective by asking 
research questions that bear testimony to the “spirit” of a theory. Nevertheless, we 
agreed that it is important to identify and make explicit one’s theoretical perspective 

   Table 2.3 
  Number of PME Papers Mentioning Literary Theory, Discourse Analysis, Social Linguistics, 
Positioning Theory and Postmodern Approaches   

 Search Terms 
 PME 
 2007 

 PME 
 2008 

 PME 
 2009 

 PME 
 2010 

 Literary Theory, Discourse Analysis, Social 
Linguistics: 

 Critical Discourse Analysis  3 
 Discourse Analysis  4  4  1  5 
 [Mikhail] Bakhtin  1  4  3  5 
 [Norman] Fairclough  3 
 [Michael] Halliday  2  1 
 [Ruqaiya] Hasan  2 
 [J.R.R.] Martin  3 
 [Gunther] Kress  1  4 
  Positioning Theory:  
 Positioning theory  2  4 
 Social psychology 
 [Rom] Harré  1  2 
  Foucault and Postmodern Approaches:  
 [Michel] Foucault, Foucauldian  1  2  4  4 
 Feminis [m/t] 
 Psychoanaly [tic theory]  1  2  2  1 
 [Slavoj] Žižek  1 
 [Jacques] Lacan  1  1  3 
 [Deborah] Britzman, [Elizabeth] Ellsworth 
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because attention to this detail makes for richer, more thoughtful interpretation. 
In addition, if readers outside an esoteric circle are to be addressed (which is necessary 
for dissemination), then the conceptual underpinning should be articulated. 

 We need to make clear, too, that page restrictions for papers in PME proceedings 
act as constraints for researchers. Theoretical frameworks were usually presented in 
a succinct format or not at all. Although many papers provided hints at the stand-
point taken, the implicit nature of this evidence made it dif fi cult to provide absolute 
characterizations of the  fi eld. There was evidence, however, from those reports 
which declared their positions, that the PME conference proceedings under investi-
gation were open to a range of theoretical and methodological standpoints. That is 
to say, a diverse and complex array of theoretical frameworks informed inquiry. 
Speci fi cally, although there are many references to cultural studies and a range of 
social practice theories such as symbolic interactionism, activity theory, situated 
learning and social constructivism, a relatively small number of studies were 
informed by postmodern and sociological theories. 

 Given that sociology challenges many assumptions of psychology, reference to 
sociological theories could indeed have been expected to be uncommon in PME 
proceedings. Tables  2.1 ,  2.2 , and  2.3  also reveal the “white spots,” that is when we 
did not  fi nd a reference to a theory we searched for. These white spots could indicate 
that the respective theories were not being integrated into the mainstream. However, 
in some cases, lack of such reference could also mean that although a well-estab-
lished researcher from mathematics education, who has built from and elaborated a 
theory that has its roots outside the  fi eld, is cited, any reference to the original 
sources is not seen as essential anymore. However, in our investigation we were less 
interested in the proportions of different branches of theorizing, and more interested in 
how theories from sociology, linguistics, activity theory, positioning theory, situated 
cognition and postmodern theories were used, and to what effect.  

   Adoption and Assimilation of Established Theories 

 One difference between the work of mathematics educators and the theorists 
from whom we draw is that most of these theories are oriented to describing and 
analyzing practice, while in mathematics education there is a sense that we have to 
prescribe or at least identify good practice. We think that this tension is central to 
many of the challenges mathematics educators have when applying theories which 
emerge from other disciplines. As criteria for usefulness, in a technical sense, of 
theorizing can only be framed in relation to a given practice, there would not be any 
innovative or critical potential if identifying good practice were the only  raison 
d’être  of research. A sometimes-observed hostility towards theory in mathematics 
education research is based on a misreading of theory as mere contemplation and 
speculation. Theorizing includes systematization of and critical re fl ection upon 
practice that opens up new views. Seen in this way, theorizing is indispensable for 
the advancement of a  fi eld. 
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 In considering the range of theories available to mathematics education researchers, 
there are a number of decisions researchers have to make with regard to theory. 
First, one chooses theory that enables one to address the research question, but often 
the theory is instrumental in formulating the question as well. Second, when choos-
ing a well-developed theory, one chooses aspects of that theory for focus. Third, it 
is important to consider the “translation” of the theory that was birthed in a speci fi c 
context to the context of mathematics education. Fourth, there are decisions about 
how much attention to give to the theory when writing about the research, including 
the possibility of not recognizing that the research has a perspective that is socio-
culturally and politically relevant. For the last three of these choices, there are con-
tinua—for example, a researcher might take one concept from a theory, more of the 
theory, or much of the theory. There is yet another possibility—taking two or more 
theories in some kind of hybridization. Moreover, in our view, importing a theory 
from a different tradition of research is already a form of hybridity. The recontextu-
alization of theories from outside our  fi eld necessarily involves a change in the criteria 
for what counts as advancement, a shift in focus and in meaning. 

 In our conversations about the PME papers we considered possible ways of 
misusing theories. One could, for example, use a single concept from a theory and 
thus miss some central ideas of the theory. This could be done with intention or with 
naïveté (and we acknowledge that there are only degrees of naïveté, for no one can 
be said to know everything about a theory). We agreed that for a misread of a theory 
to be deemed heresy, it would have to be an intentional twisting of the theory, but 
then we wondered how to distinguish between heresy and “moving theory forward,” 
both of which turn and/or move theory. Picking up on single concepts from a theory 
can be productive, but it may not be. Productive, deliberate re-interpretation and 
expansion of theory based on some principles might be called heresy or develop-
ment, depending on one’s point of view. Hybrids from different theoretical sources 
can be promising in bringing together ideas that seemed apart, but also limiting 
by distorting the spirit of the individual theories. The strategy might amount to a 
pastiche or a conglomerate, and perhaps even to an anti-theoretical bricolage. 
This brings forward the important question of how we might judge the qualities 
theories bring to our  fi eld. 

 When reading a selection of PME contributions, we were interested in which 
aspects of the theories were used, whether or not the papers included re fl ection on the 
challenges of applying these theories in particular research contexts, how the research-
ers described the motivation for their choice of theory, the extent to which the data 
interpretation drew on the theory, the extent of the description of the theory, and who 
the paper cites in the description of the theory—the major theorists from outside 
mathematics education, or mathematics educators applying the theory in our  fi eld. 

 From our reading, we see that “networking” theories remains a challenge for 
research in mathematics education. We found examples of this challenge in our 
reading of promising contributions that could form a starting point for moving the 
discipline forward. We found some innovative study designs that attempted to 
achieve some theoretical combinations that looked entirely novel. But in the exam-
ples of theoretical combinations, one theory often dominated. The assumptions 
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shared by the individual theories were not elaborated. In many reported empirical 
studies, the motivation for theory choice is not made explicit. While the “novelty” 
of an approach might be mentioned, the promises of a new theory in relation to other 
approaches that did not carry the same promises tended not to be discussed. We also 
noted a geographical distribution of branches of theorizing and of innovation. This 
is of course due to the physical closeness of experts in a location, for example super-
visors, but also to the cultural situatedness of traditions. In the PME papers we also 
identi fi ed some contributions that fully exploited the potential of theories and sought 
to advance our understanding of the  fi eld. Furthermore, some authors alerted readers 
to the potential of a whole branch of theories.  

   Examples of Providing New Terrain 

 Our selection of papers from the PME proceedings for further discussion was 
guided by the number of theories the papers connected with, by promising titles, 
and surprising combinations of references. We were also careful to review plenary 
papers and research forums. In our selection, we also have taken the number of 
references made in the same paper as an indication of an extended discussion of a 
theory, though these numbers are not represented in the tables above. 

 A theoretical paper by Brown  (  2008  ) , for example, provides a critical analysis of 
Luis Radford’s cultural theory of objecti fi cation. Using ideas drawn from a range of 
postmodern sources, Brown offered a critique of the way in which Radford concep-
tualized the notions of culture and subjectivity in his theoretical development. 
Brown drew speci fi cally on discursive approaches to knowledge and subjectivity to 
develop his critique. Working from the premise that Radford’s cultural theory of 
objecti fi cation “perhaps provides the most sustained and substantial excursion” 
(p. 209) into the area of cultural and historical dimensions of mathematical objects, 
Brown attempted to unsettle some of the foundations on which that theory is built. 

 Breen’s plenary paper at the PME 2007 conference at the end of his term as 
President of PME (Breen,  2007  )  is suffused with ideas from enactivism and psycho-
analytic theory and these provided a springboard for Breen’s re fl ections of and 
hopes for mathematics education. What the paper revealed particularly is that theo-
retical border-crossing into enactivism and psychoanalytic ideas requires a shift in 
thinking and in attitude and, in that sense, the sensibilities of the theory may have 
been lost on some readers. Such a shift offers readers new understandings about 
mathematics education and its situatedness with institutions, history, and cultural 
 fi elds. It also draws our attention to our ultimately compromised stance in every-
thing we do and say within mathematics education. As a plenary paper the content 
could be deemed highly in fl uential. It opened up theoretical discussion for the dis-
cipline. Of course, readers could choose to dismiss his theoretical tools or they 
could choose to pick up snippets of ideas that suited them. Alternatively, readers 
could assess his theoretical apparatus as a key resource for interrogating and under-
standing the dynamics and politics of mathematics education. 



50 Jablonka, Wagner, and Walshaw

 At the PME 2009 conference, a research forum on sociological theories in 
mathematics education was held. The overall agenda of the forum was researching 
possibilities of how more equitable outcomes may be achieved in mathematics 
education, as no research group in mathematics education, least of all the leading 
international group, can ignore the social disadvantages reproduced in mathematics 
classrooms in most countries of the world (Lerman,  2009  ) . The contributors explored 
how research in mathematics education has made, and could make, use of sociologi-
cal theories in shaping research questions and methodologies that contribute to the 
agenda. The forum also discussed the ideologies at work in research designs. At the 
PME 2010 conference the discussion group on mathematics education and democracy 
(Mattos, Batarce, & Lerman,  2010  )  also provided new terrain that is not genuinely 
linked with psychology. The members of the discussion group included as their theo-
retical underpinnings Karl Marx’s concept of commodity, Jean Baudrillard’s concept 
of sign value as well as the work of Jacques Derrida. One key issue for discussion 
was the constitution of mathematics knowledge as universal need in today’s society 
and the role of mathematics education in the constitution of such an ideology. 

 In a plenary address at PME 2009, Morgan’s  (  2009  )  account of her evolving 
research program provided a window into how tools and ideas from linguistics 
might connect with a researcher’s agenda. She described how    Pimm’s (1987) book 
title connected to the questions that dominated her thinking about mathematics edu-
cation, and how this connection drew her to systemic functional linguistics (SFL). 
From this, she became interested in Fairclough’s work because it helped her move 
beyond description to the judgment of mathematical texts. Fairclough’s work con-
nects Halliday’s to critical social theorists including Foucault and Bourdieu. Not 
surprisingly, Morgan was next drawn to Bernstein’s theory to help her understand 
the social context of mathematics discourse. In her work with Evans (Evans & 
Morgan,  2009  ) , she noted that discursive approaches address some of the classic 
dilemmas in sociology and social theory: structure versus action, order versus 
con fl ict, and of fi cial versus deviant perspectives. Morgan’s path is illustrative of the 
connections among the three strands we are using to divide up theories that attend 
to social, political and cultural dimensions of mathematics education.   

   Opening Up New Perspectives 

 We now turn to include mathematics education literature beyond the recent PME 
proceedings to outline the way theory from outside the  fi eld has been used to move 
the  fi eld forward through accounting for social, cultural and political dimensions of 
mathematics education. We divide this work into the three broad areas, discourse 
analysis, sociology and postmodern approaches, though we know that these three 
areas are interconnected. Indeed, our work on these overviews reminded us of these 
intersections and the related dif fi culty of categorizing work. However, we are also 
aware of other approaches to knowledge development that provide alternatives to 
cognitivism and are compatible with socio-cultural learning theories. 
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 Enactivist and complexity theories, for example, add a new twist to the in fl uences 
of the social in highlighting the dynamic and interactive adaptations of the learner, 
and address questions of “being” rather than “knowing.” An insightful application 
of enactivism for education can be observed in the work of Davis and Simmt  (  2003  ) . 
A similar biological metaphor is used by Radford, Edwards, and Arzarello  (  2009  )  
in their embodied theory. Ideas are not held by individuals but are embodied by 
human beings with normal human cognitive capacities living in a culture, situated 
in and productive of larger, social, cultural and historical thinking. Mathematical 
thinking, learning and communication involve different semiotic systems and mul-
tiple modalities of expression including gesture, speech, written inscriptions, and 
physical and electronic artefacts, all of which are integral to the cognitive process 
(Radford,  2009  ) . The conceptualizations of one person are not assessed as a mea-
sure of “ fi t” or “match”; rather they are said to be viable (or otherwise) in relation 
to another’s conceptualizations. 

   Discourse Analysis 

 Theory from linguistics has been instrumental in illuminating interpersonal 
interaction within the contexts of mathematics teaching and learning and, in particu-
lar, the positioning of students and teachers in relation to others and the discipline. 
However, discourse analysis is not limited to linguistics. As articulated by Ryve 
 (  2011  ) , mathematics education draws on various theorizations of discourse to illu-
minate multiple perspectives on mathematics teaching and learning. Ryve’s analysis 
of numerous articles in mathematics education journals shows that the concept of 
discourse is too-often undertheorized in research reporting. However, there are 
strong examples of productive use of various forms of discourse analysis in the 
recent years of mathematics education scholarship, which we overview below. 

 Halliday  (  1978  )  called the discipline-speci fi c use of language employed in math-
ematics communication “the mathematics register.” With the increasing use of this 
term the fuzzy boundaries of the register are becoming exposed, drawing attention 
to the goals of mathematics educators. Mathematicians speak and write differently 
from mathematics teachers and learners. Pimm  (  2007  )  and Barwell  (  2007  )  have 
commented on this distinction in response to research that seems to blur this line. 
Herbel-Eisenmann, Wagner, and Cortes  (  2010  )  clari fi ed their analysis of mathematics 
classroom discourse as investigations of “the mathematics classroom register.” Even 
so, any classroom or any interaction has its own peculiar forms, so it is not possible 
to delineate “the” register accurately. 

 Following Halliday’s  (  1985  )  social semiotics, a powerful body of tools for under-
standing how people use language for various purposes and effects in discourse—
called systemic functional linguistics (SFL)—has been developed. Though various 
scholars used SFL tools before, Morgan  (  2006  )  contributed an introduction of social 
semiotics to mathematics education, with the purpose of demonstrating its tools and 
of identifying research questions that these tools can help to answer. They are useful 
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for analyzing transcripts to identify who or what is doing things in learning contexts, 
the objects of mathematics in these contexts and the relationships at work. 

 For example, Nachlieli and Herbst  (  2007  )  used such tools to identify the particular 
utterances that related to assumptions in the proof discourse they analyzed. Both 
Mesa and Chang  (  2008  )  and Wagner and Herbel-Eisenmann  (  2007  )  used a narrower 
tool set within the rubric of SFL, as they used Martin and White’s appraisal linguis-
tics to understand the engagement of mathematics learners in classrooms. 

 Mathematics educators are using approaches to discourse analysis in addition to 
social semiotics. For example, Both Mesa and Chang  (  2008  )  and Wagner and 
Herbel-Eisenmann  (  2009  )  complemented their SFL work with positioning theory, 
which is another form of analyzing discourse from a social psychology perspective. 
Hegedus and Penuel  (  2008  )  used Goodwin’s participation frameworks to analyze 
discourse speci fi c to a mathematics learning with wireless technology, aiming to 
document how students’ identity shifts during the course of a class. Carlsen  (  2010  )  
used Linell’s dialogical approach to study interaction and its effect on meaning. 
Black et al.  (  2010  )  used Gee’s approach to discourse analysis, which takes a broader 
view of discourse, to identify the interconnecting stories at work in students’ 
accounts of their mathematical narratives. 

 In addition to using tools to identify features of language for understanding 
what is happening in mathematics learning contexts, linguistics and other domains 
provide theory for understanding in general the connections between language and 
thinking. This kind of theory is often called “discursive psychology.” Some exam-
ples of using a linguist’s observations to support one’s line of attention in mathe-
matics education include the following. Leung and Or  (  2007  )  used Michael 
Halliday to support their claim that language choices shape human experience. 
Similarly, Sakonidis and Klothou  (  2007  )  used Gunther Kress to substantiate their 
observation that students’ writing is not necessarily read in the intended way by 
their assessors. De Freitas  (  2009  )  used Fairclough’s “critical discourse analysis” 
to locate the structuring of power relationships in mathematics classrooms in the 
language choices. 

 Sfard  (  2008  ) , in developing her own model to explain how communication and 
cognition are co-implicated in mathematics learning, invented the word “commog-
nition” to denote this inherent connection. Barwell  (  2009  )  drew on discursive psy-
chology to critique Sfard’s use of examples to develop her model, and pointed to the 
general challenge of drawing inferences from excerpts of mathematics learning 
situations. Indeed, most analysis of mathematics education discourse works with 
texts identi fi ed by researchers, perhaps because these chosen texts exemplify a par-
ticular distinction or phenomenon. Alternatively, if one works from a large body of 
diverse classroom texts, which linguists call a “corpus” (e.g., Herbel-Eisenmann 
et al.,  2010 ; Wagner & Herbel-Eisenmann,  2007  ) , it is possible to identify features 
of the discourse in general. This corpus linguistics work does not undermine the 
importance of in-depth analysis of isolated excerpts. Nevertheless, it is important to 
be careful about warrants for claims made from examples of mathematics teaching 
and learning discourse. 
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 Discourse analysis appears in yet other forms of mathematics education work. 
In researched professional development contexts, mathematics educators have been 
directing the attention of teachers to forms of discourse analysis. Herbel-Eisenmann 
supported a group of mathematics teachers in their action research projects that 
focussed on aspects of discourse (e.g., Herbel-Eisenmann & Cirillo,  2009  ) . Zolkower 
and de Freitas  (  2010  )  guided teachers in deconstructing transcripts of their mathe-
matics teaching to increase their awareness of semiotic choices available to them. 

 De Freitas  (  2010  )  used critical discourse analysis to study the classroom dis-
course and interaction patterns of two secondary school mathematics teachers of 
senior classes in Canada. She employed Fairclough’s understanding that language 
not only produces meaning but also positions speakers in speci fi c relations of power. 
The purpose was to understand the way in which teachers’ subjectivity is consti-
tuted and enacted, in brief and often spontaneous and contradictory speech acts. 
The task demands thinking about text and context in classroom interaction as inter-
secting rather than separated. In the analysis de Freitas showed how one teacher, 
Mark, repeatedly used metaphors that signi fi ed an antagonistic relationship between 
students and texts, and embedded many references to sports throughout his lessons. 
She demonstrated how the other teacher, Roy, continuously made reference to the 
dif fi culty of learning calculus, choosing to exclude discourse from other texts that 
spoke calculus into existence in other ways. 

 Both analyses highlighted what teachers choose to say and the way in which they 
say it, and the power relations that descend from those linguistic decisions. In par-
ticular, the analyses provided counter-narratives about classroom discourse, point-
ing to the regulatory power of teacher discourse in providing access to mathematics, 
by shedding light on those students who were included within and those who were 
positioned outside of the text. Importantly, through the  fi ne-grained reading that 
unpacked hidden relationships and regulatory practices operating within the class-
room, de Freitas demonstrated the way in which the discursive practices of the two 
teachers contributed to the kind of thinking that is possible within the classroom. 

 The number of edited collections that have focussed on discourse in mathematics 
education in recent years points to the importance of discourse analysis within the 
 fi eld. Chronaki and Christiansen  (  2005  )  presented a collection of varied perspec-
tives used to theorize communication and this collection also addressed associated 
political issues. Moschkovich  (  2010  )  likewise assembled multiple perspectives on 
language and mathematics education and identi fi ed new directions for research. 
This volume featured different authors from the Chronaki and Christiansen volume, 
demonstrating the depth of the  fi eld within mathematics education. Herbel-Eisenmann, 
Choppin, Wagner, and Pimm  (  2011  )  brought into conversation mathematics educa-
tion research that focussed on equity and on discourse to show how these two are 
inherently connected. Barwell, Barton, and Setati  (  2007  )  edited a special issue of 
 Educational Studies in Mathematics  focussed on a narrower discourse-related issue—
mathematics learning in multilingual contexts. There is an active group of scholars 
working together to focus on multilingual contexts, many of whom gathered for an 
ICMI study conference in 2011.  
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   Sociology 

 Our study of trends in mainstream research as re fl ected in the PME conferences 
has shown that employing Vygotskian and neo-Vygotskian theories, as well as a 
general reference to the label “socio-cultural,” has become common. Vygotsky is 
often cited only in the text, as it is usual with references to classical works and 
names that stand for an intellectual tradition (e.g., as the “Vygotskian paradigm” or 
“Vygotskian approach”). Similarly, activity theory is often referred to without 
speci fi c references. Clearly, socio-cultural perspectives based on those theories on 
learning have been integrated into mainstream. These perspectives have consider-
ably advanced the  fi eld of mathematics education by drawing attention to socially 
and culturally speci fi c experiences among learners of mathematics. 

 However, relations to social structures remain under-theorized in those 
approaches. Learning within a community of practice does not occur in isolation 
from the power relations that operate within that practice. Conceptualizing learning 
through legitimate peripheral participation does not necessarily help to understand 
strati fi cation of achievement in mathematics classrooms, especially in relation to 
social and economic class, race and gender (Ensor & Galant,  2005 ; Huzzard,  2004  ) . 
How does social structuration come about in communities of practice? Daniels 
 (  2001  )  suggested that the theories of situated knowledge and learning should be 
related to a political analysis of power and control. A potential of productive inter-
action between socio-cultural perspectives on learning and sociological theories 
was pointed out by de Abreu  (  2008  ) , who suggested that while cultural psychology 
allows for, if not draws attention to, the diversity among learners in their socially 
and culturally speci fi c experiences, apprenticeship models are limited in conceptu-
alizing consequences of macro-social structures on learning. 

 In many studies of mathematics classroom interaction, reference is made to sym-
bolic interactionism and phenomenology, the reference sometimes being mediated 
through the works of mathematics educators who have followed these perspectives 
in their works (see, e.g., Yackel & Cobb,  1996  ) . However, not all sociologists accept 
phenomenology (and its offspring ethnomethodology) and symbolic interactionism 
as genuine sociological theorizing. Although both share an anti-positivistic paradigm 
and common assumptions about the task of focussing on understanding of how 
meanings are developed and shared, they have been criticized for focussing merely 
on micro-level small group social interactions as well as for non-attention to the 
unintentional “hidden” consequences of actions or to the constraints of socio-political 
structures on people’s actions. 

 But there are also important differences between the two traditions. Symbolic 
interactionism is interested in how the participants de fi ne the situation and come to 
make sense through the process of interaction, while ethnomethodology is interested 
in uncovering the taken-for-granted values, norms and rules that already operate in 
the interaction. Classroom studies based on symbolic interactionism illuminate how 
( fl exible) role expectations and meanings are established through a “negotiation of 
meaning,” with a focus on how students act in situations that demand new interpretations. 
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This leads to more insightful interpretations of what happens in “inquiry-based” 
learning situations than in classrooms with more apparent role-asymmetries (Voigt, 
 1996  ) . Ethnomethodology acknowledges that the taken-for-granted rules are func-
tional and that the participants’ interpretations might be limited. Voigt  (  1984  ) , 
for example, showed that teachers and students enact subconscious practices or 
“routines” when structuring the process of developing new knowledge interactively. 
He also pointed out that in the interactive construction of new meaning through an 
elicitation pattern, which starts with a teacher’s open question (a new “task”), there 
is no shared frame of reference from the outset. For the students the new question is 
ambivalent, and this ambivalence is only retrospectively (re fl exively) reduced when 
the of fi cial solution is institutionalized. This ambivalence causes a problem, espe-
cially with contextualized mathematics as a starting point for developing new con-
cepts and methods. The issue has been taken up by researchers who are interested 
in the effects of “invisible” pedagogic practices on the strati fi cation of achievement 
(see e.g., Jablonka & Gellert,  2011  ) . 

 In order to explore the strati fi cation of achievement in mathematics classrooms, 
one has to acknowledge that patterns of classroom interaction are functional in terms 
of the goals of the institution and are not accomplished at the initiative of the partici-
pants in a single classroom. Theorizing the reproduction of inequalities through math-
ematics education is the most obvious agenda of genuine sociological approaches. 
Advances have been made through employing the works of Bourdieu and Bernstein. 
In PME conferences, references to Bourdieu and Bernstein are not very common and 
remain often on a general level, with the exception of the research forum on sociologi-
cal theories mentioned above. Bernstein’s notion of visible pedagogy invites didacti-
zation, as can be seen by Sullivan’s  (  2008  )  reference to Bernstein, pointing to the 
necessity of making explicit the criteria for evaluation when implementing non-
routine tasks in classrooms. Aaron  (  2008  )  innovatively employed Bourdieu’s notion of 
“symbolic economy” when analyzing students’ views of classroom work in geometry 
lessons in order to conceptualize differences in the students’ identities. 

 In an illuminative investigation of unequal achievement in mathematics secondary 
education in Victoria, Australia, Teese  (  2000  )  drew on Bourdieu. His analysis shows 
that much of the students’ success at different levels of the mathematics curriculum 
depended on their personal characteristics, such as organizational skills, study habits, 
concentration and academic self-esteem. Teese argued that the discriminating poten-
tial of mathematics education is implicit in a curriculum hierarchy that raises the 
demands over successive levels of mathematics that call more and more on embedded 
scholastic attitudes and behaviours. It can be taken as a measure of the implicit cul-
tural homogeneity of the mathematics curriculum as a whole—based on sequenced 
and overlapping content and shared conceptual emphasis—that the average social 
level of students rises at each level of performance. Teese’s investigation showed the 
potential of data analysis from a consistent theoretical vantage point. 

 Bernstein’s work offers a broad range of interrelated notions that are incorpo-
rated into a complex theoretical body. Most prominently in references feature the 
concepts of recontextualization, horizontal and vertical discourse, classi fi cation and 
framing, and visible and invisible pedagogy. Increasing numbers of researchers in 
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mathematics education have extended, developed and critically engaged with that 
body of theory. Dowling’s  (  1998  )  study of school mathematics texts and some of 
the methodological tools developed in that study provided a major contribution to 
sociological theorizing in mathematics education. 

 Uncovering the ideologies behind different mathematics curricula and scrutiniz-
ing the ways in which what types of knowledges are constructed for which groups 
of learners remains a major task for sociological approaches. Noss et al.  (  1990  )  
provided a collection of sociological analyses of curriculum,    Ernest  (  2009  )  attempted 
a critique of ideology in mathematics, science and technology education research 
and its globalization, Ensor and Galant  (  2005  )  reviewed studies from the South 
African context. Analysis of the development and effects of policy discourses in 
mathematics education is another domain of study to which sociological theory 
provides powerful tools. 

 Valero and Zevenbergen  (  2004  )  located approaches, sometimes also subsumed 
under the label “socio-cultural,” which acknowledged that both mathematics education 
and research in the  fi eld are not only social but also political practices. Depending on 
the political, economic and social conditions, these practices exercise power in differ-
ent forms. Institutions that contribute to the reproduction of power, as for example 
schooling, can be analyzed as political institutions. Perspectives explicitly sharing the 
acknowledgement of this fact can be described as “socio-political.” Such approaches 
have moved beyond the tools made available within classical sociology and cultural 
psychology to explore the power dynamics within social interactions. They ground 
their investigations on the premise that the practices and processes of mathematics 
education are inherently political. Skovsmose  (  2009  ) , for example, wrote, in his 
critique of mathematical rationality, of the symbolic power of mathematics. 

 Martin  (  2010  )  observed that race still remains under-theorized in mathematics 
education, as disparities in achievement are often taken as re fl ecting race effects 
rather than as consequences of the racialized nature of the students’ mathematical 
experiences. A similar point has been made (e.g., Skovsmose,  2007  )  about many, 
mostly quantitative, studies of unequal attainment in relation to social and economic 
background that treat the students’ background merely as an input variable. 
Similarly, Gutiérrez and Dixon-Román  (  2011  )  demonstrated how “gap-gazing” 
constructs those who do not achieve as de fi citarian, while not addressing the ideo-
logical underpinnings of the goals of mathematics education. Chronaki  (  2011  )  
argued that curriculum politics act as “ideological state apparatus” (Althusser, 
 1971  ) , regulating the micro-level of mathematics education by creating micro-
spaces, for example in the form of didactic innovations. She argued that hegemonic 
discourses of equity construct subjects with static identities as marginalized and 
voiceless. Chronaki observed that such discourses are underpinned by constructivist 
and socio-cultural approaches that overemphasize the “autonomous subject” who 
makes rational decisions. This points to the potential of employing psychoanalytic 
and poststructuralist theories, and clearly challenges psychological theorizing. 

 Researching unequal access to mathematical practices and discourses that provide 
cultural and symbolic capital might leave the conception of curriculum untouched. 
However, exposing the forms of mathematics privileged in a curriculum is an outcome 
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of an analysis of the functionality of curriculum as well as of mathematics. Pais and 
Valero  (  2011  )  argued that mathematics education in many places must be under-
stood within a capitalist economic and neo-liberal political setting that calls for 
quality and equity yet serves particular interests in these settings. 

 Critique and a wish to contribute to an agenda for social change is an important 
agenda in sociologically-oriented research in mathematics education as it was out-
lined by Noss et al.  (  1990  ) . The fact that this is a political agenda does not mean that 
the research is more value-loaded than any other, but rather that the values are made 
more explicit.  

   Postmodern Approaches 

 Seminal edited volumes written during the last decade (e.g., Bishop, Clements, 
Keitel, Kilpatrick, & Leung,  2003 ; Boaler,  2000 ; Lester,  2007 ; Sriraman & English, 
 2010  ) , although making important contributions to the discipline, did not re fl ect the 
impact and take-up of postmodern theory within mathematics education. Given that an 
increasing number of researchers are interested in what these social theories might 
mean for mathematics education, we look at the origins of and the assumptions under-
pinning this theoretical movement and the way in which the movement promotes local 
voice and critical thinking, even as it holds critical thinking itself up for scrutiny. 

 The speci fi c traditions of psychology and sociology provide a bedrock of concepts 
and theories for the study of mathematics education from a postmodern perspective. 
Psychology has informed a psychoanalytical turn, designed to unsettle fundamental 
modernist assumptions concerning identity formations. For example, Brown and 
McNamara  (  2010  )  drew on the work of Lacan to investigate how preservice teach-
ers use language to describe the world around them and how they see themselves 
 fi tting in. Sociology has helped seed poststructuralist work that aimed at drawing 
attention to the ways in which power works within mathematics education, at any 
level, and within any relationship, to constitute identities and to shape pro fi ciencies. 
Walshaw  (  2004a  ) , for example, built on the work of Foucault to explore the ways in 
which teaching practice is inherently political. 

 Like analyses of a modernist persuasion, at the heart of postmodern analyses lies an 
interest in understanding contemporary social and cultural phenomena (e.g., Brown, 
 2008 ; de Freitas & Nolan,  2008 ; Walls,  2009  Walshaw,  2004b,   2010  ) . Postmodern 
analyses chart teaching and learning, and the way in which identities and pro fi ciencies 
evolve, tracking re fl ections, investigating everyday classroom activities and tools, 
analyzing discussions with principals, mathematics teachers, students, and educa-
tors, and mapping out the effects of policy, and so forth. The point of departure from 
modernist narratives is derived from assumptions about the nature of the reality 
being studied, assumptions about what constitutes knowledge of that reality, and 
assumptions about what are appropriate ways of building knowledge of that reality. 
As a result of these speci fi c understandings, the lived contradictions of mathematics 
processes and structures are able to be explored. 
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 Poststructuralists and psychoanalysts share some fundamental assumptions 
about language, meaning and subjectivity. They see language as fragile and prob-
lematic and as  constituting  social reality rather than  re fl ecting  an already given reality. 
What is warranted at one moment of time, may be unwarranted at another time 
(see Walshaw,  2007  ) . The claim is that because the construction process is ongoing, 
we do not have access to an independent reality. Hanley  (  2010  )  demonstrated that 
point in her exploration of the way in which teachers make sense of and enact cur-
riculum reform. She showed that although teachers attempted to put into practice 
what they learned through a professional development project, what was learned 
and practised in professional development initiatives was never fully cashed in as 
educational capital within the classroom. 

 Objectivity is not the only concept that postmodern theorists take issue with. 
They debate conventional understandings of reason, insisting that rationality is 
always relative to time and place. They prefer to think in terms of “local” determi-
nants, fallibility and contingency. Underwriting their projects is a “decentred 
self”—a self that is an effect of discourse which is open to rede fi nition and which is 
constantly in process. This point was given expression by Walls  (  2010  )  in her inves-
tigation of the “good” teacher, in a setting of compulsory standardized testing. Walls 
drew on the idea of teacher identity as a process embedded in discourse, to explore 
teachers’ struggle for self and to investigate how systemic forces, in a culture of 
teacher accountability, are lived by teachers as individual dilemmas. 

 What is apparent in mathematics education research that draws on postmodern 
theories is a move towards exploring tentativeness and developing scepticism of the 
particular principles and methods that put a shine on essentialist and absolutist ten-
dencies. What such theories also do is require researchers to consider the implicit 
assumptions that guide their work. The point was emphasized by Adler and Lerman 
 (  2003  ) , who argued that there are moral obligations, and hence, ethical issues at 
stake in any research practice. More critical debate and evaluation of the competi-
tive work of researchers is needed particularly at this moment of time when political 
in fl uences on research are becoming deeply entrenched. In Adler and Lerman’s 
view, such in fl uences were “insuf fi ciently problematized in the mathematics educa-
tion community” (p. 457). 

 De Andrade  (  2008  ) , reporting on a research project undertaken in Brazil, drew on 
the work of Foucault and used a form of discourse analysis to look at the relation-
ship between research and classrooms in mathematics education. Derrida’s ideas of 
deconstruction also informed the methodology, by providing a vehicle for keeping 
“the system in play,” “in process,” and “to set up procedures to continuously demys-
tify the realities we create, to  fi ght the tendency for our categories to congeal” 
(p. 60). Employing these ideas, De Andrade  (  2008  )  set up contradictions between 
model classrooms as depicted in mathematics education research, and the kinds of 
classrooms in which teachers in Brazil sometimes  fi nd themselves teaching. Two 
major themes could be discerned in De Andrade’s paper: the subjectivity of learners 
in actual classrooms and the inherently political nature of research. These themes 
are in keeping with other work based in the  fi eld that draws on Foucault’s framework. 
Such a framework provides the means to explore the relationship between power 
and knowledge. It is also able to signal that the views of teachers and researchers are 



592 Theories for Studying Social, Political and Cultural Dimensions

always enmeshed in sites of knowledge production that are unavoidably political. 
In drawing on the work of Foucault, De Andrade dealt with meaning construction 
in a way that acknowledged the researcher’s own complicity in the analysis. 

 Stentoft and Valero  (  2010  )  investigated the fragility of mathematical learning. 
Their discussion expressed a poststructuralist imagination that took seriously the 
notion that language constitutes social reality rather than re fl ects an already given 
reality. In developing an understanding of the “noise” symptomatic of everyday 
classrooms, Stentoft and Valero  (  2010  )  challenged interpretations of the practices 
within what are typically characterized as “pure mathematics classrooms.” Their 
theoretical approach used precepts that are, in tenor, at odds with the presupposi-
tions that ground the rational autonomous learner. 

 In a discussion on undermining traditional approaches to learning, Stentoft and 
Valero  (  2010  )  drew attention to the interrelatedness as well as the fragility of class-
room discourse, identity and learning. They argued that these three elements together 
constitute the landscape within which a student’s sense-of-self as learner is formed. 
In their discursive analysis, they case studied mathematics classroom interactions at 
a Danish teacher training college. Underlying the analysis was an intent to avoid 
mere descriptions of classroom life, but rather, to unpack how students and teachers 
were involved with constructing multiple identities over the course of a mathemat-
ics lesson. The intent was also to make clear how learning mathematics and con-
structing mathematical knowledge in the classroom is inextricably caught up in the 
discursive practices of the classroom. 

 Bibby  (  2010  )  used concepts from psychoanalytic theory to explore the pedagogical 
relation. She drew on the concepts of the oedipal family and the Oedipus complex 
to unpack relationships to mathematics, particularly as they are constituted in pri-
mary schools. Post-Freudian psychoanalytic theories of authority provided her with 
conceptual tools to investigate the way in which mathematics, with an emphasis of 
rules, speed and correct answers, is characterized as masculine in traditional school 
mathematics pedagogy. Taking care not to essentialize gender, Bibby unpacked the 
ideational  fi ction of binary characterization, and proffered, instead, masculinity and 
femininity, boy and girl, as “elements within gender.” She drew on research data to 
unpack some of the potential consequences of differentiating mathematics as an 
unemotional, authoritative, rational, systematic and logical set of values and prac-
tices, away from so-called feminine qualities such as warmth, emotional attune-
ment, and creativity. Speci fi cally, she explored the tensions that result from  fi ctions 
that allow for the deployment of masculinity in the discursive construction of math-
ematics and investigated the consequences for teachers and students living with the 
effects of these splits in policy and practice.   

   Theories from Within Mathematics Education 

 In addition to the theories mathematics education researchers import from other 
domains, there are theories that were born within mathematics education itself in 
order to overcome the limitations of a purely psychological paradigm. For example, 
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as mentioned previously, Sfard  (  2008  )  developed her own model for describing the 
interaction between communication and cognition. This model has subsequently 
been used by other researchers as a theoretical perspective on cognition. Because 
the connection of communication and cognition could have been theorized outside 
of the context of mathematics education, Sfard’s theory is an example of the way 
researchers in our  fi eld develop theory using contexts from mathematics education 
and theory from other domains. This is a strong example, because others have taken 
up her theory. 

 Renert and Davis  (  2010  )  proposed an integral perspective for exploring knowl-
edge production. They developed a model that integrated self, culture, and nature, 
through which a plurality of perspectives could be entertained. Their proposal was 
towards an evolutionary perspective, one that is inclusive of the contributions of 
traditional, modernist and postmodern perspectives. They showed how each per-
spective leads to different views about the kinds of tools that mathematics uses and 
each makes it possible for certain understandings to be entertained and legitimated. 
Their integral perspective valued the enacted, creative and dynamic dimensions of 
mathematics and was focussed on the health and harmony of the entire system. 
Renert and Davis applied these ideas to their work with experienced middle-school 
teachers. Their work demonstrated how teachers are crucial participants in the 
creation of mathematical possibilities. They suggested that teachers might engage 
students more meaningfully with mathematics by elaborating the speci fi c, by using 
active language, and by allowing them to engage with multiplicity and plurality in 
discourse, meaning-making and interpretation. 

 There are other theories that have arisen in mathematics education for which the 
unique context of mathematics education is a necessary aspect of the theory. These 
include work that is critical of mathematics education and its position and role in 
society. One of the more established, but also very diverse, of these approaches is 
ethnomathematics. In PME proceedings, the term was referred to in 10 papers in the 
volumes from 2010, but only in three papers from 2009 and in one paper from 2007. 
Ethnomathematics is concerned with practices and activities of marginalized groups, 
that can be identi fi ed as mathematical, but which are not institutionalized as 
mathematics. 

 The term ethnomathematics is a label used for the theoretical underpinnings as 
well as for the product of an analysis of the mathematical nature of such activities. 
It emerged from a critique of both a Eurocentric gaze in popular history of mathe-
matics as well as an elitist pedagogic model together with a de fi citarian perspective 
on the knowledge of students with a cultural frame not in line with the of fi cial 
school culture. Thus it allows seeing the political dimension of mathematics educa-
tion derived from and designed for the hegemonic sectors of society. The spirit of 
the approach to both research and education is a commitment to inclusion. 
Ethnomathematics brought into attention the cultural embeddedness of mathematical 
knowledge and of mathematics education. 

 There are, of course, other forms of criticism of mathematical practices and 
mathematics education practices. For example, much equity work in mathemat-
ics education has criticized the way mathematics is taught and has based this 
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criticism on sociological and political perspectives. There has also been criticism of 
mathematical rationality, and its effects on society. Skovsmose’s work, partly 
inspired by critical theory and critical pedagogy, drew many to contribute to the 
project of critical mathematics education (see Alrø, Ravn, & Valero,  2010  ) . His 
analysis of the formatting power of mathematics itself ought to be viewed as a con-
tribution to the sociology of mathematics, a branch of sociological theorizing that 
has a great potential to be further developed. It is necessary for scrutinizing tradi-
tional dogmas about mathematical knowledge production and applications. 
Understanding the relationships between different practices that include mathemat-
ics and exhibit different knowledge structures and discourses, in school and outside 
school, remains a major concern (Jablonka,  2003 ; Jablonka & Gellert,  2007  ) . 

 Though theories have emerged within mathematics education, as described 
above, these theories still connect with theories outside mathematics education. 
For example, ethnomathematics research is informed by ethnographic traditions. 
And critiques of mathematics use approaches that have been developed outside 
mathematics education. In short, there are no theories that are absolutely indepen-
dent from other theories. There are no distinct theories; there are only relations 
among theories.  

   Conclusion 

 In this chapter we have presented a critical investigation of contemporary 
theoretical trends in international research in mathematics education. Our attempt at 
mapping the  fi eld by broad strokes has allowed us to grasp the current state of play 
in theory selection, to understand how particular theories gain ascendancy, and to 
see how differing theories are acted upon in varying research projects. What has 
been revealed is a vibrant international research community that validates a wide 
range of theoretical perspectives, each of which informs the production of new 
knowledge relevant to mathematics education. 

 Though there is vibrancy and growth in our  fi eld attributable to socio-cultural 
and political perspectives, it is important to recognize that the  fi eld itself is domi-
nated by one language and also by certain cultural practices, some of which are 
related to that language. Our review of the  fi eld follows developments in the litera-
ture published in English because this volume is in English and because English is 
the primary linguistic medium for developments in our  fi eld. However, we recog-
nize that there is good work in other languages that addresses socio-cultural and 
political dimensions of mathematics education. The dominance of English in our 
 fi eld is, of course, a characteristic that relates to social, cultural and political forces. 
There is some scholarship that addresses this characteristic of our  fi eld (e.g., Barton, 
 2008 ; Skovsmose,  2006  ) , but more often this characteristic is addressed in researchers’ 
descriptions of the limitations of their work. 

 As all of the perspectives we have discussed not only challenge the assumptions 
of psychology but are also based on partly con fl icting assumptions, the question of 
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the complementarity or juxtaposition of analyses informed by these perspectives 
becomes important. Research in mathematics education is diversi fi ed and the 
domain might be characterized as a collection of different approaches within rival 
discourses with little or no dialogue. If dialogue is avoided, it is then not the explan-
atory power of the diverse theories that prompt reception and dissemination, but the 
power relations among the researchers within competing discourses. However, 
many researchers acknowledge the potential of asking for alternative interpretations 
of the same empirical  fi eld from different theoretical vantage points, for these can 
bring tensions to the foreground. This will only happen, of course, if the theoretical 
underpinnings are well understood and their implications for the research design 
well articulated. That is particularly the case if interpretations based on distinct 
theories are controversial. 

 What can we learn from this pro fi le? We can  fi nd out about the speci fi c theorists 
who are currently in fl uential in the  fi eld. We can learn about the way in which ideas 
about theory in mathematics education change. But we can do more—we can draw on 
the insights that our exploration offers to inform the debate about those things that are 
most important in mathematics education. From our interrogation we see signs of a 
shift away from cognitive psychology and evidence of critical questioning, of the cre-
ation of new ideas, and new ways of doing things, as well as a tolerance for multiplicity. 
All of these observations will contribute to the development of a body of professional 
knowledge in our discipline, informed by theory rather than driven by policy. We 
believe the international research community holds the reins of exciting potential for 
further development of leading edge knowledge in mathematics education. 

 Serious engagement with the work produced from different vantage points and 
openness towards different views can counteract the establishment of closed circles 
of academic inquiry, often labelled under a common term and declaring other 
projects as irrelevant to their own. We share the belief that an analysis of the situa-
tion of mathematics education needs to include critical re fl ection of its practices. 
It is only in its difference to practice as unmediated and often unconscious action, 
that theory transcends practice.      
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  Abstract   Past research has largely characterized disadvantage as an individual or 
social condition that somehow impedes mathematics learning, which has resulted in 
the further marginalization of individuals whose physical, racial, ethnic, linguistic 
and social identities are different from normative identities constructed by dominant 
social groups. Recent studies have begun to avoid equating difference with de fi ciency 
and instead seek to understand mathematics learning from the perspective of those 
whose identities contrast the construction of normal by dominant social groups. 
In this way of thinking, “understanding” disadvantage can be discussed as under-
standing social processes that disadvantage individuals. And, “overcoming” disad-
vantage can be explored by analyzing how learning scenarios and teaching practices 
can be more  fi nely tuned to the needs of particular groups of learners, empowering 
them to demonstrate abilities beyond what is generally expected by dominant dis-
courses. In this chapter, we consider theoretical and methodological perspectives 
associated with the search for a more inclusive mathematics education, and how 
they generally share a conceptualization of the role of the teacher as an active par-
ticipant in researching and interpreting their students’ learning. Drawing from 
examples with a diverse range of learners including linguistic, racial and ethnic 
minorities, as well as deaf students, blind students, and those with speci fi c dif fi culties 
with mathematics, we argue that by understanding the learning processes of such 
students we may better understand mathematics learning in general.      
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 In this chapter, we consider research in mathematics education that has concerned 
itself with documenting, analyzing, and critiquing the social construction of disad-
vantaged mathematics learners and in investigating the participation of students 
from marginalized cultural and social groups. To begin, we will discuss how the 
notion of disadvantage as de fi ciency in mathematics learning further stigmatizes 
and marginalizes social groups whose identities are not congruent with those of 
dominant social groups and consider alternative approaches to understanding and 
interpreting issues of equity and access in mathematics education. We go on to con-
sider developing research perspectives that aim to look beyond models in which 
difference is equated with de fi ciency and focus instead on how mathematical agency 
and identities are mediated by a diverse range of resources, including language, 
cultural artefacts and sensory experiences. Finally, we turn to attempts to engage 
teachers in the challenge of capitalizing upon this diversity to create more inclusive 
mathematics classrooms. 

   Difference, Not Disadvantage 

 Discourses of disadvantage in mathematics education parallel larger societal dis-
courses. Being social, these discourses could have been built otherwise. The soci-
etal discourses beget disciplinary discourses and disciplinary discourses both re fl ect 
and contribute new ideas to their parent discourses. Ideas of disadvantage tend to 
be based on physical, racial, ethnic, linguistic, social and gendered identities that 
are different from normative identities constructed by dominant social groups. 
As researchers such as Gutiérrez  (  2008  )  and Martin  (  2009a  )  have argued, a problem 
with this perspective is that it treats marginal groups as static categories and runs the 
risk of equating group membership with connotations of innate intelligence. At the 
least, this perspective implies that students from particular cultural groups are 
de fi cient in something—like mathematical achievement—that those from the domi-
nant ideal have. Hence to overcome their possibly innate disadvantage the marginal-
ized need to become more like their more “normal” contemporaries. But, as many 
researchers have suggested, physical, racial, ethnic, linguistic, social and gendered 
identities are far from static, they are constructed in association with social, political 
and economic processes. Viewed in this way, identities are continually constructed 
and reconstructed, experienced and re-experienced. Identity is simultaneously 
cultural and transcends culture. 

 In this chapter then, we consider that particular groups come to be disadvantaged 
not as a result of some static characteristic that de fi nes the group in question but by 
the social, political, economic and psychological practices of the wider society to 
which they belong. This brings us to a dif fi cult challenge. We are faced, in this 
chapter, with the enormous task of considering developments in the  fi eld of mathe-
matics education in relation to disadvantage—or, perhaps better, difference—in 
general. As if everyone somehow experiences difference in the same ways. This 
challenge is, of course, impossible to tackle in a fully adequate way, and inevitably 
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we have had to make choices on which learners we will focus in our discussion. 
Indeed, any attempt to list those who society disadvantages is similarly dangerous. 
On the one hand, we risk excluding some groups from the list and on the other we 
risk assuming terminology that will be deemed unacceptable by some of those who 
would position themselves either inside or outside the groups we label. Yet, we cannot 
write this chapter without doing so. 

 In their chapter on issues of equity and access in the  Second Handbook of 
Research on Mathematics Teaching and Learning , Bishop and Forgasz  (  2007  )  sug-
gested that a wide range of student groups had suffered what they called “con fl icts 
with mainstream mathematics education,” including, students from racial and ethnic 
minorities and indigenous peoples, rural learners, non-Judeo-Christian religious 
student groups, working-class students, female students and students with disabilities. 
We would add to this list students who have been expected to learn mathematics in 
a language different from their  fi rst or home language and lesbian, gay or transgen-
der students, although this last student group, as Rands  (  2009  )  has argued, is almost 
completely absent from the research literature. 

 Another impossible task for this single chapter is to consider all the fronts on 
which action is necessary if disadvantage is to be overcome. The very view of 
disadvantage to which this chapter subscribes should make it clear that disadvan-
tage cannot be overcome at any global level without a restructuring of a society as a 
whole. At a more local level, however, we will argue that one way in which “over-
coming” disadvantage can be explored is by analyzing how learning scenarios and 
teaching practices can be more  fi nely tuned to the practices of particular groups of 
learners, empowering them to demonstrate abilities beyond what is generally 
expected by dominant discourses. We therefore focus our attention on research 
related to understanding the mathematical practices of students from groups mar-
ginalized by wider society, using a lens in which deviances from any documented 
norms are treated as differences not as de fi ciencies. This suggests a shift from focus-
sing on disadvantage to moving towards equitable approaches in mathematics 
education. In this chapter, we concentrate in particular on school mathematics and, 
more speci fi cally, we have chosen to focus mainly on research related to mathematical 
practices as they occur within classrooms. We begin by considering recent views on 
equity in the context of mathematics education.  

   Views on Equity 

 Our shift in focus from overcoming disadvantage to equity means that the latter 
category requires examination. Equity does not exclusively affect students posi-
tioned as disadvantaged by virtue of their linguistic, cultural, ethnic and racial, 
physical, sexual, and gender identities. As such, discourses on equity are not mar-
ginal issues in mathematics education policy, research and practice. Bishop and 
Forgasz  (  2007  )  provided details on possible research approaches to access and 
equity in mathematics education. Here, instead, we focus on examining critiques of 
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the equity approaches previously identi fi ed. We attempt to de fi ne equity and to 
provide a deeper theoretical framework for understanding connections between 
macro and micro perspectives. 

 For some, in mathematics education, “equity” has to do with its legal denotation 
of “fairness” and “justice” and is made indistinct from “equality.” As such, equity is 
thought to equate to providing the same for all. Internationally, the notion “mathe-
matics for all” gained acceptance and emerged as a Theme Group at ICME-5 
(Damerow, Dunkley, Nebres, & Werry,  1984  )  and continued on by a host of authors 
(for example, Croon,  1997 ; National Council of Teachers of Mathematics,  1989 ; 
Steen,  1990  ) . Nearly two decades later, from the perspective of critical theory, this 
view is subject to negative appraisal. Frankenstein  (  2010  )  describes a profound 
concern that “mathematics for all” assumes that all students have the same social, 
economic context and further pointed out that Apple (1992) concluded that the 
NCTM  Standards  (1989) did not address “the question of  whose problem  … by 
focussing on the reform of mathematics education for ‘everyone,’ the speci fi c prob-
lems and situations of students from groups who are in the most oppressed condi-
tions can tend to be marginalized or largely ignored” (Secada,  1989 , p. 25). The 
 Standards  did not contain, for example, suggestions for mathematical investigations 
that would illustrate how the current US government’s real-life de-funding of public 
education, through funding formulas based on property taxes, creates conditions in 
which the real-life implementation of the NCTM student-centered pedagogy is vir-
tually impossible except in wealthy communities (Kozol,  1991  ) . 

 Others, not necessarily critical theorists, have proffered a similar line of analysis: 
equity in mathematics education is not likely to be achievable within societies suf-
fering from structural socio-economic inequalities. For instance, Clarke and Suri 
 (  2003  )  problematized cultural explanations of observed differences and similarities 
in international comparative research of mathematical achievement. In discussing 
how analyses of between countries rankings on international comparative assess-
ments, such as TIMSS and PISA, masks within country inequities, he cited Berliner 
 (  2001  )  as saying,

  Average scores mislead completely in a country as heterogeneous as [the United States of 
America] … The TIMSS-R tells us just what is happening. In Science, for the items com-
mon to both the TIMSS and the TIMSS-R, the scores of white students in the United States 
were exceeded by only three other nations. But black American school children were beaten 
by every single nation, and Hispanic kids were beaten by all but two nations. A similar pat-
tern was true of mathematics scores. … The true message of the TIMSS-R and other inter-
national assessments is that the United States will not improve in international standings 
until our terrible inequalities are  fi xed. (p. B3)   

 The consequence of internal social and economic variations or inequalities is 
missed in the aggregation of performance data for countries as socially and cultur-
ally plural, for instance, as in the cases of, Australia, Brazil, Canada, England, South 
Africa, and the USA. 

 Socio-political variations within and between countries not only skew interpreta-
tions of international comparative data but also mask possibilities for equitable 
access, treatment, and outcomes in mathematics education. In their discussion of 
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social inclusion and diversity in mathematics education, Baldino and Cabral  (  2006  )  
argued the need for researchers to develop a theoretical stance to examine and 
understand practices in mathematics education from broader social and political 
perspectives. Assuming this challenge, Pais and Valero  (  2011  )  constructed a theo-
retical perspective of equity for understanding connections between the micro views 
of equity in mathematics teaching and learning practices and the macro-social con-
ditions in which those practices occur. They argued that research on equity has not 
fully theorized the complexity of social and political life that entails the practices of 
mathematics education to understand how this engul fi ng complex conditions pos-
sibilities for equitable access, treatment, and outcome in mathematics education. 

 From another theoretical perspective, progress toward equity is viewed as a 
tension between dominant and critical mathematics education (Gutiérrez,  2007  ) . 
The latter practice of mathematics education was  fi rst theorized by Frankenstein 
 (  1983  ) . Distinctions between dominant and critical draw attention to differences 
among practices of mathematics education that re fl ect the social–political status quo of 
societies and practices that admit the positioning of students as members of a society 
rife with issues of power and domination. Critical mathematics takes students’ 
cultural identities and builds mathematics around them in ways that address social 
and political issues in society, especially highlighting the perspectives of marginal-
ized groups. This is a mathematics that challenges static notions of formalism, as 
embedded in a tradition that favors the West. For us, the distinction between domi-
nant and critical is not one of acquisition and application, but rather one of aligning 
with society (and its embedded power relations) or exposing and challenging society 
and its power relations (Gutiérrez,  2007  ) . 

 Gutiérrez’s  (  2007  )  point was that attitudes and practices in mathematics educa-
tion that align with dominant perspectives of who can and does mathematics lead to 
inequity. She proposed a way to de fi ne equity that implies how both to achieve and 
to measure it. Borrowing from D’Ambrosio’s  (  1999  )  trivium—literacy, matheracy, 
and technoracy—and illustrating with data from a high school that supports Latina 
and Latino students’ participation in calculus courses while enabling them to main-
tain their linguistic and cultural identities, she posits three criteria for achieving and 
measuring equity in mathematics education:

    1.    Being unable to predict students’ mathematics achievement and participation 
based solely upon characteristics such as race, class, ethnicity, gender, beliefs, 
and pro fi ciency in the dominant language.  

    2.    Being unable to predict students’ ability to analyze, reason about, and especially 
critique knowledge and events in the world as a result of mathematical practice, 
based solely upon characteristics such as race, class, ethnicity, gender, beliefs, 
and pro fi ciency in the dominant language.  

    3.    An erasure of inequities between people, mathematics, and the globe.     

 The  fi rst of Gutiérrez’s three criteria addresses the acquisition of cultural capital 
needed to participate fully in the economic life of dominant society. The second, 
points to students’ abilities to use mathematics to analyze and critique injustices in 
society. The third criterion is clearly far-reaching and seeks to position students, now 
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possessing both dominant and critical mathematics, as active users of mathematics 
in the service of eliminating social inequities. With these micro and macro criteria 
of equity in mind, in the next section we consider the changing views of learning 
that characterize research investigations into the participation of different groups of 
students in the practices associated with doing and learning mathematics.  

   Perspectives on Learning: From Individual 
to Socio-political Approaches 

 Just as perspectives on disadvantage and equity have changed substantially in 
mathematics education literature over the past 20 years or so, so too have views on 
learning. In particular, by the end of the last century, what Lerman  (  2000  )  termed the 
“social turn” had already begun to take place, with socio-cultural theories on learning 
ever more present and a shift in the balance between those who equate learning with 
a culture of acquisition and those who focus on the practice of understanding. 
Following Lave  (  1990  ) , Sfard  (  1998  )  described the two poles on this balance as dis-
tinct metaphors for learning—with the metaphor of acquisition emphasizing knowl-
edge as a commodity, as possession, and learning as coming to have, whereas the 
metaphor of participation posits knowledge as an aspect of the activity or discourse 
of a cultural domain and learning as a process of coming to belong. 

 The increasing prevalence of socio-cultural theories (Atweh, Forgasz, & Nebres, 
 2001  ) , and attention to learning as participation in cultural practices, characterizes 
the  fi eld of mathematics education as a whole and is not limited to those whose 
research lens is focussed on those who continue to be marginalized players in prac-
tices associated with school and university mathematics. Indeed, if researchers use 
socio-cultural approaches to examine the extent to which students become “suc-
cessful” participants only in  existing , privileged mathematical practices or the cog-
nitive behaviours that characterize those already included, then there is a danger of 
making ever more invisible those whose life experiences lead them to appropriate 
these practices in ways that differ from a supposed norm. That is to say, if research-
ers treat learning school mathematics as some kind of general process of encultura-
tion, expecting that all learners, regardless of their differences, experience and 
appropriate the artefacts that currently compose school mathematics in the same 
ways, then once again there is a risk of failing to recognize as valid forms of appro-
priating and using mathematical tools which deviate from the expected, with the 
result that researchers reinforce discourses that see members of certain groups as 
somehow innately disadvantaged. This perspective aligns with central premises of 
the ethnomathematics research program (D’Ambrosio,  2001 ; Gerdes,  2007 ; Knijnik, 
 2002  ) , critical and social justice pedagogy (Frankenstein,  1983,   1998 ; Gutstein, 
 2006 ; Skovsmose,  1994,   2011 ; Sriraman,  2008 ; Wager & Stinson,  2012  ) , and cul-
turally responsive mathematics education (Greer, Mukhopadhyay, Powell, & 
Nelson-Barber,  2009  ) . 
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 Indeed, the kinds of quantitative comparisons between student groups that tend 
to be used when equity is considered in terms of outcomes are usually made on the 
basis of high-stakes assessment instruments designed to measure achievement in 
relation to the current hierarchies of mathematical knowledge of existing school 
curricula (Gutiérrez & Dixon-Román,  2011  ) . If we accept that learners’ appropria-
tions of the artefacts associated with the discipline of mathematics are mediated by 
cultural tools, then any attempt to judge learners’ achievement using tools and prac-
tices associated exclusively with what Gutiérrez  (  2002  )  calls “dominant mathemat-
ics” and Bishop and Forgasz  (  2007  )  term “western mathematics” may privilege the 
participation of certain groups of learners at the expense of others. Perhaps more 
worryingly, as researchers such as Martin  (  2009a  )  and Gutiérrez  (  2010  )  have sug-
gested, viewing learning only in terms of enculturation into the dominant culture 
can imply that learning to succeed is equated with learning to be like those idealized 
in the dominant culture. For learners who do not  fi t this ideal, this process, if pos-
sible, would involve a denial of their very identity. These concerns con fi rm that 
understanding different patterns of participation in school mathematics necessitate 
more than comparing outcomes: it also involves focussing on the mathematics 
learner as a cultural being and on investigating how different aspects of this being 
have an impact upon the particular ways that the practices of school mathematics 
are appropriated. This returns us to the idea of mathematics learning as a process of 
appropriation and especially to how the term appropriation might be interpreted. In 
what follows, we explore two points of view—enculturation and emancipation—as 
presented in the current literature. 

 On the one hand, Gutiérrez  (  2010  )  has pointed out that not all research that 
adopts a socio-cultural perspective addresses issues of power or how power rela-
tions contribute to the marginalization of certain groups of learners. She sug-
gested that this has led researchers such as Greer, Mukhopadhyay, Powell, and 
Nelson-Barber  (  2009  ) , Mukhopadhyay and Greer  (  2001  ) , Valero and Zevenbergen 
 (  2004  ) , and Walshaw  (  2001  )  to demarcate between socio-cultural research whose 
goal is that of enculturation and that research which aims for emancipation. 
Alluding to a second turn in mathematics education, analogous to the social turn 
mentioned above, she highlighted the increasing attention to theoretical perspec-
tives and tools of an overtly socio-political nature (see, for instance, Mellin-Olsen, 
 1987 ; Valero & Zevenbergen,  2004  ) . Perhaps not surprisingly, although the social 
now permeates many aspects of mathematics education researchers, it is research-
ers interested in equity and social justice who are most responsible for this socio-
political turn, since any comprehensive attempt to challenge the privileges and 
disadvantages that currently characterize educational institutions involves a polit-
ical gaze. Gutiérrez  (  2010  )  highlighted in particular work emanating from critical 
mathematics education, critical theory and post-structuralism. These perspectives 
bring conceptual tools that aim to illuminate how issues of power and identity 
manifest in mathematics education. They adopt methodologies which emphasize 
the voices and stories of students from marginalized groups (see, for example, 
Martin,  2006 ; Mendick,  2006  )  and they question perspectives in which cultural 
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identities are used as static cultural markers, instead positing identity construction 
as an on-going dynamic perspective which re fl ects how senses of self are continually 
created and recreated:

  In mathematics education we recognize that learners, practitioners, and researchers are 
constantly creating themselves—writing themselves into the space of education and society 
as well as drawing upon and reacting to those constructions. (Gutiérrez,  2010 , p. 10)   

 Within this emerging socio-political tradition, “narratives of self” (Mendick, 
 2005  )  and analyses of discursive positioning (Evans, Morgan & Tsatsaroni,  2006  )  
are means to explore the complex and continuous processes by which students 
develop their identities as mathematics learners in relation to discursive binaries 
such as masculine and feminine, active and passive, black and white, and so on of 
the dominant culture. Counter narratives (Stanley,  2007  )  can serve as alternatives to 
the dominant discourses, offering stories of struggle, of resistance, of achievement 
and of success, and hence challenge views which associate deviation from the main-
stream with failure and de fi ciency (Berry,  2008 ; Berry, Thunder, & McClain,  2011 ; 
Martin,  2009a ; Stinson,  2006  ) . 

 On the other hand, although emancipation is clearly an explicit facet on the 
agenda in socio-political approaches, not all researchers would necessarily agree 
that it makes sense to dichotomize enculturation and emancipation. It might even be 
asked what this dichotomization implies about the processes of “enculturation”—
does it suggest a process by which all learners should develop identical senses for a 
particular artefact, regardless of their cognitive resources, or worse, a kind of impo-
sition of cultural norms in which the individual is a passive recipient? On the con-
trary, it is also possible to view enculturation as part of emancipation and not in 
binary opposition to it. 

 At the very least, within the socio-cultural perspectives which have their roots in 
Vygotsky’s work appropriation cannot be viewed as a one-way process (Moschkovich, 
 2004 ; Newman, Grif fi n, & Cole,  1989 ; Rogoff,  1990  ) . And although both social 
meanings and personal senses play their parts (Leontiev,  1978  ) , appropriation does not 
involve a gradual replacement of personal senses by culturally accepted meanings. 
Rather, it might be characterized as a kind of entanglement of perspectives on an 
activity, out of which emerges new forms of thinking about the objects in question 
for all—or for some—of those involved. Hence, the social is always fully present: 
the activities undertaken and the expressions associated with them being essentially 
social acts, mediated by  all  the means available to those interacting within the 
setting in question. This means not only the physical resources and semiotic presen-
tations, but also the cognitive resources associated with the multiple identities which 
the learners bring to the setting. Hence, it is only when it is assumed that everyone 
will, or should, appropriate the tools and practices which comprise mathematics in 
the same way that enculturation becomes equated with imposition. In the following 
section, we consider the growing corpus of research focussed on how the mathemat-
ical agency of learners mediates and is mediated by cultural, cognitive and corporal 
resources.  
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   Examinations of Multiple Resources 
for Mathematics Learning 

 Although the social turn in mathematics education began in earnest only toward 
the end of the last century, Vygotsky  (  1978 /1930) was already attributing analytic 
primacy to the social and cultural rather than the individual in the theory he devel-
oped during the 1920s and 1930s. A central tenet of his theory is that human beings 
have a special mental quality which involves the need and ability both to use arte-
facts to mediate their activities and to encourage the appropriation of these forms of 
mediation by subsequent generations (Cole & Wertsch,  1996  ) . At particular moments 
in the history of a given culture, artefacts are created as a response to the demands 
of particular practices. In turn, these artefacts modify the activities of those using 
them and, further, can also be modi fi ed in use. 

 Hence, as Cole  (  1996  )  argued, “artifacts are the fundamental constituents of cul-
ture” (p. 144): in any given setting, a multitude of coordinated artefacts mediate our 
attitudes and beliefs as well as our social interactions and our actions on the human 
and nonhuman world. From this perspective, learning mathematics can be described 
as coming to use artefacts that historically and culturally represent the body of 
knowledge associated with mathematics. It is important to add two caveats to this 
de fi nition. First, in the light of the discussion of the previous section, mathematics 
needs to be viewed in its broadest sense and not restricted to mathematical practices 
associated exclusively with dominant forms of school mathematics. Second, as the 
research explored in the next section reveals, the ways in which learners appropriate 
and use different artefacts should not be expected to be identical for all. 

   Interplays Between the Sensory, the Material and the Semiotic 

 Mediation has been well documented in the mathematics education literature (e.g., 
Bartolini Bussi & Mariotti,  2008 ; Forman & Ansell,  2001 ; Moreno-Armella & 
Sriraman,  2010  ) . The idea that all intellectual activities involve an indirect action on the 
world is particularly attractive given the nature of mathematics, whose objects depend 
for their materialization in activity on the mediating presence of some perceivable 
entity, be it of material or semiotic form. In the context of this chapter, it is perhaps 
interesting to note that Vygotsky’s work on mediation has its roots in his work with 
blind learners, deaf learners and learners with different disabilities (Vygotsky,  1997  ) . 

 Bringing arguments characteristically before his time, rather than associating 
disability with de fi cit and focussing on quantitative differences in achievements 
between those with and without certain abilities, Vygotsky proposed that a qualita-
tive perspective should be adopted to understand how access to different mediating 
resources impacts upon development. This position became associated with his  fi rst 
formulations of the notion of mediation, as he began to discuss the idea that the 
eye and speech are “instruments” to see and to think respectively, and that other 
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instruments might be sought to substitute the function of sensory organs (Vygotsky, 
 1997  ) . For example, he argued that, for the blind individual, the eye might be substi-
tuted by another instrument. Consistent with his view that artefacts both modify the 
activities of those using them and become modi fi ed as a result of their use, this sub-
stitution can be expected “to cause a profound restructuration” of the intellect and of 
the personality of the blind individual (Vygotsky,  1997 , p. 99). That is, since hands 
and eyes are fundamentally different tools, when one is used instead of the other, it 
is to be expected that different perspectives on activities they mediate will emerge. 

 Vygotsky’s writings suggested that he was, at least implicitly, attributing to 
organs of the body—more speci fi cally, to the eye, to the ear and to the skin—the 
role of tool. This implies that sensory tools should be included alongside material 
and semiotic resources as mediators in learning. And, rather than using a model that 
posits students with disabilities as de fi cient in relation to those without, Vygostsky’s 
stance involves considering how and when the substitution of one tool by another 
may empower different mediational forms and hence engender different mathemati-
cal practices. In this sense, in their investigations of the practices of blind mathemat-
ics learners in Brazil, Fernandes and Healy (Fernandes & Healy,  2007a ; Healy & 
Fernandes,  2011  )  have argued that to understand blind learners, it is important to 
identify these differences and explore how the particular set of material, semiotic 
and sensory tools by which blind learners seek to give sense to their activities in the 
world motivate different forms of participation in mathematics. Pointing to some of 
the differences associated with seeing with one’s hands and seeing with one’s eyes, 
Fernandes and Healy explored how tactile means of accessing visuo-spatial informa-
tion became associated with the highlighting of certain mathematical abstractions 
by blind mathematics students. Although mathematically valid, these abstractions 
were not always those that the teacher was intending to highlight in the teaching 
situation and tended to be expressed both bodily and linguistically in accord with the 
dynamic manners in which the learners’ hands explored artefacts used to represent 
mathematical objects. 

 This last point is illustrated in a case they report in which two blind learners 
explored re fl ective symmetry (Fernandes & Healy,  2007a  ) . One of the learners was 
blind from birth while the other gradually lost his sight over a 10-year period, 
becoming completely blind only at the age of 15 years. There were differences 
between approaches to symmetry adopted by the two students. For example, the 
student who had never had access to the visual  fi eld tended to treat geometrical 
objects as dynamic trajectories and attempted to look for invariance relationships 
among the sets of points which de fi ned the trajectories; the second student attempted 
to characterize the objects he was feeling in terms of objects he remembered from 
before he lost his sight. Nevertheless there were also similarities. Notably, both 
students tended to move their hands or corresponding  fi ngers from each hand in a 
symmetrical manner over the materials they were exploring. This was not some-
thing that the researchers had anticipated in the design of the tasks—which had been 
developed based on research into sighted learners’ understandings of symmetry and 
re fl ection. Fernandes and Healy suggested that concentrating more speci fi cally on 
how blind learners use their hands to conceive mathematical objects might highlight 
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the existence of alternative learning trajectories for those with or without visual 
impairment—or at least differences in preferred routes to mathematics. 

 A similar point was made by Nunes  (  2004  )  in relation to deaf mathematics learners. 
She argued that, in the light of the results of recent studies highlighting the role of 
visuo-spatial representations in the mathematics learning of the deaf and the hard 
of hearing (Bull,  2008 ; Kelly,  2008 ; Nunes & Moreno,  2002  ) , the participation of 
deaf learners in mathematical activities might be prejudiced if tasks are consistently 
presented to them in forms that privilege serial over spatial coding. Nunes main-
tained that deaf learners should be given opportunities to learn to use their preferred 
and superior visuo-spatial abilities to represent and manipulate the sequential infor-
mation within mathematical problems. 

 Marschark, Spencer, Adams and Sapere  (  2011  )  also stressed the need to teach to 
the speci fi c strengths and needs of deaf and hard-of-hearing (DHH) learners. Their 
view was that there has been a general assumption in approaches to teaching that these 
learners are “simply hearing children who cannot hear” (Marschark et al.,  2011 , p. 4). 
This practice, they argued, is misplaced, as it does not take into account the speci fi c 
cognitive and language abilities of DHH learners. As far as mathematics learning is 
concerned, alongside the importance of visuo-spatial representations, they pointed to 
other factors that have an impact on the participation of DHH in school mathematics—
including early experiences with quantitative concepts (Bull,  2008 ; Nunes & Moreno, 
 1998  ) , limited opportunities for informal, incidental mathematics learning (Nunes & 
Moreno,  2002 ; Pagliaro,  2006  ) , and sensory and language differences in how those 
with or without hearing loss process information (Marschark & Hauser,  2008  ) . This 
is consistent with Mayer and Akamatsu’s  (  2003  )  position that in designing learning 
activities for DHH students, it is necessary to take into account the sensory modali-
ties available to them and to ensure they have opportunities to appropriate and 
manipulate all possible mediational means at their disposal. 

 Much of the research related to DHH learners has focussed on language issues 
rather than mathematics and, even when mathematics learning is under study, as 
Bishop and Forgasz  (  2007  )  noted, language  fl uency is frequently cited as a factor 
which contributes to the differential engagement of DHH learners with mathematics 
problems (Kelly, Lang & Pagliaro,  2003 ; Pagliaro,  2006  ) . Fluency in the language 
of instruction is an issue which has implications for participation in mathematics 
learning activities for many marginalized students, not only those with hearing loss. 
In the next section, we turn to questions addressed in the literature concerned with 
equity, language and mathematics learning.  

   Language and the Mediation of Mathematics Learning 

 Not surprisingly, the central stage given to language has resulted in the application 
of socio-cultural perspectives by researchers investigating the mathematics learning 
of those who are bi- or multilingual (Civil,  2009 ; Moschkovich,  2002,   2007  ) . 
Such studies avoid a de fi cit view of linguistic minority students by discussing all 
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their language options as potential cognitive resources that may contribute to their 
appropriation of mathematical knowledge. Setati and Moschkovich  (  2010  )  took this 
point a little further, arguing that rather than comparing the performances of bilin-
guals or multilinguals to monolinguals in situations which privilege only the lan-
guage of the dominant monolingual group, research should better “focus on the 
multiple ways that bilingual learners might describe mathematical situations” (p. 3). 
Indeed, this position also applies to those who communicate using sign languages 
as well as to speakers of variants of a dominant language such as Black English 
Vernacular (BEV) speakers. With a culturally appropriate pedagogy, they as well as 
speakers of the dominant variant (e.g., Standard American English), could enjoy 
access to multiple perspectives and expressions of mathematical ideas. From the 
point of view of equity, this underlines how difference cannot be understood as 
de fi ciency. On the contrary, there is an implication that access to more than one 
language might be associated with positive bene fi ts for the mathematics learner. 
Empirical support for this claim can be found in the work of Clarkson  (  2006  ) . 

 In this vein, and drawing from the work of Grosjean  (  1985  ) , Setati, Adler, Reed, 
and Bapoo  (  2002  )  argued that bilinguals and multilinguals have a unique and 
speci fi c language con fi guration, and hence it makes little sense to consider their 
linguistic abilities as the sum of two or more complete or incomplete monolinguals. 
The question then arises of the impact of this unique language con fi guration on their 
mathematical practices. One difference is that when learners are bi- or multilingual, 
their mathematical activity is not necessarily con fi ned to one or other of their lan-
guages. Planas and Setati  (  2009  )  and Moschkovich  (  2007  )  described how bilingual 
learners switched between their two languages during mathematical activities. How 
and when these switches occurred did not relate only, or even necessarily, to the 
relative pro fi ciency in one language over another—rather they were more complex, 
being interweaved with the social circumstances in which the activity took place 
and infused with questions of power and status. That is to say, for many students, 
and especially those from immigrant or indigenous groups who learn mathematics 
in a language that is not their  fi rst, linguistic identities and activities are intertwined 
with cultural identity.  

   Multilinguals and Cognitive Resources 

 The multiplicity of linguistic and cultural diversity that exists in some countries 
challenges educational institutions and teachers to provide equitable instruction so 
that all students are respected and develop their intellectual potential, especially in 
mathematics. School children whose cultural and linguistic backgrounds differ from 
the institutional culture and language of schools often confront cognitive obstacles 
that are invisible and incomprehensible to others, and are viewed as a disadvantage 
in mathematics classrooms (Garcia & Gonzalez,  1995  ) . 

 To understand sources of disadvantage for linguistic minorities in mathematics 
classrooms, Vazquez  (  2009  )  and Powell and Vazquez  (  2011  )  investigated differences 
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in mathematical thinking of two groups of Spanish-dominant fourth graders in a 
poor urban community in the northeast of the USA by examining their problem-
solving representations. Powell and Vazquez  (  2011  )  analyzed students who received 
bilingual instruction in Spanish and English and students who received instruction 
only in English. In the classroom, the former group of students was allowed to use 
Spanish and English as they wished in their discursive interactions, but the latter 
group of students was expected to use English only. The researchers examined how 
each group of students built mathematical representations in language and with 
inscriptions, focussing particularly on the discursive interactions as students within 
a group justi fi ed and attempted to persuade each other of their results. The research-
ers found that the group of students who communicated bilingually moved  fl uidly 
between English and Spanish, showed greater facility in solving the problem task 
and built more re fi ned representations. The group that was expected to communi-
cate in English only experienced dif fi culty in their discursive interactions. Compared 
to the English-only group, the bilingual group had greater ease in communication 
and construction of mathematical representations. 

 For some researchers, results such as these are interpreted as indicating the 
existence of differences in the cognitive practices of bi- and monolinguals. According 
to Hagège  (  1996  ) , for example, bilinguals have a greater cognitive elasticity than 
monolinguals. Furthermore, investigating the plasticity of the bilingual brain, 
Mechelli et al.  (  2004  )  tested the density differences of the gray and white mass of 
the brain among monolingual and bilingual individuals. Their results revealed that 
the grey mass in bilingual individuals is larger than that of monolingual individuals. 
They found that the human brain undergoes structural changes in response to the 
environment, including the learning of new languages. 

 Irrespective of whether  fl uency in more than one language leads to structural dif-
ferences in the brain, being multilingual offers advantages for learning mathematics. 
Internationally, mathematics education researchers have paid increased attention to 
how multilingualism relates positively to cognitive development,  fl exibility, and the 
promotion of academic achievement in learners (Adler,  2001 ; Gorgorio & Planas, 
 2001 ; Moschkovich,  1999 ; Setati,  2002 ; Setati & Adler,  2000  ) . However, instruc-
tional environments may prejudice the participation and performance of multilin-
guals when they do not invite and encourage them to use their rich linguistic 
resources for mathematical sense making. 

 Taken together, these research studies suggest that those who learn mathematics 
in a language that is not their  fi rst may experience it in different ways than monolin-
gual learners. Equity in participation may therefore require the recognition that par-
ticular linguistic resources support particular mathematical practices. To stress this 
point, we return to the case of deaf learners whose  fi rst language is a signed rather 
than a spoken language. Most of the research related to bilingual learners within the 
mathematics education literature relates to those with some or complete  fl uency in 
two spoken languages. Many deaf people have a sign language as their  fi rst lan-
guage and the written version of the mainstream language within their country as a 
second. Although sign languages are now regarded as true, natural languages (even 
if this recognition only began to come about in the 1960s and 1970s after Stokoe’s 
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 (  1960 /2005) work), there are some differences between signed and spoken languages. 
In particular, sign languages are visual-gestural whereas spoken languages are 
serial-auditory, with simultaneity a pronounced feature of sign languages (Mayer & 
Akamatsu,  2003  ) . Nunes  (  2004  )  reported on a strategy, spontaneously developed by 
students in a number of studies with British deaf learners, which involved simulta-
neous counting up through the number signs on one hand and down on the other in 
order to arrive at the sum of two whole numbers. Given the task of adding 8 and 7, 
they would sign 8 using one hand and 7 on the other, then they would count down 
through the signs from 7 to 0, while counting up from 8 at the same time (left hand: 
7, 6, 5, 4, 3, 2, 1, 0; right hand 8, 9, 10, 11, 12, 13, 14, 15). For students using spo-
ken language, this strategy would be rather dif fi cult to perform purely linguisti-
cally. It could of course be modelled using concrete material, but this is not the 
point—the simultaneity of sign languages in this case associated with the sponta-
neous use of a perfectly valid strategy not usually observed among those who speak 
with their mouths. 

 The evidence from research with bi- and multilingual learners reported in this 
section suggested that particularities associated with the language(s) in use in math-
ematics learning scenarios had an impact on the mathematics practices that devel-
oped within them. Understanding these particularities is important for including 
students from language minorities, as is recognizing that language is a central aspect 
of the learner’s identity both in the mathematics classroom and beyond. The research 
also indicated that the ways that learners feel that they can use, or not use, their vari-
ous language resources, and the ways that they experience the valuing of certain 
languages, are likely to have consequences for their participation within the math-
ematics classroom. Identifying how minority languages and multilingual learning 
contexts empower alternative—valid—mathematical strategies represents a central 
research challenge, which may contribute not only to increasing the participation of 
groups previously marginalized or excluded, but also to understanding learning 
mathematics as a whole.  

   Power and Disadvantaging Linguistic Resources 

 The positive resource of language for mathematical cognition notwithstanding, 
extra-cultural processes can cause a syntactic or semantic resource to be or be expe-
rienced as a disadvantage. Here we discuss two examples. Students can experience 
dif fi culties learning mathematics when their linguistic heritage suffers uncritical 
adoption or imposition of distinct and distant cultural and linguistic conventions. In 
the People’s Republic of China, even educated adults experience dif fi culties reading 
multi-digit numerals—for instance, 1,335,013,694—without  fi rst pointing and nam-
ing from right to left the place value of each digit before knowing how to read the 
“1” in the billions place and the rest of the numeral. Powell  (  1986  )  reported that this 
state of affairs results from an extra-cultural, syntactic convention of delimiting 
digits in a many-digit numeral that varies from the linguistic structure of Mandarin 
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numeration. Conventions for delimiting digits in a many-digit numeral serve to 
facilitate reading it and saying it aloud. In contrast to certain Romance and Germanic 
languages of the West, where commas, spaces, or points are used in accordance 
with the linguistic structure of those languages to delimit groups of three digits, the 
linguistic structure of naming numerals in Mandarin is instead based on groups of 
four digits. A western convention for delimiting digits in a many-digit numeral does 
not facilitate a Mandarin speaker’s reading of it. For a Mandarin speaker to read 
with ease China’s approximate population  fi gure—1,335,013,694—the numeral 
should be delimited alternatively like this: 13 3501 3694. 

 This example draws attention to how experience in learning mathematics arises 
from the interaction of language, mathematics, and power. Researchers have exam-
ined the nature and causes of mathematics learning dif fi culties manifested when edu-
cators adopt curricula for use in a cultural and linguistic milieu distinct and distant 
from the one for which the curricula were developed (see, e.g., Berry,  1985 ; Orr,  1987 , 
Philp,  1973  ) . Based on his analysis of problems in second-language mathematics 
learning in Botswana, Berry  (  1985  )  put forward a general theory of types of language-
associated learning problems, consisting of two categories. Of interest here is his second 
category of problems, those that “result from the ‘distance’ between the cognitive 
structure natural to the student and implicit in [the semantics of] his mother tongue 
and culture, and those assumed by the teacher (or designer of curriculum or teaching 
strategies)” (p. 20). Adding to the notions of semantic and cultural differences by 
which Berry de fi ned the term “distance,” the example presented by Powell  (  1986  )  
suggests that there are  syntactic  differences, as well. 

 The issues of power as well as semantic, syntactic, and cultural differences all 
 fi gure in the second example. It examines attitudes of some educators toward the 
linguistic variant of English that some African Americans speak in the USA 
exempli fi ed in  Twice as Less: Black English and the Performance of Black Students 
in Mathematics and Science  (Orr,  1987  ) . Orr taught at a white, middle-class private 
high school in Washington, DC, to which a group of urban, African-American stu-
dents were given places for a number of experimental years. When these students 
performed poorly in mathematics and science, she and her colleagues questioned 
why. Explanations focussed on linguistic features of the work done in class and at 
home. Orr and her colleagues found “explicit evidence” that African-American 
“students were using one kind of function word, prepositions, in a manner different 
from other students; their misuses [ sic ] were different even from the misuses with 
which [they] were familiar” (p. 21). That is, the semantic and syntactic use of words 
similar to Standard American English (SAE) by students speaking Black English 
Vernacular (BEV) were different from those used by students who belonged to the 
culture with power. Orr concluded that this linguistic difference  was  the reason why 
African-American students did poorly: “For students whose  fi rst language is BEV, 
then, language can be a barrier to success in mathematics and science” (p. 9). 
Furthermore, she claimed that, unlike the grammar of BEV, “the grammar of stan-
dard English [SAE] has been shaped by what is true mathematically” (p. 158). 
She offered no substantiation for this claim of a supposed intrinsic superiority of the 
language of a culture of power, and, as a result, appears to distort connections between 
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conceptual understanding and semantic and syntactic differences. As linguists, like 
Labov  (  1972  ) , have demonstrated, as with any other language, BEV and SAE are both 
capable of generating labels for concepts attended to by the culture of the speakers. 
The effect of Orr’s viewpoint is to confer privilege on the culture and language (SAE) 
of the dominant power and, thereby, to deny legitimacy to other culturally-based 
linguistic and cognitive experiences. 

 These examples of how power can disadvantage the linguistic resources of 
students illustrate the work that mathematics education researchers and others in 
society have yet to accomplish in order to achieve Gutiérrez’s  (  2007  )   fi rst criterion 
of equity. We now turn attention to research on the mathematics learning of those 
diagnosed as needing “special education.”  

   Equity and Disability: Research into Speci fi c Dif fi culties 
in Mathematics Learning 

 At the beginning of our review of research documenting the mathematical agency 
of different groups of mathematics learners, we pointed to a general shift towards 
social and political perspectives in research related to the search for more equitable 
mathematics classrooms. To end the section we return to this theme, looking more 
closely at the literature concerning the mathematics learning of one group of learn-
ers: those described as having special education needs in mathematics. A  fi rst ques-
tion that arises in relation to the label “special educational needs” is how to decide 
which students are included. Gervasoni and Lindenskov  (  2011  ) , who preferred to 
use the expression “students with special rights for mathematics education,” drew 
attention to this challenge and the lack of any universally accepted de fi nition. They 
focussed on two groups. The  fi rst group encompassed learners with disabilities 
de fi ned by the United Nations convention on the rights of persons with disabilities, 
as having long-term physical, mental, intellectual or sensory impairments which in 
interaction with various barriers may hinder their full and effective participation in 
society on an equal basis with others (United Nations, 2006, cited in Gervasoni & 
Lindenskov,  2011  ) . 

 The second group they delineated was those who underperform in mathematics. 
Deciding and de fi ning who should be classi fi ed as a member of this second group 
raises a multitude of questions for those interested in issues of equity and social 
justice. Referring to special education more generally, O’Connor and DeLuca 
Fernandez  (  2006  )  referred to the  fi rst group as a “non-judgemental” category of 
special education, and the second as a “judgemental” category. 

 In a review of the literature related to students in both groups, Magne  (  2003  )  
claimed that the move toward social and cultural interpretations was only beginning 
to emerge in this particular area of research, with many of the studies surveyed con-
centrating on the search for neurological explanations. His claim referred mainly to 
the literature related to the “judgemental” category, the members of which are char-
acterized in relation to some notion of low achievement. Like O’Connor and DeLuca 
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Fernandez, Magne’s view was that low achievement is a social construct, “not a fact 
but a human interpretation of relations between the individual and the environment” 
(p. 9). However, he believed that this relativist view does not represent the dominant 
view in much of the research in this area. To explore his claim, we consider the 
literature related to “dyscalculia” as a condition associated with speci fi c dif fi culties 
in learning mathematics as a case in point. 

 To a certain extent, the migration of the term “dyscalculia” from neuropsychology 
to education underlines the prevalence of the search for neurologically-based expla-
nations for the low performances of learners identi fi ed as experiencing particular 
dif fi culties in participating in the practices of school mathematics (Munn & Reason, 
 2007  ) . According to the neuropsychological perspective, dif fi culties in learning 
mathematics (or rather arithmetic, since the majority of studies con fi ne their atten-
tion to this area of mathematics) are associated with a cognitive “disorder” or a 
speci fi c “learning disability.” Gifford  (  2005  ) , in her review of the dyscalculia litera-
ture, suggested that it is still not clear that dyscalculia can be considered to be asso-
ciated with a speci fi c cognitive de fi cit since there is not even a robust consensus on 
what precisely are its de fi ning characteristics, aside from poor recall of number 
facts. Although she did not discount the possibility that there may exist differences 
between individuals in the neurological processing of number, she concluded that 
there is no  fi rm evidence linking particular brain de fi cits with mathematical 
dif fi culties and pointed to several criticisms of the exclusively neuropsychological 
approaches. One critique related to a particular view of mathematics that has been 
adopted by some involved in building brain-based explanations for learning 
dif fi culties. These researchers tend to determine mathematical performance in rela-
tion to mainly knowledge of arithmetic facts and procedures, and pay little attention 
to conceptual understanding. 

 Even in relation to calculating procedures, Gifford  (  2005  )  was concerned that 
neuropsychologists make assumptions about what procedures should be tested to 
diagnose learners and what calculation procedures are considered as “normal.” For 
example, she cited Geary’s  (  2004  )  study in which it was suggested that students 
with dyscalculia have problems in sequencing the steps in adding numbers with 
more than one digit in column arithmetic. In Geary’s study, a strategy of adding, for 
example, 45 and 97, was described in terms of the paper and pencil algorithm of 
arranging the numbers into the correct columns and “carrying the 10.” Other pos-
sible strategies, such as adjusting the numbers to 42 and 100, appear not to have 
been taken into account. Furthering this critique, Ellemor-Collins and Wright  (  2007  )  
offered evidence that the collection-based strategies which underline the written 
algorithm are not necessarily the most ef fi cient for all learners, and that for some 
learners sequence-based strategies (keeping the 45 whole and counting on  fi rst 7 
and then 90) tend to correlate with more robust arithmetic knowledge—especially 
for those previously identi fi ed as low achievers. 

 Such critiques support the view that the nature of the mathematics involved and 
students’ experiences of this mathematics are factors to be taken into account if we 
wish to further our understandings of dif fi culties that learners have when partici-
pating in school mathematics. Adopting this position, Magne  (  2003  )  pointed to 
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D’Ambrosio’s  (  2001  )  work in ethnomathematics and suggested that cultural and 
sociological interpretations of students’ reactions to particular mathematical topics 
should also  fi gure in attempts to understand underperformance in mathematics. 
Gervasoni and Lindenskov  (  2011  )  also stressed the in fl uence of the mathematics 
background against which achievement is being assessed, arguing that low mathe-
matics achievers are those “who underperform in mathematics due to their explicit 
or implicit exclusion from the type of mathematics learning and teaching environ-
ment required to maximize their potential and enable them to thrive mathemati-
cally” (p. 308). 

 Another possible problem underlying some of the research seeking to identify 
neurological causes for mathematical dif fi culties is an assumption that all students 
learn the same way. This assumption can become a self-ful fi lling prophecy when it 
translates into teaching programs based on the premise that classrooms consist of a 
relatively homogenous group of students who will all gain the same value from the 
same type of experience (Ginsburg,  1997  ) . Neither learning dif fi culties nor response 
to teaching interventions can be expected to be homogenous, as Ann Dowker  (  1998, 
  2004,   2005,   2007  )  has shown in her extensive exploration of arithmetical dif fi culties 
of young mathematics learners. Dowker’s view is that arithmetical ability is not 
unitary, but composed of a variety of components. Students who have dif fi culty with 
one component will not necessarily experience dif fi culty with others, although, 
without teaching intervention speci fi cally aimed at the problems that an individual 
learner is experiencing, dif fi culties in different components may come to be corre-
lated over time for a variety of reasons—not the least of which is an increasing 
perception by the learner that they are “no good at mathematics” (Dowker,  2007  ) . 
As well as investigating the wide range of arithmetical dif fi culties, Dowker also 
considered research related to how students might be supported in overcoming such 
dif fi culties. After reviewing a number of early intervention programs, most of which 
were carried out in the UK, she concluded that although many learners have arith-
metic dif fi culties, many of these can be overcome if appropriate teaching interven-
tions are made. She wrote:

  No two children with arithmetical dif fi culties are the same. It is important to  fi nd out what 
speci fi c strengths and weaknesses an individual child has; and to investigate particular mis-
conceptions and incorrect strategies that they may have. Interventions should ideally be 
targeted toward an individual child’s particular dif fi culties. If they are so targeted, then most 
children may not need very intensive interventions. (Dowker,  2004 , p. 45)   

 Gervasoni and Sullivan  (  2007  )  analyzed data collected during more than 20,000 
assessment interviews aiming to identify learners in Australia with dif fi culties in 
learning arithmetic, and arrived at a similar conclusion. They stressed that “there is 
no single ‘formula’ for describing students who have dif fi culty learning arithmetic 
or for describing the instructional needs of this diverse student group” (p. 49). 
Like Dowker, they too emphasized that a learner who has dif fi culty in one aspect of 
number learning will not necessarily have dif fi culties in all (or even any) others. 

 Although these  fi ndings do not rule out neurological explanations for dif fi culties 
in learning about number, they suggest that it may not be appropriate to label the 
dif fi culties experienced by many mathematics learners as learning disabilities. 
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Instead, the evidence indicates that under the right conditions and interventions, many 
of those experiencing speci fi c arithmetical dif fi culties can, and indeed do, learn. 
Moreover, even if it is the case that different students process numbers differently, 
cognitive factors are not the only factors which in fl uence student performance. 
Emotional and attitudinal factors as well as socially mediated factors such as cur-
riculum and teaching approaches have also been suggested as likely to be involved. 

 The recognition that low achievement is a social construct and not simply an 
individual characteristic has contributed to the recent growth in socio-political inter-
pretations of how students of mathematics come to be de fi ned as underachieving. 
These have been largely founded on critical theories and perspectives from disability 
studies. For example, Borgioli  (  2008  )  presented a critical examination of learning 
disabilities in mathematics within the USA. Like Magne, she referred to the preva-
lence of brain-based explanations and argued that labelling a child as someone in 
need of special mathematics education involves determining “normal” or “ideal” 
achievement, and positioning those that deviate from this norm as problematic and 
in need of remediation. Her view is that the school rather than the learner bene fi ts 
most from the labelling, since “locating the obstacle within the brains of the indi-
vidual offers a convenient explanation for student failure” (p. 137). Re fl ection on 
the mathematics curriculum and how it is offered is avoided because it is the low 
achieving students who are seen as the problem. Woodward and Montague  (  2002  )  
described how frequently “the solution” involves removing the “special learner” from 
the mainstream classroom for highly directed training with speci fi c step-by-step 
problems, since the practices associated with special mathematics education in the 
USA have “a history of placing a considerable emphasis on rote learning and the 
mastery of math facts and algorithms” (p. 91). 

 The process of “othering,” that is to say, framing students who differ from the 
socially and politically de fi ned norms as outsiders, can have the effect of perpetuat-
ing inequitable practices, since it legitimizes exclusion. Indeed, in many countries, 
concern has been raised about the disproportionate representation of ethnic minority 
students, indigenous students groups and those living in poverty in Special Education 
programs (Artiles, Klingner, & Tate,  2006 ; Dyson & Gallannaugh,  2008 ; Mantoan, 
 2009 ; McDermott,  1993  ) . Although this is not an issue speci fi c to mathematics 
education, it is important that it is not brushed aside. Ways in which the culture and 
organization of schools constrain the achievement of particular groups of students, 
at times even pathologizing their bodies and behaviours, need to be further studied, 
especially in relation to the labelling of underachievement (O’Connor & DeLuca 
Fernandez,  2006  ) . 

 As we end this section, it is worth commenting that learners with special educa-
tional needs and learners with disabilities have, until relatively recently, been 
largely absent from the mathematics education literature related to equity and 
social justice. The questions of how these learners become less peripheral partici-
pants in the micro-practices of mathematics classrooms, and what macro-social 
conditions are necessary for their inclusion in the sense proposed by Pais and 
Valero  (  2011  ) , are particularly important areas that urgently need to be addressed 
by future researchers.   
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   Research into Practice: Considerations of Equity 
in Teacher Education 

 Although there have been changes in discourses surrounding students whose 
identities do not conform to the dominant norms within the mathematics education 
research community, and new associated research foci have emerged, if these 
changes are to have an impact on mathematics classrooms it is critical that all princi-
pal actors be involved—from policymakers and researchers to teachers and students. 
In this section, we examine the developing strategies for involving teachers in chal-
lenging the social processes which sustain disadvantage and in preparing them to 
create mathematical learning scenarios based on respect, justice and equity—and by 
so doing make progress towards reaching, at least, Gutiérrez’s  (  2007  )   fi rst equity 
criterion. We should stress that the issue of preparing teachers for equity is not new. 
It has long been considered an issue for inclusion in preservice courses, since pro-
spective teachers tend to have limited experience interacting with cultures outside 
of their own (Grant & Secada,  1990  ) . For the professional development of inservice 
teachers, equity too was on the agenda in the 1990s, with Little  (  1993  )  questioning 
the adequacy of a  training model , “a model focussed primarily on expanding an 
individual repertoire of well-de fi ned and skilful practice” (p. 129), for preparing 
teaching for the aspects of teaching and schooling in a changing society. Regarding 
equity and diversity, she argued that a new perspective was needed for the profes-
sional education of teachers, one in which collaboration and the establishment of 
teaching networks played a central role. 

 Concerning the preparation of mathematics teachers, Matos, Powell, and Stzajn 
 (  2009  )  argued that the last 20 years have indeed seen a shift from models based 
exclusively on training to more those requiring more practice-based professional 
development. They associated this shift with the move discussed above from seeing 
learning as a process of individual acquisition of knowledge to understanding it as 
the appropriation of forms of participation in social practices. In their chapter, Matos 
et al.  (  2009  )  did not explicitly consider the move towards more practice-based mod-
els of teacher education in relation to the challenge of deconstructing disadvantage. 
Nevertheless, that connection could be important because any approach to prepar-
ing teachers for cultural diversity based on a model in which sensitivity is treated as 
something that can be trained rather than experienced would seem to be doomed to 
failure. However, it is recognized that the implementation of practice-based models 
will not necessarily guarantee more inclusive approaches to teaching. 

 Though not speci fi cally related to mathematics education, Jennings’s  (  2007  )  sur-
vey of how diversity was addressed in 142 public university elementary and second-
ary teacher preparation programs across the USA suggested that some attention was 
being given to diversity in all the courses surveyed, and that diversity topics were 
included in many different aspects of the programs (including foundation courses, 
teaching methods courses and teaching experiences). This study indicated similar 
patterns across both elementary and secondary programmes in how diversity topics 
were prioritized. In both cases, race and ethnicity were the most emphasized forms 
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of diversity, followed in order by special needs, language, social class, gender, and 
 fi nally sexual orientation. No information was given on whether the prioritization 
patterns applied equally across all areas of subject areas, but other studies have 
con fi rmed that, although gender has been, and continues to be a major point of 
debate within the mathematics education community, it apparently remains under-
explored in the area of mathematics teacher education. 

 In their survey of the European literature, Hourbette, Baron, and Khaneboubi 
 (  2008  )  were “forced to acknowledge” the existence of relatively few contributions 
focussing on the  fi eld of gender issues in mathematics teacher education. Battey, 
Kafal, Nixon, and Kao  (  2007  )  suggested that programs which address gender in 
relation to the education and professional development of mathematics teachers, 
and teachers of other STEM subjects, lack elements essential for the effective pro-
motion and implementation of equity principles in the classroom. Elements that 
Battey et al. pinpointed as central included inquiry, collaboration, a focus on class-
room practice, and consideration of the larger social and political context. They 
stressed that inquiry, in particular, was important in professional development 
related to equity in mathematics learning because it can be considered with respect 
to the teaching institutions involved as well as to the subject matter, teaching prac-
tices, and teachers’ attitudes and beliefs. The suggestion was that to achieve more 
equitable mathematics classrooms, the teacher needed to become an active partici-
pant in researching and interpreting their students’ learning, and should engage in 
the processes of re fl ecting on their beliefs about the mathematics that different stu-
dents do and how they do it. We now turn to research in which explores how teach-
ers might be involved in such activities. 

 For some researchers, an important  fi rst step is to involve teachers in decon-
structing disadvantage and moving away from views of differences as de fi cits. For 
example, among the concerns that Aguirre  (  2009  )  raised about privileging equity 
and mathematics in preservice and inservice teacher education courses, was the 
need to develop strategies to confront resistance among practising and future teach-
ers to both ideological change and pedagogical change. Her work centred in particu-
lar on Latino/a learners in US classrooms. Among the resistances of an ideological 
nature that were identi fi ed, she focussed in particular on the need to challenge what 
she called the “recycling of the cultural de fi cit position in mathematics learning” 
(p. 308). In a similar vein, a recent review of European research into teacher educa-
tion and inclusion concluded that any teaching is likely to be ineffective where the 
dominant belief system is one that “regards some students as being ‘in need of 
 fi xing’ or worse, as ‘de fi cient and therefore beyond  fi xing’” (European Agency for 
Development in Special Needs Education,  2010 , p. 30). 

 In light of results such as these, we would argue that a common factor identi fi ed 
among those working to understand inequity and to undermine approaches which 
sustain it is the need to support teachers, at the earliest possible opportunity (prefer-
ably before they start teaching), to develop positive attitudes towards the learning 
possibilities of students from marginalized groups and to understand larger social 
and political forces which support inequity and position students as disadvantaged. 
Some indications of the methodologies and activities by which this might be 
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achieved can be found in the literature related to teacher education and cultural 
sensitivity, as well as in attempts to involve teachers in investigating the mathematics 
of different student groups. 

   Teacher Education and Cultural Sensitivity 

 A consensus among mathematics education researchers concerned with prepar-
ing teachers to work with diversity and for equity is that any attempt to understand 
disadvantage brings into play questions of social justice. This in turn implies that 
those entering and working in the teaching profession today should “understand the 
historical, socio-cultural and ideological contexts that create discriminatory and 
oppressive practices in education” (Ballard,  2003 , p. 59). Although Ballard referred 
to inclusive education in general, an examination of some of the teacher education 
programs in mathematics education which have explicitly addressed the question of 
equity shows that at least some mathematics educators agree that socio-political 
understanding does indeed merit centre place. Gutstein  (  2006  ) , for example, 
identi fi ed three essential knowledge bases for teaching mathematics for social jus-
tice: classical mathematical knowledge, community knowledge, and critical knowl-
edge. Similarly, in considering the question of what teachers need to know to support 
learners in bilingual and multilingual classrooms, Moschkovich and Nelson-Barber 
 (  2009  )  stressed the importance of addressing issues related to cultural content, 
social organization and cognitive resources. They contended that the ways that dif-
ferent learners come to know often represent values and beliefs which are speci fi c 
to their cultural identity, and that it is these identities that mediate their preferences 
for adopting forms of thinking, observing, acting and interacting in the mathematics 
classroom. 

 Unless they have knowledge of how mathematics might appear and be expressed in 
the practices of different cultures, teachers can believe there is only one (“western”) 
mathematical discourse, and even that, in some multilingual contexts, if this is not 
expressed in the dominant tongue, then students are somehow failing to engage in 
mathematical discourse at all. Gay  (  2009  )  stressed that preparing teachers to work 
with ethnically diverse students requires a deep and broad knowledge base concern-
ing the cultures, histories and heritages of different ethnic groups. Hughes et al. 
 (  2007  )  suggested that one way in which teachers can become more aware of the 
mathematics which their students engage in outside of school is to create knowledge 
exchange programs and activities which explicitly aim to make connections between 
learners’ activities at home and at school. They described how the Home School 
Knowledge Exchange Project in the UK opened a channel of communication that 
brought teachers into contact with the variety of ways by which their students had 
contact with mathematics in different aspects of their life. One example they 
described was how this communication channel enabled teachers to understand the 
differences between the  fi nger-counting strategies they were emphasizing at school 
and those in use in the homes of some of their students of Bengali origins—in which 
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it was often the case that three sections on each  fi nger were counted rather than just 
a single  fi nger. 

 Despite these recent attempts to improve our understanding of the processes of 
both preparing and supporting teachers to work in cultural diverse settings, Johnson 
and Timmons-Brown  (  2009  )  have argued that teacher development courses that are 
not tailored to “generic” populations of mathematics learners remain relatively rare. 
This would suggest that, notwithstanding the progress we have made as an aca-
demic community to understand, interpret and challenge disadvantage, we still need 
research in which teachers and future teachers, as well as researchers, have oppor-
tunities to examine in more detail the mathematical practices of particular popula-
tions. Although the move towards a more practice-based education (Matos et al., 
 2009  )  can be seen as a move forward in this respect, since the contexts in which 
practitioners work would be central to the courses, Johnson and Timmons-Brown 
 (  2009  )  have warned us that there is still a danger that the focus will continue to be 
what works in existing practice, with the result that teacher preparation will con-
tinue to be governed by the dominant voice and prospective teachers will continue 
to learn to teach using strategies that advantage dominant groups. 

 Essentially, we interpret this as a call for new practices for teaching,  fi ne-tuned 
to the lives, the strengths, and the needs of particular groups of learners. Such a call 
necessitates the fostering of reciprocal relationships between teacher educators, 
researchers, teachers and future teachers. It is to examples of research projects born 
out of such collaborations that we now turn our attention.  

   Investigating Difference Collaboratively 

 Critical to changing teachers’ perceptions of students from marginalized groups is 
a change in perspective: removing the “do not” from the phrase “what students do 
not do” so that it becomes “what students do.” That is, the focus needs to become how 
students’ mathematical ideas develop—and the pedagogical strategies appropriate 
to support their development—rather than the dif fi culties that students experience 
(Jaworski,  2004 ; Wood,  2004  ) . Participation in research studies and in research-
based teacher development programs appears to offer possible means of promoting 
such a shift. 

 Willey, Holliday, and Martland  (  2007  ) , for example, re fl ected on how collabora-
tion in the Mathematics Recovery Project, a program aimed at meeting the needs of 
young learners experiencing dif fi culties in the area of numeracy, in fl uenced teachers 
in a region of the UK. They reported that teachers who participated in the Mathematics 
Recovery Project developed an enhanced faith in students’ abilities to solve prob-
lems by themselves. In addition, the teachers became more con fi dent in their ability 
to assess what their students knew, and what were thinking, and to offer appropriate 
support to help the students learn. Thomas and Ward  (  2001  )  arrived at a similar 
conclusion in relation to the increased understanding of numerical concepts and 
principles among teachers who participated in similar intervention programs in 
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Australia and New Zealand. Although the intervention programs themselves were 
aimed primarily at children identi fi ed as underachieving in mathematics, it was 
reported that participating teachers developed their own understandings of numbers 
and children’s learning about numbers. In these projects, teachers in the programs 
were participants in professional development courses and did not, apparently, act 
as researchers in their own right. 

 Another strategy increasingly used in a variety of research contexts involves 
projects based on sustained collaborations between researchers and practitioners, 
and the development of research methodologies which recognize not only the need 
to interleave the theoretical with the practical but also to make connections between 
the micro issues of individual learning and the macro issues related to the context in 
which this occurs. Methodologies that characterize these collaborations include par-
ticipatory action research in which participants work together to conduct a process 
of co-generative inquiry (Greenwood & Levin,  2000  ) , as well as methods associated 
with design research—especially in relation to what has been described as multi-
tiered teaching experiments (Lesh & Kelly,  2000  ) . 

 Regardless of the particularities of the research methodologies used, we can 
locate a number of examples in the mathematics education literature of how partici-
pation in a research project supported teachers in focussing on the inclusion of 
previously marginalized groups within their classrooms. Here, we mention two 
examples. The  fi rst is the  Informal Mathematics Learning Project  (Powell, Maher, 
& Alston,  2004 ; Weber, Maher, Powell, & Stohl Lee,  2008  ) , a research-based, pro-
fessional development model for mathematics education that aimed at engaging 
teachers in attending to and re fl ecting on the development of students’ mathematical 
ideas and reasoning, and on using their re fl ections to inform their own teaching 
practices. The project was conducted as an after-school program in a partnership 
between the Robert B. Davis Institute for Learning at Rutgers University and the 
Plain fi eld School District, New Jersey, an economically disadvantaged, urban com-
munity whose school population was 98% African American and Latino. In the 
context of the ideological narrative of closing the racial achievement gap in US 
society, which embodied assumptions relating to a supposed intellectual inferiority 
of African-American and Latino/a students (Martin,  2009b  ) , the project aimed at 
providing a counter narrative. The approach involved the teachers in documenting 
the students’ development of mathematics ideas and forms of reasoning, and attending 
to these developments so that they could access these students “having of wonderful 
ideas” (Duckworth,  1996  ) . 

 Our second example is the project  Towards an Inclusive Mathematics Education , 
which began in São Paulo, Brazil, in 2002, as practising mathematics teachers 
enrolled in a post-graduate course expressed a desire to improve their understanding 
of how they might work with the students with disabilities who were beginning to 
join their regular classes—which was something the teachers felt neither preservice 
nor inservice courses had prepared them to do (Fernandes & Healy,  2007b , Healy, 
Jahn & Frant,  2010  ) . Since the project began, a series of sub-projects have been car-
ried out. Each has involved the establishing of partnerships between school- and 
university-based participants in designing and evaluating learning scenarios either 
for blind learners or for deaf learners. 
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 Just as discourses related to gap-gazing led to students from certain racial, linguistic 
and social minorities being seen as lacking in mathematical ability, discourses about 
students with disabilities have also been infused with narratives underestimating 
their mathematics learning potential (see, e.g., Gervasoni & Lindenskov,  2011  ) . 
Emerging from the work of those participating in the  Towards an Inclusive 
Mathematics Education  project have been alternatives which challenge traditional 
narratives. One factor that is critical to empowering students who lack access to one 
or other sensory  fi eld is access to communicational tools that enable them not only 
to access conventional forms of mathematics but also to express mathematical ideas 
in innovative ways which make sense to them. One outcome of the project has been 
the collaborative development of digital tools which support new means of expressing 
mathematics by capitalizing on the forms of reasoning available to the participating 
students, including the use of sound, touch, movement and visual–spatial represen-
tations. One of the  fi ndings associated with teachers’ involvement in developing 
and using these classroom tools is that collaborating teachers seem open to accept 
the potential and legitimacy of rather unconventional expressions of mathemati-
cal objects, properties and relations. This led Healy, Jahn, and Frant  (  2010  )  to 
conclude that:

  Those working with the deaf and with the blind seem to come to the design process already 
with an acceptance that conventional mathematical expressions alone are not always acces-
sible to their students. The need for new expression is hence legitimized from the start. 
As other teachers evidence the mathematical practices afforded by these tools, it may be, 
although this is as yet is an untested conjecture, that they judge that these practices would 
also be bene fi cial for all of their students. (p. 402)   

 The message from this project seems to be that when teachers become involved 
in researching how deaf and blind students develop mathematical ideas and reason-
ing, not only do they, along with the university-based researchers, become more 
sensitive to the value of a variety of ways of accessing and representing mathemati-
cal ideas, but they also  fi ne-tune their understandings of the particular abilities of 
blind students, and deaf students. Furthermore, they begin to re fl ect on how the 
novel approaches by which the participation of these students was encouraged might 
also be appropriate for the rest of their students. That is, rather than seeing the 
minority student as disadvantaged because the ways they experience the world do 
not correspond to the supposed norms, when teachers attend to their students’ expe-
riences this can open new windows on what they come to recognize and value as 
mathematical practices. That, in its turn, may open new windows for the teachers, 
as they learn to interpret how a wide range of students learn mathematics.   

   Re fl ection 

 In this chapter, we have drawn attention to how the recent increased attention 
accorded to socially and politically motivated accounts of mathematics learning 
have contributed to a shift away from associating disadvantage with innate or static 
characteristics of individual students or groups. These traditional practices and societal 
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discourses resulted in the disadvantaging, and alienating of many students. The shift 
has been towards socio-cultural approaches to mathematics education, by which 
researchers and teachers have come to recognize learners as culturally-situated and 
embodied beings. This new focus has enabled researchers to identify the mathemat-
ical potential of previously marginalized students. The new focus has been on iden-
tifying qualitative differences mediated by cultural, linguistic and sensory tools, 
rather than on measuring quantitative performance differences among and between 
different groups through assessment tools geared to idealized norms. 

 However, perhaps in part because we chose to focus our attention on research 
related to mathematical practices as they occurred within classrooms, on the whole 
these emerging counter-narratives have been mainly con fi ned to reporting and put-
ting forward new micro views for promoting equity in mathematics teaching and 
learning practices. On their own, these narratives may have insuf fi cient power to 
challenge successfully inequities in the macro-social conditions in which the prac-
tices occur. Such challenges are a necessary condition for equity and social justice 
to be achieved in school mathematics.      
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  Abstract   Major paradigmatic changes in mathematics education research are 
drawing attention to new perspectives on learning. Whereas de fi cit models were 
previously in the foreground of research designs, these have been replaced by a 
wide variety of theoretical directions for studying diverse approaches to learning 
mathematics. There is now an acceptance of the need for richness and variety in 
research practices so that approaches can be studied, compared and mutually 
applied and improved. Psychological and quantitative approaches and methods 
are now increasingly complemented, or even replaced, by new directions that rely 
on social and anthropological theories and methods. Rather than reviving ideas 
about de fi cit research in mathematics education, the aim of this chapter is to pres-
ent some socio-cultural perspectives of mathematics learning, and to show how 
these perspectives go beyond the de fi cit model of learning. Framing the main 
traditional markers of discrimination in school mathematics—gender, social class 
and ethnicity—in a perspective of social justice, the chapter concludes with a 
re fl ection on equality in terms of the democratic principle of meritocracy in math-
ematics education.      
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 The assumption that people of low socio-economic background, or of different 
genders or ethnic groups, are intellectually less capable than others has deep impli-
cations in society. In educational settings, this assumption is particularly perverse, 
for it strongly in fl uences the development of policies and practices for dealing with 
differences as markers of segregation. Under the label of “de fi cit model”—some-
times labelled as de fi cit thinking, de fi cit theory, the de fi cit paradigm, and the de fi cit 
discourse of learning—from the early 1960s, in the USA, for example, the de fi cit 
assumption seemed to adopt a de fi nite theoretical perspective in attempts to explain 
why students “failed.” Social and political factors embedded in the educational sys-
tem, which favoured segregation among groups of students, were ignored. In other 
countries—such as Australia (with Aborigines), New Zealand (with indigenous 
peoples), the UK (with immigrants), the Netherlands (with immigrants), South 
Africa (with Black and poor populations) and Brazil (with poor and indigenous 
people)—the same debate occurred, not so much under the label of  de fi cit , but in 
relation to the alleged de fi cit transmitters under investigation: gender, social class, 
race, culture or familial context. 

 Richard Valencia  (  2010  )  described six main characteristics of the de fi cit model 
in the educational context:

    • Victim blaming . The de fi cit model of learning links the school failure to a mem-
bership community. It attributes the performance of poor students, students of 
color, students of different genders and ethnic groups to their alleged cognitive 
and affective de fi cits.  
   • Oppression . The de fi cit model holds little possibility of success to these students, 
privileging some and oppressing others.  
   • Pseudoscience . De fi cit research draws on deeply negative bias in relation to per-
sons of color, of different genders, of low socio-economic class and minority 
culture, “basing their research on  fl awed assumptions, using psychometrically 
weak instruments, not controlling for key variables” (p. 95), and communicating 
their  fi ndings in proselytizing ways.  
   • Temporal changes . The de fi cit discourse varies depending on when they are 
made. Alleged de fi cits can be transmitted by low-grade genes, gender, minority 
culture, social class, familial context, and other related transmitters.  
   • Educability . The de fi cit model often goes beyond the description, explanation 
and prediction of elements of poor students, students of color and of different 
genders, classes and cultures. It is also “a prescriptive model based on educabil-
ity perceptions” (p. 18) of these students.  
   • Heterodoxy . The de fi cit model re fl ects the “dominant, conventional scholarly 
and ideological climates of the time. Through an evolving discourse, heterodoxy 
has come to play a major role in the scholarly and ideological spheres in which 
de fi cit thinking has been situated” (p. 18).    

 Taking the USA as the scenario of his critique (which can be fairly extended to 
other countries), Valencia  (  2010  )  carefully scrutinized several North-American doc-
uments, dismantling the fallacy of the de fi cit discourse. One of his main conclusions 
was that:
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  Students are not at risk for academic problems due to their alleged de fi cits. Rather, schools 
are organized and run in such oppressive ways (e.g., inequities in the distribution of teacher 
quality characteristics and inequities in the distribution of economic resources for school-
ing) that many students are placed at risk for school failure. (p. 125)   

 At the time de fi cit models were in the foreground of research designs, the work 
developed by Klineberg  (  1935  )  brought an important psychological contribution in 
challenging the assumption that certain racial groups are intellectually inferior to 
others. Klineberg studied Black American children’s IQ scores, and showed that 
they can be directly affected by environmental circumstances. Klineberg’s research 
did not reach to a de fi nite conclusion about the speci fi c role of the environment over 
these achievements but, as stated by Lieberson  (  1985  ) , it did “present evidence that 
such events can occur, that IQ is at least affected by the environment, and that judg-
ments on a rather clear-cut matter can be altered by the in fl uence of a social group” 
(p. 220). 

 Similar reactions on intelligence tests among different ethnic groups appeared in 
the works of Bruner  (  1990  ) , Canady  (  1936  ) , Cole  (  1985  ) , Gould  (  1995  ) , Long 
 (  1925  ) , Menchaca  (  1997  ) , Thomas  (  1982  ) , and Van der Veer and Valsiner  (  1991  ) , 
among others. All these works share somehow the conclusion that intelligence tests 
measure the familiarity of certain minority groups with the culture and language 
pro fi ciency of dominant groups, not intelligence. Bruner  (  1990  ) , for instance, ques-
tioned some ideas concerning the relationships between school learning and devel-
opment and  intellectual prowess . Without any re fl ection about what exactly we 
want to mean by intellectual prowess, said Bruner, we decided “to use school per-
formance as our measure for assessing ‘it’ and predicting ‘its’ development” (p. 26). 
For Bruner, a de fi nition of intellectual prowess or successful performance intimately 
depends on which traits a culture selects to honor, reward and cultivate. So, what-
ever de fi nition of these terms is used, that de fi nition should lead us to issues con-
cerning the use we wish to make of them in “a variety of circumstances—political, 
social, economic, even scienti fi c” (p. 27). This is to say, the cognitive development 
of the individuals cannot be evaluated out of the culture they are inserted in, and the 
operatory power and limits of theoretical models of learning and development 
adopted by diverse research lines must be analyzed in their emergent political-his-
torical context. 

 By the 1970s, de fi cit research designs began to be challenged by a wide variety 
of theoretical perspectives of learning. Since then, there has been an acceptance of 
the need for richness and variety in research practices so that approaches can be 
studied, compared and mutually applied and improved. Psychological and quantita-
tive approaches and methods have been increasingly complemented, or even 
replaced, by emergent approaches that rely on social and anthropological theories 
and methods. 

 Rather than reviving ideas about de fi cit research in mathematics education, the 
aim of this present chapter is to present some socio-cultural perspectives of mathe-
matics learning, and to show how these perspectives go beyond the de fi cit model of 
learning. The chapter has been structured in four main parts. In the  fi rst part, we 
provide a description on how the research  fi eld of mathematics education has been 
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reacting to de fi cit assumptions. In the second part, we discuss some socio-cultural 
perspectives of mathematics learning, showing that their mainstream assumptions 
challenge any de fi cit discourse. The third part promotes a perspective on social 
justice. Here some recent research related to the main traditional markers of dis-
crimination in school mathematics—gender, social class and ethnicity—are 
approached. Finally, in the summary, we present an overview of the main issues and 
claims discussed. 

   Socio-cultural Reactions to De fi cit Assumptions 
in Mathematics Education 

 It is well-documented in the literature that, historically, mathematics education 
developed as a research  fi eld from the late 19th century under the in fl uence of two 
main disciplines—mathematics itself and psychology (D’Ambrosio,  1993 ; 
Kilpatrick,  1992 ; Lerman,  2000 ; Schoenfeld,  1992  ) . It is also well-documented that 
mathematics has had an important role in the intellectual selection, preparation and 
guidance of students to enter higher education studies. Mathematics has been used 
to help select those who will occupy different social positions, thereby serving as a 
 critical  fi lter  (Bishop,  1999 ; Ernest,  2007a ; Gomes,  2008 ; Sells,  1978  ) . Ernest 
 (  2007a  )  argued that, in Western culture, this “critical social function of mathematics 
is exacerbated by the preconception that mathematical performance is largely inher-
ited” (p. 2), or, put another way, determined by de fi cit transmitters like those we 
have discussed. This discrimination, apparently stronger in mathematics than in 
other school disciplines, is still supported, in Ernest’s view, by a signi fi cant corpus 
of quantitative research that correlates student mathematical achievements with 
gender, race, class, culture, familial socialization, and other divisors of society such 
as special needs, disability, sexual orientation, age, creed and religion. 

 Socio-cultural perspectives that differed from the de fi cit explicative approach 
of causality in mathematical performance started to appear by the late 1970s. 
These perspectives shared the assumption that it is too restrictive to consider 
merely “the gaps” of a population, and argued that each culture should be exam-
ined from tasks or practices that are signi fi cant or meaningful to their members. 
There emerged a number of works within and around mathematics education 
(e.g., Bernstein,  1996 ; Bishop,  1988 ;    Bourdieu & Passeron,  1977 ;    Carraher & 
Schliemann,  2002 ; D’Ambrosio,  1985 ; Gardner,  1983 ; Geertz;  1973 ; Green fi eld 
& Childs,  1977 ; Lave,  1977 ; Scribner & Cole,  1973 ; Sternberg,  1985  )  that prob-
lematized the de fi cit approach, in terms of both speci fi cities of the socio-cultural 
groups under investigation and methods that are pertinent to study these groups.  
The socio-cultural variable was taken into consideration in these works (Perret-
Clermont & Brossard,  1988  ) . 

 This movement towards new paradigms of learning in academic communities 
has been described by Lerman  (  2000  )  as the  social turn , having its peak around 
1988. Lerman observed that the positive receptivity of new alternative perspectives 
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of learning by the mathematical education community “was due more to political 
concerns that inequalities in society were reinforced and reproduced by [de fi cit 
assumptions] in school mathematics, than social theories of learning” (p. 24). Valero 
 (  2004  )  pointed out that this signalled that some researchers found support, in these 
socio-cultural perspectives, for their understandings of these inequalities. On the 
other hand, for other researchers, these perspectives offered an explanatory power 
for them better to understand the mathematical practices in terms of the interactions, 
relationships, and discourses that effectively occur in the classroom. Whatever the 
case, these perspectives became an intellectual commitment for many mathematics 
education researchers: for some it is more political, and for others more pragmatic 
or affective. 

 The social turn in mathematics education was in fl uenced not only by emerging 
socio-cultural approaches, notably those originating from cultural psychology, 
anthropology, sociology and philosophy of mathematics, but also by ethnomathematics, 
issues of gender, social class and ethnicity, history of mathematics, sociolinguistics, 
semiotics, and other topics in the social sciences (Ernest, Greer, & Sriraman,  2009 ; 
Lerman,  2000  ) . In particular, emergent socio-cultural views of intelligence in 
response to de fi cit discourses played a special role in the social turn within aca-
demic communities in general. Two particular alternative contributions have chal-
lenged the de fi cit paradigm by arguing that intelligence is a social construct that 
manifests, in many ways and means, different things to different social groups. One 
contribution came from Gardner’s  (  1983  )   Theory of Multiple Intelligence . Gardner 
de fi ned intelligence “as the ability to solve problems, or to fashion products, that are 
valued in one or more cultural or community settings” (p. 7). The other contribu-
tion, known as the  Triarchic Theory of Intelligence , was introduced by Sternberg 
 (  1985  ) . It distinguished between three contexts in which intelligence manifests 
itself: the  fi rst relates to successful performance in standardized school norms 
(e.g., appropriated ways of thinking and reasoning, tests and socio norms); the 
second is associated with creativity and motivation toward novelty; and the third 
concerns successful performances in out-of-school activities. 

 New conceptualizations for intelligence generated new ways of thinking about 
both cognition and learning, and all of these demanded the development of alterna-
tive methods to complement statistical studies, or even replace them. In relation to 
cognition and learning, Jean Lave’s book  Cognition in Practice   (  1988  )  had a very 
important in fl uence on thinking about mathematics education. Grounded on 
Vygotsky’s ideas, Lave demonstrated that cognition is a phenomenon that emerges 
in social interactions, and that learning and identity formation occur as a result of 
participation in social practices. This resulted in a radical shift of paradigm in rela-
tion to traditional views of cognition and learning in that meaning, thinking, and 
reasoning came to be seen as products of social activity (Lerman,  2000  ) . 

 Alternative methods of empirical research, involving qualitative approaches (see 
Groulx,  2008  ) , challenged the authority of statistical methods, which came to be seen 
as being relevant only to events that could be “classi fi ed, operationalized and orga-
nized” (p. 97; our translation). By contrast, qualitative methods focussed on the par-
ticularities, conditions and circumstances of the historical/socio-cultural environments in 
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which the events occurred; the subject-participants become actors in that their 
voices were heard, revealing a diversity of situations in which they acted in various 
manners and made use of a varied resource repertoires. Yet, qualitative approaches 
pushed academic communities to rethink studies concerning the needs of the groups 
of individuals according to the socio-cultural singularities of their  forms of life,  and 
not as measurement indicators. 

 Although the works mentioned so far claimed that intelligence, cognition and 
learning should not be explained any more from de fi cit parameters—the issue still 
remains alive in the agenda of a number of scholars from different Western coun-
tries (e.g., Ernest,  2007a ; Ford, Harris, Tyson, & Trotman,  2002 ; Gillborn,  2005 ; 
Gomes,  2003 ; Gorgorió, Planas, & Bishop,  2004 ; Gutiérrez,  2007 ; Keitel,  1998 ; 
Martin,  2009 ; Stevens, Clycq, Timmerman, & Van Houtte,  2009 ; Valencia,  2010 ; 
Weiner,  2006  ) . 

 In the next section some socio-cultural perspectives of mathematics learning are 
presented, showing that their mainstream assumptions go beyond de fi cit 
discourses.  

   Socio-cultural Perspectives for the Learning of Mathematics 

 Socio-cultural perspectives of mathematics learning are found under different 
denominations and within different research foci. Some of these perspectives con-
form to the main research foci proposed by Bishop  (  1999  ) —mathematics learning, 
mathematics curricula and mathematics teaching. These three foci are described by 
Bishop in the following words: mathematics learning relates to the ways  cultural 
learners  learn and use mathematics. This includes “characteristics of learners, types 
of learning, attitudes, beliefs, motivations, feelings, ways of remembering, imagin-
ing, representing” (p. 4). Mathematics curricula deal with  cultural issues  involved 
in “aspects of content, sequences of ideas, relationship to other topics, other sub-
jects, other contexts, both real and virtual” (p. 4). Mathematics teaching covers all 
that encompasses  the context of mathematics teaching , which, at the end, converges 
to the classrooms in the form of “interactions, explaining, clarifying, linking with 
other knowledge, inspiring, leading, communicating” (p. 4). 

 In the analysis which follows we will show that these foci are not disjoint: each 
overlaps or complements the others. 

   Cultural Learners, Cognition and Affect 

 Acknowledging that learning and cognitive processes should not be analyzed 
outside a learner’s culture led to the development of studies of beyond-school math-
ematical practices in culturally relevant contexts. Barton  (  1996  )  identi fi ed four 
bodies of literature in these studies, one of them focussing on the exploration of 



1074 Beyond De fi cit Models: Sociocultural Directions

relationships between the thinking processes of an individual’s cultural group and 
mathematics education. Thus, for example, Terezinha Nunes, Analúcia Schliemann 
and David Carraher’s studies of street mathematics and school mathematics with 
some groups of Brazilian children analyzed data on the similarities and differences 
between different groups of people as they attempted to solve mathematical prob-
lems at work and in school. These data, and data from other like studies, constituted 
strong evidence against de fi cit models as they showed that, despite failing in school 
mathematics, children from poor economic backgrounds could understand and 
apply basic mathematical principles as they solved problems in familiar work 
contexts. 

 In their  fi rst analysis of the mathematics that people practise in everyday settings, 
Carraher, Carraher, and Schliemann  (  1985  )  found that young street vendors in Brazil 
correctly solved 99% of the arithmetic problems that emerged during selling trans-
actions. However, when asked to solve similar problems presented to them as 
school - like computations, the percentage of correct answers dropped to 37%. Nunes, 
Schliemann, and Carraher’s  (  1993  )  studies, together with those by other authors 
(e.g., Lave,  1977,   1988,   1989 ; Reed & Lave,  1979 ; Saxe,  1991  ) , demonstrated that 
speci fi c socio-cultural activities, such as buying and selling, promote the develop-
ment of mathematical knowledge previously thought of as accessible only through 
formal instruction. These  fi ndings strongly challenged the adequacy of de fi cit mod-
els in relation to mathematical learning: failure to learn mathematics in school can-
not be attributed to de fi cits, given that the same children who failed in school tasks 
showed mathematical understanding in other contexts. The analysis of school fail-
ure needs to focus therefore on the school itself, its values, its assessment proce-
dures, and, above all, the different practices developed in and out-of-school 
contexts. 

 Nunes, Schliemann and Carraher, and their students—the so-called  Recife 
Group —developed over more than 20 years new contexts of observation in which 
mathematical activities were not necessarily related to school mathematics pat-
terns (see, e.g., Acioly,  1994 ; Acioly-Régnier,  1997 ; Acioly & Schliemann,  1987 ; 
Carraher,  1986 ; Carraher et al.,  1985 ; Da Rocha Falcão,  1995 ; de Abreu & Carraher, 
 1989 ; Nunes, Schliemann, & Carraher,  1993 ; Schliemann,  1985 ; Schliemann & 
Acioly,  1989 ; Schliemann, Araújo, Cassundé, Macedo, & Nicéas,  1994 ; Schliemann, 
& Carraher,  2004 ; Schliemann & Magalhães,  1990  ) . One of the contexts, discussed 
by Da Rocha Falcão  (  2005  ) , referred to a speci fi c community of Brazilian  fi shermen, 
the  jangadeiros  from Recife. Although most of these  fi shermen were illiterate and 
possessed no conceptual-vectorial schemes at all, Da Rocha Falcão showed how 
they were able to pilot their sailing boats conforming to vectorial principles of 
composition of the direction and intensity of the wind and the orientation of the 
sail and keel. 

 Refusing to accept de fi cit models to explain dif fi culties in learning school math-
ematics, researchers in the Recife group built upon aspects of Piaget’s and Vygotsky’s 
theoretical accounts of cognitive development and followed methods similar to 
those developed by Cole and Scribner  (  1974  ) , Luria  (  1976  ) , and Reed and Lave 
 (  1979  ) . Thus, the group developed a conceptual and contextual analysis of empirical 
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data, using methods from anthropology, psychology, and mathematics education, to 
bring out the different levels of conceptualization and representations of partici-
pants in their studies. Vergnaud’s  (  2009  )  theoretical proposal of  conceptual  fi elds  
provided a fruitful background for their analysis of the invariant, symbolic, and situ-
ational aspects of concepts developed both in and out-of-school. 

 Although initially formed with the above-mentioned theoretical and method-
ological orientations, some members of the Recife group reelaborated them and 
incorporated others to continue their own investigations. For instance, Da Rocha 
Falcão pointed out that, although Brazilian  fi shermen—the  jangadeiros  from 
Recife—and amateur sailing apprentices displayed clear differences in their psy-
chological competences of sailing, both groups of competences were semiotically 
and culturally mediated. Supported by Leontiev’s  (  1994  )  theoretical concept of 
activity, Da Rocha Falcão argued that the classi fi cation of these Brazilian  fi shermen’s 
sailing competences, proposed by Vergnaud  (  1991  )  as being  competences-in-action , 
or else  savoir-faire  as proposed by Piaget  (  1974  ) , suggested the possibility of non-
semiotic, strictly practical human actions. Da Rocha Falcão stated that the fact that 
many people could not explain or discuss their competences should not be taken as 
evidence that these competences had a purely enactive character. 

 The systematic research program developed by the Recife group not only drew 
attention to the weakness of de fi cit models for learning mathematics to explain the 
academic failure of children but also demonstrated common aspects of concepts 
developed out-of-school and in school. In discussing analytical tools for the study 
of mathematical activity, Araújo et al.  (  2003  )  proposed, among other things, to take 
into account pre-conceptual competences characterized in two ways: First, by their 
effectiveness in culturally meaningful contexts; and second, by the fact that these 
competences are, by nature, quite dif fi cult to express using symbolic-explicit repre-
sentations (see also Frade & Da Rocha Falcão,  2008  ) . For these authors, effective-
ness and tacit quality are invariants of mathematical activity, irrespective of whether 
we are considering school or out-of-school mathematical practices such as those 
performed by tailors (Lave,  1988  ) , carpenters (Millroy,  1992  ) ,  cambistas de jogo do 
bicho —Brazilian bookmakers dealing with what is called the “animal lottery” ( jogo 
do bicho ) (Acioly & Schliemann,  1987  ) ,  fi shermen (Da Rocha Falcão,  2005  )  and 
other communities of practice (e.g., Santos & Matos,  2002  ) . 

 For researchers in the Recife group, the core issue regarding predictors of selec-
tive school failure relates to particular characteristics of the semiotic interactions 
and concepts developed in different practices. But what are those characteristics? 
Are they linked to the context of learning, to students’ identities, or to mathematical 
concepts involved in the activity? It seems that the  simultaneous  consideration of 
these three aspects distinguishes this group as researchers of the psychology of 
mathematics education inspired by the theoretical perspectives of Vygotsky, Piaget, 
Vergnaud, Leontiev, and Lave, among others. 

 Within psychology, the role of culture and contexts in the cognitive development 
of individuals is a fundamental issue. The dif fi culties of integrating cultural and 
conceptual aspects within works on mathematical competences can be illustrated in the 
analysis by Saxe and Posner  (  1983  )  of the strengths and weaknesses of transcultural 
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research into the development of the concept of number, associated with the 
approaches of Piaget and Vygotsky. For Saxe and Posner, each of the theories pro-
vides a base to analyze universal or culture - speci fi c processes on the creation of 
numerical concepts in children. 

 Piaget described how numerical operations are developed, but he did not analyze 
the mechanisms through which social factors contribute to the creation of numerical 
thought. His theory did not give us enough information about the level of conceptu-
alization of the individual in speci fi c domains of knowledge—a fact later recog-
nized by Piaget  (  1971  )  himself, at least in relation to what he called formal operations 
in adolescence and adulthood. The lack of analysis concerning possible differences 
of conceptualization across contexts or situations led to the abandonment of the 
theoretical frame of stages of development in the sense Piaget gave to them. By 
contrast, Vygotsky’s approach, as interpreted by a group of American psychologists 
(Cole, Gay, Glick, & Sharp,  1971 ; Cole & Scribner,  1974  ) , considered cultural 
experience as a differentiated theoretical construction. With this approach, concepts 
are regarded as important, but conceptual development is not analyzed in depth. 

 Taking advantage of both perspectives, the theoretical perspective of conceptual 
 fi elds proposed by Vergnaud  (  1991,   2009  )  provides a pertinent and operative frame 
that allows a new type of analysis of different types of conceptualizations occurring 
in different contexts. The core of Vergnaud’s theory lies in the importance attributed 
to situations for the development of concepts. We recall that this theory de fi nes a 
concept as a tripolar system constituted by three groups that he called  signi fi ers, 
situations, and invariant operatories.  The group of signi fi ers allows the representa-
tion, the communication and the treatment of a concept; the group of situations 
refers to situations in which the concept operates, and to the idea of reference; the 
group of invariant operators refers to the idea of meanings. 

 Using Vergnaud’s tripolar system, Acioly-Régnier  (  2010  )  identi fi ed a distinction 
between school and non-school contexts in terms of  focus of consciousness . In this 
identi fi cation, the dif fi culty an individual is faced with relates to the recognition of 
whether the concepts or representations are relevant to a given situation, be it a 
school or a non-school situation, or even to lack of the cultural tools to represent the 
situation. Acioly-Régnier showed that, within a school frame, the focus of con-
sciousness is essentially directed to the bipolar relation signi fi er-signify, leaving 
aside the situations they may refer to. In non-school contexts the stress is mainly on 
the axis signify-referent. In this case, Acioly-Régnier  (  2010  )  noted that the concep-
tualization becomes somewhat incomplete and the equilibrium of the triple (signi fi er, 
referent, signify) is lost. 

 In terms of the focus of consciousness, this has been justi fi ed as everyday con-
cepts are linked to local knowledge as opposed to universal knowledge (Rogoff, 
 1981  ) . For Acioly-Régnier, this view is controversial. Her study indicated that the 
same lack of generalization applies to learning that takes place in school contexts. 
As studies of transfer show (e.g., Boaler,  2002a ; Carreira, Evans, Lerman, & 
Morgan,  2002 ; Frade, Winbourne, & Braga,  2009 ; Greeno, Smith, & Moore,  1993 ; 
Lerman,  1999  ) , generalization and transfer across contexts are not, in general, with-
out mediation, automatic, or even comfortable. 
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 It is fundamentally important to take explicit account of the contexts in which 
learning takes place and to study the speci fi cities of the concepts developed by the 
individual in a given context. That is particularly the case when the speci fi cities of 
the semiotic interactions cannot be understood by the dichotomy: street mathemat-
ics context versus school mathematics absence of context. 

 In this respect, the perspective taken by Lave and Wenger  (  1991  )  illustrated a 
way of breaking with this dichotomical model. Regarding the appropriation of cer-
tain kinds of knowledge, they expanded Lave’s initial views, placing the develop-
ment of learning as a matter of identity development that takes place in social 
relations within the situations of coparticipation. This participation not only refers 
to local events that set in motion certain activities with certain people, but to a more 
global process that integrates the active participants to the practices of social com-
munities and leads them to build their own identities to connect with the commu-
nity. Lave and Wenger illustrated their theory of situated cognition by considering 
previous empirical studies of different learning processes among several groups: the 
midwifes of Yucatec, the tailors of Vai and Gola, the quartermasters of the American 
marine, the carvers at slaughterhouses, and a group of alcoholics anonymous. At 
 fi rst the individuals who join communities remain mostly at the periphery, where 
they do their  fi rst learning acquisitions. As they become more competent they move 
to the centre of the community. Therefore, learning is not seen as a simple acquisi-
tion of knowledge by individuals, but as a process of social participation in a certain 
practice or situation. 

 Acioly-Régnier  (  2010  )  adopted the characterization of concept proposed by 
Vergnaud  (  2009  )  in which a concept involves a set of situations, a set of operational 
invariants, and a set of linguistic and symbolic representations, but took into account 
the context of the conceptual development. At a more general level, Acioly-Regnier 
proposed a framework for psychological processes and a conceptualization of reality 
that includes three poles: culture, cognition and affect, as depicted in Figure  4.1 .  

 This framework considers, simultaneously, the idea that performance in a given 
context occurs under the triple in fl uence of cognitive, affective and cultural factors. 
Empirical evaluations of this proposal require multiple methodological approaches 
aiming at providing different and relevant perspectives regarding the phenomenon 

Psychological processes. 
Conceptualization of 

reality

Culture

CognitionAffectivity

  Figure 4.1.    Schematization 
of the frame culture, 
cognition and affect.       
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under analysis. For example, one needs to consider the role given to the individual 
by the researcher—as holder of knowledge, as simply a source of information, or 
even as someone submissive to a research protocol built by the researcher to test the 
limits and strengths of her knowledge. The nature of the interaction proposed by the 
researcher to collect the data, also needs to take into account and be examined from 
the perspective of, for example, the classic interaction individual-researcher or the 
binomial interaction within a pair or a larger group (Acioly-Régnier,  1996  ) . Acioly-
Régnier  (  2010  )  argued that cognitive performance depends on the nature and the 
context of the question, an individual’s familiarity with the situation, the kind of 
formulations (oral or written) that are required, etc. All these parameters play an 
important role in the construction of the data, as do classroom-speci fi c factors such 
as the extent to which students are allowed to display their mathematical 
understandings. 

 Numerous studies into cognition and context have clari fi ed important issues 
regarding individual challenges and strengths as learners develop concepts across 
different contexts. Questions still remain, however, so far as the relevance of these 
research  fi ndings and theoretical approaches to mathematics education—see 
Moshkovich and Brenner  (  2002  )  for a collection of studies on this issue. Also many 
questions need to be addressed regarding children who fail to learn mathematics in 
schools. For instance: What mathematical understandings do these children develop 
outside of schools, which are relevant to the mathematics curriculum? How are 
these beyond-school understandings different from the mathematics they are sup-
posed to learn in schools? How can a teacher identify the strengths and limitations 
of children’s previous concepts? How can the teacher create environments that will 
allow children to learn mathematics that is not merely a set of memorized proce-
dures, but rather a set of meaningful, related concepts—as they seem to be capable 
of doing when they learn outside of schools? These kinds of questions show that 
psychology alone is not able to account for socially -  and culturally - orientated theo-
retical perspectives of cognition. Possible responses to these questions can be elabo-
rated from issues outside of psychology, however, and these will be discussed in the 
following sections.  

   Culture and Mathematics Curricula 

 Three particular socio-cultural perspectives of mathematics learning have had a 
strong in fl uence on mathematics education research on curricula issues: ethnomath-
ematics, Bishop’s perspective of mathematical enculturation and acculturation, and 
situated perspectives originated from Lave’s ideas on cognition in social practices. 

   Ethnomathematics.   In his articles  The Name Ethnomathematics: My Personal 
View  and  Ethnomathematics: My Personal View , D’Ambrosio  (  2010a,   2010b  ) , 
reported on the trajectory of ethnomathematics, presenting his personal view of this 
already consolidated research  fi eld. In the  fi rst article, he noted that the word 
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ethnomathematics was always used by him when he was describing the mathematics 
of other cultures, especially those without writing and those marginalized by the 
colonial process (D’Ambrosio,  2010a  ) . D’Ambrosio  (  1997  )  recognized, however, 
that this word has been broadened to encompass other ethnomathematics currents, 
for example, critical approaches to the eurocentric character of mathematical 
knowledge (Powell & Frankenstein,  1997  ) , research on educational policies and 
society (Gerdes,  1994  ) , and studies of mathematical ideas of non-literate groups 
(Ascher & Ascher,  1997  ) . In the second article, D’Ambrosio  (  2010b  )  explained 
what he meant by ethnomathematics and an ethnomathematics program: the former 
relates to a theoretical framework, and the latter to the empirical dimension of it. In 
both articles, D’Ambrosio made it clear that ethnomathematics consists of a theory 
of knowledge of different cultural groups, with special emphasis on both the history 
and philosophy of mathematics, the aim being to understand, explain, learn about, 
cope with and manage the natural, social and political environment of processes 
involving counting, measuring, sorting, ordering and inferring, of well-identi fi ed 
cultural groups (see also D’Ambrosio,  1988,   1997  ) . He linked his theoretical 
approach to its empirical dimension by saying that his “proposal is a transcultural 
perception of the nature of mathematical knowledge, which demands a 
transdisciplinarian approach to knowledge in general” (D’Ambrosio,  2010a  ) . In this 
sense, an ethnomathematics program focusses on epistemological investigations of 
mathematical ideas and practices of different cultures—such as those developed or 
used by indigenous populations, labor and artisan groups, periphery communities in 
urban environment, farms, and professional groups—using methodological 
procedures inspired by ethnography. 

 The paragraph above shows the wide scope of ethnomathematics studies as 
viewed by its best known scholar. It leads us to re fl ect, in particular, on some peda-
gogical implications of these studies as they are directed to societies, communities 
or groups in which education is structured by any type of formal instruction. The 
main challenge of ethnomathematics studies, when restricted to any type of formal 
education, lies with curricular issues, for their assumptions depend on a curriculum 
planned and developed around the speci fi c socio-cultural needs and life history of 
these groups. This implies a teaching context design based on the socio-cultural 
environments of the learners, and a view of cognition in which reasoning re fl ect 
cultural roots (D’Ambrosio,  2010c  ) , because meaning-making derives from the 
learners’ socio-cultural needs and life histories. This articulation of  curriculum-
context of teaching-cognitio n was well illustrated in the work carried out by Knijnik 
 (  2004  )  with landless peasant communities in Southern Brazil. In this work, Knijnik 
clearly showed her careful role as researcher in the construction and planning of 
such articulation to attend to the social needs of the communities under 
investigation. 

 Ethnomathematics has inspired studies into the education of youths and adults 
(e.g., Fonseca,  2010  ) , indigenous communities (e.g., Barton,  2008 ; Costa & Silva, 
 2010  ) , other minority communities (e.g., Knijnik,  1999 ; Palhares,  2008  ) , profes-
sional groups (e.g., Palhares,  2008  )  and has generated a range of socio-political 
approaches to research (Gerdes,  1994 ; Powell & Frankenstein,  1997 ; Valero & 
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Zevenbergen,  2004  ) . Yet, ethnomathematics has brought important contributions to 
mathematics learning and teaching in traditional classrooms, in particular to cul-
tural roots, interactions between mathematics and languages, human interactions 
and values and beliefs (Bishop,  2002,   2010  ) . However, we do not  fi nd substantial 
ethnomathematics studies in the literature on mathematics education within school 
environments. 

 We suspect that this is due to two main reasons. First, the complexity of tradi-
tional classrooms in terms of the multiplicity of the students’ needs and life histories 
are much too diverse to permit the students to be considered as well-identi fi ed cul-
tural groups in the sense of ethnomathematics. Besides, these classrooms are 
inserted in a type of educational system in which the mathematics curriculum is 
basically the same in all countries (Bishop,  2010  ) , generally elaborated and devel-
oped by pre-established contents, guided by national policies and mechanisms of 
assessment performances, and with little opening for changes. The second reason, 
which can be viewed as a consequence of the  fi rst, concerns a probable lack of inter-
est in researching mathematics classrooms because ethnomathematical thinking, as 
Knijnik  (  2004  )  observed, emphasizes “other mathematics, usually silenced in 
school, as the cultural production of non-hegemonic groups” (p. 136). What we  fi nd 
in the literature about ethnomathematics and formal mathematics learning and 
teaching is a set of proposals concerning pedagogical lines of actions to incorporate 
the cultural diversity in the educational context (Borba,  1997 ;    Gerdes,  1996 ; 
Palhares,  2008 ; Shirley,  1995  ) .  

   Mathematical enculturation and acculturation.   Bishop’s perspective of 
mathematical enculturation (Bishop,  1988  )  and acculturation (Bishop,  2002  )   fi lls 
the space left open by ethnomathematics concerning school mathematics in some 
important aspects. It is a perspective that helps us to understand affective imbalances 
within mathematics classrooms, especially multi-ethnic classrooms, between 
students and teachers,  culturally . Borrowing from the literature on anthropology, 
Bishop introduced the concepts of enculturation and acculturation into mathematics 
education. These concepts primarily address curricular issues in that they are 
strongly linked to the culture the student brings from home and the teachers’ 
cultures, values, beliefs and choices in relation to mathematics, mathematics 
education and education in general (Bishop,  1988,   2002 ; Bishop, FitzSimons, Seah, 
& Clarkson,  1999 ; Seah & Bishop,  2000  ) . 

 Frade and Faria  (  2008  )  noted that Bishop’s educational analysis was initially 
grounded on the perspective of enculturation, where enculturation was taken to 
mean the induction, by a particular cultural group, of young people into their cul-
ture. This perspective presupposes the existence of a cultural consonance between 
school mathematics and the culture the student brings from home. Frade and Faria 
 (  2008  )  observed, however, that Bishop  (  1994  )  re-evaluated his premises for the pur-
pose of reaching an understanding of cultural con fl icts within multi-ethnic class-
rooms—moving from the assumption that mathematics education may not be a 
process of enculturation, but rather a process of  acculturation , the induction into an 
outside culture by an outside agent. Often one of the contact cultures is dominant, 
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irrespective of whether such dominance is intended. At this stage, according to 
Frade and Faria, Bishop’s studies began to focus not so much on individual students, 
but on the acculturation process per se, and on the role of the so-called  accultura-
tors . After observing apprentices (in general) during their experiences with cultural 
con fl icts, Bishop  (  2002  )  proposed a more radical hypothesis: “all mathematics edu-
cation is a process of acculturation … every learner experiences cultural con fl icts in 
that process. However, cultural con fl icts need not be conceptualized exclusively in 
a negative way” (p. 192). 

 Frade  (  2006  )  reported that for Bishop  (  2002  )  mathematics teachers are the main 
agents of mathematics acculturation. He considered two types of acculturator -
 teachers: the teacher who does not make any reference to any out - of - school math-
ematical knowledge; and the teacher who imposes what she wants through her 
privileged position and power. In both cases, Bishop claimed, although the resulting 
cultural con fl icts contain a cognitive component, they are infused with emotional 
and affective traces or nuances indicating deeper and more fundamental aspects 
than can be accounted for from a cognitive perspective. These affective traces clearly 
appeared in the works of Frade and Machado  (  2008  ) , and Frade and Faria  (  2008  ) , 
who reported on two studies into teachers’ mathematical culture and values, and the 
corresponding affective reactions of the students to both their learning and their 
teachers’ practices. 

 In an attempt to humanize the imbalanced relationship between the culture of the 
teachers and the culture of the students, Frade and Faria  (  2008  )  suggested that 
Bishop  (  2002  )  proposed to reconceptualize mathematics learning environments 
based, to a great extent, on Gee’s  (  1996  )  theoretical construct of  borderland dis-
course . This would correspond to the area of intersection between the students’ 
primary and secondary discourses. The primary discourse refers to the discourse 
learned and used within the family, at home or with surrounding groups. The sec-
ondary discourse, more institutional or formal than the primary one, is related to 
traditions passed forward to us by various generations through time, aiming at learn-
ing conducted in external environments. According to Frade and Faria, the potential 
oppressive character of an acculturation process led Bishop to state that the inten-
tional mathematics acculturation of a young person is turned into some type of 
cultural production while schools should be the place where the primary discourse 
of the students’ families and communities meet the secondary discourse of the 
mathematics community. This  turning  was explained by Bishop as he explored the 
idea of  transition  (see de Abreu, Bishop, & Presmeg,  2002  ) . 

 More recently, Bishop  (  2010  )  revisited the evolution of his works and discussed 
the universality of mathematics curriculum—that is to say, the fact that school 
mathematics curricula are almost the same in every country, apparently disregard-
ing the cultural diversity that characterizes the population in general. Bishop urged 
that “mathematics curricula be designed which deal with numeracy/ethnomathe-
matics practices as one strand together with Mathematical theory as a separate but 
related strand” (p. 339). By Mathematical theory for a school’s curriculum, Bishop 
meant “an approach which focusses on the many ‘Why’ questions provoked by 
numeracy/ethnomathematics practices” (p. 339). In this way, Bishop suggested that 
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we would have “a balanced mathematics curriculum for all—one which respects 
local ethnomaths/numeracy practices, ‘legitimizes’ them, and accepts them within 
the school context, and investigates their rationales by using appropriate Mathematical 
theory” (p. 340). In relation to values, Bishop restated their importance in educa-
tional research. For him, although we can perceive an increased interest in culture-
based research constructs, they are still insuf fi ciently addressed, given that “shared 
values are a signi fi cant part of any culture” (p. 341). 

 Bishop’s perspective has in fl uenced not only studies focussing on school mathemat-
ics. His ideas have been taken up by those conducting general studies into the develop-
ment of curricula in con fl ictive political and/or multicultural contexts (de Abreu et al, 
 2002 ; Civil,  2007 ; Gorgorió & Planas,  2001 ; Powell & Frankenstein,  1997 ; Valero & 
Zevenbergen,  2004  ) , and also on teachers’ values and students’ affect (Clarkson, 
FitzSimons, & Seah,  1999 ; Frade & Faria,  2008 ; Frade & Machado,  2008  ) . 

 It is clear that both ethomathematics and Bishop’s perspective are unquestion-
ably rooted in humanistic views such as respect for cultural diversity, equality and 
social justice, and human rights. Mathematics education researchers and teachers 
who have a commitment to these approaches do not accept assumptions and claims 
based on the cultivation of de fi cit practices or discrimination of any type. In particu-
lar, ethomathematics and Bishop’s perspective are very aligned with Bruner’s  (  1990  )  
position concerning the socio-cultural character of intellectual prowess. In the case 
of ethnomathematics, it is common to refer to those groups which, for some reason, 
are excluded from the cultural production of Western hegemonic education. In 
Bishop’s perspective, teachers and students are the main perpetrators of cultural 
con fl icts in which students’ “primary” cultures are often oppressed by the “second-
ary” cultures of the teachers.  

   Situated perspectives of learning.   With a different emphasis on culture from 
that given by ethnomathematics and by Bishop’s perspective, but still relying on 
anthropology, we  fi nd the situated approaches to mathematics learning originating 
from Lave’s  (  1988  )  perspective on cognition in practice (see also Lave and Wenger, 
 1991  ) . 

 Lave’s core idea is that cognition is a product of semiotic interactions between 
the individuals and the social practices in which they participate. According to 
Frade et al.  (  2009  ) , this implies that cognition is “a phenomenon that emerges from 
the practice, from the fact that an essential feature of the practice is making 
resources available for … involving and encouraging the individuals” (p. 16) to 
interact semiotically within it. For these authors, this is what it can be understood 
by learning as a process which does not depend on an individual only, but notably 
on the potential of the appeals of practice to bring individuals to participate in it 
(for other situated approaches, see, for example, Boaler,  2000 ; Brown, Collins, & 
Duguid,  1989 ;    Cobb & Bowers,  1999 ; Engeström,  1999 ; Greeno,  1997 ; Kirshner 
& Whitson,  1997 ; Watson & Winbourne,  2008  ) . By focussing on the practices in 
which individuals are expected to learn to participate, learning is then seen as a 
process of changing participation and identity formation within these practices 
(Lave & Wenger,  1991  ) . 
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 Lave and Wenger’s  (  1991  )  social - practice perspective of learning had profound 
implications not only for those studying mathematics practices in and out-of-school 
settings but also for the interdisciplinary character of research in mathematics edu-
cation. The emphasis on practices as the emergent locus for the production of mean-
ings indicated that mathematics learning and its use by common people was no 
longer a matter for discussion by psychologists only. Psychology alone was not able 
to account for the processes involved in learning and using mathematics from a situ-
ated point of view (Boaler,  2000  ) . 

 In the context of school mathematics, learning as a result of participation and 
identity formation is particularly challenging in two special aspects. First, it claims 
a refocussing of the teachers’ attention away from students’ cognitive differences/
performances (conveyed by expressions such as “good student” and “weak stu-
dent”) towards the students’ semiotic interactions within mathematical practices or 
activities, which are situated in a broader historical/socio-cultural context. This does 
not imply that students’ individual needs are ignored. On the contrary, cognition 
viewed in terms of symbolic mediation means that different individuals will interact 
in semiotically different ways. In producing different meanings, teachers should be 
aware that students will have distinct needs that must be considered by the 
practice. 

 Second, and consequently, it demands a rethinking of the idea that the mathemat-
ics curriculum should be centred on a “universal” or taken-for-granted list of pre-
established subjects. What is being called for, now, is a re-direction to propositions 
of mathematical practices within the space of signi fi cation/meaning of the students, 
to allow them to interact semiotically. Participation, in Lave and Wenger’s sense, is 
not merely an act of engagement in a certain practice or activity; changing forms of 
participation are part of a process that shape identity formation. That is to say, by 
beginning to participate in new ways, participants come to see and deal with con-
cepts or situations that either they have not seen before or, if they have, they now see 
and deal with them in different ways. It might be said that individuals have learned 
or become different persons in relation to a certain domain. Indeed, according to 
Lave and Wenger  (  1991  ) , the concept of participation involves, above all, a contri-
bution of the individual to the development of the practice and the contribution of 
the practice to the development of the individual as well. 

 This refocussing of the teachers’ attention and the rethinking of the universal 
character of mathematics curricula are key aspects of situated approaches that chal-
lenge de fi cit assumptions. Cognition is now to be seen as a process which does not 
depend on an individual’s “natural” attributes. And, by focussing mathematics 
curricula on mathematical practices that include diversity considerations as earlier 
proposed by Bishop  (  2010  ) , for instance, while at the same time providing access to 
globalized knowledge, educators foster student participation and avoiding differen-
tiation, division, quali fi cation and disquali fi cation among students (Popkewitz, 
 2004  ) . 

 Some researchers (e.g., Walkerdine,  1997  )  have pointed out that Lave’s situated 
perspective does not clarify how subjectivities are produced in social practices. 
Similarly to the discussion developed by Frade and Meira  (  2010  )  about the social 
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nature of affective behaviours and the constitution of identity, the production of 
one’s subjectivity can be also seen as results of internalizations that occur from the 
interactions between individuals and those practices in which they are involved. 
How an individual reacts to and internalizes what she has learnt as a result of her 
engagement in social practices depends not only on her previous life experiences, 
choices and judgments, but also—and perhaps mainly—on a combination of the 
contingencies, circumstances and social norms to which she is subjected at the 
moment. Thus, according to Frade and Meira  (  2010  ) , one’s subjectivity is subjected 
to continuous changes, and depends on the historical/socio-cultural circumstances 
which the individual has experienced and is experiencing at that particular moment 
of life. 

 Studies on ethnomathematics, Bishop’s perspective, and situated learning per-
spectives clarify important issues concerning the learning and the use of mathemat-
ics by different cultural groups. However, there are many unanswered questions that 
need to be investigated: What effects do mathematical content and its use have on 
the processes of participation and identity formation? How can teachers effectively 
evaluate their students’ mathematical developments in terms of participation and 
identity formation? What needs to be done to create curricula based on mathemati-
cal practices, rather than merely on content? Which kind of curricular materials 
would teachers need to support work with a curriculum based on mathematical 
practices? How can cultural speci fi cities be incorporated into the curriculum of dif-
ferent cultural groups without avoiding the mere reproduction of their cultures?   

   The Classroom Dynamic: The End Point of Mathematics 
Teaching 

 As indicated earlier, the context of any formal teaching is con fi gured under the 
in fl uence of a number of factors—like institutional issues, curricular policies, peda-
gogical organization, teacher quali fi cations, values and beliefs, power relationships, 
and people’s expectations and needs. In classrooms, all of these are manifested, 
somehow, in the form of interactions, explanations, clari fi cations, linking with other 
knowledge, inspiration, leadership, and communication. The unique combination of 
these in a classroom produces a classroom dynamic in terms of norms, negotiations, 
designs and modes of teaching. Below we provide illustrations of some socio-cul-
tural approaches, the intention being to explore how these factors combine in class-
rooms to affect teaching and learning. 

   Social negotiations.   A classic example of a proposal for the negotiation of 
meanings and conduct between teacher and students comes from Guy Brousseau, 
one of the pioneer scholars of the well-known  didactique Française . Brousseau 
 (  1986,   2006  )  introduced the notion of  didactic contract  as a theoretical framework 
aimed at understanding certain didactic situations involving the triple relationship 
“teacher–students– savoir  (knowing).” Chevallard, Bosch, and Gascón  (  1997  )  
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described a didactical contract as a set of generally tacit norms or clauses which 
regulates the reciprocal duties of teacher and students concerning a common project 
of study. For Chevallard et al.  (  1997  ) , this set of norms or clauses is not static, for it 
evolves as long as the didactical process goes forward. A didactical contract is 
therefore a construct to illuminate studies whose objective is to understand and 
support the work developed in the classroom (e.g., Galligan,  2005 ; Novotná & 
Hošpesová,  2008 ; Passos & Teixeira,  2011 ; Sierpinska,  2007  ) . 

 Another example of a framework for analyzing interactions in classrooms was 
offered by Cobb and his colleagues (Cobb,  2000 ; Cobb, Stephan, McClain, & 
Gravemeijer,  2001 ; Yackel & Cobb,  1996  ) . Based on a situated approach, these 
authors developed a framework that was intended to link the “social” and the “indi-
vidual” dimensions of classroom interactions. In doing so, they saw these interac-
tions as a coordination between the establishment of common mathematical practices 
(a social perspective) and the individuals’ reorganization of mathematical reasoning 
during the evolution of these practices (a psychological perspective). The social 
perspective concerns the regulation of the classroom microculture regarding three 
main features: classroom social norms (established jointly by the teacher and stu-
dents), socio-mathematical norms (normative aspects of classroom discourse and 
interaction that are speci fi c to mathematics), and classroom mathematical practices 
(normative ways of reasoning mathematically during speci fi c tasks). The psycho-
logical perspective focusses on the individual students’ particular ways of partici-
pating in such common mathematical practices, more precisely on the individuals’ 
mathematical beliefs (about their own role, the role of others, and the general nature 
of mathematical activity in school), values, interpretation and reasoning. For Cobb 
 (  2000  ) , “each perspective constitutes the background against which mathematical 
activity is interpreted from the other perspective” (p. 64). Recent explorations of 
this interpretative framework in classrooms can be found in the works of Levenson, 
Tirosh, and Tsamir  (  2009  ) , Lopez and Allal  (  2007  ) , Tatsis and Kolezab  (  2008  ) , 
Yackel  (  2001  ) , and Yackel, Rasmussen, and King  (  2000  ) .  

   Classroom designs.   From a critical mathematics perspective, the construct of 
 landscapes of investigation,  introduced by Skovsmose  (  2001  ) , refers to a dialogical 
environment in which mathematics is discussed through thematic projects that lead 
the students to develop a critical position about the role of the discipline in society 
concerning social, political and economical interests. In proposing these landscapes 
of investigation, Skovsmose observed that the teacher will probably have the 
experience of transposing a risk zone marked by the unpredictability of some events. 
On the other hand, he argued that not only may the students’ mathematical abilities 
be developed in relation to certain contents but also their competence to interpret 
critically and act in a social and political situation structured by mathematics. 
Skovsmose stated that landscapes of investigation can be set no matter how the 
learning processes are organized. 

 Complementing the illustrations provided by Skovsmose, the work of Araújo 
 (  2009  )  offered an example of the processes of negotiation, production and develop-
ment needed to build landscapes of investigation in the classroom. Acting as 
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teacher-researcher, Araújo reported on a whole - year term course for undergraduate 
geography students designed from mathematical modelling projects (see also 
Barbosa,  2006 , for a discussion on mathematical modelling in classroom from a 
socio-critical and discursive perspective, and the work of Pontes,  2003 , about 
classroom design based on activities in mathematical investigations). 

 Another classroom design that has been taken up by researchers and teachers 
came from the core ideas surrounding Lave and Wenger’s concept of  community of 
practice . Winbourne and Watson  (  1998  )  proposed an adaptation of such ideas so 
that they would become applicable to certain school settings. This adaptation was 
intended to account for a design for teaching, and provide an analytical tool to 
evaluate relationships and student participation in mathematics classrooms. 
Winbourne and Watson suggested that, in some school settings, we can have, or not 
have, what they called a  local community of practice.  Frade et al.  (  2009  )  synthesized 
this construct as follows:

  A local community of practice in a school setting is, amongst other things, continuing activity 
where the participants—teacher and students—work purposefully together towards the 
achievement of a common goal. In doing so they share … ways of behaving, language, 
habits, values and tool - use, and can see themselves as an essential part of the regulation of 
their activity and progress towards the common goal. (p. 15)   

 Based on these ideas, Frade et al.  (  2009  )  examined the students’ crossing of 
boundaries between some speci fi c, apparently insulated school practices. This 
crossing of boundaries was the focus of research carried out by secondary mathe-
matics and science teachers who planned and developed an interdisciplinary col-
laboration aimed at creating a local community of practice. The authors concluded 
that it was mainly the activity of these teachers that enabled the students to cross the 
boundaries between their disciplines: the teachers translated their speci fi c discipline 
language codes, worked together to prepare and organize their collaborative work, 
and shared their goals and purposes with the students. 

 Other studies—for instance, those by Watson and Winbourne  (  2008  )  and Graven 
 (  2004  ) —have applied the concept of communities of practices to educational and 
professional mathematical settings. Thus, Graven  (  2004  )  used Wenger’s  (  1998  )  
concept of communities of practice to investigate the teacher learning which 
occurred within a mathematics senior-phase inservice program fostered by a change 
in the curriculum in South Africa.  

   Modes of teaching.   Here, we offer some illustrations that share the assumption 
that the enhancement of “the competencies and identities of all learners, to a large 
extent, rests with how teachers operationalize the core dimensions of pedagogy” 
(Walshaw & Anthony,  2008 , p. 518) 

 The social turn translated into new pedagogies and classroom organization 
demands considerable effort and commitment from teachers. They are expected to 
move their pedagogical actions from traditional modes and conducts of teaching, 
as well as their ways to organize the classroom, toward the production of a new 
pedagogy featuring classroom dynamics which foster mathematical and social 
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interactions. From a socio-cultural perspective committed to equity to the students’ 
access to globalized knowledge and to educational change, Walshaw and Anthony 
 (  2008  ) , in discussing the teacher’s role in discursive practices within the classroom, 
have provided a rich and comprehensive review of the literature about connections 
between teachers’ pedagogies and desirable mathematical and social outcomes for 
students. Walshaw and Anthony showed how engagement in mathematical dis-
course can successfully develop students’ understanding while at the same time 
fostering a respectful exchange of ideas (between the teacher and the students and 
among students) as well as teacher listening, attentiveness, and re fl ection-interaction. 
These authors also discussed the effectiveness of the teacher’s role in building 
bridges between students’ everyday ideas and their mathematical ideas. It is through 
language—in particular by acknowledging students’ dif fi culties when attempting to 
use mathematical language—that teachers can build these bridges. Walshaw and 
Anthony argued that by teaching and involving students in mathematical language, 
teachers contribute to students’ development of mathematical clarity through argu-
mentations, critiques, and justi fi cation of assertions. 

 For David  (  2004  ) , teachers have a decisive in fl uence over the interactions that 
occur in the classroom. Her assumption was that all enunciations made by the 
teacher directly act on how the students internalize mathematics (see Blanton, 
Stylianou, & David  (  2003  )  for a development of patterns of these enunciations). 
Based on the work of Vygotsky and his colleagues (Luria,  1976 ; Vygotsky,  1962, 
  1978  ) , David’s analysis of a number of lessons taught by a group of elementary and 
secondary mathematics teachers, revealed how much the mediation role of the 
teacher’s language and discourse can contribute to the development of aspects of the 
students’ mathematical thinking and actions. 

 Meira and Lerman  (  2010  )  focussed on the role of language and discourse in con-
ceptual development. They employed Vygotsky’s notion of the  zone of proximal 
development  (ZPD) as a semiotic space when analyzing interactions between a pre-
school teacher and her students. When investigating the communicative moves of the 
teacher and a 2.5 year-old child around a plantation of beans set-up on cotton wool, 
Meira and Lerman demonstrated how the teacher positioned herself to be receptive 
to the pupil’s attempts to use new words in idiosyncratic ways. In this way they sus-
tained a shared  fi eld of attention that enhanced communication by allowing both the 
teacher and the child to recognize ambiguities in their own discursive contributions. 

 Numerous other studies grounded on socio-cultural perspectives have directly or 
indirectly drawn attention to the roles of teachers in classrooms. These studies 
addressed distinct factors such as the relationships that both the students and teach-
ers developed with mathematics and mathematical practices as a result of  participa-
tion  (e.g., Back & Pratt,  2007 ; David & Watson,  2008 ; Frade & Tatsis,  2009 ; Goos, 
Galbraith, & Renshaw,  2002 ; Jaworski,  2008 ; Martin, Towers, & Pirie,  2006 ; 
McVittie,  2004 ; Williams & Clarke,  2003  )  and  identity  (e.g., Boaler,  2002b ; Boaler 
& Greeno,  2000 ; Brown & McNamara,  2011 ; Frade, Roesken, & Hannula,  2010 ; 
Ingram,  2008 ; Sfard & Pursak,  2005  ) . Other matters addressed by researchers have 
been the effects of possibilities for communication between the teacher and students 
(e.g., Chronaki & Christiansen,  2005 ; Setati & Adler,  2000 ; Silver & Smith,  1996  ) , 
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classroom culture (e.g., Seeger, Voigt, & Waschescio,  1998  ) , teachers’ mathematical 
knowledge for teaching (e.g., Ball,  2003 ; Moreira & David,  2008 ; Tardif, Lessard, 
& Lahaye,  1991  ) , and teacher’s professional development (e.g., Fiorentini,  2003 ; 
Nicol,  2002  ) . Although these studies and those discussed above clarify many aspects 
concerning how socio-cultural perspectives can reach the classrooms, there is an 
important question which needs more attention—To what extent do  fi ndings of 
research on classroom interactions and teacher communication and behaviour offer 
guidance on how students can be  guaranteed  reasonable participation? 

 In completing the present section, we suggest that there is a fourth emergent 
focus of research in mathematics learning represented by a substantial and increas-
ing corpus of research whose main concern is speci fi cally with socio-political 
dimensions of mathematics education (Baldino,  1998 ; Knijnik,  2010 ; Mattos & 
Batarce,  2010 ; Restivo & Sloan,  2007 ; Valero & Zevenbergen,  2004  ) . Although 
methods and approaches in this area of research need to be consolidated (Valero, 
 2004  ) , the socio-political perspectives neatly go across the three foci or areas we 
have been discussing so far. They are intimately associated with the notion of  power  
and  inclusion  in their different manifestations (social, economic, political, educa-
tional and cultural) and include critical mathematics approaches (e.g., Chronaki, 
 2004 ; Mellin-Olsen,  1987 , Powell & Frankenstein,  1997 ; Skovsmose,  2001 ; 
Skovsmose & Borba,  2004  ) , and equality issues concerning learner gender, ethnic-
ity, social class, language, and other divisors of society (e.g., Barton,  1996,   2008 ; 
D’Ambrosio,  2001 ; Ernest,  2007a,   2007b ; Ernest et al.,  2009 ; Frankenstein,  1995 ; 
Gerdes,  1996 ; Gorgorió & Planas,  2001 ; Keitel,  1998  ) . 

 The next section is dedicated to a discussion on social justice and equality in 
mathematics education. For equality, we selected issues of gender, ethnicity and 
social class.    

   Social Justice: An Emergent Discourse 
in Mathematics Education 

 Social justice refers to the realization of a common good to be applicable in a 
certain practice of a group, community or society; it is a concept associated with 
 praxis , with human action. The discussion in this chapter will make it clear that 
social justice is an emergent discourse in mathematics education: the common good 
is  equality  (and all that it subsumes, like diversity, inclusion, accessibility, dignity, 
respect, assistance, opportunity)—applicable to  all mathematics learners and users 
as well  (not withstanding ethnicity, gender, social class, age, …), and to  mathemati-
cal practice in its several manifestations  (educational, social, cultural, professional, 
economic, political and technological). 

 There are many ways in which a discussion on social justice in mathematics 
education can be organized (see, e.g., Atweh & Keitel,  2007 ; Dowling,  2007  ) . We 
will consider the  meritocratic model  to structuring our discussion for two main 
reasons: (a) it has a direct impact on the students’ lives and identities inside and 
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outside the school; and (b) mathematics teachers are very familiar with it and its 
mode of functioning. 

 In his analysis of equal opportunities and its limitations in formal systems of 
education, François Dubet  (  2004  ) , the sociologist of education, discussed why 
social justice, in the sense described above, is not really found. Dubet reported that, 
contrary to the aristocratic societies which prioritized the “well born,” democratic 
societies have chosen merit as the essential principle of justice in education: by giv-
ing equality of access to all, the school becomes fair because everyone can become 
successful as a result of their efforts and qualities. This principle, said Dubet, was 
progressively implemented in the modern and rich countries with the expansion of 
common compulsory schooling, and the opening of tertiary and secondary educa-
tion. Then, gradually, the formal frame of both the equal opportunity and merit 
principles was globally installed in a great number of countries. For Dubet, this 
school, however, did not become fairer for reducing performance differences 
between social classes, even though all students were allowed to enter into a sup-
posedly balanced competition—see Kariya  (  2011  )  for a discussion of this remark in 
the context of Japanese education. 

 This purely meritocratic aspect of justice in schools brought a number of 
dif fi culties in that it reinforced markers of segregation between various groups of 
students (Valencia,  2010  ) . In particular:

   The accessibility of the meritocratic model to all did not eliminate the inequali-• 
ties of social classes, gender and social groups. The more favored students still 
had decisive advantages.  
  The meritocratic school especially did not adequately address the needs of the • 
most disadvantaged students. The barriers are more rigid for the poor, and teach-
ers’ expectations are less favorable to children from disadvantaged families. In 
competing with others, disadvantaged students more than often lose and become 
the despair of their teachers. They are left aside, marginalized within a differenti-
ated curriculum, and become increasingly weak.  
  The “losers,” that is to say, the students who fail, are seen as solely responsible • 
for their failure—because, it is argued, the school gave them the same opportuni-
ties to succeed as it gave the other students. As a consequence, these students 
tend to lose their self-esteem and motivation, refuse to attend school, or particu-
lar classes within school, and, in many cases, become violent individuals: after 
all, the meritocratic school placed them in a competitive environment without 
giving them the support they needed to succeed. From the point of view of the 
teachers, the meritocratic school is also cruel as they become the major agent of 
social and educational selection.    

 Dubet  (  2004  )  stated that he doubted whether the model of justice based on merit 
would be abandoned because within a society that, in principle, demands equality 
between all, individual merit is seen, by many, as the only way of producing fair or 
legitimate inequalities—other inequalities, based on birth and biological attributes, 
for example, are recognized as unacceptable. 
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 Yet, as Dubet noted, we cannot ignore the fact that inequalities within schools 
can cause social and economic inequalities. As Cole  (  1985  ) , a US scholar, stated 
over 25 years ago:

  Our society, founded upon the principle that all men are created equal, has never lived easily 
with the recognition of enormous  de facto  social inequality. We need a rationale for such 
inequality and our traditions strongly bias us to seek the causes of inequality, in proper-
ties of individuals, not society. At the same time, we realize that social and economic 
inequality can be the causes of individual intellectual inequalities, as well as their conse-
quences. (p. 218)   

 This issue poses a challenging question to educators: Can social justice ever be 
achieved in schools in which, in the name of democracy, the meritocratic model is 
adopted? 

 For Dubet, social justice in schools (and other formal educational institutions) 
should consist, on the one hand, of assuring education accessibility to all, and on the 
other hand, of using this accessibility to suppress obvious privileges and complicity 
between the school and certain social groups. This understanding of social justice 
would be measured by  the way the school treats the disadvantaged students; by 
recognizing them as individuals in evolution, rather than students engaged in a 
competition . According to Dubet, a school committed to social justice does not 
humiliate and hurt the students usually identi fi ed as “losers.” Instead, it values and 
works on those students’ interests and needs, assists them in their evolution preserv-
ing their dignity and the equality of principles in relation to the others and in the fair 
sharing of human and material intellectual resources available. 

 As already suggested in this chapter, when applied to the teaching and learning 
of mathematics, the meritocratic principle seems to play a special role in the provi-
sion—or obstruction—of social justice. It is through it that mathematics acts as a 
 critical  fi lter  in schools. And the results of several recent research studies, men-
tioned earlier in this chapter in the context of a discussion on de fi cit models have 
con fi rmed that  the fair treatment to all in schools is still far from being achieved.  
Those studies mostly reacted to de fi cit discourses involving issues of gender, eth-
nicity and social class (though other markers are also claimed by social justice). 
They shared the conclusion that inequalities in mathematics education concerning 
these traditional de fi cit markers were consequences of socially - constructed dis-
courses to meeting the political, social and economic interests of some groups 
within the society. In this sense, the meritocratic model can be seen as an ef fi cient, 
but a perverse mechanism of implementation of these interests in schools. 

 Next, we will brie fl y approach issues of gender, ethnicity and social class, the aim 
being to present current views of researchers in mathematics education on these issues. 

   Gender 

 Recent researchers on gender have seemed to agree that inequalities between 
females and males in mathematics education emerged from a traditional discourse 
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which relied on the premise that females have a fragile emotional nature in comparison 
to the strong rational nature of males (Walkerdine,  1998  ) . This premise had other 
associated beliefs and assumptions: females tend to do better in affective matters 
demanding care, assistance and sensitive support, as well as in the humanities and 
professional areas. This explains in part why it is not surprising that many young 
and adult women do not hesitate to comment on their supposed incompetence in 
mathematics and related subjects. Males, on the other hand, are supposed to do bet-
ter in objective and rational matters, in the hard sciences, and in competitive profes-
sions. Although this is a simplistic description for the presence of inequality between 
genders, there is a sense in which it is true: the public image  is  that mathematics is 
a male domain (e.g., Burton,  1986 ; Forgasz,  1998 ; Hyde, Fennema, Ryan, Frost, & 
Hopp,  1990 ; Keitel,  1998  ) . 

 In terms of the meritocratic model, females and males are the actors of the com-
petition. Females always start with a disadvantage in comparison to males, for, the 
public perception is that women are competing in a territory essentially meant for 
men. This competition appears more or less explicit in several studies. Willis  (  1998  )  
reported that the Head of the Mathematics Department of a school in Australia 
believed that girls did not enrol in mathematics classes at the senior levels as much 
as boys do, not because they lack mathematical skills, but because of emotional 
insecurities. The school authorities, and often the girls themselves, thought that girls 
could not cope as well as boys with social pressures (see Sukthankar,  1998 , for com-
ments on familial pressures with respect to the career choice of females). And, if for 
any reason, the rules of the competition are changed so that females perform better 
than males, then this is blamed on “feminist initiatives” (Zevenberger,  1998  ) . 
Skelton  (  2010  ) , in discussing the repositioning of girls from “victims” to “victors” 
at school, showed how the Australian media dealt with the fact that in 1996, for the 
 fi rst time, girls from one State performed higher than boys in the end-of-secondary-
school mathematics examinations. A similar study focussing on community reac-
tions to this fact was reported by Coupland and Wood  (  1998  ) . 

 The situation with respect to females’ participation and performance in mathe-
matics is showing signi fi cant signs of changing, although these signs vary according 
to time, nation, ethnicity, school level, and socio-economic status (Ernest,  2007b ; 
Fennema,  1995 ; Forgasz, Leder, & Kloosterman,  2010 ; Grevholm,  2007 ; 
Nkhwalume,  2007 ; Rossi-Becker,  1998  ) . In relation to the image of mathematics as 
a male domain, the study by Forgasz et al.  (  2010  )  indicated that most North American 
and Australian research student-participants see mathematics as relatively gender 
neutral. Seliktar and Malik’s  (  1998  )  study showed that, in the USA, differences 
between males and females in academic choices are reducing, resulting in a fairer 
competition. Seliktar and Malik attributed this to a socio-economic need, typical of 
modern countries: the traditional occupations of women are suf fi ciently low in pres-
tige, autonomy and  fi nancial compensation that they do not enable a modern and 
autonomous woman to support a family. So, more women are wanting to secure 
higher paying jobs which often require technical quali fi cations. Without mathemat-
ics quali fi cations and expertise, these jobs may not be achievable. Rossi-Becker 
 (  1998  )  attributed the change to extensive and diverse intervention programs aiming 
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at increasing the participation of women in mathematics and related professions. 
Ernest  (  2007b  )  reported that in Latin-American countries, the Caribbean and 
Scandinavia, a higher proportion (at least 50%) of those taking up mathematics and 
science studies, and occupations, are women. Regarding imbalances in mathemati-
cal performance, Ernest analyzed data from different countries and concluded that 
“no unambiguous differences in achievement levels can be identi fi ed” (p. 5). 

 In many communities the meritocratic model has been replaced by a model 
based on everyday competence. For instance, studies conducted by Knijnik  (  1998  ) , 
with landless peasant communities in Brazil, and McMurchy - Pilkington  (  1998  ) , 
with the Maori community in New Zealand, reported data suggesting that for 
females, school mathematical subjects were not useful or related to their everyday 
lives or to their roles in their communities. In the case of the Maori community, 
McMurchy-Pilkington showed that although the women regarded themselves as 
not mathematically competent (considering the school parameters), they were able 
to think in mathematically complex ways, especially in family-related situations. 
Thus, what was valued by the Maori women was their ethnomathematical compe-
tence in everyday life. Singh  (  1998  ) , who studied a group of South African Indian 
females, reported a strong tension between the females’ aspirations for gaining 
better quali fi cations in order to gain control over their lives and be able to enter 
the labor market, and barriers imposed by historical, economic and social hege-
monic forces.  

   Ethnicity 

 Although studies relating gender and participation in mathematics seem to point 
to real signs of changes, even in countries in which women have been oppressed, the 
same cannot be said in relation to ethnic and social class differences. Over the past 
four decades, much research on race and minority ethnic culture in mathematics 
education has continually shown the cruel effects for many students of meritocratic 
competition in mathematics. Here, the actors of the competition are often the 
socially and politically constructed individuals identi fi ed as the “non-whites” and 
the “whites.” As mentioned previously, many teachers continue to maintain low 
expectations and negative images of some under-achieving groups of students, 
especially the “non-white” ones. Consequently, these students are often subjected to 
a differentiated treatment and curriculum, reinforcing inequalities and obstructing 
their access to quality education. In addition, in most developed and developing 
countries, issues of race and minority ethnic cultures are strictly linked to issues of 
class. This is the case, for instance, of Brazil (e.g. Costa & Silva,  2010  ) , South 
Africa (e.g., Dowling,  2007  ) , and the USA (e.g., Livingston,  2007  ) , where the color 
of the skin clearly reveals separate social positions in society. In the Netherlands, 
research carried out by Stevens et al.  (  2009  )  called attention to the importance of 
considering family processes and characteristics as an essential aspect of under-
standing the relationship between race/ethnicity and educational inequality. 
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 The meritocratic model relies on the democratic principle of equality and is 
based on the logic of a universal curriculum for mathematics: everybody should 
learn the same set of contents and achieve a  fi xed set of abilities or skills (Bishop, 
 2010  ) . By effectively ignoring the cultural diversities of groups of students, those 
supporting this model align themselves with the continuation of educational de fi cit 
practices (Ford et al.,  2002 ; Gillborn,  2005 ; Glevey,  2007 ; Martin,  2009 ; Powell, 
 2002 ; Valencia,  2010  ) , cultural con fl icts (e.g., Gorgorió et al.,  2004  ) , and con fl ictive 
communications and affective relationships between students and their teachers 
(e.g., Gates,  2002 ; Gillborn,  1990 ; Sewell,  1997 ; Wright, Weeks, & McGlaughlin, 
 2000  ) . In relation to the maintenance of de fi cit practices in schools, the studies of 
Glevey  (  2007  )  and Martin  (  2009  )  are particularly noteworthy in that they not only 
provide complementary explanations for the persistent inequality between some 
groups of students, but they also propose actions to remove these inequalities within 
classrooms. 

 Taking the classroom in England as the context of his study, Glevey  (  2007  )  dis-
cussed the persistent underachievement of Black students (that is to say, students of 
any African heritage). Some of his conclusions were

   The lack of care, attention, teacher expectation, and consequently the non-access • 
to education quality can be considered the major factors in the mathematical 
underachievement of pupils of color, minority ethnic cultures and low social 
classes. These pupils often develop unhealthy identities marked by painful feel-
ings of poor self-esteem and low self-expectations in life.  
  How schools succeed in providing social justice to the disadvantaged pupils • 
depend on their appreciation of the ideological positions and tensions within 
which they function. We have noted that competencies, abilities, skills and moti-
vation to participate are not innate—they result from learning which develops in 
healthy affective environments.  
  The persistent underachievement of these pupils (all over the world) is a chal-• 
lenge that must be confronted and defeated. According to Glevey  (  2007  ) , “while 
legislations are useful in persuading teachers to treat all pupils with dignity, the 
crucial importance of genuine care and compassion cannot be overlooked if real 
progress is to be made in supporting all pupils” (p. 12).    

 Similar illuminations are also found in the works of Martin  (  2006,   2009  ) , who 
has discussed the learning of mathematics by Afro-American pupils in the USA. 
Martin  (  2009  )  called for teachers and schools to implement mathematics classroom 
practices that “promote the development of positive racial and mathematical identi-
ties and situate the learning of mathematics in the social (and racial) realities con-
fronting students” (p. 299). 

 Regarding cultural con fl icts, research carried out by Gorgorió et al.  (  2004  )  with 
a group of immigrant youngsters in a Catalonian school district clearly revealed the 
major tensions to which immigrant students are subjected. Although Gorgorió 
et al.’s  (  2004  )  research focussed on identifying social and political circumstances 
which generated con fl icts in the context of the research, it indirectly revealed the 
impact of such con fl icts on the communication and relationship between students 
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and teachers. For instance, Gorgorió et al. showed that a teacher - participant in the 
research attributed these con fl icts to the immigrant students’ rejection of the 
Catalonian school culture. As a consequence, this teacher-participant had, as would 
be predicted by Dubet  (  2004  ) , Glevey  (  2007  ) , Martin  (  2009  )  and many other 
researchers, low learning expectations for those students, as well as a negative image 
of them, and a lack of awareness of the need to understand the particularities of their 
cultural roots. Gorgorió et al.’s proposal is “to spread the idea [in schools] that cul-
tural and social diversity, far from being a problem, can be a source of richness if the 
teachers can take the advantage of it” (p. 121).  

   Social Class 

 Most of the studies on social class in the mathematics education literature frame 
their questionings, arguments and claims in the terms of theories and models put 
forward by scholars, like Freire, Bourdieu, Bernstein, Foucault, and others. 
Relatively few modern scholars have reported empirical studies in which social 
class and mathematics learning are variables (Cooper & Dunne,  2000  ) . 

 Nonetheless, three empirical studies deserve our attention due to the inequalities 
with which they are often associated: differentiated curriculum for low-class stu-
dents, poor performance of low-class children on national curriculum tests, and 
dif fi cult school and life conditions for poor children. The  fi rst study, reported by 
Dowling  (  1998,   2007  ) , provided a critical investigation of school mathematics text-
books in the UK. Dowling analyzed a series of popular mathematics textbooks for 
school years 7 and 8—namely, the SMP 11–16 textbooks. According to Dowling, 
these textbooks consisted of a large number of booklets organized for levels and 
topics which could be used  fl exibly by all students. However, at the beginning of 
school year 9, the format of the SMP 11–16 changed, presenting three series of 
textbooks for use in year 9 and the subsequent 2 years. In a careful analysis of two 
samples of these series (series  Y  and series  G ), Dowling concluded that the  Y  series 
and the  G  series were clearly distinguished in terms of the “ability” of the proposed 
student audience. His main  fi ndings pointed out to a strong bias concerning per-
ceived ability and social class: the  Y  series was speci fi cally directed at high-ability 
students, and the  G  series at lower-ability students. The result was that student 
groups re fl ected social class and, among other things, these were marked by differ-
entiated content and classroom discourse. 

 Dowling’s study demonstrated that the meritocratic model, assumed by the use of 
the SMP series, orientated teachers and students to the belief that ability and social 
class positioning walked hand in hand, that mathematical ability is an attribute some-
how encapsulated in social positioning, and that ability is not changeable or achieved 
during school years. This same belief clearly was in evidence in the following 
statement of a mathematics teacher during a conversation with Gates  (  2006  ) :

  You know, a lot of my bottom group really struggle with maths—and I’ve noticed they all 
come from the same part of town, and they have got similar family backgrounds. Surely that 
can’t be a coincidence? (p. 367)   
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 A second study, reported by Cooper and Dunne  (  2000  ) , addressed the relation-
ships between mathematics success or failure, and social class. Taking the context 
of the UK National Curriculum and assessment in mathematics, these authors com-
pared a large number of test and interview data. Cooper and Dunne showed that 
many children failed these tests because they got confused when interpreting items 
that were concerned with supposedly “realistic” situations, and not because they 
lacked related mathematical knowledge and understanding. Drawing on Bernstein’s 
and Bourdieu’s accounts of social - class differences and cultural orientation, Cooper 
and Dunne explored whether the same patterns of responses occurred with male and 
female children and with children from different social classes. They concluded that 
performance on National Curriculum items in general, and what they called “eso-
teric” and “realistic” items—referring to Dowling’s  (  1998  )  introduction of these 
terms—in particular, varied by both gender and social class. 

 For instance, in relation to the primary school context, Cooper and Dunne’s 
 (  2000  )  results indicated that middle-class children tended to move  fl exibly and 
appropriately between and across the boundaries of the “esoteric” and the “realis-
tic” items but working-class children did not. Cooper and Dunne also showed that 
the tendency of working-class children to solve esoteric items was marked by bring-
ing to their responses considerations of their everyday lives, which were not always 
appropriate from the point of view of the  language games  that were being played. 
This indicated at least two things: (a) working-class students seemed to be subjected 
to a differentiated curriculum, which somehow prioritized mathematical contents 
drawn on the public domain, rather than on the esoteric domain; and (b) National 
Curriculum items seemed to be designed for middle-class students. Whatever the 
case, both teachers and designers of these item tests needed to be aware that inequal-
ities between social classes were being reproduced through National Curriculum 
test data. 

 The third, study was developed by Vithal  (  2003,   2004  ) . Vithal reported on the 
painful life and school experiences of two Black adolescents—a boy, Wiseman, and 
a girl, Nellie—who were identi fi ed as living in the margins of society. Wiseman and 
Nellie were  street children  in the city of Durban, South Africa. Both had lived in and 
attended shelter (usually called “home”) schools. Nellie had moved on to a “nor-
mal” school. In both cases, Vithal noted that the physical and intellectual conditions 
of the schools were very poor, insofar as they needed more adequate physical and 
pedagogical resources. Nellie had attended three different schools and had had a 
disrupted primary schooling. Like many street children, Nellie had faced experi-
ences of abuse, neglect and poor health while trying to cope with schooling. 

 The extent of the discrimination suffered by Nellie from both her teacher and 
her classmates was revealed in an interview, when she commented that because 
the other students did not understand her situation, they laughed at her, and 
teased her. Nellie said she liked mathematics, but her test results were very low 
(Vithal,  2004  ) . 

 The experience of Wiseman was quite different. He was recognized not only by 
his teacher, but also by his peers as one of the best students, someone who would 
de fi nitely be placed into one of the public schools. He was proud and con fi dent of 
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his mathematical ability and assisted his classmates when participating in his math-
ematics classes. 

 Nellie’s and Wiseman’s appreciation for mathematics, despite their harsh condi-
tions of life and schooling, point to, as indicated by Vithal, the need for future 
research in mathematics education to consider more seriously why and how learners 
in poverty and in potentially violent situations continue to learn, and want to learn 
mathematics. 

 Results of the studies summarized above strengthen the claim that social justice 
is an urgent matter that needs to be more carefully considered by education policy 
makers, mathematics teachers, and mathematics education researchers. Social jus-
tice in mathematics education cannot be achieved without a political and affective 
commitment from those responsible for creating mathematics education learning 
environments. 

 Appropriate and culturally-sensitive policies, based on modern research  fi ndings, 
need to be devised and implemented. There has been too much rhetoric and too 
much de fi cit thinking. In terms of research, how can studies on mathematics learn-
ing, mathematics curricula and mathematics teaching effectively lead to fair treat-
ment for disadvantaged students? Can issues like affect, education policies and 
actions that divide society, and the need for social justice, become central issues in 
mathematics teacher development courses? Can the powerful meritocratic model be 
tweaked, so that it becomes a mechanism for equality? If it can, then how? 

 We close this section with a message to all Nellies and Wisemans, adapted from 
a re fl ection of Richard Rorty  (  1989  ) : “To fail as a human being is to accept some-
body else’s description of oneself” (p. 28).   

   Summary 

 This chapter offers a view of how various socio-cultural perspectives of learning 
mathematics go beyond the de fi cit model of learning. The chapter was not intended 
to revive ideas or discuss data from the de fi cit research. Instead, it attempted to 
address the issue in a broad sense, showing a variety of perspectives and reporting 
on a number of relevant studies, within and around mathematics education. In 
reporting these studies, we chose to highlight the main conclusions, rather than 
discuss methods, arguments and evidence used to reach conclusions. 

 By contrasting de fi cit models and socio-cultural perspectives of mathematics 
learning, the chapter displays an uncomfortable reality: despite all academic 
advances and efforts to emphasize the fundamental role of culture in any individu-
al’s learning and development, de fi cit thinking is still a cloud hanging over the edu-
cational context, particularly in relation to mathematics education. By looking at the 
results of several current research studies that generated results that challenged 
de fi cit discourses, and by providing a brief overview of recent research concerning 
the three traditional de fi cit markers in mathematics education—gender, ethnicity 
and social class—the chapter has shown that inequality does persist within the walls 
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of many schools, manifesting itself in different ways and varying across time and 
within and between nations. 

 The perspective from which we addressed issues of gender matches what Ernest 
 (  2007b  )  called as “The Public Educator” view, which is that “the gender and math-
ematics problem is a product of the distorted social construction of gender roles and 
differences and of mathematics itself” (p. 7). The result of this distortion, said 
Ernest, can be explained in terms of a vicious cycle: Gender-stereotyped cultural 
views (mathematics = male, mathematics  ¹  feminine) → Lack of equal opportunities 
to learn mathematics, plus the stereotyped self perceptions of mathematics and 
mathematical abilities by women → Women’s lower participation rate in mathemat-
ics → Unequal opportunities to study and work: “critical  fi lter” → Women in lower 
paid jobs → Reproduction of gender inequality in society → Con fi rmation of gender 
stereotyping → Gender-stereotyped cultural views (closing the cycle). In his conclu-
sion, Ernest stated that “only if every link in the cycle is attacked can the reproduc-
tive cycle of gender inequality in mathematics education be broken” (p. 8). It is 
clear that the reproduction of this cycle involves distinct factors that are associated 
with economic and political conditions, theories and research methodologies, and 
education practice. The challenge to mathematics educators might be formulated as 
follows: “What can mathematics educators, teachers and policy makers effectively 
do to reduce, or even break this cycle?” 

 Regarding ethnic issues, a very strong argument about the biological non-existence 
of human races has been provided by Birchal and Pena  (  2010  ) , who stated:

  The notion of “race” was imported from the common sense to science … Recently, how-
ever, the advances of the molecular genetics and the sequencing of the human genome … 
showed that the labels previously used to distinguish races do not have biological impor-
tance. It may seem easy to distinguish phenotypically a European from an African or an 
Asian, but such ease disappears completely when we look for evidence of these racial 
differences in genomes. In spite of that, the concept of race persists, qua social and cultural 
construction, as a way of favouring cultures, languages, beliefs and emphasizing the differ-
ences between groups with different economic interests. (p. 24)   

 These authors analyzed some aspects of the tension between the social and the 
biological views of race (in connection with the philosophical question of the rela-
tion between science and ethics). 

 Birchal and Pena  (  2010  )  cited Relethford  (  1994,   2002  ) , and Jablonski and 
Chaplin  (  2000,   2002  ) —to support the assumption that, from the biological point of 
view, human races do not exist. This evidence strongly indicated that there is an 
excellent correlation between levels of UV radiation and levels of skin pigmentation 
worldwide: “The degree of skin pigmentation is determined by the amount and the 
type of melanin in the skin, and these in turn are apparently determined by a small 
number of genes (4–6) of which the melanotropic hormone receptor appears to be 
the most important” (p. 24). Birchal and Pena added that external phenotypic fea-
tures (e.g., nose format, thickness, hair colour and texture) most likely indicate 
adaptation to environmental conditions and are in fl uenced by sexual selection. And 
these phenotypical features also depend on relatively few genes. For these authors, 
these iconic “race” features correlate well with the continent of origin, but depend 
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on variation in an insigni fi cantly small portion of the human genome. In this sense they 
argued that “race is skin deep. Yet, human societies have constructed elaborated 
systems of privilege and oppression based on these insigni fi cant genetic differ-
ences” (p. 24). 

 Birchal and Pena illustrated their assumption by analyzing the broad admixture 
of genes within the three founding continental groups forming the Brazilian popu-
lation—the Amerindians, Europeans and Africans. The evidence produced a weak 
correlation between colour (a race correlate) and ancestrality. Consequently, they 
concluded, that “in Brazil, the colour, as socially perceived, has little or no biologi-
cal consequence” (p. 24), and raised the question: “Since race does not exist from a 
biological point of view, would it lead to the moral consequence that the social use 
of the concept of race should be banned?” (p. 25) This question offers a strong chal-
lenge not only for society in general but also for those who support, consciously or 
subconsciously, the de fi cit model of learning concerning ethnicity. 

 Socio-cultural perspectives of mathematics learning cannot by themselves 
guarantee equality in mathematics education. But they can guide and help policy 
makers and mathematics teachers to improve their understandings of the diversity 
of identities and  forms of life  that are encountered in classrooms. It is a matter of 
being sensitive and dealing with differences not as de fi cit qualities, but instead as 
evidence of varieties of singular human beings and familial realities, who need dif-
ferent levels of assistance and care. It is in this sense that this chapter makes claims 
for social justice. 

 Osler and Starkey  (  2010  ) , in proposing to discuss educational inequality and 
discrimination in terms of human rights, stated

  These standards provide a common point of reference for teachers and educators as they 
engage with students from a wide diversity of cultural, [economic], ethnic and religious 
backgrounds. Schools can help to ensure that human rights are known and understood, not 
simply as normative standards for encouraging pro-social behaviour, but also as a set of 
principles for critically engaging with social and political realities. (p. 43)   

 Osler and Starkey argued that the realization of justice is at the heart of the 
human rights project. 

 The approach taken in this chapter is consistent with the view expressed by Osler 
and Starkey  (  2010  ) . Our discussion of inequality and discrimination in terms of 
social justice can be viewed as a claim for human rights concerning the speci fi c case 
of de fi cit thinking in mathematics education. Our decision to address the main 
issues in terms of social justice allowed us to develop the critique of the meritocratic 
model of justice as presented by Dubet  (  2004  ) . As previously suggested, it is impor-
tant to question this model since, on the one hand, it is based on the democratic 
principle of equality, and on the other hand, it has been used as a mechanism of 
discrimination and exclusion, especially in relation to inequality between social 
classes. Of course, our approach also has economic and political implications. 

 Further research on the effects of the meritocratic model on practices, and 
therefore on people, is needed. How can socio-cultural perspectives guide and 
support mathematics education researchers, policy makers and teachers to implement 
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these perspectives in educational systems based on the meritocratic model more 
effectively? If mathematics education is to become a domain that features justice 
and equality, then responses to this question must incorporate ways of rethinking 
the model and its use. This is a challenge that this chapter leaves to both practice 
and to future research in mathematics education.      
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  Abstract   Researchers have increasingly recognized that learning mathematics is a 
cultural activity. At the same time, research aims, technological advances, and 
methodological techniques have diversi fi ed, enabling more detailed analyses of 
learners and learning to take place. Increased opportunities to study learners in dif-
ferent cultural, social and political settings have also become available, with ease of 
access to results of international benchmark testing online. Large-scale quantitative 
studies in the form of international benchmark tests like Trends in International 
Mathematics and Science Study (TIMSS), the Programme for International Student 
Assessment (PISA), and detailed multi-source (including video) qualitative studies 
like the international Learners’ Perspective Study (LPS), have enabled a broad range 
of research questions to be investigated. This chapter points to the usefulness of 
large-scale quantitative studies for stimulating questions that require qualitative 
research designs for their exploration. Qualitative research has raised awareness of 
the importance of socio-cultural and historical cultural perspectives when considering 
learning. This raises questions about uses that could be made of “local” theories in 
undertaking intercultural analyses.      

   Intercultural Contexts, Learners, and Learning Processes 

 There is now a greater recognition that mathematics classrooms need to be 
considered as cultural and social environments in which individuals participate, 
and that teaching and learning activities taking place in these environments should 
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be studied as such (e.g., Cobb & Hodge,  2011 ; Lerman,  2006 ; Seeger, Voigt, & 
Washescio,  1998  ) . Seminal works by Bishop  (  1988a,   1988b  )  have directed researchers 
to the pivotal role that culture plays in both teaching and learning of mathematics. 
Säljö  (  2010  )  emphasized the importance of    Vygotsky’s ( 1978 ) work on the role of 
cultural tools in supporting learning. He drew attention to ways in which historical 
aspects of culture support student learning: “[Cultural tools] are the products of the 
development of practices in society over time” (Säljö,  2010 , p. 499). They support 
communication between teacher and learner, and they also support a child thinking 
alone using cultural tools such as language, mathematical symbols, and concrete 
artefacts in doing so (Vygotsky,  2009  ) . Thus, learning is supported through access 
to the knowledge, tools, rules, and ways of thinking a culture has previously devel-
oped. These realizations have led to studies of differences between learning out-
comes in different countries (Stigler & Hiebert,  1999  ) , learners learning in cultural 
contexts that differ from their own (de Abreu, Bishop, & Presmeg,  2002  ) , and dif-
ferences in the nature and magnitude of learning for the same child in different 
learning contexts (Nunes,  2010 ; Zang & Sternberg,  2010  ) . 

   Terminology 

 In this chapter the terms “contexts,” “intercultural,” and “local,” will have the 
following meanings:

    • Contexts  relates to the cultural settings in which learning occurs.  
   • Intercultural  describes studies of learners in different cultural contexts whether 
they be contexts: (a) in different countries (described as: “multicultural scho-
lastic contexts” by Favilli, Oliveras, & César,  2003 , and “cross-cultural con-
texts” by Zang & Sternberg,  2010  ) ; or (b) of practice of learners in the same 
classroom; or (c) during learner “transition” from one context to another (de Abreu 
et al.,  2002  ) ; or (d) in which the same learner participates (Jorgensen,  2010 ; 
Nunes,  2010  ) .  
   • Local  refers to those cultural practices that belong to, or those theories formu-
lated by, researchers who belong to the culture under discussion.      

   Intercultural Studies and Theoretical Perspectives 

 Researchers in the  fi eld of mathematics education have recently drawn upon a broader 
array of theoretical positions and research methods to frame their inquiries. This broad-
ening of research perspectives is closely tied to the emergence of advances technological 
advances that have increased the capacity for large-scale qualitative research methods 
and analysis applications. Qualitative methodologies have increasingly  complemented 
quantitative methodologies. Certain methods are more appropriate to  particular research 
questions than to others (Battista et al.,  2009  ) . Distinctions between the usefulness of the 
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product of learning and the processes through which learning occurs can be crucial 
when deciding which research designs will be most appropriate for exploring particular 
research questions. 

 Among the theoretical perspectives now employed, there has been a growth in 
attention to sociological and socio-cultural theories, and more recently, closer con-
nections have been made between social and cognitive theories of learning 
(Hershkowitz, Schwarz, & Dreyfus,  2001  ) . Social practices have been argued to be 
discursively constituted whereby people become part of practices as practices 
become part of them (Lerman,  2002  ) . In addition, those topics arising from and 
extending the notions of ethnomathematics and everyday cognition provide broader 
perspectives on learning mathematics (Presmeg,  2007 ; Watson & Winbourne,  2008  ) . 
A productive area for intercultural research could be links between socio-cultural 
aspects of learning and learner cognition to answer such questions as: are there 
cultural differences in the thought processes students use in different cultural contexts? 
Battista et al.  (  2009  )  called this new emphasis, “Qualitative Cognition-Focused 
Research.” According to Battista et al.  (  2009  ) :

  Research that focuses on describing cognition attempts to account for individual students’ 
and teachers’ actions, reasoning, and learning (   Cobb, 2007). The value of these descriptions 
[is] in the insights they provide researchers and teachers and curriculum/assessment devel-
opers into the nature of students’ mathematical learning. (p. 222)   

 Through video study, Qualitative-Cognition-Focused-Research could be studied 
in conjunction with the learning context to learn more about connections between 
socio-cultural, and cognitive activity during the process of learning mathematics. 
Wood’s  (  2007  )  abstract for her intended ICME Study Topic Group 26, Learning and 
Cognition in 2008 presentation made this connection:

  In the past 15 years, following Vygotsky’s interest in the in fl uence of culture on children’s 
intellectual development research in mathematics education shifted to an interest in the 
 social or cultural  aspects of learning mathematics. … Although the goal of these theoretical 
perspectives is to account for the social conditions of learning, they do not provide con-
structs to account for internal mental processes. (Wood,  2007 , abstract)   

 Wood identi fi ed social and cultural aspects of learning mathematics as insuf fi cient 
on their own to gain a deep understanding of processes of learning. 

 Developmental psychology aims to analyze individual psychological processes 
involved in learning and using mathematics in speci fi c socio-cultural contexts 
(de Abreu,  2008  ) . In contrast, a cultural psychological perspective pays attention to the 
interplay between the individual, society, and the culture. Learning mathematics is 
viewed as a function of what an individual accomplishes over time and across the 
various communities and practices in which he or she participates. By contrasting two 
perspectives in research on mathematics relating to out-of-school contexts, namely, 
ethnomathematics education (D’Ambrosio,  1985  )  and developmental psychology 
(Nunes, Schliemann, & Carraher,  1993  ) , de Abreu  (  2008  )  identi fi ed different levels 
and foci of analysis in the studies to discuss a cultural psychological perspective. 

 By making closer connections between socio-cultural, historical cultural, and 
cultural psychological theoretical perspectives, there is potential to more fully 
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explore Vygotsky’s ( 1978 ) work on how thought processes used within communities 
in fl uence the ways learners participate in their cultures. 

 This broadening of theoretical perspectives employed in mathematics education 
research re fl ects the growing interest in in fl uences of different cultural settings, and 
different social and political contexts, and contributions of internal learner processes.  

   Qualitative and Quantitative Studies 

 Adapted from other research  fi elds like agriculture, the quantitative research 
methods in education employed in and beyond the 1960s relied on experimental and 
quasi-experimental research designs and statistical analyses as a base for generalizable 
claims on teaching and learning. More recently, there has been increased interest in 
detailed qualitative analysis of learners and learning, rather than only the reporting 
of patterns or tendencies. 

 TIMSS and PISA used quantitative techniques to study learning outcomes (student 
performances), and also collected information about learner characteristics, and the 
contexts within which they learn. More could be done, though, to present results in 
ways that bene fi t teachers and learners (see, e.g., Andrich & Styles,  2011 ; Doig, 
 2006  ) . Formative assessment could be provided through:

  Multiple-choice items whose distractors are based on research evidence, and open-response 
items whose response categories are similarly based. … [and] reporting student results … 
on item-wise indicators of performance, not global aggregations. (Doig, 2011, personal 
communication).   

 TIMSS has to some extent pursued such directions but more could be done. 
 The validity of ranked country performances from international benchmark tests 

has been brought into question. These results are frequently “accepted as fact” 
(Loveless,  2011 , p. 12). Analyses of test rankings and historical cultural contexts 
demonstrated that international test scores must be interpreted cautiously, and some 
scholars believe that much of what one may hear or read about them is misleading. 
Although quantitative experimental research is considered, by some, to be inher-
ently more scienti fi c, rigorous, and valid than qualitative research, limitations to 
 fi ndings from quantitative research point to the need for caution when considering 
results from such studies. 

   Interpreting Findings from Large-Scale Quantitative Studies 

 A cautionary note about accepting  fi ndings from large-scale quantitative studies 
without interrogating these results using qualitative methods was delivered by the 
President of the European Association of Researchers in Learning and Instruction 
(EARLI) at her presidential address at the 2011 EARLI Annual Conference 
(Lindlom-Ylanne,  2011  ) . Her team employed quantitative analyses in studying the 
stability and variability of tertiary learners’ approaches to learning mathematics and 



1495 Studying Learners in Intercultural Contexts

preliminary  fi ndings indicated no signi fi cant differences. Subsequent qualitative 
analysis of subsets of data showed differences existed between two learner cohorts, 
but these differences had cancelled each other out when results for the two cohorts 
were aggregated. Separating learner cohorts has also created impressions of learner 
outcomes on international benchmark results. In the USA, for example, the average 
derived from considering all US data together hides the high performances of 
several learner cohorts, and the extremely low performances of other US learner 
cohorts (see, e.g., Loveless,  2011  ) . Thus caution is required in interpreting statistical 
data on learner performance in large-scale quantitative studies. 

 Shimizu’s  (  2005  )  analysis of learner performances on two items from    PISA 
(Organisation for Economic Co-operation and Development,  2003 ) showed that 
aggregated performances by country hid important differences in learner perfor-
mances on two test items. Shimizu raised questions about the in fl uences of cultural 
practices in different countries on the accessibility of test items set within different 
“real-life” contexts. He found the overall high mathematical performance of 
Japanese students compared to their international counterparts on PISA (Organisation 
for Economic Co-operation and Development,  2003 ) was not re fl ected in perfor-
mances on one of the two test items. Japanese students outperformed their interna-
tional counterparts on the item involving spatial interpretations, and under-performed 
in comparison to their international counterparts on the item requiring cost-related 
decisions in selecting items to assemble a skateboard. Shimizu pointed out the possi-
bility of Japanese learners’ familiarity with number cubes and Origami as a cultural 
activity contributing to their higher performance on the spatial interpretation item. 
This  fi nding  fi ts with Vygotsky’s ( 1978 ) perspective of learning supported by cultural 
artefacts developed within the community to which the learner belongs. Shimizu 
raised questions about cultural practices in other countries that could have contributed 
to learners from some countries achieving higher performances than Japanese learners 
on the skateboard item, which required the use of simple numerical procedures and 
decision-making. 

 In countries in which mathematics learning is undertaken in a language other 
than their own (e.g., the Philippines, South Africa), students face an additional dis-
advantage as well as other constraints in their learning environments (Clarke et al., 
 2006  ) . Limitations associated with providing a single ranking for performances of 
different countries on international benchmark tests show the highly problematic 
nature of reporting results in this way.  

   In Summary 

 Extreme caution is necessary in interpreting results of large-scale quantitative 
studies associated with studying learner performances. Inequities are built into 
international benchmark items due to varying degrees of accessibility to different 
learner cohorts. As international benchmark test items tend to be contextualized 
using artefacts from the more “well-resourced” countries, and these contexts may 
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have little or no meaning for students from less well-resourced countries, this raises 
questions about the assumptions on which international comparative studies of 
school mathematics are predicated. Keitel and Kilpatrick  (  1999  )  suggested that the 
spectre of an “idealized international curriculum” lies behind even the most sophis-
ticated research designs, including text and document analyses and the use of video 
to study classroom practice:

  A pseudo-consensus has been imposed (primarily by the English-speaking world) across 
systems so that curriculum can be taken as a constant rather than a variable, and so that the 
operation of other variables can be examined. (Keitel & Kilpatrick,  1999 , p. 253)   

 Some far-reaching consequences of publishing such results online and in print 
are now discussed.   

   Impacts of International Benchmark Rankings: 
Local and International 

 The purposes of international studies such as PISA and TIMSS include providing 
policy makers with information about educational systems. The primary interest of 
policy makers in such information is generally to see their own country’s relative 
rank among participating countries. They welcome a simple pro fi le of student per-
formance. There is a close match between the objectives of PISA, in particular, and 
the broad economic and labour market policies of host countries. This  fi t naturally 
invites a lot of public talk about respective rankings of learner performances, and 
this public talk is both competitive and evaluative in emphasis. For example, the 
release of results of the OECD-PISA 2009 (Programme for International Student 
Assessment, OECD,  2010  )  and the TIMSS 2007 (Trends in International Mathematics 
and Science Study,    Mullis et al.,  2008  )  received huge publicity through the media in 
some countries (see, for example, Loveless,  2011  ) . 

 The extent of interest in cultural practices of high-performing countries is dem-
onstrated through the study of pedagogical practices (e.g., Japanese Lesson Study) 
of some high-achieving countries in other countries: by researchers, regions, and 
schools. Interest is also evidenced in the attention paid to cultural practices in high-
achieving countries in East Asia (   Li & Shimizu,  2009  ) , and interest in cultural prac-
tices in countries not in East Asia who have achieved high-ranking performances 
(e.g., Finland). 

   Lesson Study 

 Partly due to the high ranking of Japan in international benchmark tests (see for 
example, Stigler & Hiebert,  1999  ) , Japanese  lesson study  has become a focus of 
attention in countries including Australia (see White,  2004  ) , Malaysia (see Chiew & 
Lim,  2003  ) , and the USA (Fernandez, Cannon, & Chokshi,  2003 ; Fernandez & 



1515 Studying Learners in Intercultural Contexts

Yoshida,  2004  ) . Lesson study is an approach to developing and maintaining quality 
mathematics instruction through a particular form of activity of Japanese teachers 
(Shimizu,  2002  ) . Generally, a lesson study consists of the following events: the actual 
classes taught to pupils, observation by others, followed by intensive discussion called 
the study discussion. Designing, enacting, and analyzing are the three stages of lesson 
study that evolve before, during, and after the lesson. There is extensive preparation 
made before the class, and extensive work to be done after the lesson study as well, 
including follow-up and preparation for the next lesson to be presented and studied. 
These events form a cyclic process that can also be iterative in nature. 

 The presence of Japanese teachers during the initial stages of introducing lesson 
study to a group of US teachers helped US teachers identify appropriate lenses through 
which to view the processes of teaching and learning. These “ fi ndings suggest that to 
bene fi t from Lesson Study teachers will  fi rst need to learn how to apply critical lenses 
to their examination of lessons” (Fernandez et al.,  2003 , p. 171). To develop better 
understandings of educational activities in local contexts, researchers need to consider 
the underlying values and beliefs shared by the people in the community. It should be 
noted, for instance, that valuing students’ thinking as necessary elements to be incorpo-
rated into the development of a lesson is key to the approach taken by Japanese teachers 
(Shimizu,  2009  ) . Describing anticipated students’ responses is, among other activities, 
key to lesson planning because the whole-class discussion depends on the solution 
methods the students actually come up with. Having a clear sense of the ways students 
are likely to think about and solve a problem prior to the start of a lesson makes it easier 
for teachers to know what to look for when they are observing students’ work on the 
problem. Thus, the likelihood of succeeding with integrating pedagogical practices 
from high-ranking countries into local situations is expected to be highly dependent on 
whether those in the local situation are aware of the key aspects of the practice, the 
purposes for which it was developed, and nuances of cultural activity that are implicit 
within the way in which this practice is implemented in the country of origin.  

   Finland: Educational, Cultural and Historical Perspectives 

   Finland has achieved high rankings on international benchmark tests (e.g., PISA, 2003). 

 Finland once again came out top in the OECD’s latest PISA study of learning skills among 
15-year-olds, with high performances in mathematics and science matching those of top-
ranking Asian school systems in Hong Kong-China, Japan and Korea. (OECD,  2004  )    

 Such reports focussed interest of the international community on educational 
policy in Finland. Sahlberg  (  2007  )  drew attention to Finland’s historical and cultural 
perspective on education and to the way Finnish education authorities have remained 
“faithful” to their educational philosophies:

  Steady improvement in student learning has been attained through Finnish education 
policies based on equity,  fl exibility, creativity, teacher professionalism and trust. Unlike 
many other education systems, consequential accountability accompanied by high-stakes 
testing and externally determined learning standards has not been part of Finnish education 
policies. (p. 147)   
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 Instead of demanding teacher accountability by introducing national benchmark 
testing for learners, Finland achieved top ranking by retaining their educational poli-
cies based upon mutual trust, and faith in their teachers to meet the needs of learners 
creatively and  fl exibly. This included autonomy for both teachers and learners:

  The academic prowess of Finland’s students has lured educators from more than 50 coun-
tries in recent years to learn the country’s secret, … What they  fi nd is simple but not easy: 
well-trained teachers and responsible children. Early on, kids do a lot without adults 
hovering. And teachers create lessons to  fi t their students. “We don’t have oil or other 
riches. Knowledge is the thing Finnish people have,” says Hannele Frantsi, a school principal. 
(Gamerman,  2008 , p. W1)   

 The Finnish education system has become an attractive and internationally-examined 
example of a well-performing system that successfully combines quality with wide-
spread equity and social cohesion through reasonable public  fi nancing (Sahlberg,  2007 , 
p. 147). The reasons for its success appear to be their willingness to retain their 
historically-developed focus on giving teachers the leeway to respond idiosyncrati-
cally to the needs of the learners in a country in which developing autonomy in 
students is a cultural practice. That said, Finland was achieving high rankings on 
international benchmark tests before its present educational policy was developed. 
“This suggests that cultural and societal factors, which predate and are intertwined with 
the policies in question, may be the real drivers of success” (Loveless,  2011 , p. 11).  

   In Summary 

 League ladders ranking national performances are widely publicized and have 
in fl uenced both research, and teaching practices—and therefore learning. Retaining 
con fi dence in teaching and learning practices developed within a local culture may 
sometimes be more appropriate than attempting to emulate practices that have been 
found to be successful in other cultures. Importing teaching practices from other 
countries into local contexts without also paying attention to the cultural practices 
within which those practices were embedded can be unproductive. Findings indicate 
that teaching practices that are consistent with the historical and cultural practices of 
learners may sometimes better support the development of learner mathematical per-
formances. This raises questions about the types of teaching practices that could 
optimize student learning in a multicultural classroom.   

   Dichotomies that Have Focussed Mathematics Education 
Research 

 There are many dichotomies evident in intercultural research, some of which 
have already been identi fi ed and discussed to varying extents within this chapter. 
They include: (a) high-performing/low-performing, (b) af fl uent/not-af fl uent, 
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(c) teacher-centred/student-centred, (c) autonomous/not autonomous, (d) East/West, 
(e) in-school/out-of-school. This section illustrates how questions raised from 
quantitative research focussed on dichotomies have led to qualitative research 
designs developed for the purposes of answering further questions. 

   Beyond Labels “East” and “West”: Problematizing 
the Dichotomy of Cultural Traditions 

 The dichotomy East/West has been foregrounded by international benchmark 
testing, and has led to a qualitative focus on learning in different geographical 
regions as a result. Accumulated research over the past decade has contributed to our 
understanding of similarities and differences in mathematics teaching and learning 
between East Asia and the West (e.g., Leung, Graf, & Lopez-Real,  2006  )  or between 
Eastern and Western cultures (Cai,  2007  ) . The ICMI study reported by Leung et al. 
 (  2006  ) , “A comparative study of East Asia and the West,” is distinguished here from 
other studies in that it was “speci fi cally concerned with comparing practices in 
different settings and with trying to interpret these different practices in terms of 
cultural traditions.” The discussion document for the study argued that “those based 
in East Asia and the West seem particularly promising for comparison.” In this 
study a comparison was made between “Chinese/Confucian tradition on one side, 
and the Greek/Latin/Christian tradition on the other.” 

 Juxtaposing the two different cultures indicated that researchers wanted to examine 
teaching and learning in each cultural context by contrasting differences between 
them. The labels “East/Eastern” and “West/Western,” however, could be problem-
atic in several ways. First, the terms East and West literally mean geographical areas 
but not cultural regions. Needless to say, there are huge diversities in ethnicity, 
tools, and habits that are tied to the corresponding cultures. Further, Cobb and 
Hodge  (  2011  )  argue that two different views of culture can be differentiated in the 
mathematics education literature on the issue of equity, and that both are relevant to 
the goal of ensuring that all students have access to signi fi cant mathematical ideas. 
“In one view, culture is treated as a characteristic of readily identi fi ed and thus cir-
cumscribable communities, whereas in the other view it is treated as a set of locally 
instantiated practices that are dynamic and improvisational” (p. 179). With the second 
view, in particular, it is problematic to specify different cultures based on geograph-
ical areas. 

 Second, it is possible to oversimplify and mislead the cultural in fl uence on 
students’ learning within each cultural tradition by using the same label for different 
communities. For example, there are studies which suggest much child education in 
Japan diverges from the Confucian approach in “East Asia” (Lewis,  1995 ; Rohlen 
& LeTendre,  1996  ) . Also, in the special issue on exemplary mathematics instruction 
and its development in selected education systems in East Asia, it was manifested 
that there is a variety of approaches to accomplish quality mathematics instruction 
in these different systems. Thus, any framework for differentiating cultural tradi-
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tions runs the risk of oversimplifying the cultural interplay. In particular, there is a 
need to question whether polarizing descriptors such as “East” and “West,” “Asian” 
and “European,” are maximally useful. Perhaps we need more useful ways to exam-
ine differences, for the purposes of learning from each other and identifying ways to 
optimize learner practices.  

   In-School and Out-Of-School Understandings 

 Earlier studies of mathematics in out-of-school contexts have identi fi ed differ-
ences in the ways learners were able to use (or not use) the same mathematical 
procedures in in-school and out-of-school contexts (e.g., Jorgensen,  2010 ; Nunes 
et al.,  1993 ; Rogoff,  2003  ) . The study of young street sellers in Brazil showed that 
these young people used mathematics in meaningful ways for the purpose of selling 
their wares and managing their  fi nances. In school, they were unable to give answers 
for the same calculations when they were presented without the real-life contexts 
that were personally meaningful to them (Nunes,  2010  ) . Instead of dichotomizing 
in-school/out-of-school performances through quantitative analyses, Nunes  (  2010  )  
undertook a qualitative analysis of the differing understandings developed by stu-
dents. This study provided a powerful illustration of how students whose in-school 
performances would be ranked low on international benchmark tests had the capac-
ity to think mathematically when working in meaningful contexts. The study stimu-
lated re fl ection on how in-school learning could be changed to capture facets of 
what assisted learners in out-of-school contexts. 

 Further developments of the studies of cultural accounts of mathematics learning 
have raised alternative perspectives on the role of cultures in learning mathematics. 
By contrasting two perspectives in research on mathematics in out-of-school con-
texts, namely, ethnomathematics education (D’Ambrosio,  1985  )  and developmental 
psychology (   Nunes, Schliemann, & Carraher,  1993  ) , de Abreu  (  2008  )  identi fi ed 
different levels and foci of analysis in the studies to discuss a cultural psychological 
perspective. Although the level of analysis in ethnomathematics education relates to 
historical and anthropological analysis of the mathematics of different sociocultural 
groups (sociogenetic level), developmental psychological studies aimed to analyze 
the psychological processes of individuals when learning and using mathematics in 
speci fi c socio-cultural contexts (de Abreu,  2008  ) . A cultural psychological perspec-
tive pays attention to the interplay between the individual, society, and the culture. 
Learning mathematics is viewed as a function of what an individual accomplishes 
over time and across the various communities and practices in which he or she par-
ticipates. In this way, research on mathematics in out-of-school contexts has shown 
a shift from cross-cultural comparisons to social practice within cultures. Notions 
such as participation and identity are keys to understanding and studying learning 
mathematics in cultural contexts.  
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   In Summary 

 Our discussion of the studies in this section pointed to the need to examine the 
labels used in mathematics education literature that refer broadly to dichotomies, 
and to consider how best to gain greater understanding of teacher and learner prac-
tices and in fl uences upon these practices by taking a  fi ner-grained look at what is 
happening. In particular, it is becoming abundantly clear that the cultural practices 
of the communities in which the teaching and learning takes place should be consid-
ered when making sense of classroom practices.   

   Beyond Dichotomies in International Comparative 
Research Studies 

 Not all international research studies of learners focus on dichotomies. 
International comparative classroom research is viewed as the exploration of similar-
ity and difference in order that our understanding of what is possible in mathematics 
classrooms can be expanded by consideration of what constitutes “good practice” in 
culturally diverse settings.

  Our capacity to conceive of alternatives to our current practice is constrained by deep-
rooted assumptions, re fl ecting cultural and societal values that we lack the perspective to 
question. The comparisons made possible by international research facilitate our 
identi fi cation and interrogation of those assumptions. (Clarke, Emanuelsson, Jablonka, & 
Mok,  2006 , p. 3)   

 Analysis of video data collected in the video component of TIMSS, as reported 
by Stigler and Hiebert  (  1999  ) , centred on the proposition that the teaching practice 
of a nation (at least in the case of mathematics) could be explained to a signi fi cant 
extent by a teacher’s adherence to a culturally-based “teacher script.” Central to the 
identi fi cation of these cultural scripts for teaching were the lesson patterns reported 
by Stigler and Hiebert  (  1999  )  for Germany, Japan and the USA. The contention of 
Stigler and Hiebert was that at the level of the lesson, teaching in each of the three 
countries could be described by a “simple, common pattern” (Stigler & Hiebert, 
 1999 , p. 82). 

 On the other hand, one focus of the Learner’s Perspective Study (LPS) has been 
on the form and function of recognizable activity conglomerates within lessons 
that LPS researchers termed “lesson events” (Clarke, Keitel, & Shimizu,  2006  ) . 
A lesson event was characterized by a combination of form and function, both of 
which were subject to local variation, but with an underlying familiarity and fre-
quency of use that suggested both intercultural relevance and utility. Each individual 
lesson event had a form (visual features and social participants) suf fi ciently com-
mon to be identi fi able within the classroom data from each of the countries studied. 
In each classroom there were idiosyncratic features that distinguished  each teacher’s  
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enactment of each lesson event, particularly with regard to the function of the particu-
lar event (intention, action, inferred meaning, and outcome). At the same time, 
common features could be identi fi ed in the enactment of lesson events across the 
entire international data set and across the data set speci fi c to a country. 

   TIMSS Rankings in the USA as a Catalyst for the TIMSS 
Video Study 

 The TIMSS 1995 Video Study of mathematics teachers’ practices in Japan, the 
USA, and Germany was designed by US researchers to interrogate differences in 
practices between teachers in the USA, and teachers in countries ranked differently 
from the USA (Germany and Japan) on mathematical performances on the Third 
International Mathematics and Science Study. It was the  fi rst attempt to collect and 
analyze videotapes from a national random sample of mathematics classrooms (Stigler, 
Gonzales, Kawanaka, Knoll & Serrano,  1999  ) . According to Stigler, Gallimore, and 
Hiebert  (  2000  ) :

  There is another more subtle reason for studying teaching across cultures. Teaching is a 
cultural activity. Because cultural activities vary little within a society, they are often trans-
parent and unnoticed. … Cross-cultural comparison is a powerful way to unveil unnoticed 
but ubiquitous practices. … Comparative research invites reexamination of the things 
“taken for granted” in our teaching, as well as suggesting new approaches that never evolved 
in our own society. (pp. 87–88)   

 The catalyst for this video study was the US ranking on TIMSS, which was lower 
than expected by political and educational stakeholders in the USA. The “high-
performing/low-performing” dichotomy that focussed the large-scale quantitative 
analysis of TIMSS data raised questions about why learners in some countries per-
formed better than learners in other countries. The qualitative TIMSS Video Study 
was designed to provide answers to such questions. 

 The TIMSS 1999 Video Study expanded the design of the TIMSS 1995 Video 
Study from three to seven (Hiebert et al.,  2003  ) . These studies used a single camera 
focussed predominantly on the teacher because previous international studies of 
mathematics classroom had identi fi ed coherent sets of actions, and associated atti-
tudes, beliefs and knowledge, that appeared to constitute culturally-speci fi c teacher 
practices (Stigler & Hiebert,  1999  ) . The LPS team from Australia, Germany, Japan, 
and the USA, at its inception in 1999, hypothesized that there is also a set of actions 
and associated attitudes, beliefs, and knowledge of students that constitute a culturally-
speci fi c coherent body of learner practices (Clarke, Keitel, & Shimizu,  2006  ) . They 
considered that teaching and learning, as classroom practices should be studied 
together as interdependent activities within a common setting. Findings from the LPS 
raised questions about the “culturally-based teacher script” identi fi ed through the 
1995 TIMSS Video Study. LPS  fi ndings showed lesson structure differed from lesson 
to lesson for some teachers, and teachers in a particular country did not generally 
display a common set of teaching practices.  
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   International Comparative Study: Learner’s Perspective Study 

 By extending its focus to learners and learning within each context, LPS addressed 
an identi fi ed need:

  What is absent from nearly all the rhetoric and variables of TIMSS … is … the notion that 
students themselves are agents. TIMSS makes students from 41 countries into passive 
subjects … all linked to the seduction of one global economic curriculum. (Thorsten,  2000 , 
p. 71)   

 Among the methodologically most interesting aspects of LPS are the collabora-
tive negotiation of the research design, the method of data generation, the intercul-
tural and local analyses, and the processes by which various complementary 
accounts can be integrated into a rich and useful portrayal of mathematics class-
rooms internationally. The combination of participating countries gives good repre-
sentation to European and Asian educational traditions, well-resourced and less-well 
resourced school systems, and mono-cultural and multi-cultural societies (Clarke, 
Emanuelsson et al.,  2006  ) . LPS developed a common research protocol intended to 
capture the activity of learners, their perspective on their mathematics lessons, and 
their learning outcomes, in addition to the types of data on teachers and teaching 
collected in TIMSS video studies. By the end of 2000, the LPS community had 
expanded to include researchers from nine countries or regions (Australia, Hong 
Kong, Germany, Israel, Japan, South Africa, Sweden, The Philippines, and the USA) 
(Clarke, Keitel, & Shimizu,  2006  ) . 

 Inclusivity as a methodological principle is pervasive within the LPS research 
design, with the inclination to integrate rather than segregate being at the heart of 
the Study:

  The inclination to integrate rather than segregate is … at the heart of the Learner’s 
Perspective Study (LPS), since it was intended from the project’s inception that any docu-
mented differences in classroom practice be interpreted as local solutions to classroom situ-
ations and, as such, be viewed as complementary rather than necessarily oppositional 
alternatives. (Clarke, Keitel, & Shimizu,  2006 , p. 215)   

 LPS data generation techniques included a three-camera approach including on-
site mixing of the teacher and student camera images into a picture-in-picture video 
record. These mixed images were used to stimulate participant reconstructive 
accounts of classroom events in post-lesson interviews of students and teachers. 
Video records were supplemented by student written material, and test and ques-
tionnaire data from students and the teacher. These data were collected for sequences 
of at least 10 consecutive lessons occurring in the “well-taught” eighth-grade math-
ematics classrooms of teachers in participating countries. The three mathematics 
teachers in each country were identi fi ed for their locally-de fi ned “teaching compe-
tence” and for their situation in demographically diverse government schools in 
major urban settings (Clarke, Emanuelsson et al.,  2006  ) . 

 LPS research teams from each participating country generate their own data, and 
control who uses their data and for what purposes. Half-yearly meetings and pro-
gressive publications of LPS books (Clarke, Emanuelsson et al.,  2006 ; Clarke, 



158 Shimizu and Williams

Keitel, & Shimizu,  2006 ; Shimizu, Kaur, Huang, & Clarke,  2010  )  about different 
aspects of LPS  fi ndings have strengthened research collaborations. The number of 
countries employing the LPS research design, and sharing the data they generate, 
grew from 9 in 2000 to 14 in 2011. This points to the value researchers internation-
ally place on participating in a collaborative international team with access to 
rich video data on teaching and learning, in mathematics classrooms across the 
world, and the opportunities to interact with their international counterparts in anal-
yses within this data-set.  

   In Summary 

 International benchmark rankings have prompted deeper studies of teaching and 
learning as a result of the patterns they show. TIMSS (1995) raised questions which 
qualitative studies—the TIMSS 1995 and 1999 video studies—were designed to 
explore. But, the design of these qualitative studies prioritized the “teacher’s voice.” 
This raised questions about the capacity of the TIMSS video studies to capture 
important information about how students learn. As a result, another qualitative 
video study, the LPS, was designed to capture in detail the reciprocal practices of 
teachers and learners, and the perceptions of lesson participants about this activity. 
Thus, although questions have been raised about the validity of the results of large-
scale international studies (with regard to student performances), these tests have 
stimulated questions that have led to qualitative research designs employing video 
techniques to interrogate classroom activity. This has resulted in a deeper under-
standing of similarities and differences in teacher and learner practices within and 
across cultures.  

   Bene fi ts and Limitations of International Video 
and Video-Stimulated Interview Studies 

 Methodological challenges and bene fi ts of international “video survey” studies 
have been usefully discussed (Clarke, Keitel, & Shimizu,  2006 ; Jacobs, Kawanaka, 
& Stigler,  1999 ; Stigler et al.,  2000  ) . Advantages associated with the use of video 
are that it reveals classroom practices clearly, facilitates re fl ection on alternatives in 
practice within each country, and stimulates discussion about teaching and learning. 
Video enables the study of complex processes, enables coding from multiple per-
spectives, stores data in a form that allows unanticipated and novel analyses at a 
later time, facilitates integration of qualitative and quantitative information, and 
facilitates communication of results (Clarke,  2000 ; Hiebert et al.,  2003  ) . Limitations 
and bene fi ts of video research designs can be associated with various factors includ-
ing: (a) camera con fi guration; (b) participant response to camera/s; (c) post-lesson 
video-stimulated interviews; and (d) local team involvement. Limitations in research 
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scope can be associated with cameras con fi guration that captures a narrow focus 
(e.g., teacher only) of classroom activity. Broader capture (including the teacher, the 
whole class, and a pair of focus students) can support the interrogation of a wider 
range of research questions using a rich variety of theoretical perspectives. Participant 
consciousness of the cameras can alter lesson activity. A familiarization period can 
be added to the research design to minimize such effects. Clarke  (  2000  )  introduced 
a familiarization period because he found that students were likely to display the 
same types of lesson activities with lesser frequency and intensity at the beginning 
of the research period (Clarke,  2001  ) . 

 As marked differences have sometimes been found between teacher, student, and 
researcher perspectives, it is important to collect multi-perspective data. Williams 
and Clarke  (  2002  )  showed, for example, that the observed behaviour of a student in 
a lesson video did not capture their development of deep understandings recon-
structed in post-lesson video-stimulated interviews. Post-lesson video-stimulated 
interviews in which participants reconstruct their lesson activity can provide valid 
data where the participant is suf fi ciently comfortable to respond with their own 
ideas rather than give responses they consider the interviewer would want. The 
video stimulation adds to the validity of the responses by giving the interviewee 
access to “memory traces” about a speci fi c instance and thus limiting generalized 
responses (Ericsson & Simons,  1980  ) . Even when an interview protocol is provided 
for intercultural studies, the nature of the probes has been found to differ from country 
to country due to the research foci of local research teams (Williams,  2005  ) . There 
are both limitations and advantages to this. The locally formulated probes increase 
opportunity to illuminate aspects of the context valued by the local team, but may 
decrease opportunity to interrogate data for some intercultural studies. That said, 
the local probes can in themselves become a fruitful area for intercultural study. 

 One of the most powerful outcomes of large-scale video studies, such as the 
TIMSS video studies, has been the interest they have stimulated about multi-per-
spective video-data-capture research designs supporting multiple analyses. Clarke 
 (  2001  )  demonstrated this potential in his study of Australian mathematics and sci-
ence classrooms where different researchers used different theoretical perspectives 
to analyze video of the same lesson. The design used in this Australian study was 
the forerunner to the research design developed for LPS (see, e.g., Clarke, Keitel, & 
Shimizu,  2006  ) .   

   Qualitative Studies: Studying Social Interaction 
and Meaning-Making 

 Studies of learning and learners across contexts and across countries have the 
potential to extend our understandings of how to optimize in-school learning. It is 
in the examination of classrooms across a variety of cultural settings and school 
systems that we  fi nd educational assumptions most visible and open to challenge. 
The contrasts and unexpected similarities offered by research in such culturally 
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diverse settings reveal and challenge existing assumptions and theories and make 
essential a reconstruction of some of our theoretical perspectives. 

 A major bene fi t of comparing classroom practices in different cultural contexts 
is to describe in detail the nuances of mathematics teaching and learning in the con-
texts, so that the stereotypical, one-size- fi ts-all perceptions are shattered and we can 
better understand the key elements of such practice and use this understanding to 
re fl ect on mathematics teaching and learning in our own culture. 

 Comparing learning across cultures has additional advantages (Hiebert et al., 
 2003 ; Leung et al.,  2006  ) . It allows educators to examine understandings of learn-
ers, and teaching practices that in fl uence this from a fresh perspective by widening 
the known possibilities. In addition to examining how teachers across one’s own 
country approach mathematics and what type of learning results, such research pro-
vides opportunities to use theoretical lenses developed in another local community 
(called “local theories” in this chapter), to examine how teachers from that com-
munity approach the same topic, and what students learned as a result. This can 
make one’s own teaching practices and the achievements of learners from these 
practices more visible by contrast and therefore more open for re fl ection and 
improvement. Comparing teaching across cultures can reveal alternatives and stim-
ulate discussion about the choices being made within a country. Although a variety 
of teaching practices can be found in a single country (see, e.g., Williams,  2005  ) , it 
sometimes requires looking outside one’s own culture to see something new and 
different. These observations, combined with carefully crafted follow-up research, 
can stimulate debate about the approaches that may make the most sense for achieving 
the learning goals de fi ned within a country. 

   LPS Research Raising Questions for Intercultural Studies 

 The studies reported in this chapter differed in focus and the extent to which they 
explored the learning of mathematics, and learners of mathematics. They were pro-
vided to stimulate thinking about possible questions which can be answered through 
qualitative intercultural studies. They include single-country studies with potential to 
be extended to intercultural studies, and intercultural studies. Included in these descrip-
tions are the study focus, and primary data sources accessed. 

 Illustrations of single-country studies are: (a) learners’ responses to motivational 
strategies utilized in a class in the Philippines, and in video and student interviews 
(   Ulep,  2006 ); (b) discrepancies between learner and teacher perceptions of lesson 
climaxes (“yamaba”) in a Japanese-utilized lesson video, and in teacher and student 
interviews (Shimizu,  2005  ) ; (c) learners’ points of view on mathematics lessons in a 
Swedish-utilized lesson video (Emanuelsson & Sahlström,  2006  ) ; and (d) learners’ 
cognitive, social, and affective activity and psychological characteristics associated 
with creative mathematical activity simultaneously interrogating student interviews 
and lesson video (Williams,  2006  ) . Although not undertaken for the purpose of 
intercultural comparison, Williams’  (  2005  )  study of creative student thinking in 
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classrooms using LPS data showed the potential for studying learners’ processes of 
thinking and social in fl uences upon it in intercultural settings. Given the identi fi ed 
in fl uences of culture on the ways learners learn, this could be a productive focus for 
further research. 

 Clarke, Emanuelsson et al.  (  2006  )  included various intercultural studies under-
taken by LPS teams. These studies provide a window into the activities of learners 
in different cultural contexts, including what they attended to, ways they partici-
pated in the lesson, thinking processes they employed, and what was valued by 
learners and teachers in the contexts.  

   LPS Intercultural Studies 

 O’Keefe, Xu, and Clarke  (  2006  ) , an Australian research team, interrogated 
“kikan-shido”—the Japanese word for “between-desk instruction”—using LPS 
post-lesson data from Australia, Germany, Hong Kong, Japan, Shanghai, and Tokyo. 
The same form of “between-desk walking” was found to occur in all countries, but 
its functions differed from teacher to teacher. Students differed in their perceptions 
of the purpose of this activity, and student perceptions tended to differ from the 
intended teacher purposes. Instead of a “country signature” for kikan-shido, with 
each teacher in a particular country employing kikan-shido for the same function, 
they found “teacher signatures” and these differed from teacher to teacher. Within-
country similarities and differences tended to be as great as intercultural similarities 
and differences. 

 Jablonka’s  (  2006  )  analysis of patterns of participation in classrooms in Germany, 
Hong Kong, and the USA used lesson video and interviews to study activity and 
perceptions associated with learners coming to the front of the class. The study 
found differences in the functions for this activity: sometimes students came to the 
front of the class to facilitate individual interactions between teacher and learner, 
and sometimes for the purpose of “public talk” to the class. Learners differed in the 
risks they perceived to be associated with such activity. There were across-country 
and within-country similarities and differences. 

 Khuzwayo  (  2006  )  analyzed teacher interviews from South Africa, Australia, and 
the USA to identify constraints associated with teachers changing practices. In each 
country he found a high level of commitment of teachers to the learners in their 
classes. 

 Williams  (  2005  )  examined learners’ cognitive, social, and affective activity in 
Australia, the USA, and Japan. Although she found creative mathematical learner 
activity in all three countries, the interview probes for data available from Japan at 
that time (Japanese School 1 only) focussed on the mathematical object not the 
process of learning so there was insuf fi cient data to develop Japanese case studies. 
Williams simultaneously interrogated student interviews and lesson video and found 
that the creative thinkers identi fi ed all possessed certain psychological characteris-
tics (   Seligman,  1995 ; Williams,  2006  ) . Although not intended as an intercultural 
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study, this study demonstrated the potential of the LPS Research Design to support 
an intercultural study of student thinking during the creative development of new 
mathematical ideas if local probes  fi t with this research focus.  

   Summarizing LPS Contributions to Intercultural Studies 

 Instead of focussing on dichotomies, LPS teams have explored similarity and 
difference in order to understanding what is possible in mathematics classrooms. 
In intercultural studies, researchers used  fi ndings from other countries to illuminate 
what had not previously been transparent about learners and contexts for learning 
mathematics in their own country. The  fi ndings are useful at a “local” level and also 
at the international mathematics education level. Studies that do not presently have 
an intercultural focus could be extended to include such a focus due to the richness 
of this data set. 

 LPS has shown that intercultural research does not have to focus around evalua-
tion of practices in different countries according to dichotomies where one pole is 
judged as optimal and the other pole as non-optimal. LPS research undertaken thus 
far has demonstrated the richness of the data for supporting a broad range of research 
foci and a diversity of theoretical perspectives. By showing there can sometimes 
be more similarities across countries than within a country, LPS research raises 
questions about the validity of considering learners and learning contexts within a 
particular country as homogeneous.   

   Challenges Ahead 

 As this chapter has shown, the focus of intercultural research studies has been 
in fl uenced by  fi ndings of other intercultural studies, and collaboration between 
“local” researchers from different cultural settings has focussed beyond dichoto-
mies and deepened our understandings of learners and learning in different cultural 
contexts. Qualitative studies have been designed to interrogate quantitative  fi ndings, 
and researchers have developed appropriate theories to inform these studies. It has 
been through careful use of theory that detailed analyses of teaching and learning in 
classroom has been able to generate generalizable claims. 

 Research designs that harness the potential for complementarities between quan-
titative and qualitative approaches could be a productive focus. Quantitative studies 
employ numerical indicators of students’ capabilities for reasoning that are linked 
via statistical procedures and experimental designs but do not examine thought in 
the complex multifaceted way it occurs. In contrast, qualitative research can inves-
tigate in depth the nature and structure of individual learners’ understandings, sense-
making, and learning that are useful not only for researchers but also for teachers. 
In any scienti fi c inquiry methods can only be judged in terms of their appropriate-
ness and effectiveness in addressing a particular research question. For studying 
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such complex phenomena as learners and their learning in mathematics classroom, 
multiple methodological approaches are more appropriate in various parts of a study 
or in different studies within a series of studies. 

 Challenges confronting the international research community include develop-
ment of:

   Test instruments that can legitimately measure the achievement of students who • 
have participated in different mathematics curricula,  
  Research techniques by which the practices, motivations, beliefs, and thought • 
processes, of all classroom participants can be studied and compared with sensi-
tivity to the cultural context, including contexts in multicultural classrooms,  
  Theoretical frameworks by which the structure and content of diverse mathematics • 
curricula, their enactment, and their consequences can be analyzed and com-
pared within the cultural contexts in which they occur,  
  Increased understanding of the role of local theories in illuminating intercultural • 
analyses, and  
  Increased understandings of how local theories might inform decisions about • 
integrating practices across cultural contexts, and inform the processes of doing so.     

   Concluding Remarks 

 Mathematics education research in recent years tends to include more interna-
tional endeavours than ever before. As the globalization and internationalization of 
research activities has continued to increase, the  fi eld of mathematics education 
research has clearly shown the diversi fi cation of perspectives on teaching and learn-
ing embedded in local contexts. International comparative studies have recognized 
the need to focus on existing diverse voices and perspectives among members of the 
community. Recent research has illuminated connections between learners and 
learning, and socio-cultural and historical cultural in fl uences upon these. More 
recently there has been some focus on connecting psychological cultural perspec-
tives to socio-cultural and historical cultural perspectives. Most important for the 
future is to stop positioning mathematics learning and mathematics learners as 
needing to comply with some idealized “international standard,” and instead to  fi nd 
ways to give learners opportunities to show what they know, and opportunities to 
build upon this knowledge.      
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  Abstract   In this chapter, we explore, from a social justice perspective, conceptions 
of learners in transition between contexts and evaluate pedagogical practices that 
have been advocated for such learners. Learning occurs as learners re fl ect on their 
transition between contexts, particularly when there are differences in what content 
knowledge is valued, the relationships between participants and how activities are 
undertaken. From this perspective, productive pedagogical practices for learners 
in transition are those that build and sustain relationships between learners and 
mathematics and between learners and others, including those outside the classroom. 
We look speci fi cally at examples of pedagogical practices that draw on ethnomath-
ematics and critical mathematics education for their inspiration.      

 Transitioning between contexts, such as home and school, can be a fairly minor 
issue for learners if they perceive similarities in what knowledge is valued and how 
learners and others should interact together and with the mathematical content. 
However, for other learners who perceive the contexts as being very different, the 
transitioning process can limit the possibilities for their future. This is because tran-
sitioning between contexts affects not just what knowledge is valued, and thus 
learnt, but also learners’ processes of becoming. In this chapter, we describe how 
learning is connected to transitioning between contexts, before discussing different 
positions on social justice in mathematics education. In so doing, we identify two 
pedagogical approaches, ethnomathematics and critical mathematics education, to 
analyze using Wenger’s  (  1998  )  three modes of belonging. Using learners’ opinions, 
we identify the features of these approaches which support learners to broaden hori-
zons of possibilities for their futures. 

    T.   Meaney   (*) •     T.   Lange  
     Malmö University ,   Malmö ,  Sweden       
e-mail:  Tamsin.meaney@mah.se   
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 Adjusting to new contexts always involves learning. The degree of adjustment 
varies depending on the similarities or differences between contexts. Nevertheless, 
even when contexts have a connection to mathematical knowledge, learning may 
not include gaining school mathematical outcomes. de Abreu, Bishop and Presmeg 
 (  2002  )  saw the transitioning process as being part of a dynamic relationship between 
the learner and the contexts being transitioned. Contexts act as mediators between 
what is structurally possible, through schooling for example, and what actually 
happens, such as learning. Thus, we see contexts as the enactment of systems of 
knowledge within social practices, whose elements Fairclough  (  2003  )  described as: 
(a) action and interaction; (b) social relations; (c) persons (with beliefs, attitudes, 
histories, etc.); (d) the material world; and (e) discourse. 

 The following is an example of how social practices contribute to actual events:

  Classroom teaching articulates together particular ways of using language (on part of 
both teachers and learners) with the social relation of the classroom, the structuring use of 
the classroom as a physical space, and so forth. … Social events are casually shaped by 
(networks of) social practices—social practices de fi ne particular ways of acting, and 
although actual events may more or less diverge from these de fi nitions and expectations 
(because they cut across different social practices, and because of the causal powers of 
social agents), they are still partly shaped by them. (Fairclough,  2003 , p. 25)   

 Thus, contexts are not just physical settings, but include the valuing of knowl-
edge, the typical distribution of power within relationships that interact around that 
knowledge and the sorts of interactions that are expected to occur between partici-
pants with that knowledge. As such, contexts can be considered systems of knowl-
edge enacted in social practices. 

 Transitions between contexts have been referred to as boundary crossings (Crafter 
& de Abreu,  2011  ) . Lipka, Yanez, Andrew-Ihrke, and Adam  (  2009  )  described 
boundary work as education across cultures which “requires bridges between elders 
and schooling” (p. 267). Bishop  (  2004  )  used Gee’s  (  1996  )  description of “border-
land discourses” to describe the differences between home and school mathematical 
practices. An alternative is to consider transitions in relationship to a change in 
horizons of learners’ possibilities for their futures. Gadamer  (  1996  )  stated “the hori-
zon is the range that includes everything that can be seen from a particular vantage 
point. … we can speak of narrowness of horizon, of the possible expansion of hori-
zon, of the opening of horizon and so forth” (p. 302). 

 For example, when transitioning between contexts involves the loss of connec-
tions with the home, this can be considered a narrowing of learners’ horizons of 
possibilities for their futures. An Indigenous group “may well recognize that school-
ing provides the skills necessary to survive in a technological world, but it will also 
blame the school for alienating students from their home culture, whether deliber-
ately or unintentionally” (Cantoni,  1991 , p. 34). 

 At times, transitions can be one-way, so it is not possible to return to the original 
context—the horizon in one direction closes while another expands. For example, 
Gorgorió and Planas  (  2003  )  stated, “[w]hen referring to the schooling of immigrant 
children, transition processes may be viewed as the gradual adaptation to societal 
expectations” (p. 3). On the other hand, transitions between home and school occur 
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on a regular basis and although learning may result in a reinterpretation of each 
context, the knowledge valued in one context would not be replaced by that from the 
other context. de Abreu et al.  (  2002  )  labelled these as collateral transitions. In these 
situations, learners have to learn how to juggle the discontinuities between the dif-
ferent social practices.

  We understand the construct of  transition  not as a moment of change but as the experience 
of changing, of living discontinuities between cultures; in particular, discontinuities between 
different school cultures, and different mathematics classroom cultures, and between how 
the home and school culture understand, value and use mathematics. Transitions include the 
processes of developing both individual and social identities while coping with new social 
and cultural experiences. (Gorgorió & Planas,  2005 , p. 93)   

 Transitioning is dynamic and never-ending. For example, César  (  2007  )  described 
a student in Portugal who is  fi rst seen as being disruptive. When a new teacher 
provided him with different activities, he began to engage in learning mathematics. 
He then had to re-negotiate his role with his Cape Verde friends and community 
who had come to expect that he would have a leadership role in disrupting the math-
ematics class. Transitioning into new contexts and between contexts results in learn-
ing. New understandings can be used to re fl ect on the same contexts, but in new 
ways, thus contributing to transitioning being an ongoing process. Learning is more 
than a passive interpretation of the world, as it can result in changes to the contexts 
themselves (Diversity in Mathematics Education Center for Learning and Teaching 
[DiME],  2007  )  and to the horizons of future possibilities. 

 For Radford  (  2008  ) , learning involved becoming progressively conversant with 
the collectively and culturally constituted forms of re fl ection. Learning is “not just 
about knowing something but also about becoming someone” (Radford,  2008 , 
p. 215). In this way, the object of learning is not only within the awareness of the 
learner, but the learner him/herself is part of what is to be appropriated in the learn-
ing process. Similarly, Brown  (  2009  )  stated “a person’s becoming occurs through 
engagement in the ways of knowing, doing and valuing of a particular social group, 
for example, philosophers, mathematicians, lawyers, gang-members, etc.” (p. 172). 
Thus, learning embeds the individual within the historically developed societal con-
text. The appropriation of forms of re fl ection happens in the entangled relationship 
between the individual, the collective and forms of practice, mediated through arte-
facts. Re fl ection produces conceptions of contexts while, simultaneously, interactions 
within and between contexts support the appropriation of the socially constructed 
and culturally constituted forms of re fl ection. 

 When learners transition between two contexts that are very similar, the need for 
adjustments may not be large. For other learners, such as Indigenous students, learn-
ing mathematics may involve querying their perceptions of what knowledge is and 
how it is gained (see for example Barta & Brenner,  2009  ) . It is likely that many 
Indigenous students would agree with Gorgorió and Planas  (  2005  )  that “the com-
mon understanding of the [mathematics] student is still ‘monolingual,’ belonging to 
the dominant culture, and having middle class social attitudes” (p. 92). Consequently, 
when participants construct relationships in the mathematics classroom that position 
learners as being different from “typical” mathematics learners, then transitioning is 



172 Meaney and Lange

likely to be dif fi cult. Similarly, when learners transition into outside-school contexts 
where school mathematics is not valued, then the transitioning can be problematic. 
This can occur when immigrant children have to do homework that their parents 
consider to have limited mathematical value (Civil,  2008  ) . In these cases, learners 
are forced into re fl ecting on the differences, resulting in a different kind of learning 
from that which probably was intended by, for example, the teachers. 

 Although the transitioning process is never completed, it continually produces 
outcomes. As a result of re fl ecting on their learning experiences, learners may 
decide to adapt so they more closely resemble what they consider to be “typical” 
mathematics learners, or they may choose not to engage with mathematics, or they 
may accommodate to these new forms of re fl ection by doing something in between. 
An example of this would be when learners do not perceive that transferring knowl-
edge across contexts is valuable. For example, Nunes, Schliemann, and Carraher 
 (  1993  )  described how children who operated as street vendors were able to do com-
plex calculations as part of their jobs but could not relate these calculations to what 
they were required to do in mathematics classrooms. Similarly, Brenner  (  1998  )  
found that  fi rst-grade children recognized that the prices given for textbook items 
did not re fl ect the money exchanges that they engaged in outside of school. For both 
sets of learners, an outcome was that mathematics was compartmentalized so that 
only one type of mathematics could be used in each context. Transitioning can result 
in a range of outcomes depending on the learners’ re fl ections. 

 Skovsmose  (  2005  )  saw learners’ perceptions of their situation as being pivotal to 
the sort of learning in which they engaged. Learners’ backgrounds as well as their 
foregrounds, that is, perceived opportunities for their futures, form their disposi-
tions to learn. Like Radford’s descriptions of re fl ections, these perceptions are not 
individually formed but are collectively and culturally situated. When learners tran-
sition between contexts, different foregrounds and backgrounds come to their atten-
tion. As a result, dispositions to learn can be contradictory.

  Intentions of learning emerge out of dispositions. Dispositions are concerned with “back-
ground” as well as “foreground” and are revealed when the learner produces, creates or 
decides his or her intention. A situation which could raise intentions for learning does not 
automatically belong to the background of the student having to do with his or her situation 
and social or cultural heritage. It is just as much to do with the students’ possibilities but the 
possibilities as the student perceives them. The decision of the learner to act or learn there-
fore has a role to play when conditions for learning are created. The student has to be 
involved in the learning—should want to learn—if the learning activity is to become learn-
ing as action. Furthermore, the learning has to be performed by the learner if it is to include 
re fl ections and a critical awareness. (Vithal & Skovsmose,  1997 , p. 147)   

 If the learning situation supports the active involvement of learners, intentions 
for learning are formed and the resulting learning process is one of action (Alrø & 
Skovsmose,  2002  ) . When learners identify with the teacher’s suggested outcomes 
of the learning activity, then joint ownership and shared perspectives between the 
teacher and learners develop. When learners’ intentions differ, then so will the out-
comes from learning. 

 In this chapter, we investigate pedagogical approaches, advocated for learners 
whose learning seems to involve a complex transition process. Re fl ection on the 
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intertwining of backgrounds and foregrounds will affect learners’ decisions to 
engage and to a broadening or narrowing of their horizons of possibilities for their 
future. Consequently, we consider the impact of transitioning between contexts, in 
which mathematical knowledge and ways of interacting around it are perceived dif-
ferently, to be an issue of social justice. 

   Situating Pedagogical Approaches as an Issue 
of Social Justice 

 Investigations of social justice within mathematics education have focussed on 
the learner–teacher relationship and the pedagogical practices used in mathematics 
classrooms (Atweh & Brady,  2009  ) . However, Fairclough’s  (  2003  )  description of 
learning suggests that as one part of the entangled relationships contributing to learn-
ing, pedagogical practices, as social practices, involve the valuing by participants of 
certain systems of knowledge. Learners’ dispositions will be affected by relation-
ships with mathematics held by other participants, such as teachers, students, and 
families. Relationships are not formed solely within an individual classroom but mir-
ror the wider societal valuations of who and what is seen as important.

  It is through this process of drawing on the resources of the various discourses available 
within a given classroom that individuals construct their identities as teachers and students 
of mathematics, positioning themselves in relation to the mathematical and nonmathematical 
activity within the classroom and in relation to the other participants in the classroom and 
accounting—to themselves and to others—for the nature of their own participation. The 
privileged of fi cial discourses provide what may be constructed “natural” positions for teachers 
and students, although individuals may resist this discourse. (Morgan,  2009 , p. 98)   

 Curriculum, representing of fi cial discourse, identi fi es what should be learnt and 
sometimes how it should be learnt, constrains teachers’ abilities to implement peda-
gogical practices. 

 Table  6.1 , from Willis  (  1998  ) , summarizes four social justice approaches within 
mathematics education and illustrates how these are likely to channel teachers and 
learners into forming different kinds of relationships with each other and with math-
ematical knowledge. Yet, the table also illustrates that it is dif fi cult to discuss per-
spectives on social justice in ways that do not position some groups as always being 
outside of the curriculum. This is especially the case in Perspectives 1 and 2, but 
even in Perspectives 3 and 4 there is an implicit comparison between “others” and 
the “norm.” In the  fi nal perspective, the educational task is described as to “help 
children develop different views of who does mathematics and what it means to be 
good at it, to understand how they are positioned by mathematics and how to use it 
in the interests of social justice” (p. 15). The word “different” indicates that the cur-
rent norm does not do this. It is implicit that those who are affected most by social 
justice inequities and so have the more complex transitioning to do are the ones who 
need this alternative curriculum.  

 In considering learners transitioning between contexts, all the perspectives 
acknowledge that there might be differences in how knowledge is valued between 
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home and school contexts. However, the assumption is that the transitioning process 
is one way—into classrooms. Perspective 4 is the only one that seems to recognize 
that learners also transition out of school contexts and that the curriculum may have 
a role in easing that transitioning process. 

 Focussing on pedagogical approaches readjusts the emphasis from the deviant 
performance of particular groups of learners, where the main outcome of an appro-
priate transitioning would be to have them perform similarly to “normal” students. 
Mathematics education has for a long time documented cases of learners who 
underachieve but research on pedagogical practices that produce more positive 
results has not been so proli fi c (Anthony & Walshaw,  2007 ; Nasir & Cobb,  2007  ) . 
We choose to analyze learners’ views on pedagogical approaches, ethnomathemat-
ics and critical mathematics education, because they had similarities with perspec-
tives 3 and 4. In these perspectives, the mathematics curriculum is considered to be 
changeable and there is an emphasis on learners using their mathematics knowledge 
from outside of school within the classroom. Vithal and Skovsmose  (  1997  )  stated:

  Whilst ethnomathematics seems to deal mainly with cultural and social issues, critical 
mathematics education has largely focused on social and political aspects. These perspec-
tives are, of course, connected. We conceive of ethnomathematics and critical mathemat-
ics education as two important educational positions in the attempt to develop an 
“alternative” mathematics education which expresses social awareness and political 
responsibility. (p. 131)   

 These perspectives on the connections between social justice and mathematics 
curriculum provide information on the structure of the relationships that learners 
can forge with mathematics and other participants within mathematics classrooms. 

 Biddy  (  2009  )  interviewed a large number of primary school students in England 
about their mathematics classes. Many interviews indicated that these children did 
not like the relationships in which they were positioned within the classroom. 
Consequently, she suggested that “a de fi nition of pedagogy needs to be founded in 
relationships or relationality” (p. 135). Pedagogy as relationships has two compo-
nents; mutuality and being seen and valued. Mutuality meant that the learning of the 
group was more important than learning of an individual which was in contrast to 
their teachers’ view of the importance of the individual. For the learners, being seen 
and valued involved their teacher listening to them and valuing their contributions. 
If this is not done, Presmeg  (  2002  )  suggested that “ symbolic violence  [will be] expe-
rienced by students in transition between contexts when their cultural capital is 
devalued by signi fi cant others” (p. 226). Mathematics curricula provide parts of the 
structures in which teachers operate, but it is how they interpret these structures that 
will affect the relationships that are forged both inside and outside the classroom 
around mathematical understandings. 

 As discussed in later sections, ethnomathematics or critical mathematics edu-
cation do not provide details about the sorts of relationships that they should 
foster. Yet in accepting that learning is about becoming and thus more than gain-
ing familiarity with knowledge and skills, then there is a need to understand 
learners’ perspectives on the relationships that they form. In the next sections, 
we identify learners’ perspectives on being involved in ethnomathematics and 
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critical mathematics perspectives from previous research. We then discuss these 
pedagogical approaches using Wenger’s  (  1998  )  three modes of belonging to inves-
tigate the relationships to which they contribute. 

 Our primary sources for relevant research have been conferences such as 
Mathematics Education in Society and the International Conferences on 
Ethnomathematics. From lists of papers, we identi fi ed authors working in the  fi eld 
and located related journal articles and book chapters. Nevertheless, we have not 
located all relevant material. 

 Each section begins with a description of the pedagogical approach and theoreti-
cal concerns. Then, learners’ perceptions of the impact of these approaches are 
described. At times we have used learners’ views as reported second-hand through 
quotations from teachers. Although not ideal, the paucity of research limited the 
available data. The  fi nal section analyzes students’ perspectives using the modes of 
belonging to illustrate what supported their transitioning between contexts.  

   Ethnomathematics 

 Ethnomathematics began in the 1980s as “the study of mathematical ideas of 
non-literate people” (Ascher & Ascher,  1986  )  but soon broadened to the mathemati-
cal practices of speci fi c groups, whether they be carpenters (Masingila,  1994  )  or 
cardiovascular surgeons (Shockey,  2002  ) . The mathematics used and developed by 
Western mathematicians is one kind of ethnomathematics (Borba,  1990  ) , although 
academic mathematics has sociological implications that other kinds of mathemat-
ics do not have (Knijnik, Wanderer, & Oliveira,  2005  ) . D’Ambrosio  (  1992  )  described 
a research program in ethnomathematics as “the study of the generation, organisa-
tion, transmission, dissemination and the use of jargons, codes, styles of reasoning, 
practices, results and methods” (p. 1183). 

 An ethnomathematical research program can be traced to two complementary 
research agendas: to understand better the mathematical practices of different 
groups (Bishop,  2004  ) , and to support the development of a more just and socially 
equitable society that deals with the economic and environmental problems facing 
the world (D’Ambrosio,  2010  ) . The  fi rst arose from work from the 1960s and 
1970s which showed that the development of mathematical understandings was 
culturally related (Wedege,  2010  ) . The second came from concerns about the loss 
of human dignity through the continual con fl icts that af fl ict the world and the need 
for mathematics and mathematics education to contribute to efforts for peace 
(D’Ambrosio,  2010  ) . 

 Despite these worthwhile aims, ethnomathematics has not been without criti-
cisms. For example, the valuing of a practice only if it can be labelled as Western 
mathematics has been questioned (Jablonka & Gellert,  2010  ) . Barton  (  2004  )  stated 
that although ethnomathematics provides opportunities to reconsider how aspects 
of Western mathematics are perceived, labelling cultural activities as “mathematics” 
was problematic unless certain conditions were met. He speci fi ed that the knowledge 
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“should be systematised, should be formalised and should relate to quantity, 
relationships, or space. It must also be suf fi ciently abstracted to be removable from 
its practice” (p. 23). These conditions enable practitioners to be able to discuss their 
ideas as mathematics. Similarly, Pais  (  2011  )  suggested that although learners may 
engage in a range of activities, it is not until these activities are recognized that they 
become mathematics. However, labelling of traditional activities as mathematics 
runs the risk that they are seen as having no intrinsic value, except as examples of a 
Western knowledge system (Roberts,  1997  ) . 

 Yet, ethnomathematics “has obvious pedagogical implications” (D’Ambrosio, 
 2010 , p. 9). In a description of the  Math in Cultural Contexts  project, developed in 
Alaska over several decades, Lipka et al.  (  2009  )  summarized many of the assump-
tions on which their ethnomathematical pedagogy is based:

  The assumptions include that students will gain increased access to the math curriculum 
because they can identify with the curriculum and pedagogy on multiple levels, from famil-
iar contexts to familiar knowledge, and that they will have multiple ways of engaging with 
the material. … Further it is assumed that the inclusion of local knowledge, language and 
culture may well have a positive effect on students’ identity that will be different from the 
typically reported process of schooling that marginalizes so many AI/AN (American Indian/
Alaskan Native) students. (p. 266)   

 Researchers in other parts of the world acknowledge similar assumptions (see, 
e.g., Adam,  2003 ; Laridon, Mosimege, & Mogari,  2005  ) . However, the diversity of 
aims could result in con fl ict, making it dif fi cult to implement an ethnomathemati-
cal approach that supports students to transition between contexts and broaden their 
horizons of possibilities. 

 Vithal and Skovsmose  (  1997  )  suggested that, to South Africans, the aims of eth-
nomathematics closely resemble those of apartheid where perceptions of cultural 
differences were used to differentiate education opportunities. To overcome the 
likelihood that some learners’ opportunities would be limited, they recommended 
that students’ foregrounds should be considered when choosing mathematics activi-
ties. As well, by presenting an activity as representative of a culture, a teacher could 
gloss over differences within that culture (Vithal & Skovsmose,  1997  ) . Considerations 
of foregrounds and backgrounds in designing of mathematics activities have been 
discussed as the need for “permeability.”

  A serious commitment to encouraging children to use mathematics to contribute to the solu-
tion of problems drawn from everyday life (whether textually represented in texts and tests 
or actually experienced in their life outside school) will also need to increase the permeabil-
ity of the boundary between children’s everyday knowledge and experience and their more 
purely mathematical knowledge. (Cooper & Harries,  2002 , p. 21)   

 If permeability is achieved then learners are likely to transition between contexts 
more easily. Knijnik  (  1998  )  reported that in the mathematics education program in 
which she worked with the Landless People Movement of Brazil “the interrelations 
between popular knowledge and academic knowledge are quali fi ed, allowing the 
adults, youths and children who participate in it to concurrently understand their 
own culture more profoundly, and also have access to contemporary scienti fi c 
and technological production” (p. 188). This suggested that for these learners 
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participating in activities allowed them to transition both into and out of formal 
mathematical contexts. 

 In regard to immigrant classrooms, there have been consistent calls for teachers 
to know their learners better and to base their teaching on everyday mathematics 
that learners bring to the classroom (Civil & Planas,  2010 ; de Abreu & Gorgorió, 
 2007  ) . Moreira  (  2007  )  suggested that the mathematics teacher should act as an eth-
nomathematical researcher. When ethnomathematical practices have been used in 
the classroom (Barta,  2002 ; Masingila, Davidenko, & Prus-Wisniowska,  1996  ) , the 
activities have tended to be those of adults rather than children. There are few exam-
ples of children’s own activities being used (see Masingila,  1996 ; Presmeg,  1996  ) . 
Carraher and Schliemann  (  2002  )  suggested that “there seems to be relatively little 
mathematical activity in children’s out-of-school activities, and when it does come 
into play, it does not seem to call for a deep understanding of mathematical rela-
tions” (p. 150). 

 As well, Stillman and Balatti  (  2001  )  warned that the process of bringing cultural 
activities into the mathematics classroom potentially “divorces the cultural prac-
tices from their context and trivializes and fragments them from their real meaning 
in context” (p. 325). In Papua New Guinea, the curriculum was changed to support 
the use of traditional knowledge in the mathematics classroom. Esmonde and Saxe 
 (  2004  )  suggested that the support for using vernacular languages and Indigenous 
counting systems in community schools may revive the use of  tok ples  counting 
systems but only by altering its structure so that it resembled the Hindu-Arabic 
system. Paraide  (  2005  )  also warned of the dif fi culties in trying to make connections 
between another Papua New Guinean counting system and the Hindu-Arabic one. 
Thus, although incorporation of traditional counting practices would achieve some 
of the aims of an ethnomathematical approach, alteration of the traditional knowl-
edge could lead to a narrowing of learners’ perceptions about the value of that 
knowledge in the future. 

 Reconciling the differences in how knowledge is valued in different contexts is 
often left to teachers who can struggle to do this (de Abreu,  1993  ) . For example, a 
Ghanaian teacher felt that she was not able to bring in the learners’ outside school 
knowledge about sharing according to status because she saw it as being in con fl ict 
with the fraction knowledge that the curriculum required her to teach (Davis, Seah, 
& Bishop,  2009  ) . In the USA, Cahnmann and Remillard  (  2002  )  described how one 
teacher working in a low socio-economic area was able to make cultural connec-
tions for her students so that they would enjoy mathematics, but struggled to make 
the tasks mathematically challenging. Consequently, the learners had limited access 
to academic mathematics. 

 In the Funds of Knowledge project described by Civil  (  n.d.  ) , teachers visited the 
homes of some of their learners to identify activities that then could be used in the 
classroom to support connections being made between school and out-of-school 
mathematical knowledge systems.

  Overall the money module focused on children discussing social issues in relation to money 
(such as welfare, food stamps, buying a car, a house) in the third grade class and on research-
ing topics such as “money, power, and politics” or “foreign currencies,” in the  fi fth grade 
class. Hence, in this class, the main academic areas emphasized through this module were 
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social studies, reading and writing. In the third grade class, mathematics was more present, 
for example through connections to children’s literature that had money as the focus. But 
even with the third graders, I think that we only scratched the surface of the mathematics in 
a module around money. The very rich discussions in both classrooms showed the wealth 
of knowledge that these children had about everyday uses of money, budgeting, and what it 
means not to have enough money. Yet, in terms of our mathematical agenda, I did not feel 
we succeeded in exploring the potential in this module. (p. 7)   

 Later, working with a different teacher, a unit based on gardening seemed to be 
more solidly grounded in mathematics, although at times the mathematics activities 
were contrived. Notwithstanding, the teacher drew on parents and researchers as 
resources rather than the learners, Civil  (  n.d.  )  suggested that the learners cared about 
their plants and this contributed to their being interested in the mathematics 
problems. 

 Although there are high expectations about using an ethnomathematics approach 
to ease the transition between school and out-of-school contexts, some mathematics 
educators have queried its potential. In the next section, we describe learners’ views 
about being involved in ethnomathematics activities. 

   Learners’ Views on Ethnomathematical Approaches 

 From the perspective of learners, incorporating cultural activities into the math-
ematics classroom was valuable. The reasons for this varied from  fi nding the activities 
interesting, to seeing these activities in a new light. This supported learners to re fl ect 
not only on what they were learning but also on how they were learning, leading 
potentially to a broadening of their horizons for future possibilities. In re fl ecting on 
how they were learning, learners expressed a desire to be more involved in group 
work and to learn by doing, through working with artefacts. 

 Mosimege and Ismael  (  2004  )  reported on learners’ enjoyment in mathematics 
lessons that were based around traditional African games.

  The last sessions were very nice. The game practice was very nice. We used to play this 
game at home without knowing what is essential in it. (pp. 132–133) 

 I liked the lessons, they were very exciting because we were taught by doing … With this 
way of teaching you can learn really (…) other teachers should also teach us in this way if 
there is a possibility. (p. 133)   

 In the  fi rst quotation, recognizing the game as mathematics seemed to make it 
more valuable for the learner. In a later article, Nkopodi and Mosimege  (  2009  )  com-
mented on the need to ensure that the mathematics was visible and the games were 
not merely considered fun activities. However, as noted above, there is a risk that the 
inherent value of the game itself is lost and this could lead to a narrowing of horizons 
around traditional practices. 

 Getting students involved in ethnomathematics projects was considered to be a 
way of supporting learning. In Israel, a tenth-grade teacher in an Arab school worked 
with researchers to introduce a geometry unit based on traditional geometric designs 



1816 Learners in Transition Between Contexts

(Massarwe, Verner, & Bshouty,  2010  ) . Comments from the learners indicated that 
some of their enjoyment was connected to being involved in group work but, like 
the previous set of learners, also doing something with the designs, rather than simply 
working with them abstractly, was appreciated:   

   Salam :    First time ever that I understand geometry.   
   Yusof :    I discovered that geometry has a special magic and that it is important.   
   Nimr :    I very much enjoyed it. The group work drew us close.   
   Hanna :     Not only theorems and proofs—it is an enjoyable experience of discovering and 

drawing.   
   Ranya :    I would prefer to study geometry this way. (Massarwe et al., 2010, p. 17)       

 In other places, the implementation of ethnomathematics units evoked similar 
comments about the need for mutuality of learning (Biddy,  2009  ) . In describing a 
mathematics lesson on the Andean  fl ute, zampoña, Favilli and Tintori  (  2004  )  pro-
vided comments from  fi ve teachers and their students. The students’ comments 
came from a questionnaire, with many commenting on how they worked together:

     What I really liked about the zampoña lessons was the way we all worked together and the • 
new experience.  
  The thing I liked most of all about the zampoña lessons was being able to work all together: • 
we were a real team, just like a real family; I also liked it when we found the mathematical 
law, because we were all enthusiastic, we felt like … important mathematicians. (p. 44)      

 When ethnomathematical activities are introduced into the mathematics class-
rooms where there are Indigenous students, traditional interaction patterns need to 
be respected. Lipka et al.  (  2005  )  described how one teacher supported learners’ use 
of gestures to describe their ideas in collaborative discussions, even to the degree 
that talking was replaced. Thus, “the safe learning environment, in which nonverbal 
communication was honored as a cultural way of ‘talking’ and communicating 
mathematically in the classroom, allowed [the learner] to take a leadership role and 
contribute her knowledge in a culturally congruent way” (p. 379). Mutuality of 
learning may be achieved in a range of ways. 

 Relationships with artefacts were also valued by learners. In Favilli and Tintori’s 
 (  2004  )  project, it was clear that the artefacts used in the lesson supported learners’ 
engagement and thus also their re fl ection about how they liked to learn:

     The thing I liked about the zampoña lessons was that … now I know how to make one!  • 
  The thing I liked about the zampoña lessons was seeing something we had made working, and • 
working well because some of our classmates even played a tune with it.  
  The work was good fun and, to tell the truth, I really like manual work. (Favilli & Tintori, • 
 2004 , p. 41)      

 The teachers’ comments suggested that the learners had gained mathematical 
understanding from being involved. Nonetheless, as Pais  (  2011  )  pointed out, the 
zampoña was not from the culture of the learners and there is little evidence that 
cultural considerations in which the zampoña was embedded were discussed in any 
detail. Thus, there was a risk of trivializing the culture of the activity and this could 
result in a narrowing of horizons in respect to out-of-school contexts. If the activities 
are not related to contexts with which the learners were familiar outside of the 
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classroom, what contexts are learners being transitioned between? Or is it suf fi cient 
that enjoyment of making the  fl ute supported learners’ transition into the context of 
the mathematics classroom? 

 In other ethnomathematical activities, like the Arab geometric unit, the connec-
tion to the cultural background of the learners was evident. These examples sug-
gested that learners’ horizons of possibilities for futures were broadened, in regard 
not just to the school context but also to their home contexts. After the implementa-
tion of an ethnomathematics unit in nine Grade 5 Maldivian classrooms, Adam 
 (  2003  )  had learners complete a survey. Their comments indicated that they valued 
the connection between activities done outside of school and mathematics.

  I can understand mathematics better now … I know how to use formulae and things better 
after seeing how people do things in [for example] construction of houses. (p. 47) 

 Before the measurement topic was taught, I did not think of mathematics outside school. 
Now I see mathematics everywhere. On the street—Mum also use [sic.] measurement in 
cooking—to measure the rice. At the  fi sh market to sell the  fi sh. (p. 46)   

 Similarly, at a teacher education college in Israel, prospective Bedouin and 
Jewish teachers presented projects in which they had identi fi ed the mathematics in 
cultural activities (Katsap & Silverman,  2008  ) . The following quotations from two 
Bedouin prospective teachers illustrate how they found the activities stimulating 
and supportive of their learning:

  A subject that I did not previously like, such as the theory of different symmetries, I saw 
suddenly in a new way in this course, after it was connected to the culture of my people. It 
was easy to understand and I now like it, and therefore I de fi nitely think that the process of 
exposing the teacher to the cultural aspects of the mathematical ideas is one that contributes 
to the training of the teacher. (p. 96) 

 I was very happy during the presentation … because the material was linked to our culture, 
and everyone is proud when other people learn and become acquainted with their own cul-
ture… I’ve noticed during the presentation of the study unit that the participating teachers 
showed considerable interest and desire to learn about our culture… Our group prepared 
many examples of embroidery and in one activity Jewish teachers were asked to describe 
orally the transformation types revealed by this example. At the end of the lesson the teachers 
described their sensations during this task. The satisfaction they’ve felt was evident. (p. 91)   

 For many prospective teachers, learning about their own culture through mathe-
matics was a surprise. It also surprised them that other prospective teachers who did 
not share their religion/culture were interested in the activities. 

 The activities seemed to broaden learners’ horizons in regard to possibilities for 
their futures outside of formal mathematics education situations. Katsap and 
Silverman  (  2008  )  commented on how the activities contributed to dialogue:

  In a lesson on the concept of time presented by a Jewish group, the discussion ranged 
from the philosophical understanding of the concept to mathematical insight. When a 
Bedouin student presented his own position on the matter without referring to his culture’s 
attitude, one of the presenters immediately said, “Why are you presenting this example? 
It would be better if you told us how you view time in the desert. What does your sheikh 
(literally, ‘elder’) think about the essence of time?” … In any other class, a political argument 
could have easily ensued. However, in this case, the Bedouin prospective teacher began 
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to relate how Bedouin religious leaders saw the concept of time. Everyone listened with 
interest, as moments before the class had discussed the Western attitude of “time is 
money.” Two opinions from the two respective cultures represented their emotional per-
ceptions of time and their cognitive mathematical perceptions of time. (pp. 86–87)   

 Lipka and Adams  (  2004  )  summarized similar comments by learners about how 
they could relate to the mathematics activities which were set in cultural contexts. 
However, they also provided examples where the use of materials was not received 
as had been expected. In one instance, learners told their teacher that they did not 
want to do the activity because they were already familiar with it. 

 It would seem that learners engaged with the ethnomathematics activities because 
the activities were of interest to them and/or because they made connections between 
different contexts that they were transitioning. It may be that the value given to 
knowledge that originated outside of the mathematics classroom enabled them to 
re fl ect on the sorts of the connections that could be made as they transitioned both 
into and out of the classroom. Many activities allowed learners to interact with each 
other and artefacts in collaborative, dialogical ways which supported them as they 
developed mathematical understandings. However, more research is needed to 
understand better how and if learners’ horizons for future possibilities were broad-
ened as a result of working with ethnomathematics projects.   

   Critical Mathematics Education 

 There are two main geographical groups of critical mathematics educators. 
Notwithstanding, both groups often refer to each other’s theoretical positions and 
the distinctions between them are not large. One group located in Europe, but with 
connections to Brazil (see Campos, Wodewotzki, Jabobini, & Lombardo,  2010  ) , 
uses the work of Ole Skovsmose who was in fl uenced by the Frankfurt School of 
Critical Theory (Skovsmose,  2004  ) . Critical theorists aimed at “‘emancipating’ 
people from positivist ‘domination of thought’ through understanding their circum-
stances and taking action to change their situation” (Patrick,  1999 , p. 86). The other 
group, mainly in America, uses the ideas of Marilyn Frankenstein  (  2010  )  on critical 
mathematical literacy. She drew her inspiration from Paolo Freire. In a re-issue of 
her  fi rst paper, Frankenstein  (  2010  )  wrote:

  Freire’s theory compels mathematics teachers to probe the non-positivist meaning of math-
ematical knowledge, the importance of quantitative reasoning in the development of critical 
consciousness, the ways that math anxiety helps sustain hegemonic ideologies, and the con-
nections between our speci fi c curriculum and the development of critical consciousness. In 
addition, his theory can strengthen our energy in the struggle for humanization by focusing 
our attention on the interrelationships between our concrete daily teaching practice and the 
broader ideological and structural context. (p. 9)   

 Following the suggestions that Freire made about teaching literacy to adults, 
Frankenstein  (  2010  )  suggested that the problems that learners engage in should be 
drawn from their own experiences and this would become the starting point for the 
curriculum. From a philosophical perspective, Skovsmose  (  2004  )  identi fi ed critical 
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mathematics education as “a preoccupation with challenges emerging from the 
critical nature of mathematics education. Critical mathematics education refers to 
concerns which have to do with both research and practice, and a concern for equity 
and social justice being one of them” (p. 1). 

 With Helle Alrø, Skovsmose described the need to build learners’ “mathemacy” 
which by connecting to their own contexts empowers their mathematics learning 
(Alrø & Skovsmose,  2002  ) . A slightly different interpretation, but one still with an 
emphasis on empowerment, is that of Ernest  (  2002  ) :

  A successful critical mathematics education must succeed in empowering the learner,  fi rst 
to overcome internal inhibitions and perceptions of inadequacy, second to question the 
teacher, the subject, and the constraints of school, and third to question the “facts” and 
edicts of authority at large in society. (p. 1)   

 Similarly, Frankenstein  (  1998  )  suggested that there are four aims for a critical-
mathematical literacy curriculum:

     1.    Understanding the mathematics.  
   2.    Understanding the mathematics of political knowledge.  
   3.    Understanding the politics of mathematical knowledge.  
   4.    Understanding the politics of knowledge. (p. 1)       

 As Jablonka and Gellert  (  2010  )  stated, “critical mathematics literacy intends to 
be simultaneously a pedagogy of access and a pedagogy of dissent” (p. 43). However, 
it is not easy for educators to resolve the inherent tension between these two aims 
(Powell & Brantlinger,  2008  ) , nor for learners to achieve them because of the high 
level of re fl ection required. 

 An examination of the pedagogical practices advocated by critical mathematics 
educators illustrates how dif fi cult this tension is to resolve. Alrø and Skovsmose 
 (  2002  )  advocated the inquiry cooperation model (see Figure  6.1 ), which emphasizes 
the role that the teacher has to play in listening to learners’ contributions both as 
they meet and then engage with a new problem. The teacher must listen respectfully 
to the learners but also challenge their reasoning. “Challenging good reasons, there-
fore, means making the students re fl ect upon and widen their perspective and 
knowledge” (Alrø & Skovsmose,  1996 , p. 33).  

 Alrø and Skovsmose  (  1996  )  found few examples in their empirical data of teachers 
actually engaging learners in dialogue similar to that of the Inquiry Co-operation Model. 
As well, in a discussion of an project, called “Terrible Small Numbers,” done with 15- 
and 16-year-olds about the sampling of eggs for salmonella, Alrø and Skovsmose  (  2002  )  
wrote: “‘Terrible small numbers’  in principle  provided topics for re fl ection, which  in 
principle  may face the challenge of critique. But as experienced by the students, the 
re fl ections were not developed into any powerful ideas of critique” (p. 229). 

 In his research on how four teachers incorporated culturally relevant teaching 
ideas into their mathematics lessons, Matthews  (  2003  )  reported that only one teacher 
combined developing learners’ mathematical understanding with critiquing their 
situation with any degree of success. Matthews suggested that this teacher was successful 
because she built strong relationships with her students based on traditional 
Bermudian understandings about friendship. The pedagogical practises of this 
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teacher were similar to those advocated by in the inquiry co-operation model (Alrø 
& Skovsmose,  2002  ) , as the successful teacher expected learners to work together 
to justify the appropriateness of their answers. The inquiry co-operation model is in 
alignment with the conception of pedagogies as relationships as it requires teachers 
both to hear the learners’ contributions and to value them. 

   Learners’ Perspective on Critical Mathematics Education 

 As was the case with ethnomathematical pedagogical practices, learners involved 
in critical mathematics education activities responded positively to them. Again this 
seemed to be related to how learners were expected to work together as well as 
 fi nding the project work interesting. One difference with ethnomathematics activi-
ties was that learners seemed to have more choices in regard to the project work that 
they did. Critical mathematics education projects also supported learners to make 
transitions both into mathematics classrooms but also to outside-school contexts, 
thus broadening their horizons for future possibilities in multiple directions. 

 Moreira and Carreira  (  1998  )  describe an activity in a calculus class for Portuguese 
students completing a business degree. Although the class did not include critical 
mathematics goals, “some of the problem situations used in teaching mathematical 
topics were suitable for promoting the act of acquiring a new consciousness” (p. 4). 
In the following extract, the students used a mathematical model to explore income 
distribution in an imaginary country.   

   Miguel:     Now we just need to compute  f (0.5).   
   Paulo:     Which gives 25%.   

Student Teacher

getting in
contact

locating

identifying

advocating

thinking aloud

reformulating

challenging

evaluating

  Figure 6.1.    Inquiry co-operation model (from Alrø & Skovsmose,  2002 , p. 63).       
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   Miguel:       So 25% is the income of the poorest half of the population. This means that the 
other half is receiving 75%. It’s a striking difference!   

   Cristina:      What are you saying? I don’t get it.   
   Paulo:      He’s saying that the  fi rst half, which is the worse paid, gets 25% of the total 

income. Therefore, the second half is receiving all the remaining, that is 75%. These 
are the better paid, they’re the richer people.   

   Cristina:     Sure, according to this model …   
   Eduardo:      Yeah [ speaking with an ironic tone in his voice ], I doubt that the income can ever 

be so unfairly distributed.   
   Isabel:     Well, you’d better not!   
   Eduardo:      OK. Let’s move on to this one: how do you interpret the fact of having  f (0) equal 

to 0 and  f (1) equal to 1?   
   Paulo:     Well, if there’s no population there can’t be any distribution of incomes.   
   Eduardo:      No people, no income.   
   Paulo:     The  f( 1) equals1 means that 100% of the people receive the whole income.   
   Eduardo:      Exactly.   
   Isabel:     Which means that there is no embezzlement of money.   
   Cristina:     There’s no sense here to speak of an embezzlement of money …   
   Isabel :     I mean that there are no false donations, no frauds, no fake payments, no funds 

deviations and no tax evasions.   
   Eduardo:     You’re making a good point there … (Moreira & Carreira, 1998, pp. 4–5)       

 In the exchange, learners used their mathematical understandings but also 
justi fi ed their responses from their own experiences: “There is no embezzlement of 
money.” While Cristina saw this as a mathematical exercise, distinct from reality, 
Isabel and Eduardo interpreted the results from what they knew about the Portuguese 
economy. The complexity of the situation contributed to them engaging with the 
problem. This is in direct contrast with Esmilde, an immigrant student in Gorgorió 
and Planas’  (  2005  )  research, who tried hard to bring his knowledge of different 
housing situations to a mathematical problem about population density. Both his 
teacher and a non-immigrant peer rejected his suggestion, only valuing the mathe-
matical content. Consequently, Esmilde withdrew from engaging in the problem, 
thus narrowing his horizons of possibilities for his future. 

 In reported studies, many learners expressed varying levels of dislike for math-
ematics in the initial stages. Gutstein  (  2003  )  quoted from one of his middle-grade 
students who described his learning after two years of being involved with critical 
mathematics education as:

  Well, I thought of mathematics as another subject in school that I hated. And I didn’t bother 
to think too much about world issues or everyday issues. Now I know it all relates. And I’ve 
learned how powerful math can be to help us explain our decisions and help us express 
ourselves because, like I said before, math makes things more clear. (p. 61)   

 Critical mathematics education seems to have the possibility to broaden learners’ 
horizons for future possibilities both within a school context but also in relationship 
to wider societal contexts that included learners’ own foregrounds and consider-
ations of the sort of world that they wanted to live in. Thus, the horizons for future 
possibilities seemed to be broadened in a multitude of directions. 

 In Andersson’s  (  2011  )  research, learners in two classes worked in groups on 
projects—such as working out each learner’s carbon footprint—that she [Andersson] 
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deemed as being related to societal contexts and likely to support critical re fl ections. 
One of Andersson’s end-of-high-school learners, Sandra, stated:

  What surprised me most though was how important a role mathematics plays when talking 
about environmental issues. With support of mathematics we can get people to react and 
stop. […] I am so interested in environmental questions and did actually not believe that 
maths could be important when presenting different standpoints. (p. 7)   

 The projects described by Moreira and Carreira  (  1998  ) , Gutstein  (  2003  )  and 
Andersson’s  (  2011  )  appear to have been designed without soliciting the learners’ 
opinions on the sorts of projects in which they would like to engage. This lack of 
consultation could be in con fl ict with learners’ preference for being seen and valued 
and also leaves learners as the mediators of the transitions between different con-
texts. Although the activities seemed to have broadened learners’ horizons both for 
possibilities for their futures from the school context and from outside-school con-
texts, more research is needed to better understand this connection. 

 Gutstein  (  2003  )  claimed that the problems he set were from the learners’ lived 
experiences. Dowling  (  2010  )  criticized one of Gutstein’s problems, random traf fi c 
stops, because the premise on which it was based, that the police would know the 
ethnicity of the drivers before they stopped them, was unlikely to be a reality. One 
of Gutstein’s  (  2007  )  own students challenged him similarly in a journal entry about 
whether racism was a factor in getting house mortgages.

  In my  fi rst article I said that I thought racism was not a factor; after our second discussion I 
thought racism was a factor, but I think that we don’t really know. Even though the rate for 
Blacks was 5Xs higher than whites in being rejected, that does not necessarily mean it is 
racism. It could be because of debt, income, or maybe it could be racism. (p. 58)   

 Gutstein responded to the learner’s comments by discussing the relationship 
between individual and institutional racism. At the end of the project, he also had 
learners adopt the perspectives of other participants in the problem, including the 
bank lenders. The project resulted in much discussion and Gutstein hypothesized 
that it was because the problem was meaningful for the learners. As one learner, 
Leandro wrote:

  This project was very interesting because it has happened to one of my uncles. He was look-
ing for a house and found one. But in the end, he was turned down. This really is important 
to me because I will like to buy a house when I grow up, not only for me, but for my cousin 
and my sister. (Gutstein,  2007 , p. 61)   

 Others have noted a similar impact on statistical learning when the topics were 
important to the learners. In work with student teachers in Columbia, Rojas  (  2010  )  
found that “the students learned to use these statistical tools and concepts in the 
context of identifying and addressing the most pressing problems facing their own 
communities” (p. 3). In Brazil, a group of medical researchers worked with sixth-
grade students in high poverty areas on how to interpret statistical data about mouth 
cancer so that they could then present this information to their families (Sundefeld, 
Homse, Prieto, & Rodrigues,  2010  ) . By the end of the project, students had increased 
their understanding both about mouth cancer and also statistics. Many of their fami-
lies commented that they had learnt a lot from their children about mouth cancer, 
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although their statistical knowledge had not improved. This was the only project 
which seemed to investigate learners transitioning into out-of-classroom contexts 
explicitly. 

 Having learners engage in topics that investigate inequities can mean that children 
deal with adult topics. Stocker and Wagner  (  2007  )  discussed some of the ethical 
tensions arising from this. In support of his argument for using mathematics to 
understand social justice issues better, Stocker quoted two of his 12- and 13-year-
old students:

  If we don’t know about social issues, if we don’t learn to be critical, we won’t form views 
of our own. We’ll grow up in a politically impotent society. 

 Only through learning can things change. Schools need to teach this stuff. Children can’t be 
hidden from the world. (p. 19)   

 Similarly, Gutstein’s  (  2003  )  learners felt that being involved in considering societal 
issues which required them to understand mathematics was important.

  Also, I thought math was just a subject they implanted on us just because they felt like it, 
but now I realize that you could use math to defend your rights and realize the injustices 
around you. I mean you could quickly  fi nd an average on any problem,  fi nd a percentage on 
any solution, etc. I mean now I think math is truly necessary and I have to admit it, kinda 
cool. It’s sort of like a pass you could use to try to make the world a better place. (p. 62)   

 In her work with adult learners, Tomlin  (  2002  )  requested them to bring in 
problems that they found relevant and which required mathematics. Although one 
student’s problem  fi tted the criteria, it could be solved more sensibly, through the 
combined wisdom of classmates, in ways which did not involve using mathematics. 
Civil  (  n.d.  )  commented that in real-world problems, “mathematics is often hidden; 
it is not the center of attention and may actually be abandoned in the solution pro-
cess” (p. 27). 

 Although learners could not choose their own problems in Andersson’s  (  2011  )  
projects, there was some room for them to make some choices, and that was appre-
ciated. The following comment is again from Sandra, who had described herself as 
having maths anxiety:

  We distributed the time well, I think. […] The group worked well. We were good at different 
things and helped each other. I am proud of the work I have done as I felt I could contribute a 
lot in the beginning when we talked about borrowing money and interest rates. To plan time 
and content [my]self got me to feel it related to me. I think mathematics has been a little more 
fun than usual. […] I feel the project has been meaningful and to look at mathematics from 
different angles (vändra och vrida på matematiken) was positive. But I would like more time 
for explanations from the teacher, as mathematics is dif fi cult for me. (Andersson,  2011  )    

 For Sandra, the pedagogical approach seemed to respect both her need to be seen 
and valued. “I felt in that I could contribute a lot,” and for mutuality in learning “the 
group worked well. We were good at different things and helped each other.” 
Working in groups seemed to support her to overcome her anxiety about mathemat-
ics which can be seen as one form of transition. Nevertheless, the  fi nal cry about 
needing more help from the teacher suggests that she had not yet come to see herself 
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as being a capable learner of mathematics. At the end of the project on carbon 
footprints, Sandra wrote:

  I have probably learnt more now than if I had only calculated tasks in the book. Now I could 
get use of the knowledge in the project and that made me motivated and happy! I show my 
knowledge best through oral presentations because there you can show all the facts and talk 
instead of just writing a test. To have a purpose with the calculations motivated me a lot. 
(Andersson,  2011  )    

 Activities linked to critical mathematics education seemed to support learners’ 
re fl ections on their learning both of content knowledge but also about themselves. 
These re fl ections enabled learners to see connections to their backgrounds, their 
foregrounds and their hopes for the future of the world. Thus, they could be said to 
support them transitioning between contexts—into and out of the mathematics 
classroom—thereby broadening their horizons for their future possibilities in more 
than one direction.   

   Modes of Belonging 

 In order to analyze learners’ perceptions, we draw on Wenger’s  (  1998  )  modes of 
belonging. Nasir and Cooks  (  2009  )  suggested that Wenger “reconceptualizes learn-
ing from an in-the-head phenomenon to a matter of engagement, participation, and 
membership in a community of practice” (p. 42). The modes of belonging indicate 
how people position themselves in relationship to communities of practice, and thus 
the forms of becoming that are possible. Commonly, mathematics classrooms are 
considered to be communities of practice.

  The recognition of the mathematics classroom as a functioning community where teacher 
and student activity in it is shaped by (and shapes) a set of norms and practices for learning 
mathematics highlights the importance of issues such as competence, ownership and align-
ment in engaging in this community. In particular, alignment between practices and identi-
ties of home and school has implications for whether students negotiate ways of participating 
that serve their individual goals (   Cobb & Hodge, 2002; Hand, 2003). (DiME,  2007 , p. 408)   

 Consequently, it would seem that the ultimate goal is to understand how learners 
transition into the community of practice of the mathematics classroom. Yet this view 
of a mathematics classroom tends to decontextualize it from the “larger social, cul-
tural, economic and political structures” (Valero,  2010 , p. LXI) that in fl uence what 
occurs within those classrooms. In contrast, we see membership of the mathematics 
classroom community of practice as only one outcome of the never-ending transition-
ing process and one that occurs concurrently with learners transitioning from the 
classroom context into outside-classroom contexts such as the home. Therefore, we 
use modes of belonging to consider how pedagogical approaches support learners to 
transition between contexts in ways that broaden rather than narrow their horizons of 
possibilities for their futures in a number of directions. Figure  6.2  summarizes the 
three modes of belonging: engagement; imagination; and alignment.  
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 According to Wenger  (  1998  ) , engagement has three parts: “the ongoing negotia-
tion of meaning,” “the formation of trajectories,” and “the unfolding histories of 
practice” (p. 174). The distribution of power affects participants’ willingness and 
ability to engage and conversely engagement “affords the power to negotiate our 
enterprises and thus to shape the context in which we can construct and experience 
an identity of competence” (p. 175). Although some practices are engaged in many 
times, each new experience will need to be made sense of again, leading to an evolu-
tion of these practices. Continual negotiation of meaning within familiar and unfa-
miliar situations contributes to the formation of trajectories. “As trajectories, our 
identities incorporate the past and the future in the very process of negotiating the 
present” (p. 155). However, “the understanding inherent in a shared practice is not 
necessarily one that gives members broad access to the histories or relations with 
other practices that shape their own practices” (p. 175). 

 Imagination is embedded within “our own experience” (Wenger,  1998 , p. 173). 
Like Radford’s view of learning, imagination arises in the interaction between the 
individual and in Wenger’s case the community of practice. In retelling a story about 
two stone-cutters who gave different responses when questioned about what they 
saw themselves as doing when chiselling a block of stone, Wenger  (  1998  )  stated: 
“Their experiences of what they are doing and their sense of self in doing it are 
rather different. This difference is a function of imagination. As a result, they are 
learning very different things from the same activity” (p. 176). Imagination is 
closely linked to whether learners perceive the process of transitioning between 
contexts as leading to a narrowing or widening of their horizons of possibilities for 
their futures. 

 For Wenger  (  1998  )  “the process of alignment bridges time and space to form 
broader enterprises so that participants become connected through the coordination 
of their energies, actions, and practices” (p. 179). Although alignment is usually 
connected to both engagement and imagination, it may not be. Some learners in 
mathematics classrooms may complete textbook exercises and have a clear sense of 
what it means to be a mathematics learner, but when an opportunity arises to withdraw 
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  Figure 6.2.    Modes of belonging (from Wenger,  1998 , p. 174).       
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from taking mathematics classes they do so because they do not want to align 
themselves with this practice (Ingram,  2011  ) . Coerced alignment may impact on the 
belonging that learners ultimately assume.  

   Modes of Belonging: Ethnomathematics 
and Critical Mathematics Education 

 From the learners’ perspectives, pedagogical practices based on ethnomathematics 
and critical mathematics education seem to have features that support them to tran-
sition between contexts. Nevertheless, researchers considered that both sets of 
approaches have some inherent tensions arising from multiple and sometimes 
con fl icting assumptions. On the other hand, learners’ perceptions, as reported in 
research reports, suggest that they were not concerned with these tensions. Generally, 
learners veri fi ed that learning experiences based in ethnomathematics and critical 
mathematics education provided them simultaneously with mathematical skills and 
an awareness of outside school issues. Analyzing the comments using Wenger’s 
modes of belonging indicated that working as a group on complex problems that the 
learners cared for were features that supported learners to transition between 
contexts. 

   Engagement 

 The learners’ comments indicated that they engaged in the projects and so 
re fl ected on what mathematics was, how it could be used and how it should be 
learnt. Often the projects spanned several lessons and in some instances, learners 
worked on them at home. However, the transition into home contexts, and their 
engagement in activities there, was the focus of only one research study (Sundefeld 
et al.,  2010  ) . 

 Teachers and facilitators often assumed a shared history with learners when 
choosing an activity. Usually, the activity was seen as the vehicle for connecting the 
learners’ backgrounds to improved school mathematics understanding, which was 
an important consideration in learners’ foregrounds. 

 The negotiation between familiar and unfamiliar situations could contribute to 
the formation of a trajectory. However, there is a need to recognize the impact of 
learners’ own perceptions of their situation on their dispositions to learn. Andersson 
 (  2010  )  commented on how labelling a day, set aside for project work about the 
United Nations Rights of the Child, as a Maths Day meant that many students chose 
to attend doctor and dentist appointments. One student, Petra, stated:

  First I thought, a whole day of mathematics, I can’t do it; I just can’t be there the whole day. 
But when I got there it was actually quite fun and now, afterwards, I read and look in the 
newspapers in a different way. So I actually learnt something that was really unexpected of 
a math-day. (p. 14)   
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 In the critical mathematics education projects, learners were supported to 
engage by being able to make choices about aspects of the projects, although not 
usually the topic of the projects. In the ethnomathematics activities, learners 
commented on the value of being physically involved in an activity, such as play-
ing games and making  fl utes. This increased their interest and supported them to 
re fl ect on both the activity and mathematics in different ways. It would have been 
valuable to know whether they also engaged in these activities outside of the 
classroom so that the activities could be considered as easing their transition in 
that direction as well. 

 Project work provided learners with opportunities to form supportive and col-
laborative relationships that contributed to developing a shared history of learning. 
A requirement to present to others supported learners to share more than just infor-
mation about the project (e.g., Katsap & Silverman,  2008  ) . This has links to Biddy’s 
 (  2009  )  learners’ requests for mutuality in learning. 

 When learners worked in groups to solve challenging problems, power was not 
located within the teacher but  fl owed between the participants. Sundefeld et al.’s 
 (  2010  )  project showed that school children could take on the role of informants to 
their families. Again, it would have been valuable to know how this eased their 
transition from school to out-of-school contexts.  

   Imagination 

 Imagination is closely connected to learners considering themselves as being 
seen and valued. For this to occur, learners need to re fl ect on how they are learning. 
Often project work supported the learners to see that mathematics could be used in 
situations that were important to them. In Gutstein’s critical mathematics education 
projects, learners began to understand the power of mathematical ideas and this 
provided a motivation for them to want to learn. In the gardening project described 
by Civil’s  (  n.d.  ) , the children’s devotion to their plants was a surprise to the teacher 
but supported them to participate in solving the somewhat contrived mathematical 
problems about the gardens. 

 When learners could connect mathematics to their interests, they could imagine 
engaging in future tasks that required them to use mathematics. However, some 
learners did not immediately embrace the idea that it was mathematics that provided 
them with these possibilities. The following quote from one of Andersson’s learn-
ers, Zizzie, exempli fi es this tension for the learner:

  A math-day, how fun could that be, and why did you call it a math-day? We worked on 
posters, we sought information, we rewrote mathematics stuff for best effect, but that is not 
mathematics! It was a really good day, but de fi nitely not maths. (Andersson,  2010 , p. 15)   

 Imagination of future possibilities was connected to the learners’ experiences 
with mathematics in the past (Patrick,  1999  ) . Allowing spaces for discussion of dif-
ferent facets of the activities meant that they were opened to discussion and 
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re fl ection. This is likely to broaden horizons for imagining future possibilities for 
school mathematics. However, the relationship to transitions to outside-school contexts 
is not so clear.  

   Alignment 

 On the whole, the learners aligned themselves with the aims of the ethnomathe-
matics and critical mathematics agendas to which they were introduced. This can be 
seen in the way that they combined their everyday knowledge, interests and math-
ematical understandings when working on the different activities. Yet, some learn-
ers had to be encouraged to align themselves with the activities by a teacher or in 
some cases an elder (Lipka & Adams,  2004  ) . 

 It was not always clear how learners’ changed perceptions of mathematics 
and how it could be learned were connected to their willingness to align themselves 
with mathematics activities in the future. As one of Gutstein’s  (  2003  )  learners stated 
“I think that now I can understand the world better by using math, but that doesn’t 
mean I  like  connecting math with what surrounds me. I still think that there are 
some ‘ BIG IDEAS ’ you can understand  without  using math” (p. 61, upper-case and 
underlining in the original). This learner may have learned to tolerate doing math-
ematics in the classroom but was unlikely voluntarily to choose to use mathematics 
in situations outside the classroom. The transition into the mathematics classroom 
was eased but the mathematical knowledge was likely to remain compartmentalized 
as something done at school. 

 For other students, the power that they gained from solving problems that mat-
tered to them, with mathematics, supported their continuing engagement in mathe-
matics classrooms. By enrolling in courses adult learners—such as those described 
by Tomlin  (  2002  )  and Patrick  (  1999  ) —showed that mathematics learning was an 
enterprise with which they wished to align themselves. This was the case even 
though their imagination of mathematics seemed clearly connected to what they had 
not been able to do when at school. 

 By using the modes of belonging as a lens, it is possible to see that activities 
based on ethnomathematics or critical mathematics education approaches provided 
possibilities for easing learners’ transitions into mathematics classrooms. This is 
because it enabled learners to see possibilities about why they should learn mathe-
matics. This was not possible when connections were not made to their backgrounds, 
foregrounds or to improving the world in which they lived. Nevertheless, although 
the activities provided opportunities for learners to engage in, imagine and align 
themselves to learning mathematics at school, there were still tensions when teach-
ers’/facilitators’ assumptions about the activities did not match those of the learners. 
The focus of activities was on easing learners’ transition into the mathematics class-
room and only secondary consideration, if any, was given to easing learners’ transition 
into out-of-school contexts.   
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   Transitioning Into and Out of School 
Mathematics Contexts 

 In this chapter, we have de fi ned contexts as systems of knowledge. Transitioning 
contexts, therefore, involved coming to terms with differences in knowledge, how it 
was organized and valued and the interaction patterns around how it was used. 
Learners’ re fl ection on these differences led to learning, both about the knowledge 
but also about the learners themselves. When the knowledge system of school math-
ematics was similar to those of outside-school contexts then the transitioning pro-
cess was likely to lead to a broadening of horizons of possibilities for learners’ 
futures, in both the school and out-of-school directions. However, when there were 
differences, then transitioning could leave learners as the mediators between knowl-
edge systems. This could result in a narrowing of learners’ horizons in regard to 
school mathematics learning and out-of-school learning. 

 In this  fi nal section, we  fi rst discuss why learners’ perspectives are so important 
before revisiting Willis’ table showing the relationship between disadvantage, math-
ematics education and curriculum. Then, we summarize those practices that seemed 
to ease learners’ transitioning and conclude with suggestions for further research. 

 If we take seriously the proposition that learning occurs when learners transition 
between contexts and that it includes a process of becoming, as well as understand-
ing content, then it is important to consider the pedagogical practices from the 
learners’ own perspectives. It is their understanding of the activities that enables 
connections between their foregrounds and backgrounds to form their dispositions 
to learn (Skovsmose,  2004  ) . As can be seen in the modes of belonging analysis, 
regardless of the pedagogical approaches adopted, learners’ perceptions may be 
different from the perceptions of those who develop the mathematical activities. 
This can lead to a narrowing of horizons of possibilities for learners’ futures, both 
in regard to formal mathematics and to out-of-school activities. Nevertheless, in the 
studies described, ethnomathematics and critical mathematics education approaches 
did seem to support learners to transition between in-school and out-of-school con-
texts, at least in one direction—towards school—and thus broadened horizons from 
this viewpoint. 

 Ethnomathematics and critical mathematics education have similarities with 
Perspectives 3 and 4 in Willis’  (  1998  )  table (see Table  6.1 ). As described earlier, the 
perspectives appear to position some groups as being other, so the focus remains of 
their differences. By investigating pedagogical approaches, we instead focus on the 
relationship between transitioning and the narrowing or broadening of horizons of 
learners’ possibilities for their futures. Using learners’ perspectives means that 
although their re fl ections form the heart of the analysis, it is the approaches and the 
outcomes of the approaches which are discussed. 

 The features that the learners suggested supported their transitioning process 
varied between what was learnt and how it was learnt. On the whole, learners sug-
gested that activities had to be based on something that they cared for: in their past, 
such as poor performance in mathematics when at school; in their future, for example 
using ethnomathematical activities themselves as teachers; and in their present, 
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cultivating a garden and growing plants. Learners also valued activities which were 
socially or politically motivating for them—such as investigating issues to do with 
climate change. The activities in which learners were interested generally involved 
integrating knowledge systems from inside and outside school. 

 The relevance of Biddy’s  (  2009  )  pedagogy of relationship was obvious in learners’ 
comments about how they should learn. For example, they valued being seen and 
valued, not only by their teachers but also by other learners. Being able to negotiate 
aspects of the activities with each other and with the teacher was one aspect of this, 
and this contributed to their aligning themselves with the present activities. Working 
in collaborative groups that had to resolve complex issues meant that all learners 
had to contribute, and those contributions were seen as valuable. The continuing 
negotiation within the groups, with the teacher, and in relation to the artefacts with 
which they had to work, meant that power was distributed between participants. 
Working with artefacts that learners found interesting, such as the Andean  fl ute, 
supported their engagement in mathematics education activities. Many learners 
commented on the value of “learning by doing.” However, when the tasks were not 
explicitly linked to the learners’ own culture, the only transitioning that the tasks 
supported was into the classroom. 

 Learners have valuable insights into the sorts of pedagogical practices that con-
tribute to their transitioning between contexts. Over the last few decades there has 
been much theorizing about reasons why certain groups of learners do not do well 
in mathematics classrooms. This has led to awareness that learners’ backgrounds 
and their expectations about what they can learn in the classrooms will contribute to 
their dispositions to learn. Yet this has not led to a proliferation of research that asks 
learners about their experiences. In this chapter, we have presented much of the 
research that is available. Nonetheless, there is a need for more work if we are to 
learn how to ease learners’ transitioning processes so that their horizons of possibili-
ties for futures are enlarged rather than reduced. We do not know, for instance, 
whether enjoyment of an activity in itself eases learners’ transitioning between con-
texts or whether there is a need to bridge different knowledge systems with which 
learners are familiar. 

 As well we would suggest that further work needs to be done in regard to improv-
ing our understanding of the range of contexts that are likely to facilitate learners’ 
transitions. In our analysis, it was clear that both ethnomathematics and critical 
mathematics education have the potential to ease the transitioning of learners into 
out-of-school contexts. However, this has rarely been the object of mathematics 
education research, which has remained focussed on transitioning into mathematics 
classrooms. The obsession with national testing, with equity issues being strongly 
tied to increased test results, has blinkered much of the research, leading to a focus 
on the importance of easing learners into the mathematics classroom. Yet it is naïve 
to believe that learners would form dispositions to learn simply from their experi-
ences in those classrooms. The re fl ection in which learners engage as they transition 
into out-of-school contexts, including the home, is likely to have an equal impact on 
their dispositions to learn, within those very classrooms which are deemed to be so 
important.      
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  Abstract   Adults’ mathematics education (AME) as a  fi eld of study and practice 
displays a broad range of settings for teaching and learning and for research. At the 
same time, its activities develop in a dynamic context of globalization, competition, 
and social insecurity. AME is faced with the same struggle for its justi fi cation, 
between humanistic and human capital goals of education, that adult education and 
lifelong education have been facing over the last half-century. This struggle is 
re fl ected in AME practice, research and policy. In this chapter, we formulate critical 
perspectives for examining AME in these three dimensions with a view to helping 
ourselves and others to clarify and act in crucial areas. Thus, we examine multiple 
and contested meanings of key terms like numeracy, and how de fi nitions vary 
depending on whether they seek to foreground the individual learners’ needs or 
particular economic imperatives (for example, labour market needs). We illuminate 
how such variable de fi nitions are experienced by AME learners and practitioners, 
and how they lead us to problematize ideas such as “the transfer of learning” of 
mathematics, for example, from school to work, and from formal to non-formal or 
informal learning situations. It is timely now, when a new international survey of 
adults’ skills, the OECD-sponsored Programme for International Assessment of Adult 
Competencies (PIAAC) is being conducted, to question what these surveys can tell 
us for the development of AME as a  fi eld, and what alternative questions we need 
to be pursuing independently.      
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   Introduction 

 Adults’ mathematics learning as a focus of research has developed in relation to 
a range of educational practices in formal, non-formal and informal settings, many 
of which have not been focussed primarily on learning mathematics. But, once 
established and institutionalized, a  fi eld of practice like adults’ mathematics educa-
tion (AME) becomes partially dependent on the development of ideas, pedagogic 
strategies, and solutions to problems that can be developed by research. As we will 
argue in the next section, the two main pillars of AME research are the  fi elds of 
mathematics education and adult education. But, although the development of the 
 fi eld of practice is an important criterion for relevance, it is crucial for research to 
be able not only to solve problems in the  fi eld of practice but also to review critically 
and to reformulate these problems (Olesen & Rasmussen,  1996 ; Wedege,  2004  ) . 

 In the  fi rst  International Handbook of Mathematics Education , the chapter 
“Adults and Mathematics (Adult Numeracy),” by Gail FitzSimons, Helga Jungwirth, 
Jeurgen Maaß and Wolfgang Schlöglmann  (  1996  ) , introduced the  fi eld with some of 
its main problems, such as adults’ beliefs about and attitudes towards mathematics, 
and important distinctions like mathematics versus numeracy and school mathematics 
versus out-of-school mathematics. It also pointed to the heterogeneity of the  fi eld—in 
terms of learner as well as teacher diversities. The complexity of the  fi eld—in 
research, in practice, and in policy terms—was further emphasized in the chapter by 
Gail FitzSimons, Diana Coben and John O’Donoghue  (  2003  )  in the  Second 
International Handbook of Mathematics Education . In that chapter the authors ana-
lyzed the  fi eld of “lifelong mathematics education” in terms of its social, cultural 
and economic dimensions and from the perspectives of globalization and lifelong 
learning (LLL). 

 Clari fi cation about our use of the term “adult” is needed. Of fi cial de fi nitions 
often de fi ne an adult as someone who has  fi nished compulsory schooling, or who is 
15+ or 16+ years; in labour statistics, attention may focus only on those up to 
65 years (or retirement age). But the de fi nition of an “adult” is not straightforward, 
as has been shown in the international research forum Adults Learning Mathematics 
(e.g., Safford,  1999  ) , and in recent ICME topic study groups (e.g., Wedege, Evans, 
FitzSimons, Civil, & Schlöglmann,  2008  ) . In this chapter we adopt a broad under-
standing of  adults  as including people of a wide range of ages, who:

     participate in a substantial range of social practices, such as working (or seeking work), • 
parenting, caring and housework, budgeting and organizing consumption, voting; and  
  are conscious of having social or political interests (cf., Wedege et al.,  • 2008  ) .      

 In particular, this de fi nition includes adults over 65 years of age and many 
adolescents. 

 Mathematics education, too, is to be understood in a broad sense, including for-
mal, non-formal and informal learning (UNESCO,  2000  ) . We can, following 
FitzSimons et al.  (  2003  ) , distinguish Formal Adult Mathematics Education (FAME), 
from Non-Formal Mathematics Education (NFAME), and Informal Adult 
Mathematics Education (IFAME). FAME normally has a well-speci fi ed curriculum, 



2057 Critical Perspectives on Adults’ Mathematics Education

and usually results in certi fi cation. NFAME focusses on practical knowledge and skills 
of fairly immediate usefulness to particular learners, for example in workplace 
training, and may not result in assessment or certi fi cation. IFAME includes the 
lifelong processes by which every person accumulates knowledge, skills, attitudes 
and insight from experiences within their environments. 

 In Coben’s  (  2006  )  re fl ection on issues highlighted by the  Second International 
Handbook  chapter, one task pinpointed as necessary for developing a  fi eld-speci fi c 
framework for AME was a speci fi cation of the key concept of numeracy. Strictly 
speaking, it is not correct to talk about “the concept of numeracy” because numer-
acy is a contested notion and there are a number of plausible, yet different, de fi nitions 
(Coben et al.,  2003  ) . 

 There are important reasons for this. Though introduced to policy debates in the UK 
in the late 1950s, the term “numeracy” only came to the fore in the 1980s. By then, 
policy makers had become concerned that adults should be able to use mathematics 
in “real contexts,” especially work (see, e.g., Cockcroft,  1982  ) . 

 At the same time, adult literacy tutors were looking to develop their teaching to 
address mathematical skills which would complement literacy skills. And progres-
sive educators were seeking to draw on research displaying “everyday mathemat-
ics” capabilities of ordinary people, to foreground their knowledge and experience 
while critiquing élitist notions of education and of mathematics (e.g., D’Ambrosio, 
 1985 ; Lave,  1988 ; Nunes, Schliemann, & Carraher,  1993  ) . As Johnston and 
Yasukawa  (  2001  )  recounted:

  Frustrated with a mathematics whose history kept it within strong disciplinary boundaries 
… we colonized numeracy, permitting, indeed requiring, it to be a bridge between mathe-
matics and society. (p. 291)   

 It is dif fi cult to disentangle the differing notions of numeracy proposed from 
the underlying (and competing) ideologies: we attempt to do this by examining 
different examples of studies using the concept and by problematizing their assump-
tions. Nevertheless, the different approaches share some concerns: for example, in 
most, there is a desire to address the problem of the transfer of knowledge between 
differing contexts by emphasizing an idea of numeracy as “bridging” mathematics 
and adult life in some way. 

 Several de fi nitions of numeracy are given in this chapter. We can make sense of 
the differences, by analyzing key dimensions on which they might vary. One is 
whether numeracy is considered as mainly low-level “basic” skills: some views 
focus on lists of skills at the “lower levels” of a skills hierarchy. In contrast, other 
researchers (e.g., Hoyles, Noss, Kent, & Bakker,  2010 ; Nunes et al.,  1993  )  describe 
adults’ use of more advanced modes of mathematical thinking which might be 
called numeracy. 

 Some approaches see numeracy as able to be (a) de fi ned generally within a 
professional group, across a country, or even transnationally and (b) measured/
tested in a standardized way. We might call this a generalizing approach—starting 
either with claims about societal and/or labour market requirements for adults’ 
mathematical competences, or with demands from the academic discipline. In contrast, 
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some prefer a subjective approach—starting with adults’ own perceived needs for 
mathematical competences and their beliefs and attitudes towards mathematics. 

 Another related dimension might be called contextuality: the extent to which the 
context of mathematical/numerate thinking is considered crucial in characterizing 
it. The term “basic” is sometimes taken to mean “abstracted from any context.” 
However, most adults are interested in their use of mathematical ideas in speci fi c 
contexts, as are their community and work colleagues. In AME research and in 
practice, the emphasis on contextuality is a strong feature of most de fi nitions of 
numeracy, and it relates to the problem of transfer mentioned above. 

 This de fi nition from Denmark (see also Wedege,  2010a ) stresses contextuality, 
particularly its societal aspects:

   Numeracy  consists of functional mathematical skills and understanding that in principle all 
people need to have. Numeracy changes in time and space along with social change and 
technological development. (Lindenskov & Wedege,  2001 , p. 5)   

 Another dimension relates to whether numeracy is seen largely as a cognitive 
skill, or whether the affective aspect is also seen as crucial. Much AME research 
emphasizes the affective—beliefs, attitudes, emotions, and motivations. 

 As with numeracy, lifelong learning (LLL) is a contested concept. Adopting LLL 
as a focus means that the rights and the obligations concerning education do not 
stop with childhood and youth but include adult life. According to Rubenson  (  2001  ) , 
in the late 1960s, UNESCO introduced LLL as a utopian-humanistic guiding prin-
ciple for restructuring education. The concept reappeared in policy debates in the 
late 1980s in a different form. These debates were driven by interests based on an 
economistic worldview, emphasizing the importance of highly developed human 
capital, and science and technology. Thus, from the  fi rst to the second generation, 
LLL had changed from a utopian ideal to an economic imperative—though not 
without criticism. From the late 1990s, a third generation concept of LLL (some-
times called “inclusive liberalism”—Walker,  2009  )  was being emphasized, with 
both active citizenship and employability being presented as important aims. This 
was the view promoted by the Organisation for Economic Co-operation and 
Development (OECD), the European Union (EU), and other transnational organiza-
tions. A strong connection between economy and education has been promoted and 
maintained through the economics of education and human capital theory. 

 Rubenson  (  2008  )  argued that the OECD and other transnational organizations 
have now achieved hegemony over educational discourse in industrialized coun-
tries—with respect to the situation in less industrialized regions (see, e.g., Aitchison, 
   2003  ) . In this chapter, we aim to discuss and to elucidate the dominant human capi-
tal discourse, as well as important alternative discourses. The adoption of critical 
perspectives (from critical theory) helps us to develop an understanding of these 
often con fl icting points of view. There are a number of ways that we aim to open up 
critical perspectives in this chapter:

   We trace the multiple, ambiguous and contested meanings of key concepts such as • 
numeracy and LLL, and relate them to the sometimes contradictory educational 
goals held by institutions and groups, and to these groups’ exercise of power.  
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  We challenge dominant discourses, received ideas and conventional formulations • 
of problems (such as “learning transfer”), sometimes bringing to bear widely 
used criteria (e.g., of methodological validity), sometimes deploying critical 
theoretical perspectives.  
  We stress the ways that historical changes in society’s ideology, economic • 
organization, or political power relations may change the meaning that numeracy 
has for adults in society (Cohen,  1982  ) : for example, reference is made to peo-
ple’s need for a greater degree of numeracy or “ fi nancial literacy” as the welfare 
provisions in some countries are eroded (e.g., Bond,  2000  ) .  
  We illustrate the need to document the differential effects of ongoing social and • 
political changes on different groups within society, and aim to foreground issues 
of social justice and inclusion/exclusion (Rogers,  2006  ) , in terms of various 
dimensions of social difference.  
  We present examples of research and practice that are speci fi c to adults and dis-• 
cuss the need to problematize whether and how ideas from education at the 
school level can be transferred to adults’ mathematical learning/numeracy (cf., 
Coben,  2006  ) .    

 Thus, the emphasis in this chapter is on the adult learner with numeracy as a key 
concept, and the set of research problems is related to adults, mathematics, and 
lifelong education in a societal context. In the next section, we consider AME as 
a  fi eld of study, and the variety of theoretical approaches deployed. In the two 
sections after that, we illustrate the wide range of educational practice in AME, and 
focus on policy issues, in particular those relating to international surveys of adult 
numeracy. The  fi nal section brings together our conclusions. Throughout, we con-
sider the issues from our critical perspectives.  

   AME as a Field of Study 

 In this section, we consider AME as a  fi eld of study, the variety of theoretical 
approaches used, and some illustrations of research deploying critical perspectives 
from the  fi eld. 

   Emergence and Identity of AME as a Field of Study 

 The research  fi eld of AME can be seen as having been cultivated in the “border-
land” between the two domains of mathematics education and of adult education 
from where concepts, theories, methods and  fi ndings have been imported and recon-
structed. Both adult education (Olesen & Rasmussen,  1996  )  and mathematics edu-
cation (Sierpinska & Kilpatrick,  1998  )  have a strong sense of their own speci fi city. 
Multidisciplinarity, the importing and juxtaposing of theories and methods from 
other disciplines, has been vital in building the research domain of mathematics 
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education. However, interdisciplinarity requires a coherent framework of concepts, so 
the imported frameworks must be reconstructed and recontextualized (Brousseau, 
 1986  ) . In AME, both in practice and in research, reconstruction of conceptual 
frameworks from other disciplines has been a central task (FitzSimons et al.,  2003  ) . 

 The institutional supports for AME research, especially internationally, in terms 
of journals, meetings of researchers, and reviews of research, are important. These 
include (a) the international organization “Adults Learning Mathematics—A 
Research Forum” (ALM) which brings together researchers and practitioners 
(Coben, O’Donoghue, & FitzSimons,  2000  ) ; and (b) Topic Study Groups at ICME 
congresses that have had AME as their principal focus. 

 The Australian-based journal  Literacy and Numeracy Studies: An International 
Journal in the Education and Training of Adults  has been publishing for some 
20 years, and re fl ects the origins of the AME  fi eld in adult literacy concerns. A journal 
dedicated to AME research,  Adults Learning Mathematics—An International 
Journal , has been published since 2005. The journal  Numeracy , an offspring of the 
National Numeracy Network in the USA, began publishing in 2008. 

 Work done under the aegis of public agencies has also been important. For example, 
in England, the National Research and Development Centre for Adult Literacy and 
Numeracy (NRDC), established in 2002 by the UK government within its Skills for 
Life strategy, has sponsored many relevant projects. In the USA, the university-
based National Center for Adult Literacy and the federally-funded National Center 
for the Study of Adult Learning and Literacy have both produced several research 
reports on numeracy (see, e.g., Gal,  2000  ) . In 2004, the Brazilian government created 
a secretariat in the Ministry of Education dedicated to Lifelong Education, Adult 
Literacy, Diversity and Inclusion—aiming to reduce educational inequalities by 
ensuring all citizens have access to education. And there has been useful institu-
tional work in other European countries—for example in Sweden (Gustafsson & 
Mouwitz,  2004  )  and cross-European funded networks, e.g., EMMA (see the list of 
Web sites at the end of this chapter). In 2010, New Zealand established a National 
Centre for Literacy and Numeracy for Adults. 

 Thus, it now makes sense to talk about a  fi eld of AME which has a legitimate and 
distinctive place within the mathematics education research domain. We will aim to 
characterize the  fi eld by considering three key aspects: (a) the aims of studies in 
AME; (b) the theories and research questions that provide the organizing basis for 
research; and (c) the range of methodologies used. 

 On the basis of a speci fi c theoretical and methodological approach, research 
questions concerning issues in the problem  fi eld have been formulated. Any research 
question in AME is, for example, based on a speci fi c conception of adult mathemat-
ical knowledge, of how adults learn mathematics, and of justi fi cations for AME 
(Wedege,  2009  ) . It has been recognized that within AME, the same key concept 
or term, such as “numeracy” or “adults’ everyday mathematical knowledge,” may 
be de fi ned and construed in inconsistent or con fl icting ways because of different 
theoretical commitments, methodologies, aims, interests, or values. 

 For example, generalizing and subjective approaches, discussed in the Introduction 
to this chapter, can be illustrated with a series of projects. The generalizing approach 
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was assumed in an in fl uential early British report,  Mathematics Counts  (Cockcroft, 
 1982  ) , on the mathematical needs of adults. This “Cockcroft Report” asserted that 
the needs of adults should be taken into account when curricula in schools were 
being de fi ned. In contrast, Benn’s  (  1997  )   Adults Count Too  took a subjective 
approach, starting with adults’ perspectives. Benn argued that mathematics is not a 
value-free form of knowledge, but is imbued with élitist notions which can often 
exclude and mystify. She therefore rejected approaches where any problem with 
mathematics learning is located within the learner—rather than with systemic 
inequalities and prejudices that may themselves be reinforced by a generalizing 
approach, and may themselves have effects on individual adults’ mathematics learn-
ing. However, to understand the affective and social conditions for people’s learning 
processes in mathematics, one has to combine generalizing and subjective 
approaches, as Gail FitzSimons did in  What Counts as Mathematics?   (  2002  ) , which 
discussed “technologies of power” in adult and vocational education.  

   Why Study AME? 

 At the societal level, reasons for research into AME are formulated within speci fi c 
discourses—within, for example, discourses on transnational policies or human 
capital theories which position adult numeracy learners according to the de fi nition 
of numeracy formulated by the discourses. 

 Another related purpose is to ensure that entrants to/employees in a particular 
sector meet standards of knowledge or skill required in that work. This matter is 
taken up in one of our case studies in this section on the standards required for entry 
to the nursing profession. 

 Other studies have aimed to describe adults’ learning, knowledge and use of 
mathematics in different settings—some of these settings, though not all of them, are 
related to work (see, e.g., Evans, Alatorre, van der Kooij, Noyes, & Potari,  2010  ) . 
Much signi fi cant research has been done with adults in this general area. Examples 
include:

   Studying the distinctive mathematical practices among identi fi able cultural • 
groups (D’Ambrosio,  1985  ) .  
  Describing the mathematical thinking used by adults in everyday activities, and • 
contrasting it with thinking in school mathematics (Lave,  1988  ) .  
  Analyzing mathematics practices of working adults in Brazil, and comparing this • 
mathematics with school mathematics (Nunes et al.,  1993  ) .    

 Discussions of the context of the use of mathematics relate closely to the problem 
of “learning transfer”—see Chapter   6     of this  Handbook . This remains a crucial con-
cern for research and learning in a subject claiming wide applicability, like mathe-
matics. The traditional use of the term “transfer” as a metaphor describing a situation 
where a person carries the learning product from one problem, situation, or institution, 
to another has been widely criticized in psychology and in adult  educational circles 
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(e.g., Hager & Hodkinson,  2009 ; Tuomi-Gröhn & Engestrom,  2003  ) . Transfer has been 
reformulated in several ways: for example, in terms of (a) translation across contexts 
(Williams & Wake,  2007b  )  or across discourses (Evans,  2000b  ) ; (b) as consequential 
transition, involving a developmental change in the relationship between an individ-
ual and social activities (Beach,  1999  ) ; and (c) as boundary-crossing of a person 
across activities (Tuomi-Gröhn & Engestrom,  2003  ) . 

 Another central aim of AME research has been to elucidate relationships between 
cognitive and affective aspects of adults learning mathematics. In the early studies 
of adults, problems were formulated within the affective domain with several foci:

   Mathematics anxiety (e.g., Buxton,  • 1981 ; Tobias,  1978 /1993);  
  Experience of failure and success (e.g., Burton,  • 1987  ) ;  
  Empowerment (e.g., Benn,  • 1997 ; Frankenstein,  1989  ) ;  
  Emotions (e.g., Evans,  • 2000a  ) .    

 Because of the importance in post-compulsory education of the adult’s motiva-
tion to learn in ways that are meaningful to him/her, the tendency to emphasize 
the study of affective factors (beliefs, attitudes and emotions towards mathematics) 
in AME has always been strong.  

   How to Study AME? 

 As the international research  fi eld of AME was being established many of the 
researchers formulated problems and constructed their research questions within 
theo-retical perspectives and methodologies found in mathematics education 
(e.g., Bishop,  1988 ; Ernest,  1991 ; Skovsmose,  1994  ) . They also adopted perspec-
tives found in adult education (e.g., D’Ambrosio,  1985 ; Freire,  1972  ) ; in developmental 
or social psychology (e.g., Nunes et al.  1993 ; Vergnaud,  1988 ; Walkerdine,  1988  ) ; 
and in social anthropology or sociology (e.g., Lave,  1988 ; Lave & Wenger,  1991  ) . 
Studies such as these provided the concepts that formed the basis for early studies 
within AME. 

 We now describe and illustrate a range of theoretical perspectives, and related 
methodologies, in studies currently conducted in AME. 

   Utilitarian perspectives.   In the UK the Cockcroft Report  (  1982  )  on school 
mathematics commissioned research including a street survey of adult numeracy 
performance and a set of semi-structured interviews - both of these including 
performance questions and questions about attitudes (Advisory Council for Adult 
and Continuing Education,  1982  ) . This was followed by a series of studies involving 
home interviews, culminating in a “Skills for Life” policy (Department for Education 
and Skills (DfES),  2003  ) . Each survey drew on a speci fi c de fi nition of numeracy as 
an adult skill, formulated in general terms. The recent international surveys have 
used a similar de fi nition, test, and measurement approach. Other studies of this type 
focus on employees in a particular sector, and whether or not they meet standards of 
knowledge or skill required in that work.  
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   Ethnomathematics perspectives.   Within the classic ethnomathematical 
perspective the approach is subjective almost by de fi nition. It emphasizes adults’ 
“everyday knowledge” (D’Ambrosio,  1985  ) . Most ethnomathematics research 
programs have focussed on these developing aims (Jablonka,  2003  ) :

   Relating out-of-school practices with school (or college) mathematics.  • 
  Uncovering latent mathematical content hidden or “frozen” (Gerdes,  • 1996  )  in 
traditional artefacts of indigenous peoples.  
  Challenging a “Eurocentric” version of the historical origins of mathematical • 
concepts and methods.    

 Classic ethnomethodological research (e.g., Gerdes,  1996  )  has tended to use 
ethnographic approaches. However, other approaches may be combined with ethnog-
raphy, as in the activist approach of Knijnik’s  (  1993  )  work with the “landless,” 
which will be discussed later in this chapter.  

   Situated perspectives.   We consider the work of Lave (and colleagues) and that 
of Nunes, Schliemann and Carraher under this heading, though their theoretical 
commitments are somewhat different. 

 Lave has studied the use of mathematics by adults in settings outside the school. 
Her early work championed  situated cognition , the idea that knowing, thinking and 
learning depend in crucial ways on the situation in which they are done. The strong 
form of situated cognition argues that there is a disjunction between doing mathe-
matics problems in school and numerate problems in everyday life, because these 
different contexts are characterized by different “structuring resources.” And people’s 
thinking is speci fi c to these distinct practices and settings. Accordingly, aiming for 
the “transfer” of learning from school or academic contexts to outside settings is 
likely to be fruitless. 

 Methodologies used included “activity shadowing” (semi-participant observation) 
of adults shopping, and Weight Watchers, and Piagetian clinical interviews, which 
posed arithmetical problems in relevant contexts. 

 Lave’s later work has focussed on describing learning within communities of 
practice, including apprenticeship as a model of situated learning (Lave & Wenger, 
 1991  ) . This emphasized less the discontinuities between practices, and acknowledged 
that no practice could ever be completely closed. Lave argued that a community of 
practice must be understood in relation to other tangential, or overlapping, commu-
nities. The approach now consisted of identifying communities of practice which 
were interdependent (Lave,  1996 ; Wenger,  1998  ) , and studying the bridges between 
them, particularly the social relations and identities across them. 

 In contrast, Terezhina Nunes, Analucia Schliemann and David Carraher have 
been optimistic about the possibilities of applying learning from school in outside 
practices—and vice versa. They studied the everyday “mathematics-containing” 
practices of various communities of workers around Recife in Brazil—for example, 
carpenters, bookies, farmers, and  fi shermen (see Nunes et al.,  1993  ) . These studies 
generally began with ethnographic descriptions of the work practices (particularly 
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the numerate aspects), followed by studies employing experimental designs 
(researcher-controlled allocation of different types of problems) with Piagetian 
clinical interviews. Here the subject was asked to solve several sets of problems 
constructed by the researchers. 

 Nunes et al.  (  1993  )  documented clear differences in calculation methods between 
street mathematics and school mathematics, characterized as using oral and written 
procedures, respectively. Drawing on the work of Gérard Vergnaud  (  1988  )  and others, 
and going beyond ethnomathematical analyses, they emphasized the mathematical 
invariants (e.g., symmetry or commutativity) underlying the properties or relations 
of quantitative concepts—even when these concepts had different representations in 
different contexts. 

 Concerning transfer, Schliemann  (  1995  )  concluded:

  Mathematical knowledge developed in everyday contexts is  fl exible and general. Strategies 
developed to solve problems in a speci fi c context can be applied to other contexts,  provided 
that the relations between the quantities in the target context are known by the subject as 
being related in the same manner as the quantities in the initial context are . (p. 49, empha-
sis added)   

 Developing this idea, evans  (  2000a  )  emphasized  both similarities and differences 
between signs  in meaning-making and facilitating transfer. 

 Both Lave and Nunes et al. made ground-breaking contributions to understanding 
mathematical thinking in context—through seeking out and describing numerate 
thinking in a wide range of contexts relevant to adults.  

   Cultural–Historical Activity Theory.   Cultural–Historical Activity Theory 
(CHAT) is an extension of the work of Lev Vygotsky  (  1930  ) , Alexei Leontiev  (  1978  ) , 
and other Soviet psychologists from the early 20th century. This approach was further 
developed by Michael Cole  (  1996  )  and Yrjö Engeström  (  2001  ) , among others. Here 
the context for any action is the activity in which the subject is engaged (Engeström, 
 2001  ) . Activities are oriented toward collective motives, which have arisen in the 
course of cultural historical development, and are organized in the triplet of activity/
action/operation (Roth,  2007a  ) . 

 Some “third generation” CHAT researchers see emotion as a crucial basis for 
motivation and identity. Identity is related to an individual’s participation in col-
lective activity; this relates to individual and collective emotional “valences” aris-
ing from face-to-face interaction with others. Cognition and emotion are seen not 
only as mutually in fl uencing, but also as having “inner connections in activity” 
(Roth,  2007a  ) . 

 The preferred research methods in the CHAT approach are ethnographic (partici-
pant observation). However other methods have been used. Thus, for example, when 
Roth  (  2007b  )  required more convincing indicators for his claims about emotions, he 
made systematic measurements of speech intensity and pitch. 

 Other key concepts in CHAT and related approaches are those of boundary cross-
ing and boundary objects—see our discussion of the recent work of Hoyles et al. 
 (  2010  )  below.  
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   Discursive perspectives.   We group a range of approaches under this heading, 
including many that specify the context of adults’ mathematical thinking as social 
practices. Most of these authors see adults’ activity within social practices as 
regulated by discourse, and as taking form within positions made available by 
discourse. According to Evans, Morgan and Tsatsaroni  (  2006  ) , a discourse is a 
system of signs that:

  provides resources for participants to construct meanings and identities, experience emo-
tions, and account for actions. Discourses specify what objects and concepts are signi fi cant 
and what  positions  are available to participants in the practice … They also provide stan-
dards of evaluation. (p. 210; emphasis in original)   

 This perspective problematizes the idea of context, and stresses the need to ana-
lyze an adult’s positioning in multiple social practices. It aims to describe the sub-
ject’s navigation of general social requirements (crystallized in the roles, resources 
and constraints offered by discursive practices), and “subjective” goals and impulses 
(Evans,  2000a  ) . 

 Many discursive approaches emphasize affect and emotion, which are central con-
structs in AME research. Some work has aimed to show how individuals’ experiences 
emerged from interactions between a personal history of involvement in discursive 
practices, and present positionings, including those in pedagogic practices (Evans et al., 
 2006  ) . Researchers focussing on discursive approaches sometimes discuss affect and 
emotion within psychoanalytic perspectives—following Lacan’s work which empha-
sizes desire, which, it is argued, permeates the workings of language (see, e.g., 
Walkerdine,  1988  ) . The term “desire” captures the energy and intensity of emotion, 
and supports a uni fi ed approach to cognition and affect, seeing emotion as “attached” 
to (chains of) signi fi ers (words, symbols, etc.) representing ideas. 

 Another strand of discursive approaches has focussed on having “numeracy 
practices” and “numeracy events” as the unit of analysis (Street, Baker, & Tomlin, 
 2005  ) . This approach uses parallel ethnographic approaches from the study of lit-
eracy. Street et al. examined numeracy events in the home in order to understand the 
relationship (or lack thereof) between the numeracy that children were learning 
from parents and that in the school. Gebre, Rogers, Street and Oepnjuru  (  2009  )  used 
similar methods to study the literacy and numeracy practices of “non-literate” adults 
in Ethiopia. 

 Some research based on discursive approaches has used the work of Bernstein 
 (  2000  )  on pedagogic discourse (e.g., Evans, Tsatsaroni, & Staub,  2007 ; FitzSimons, 
 2002  ) . Others have used the work of Foucault, focussing on knowledge and plays of 
power (e.g., FitzSimons,  2002 ; Reis & Fonseca,  2008  ) .   

   Case Studies Using Critical Perspectives in Research on AME 

 As discussed in the introduction to this chapter, critical perspectives on any 
theme are not only concerned with societal and individual ways of coping with 
economic, social and technological change, but also with related equity and inclusion 
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considerations. Some draw on critical theories to question received notions of 
numeracy or other key concepts, or accepted beliefs about the functioning of a social 
system, especially mechanisms or groups within that system. Overall, they 
problematize issues about dominant perspectives, particularly issues from policy 
discourses of recent decades. In order to show how critical perspectives have been 
deployed in a range of AME research investigations we have selected four studies of 
adults’ mathematics learning or usage within speci fi c social practices. These studies 
were concerned with (a) adult numeracy students; (b) trainee nurses; (c)  fi nancial 
advisers and industrial engineers; and (d) landless peasants. 

   Motivation of adults returning to study mathematics.   For Swain, Baker, 
Holder, Newmarch, and Coben  (  2005  ) , a central research question concerned 
students’ motives for attending—and continuing with—adult numeracy classes. 
The dominant view at the time was that adults would, or should, be motivated to take 
further basic skills classes in order to cope better with numerical challenges arising in 
work contexts, and in everyday life. 

 The researchers selected three Further Education colleges in southern England, 
involving 80 adult learners attending stand-alone numeracy classes. Their method-
ology included (a) classroom observation and semi-structured interviews by the 
project leader; (b) interviews, session plans and  fi eld-notes made by three teacher-
researchers; and (c) analyses of diaries and photographs produced by the students to 
record numerate experiences outside class (Swain et al.,  2005  ) . 

 Theoretical resources included:

   Theories of identity about how people’s beliefs about self have an in fl uence on • 
their perceptions of the world.  
  Sociological theories of Bourdieu (e.g.,  • 1986  ) , whose concept of habitus (dispo-
sitions acting subconsciously to organize people’s social experiences) supports 
the investigation of identity, and whose concepts of cultural capital (knowledge 
and skills acquired largely through education) and social capital (resources 
gained via “connections” with particular groups) explain how people gain power 
and status in society.  
  Lave’s  (  • 1988  )  position that out-of-school practices should not be seen as merely 
the application of school techniques.  
  The idea of a learning career (Swain et al.,  • 2005  ) .    

 The main  fi ndings were that reasons for joining, and continuing to attend, numeracy 
classes were varied and complex. The students’ three main motivations were (a) to 
prove that they could succeed in mathematics; (b) to achieve understanding and 
engagement; and (c) to help their children with homework. Less mentioned were 
the need to gain a quali fi cation and to help their functioning in everyday life. 
By re fl ecting on data both from the whole sample and from individual case studies, 
the researchers were able to analyze in fl uences on motivations from social class, 
ethnicity, and especially gender factors.  
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   Numeracy for nurses.   Numeracy is a key skill for professional nurses—it 
pervades many aspects of their professional practices, such as calculating  fl uid 
balance, drug dosages and intravenous drip rates (Hoyles, Noss, & Pozzi,  2001 ; 
Hutton,  1998  ) . Coben  (  2010  )  and her colleagues referred to “a growing literature 
revealing a lack of pro fi ciency amongst both students and registered nurses” (p. 13) 
when solving written tests of “relevant mathematics.” 

 Coben  (  2010  )  pointed out that a professional registration body for nursing in the 
UK required nursing students to achieve 100% in a test of numeracy before they 
would be permitted to register as nurses. However, other than that stipulation, there 
was no recognized standard for numeracy for nursing, and therefore it was dif fi cult 
to determine which skills required development, or to ascertain when competences 
had or had not been achieved. Hence, it could be argued, a multiplicity of tests, 
processes and criteria, which may have been neither reliable nor valid, were being 
developed and deployed in pre-registration nursing programs throughout the UK. 
In this context, a system of high-stakes testing, using instruments of doubtful quality, 
threatened both to undermine social justice, and to fail to solve the problem of the 
“safety-critical nature of nursing” (p. 13). 

 In current projects, Coben and her colleagues are motivated by the need to avoid 
a proliferation of numeracy tests, especially if based on simplistic notions of “com-
petency.” Instead, they proposed a notion of numeracy for nursing based on what 
Gigerenzer, Todd, and ABC Research Group  (  1999  )  called “fast and frugal heuris-
tics,” within a framework expecting bounded rationality, rather than complete ratio-
nality. This view of heuristics is aligned with Coben’s  (  2000a  )  characterization of 
numeracy:

  To be numerate means to be competent, con fi dent, and comfortable with one’s judgements 
on  whether  to use mathematics in a particular situation and if so,  what  mathematics to use, 
 how  to do it, what  degree of accuracy  is appropriate, and what the answer  means  in relation 
to the context. (p. 35, emphasis in the original)   

 On this basis, the project team designed ICT-based simulations of practical assess-
ment situations aiming to meet a set of conditions for measurement validity, reliability 
and authenticity. Team members believed that such an approach would avoid inequi-
table outcomes—which had disadvantaged particular social groups—and would retain an 
“enablement” or formative focus (Coben,  2010 ; Coben et al.,  2010  ) .  

   Techno-mathematical literacies for intermediate-level professionals.   Hoyles 
et al.,  (  2010  )  conducted a large project on mathematics in workplaces in the 
manufacturing and  fi nancial service sectors in the UK. Their initial focus was on the 
use of mathematics in these workplaces. However, using historical and sociological 
evidence about major shifts that have occurred in the workplace—including increased 
competitive constraints on UK  fi rms, increasing customer demand for “customization,” 
and a need for more  fl exible customer communication—they showed that the type 
of mathematical skills required for work had greatly changed. Thus, Hoyles et al. 
thought it appropriate to adopt a generalizing approach for the study. 
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 According to Hoyles et al.  (  2010  ) , the notion of “numeracy,” as it is often used, 
is insuf fi ciently linked with developing technologies in speci fi c workplaces. On the 
other hand, “mathematics” is rich enough, but not perceived as relevant, to work-
place tasks faced by managers and intermediate employees (see also Noss,  1998  ) . 
What matters are Techno-mathematical Literacies (TmLs), abilities which allow the 
adult employee to understand and communicate  fl uently in the language of mathe-
matical inputs and outputs to speci fi c technologies. Hoyles et al.  (  2010  )  argued:

  Much of the discussion around “skills gaps” and the non-transferability of school mathe-
matics misses the essential characteristics of the knowledge required in technology-medi-
ated work, where there has been a shift in requirement from  fl uency in doing explicit 
pen-and-paper calculations, to  fl uency in using and interpreting outputs from IT systems in 
order to informate workplace judgements and decision-making. (p. 7)   

 Hoyles et al.  (  2010  )  proceeded to show how the concept of TmLs had been 
developed by analyzing the limitations of the concept of numeracy, and this resulted 
in the construction of a new object of study. Their research had three main aims:

    1.    To understand the TmLs required by employees at different levels in four different 
industrial and commercial sectors.  

    2.    To identify speci fi c cases in companies of techno-mathematical skills gaps.  
    3.    To design, in collaboration, learning resources to help employees develop new 

skills in order to work more effectively, and to work with relevant sector and 
training organisations on policies related to forms of quali fi cation and accredita-
tion. (p. 19)     

 The methodologies used included a combination of sociological/historical 
analysis, plus ethnographies of workplaces for the  fi rst aim; and a design phase for 
the second. With respect to the third aim, the researchers designed interventions, 
making use of software tools that “adapt or extend symbolic artefacts [for example 
a graph] identi fi ed from existing work practice, that are intended to act as boundary 
objects, for the purposes of employees’ learning and enhancing workplace commu-
nication” (p. 17). 

 An example of results from the ethnographic phase is given in a discussion of the 
problems experienced by those customer-service employees in pensions companies 
who did not understand the calculations involved in the predicted value at retirement 
of clients’ pension investments. One result of this situation was that client queries 
were often slowly and poorly dealt with. In policy terms, the need for an educational/
policy response in the workplace, and in the sector, was due to the fact that many UK 
workers in  fi nancial services faced the prospect of wide-scale outsourcing of their 
jobs by companies to other countries where employees were typically more mathe-
matically skilled and signi fi cantly cheaper to employ—an immediate skills problem 
which the formal education system would not be likely to address. The researchers 
argued that the shift that had occurred in the type of mathematical skills required for 
work had not yet fully been recognized by the formal education system or by employers 
and managers, and was therefore not being addressed in educational and policy 
debates about “numeracy.”  
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   Landless peasants.   The Landless Movement is the largest social movement in 
Latin America. It was estimated that, in 2003, the Movement comprised 1.5 million 
landless members organized in most states in Brazil. Research and pedagogic work 
with this Movement has been the basis of much of the activity of Knijnik  (  2007  ) , 
and her research group (see Bicudo, Knijnik, Domite, & Fonseca,  2010  ) . 

 In the  fi rst and second phases of her work, drawing on ethnomathematics and the 
work of sociologists such as Pierre Bourdieu, Knijnik  (  2007  )  problematized the 
dichotomy between élite academic mathematics and the “popular” mathematics 
practised by rural workers, but which was often not regarded as socially legitimate. 
From Bourdieu, Knijnik  (  1997  )  utilized concepts of cultural capital and social capital, 
in investigating the traditions, practices and mathematical concepts of the landless 
peasants. She undertook the pedagogical work needed for them to be able to inter-
pret and decode their knowledge, to acquire the knowledge produced by academic 
mathematics, and to establish comparisons between the two kinds of knowledge. In this 
way, she was able to analyze the use of the two kinds of knowledge and the power 
relations involved between them. 

 In the latest phase of her work, she has developed an ethnomathematical approach 
using poststructuralist theorizations from Foucault to investigate more deeply 
con fl ictive and unstable aspects of culture, and associated power relations, differ-
ences, and eurocentrism in academic and school mathematics discourses (Bicudo 
et al.,  2010 ; Knijnik,  2007  ) . According to Knijnik  (  2007  ) :

  When they come to adult education projects, their peasant culture comes with them, even 
when the school curriculum tries to impose a sort of “forgetfulness” about who they are, 
[and] the grammar they use when adding, subtracting, multiplying and dividing. When this 
subtle imposition of denying their culture occurs, it is not surprising to see that it brings 
with it a resistance process. … When they go outside school, their peasant mathematics is 
revived, showing that it can survive the school conservative practices that are bound by only 
one kind of rationality. … Maybe it will be possible to enlarge our adult mathematics 
education world, including other mathematics, other rationalities … If so then our dreams 
of solidarity in our societies can be ful fi lled. (p. 61)     

   Summary 

 This section has drawn attention to the diverse theoretical and methodological 
approaches used within AME studies. The four case studies exhibited critical per-
spectives in different ways. Swain et al.  (  2005  ) , using theoretical resources from 
sociology to describe adult students’ identities and learning careers, criticized 
received views about the motivations of adults returning to study numeracy. 

 In the context of nursing education, Coben  (  2000a  )  and her colleagues were chal-
lenged to combine generalizing requirements for quali fi cations in society with 
appreciation of adults’ existing competences and subjective needs, including for the 
need for effective formative assessment as a basis for development. They challenged 
the conventional “de fi cit” characterization of nurses’ numeracy, and maintained that 
often the high-stakes testing and assessment programs from which this characterization 
derived used instruments which lacked reliability, validity, and authenticity. 
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 Hoyles et al.  (  2010  )  also focussed on policy issues, beginning from a socio-
historical study of changes in the national and international business context. They 
questioned the usefulness of the idea of numeracy, the conventional formulation of 
the problem of transfer of numeracy skills, and “the language of skills policy that 
organises competences into divisions of skills hierarchies” (p. 13). Among their 
critical theoretical resources, they draw on CHAT. 

 Working with landless peasants in Brazil, Knijnik  (  2007  )  and her colleagues 
critiqued the taken-for-granted superiority of general knowledge forms over local 
ones. Drawing on critical theory (e.g., from Foucault), Knijnik elaborated a notion 
of knowledge discourses, and promoted a way of balancing knowledge of the pow-
erful, with knowledge of the adult grounded in the setting. Putting it another way, 
they sought to articulate “knowledge of the powerful” into “powerful knowledge” 
(Young,  2010  )  for the landless.   

   AME as Educational Practice 

 In this section we examine examples of AME practice in different contexts. 
We consider examples of formal adults’ mathematics education (FAME), non-formal 
learning (NFAME) and informal learning (IFAME), though these categories some-
times overlap. We consider several aspects of these types of AME: (a) the aims/
goals of programs and learners; (b) the learners themselves; and (c) curriculum and 
pedagogy. We then identify and discuss some of the tensions within each of these 
aspects. 

   AME in Practice in Different Contexts 

   FAME in higher education.   Hahn  (  2010  )  described a “service mathematics” 
course within a postgraduate professional management apprenticeship program. The 
course was offered in the context of a partnership between the education provider and 
a  fi rm, within the French  alternance  system, which aimed to link mathematics to 
students’ professional experience. The pedagogy involved teachers asking students 
to confront their different conceptualizations of statistical distributions and summary 
measures, built through multiple experiences at school and at work. 

 Carreira, Evans, Lerman, and Morgan  (  2002  )  reported on a  fi rst-year calculus 
course within an undergraduate business degree course in Portugal. Here, the lecturers 
focussed on achieving transfer of the mathematics taught and learned into problem 
contexts in the disciplinary context of economics. They concluded that although 
transfer can be a problematic notion, careful consideration of the roles of language 
and the social organization of learning can facilitate the construction of new 
mathematical meanings in new situations. 

 In Thailand, a distance-education program was designed to meet the needs of 
students with diverse educational, socio-economic and age pro fi les (Boondao & 
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Chantarasonthi,  2008  ) . The program allowed the learners to choose from different 
media—textbooks, workbooks, and CD ROMs. The authors attributed the students’ 
satisfaction and achievements to the program’s  fl exibility: it catered for different 
learning styles, and gave learners control over their own learning. It allowed the 
students to use self-paced materials and their own choice of learning media. It also 
provided realistic contexts in problems.  

   FAME in basic education.   Fonseca and Lima  (  2008  )  described their work in 
Brazil as “Youth and Adult Mathematics Education” (see also Bicudo et al.,  2010  ) . 
In Brazil, as in many other countries, basic education must be offered for adults 
aged 18 years or more, since large numbers historically have been excluded from 
basic schooling in their youth. The adult courses aim at students learning to handle 
the “texts” available in their social practices, and to produce their own texts by 
learning about new “mathematical genres.” 

 In a non-vocational context, Hassi, Hannula, and Saló i Nevado  (  2010  )  examined 
adult basic education, including numeracy, in Finland. One study involved a Folk 
High School, based on the tradition of liberal education for adults in Scandinavia. 
There, learners could study subjects similar to those available in secondary schools—
but “unlike the curriculum for regular students, adults’ curriculum recommends taking 
into account local circumstances, local history, culture and students’ living condi-
tions” (p. 8). Like Swain et al.  (  2005  ) , these researchers found varied reasons for 
students’ attending classes: to overcome their lack of formal education, for intrinsic 
interest, or to facilitate access to further courses.  

   NFAME with parents.   Díez-Palomar  (  2008  )  offered three reasons why more 
research focussing on parents as mathematics learners was needed:

   There is a connection between pupils’ performance in school mathematics, • 
parental engagement and family involvement.  
  The desire to help children with school work provides strong motivation for • 
parents to learn mathematics.  
  There is evidence that low-income families usually have fewer opportunities • 
than middle- or upper-class families to engage in their children’s education.    

 The issue is how parents—particularly (but not only) those in minority and working-
class communities—learn to help their children do mathematics. A crucial need is 
to transform parents’ own perceptions about themselves as learners and doers of 
mathematics and to develop teaching innovations that capitalize on students’ (and 
families’) everyday knowledge and experiences (Civil,  1999 ; Díez-Palomar,  2008  ) . 

 Chodkiewicz, Johnston, and Yasukawa  (  2005  )  reported a case study of a  fi nancial 
literacy program conducted in disadvantaged school communities in Australia. The 
program was conducted concurrently for schools and parent groups. The curriculum 
for the parents took account of the “taboos, the privacy around money, exploring 
attitudes to money, people’s    ‘money stories’ … and learning from life experiences” 
(p. 38), as a way both to establish the parents’ contexts for their learning, and to 
avoid imposing dominant discourses about what competent  fi nancial management 
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involved. In this study the curriculum writers’ and facilitators’ perceptions of 
 fi nancial literacy also needed to be challenged.  

   NFAME in workplaces.   Mathematics education in and for work has been 
studied from different angles, including preparation for the workplace (see Hahn’s 
example above and the apprenticeship example below), issues of transfer of 
knowledge from academic to workplace domains (and vice versa - Wedege,  2010b ), 
and ways in which workers learn and are supported in learning in the workplace 
(see, e.g.,  Education Interfaces between Mathematics and Industry: EIMI 2010 
Conference, Proceedings,  Araújo, Fernandes, Azevedo, & Rodrigues,  2010 ; Strässer, 
 2000  ) . 

 The view put forward by Hoyles et al.  (  2010  ) , that new forms of technology-
mediated work rendered a lot of the mathematics in work practices invisible (see the 
previous section), was discussed by Williams and Wake  (  2007a  ) . As “outsiders and 
boundary-crossers,” Williams and Wake studied workers’ practices in manufactur-
ing sites with a view to understanding contradictions between the mathematics 
taught in college and the (often invisible) mathematics embedded in workplace 
practices. They described the mathematical knowledge and procedures of work 
practices and procedures as being “black-boxed,” to capture how the history of 
negotiations and con fl icts between different interest groups during the development 
of new material or symbolic artefacts was lost once they come into use. Williams 
and Wake’s ethnographies in workplaces sought to open these black boxes. They 
thereby uncovered some of the politics of the workplace that in fl uenced what math-
ematical knowledge workers were entitled to know, thus complicating the question 
of what is learnable, in formal education as preparation for work. 

 In a study that looked at tailoring in Senegal, Shiohata and Pryor  (  2008  )  com-
pared experiences of the learners in an apprenticeship and those who took courses 
in a vocational training centre. Apprentices were  fi rst trained in the desired attitude 
( comportement ), for working both within the workshop and dealing with customers 
(p. 192), and then in practical skills for the tailor’s workshop, including cutting 
cloth. These latter skills the apprentices found challenging because “errors cannot 
be corrected” (p. 193). In contrast, vocational centre trainees attended formal classes 
emphasizing both theory and practice—though they never actually handled cloth 
because it was considered too expensive. The researchers found that the practical 
learning of the apprentices in the workplace appeared to be more in fl uential in the 
development of vocational identities than the more theoretical focus taken in the 
training centre.  

   IFAME.   Mathematics learning also takes place in informal settings. One large-scale 
example is the process of conversion to the euro, which occurred in 17 European 
countries. Each country had taken initiatives to educate the public in the likely 
consequences of the change, including the need to develop “price intuition” in the 
new currency; the several ways to do this involve different forms of numeracy. 
Mullen and Evans  (  2010  )  studied, in the last-but-one country to convert (the Slovak 
Republic in January 2009), methods used, both by the state to educate citizens and 
by citizens themselves to cope, during the process. 
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 Yasukawa and Brown  (  2012  )  discuss a case study of informal learning in a trade 
union campaign for better pay and conditions of “casually-employed” academics. 
Collective learning emerged through the academics deciding to organize around shared 
experiences of discontent, and working with union delegates as “barefoot mathemati-
cians” [cf., “barefoot statisticians” described by Evans and Rappaport  (  1998  ) ]. 
The workers learned how the complex pay formula worked, and documented evidence 
that led to a dispute, which ultimately resulted in a win for workers. Throughout this 
campaign, the casually-employed academics understood at  fi rst hand the relationship 
between membership density of casual academics and strength in the union. 

 Mathematics/statistics learning is also produced by a longstanding social move-
ment, the Radical Statistics Group, which engages its members and interested citi-
zens in critical analysis of statistics, particularly statistics relating to public policy 
making. This takes place via email list debates, and through a range of publications 
(see the Radical Statistics Group website at   http://www.radstats.org.uk/    ).   

   Aspects of AME Practice 

 Here we examine some of the examples introduced above, according to three 
aspects: (a) aims/goals; (b) the adult learner; and (c) curriculum and pedagogy. In so 
doing, the in fl uences of competing interests and agendas, learners’ lives and identi-
ties, and different approaches to pedagogies and curricula will reveal the political 
nature of AME practice. 

   Aims/goals.   The “justi fi cation problem,” the question of why we need mathematics 
education, has both a generalizing and a subjective dimension. Niss  (  1996  )  presented 
the following three types of reasons from the societal point of view:

    1    Contributing to the technological and socio-economic development of society at 
large.  

    2    Contributing to society’s political, ideological and cultural maintenance and 
development.  

    3    Providing individuals with prerequisites which may help them to cope with life in 
various spheres: education, occupation, private life, social life, life as a citizen. (p. 13).     

 The  fi ve spheres mentioned in the third reason relate broadly to Steen’s  (  1997  )  
dimensions of importance to learners. 

 Societal aims as expressed in policy discourses and the multi-faceted personal 
goals of the learner may not always be aligned. Certainly, education is often experi-
enced by adults as a  fi eld of tension between felt needs concerning what one wants 
to learn, or has to learn, and various economic and societal constraints (Illeris, 
 2003a  ) . “Monica,” an adult numeracy student interviewed by Swain et al.  (  2005  ) , 
was an unemployed single parent who had to respond to the government demand to 
go back to work, or else to go into training. Her motives for choosing a numeracy 
class were to obtain a mathematical quali fi cation and to get a better job, to prove to 

http://www.radstats.org.uk/
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herself that she was worth something, and to set a good example to her son. Monica’s 
subjective needs were linked to self-esteem. 

 Such sets of con fl icts often serve as a backdrop to adults’ learning processes. 
To educators or policy makers, they sometimes appear as  resistance  to learning—but 
they can also relate to the students’ perceptions of themselves as competent persons 
without mathematics, and to seeing mathematics as not relevant to their daily activi-
ties and life projects (Wedege & Evans,  2006  ) .  

   The adult learner.   In our construction of the adult learner, we consider the three 
dimensions of the cognitive, affective and social dimensions as important, and as 
always potentially in tension (Illeris,  2003b  ) . We see the cognitive and the affective 
as parts of a whole, itself understood as an important aspect of the subjectivity(ies) 
or identity of the adult who is participating in a range of social practices. Many 
recent studies in AME include a strong emphasis on the affective dimension, 
including consideration of motivation (see Wedege & Evans,  2006  ) . This resonates 
with reports of research discussed in the previous section and reports from the  fi eld 
of practice. 

 Mathematics life history interviews allow practitioners, as well as researchers, to 
gain a better understanding of adults’ motivations and experiences with mathemat-
ics throughout life (Barton et al.,  2007 ; Buerk & Szablewski,  1993 ; Coben,  2000b ; 
Evans,  2000a ; Martin,  2007 ; Swain et al.,  2005 ; Wedege,  1999  ) . For example, in 
Coben’s  (  2000b  )  study, in England, almost all interviewees mentioned the impor-
tance of mathematics and of success on mathematics examinations. One familiar 
theme in these stories was:

   the door  marked “Mathematics,” locked or unlocked, through which one has to go to enter 
or progress within a chosen line of work or study. This image was often used, re fl ecting the 
frequency with which mathematics tests are used to  fi lter entry into training and employ-
ment. (p. 54)   

 Barton et al.  (  2007  )  studied “the relationship between lives and … learning … 
over time in a range of settings” (p. 1). They concluded that although the “dominant 
discourse in the literacy, numeracy and language  fi eld is often one of progression 
to further education, higher quali fi cations and better jobs … if you understand what 
is going on in people’s lives over time it becomes clear that this is one of many pos-
sibilities” (p. 159). They illustrated this point by offering the case of “Barbara,” 
who moved from being a self-employed business woman to working part time as a 
care assistant—a move that the dominant discourse might regard as “regressive” but 
which enabled Barbara to work where she had long wanted to be. They also showed 
how learning careers for adults are often non-linear: adults may be in and out of 
formal college learning as other aspects of their life, such as health and family, 
interfere in both predictable and unpredictable ways. 

 Thus, both research and practitioners’ experiences show that adult students are 
motivated to study mathematics for many different reasons.  

   Curriculum and pedagogy.   The preceding discussions about the aims for adult 
mathematics learning, and the goals of the learners, illustrate tensions between 
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accounts from adult learners’ perspectives, and the generalizing perspectives coming 
from educational providers, employers and policy makers. Thus, aiming to construct 
a comprehensive and meaningful framework for an adult mathematics curriculum 
or pedagogy may well lead to a highly contested space, with con fl icting accounts of 
the underpinnings to programs experienced by adult learners. However, as indicated 
in the introduction to this chapter, by taking a critical perspective, we orient ourselves 
toward examining these tensions, rather than avoiding them. 

 In a community education setting, Oughton  (  2008  )  confronted the fundamental 
critical dilemma of who decides what should be the curriculum. Her study involved 
getting the learners, as part of their learning, to articulate what they wanted to learn. 
However, this exposed the dilemma faced by many who seek to enact an empower-
ment model of adult education. Although she was aware of the critiques of the 
national curricula for adult literacy and numeracy— that it was constructed around 
a “de fi cit model” of learners—she found that some learners effectively wanted their 
“de fi cits” remediated through an experience of the school mathematics they had 
missed earlier in their lives. 

 The politics around the determination of the curriculum are encountered not 
only within formal education but also in NFAME, in workplace numeracy training 
and in “citizenship training” and  fi nancial literacy programs. Hull  (  1997  ) , Gallo 
 (  2004  )  and Bond  (  2000  )  presented arguments about who the curriculum is for, and 
what is needed in it—with Bond maintaining that the aim should be to develop 
critical understanding of power relations in workplaces and society at large, and 
of the ways to build greater worker/learner agency through collective action. 

 Researchers using ethnographic approaches to study learning needs associated 
with various workplaces, have often uncovered the complex interactions and ten-
sions between changing work practices and numeracy and literacy learning (Bel fi ore 
et al.,  2004 ; Black & Yasukawa,  2011a  ) . In some cases, employees’ resistance to 
replacing ways of working that have meaning to them with new practices that are not 
understood by them or are not in their interests, has been attributed, by employers, 
to literacy and numeracy “de fi cits.” 

 However, not all of the ambiguities and contestations about the determination of 
curriculum and pedagogy are directly attributable to tensions in power relations 
between established curricula or employers’ agendas. Different understandings of 
issues like “learning transfer” add to confusion about what the learner is learning 
and why. This is particularly pertinent in relation to the interface between formal 
adult education in the higher and vocational education sectors, and work. Education 
providers, as well as professions and industries, may claim that students studying 
towards a professional or trade quali fi cation need to learn certain kinds of mathe-
matics. However, this need is not always obvious to students, because their motiva-
tions for study are focussed on vocational quali fi cations, not on learning mathematics 
(Strässer & Zevenbergen,  1996  ) . Hahn  (  2010  )  and FitzSimons  (  2002  )  have shown 
that it is the ways in which mathematics is made realistic and authentic in the curricu-
lum, combined with the pedagogic approaches such as affording agency to learners 
in shaping problems, that in fl uence the extent to which learners can make connec-
tions between the mathematics they are learning and the professional/occupational 
 fi eld with which they identify. 
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 These studies suggest that the notion of learning transfer between formal education 
and work cannot be understood without understanding how the learners are forming 
(or not forming) a professional or occupational identity through which they will 
activate their mathematical knowledge and skills. 

 The in fl uence of broader social and economic changes on the forms of mathe-
matics and numeracy that adults might learn is played out not only in formal and 
non-formal education settings but also in informal learning through community 
development initiatives and social movements. We point to the very speci fi c learning 
needs that emerged for adults with the euro (Mullen & Evans,  2010  ) . Bond’s  (  2000  )  
approach to  fi nancial literacy explicitly challenged neo-liberal ideologies and their 
implications for lower-income adults: “the aim of any  fi nancial literacy program for 
adults should be to enable them, individually and collectively, to understand and ques-
tion the way in which  fi nancial institutions, the state and personal and household 
decision-making connect to shape numerous aspects of their daily lives” (p. 76).   

   Critical Perspectives in AME Practice 

   The transfer of mathematical learning.   This transfer, between school and 
everyday practices, and in the opposite direction, is, of course, a problem both for 
research and for practice—see Chapter   6    . 

 A number of ways of “teaching mathematics for transfer” to adults have been 
discussed in the literature (e.g., Araújo et al.  2010 ; Carreira et al.  2002 ; Evans, 
 2000b ; Williams & Wake,  2007a,   2007b  ) . Wake and Williams  (  2010  )  explored 
how curriculum speci fi cation and classroom activity in mathematics might be 
informed by  fi ndings from research into the uses of mathematics in workplaces. 
They re-conceptualized learning “transfer” using Beach’s  (  1999  )  construct of col-
lateral transition to describe transformations of mathematics required in crossing 
boundaries. In considering how better to prepare students to use mathematics in 
different settings, they recognized the need to understand how mathematics was 
constituted differently in college and in workplaces and suggested how the “academic 
practice” of mathematics might be developed and enriched in ways suggested by 
its use by workers.  

   Social difference and different skills and needs.   Addressing social justice 
issues in practice requires more than well-formulated curricula and well-meaning 
pedagogy: it also requires that larger systemic problems, and perceptions of these 
problems, be addressed. 

 Martin  (  2007  )  focussed on the construction of identities at the intersections of 
two areas of experience: “being African American” and “becoming a doer of math-
ematics” (p. 147). His narrative interviews with African American adults returning 
to study mathematics suggested that “issues of racial boundaries, perceived position 
and devalued social status, meaning-making for mathematics, and identity, assume 
prominence” (p. 148). The initial motives for studying mathematics for one student, 

http://dx.doi.org/10.1007/978-1-4614-4684-2_6


2257 Critical Perspectives on Adults’ Mathematics Education

Keith, were job improvement and helping his children at school. However, Keith came 
to see that his status and identity, and the meanings assigned to them by “Whites,” 
created boundaries that limited his opportunities in society, and particularly in 
mathematics. Thus, his struggle for mathematics literacy can be seen as a part of a 
general struggle for literacy and for freedom from prejudice and discrimination. 

 For Shiohata’s and Pryor’s  (  2008  )  tailoring apprentices and trainees, access to 
workplaces was very gendered. Although the men had access, through apprentice-
ships, into an authentic but very conservative way of working, the women could 
only train in fee-paying training centres where the focus was on theoretical knowl-
edge designed to enable textile workers to work in the globalized and technological 
workplace of the future. Social differences in this case led to different future oppor-
tunities for apprentices and trainees. 

 Policies aiming to increase access to higher quali fi cations and skills do not 
necessarily affect people’s lives in the way intended. In a study of embedded liter-
acy and numeracy support in vocational education and training, Black and 
Yasukawa  (  2011b  )  interviewed a trade teacher of young Australian Aboriginal 
men in an animal husbandry course. This trade teacher explained that many of the 
learners completed the initial course, but were unwilling to proceed to the next 
course (which promised access to better job opportunities) because it included 
aspects of managing teams of workers. The young men were concerned that they 
could  fi nd themselves in a culturally problematic situation of having to “manage” 
elders in their communities who were working in the pastoral industry. Those con-
cerned with social justice need to remember that individual achievements not val-
ued by the individual’s community may create new tensions that the individual will 
have to negotiate. 

 From a social practices perspective, AME must start from the everyday numer-
acy practices of learners. This means that social differences can give rise to different 
numeracy practices—see, for example, Jorgensen  (  2011  )  on younger learners, 
Houssart  (  2007  )  on older learners, and Henningsen  (  2008  )  and Reis and Fonseca 
 (  2008  )        on gender. Inevitably, it seems, the generalizing views of mathematics that 
smooth out these differences, and pedagogical practices that seek to af fi rm the 
knowledge and skills that learners bring from the particularities of their lives and 
culture, will co-exist in tension.  

   “Invisibility” of mathematics.   Practitioners and researchers are often surprised 
to  fi nd that if one asks adults whether they use mathematics in everyday life, or in 
the workplace, the answer is often “No!” Some reasons for this emerged from the 
mathematics life history interviews described above. In those interviews, adults 
spoke about their mathematical experiences throughout life—both those that were 
explicitly mathematical (such as being taught subtraction at school, or budgeting as 
an adult) and those where mathematics was implicit (such as knitting or judging 
distances when driving). These interviews suggested a theme of “invisible 
mathematics—the mathematics one can do, which one does not think of as 
mathematics—also known as common sense” (Coben,  2000b , p. 55). Thus, for 
those people who have never perceived themselves as successful in mathematics, 
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mathematics was always what they could  not  do. The meaning of “invisible” is here 
subjectively invisible, that is to say, people do not recognize as mathematics the 
quantitative reasoning that they do. 

 This phenomenon appears to be widespread. If so, it is important in its effects on 
the beliefs and motivations of learners, and especially on their con fi dence. It is not 
surprising, then, that a number of mathematics educators working with adults have 
tried to counter it (see, e.g., Keogh, Maguire, & O’Donoghue,  2010  ) . 

 Jungwirth, Maaß and Schlöglmann  (  1995  )  made a different, but related, distinction 
based on “visibility in the curriculum”: the distinction was between courses in which 
mathematics is explicitly taught, and “mathematics-containing” courses in which 
mathematical concepts and methods were used implicitly but not explicitly. 
Both senses are different from that of “objectively invisible” mathematics, that is to 
say, mathematics hidden in technology. This latter sense was used by some researchers 
(e.g., Araújo et al.,  2010 ; Noss,  1998  ) .   

   Summary 

 In this section we have illustrated the many promises and tensions in adults’ 
mathematics education practice that warn against attempts at simplistic characterizations 
of the  fi eld. AME takes place in formal education settings such as in higher education 
and further education sectors. However, within those sectors, the institutional aims of 
mathematics range from specialized mathematics degrees, to service teaching for 
other disciplines (e.g., Hahn,  2010  ) , to numeracy courses for adults (Oughton,  2008  ) . 
In NFAME, parents engage in learning numeracy, for example in a  fi nancial literacy 
program complementary to their children’s studies (e.g., Chodkiewicz et al.,  2005  ) . 
Mathematics is learned at work in both non-formal and informal ways (Wake & 
Williams,  2010  ) . In community settings and social movements, both non-formal and 
informal adult education facilitates learning such as  fi nancial literacy (Bond,  2000 , 
Mullen & Evans,  2010  )  and critical citizenship (see the Radical Statistics website). 

 However, AME can be characterized not just in terms of the type of education 
provision (formal, non-formal and informal) or the institutional aims for the pro-
grams. It is critical to examine adult mathematics learning from the perspectives of 
the learners and their goals, and the curricular and pedagogical responses to them. 

 Engagement in mathematics learning at all ages can also be planned, incidental, 
or necessitated by larger societal changes, such as the introduction of the euro cur-
rency. But it can be dif fi cult to nurture because of resistance engendered by dif fi cult 
school experiences or by the invisibility of mathematics in many work and other 
social practices. 

 At a time when a crisis narrative is being created in many countries as a result of 
poor national performance on international surveys such as PISA, governments 
have responded with strategies that tend to smooth out, and hide, the rich and diverse 
realities of adult learners’ lives, needs, aspirations, and constraints. Therefore, a 
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critical perspective is needed to ensure that learners and their learning are not lost in 
the generalizing stories that are written and told about adults’ mathematics 
education.   

   The Policy Context of AME 

 In previous sections, we have gained some insight into the policy contexts of 
AME. Here we consolidate those insights and consider the role of international 
adult surveys in policy developments. 

   The Changing Policy Context 

 So far, we have shown the need to problematize or contest de fi nitions of key 
concepts, such as numeracy and LLL, within differing discourses; this can be 
extended to terms like “globalisation” (FitzSimons,  2002  ) ; and “competence” 
(Moore,  2007  ) . We have also described the competing policy discourses—labelling 
the two main alternatives “human capital” and “humanistic” in the introduction to this 
chapter—and have noted changes in these de fi nitions and discourses over time. 

 In particular, we have kept in perspective the generalizing versus subjective 
perspectives on policy, and the challenges for learners and practitioners in navigating 
the tensions between them. There seems to be broad consensus that numeracy, of 
some kind, is needed by adults in modern societies. However, we note that policy 
discourses in countries like Australia, England and the USA refer constantly to 
numeracy (and literacy) as “essential” or “foundation” skills, implying that the same 
types of skills are needed by all groups within society, or even across different soci-
eties. In this chapter we have problematized that point of view.  

   International Surveys of Adults’ Skills 

 The formal level of literacy, published for every country worldwide (United 
Nations Development Programme,  2009 , Table H) is a basic social indicator, often 
used in discussions of “level of development.” Yet many governments now feel the 
need to monitor functional, and not only formal, literacy of a population. For example, 
the UK completed its  fi rst Skills for Life Survey in 2003 (Department for Education 
and Skills,  2003  ) . Since 2001, the Brazilian National Functional Literacy Index 
(INAF), sponsored by non-governmental organizations (NGOs), has regularly 
monitored functional literacy. 

 Since 1990 there has been a series of international studies of adults’ literacy and 
numeracy skills designed to inform governments. These have included:
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   The International Adult Literacy Survey (IALS) conducted by OECD in 1994, • 
1996 and 1998.  
  The Adult Literacy and Lifeskills Survey (ALL) conducted in 2003 and 2005.  • 
  The Programme for the International Assessment of Adult Competencies • 
(PIAAC)  fi rst conducted during 2011 and 2012.    

   IALS and ALL.   The report on the  fi rst cycle of IALS elaborated on the reasons 
for undertaking the survey. It was stated that the production and use of knowledge 
was important: 

 But the measurement of knowledge and skills and of their bene fi ts is still imperfect … We 
need to understand the value of competencies … during different phases of the lifespan, so 
as to make informed decisions about human capital investment. … education provides 
many bene fi ts, including social cohesion … (OECD & Statistics Canada,  1995 , pp. 5–7) 

 The concerns of the OECD group of highly industrialized countries clearly went 
beyond the simple proportion of citizens qualifying as formally “literate.” IALS was 
based on a human capital approach, which focussed on the social “return” from 
investing in peoples’ attainment of quali fi cations, at all levels of education. Though 
the introduction referred to social bene fi ts like social cohesion, the main concern 
seems to have been economic and educational ef fi ciency. 

 In IALS, three measures (for dimensions of literacy) were produced for each 
respondent. “Numeracy,” as such was not measured, but some indications of it could 
be inferred from results in Quantitative Literacy, and to a lesser extent, Document 
Literacy. 

 For ALL, a measure of Numeracy was created to have a much wider “breadth of 
mathematical skills and purposes” (Gal, van Groenestijn, Manly, Schmitt, & Tout, 
 2005  ) . In contrast with IALS, which had 19 participating countries, ALL’s two 
stages had only 7 and 5 participating nations, respectively.   

   Programme for the International Assessment of Adult 
Competencies 

 At the same time as it was developing the much-publicized PISA (Programme 
for International Student Assessment), in the late 1990s, OECD was also commis-
sioning its PIAAC study. PIAAC’s objectives were summarized by Andreas 
Schleicher  (  2008  ) , of the Education Directorate at OECD, as helping participating 
countries to:

     Identify and measure differences between individuals and across countries in key • 
competencies.  
  Relate measures of skills based on these competencies to a range of economic and social • 
outcomes of policy relevance to participating countries, including  individual outcomes  
such as labour market participation and earnings, or participation in further learning and 
education, and  aggregate outcomes  such as economic growth, or increasing social 
equity in the labour market.  



2297 Critical Perspectives on Adults’ Mathematics Education

  Assess the performance of education and training systems, and clarify which policy • 
measures might lead to enhancing competencies through the formal educational system—
or in the work-place, through incentives addressed at the general population. (pp. 2–3, 
 emphasis added )      

 These objectives offered a “human capital” approach, linked with social concerns. 
They placed heavy emphasis on comparisons between countries—which presup-
posed a basically competitive international economic context. PIAAC thus followed 
the earlier international adult surveys, IALS and ALL, but with some crucial devel-
opments (see below). Three skills or competencies were to be measured: Literacy, 
Numeracy, and Problem Solving in Technology-Rich Environments. 

   Conception of numeracy in PIAAC.   In the conceptual approach used by 
PIAAC (and PISA), numeracy is seen as a competency, which is “an internal mental 
structure of abilities and dispositions,” made up not only of cognitive skills and a 
knowledge base but also motivations, attitudes, and other non-cognitive components. 
It has been de fi ned for the purposes of designing the items as “the ability to access, 
use, interpret, and communicate mathematical information and ideas, in order to 
engage in and manage the mathematical demands of a range of situations in adult 
life” (PIAAC Numeracy Expert Group,  2009 , p. 21). 

 This de fi nition represented an attempt to conceptualize a broad range of adults’ 
mathematical thinking in context. But what is measured by a scale depends both on 
a conceptual scheme, and an assessment scheme, describing both the tasks used and 
the modes of administration and scoring (PIAAC Numeracy Expert Group,  2009  ) . 

 Thus, in order to  operationalize  numeracy, it is,  fi rst of all, necessary to specify 
a number of dimensions of “numerate behaviour,” which can be used in the con-
struction of a set of items. PIAAC identi fi ed the following four dimensions:

   Context (four types): everyday life, work, societal, further learning.  • 
  Response (to mathematical tasks—three main types): identify/locate/access • 
(information); act on/use; interpret/evaluate.  
  Mathematical content (four types): quantity and number, dimension and shape, • 
pattern and relationships, data and chance.  
  Representations (of mathematical/statistical information): e.g., text, tables, graphs.    • 

 Each item was categorized according to these four dimensions, and its “estimated 
dif fi culty” (or “ability level”) was also given. The aim was to stipulate the proportions 
of the items that were from each key dimension (e.g., the proportion of “data and 
chance” items of moderate dif fi culty)—in order to try to assure the content validity 
of the overall set of items that was used in the test (Gal et al.,  2005 ; PIAAC Numeracy 
Expert Group,  2009  ) . (For illustrative ALL items, similar to those used in PIACC, 
see Gal et al.,  2005 .) 

 Numerate behaviour, in turn, was understood as “founded on the activation of 
enabling factors and processes,” including numeracy-related experience, literacy 
skills, beliefs and attitudes, and “context/world knowledge” (PIAAC Numeracy 
Expert Group,  2009 , p. 29). Thus PIAAC, more than the earlier international adult 
surveys, aimed at producing affective and other contextual data that could be related 
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to a respondent’s performance. Demographic and attitudinal information were 
gathered via a background questionnaire, and self-report indicators on the respondent’s 
use of job-related skills at work were also obtained.  

   Survey design and administration.   PIAAC data have been collected in 2011 
and 2012. Twenty- fi ve countries were involved, including 18 members of the 
European Union. In each participating nation about 5,000 adults between 16 and 
65 were interviewed. Results will be released in 2013. 

 Adult surveys cannot rely on “captive populations” of children at school, so 
PIAAC (like IALS and ALL) combined household survey methods with educational 
testing methodology. In addition, PIAAC’s “default” method of survey administra-
tion was by laptop computer. This allowed for adaptive testing, which attempted to 
assess the initial “level” of the respondent from a few responses, and once that had 
been achieved then more appropriate items (in terms of dif fi culty) were put to the 
person throughout the interview.  

   Aspects of survey validity.   The “curriculum” that was assumed when the PIAAC 
numeracy instruments were being constructed was implied by the four-dimension 
de fi nition of numeracy that had been developed. This was for an international survey, 
and a transnational de fi nition of numeracy was used. One should question how well 
that de fi nition, and the corresponding items, “ fi t” adults’ lives in any particular 
country. The four types of context (everyday life, work, societal, further learning) are 
of course idealizations—rather than actual contexts that any particular respondent 
might meet in his or her everyday life. Concerning pedagogy, PIAAC related 
numeracy, for example, to a potentially fruitful combination of informal and formal 
learning (PIAAC Numeracy Expert Group,  2009  ) . However, in the previous section, 
we gave several examples of tensions between what is learned formally and what is 
learned informally. 

 Computer administration of test questions should help with the reliability of 
administration across interviews and with reliability of marking. But it raises ques-
tions about validity. For example, it is dif fi cult to assess the possible effects on 
respondents’ thinking and behaviour of the on-screen presentation of tasks. These 
response modes contrast with the ways that many adults’ numeracy practices are 
acted out in the participants’ day-to-day lives. Similar problems arise of course for 
much educational assessment (e.g., assessments associated with PISA). 

 The validity of the concept of an adult’s “level” of numeracy, used in PIAAC and 
in other national and international surveys, has been challenged. For example, 
Gillespie  (  2004  ) , in re fl ecting on the Skills for Life survey carried out in the UK, 
argued: “The  fi ndings con fi rm that for many, being ‘at a given level’ is not meaning-
ful for the individual, as levels embody predetermined assumptions about progres-
sion and relative dif fi culty” (p. 1). This is because many adults have different “spiky 
pro fi les,” due to distinctive life experiences: thus, for example, some  fi nd items of 
Type A (say, “data and chance”) more dif fi cult than Type B items (say, “dimension 
and shape”), and others  fi nd the opposite. 

 When results are reported, “the minimum level of numeracy needed to cope with 
the demands of adult life” is sometimes stipulated—but that concept is of question-
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able worth. Such generalizing claims group together adults with different work, 
family and social situations—and further assume that the demands are the same 
across the countries studied. 

 These sorts of concerns about validity are relevant for all surveys which include 
assessments, especially those that aim at making comparisons across countries, or over 
time. Nevertheless, questions of validity must be assessed for every survey or assess-
ment, especially if it is intended that the results will inform policy or practice.   

   Summary 

 We have aimed in this section to give an informative and balanced, yet critical, 
description of the design of the PIAAC survey, and have offered some re fl ections on 
methodological validity. Our concern has been to inform readers about what was 
planned, to alert them to issues that need to be kept in mind when interpreting the 
results from such studies, and to elucidate the policy context in which PIAAC has 
been produced. Here we elaborate on the latter. 

   Possible bene fi ts and risks of international surveys for AME research and 
practice.   These studies, despite their limitations, offer educational planners and 
researchers new data on some aspects of the competencies of adults, who are mostly 
outside of formal educational systems, and thus less accessible to researchers. They 
can help us to understand the effects of formal educational systems, characteristics 
of their graduates, and relations of performances to categories of respondents — via 
demographic, attitudinal, and “skills use” data. 

 Results of international surveys can also provide the context for other types of studies 
that will supplement or probe survey results. OECD policy is to make available national 
datasets from the surveys after publication to researchers and policy makers. 

 However, the results of international surveys usually lead to “high-pro fi le” 
reporting, by policy-making bodies and by the media. This entails risks. Conceptions 
that we have seen to be highly contestable, such as numeracy, skill, and LLL, may 
be narrowed and  fi xed in public discussions and in subsequent research. This may 
also be true of the idea of “the adult learner,” resulting in an “agreed” concept that 
ignores the rich diversity we have described previously.  

   The changing policy context.   Whereas, in earlier studies, there was a multiplicity 
of aims for adult education, featuring both economic/vocational and humanistic 
goals, increasingly, “under globalisation, educational values tend to be interpreted 
through neo-liberal imperatives” (Rizvi & Lingard,  2010  ) . The emerging 
international policy discourse uses a human capital approach—from among all of 
the social–scienti fi c perspectives that could have been employed—in pursuit of 
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economic ef fi ciency, in a context constructed as one of international competitiveness, 
brought about by global factors. 

 In this context, the OECD, a transnational organization, has promoted the collec-
tion of data through PIAAC and other international surveys, as a way to support the 
achievement—and demonstration—of a country’s state of competitive readiness. 
In addition, OECD and the European Union (with 18 of its 27 member-states partici-
pating in PIAAC) have taken on a key role in disseminating ideas and practices that 
will strongly in fl uence national policy-making around the world. Such transnational 
organizations are already dominant players in constructing “the skills and competen-
cies agenda” in industrialized countries at least (Grek,  2010 ; Rubenson,  2008  ) . 

 Thus, PIAAC, and the associated technological and administrative machinery 
supporting it, have generated data for monitoring the acquisition and updating of 
adults’ competencies, for facilitating international comparisons, and for assessing 
progress over time. Therefore PIAAC may be implicated in ongoing shifts in the 
meaning of LLL, and of numeracy, in the globalized environment (Evans & Tsatsaroni, 
 2011 ; Rizvi & Lingard,  2010  ) .    

   Conclusions 

   Ways in Which AME is Speci fi c and Different from Mathematics 
Education in General 

 What is  speci fi c  about the teaching and learning of mathematics and numeracy 
for adults? 

 Our survey of AME suggested that associated with the practices of teaching and 
learning of mathematics/numeracy for adults are a number of “awkward realities” 
(Coben,  2006 , p. 29). These include qualities of the learners:

   The diverse aims and goals that learners bring to learning may not always sit • 
comfortably with the aims and goals of policy makers, or indeed with educators 
in general.  
  The diverse ways in which adults’ identities and engagements with mathematics • 
learning mutually shape each other are likely to differ from individual to indi-
vidual, and from nation to nation.  
  The intensity of affective challenges for many adults, when mathematics is • 
included in their educational programs, needs to be taken into consideration.    

 And educational and social environments can also generate awkward realities:

   There is a wide diversity of professional, vocational and community learning • 
programs within which mathematics is a part, but not the primary focus for most 
learners.  
  In of fi cial discourses there are many paradoxical claims made about mathemat-• 
ics being “basic,” yet for many adults mathematics is largely invisible in their 
social practices.    
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 The awkward realities also include characteristics of research peculiar to AME: 
while children’s experiences in learning mathematics are likely to be largely depen-
dent on formal schooling, adults’ knowledge and skills in mathematical areas are 
likely to be more dependent on NFAME and IFAME learning. This makes a number 
of processes more challenging for AME research:

   It is dif fi cult to provide empirical descriptions of an adult’s mathematical knowl-• 
edge, for it is encoded in different terminologies among different groups of 
stakeholders.  
  Measurement of performance in numeracy is not a simple matter because of the • 
likelihood that, by contrast with school-age students, adults have more “spiky 
pro fi les.”  
  Adults typically participate in a wider variety of practices than school students, • 
and this can affect how “transfer” of learning (transitions or boundary crossing) 
between different contexts by learners and doers of mathematics is described.  
  Affective aspects of adults’ positioning, vis-à-vis mathematics, is likely to need • 
greater attention because of their greater life experiences.    

 These awkward realities further justify the adoption of critical perspectives when 
examining AME because the key issues are not easily resolved and they affect 
different groups of adults differently. They are all linked in some ways to questions 
of power. 

 Nevertheless, the mutual interdependence between research  fi elds in AME and 
mathematics education (ME) has been fruitful.

   Frameworks from ME have been adopted for AME research, straightforwardly, • 
or in multi- or interdisciplinary fashion.  
  Theoretical contributions from research in AME have been adopted in ME. • 
That is true, for example, in the areas of (a) learning transfer and (b) the impor-
tance of affect.    

 Undoubtedly, cross-fertilization between these  fi elds has been valuable for both 
AME and ME.  

   Future Developments in AME as a Field of Study 

 What kinds of research are needed over the next decade to ensure a balanced 
focus in adults’ mathematics education? 

 In this chapter we have discussed studies that re-assert the values of alternative 
approaches in contesting the human-capital approach. Consider, for example:

   Hoyles et al.’s  (  • 2010  )  use of “Techno mathematical Literacies” (TmLs), in  fl exible 
IT-supported decision-making by professionals;  
  Knijnik’s  (  • 2007  )  and colleagues’ work with the Landless Movement in Brazil, which 
has helped adults and researchers bridge academic and “local” knowledge; and  
  Barton et al.’s  (  • 2007  )  description of the interaction between adults’ lives, learning 
and identity change, within dynamic socio-economic conditions.    
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 On-going attention to adults’ needs is required, within a context of changing 
dimensions of social difference, e.g., differently evolving skills of those in different 
age groups. Emphasis ought to be given to demands for re-skilling in a rapidly 
changing and increasingly competitive labour market. Relationships between learn-
ing and identity formation (Swain et al.,  2005  )  mean that the dynamics of changing 
identities, changing economic and cultural environments, and changing policy 
constructions of numeracy, will remain important foci for research and practice. 

 There is a range of positions for the AME researcher to take in a given setting. 
These include the following:

   Objective  • reporter  of what is “really” going on;  
   • Producer of accounts  from those engaged in activities in context;  
   • Advocate  for social or educational change;  
   • Activist , working alongside those engaged in trying to bring about changes.    

 These roles are illustrated by the positions taken by researchers and practitioners 
in the accounts given in this chapter, and clearly relate to ideas of education for 
social justice.  

   Future Developments in AME as a Field of Practice 

 In curriculum, new areas of numeracy (and literacy) are related to emerging 
social and political issues. These emerging issues include:

   Financial literacy (see “AME as Educational Practice”);  • 
  Health-related decision making: interpreting expressions of risk from speci fi c • 
diseases, and likelihoods of success of speci fi c medical interventions (Gigerenzer 
et al.,  1999 ; O’Hagan,  2011  ) ;  
  Environmental numeracy: the ability to participate skilfully in often highly quan-• 
titative public debates and decision-making, and also to implement informed 
“sustainability skills” in industrial, home and community settings.    

 In pedagogy, as larger populations in many countries gain easier access to new 
forms of information and communication technologies, increasing use of multi-
modal forms of learning are likely to emerge to support learning outside formal 
classroom settings. Thus, for example, there will be much more attention given to 
distance or “blended” learning for university students (Boondao & Chantarasonthi, 
 2008  ) , and for workplace learning (Hoyles et al.,  2010  ) . 

 It is likely that the “crisis” discourses surrounding knowledge and skills, especially 
literacy, numeracy, and technology skills, in many countries, will result in numeracy 
coming to be seen, even more than it is now, as foundational for acquiring new 
occupational skills. This is related to important questions associated with issues 
surrounding effective pedagogy for “embedding” numeracy into vocational and 
professional education in FAME and NFAME. The need to facilitate transfer of 
learning, and to make visible the mathematics in vocational and professional practices, 
will increase, and such matters present a big challenge to AME researchers.  
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   Future Developments in AME Policy 

     1.    We aim to avoid numeracy being reduced to a narrow competency, through the 
dominance of human capital discourses and a narrow range of studies that 
monopolize the study of adults’ competences. Instead we must work towards a 
richer notion of numeracy, building it as an element of “powerful knowledge” 
(Young,  2010  ) .  

    2.    We must maintain connections with wider currents of educational and social 
science research that explore issues relevant to AME research and practices. For 
example, notions of skill, which have been debated by Moore  (  2007  ) , and Sennett 
 (  2008  ) , need to be further problematized.  

    3.    Numeracy tutors and adult tutors generally have been relatively neglected in 
most countries’ educational systems. They need, and deserve, greater attention 
and support in responding to the generalizing trends highlighted in this chapter—
especially in regard to negotiating tensions between personal philosophies of 
AME, the demands and needs of the students, and wider educational policies.           
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  Abstract   Besides clarifying the de fi nitions of equity and access we brie fl y contrast 
two philosophical positions on the nature of mathematics and speculate about their 
consequences for equity and access. We next discuss “whose mathematics,” and pro-
vide a viewpoint for mathematics learning as related to equity and access for stu-
dents. We also consider mathematics teachers and their teaching role as these are 
related to equity and access for students, and then broaden the chapter to include politi-
cal in fl uences on both teachers of mathematics and learners. Given the diverse political 
systems in operation throughout the world, and the range of conditions within and 
between countries, we are unable to frame questions that can be de fi nitively answered. 
Our observations relate to the role that politics plays at different levels to in fl uence 
access and equity for teaching and learning mathematics and are supported by particu-
lar examples, some from history, others documenting more recent events. Finally we 
offer a brief discussion of several international cases of what we believe is a form of 
colonization that follows from of fi cial insistence on “English  fi rst” in teaching math-
ematics in some states where English is a second language for students.      

   Equity and Access 

 So far as mathematics education is concerned, access and equity are mostly 
concerned with whether a complete range of mathematics courses is available at 
the school level to satisfy the needs and demands of every student and the degree 
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to which that access remains open to intending students provided that student 
performance is satisfactory. So for mathematics learning to be equitable and accessible, 
all students, regardless of social and cultural background, gender, religious beliefs, 
ethnicity, geographical location, and family  fi nancial circumstances, should have 
the same “opportunity to learn” (OTL) mathematics (Husén,  1967  ) . For Husén, 
OTL was the degree of overlap between content taught and content assessed. 
Classroom conditions, curriculum decisions, teacher beliefs about mathematics and 
about which students can learn mathematics, teacher preparation in mathematics, 
and teacher knowledge of effective teaching strategies are factors not considered in 
OTL, nor are factors that operate to make the content differentially accessible for 
different students. 

 A seemingly direct way to make some assessment of the access part of equity 
and access is to collect information on the provision of mathematics courses, par-
ticularly at the high school level. The premise that supports this approach is that 
without the opportunity to take courses beyond basic arithmetic and elementary 
level mathematics, students will  fi nd it dif fi cult to continue on to mathematics and 
science courses at upper secondary school that are necessary for success at the col-
lege or university levels. Assessing participation rates of different socio-economic 
and ethnic groups of students within a particular school in those advanced mathe-
matics courses that are provided should generate a second measure of access and 
equity. These data may be disaggregated to allow comparison not only between 
countries but also between subpopulations within each country and at the state or 
district level as well. Of course, performance within courses is an important compo-
nent of access. At the secondary school level, if the performance of a particular 
student in required mathematics courses is assessed by teachers as being not up to 
some speci fi ed standard, then further access to mathematics for that student may be 
quickly closed-off. In almost all countries, performance in secondary mathematics 
courses acts as a gatekeeper, not only limiting access to further school mathematics 
courses, but also limiting student choices in higher education. In only a small number 
of countries is it the case that students who are prevented from moving on in math-
ematics may re-enter their studies of mathematics as adults. 

 Data from a variety of sources including international tests (such as PISA, 
TIMSS), national tests (such as SAT in the USA) and local tests (for example, the 
state-imposed NCLB-mandated tests in the USA), on both access and performance, 
are currently collected and examined by a correspondingly broad range of groups 
with particular interests in education: school administrators, educators, members of 
policy groups and politicians. For example, Akiba, LeTendre, and Scribner  (  2007  ) , 
after reporting the 2003 TIMSS data from 46 countries on student access to quali fi ed 
teachers, noted the not-surprising outcome that access to quali fi ed teachers was 
positively related to student performance. However for the USA, which had similar 
teacher quality to other countries, there was a large gap in access to quali fi ed teach-
ers for low-SES students compared with high-SES students. By contrast, Korea, 
which had a much higher rate of quali fi ed teachers and higher student achievement 
in comparison with the USA, still had a substantial achievement gap between the 
high and low-SES students. That suggested that quali fi ed teachers alone may not be 
able to overcome the effects of low-SES. 
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 Another example of international comparisons of mathematics performance is 
provided by the surveys conducted by the Programme for International Student 
Assessment (PISA). Comparative data have been collected, analyzed and published 
by the Organization for Economic Co-operation and Development (OECD), a forum 
of some 34 countries whose mission, according to its Web site (  http://www.oecd.
org/pages/0,3417,en_36734052_36734103_1_1_1_1_1,00.html    ), is “to promote 
policies that will improve the economic and social well-being of people around the 
world.” PISA has been conducting its tests of reading literacy, mathematics literacy 
and science literacy every 3 years since 2000. The latest mathematics results are of 
data collected in 2009 from a sample of 15-year-olds selected in participating coun-
tries (OECD,  2010a  ) . These data allow many comparisons to be made within and 
between countries by educational researchers and educational administrators. For 
example, rates of participation and performance outcomes of males in a range of 
mathematics tests and courses are compared with those of females; and rates and 
performances for those same courses and tests of different minority groups are com-
pared with those of other minorities and of course with the rates and performances of 
the members of the dominant group. Measures other than achievement can also be 
made—with analyses of measures of variables based on ethnicity, socio-economic 
status, geographic location and similar characteristics providing a wealth of data 
allowing comparisons at international, state and local levels (OECD,  2010b,   2011  ) . 

 International comparative studies (such as TIMSS, PISA) have established per-
formance gaps of different kinds; for example, gender, Black versus Caucasian, 
Latino versus Caucasian. Much energy has gone into devising ways to close these 
gaps (NCTM,  2005  ) . The other longer-term aspect of access and performance is their 
possible in fl uence on opportunities for individuals in the future, which may lead to 
improvement in the economic, intellectual, and social lives of those with strong 
performances and a corresponding downturn in life chances for those with mediocre 
or poor performances. 

 Equity has found expression in terms of keeping track of performance within and 
between diverse groups identi fi ed by such considerations as, for example, gender, 
socio-economic status, and ethnicity (including minority language speakers). In 
mathematics education, a great deal of ground-breaking work, over many years, has 
established gender and ethnicity as attributes worthy of continuing consideration 
(see, e.g., Fennema & Leder,  1990 ; Fennema & Sherman,  1977,   1978 ; Forgasz, 
Leder, & Kloosterman,  2004 ; Reyes & Stanic,  1988 ; Secada,  1990  ) , and the impact 
of poverty as a negative correlate of performance (Bracey,  2009 ; NCES,  2010  )  is 
also well-documented. The USA has one of the highest rates of childhood poverty 
among industrialized nations, a situation that raises issues concerned with equity 
and access for many US students. 

 Notice that poverty is not an attribute of individuals; it is rather a condition of 
their existence that leads to secondary consequences. Poverty is often accompanied 
by debilitating effects for young children, and these effects can compromise almost 
all attempts to achieve greater equity and access to education in general and to 
mathematics education in particular. But our lens must also bring into focus ways 
to decide upon the most appropriate nature of the mathematics into which young 
children and older students are to be inducted.  

http://www.oecd.org/pages/0,3417,en_36734052_36734103_1_1_1_1_1,00.html
http://www.oecd.org/pages/0,3417,en_36734052_36734103_1_1_1_1_1,00.html
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   The Added Dimension of “The Politics of …” 

 The  Oxford Dictionaries Online  (  http://oxforddictionaries.com/de fi nition/politics    ) 
offers a set of meanings for the word “politics.” In particular, there is one broad, 
neutral meaning—“the academic study of government and the state”—and a second 
meaning associated with “The politics of ….” This second de fi nition is: “The assump-
tions or principles relating to or inherent in a sphere, theory, or thing, especially when 
concerned with power and status in a society.” At a more contentious level we read 
a third de fi nition: “Activities within an organization that are aimed at improving 
someone’s status or position and are typically considered to be devious or divisive.” 
In this chapter, all three de fi nitions will be relevant to our purposes. 

 The  fi rst is relevant because government-funded schools, as the designated sites 
for educating the majority of those soon to enter the general society, are institutions 
established by the state with functions and roles subject to state regulation. The state 
has political authority over these functions and roles, and that authority is codi fi ed 
in laws and statutes. At the base of these laws and statutes is a set of assumptions 
and beliefs about the purpose and nature of education. The school is the instrument 
intended to ensure that those graduating from it will in some sense be prepared to 
participate in the society envisioned by those in power. 

 In practice this is highly problematic. Assumptions about education and its 
purposes are varied and always contested by political groups and individuals within 
any citizenry. We all want our children to get a “good education,” but there are 
within any one country very different images of what that means—negotiating 
which notions of the good are to guide the provision of education brings us to our 
second de fi nition of politics as it applies to mathematics education—politics consists 
of those “assumptions or principles relating to or inherent in all  aspects of mathemat-
ics teaching and learning , especially when concerned with power and status in a 
society.” Each generation is inducted into a world that is adopting new layers of tech-
nological complexity; schools in the developed world are currently educating 
students all of whom have always known the Internet. Many of these students will 
 fi nd employment in  fi elds or roles that are yet to be invented. The traditional argu-
ment that someone or some group knows what basic mathematical knowledge and 
skills will prepare students for their roles in society rings hollow when set against 
these realities. 

 Two commonly-held positions on education and the importance of learning math-
ematics may be labelled for our purposes as the  utilitarian perspective —that only 
those mathematics courses that prepare the student for the world of work are neces-
sary—and the  liberal perspective— that all students can learn mathematics and indi-
viduals should be encouraged to pursue those mathematics courses that will allow 
them best to develop their own lives and careers. Of course, this is an over-
simpli fi cation. Ernest  (  1991  ) , for example, pointed out that each perspective will be 
enacted within a range of different groups with very different rationales and educa-
tional aims. The essential point is that the position held by those with responsibilities 
for political action may in fl uence equity and access to mathematics, as well as the 
kind of mathematics education that should be supported as part of public education. 

http://oxforddictionaries.com/definition/politics
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 The utilitarian perspective may be described as conserving the status quo, but the 
political solutions offered by the liberal or humanist perspective are aimed at trans-
forming society through the emergence of individuals who have sought their own 
pathway and who will bring new insights into problem solving. Somewhere between 
the two ideals, utilitarian and liberal, can, perhaps, be found the politics of the prac-
tical as the small numbers of the highly in fl uential negotiate with the masses whose 
members each have limited individual power in the continuing struggle between 
different classes. How do these negotiations in fl uence educational realities when 
considering the mathematical education of students and the preparation of their 
mathematics teachers in different societies?  

   What Mathematics? Whose Mathematics? 

 This is not the place to undertake a full discussion of the range of philosophical 
positions that may be taken on the nature of mathematics and the relationship of 
those positions to possible beliefs about mathematics education (Ernest,  1991  ) . 
Our purpose here is to contrast two general perspectives and speculate about their 
consequences for equity and access. 

 Those holding a political position that we will continue to describe as utilitarian 
tend to perceive mathematics as neutral and uncontroversial, but those holding a 
more liberal perspective are likely to take an entirely different view of the nature 
and role of mathematics, for individuals and within society. To make the distinction 
clearer, let us consider the following comparison of positions on the nature of math-
ematics. It should be emphasized we do not intend to suggest that commentators 
who offer what we describe below as an example of what it means for mathematics 
to be neutral are therefore utilitarian in their political stance. The same disclaimer 
holds for those whose viewpoint exempli fi es the liberal political perspective on the 
meaning of mathematics. In the interests of full disclosure we, the authors, declare 
ourselves to hold a liberal perspective. 

 At the Research Pre-session of the April 2010 meeting of the National Council 
of Teachers of Mathematics (NCTM) in the USA, a symposium entitled  Keeping the 
Mathematics in Mathematics Education Research  was held. This symposium came 
close on the heels of an editorial in the March 2010 issue of the  Journal for Research 
in Mathematics Education  (Heid,  2010  )  in which the editor stated that “ JRME  pub-
lishes research in which mathematics is an essential component rather than being 
the backdrop for another area of inquiry” (p. 103). 

 After reporting their impressions of part of the NCTM symposium, Martin, 
Gholson and Leonard  (  2010  )  reacted very strongly to some of the statements made 
during the symposium in relation to mathematics and the neutrality of the questions 
about the relationship between mathematics and mathematics education. Some of 
the words that drew their reaction were in the published symposium summary: “… 
the session addresses a growing concern among many mathematics education 
scholars regarding the lack of attention to mathematics in much of the current work 
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in mathematics education” (NCTM,  2010 , p. 60). Guershon Harel  (  2010  )  offered 
questions during the symposium about the role of mathematics in mathematics edu-
cation research that he claimed were neutral and apolitical. This claim led Martin, 
Gholson and Leonard to present a strong case for the political and cultural nature of 
all mathematics and all mathematics education research. 

 The editorial comments by Heid, and the statement by Harel, had political impli-
cations for access and equity to mathematics teaching and learning—and also for 
what should count as research in the  fi eld of mathematics education, including 
mathematics teacher preparation and inservice development. Martin, Gholson and 
Leonard wrote:

  To whose mathematics are Heid and Harel referring? Is it the very same school mathematics 
that has been used to stratify students, affording privilege to some and limiting opportunities 
for others? … Mathematics can also be used as a tool for understanding the work and, in the 
case of marginalized students, it can aid in understanding the social forces that contribute to 
their marginalization. (p. 14)   

 To rephrase: A critically aware approach to mathematics may help those who are 
marginalized to understand how their marginalization came about and it may also pro-
vide opportunities to resist that marginalization. Strong support for the position on math-
ematics outlined in the above quotation may be found in Bishop  (  1988  ) , D’Ambrosio 
 (  1985  ) , Mellin-Olsen  (  1987  ) , Powell and Frankenstein  (  1997  ) ,  Skovsmose (2010) , and 
many others. Contributors to the edited collection,  Ethnomathematics: Challenging 
Eurocentrism in Mathematics  (Powell & Frankenstein,  1997  )  provided strong argu-
ments for this position. 

 The plight of smaller nations, struggling to survive in the swirl of world-wide 
globalization, provides a case in point. Later in this chapter we will outline some of 
the unintended consequences in several nations that have taken the political decision 
to require that all education, including the teaching of mathematics, be conducted in 
English only. We believe that this is an extreme form of marginalization, bordering 
on a form of neo-colonization, that is taking place with the tacit agreement of local 
politicians and administrators. The prevailing course of action in those nations is 
almost universally to adopt existing textbooks from the USA or Britain, and the 
result is that there is little local cultural input into the mathematics that is taught. As 
a result, the mathematics in the curriculum can be irrelevant to much of the daily 
lives of students in those nations. How likely is it that students in such a situation 
will come to see mathematics as a tool that allows them to understand their margin-
alization and attempt to do something about this neo-colonization? 

 So we question whether students in small nations with highly-developed sets of 
cultural practices and long-established languages should be required by political  fi at 
to undertake their entire education in a language other than their  fi rst language. 
Should teachers in those nations be required to teach only in a language that is, for 
many of those teachers, a second language? 

 As we discuss equity and access to mathematics education across nations we will 
assume that the mathematics with which students should interact should be in a 
form that is relevant and meaningful to their lives, not only in an economic sense but 
also in a more holistic culturally-appropriate sense (Bishop,  1988  ) .  
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   Equity and Access for Students: A Developing Viewpoint 

 Earlier, we indicated that we would refer to more recent approaches to de fi ning 
equity and access in mathematics education. Nasir and Cobb  (  2007  )  reminded us 
that the meanings of these terms are neither  fi xed nor transparent to all who are 
interested in ensuring that students enjoy every opportunity to participate success-
fully in mathematics beyond rudimentary levels. Not only do the concepts continue 
to evolve within the mathematics education community, but so too do mathematics 
educators’ understandings of how they relate to mathematics learning. 

 Nasir and Cobb  (  2007  )  sought to reframe common understandings of access and 
equity by pointing out that although earlier reports on the constructs were made 
within an environment that accepted that culture and other factors were in play there 
was not, at that time, a deep recognition of their effects. They were treated merely 
as background factors. This is not to say that those conducting the studies were not 
aware of cultural impacts, but rather to suggest that the analyses were insuf fi ciently 
sensitive and unable to treat these impacts in a functional way. 

 Nasir and Cobb’s  (  2007  )  perspective raised the need to understand culture and its 
impact, and to generate more productive ideas by applying “sociocultural theory 
[which] provided us with not only a common language, but also with a toolkit of ideas 
that potentially offered important insights into long-standing equity and diversity issues 
in mathematics education” (p. xi). We recognize a parallel to the concerns expressed by 
White, Altschuld, and Lee  (  2006  )  that are discussed later in this chapter. In particular, 
we recognize that those students belonging to a cultural minority, or who speak a 
language that is different from the language spoken by the majority, are too often 
treated as if they suffer from some kind of de fi cit. Thus minority students are offered 
equity and access, but to take advantage of that offer, they can be expected to move 
away from their home languages (or cultures), and asked to engage with their edu-
cation using an unfamiliar language. For students who are studying in mathematics 
classrooms in which more than half of the time they are unable to understand what 
is said by their teachers, the “access” provided is no access at all. 

 Instead, we would offer a more positive view of the potential gains brought to the 
table by minority language students who are learning mathematics or any other 
subject, whether with peers only or with majority students. We shall argue that these 
gains could be a direct consequence of either their cultural or language differences. 
Such students have the capacity to enrich the classrooms in which they study, pro-
vided their teachers are suitably prepared to take advantage of their presence and 
their cultural and language differences.  

   Mathematics Teachers and Teaching Mathematics 

 How do equity and access interact in relation to teaching? Arguably one element 
of access is the competence of the teacher in terms of both mathematical knowledge 
and preparation to function effectively in the classroom. Ill-prepared teachers, or 
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those with inadequate background knowledge, are likely to undermine any claims 
of access or equity (cf. Akiba et al.,  2007  ) . Of course, similar concerns may be 
raised about the preparation of students on entering the school—their access to 
mathematics and their claims for equitable treatment may be in fl uenced by the 
degree to which they are prepared to learn in terms of attitude and knowledge. 

 An issue that is not often framed at all is that of access of minorities into prepa-
ration as teachers of mathematics, and their retention once they do enter the pro-
fession. In the USA, the Business-Higher Education Forum (BHEF)  (  2007  )  
documented a serious situation (emphases in original):

   The USA will need more than 280,000 new mathematics and science teachers • 
by 2015.  
  Shortages are most apparent in  • high-minority and high-poverty classrooms,  
where students are less likely to be taught by a teacher who is well-prepared in 
the subject area.  
  In 2002, 72% of high-minority middle school mathematics classes were taught • 
by teachers who had not majored or minored in mathematics, compared with 
55% of low-minority classes.  
  There is also a  • critical shortage of minority teachers , which is outpacing the 
overall mathematics and science teacher shortage.  
  In 2003, 42% of public school students were from minority groups—yet only • 
16% of their teachers were minorities. (p. 1)    

 The last two bullet points draw attention to a signi fi cant problem. The usual factor 
mentioned in support of minorities as teachers is that the minority teacher is a role 
model for minority students. But diversity in teaching faculty teaches all students that 
diversity is to be valued in everyday society. In addition, the BHEF document pro-
vided evidence that in the USA there was a serious retention problem with an annual 
attrition of 394,000 teachers. The attrition rate of mathematics and science teachers 
led all other areas and was particularly high in schools regarded as high poverty. Other 
statistics in the BHEF list related to the impact of poverty thereby signalling the growing 
importance of this factor in equity and access, even though the BHEF document, in 
developing its recommendations, did not mention the need to deal with poverty. 

 From the above statistics, we better understand the possible explanation put forward 
by White et al.  (  2006  ) , who stated that “college retention rates for under-represented 
minorities (URM) in science, technology, engineering, or mathematics (STEM) 
are lower than other groups. One reason may be that the studies often do not view 
premature departure from a cultural perspective” (p. 41). That is to say, although 
those conducting the studies reported the data, too often they did not take account 
of possible explanations based on ethnicity. This lapse contributes to the continuing 
problem of recruitment of minority teachers in these  fi elds—if relatively fewer 
minorities take mathematics courses in college, the pool of potential minority teachers 
of mathematics will be correspondingly reduced. 

 The reader may wonder why it should be important for minorities to teach math-
ematics to minorities. Such a reader may subscribe to the mainstream position that 
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mathematics is value-neutral, entirely objective and essentially the product of 
western thought, so that the ethnic background and the  fi rst language of the teacher 
should be irrelevant. In response to this mainstream view (which is a political posi-
tion supported by those usually described as holding the utilitarian perspective 
described earlier), we raise again the very different picture of the place of mathe-
matics that may be found in, for example, D’Ambrosio  (  1985  ) , Mellin-Olsen  (  1987  ) , 
and Powell and Frankenstein  (  1997  ) . For these liberal scholars, mathematics is not 
merely a skill to be acquired in the service of a global society envisioned by the 
owners and managers of the dominating multi-national corporations. Mathematics is 
also a tool for the enlightenment of individuals and the transformation of societies. 
Many smaller societies are losing their cultures because of a continuing coloniza-
tion that is supported at administrative levels in many of those societies by the insis-
tence that all instruction should take place in, for example, the English language. 
An examination of prevalence of this scenario, including reports of relevant studies 
and the effects of the acceptance within some non-English speaking societies, will 
form a major part of the second half of this chapter. 

 We would claim that most students are taught by teachers who began their lives 
in a very different world from that of their students in terms of everyday access to 
technology. The exponential growth in worldwide forms of almost instantaneous 
communication combined with seemingly limitless access to information of all 
kinds has widened the gap between the current generation and the preceding ones 
from which the majority of teachers of today originated. Cheap cell phones that 
have taken on computer-like functions, including texting and email, Netbooks, and 
handheld tablets, are ubiquitous and not only in the developed world. Children 
beginning school in many parts of the world have always known the Internet. World 
Internet usage is measured according to a penetration index corresponding to the 
percentage of a population that uses the Internet (Miniwatts Marketing Group, 
 2011  ) . Even in some African countries penetration exceeds 10% and in Europe, the 
USA, Asia and Australia the reported penetration is in excess of 30%. Given that 
students have always had access to more technology than their teachers, an impor-
tant question for further research may be what assumptions and principles should be 
established both for mathematics teaching and learning, and for the preparation of 
teachers of mathematics, in order that students will be prepared, and able, to take 
advantage of technological advances. 

 That the third view of politics outlined earlier in the chapter as a set of prac-
tices that are intentionally devious and divisive is relevant to equity and access to 
mathematics education, is evidenced in the USA by the concerted attacks on 
teachers and teacher unions that have occurred for the last decade (see Maher, 
 2002  ) . In 2011, these attacks reached a fever pitch with calls for “value-added” 
measures of teacher quality. The discussion typically opens with a position that 
few would argue against—that all students should have access to a competent 
and knowledgeable teacher of mathematics. Educational administrators argue 
that agreement with that point of view implies that there needs to be reliable ways 
of identifying and supporting teachers whose performance is less than competent. 
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In the USA a chain of reasoning has been developed that has growing appeal. 
That chain goes like this:

   Many students’ test scores are unacceptable.  • 
  Teachers are directly responsible for their students’ individual scores.  • 
  Therefore many teachers are ineffective.  • 
  It is now possible through advanced technology to link each teacher with the test • 
scores of each student that the teacher teaches.  
  As students move from year to year it is possible to measure those students’ • 
changes in test scores from one teacher to the next.  
  These change scores are statistically manipulated using different models to • 
produce value-added measures (VAM).  
  These measures are then attributed to the current teacher of each student.  • 
  Averaging out the VAM for a class provides a measure of the effectiveness of the • 
current teacher for that class for that year.  
  Collecting VAM each year allows over time the identi fi cation of “good” and • 
“bad” teachers.    

 Despite the rhetoric that of course such measures should not be the only mea-
sures, in the USA they are rapidly becoming the sole measure of teacher effective-
ness and are often used as the sole criterion for teachers to retain their teaching 
positions. 

 Are there any problems with the VAM approach? First, many factors indepen-
dent of the teacher contribute to what and how students learn. Second, the tests used 
are underestimates of student knowledge and they are also not appropriate for the 
sophisticated statistical models needed to create the VAM for each teacher. Complex 
models are necessary for a variety of reasons, for example, to allow for test differ-
ences from year to year and district to district. Indeed studies of various VAM 
approaches show wide variation in results on the same initial data, and in some 
cases it is possible to draw absurd inferences from their implementation. Now con-
trast the VAM perspective that rests solely on student results with that of Ingvarson 
and Rowe  (  2007  ) , who pointed out the essential dif fi culty of conceptualizing and 
evaluating “teacher quality.” 

 Are teachers alone responsible for the scores their students produce? The answer 
from many countries is a resounding “No.” The model of learning that assigns all 
responsibility to teachers is the input model, which assumes that students sit pas-
sively while the teacher  fi lls their brains with new knowledge—the test score is then 
assumed to provide a direct measure of the presence of that new knowledge. Very 
few educationists believe this is how students learn. Furthermore, almost no-one 
believes that standardized test data provide a direct measure, or even a good mea-
sure, of what students know. 

 Politicians and educational administrators universally preface any comments on 
test scores with the quali fi cation that “test scores alone are not a good indicator of 
student performance.” However, having said that, they then abandon their own cau-
tion and arrive at important decisions about the quality of teachers and students 
based solely on the test scores. 
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 This whole process objecti fi es students; it reduces them to ciphers. It denies the 
reality that students make decisions to participate (or not participate); that students 
have a range of motivating factors that come into play in classroom situations, some 
conscious, some at the level of the subconscious. 

 There is nothing in the statistical models which takes into account factors external 
to the classroom; no matter how well-documented it is that these external factors 
strongly in fl uence how well individuals learn. The principal external factor is 
 poverty , which is not a student attribute but rather a debilitating condition of a 
student’s existence. Consider these mathematics results from the National 
Assessment of Educational Progress (NAEP) in the USA:

  In 2009, about 49% of 8th-graders from high-poverty schools performed at or above  Basic , 
13% performed at or above  Pro fi cient , and 1% performed at  Advanced . In contrast, about 
87% of 8th-graders from low-poverty schools performed at or above  Basic , 50% performed 
at or above  Pro fi cient , and 15% performed at  Advanced.  (Condition of Education: Special 
Analysis High-poverty Public Schools, 2010, para 1.)   

 Many of the designers of VAM are ambivalent in relation to the use of stan-
dardized test results for high-stakes decisions. Thus, for example, Steven Rivkin 
 (  2007  )  recognized the many dif fi culties with standardized test scores as the major 
source of data:

  The imprecision of tests as measures of achievement, failure of some examinations to mea-
sure differences throughout the skill distribution, and limited focus of the tests on a small 
number of subjects further complicate efforts to rank teachers and schools based on the 
quality of instruction. (p. 1.)   

 But in the very next paragraph, we read: “Yet despite these potential drawbacks, 
value-added analysis may still provide valuable information to use in personnel 
decisions and teacher compensation structures” ( p. 1). Later, Rivkin noted that it 
was “unlikely that available variables account for all school and peer factors sys-
tematically related to both achievement and teacher quality” (p. 3). Still later: “The 
myriad factors that in fl uence cognitive growth, the purposeful sorting of families 
and teachers into schools and classrooms, and the imperfections of tests as measures 
of knowledge complicate efforts to estimate teacher effects” ( p. 5). 

 Although the drawbacks are real, and the information is suspect, teachers on the 
wrong end of personnel decisions can be dealt with harshly. Even following his 
enthusiastic support for VAM, Rivkin advocated important direct forms of teacher 
evaluation such as those practised at the school level, with well-prepared supervi-
sors available to observe and provide relevant feedback aimed at supporting those 
teachers who need to improve. 

 The political aim of these attacks from political conservatives within the USA 
has been to lay the blame for “poor” US student performances in international and 
national standardized tests at the feet of teachers and teacher unions. That these 
attacks are unfair and based on misunderstandings about the interpretation of test 
scores, deliberate or otherwise, has been made clear by writers such as Bracey 
 (  2009  ) , and Ravitch  (  2010  ) . The effects on the morale of teachers are as yet unknown 
but most certainly are unlikely to be positive or neutral. 
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 Some of the effects on the teachers’ work practices, in the USA at least, are 
becoming apparent to those working with teachers in schools. An elementary school 
that the  fi rst author of this chapter visits regularly is a school with a majority of 
students of minority status, many of whom are classi fi ed as second-language 
learners. Now in a “restructuring” year, because of poor test performance on a state-
wide standardized test, its students take the state tests for English and mathematics 
three times over the course of the school year. Only the best scores are counted. The 
pressure to meet yearly upgraded targets, which according to statisticians must 
eventually become unrealistic, has caused many schools to allocate ever-increasing 
periods of test preparation in mathematics and language. This extra time is almost 
exclusively directed at those students whose performances on the  fi rst opportunity to 
test are not quite “satisfactory” but are “approaching satisfactory.” The colloquial 
expression for these children is the “bubble kids.” The reader is left to speculate about 
the impact these changed practices are having on those students who are achieving 
at either high or at very low levels (as determined by their test performances). 

 Other areas, in which similar concerns have been expressed and rapidly followed 
by politically-motivated attacks, are the arrangements and requirements for teacher 
education and provisions for inservice education for teachers. Curiously the attacks 
often cite Finland as a place for the USA to emulate because of its successes in inter-
national tests. Never mentioned are three critical facts about teachers and teaching 
mathematics in Finland; the curriculum is determined at a local level, teachers are 
fully-unionized and almost all have the type of masters degree that is being attacked 
as inappropriate for US teachers (Kupiainen, Hautamäki, & Karjalainen,  2009  ) .  

   International Cases of Colonization: “English First” 
in Teaching Mathematics 

 Mathematics does not consist solely of symbols, and it is concerned with more 
than manipulation and computation with numbers. Despite a commonly-held belief 
to the contrary, mathematics requires considerable language skills if it is to be well 
learned. Learning mathematics involves the development of concepts and the mas-
tering of skills. Mathematical concepts are necessarily abstract and eventually come 
to be recorded with concision and precision. However to develop concepts success-
fully, most students need to engage in a great deal of spoken discourse with teachers 
and fellow students. Productive discourse is only possible when students engage in 
interchanges involving rich language to explain their individual perspectives. 
Mathematics also involves logical thinking, together with deductive and analytical 
reasoning. 

 Therefore to teach and learn well in mathematics, access to the language of 
instruction for both teacher  and  her students, is an important factor. Both the teachers 
and the students must be competent in the language of instruction if their discussions 
and explanations are to be understood by all parties. If the students are not familiar 
with the language of instruction clearly they will be deprived of access into higher 
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levels of mathematics learning. This would seem to make obvious the necessity of 
the language of instruction matching the language spoken by the students. 
Furthermore, the teacher should have a deep knowledge of that same language. 
Otherwise, equity and access to mathematics learning will be compromised. This is 
not an issue in most developed countries where teachers and students by and large 
share a common language. Some developing countries in Africa (such as Kenya, 
Malawi) have changed their language policies over the past  fi ve years to ensure 
that their primary school pupils are taught in their mother tongue or home lan-
guages. This policy change has raised objections from some upper- and middle-
class parents who believe that if their children were to be taught in English they 
would be more likely to gain access to the global world than if they continue to be 
taught in their home language. 

 Other countries have changed their language policy away from an emphasis on 
local languages  fi rst, presumably to suit political and economic agendas, and seem-
ingly without knowledge of the potentially negative impact of an inappropriate 
choice of language of instruction on both equity and access into mathematical 
knowledge of the students within the country. English, which has rapidly become 
the dominant international language, is considered the language of power— fl uency 
in its use is regarded more and more as a pre-requisite for gaining status and pres-
tige, particularly for countries seeking to compete within the globalized economy. 

 Although English is a second or third language for the children of many coun-
tries (e.g., South Africa, Malaysia, Hong Kong, The Philippines, and American 
Sāmoa), in a number of such countries English is now required as the sole language 
of instruction for many school subjects including mathematics at all levels within 
the public school. In many places the “English-only” edict begins at the primary 
school and continues through all grades of the high school. The perceived political 
advantages of having con fi dent English-speaking school graduates entering their 
workforce have trumped the local educational aims in many of the countries that 
have made this choice. 

 One wonders if suf fi cient thought has been given to the social and cultural impacts 
on the people of the non-English speaking nations that are making this choice, almost 
all of which are former European colonies. Below are several international cases 
seeking to illustrate the consequences of political action. Almost certainly, there are 
other cultures being marginalized with subsequent loss of their unique ways of 
thought through the insistence on the use of English-only in the schools and increas-
ingly in the mainstream society. The irony is that this marginalization is being initi-
ated and promulgated by in fl uential members within each culture as those members 
seek to position their countries as players in the globalized society. 

   The Case of South Africa 

 Setati  (  2005  )  reminded us that “language is always political, not only at the macro 
level of policy making but also at the micro level of classroom interaction” (p. 450). 
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This is because the choice of language use and the purposes for its use are not only 
pedagogic but also serve the political purpose of developing a work force to enable 
the country to compete internationally. As a result, English is further advanced as 
 the  international language. It is also generally observed that in many formerly colo-
nial countries such as South Africa, Nigeria, Malaysia, and others, a “change in the 
language policy of a country is often linked to change in political power” (Setati, 
 2005 , p. 450). 

 Setati  (  2005  )  analyzed the language used in teaching and learning mathematics 
in a multilingual primary mathematics classroom in South Africa. The class was 
taught by a quali fi ed and experienced African teacher who was competent in both 
English and the home language of her pupils (Setswana). Her analysis highlighted 
the dilemma and tension experienced by the mathematics teacher. On one hand, she 
was aware of the potential power of English as a gateway to access educational and 
other resources in South Africa, but on the other hand, she realized the importance 
of using her pupils’ home language as the language of mathematics in conceptual 
discourse. However, insisting that the teacher and pupils used only English, far 
too often led to a parody of discourse as a consequence of which pupils came to 
memorize words and symbols without a complete understanding of their meanings. 
The negotiation of meaning that is one of the most important outcomes of genuine 
discourse was simply not possible in such circumstances. 

 More importantly, because English was imposed, pupils learned by inference 
that their home language could not be very important. So, unless a teacher was 
extraordinarily competent the only school discussions that the pupils experienced in 
mathematics classes would take place in a language in which pupils were only 
barely functional, and the cognitive content would be presented at a very low level 
only. Small wonder, then, that the pupils experienced “a devaluing of conceptual 
discourse as valuable mathematical knowledge” (Setati,  2005 , p. 462). 

 In fact, a similar dilemma has been experienced by Malaysian mathematics 
teachers who have been operating under the policy of making students’ non-home 
language the language of instruction for teaching mathematics and science in 
Malaysian schools (see Lim & Ellerton,  2009 ;    Lim & Presmeg,  2011  ) . Related 
issues will be discussed later in this chapter.  

   The Case of Botswana 

 In the case of Botswana, Garegae  (  2007  )  described problems faced by teachers 
and students that were similar to those in South Africa. In mathematics classes, it has 
been mandated that English will be the language of instruction. Garegae’s  (  2007  )  
study was very different from that reported by Setati  (  2005  )  above in that Garegae 
focussed on a more linguistic analysis of the language use in the classrooms in which 
mathematics was being taught. As the language of instruction, English was not the 
learners’  fi rst language, and teachers preferred to code-switch between English (L2) 
and Setswana (L1) even though this was not of fi cially acceptable. 
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 Garagae observed three junior secondary school teachers teaching mathematics 
and found that they used three types of code-switching: insertion, alternation, and 
sentence translation. Insertion referred to when “teachers inserted a word in a 
sentence expressed in another code; say a Setswana code inserted into an English 
sentence” (p. 235). Alternation refers to those situations where, “sentences are being 
alternated, and a complete sentence in one code is followed by another in a different 
code” (p. 235). The third type of code-switching, sentence translation, was found to 
be the most common and for this type, “the next sentence is the translation of what 
was expressed in the previous code” (p. 235). Garegae  (  2007  )  observed that the  fi rst 
two forms of code-switching encouraged a positional simpli fi cation strategy for 
acquiring L2 and thus disadvantaged the pupils. This was because when students 
heard isolated words regularly from the teachers, they were not able to learn the 
meaning of the word as well as the rules of syntax and grammar. 

 Garegae proposed that the translation of whole sentences from one code to 
another is a better type of code-switching because it helps to clarify the meanings of 
words, expressions and sentences expressed in another code through an entire refor-
mulation of instructions. In Botswana’s school mathematics curriculum, students 
were expected to be given a chance to experience a change in teaching methodology 
from the traditional method of transmission teaching strategy to more of a problem-
solving approach, by which students were asked to conjecture and formulate hypoth-
eses about a mathematical problem. Classroom discourse was encouraged whereby 
learners exchanged ideas, discussed and justi fi ed their arguments. 

 But for this to succeed, learners needed to be well versed in the language of 
teaching and learning. Therefore, Garegae  (  2007  )  argued, “if teachers code-switch 
without helping students to be able to construct proper sentences, then classroom 
discourse in Botswana schools will remain an unattainable dream” (p. 236). This 
case again highlighted the inequity in access to certain kinds of teaching approaches 
due to the lack of student competency in the language of instruction, with the root 
cause of inequity being the politically-mandated use of English as language of 
instruction.  

   The Case of Malaysia 

 Viewing English as the “language of power” in meeting the challenges of global-
ization, in 2003 the Malaysian Ministry of Education took a bold and drastic step 
implementing the new language policy of Teaching Mathematics and Science in 
English (or better known as PPSMI). According to Choong  (  2004  ) , the initial ratio-
nale was “teaching the subjects in the science disciplines in English would expedite 
acquisition of scienti fi c knowledge in order to develop a scienti fi cally literate nation 
by the year 2020” (p. 2). However, English was not the  fi rst language of the majority 
of Malaysian teachers and students in schools. In fact, those teachers who were less 
than 45 years old had experienced their entire education (primary to secondary to 
tertiary) with languages other than English as the medium of instruction. Before 2003, 
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English was taught as a subject, but not as the medium of instruction. Therefore, 
teaching mathematics in English posed great challenges, particularly to mathematics 
teachers in this age group—if their preparation in English was only as a stand-alone 
subject it was unlikely that they would have suf fi cient knowledge of English to 
conduct mathematics classes in English. 

 In one local study, Lim, Saleh, and Tang  (  2007  )  surveyed the perspectives of 
20 primary school administrators, 443 mathematics and science teachers, and 787 
primary Year 5 pupils from 20 schools in three northern states of Peninsular 
Malaysia, 5 years after the implementation of PPSMI. Their results showed that 
one- fi fth of the teacher participants rated their own competency in spoken and 
written English as “poor.” By comparison, almost all of these teachers rated their 
language competency in Malay and/or Mandarin as “good.” Indeed, “if nearly one-
 fi fth of the primary school teachers were incompetent in the English language, then 
their lack of con fi dence when teaching mathematics and science in English is 
entirely understandable” (Lim & Presmeg,  2011 , p. 145). 

 After a review of the various related studies in Malaysia, Lim and Ellerton  (  2009  )  
concluded that the overall con fi dence among mathematics teachers in their English 
language pro fi ciency remained low enough for teaching in that language to appear 
as threatening. This lack of con fi dence might have led them to code-switch, or dis-
couraged them from using English fully. For example,    Tan, Lim, Chew, and Kor 
 (  2011  )  analyzed the discourse of 12 video-recorded mathematics lessons and found 
generally that the pattern of language use re fl ected the ethnicity of the pupils. Their 
discourse analysis showed that teachers talked more than their students, and that 
mathematics talk was much more common than non-mathematics talk. The use of 
English was greater than the use of mother tongues in all classes except the weak 
classes in the Chinese vernacular schools. In those schools the mother tongue domi-
nated classroom discourse. However, the pupils’ mother tongue was “the language 
to fall back on for the teaching of mathematics” (p. 141). The English language 
functioned more signi fi cantly in providing contextual discourse rather than concep-
tual discourse. Additionally, the pupils’ mother tongue played “a major role as the 
language of conceptual discourse which required re fl ection and the articulation of 
one’s reasoning” (p. 142). 

 Based on the data from the same study, Lim and Presmeg  (  2011  )  analyzed in depth 
the dilemma of teaching mathematics in two languages in one Malaysian Chinese 
primary school. Because of the complex socio-cultural demands of the Malaysian 
Chinese community, mathematics was taught in both Mandarin (the pupils’ mother 
tongue) and English (the of fi cial language of instruction for mathematics) in this 
type of school. Both teachers in Lim and Presmeg’s study emphasized that they 
resorted to code-switching so that those among their students who were weak in 
English would have a better chance of catching up with their peers. Consequently, a 
substantial amount of teaching time was wasted in making translations, especially 
of the terminology of mathematics. To expedite the teaching, these teachers some-
times opted to teach in the students’ mother tongue (Mandarin) only. Hence, some of 
these students, particularly the weaker ones, may have been denied the opportunity 
to speak and express their mathematical thoughts in English. 
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 Although the practices mentioned above were understandable from the points of 
view of teachers struggling to survive, they could well have created real learning 
problems for non-English speaking students. The source of these dif fi culties could 
lie in the decision at some administrative level to adopt a short-sighted political 
solution to what is a very complex educational problem. Malaysia will revert to 
requiring the mother-tongue to be the language of instruction in mathematics and 
science classes from year 2012 (Chapman,  2009  ) . Inevitably, the debate concerning 
whether access and equity for some groups of pupils will be improved by the planned 
policy change will continue. We would maintain only that the issues of equity and 
access in learning mathematics are signi fi cantly related to the language of instruction 
for mathematics.  

   The Case of Aboriginal Australians in Homeland Communities 

 The example here is of a majority English-speaking nation with a small minority 
of Aboriginal people leading relatively traditional lives in remote communities now 
mostly in the far north and north-west of the country. Most Australia Aboriginal 
people have become urban dwellers and have adopted “white-fella” ways—but, as 
Harris  (  1991  )  reminded us, many still look to the remote groups leading traditional 
lives to maintain the cultural knowledge and languages of the Aboriginal people. 
Schooling in these communities was in theory conducted in English, but the com-
mon practice was best described in the words of an Aboriginal Australian colleague, 
“English is the language of instruction but  Yolngu Matha  is the language of 
explanation.” 

 Two points were evident:  fi rst, the oral language was extremely and uniquely 
important so far as learning was concerned; and second, in  Yolngu Matha,  concep-
tions of space were expressed in ways that were completely unfamiliar in European 
languages—and hence, attempts at cross-translation mentioned earlier could not be 
successful. As Christie  (  1995  )  pointed out, political correctness in the 1970s 
“seemed to dictate that all languages are ultimately capable of communicating the 
meanings of all other languages” (p. 2). Christie also pointed out that languages 
express different epistemologies arising from different world views, and that it is 
likely that different mathematics is a real consequence of these different world-
views. This raised several points, not the least of which is the negative effect on 
Aboriginal languages and culture of being instructed in English. That, together with 
the added dif fi culty that many teachers are non-Aboriginal, and are non-native 
speakers of the local language, has created many very problematic scenarios. 

 How different are Aboriginal languages from English and other European lan-
guages? An emphasis on cardinal directions is one aspect that Aboriginal languages 
share with languages of other ancient cultures. English words “left” and “right” are 
not used, and there are not simple words for those concepts in the local language. 
Teaching children how to form letters in English provides an example of how different 
the languages can be—an English speaker might use up, down, left and right, but the 
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Aboriginal teacher would use the cardinal directions, north, south, west and east 
(in the local language) and the correct words in a situation would be relative to the 
child’s spatial orientation.  

   The Case of American Sāmoa 

 Hunkin-Finau  (  2006  )  describes the situation in American Sāmoa thus:

  Although American Samoan society values the idea of bilingualism and biculturalism, its 
teachers are bound by an education system that promotes, and is heavily oriented towards, 
English and western values. Outside of their professional work, Samoan teachers live as 
Samoans in the community; inside the schools, they employ English and operate within a 
system that is tied to western values. (p. 49)   

 By adopting an English-only policy in the schools, there is loss of the traditional 
ceremonial forms of Samoan at the same time as there is growth of a form of Samoan 
contaminated by the kind of code-switching that Garegae reported in Botswana. 
The long-term result is that although Samoan students are losing their Samoan, they 
are not improving much in Standard English, and are certainly doing poorly in 
mathematics by most standards. A signi fi cant aspect of the problem is the limited 
knowledge of English of many teachers (Hunkin-Finau,  2006  ) .   

   Concluding Remarks 

 Political decisions lead to policy formulation. A positive example of policy 
formulation that has had an impact on access and equity in mathematics for both 
students and teachers is that made, and implemented at the national government 
level, some 10 years ago, by Finland. Some believe that these decisions culminated 
in recent very strong international PISA performances by Finnish students (OECD, 
 2010a  ) . Table  8.1  shows the major policy decisions taken in Finland on the right, 
which offer a strong contrast to the conventional model that is in effect in many 
countries, shown in the left column (Kupiainen et al.,  2009 , p. 12).  

 It could be argued that the key to Finnish success was the successful implementa-
tion of the outlined policies. This is to be contrasted with the unsuccessful imple-
mentation of the English-only education policy described in several cases earlier in 
this chapter. The usual reasons given by outside commentators for Finland’s success 
are that it has a relatively small population, that the population is essentially homo-
geneous in terms of culture, with a high literacy level, and that Finland enjoys a low 
level of poverty among children. However two points should be made. First, 10 
years previously, Finland, by its own admission, had an education system plagued 
with problems (Kupiainen et al.,  2009  ) , despite all the factors mentioned in the last 
paragraph that should have been associated with success. Second, the policies 
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adopted recognized and took advantage of the professionalism of teachers and 
administrators. The new policies removed many bureaucratic restrictions that are 
faced in education reform in most countries. 

 Perhaps at the heart of the politics and policy decisions taken within a nation, 
decisions that have an impact on equity and access in mathematics teaching and 
learning, is a general desire to develop the nation’s political economy. Participation 
in the global marketplace is seen as very desirable as nations strive to improve the 
circumstances of their people. This essentially means that successful entry into the 
global marketplace becomes a major rationale behind many decisions, including 
educational, taken by the political leaders of a nation. Perceptions of success are 
related to producing an educated workforce. But this requirement demands a great deal 
of both teachers and students, particularly in countries where the political economy 
is unable to provide the necessary infrastructure and resources. 

 In such cases the implementation of the policies thought essential to joining the 
global market place, such as educating non-English speaking students in English 
only, falters and becomes counterproductive. Keady  (  2006  )  used the term “vulner-
ability” to remind leaders of nation states seeking to participate in the global econ-
omy that there are costs that go unrecognized associated with the supposed economic 
bene fi ts. These costs include unwanted changes in social and cultural life within the 
state that may lead to a reduction in equity and access to mathematics learning, and 
indeed many other aspects of formal education. 

 It is impossible to close this chapter with a set of pronouncements concerning the 
overall situation with respect to the politics of access and equity to mathematics teach-
ing and learning across the world. The level of complexity of such a task would be far 
too great. We have pointed to possible factors that make it less likely for some students 
to gain access to mathematics and to learn from a well-prepared teacher. Poverty 
remains a major factor—even in resource-rich developed countries there are pockets 
of citizens living below the poverty line. With few exceptions, hungry students do not 
learn as well, or as much, as others and are thus denied access and equity.      

   Table 8.1 
  Comparison of Two Models of Policy Formulation   

 General Western Model  The Finnish System 

  Standardization  
 Strict standards for schools, teachers and students 

to guarantee the quality of outcomes. 

  Flexibility and diversity  
 School-based curriculum development, 

steering by information and support. 
  Emphasis on literacy and numeracy  
 Basic skills in reading, writing, mathematics and 

science as prime targets of education reform. 

  Emphasis on broad knowledge  
 Equal value to all aspects of individual growth 

and learning: personality, morality, 
creativity, knowledge and skills. 

  Consequential accountability  
 Evaluation by inspection. 

  Trust through professionalism  
 A culture of trust on teachers’ and headmasters’ 

professionalism in judging what is best for 
students and in reporting of progress. 
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  Abstract   The eight chapters in Section  B  were written by 22 scholars from 13 
different nations. The  fi rst chapter provides historical perspectives on the growth of 
mathematics education as a  fi eld of study, with an emphasis being on the move 
towards greater internationalization. The “middle chapters” discuss theoretical and 
practical developments, especially in relation to the trend towards greater degrees of 
collaboration between school teachers, based in schools, and mathematics educa-
tors not based in schools. Issues such as: (a) “How should we educate mathematics 
teacher educators?”; (b) “How much should practice be in fl uenced by a perceived 
capacity to deliver success in terms of international competitiveness linked to 
economic agendas?”; and (c) “How can teachers of mathematics become effective 
mathematics education researchers?” are taken up. In the  fi nal chapter in the 
section, the issue of how much notice is being taken by curriculum developers 
and policy makers of the “ fi ndings” of mathematics education research is raised.   

 Keywords   Action research in mathematics education  •  Mathematics education 
as a  fi eld of study  •  Teachers as researchers  •  Teacher education  •  Theory and 
mathematics education            

 The aim of this section is to document and analyze various issues concerned with 
developing a  fi eld of study—in this case, mathematics education. As the  fi rst chapter 
in this section shows, our  fi eld is a relatively new one, especially when compared 
with that of mathematics, and even with education. However, increasingly over the 
last decade, as the various practices in mathematics education have proliferated, 
albeit seemingly without any comparable increases in overall mathematical achieve-
ments and attitudes, researchers have taken serious steps to address the nature of our 
 fi eld. It is timely, therefore, in this international handbook, to analyze what has 
changed in the  fi eld since the last international handbooks (Bishop, Clements, 
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Keitel, Kilpatrick & Laborde,  1996 ; Bishop, Clements, Keitel, Kilpatrick & Leung, 
 2003  )  and to ponder where mathematics education is as a  fi eld of study at present. 

   The Field of Study in Previous Handbooks 

 In earlier handbooks of mathematics education this topic has received limited and 
relatively narrow attention. In the  fi rst handbook produced in the  fi eld (Grouws, 
 1992  )  there was no speci fi c section, or indeed chapter, with this focus. However an 
invitation came to me to contribute a chapter to that handbook under the title 
“International Perspectives on Research in Mathematics Education,” and in that 
chapter I did to some extent indicate how our  fi eld of study was growing. The title 
of the chapter also indicated an assumed brief for the chapter, which was to docu-
ment the various research activities happening in different countries. 

 On re fl ection it occurred to me that the brief given to me for the Grouws  (  1992  )  
 Handbook  was an impossible brief to follow, as there was no way of establishing 
the validity of any claims which might be made about what was occurring within 
several countries. It also assumed that it was the country, the “nation state,” which 
was somehow the determining factor in the choice of research study. Given the 
debates within our research  fi eld, as I saw them, due to increasing numbers of 
conferences, journals and collaborative research activities, it seemed much more 
appropriate to shed light on these perspectives by referring in some way to their 
historical and cultural backgrounds. 

 This I achieved by considering research in our  fi eld as following three distinct 
traditions: namely the Pedagogue tradition, the Empirical Scientist tradition, and the 
Scholastic Philosopher tradition (Bishop,  1992  ) . In particular, rather than viewing 
research trends as particular national styles or traditions, these three traditions were 
shown to occur both within and across national boundaries. 

 Nowadays, with the growth in international contacts in research, publishing and 
conferences, it is less easy to see the three traditions in research practices. Nor 
would that necessarily be a good way to analyze the trends and developments in our 
 fi eld in this current  Handbook . Research these days trawls many diverse  fi elds for 
its constructs and its processes. Anthropological, socio-cultural, and political 
perspectives are among many being brought to bear on the complex problems of 
the practice of mathematics education today. 

 The previous Kluwer/Springer handbooks have demonstrated the growth of 
interest in the theoretical nature of the  fi eld itself. In the  fi rst  International Handbook 
on Mathematics Education  (Bishop et al.,  1996  ) , two sections contained chapters 
focussing on different aspects of the topic. Chapter 22 was titled “Epistemologies of 
Mathematics and Mathematics Education” (Sierpinska & Lerman,  1996  ) , and 
Chapter 28 was titled “The Role of Theory in Mathematics Education and Research” 
(Mason & Waywood,  1996  ) —and as they introspected on the constructs and 
methods being used, the authors of these chapters demonstrated how researchers 
had begun to address the issues faced by researchers in a developing research  fi eld. 
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 Epistemology is a fundamental part of any  fi eld of study, but what Sierpinska and 
Lerman  (  1996  )  showed in their chapter was that mathematics education, as a  fi eld, 
contains many related but also competing epistemologies. As they saw it: “There is 
much debate within the international community of mathematics educators about 
theoretical approaches and their underlying epistemological issues” (p. 867). 
Diversity of epistemology was echoed in the chapter by Mason and Waywood, in 
terms of both the range and the articulation of theory and theories relevant for 
mathematics education. As they stated: “Instead of asserting exclusivity, people 
will increasingly acknowledge that each discourse provides a way of seeing and 
speaking which may or may not seem appropriate to the context, issue, and partici-
pants, which may or may not prove to be informative in the future” (p. 1083). 

 The assumed brief for that  fi rst  Handbook  was to represent the range of activities 
and ideas being developed in the  fi eld up until its publication in 1996. In the  Second 
International Handbook of Mathematics Education  (Bishop et al.,  2003  )  there was, 
once again, no particular section focussing on the  fi eld itself. Partly the reason for 
this was that the assumed brief for that  Second Handbook  was not to just repeat the 
chapters and sections of the  fi rst, but to focus on what were felt to be the growth 
aspects and issues and concerns in the  fi eld since the publication of the  fi rst 
 Handbook . Mathematics education as a  fi eld of study did not appear to be a priority 
area, compared with policy issues, technological developments, issues in research, 
and professional practices in mathematics education, which formed the four 
sections. However in Section 3 “Issues in research in mathematics education” there 
were several chapters which showed that whenever research is undertaken, theo-
retical issues are always present. It was clear that in the seven years which had 
passed since the publication of the  fi rst  International Handbook , more interest, and 
also more concern, had been expressed about the  fi eld—how it should be studied, 
what quality controls should be exerted on the research, and the role of ethics 
in research. 

 In introducing that section, Kilpatrick  (  2003  )  referred to some of the questions 
addressed by the chapter authors: “What is ethical practice in our research and how 
is that research to be done amid situations of social and political con fl ict? What 
impact does educational research have on mathematics education? How is our 
research to overcome various obstacles to dissemination? What is the role of 
mathematics teachers as researchers? How is the next generation of researchers in 
mathematics education to be prepared? These questions would probably not have 
been posed by most researchers a half-century ago, if only because few then were 
interrogating their own practice as researchers” (p. 436). 

 Regarding other handbooks, in 2007 the National Council of Teachers of 
Mathematics (NCTM) published a  Second Handbook of Research on Mathematics 
Teaching and Learning  (Lester,  2007  ) , as a follow-up to its  fi rst 1992 NCTM hand-
book. Part 1 of the  Second Handbook  (which was one of six parts) put the nature of 
the  fi eld of study front and centre with three powerful and comprehensive chapters: 
“Putting Philosophy to Work: Coping with Multiple Theoretical Perspectives” 
(Cobb,  2007  ) , “Theory in Mathematics Education Scholarship” (Silver & Herbst, 
 2007  ) , and “Method” (Schoenfeld,  2007  ) . But although these three chapters gave an 
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overall perspective on the issues pertaining to the  fi eld and its concerns, there were 
no follow-up chapters on speci fi c issues. 

 In the recent handbook on mathematics education, part of the Major Themes 
series by Routledge, I took the notion of democratizing research in mathematics 
education as a way of selecting the articles to be included (Bishop,  2010  ) . This 
handbook was formed from already published papers, and Part 8, in Volume 4 of 
that work, focussed on research and theoretical analyses. It contained 17 signi fi cant 
papers. 

 The chapters and sections in this and previous handbooks demand that any 
researcher in our  fi eld these days cannot escape the obligation to recognize that their 
research is in a  fi eld which has its special professional ethics and responsibilities. 
Any researcher seeking to explore a speci fi c issue these days has to cross several 
complex hurdles before they can even begin the study. Likewise any researcher 
seeking to publish research  fi ndings these days will have to satisfy strong peer 
reviews in which their methods and theoretical base will be carefully scrutinized.  

   The Structure of This Section 

 The chapters in this section document and analyze the diverse ways in which 
mathematics education is now being researched and theorized as a  fi eld. The authors 
have drawn on research more recently published, and show how current research 
builds on the work done in the past. They cannot claim to be fully comprehensive 
in their coverage of the literature, but they do give us an account of where the  fi eld 
is now. 

 Furinghetti, Matos and Menghini, the authors of the  fi rst chapter in this section, 
set the scene by giving us a historical view of the development of mathematics 
education as a  fi eld. They argue, in Chapter   9    , that mathematics education has 
grown from being mostly    an enterprise controlled by mathematicians to a world-
wide, developing intellectual and scholarly area of activity with many professionals 
playing a role. They particularly focus on the role of mathematical communication 
as a crucial aspect of this development, and this role is analyzed through the growth 
of journals and research conferences. As well as developing communication about 
mathematics education, with the sharing of pedagogical and curricula solutions to 
practical problems, internationalization has also played a strong part in the growing 
 fi eld. Journals such as  L’Enseignement Mathématique  and  Educational Studies in 
Mathematics  in fl uenced the international spread of ideas, as did organizations such 
as the International Commission on Mathematical Instruction (ICMI). 

 As well as painting a general picture of an academic  fi eld developing through the 
growth of organizations and international means of communication, Furinghetti 
et al. analyze three speci fi c areas of mathematics education. These are presented not 
just as exemplars of the developing  fi eld but as pointers to three aspects of that 
growth: the relationships with psychology, the study of social, cultural and political 
dimensions, and the increasing relevance of theories for mathematics education. 

http://dx.doi.org/10.1007/978-1-4614-4684-2_9
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This, then, is the historical backdrop against which the current approaches to the 
study of our  fi eld are detailed in the subsequent chapters. 

    Fundamental to any  fi eld of knowledge  fi eld are the theories, models and frame-
works used to interpret, analyze and research the  fi eld. Since the time of the  fi rst 
Kluwer  Handbook  we have seen a veritable explosion in the range of theories and 
constructs used in mathematics education research. Some of these were explored in 
different chapters in the  Second International Handbook , and Jablonka, Wagner and 
Walshaw draw attention to many theoretical constructs in Chapter 2 of this  Third 
Handbook.  Chapter   10    , by Sririman and Nardi, addresses the increasing interest and 
concern about this proliferation. Not only does the variety confuse and challenge 
new researchers, it also means that the diverse analyses are more and more dif fi cult 
to reconcile, synthesize, and apply. 

 As the theoretical  fi eld of mathematics education has grown, so too have the 
research methods used to study the  fi eld. In the special area of teacher education, 
research has moved from the psychological and the quantitative, to the social and 
anthropological, and increasingly we are seeing a reduction in the use of one single 
method, and a preference for “mixed-method” approaches. In Chapter   11    , Gellert, 
Becerra Hernández and Chapman argue that far from dealing with the area of “which 
method,” studies have skirted around the problem. Research nowadays relates to the 
fact that as well as studying teachers and teaching, researchers want to see their 
 fi ndings and theories applied to the teachers, their teaching, and their education. 
This has led to more research in which mathematics educators work “with” teachers 
rather than “on” teachers. Gellert et al. also report a survey that focussed on 
“methodologies, research methods and research techniques,” drawing on journal 
articles published between 2005 and 2010. Chapter   11     complements Chapter   10     
by analyzing the relationship between the theories and constructs being used in 
research studies and the research methods now available. 

 Mathematics education is both a professional and an academic  fi eld, and as we 
 fi nd in other such  fi elds of knowledge there are both advantages and disadvantages 
with that situation. One advantage is that the professional context offers an impor-
tant reality check on the theories coming from academic research. Another is that 
there is an ever-present need for increased knowledge in the professional  fi eld as 
society becomes yet more complex. One major “disadvantage,” however, for 
academic researchers is that the needs of the professionals do not always sit easily 
with the academy’s research agendas. 

 In Chapter   12    , Kieran, Krainer and Shaughnessy explore this relationship in 
relation to research and the practices of teaching. The authors focus on a speci fi c 
idea—namely considering teachers not as recipients of research  fi ndings but as key 
stakeholders in the research enterprise itself. They explore what this means and how 
this idea develops in  fi ve international contexts. Kieran et al.’s analyses reveal that 
teachers’ subjective theories play a signi fi cant role in this new relationship. Their 
analyses also draw attention to three important dimensions of research where 
teachers are key stakeholders: re fl ective, inquiry-based activity with respect to 
teaching action; a signi fi cant action-research component accompanied by the 

http://dx.doi.org/10.1007/978-1-4614-4684-2_10
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creation of research artefacts by the teachers (sometimes assisted by university 
researchers); and the dynamic duality of research and professional development. 

 As has already been indicated, in the  fi eld of mathematics teacher education, 
there is much debate about the balance between professional and academic foci. 
On the one hand, there is the emphasis on the craft knowledge of the teacher which 
is based at the particular and local level; on the other hand is academic knowledge 
at theoretical and general levels. In Chapter   13    , by White, Jaworski, Agudelo and 
Gooya, the focus is on how to blend and balance the two through the activities of 
teachers learning from other teachers. Demonstration lessons have been a feature of 
teacher preservice and inservice programs for years, but recent programs such as 
lesson study (LS) and the Learner’s Perspective Study (LPS) have helped to raise 
the research to another theoretical level. 

 Although the issues around the theory–practice relationship in mathematics 
education have generally been focussed on teachers, and typically on school 
teachers, there is another set of issues concerning a different group of practitioners. 
The development of mathematics education as a  fi eld has depended to a large part 
on the development of a group we could refer to as “mathematics educators.” This 
category not only includes school mathematics teachers but also, increasingly, 
research students, junior and senior researchers and professors, who may or may not 
have been school teachers previously. Chapter   14    , by Novotna, Margolinas and 
Sarrazy addresses issues of teacher education, both preservice and inservice, as well 
as the growth of master’s and doctoral research, from the perspective of the develop-
ment of the research practitioners themselves. 

 Chapter   15    , by Brown and Clarke, analyzes the idea and signi fi cance of institu-
tional contexts, and examines the research bene fi ts and drawbacks of these contexts, 
both for the training and education of researchers and also for the development of 
the  fi eld itself. 

 Research in mathematics education has increasingly turned to issues of context, 
but it too is situated in many contexts, and the researchers themselves cannot be 
neutral concerning their values and beliefs about mathematics education. Far from 
being the province of the lone university researcher, research these days takes place 
increasingly in small and large teams, usually but not always at universities. It is 
often funded by agencies and governments, each with its own agenda. 

 At the highest level, therefore, the future of the  fi eld of mathematics education 
may indeed be at stake with concerns being raised about the interaction of govern-
mental policy with institutional practice. This is a source of much debate at present, 
as Hoyles and Ferrini-Mundy make clear in Chapter   16    . At the heart of the debate 
is the accusation that researchers are too often concerned about pursuing their own 
“interesting,” and general, research questions—instead of paying suf fi cient atten-
tion to relationship issues of policy and practice. 

 It has to be hoped that the research community recognizes and faces this chal-
lenge, by considering the policy implications of developments in researching 
mathematics education, by determining appropriate research questions, and by 
addressing the nature and implications for practice of research  fi ndings. Also impli-
cated are the many issues of making research  fi ndings professionally and publicly 
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available (and understandable) through conferences, research publications and 
other materials. Of the greatest concern, therefore, in this section of the  Handbook , 
is the challenge that practical policy imperatives bring for the future development of 
the  fi eld itself.          
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  Abstract   This chapter takes a historical view of the development of mathematics 
education, from its initial status as a business mostly managed by mathematicians to 
the birth of mathematics education as a scienti fi c  fi eld of research. The role of math-
ematical communication is analyzed through the growth of journals and research 
conferences. Actions of internationalization and cooperation in facing instructional 
and educational problems are illustrated with reference to the journal  L ’ Enseignement 
Mathématique  and to ICMI. Curricular and methodological reforms in the 20th century 
which generated changes in school mathematics are considered. Starting from the 
acknowledgement that research in mathematics education demands more than the 
traditional focus on discussing curricular options at distinct grade levels, we identi fi ed 
several specialized clusters, debating speci fi c issues related to mathematics educa-
tion at an international level. We grouped the clusters into three main areas: relation-
ships with psychology, the study of social, cultural and political dimensions, and the 
relevance of a theory for mathematics education.      

   Introduction 

 In this chapter we consider the evolution of mathematics education from its initial 
status as an enterprise mostly managed by mathematicians to the birth of mathemat-
ics education as a scienti fi c  fi eld of research. We start our story in the 19th century 
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when old states acquired a modern organization, new states were created, and systems 
of education had to be updated or constructed. In this story researchers in many 
 fi elds (psychology, philosophy, medicine, sociology, linguistic, anthropology, etc.) 
had a role, but the main players were professional mathematicians and mathematics 
teachers. The transition was via a lengthy pathway leading to a clari fi cation of rela-
tionships between them and consequent autonomy from mathematicians acquired 
by mathematics educators. This autonomy was of fi cially acknowledged through the 
new election procedure for the International Commission on Mathematical 
Instruction (ICMI)—adopted in Santiago de Compostela (August 19–20, 2006) by 
the General Assembly of the International Mathematical Union (IMU)—that trans-
ferred the election of the ICMI Executive Committee from the IMU General 
Assembly to the ICMI General Assembly (see Hodgson,  2009  ) . To outline steps 
taken on this pathway we will focus on the following important moments:

   The attainment by mathematics education of an international dimension at the • 
beginning of the 20th century through the journal  L ’ Enseignement Mathématique  
and the International Commission on the Teaching of Mathematics;  
  Curricular reforms; and  • 
  The autonomous initiatives inaugurated by the new approach to mathematics • 
education that made it an academic discipline with a new  fi eld of research.    

 Since the shaping of the new discipline bene fi ted from the interaction with other 
domains, we will also outline the most in fl uential of these interactions. 

 The movement of communication, internationalization, and solidarity that 
endowed mathematics education with an international dimension at the beginning 
of the 20th century involved countries from all around the world, but most events 
and people that contributed to making mathematics education an academic disci-
pline belonged to Europe and North America. For this reason our history is mainly 
devoted to these two regions. We leave to the other chapters of this  Handbook  (see, 
for example,    Chapter   26    , by Singh and Ellerton) discussion of other rivulets along 
which mathematics education developed before and after its emancipation from 
mathematicians and how attention shifted to other regions of the world. 

 The roots of mathematics education date back to the origins of mankind. Ancient 
civilizations left us documents that evidence an intertwining between the develop-
ment of mathematical culture and concern about the transmission of this culture 
(Karp & Schubring,  in press ; Kilpatrick,  1994  ) . In the immense landscape of social, 
economic, and political events that accompanied the evolution of mathematics 
teaching, we put forward two important developments that affected it. First, the 
invention of printing in the 15th century created the possibility of universal literacy 
and for mathematical knowledge to be transmitted easily to large numbers of peo-
ple. Over centuries, this led to the second development, the creation of schools to 
educate the masses. As a result, mathematics—which was an arcane subject 
600 years ago—has become a subject studied by virtually all students in the world. 

 For many centuries the roles of mathematics teachers and researchers in mathe-
matics were largely overlapping. Slowly, when mathematical topics reached an 
advanced stage far from the elementary level, this overlapping happened only in the 
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case of university teachers who were carrying out research as part of their profession. 
In the primary and secondary schools, however, the division between teaching and 
researching mathematics became evident. Among other things, this led to a diversi fi ed 
production in mathematical literature: on the one hand, textbooks speci fi cally aimed 
at school teaching were published; on the other hand, there was a production of mate-
rials reporting new results from mathematics research. According to Struik  (  1987  ) , the 
process of professionalization of researchers in mathematics was strongly accelerated 
by the stimuli given to scienti fi c research in the years of the Industrial Revolution, 
which created “new social classes with a new outlook on life, interested in science 
and in technical education” (p. 141). New democratic ideas generated by the French 
Revolution “invaded academic life; criticism rose against antiquated forms of thinking; 
schools and universities had to be reformed and rejuvenated” (p. 142). In the 19th 
century the mathematicians’ “chief occupation no longer consisted in membership 
in a learned academy; they were usually employed by universities or technical 
schools and were teachers as well as investigators” (p. 142). 

 Around the middle of the 19th century the profession of mathematics teacher at 
the primary or secondary level was assuming a new shape, in connection not only 
with the modernization of old nations, but also with the emerging of new social 
pulses which manifested themselves in new associations and trade unions, political 
and social movements, and solidarity initiatives. The transmission of mathematical 
knowledge was no longer a private matter left to families or to religious bodies, but 
became a public business under the responsibility of the state. In the following years 
the establishment of modern national systems of instruction took place in the new 
and old countries. In this process the main concern became the development of cur-
ricula, the production of suitable textbooks, and problems associated with teacher 
education and recruitment. Soon the need for re fl ecting on problems inherent in the 
whole construction gave impulse to the creation of speci fi c journals and associa-
tions. This is the setting in which our story of the transition from “mathematics and 
education” to “mathematics education” began.  

   Mathematical Communication 

 Mathematicians, like all scientists, have always felt the need to communicate 
their results. Towards that end, for a long time they mainly used private communication 
but after the establishment of academies and societies they began to write proceed-
ings and reports. Following changes in the cultural and social milieu provoked by the 
Industrial and French Revolutions, the means of communicating became modern-
ized and the  fi rst journals devoted speci fi cally to mathematics appeared. Initially 
they were ephemeral or, like the French  Annales de Mathématiques Pures et 
Appliquées  lasted for a few decades (1810–1832). But soon, important periodicals, 
some of them still existing, were published—in 1826, for example, the  Journal für die 
Reine und Angewandte Mathematik , founded by August Leopold Crelle,  fi rst 
appeared, and in 1836 the  Journal de Mathématiques Pures et Appliquées , founded 
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by Joseph Liouville, was published. These journals, and others of the same kind 
available around that time, contained not only original essays, but also mathematical 
memoirs extracted from eminent works and abstracts of important papers. In this 
way they contributed to the progress of mathematics by making available new 
results and important works not easily accessible to all their readers (among them 
beginning researchers). They were mainly devoted to research and had an interna-
tional readership. 

 Around the middle of the 19th century another kind of journal, usually termed an 
 intermediate journal , appeared. Between 1877 and 1881, for example, the  Journal 
de Mathématiques Élémentaires  [ et Spéciales ] (editor Justin Bourget) was pub-
lished, and in 1882 it became the  Journal de Mathématiques Spéciales  (editor 
Gaston Albert Gohierre de Longchamps). Some of these intermediate journals were 
speci fi cally addressed to teachers and students in classes preparing for admission to 
special schools, and mathematical themes were treated at an intermediate level between 
secondary and university. Earlier, in Great Britain, periodicals such as  The Ladies ’ 
 Diary  or  Woman ’ s Almanack   fi rst issued in 1704 and  The Educational Times , issued 
from 1847 to 1929, contributed in some way to the growth of mathematical knowl-
edge by publishing mathematical questions addressed to amateurs.  The Educational 
Times,  which was linked to the College of Preceptors (1849), developed from the 
Society of Teachers (1846). This society had been established to improve the stan-
dards of secondary school teaching and, according to Howson  (  2010  ) , “initially 
offered quali fi cations for pupils and teachers” (p. 43). It was from this journal 
that  Mathematical Questions with their Solutions. From “The Educational Times”  
(editor William John Clarke Miller) originated, and this was published between 
1864 and 1918. 

 In the panorama of journals of diverse nature appearing in the 19th century it is 
dif fi cult to identify journals that speci fi cally addressed secondary mathematics 
teaching. Indeed, a sign that attention would be given to secondary-level mathe-
matics was the presence of the word “elementary” in the title—though the meaning 
of this term differed in different journals. Examples of the genre were three French 
publications  Journal de Mathématiques Élémentaires  (editor Henri Vuibert, 
founded in 1876),  Journal de Mathématiques Élémentaires  (editor de Longchamps, 
founded in 1882),  L ’ Éducation Mathématique  (editors Jean Griess and Henri 
Vuibert, founded in 1898), and the Italian publication  Rivista di Matematica 
Elementare  (editor Giovanni Massa, founded in 1874). Sometimes the founders and 
editors of these journals were schoolteachers, and indeed most of the contributors 
to the Italian  Rivista di Matematica Elementare  were secondary schoolteachers. 
The dates of foundation show that journals related to mathematics teaching at 
secondary level were born later than research journals. This delay is understand-
able if one considers that primary and secondary teachers, who were constructing 
their professionalism and their identity when the establishment of the systems of 
education in the various countries was taking place, constituted the main readership 
of this kind of journal. 

 The creation of journals devoted to mathematics teaching was often linked with 
associations of mathematics teachers. In some cases the periodicals provided roots 
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for the idea of founding professional associations. For example, in 1915 in the USA 
the MAA (Mathematical Association of America) assumed responsibility for the 
 American Mathematical Monthly , which was aimed at teachers of mathematics and, 
since 1894, had been published, privately. The Association of Teachers of 
Mathematics of the Middle States and Maryland began publishing a quarterly jour-
nal,  The Mathematics Teacher  in September 1908, which eventually was adopted as 
the of fi cial journal of the NCTM (National Council of Teachers of Mathematics) 
upon its founding in 1920. In Italy the journal  Periodico di Matematica  was founded 
in 1886 and became the of fi cial organ of the Italian National Association of 
Mathematics Teachers, Mathesis. In other cases the founding of teacher associa-
tions led to the publication of new journals for the purpose of spreading informa-
tion and ideas. In Germany the Deutscher Verein zur Förderung des mathematischen 
und naturwissenschaftlichen Unterrichts was founded in 1891 and the journal 
 Unterrichtsblätter für Mathematik und Naturwissenschaften  followed in 1895. 
In the UK the Association for the Improvement of Geometrical Teaching (AIGT), 
founded in 1871, evolved into the Mathematical Association in 1897. The Association 
continued to publish  The Mathematical Gazette,  which had  fi rst appeared in 1894. 
In France the APMEP (Association des Professeurs de Mathématiques de 
l’Enseignement Public), begun its activities and the publication of its  Bulletin  in 1910  . 

 Communication through journals devoted to mathematics (sometimes together 
with other sciences) accompanied the growth of the community of mathematicians 
and later of mathematics educators. Some of the 182 mathematics periodicals listed 
in a  Catalogue  prepared by the Mathematical Association  (  1913  )  still survive; and 
many new ones would be created. Some of these publications primarily addressed 
mathematical research, but others were devoted to mathematics teaching. The number 
of the latter grew considerably in the 20th century so that there were 253 in a list 
compiled by Schubring and Richter  (  1980  ) . Some of these journals are examined in  
(Hanna,  2003 ; Hanna & Sidoli,  2002  ) . 

 As we mentioned above, in the decades on either side of 1900 most important 
national associations of mathematics teachers were founded. These associations, 
and their journals, helped to promote communication and to shape mathematics 
teacher identity. In particular, the role of the associations was crucial in stimulating 
and guiding reforms which took place during that period. These reforms worked 
towards updating school mathematics in accordance with the new trends in research 
and towards making curricula suitable in an age of industrial and technological 
innovation. As observed by Nabonnand  (  2007  ) , it is true that the spirit of reforms 
was often embodied by strong personalities such as John Perry in the UK, Felix Klein 
in Germany, and Charles Émile Ernest Carlo Bourlet in France, but the programs of 
reforms were discussed, worked out and spread with the teacher associations as 
important players. 

 In the United States of America the American Mathematical Society (AMS) was 
formed in 1888. AMS always emphasized research (and still does), whereas MAA 
emphasized teaching (in colleges), and still does. Eliakin Hastings Moore advo-
cated Perry’s ideas in his 1902 AMS Presidential address, see (Moore,  1903  ) , and 
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many AMS members were angry with him for doing so. In the UK, the Association 
for the Improvement of Geometrical Teaching (AIGT) and, later on, the Mathematical 
Association, were born with the aim of supporting reforms in the geometric sylla-
bus. In Switzerland, new programs centred on the introduction of graphical repre-
sentation of functions were introduced following the proposal of the mathematics 
teachers association. In 1906, after a talk delivered by Emanuel Beke at the annual 
meeting of the society of Hungarian teachers, a Commission charged with studying 
general reforms and changes in secondary mathematics teaching was instituted by 
the same society with Beke as its  fi rst president. In certain cases an important role 
of associations was to defend mathematics teaching when it was marginalized. For 
example, in Italy the mathematics teacher association  Mathesis , founded in 1895, 
had the aim of supporting mathematics teaching against a decline which had started 
in the 1890s. Most of the associations are still alive and in good health; new ones 
have been founded. Many publish journals, bulletins, and newsletters, as well as 
organize national meetings and other activities. 

 Often, both teachers and professional mathematicians participated in these 
initiatives. There were also initiatives carried out by secondary teachers alone; this 
happened, for example, in Italy during the initial period of the teacher associa-
tions. In other cases, for example in France, academic mathematicians drove these 
initiatives and led reform movements. The problem of the relationship between the 
two communities (mathematicians and mathematics teachers) and the need to share 
responsibility and authority are ever-present in the background of the development 
of mathematics education to the status of an academic discipline.  

   Mathematics Education Unbounded 

 The national journals and teacher associations became an important tool for 
transmitting ideas and information among teachers within many nations, and proved 
to be of crucial importance in shaping the identity of mathematics teachers. 
Considering that the themes treated were related to the national systems of educa-
tion and that the teachers of a country constituted the readership, it is not surprising 
that most contributors were national and that the actions of teacher associations 
were mainly con fi ned to dealing with national problems. In the journals devoted to 
mathematics teaching the contributions by foreign authors were very few and usu-
ally translated into the local language. In spite of these national settings, we can 
identify some common ground in re fl ections, at the beginning of the 20th century, 
on the problems of mathematics teaching. Discussions about the organization of 
curricula were often based on three main themes:

   Relationship between parts of programs;  • 
  Rigor versus intuition; and  • 
  Relationships between mathematics and the other disciplines.    • 
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 What emerged was the need to go beyond discussions on the reorganization of 
the curricula. It was recognized that there was a need to consider new methods of 
teaching that took into account the following:

   “Practical approaches to teaching,” based on observation, experiments and • 
laboratories;  
  New  fi ndings about children’s development; and  • 
  A focus on applications.    • 

 Due to many common features among mathematics education problems, possible 
advantages of international cooperation in working towards solutions to the instruc-
tional and other educational problems were recognized in many countries. In the 
following we will describe two main initiatives that strongly contributed to this 
growing internationalism. 

   The Journal  L ’ Enseignement Mathématique  

 In the second half of 19th century, internationalization was a perennial idea in 
many aspects of society. Transportation was becoming speedier, and technologi-
cal developments facilitated long-distance communication. In this context it was 
not surprising to see the emergence of the idea of world exhibitions, or fairs, 
which provided occasions for showcasing new industrial and technological pro-
ductions and sharing ideas and projects. The  fi rst world exhibition was held in 
London (1851), and this was followed up over the next 30 years with exhibitions 
in Paris, Vienna, Philadelphia and Melbourne. Internationalism invaded all 
aspects of life, among them mathematics. It was not by chance, then, that in 1893 
a congress of mathematicians was held in Chicago, where a world exhibition was 
being organized. The 1893 congress of mathematicians was the cornerstone in 
the process of making mathematics unbounded, and heralded a tradition (started 
in 1897) of organizing International Congresses of Mathematicians (ICMs). One 
of the promoters of the tradition of having ICMs was the French mathematician 
Charles-Ange Laisant, who was stimulated both by his cultural view of the nature 
of mathematics and by social ideals of fraternity and solidarity (Furinghetti, & 
Giacardi,  2008  ) . 

 Following the Congress of Paris, in 1900, ICMs have been held every 4 years 
(except for breaks due to the two World Wars). These regular forums have contrib-
uted remarkably to shaping the identity of an international community of research 
mathematicians. The International Mathematical Union (IMU) was founded in 
1920, and although it was dissolved in 1932 it was re-established in 1951, with the 
 fi rst General Assembly of the new IMU being held in 1952. 

 The idea of internationalism was not easily transferable into the world of educa-
tion for two obvious reasons: (a) issues of instruction are mainly national; and (b) 
mathematics teachers have a status different from that of mathematicians—in 
particular, they have less opportunities and  fi nancial resources for communicating and 
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traveling together. Still, mathematics education was touched by internationalization, 
thanks to the foundation in 1899 of the journal  L ’ Enseignement Mathématique  by 
Laisant and the Swiss mathematician Henri Fehr. The mission and vision of this 
publication, explicitly declared by the editors in the  fi rst issue, was to make mathe-
matics instruction join the movement of solidarity, internationalism and communi-
cation of the times. 

 This international character of  L ’ Enseignement Mathématique  marked the differ-
ence between this journal and the other existing journals addressed to mathematics 
teaching: immediately, it published surveys on the situation of mathematical 
instruction in different countries. The editorial board included mathematicians and 
historians of mathematics who had already shown a genuine interest for the prob-
lems of mathematics teaching (notably Klein), and of communication in mathe-
matics (notably Magnus Gustaf Mittag-Lef fl er, founder of the mathematical journal 
 Acta Mathematica ). 

 The early years and the development of  L ’ Enseignement Mathématique  have 
been outlined by Furinghetti  (  2003,   2009  ) . The journal was special not only for its 
international character, but also for its scope. In the sixth volume (1904) the editors 
claimed that for them the word “enseignement” (teaching) had the widest possible 
meaning: it meant teaching to pupils, as well as teaching to teachers—and, indeed, 
the editors made clear, one can hardly have the one without the other. For this reason 
they explicitly stated their intention to dedicate a wide place to questions of philoso-
phy, methodology, and history. For them, teachers needed to enlarge their horizons 
beyond the program of their classrooms and their countries. 

  L ’ Enseignement Mathématique  was a product of the mathematical milieu—but 
Fehr was teaching in Geneva, where the psychologists Édouard Claparède and 
Théodore Flournoy were working. They used the journal to launch a questionnaire 
investigating the ways of working of mathematicians. This study is important 
because it pointed to aspects that were not merely cognitive—using terminology 
that we would now say was concerned with the affective domain. On the other hand, 
research mathematicians, like Henri Poincaré, published articles in the journal that 
focussed on aspects related to the nature of the mathematical invention.  

   The Rise and Development of an International Project: 
The Early ICMI 

 In 1905 David Eugene Smith published in  L ’ Enseignement Mathématique  a 
paper that advocated more international cooperation and the creation of a commis-
sion to be appointed during an international conference with the aim of studying 
instructional problems in different countries (see Smith,  1905  ) . This article was the 
seed for the establishment, during the fourth ICM (Rome, 1908), of the International 
Commission on the Teaching of Mathematics ,  with Klein as its  fi rst president. In the 
 fi rst decades of its life the Commission was most commonly referred to as CIEM 
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( Commission Internationale de l ’ Enseignement Mathématique ), in French, or 
IMUK ( Internationale Mathematische Unterrichtskommission ), in German. Though 
it underwent many changes in status and scope, this Commission may be considered 
the  fi rst incarnation of the present ICMI. 

 The signi fi cance of the foundation of ICMI goes beyond the mere creation of an 
organizational structure. What was important was that it pointed to the existence of 
an international community for whom the main focus of attention would be mathe-
matics education. Given that the initial members of ICMI were nations, and that the 
representatives of those nations were predominantly academic mathematicians, it 
was not surprising that for a long time ICMI’s activities were developed inside the 
community of mathematicians. During ICM meetings, ICMI presented its reports 
and received mandates for future activities (Furinghetti,  2007 ; Furinghetti & 
Giacardi,  2008 ; Menghini, Furinghetti, Giacardi, & Arzarello,  2008  ) . 

 The main ICMI outcomes in the early years were national reports on mathematical 
instruction in the various countries, and international inquiries on important themes 
of the teaching of mathematics. Although Klein  (  1923  )  explicitly claimed that ICMI 
recognized that all levels of school mathematics deserved attention, in practice 
attention was mainly paid to secondary and tertiary levels, and to teacher education. 
These priorities were evident in the following list of activities launched by ICMI 
between 1908 and 1915:

   Current situation of the organization and of the methods of mathematical • 
instruction;  
  Modern trends in the teaching of mathematics;  • 
  Rigor in middle school teaching and the fusion of the various branches of • 
mathematics;  
  The teaching of mathematics to students of physical and natural sciences;  • 
  The mathematical training of the physicists in the university;  • 
  Intuition and experiment in mathematical teaching in the secondary schools;  • 
  Results obtained on the introduction of differential and integral calculus into the • 
upper years of middle school;  
  The place and role of mathematics in higher technical instruction; and  • 
  Inquiry into the training of teachers of mathematics in secondary schools in the • 
various countries.    

 Like many other scienti fi c institutions, ICMI suffered a general crisis during the 
First World War, and the period between the two world wars was a time of stagnation 
in ICMI’s activities (Schubring,  2008  ) . During the  fi rst General Assembly of the 
reconstituted IMU, held in Rome in 1952, ICMI became a permanent sub-commission 
of IMU. 

 However, times had changed, and in the 1950s and 1960s the old agenda based 
on inquiries and national reports was felt to be inadequate to face new situations. 
Also, relationships with mathematicians needed to be reconsidered in order to deal 
with educational problems ef fi ciently.   
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   Curricular Reforms in the 20th Century 

   Reforms at the Beginning of the 20th Century 

 At the time ICMI was born issues associated with the construction of mathematics 
curricula were often hotly debated in many countries. These debates not only dis-
cussed issues common to the different nations, but also nation-speci fi c matters. 

 For instance in both the UK and Italy, the adequacy of Euclid’s  Elements  for the 
teaching of geometry was a much-debated topic. In the early 1870s the AIGT 
(Association for the Improvement of Geometrical Teaching) had been created to 
consider, and to challenge, the tradition of using rote exercises for the entrance 
examinations to British Universities. The ensuing discussions generated numerous 
alternative textbooks and also led to some changes in the entrance examinations. 
But in 1901 the British Association for the Advancement of Science hosted an 
address by John Perry that would in fl uence mathematics education throughout the 
world. Perry attacked the whole system of a mathematical education which, he 
claimed, did not take into account children’s minds, their interests, the applications 
of mathematics, and connections between different areas of mathematics. His idea 
of  practical mathematics  applied to the study of geometry meant that the  fi rst work 
with geometry should involve students using rulers, compasses, protractors, set 
squares, and scissors. In England, the “Perry movement” initiated much discussion 
about mathematics syllabi and about the need for the reconstitution of secondary 
mathematics education (Howson,  1982  ) . It also in fl uenced many countries outside 
England, such as Japan, where Perry had taught for a brief period (Siu,  2009  ) , and 
the USA, where, as previously mentioned, Moore accepted Perry’s arguments and 
convictions in relation to mathematics education (Moore,  1903  ) . 

 In Italy an adaptation of Euclid’s  Elements  was published in 1867/1868 as the 
 fi rst Italian textbook after the uni fi cation. The authors were famous mathemati-
cians who defended the idea of the purity of geometry against criticisms expressed 
in Italy and in the UK. The Italian reformers emphasized the importance of prepar-
ing and publishing good manuals based on the  Euclidean method . In Italy, research 
in the  fi eld of geometry was  fl ourishing, and many important researchers were 
engaged in authoring textbooks. For lower secondary school an intuitive geometry 
was introduced based on observation and on experimental activities. 

 Towards the end of the 19th century in the USA a “Committee of Ten” was 
appointed to make recommendations on the standardization, in contents and meth-
ods, of American school curricula (Kilpatrick,  1992  ) . The subcommittee for math-
ematics produced a range of recommendations, for elementary to high school 
mathematics curricula, which can be summarized in the key words “exercise the 
pupil’s mental activity” and “rules should be derived inductively instead of being 
stated dogmatically.” 

 In France, a reform of 1902 especially directed at the lycées recognized the need 
for emphasis on new modern humanities, including mathematics, and to do away 
with the monopoly of the classical humanities. The reformers also called for school 
mathematics to take on a greater sense of reality, displaying more applications to the 
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life sciences (Gispert,  2009  ) . An important aspect of the reform was the introduction 
of elements of differential and integral calculus into secondary schools. We recall 
that during this period France was a leading country in the  fi eld of analysis. 

 Both the French reform and the Perry movement with its demand for increased 
emphasis on calculus gave impetus to the German reform movement led by Klein. 
This movement, whose key phrase was “functional reasoning,” had among its prin-
cipal aims the shifting down of some elements of differential and integral calculus 
from university to secondary school. However, the contents of the reform were not 
limited to the last school years; on the contrary, the reform started from the lower 
grades and involved many teachers (Schubring,  2000  ) . The present-day emphasis 
given to functions as the conceptual building block for the teaching and learning of 
algebra and geometry is reminiscent of this German reform movement (Törner & 
Sriraman,  2005  ) . In particular, the role of analytical geometry in the study of func-
tions was stressed and thus a link between school geometry and algebra was estab-
lished. Moreover, Klein’s Erlanger Program, which characterized geometry as the 
study of invariant properties under a group of transformations, provided a stimulus 
for deeper work on geometric transformations in mathematics teaching. 

 After becoming the foundation president of ICMI in 1908, Klein promoted an 
international reform based on the ideas of the German reforms. An international com-
parison of curricula, which was part of ICMI’s agenda from the start, was to serve as a 
key enabling element for this proposal (see Schubring,  2003  ) . Although not all countries 
participated actively, many initiated signi fi cant curriculum reform activities during 
that period. According to Schubring  (  2000  )  these countries included Austria, Belgium, 
Denmark, France, Germany, Great Britain, Hungary, Sweden, and the USA. 

 Our analysis of the contents of the mathematics curriculum in various nations led 
us to concur with Howson  (  2003  )  that up to the late 1950s there was considerable 
agreement on what school algebra might mean. After the introduction of letters to 
denote numbers or variables should come the construction of algebraic formulae, 
followed by the formation or solution of linear equations, then quadratics, then 
simultaneous linear equations, and the properties of the roots of quadratic and cubic 
equations. In contrast, there might be notable differences in the teaching of geom-
etry. These concerned the closeness to the original Euclid, the level of rigor, the use 
of algebraic or analytical means, the experimental or intuitive, the use of geometric 
transformations, and the attention given to space geometry. Nevertheless, it was 
generally agreed that in most nations attention to a small number of classical theo-
rems in geometry was required—these theorems included the theorem of Pythagoras, 
the theorem of Thales or intercept theorem, the circle theorems, and congruence and 
similarity properties.  

   Modern/New Math(s) 

 A second international reform that occurred in the 1960s is thought to have 
originated from the group of mathematicians established in 1932 under the assumed 
name Bourbaki. The interest of the Bourbaki group in mathematics education 
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started in the 1950s, when some of its members joined the International Commission 
CIEAEM (Commission Internationale pour l’Étude et l’Amélioration de 
l’Enseignement des Mathématiques  ), founded by Caleb Gattegno with the aim of 
studying and improving mathematics teaching (see Félix,  1985  ) . This Commission 
comprised people from different backgrounds (mathematicians, pedagogists, psy-
chologists, epistemologists, and secondary teachers). 

 In its initial years, CIEAEM’s actions may be summarized in the following 
points: democratization of mathematics, active pedagogy, and actual involvement of 
teachers. Among the mathematicians of this research group we  fi nd the Bourbakists 
Jean Dieudonné, Gustave Choquet, and André Lichnerowicz, who also contributed 
to the text by Piaget et al.  (  1955  ) , which was the  fi rst of the two books edited by 
CIEAEM. In that book all authors recognized the opportunities that modern math-
ematics offered in relation to the reform of mathematics teaching, and Dieudonné 
claimed that the essence of mathematics was reasoning on abstract notions. 

 The “modern mathematics” movement that developed in Europe had common 
roots with a parallel movement in the USA (see Moon,  1986  ) —the new math move-
ment started in the early 1950s by Max Beberman with the creation of the University 
of Illinois Committee on School Mathematics (UICSM). Soon after the launch of 
Sputnik in 1957, the American Mathematical Society set up the School Mathematics 
Study Group (SMSG) to develop a new curriculum for high schools. In 1958, Edward 
G. Begle, then at Yale University, was appointed as its Director (see Grif fi ths, & 
Howson,  1974 ; Wooton,  1965  ) . Among the many curriculum groups established in 
the USA during the new math period, SMSG was, perhaps, the most in fl uential. 
The experiences of this group and the numerous other mathematics curriculum 
groups established around that time bene fi ted from contributions of psychology 
(Kilpatrick,  1992  ) . 

 All these streams of reform related to modern, or new, mathematics met in 1959 
at an international conference held in Royaumont, near Paris. The conference was 
organized by OEEC (Organisation for European Economic Co-operation), and 
chaired by Marshall Stone, the president of ICMI. An important role was played by 
members of CIEAEM, particularly by Dieudonné, who gave a lecture concerning 
the transition from secondary school to university. According to Dieudonné, the 
treatment of geometry should proceed from the real numbers, establishing rules for 
the operations on a set of unde fi ned objects so that a vector space structure would 
be created. Metric relations would then be introduced by means of a scalar product. 
Euclidean geometry could be dealt with in only three lessons, in which the system 
of axioms would be presented. The properties of triangles would not have a role in 
this new development (OEEC,  1961  ) . 

 We note that in the same year, 1959, the Woods Hole Conference took place in 
the USA, with the more general aim of improving science education, and bringing 
together scientists, mathematicians, psychologists and others (Bruner,  1960  ) . 

 The aim of the Royaumont Conference was to achieve mathematics curriculum 
reform in Europe—but, since both the USA and Canada had been invited to attend, 
it could be argued that an international reform stretching beyond European nations 
was desired. The conference had a more practical sequel in 1962 in Dubrovnik, 
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Yugoslavia, when a group of experts met to produce a modern program for 
mathematics teaching in secondary schools. In the geometry programs for the ages 
15–18 produced by the Commission, the Cartesian plane was de fi ned as a vector 
space of dimension two with a scalar product. In line with the proposals of Choquet 
(OEEC,  1962  ) , these concepts were to be introduced via axioms. For children aged 
from 11 to 15 years, a more intuitive approach to geometry was recommended, in 
line with the proposals by the Belgian mathematician Paul Libois. So far as algebra 
was concerned, the contents listed in Dubrovnik included sets, applications and 
functions, the introduction to real numbers, elements of number theory, combinato-
rics, groups and structures, linear applications and matrices. Some of these topics 
would become standard in many curricula. Set theory was to be a major integrating 
theme, and strongly in fl uenced the language used in textbooks written for modern 
mathematics. 

 In both Europe and the USA, the path of innovation was to start at the university 
and proceed down through the secondary schools to primary schools. Set theory 
would be present at all levels of education with, for example, cardinal and ordinal 
aspects of natural numbers being introduced at the beginning of elementary grades 
(Pellerey,  1989  ) . Many countries of fi cially adopted modern mathematics programs, 
and in France and Belgium the proposals were completely in line with Bourbakist 
viewpoints. 

 Although the modern/new math movements soon aroused strong criticisms (see, 
e.g., Ahlfors et al.,  1962 ; Kline,  1973 ; Thom,  1973  ) , the ample debates about 
changes in school mathematics provided a springboard for subsequent, more solidly 
based reform initiatives in the 1960s. In the UK the School Mathematics Project 
was launched in 1961, and the work of Edith Biggs and the “Nuf fi eld Project” popu-
larized the use of concrete materials and of laboratory techniques in British primary 
school mathematics programs. In 1967 the Nordic Committee for the Modernization 
of School Mathematics (Denmark, Finland, Norway, and Sweden) presented a new 
syllabus inspired by new math. One of the best-known members of this Committee 
was Bent Christiansen, of Denmark. In 1968 the Zentrum für Didaktik der 
Mathematik (Centre for the Didactics of Mathematics) was founded in Karlsruhe by 
Hans Georg Steiner and Heinz Kunle. This was followed in 1973 by the IDM 
(Institut für Didaktik der Mathematik), founded in Bielefeld by Steiner, Michael 
Otte and Heinrich Bauersfeld, whose aims combined practice in school and theo-
retical research. In 1969 the  fi rst IREMs (Instituts de Recherche sur l’Enseignement 
des Mathématiques) were established in Lyon, Paris, and Strasbourg. In the early 
1970s the Collaborative Group for Research in Mathematics Education was estab-
lished at the University of Southampton’s Centre for Mathematics Education, with 
Geoffrey Howson and Bryan Thwaites as collaborators .  In 1971 Hans Freudenthal 
founded the Institut Ontwikkeling Wiskunde Onderwijs (IOWO, Institute for the 
Development of Mathematics Teaching). This initiative had its far roots in the 
“Mathematics Working Group” founded in 1936 by Tatiana Ehrenfest-Afanassjewa. 
The meetings of this group were attended by Freudenthal and constituted a  fi rst step 
in the successive development of the “Realistic Mathematics” movement, initially 
led by Freudenthal (Smid,  2009  ) . 
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 New Bourbakist-type topics such as vectors, transformations, matrices, and set 
theory were included in the school mathematics curricula of numerous countries, 
and a greater emphasis on probability and statistics became the order of the day. The 
1970s were fertile years for the creation of projects, as shown by the fact that the 
presentations of 15 projects were mentioned in the  Proceedings of the Third 
International Congress on Mathematical Education  (ICME-3), held in Karlsruhe, 
Germany, in 1976. These and other changes in mathematics education were 
outlined in a special issue of  Educational Studies in Mathematics  entitled “Change 
in Mathematics Education Since the Late 1950s—Ideas and Realisation: An ICMI 
Report” (1978).  

   Creeping Reforms 

 In addition to these strong curricular innovations there were also some creeping 
reforms that in fl uenced both curriculum content and teaching and learning methods in 
school mathematics. The experimental work of psychologists, new teaching aids, and 
the reform movements of the early 20th century brought an interest among mathema-
ticians in mathematics laboratories (Borel,  1904  )  in which students actively used 
drawing instruments, calculating machines, and manipulatives. At the beginning of 
the 20th century, Peter Treutlein, a German mathematician, developed more than 
200 models that could assist the teaching of geometry    (Treutlein & Wiener,  1912  ) . 
These models were manufactured and distributed by famous manufacturers such as 
those of Ludwig Brill (Darmstadt) and Martin Shilling (in Halle and then Leipzig) in 
the middle of the 20th century, and came to be widely used in German universities and 
polytechnics. 

 After the Second World War the use of concrete materials was taken up again in 
many contexts. In 1945 an NCTM yearbook was devoted to measuring and drawing 
instruments and to the creation of three-dimensional physical models. An active 
promoter in this  fi eld was Gattegno, who focussed the early activities of CIEAEM 
on concrete materials (see Gattegno et al.,  1958  ) . This activity had an important 
didactical transposition in the work of the teacher Emma Castelnuovo. Gattegno, as 
well as the mathematician and psychologist Zoltan Dienes, strongly supported the 
use of manipulatives, such as Cuisenaire rods and logic blocks, in classroom activi-
ties. The presence of Dienes at ICME-1 in Lyon, France, in 1969 testi fi ed to the 
interest of the ICMI community in the use of concrete materials. 

 Other psychologists, including Jean Piaget, in fl uenced the movement. Willmore 
 (  1972  )  and Price  (  1995  )  have pointed out the importance of this in changing think-
ing about the teaching and learning of mathematics. Libois used concrete materials 
at the École Decroly in Brussels, and in the UK, the Association of Mathematics 
Teachers (ATM) strongly supported Gattegno’s initiative in promoting the use of 
manipulatives. Manipulatives became a vehicle for intuition and experiment in the 
classroom, and prepared school milieu to receive subsequent innovations with math-
ematical technology (Ruthven,  2008  ) . Gattegno authored innovative software for 
teaching elementary numeration concepts and  fi lms for teaching geometry that 
extended some of the themes in Jean Nicolet’s  fi lms (Powell,  2007  ) . 
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 In the  Proceedings  of the  fi rst ICME Congress  (  1969  )  we  fi nd reference to games, 
worksheets,  fi lms, overhead projectors, and to concrete materials to be used in the 
classroom. The use of materials is put in relation to a new methodology of class-
room activities that also includes working groups and classroom discussion. At that 
time, computers were entering into discussions on mathematics education. An 
explicit reference to the role of computers in school mathematics, especially for 
applied mathematics, was made by Bryan Thwaites  (  1969  )  in his address at ICME-
1. At the same conference, Frédérique Papy presented the “minicomputer” (Papy, 
 1969  ) . The initial interest in the algorithmic aspects or in discrete mathematics 
created a place for programming to be considered as a means for attaining rigor 
(Furinghetti, Menghini, Arzarello, & Giacardi,  2008  ) . 

 In the 1970s and 1980s attention turned towards learning environments, or micro-
worlds, for example, in the form of turtle geometry as presented by Seymour Papert 
at ICME-2 (Howson,  1973 ; Papert,  1972a,   1972b  ) . Software was developed, includ-
ing forerunners to the dynamic geometry software which helped in revitalizing parts 
of mathematics, for example, proofs and Euclidean geometry. Technology was con-
sidered as a means for changing both the curriculum and teaching practices; math-
ematical activity could be enriched by modelling or processing data in statistics, by 
experimenting, and by visualizing. Research on the role and use of technology in 
the teaching of geometry was conducted, at  fi rst using a constructivist perspective in 
a broad sense, and later using additional theoretical perspectives, in particular, the 
social interactions in which learning takes place (Laborde,  2008  ) . The use of 
dynamic geometry software was explored as a mediator between constructivist and 
other theoretical levels, highlighting the need for precise curricular construction 
(Borba & Bartolini,  2008  ) . 

 The increasing availability of ordinary calculators, scienti fi c calculators, and 
graphics calculators generated interesting experimental approaches to instruction. 
On the one hand, attention was directed at algorithmic aspects (see    Engel,  1977  ) , but 
on the other hand the ways in which some topics—functions, for example—might 
be dealt with in secondary schools using the new technology began to be investi-
gated (Guin, Ruthven, & Trouche,  2005  ) . Already, at ICME-2 in Exeter, a Working 
Group had explicitly addressed technology, and at ICME-3 in Karlsruhe this hap-
pened with  fi ve of fi cial activities. The survey presented by Fey  (  1989  )  at ICME-6 in 
Budapest described developments in the use of technology during this pioneering 
period. The  fi rst ICMI Study, launched in 1984, was devoted to computers and 
informatics (Churchhouse et al.,  1986  ) .   

   From Mathematics and Education to Mathematics Education 

   Emergence of New Approaches in Mathematics Education 

 In the 1950s mathematical research changed direction, and also the role of 
mathematics in society changed. New uses of mathematics were promoted by 
advances in technology, and by the political associations with the space race and the 
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iron curtain. Mathematics instruction was perceived by governments as linked to 
an important potential for power among nations. In the meantime, schools were 
being called upon to deal with rapidly increasing populations and associated educa-
tional problems. 

 Given the complexity of emerging educational problems, the mere study and 
comparison of curricula and programs, which had been the main activities of early 
ICMI, were judged to be insuf fi cient. New approaches to mathematics education 
suitable to the changed mathematical and social contexts were needed (Furinghetti, 
Menghini, Arzarello, & Giacardi  2008  ) . Various initiatives, such as CIEAEM and 
the USA curricular groups, pointed to the need for cooperation among mathemati-
cians, teachers psychologists, mathematics teacher educators and mathematics 
teachers. Clearly, there had emerged a need for new professional expertise featuring 
what Krygowska  (  1968  )  called “frontier research,” which acknowledged mathemat-
ics education as a scienti fi c discipline. 

 Freudenthal  (  1963 ) observed that history had shown the sterility of the problems 
of mere organization. By the end of the 1960s research interest shifted from curricu-
lar issues to the wider study of various dimensions of mathematics education. There 
emerged a trend towards widening the scope of curricular interventions, for example 
to pre-school and to vocational and adult education settings. There was also a call 
for more careful scienti fi c research in mathematics education. A strong case for the 
importance of empirical research was made in the  fi rst ICME in 1969 by Begle, then 
at Stanford University. According to Begle  (  1969  ) :

  … the factual aspect has been badly neglected in all our discussions and … most of the 
answers we have been provided have generally had little empirical justi fi cation. I doubt if it 
is the case that many of the answers that we have given to our questions about mathematics 
education are completely wrong. Rather I believe that these answers were usually far too 
simplistic and that the mathematical behaviours and accomplishments of real students are 
far more complex than the answers would have us believe. (p. 233)   

 Interest in empirical research in mathematics education was growing in the USA 
and, by the mid-1960s, several conferences discussing priorities for research for 
mathematics education took place. 

 By 1968 a Special Interest Group on mathematics education research had been 
formed within the American Educational Research Association (Kilpatrick,  1992  ) . 
Although this kind of research was not being embraced in many other countries, the 
growth of international research journals and centres would change this perspective. 
As Fehr and Glaymann  (  1972  )  stated in the UNESCO publication  New Trends in 
Mathematics Teaching :

  The curriculum reform movement of the last two decades in school mathematics was aimed 
primarily at improving educational practice. It was not designed to increase the number or 
the quality of research studies in mathematics education. Nevertheless, the reform move-
ment did enormously stimulate such research—in part because curriculum reformers have 
been asked to demonstrate that their work can make a difference in the classroom; in part 
because these reformers have recognized that future changes can be managed better if we 
understand more about the teaching and learning of mathematics; and in part because the 
ferment in the curriculum has attracted many new scholars to the study of problems in 
mathematics education. (p. 127)   
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 There was also a growing recognition of the need for the academic legitimacy 
of specialists in mathematics education to be recognized and respected. The 
“ Resolutions of the First International Congress on Mathematical Education”   (  1969  )  
assumed that mathematics education was becoming a science in its own right, with 
its own problems relating to both mathematical and pedagogical content. ICME called 
for the new science of mathematics education to be given a place in suitable 
mathematical departments of universities or research institutes. 

 This discussion about the identity of  mathematics education , or  didactics of 
mathematics —the preferred nomenclature in some countries—was continued at 
ICME-2 in 1972. Anna Zo fi a Krygowska, for example, in her contribution to the 
Working Group on teacher training for prospective secondary teachers, which was 
chaired by Steiner, identi fi ed four aspects of didactics of mathematics: a synthesis 
of the appropriate mathematical, educational, cultural and environmental ideas; an 
introduction to research; the nature and situation of the child; and practical experience 
(see Howson,  1973  ) . Bent Christiansen  (  1975  )  distinguished between mathematics 
education as a process of interaction between teachers and learners in their classes 
and the didactics of mathematics, which was the study of this process. He recog-
nized in didactics of mathematics the status of a new discipline and pointed out that it 
must be taught by specialists—“didacticians of mathematics”—and not by general 
education specialists.  

   New Initiatives in Mathematics Education 

 The rethinking on the role and the methods of mathematics education carried out 
in the 1950s and the 1960s led to a global discussion that included rethinking about 
the relationship between mathematicians and mathematics educators and a plan for 
new ways of communicating among mathematics educators. Two ICMI presidents 
faced these issues with particular energy—Heinrich Behnke and Freudenthal 
(Furinghetti & Giacardi,  2010  ) . The former tried to settle administrative relation-
ships, including  fi nancial issues, with mathematicians after the rebirth of ICMI in 
the 1950s and looked for new terms of references. But this was not enough: a cul-
tural cut with mathematicians was necessary and this was made by Freudenthal who 
acted on the two main issues that were characterizing the dependence on the math-
ematical community, journals and conferences. Both the initiatives he took were 
taken independently from IMU. 

  L ’ Enseignement Mathématique , the of fi cial organ of ICMI since its foundation, 
was becoming a mathematical journal with little room for educational issues. On the 
other hand, the professional mathematics teaching journals were local and, due to 
their mission and vision, not suitable for publishing articles on didactic research. So 
in 1968 Freudenthal founded  Educational Studies in Mathematics  (ESM) 
(Furinghetti,  2008  ) . According to Hanna  (  2003  ) , this initiative stimulated other 
groups to publish mathematics education research journals:  Zentralblatt für Didaktik 
der Mathematik  (ZDM) (now  The International Journal on Mathematics Education ) 
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was  fi rst published in 1969 (the  fi rst editors were Emmanuel Röhrl and Steiner) and 
the  Journal for Research in Mathematics Education  (JRME) was  fi rst published in 
1970 (the  fi rst editor was David C. Johnson). ESM and its contemporary journals 
would become important vehicles in which questions, methods, and research within 
the discipline “mathematics education” were developed, reported and discussed. 

 The development of mathematics education was also accelerated by new ways of 
meeting at the international level. At its inception ICMI promoted important confer-
ences, such as those in Milan (1911) and Paris (1914) but, because conferences 
were no longer held during and after World War I, the only scheduled places for 
discussing didactical issues were in those sections within the quadrennial ICMs that 
were devoted to the didactics of mathematics. These sections usually encompassed 
also philosophy of mathematics, history, and logic, and were variously put together 
or separated according to the inclinations of the organizers. No plenary talk was 
ever devoted to mathematics education. 

 In the 1960s the new math movement stimulated some important meetings in the 
USA and in Europe that focussed on mathematics education research, and ICMI 
collaborated with UNESCO in organizing some of these conferences. Occasionally 
the audience was enlarged to include teachers. Freudenthal succeeded in establish-
ing the tradition of having an international conference—the International Congress 
on Mathematical Education (ICME)—with regular dates. The  fi rst of these confer-
ences (1969 in Lyon) was organized according to a traditional pattern of presenting 
a sequence of talks, but already at the second of Exeter (UK), in 1972, working 
groups were organized, and projects presented with the aim of creating the very 
place for discussion of ideas. Since ICME-3 (Karlsruhe, 1976), ICME meetings 
have been held on a quadrennial basis. 

 New perspectives for looking at mathematics education also emerged from 
within the body of mathematicians. The concluding sentence of the talk delivered 
by Hassler Whitney, a mathematician who became president of ICMI in 1979, pro-
vided evidence that attention might be shifted to the learner:

  We are too used to thinking of the subject matter, and how children can learn it. We must 
start with the children, to see what they really are. (Whitney,  1983 , p. 296)   

 At ICME-3, in Karlsruhe, the  fi rst af fi liated study groups were established—HPM 
(the International Group on the relations between the History and Pedagogy of 
Mathematics) and PME (the International Group for the Psychology of Mathematics 
Education) (see Furinghetti & Giacardi,  2008  ) . With these groups a new period began 
with regular meetings and proceedings. This marked the evolution of the provision 
of support for researchers in mathematics education.   

   Clusters of Speci fi c Issues in the “Discipline” 
of Mathematics Education 

 By the middle of the 1970s new tendencies outlined in the last section were 
manifesting themselves more clearly at the international level. Understanding that 
the endeavour of searching for directions for mathematics education required more 
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than merely discussing curricular options at the distinct grade levels, ICMI of fi cials 
met with staff members of UNESCO at the end of 1974 to prepare the elaboration 
of the fourth volume in the series of books,  New trends in mathematics teaching . 
This was an important step towards deepening discussion of issues that had already 
been raised. The aim was not only to identify major problems in the  fi eld of math-
ematics education but also to guide and monitor the direction and intensity of 
changes taking place in that  fi eld (Steiner & Christiansen,  1979  ) . A methodology 
favouring in-depth discussion of the chapters was chosen, leading to broader 
approaches to the issues of mathematics education (D’Ambrosio,  2007  ) . The results 
of this careful preparation of the book became visible during the third ICME that 
took place in Karlsruhe in 1976 and constituted a landmark in the history of math-
ematics education. 

 As a consequence of this in-depth approach, the fourth volume of  New Trends  
contained chapters dedicated to the discussion of curricular issues at various 
levels—including adult education, university teaching, and the use of technology. 
These were discussed at a deeper level than ever before and a critical analysis of 
curriculum development and issues associated with the evaluation of students, 
teachers and educational materials was presented. The importance of moving on 
from curricular issues was noticed and appreciated: “Until recently, both research 
and development had focussed on only one of two main determinants of the learning 
process: the pupil or the curriculum. They did not consider the in fl uence of the 
teacher nor of the general context of instruction” (Bauersfeld,  1979 , p. 200). The 
book also contained a chapter on the professional life of teachers of mathematics 
and another discussing goals and objectives for mathematical education. 

 The third ICME, at Karlsruhe, and the publication of the fourth volume of  New 
Trends  have been acknowledged as the starting point for the formation of several 
specialized clusters of speci fi c issues related to mathematics education at an inter-
national level. We will group them into three areas: (a) relationships with psychol-
ogy; (b) the study of social, cultural and political dimensions; and (c) the relevance 
of a theory for mathematics education. 

   Psychology and Mathematics Education 

 Since the late 19th century answers to issues related to mathematics teaching and 
learning have been sought in  fi elds outside of mathematics. Important contributions 
came from the merging of competencies within various educational sciences and 
other disciplines: pedagogy, psychology, philosophy, and medicine. The early works 
carried out in this  fi eld concerned pupils with particular needs, but the methods 
applied in these cases soon proved to be suitable for dealing with problems associ-
ated with the teaching and learning of normal children in the primary school. The 
mathematical content taken into consideration was mainly concerned with arithmetic, 
but the use of concrete materials affected also the teaching of geometry. 

 Educators carried out their work in  practice schools  founded and directed with 
the purpose of experimenting with new teaching methods. In these schools practice 
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was strongly interwoven with research and two different research streams arose: one 
was concerned with research on teaching methods, the other with the observation of 
pupil behaviour. In these developments the roots of theories of learning that are 
concerned with what goes on in the brain of the learner (such as in Piaget’s theory) 
can be recognized, as can theories of instruction that refer to the behaviours a child 
should undertake in order to learn (such as in Bruner’s theory). 

 The in fl uence of the work of pedagogists and psychologists in mathematics 
education probably started at the beginning of the 19th century through the Swiss 
educator Johann Heinrich Pestalozzi. Pestalozzi in fl uenced the teaching and learning 
of arithmetic and geometry in primary schools in Europe (de Moor,  1995 ; Howson, 
 2010  )  and in the USA (Cajori,  1890  ) . One of his followers was Friedrich Fröbel, the 
founder of the German kindergarten organization. Fröbel brought his pupils to learn 
by means of games and other activities—wooden blocks were used to teach arith-
metic and concrete geometrical objects to teach geometry. 

 Johann Friedrich Herbart was another scholar to in fl uence how mathematics was 
taught in schools. Around 1900, Herbart’s ideas in fl uenced elementary teaching and 
teacher education in various countries (Howson,  1982  ) . Notwithstanding    the stages 
of instruction that Herbart urged teachers to follow (see Ellerton & Clements,  2005  ) , 
his views of the relationship between teaching and learning can be regarded as being 
consistent with what later became known as constructivism. It was largely based 
also on human and social interactions. 

 The interest in child education grew particularly in the USA as a result of the 
writings of John Dewey who, in 1896, founded a laboratory school at the University 
of Chicago. In 1904 Dewey moved to Columbia University, where he spent the rest 
of his career. Dewey framed all learning as the result of activity. As for mathematics 
learning, one of his leading premises was that the notion of quantity is grasped by 
the child as a result of solving practical problems (Stemhagen,  2008  ) . This idea of 
 active learning  was also present in the work of Maria Montessori, who created a 
school for children in Rome, and of Ovide Decroly who created the  École de 
l ’ Ermitage  in Brussels. Both were physicians who developed their methods when 
working initially with children with minor disabilities. Decroly’s method was based on 
observations of the surrounding world, but Montessori developed speci fi c materials 
(materiale strutturato) that were intended to help children to learn autonomously. 
After that period many psychological laboratories were established in Europe, often 
by psychologists such as Alfred Binet—the French psychologist famous for his 
contributions to intelligence theory and testing—and the Swiss neurologist and 
child psychologist, Claparède. Children’s attempts to learn mathematics were often 
studied in Binet’s and Claparède’s laboratories. 

 In the USA, research in the learning of mathematics was conducted by Edward 
Lee Thorndike, a behaviourist psychologist who had a strong interest in mathemat-
ics learning, and William Brownell, a teacher, psychologist, mathematics educator, 
and education psychologist. Brownell and Thorndike, although coming from differ-
ent theoretical positions, were part of a broader movement to create a science of 
education. In 1922 Thorndike published his  Psychology of Arithmetic , and soon 
after that his  Psychology of Algebra  (1923). Both were based on the theory of 
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associations in a “connectivist” perspective, and were intended to support Thorndike’s 
series of school mathematics textbooks. Brownell, following the ideas of his advisor 
Charles H. Judd, stressed the importance of “meaningful learning” with respect to 
“rote” methods, in contrast to Thorndike’s more behaviourist views (Kilpatrick & 
Weaver,  1977  ) . 

 Behavioural psychological theories (“behaviourism”), which had been developed 
via experiments with animals, were linked to school learning by Burrhus Frederic 
Skinner during the period 1930–1950 with an emphasis being given for what became 
known as operant conditioning. Skinner emphasized reinforcement processes, seen 
as fundamental in the shaping of behaviour. According to the corresponding 
instructional theory, changes in behaviour could be obtained through programmed 
instruction (or, later on, through mastery learning and computer-assisted learning). 
These ideas had a wide application in mathematics instruction (see Skinner,  1954  ) , 
and in particular on theory supporting the early uses of computers in learning. 

 The major in fl uence of psychology on mathematics education, however, came 
from the work of the Swiss psychologist, Jean Piaget. While studying the behaviour 
of children in a clinical manner and identifying “cognitive stages,” Piaget developed 
methods that permitted broadening the range of mathematical topics in primary 
school. Piaget’s stages were paralleled in the USA by the instructional stages of 
Jerome Bruner but, as Kilpatrick  (  1992  )  put it, only “with the arrival of cognitive 
psychology in 1950s and 1960s, marked by the availability of Piaget’s work in English 
translation and the reinterpretation of that work by Jerome Bruner, [did] researchers 
in mathematics education begin to have a more judicious regard for psychological 
theory and to collaborate more frequently with psychologists” (p. 18). 

 Although the Russian Lev Semënovič Vygotskij was born in the same year as 
Piaget, it was not until the 1960s that his ideas began to have an impact on mathe-
matics education. This delay was due to the lack of translations of his works and 
also to a lack of interest in a social perspective in this  fi eld. The introduction of 
Vygotsky’s ideas, especially in relation to the crucial role of social interactions in 
the advancement of learners through their zone of proximal development (ZPD), 
would prove to be important. For Vygotsky, all knowledge was socially constructed 
and internalized by joint processes into which learners brought their personal expe-
riences. It followed that close and supportive relationships played an important role 
in an individual’s knowledge growth. In the perspective of cultural mediation, the 
world of meaning in the child developed by means of tools (artefacts) and signs. 
Over the past 25 years Vygotskian theory has been applied extensively in mathe-
matics education, the focus being on the mathematical activities of a group of learners 
or a dyad rather than the individual (Berger,  2005  ) . 

 An important contribution to the tie between mathematics education and educa-
tional sciences came from scholars—such as Caleb Gattegno, Zoltan Dienes, 
Richard Skemp, and Efraim Fischbein—whose training was both in mathematics 
and in educational sciences. The work of Skemp and Fischbein stimulated thinking 
about the role of psychological factors so far as the teaching and learning of math-
ematics in the higher grades were concerned. Skemp  (  1976  )  distinguished between 
“instrumental” and “relational understanding”: Instrumental understanding is the 
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result of a mechanic learning of rules, theorems and their immediate applications, 
and relational understanding is the result of a personal engagement of the learner 
with mathematical objects, situations, problems, ideas. We owe to Fischbein deep 
work on the interactions between intuition and rigor in mathematics education 
(Tirosh & Tsamir,  2008  ) . Both Skemp and Fischbein were among the founders of 
PME. Fischbein was the  fi rst president of PME, Skemp the second. 

 During ICME-1, a round table discussion on the psychological problems of 
mathematics education was organized under the leadership of Fischbein, who also 
organized and led a similar discussion group at ICME-2. In the introduction to the 
 Proceedings  for ICME-2, Howson  (  1973  )  stressed the importance that Piagetian 
psychology had in relation to elementary school mathematics. He also noted that the 
working group on “The Psychology of Learning Mathematics” was the most 
attended of all working groups at the Congress. According to Howson  (  1973  ) , the 
topic discussed “underpins the whole of mathematics education” (p. 15). 

 In his 1990 introductory chapter providing a research synthesis for PME of the 
 ICMI Studies Series , Fischbein  (  1990  )  claimed “the psychological problems of 
mathematical learning and reasoning are scienti fi cally exciting and at the same time 
genuinely relevant for mathematics education” (p. 4). This sentence epitomized 
more than a century of interaction between psychologists and mathematics educators. 
As a matter of fact, though many domains of knowledge have been linked to math-
ematics education, such as psychology, philosophy, medicine, sociology, linguistic, 
and anthropology, the main external conceptual support to the development of 
mathematics education has come from psychology.  

   Social, Cultural and Political Dimensions 

 In 1972 the chapter dedicated to research in mathematics education in the third 
volume of  New Trends in Mathematics Teaching  (Fehr & Glaymann,  1972  )  pro-
posed three areas for research: curricula, methods and materials; learning and the 
learner; and teaching and the teacher. Four years later, by the time of ICME-3 in 
Karlsruhe, the chapter on the same issue in the fourth volume (Bauersfeld,  1979  )  
enlarged the possibilities for research activities by listing  fi ve possibly fruitful areas 
for research: investigations of interactions, studies of real classroom situations, 
research interests of the teacher, extension of the repertoire of research methods, and 
a theoretical orientation. Events and perspectives presented at ICME-3 were instru-
mental in mathematics education adopting more comprehensive perspectives. 

 This widening of prospective research interests was also accompanied by a 
broader understanding of the dimensions involved in the place and roles of mathe-
matics and mathematics education in society. By the late 1970s there was a growing 
interest in the importance of social factors either in discussing the role of mathemat-
ics in curricula or in the ways in which social and cultural factors intervened in 
teaching and learning mathematics. It was increasingly recognized that didactics of 
mathematics is (or should be) “concerned not only with the process of interaction in 
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the classroom but also with mathematics education as a societal aspect: a process of 
development imbedded in the process of development of the educational system as 
a whole” (Christiansen,  1975 , p. 28). This viewpoint was also expressed elsewhere 
(for example, Bishop,  1979  ) . Preparation for ICME-3 brought into focus two early 
tendencies about this theme. One, championed by Ubiratán D’Ambrosio  (  1979  ) , 
re fl ected on the overall objectives and goals of mathematics education; the other 
was outlined by Bauersfeld  (  1979  ) , who advocated, among other things, the impor-
tance of the study of interactions in the teaching–learning process. 

 These two areas, a broad perspective of the cultural and social bases for teaching 
and learning mathematics and the consequent enlargement of the scope of research, 
saw signi fi cant developments in the 1980s. D’Ambrosio’s early elaboration of the 
goals for mathematics education, produced for ICME-3, evolved into a broader per-
spective offered at his plenary session at ICME-5 in Adelaide (D’Ambrosio,  1985, 
  2007  )  when the concept of ethnomathematics was  fi rst presented in a major interna-
tional event in mathematics education. He suggested that mathematics education 
should take into account the diversity of cultural attitudes and cultural diversity of 
distinct “societal groups, with clearly de fi ned cultural roots, modes of production 
and property, class structure and con fl icts, and senses of security and of individual 
rights” (D’Ambrosio,  1985 , p. 5). The consideration of the diverse ways in which 
mathematics blends in distinct cultures and social milieux, together with a re fl ection 
of its consequences for mathematics education, prompted a  fl urry of investigations, 
many of them uncovering undervalued mathematical activities in daily practices of 
social groups and professions. This kind of research stimulated further study and 
re fl ection on associated educational practices. 

 Almost at the same time in Europe two lines of research emerged valuing the 
social dimensions of teaching and learning. Bauersfeld  (  1980  )  published his early 
work about “hidden” social dimensions in the interactions between teacher and stu-
dents in the mathematics classroom. And Guy Brousseau  (  1986  ) , immersed in a 
French tradition of research, proposed a theory accounting for the transformation 
(and pitfalls) of scienti fi c mathematics into school mathematical knowledge. Both 
of these lines saw signi fi cant developments in further years. 

 By the end of the 1980s, research on the in fl uence of social and cultural dimensions 
on mathematics curricula and mathematics teaching and learning was consistently 
being reported in mathematics education research publications. In a book published in 
1987, Stieg Mellin-Olsen, after discussing the mismatch between the mathematical 
competencies of students in school and in daily life, argued that mathematics education 
researchers needed to recognize that political dimensions were inevitably at the centre 
of mathematics teaching and learning (Mellin-Olsen,  1987  ) . 

 With the bene fi t of hindsight it can be seen that 1988 was a key year in the devel-
opment of mathematics education research. During that year,  Educational Studies 
in Mathematics  dedicated a special issue to “Socio-cultural studies in mathematics 
education” (Bishop,  1988a,   1988b ); Bishop ( 1988b ) authored a book on the subject; 
a “Fifth Day Special Programme on Mathematics, Education, and Society,” at 
ICME-6 in Budapest, was devoted to “examining the political dimensions of math-
ematics education” (Keitel, Damerow, Bishop, & Gerdes,  1989 , p. i); and, at a plenary 
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at the twelfth PME conference Terezinha Nunes reported on her team’s work detailing 
the mathematical competencies of illiterate children selling small goods in the streets 
of Brazilian cities (Carraher,  1988  ) . This  social turn , as Stephen Lerman  (  2000  )  called 
it, signaled “the emergence into the mathematics education research community of 
theories that see meaning, thinking, and reasoning as products of social activity” (p. 23). 

 We can include in this social turn the analysis, from an educational stance, of the 
role of mathematics and mathematics education in society, echoing D’Ambrosio’s 
early re fl ections on goals for mathematics education (D’Ambrosio,  1979  ) . In the 
middle of the 1990s, Ole Skovsmose  (  1994  )  discussed the relations between math-
ematics, society, and citizenship. Acknowledging mathematics power in contempo-
rary societies, he proposed the adoption of a critical stance in mathematics education 
that allowed for a comprehensive perspective connecting issues of globalization, 
content, and applications of mathematics, as a basis for actions in society, and for 
empowerment through mathematical literacy.   

   A Concern with Theory 

 The understanding that mathematics education should look for an adequate place 
in the academic  fi eld was already present at the beginning of the 20th century 
(Kilpatrick,  1992  ) . One of the resolutions passed at the  fi rst ICME  (  1969  ) , related to 
the need for a “theory of mathematics education” (p. 416). From the middle of the 
1970s, in the wake of ICME-3, this push towards theory development became evi-
dent. Steiner, based at the IDM at the University of Bielefeld, led this thrust towards 
theory development and re fl ection. He formed an international study group called 
Theory of Mathematics Education (TME), which held  fi ve conferences until 1992, 
and was a regular special group at international conferences. The debate about the 
nature, the possibilities, the limits and the legitimacy of mathematics education as a 
scienti fi c  fi eld conducted by the group (Steiner et al.,  1984  )  enlarged earlier discus-
sions (e.g., Begle,  1969 ; Christiansen,  1975  )  and involved prominent researchers 
from several countries. The relationship between mathematics education and other 
 fi elds of knowledge (psychology, education, sociology, mathematics, etc.), the explan-
atory power of competing paradigms, the viability of home-grown theories, the rela-
tionship between theory and practice, and re fl ections on curriculum change were 
among the many contributions of this group. The most tangible productions were 
two books, one edited by Steiner and Vermandel  (  1988  )  on the foundations and 
methodology of mathematics education and another (Biehler, Scholz, Sträßer, & 
Winkelmann,  1994  )  offering a comprehensive survey of how mathematics education 
was viewed around the world. 

 Several books (Bishop, Clements, Keitel, Kilpatrick, & Laborde,  1996 ; Bishop, 
Clements, Keitel, Kilpatrick, & Leung,  2003 ; English,  2002 ; Grouws,  1992 ; 
Sierpinska & Kilpatrick,  1998 ; and this  Third Handbook , in particular) have made 
an effort to account for the diversity of mathematics education research. In an 
attempt to characterize this diversity, Bishop  (  1992,   1998  )  drew attention to research 
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traditions that were the “result of upbringing education, cultural background, and 
research training” (Bishop,  1992 , p. 712). In 1992, he applied this construct to the 
characterization of three different traditions and later he used it as the background 
for a re fl ection about the relationship between research and educational practice 
(1998). One tradition is the pedagogue tradition, which values the role of teachers 
re fl ecting on their practice, with experiment and observation being the key compo-
nents of the research. The empirical-scientist tradition was re fl ected in Begle’s paper 
at the 1969 ICME-1, and “the key to knowledge, and the research process focusses 
attention on the methods of obtaining that evidence and of analyzing it, often quan-
titatively” (Bishop,  1992 , p. 712). Thirdly, there is the scholastic-philosopher tradi-
tion, based on analysis, rational theorizing, and criticism. The actual teaching reality 
is an imperfect manifestation of these theoretical proposals.      
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  Abstract   In this survey, roots of mathematics education are traced from Piaget to 
the current work on theorizing which utilizes sociological and commognitive frame-
works. Attention is given to the critiques of Sriraman and English’s (2010) edited 
collection,  Theories of Mathematics Education,  and productive discussions from 
the reviews are unpacked. The notions of “operational” versus “functional,” and 
“models” versus “theories,” are also tackled by focussing on conceptual frameworks 
which harmonize the terms as opposed to exemplifying their polarities.      

   Introduction 

 This chapter  fl ows from the extensive discussion of  Theories of Mathematics 
Education: Seeking New Frontiers  (Sriraman & English,  2010  ) , in book reviews and 
critical notices in several major outlets (Artigue,  2011 ; Ely,  2010 ; Fried,  2011 ; 
Jankvist,  2011 ; Schoenfeld,  2010 ; Umland,  2011  ) . The chapter has been structured 
so the second author (Nardi) is mainly responsible for the sections entitled “Critiques 
of  Theories of Mathematics Education ” and “Discursive Approaches to Research in 
Mathematics Education: The Case of Sfard’s ‘Commognitive’ Framework , ” and the 
 fi rst author (Sriraman) is mainly responsible for all other sections. 

 The dialogic form in which the community of scholars has undertaken theoreti-
cal developments in the  fi eld of mathematics education has allowed for the neces-
sary intellectual critique needed to advance the  fi eld. Mathematics education as a 
research discipline occurs at the nexus of numerous other domains of inquiry 
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(Sriraman,  2008 ; Sriraman & English,  2010  ) . Unlike other  fi elds, such as the natural 
and physical sciences, hermeneutic continuity in theory development is by and large 
absent in the learning sciences. Although psychological theories served as the theo-
retical underpinnings of the  fi eld in the 1950s and 1960s, methods from other 
domains of study such as sociology, anthropology, cultural historical studies, have 
swayed mathematics education into multidisciplinary and uncharted directions. 
Although this has contributed to both the complexity inherent in a  fi eld that deals 
with cognizing and socially situated subjects within the larger contexts of institu-
tions and culture, it has also given cause for celebrating the multidisciplinary nature 
of mathematics education. 

 The perceived objectivity of mathematics coupled with the perceived subjectiv-
ity of the social sciences makes theory development in the  fi eld of mathematics 
education a particularly nuanced and complex task. In general, theories have been a 
troubling issue for the  fi eld of mathematics education, and today a “bewildering 
array of theories, theoretical models, or theoretical frameworks” (Jablonka & 
Bergsten,  2011  )  is abundantly found in the literature that characterizes mathematics 
education research (MER). 

 In this chapter we discuss brie fl y critiques of  Theories of Mathematics Education  
(Sriraman & English,  2010  )  as well as address the psychological foundations of 
what has been called the “social turn” (Lerman,  2000  ) , or the “social brand” 
(Jablonka & Bergsten,  2011  )  in mathematics education. We also discuss different 
schools of thought on what theory means in mathematics education, and assess 
ways in which we are progressing. Our overall observations of the  fi eld indicate that 
there seems to be increasingly more effort to employ theoretical frameworks with a 
more pronounced focus on institutional and social dimensions (e.g., the 
Anthropological Theory of Didactics (ATD), as derived from the work of Brousseau 
and Chevallard), and discursive practices (e.g., Sfard’s commognitive framework). 
Piagetian foundations are also in need of being revisited and revitalized, given the 
canon of experimental studies in the last two decades (e.g., the Rational Number 
Project; Models and Modeling) that have developed models that can be subsumed 
within the larger theory. We begin with a brief presentation of critiques of  Theories 
of Mathematics Education  (Sriraman & English,  2010  ) .  

   Critiques of Theories of Mathematics Education 

  Theories of Mathematics Education  (Sriraman & English,  2010  )  grew out of a 
research forum at the 29th meeting of the International Group on the Psychology of 
Mathematics Education in 2005 and of a selection of articles published in  ZDM—
The International Journal on Mathematics Education , between 1994 and 2008, 
many of which were in the two special issues of  ZDM  on theories published in 2005 
and 2006 (Sriraman & English,  2005,   2006  ) . Some of the early parts set the scene 
through re fl ection on the role of theory in MER, on theory pluralism, etc. In reso-
nance with the eclecticism of  Theories of Mathematics Education,  most parts can be 
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read independently. Through its structure, both across and within the 19 parts, the 
book invited the reader to engage in a dialogue about theoretical issues. 

 The book has been reviewed in several key mathematics and mathematics educa-
tion publications. Although many reviews have acknowledged its considerable 
ambition and strengths (e.g., Artigue,  2011 ; Ely,  2010 ; Fried,  2011 ; Jankvist,  2011 ; 
Schoenfeld,  2010 ; Umland,  2011  ) , in this section we focus on those constructively 
critical parts of some of the reviews that have led partly to the shaping of this 
chapter. 

 A  fi rst concern (Artigue,  2011  )  was in regard to the presentation in the book 
in relation to the French tradition of  didactique des mathématiques . Artigue noted 
that “seen from the outside, the [French] theoretical landscape seems homogeneous” 
(p. 311). She went on to say that “those who know this culture are well aware that 
the situation is much more complex, that different local theoretical constructions 
have emerged from TDS (Theory of Didactical Situations) and ATD or from the 
connection of these with other frameworks such as Vergnaud’s theory of conceptual 
 fi eld, the theory of activity or cognitive ergonomy” (pp. 311–312). Furthermore, 
“most researchers productively combine different theoretical approaches in their 
research work, for instance joint action theory (Sensevy,  2009 ; Sensevy & Mercier, 
 2007  ) , the didactic-ergonomic approach of teachers’ practices (Robert & Rogalski, 
 2005  ) , or the instrumental approach of technological integration (Artigue,  2002 ; 
Guin, Ruthven, & Trouche,  2004  ) ” (p. 312). 

 To redress the balance a little, in this chapter we have attempted a necessarily brief 
and abridged account of recent developments in the areas highlighted in Artigue’s 
comment. This only partially addresses Artigue’s comment that the educational dis-
course in the  Theories  volume is rather “too culturally connoted” (p. 313) and that 
the contribution of other, non-Anglo-Saxon approaches remain largely “invisible” 
(p. 315) to the international community—a concern that has been echoed in historical 
treatments of the development of mathematics education in non-Anglo-Saxon parts of 
the world (e.g., Germany, France, and Italy (Sriraman & Törner,  2008  ) . 

 Another concern, also expressed by Artigue  (  2011  ) , was in regard to an impres-
sion that a reader may garner from the book that “investigating the relationships 
between … different theoretical approaches and developing networking activities” 
(p. 312) is somewhat a novel enterprise. As Artigue noted, the  didactique  commu-
nity has been dedicating parts of its energy to this task since the early 1980s. 
Furthermore, in recent years, theory “networking,” substantially addressed in Parts 
XV and XVI of the book, has been the focus of several European projects and work 
within ICMI. We shall comment brie fl y on these considerations in the  fi nal section 
of the chapter, where “networking” is the main focus. 

 A third concern raised by Artigue  (  2011  )  was that a reader may leave the book 
with an impression of a somewhat light-touch approach to the pitfalls of excessive 
eclecticism. We agree with Artigue that “theoretical diversity can only be a richness 
if it is not synonymous to theoretical fragmentation or eclecticism” (p. 312). 
We share with her the concern about “the theoretical explosion in mathematics 
education” (p. 312), and we recognize the need to “re fl ect on the way we tacitly 
contribute to it as a community when we value much more the creation of new 
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theoretical entities than the hard work often required in order to appropriate and 
adequately exploit what has been already built by other researchers and communi-
ties” (p. 312). It is for that reason that we conclude this chapter with a call to math-
ematics education researchers for a more incisive approach to, and employment 
of, theory that goes beyond knowing the “grammar” of a theory (Lerman,  2010 , 
p. 101)—a trend that Lerman and other contributors to the book identi fi ed as a 
symptom of careless eclecticism. As observed in Umland’s  (  2011  )  review, “a well-
articulated set of linked and nested theoretical structures” (p. 74) need not be per-
ceived as an out-of-reach, or totally undesirable goal of MER. 

 A valuable observation made in several reviews of  Theories of Mathematics 
Education —in, for example, Artigue  (  2011  )  and Umland  (  2011  ) —has been that any 
enterprise with a focus on the generation and employment of theory in mathematics 
education must consider the interplay between general and meta-theoretical devel-
opments as well as theoretical developments within speci fi c areas of research in 
mathematics education. As Umland  (  2011  )  observed, this enterprise often entails 
considering “re fl ections on the philosophical foundations of mathematics education 
as a  fi eld” (meta-theory), “theoretical perspectives from other disciplines that could 
be brought to bear on mathematics education research,” and “proto-theories” (p. 73), 
descriptors of the processes underlying the teaching and learning of mathematics. 
In this chapter our focus is on the former part of Artigue’s distinction (or the second 
and third of Umland’s distinction), even though the examples we mention originate 
in studies conducted within speci fi c areas of research. Finally, as several commenta-
tors have noted (e.g., Umland,  2011  ) , any enterprise with this focus needs to allo-
cate some attention to what the authors mean by “theory.” We do so, modestly, in the 
Introduction and in other sections of this chapter.  

   Dynamic Interactionism Between Models and Theories: 
The Case of Piaget’s Notion of “Operational” 

 Piaget’s theory of cognitive development in children serves as one of the barom-
eters through which we can analyze both model and theory development in mathe-
matics education, particularly in ensuing experimental work in North America in 
various longitudinal projects funded by the National Science Foundation (see, e.g., 
Lesh, Cramer, Doerr, Post, & Zawojewski,  2003 ; Lesh & Doerr,  2003 ; Lesh, Post, 
& Behr,  1987,   1988 ; Lesh et al.,  1992  ) . Put simply, the function of any theory is to 
explain phenomena. The natural and physical sciences have an established body of 
theories which have been validated over time through scienti fi c experimentation 
and conforming data. Theory development has also been spurred by falsi fi cation 
(Popper,  1959  ) . Newer theories are able to subsume older theories. Newtonian 
mechanics occurs as a special case in Hamiltonian mechanics. Euclidean geometry 
can be reduced to a special case of Riemannian geometry. Weyl’s  (  1918  )  mathemati-
cal formulation of the general theory of relativity by using the parallel displacement of 
vectors to derive the Riemann tensor revealed the interplay between the experimental 
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(inductive) and the deductive (the constructed object). The continued evolution of the 
notion of tensors in physics/Riemannian geometry can be viewed as a culmination 
or a result of  fl aws discovered in Euclidean geometry. 

   On the Notion of “Operational” in Mathematics Education 

 Mathematics education, however, is neither one of the natural/physical sciences 
nor mathematics per se. In mathematics education one often has to ask the question: 
“What are the phenomena that we are trying to explain?” (Schoenfeld,  2010  ) . One 
answer to this question in relation to Piaget’s body of foundational work is mathe-
matical cognition. For instance, mathematics education has developed empirically 
validated models within the Rational Number Project (see Lesh et al.,  1987,   1989, 
  1992,   2003  )  which explain how proportional reasoning develops in children in a 
way that, by and large, coheres with Piagetian stage theory. There are models that 
also explain how combinatorial reasoning develops (see, e.g., Sriraman & English, 
 2004  ) . Some of the  fi ndings suggest that when Piaget’s experiments are repeated 
with age-appropriate materials, the stages proposed by him are not as discrete as 
they might have seemed, but more porous with the possibility of children being able 
to reason at a more advanced level given contextual play materials. Dienes’ six-stage 
theory of learning mathematics bears resemblance to both Piaget’s and Bruner’s 
theories, provided a somewhat  different  conceptualization of the meaning of “opera-
tional” is permitted (Dienes,  1960,   1963,   1964,   1971,   2000 ; Dienes & Jeeves,  1965  ) . 
Similarly, the recent body of work by the models and modelling group has built on 
operational de fi nitions from within the work of Dienes to develop models of student 
thinking in contextual problems. 

 When viewed from the biological perspective of neural networks, much of the 
post-Piagetian body of experimental work in mathematics education can be made to 
cohere within Piaget’s stage theory—with a critical number of exceptions that war-
rant reconceptualization which could give rise to a more dynamic theory with the 
possibility of the contexts allowing children to function at a higher stage. However 
a foundational point of continued argument remains the working de fi nition of 
“operational.” 

 Biologists have found that methodological reductionism, that is to say going to 
the parts to understand the whole, which was central to the classical physical sci-
ences, is less applicable when dealing with living systems. Analogously, the chal-
lenge confronting mathematics educators in the learning sciences who hope to 
create models (of the underlying conceptual systems) that students, teachers and 
researchers develop to make sense of complex systems occurring in their lives is the 
mismatch between learning science theories based on mechanistic  information pro-
cessing  metaphors and recent discoveries on how complex systems work. Not 
everything that students know can be methodologically reduced to a list of condi-
tion-action rules, given that characteristics of complex systems cannot be explained 
(or modelled) using only a single function—or even a list of functions. Physicists 
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and biologists have proposed that characteristics of complex systems arise from the 
 interactions  among lower-order/rule-governed agents—which function simultaneously 
and continuously, and which are not simply inert objects waiting to be activated by 
some external source (Hurford,  2010  ) . 

 Given the paradigm shifts which have occurred in the physical and natural sciences, 
there have been proposals to view learning and the modelling of learning as analogous 
to the study of complex systems (Mousoulides, Sriraman, & Lesh,  2008  ) . Piaget 
sought answers to fundamental questions about the nature and origins of knowledge 
by studying children. His focus was the child’s understanding of space, time, and 
causality, and relations of invariance and change (Piaget,  1971,   1975  ) . Trained as a 
biologist, he was also interested in exploring the “metaphors” from biology such as 
organization, development, and adaptation. His theory of development proposed 
sensorimotor, pre-operational, concrete operational and formal operational stages of 
cognitive development. Operations were de fi ned as internalized actions, derived 
directly from the subject’s physical actions as enacted in sensorimotor behaviour. 

 Consider the stage of generalized formal operations characterized by the organi-
zation of operations in a structural whole and the culmination of the sensorimotor, 
pre-operational, and concrete operational stages. Piaget  (  1958  )  suggested that at the 
stage of formal operations, there is a “structural mechanism” which enables stu-
dents to compare various combinations of facts and decide which facts constitute 
necessary and suf fi cient conditions to ascertain truth. Those that were able to trans-
form propositions about reality, such that the relevant variable could be isolated and 
relations deduced, were said to have achieved “functionality” in their structural 
 fl exibilities. Another characteristic of the stage of generalized formal operations 
was the relative ease with which reversibility of thought operations occurred. 
Piaget’s essential claim was that there was a link between mathematics and biology. 
In other words, operationality became functionality after reversibility in order was 
achieved, so that the person became able to generalize mathematical structures or 
subsume classes of counter examples into an existing structure. This was a highly 
unusual claim 60 years ago, but one that Piaget tried to substantiate with decades of 
research. Piaget’s characterization of knowledge and cognition was that there are 
forms of biological adaptation within which structures of  action  (evolving upwards 
from individual sensorimotor schemes) play a role. 

 An operational de fi nition of mathematics is that it is an intellectual activity con-
cerned with the creation of structure, with new characterizations that emphasize 
embodiment and anchoring in culture. Piaget  (  1958,   1987  )  conceptualized the whole 
of mathematics in terms of creation of structures, not in a physical or literal sense 
but operations carried out in the idealized world of the mathematician. The relation-
ship between the two worlds was explained as follows: the idealized constructions 
emerge as a result of a series of abstractions from their literal counterparts, which 
are the real actions and physiological movements human beings make in the world. 
Piaget’s psycho-genetic account of mathematics retraced this descent from actions 
to formal thinking as one of increasing abstraction and generalization. Being 
enamored by the ongoing attempt of the Bourbaki at that time to formalize all of 
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mathematics, Piaget compared his operator structures of thinking to the structures 
espoused by the Bourbaki. 

 The Bourbaki, who aimed to write a body of work based on a rigorous and for-
mal foundation, which could be used by mathematicians in the future, identi fi ed 
three fundamental structures on which mathematical knowledge rest: (a) algebraic 
structures; (b) structures of order; and (c) topological structures (Bourbaki,  1970  ) . 
More information on the Bourbaki can be found on the Bourbaki Web site located 
at   http://www.bourbaki.ens.fr/    . 

 Piaget claimed that there existed a correspondence between the mathematical 
structures of the Bourbaki and the operative structures of thought. He felt that in the 
teaching of mathematics a distinctive synthesis would occur between the psycholo-
gist’s operative structures of thought and the mathematician’s mathematical struc-
tures. Dubinsky  (  1991  )  used the Piagetian notion of  re fl ective abstraction , to develop 
a model using “schemas” as a way of better understanding cognitive processes in 
advanced mathematics. APOS theory (Asiala, Cottrill, Dubinsky, & Schwingendorf, 
 1997  ) , developed in mathematics education to explain advanced mathematical 
thinking, is another instance of theory development cohering within a larger theory. 
Within the realm of mathematical cognition there are micro-theories, or what should 
more accurately be labelled models, that build on Piaget’s work and inform it 
suf fi ciently that it is possible to re-conceptualize the theory as being more dynamic. 
The only contentious point in reconceptualizing Piagetian theory on cognitive 
development is how to gain consensus on the de fi nition of “operational” thinking 
and how to put this concept on a  fi rmer theoretical ground. 

 In physics, one could say that theoretical terms are invariants of operations rep-
resented by physical measurement devices. Physicists have “learned” that theoreti-
cal terms have to be de fi ned operationally in terms of theories and that this can be 
supported via experimentation which can back up notions occurring within the the-
ories (Dietrich,  2004  ) . The question is how can this be adapted by researchers in 
mathematical cognition? That is to say, how can we operationally de fi ne observa-
tional terms, namely perceived regularities that we attempt to condense into theo-
ries—or as Piaget attempted to do—phylogenetically, to evolve mental cognitive 
operators (Dietrich,  2004  ) ? The purpose of theoretical terms is to clarify the mean-
ing of concepts. On the other hand the purpose of observational terms is to delineate 
how the concepts/constructs have been measured. Ideally there should be a perfect 
match between theoretical terms and observational terms. That is to say, observa-
tions should con fi rm theory irrespective of when or where the observations are made 
so long as the initial conditions of an experiment are somewhat the same. For 
instance, within models and modelling research, if researchers consistently report 
similar observations of students modelling processes when confronted with the 
same complex situation across age groups and locations, then these observations 
can be used to develop a sound theoretical construct. Conversely, when the theoreti-
cal construct is tested (or subject to experiment) at a new location, researchers 
should be able to predict the types of behaviours that will be observed as long as the 
integrity of the experiment (starting conditions, etc.) is replicated. 

http://www.bourbaki.ens.fr/
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 Having developed only slightly beyond the stage of continuous theory borrowing, 
the  fi eld of mathematics education currently is engaged in a period in its develop-
ment replete with inquisitions aimed at purging those who don’t vow allegiance to 
not always well-de fi ned perspectives on mathematical learning (such as 
“constructivism”—which most modern theories of cognition claim to endorse, but 
which rarely generates testable hypotheses that distinguish one theory from another). 
Certain others would want to purge those who don’t pledge to conform to psycho-
metric notions of “scienti fi c research”—such as pretest/posttest designs with “con-
trol groups” in situations where nothing signi fi cant is being controlled, where the 
most signi fi cant achievements are not being tested, and where teaching-to-the-test 
is itself the most powerful untested component of the “treatment.” With the excep-
tion of small schools of mini-theory development, which occasionally have sprung 
up around the work of a few individuals, most research in mathematics education 
appears to be ideology-driven rather than theory-driven or model-driven (Lesh & 
Sriraman,  2005  ) . Furthermore, as Artigue  (  2011  )  has pointed out, there is also less 
acknowledgement of non-Anglo Saxon approaches to conceptualizing researchable 
phenomena in mathematics education. 

 Theories are cleaned-up bodies of knowledge that are shared by a community. 
They are the kind of knowledge that gets embodied in textbooks. They emphasize 
formal/deductive logic, and they usually try to express ideas elegantly, using a single 
language and notation system. The development of theory is absolutely essential in 
order for signi fi cant advances to be made in the thinking of communities (or indi-
viduals within them). But, theories have several shortcomings. Not everything we 
know can be collapsed into a single theory. For example, models of realistically 
complex situations typically draw on a variety of theories. Pragmatists (such as 
Dewey, James, Peirce, Meade, Holmes) argued that it is arrogant to assume that a 
single “grand theory” will provide an adequate basis for decision-making for most 
important issues that arise in life (Lesh & Sriraman,  2005  ) . Models are purposeful/
situated/easily-modi fi able/sharable/re-useable/multi-disciplinary/multi-media 
chunks of knowledge. They often (usually) integrate ideas from a variety of theories. 
They are directed toward solving problems (or making decisions) which lie outside 
the theories themselves. That is, they are created for a speci fi c purpose in a speci fi c 
situation. Models are seldom worth developing unless they also are intended to be: 
(a) sharable (with other people) and (b) re-useable (in other situations). So, one 
of the most important characteristics of an excellent model is that it should be easy 
to modify and adapt, and ideally should cohere with a larger theory and in some 
instances develop it further.  

   From Social/Institutional Branding to Bernstein and Beyond 

 Theory is also important as it provides the lens through which to construct and 
look at data. Although MER theories were originally largely psychological, recent 
realizations of the importance of social and cultural contexts have led to the 
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emergence of sociological theories as well. Lerman  (  2010  )  drew on these recent 
traditions, largely Bernstein, to establish the claim that plurality of theories in MER 
is not a problem, and in fact is necessary. Below we outline his argument roughly. 

 Despite external pressures on educational research, MER is thriving in quantity 
(journals, conferences, etc.) as well as in terms of generated theories. Lerman  (  2010  )  
looked at whether this is unusual and bene fi cial. He did so through an empirical 
meta-study that drew on the sociological theory of Basil Bernstein. Hierarchical 
discourses (as opposed to horizontal discourses) are those that require apprentice-
ship and involve gradual distancing and abstraction (e.g., mathematics, whether 
academic or in school). Horizontal discourses are acquired tacitly and concern 
speci fi c contexts. Traditional pedagogies are explicit and are about performance. 
Authority is clearly located in the teacher. “Reform” pedagogies are often implicit, 
sometimes invisible and privilege those with prior linguistic wealth (Bernstein’s 
“elaborated code”). Verticality is a concept that describes how knowledge domains 
grow vertically (new theories replace old ones, as more or less in science) or hori-
zontally (new discourses and theories develop in parallel and are often incommen-
surable with previous ones). MER, as any other social science, develops horizontally. 
Because, unlike mathematics, MER has a “weak” grammar (but it does have a gram-
mar, you need to know MER theories to do work in it), building theory across the 
boundaries of prior theories is possible. 

 Lerman’s study was an analysis of papers published in  Educational Studies in 
Mathematics  (ESM), or in  Journal for Research in Mathematics Education  (JRME), 
and in the  Proceedings  of conferences of the International Group for Psychology in 
Mathematics Education (PME). Although a majority used theory, it was mostly 
traditional psychological learning theory. There was an increase, with time, towards 
more social theories (Vygotskian, ethnomathematical, social/critical, post-struc-
tural: belonging to what Lerman terms “the social turn”) and the vast majority of 
authors were content with using a theory, not building upon it, refuting it, etc. A 
caveat was that only accepted, published research was looked at. Is there an issue of 
gatekeeping here? Lerman’s proposition was that new theories were new voices 
which needed to be heard. Theory should be used appropriately in a way that also 
demonstrates concern for practice (unlike any other social science). In that sense it 
is a bit like Medicine or Computing. In mathematics education, one should not 
ignore social and political implications. 

 In their commentary on Lerman’s  (  2010  )  paper, Jablonka and Bergsten  (  2010  ) , 
although agreeing with Lerman’s overall position, noted the following:

    1.    There are examples of “strong” grammar theories in MER—like for example, the 
ATD and embodied cognition.  

    2.    “Use of theory” is weakly de fi ned by Lerman. Many papers in ESM and JRME 
cite theory but do not use it in any substantial way. Some offer common sense 
re-workings of data that are not informed by theory at all.  

    3.    Theoretical hybrids can achieve some level of communication across theories.  
    4.    There is a trend towards selective acceptance of parts of a theory (e.g., accepting 

importance of bodily-based metaphors but not the entire embodied cognition 
framework).  
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    5.    What Lerman calls a “social turn” is more a “social brand.”  
    6.    MER is more focussed on the “knower” than on “knowing,” and this can be 

dangerous.  
    7.    Looking at other  fi elds can be bene fi cial, for it looks beyond insular approaches 

to theorizing by mathematics education researchers.     

 Several explications of the so-called state-of-the-art of mathematics education in 
the past have been put forward by mathematicians and even mathematics educators 
who have done little or no research in the classroom or other learning settings in 
order to substantiate their claims. This has created several canons of literature which 
are by no means easy to differentiate, and sieve out. Research that advances theory 
through empirical data is what is needed, as opposed to theories advocated in the 
form of rhetoric in introspective articles, or theories in which quotations are the 
main form of data. “Theories” of dubious origins are potentially dangerous when 
pieces of legislation or reports from advisory panels of government bodies become 
the basis of curricular changes and research programs. 

 For instance the call of the National Mathematics Advisory Panel in the USA to 
make forms of algebra the panacea for curricular ills needed to be carefully scruti-
nized. The same should be said with respect to the stipulation that psychometric 
aptitude–treatment–interaction-based clinical studies were the only genre for 
research worthy of funding. It could be argued that that stipulation has led many 
mathematics education researchers into a blind following of this mode of research 
without regard for the fundamental problems of the  fi eld (see Greer,  2008  ) . This 
swerving of research focus based on political tides does not bode well for any  fi eld 
of research. 

 One of the main points made by Jablonka and Bergsten  (  2011  )  was the need to 
build strong theoretical bases for the  fi eld based on ongoing research as well as to 
establish a rigorous framework for theorizing according to a speci fi c research gram-
mar—such as Basil Bernstein’s internal/external languages of description. If that 
could be achieved, so that a sort of coherence pervaded the objects of theoretical 
discussion, there would be a natural and much welcomed end to the need, every 
decade or so, to justify the existence of mathematics education as a “research  fi eld” 
(see, e.g., Sierpinska & Kilpatrick,  1998 ; Sriraman & English,  2010  ) . 

 Jablonka and Bergsten  (  2011  )  critiqued the strengths and weaknesses of four 
ways of theorizing and illustrated what they meant by modes and qualities of theo-
rizing. The four modes of theorizing that they selected from the literature and pre-
sented as examples were diverse enough to cover the spectrum of existing 
“theoretical” trends. The  fi rst example was the PISA framework, by which a vaguely 
de fi ned notion of “mathematization” became a major constituent of mathematical 
literacy. Despite the weak operationalization of basic notions and despite criticisms 
arising from a lack of cross-cultural validity for PISA test items, the framework has 
dangerously mutated into a basis for curricular reform in many countries of the 
world. The second example was the theory of authentic task situations, taken from 
Sweden. The arbitrariness of categories (or aspects) chosen in the operational frame-
work was noted, and Jablonka and Bergsten  (  2011  )  claimed that relationships 
between categories were vague and empirically tenuous. APOS theory was used as 
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the third example of a theory that deals with conceptual development in mathemat-
ics. This neo-Piagetian theory was appraised as having a relatively strong internal 
consistency in its grammar and in its speci fi c theorizing in terms of actions, pro-
cesses and objects within schemas. Fourthly, Jablonka and Bernstein tackled the 
French school which is the focus of the next section.  

   The “French” Way 

 Jablonka and Bergsten  (  2011  )  referred to the ATD as an example of a theory that 
uses a specialized language and develops hierarchical relationships between praxeolo-
gies. ATD is of particular interest to the MER community given its ecological nature 
and the wideness of its applicability. Simply put, ATD is an extension of Brousseau’s 
ideas from within the institutional setting to the wider “Institutional” setting [the 
upper-case I is our choice]. Artigue  (  2002  )  clari fi ed this subtlety when she stated:

  The anthropological approach shares with “socio-cultural” approaches in the educational 
 fi eld (Sierpinska and Lerman,  1996  )  the vision that mathematics is seen as the product of a 
human activity. Mathematical productions and thinking modes are thus seen as dependent 
on the social and cultural contexts where they develop. As a consequence, mathematical 
objects are not absolute objects, but are entities which arise from the practices of given 
institutions. The word “institution” has to be understood in this theory in a very broad 
sense…[a]ny social or cultural practice takes place within an institution. Didactic institu-
tions are those devoted to the intentional apprenticeship of speci fi c contents of knowledge. 
As regards the objects of knowledge it takes in charge, any didactic institution develops 
speci fi c practices, and this results in speci fi c norms and visions as regards the meaning of 
knowing or understanding such or such object. (p. 245)   

 Chevallard proposed a theory much larger in scope than the TDS in order to be 
in a position to move beyond the cognitive program of MER, with its classical con-
cerns (Gascón,  2003  )  such as the cognitive activity of an individual explained inde-
pendently of the larger institutional mechanisms at work which affect the individual’s 
learning. Chevallard’s  (  1985,   1992a,   1992b,   1999a,   1999b  )  essentially contended 
that a paradigm shift was necessary within mathematics education, one that began 
within the assumptions of Brousseau’s work, but shifted its focus on the very origins 
of mathematical activity occurring in schools, the institutions which produce the 
knowledge (K) in the  fi rst place. 

 The notion of didactical transposition (Chevallard,  1985  )  was developed to study 
the changes that K goes through in its passage from scholars/mathematicians  cur-
riculum/policymakers → teachers → students. In other words, Chevallard’s ATD 
was an “epistemological program” which attempted to move away from the reduc-
tionism inherent in the cognitive program (Gascón,  2003  ) . Bosch, Chevallard, and 
Gascon  (  2005  )  clari fi ed the desired outcomes of such a program of research in the 
following way:

  ATD takes mathematical activity institutionally conceived as its primary object of research. 
It thus must explicitly specify what kind of general model is being used to describe math-
ematical knowledge and mathematical activities, including the production and diffusion of 
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mathematical knowledge. The general epistemological model provided by the ATD proposes 
a description of mathematical knowledge in terms of mathematical praxeologies whose 
main components are types of tasks (or problems), techniques, technologies, and theories. 
(pp. 4–5)   

 It is noteworthy that the use of ATD as a theoretical framework by a large body 
of researchers in Spain, France and South America resulted in the creation of an 
International Congress on the ATD, which has been held biennially since 2005. The 
aim of these congresses has been to propose a cross-national research agenda and 
identify research questions which can be systematically investigated with the use of 
ATD as a framework. 

 In Sriraman and Törner  (  2008  ) , several focal points were isolated via historical 
analysis to suggest ways in which the theoretical differences between the German, 
French and Italian schools of thought can be bridged (or networked) and made to 
interact in the present and future. In outlining the differences and similarities 
between the various positions and schools of thought in these three countries it 
became apparent that researchers were often entrenched in “ideological” perspec-
tives. Lerman  (  2000  )  explained that these ideological tendencies were a result of the 
 fi eld adopting theoretical frameworks via a process of recontextualization (Bernstein, 
 1996  ) . In this process “different theories become adapted and applied, allowing 
space for the play of ideologies” (p. 19). However, Jablonka and Bergsten  (  2011  ) , 
by using Bernstein’s sociological framework, clari fi ed and elaborated on different 
modes of classi fi cation, modelling and theorizing with respect to relational densities 
among basic concepts within a theory, as well as levels of discursive saturation 
(or lack of it) in the four examples of theorizing in mathematics education chosen. 
In mathematics education, there is a preponderance of homegrown theories, and a 
lack of high relational density and intertextuality in the current modes of theorizing. 
More importantly there is sometimes a tendency of researchers in our  fi eld borrowing 
from terms and concepts  fi elds such as sociology, social anthropology, linguistics, etc., 
without committing to the deeper levels of theorizing that occurs in those  fi elds.   

   Discursive Approaches to Research in Mathematics Education: 
The Case of Sfard’s “Commognitive” Framework 

 We close this chapter with commentary on discursive approaches to research in 
mathematics education, and in particular on Anna Sfard’s commognitive framework. 

 Compared to, say, two decades ago, reports of research in mathematics education 
are substantially different: longer, often qualitative and no longer examining learn-
ing merely in terms of individual acquisition or construction but with ample refer-
ence to the context in which the learning occurs. Focussing on environmental factors 
associated with learning has often meant shifting to a focus on communication and 
language; in other words our examination of learning has become  discursive . In this 
section we pay special attention to this opening up of the  fi eld to discursive approach-
es—an opening up that has been con fi rmed quantitatively by Ryve  (  2011  ) . We do so 
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by tracing—by necessity, rather selectively—some relevant developments, and we 
focus on one framework that has been attracting increasing attention in recent years, 
namely Anna Sfard’s  (  2008  )   commognitive framework . 

 Discursive approaches to research in mathematics education are one of recent 
steps in a trail of attempts to describe human thinking—the work of Jerome Bruner, 
arti fi cial intelligence metaphors and models and Piaget’s genetic epistemology 
being of special importance. Although these works often had remarkable success 
in advancing our understanding of how human beings think, they did not always 
succeed in providing adequate explanations of persistent learning behaviours such 
as individual or collective failures in mathematics. Over the last 40 years or so, 
these approaches to research, which have sometimes been given as the label “acqui-
sitionist,” have been met with increasing doubt both on methodological and episte-
mological grounds. 

 With regard to methodological grounds, their clinical-experimental methods 
were deemed too remote from the milieu (of the classroom, the home, etc.) in which 
mathematical learning typically occurs. Accordingly, ethnographic approaches to 
studying learning began to emerge with the observation of ordinary practices (of 
learners, teachers, etc.), gradually replacing laboratory-based data collection. 

 From an epistemological perspective, doubt was cast on the appropriateness of 
the ways in which the older research approaches viewed learning—that human 
thought somewhat mirrored nature, re fl ected external phenomena, and that there-
fore learning could be described as context-invariant and universal. The sociocul-
tural perspective, pioneered by Vygotsky, and epistemologically and philosophically 
bolstered by the work of Wittgenstein, Schutz and Mead, largely opposed this view. 
It emphasized that learning was an activity that occurred in, and was co-constituted 
by, situational, cultural and historical milieu. As editors of  Learning Discourse: 
Discursive Approaches to Research in Mathematics Education , Kieran, Forman and 
Sfard  (  2002  )  noted that the discursive perspective espoused this socio-cultural tenet. 
Furthermore, its emphasis was  fi rmly placed on the view of human thinking as a 
type of communication:

  Within the discursive framework, thinking is conceptualised as a special case of the activity 
of communication and learning mathematics means becoming  fl uent in a discourse that 
would be recognised as mathematical by expert interlocutors. (Kieran et al.,  2002 , p. 5)   

 Obviously, sweeping discursive approaches under an apparently uni fi ed, umbrella 
term such as “the discursive framework” does not do justice to the diversity of these 
approaches. This diversity is evident, for example, in the seven chapters of Kieran 
et al.’s  (  2002  )  edited collection, as well as in more recent efforts to delineate the 
many and varied strands of discourse-oriented research—such as Sfard’s entry on 
Discourse in the forthcoming  Encyclopedia of the Sciences of Learning  (Seel,  2012  ) , 
Jaworski and Coupland’s  (  2005  )   The Discourse Reader , and, within mathematics 
education, Andreas Ryve’s  (  2011  )  formidable review of 108 papers which reported 
research deploying a discursive approach. The 2001  Educational Studies in 
Mathematics  special issue, from which the 2002 Kieran et al. volume originated, 
had the subtitle “Bridging the Individual and the Social” and, indeed, the impression 
is that the editors extended an open invitation to the reader to re fl ect on “the social 



316 Sriraman and Nardi

nature of the individual” (p. 10). To do so, and to carry out research within this 
complex framework, is a very challenging task. For the rest of this section we focus 
on the recent work to this purpose of one of that volume’s contributors, Anna Sfard 
(see, e.g., Ben-Yehuda, Lavy, Linchevski, & Sfard,  2005 ; Kieran et al.,  2002 ; Sfard, 
 1987,   2002,   2007,   2008 ; Sfard & McClain,  2002 ; Sfard & Prusak,  2005  ) . On the 
way, we aim to illustrate the potency and some of the limitations of the discursive 
perspective. Part of the discussion which follows has been adopted from a review-
essay on the 2002 volume by one of us (Nardi,  2005  ) . 

 Beyond recognizing communication in mathematical learning as an  aid to , or a 
component of, thinking, Sfard’s position on communication was that it is “almost 
tantamount to the thinking itself” (Kieran et al.,  2002 , p. 13). Sfard distanced herself 
from the perspective of learning as acquisition of entities (e.g., concepts, schemes, 
etc.). For her, learning was to be seen as change in one’s participation in well-
de fi ned forms of activity. The shift to this perspective was necessary because earlier 
perspectives had failed to provide satisfactory accounts for problems of both theory 
and practice. Two examples from classroom data reported by Sfard  (  2002  )  drew 
attention to two such problems. One concerned our limited ability to explain failure, 
and success, in mathematical learning, despite extensive work on students’ percep-
tions of, and dif fi culties with, speci fi c mathematical topics. The other concerned 
our limited ability to establish pedagogical practices that warrant understanding 
(as opposed to merely instrumental task completion). Both highlight our limited 
insight into what determines the ways in which interlocutors (in this case, students 
and teachers) choose to proceed in a mathematical conversation. In a more recent 
work, Sfard  (  2008  )  provided many more examples—see, for instance, the  fi ve quan-
daries that she discussed in Chapter   9     of that book. 

 What is it, then, that the learning-as-acquisition metaphor, the Piagetian 
account—the equating of understanding with “perfecting mental representations,” 
and learning-with-understanding with “relating new knowledge to knowledge 
already possessed” (Sfard,  2002 , p. 21)—has left unaccounted? The shift from 
behaviourism to acquisitionism was clearly useful, Sfard stressed, but the approach 
that she now proposed would move on from Piaget’s work. That approach, which 
originated in the work of Vygotsky, was intended to complement the latter in order 
to enrich our understanding of the issues that acquisitionism had left unresolved. 

 The basic difference between an acquisitionist and a participationist perspective 
on learning is that the latter dispenses with the belief in the existence of context-free 
cognitive invariants, and emphasizes the social origins of human learning. Sfard’s 
 (  2002  )  account clearly delineates differences between the two frameworks, but also 
draws attention to how they complement each other. Thinking, in the participationist 
framework, is conceptualized as communicating with oneself, whereas “communi-
cation may be diachronic or synchronic, with others or with oneself, predominantly 
verbal or with the help of any other symbolic system” (p. 28). If “communicational” 
(a term which is explained in the 2002 paper as epistemologically distinct from but 
akin to “discursive,” and was later, in the 2008 volume, replaced by “commogni-
tive”) psychology of human thinking posits that speech is no longer a window to 
thought but its determining element, then as long as thought is in language, the 
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two—the thought and the speech—are inseparable. The interlocutor is constrained 
by the situation in which the communication takes place and in fl uences it in return. 
In this sense, learning mathematics, or history, is initiation to a discourse, where 
discourse is meant as a type of communication that characterizes a particular com-
munity. From this perspective, we can talk about the discourse of science, or the 
discourse of a professional group, or a social class. Mathematical learning, then, is 
initiation into mathematical discourse. Sfard  (  2002  )  introduced four factors that 
determined this initiation, two of these being introduced as “mediating tools” (p. 29) 
and “metadiscursive rules” (p. 30). 

 Sfard  (  2002  )  closed her introduction to what at the time was called “the com-
municational framework” with a cautionary methodological remark. Wittgenstein 
wisely attacked mentalism—any reference to “mental states” and the inherently 
unobservable entities “in the mind” (p. 32). However, as “experiences, feelings and 
intentions are central to all our decisions” (p. 32), research must  fi nd ways of incor-
porating those into its accounts. Doing so is “safe,” Sfard suggested, “as long as it 
is understood that the status of any claim about other people’s intentions the 
researcher can make is  interpretive  [Sfard’s emphasis]” (p. 32). All that research 
can offer is compelling, cogent, trustworthy researchers’  interpretations . 

 A key contribution, in our view, of this approach has been in the research meth-
ods proposed as a means towards generating the aforementioned interpretations. 
These include “focal analysis” and “preoccupation analysis”:

   “Focal analysis” involves an analysis of the “effectiveness of communication” • 
between interlocutors with regard to the degree of clarity of the “discursive 
focus”—de fi ned as “the expression used by an interlocutor to identify the object 
of her or his attention” (p. 34). There are three “focal ingredients” considered in 
this type of analysis: “pronounced” (what one is attending to), “attended” (how 
is one attending to what one is attending?) and “intended” (the collection of 
experiences evoked by the “pronounced focus” and the “assortment of state-
ments that the interlocutor is now able to make on the entity identi fi ed by the 
pronounced focus,” all the “discursive potentials” borne out of the “pronounced 
focus”). The constantly evolving nature of the “intended focus” is “the crux of 
the matter”: successful communication often relies on the “attended focus” being 
“used as a public exponent of the intended focus.”  
  “Preoccupation analysis” involves an analysis of the “two types of intentions • 
which may be conveyed through communicative actions” (p. 38): “object-level” 
intentions, like, for example, the intention to solve the mathematical problem in 
question, and “meta-discursive intentions,” which are “often less visible even if 
not less in fl uential” (e.g., the ways in which the interaction is managed, the rela-
tionship between the interlocutors, etc.). The former are often taken care of with 
the help of “focal analysis.” “Preoccupation analysis” aims to explore the  inter-
relation  between these two types of intentions. Its principal tool is the “interac-
tivity  fl owchart,” a diagram characterized by “proactive” and “reactive arrows” 
to reveal “initiating” and “responsive” attitudes, “discourse-spurring” and “face-
saving” techniques used by the interlocutors.    
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 Both methods have the potential to illustrate learning and teaching in useful 
ways. To us, the ways in which the analyses generated through these methods not 
only acknowledged that not any communication generates learning, but also offered 
ways of describing the  type  of communication that does generate learning, was 
very important. This is a vital issue to which several other authors in the Kieran 
et al.  (  2002  )  volume returned, including Kieran herself, in her own chapter in 
the volume. 

 There is little doubt that the work summarized above is a well-thought through 
endeavor to bridge the individual with the social within research in mathematics 
education. Any concerns that such an elaborate analysis of mathematical conversa-
tion may miss an emphasis on the development of individual interlocutors are 
largely assuaged by the painstaking detail with which “focal analysis” and “interac-
tivity  fl owcharts” elaborate such developments (and also generate  mathematically  
rich accounts of the data). 

 A pragmatic concern about the employment of these methods is one of scale. 
To generate an account of data through any of the above approaches is a time-
consuming enterprise that by de fi nition needs to focus on only parts of the typically 
vast amount of data collected in naturalistic studies of learning and teaching. This 
focussing on fragments of the data may have an impact on the analyst’s capacity to 
observe learning over a substantial period of time. 

 Finally, and this is an issue that Sfard elaborated upon in later work (e.g., Sfard, 
 2008  ) , there is the issue of “ecological validity” (Seeger,  2002 , p. 293) of  fi ndings 
generated by discourse-oriented analyses. Seeger  (  2002  )  employed this term to 
describe the degree to which  fi ndings “give a fairly comprehensive and typical 
account,” particularly in cases where “experimental conditions do not match condi-
tions in the real world” (p. 293): by focussing on collecting evidence on the observ-
able elements of mathematical behaviour, we may miss implicit, unobservable but 
perhaps signi fi cant processes taking place. Later, when Sfard  (  2008  )  elaborated 
upon this issue, she made a strong plea for the discursive researcher to “alternate 
between being an  insider  and an  outsider  to the discourse under study” (p. 278). 

 Sfard’s  (  2008  )  ambitious book, which came a few years after the 2002 volume, 
presented her proposition in fuller scope—and in a way that situated her perspec-
tive “at the intersection of consciousness studies, linguistics, philosophy, and 
mathematics education” (Sriraman,  2009 , p. 541). The perspective is known as the 
“commognitive framework,” with the hybrid term “commognition” emphasizing 
the interrelatedness, almost inseparability, of “cognition” and “communication.” 
In Sfard’s  (  2008  )  words, the term is meant to refer “to those phenomena that are 
traditionally included in the term cognition, as well as to those usually associated 
with interpersonal exchanges” (p. 83). 

 From the assumption that thinking is a special case of communicational activity 
it follows that mathematical learning can be seen as a particular type of communica-
tion. In Sfard’s participationist view of learning, mathematical learning is seen as 
initiation into the discursive practices of the mathematical community. The learning 
of mathematics therefore involves a change of discourse. Teaching mathematics, in 
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this sense, involves the changing of the students’ discourse. Forms of communication 
include communication through written language, spoken language, physical 
objects and artefacts deployed for discursive ends. Speci fi cally, a discourse is made 
distinct by a community’s  word use ,  visual mediators ,  endorsed narratives  and 
 routines :

    • Word use  (vocabularies, keywords and their use) includes the use of mathematical 
terminology as well as ordinary words with a speci fi c meaning within mathemat-
ics (such as “limit,” “open,” “continuous,” and “group”).  
   • Visual mediators  include diagrammatic and symbolic mediators of mathematical 
meaning (graphs, diagrams, symbols, etc.) as well as the physical objects we 
often employ in mathematics lessons in school settings .   
   • Endorsed narratives  include de fi nitions, theorems and proofs and generally text, 
either spoken or written, which describe objects and processes as well as rela-
tionships among those, and is subject to rejection or endorsement according to 
rules de fi ned by the community.  
   • Routines  include regularly employed and well-de fi ned practices that are employed 
by, and distinctly characterize the community. Within mathematics,  routines  
include conjecturing, proving, estimating, generalising, abstracting, etc.    

 The question might be asked: “What makes Sfard’s efforts to illuminate our 
understanding of thinking any different from previous efforts?” (Yackel,  2009 , p. 90). 
Sfard’s efforts to go to great lengths to develop an approach that meets accepted 
standards of scienti fi c rigor by providing operational de fi nitions of keywords, such 
as thinking, communication, discourse, and mathematical object would be one 
answer to that question. And we note that her approach to developing operational 
de fi nitions is Wittgensteinian, as evident in her endorsement of Wittgenstein’s state-
ment, “the meaning of a word is its use in the language” (Sfard,  2008 , p. 73). Another 
answer to this question is that, although Sfard cast a critical eye on acquisitionist 
metaphors for learning, she was also “careful to point out the bene fi ts of objecti fi cation, 
namely the ways it contributes to effective and ef fi cient communication,” thereby 
“not decrying our propensity for objecti fi cation” (Sfard,  2008 , p. 91), but simply 
calling for a careful scrutiny of the assumptions we make when we employ “object” 
metaphors. 

 The potency and degree of acceptance of Sfard’s proposition will depend on how 
comfortably it will sit alongside other approaches in what we earlier described, 
borrowing from Jablonka and Bergsten  (  2010  ) , as the “social brand” of approaches 
to research in mathematics education. For example, could the radical constructivist 
position be “subsumed as an extreme case within the commognitive framework” 
(Sriraman,  2009 , p. 544)? For the moment it seems that the framework puts forward 
a “grammar by which communication can be better fostered between researchers 
analyzing the same discursive ‘mathematical’ objects in teaching and learning situ-
ations” (Sriraman,  2009 , p. 544). The framework seems to be accumulating several 
“theoretical and methodological” elaborations (Ryve,  2011 , p. 187) and seems to 
have attracted numerous users of its grammar. We close this section with a brief 
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outline of a few examples of such use: one from secondary MER, speci fi cally the 
award-winning  Research in Mathematics Education  paper by Natalie Sinclair and 
Violeta Yurita  (  2008  ) ; and, three from research into the teaching and learning of 
post-compulsory mathematics presented at CERME7, the 7th Congress of European 
Research in Mathematics Education. 

 Sinclair and Yurita  (  2008  )  investigated the impact of the introduction of a 
dynamic geometry environment (DGE) on the mathematical thinking of students 
and teachers in a secondary geometry class, by identifying changes in the discourse 
engendered by its introduction. The paper focussed on the teacher and it is to the 
credit of the authors’ (commognitive) analysis that they revealed substantial differ-
ences between static and dynamic geometry—for example, “in the ways the teacher 
talks about geometric objects, makes use of visual artifacts and models geometric 
reasoning” (p. 135). 

 Nardi  (  2011  )  examined data from interviews with university mathematicians—
reported extensively in (Nardi,  2008  ) —in order to outline issues related to university 
students’ discursive shifts in the early periods after their arrival at university. The 
paper focussed on verbalization skills, namely skills in the employment of ordinary 
language to convey mathematical meaning. During the interviews the mathemati-
cians emphasized the role of verbal expression to drive noticing to the key idea of a 
symbolically-formulated mathematical sentence; the importance of good com-
mand of ordinary language; the role of verbalization as a mediator between sym-
bolic and visual mathematical expression; and the precision proviso for the use of 
ordinary language in mathematics. The analyses revealed that the community’s 
discourse on verbalization in mathematics tended to be risk-averse; that word-
less mathematics discourse remained alluring; and that more explicit, and less 
potentially contradicting, pedagogical action was necessary in order to facilitate 
students’ appreciation of verbal mathematical expression and acquisition of ver-
balization skills. 

 Stadler  (  2011  )  examined a particular case of the transition from secondary school 
to university mathematics (the mathematical context was solving a parametric 
system of simultaneous equations) in order to discuss students’ experiences of the 
transition as an often perplexing re-visiting of content and ways of working that 
seem simultaneously familiar and novel (in this case dealing with variables, param-
eters and unknowns when solving equations). The paper’s commognitive analyses 
of the student observations and interviews allowed the multi-faceted (individual, 
institutional, social) nature of the transition from school to university mathematical 
discourse to emerge. Throughout, the impression was that Sfard’s perspective 
provided a good  fi t to studies of transition. 

 Finally, Viirman  (  2011  )  traced the variation within and between three university 
lecturers’ discourses as they introduced the concept of function. Through analysis 
of the observations that focussed particularly on the routines and endorsed narra-
tives characterizing the lecturers’ discourse, the variation across the three came to 
the fore (the variation concerned the different ways the lecturers resorted to 
de fi nitions, examples, the “why” or “when” of endorsing certain narratives, etc.).  
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   Concluding Remarks 

 We conclude this chapter with a call to mathematics education researchers for a 
more incisive approach to, and employment of, theory that goes beyond merely 
knowing the “grammar” of a theory (Lerman,  2010 , p. 101), a trend that Lerman and 
other contributors (e.g., Sriraman & English,  2010  )  identi fi ed as a symptom of care-
less eclecticism. As Artigue  (  2011  )  noted:

  This is indeed hard work. Theoretical frameworks and constructs being dynamic entities 
shape research practices and are shaped by these, one cannot make sense of them without 
considering their different components and the research practices (or research praxeologies 
following Chevallard and ATD) they make possible and those they result from. It is not 
enough to know the elements of its “grammar” … for making sense of a theory and appre-
ciating its potential. Any productive dialogue around theoretical issues cannot stay at the 
level of the theoretical objects themselves but needs to enable collaborative work around 
appropriate exemplars of research praxeologies, and this is also a real challenge for us. (p. 312)   

 Orchestrated efforts in this direction have been evident in the  fi eld for some time 
(see, for example, Parts XV and XVI of Sriraman and English  (  2010  )  that were 
dedicated to “networking of theories”). The call for an even more systematic com-
munication between theories that would go beyond merely borrowing extends to 
developments in other  fi elds too—neuroscience being prominent among those  fi elds 
where recent developments have made this call even more topical (see, for example, 
Campbell’s  (  2010  )  strong case for a mathematics education neuroscience). The 
words of Kristin Umland  (  2011  )  serve as a good indication of a way forward: after 
calling for a systematic survey of the big questions in mathematics education that 
need to be addressed, Umland added:

  This survey should include a discussion of research methods that might be appropriately 
used to investigate them and weaknesses in both the relevant empirical record and extant 
theories, many of which are still very immature and should necessarily be re fi ned as time 
passes. The ultimate test of the value of the ideas … is whether they or their progeny help 
solve the problems that teachers, administrators, and policymakers face as they work to 
improve mathematics teaching and learning. (p. 74)        
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  Abstract   As the  fi eld of mathematics education grows so too do the research methods 
used to study the  fi eld. In the special area of teacher education, the last decade has 
witnessed a substantial increase in attention. New perspectives and new methodolo-
gies have been constituted and new research techniques established. Choosing the 
“right” method is not a trivial task for any researcher, and increasingly we are seeing 
more sophisticated research methods, including different forms of mixed methods. 
A main concern of    research these days relates to the fact that as well as studying 
teachers and teaching, researchers want to see their  fi ndings applied to the profes-
sional development of teachers and to a critical modi fi cation of teacher education 
practices, in the frame of social changes. This has led to more research  with  teachers 
rather than  on  teachers. After surveying state-of-the-art of methods in research on 
mathematics teacher education published in renowned international journals, this 
chapter focusses on  participatory action research  as an example of a research 
method from the politicized periphery of the  fi eld.      

   Introduction 

 Prior to the establishment of the  Journal of Mathematics Teacher Education  
(JMTE) in 1998 only a relatively small number of studies of mathematics teacher 
education were published in academic journals. This was indicated in Lubienski and 
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Bowen’s  (  2000  )  survey of mathematics education research reports published in 48 
major educational research journals between 1982 and 1998. Only 6% of their “general 
topics related to teaching and learning” (p. 630) category, among the 3,011 articles 
they identi fi ed as research on mathematics education, dealt with teacher education. 
The situation seems to have changed substantially since 1998. For example, Sfard 
 (  2005  ) , in the course of summarizing a survey on the relation between mathematics 
education research and practice presented at the  10th International Congress on 
Mathematical Education  [ICME10], reported about a “prevalent focus on teacher 
and teacher practice” (p. 397) based on the responses of the 74 participants when 
they were asked how they would describe their “work in mathematics education 
over the last  fi ve years” (p. 396). The survey team found that “teacher-centeredness 
in research could be identi fi ed in two-thirds of the respondents who claimed to be 
engaged in research” (p. 397). 

 Although the  fi eld of research on mathematics teacher education has grown sub-
stantially and continues to grow, “research method” seems to be a peripheral aspect 
of this research. As a prominent example, the four volumes of  The International 
Handbook of Mathematics Teacher Education  (Jaworski & Wood,  2008 ; Krainer & 
Wood,  2008 ; Sullivan & Wood,  2008 ; Tirosh & Wood,  2008  )  were organized along 
the questions of the  what , the  how  and the  who  of mathematics teacher education as 
well as on the knowledge and roles of teacher educators working with teachers in 
teacher education processes and practices. However, there was no explicit focus on 
the methods by which all that knowledge of mathematics teacher education had 
been accumulated in any of the 60 chapters. A similar absence can be observed in 
an editorial of JMTE in which the three articles of the issue were introduced with 
the words: “These three articles differ in many aspects, including scope, nature, 
objects of research, speci fi c aims, research questions and suggestions for improving 
mathematics teacher education” (Tirosh,  2007 , p. 143). Again, research method was 
apparently not a category to name. 

 This chapter intends to lessen this research de fi cit. It reports on a survey that 
exclusively focussed on methodologies, research methods and research techniques, 
drawing on journal articles published between 2005 and 2010. It builds on a survey 
by Adler, Ball, Krainer, Lin, and Novotna  (  2005  )  that included a focus on methods 
used in reports on research related to mathematics teacher education published 
between 1999 and 2003. The chapter offers examples of techniques used in the 
research surveyed. It also discusses issues related to what and which research gets 
published in the journals surveyed. In particular, it discusses work which has been 
done at the periphery of the  fi eld of research on mathematics teacher education. 
As an example of this, emphasis is placed on describing a version of  participatory 
action research.  The chapter does not discuss research methods in terms of which 
method could be used for which purposes under what conditions. Such a discussion 
about  doing  research in teaching or teacher education that deals with the working of 
different research methods, although not speci fi c to mathematics education, is avail-
able in sources such as Linn  (  1986  )  for quantitative methods, Erickson  (  1986  )  for 
qualitative methods, and others noted in later sections of this chapter.  
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   Surveying Research Methods in Mathematics 
Teacher Education 

 For the sake of conceptual precision it will be useful to distinguish between a 
methodology, a research method and a research technique. In this chapter these 
terms are differentiated conceptually as follows: Research techniques, for example 
videotaping, can be used for different purposes. Research techniques do not consti-
tute a research method, although many methods draw on a speci fi c set of techniques. 
Methods, for example case study, can be regarded as ways for gathering evidence. 
Methodologies refer to the rationale and the theoretical assumptions guiding the 
research. They justify why the research is proceeding the way it does. In this sec-
tion, we present the results of our survey of research methods, methodologies and 
techniques in mathematics teacher education. We build on a survey of research on 
mathematics teacher education conducted for ICME10 and make comparisons to it 
and other previous surveys to establish possible trends. 

   A Survey Conducted at ICME10 

 At ICME10, Jill Adler, Deborah Ball, Konrad Krainer, Fou Lai Lin and Jarmila 
Novotná  (  2005  )  reported on an international survey of published research in math-
ematics teacher education for the period 1999–2003. The survey was based on pub-
lications in many international journals and some special conference proceedings 
and on handbook articles. The  fi nal focus of the survey was research published in 
JMTE (65 articles), in the  Journal of Research in Mathematics Education  [JRME] 
(7 articles) and in the proceedings of the annual conferences of the International 
Group for the  Psychology of Mathematics Education  (88 papers). The survey 
identi fi ed four emerging themes and Adler et al.  (  2005  )  summarized their  fi ndings 
by making the following claims: 

   “Claim 1: Small-scale qualitative research predominates” (p. 368).   For 
small-scale research, Adler et al. counted studies focussing on a single teacher or on 
groups of size less than 20. Of the 145 studies drawing on empirical data, 98 fell 
into this category. Adler et al. argued that since research on mathematics teachers’ 
education and professional development is a rather new  fi eld of study, hypotheses 
needed to be identi fi ed through qualitative inquiry before large-scale testing of 
hypotheses occurred. “It seems natural that the interest in particularization precedes 
generalization” (p. 369). Although Adler et al. acknowledged the “signi fi cant 
contributions for conceptualizing the complexity of teacher education and modelling 
individual teachers’ learning process” (p. 370) made by small-scale qualitative 
studies, they also called for more large-scale studies, cross-case analyses and 
longitudinal studies.  
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   “Claim 2: Most teacher education research is conducted by teacher educators 
studying the teachers with whom they are working” (p. 371).   As more than 80% 
of the studies were of this type, Adler et al. called for more external research of 
large-scale type and/or for the development of “strong and effective theoretical 
languages that enable us to create a distance between us and what we are looking at” 
(p. 372).  

   “Claim 3: Research in countries where English is the national language 
dominates the literature” (p. 372).   In JMTE, 80% of the articles published from 
1998 to 2003 were from such countries. For JRME and for the  Psychology of 
Mathematics Education  conference proceedings the  fi gures were somewhat lower 
(71% and 43% respectively), but still noteworthy. As Adler et al. argued, it seems to 
be troubling that the perspectives of some, and the particularities of their conditions, 
become the basis of the generally-accepted knowledge in the  fi eld.  

   “Claim 4: Some questions have been studied, not exhaustively, but extensively, 
but other important questions remain unexamined” (p. 375).   Issues which 
have been studied extensively and for which there are numerous international 
publications are:

   the effectiveness of particular programs of teacher education;  • 
  teachers’ (re-)learning within reform processes; and  • 
  professional communities and other institutional settings.    • 

 Issues which, according to Adler et al. (p. 376), have remained unexamined are:

   teachers’ learning in contexts where reform is not the dominant issue;  • 
  the nature of teachers’ learning from experience;  • 
  teachers learning to address issues of gender, language and socio-economic • 
status;  
  comparisons of the effectiveness of different teacher-education settings; and  • 
  the effects of extending programs to multiple teacher-learning settings.      • 

   Survey 2005–2010 

 Building on the survey by Adler et al.  (  2005  ) , we conducted a survey for the 
period 2005–2010 focussing on research methods, methodology and techniques in 
studies on mathematics teacher education. For such a survey, it is always dif fi cult to 
decide which publications to include. Our decision to focus on JMTE, JRME and 
 Educational Studies in Mathematics  (ESM) was motivated by the high prestige of 
these journals in the  fi eld of mathematics education in general and, particularly for 
JMTE, in mathematics teacher education. We assumed that the publications in these 
journals re fl ected and produced accepted knowledge in the  fi eld (Dowling,  2009 ; 
Ernest,  1991  ) . This position was similar to that of Wilson and Cooney’s  (  2002  )  
justi fi cation of why they reviewed JMTE, JRME and ESM for articles on mathematics 
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teachers’ beliefs or teacher change: “We have chosen to review articles from these 
three journals, given their international readership and the fact that they provide 
important outlets for researchers concerned with teaching or teacher education” 
(p. 128). We recognized the limitation in focussing only on these English-based 
journals, but given their prominence in the  fi eld, they provide a standard to under-
stand how the  fi eld is growing in relation to the boundaries they implied, whether 
intentional or not. 

 Another challenge was deciding which articles to include and exclude. As Adler 
et al.  (  2005 , p. 364) noted, the boundary between what to include and what to 
exclude is somewhat blurred. For the survey reported in this section, not all articles 
published in JMTE were included. Our focus was on the education and professional 
development of mathematics teachers. Like Adler et al.  (  2005  ) , we excluded studies 
on teachers’ knowledge, beliefs and practices, and those in the “mathematics teacher 
education around the world” category, where there was only a limited relationship 
to the  processes  of teacher education and professional development. We also did not 
include articles that focussed on the description of tasks for mathematics teacher 
education and professional development purposes, for these could be found in a 
special issue of JMTE (2007,  10 (4–6)). 

 A  fi nal concern could be the description of the research method, methodology 
and technique in the article. As Burton  (  2002  )  reminded us, journal articles are 
notoriously short in their discussion of methodology.

  In the majority of articles in journals and chapters in books, a description is provided of 
“how” the research was done but rarely is an analysis given of “why” and, more particu-
larly, out of all the methods that could have been used, what in fl uenced the researcher to 
choose to do the research in the manner described. (p. 1)   

 However, this shortness is not being taken as an indication of an underdeveloped 
methodology on which the research is based. 

 In the following subsections we report on selected  fi ndings from the survey. 
We connect our results with the results from other surveys in order to estimate 
trends or tendencies of development. We focus on research methods and techniques 
as methodologies, in our de fi nition of the term, necessarily connect to research 
questions and the activated theories. In the two last subsections we move beyond the 
survey to argue that methodologies, research methods and techniques are constantly 
being developed further. 

   Number of participating teachers.   Adler et al.  (  2005  )  claimed that small-scale 
research dominates the  fi eld of mathematics teacher education. This claim is still 
legitimate. Although our data corpus differs from that of Adler et al. in that we have 
focussed only on journal articles, there seems to be little progress towards an 
increase in the number of teachers involved. Although the percentage of studies 
with more than 100 participating mathematics teachers has nearly doubled, still 
89% of the studies involve less than 100 teachers (see Table  11.1 ).   

   Geographic origin of the research.   Research in countries where English is a 
national language (nearly always  the  national language) continued to dominate in 
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these English-based journals. Seventy percent of the articles with single-nation 
authors came from English-speaking contexts (Québec was not included in the 70%). 
For only two of the 19 articles did contributing authors work in different countries, 
and English was not the national language in any of those countries. For 54% of the 
articles, at least one author worked in the USA. Figure  11.1  displays (in dark) the 
countries represented by at least one research institution within our data corpus.   

   References to standard procedures, or standard references.   Established 
methods or techniques generally provide a standard for referencing a researcher’s 
choice of a method or technique. However, 40% of the articles surveyed do not 
provide any substantive reference to such methods or techniques. For those with 
references, most of the sources are mentioned only once. In this survey, we accounted 
for only those references where the relation to the referenced work was made explicit 
in the 151 articles. This explicitness was in the form of a quotation or in some 

   Table 11.1 
  Numbers of Teachers Studied in JMTE, ESM and JRME Articles   

 Numbers of Teachers Participating in the Study  JMTE/ESM/JRME 
 Number of Articles ( n  = 151) 

 1  23 
 2–9  46 
 10–19  15 
 20–99  45 
 100 or more  17 
 No data/No empirical study   5 

  Figure 11.1.    Global distribution of the surveyed research on mathematics teacher education.       
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reference to a particular feature or interpretation of the method or technique used—as 
was the case in the following example from Barrantes and Blanco’s  (  2006  )  
explanation of “discussion groups” in which both alternatives are visible.

  This is “an unmanaged technique whose purpose is the controlled production of discourse 
by a group of subjects who meet for a limited time to debate a topic designated by the 
researcher” (Gil,  1992 –1993, p. 201). The idea is to establish and facilitate oral debate, not 
to interview the group (Watts & Ebbutt,  1987  ) . (Barrantes & Blanco,  2006 , p. 418)   

 In this example, both Gil  (  1992 –1993) and Watts and Ebbutt  (  1987  )  were included 
in the survey as referenced sources. However, bibliographical references that appear 
merely as name-dropping are not included. We admit that this distinction was not 
always clear-cut and unambiguous. The result of the analysis of the 151 articles was 
a list of 80 referenced volumes, chapters and articles with 63 of these 80 mentioned 
only once and 7 of the 80 only twice (this happened particularly in the case of 
authors publishing more than one article during 2005–2010). For the remaining 10, 
some sources stood out by frequency (see Table  11.2 ).  

 Frequencies of 3 to 6 occurred for reference to various qualitative research meth-
ods (Bogdan & Biklen,  1998 ; Creswell,  1998 ; Erickson,  1986  )  and, more speci fi cally, 
to work on case studies (Stake,  1995,   2000 ; Yin,  1989  )  and ethnography (Goetz & 
LeCompte,  1984 ; LeCompte, Preissle, & Tesch,  1993  ) . A predominance of qualita-
tive research methods is overtly visible. 

 It is remarkable that the two most often-cited volumes elaborate grounded the-
ory. This is particularly interesting as any grounded-theory approach emphasizes 
the importance of a sensitive relation to the phenomena under study without draw-
ing systematically on a speci fi c theory. Either the  fi eld of research on mathematics 
teacher education and development is still empirically underdeveloped, or there is 
widespread scepticism of the usefulness of the theories that have been generated in 
the  fi eld. This scepticism seems to be paralleled by a dichotomy of idiosyncrasy/
standardization of the literature on methods and research techniques which are most 
often referenced. The effect of language standardization was particularly strong 
given the English-based focus of the journals: only 3% of these references are work 
that was not originally written in English.  

   Table 11.2 
  Most Frequently Referenced Research Volumes   

 Title (Author)  Frequency 

  Basis of Qualitative Research: Grounded Theory Procedures and Techniques  (by A. 
L. Strauss & J. Corbin; 1st and 2nd editions) 

 19 

  The Discovery of Grounded Theory: Strategies for Qualitative Research  (by B. G. 
Glaser & A. L. Strauss) 

 12 

  Qualitative Data Analysis: An Expanded Sourcebook  (by M. B. Miles & A. M. 
Huberman; including earlier editions) 

 10 

  Qualitative Research and Evaluation Methods  (by M. Q. Patton; including earlier 
editions) 

  9 
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   From a distinction between qualitative and quantitative methods to mixed 
methods?   Although the distinguishing characteristics of qualitative and quantitative 
research have been, and still are, disputed, the distinction itself has been proven 
useful for a broad categorizing of research studies. The notion of “mixed methods” 
is much younger and has been made popular through a set of handbooks and articles 
(e.g., Creswell,  2003 ; Johnson & Onwuegbuzie,  2004 ; Tashakkori & Teddlie,  2003  ) ; 
since 2007 the  Journal of Mixed Methods Research  has contributed to the distribution 
of knowledge about possibilities for combining qualitative and quantitative methods 
and techniques. 

 Hart, Smith, Swars and Smith  (  2009  )  surveyed the research methods used in 
mathematics education by examining the use of qualitative, quantitative and mixed 
methods in articles published between 1995 and 2005 in major research journals in 
mathematics education. A subset of their data corpus consisted of all the articles 
published in JMTE, ESM and JRME, and therefore a comparison of  fi ndings is pos-
sible. Of particular interest here is how qualitative, quantitative and mixed methods 
research were distributed and whether a trend towards one of the options could be 
observed. For this purpose, we assemble in Table  11.3  the percentages of articles 
that used qualitative, quantitative and mixed methods in the period from 1995 to 
2005 (from Hart et al.,  2009  )  and the respective percentages from our own survey of 
research on mathematics teacher education and development based on the period 
2005–2010. Since Hart et al. did not focus speci fi cally on teacher education and 
development, we display Hart et al.’s percentages for JMTE separately.  

 Table  11.3  shows a decline of the percentage of mixed methods from 28% to 
19%, suggesting that there was not a trend towards an increase in research that uses 
mixed methods. But the suggestion of a trend away from mixed methods could be a 
technical artefact: It is not a straightforward task to decide whether a combination 
of quantitative and qualitative research techniques actually results in a mixed meth-
ods approach. Hart et al.  (  2009  )  decided to “categorize an article as mixed methods 
if both qualitative and quantitative methods are used  in any part  of the article” (p. 
38, emphasis added). They concluded that for the 10 JRME articles with mixed 
qualitative methods and inferential statistics, 6 did not report any  fi ndings from the 
interpretive analysis in the conclusions of the articles. That may explain the higher 
rate for mixed methods in Hart et al.’s survey. 

 A closer look at our survey data (see Figure  11.2 ) shows a slight increase in 
the number of studies that combined qualitative and quantitative methods at the 

   Table 11.3 
  Distribution of Quantitative, Qualitative and Mixed Methods   

 Hart et al. (1995–2005)  Our Survey (2005–2010) 

 ESM, 
JRME + JMTE 

 JMTE only (from 
Hart et al.,  2009  )  

 Research on Mathematics Teacher 
Education and Development 

 Quantitative only  14%  6%  17% 
 Qualitative only  58%  66%  64% 
 Mixed  28%  28%  19% 
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expense of the number of research studies that used qualitative methods only. We 
distinguished between research that provided a quantitative description only of the 
phenomenon under study (including different-treatment designs, control-group 
designs), research reports that generated a qualitative description only (excluding case 
studies), case studies, and research that substantially combined qualitative and quanti-
tative methods or techniques and generated both qualitative and quantitative descrip-
tions. The trends are not considerable, and the year 2008 seems to be singular.   

   Techniques of data construction and data analysis.   The spectrum of techniques 
by which the data of the surveyed research were constructed was rather broad. Most 
of the published research drew on a combination of two or more of the following 
elements: questionnaires and surveys, interviews, group conversations, videotaped 
classroom lessons (including copies of students’ work), videotaped inservice lessons 
(including copies of students’ work), and  fi eldnotes. A few studies used inservice 
course participants’ re fl ective writing, mathematical autobiographies, different 
kinds and formats of tests (including multiple-choice, open-ended assessments, pre- 
and post-tests). In the 151 studies reviewed, research that drew on one single 
technique for the construction of data was extremely scarce. 

 If it was true that the techniques for data construction were rather variegated, the 
same was a fortiori true for the techniques of data analysis. Whether or not the tech-
niques used could be subsumed under inferential or descriptive statistics, or as inter-
pretive, interactionist, epistemological, psychoanalytical, critically discursive, 
phenomenological, etc., most of the research seemed to be such that the individual 
research topic or research interest determined the research methods—and not vice 
versa. Nevertheless, and this observation might relate to the predominance of the 
grounded theory literature, coding according to  emergent  categories seemed to be a 

  Figure 11.2.    Development of the distribution of methods (2005–2010), in percentages.       
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very common pattern in much of the research reported. Apparently, there is not 
much coherence in the  fi eld in terms of a mutual enhancement or synergy of research 
methods and techniques.  

   Dynamical development of methodologies, research methods and techniques.  
 The development of methodologies, research methods and research techniques can be 
linked to the interconnected nature of theory, research questions, research methods and 
research  fi ndings. This development can be triggered by conceptual advances, as can 
be witnessed in research on the professional knowledge of mathematics teachers (cf., 
Baumert et al.,  2010 ; Fennema & Franke,  1992 ; Neubrand, Seago, Agudelo-Valderrama, 
DeBlois, & Leikin,  2009  ) . It can also be generated by shifts in the perception of 
favourable settings for learning re fl ected in mathematics teachers’ professional 
development as collaborative learning (cf., Arbaugh,  2003 ; Gellert,  2003 ; Krainer, 
 2003  ) . This could partly account for the apparent increased interest in grounded theory 
or  emergent  methods, re fl ected in the studies reviewed which employ inductive 
approaches to interpret or evaluate such learning contexts and experiences. 

 Sometimes methods and methodologies develop because of a re fl ection on the 
methods and methodologies themselves. Such a development is particularly relevant 
here. As a case, we consider the developments of methodology and method used in 
the  fi eld of mathematics teachers’ espoused and attributed beliefs. Speer  (  2005  )  
examined the distinction that is often made—within cognitive frameworks 
(Frykholm,  1999 ; Thompson,  1992 ; Vacc & Bright,  1999  ) —between what mathe-
matics teachers state and what is re fl ected in their practice:

  I assert that in some cases, reported discrepancies between professed and attributed beliefs 
may in fact be the result of methodological artifacts and not an accurate re fl ection of the 
phenomena researchers seek to understand. In particular, reported inconsistencies may be 
the result of a lack of  shared understanding  among the researchers and teachers about what 
descriptive terms mean. (Speer,  2005 , p. 362)   

 Speer’s critique of the distinction of professed and attributed beliefs was stimu-
lated by researchers who investigated mathematics teachers’ beliefs from non-
cognitive frameworks—like, for instance, from interactionist frameworks (Skott, 
 2001  )  and discursive (psychology) frameworks (Barwell,  2003 ; Gellert,  2001  ) . 
However, her critique focussed on the methods used in research on mathematics 
teachers’ beliefs and the respective methodologies. She argued that “research 
designs should incorporate opportunities to assess and generate shared understand-
ing in studies of beliefs and practice” and that data on beliefs should be “obtained 
in conjunction with data on the practices that one seeks to understand” (p. 370). 
For Speer  (  2005  ) , one research technique that closely relates data on beliefs and 
practices is the video-stimulated interview:

  By using videoclips of teachers’ classes in interviews, it is possible to obtain information 
beyond what is possible in traditional, de-contextualized interviews or in a combination of 
interviews and observation. (p. 377)   

 Video-stimulated interviews have the potential to facilitate a shared understanding 
of beliefs and practices among teachers and researchers. The notion of shared under-
standing raises questions about the very dichotomy of professed versus attributed 



33711 Research Methods in Mathematics Teacher Education

beliefs. As Speer concluded, the premise that beliefs can be regarded as “pure” 
representations of teachers’ cognition can no longer be taken for granted. Researchers 
are principally involved in the construction of data, and not the collection of data 
(Gellert,  2009  ) , and the selected research techniques have an impact on the charac-
teristics of the data.  

   Challenging conventional standards of research methods.   What counts as 
legitimate methodologies, research methods and techniques seems to be, at the 
present moment, in a particularly dynamic development. Some researchers are 
deliberately going beyond mainstream interpretations of how a research process 
ideally is to be conducted. This dynamic development is most visible in a set of 
papers published as a special issue of JMTE (2010,  13 (5–6)) titled  Observing the 
Process of Mathematics Teacher Change . We illustrate this shifting of research 
guidelines by referring to two articles published in the JMTE special issue. 

 One of the traditional and common central tenets of research is that it starts with 
one or more research questions. Research is intentional and follows a certain logic 
of development—at least in its presentation in journal articles, volumes or lectures. 
It is not dependent on chance, coincidence or accident. It identi fi es a research goal 
and elaborates precise research questions to be pursued in the course of the research 
process. A different position has been outlined by Liljedahl  (  2010  ) :

  Working as both a mathematics inservice educator and a researcher interested in the contextual 
and situational dynamics of the inservice setting, I  fi nd myself too embroiled in the profes-
sional development activities to adopt the removed stance of observer. At the same time, my 
speci fi c role as facilitator prevents me from adopting a stance of participant observer. As 
such, I have chosen to adopt a stance of  noticing  (Mason,  2002  ) . … This stance allows me 
to engage in these experiences as a researcher without the requirement of an a priori research 
question. (p. 412)   

 This pragmatic approach took the involvement of the researcher-as-facilitator in 
the process of mathematics teachers’ professional development into account. 
Liljedahl would certainly not be the  fi rst and only person who did not start a research 
study with a clearly de fi ned research question. By accepting the article for publication, 
JMTE supported this perspective as legitimate. 

 Along a similar line of argument, Boylan  (  2010  )  promoted an “actor-network 
theory” (Law,  2004  )  that described “the creation of reality that occurs through the 
process of examination” (Boylan,  2010 , p. 385). In his article, he included

  an account of the ways in which the material presented in this article was gathered and 
produced when describing the professional development project itself. My aim here is  to 
blur the boundaries  between the teacher education and research aspects of this project. This 
re fl ects  fl uidity in my roles as project co-ordinator acting as a supporter of teacher change 
and researcher, who is in part a narrator (that is a constructor of narratives) of teacher 
change. (Boylan,  2010 , p. 385, emphasis added)   

 Boylan’s  (  2010  )  article was also accepted for publication by JMTE. This accep-
tance seems to have legitimized the position of the researcher-as-facilitator and the 
facilitator-as-researcher. It acknowledges that those who enable mathematics teachers’ 
professional development might also be those who are able to produce signi fi cant 
accounts of these processes.    
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   Examples of Techniques: Extending the Survey 

 In this section we extend the depth of our survey of techniques by highlighting 
examples of how and for what purpose they were used in the studies on mathematics 
teacher education in the three journals we surveyed. Although the examples of tech-
niques were drawn from all categories of studies that were directly associated with 
teacher education in these journals, the intent is not to provide a complete picture 
but a sample of the landscape of techniques. We provide examples other than inter-
views to illustrate the scope and nature of techniques for the period 2005–2010. 
Despite the fact that interviews formed the dominant category of techniques in the 
qualitative and mixed method studies, the focus here is on highlighting trends with 
respect to other categories of techniques which were used by researchers. Five 
categories are presented with examples that re fl ect different research goals and dif-
ferent ways that a technique was used to show the diversity of techniques within and 
across categories. 

   Techniques Involving Narratives/Stories 

 Narratives or stories play an important role in some studies as in the following 
examples: Lloyd  (  2006  )  used narratives to gain insight into preservice secondary 
teachers’ emerging identities as mathematics teachers. The   fi ctional  narratives of 
mathematics classrooms written by the participants were the key source of data. 
The primary analysis of data involved examining the participants’ stories and anti-
stories, both structurally and thematically, through narrative analysis. The initial 
analysis of the stories involved using the structural elements of orientation, compli-
cating action, evaluation, and resolution to focus on  how  the preservice teachers 
represented and interpreted classroom issues and events. Following structural anal-
yses, particular attention was devoted to the  meanings  of the complicating actions 
and resolutions in the content of the stories. 

 Drake  (  2006  )  used teachers’ narrative descriptions of themselves as learners and 
teachers of mathematics to understand teachers’ interpretations and implementa-
tions of a reform-oriented mathematics curriculum. The focus was on turning-point 
stories that captured teachers’ mathematics life stories at a particular point in time. 
Each of the teachers participated in a mathematics story interview based on an 
established life-story interview protocol that prompted them to recall all of their 
previous experiences of both learning and teaching mathematics and to think of 
these experiences as a story. Analysis involved using a coding scheme for life-story 
interviews that focussed on “tone and speci fi city.” 

 Harkness, D’Ambrosio, and Morrone  (  2007  )  used preservice elementary school 
teachers’ mathematical autobiographies to examine why the elementary school 
teachers were highly motivated in a social constructivist  Problem Solving  mathe-
matics course in which mastery goals were emphasized. The data included partici-
pants’ beginning-of-the-year mathematical autobiographies and end-of-semester 
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re fl ections. Analysis of the autobiographies included separating them into three 
categories—liked, disliked, or had mixed feelings about mathematics—based on 
students’ descriptions of their mathematical experiences prior to the course. 

 Kaasila  (  2007  )  considered the use of narrative and rhetorical inquiry as research 
methods when constructing a mathematical biography of an elementary preservice 
teacher. A story was created that described how the teacher constructed her mathe-
matical identity. Kaasila used two complementary approaches in choosing the epi-
sodes comprising biography:  emplotment  and  linguistic features . Emplotment 
related events to one another by con fi guring them as contributors to the advance-
ment of a plot. When searching for turning points and key episodes in a participant’s 
story, Kaasila used linguistic features in the data. 

 Chapman and Heater  (  2010  )  focussed on understanding teacher change through 
a high school mathematics teacher’s journey to inquiry-based teaching. Their data 
included stories that the participant was prompted to tell during interviews and 
chose to write based on what she considered to be signi fi cant episodes that described 
speci fi c events or situations at different stages of her journey of change. The stories 
also included detailed descriptions of examples of her inquiry-based lessons. In the 
analyses of her stories, particular attention was paid to elements of their structures—
their orientation, complicating actions, evaluation, and resolution. The contents of 
the stories were also scrutinized to identify other issues or situations that appeared 
to be signi fi cant in relation to the nature of, and in fl uences on, change. 

 Interest in narrative has grown within the  fi eld of education over the past two 
decades, mostly because it “represents a way of knowing and thinking that is par-
ticularly suited to explicating the issues with which we deal” (Carter,  1993 , p. 6). As 
Clandinin and Connelly  (  2000  )  explained, teachers’ knowledge is not something 
 fi xed and static to be replaced by something else but rather it is something lifelike, 
something storied, something that  fl ows forward in ever changing shapes. The sam-
ple of studies above offers examples of ways in which the use of narratives or stories 
is beginning to emerge in research on mathematics teacher education. 

 In most examples, however, stories were used mainly as a conveyer of teachers’ 
knowledge and experiences and not as a narrative research methodology (which was 
what was proposed by Clandinin and Connelly,  2000  ) . These studies used data anal-
ysis techniques that were more closely related to those of conventional qualitative 
methods based on text analysis, developing themes in which  fi ndings were situated 
within larger meanings. On the other hand, as noted by Creswell  (  2008  ) , narrative 
researchers analyze a participant’s stories by retelling or “restorying” them into a 
framework that makes sense (e.g., a chronology, or plot). This often involves the 
researcher rewriting a participant’s stories to place them within a chronological 
sequence and/or a plot that incorporates a main character who experiences a con fl ict 
or struggle which comes to some sort of resolution. Kaasila’s  (  2007  )  study, for 
example, re fl ected elements of this. So, although there seems to have been a grow-
ing acceptance of the use of narrative, its use as a research methodology will require 
still more consideration by researchers of mathematics teacher education and still 
more acceptance by the journals surveyed. The same applies to biographical methods 
(e.g., Smith,  1994  )  that embody narrative.  
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   Techniques Involving Videos 

 Like audio taping, videos have been used as a tool for constructing data. For 
example, classroom observations are accompanied with video recordings of the les-
sons which are either transcribed or analyzed directly in a similar way as transcripts. 
In the following examples, the focus is not on this use of videos. Instead, videos are 
used as a basis of engaging the participants as an integral aspect of the research 
design and provide the data for the studies. 

 Morris  (  2006  )  investigated preservice teachers’ abilities to collect evidence about 
students’ learning in order to analyze the effects of instruction and to use the analy-
sis to revise the instruction. Participants analyzed the effects of a videotaped math-
ematics lesson on student learning. They were randomly assigned to one of two 
conditions: (a) the “children’s learning condition” in which they had the freedom to 
decide whether the lesson was successful, and to decide which instructional activi-
ties worked well and which did not; and (b) “sources of the problems condition” in 
which the task instructions indicated that the lesson was not successful. The data 
were coded using established categories to determine the number of participants 
who gave each type of response, and to score each participant’s lesson revisions. 

 Santagata, Zannoni, and Stigler  (  2007  )  investigated what preservice teachers can 
learn from the analysis of videotaped lessons and how their analysis ability and its 
improvement can be measured. Each participant worked individually on a com-
puter, watched videotaped mathematics lessons, and completed analysis tasks. For 
the pre- and post-tests, participants watched the videotape of an Italian eighth-grade 
mathematics lesson, on the area of the sector of a circle, projected on a big screen. 
A scoring grid was developed to evaluate their lesson analyses. Five dimensions 
were coded: elaboration; links to evidence; mathematics content; student learning; 
and critical approach. 

 Stockero  (  2008  )  investigated how the use of a video-case curriculum affected the 
re fl ective stance of prospective middle school teachers and the extent to which a 
re fl ective stance developed while re fl ecting on other teachers’ practice transferred 
to re fl ecting on one’s own practice. Data sources included videotapes of course ses-
sions and participants’ written work based on the video-cases. The portions of these 
videotapes consisting of whole-class discussions focussed on analyzing and inter-
preting student thinking and pedagogical issues based on the video cases were tran-
scribed, coded, and statistically analyzed to understand changes in the participants’ 
group re fl ections during the course. Four main coding categories were used: agent, 
topic, grounding, and level. 

 Star and Strickland  (  2008  )  investigated the impact of video viewing as a means 
for improving preservice teachers’ observations of classroom practice. They utilized 
a pre- and post-test design to measure the quantity and type of classroom events that 
participants noticed before and after a methods course where improving observation 
skills was an explicit goal. In the pre-test, participants watched a video of one entire 
class period of an eighth grade mathematics class. At the conclusion of the video, 
they were given 60 minutes to work individually on the pre-assessment, which con-
sisted of questions which were concerned with what they noticed about the class. 
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The procedure for the post-assessment at the end of the semester was identical to 
that at the pre-assessment. A scoring rubric was used to grade the assessments. 

 Llinares and Valls  (  2010  )  investigated how participation and rei fi cation of ideas 
about mathematics teaching were constituted in online discussions when prospec-
tive primary mathematics teachers analyzed video-cases about mathematics teach-
ing. Data consisted of the participants’ contributions to the virtual social spaces of 
interaction in which they had to draw on the video-clips to support and provide 
evidence for their ideas. Data analysis focussed on how participants provided evi-
dence for their claims, generated alternatives to their peer’s decisions or questioned 
their assumptions. 

 In these studies, videos were used as intervention tools with some form of pre- 
and/or post-“test” research design. Statistical analysis featured in most of the stud-
ies as a result of this design. However, videos could be used in different ways—for 
example, in video-stimulated interviews, or as a means of representing the  fi ndings 
in narrative or phenomenological studies. iMovies could also be used in similar 
ways as videos to support and study preservice teachers’ development of knowledge 
of mathematics for teaching and mathematics pedagogy (Li & Chapman,  2010  ) . 
Clearly, there is room for both to be further explored as research techniques.  

   Techniques Involving Concept Maps 

 Concept maps were used by some researchers to engage teachers and generate 
data for the studies. Chinnappan and Lawson  (  2005  )  used concept maps to investi-
gate a framework for describing and analyzing the quality of teachers’ content 
knowledge for teaching in one content area—such as squares, within the domain of 
geometry. They adopted a simple form of representation for the node-link structure 
for the maps, assuming that they could be used to identify teachers’ knowledge of 
geometry and knowledge of geometry for teaching. In analyzing the maps, the 
researchers proposed that the connectedness of knowledge could be described both 
in terms of the number of knowledge components present, and in terms of the quali-
tative relations that existed among the knowledge components. The measures to 
analyze the concept maps consisted of quantity in terms of number of nodes and 
links and quality in terms of integrity (completeness and accuracy) and connected-
ness (depth, branching, cross-linking, and complexity of relationships). These 
formed the basis of scoring and statistical analysis. 

 Concept maps were also used by Hough, O’Rode, Terman, and Weissglass 
 (  2007  ) , who explored teachers’ growth in the understanding of algebra. They col-
lected pre-course concept map data on the  fi rst day of the 10-day course on algebra 
in order to gauge participants’ initial understanding of algebra. After being intro-
duced to the concept map activity, the teachers were given 12 minutes to draw and 
complete a concept map about algebra. Towards the end of the course, without refer-
ring to their initial map, participants drew a second concept map about algebra in the 
allotted time of 12 minutes in order to capture their post-course understandings of 
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algebra. Data analysis consisted of a structural/numerical analysis and a content 
analysis. For example, they used the notion that the number of concepts on a map 
can be thought of as assessing the breadth of a participant’s mathematical under-
standing of algebraic concepts. 

 Given the focus on promoting conceptual understanding in mathematics educa-
tion, it might be expected that the use of the concept map as a data-generating 
research tool would be common in studies on teacher education. But this does not 
appear to be the case, based on the period and journals surveyed. The two examples 
show how they can be used, with accompanying statistical analyses, to evaluate 
teachers’ understanding. But their potential for unpacking teachers’ sense-making 
could have been exploited in other ways.  

   Techniques Involving Tests and Tasks 

 Tests and mathematical tasks played a key role in some of the studies involving 
teachers’ mathematics content knowledge. Osana, Lacroix, Tucker, and Desrosiers 
 (  2006  )  examined the nature of preservice teachers’ evaluations of elementary math-
ematics problems using a model designed to discriminate among tasks according to 
their cognitive complexity. For the task classi fi cation, 32 mathematical problems 
containing eight cards at each of four cognitive demand levels (memorization, pro-
cedures without connections, procedures with connections, and doing mathematics) 
were created. The participants’ mathematics knowledge was measured using the 
TerraNova (a 40-minute, 25-item, multiple-choice standardized instrument which 
gives measures of basic mathematical skill) and a 20-minute “doing mathematics” 
test that contained two open-ended items created by the research team. Scoring of 
the card-sorting task was based on the number of correctly sorted problems and the 
average distance from the agreed answer. For content knowledge, the participants’ 
responses on the TerraNova standardized were scored for correct answers. For the 
open problems a rubric was created and used. 

 Leavy and O’Loughlin  (  2006  )  investigated how preservice teachers understood 
important elementary statistical concepts related to the mean. The primary data col-
lection instrument consisted of  fi ve mathematical tasks. Individual tasks indexed dif-
ferent aspects of the mean and required conceptual understanding of the mean in order 
to arrive at accurate solutions. The participants engaged in a written think-aloud 
protocol when completing the tasks. Data were analyzed from several perspectives: 
accuracy of solution, solution strategy employed, and evidence of conceptual under-
standing. A number of codes were pre-established based on a pilot study. 

 Davis  (  2009  )  examined the in fl uence of reading and planning from two differ-
ently organized mathematics textbooks on prospective high school mathematics 
teachers’ content knowledge and pedagogical content knowledge of exponential 
functions. The participants completed three paper-and-pencil tests (pre-test,  fi rst 
post-test, second post-test) that were designed by examining the content knowledge 
and pedagogical content knowledge present in both textbooks. Test items measuring 
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content knowledge were marked as correct or incorrect, with no partial credit being 
given. Questions concerning pedagogical content knowledge were analyzed for 
validity, with the number of different valid components being recorded. 

 Son and Crespo  (  2009  )  examined, through a teaching-scenario task, the reason-
ing and responses of prospective elementary and secondary teachers to a student’s 
non-traditional strategy for dividing fractions. The main task used in this study pre-
sented a student’s non-traditional strategy within a teaching-scenario task so as to 
simulate how mathematical work arises in the context of teaching. Prior to complet-
ing this main task, prospective teachers were asked to fi nd the value of 2/9 ÷ 1/3 and 
to create a story problem for this fraction division. The main task consisted of two 
prompts in the form of questions that, altogether, took about 30 minutes to com-
plete. Analyses of responses to the  fi rst prompt focussed on examining the range of 
the participants’ responses in terms of what these revealed about their ways of rea-
soning and whether they could be categorized as student- or teacher-focussed. The 
second part was analyzed for the in fl uencing factors that participants identi fi ed. 

 Thanheiser  (  2010  )  investigated preservice elementary school teachers’ responses 
to standard written place-value operation tasks concerned with addition or subtrac-
tion. The tasks consisted of four questions and required explanation of the regrouped 
digits in the addition algorithm and comparing the value of the regrouped digits in 
addition and subtraction. The participants completed the tasks during class time at the 
beginning of a methods course, before any discussion of place value or algorithms had 
occurred in the course. To analyze responses to the addition task, the researcher exam-
ined which values the participants assigned to the regrouped units, noting whether 
they considered the location of the regrouped digit, its source, or both. Those partici-
pants who correctly interpreted all digits in terms of their values on the survey were 
subsequently categorized as holding one of the correct conceptions. 

 In the above-mentioned examples, researchers used both standardized measures 
and researcher-created measures, with the latter dominating. The use of tests and 
tasks would seem to be natural choices for studying teachers’ mathematics knowl-
edge. However, with the current focus on mathematics knowledge for teaching, 
exploring other appropriate techniques is important.  

   Techniques Involving Questionnaires/Surveys 

 In some studies, and especially those framed in a quantitative or mixed methods 
perspectives, the use of questionnaires was central. Wilkins’  (  2008  )  study included 
a quantitative investigation of inservice elementary teachers’ level of mathematical 
content knowledge using a 44-item mathematics content survey. Items on the survey 
were selected from the  Third International Mathematics and Science Study , the 
 Longitudinal Study of American Youth , the  Second International Mathematics 
Study , and some developed by the author. Jones-Newton  (  2009  )  investigated pro-
spective elementary school teachers’ motivations for working with fractions before 
and after taking a course designed to deepen their understanding of mathematics, as 
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well as what instructional practices might be related to any changes detected in their 
motivations. The motivation questionnaire included 14 items adapted from prior 
research, which suggested three separate scales for these items: anxiety (four items); 
value (four items); and self-concept of ability (six items). The domain-speci fi c 
questionnaire was adapted to be topic-speci fi c by replacing the word mathematics 
with fractions. A pre-test, post-test design was used. 

 Swars, Smith, Smith, and Hart  (  2009  )  conducted a longitudinal study that exam-
ined prospective teachers’ initial pedagogical beliefs, teaching ef fi cacy beliefs, and 
anxiety; changes in these constructs across two academic years in a teacher- 
preparation program; and the relationships between participants’ beliefs and knowl-
edge for teaching elementary mathematics at the end of the program. Four instruments 
were used to gather quantitative data: The  Mathematics Beliefs Instrument  and 
the  Mathematics Teaching Ef fi cacy Beliefs Instrument  were administered four 
times; the  Mathematics Anxiety Rating Scale  was administered three times; and the 
 Learning Mathematics for Teaching Instrument  was administered once, at the end 
of student teaching. 

 Levenson, Tsamir, and Tirosh  (  2010  )  investigated elementary school teachers’ 
preferences for mathematically based (MB) and practically based (PB) explana-
tions. Using the context of even and odd numbers, they explored the types of expla-
nations teachers generated on their own, the types of explanations they preferred 
after reviewing various explanations, and the basis for these preferences. The teach-
ers  fi lled out questionnaires based on the property of parity. The questionnaire con-
sisted of two parts: teacher-generated explanations and teachers’ choices of preferred 
explanations. Teachers’ explanations given in the  fi rst part of the questionnaires 
were categorized into MB explanations, PB explanations, and “other explanations.” 
Quantitative data were analyzed using descriptive statistical processes. 

 Bekdemir  (  2010  )  examined whether the worst experiences and most trouble-
some mathematics classroom experiences affected mathematics anxiety in preser-
vice elementary teachers, and how the causes of their anxiety related to these 
negative experiences. Three different instruments were used to collect data: 
 Mathematics Anxiety Rating Scale ,  Worst Experience and Most Troublesome 
Mathematics Classroom Experience Re fl ection Test , and  Interview Protocol . 

 The above studies suggested that conventional quantitative techniques still hold 
a visible presence in teacher education in spite of the dominance of qualitative stud-
ies. However, although they use techniques that can be applied to large-scale stud-
ies, the general pattern was still to have relatively small sample sizes.   

   What Surveys Often Miss: An Example 
from the Politicized Periphery 

 There is a concern about an “apparent mismatch between the amount of research 
in mathematics education undertaken and the limited amount that  fi lters down into 
teachers’ classroom practice” (Cockburn,  2008 , p. 344). Cockburn identi fi ed several 
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obstacles for teachers who like to engage with research in mathematics education—
such as the fragmented character of research results, and the inaccessibility of 
research journals. As a way of distributing research results to teachers, Cockburn 
mentioned inservice courses in which teachers could become in fl uenced by research. 
She argued that those courses “that require teachers to undertake personalized proj-
ects which encourage them to re fl ect on, and criticize, their classroom practice in 
the light of others’ research” (p. 345) are particularly suitable for getting teachers in 
contact with the results of latest research. However, Liljedahl (in Brown & Coles, 
 2010  )  reminded us that a change of research perspectives to become more respon-
sive to the needs of teachers might be needed. When the structures of professional 
development programs do not balance the programs’ objectives with the teachers’ 
experience and personal learning plans, helpful professional development is unlikely 
to occur. 

 From this perspective, it might only be a short step towards professional develop-
ment programs that are initiated and organized by the teachers themselves—though 
supported by researchers or teacher educators. The main aim of what has been 
called “action research” is not a simple acquisition of research results by teachers, 
but investigations by teachers into their own practices, or into the conditions of their 
pedagogical work. It is presumed that in carrying out these investigations the teach-
ers are aware of, and guided by, state-of-the-art research  fi ndings related to the 
themes being investigated. 

 That action research is indeed possible in education is, of course, not a new 
insight. According to Erickson  (  1986  ) , the inherent logic of the widely accepted 
interpretive paradigm in research on teaching

  leads to collaboration between the teacher and the researcher. The research subject joins 
in the enterprise of study, potentially as a full partner. In some of the most recent work 
(e.g., Florio & Walsh,  1981  )  the classroom teacher’s own research questions—about par-
ticular children, about the organization of particular activities—become the focus of the 
study. (p. 157)   

 Erickson continued:

  It is but a few steps beyond this for the classroom teacher to become the researcher in his or 
her own right. As Hymes  (  1981  )  notes, interpretive research methods are intrinsically dem-
ocratic; one does not need special training to be able to understand the results of such 
research, nor does one need arcane skills in order to conduct it. Fieldwork research requires 
skills of observation, comparison, contrast, and re fl ection that all humans possess. In order 
to get through life we must all do interpretive  fi eldwork. What professional interpretive 
researchers do is to make use of the ordinary skills of observation and re fl ection in espe-
cially systematic and deliberate ways. Classroom teachers can do this as well, by re fl ecting 
on their own practice. (p. 157)   

 According to Erickson  (  1986  ) ,  fi eldwork as a research method has the potential 
to help “researchers and  teachers  to  make the familiar strange  and interesting again 
…. The commonplace becomes problematic” (p. 121; original emphasis retained). 
It is a response to the “need for speci fi c understanding through documentation of 
concrete details of practice” (p. 121). And it considers “the local meanings that hap-
penings have for the people involved in them” (p. 121). Fieldwork is concerned with 
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“the need for comparative understanding of different social settings” (p. 122), and a 
comparative understanding that goes “beyond the immediate circumstances of the 
local setting” (p. 122). 

 Action research has a rather long tradition in mathematics education and beyond 
(e.g., Altrichter, Feldman, Posch, & Somekh,  2008 ; Breen,  2003 ; Krainer,  1999 ; 
Zack, Mousley, & Breen,  1997 ; Zeichner,  2001  ) . Two conceptualizations of action 
research seem to dominate: on the one hand, many professional development pro-
grams for mathematics teachers include forms of action research. In those programs, 
action research is mainly directed at the personal knowledge growth of mathematics 
teachers. The role of the teacher educator, who supports the teachers’ introspec-
tions, can vary from a distant facilitator to a co-researcher who, with different exper-
tise and different aims, participates as a full member of the teachers’ action research 
group. Research results have suggested that such a form of action research produces 
results generated  through  rather than  about  professional development, but of course 
these  results-through  might generalize to  results-about —a process that is not 
directly possible the other way around. However, as Kilpatrick  (  2000  )  noted, 
“teacher research has not had much impact on the larger community” (p. 87). On the 
other hand, researchers look for a deeper ecological validity by doing research  with  
as well as  on  research participants (e.g., Planas & Civil,  2009 ; Scherer & Steinbring, 
 2006 ; Setati,  2000 ; Uworwabayeho,  2009  ) . 

 A third conceptualization of action research, which has not received much atten-
tion in the area of mathematics education during the last several decades, focusses 
on and emphasizes the transformative potential of action research in terms of eman-
cipatory educational, cultural and political processes. Under this perspective, the 
transformative moment of action research is not only directed at the personal devel-
opment of the research participants or at qualities of new insights, but also at a 
macro-social liberation from oppressive societal forces and their local and global 
manifestations (Noffke,  2009  ) . This kind of action research has been especially 
common in regions of the world facing structures of colonization or neo-coloniza-
tion. Fals Borda  (  2001  )  cited efforts made in India (De Silva, Wignaraja, Mehta, & 
Rahman,  1979  ) , Colombia (Fals Borda,  1986  ) , Tanzania (Swantz,  1970  ) , Brazil 
(Freire,  1970  )  and Mexico (Warman, Nolasco, Bon fi l, Olivera, & Valencia,  1970  )  as 
evidence for the acceptance of the conception of  participatory  action research in 
nations that had previously been colonies. 

 Greenwood and Levin  (  2007  )  maintained that emancipatory action research 
projects were most likely to have occurred, and to have been successful, in “miser-
ably poor” parts of the world (p. 154)—regions in parts of Africa, Latin America 
and Asia which had been most strongly affected by colonization. Emancipatory 
participatory action research, developed in the frame of post-colonial theories 
(e.g., Dussel,  1995,   2011 ; Spivak,  1990,   2011  ) , is committed to af fi rming “solidarity 
with the oppressed,” to working towards a “fundamental alteration in the distribu-
tion of power and money” (Greenwood & Levin,  2007 , p. 154) and to problematiz-
ing “uncontested ‘colonial’ hegemonies of any form” (Parsons & Harding,  2011 , 
p. 2). Kanu  (  1997  )  speci fi cally referred to its appropriateness for the “prevalent 
appalling conditions of teaching and teacher education” in impoverished nations. 
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In short, the aim was to “de-colonize” the future (Parsons & Harding,  2011 , p. 4). 
In this kind of action research, participation is regarded as an active engagement in 
a process that works towards the achievement of social justice, rather than a mere 
share in the research process. 

 In this section, we will elaborate a methodology of participatory action research 
of mathematics teacher education. We will suggest that participatory action research 
is crucially important when profound social and political changes are needed and is 
a particularly promising methodology for scrutinizing the social and political power 
structures that frame teaching practice. 

 Needless to say, reports of participatory action research that feature explicitly 
political positioning do not often appear as publications in high-prestige scienti fi c 
journals. Our decision to emphasize participatory action research as a research 
methodology within this  Handbook  chapter is based on an important result of our 
survey of publications on teacher education and professional development in inter-
national journals. With some few exceptions, these journals seem to affect a stan-
dardizing of research reports and a narrowing of the scope of research methodologies 
reported for, and accepted in, the mathematics teacher educators’ scienti fi c com-
munity. Burton  (  2002  )  commented in the following terms:

  How knowledge is constructed is a function of values and, indeed, is also about the com-
munity that can de fi ne those values and establish the gatekeeping criteria for maintaining 
them. Inevitably, therefore, I see epistemology as interlocked with methodology. (p. 6)   

 In this chapter, participatory action research is regarded as a methodology in 
research on teacher education and professional development that responds to the 
particularities of “situations of social and political con fl ict” and transformation 
(Vithal & Valero,  2003  ) . As an example, we focus on a Latin American context in 
which decolonization and transition were part and parcel of the of fi cial rhetoric and 
agenda, although not always part of the educational reality. 

   Development of Participatory Action Research in Latin America 

 Participatory action research has been developed in Latin America as a critical 
and transformative conception. The terminology was introduced by Marja-Lissa 
Swantz in  1970  and achieved recognition at the  World Symposium on Action 
Research and Scienti fi c Analysis  in Cartagena, Colombia, in 1977. This event exam-
ined the issue of participation, noting that a central point had to do with the need to 
break the classic pairing of research subject and object. It is assumed that those set-
ting the research problem, those who analyze and solve problems, are actors who 
are involved, called base groups, which are grouped for the “action” of researching 
any fact or issue that affects them, looking for its transformation. 

 Among the notable educators-researchers and advocates of this new focus was 
Orlando Fals Borda, who put forward a radical perception about research coupled 
with political commitment in his  Militant Sociology  (1986, 1995, 2003), a work in 
which he presented science as being committed to the so-called popular sectors. 
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Similarly, the in fl uential work and writings of Paulo Freire  (  1970,   1990  ) , Luis Bigott 
 (  1992  )  and by Ezequiel Ander-Egg  (  2003  )  were important in conceptualizing 
participatory action research to the point where it offered a strong theoretical base. 
Fals Borda  (  1986,   1995,   2003  ) , who emphasized the necessity of social transforma-
tions, de fi ned participatory action research as a social praxis that enabled problems 
of exploitation, dependence and issues associated with retention of power among 
the privileged few to be identi fi ed and challenged. 

 However, research in mathematics education in Latin America has long been 
dominated by a positivist paradigm and a psychological orientation (Messina,  1999  ) . 
Gómez and Valero  (  2004  ) , re fl ecting on ICME10 and the  28th Conference of the 
International Group for the Psychology of Mathematic Education  (PME 28) held in 
2004, spoke of a shift in attention from the learning of mathematics to its teaching, 
and added that this shift was manifest in research in mathematics education in Latin 
America. According to Gómez and Valero, the knowledge and the beliefs of math-
ematics teachers, including their initial and inservice training, had become impor-
tant foci for research. In their analysis of the research presented at ICME 10 and 
PME 28, Gómez and Valero  (  2004  )  noted increased interest in studying the social 
aspects that affect mathematics and its teaching and learning: “Topics of democ-
racy, equality, diversity or gender appear more and more frequently in the research 
literature” (p. 3). 

 According to Gómez and Valero  (  2004  ) , in modern mathematics education research 
“most studies use qualitative methods and tend to worry about the detailed description 
and interpretation of speci fi c phenomena” (p. 3). In short, it seems as if research in 
mathematics education has evolved as much in its sphere of interest as in its meth-
odologies. Different international forums have revealed the need to pay attention to 
the diverse social aspects that strongly in fl uence the teaching of mathematics and 
the impact that these aspects have on the possibility of giving access for a growing 
number of students to socially valued forms of mathematical knowledge. 

 Action research in mathematics education in Latin America has been steadily 
gaining ground and importance. That has been documented by the annual meetings 
of the Colombian Association of Mathematics Education (ASOCOLME), at which 
numerous papers have been presented for which action research has been a funda-
mental methodological guide. In the Research and Advanced Studies Center of the 
National Polytechnic Institute of Mexico (CINVESTAV) a combination of four 
methods has predominantly been used: action research, didactic engineering, devel-
opmental psychology, and socio-epistemology (Cantoral,  2000  ) . The 12th 
Interamerican Conference of Mathematics Education (IACME XII) held in 2007 in 
Mexico, the 6th Ibero-American Conference on Mathematics Education (CIBEM 
VI) held in Chile in 2009, and the Latin American Meeting of Mathematics 
Education (RELME), have all shown how action research can be used as a method-
ology that opens new sources of inquiry for mathematics education, in which his-
torical, social, cultural and political issues are brought together to enable the process 
of teaching and learning of mathematics to be seen as a signi fi cant undertaking of 
humans (Rojas Olaya,  2011  ) . 



34911 Research Methods in Mathematics Teacher Education

 In Venezuela, the Group for Research and Dissemination of Mathematics 
Education (GIDEM) was established in 1999 and, since its creation, the socio-
political role of mathematics education has been at the forefront of Group consid-
erations, with any supposed neutrality of mathematics being rejected. The work of 
GIDEM is grounded in a critical conception of mathematics and mathematics edu-
cation and in a methodology of participatory action research. The critical stance is 
based on the sociological tenet that the serious con fl icts existent in (not only) Latin 
American societies are essentially class con fl icts. As Skovsmose  (  1994  )  stated, 
“even after the belief in a Marxist de fi nition of classes has lost supporters” (p. 12), 
con fl icts continue to be the result of inequalities of opportunity, differential access 
to information, and worse, manipulation of information in order to handle large 
masses of people. Under such circumstances, Habermas’  (  1984 –1987) objective 
that the force of the better argument should determine any dispute, cannot be 
reached. As a consequence, for the democratization of society it is important that 
citizens acquire the capacity to analyze and judge the results and consequences of 
social and political developments, in short, to develop “democratic competence” 
(Skovsmose,  1994 , p. 34). The development of critical citizens is linked to an edu-
cation for democracy and to John Stuart Mill’s statement that “any education which 
aims at making human beings other than machines, in the long term makes them 
claim to have the control of their own actions” (Mill,  1975 , p. 185; cited in 
Skovsmose,  1994  ) . 

 A conception of mathematics education as a scienti fi c research  fi eld devoid of 
values has helped to perpetuate what Giroux  (  1989  )  called “a policy of silence and 
an ideological amnesia” (p. 19). This silence supports the hiding of the mathemati-
zation of reality, and has transformed the relation between mathematics, technology 
and society, thus resulting in a lack of awareness (Jablonka & Gellert,  2007  ) . As an 
example of the mathematization of our reality, witness the global  fi nancial struc-
tures that are supported by mathematical models, measures and systems. Hence 
trade rules depend on the use of mathematics. Examinations, grades, salaries, fund-
ing and many other subsystems that form our society are highly in fl uenced by, and 
dependent on, mathematics (Davis & Hersh,  1986  ) . Mathematics is shaping our 
society (Keitel, Kotzmann, & Skovsmose,  1993  )  and Skovsmose  (  1994  )  attributed 
to mathematics a formatting power. 

 However, one of the main perils of the mathematization of societies is that not 
all issues receive the same attention. Mathematical models are structuring our 
society, but not equally. Some aspects are highlighted, but others are ignored. 
Thus, models such as the gross domestic product, income tax, value added tax, 
the distribution of social bene fi ts in the population, among other things, become 
the guidelines to design and build our world. To evaluate and scrutinize the sym-
bolic power of mathematics, a critical stance and competence is needed that ques-
tions how mathematical models are designed, and who bene fi ts by their 
application. The methodology of participatory action research in mathematics 
(teacher) education is grounded on a critical conception of mathematics and 
mathematics education.  
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   Implementation and Examples of Participatory Action Research 

 Becerra and Moya  (  2010  )  conceptualized a participatory action research meth-
odology for research in mathematics teacher education that has eight elements:

    1.    The   fi rst  element is the important task of recreating and transforming teaching 
practice.  

    2.    A  second  consideration is a recognition of the conceptional relationship between 
theory and practice, and the attempt to turn it into a single dialogic unit, where 
educational theory is determined by how it relates to practice, and this practice in 
turn adjusts our theoretical references. For Becerra and Moya  (  2008  ) , the alleged 
dichotomy between theory versus practice is a false dilemma (see also, e.g., 
Bazzini,  2007 ; Steinbring,  1994 ; Steiner,  1985  ) .  

    3.    The  third  element is related to knowledge and understanding. It is assumed that 
knowledge is a process that does not end with the completion of an investigation. 
Knowledge is seen as something that is done, in process, in transit, en route 
(Bigott,  1992  ) . Knowledge is conceptualized as a dialectical process.  

    4.    In the  fourth  element,  dialogue  is presented as a fundamental research tool, and 
is understood as more than a simple conversation or a lively exchange of ideas. 
This dialogue involves the confrontation of different views around common 
interests, with the intent to understand, to learn and advance in the quest for truth 
shared with others (Fierro, Fortoul, & Rosas,  1999  ) .  

    5.    The   fi fth  element is the premise that re fl ection and construction are not carried 
out in isolation, as men and women are social, historical beings. The construc-
tion of knowledge makes sense in the frame of its social relevance.  

    6.    The  sixth  element is the relationship between epistemology and methodology, 
which carries with it an insistence on explanations of how insight and under-
standing are constructed (Becerra,  2003,   2005 ; Moya,  2008  ) .  

    7.    A  seventh  element is linked to the inalienable right to participate actively and 
consciously in the construction of a new form of citizenship. To enhance and to 
increase the active participation of others, especially of future mathematics teach-
ers, as part of research and education, including mathematical education, means 
being committed to the full development of women and men as social beings.  

    8.    According to the socio-critical paradigm the  eighth  and  fi nal element is that 
research cannot be regarded as a political neutral activity.     

 These eight elements direct GIDEM’s participatory action research projects. 
In the concrete process of research, these methodological elements translate into 
methods and research techniques. According to Becerra  (  2003,   2010  )  and Lanz 
 (  1994  ) , characteristic steps in participatory action research projects are:

    • The social framing of the topic:  Lanz suggests approaching the participants 
through open discussions, conducting presentations about the critical issues 
affecting the group or the established practice, and encouraging research into 
major problems that they confront.  
   • Delineating the object of study:  The research problem is clari fi ed by outlin-
ing the problematized social action, the social subjects involved in research, 
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both directly and indirectly, and the spatial dimension and the temporal scope 
of it.  
   • Directionality of the investigation : A central characteristic is the de fi nition of the 
envisaged change. From the analysis and re fl ection of the collective social praxis, 
goals and objectives are formulated, and some strategies of articulation are 
established.    

 Following this scheme, a team of researchers at the Pedagogical University 
Experimental Libertador of Venezuela developed a research project based on its teacher 
education program, involving the full participation of students and teachers responsible 
for 1st through 6th grade of primary mathematics education (Becerra,  2003  ) . One of 
the research goals was the construction of a participatory methodology for the geom-
etry course of the teacher education curriculum. Flexible action plans were developed, 
which could be modi fi ed depending on work being done during the course. Participant 
observation and interviews were used as techniques of data collection, with some stu-
dents selected at the beginning of the course as key informants for each speci fi c activ-
ity, and some appointed as participant-observers in each group. 

 One of the in-class strategies used for this research was the development of con-
jectures by students working in small groups. This strategy consisted in the plan-
ning of workshops, which contained a series of exercises and problems in relation 
to mathematical activities. Each group had to submit a report describing what had 
been done in the workshop, including the assumptions made and justi fi cations 
which supported them. Reviewing the work delivered by the end of each workshop, 
the most interesting observation was probably the domain of the justi fi cations. 
The conjectures made in most cases were adequate, even when the teacher students 
might have had dif fi culties in resolving the problem. The results show the transfor-
mation that can occur when students are the protagonists of their learning and 
become aware of their potential. This educative process does not imply leaving the 
students to their own devices; rather, education might mean preparing the ground 
for them to be the protagonists and owners of their own knowledge, with the teacher 
intervening, with clari fi cations, when needed. 

 Silva  (  2010  )  conducted a research project entitled  From the Real to Formal 
Mathematics , which applied participatory action research principles and was 
intended primarily to develop educational projects related to the assessment of dif-
ferent energy sources that enable students to acquire mathematical knowledge 
needed for the third year of secondary education ( Bachillerato ). Silva analyzed les-
sons, written tests and notebooks. Among the study’s conclusions were: (a) the 
issue of the valuation of various energy sources enables participants to develop 
themes for the mathematics program, such as real functions, proportions, systems of 
equations and inequalities, among others; (b) the students used representations of 
mathematical concepts and procedures to interpret the situations under consider-
ation, and to analyze phenomena in order to identify and understand related math-
ematical concepts and applications; and (c) the process of teaching and learning of 
mathematics that was used in the study drew on economic and ecological crises—this 
approach was needed in order to overcome a structure of permanent competition, 
individualism, and evaluation as a form of repression and uncritical thinking 
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(cf., Gellert,  2011 ; Renert,  2011  ) . Instead, the process facilitated the development of 
a new structure featuring teamwork, participation, cooperation, democratic evaluation 
and commitment to studying the world around us. 

 Starting from the premise that mathematics education is a  political  fact, Serrano 
 (  2010  )  studied the potential role of mathematics education in and for Venezuelan 
society. Working with high school students from Caracas, he focussed on the char-
acteristics of mathematical literacy (cf., Jablonka,  2003  )  in the particular context of 
the group of students. He used participatory action research as a methodology that 
epitomized the emancipation of students. Among the key elements of such a math-
ematical literacy were a combination of mathematical skills, meta-mathematics, 
socially and axiologically characterized, and knowledge of problems and crises—
such as population growth—within the students’ community or region. These were 
necessary for transformative action, since without understanding the role of math-
ematics, as well as the mathematics involved, no profound understanding of these 
situations was possible and thus no transformation would be achieved. 

   Final thoughts.   From the perspective of a participatory action research 
methodology, we cannot ignore that we live in a capitalist society, and although we 
do not think that the economic and class dynamics can explain everything that is of 
particular importance to mathematics teacher education research, we should not 
ignore that “their in fl uence means putting aside some of the most insightful analytical 
tools we have” (Apple,  1997 , p. 177). Therefore, it is our responsibility as researchers 
in mathematics teacher education to carry out research with the consciousness of 
being involved in organizations that reproduce unequal class relations in our society. 
Particularly in Latin America, researchers committed to participatory action research 
are working towards making those institutions more democratic and egalitarian, 
close to the evolution of the societies and the problems they confront. In this way, 
the proposal of a participatory action research that is critical and transformative is an 
important task. The characteristics of the research–action–re fl ection–emancipation 
process that we propose cannot be developed in a sudden manner. Changes and 
transformations that emerge will have a deep impact on the various organizations, 
both formal and non-formal, and the extent and forms of this impact will be 
in fl uenced by the extent to which each member of a collective or group assimilates 
them, and the extent to which the rest of the group provides suf fi cient support and 
encouragement for the creation of a more egalitarian and democratic society.    

   Afterword 

 Claims and disputes about the “right scienti fi c method” stand at the philosophi-
cal centre of any knowledge generation. The ground-breaking work of the French 
17th century philosopher René Descartes  (  1637  )  was tellingly titled: “Discourse on 
the Method of Rightly Conducting the Reason, and Seeking Truth in the Sciences.” 
Descartes’ method has been characterized as objective, analytical and systematic. 
It has often been cited as the cornerstone for any kind of objectivist positivist 
enquiry. 
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 Opposition to Descartes’ fundamental work can be found in the writings of 
Giambattista Vico, During his lifetime in the 17th and the 18th century, Vico was 
not really considered in fl uential but in the last decades of the 20th century his ideas 
received much attention. In his inauguratory lecture at the University of Naples, 
Vico maintained that modern research (at that time) paid undue attention to the geo-
metrical method modelled on the discipline of physics, and to abstract philosophical 
criticism. For Vico, such a point of view undermined the importance of exposition, 
persuasion, and pleasure. It benumbed the imagination and stupe fi ed the memory, 
both of which were central to complex reasoning and the discovery of truth. Vico’s 
lecture was also a lecture on method—it was published in  1709  under the title “De 
Nostri Temporis Studiorum Ratione”—“On the Study Methods of Our Time.” 
Disputes over the “right scienti fi c method” have a long tradition, and it is essential 
for any researcher to make the methods used in research explicit. This is one of the 
standards for the production of any kind of research report. 

 Are we still disputing the “right method,” speci fi cally in research on mathemat-
ics teacher education and professional development? This chapter has given two 
different answers. The survey indicates that most published work has referred idio-
syncratically to methods and techniques used and discussed by others. Although the 
works of Glaser, Corbin and Strauss seemed to effect some standardization, the 
research journals (personi fi ed by the editors and peer reviewers) have not insisted 
on a common canon of referenced methodologies, methods or techniques. As long 
as the methodical research procedure is explained, anything seems to go. 

 The other answer is that there seem to be a set of hidden values that regulate—or 
self-regulate—the development of mathematics teacher education as a research 
 fi eld. Although our survey list of the keywords associated with the research reports 
we reviewed contained the terms “critical thinking,” “discourse,” “empowerment,” 
“equity/diversity,” “Foucault,” “ideology,” “neoliberal,” “policy issues,” “social and 
cultural issues,” and “social justice,” concepts that indicate a critical-political per-
spective or a transformative-political perspective were noticeably scarce. We did not 
 fi nd other keywords that could indicate any political perspective, and the keyword 
entries just listed constituted only 1.4% of all keyword entries. Undoubtedly, inter-
national research journals can effect a severe channelling of visible research per-
spectives. Our report on research that has been characterized as participatory action 
research demonstrates that a politicized perspective on mathematics teacher educa-
tion has been developed at the social periphery of the research  fi eld. Apparently the 
dispute for the “right method” continues: Does method aim at value-free description 
or at principled transformation?      
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  Abstract   Teachers are regarded as having a major role in the development of math-
ematics teaching and students’ learning. Nevertheless, in much mathematics educa-
tion research, teachers are viewed as recipients, and sometimes even as means to 
generate or disseminate knowledge, thus conserving a distinctive gap between 
research and practice. The theme of this chapter is to regard teachers as key stake-
holders in research (i.e., as (co-)producers of professional and/or scienti fi c knowledge) 
in order to make the link between research and practice more fruitful for both sides. 
After exploring the concept of stakeholder, the authors present  fi ve international 
examples, all of them involving teachers researching their own or their colleagues’ 
practice. An analysis of the commonalities and differences among these examples 
reveals the presence of three important dimensions of research where teachers are 
key stakeholders: re fl ective, inquiry-based activity with respect to teaching action; 
a signi fi cant action-research component accompanied by the creation of research 
artefacts by the teachers (sometimes assisted by university researchers); and the 
dynamic duality of research and professional development. This chapter illustrates 
how traditional barriers between research and practice are being replaced by syner-
gistic interactions between the two, enabling the intersection of the two worlds.      
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   Introduction: Teachers’ and Researchers’ Diverse Worlds 

 In most cases, the worlds of teachers and researchers differ greatly, even if there 
are also cases where they work together so closely that the traditional roles begin to 
blur. Nevertheless, mathematics education research and mathematics teachers’ 
practices can overlap considerably, as is re fl ected in the case of  students’ mathemat-
ical thinking . Let us start with a concrete example. When middle-school students 
deal with identities like ( a  +  b ) 2  =  a  2  + 2 ab  +  b  2 , a variety of errors or misconceptions 
appear. For instance, many students come up with  a  2  +  b  2  as the result of expanding 
( a  +  b ) 2 . Several researchers have published studies on this phenomenon (see, e.g., 
Davis, Jockusch, & McKnight,  1978 ; Kieran,  2007 ; Kirshner & Awtry,  2004 ; Matz, 
 1982  ) . As well, most teachers are aware of this phenomenon and have developed—
consciously or subconsciously—strategies for dealing with it. They have worked 
out ways to support students’ thinking and re-designed their introduction to the 
topic in order to decrease the likelihood that this error will occur. Some teachers 
might have been in fl uenced by mathematics educators’ research, and a few of them 
might have even collaborated very closely with them. In addition, some teachers are 
highly respected researchers in their own right. However, the picture is even more 
complex than this since there is considerable variety within the worlds of teachers and 
researchers. 

 The variation within the  world of mathematics teachers  can be illustrated by their 
ways of dealing with the identity ( a  +  b ) 2  =  a  2  + 2 ab  +  b  2  in their classroom. For exam-
ple, teacher Anna might show on the blackboard that ( a  +  b )( a  +  b ) just leads to the 
identity; then the identity is written with colors and some similar examples are 
given. Anna covers the topic in one hour because she believes that dealing with 
algebra software systems at a later grade will be much more effective. Björn, who 
spends four to  fi ve lessons on the topic, regards this identity as essential and aims at 
offering his students rich learning opportunities in order that they will remember 
very well the identity and its generation. He builds on links to geometry—interpret-
ing ( a  +  b )( c  +  d ) as expanding the size of the rectangle ( a, c ) to ( a  +  b ,  c  +  d )—and 
then encourages the students to  fi nd the identity themselves. Cecile has a  fl exible 
strategy and only decides on her concrete teaching design after some repetition 
work where she develops a sense of her students’ pre-knowledge and interests on 
this issue. Davido always starts a larger unit with a diagnostic test in order to know 
all his students’ mathematical abilities. According to his  fi ndings, he forms three to 
 fi ve ability groups in class with different tasks and task levels, supporting in particu-
lar those who might have problems in meeting the minimum standards. And there 
are many other approaches, including fostering students’ own ways to reach their 
goals (and perhaps documenting their progress in a portfolio), as well as training 
students by “teaching to the test.” 

 The diversity of students’ knowledge and interests in a classroom, the (subjectively) 
giant obstacles to overcome, and the always missing time for dealing with these 
challenges are some major factors that contribute to the complexity and unpredict-
ability of teaching. “How great it would be,” said Maria, an experienced mathematics 
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teacher in a professional development course, “if I had videotapes of all interesting 
mathematical situations in my classroom, and the time to analyze them with col-
leagues; however, I have to react immediately to each error, and this causes errors 
on my part too.” 

 This marks a good counterpart to the  world of mathematics education research-
ers  dealing with students’ knowledge, be it an identity like ( a  +  b ) 2  =  a  2  + 2 ab  +  b  2 , the 
characteristics of a proof in geometry, or advanced stochastical thinking. Although 
the identity above is a very tiny piece within mathematics, research on it is abun-
dant, with new ways of framing the research emerging over time. For example, the 
researcher, Albert, might investigate the challenges to the student who comes up 
with ( a  +  b ) 2  =  a  2  +  b  2  and then construct a mind-map about her algebraic thinking, 
explaining her dif fi culties on a theoretical basis. Bruno investigates how students’ 
mathematical ideas are dealt with by other classmates and by the teacher, and how 
the negotiation of meaning takes place or the didactical contract is generated. 
Corinne is interested in the interplay between a particular student’s mathematical 
abilities and interests. And there are many other perspectives that researchers might 
take, including large-scale investigations of students’ answers on national standard 
tests, “design research” activities with small samples of teachers, evaluations of 
studies dealing with students’ and teachers’ mathematical growth, and systematic 
re fl ections by teacher educators on their learning processes while leading interven-
tion projects. 

 We can summarize the situation as follows: Even if focussed on a very speci fi c 
topic (e.g., students’ thinking),  mathematics education research as well as mathe-
matics teaching is highly diverse . Much empirical and theoretically-based knowl-
edge is produced by the scienti fi c community and much, mostly unpublished, 
knowledge is produced by the rich experiences of thousands of teachers. From this 
it is also clear that the communication and possible collaboration between teachers 
and researchers is diverse. 

 The major question is: How can mathematics education research have an impact 
on mathematics classrooms, on students’ learning, abilities, beliefs, and interests? 
And how can researchers bene fi t from the rich body of knowledge and subjective 
theories teachers have?  And who is responsible for dealing with this question?   

   Regarding Teachers as Key Stakeholders in Research 

 Researchers and teacher educators neither have the role nor the capacity to 
in fl uence directly mathematics teaching on a large scale. Their major impact on 
teaching seems to be related to the  production of relevant knowledge  and generating 
opportunities for teachers (and to some extent also for other relevant groups like 
principals) to confront this knowledge with their existing knowled ge . In general, 
teachers are regarded as key persons of educational change (e.g., Fullan,  1993  ) . This 
view is largely supported by research evidence. For example, an analysis of student 
learning over many large-scale projects (Hattie,  2003  )  shows that teachers’ impact 
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on students’ learning is high: identi fi ed factors that contribute to major sources of 
variation in student performance include students (50%) and teachers (30%) as the 
most important factors, whereas home, schools, principals, peer effects (altogether 
20%) play a less important role (see, e.g., Pegg & Krainer,  2008  ) . Research on “suc-
cessful” schools shows that such schools are more likely to have teachers who have 
continual substantive interactions (Little,  1982  )  or that inter-staff relations are seen 
as an important dimension of school quality (Pegg, Lynch, & Panizzon,  2007 ; 
Reynolds et al.,  2002  ) . 

 The implication of this research is that approaches with the most potential to bring 
about genuine improvement in learning mathematics are those that resonate with 
teachers—with their interests, beliefs, emotions, knowledge, and practice—as well 
as those that encourage further collaboration among them. Krainer and Llinares 
 (  2010  )  have emphasized that “it is desirable to use the synergy of teachers’ expertise 
and therefore to engage them in research activities and to support action research, 
among others, with the goal that some of them might develop deeper interest in 
research and thereby to enlarge the scienti fi c community” (pp. 704–705). The idea of 
viewing teachers as experts and competent partners in research is not new at all. For 
example, in the literature, they are regarded as  researchers  (e.g., Altrichter, Feldman, 
Posch, & Somekh,  2008 ; Crawford & Adler,  1996 ; Stenhouse,  1975  ) ,  re fl ective prac-
titioners  (e.g., Schön,  1983  ) , and  experts  (e.g., Bromme,  1992  ) .  Intervention research  
with teachers as partners and  action research  by teachers or teacher educators is 
becoming more prominent in mathematics teacher education (see, e.g., volumes 6.2 
and 9.3 of  JMTE  in 2003 and 2006). Lesson study, as a teacher-led professional 
development approach, has a long tradition in Japan and has begun over the last 
decade to spread to other countries (see, e.g., Hart, Alston, & Murata,  2011  ) . Recently, 
the fourth volume of the  First Handbook of Mathematics Teacher Education  
(Jaworski & Wood,  2008  )  drew attention to the crucial importance of activity involv-
ing  learning and self-re fl ection  for both teachers and teacher educators. 

 It is the ethical responsibility of a scienti fi c community and at the same time a 
wise strategy to raise questions (see Krainer,  2011  )  such as: How does our knowl-
edge get known, used, and re fl ected upon by relevant people and institutions? How 
can their experiences, which form a new kind of knowledge, be fed back to the 
researchers? What can be done by researchers apart from writing papers and giving 
talks—predominantly within the scienti fi c community—and from teaching classes 
of student teachers and offering professional development courses? It cannot be 
taken for granted that the majority of those to whom research might possibly be 
addressed do in fact read the tremendously increasing number of research papers 
and that traditional teacher education is a viable means to link research results with 
the challenges of practice. 

 There have been efforts by individual researchers and groups to raise this issue, 
for example, in a conference on “ Systematic Cooperation between Theory and 
Practice in Mathematics Education ” (Bazzini,  1994  ) , in papers like the “Dialogue 
between theory and practice in mathematics education” (Steinbring,  1994  ) , in a 
special issue of  Educational Studies in Mathematics  on connecting research, practice, 
and theory (Even & Ball,  2003  ) , in the chapter “Mathematics Teacher Education” in 
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the  International Encyclopedia of Education  (Krainer & Llinares,  2010  ) , and most 
recently in this chapter in the  Third International Handbook of Mathematics 
Education.  Not long ago, an initiative to create stronger links between researchers 
and practitioners was undertaken by the National Council of Teachers of Mathematics 
 (  2010  )  as researchers and practitioners met together to create a research agenda 
consisting of questions deemed most critical to conduct collaborative research. 
Despite these efforts and continuous claims on the importance of the role of teacher-
researcher collaboration, teachers are still often seen as more or less passive recipi-
ents of researchers’ knowledge production and sometimes as a means (e.g., as data 
supplier) to help produce knowledge. What is missing, in particular, is a systematic 
effort by the scienti fi c community (such as societies, commissions, universities, 
research groups) to analyze and promote the potential role of teachers in research 
and its bene fi t for teachers and researchers. 

 In the 1980s, an interesting change of paradigm started in  management strat-
egy  (in particular in the USA). The traditional view was the  shareholder approach , 
which regarded it the duty of management to protect the interests of the share-
holder, basically in order to avoid having poor social performance hurt the com-
pany  fi nancially. Management aimed at satisfying clients, consumers, society, 
etc., by speci fi c strategies (e.g., public relations). In contrast, Freeman  (  1984  )  and 
others developed a stakeholder approach, de fi ning “ stakeholder ” as “ any group or 
individual that can affect or is affected by the achievement of a corporation ’ s 
purpose ” (Freeman,  2004 , p. 229). The approach dealt with the practical concerns 
of managers—“How could they be more effective in identifying, analyzing and 
negotiating with key stakeholder groups?” (p. 230). The stakeholder idea is con-
nected to ethics and values, which are regarded as equally important as the busi-
ness itself (see also Krainer,  2011  ) . The main message is that “ looking at the 
whole system ”  (of interests) is a bene fi t for all parts of the system aiming at sus-
tainable development.  

 The mathematics education research “enterprise,” whose “business” includes the 
improvement of the teaching and learning of mathematics, is distinctly unlike a cor-
poration in many respects. Nevertheless, the similarities between the two can be 
useful, including the presence of a multitude of stakeholders. It is not just researchers 
who have a stake in the research enterprise, even if they are generally considered to 
have the most expertise in research (e.g., with respect to theory, methodology, etc.) 
and tend to set the trajectories for research. In addition, they are assumed to form 
their decisions not only for the sake of the scienti fi c community but more broadly for 
society too. Nevertheless, the research enterprise in mathematics education has other 
stakeholders: for example, students, teachers, parents, principals, superintendents, 
mathematicians, teacher educators, educational publishers, test-developers,  fi rms, 
education policy-makers, and even the whole society can be regarded as “stakehold-
ers” of the joint societal enterprise of promoting students’ mathematical knowledge. 
They all have an effect on students’ knowledge and at the same time they are affected 
by their knowledge. But of all these stakeholders, it is the teacher who  can affect to 
the greatest extent the achievement of one of the main purposes of the research enter-
prise, that is, the improvement of students ’  learning of mathematics.  
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 The scienti fi c community needs to regard teachers not just as stakeholders, but 
also as “ key stakeholders ” of research. At least  fi ve aspects should be discussed 
when analyzing the role of teachers with regard to the production and dissemination 
of scienti fi c knowledge—an activity central to the research enterprise and one by 
which its participants aim at contributing to the improvement of students’ learning 
of mathematics. The  fi rst three aspects suf fi ce if researchers are mainly attempting 
to optimize their own interests as researchers and seeing the production of knowl-
edge being predominantly done within the scienti fi c community (excluding practi-
tioners like teachers and non-researching teacher educators). With regard to these 
three aspects, teachers are seen as “stakeholders” in that they have a stake in the 
results of research, which can inform them about elements of student learning; but 
they are not seen as  key stakeholders —a term that we reserve for the fourth and  fi fth 
aspects. The fourth aspect deals with embracing teachers as experts who are princi-
pally able to contribute heavily to the quality of research, and the  fi fth aspect regards 
them as co-producers of scienti fi c knowledge. The following presents a brief sketch 
of these  fi ve aspects. 

   Teachers as Means 

 For most of the research where the beliefs, knowledge, and practice of students 
and/or teachers are the focus, a collaboration with teachers is needed. They supply 
data, which are analyzed by the researchers. It should be a viable standard to pro-
vide involved teachers with a rationale for the research and its possible implica-
tions for teachers’ work before the collection of data, and a summary of the research 
and its relevant  fi ndings after it. For example, it would be of interest to teachers to 
read which different ways of introducing algebraic identities (like 
( a  +  b ) 2  =  a  2  + 2 ab  +  b  2 ) different teachers use, and what the rationale behind their 
approaches is, probably accompanied by comments, evidence, and suggestions 
from the authors of the study.  

   Teachers as Recipients 

 The primary responsibility of teachers is to  teach  their students, not to read 
research papers, and there is some evidence that most teachers don’t read such papers 
very often (Zeuli,  1994  ) . Strategies by members of the scienti fi c community in order 
to increase teachers’ interest in reading research papers are manifold (see, e.g., 
Debien,  2010 ; Shearer, Lundeberg, & Coballes-Vega,  1997  ) . Some scholarly jour-
nals have sections that are speci fi cally intended to share research with teachers and 
some teacher journals have sections devoted to “research in practice.” Many research-
ers publish additional papers with a clear practice-oriented focus in journals widely 
read by teachers, write practice-focussed summaries and put them on Web sites and 
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in teacher journals, write papers and give talks about the results of research studies 
that would be of interest to teachers, use pieces of research in teacher education and, 
for example, engage student or practising teachers in short parts of this research 
(e.g., having teachers construct a multiple-choice item on “( a  +  b ) 2  = …” with the 
correct answer and three other tempting answers, and having them estimate the dis-
tribution of answers of students in their class).  

   Teachers as Alumni 

 Teachers are regarded as life-long learners, having spent a considerable amount 
of time at teacher-education institutions. Hopefully, while there, they were con-
fronted with a selection of interesting activities in the context of research and came 
to realize that research is fascinating, and that it provides insights and thereby a 
strong basis for understanding their own thinking and their students’ thinking. Thus, 
they might have developed a kind of “inquiry stance” that could increase their inter-
est in trying out small pieces of research in their classrooms, in looking for contact 
with teacher educators and researchers, or being open to offers from the wider 
scienti fi c community. Teachers’ calls to university partners like, “Do you have news 
about research on students’ algebraic thinking?” or “Are you running another inter-
esting project?” would be indicators of teachers’ inquiry stance and former teacher 
educators’ success at evoking such interests.  

   Teachers as (Co-)Producers of Professional Knowledge 

 Teachers deal on a daily basis with students’ thinking, their beliefs and concep-
tions, errors and ideas, interests and fears, emotions and cognitions, views of 
mathematics and mathematics teaching, etc. They can be regarded as experts on 
students’ subject-related learning. On each curricular topic they teach for a long 
period, they develop speci fi c expertise; however, it varies from teacher to teacher, 
dependent on pedagogical, didactical, and mathematical abilities and interest. 
Teachers who share their experiences with peers (e.g., within the context of joint 
lesson study or other kinds of professional development) are more likely to inten-
sify their abilities and interest. For example, teachers having extensively discussed 
their approach to the introduction of identities like ( a  +  b ) 2  =  a  2  + 2 ab  +  b  2  and its 
effect on students’ learning surely develop forms of professional knowledge and 
subjective theories about students’ algebraic thinking of interest to researchers. In 
particular, re fl ecting on the growth of students’ and/or teachers’ knowledge might 
be a bene fi cial endeavour for both parties. Through being involved in such proj-
ects, bridges between teachers and researchers might be built—bridges to link 
professional and scienti fi c knowledge, which are not easy to separate in many 
cases, anyway.  
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   Teachers as (Co-)Producers of Scienti fi c Knowledge 

 There is evidence of research where teachers are equal partners or even central 
 fi gures. For example, there are research projects where teachers not only help to 
gather data but also give advice concerning the design of research and the re fi nement 
of methods. Studies have been carried out where teachers design the research them-
selves, collect data, and are engaged in the analysis and interpretation of data, as 
well as in the process of formulating and disseminating the results. There are proj-
ects where the people involved decide intentionally to avoid the distinction between 
teachers and researchers since both are regarded as researchers, with differentiated 
roles in the research process. The presence or absence of teachers in a research 
project is not an indicator of research quality per se. In contrast, bringing in addi-
tional perspectives, data, and forms of communicative validation can be regarded as 
a feature enriching scienti fi c research. Having teachers participating in such kinds 
of research, the dissemination into practice is facilitated. 

 In particular in the  fi eld of student- and practising-teacher education, there is a 
considerable amount of research where those who are educating the teachers are 
also those who are carrying out the research. A special kind of such research includes 
those projects where teachers or teacher educators investigate their own practice in 
order to improve it (action research). An example of research with regard to teach-
ing algebra might be an action-research project within the framework of a profes-
sional development program where teachers try out and investigate new ways of 
algebra teaching (e.g., a different approach for dealing with ( a  +  b ) 2  =  a  2  + 2 ab  +  b  2 ), 
 fi nally producing small case studies of their experiences. The teacher educators sup-
port teachers’ innovations and investigations and probably investigate their own 
growth and support processes in order to improve them—a kind of second-order 
research (see, e.g., Altrichter et al.,  2008  ) . In addition, or alternatively, they might 
write a cross-case study on teachers’ approaches and growth or/and investigate stu-
dents’ thinking together with the teachers, or/and write together a handbook for 
teachers with learning units based on examples and re fl ections from the project. 

 The question of how intensively researchers regard teachers and others as  key 
stakeholders  is an expression of the intended and/or lived relationship between 
teachers and researchers. This means that our view of “teachers as stakeholders” is 
about “us,” about our beliefs and roles, about our understanding of “research.” 

 In the following section, we aim at providing examples of research projects, 
where teachers are regarded as  key stakeholders  in research, in the sense that teachers 
and researchers (or teachers with other teachers) act as co-producers (or as produc-
ers) of professional and scienti fi c knowledge.   

   Five International Examples 

 In reviewing the international mathematics education research literature, we 
sought approaches to linking research and practice that were innovative and where 
collaborative research partnerships had a clear focus on teachers researching their 
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practice. Several examples presented themselves, including successful recent endea-
vours in both developed and developing countries (see, e.g., OECD,  2011  ) . Space 
constraints, however, restricted our selection to  fi ve examples, each of which offers 
speci fi c insights into the diverse ways in which teachers engage as key stakeholders 
in research. Two are large nation-wide programs (Japan, China), while three (USA, 
Norway, Canada) are initiatives that are much smaller in scale and do not claim to 
be widespread within their given country. We note that the terminology used for 
 teacher  and  researcher  is not uniform across the  fi ve examples. We have tried to 
respect the nomenclature adopted by the authors of the reports of each speci fi c 
example by using the same terms that they have employed for teacher and researcher. 
We have also strived, by means of various forms of contact with individuals involved 
in the projects and programs described herein, to do justice to all examples and to 
represent their multifaceted dimensions as fairly and as accurately as possible. 

   The USA Example 

 In a 4-year project (2004–2008) led by Beth Herbel-Eisenmann, teacher research-
ers collaborated with university researchers in re fl ecting on their own teaching and 
in conducting cycles of action research that focussed on improving the mathemati-
cal discourse of their classrooms (Herbel-Eisenmann,  2010  ) . Eight mathematics 
teachers from grades 6 to 10, whom Herbel-Eisenmann had met through her work 
in her university position, were interested in learning more about classroom dis-
course, and they agreed to be the teacher-researcher participants in the project. 
These teacher-researcher volunteers came from a variety of types of school set-
tings—rural, urban, and suburban. They had teaching experiences that varied from 
4 to 23 years and taught from a variety of different curricular materials. Herbel-
Eisenmann, together with several graduate students, served as the university 
researchers over the life of the project. 

 At the beginning of the project, the group agreed that the primary goal of their 
activity, for both the university researchers and the teacher researchers, would be to 
learn about, re fl ect upon, and change mathematical discourse in classrooms. The 
book  Promoting Purposeful Discourse  (edited by Herbel-Eisenmann and Cirillo, 
 2009  )  provides a re fl ective narrative of the details of the project, including  timeline, 
details of the study-group activities of the eight teacher researchers, data generation 
and analysis phases of the action-research projects, write-ups by the teachers on 
their own research projects, and re fl ections on the experience from both the univer-
sity researchers and teacher researchers. 

 The  fi rst year of the project was spent gathering baseline data on the teachers’ 
practices, beliefs, and patterns of discourse in their classrooms. Each teacher 
researcher had one of his/her classrooms videotaped for an entire week, for four 
different weeks over a six-month time period in the school year. When classes were 
not being taped, the teachers and university team met and analyzed mathematical 
tasks and shared artefacts from their teaching in the study group. The university 
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researchers provided quantitative and qualitative discourse analyses of the taped 
classroom episodes for the teachers. Discussions were then held in which the teacher 
researchers reacted to the videotapes, discussed them, and had the opportunity to 
provide interpretations which differed from those given by the university research-
ers. The collaboration of university researchers and teacher researchers extended to 
all aspects of this project, planning, readings, data analyses, re fl ective writing, and 
developing the action-research projects themselves. 

 The interactions between university researchers and teacher researchers were 
designed to develop a community of trust and support. The main goal of the project 
was to give teachers the opportunity to  fi nd  their own  research voice, to tap the 
researchers within themselves, in order to gather evidence to help change their prac-
tice. As such there were multiple levels of “research” occurring within this project 
that linked research and practice, research by the teacher researchers themselves as 
well as research by the university researchers. 

 Early on in the project, the teachers were asked to create belief maps, professed 
beliefs about what was closest to their heart in their teaching, and then to write jour-
nal entries about these professed beliefs. Compact versions of their belief maps 
were created for continued reference throughout the project, so that both the univer-
sity and teacher researchers could continually look for congruence between pro-
fessed beliefs about teaching, and actual behavior in the classrooms by the teacher 
researchers. Throughout the project the teacher researchers were continually pro-
vided with prompts for creating re fl ective journal entries. Questions were posed 
after study group discussions that led to journal entries. Teacher researchers were 
encouraged to write journal entries on what they were learning from the discussions 
on their classroom videotapes. Discussions were also punctuated with commentary 
related to the readings on classroom discourse in which they were engaged. The 
habit of becoming a re fl ective practitioner, keeping a journal, and re fl ecting on their 
practice, was being instilled in these teacher researchers throughout this project. 

 As the readings, discussions, and shared classroom video segments progressed, the 
teacher researchers began to identify “performance gaps” that they noticed between 
what they claimed were their professed beliefs, and what they actually did while teach-
ing in their classrooms. This process provided the seeds and incubation time for the 
teacher researchers to identify their own research questions to investigate during their 
cycles of action research throughout the last two years of the project. The teachers 
noted the importance of wait time—not only after questions are posed, but also after a 
student responds. They realized that wait time was critical to provide opportunities for 
richer, deeper student discourse about mathematical content in the classroom. 

 The teacher researchers found that the process of revoicing students’ comments, 
suggestions, and questions proved to be a powerful tool for improving content dis-
course. Another primary focus of their work was on improving classroom discourse 
for social purposes. They found there was a critical need to provide a safe classroom 
environment for students to share their thinking, solutions, and ideas and to feel 
comfortable to ask questions of the teacher and of one another. 

  Promoting Purposeful Discourse  included re fl ective research chapters written by 
each of the eight teacher researchers in which they documented and shared their 
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passage through cycles of action research—what they did in their own research 
projects and what they learned throughout the four years of the project. The teacher 
researchers made their own choices on how they wished to approach writing up 
their action-research experience. In addition to their chapters, the teacher research-
ers had opportunities to present their work and experiences at several meetings and 
conferences attended by other teachers and mathematics education researchers. The 
topics investigated by the teacher researchers in their action-research projects 
included: increasing student participation in conceptual discourse; attending to par-
ticular performance gaps in their classroom practices uncovered in their belief maps; 
working towards giving students more ownership in the mathematical discourse in 
classes; revoicing student questions; addressing vagueness in classroom mathemati-
cal discourse; and improving listening to students’ mathematical discourse. 

 Several things are of particular note in this long-term effort by Herbel-Eisenmann 
to link research and practice. There were multiple levels of research linked to prac-
tice that were created and continued over the entire project. Throughout the project 
the university researchers were investigating what moves, actions, and support 
structures might be helpful to create an environment where teachers could become 
researchers. The university researchers also kept re fl ective journals throughout the 
project, and met to discuss and plan study group meetings based on their own 
research observations of the group. The teacher researchers were conducting 
research on their classroom discourse behaviours, and on patterns of student dis-
course interactions in their classrooms as they developed their own action-research 
projects. A “linking” of research and practice occurred continually throughout this 
project within the discussions and re fl ective activity of the community meetings of 
the study group. Ultimately, the re fl ective story of this project as captured in 
 Promoting Purposeful Discourse  provided yet another level of research itself. It 
presented both a meta-re fl ection by the university researchers that identi fi ed the 
major themes, trends, and activities of the project, along with the stories told by the 
teacher researchers as they described their own action-research projects.  

   The Norwegian Example 

 The three-year Learning Communities in Mathematics (LCM) Project (2004–
2007) was a research and development project that brought together teachers and 
didacticians to work together as both practitioners and researchers (Jaworski et al., 
 2007  ) . It involved a team of 14 didacticians (the term that the team preferred to use 
for the teacher educators), which included 5 doctoral students, working with 8 
schools (including primary, lower, and upper secondary) with a minimum of three 
teachers from each school (Jaworski,  2006  ) . Schools volunteered to be part of the 
project as a result of an invitation from Agder University College in Norway where 
Barbara Jaworski, who led the project, held a faculty position. 

 The motivating principle on which the didacticians and teachers agreed to work 
together was the desire to develop better learning environments for mathematics 
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students at the levels of schooling with which each teacher was associated. In fact, 
co-learning was central to this project. Jaworski  (  2011  )  cited Wagner  (  1997  )  to 
make the point:

  In a co-learning agreement, researchers and practitioners are both participants in processes 
of education and systems of schooling. Both are engaged in action and re fl ection. By work-
ing together, each might learn something about the world of the other. Of equal importance, 
however, each may learn something more about his or her own world and its connections to 
institutions and schooling. (p. 16)   

 Workshops at the college were an important tool in the co-learning process. During 
the  fi rst two years, six workshops were held per year, and four during the third year. 
Workshops were three and a half hours in length and consisted of both plenary and 
small group activity. Plenary input from both didacticians and teachers included 
introducing mathematical tasks (usually by the didacticians), reporting about class-
room activity (mainly by the teachers), and reporting from small group activity (by 
all). Small group activity included working on mathematical tasks, usually followed 
by didactical discussions in which both teachers and didacticians participated. 

 The teachers in the school teams worked together on designing tasks for the 
classroom. Didacticians were available to discuss the ideas that the teachers had 
generated, as well as to observe the classroom unfolding of the activities. Three 
didacticians were associated with each school to discuss the planned activities, to 
provide support, and to collect data. 

 All classroom lessons related to the project, as well as the workshop sessions, 
were videotaped. Jaworski  (  2006  )  stated that “the data and its analysis was largely 
owned by didacticians, with video data also providing a source for teachers to review 
classroom activity and re fl ect on teaching” (p. 11). All data were available to all of the 
didacticians of the project; in addition, the teachers had access to the data for their 
school should they so wish. The video data also proved to be a valuable resource 
within both the workshops and school settings as a tool for re fl ecting on developing 
student thinking within classroom activity. The video data were not related to 
particular research questions; rather research questions evolved through activity 
and data were used according to need. Jaworski  (  2008  )  pointed out that, as the 
didacticians followed up initial research questions in analysis of data and writing 
of papers, more re fi ned questions emerged which then fed into future activity and 
further research. 

 At the heart of this collaborative project was the resolve to frame it around an 
inquiry-based approach within communities of practice. Inquiry, which involved 
questioning, exploring, investigating, and researching within everyday practice, was 
conceptualized at three levels:

    1.    Inquiry in mathematics: (a) teachers and didacticians exploring mathematics 
together in problems and tasks in workshops; (b) pupils in schools learning 
mathematics through exploration in tasks and problems in classrooms;  

    2.    Inquiry in teaching mathematics: teachers using inquiry in the design and 
implementation of tasks, problems, and mathematical activity in classrooms in 
association with didacticians;  
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    3.    Inquiry in developing the teaching of mathematics: teachers and didacticians 
researching the processes of using inquiry in mathematics and in the teaching 
and learning of mathematics.     

 This emphasis on inquiry was, in the words of those who were asked to evaluate 
the LCM project at its close (Skovsmose & Säljö,  2007  ) , a “challenge to the tradi-
tional notion of school mathematics in Norway … the inquiry approach explicitly 
and radically breaks with this [traditional] conception of learning mathematics; the 
power of the [LCM] project has to do with how the inquiry approach informs and 
comes to be a part of reformed classroom practices” (p. 11). 

 Within the LCM project, an inquiry community for the project at large had been 
created, but it could not be separated from the established communities of which proj-
ect members were a part. According to Jaworski  (  2008  ) , “teachers participated in the 
day-to-day life of their schools and, integrally, explored the use of inquiry-based tasks 
in their classrooms and observed their students’ mathematical activity and learning; 
didacticians collected and analyzed data and wrote research papers, as expected of 
university academics and, integrally, explored the design of tasks for workshops and 
their work with teachers in school environments to support teachers in their project 
activity” (p. 320). But even more importantly, Jaworski emphasized that the alignment 
of both didacticians and teachers with their respective communities was a “critical 
alignment.” By this she meant that they did so with a critical attitude whereby they 
questioned, explored, and sought alternatives while engaging, so as to “have possibili-
ties to develop and change the normal states” (p. 314). Teachers and didacticians had 
engaged in a research activity that yielded evidence of both teachers’ learning and 
didacticians’ associated learning. Jaworski  (  2008 , p. 326) argued that “seeing the 
enterprise in terms of an activity system made it possible to pick out elements in their 
complexity and trace developmental patterns for participants in the project (see 
Goodchild & Jaworski,  2005 ; Jaworski & Goodchild,  2006  ) .”  

   The Canadian Example 

 In 1989, the CIRADE research centre attached to the Université du Québec à 
Montréal established research links with some schools. Over the years, the research 
engaged in at these schools began on to take on a distinctive shape where the empha-
sis was clearly on collaboration between teachers and researchers—research was 
being conducted “with” rather than “on” teachers. The example presented herein 
involved a group of teachers at one of these research schools and some of the 
CIRADE university researchers, led by Nadine Bednarz, who collaborated with that 
school (Bednarz,  2004  ) . The collaborative project that emerged was one that com-
bined professional development with supported action research in the classroom. 

 A group of  fi rst-grade teachers approached the researchers because they were 
having dif fi culty conceptualizing a way in which they might implement a ministe-
rial-mandated, problem-solving approach to the teaching of mathematics in their 



374 Kieran , Krainer, and Shaughnessy 

classes. The questions that the teachers put to themselves were the following: Is it 
possible to adopt a problem-solving process with young children? What does such 
an approach mean, and how can it be developed? These questions provided the basis 
for a collaborative research project that initially lasted for a year, but was extended 
for three more years. The team consisted, at  fi rst, of four  fi rst-grade teachers, a reme-
dial teacher, and two researchers, but then brought in teachers from second and third 
grade during the following years. During the course of the project’s being extended 
to the second and third grades, the mathematical content was also extended. 

 The design of problem situations, and ways in which to intervene with the chil-
dren, was the central focus of the meetings that took place between the teachers and 
researchers. The dimension of professional development, referred to as  re fl ection on 
action  by Bednarz, was constituted by the discussions regarding the problem situa-
tions, the strategies used by the children, their approaches and ways of reasoning, 
and the teachers’ management of the activity in the classroom context. In the pro-
cess of re fl ecting, other questions of a more general nature arose among the teachers 
regarding problem solving and its integration into their practice. The research 
dimension was also fuelled by the joint construction of these problem situations, in 
particular by a re fl ection on the ways in which the problem situations were enhanc-
ing the mathematical learning of the children. 

 Over the course of the four years during which the joint process of constructing 
teaching situations occurred, approximately 1 day per month was given to re fl ection. 
In addition, one day of assessment was also included at the end of each year in order 
to review the outcomes of the project. As described by Bednarz  (  2004  ) :

  The re fl ective activity was conducted in such a way as to encourage a planned, regular 
alternation between classroom experience and review of this experience. Work was per-
formed in groups using accounts of the in-class activities, the dif fi culties arising in context, 
the records of statements by the children, and the dif fi culties they encountered. This review 
of the experience took different forms and served as a starting point for developing a new 
intervention sequence. This re fl ective activity thus developed around the meanings that the 
teacher developed in context and indeed imparted meaning to the situations or actions put 
forward. (p. 7)   

 Researchers and teachers interacted and jointly explored teachers’ practice and 
engaged in the re fl ective review of that practice. The regular meetings of researchers 
and practitioners permitted, according to Bednarz  (  2004  ) , the creation of an “interpre-
tive zone” around the practice that was the subject of the exploration. This re fl ective 
activity was deemed to serve a dual function: “It is an opportunity for professional 
development through re fl ective review of the practice, with the objectives of clarify-
ing, making explicit, and improving understanding of this practice—hence, of ulti-
mately contributing to its restructuring; it is a research opportunity, as this meeting 
zone (interpretive zone) constitutes material for analysis to be used for investigating a 
certain object of interest to practice-related knowledge” (p. 11). In addition, Bednarz 
argued that, in the process of joint re fl ection on their action in collaboration with the 
researchers, the teachers were co-constructing new knowledge about their practice. 

 By the end of the project, several professional artefacts had been produced by the 
teachers: a collection of activities, observation grids, and classroom materials for the 
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school. Jointly, the teachers and researchers produced a book containing mathematical 
games for  fi rst graders, as well as videos of classroom teaching and student engage-
ment in problem solving. Scienti fi c publications were also produced by the research-
ers based on analyses of video recordings of in-class situations, the records of students’ 
statements, and audio recordings of re fl ection-oriented meetings between researchers 
and teachers. Some of these analyses dealt with teaching situations and their potential 
for stimulating children’s learning (Bednarz,  1996 ; Bednarz, Dufour-Janvier, Poirier, 
& Bacon,  1993 ; Poirier & Bacon,  1996  ) ; the process of co-construction that took 
place and the respective contributions (Bednarz, Poirier, Desgagné, & Couture,  2001  ) ; 
and the structuring of a teaching situation over time and the principles that guided this 
restructuring (Poirier, Bourdage, & Bednarz,  1999  ) . 

 To close, we note that Bednarz  (  2004  )  argued that collaborative research such as 
that engaged in within this project not only contributed to the growth of knowledge 
for the research community but also, and equally importantly, to the professional 
development of the teachers involved. Moreover, she emphasized that the need of 
the researcher to integrate the practitioner in the construction of practice-related 
knowledge was based on “the idea of better understanding the reasoning that sup-
ports his or her [the teacher’s] practice; … the teacher is considered as a partner in 
the inquiry ‘with’ whom one looks into the practice, who contributes in joint 
re fl ection (with the researcher) to the development of the practice” (p. 6).  

   The Japanese Example 

 This fourth example—on which, there are more details in Krainer  (  2011  ) —is 
unique in that it is not an approach initiated by a teacher educator or researcher, but 
rather is a longstanding, nation-wide approach conducted by teachers for teachers: 
Japanese lesson study. In their brief history of Japanese  lesson study , Fernandez and 
Yoshida  (  2004  )  indicated that the origins can be traced back to the early 1900s. In 
the 1960s, teachers started combining lesson study ( jugyokenkyu ) and school-based 
inservice professional development ( konaikenshu ). Recognizing the value of  konai-
kenshu , in the 1970s the Japanese government started supporting these grassroots 
activities. This support—small  fi nancial and other incentives—still exists today. 
Lesson study is by far the most common  konaikenshu  activity. 

 There are manifold versions and sizes of Japanese lesson study. They range from 
small-scale in-school initiatives with from four to six teachers to large-scale nation-
wide ones with hundreds of participants, many travelling long distances. However, 
a typical  lesson study process  (Fernandez & Yoshida,  2004 ; see also Hart et al., 
 2011  )  contains four to six steps, with a study lesson ( kenkyujugyo ) as the center-
piece of a lesson study ( jugyokenkyu ):

   Step 1: Collaboratively planning the study lesson  
  Step 2: Seeing the study lesson in action  
  Step 3: Discussing the study lesson  
  Step 4: Revising the lesson (optional)  
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  Step 5: Teaching the new version of the lesson (optional)  
  Step 6: Sharing re fl ections about the new versions of the lesson    

 Many schools solicit the support of an external advisor (most often instructional 
superintendents, sometimes experienced teachers on leave, or university staff). 
Schools often organize their  konaikenshu  work around a lesson study open house 
( kokaijugyo ). Here well-developed ideas are shared with visitors (mostly teachers 
and other educators from neighboring schools). When distinguished guests take part 
(e.g., an external advisor), their reactions are paid considerable attention, often indi-
cating very clear and pragmatic missions [e.g., Mr. Saeki’s statement in Fernandez 
& Yoshida  (  2004  ) : “A lesson cannot just start with giving students a problem on a 
sheet of paper”; teachers need to pay “attention to connecting lessons to students’ 
prior knowledge” (p. 202)]. In many cases, lesson study open houses are followed 
by a joint celebration in the evening (with a mixture of relaxed socializing and 
exchanging opinions not articulated at the formal meeting). Some schools even pro-
duce written reports about their work ( kenkyukiyo no matome ). In the early 1990s, 
for example, the National Institute for Educational Research compiled every year 
over 4,000 reports written by teachers (see Fernandez & Yoshida,  2004 , p. 213, 
referring to Sato,  1992  ) . 

 The vast majority of elementary schools and many middle schools in Japan con-
duct  konaikenshu  (in all subjects). In contrast, very few high schools are engaged. 
In principle,  konaikenshu  activities are voluntary; in reality however, they are 
regarded as quasi-required. However, and most importantly, many teachers  fi nd 
 konaikenshu , in particular lesson study, highly bene fi cial. Three mathematics teach-
ers’ opinions might give a  fl avor of their high regard for lesson studies:

  Developing a great lesson is an ideal thing but I think the best thing about the lesson study 
experience is that it gives you a chance to re fl ect about and rethink your own teaching. … I 
think even if it is a short period of time, having a place where everybody gets together and 
discusses instruction very seriously is an extremely valuable experience. … Anyway, lesson 
study can help teachers develop strong relationships, something I think is really important 
for all teachers. (Fernandez & Yoshida,  2004 , p. 17)   

 It is common for individual teachers to belong to more than one lesson study 
group. In addition to within-school lesson study groups, autonomous cross-school 
study groups (regional study groups and teacher clubs) are also organized by teach-
ers or unions (sometimes funded; in most cases membership fees are collected). 
A system of regular teacher rotations allows lesson study groups to learn from 
each other. 

 There are several features that are regarded as  key elements —and at the same 
time as  success factors —of lesson study. Murata  (  2011  )  highlighted  fi ve key char-
acteristics. Lesson study: is centered on teachers’ interests, is student focussed, has 
a research lesson, is a re fl ective process, and is collaborative. Further named key 
elements (see also Fernandez & Yoshida,  2004  )  are that lesson study: has its roots 
in strong movements (e.g., child-centred and problem-solving-based learning), 
regards teaching as a complex and profound enterprise (being not a one-way—and only 
a didactic—path, but a two-way integration of student ideas and content exploration), 



37712 Linking Research to Practice: Teachers as Key Stakeholders

is part of a culture of school-based professional development, is a way of encultur-
ing novice teachers by serious academic activity, and is a way of improving yourself 
by looking at others ( Hito no furi mite waga furi naose ), with no end to improving 
teaching (indicating a culture of life-long effort and continuous further develop-
ment). In addition, it should be stressed that lesson study is an autonomous and 
sustained effort by the teaching profession for the teaching profession. It has a pro-
cess and also a product dimension (lesson plans and books, indicating a rich body 
of knowledge), and has created a language of its own (indicating the status of a well-
developed profession). It is supported by townships, boards of education, the minis-
try, etc., indicating a culture of trust in teachers. 

 While the lesson study movement has become very popular internationally, the 
way in which it is practised in Japan is quite different from its many applications in 
Western countries. For example, the recent book  Lesson Study Research and Practice 
in Mathematics Education. Learning Together , edited by Hart et al.  (  2011  ) , addressed 
research and practice in 16 different locations (mostly in the USA). Due to the lack 
of experienced lesson study teachers and teacher educators, and lacking prior partici-
pation in the whole culture of  konaikenshu  activities, teacher educators act as initia-
tors of lesson studies and support practitioners or student teachers in the practice of 
lesson study. This is in contrast to the Japanese lesson study approach where teachers 
themselves are the initiators and school externals (e.g., teacher educators at universi-
ties) are invited. Because other countries lack the grassroots teacher movement on 
which the Japanese lesson-study system builds, the initiating role taken on by school 
externals in adaptations of lesson study should not be considered too surprising.  

   The Chinese Example 

 In China, at the turn of the millennium, the National Mathematics Curriculum 
Standards (NMCS) were issued, and this ushered in a new set of curriculum guide-
lines emphasizing creative thinking, problem solving, and mathematical exploration 
(Huang & Bao,  2006  ) . That document presented a challenge to teachers, who expe-
rienced dif fi culty in implementing these changes, as well as to mathematics educa-
tors who wanted to be able to assist in this endeavour. To address the problem, 
Chinese scholars developed an innovative model of inservice teacher education, 
called the  Keli  approach. 

 According to Huang and Bao  (  2006  ) , development of the new model was to 
include the following key features:

  First, it is necessary to have expert input in order to upgrade teacher ideas, in a context of 
peer support; second, it is necessary to include the whole process of action, follow-up, and 
re fl ection; and third, it is necessary to form a community, which consists of experts, 
researchers and teachers. Thus, the program of in-service teacher education, called 
Xingdong Jiaoyu (Action Education) has been created. In this program, a community con-
sisting of teachers and experts and researchers is formed, and the teachers improve their 
teaching action and upgrade their professional theory through unfolding the Keli process in 
cooperation with the members of the community. (p. 284)   



378 Kieran , Krainer, and Shaughnessy 

 Li, Huang, Bao, and Fan  (  2011  )  emphasized that innovative approaches to teach-
ers’ professional development in China establish direct connections with teachers’ 
practices and what they try to do in their own classrooms. The  Keli  approach is no 
exception. 

 The implementation of the  Keli  approach in a school or school district usually 
unfolds in three phases: (a) familiarization and focussing; (b) a cycle of teaching, 
re fl ection, and revision; and (c) disseminating the  Keli  process and the exemplary 
lesson. 

 During the  fi rst phase, “familiarization and focussing,” teachers’ approaches are 
updated and they are introduced to the procedures of developing an exemplary 
lesson, usually by some experts. Within the Chinese educational system, an expert 
or master teacher is one who holds a senior rank:

  The conditions for being a senior secondary teacher include 5 years or more serving as a 
secondary school teacher at the intermediate level or being the holder of a PhD and demon-
strating the ability to take the responsibility of senior secondary teacher. Moreover, the 
candidates should (a) have either systematic and sound fundamental theory and subject 
content knowledge, plentiful teaching experience and good teaching effectiveness, or spe-
cialize in political and moral education and classroom management, and achieve high per-
formance and acquire rich experience; (b) engage in education research on secondary 
education and teaching and write an experience summary, scienti fi c report, or research 
paper on the integration of theory and practice at a certain academic level or make remark-
able contributions to the improvement of other teachers’ academic levels and teaching abilities. 
(Huang, Li, & He,  2010 , p. 295)   

 At a certain moment a collaborative group, which consists of researchers and 
interested teachers, is formed. Huang and Bao  (  2006  )  provided a couple of exam-
ples: one study group consisted of two researchers (one from the District Education 
Institute and the other from a Teachers College/Normal University) and the teachers 
from one school; another group consisted of two professors, a PhD holder from the 
Shanghai Academy of Education Sciences, three PhD candidates from East China 
Normal University, and researchers from a local educational institute, together with 
the mathematics teachers from one secondary school. The study group members 
then decide on a particular research question related to one of the challenging areas 
of the curriculum, which thereby becomes the focus for the construction of the 
exemplary lesson. 

 During the second phase, “teaching, re fl ection, and revision,” an exemplary les-
son is developed through a cycle of three teaching stages and two re fl ection stages. 
At the outset one teacher—often someone with considerable teaching experience—is 
selected for all three teaching stages. The  fi rst stage involves the teacher designing 
the lesson by him/herself and then presenting it to a class of students, with all the 
members of the  Keli  group observing. This is followed by a  fi rst feedback meeting 
immediately after the lesson, which focusses on the teacher’s rationale for the design 
of the lesson, commentary from the group, and suggestions for revision of the les-
son. Group members may work together at developing a new and improved version 
of the lesson. 

 Following this  fi rst re fl ection stage and the subsequent revision of the lesson, the 
teacher then presents the lesson to other classes of students at the same grade level 
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within the same school—once again being observed by the  Keli  group. After that 
second round of teaching, further re fl ection by the group takes place, which focusses 
on the promising features of the exemplary lesson and on the differences that remain 
between its design and what is considered to be effective practice according to the 
new curricular guidelines. An additional revision is made and a third teaching stage 
follows. 

 The third phase, “disseminating the  Keli  process and the exemplary lesson” 
involves writing a lesson description that can be shared with the public. According 
to Huang and Bao  (  2006  ) , this description focusses on the following aspects: “(a) 
how the learning styles and teaching strategies have been changed in the classroom; 
(b) how the teacher’s conception of teaching and ways of developing a lesson have 
been updated to meet the new ideas of the new NCMS curriculum; and (c) chal-
lenges faced during the process of  Keli  or the re fl ections occurring during  Keli ” (p. 
286). Huang and Bao emphasized, as well, that teachers collaborate with the 
researchers and university members of the  Keli  group in the writing of the report. 
Once the report has been completed for publication, a video case study is produced 
for eventual use in teacher-education programs; it includes the main sections of the 
lesson, the re fl ections by members of the group, and an analysis of the lesson in both 
quantitative and qualitative terms. 

 In the example of the  Keli  group provided by Huang and Bao  (  2006  ) , teachers 
were asked to keep a diary. Some of the commentary that they entered emphasized 
in particular the value they found in the process of re fl ecting on the lesson immedi-
ately afterwards, revising it, and then redelivering it. One teacher, who was inter-
viewed on this point, stated that, “Traditionally, without follow-up action, the same 
content will probably be taught 4 years later, so there is only a little impression 
about how the content was handled before. Then the lesson will be re-designed 
repeatedly. Nowadays, the lesson plan was revised three times, and the lesson will 
be observed and re fl ected two times; it is de fi nitely helpful” (p. 293). 

 One of the researchers from a Normal University, who had about 10 years teach-
ing experience and held a PhD specializing in mathematics education, re fl ected on 
the role he played in this group and in others like it: “It is an important phase to 
summarize the particular implementation of  Keli . … At this stage, I usually play a 
key role in helping them in theorizing and abstracting such as how to organize 
events to support the main  fi ndings, how to effectively organize a paper suitable for 
publication” (p. 294). 

 A  fi nal issue concerns the commonalities and differences between the  Keli  
approach and Japanese Lesson Study. According to Huang and Bao  (  2006  ) :

  The common features of both Japanese Lesson Study and the Keli process are their com-
mon concern with practical issues and the attention both pay to developing a particular 
lesson through collaborative lesson planning, classroom observation and post-lesson dis-
cussion to tackle the particular issues in question. However, the Chinese Keli process 
emphasizes the expertise stemming from experts, the revision of lesson design and the 
consequent new action. (p. 295)   

 Experts thus would seem to have a much more involved role in the  Keli  approach 
than is the case in Japan where it is the teachers who choose the goals they wish to 
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pursue and the ways of achieving them within their lessons and, in fact, control the 
entire lesson study process—even if external experts are sometimes invited to join a 
given Japanese study-lesson sequence.   

   Discussion: Three Dimensions Central to these Examples 

 In the  fi rst section of this chapter, we situated our perspective on teachers as key 
stakeholders within two broader contexts, one related to the general notion of stake-
holder and the other related to a distinction between teacher as  stakeholder  and teacher 
as  key stakeholder  in mathematics education research. The term “key stakeholder” 
was adopted in reference to research where the teacher is considered a co-producer of 
professional and/or scienti fi c knowledge. In the subsequent presentation of examples 
drawn from the international corpus of research in mathematics education, we synthe-
sized  fi ve cases of research where the teacher participants had a “key stakeholder” role 
to play. Re fl ecting upon these examples and focussing on their commonalities and 
differences allows us now to draw out some of the important dimensions of this 
research. These dimensions include the following: re fl ective, inquiry-based activity 
with respect to teaching action; a signi fi cant action-research component accompanied 
by the creation of research artefacts by the teachers (sometimes assisted by the univer-
sity researchers); and the dynamic duality of research and professional development. 

   Re fl ective, Collaborative, Inquiry-Based Activity with Respect 
to Teaching Action 

 All  fi ve of the examples presented in the previous section involved sustained 
re fl ection on teaching action. Although the speci fi c focus and form of the re fl ection 
varied from one example to the other, the importance of this dimension cannot be 
overemphasized. Let us look more closely at the ways in which re fl ection was 
engaged in across the example-set. 

 The underlying assumption of the USA example was that teachers can improve 
their practice by studying what they do, learning how to do it better, and sharing 
their experiences with others in the  fi eld. Re fl ection was considered an essential part 
of this overall process:

  From the outset of the project, the teacher researchers engaged in many kinds of re fl ection. 
Some activities that the teacher researchers cited as provoking especially meaningful 
re fl ection included creating belief mappings, juxtaposing their belief mappings with class-
room videotapes [of their own teaching], and incorporating ideas from the study-group 
readings into their own daily practice. (Herbel-Eisenmann, Cirillo, & Otten,  2009 , p. 211)   

 Before beginning the project work, the teachers had not yet made explicit to 
themselves the beliefs that they thought drove their instructional practice. They 
were asked to create belief maps, which were a kind of semantic net that described 
“what was closest to their hearts” when they practised their teaching of mathematics. 
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According to the university researchers, “the increased awareness gained from 
developing a belief mapping enabled the teacher researchers to identify what they 
 wanted  to happen (and why) [in their classrooms] and to continually examine 
whether what they  wanted  to happen was  actually  happening” (p. 212). The con-
tinuous examining and re fl ecting on their practice in relation to what they had 
described in their belief mappings, which occurred over the duration of the project, 
took place largely as the teacher researchers watched and reviewed videotaped les-
sons. Everyone in the group watched, discussed, and re fl ected upon the videotapes 
of all the teacher researchers’ classroom teaching, with a particular focus on the 
discourse of both teacher and students. Teachers talked about how the various forms 
of re fl ection they were engaging in were enabling them to transform their thinking 
about their practice and described their increasing awareness as they constantly 
revisited their belief mappings throughout the project. In particular, the re fl ections 
that were encouraged during the project meetings helped the teachers to develop their 
own ideas for their action-research projects, of which more will be said shortly. 

 The joint re fl ective activity in the Canadian example, which alternated between 
classroom experience and review of that experience, focussed in particular on the 
dif fi culties that arose for the teachers, and for the children, as they attempted to put 
into practice the novel situations that they had co-constructed during the previous 
meeting sessions involving teachers and university researchers. This re fl ective activ-
ity often centred on the didactical and pedagogical principles that were underpin-
ning the teachers’ practices. For example, the teachers focussed on issues such as 
having the maximum number of children active, getting the children to be orga-
nized, and having the children see different ways of solving a problem and listening 
to different points of view (Bednarz,  2004  ) . This kind of collective review of their 
practice then served as a starting point for developing new teaching sequences in the 
next cycle of re fl ective activity. 

 Although the Norwegian example was similar to the Canadian one in that it alter-
nated between school activity where innovation could take place and workshops 
where both the design of tasks and re fl ective discussion occurred, the focus of the 
re fl ections was somewhat different. At the base of the Norwegian project was the 
principle of co-learning inquiry: people learning together through inquiry, where 
both didacticians and teachers were engaged in action and re fl ection, so as to learn 
not only something about the world of the other but also more about his or her own 
world. According to Jaworski  (  2008  ) , one of the reasons for introducing inquiry as 
a tool was to challenge the normal state of school mathematics teaching and to ques-
tion what that teaching was achieving. She emphasized that in an inquiry commu-
nity, participants are not satis fi ed with the normal state, but approach their practice 
with a questioning attitude, “to start to explore what else is possible; to wonder, to 
ask questions, and to seek to understand by collaborating with others in the attempt 
to provide answers to them” (p. 314). Thus, teachers’ re fl ections during the work-
shops centred on questioning, exploring, and seeking alternatives to their usual 
approaches to teaching mathematics. 

 One of the distinguishing features of the Chinese approach (sometimes also a 
part of Japanese lesson study) is the form that the re fl ection takes—one involving 
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successive iterations of a lesson. Re fl ections that are based on the observation of a 
lesson and which focus on how the lesson could be improved, which in turn feed 
into the revising of the lesson and the teaching of the new version, are then followed 
by further shared re fl ections about the new version. According to Huang and Bao 
 (  2006  ) , the re fl ections centre in particular on the promising features of the lesson 
and on the differences which remain between its design and what is considered to 
be effective practice according to the new curricular guidelines that emphasize cre-
ative thinking, problem solving, and mathematical exploration. 

 The shared re fl ections that take place during Japanese lesson study tend to focus 
on the well-developed foundational principles of Japanese mathematics teaching, 
such as paying attention to connecting lessons to students’ prior knowledge, engag-
ing students intellectually with important mathematics, having clear and explicit 
goals that address student understanding and performance, and ensuring that a given 
lesson  fi ts into an overall unit within a speci fi c grade level (Fernandez & Yoshida, 
 2004 ; for more discussion of these principles, see Corey, Peterson, Lewis, & 
Bukarau,  2010  ) . 

 In all  fi ve examples, we noted the role of the discussions and joint activities 
which served to link teachers’ practice to the re fl ective review of that practice. In 
some of the examples, these conversations involved teachers and university research-
ers; in others, teachers with teachers. But in all cases, the re fl ective activity was used 
as a vehicle for teachers’ clarifying and making explicit certain aspects of teaching 
practice. It thereby constituted a form of professional development, which is further 
discussed below.  

   The Action-Research Dimension: Teachers as Researchers 

 Action research is generally de fi ned as “systematic inquiry into one’s own prac-
tice for the purpose of learning about and changing one’s practice in order to better 
support students’ learning” (Herbel-Eisenmann,  2009 , p. 7; see also Altrichter et al., 
 2008 ; Benke, Hospesová, & Tichá,  2008 ; Krainer,  2006  ) . Action research challenges 
the assumption that knowledge is separate from and superior to practice. Atweh 
 (  2004  )  has argued that action research serves as a conduit between theory and prac-
tice because it bridges the gap between the two. In action research, the production of 
local knowledge is seen as equally important as general knowledge. All of the exam-
ples that are offered in our chapter of this volume present various approaches to 
action research, the most signi fi cant variation being between Japanese lesson study 
where teachers carry out the activity autonomously with, in some cases, externals 
(e.g., university researchers) being invited, and the other examples where the univer-
sity researchers initiate the activity and support teachers engaged in action research. 

 The most extensive and nationally widespread version of action research by 
teachers is practised in Japan within the framework of “lesson study” with its systematic 
re fl ection of practitioners on action. The teachers in a lesson study context are col-
laborative researchers who collect data, interpret it, and write down their experiences 
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in papers and books. In many cases, in order to increase the effectiveness of the 
outcomes or the dissemination of knowledge, experienced others (“critical friends”) 
are invited. Their role varies tremendously. They might participate in order to 
observe (primarily as learners), to give occasional feedback, to present an invited 
reaction, to give input, to (co-)investigate students’ growth, or to (co-)investigate 
lesson-study participants’ growth. However, in general, lesson study in Japan is 
initiated, done, re fl ected, and transferred to written artefacts by teachers for teach-
ers, in an investigative attitude towards their own practice. 

 Jaworski  (  2011  )  in discussing teachers as researchers, distinguished between, on 
the one hand, research programs in which teachers research their own practice 
within collaborative teacher practitioner-university didactician groups and, on the 
other hand, research initiatives by teachers where they are the designers of the 
research. The example of Japanese lesson study is clearly of the latter type, with 
teachers designing the research, carrying it out, and producing artefacts to be shared 
with other teachers. However, the other examples presented within this chapter do 
not fall neatly into Jaworski’s former category. Some traverse the two. For instance, 
the USA example involved a collaboration of teachers and university researchers. 
But it was the teachers who selected aspects of their classroom discourse that they 
wanted to change and then designed and carried out cycles of action research occur-
ring over more than a year, during which time they studied the impact of the changes 
on students’ social and mathematical experiences. 

 Each teacher in the project then wrote up an account of his/her action-research 
project in separate chapters of a book which documented the overall project (see 
Herbel-Eisenmann & Cirillo,  2009  ) . In their action research, the teacher researchers 
collected their own videotapes and other artefacts of practice and used these to engage 
in systematic inquiry related to their goals. Their earlier belief-mapping schemas were 
used as the standards by which the teacher researchers evaluated their own teaching. 

 Although, within the Canadian example, it was the teachers at the research school 
who approached the university researchers and asked for their assistance in a project 
that they themselves initiated, it was not the teachers who designed the research. 
This was a joint collaborative venture involving both university researchers and 
teachers. The products of the collaborative action research described in the Canadian 
example consisted of a collection of activities, of observation grids, and of class-
room materials for the school. In addition, several videos related to the situations 
tested out in class were produced by the university researchers, in collaboration with 
the teachers; these videos were to serve as material for preservice and inservice 
teacher education, as well as for a number of research publications written primarily 
by the university researchers. 

 Similarly, the research on their own practice that was carried out by the teachers 
of the Norwegian project was also designed in collaboration with the university 
researchers with whom they worked, yielding products much like the Canadian 
example. The Chinese example of teachers researching exemplary lessons, in 
collaboration with university researchers, also yielded research reports, written 
jointly by the teacher researchers and the university researchers, and video case 
studies for eventual use in teacher education programs. 
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 The  fi ve examples thus present a picture of action research that includes the 
co-production of professional and scienti fi c artefacts. The ways in which the action 
research was carried out, and the artefacts produced, can be characterized as a con-
tinuum ranging between two poles: one pole where the work is collaborative and 
shaped by input from both university researchers and teachers and where research-
ers and teachers together design, implement, and report  fi ndings of their research, 
but where the university researchers also write additional articles of a scholarly 
nature; the other pole where teachers collaborate with other teachers doing this 
work. The USA example was one that clearly straddled both poles with its teacher-
initiated action-research studies of an individual nature and teacher-written publica-
tions on that research, but within a supportive collaborative framework involving 
other teachers and university researchers.  

   The Dynamic Duality of Research and Professional Development 

 The vision that teachers conducting research constitutes a form of professional 
development presents a powerful image. In the words of Cochran-Smith and Lytle 
 (  1993  ) : “Because teacher research challenges the dominant views of staff develop-
ment and preservice training as transmission and implementation of knowledge 
from outside to inside schools, it has the potential to reconstruct teacher develop-
ment across the professional life span so that inquiry and reform are intrinsic to 
teaching” (cited in Herbel-Eisenmann, Cirillo, & Males,  2009 , p. 219). In an inter-
view just before the USA project came to an end, when teachers were asked how 
they felt about not being told what to do for their action-research studies, most 
responded that it was quite different from any of their other professional develop-
ment experiences. “To have your ideas taken seriously and to be supported in what 
you think is best over a long time” was, in the words of one of the teacher partici-
pants, a foreign but rewarding experience. Although teacher action research is still 
quite rare in the  fi eld of mathematics education, and it is even rarer for it to be 
viewed as a form of professional development, especially in the USA, the examples 
presented in this chapter are not unique. In Australia, for example, a model of pro-
fessional development, titled Improving Teaching Approaches to Mathematics 
(Pegg & Panizzon,  2011  ) , has been elaborated to underpin the process whereby 
teachers work collaboratively, with support from university practitioners, in devel-
oping and researching strategies to address issues that they have identi fi ed and 
which are relevant to their own teaching contexts. In Austria, several programs have 
been launched where teachers are supported in carrying out action-research proj-
ects, writing re fl ective papers, and in forming learning communities at their schools 
or in their districts (see, e.g., Krainer,  2011  ) . 

 Although much has already been said in this discussion section with respect to 
the importance of re fl ective activity within the  fi ve examples, its role in relation to 
professional development has not yet been articulated. Bednarz  (  2004  )  drew our 
attention to the ways in which re fl ection on action constitutes professional development. 
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In so doing, she emphasized the relevance of the knowledge that the practitioner 
constructs and develops throughout the course of his or her teaching experience, 
which then feeds into the knowledge constructed during the action-research experi-
ence. Furthermore, the shared re fl ection that occurs within the context of the research 
experience, with or without the university researcher’s contribution (as is quite often 
the case with Japanese lesson study), renders explicit the knowledge that might 
otherwise remain implicit. In the group construction process, a variety of resources 
are brought into play, all of them nourishing the professional development that is 
inherent to the situation—professional development that, according to Bednarz, is 
as signi fi cant for the university researcher as for the teacher. More speci fi cally and 
based on her experience with the Canadian project, Bednarz  (  2004  )  noted the fol-
lowing components of the process of collaborative research that she viewed as con-
tributing to the teachers’ professional development:

   A deeper re fl ection on mathematical content (learning situated in practice), • 
where teachers have the opportunity, during the discussions around the teaching 
situations and the productions of children, to improve their understanding of the 
mathematical concepts at play;  
  A new awareness of the nature of mathematical activity, where the collaborative • 
research process is also the occasion to debate what mathematical activity means;  
  New ways to look at children’s statements, where teachers have the opportunity, • 
during the discussions on the teaching situations and productions of students, to 
develop new ways to look at children’s productions, to take some distance, to 
consider different ways to solve a problem;  
  Re fl ection on the didactical variables involved in a given task and their in fl uence, • 
where the analysis of tasks moves away from super fi cial aspects and towards 
student reasoning, thereby encouraging the seeing of complexity;  
  Teaching strategies, where the arguments underlying decision making are ren-• 
dered explicit, thereby opening up other points of view;  
  An evolving relationship to the teaching of mathematics, where a changing rela-• 
tionship with teaching “know-how” is encouraged.    

 Jaworski  (  2008  )  has described, in relation to the Norwegian project, the pro-
fessional development that occurred both for the teacher researchers and the 
university researchers (didacticians): “For example, teachers suddenly came to 
see, through their study of students’ thinking and activity in algebra, how they 
could explore in their school environment ways to develop teaching and learn-
ing; didacticians saw the nature of a task that could lead to teachers’ effective 
recognition of the nature of school goals for students’ development and learning 
in mathematics” (p. 326). 

 The fact that the professional development that takes place in these types of proj-
ects occurs not just for the teachers but also for the university researchers of the 
project is a very important point. The initiators of these projects (usually university 
researchers) also experience professional development and growth in these collab-
orative research efforts—that part is seldom carefully documented or written about. 
More recently, Makar and O’Brien  (  2012  )  discussed the transformative nature of 
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collaborative research, the changes in identity, and the growth in the participation 
and perspectives of both teachers and researcher that developed over a 6-year, design 
research project on inquiry-based teaching. The teachers in Makar and O’Brien’s 
project experienced an “identity renegotiation” as they became aware of and then 
acknowledged their research contribution to the project. Meanwhile, the researcher 
documents her own professional growth as a collaborative researcher, and what she 
is learning from the teachers in the project. Makar and O’Brien refer to this as 
 re fl exivity,  the joint contributions and joint bene fi ts of teachers and researchers 
engaged in collaborative research. 

 In the Japanese example, the research that is associated with the lesson study 
process goes hand in hand with professional development and is in fact part of the 
culture of school-based professional development. The professional development 
aspect of lesson-study activity is also captured by one of its key elements in that it 
is viewed as “a way of improving yourself by looking at others ( Hito no furi mite 
waga furi naose ), with no end to improving teaching (indicating a culture of life-
long effort and continuous further development)” (Murata,  2011 , p. 10). 

 In the Chinese example, the direct link between professional development and 
research involving teachers’ practices and what they try to do in their own class-
rooms was an explicit focus, according to Li, Huang, Bao, and Fan  (  2011  ) . More 
speci fi cally, the entire research process of action, follow-up, and re fl ection, as well 
as the necessity of forming a community consisting of experts, researchers and 
teachers, is considered integral to the professional development approach adopted 
in China. 

 In their re fl ective discussions and their written research chapters, the teacher 
researchers in the USA project identi fi ed three major factors that transformed their 
own practice with regard to discourse in their classrooms and which constituted a 
form of professional development for them: (a) the in fl uence of the readings and 
research literature, (b) the importance of re fl ection by the teachers—both in study-
group discussions and written re fl ections in journal entries, and (c) the power avail-
able within a collaborative community of teachers to support one another in this 
kind of effort by teacher researchers. The creation of belief maps and subsequent 
opportunities to re fl ect on the videotapes they made of their practice proved to be 
transformative for the teacher researchers. Just seeing the data alone was not 
suf fi cient to change practice—the teacher researchers said that opportunities to 
re fl ect and to discuss with the study group whether those beliefs were actually being 
implemented in their classrooms was critical to making changes in their practice. 

 Extrapolating from the research by Herbel-Eisenmann and her colleagues sug-
gests that, for professional development to have the potential to help teachers trans-
form their practice, consideration of whether the following conditions are in place 
would be useful. Having a supportive, safe, community for the teacher researchers 
to share and discuss, maintained over a very long period of time, was clearly a deci-
sive piece in this research effort. In addition to the safe harbour of the community of 
practice, the opportunity was provided for the teacher researchers to select from a 
collection of thoughtfully chosen readings that linked to the project goals and to 
their own practice. Open discussions and analyses of the video data were conducted 
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jointly during group meetings of the university and teacher researchers. And  fi nally, 
these teacher researchers had the opportunity to write their own stories in their own 
ways, supported by the university researchers in the process. The teachers’ voice 
was crucial to the success of the work in this project.   

   Closing Remarks 

 This chapter has attempted to close the distinctive gap between research and 
practice that exists in much of the mathematics education research literature by 
viewing teachers as key stakeholders in research—stakeholders who co-produce 
professional and scienti fi c knowledge—rather than as “recipients of research,” and 
sometimes even “means” to generate or disseminate knowledge. We presented  fi ve 
examples, drawn from individual and nation-wide projects around the world, exam-
ples that offered the potential to link research and practice in clear and explicit 
ways. Our analysis of these projects revealed three salient dimensions to research 
where the teacher is considered a key stakeholder: (a) teacher re fl ection, (b) teachers 
in the role of researchers themselves, and (c) the multi-leveled professional devel-
opment experience within the research process for both teacher researchers and 
university researchers. The (co-)production of professional and scienti fi c knowl-
edge, which cut across all three of these dimensions in the examples presented, is 
considered a critical aspect of the notion of the “teacher as key stakeholder” in 
research, an aspect to which we now brie fl y return. 

 The (co-)production of professional and scienti fi c knowledge is clearly linked 
with writing papers and thus making one’s  fi ndings open for public discussion and 
critique (Krainer,  2006  ) . In general, this is rather more dif fi cult for teachers than for 
teacher educators and researchers who live in a “culture of publishing.” Despite the 
diversity between teachers’ and researchers’ worlds, discussed earlier in this chap-
ter, all  fi ve of the approaches that were presented were able to bridge these worlds 
and, as well, succeeded in promoting teachers’ writing down of the  fi ndings of their 
inquiries and investigations. This promotion was done for several reasons: system-
atic re fl ection by teachers on their own work creates new knowledge which in turn 
positively in fl uences their (future) teaching and enhances the quality of teaching. 
Writing down is an additional opportunity to learn; written artefacts increase the 
opportunities for communicating and cooperating with interested people (teachers, 
theoreticians, administrators); written artefacts help to make teachers’ professional 
knowledge more visible and accessible, and thus contribute to the further develop-
ment of the teaching profession as a whole; these artefacts also give teacher educa-
tors and researchers an additional opportunity to learn from teachers. Teachers’ own 
investigations increase their interest in research, in reading research papers, and in 
collaborating in research projects, thus building further bridges between research 
and practice. 

 The challenge now for all of us in the international mathematics education com-
munity is to consider how further to promote and systematize collaborative research 



388 Kieran , Krainer, and Shaughnessy 

work among teachers, with or without university researchers, in ways that will 
re fl ect and build upon what has been documented in the  fi ve examples presented in 
this chapter. Given the potential for professional growth from the expanded roles for 
both classroom teachers and researchers alike, and the growing documentation of 
the long-term bene fi ts for researchers, teachers, and their students from such col-
laborative research, a case can be made that all countries should consider imple-
menting a  systematic  integration of linked research and practice. Collaborative 
research with teachers has heretofore arisen on a case-by-case basis, and somewhat 
haphazardly, especially in the western countries where it has occurred. We feel that 
every country could bene fi t by implementing its own national commitment to linked 
inquiry. As has been illustrated in examples discussed in this chapter, promoting a 
national effort and national discourse around creating stronger links between 
research and practice is not only possible, but can also be rewarding for all con-
cerned. These examples can thus serve both as inspiration and model for truly bridg-
ing the gap between mathematics education research and practice. The crucial 
element is to regard  researchers as key stakeholders in practice  and  teachers as key 
stakeholders in research .      
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  Abstract   There is much debate within mathematics teacher education over ways 
in which professional and academic foci could be made to complement each other. 
On the one hand, teachers’ craft knowledge is emphasized, mainly as this relates to 
the particular and local level of teaching; on the other hand, the importance of aca-
demic subject knowledge cannot be denied. In this chapter the focus will be on how 
to blend and balance the two through activities in which teachers learn from other 
teachers, particularly the co-learning of teachers and teacher educators. It will discuss 
professional relationships, re fl ective practice, community building, and research in 
practice. Examples of research-based programs involving  lesson study  (LS) and the 
 Learner ’ s Perspective Study  (LPS) have moved the relevant research in this area to yet 
another level, in which theory and practice are combined. Projects such as these and 
others from diverse parts of the world will be presented and discussed.      

   Introduction 

 Teaching is generally regarded as a complex and demanding profession that 
requires a mixture of subject knowledge together with theoretical and practical 
knowledge, skills and understandings. Teacher learning may originate from personal 
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re fl ections on classroom experiences, professional readings, and other sources. 
However, the variations in teachers’ learning sources have not been systematically 
documented and thus have had little input into the wider collective knowledge and 
theoretical underpinnings of teaching. Yet there exists a body of theoretical and 
teaching craft knowledge that is available to teachers (see, e.g., Wood, Jaworski, 
Krainer, Tirosh, & Sullivan,  2008  ) . As well, focussing on a teacher’s knowledge 
base reveals a multi-faceted, multi-sourced, highly interconnected mix that has 
de fi ed the formation of widely accepted, common comprehensive frameworks. 
The confounding issues are whether and to what degree this knowledge is “private 
knowledge based on personal experience and only in the personal realm of thinking 
and acting,” or is “knowledge coming from and staying in practice,” or is “discur-
sively generated, shared, and general knowledge” (Neubrand, Seago, Agudelo-
Valderrama, DeBlois, & Leikin,  2009 , p. 211). 

 There is a need to clarify the difference between teachers’ theoretical knowledge 
and knowledge that arises from the teaching experience. It is common in education 
literatures for the term “craft knowledge” to be used to encapsulate the professional 
action-oriented knowledge used by teachers in their classroom teaching (Cooper & 
McIntyre,  1996  ) .

  Craft knowledge describes the knowledge that arises from and, in turn, informs what teach-
ers do. As such, this knowledge is to be distinguished from other forms of knowledge that 
are not linked to practice in this direct way … Neither is it knowledge drawn from theoreti-
cal sources. Professional craft knowledge can certainly be (and often is) informed by these 
sources, but it is of a far more practical nature than these knowledge forms. Professional 
craft knowledge is the knowledge that teachers develop through the processes of re fl ection and 
practical problem-solving that they engage in to carry out the demands of their jobs. (p. 76)   

 In contrast, theoretical knowledge generally lays down principles and frame-
works derived from research studies that are often replicable and can be generalized 
to other contexts. This kind of knowledge is less focussed on the individual teacher 
or on small practical details required for teaching. Research has sought to identify 
and articulate the types of professional knowledge that a successful teacher would 
need. The seminal work of Shulman  (  1986  )  and colleagues proposed that a basis of 
professional knowledge would contain: (a) content knowledge both substantive and 
syntactic; (b) general pedagogical knowledge including generic principles of class-
room management; (c) curriculum knowledge including materials and programs; 
(d) pedagogical content knowledge that for a given subject area included forms of 
representation, concepts, useful analogies, examples and demonstrations; (e) knowl-
edge of learners; (f) knowledge of educational contexts, communities and cultures; 
and (g) knowledge of educational purposes. 

 A number of researchers have re fl ected upon Shulman’s work in their studies 
regarding teachers’ learning. For instance, Even and Tirosh  (  2008  )  claimed that in 
coining the term pedagogical content knowledge, Shulman contributed greatly to 
the discussion of what teachers needed to know about students’ mathematical learn-
ing. On the other hand, pedagogical content knowledge has been the subject of 
much debate, particularly regarding its epistemological status (Ponte & Chapman, 
 2008  ) . Although Shulman’s work provided a suitable beginning for the growth of a 
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framework, there has been considerable development by other researchers. 
For example, Hill, Ball, and Schilling  (  2008  ) , in seeking to conceptualize the 
domain of effective teachers’ unique knowledge of students’ mathematical ideas 
and thinking, proposed the domain map for mathematical knowledge for teaching 
shown in Figure  13.1 .  

 Tim Rowland and his colleagues (see, e.g., Rowland,  2008,   2009 ; Rowland, 
Huckstep, & Thwaites,  2005  )  suggested a framework that had four domains of 
knowledge: Foundation, Transformation, Connection and Contingency. This frame-
work, which Rowland dubbed the “knowledge quartet,” developed as the result of 
an analysis of data gathered from observations of prospective teachers, and it has 
now been applied to the work of practising teachers (Rowland,  2009  ) . It drew atten-
tion to the importance of a teacher’s knowledge at any given time, and also to the 
teacher’s development of knowledge over time. 

 Shulman’s  (  1986,   1987  )  categorization can be contrasted with the European 
focus on  the didactics of mathematics  ( didactique ), which is concerned with theo-
retical and practical issues surrounding mathematics curricula and teaching, and 
their relationships with learning. The European emphasis is on designing didactical 
situations which acknowledge and incorporate important transitions from mathe-
matics itself to the ways in which that mathematics is brought to students in educa-
tional contexts. 

 Kilpatrick  (  2003  )  reported that  didactique  went beyond the art and science of 
teaching to include: learning and school systems; an intensive common epistemo-
logical analysis given to mathematical concepts and a shared methodology that is 
not to be found in U.S. research; the use of mathematics more extensively as a 
source of metaphors; a mode of analysis which proceeds from elaborate, a priori 
analyses to experimentation in the classroom. Sustained attention is to be given to 

  Figure 13.1.    Domain map for mathematical knowledge for teaching (from Hill, Ball, & Schilling, 
 2008 , p. 377).       
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classroom teaching and to the social context in which teaching and learning occur. 
It focusses intrinsically on the missing element for which Shulman introduced the 
term pedagogical content knowledge. There is considerable available research, 
conducted over several decades, focussing, in France, on didactical and adidactical 
situations (Brousseau,  1992  ) , in Germany on the epistemological nature of teachers’ 
thinking (Steinbring,  1998  ) , and in the Netherlands, among researchers at the 
Freudenthal Institute (Gravemeijer,  1994a,   1994b ,  2000 ; van den Heuvel-Panhuizen, 
 2001  ) , on  Realistic Mathematics Education . 

 The mixture of theoretical and practical learning that forms a teacher’s knowledge 
base is open to many in fl uences—from other teachers, friends, experiences in and 
out of school, subject associations, teacher-education programs, acknowledged pro-
fessional experts, etc. The idea of teachers learning from teachers can conjure many 
different images. It is evident in the literature that there is no consensus regarding 
the use of terms such as teacher professional development and teacher professional 
learning. The terms are often used interchangeably and with little or no de fi nition of 
their meanings (Even,  2008  ) . Clements  (  2008  )  was critical of attempts to de fi ne 
professional development as the planned, formal activities and programs that teach-
ers undertake to extend their professional learning, and professional learning as the 
individual growth of a teacher’s expertise. Professional development can be the 
result of numerous activities that are neither planned nor ostensibly formal—such 
as classroom experiences, reading, and informal activities and experiences. 

 The term “professional development” of teachers has often, in the past, implied 
a de fi cit view of teachers, emphasizing elements of knowledge which teachers lack, 
or ways in which teachers need to be developed (Dawson,  1999 ; Hoyles,  1992 ; 
Ponte,  1994  ) . The implication is that people who have access to theoretical knowl-
edge (possibly teacher educators, or didacticians) are in a position to remedy the 
de fi cits in teaching by changing the practices of teachers. Such a view is simplistic, 
implying that those with the theoretical knowledge could translate that knowledge 
into classroom practice if given the opportunity to do so. It ignores the complexities 
of teaching practice—there are many factors which in fl uence what teachers can do 
in the educational settings in which they work. 

 Simon  (  2008  )  wrote about two kinds of commonly available programs which 
in fl uence learning and development of practising teachers—programs which focus 
on content  and  process, and those which are solely  process based . According to 
Simon, programs which focus on content and process include “courses and work-
shops for teachers in which teacher educators aim to promote particular mathemati-
cal and pedagogical concepts, skills and dispositions” (p. 18). They can be considered 
as professional development programs in which teacher educators have an agenda 
for the learning of “participating teachers” (for example, for participants to become 
aware of research on students’ strategies and errors in the teaching of algebra). With 
such programs it is typically assumed that participants’ personal and professional 
learning will be stimulated. The process only category, according to Simon, includes 
programs such as  lesson study  (LS) and inquiry-based models, on which more will be 
said upon later in this chapter. In this category we would also include  developmental 
research  programs in which it is expected that participating teachers’ engagement 
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in research (possibly in partnership with teacher educators) will contribute to the 
improvement of teaching. 

 Teachers belong to communities situated within and around schools, and to edu-
cational systems created by the societies and cultures to which the schools belong 
(Wenger,  1998  ) . The teachers construct professional identities within these socio-
cultural and historical settings in line with the norms and expectations which pre-
vail. The kinds of planned professional development programs that would be 
expected to occur in these settings and practices would include Simon’s two catego-
ries of professional learning programs. Participation would give rise to situated 
learning arising from everyday interactions within particular environments. In all of 
these cases, a teacher’s development would most likely be related not only to the 
programs but also to that teacher’s prior knowledge and experience. 

 The study of mathematics teachers and mathematics teaching, and associated 
learning outcomes, will be resumed later in this chapter with the presentation of a 
range of programs relating to Simon’s two categories. That further discussion will 
highlight the concomitant learning of teacher educators who work with teachers for 
the purpose of developing the quality of teaching and, therefore, learning. Before 
resuming, it will be appropriate to brie fl y discuss the forces and in fl uences that exert 
pressure on the nature and delivery of these programs.  

   Local, National, and Global In fl uences on Teachers, 
Teaching and Learning 

 Professional development programs and teacher professional learning are 
in fl uenced in varying degrees by research across the  fi eld of education. These pro-
grams will be in fl uenced by a mix of international, national and local research pres-
sures and initiatives, the actual mix depending on contexts and personnel in any 
particular place at any particular time. An international in fl uence could be the result 
of globalization; a national in fl uence could be a perceived need to conform to a 
national standards document; and a local in fl uence could be a school principal’s 
desire to adopt an outcomes-based education approach within a school. 

 With the growth in communication technologies and stimulus to information 
 fl ow, and the increased ease of overseas travel, it is common to hear that we live in 
a global world, and that the world has become a global village. Globalization has 
become a familiar, albeit imprecise, term associated with multiple and signi fi cant 
changes currently happening in all areas of social life (English,  2008 ; Stromquist & 
Monkman,  2000  ) . Not surprisingly, education is also subject to forceful changes 
arising from globalization, particularly when the focus is on information  fl ow and 
the possibilities for world-wide communication. Research in mathematics educa-
tion is a global enterprise and as such is caught up in the wider movements that 
in fl uence all educational research. Other chapters in this  Handbook  make it abun-
dantly clear how Trends in International Mathematics and Science Study (TIMSS) and 
the Programme of International Student Assessment (PISA) are examples of 
 programs whose in fl uence has speedily transcended national boundaries. 
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 English  (  2008  ) , in her introduction to a handbook on research in mathematics 
education, stated: “In recent years, we have seen a major shift within the  fi eld of 
mathematics education from a mainly psychological and pedagogical perspective to 
one that encompasses the historical, cultural, social, and political contexts of both 
mathematics and mathematics education” (p. 4). It should be noted that globaliza-
tion is not always equitable in that family and other local conditions can restrict 
access to information coming from, say, the Internet. This has been felt particularly 
in the experience of one of our authoring team who had dif fi culty accessing articles 
relating to this chapter because they appeared in books which were not available in 
her country. 

 One of the main dif fi culties in the dissemination of knowledge to teachers in 
some countries is the lack of an agreed means. We provide a concrete example from 
Iran, involving the quarterly journal  Roshd: Mathematics Education Journal , which 
is one of 16 subject-bounded journals and 15 general magazines titled “Roshd” 
published by the Ministry of Education in Iran. One of the authors of this present 
chapter, Gooya, is the editor of the  Mathematics Education Journal . Since 1996, a 
special section, titled “Teachers’ Narrative,” has been included in the  Journal  in 
order to disseminate the research  fi ndings of teacher researchers arising mainly 
from action-research projects conducted either locally or at district level. Teachers 
were also encouraged and assisted through personal communications to write schol-
arly papers, which were included in the  Journal . Such publications sometimes gen-
erated workshops at annual national mathematics education conferences. The 
 Journal  had another section called “Viewpoints” in which teachers could share their 
ideas and receive feedback from their colleagues. The number of teachers commu-
nicating with this journal dropped sharply during the 2009–2010 academic year and 
this trend has continued. The editorial board investigated the reasons for the dra-
matic change and found that the formal educational system had announced that 
teachers could not get credit for their professional promotion by publishing in this 
or other similar journals. They could only get credit by publishing in university 
journals or journals of scienti fi c societies approved by the Ministry of Science, 
Research and Technology (which is responsible for higher education and any forms 
of tertiary education). Thus, a single act by authorities could deny teachers the 
opportunities offered by the journals for disseminating their practical or craft 
knowledge. 

 It is interesting that this same kind of in fl uence has been a reality in western 
academic circles for many years—where it is well known that getting a publication 
in a “top” journal (like, for example,  Journal for Research in Mathematics Education , 
or  Educational Studies in Mathematics ) would be likely to “count” towards promo-
tion, but a publication in a local “teaching” periodical would not. The message 
implicitly conveyed has been that publication in a peer-reviewed  research  journal is 
more important than publication in a periodical for which the readership is mainly 
school teachers. 

 Global forces should not be all powerful and should not completely mould local 
contexts into uniform shapes—that is because global forces do not take account for 
local realities. Education researchers have highlighted problems in adopting global 
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programs because “pedagogical methods are culturally embedded, and transplanting 
them from one culture to another is not always feasible” (Hatano & Inagaki,  1998 , 
p. 101). That said, there can be little doubt that, increasingly, local education con-
texts are being in fl uenced by local, state and national authorities. For example, 
Japan, Malaysia and the UK have mandatory national curricula. Australia and the 
USA do not, but both may be moving towards getting one (see, e.g., Australian 
Curriculum Assessment and Reporting Authority (ACARA),  2010a,   2010b  ) . Yet, 
independently of whether a national curriculum exists, local contexts cannot be 
fully understood without taking account of global in fl uences. Stromquist and 
Monkman  (  2000  )  point to efforts of groups to recapture traditional values and iden-
tities as unintended effects of globalization and the reassertion of the importance of 
local contexts. 

 Is there a middle path to blend and balance the global and local forces through 
the activities of teachers learning from other teachers? It is within this interplay of 
the two forces that Robertson  (  1995  )  used the term “glocalization” to explain the 
process whereby the global and the local interpenetrate each other, creating a hybrid. 
This hybrid adapts and blends global trends with local conditions and options. 
In other words, global trends are contextualized into the speci fi cs of local settings. 

 This interplay of global and local in fl uences can be seen within the distinction 
made between formal research knowledge which is theoretical and able to be gen-
eralized across contexts and the practical knowledge of the teacher which is based 
at the particular and local context level (Fenstermacher,  1994  ) . Teachers often con-
centrate on their own localized insights and improvements to practical—although 
published research can also be local in its focus. A survey of 282 research articles 
published between 1999 and 2003 in international journals, international handbooks 
of mathematics education, international mathematics education conference pro-
ceedings, and in national and regional sources revealed that more than 60% were 
small-scale qualitative studies of a single teacher or small group of less than 20 
teachers, and that 72% were conducted by teacher educators studying teachers with 
whom they were working (Adler, Ball, Krainer, Lin, & Novotná,  2005  ) . In a review 
of Australasian research between 2004 and 2007, Anderson, Bobis, and Way  (  2008  )  
observed that “smaller-scale studies tended to rely on self-report data and that few 
incorporated signi fi cant amounts of observation data to help validate the self-re-
ported  fi ndings … due to the labour-intensive and high cost involved when studies 
incorporate classroom observation” (p. 327). 

 The knowledge and results from many action research studies, conducted by teach-
ers, have not been disseminated widely, and in such a circumstance any impact from 
a study is likely to have been con fi ned within the local school or community. One 
result has been that teacher inquiry and practitioner research has been regarded “almost 
as second-level research paradigms in educational research, relevant mainly to improv-
ing professional practices rather than furthering the general  fi eld of education research 
and theory” (Lingard & Renshaw,  2010 , p. 35). From this perspective of formal 
research, teachers could be seen as simply translators or interpreters of educational 
research completed elsewhere, or sometimes as merely the objects of formal research. 
One result of the fact that university- and system-based academics have often had 
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greater access to power and resources than school-based teachers has been that many 
teachers have felt at liberty to ignore or reject academic research  fi ndings, which they 
perceive as coming from the “ivory tower.” Moves towards research partnerships 
between teachers and teacher educators have changed this situation somewhat, how-
ever not completely, as will be seen in some of the examples which follow. 

 In the face of criticism, there has been increased support for the concept of 
“teacher-as-researcher,” because of its focus on local issues and change. In the  fi rst 
 International Handbook of Mathematics Education,  Crawford and Adler  (  1996  )  
argued that active teacher participation in research on their own professional prac-
tice was a pre-requisite to changing and improving student educational outcomes. 
They highlighted educational change and issues associated with the lack of dissemi-
nation of formal research  fi ndings, pointing out that often university research did 
not reach teachers and therefore did not have much chance of affecting teaching and 
learning in schools. 

 Since then, an International Group for the Psychology of Mathematics Education 
(PME) working group focussed on the “teacher as researcher in mathematics edu-
cation,” published a book of papers (Zack, Mousley, & Breen,  1997  )  germane to 
the teacher/teacher educator interface. And, since its  fi rst issue in 1998, the  Journal 
of Mathematics Teacher Education  (JMTE) has published many papers relating to 
teacher research, mostly written by teacher educators who work with teachers. 
Indeed, the  fi rst article in the  fi rst volume reported a study of the learning of teach-
ers who explored questions relating to their own practice (Jaworski,  1998  ) . We will 
brie fl y describe this project (the Mathematics Teacher Enquiry project) later in this 
chapter. 

 The practices of teacher research and some of the related issues for the learning 
and development of teachers were captured in the  Second International Handbook 
of Mathematics Education  in 2003, in which it was claimed that the roots of the 
teacher-as-researcher movement lay in a paradigm shift that focussed on teachers as 
knowers and thinkers. This shift grounded theory in practice and insisted that knowl-
edge derived from research was necessarily personal. It was claimed that the value 
of knowledge arising from teachers’ research into their own teaching “was accom-
panied by an explicit rejection of the authority of professional experts who pro-
duced accumulated knowledge in scienti fi c settings for use by others in practical 
settings” (Breen,  2003 , p. 528). 

 In 2005 an ICMI study conference on mathematics teacher education produced a 
publication focussed on teacher learning through research in practice (Even & Ball, 
 2009  ) . One of the two main sections in this publication was devoted to  Teachers 
Learning in and from Practice . As well, a  fi rst  Handbook of Mathematics Teacher 
Education  was published in four volumes, and each volume included chapters 
related to teacher research (Wood et al.,  2008  ) . The fourth volume was devoted to 
the learning of teacher educators who worked with teachers in various modes of 
practice-based activity. 

 The rise of the teacher-as-researcher movement was accompanied by a renewed 
focus on theory and theory development in mathematics education, evident in 
recent publications such as those mentioned above and in the  Second Handbook of 
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Research on Mathematics Education  (Lester,  2007  ) , which devoted most of its  fi rst 
section to this theme. The 29th annual conference of PME held a special “Research 
Forum on Theories of Mathematics Education.” Theories in mathematics education 
were emerging, not only global theories such as constructivism or socio-cultural 
theory, but also more localized theories in speci fi c areas such as knowledge in teach-
ing (cf., the knowledge quartet mentioned above), including the personal theories 
of teachers and teacher educators, which were mostly based on their experiences in 
practice. These theories often gained status through their use by members of the 
international community and through associated debates in scholarly publications 
and conferences (see, e.g., Niss,  2007  ) . Gradually, as a result of such dissemina-
tion and debate, relationships between theory, knowledge, and practice have begun 
to emerge. 

 Teachers’ theories which are tested in practice and are an in fl uential part of that 
practice are often not articulated clearly. Nor are they always subjected to careful 
scrutiny outside a minority of theory-inclined mathematics education researchers. 
Teachers may develop teaching practices, and informal associations of ideas associ-
ated with their teaching, by being part of a community of teachers within a school 
or local area. Without the in fl uence of more global theoretical teaching knowledge 
which teachers themselves embrace, both in their minds and in their professional 
behaviours, the teaching community may continue to perpetuate existing practices 
irrespective of how well, or otherwise, these practices are generating high quality 
student learning. 

 The “glocal” or balanced way was taken up by Lingard and Renshaw  (  2010  ) , who 
entered the teacher-as-researcher debate by arguing that teaching should be both a 
research-informed and a research-informing profession. Not only should teachers 
have a “researchly disposition” but educational researchers should have a “pedagogi-
cal disposition” which entails a desire for multiple forms of dissemination. Lingard 
and Renshaw  (  2010  )  strongly supported the concept of co-learners and proposed the 
use of design research practices because, they maintained, these blend applied and 
theoretical positions and acknowledge teachers and academic researchers as equal 
partners in the production of knowledge. “Design research elevates the importance 
of teachers as research collaborators, not just at the local level in relation to context-
speci fi c professional practices, but in terms of developing more general insight and 
transferable knowledge about teaching and learning processes” (p. 36). 

 Jaworski  (  2004  )  made a distinction between design research and developmental 
research in terms of the degree of involvement of teachers. She argued that with 
design research, teachers often were included merely to test out designs developed 
by external researchers (see for example, Witmann,  1998  )  whereas, in developmen-
tal research, teachers were included in the decision-making process that generates a 
design. Cobb and colleagues, who have offered a range of activities in which the 
involvement of teachers can be seen to vary considerably (Cobb, Confrey, di Sessa, 
Lehrer, & Schauble,  2003  ) , saw distinctions between design and developmental 
research as blurred. 

 In the  Second International Handbook of Mathematics Education,  Breen  (  2003  )  
provided some examples of attempts to  fi nd connections between teacher education 
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as a  fi eld of practice and as a  fi eld of research. One example was the spread of the 
Japanese process of  lesson study  (LS). Breen concluded his chapter with an appeal 
to mathematics education researchers to seek closer collaboration with teachers. 
Breen’s appeal resonated with the general theoretical position emerging among 
mathematics educators (Even & Ball,  2009 ; Wood et al.,  2008  ) . 

 In the remainder of the chapter we explore professional relationships, re fl ective 
practices, and community building that have led to genuine learning on the part of 
both teachers and teacher educators. In the next section we consider relationships 
between research and development in mathematics teaching, focussing particularly 
on ways in which research can be seen to provide a basis for developing knowledge 
and practice in teaching.  

   Research as a Basis for Learning in Teaching 

 Earlier in this chapter, in our brief discussion of pedagogical content knowledge 
and  didactique,  we reported some research studies that sought to identify and articu-
late better the types of professional knowledge that a successful teacher or teacher 
educator would need. We also referred to an existing division between research and 
craft knowledge and to various attempts to remove it. In this section, we examine 
studies that seek to maximize professional knowledge creation as the practices of 
researching and teaching become more coordinated and knowledge conversion from 
one practice to the other is encouraged by educational authorities (Ruthven & 
Goodchild,  2008  ) . It will be seen that it is now well recognized, both inside and 
outside the mathematics education research community, that there is value in mini-
mizing the gap between the theoretical expert and the classroom teacher by using 
research methodologies and practices that (a) place the teacher in the genuine role 
of a researcher, and (b) problematize the teaching process rather than simplify it 
(Pritchard & Bonne,  2007  ) . 

 These desirable aims must be achieved in a wider context. Thus, for example, 
re fl ecting wider global trends in the period 2004–2007, the national governments in 
New Zealand and Australia promoted the development of accountability measures 
for funding and research, and this has been re fl ected in the Australasian mathematics 
education research output. According to Forgasz et al.  (  2008  ) , there has been:

   A decrease in creative and idiosyncratic research and an increase in program • 
research;  
  A decrease in individual research and an increase in group or team research;  • 
  A decrease in funding for basic research and an increase in funding for practice-• 
oriented projects; and,  
  A decreasing concern with the quantity of research and an increasing concern • 
with the quality of research.    

 During the last decade there has been a steady increase in the number of publica-
tions reporting teacher-education research from around the world, and many of the 
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publications are making clear the value of collaborative work among mathematics 
teachers or between teachers and researchers (Krainer & Wood,  2008  ) . A variety of 
methodologies and organizational features can be identi fi ed in these studies and the 
research is contributing to teaching development and the associated professional 
learning of teachers. 

 Our discussion will be informed by the use of a framework developed by Jaworski 
 (  2003  )  based on research with teachers in which teachers took on a practitioner-
researcher role (Jaworski,  1998,   2001  ) . She suggested that the research itself can 
be an important mediating tool for teaching–learning development and proposed a 
framework for theorizing such mediation which consisted of four paired 
constructs:

   knowledge and learning,  • 
  inquiry and re fl ection,  • 
  insider and outsider,  • 
  individual and community (Jaworski,  • 2003  ) .    

  Knowledge and learning  de fi ne an epistemological dimension in which partici-
pants bring their own thinking, beliefs and expertise to the research setting and learn 
through interactivity and dialogue within the community.  Inquiry and re fl ection  
form a research dimension in which questions asked about practice and re fl ection on 
engagement in practice lead to new questions and new ways of doing and being. 
 Insider and outsider  recognizes the roles of teachers and teacher educators in pro-
cesses of teaching development, both as insiders inquiring into their own practices 
and as outsiders researching the practices and development in teaching related to 
local and general knowledge (Bassey,  1995  ) .  Individual and community  recognizes 
the importance of collaborative activity to the developmental enterprise and ways in 
which collaboration contributes to development for individual participants. 

 The term “developmental research” is sometimes used to refer to research which 
encourages development as well as documenting the developmental process. 
Stenhouse  (  1984  )  suggested that research is “systematic inquiry made public” 
(p. 120). Consistent with this point of view, we regard as research the activity of 
teachers who engage in systematic inquiry into their own practices and share their 
thinking and outcomes with other teachers and professionals. It is hard for teachers 
to take on researcher roles, since the practice of teaching is extremely demanding 
(McIntyre,  1997  ) , and the nature of being a researcher can be perceived as not being 
within the accepted roles of a teacher. However, when collaborations are formed 
with university researchers, or teacher educators, the knowledge that both groups 
bring to the collaboration can enable a research or  inquiry  process to be established 
(Elliot,  1991 ; Jaworski,  1998,   2008  ) . 

 In a developmental research project, development and research act as two sides 
of the same coin and participants are central players collaborating in action and 
outcome. Teachers are insider researchers, studying aspects of their own practice 
and of their students’ learning. Teacher educators are often outsider researchers 
studying the development of teaching which arises through teacher research. They 
can also be insider researchers if they concomitantly study aspects of their own 
practices in promoting teaching. The inquiry processes that are involved can result 
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in new knowledge in practice (insider research) and new knowledge about practice 
(outsider research). Outsider research can lead to more generalized knowledge 
available for inspection and critique in the academic community (Jaworski,  2003  ) . 

 Developmental research can be seen as both a democratic and a critical approach 
to professional enhancement and improving practice (Goodchild,  2008  ) . It is demo-
cratic when it includes participants in collaborative engagement and respect, valu-
ing knowledge of different kinds from different sources (Herbert,  1989  ) . It is critical 
when it encourages insight into and questioning of the processes and practices of its 
participants by the participants themselves (Carr & Kemmis,  1986  ) . Collaboration 
is a basis for democratic engagement and inquiry provides the critical dimension. 

 Research into the professional practice of teaching, and teachers’ learning about 
teaching, has suggested that engagement in inquiry processes can be a strong force 
for teaching development (Cochran Smith and Lytle,  1999 ; Jaworski,  1998 ; Wells, 
 1999  ) . Cochran Smith and Lytle  (  1999  )  referred to inquiry as “stance.” Teachers 
taking on an inquiry stance start to think differently about teaching and through 
their re fl ections on the teaching process are able to modify teaching in critical ways. 
Wells  (  1999  )  reported similarly, focussing particularly on the role of dialogue in 
encouraging new thinking and development. The collaborative nature of an inquiry 
process is central to teaching development. Teachers have the opportunity not only 
to inquire into their own practice and to modify practice (which is extremely hard to 
achieve alone) but conversations with their colleagues in an inquiry community 
enable both the encouragement of an inquiry approach and a sustaining of inquiry 
activity. If the inquiry community also includes university colleagues then the 
outside knowledge they bring of published research and theory can provide an 
important additional dimension (Jaworski,  2008  ) . 

 Central to such an approach is the idea of creating or developing an “inquiry 
community” in which practitioners re fl ect on their own activities and, overtly, 
develop knowledge in practice. In order to theorize  inquiry community , we might 
start from the concept of a  community of practice  (hereafter “CoP”), drawing on 
Wenger  (  1998  ) . The term “community” designates a group of people identi fi able by 
who they are in terms of how they relate to each other, their common activities and 
ways of thinking, beliefs and values. Activities are likely to be explicit, whereas 
ways of thinking, beliefs and values are more implicit. Wenger  (  1998  )  described 
community as “a way of talking about the social con fi gurations in which our enter-
prises are de fi ned as worth pursuing and our participation is recognizable as compe-
tence,” and commented that “the social con fi gurations in which our enterprises are 
de fi ned” are the basis of practice (p. 5). In our  fi eld we might think of the practice 
of teaching mathematics. Teachers teaching mathematics within a school setting 
might be seen to form a community of mathematical teaching practice with its own 
norms and expectations and ways of being and doing. Mathematical knowledge 
provides a  foundation  for such practice (Rowland,  2008  ) , being the basis of didacti-
cal knowledge and informing pedagogy. 

 Wenger has suggested that  belonging  to a CoP, that is having identity within a 
CoP, involves  engagement ,  imagination  and  alignment . Thus, in practices of math-
ematics learning and teaching, participants engage in their practice alongside their 
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peers, use imagination in drawing on their foundational knowledge and interpreting 
their own roles in the practice and align themselves with established norms and 
values. However, the expectation that teachers will align themselves with the prac-
tices in their school environment may not promote possibilities for development. 
Brown and McIntyre  (  1993  ) , after gathering data through observations in class-
rooms and conversations with teachers, talked of classroom activity settling into 
“normal desirable states” (p. 54) in which teacher and students were comfortable 
with activity and expectations. Such normal “desirable states” may run counter to 
the need to develop students’ con fi dence in mathematics and strong conceptual 
understandings. A community of inquiry, therefore, seeks to challenge the status 
quo, not to change it overnight, but to start to question and to look critically at what 
alternatives might be possible; then to start to think and act differently. In such an 
inquiry approach,  alignment  becomes  critical . This means that while aligning with 
the norms and expectations of the school environment, teachers might start to ask 
questions about ways in which teaching and learning are approached, and start to 
explore, and to inquire into alternative possibilities. The idea of critical alignment is 
central to that of an inquiry community (Jaworski,  2006  ) .  

   Learning of Teachers and Teacher Educators 

   Mathematics teacher education is more dif fi cult and complex than mathematics education, 
because it subsumes all of the latter. Likewise, research in mathematics teacher education is 
more dif fi cult and complex than research in mathematics education. (Simon,  2008 , p. 27)   

 This quotation from Simon recognizes that research in mathematics teacher 
education of necessity requires attention to several layers. Study of teacher learning 
(of mathematics teaching) requires within it a study of the concomitant learning of 
students in the mathematics classrooms where teachers teach (see Figure  13.1 ). 
Without the latter, a study of teacher learning is hollow. As Pring  (  2004  )  stated, “an 
action might be described as ‘teaching’ if,  fi rst, it aims to bring about learning, sec-
ond, it takes account of where the learner is at, and, third, it has regard for the nature 
of what has been learnt” (p. 23). Thus, to study the learning of teachers, we have to 
attend to how they create opportunities for the speci fi c students with whom they 
work, and how they consider the associated learning outcomes. 

 It is possible that the issue might indeed be even more complicated than this. 
Although it is possible to conduct research into teacher learning in the natural set-
tings of teachers’ everyday classroom practices with their students, most often, in 
studying teacher learning, researchers focus on some teacher education program 
 designed to promote  development. Often, the people undertaking the research and 
reporting it in scholarly papers are themselves the teacher educators conducting the 
programs. As Chapman  (  2008  )  has pointed out, many such research reports focus 
on the nature of teaching and the learning of teachers, with no consideration given 
to the teacher educators’ own learning from their activity for promoting teachers’ 
learning. It is as if the practices of the teacher educators are not of critical concern. 
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 Mathematics teacher educators (“MTEs”) are themselves teachers, and in many 
ways their activities parallel the teaching activities of school teachers. They are 
professionals who work with practising teachers and/or prospective teachers to 
develop and improve the teaching of mathematics, just as school teachers work with 
students to develop students’ mathematics knowledge and understanding. MTEs are 
often based in university settings with academic responsibilities. They are often 
both practitioners and researchers. They have to take account of what a teacher 
already knows, and does, and to have regard for the nature of what has to be learned 
(Pring,  2004  ) . In their research roles, teacher educators have responsibility for con-
ducting research into the education of teachers and such research can result in devel-
oping knowledge in practice for both groups of practitioners. Thus we might ask, 
 How do mathematics teachers and teacher educators learn and develop? 

   What forms of knowledge are important for teachers? For MTEs?  • 
  In what ways does engagement in activity with teachers lead to learning and • 
development for the MTE and vice versa?  
  What programs in mathematics teacher education have been signi fi cant for the • 
learning and development of teachers and MTEs?    

 Figure  13.2  suggests related aspects of teacher and MTE knowledge.  
 Both groups have knowledge of mathematics, pedagogy, etc., as shown in B 

(in Figure  13.2 ). This knowledge may take different forms for each group, but it 
nevertheless provides a basis for communication through common areas, experi-
ence and interests. In addition, each group brings its own specialist knowledge as 
shown in A and C. Educators do not generally have the knowledge indicated in C 
and teachers generally do not have that indicated in A. A surrounding rectangle (not 
shown) might represent the deep complexity of educational environments in which 
teaching development is situated. 

  Figure 13.2.    Related aspects of mathematics teacher and mathematics teacher educators’ knowledge 
(from Jaworski,  2008 , p. 336).       

 



40713 Teachers Learning from Teachers

 In the rest of the chapter we present a range of examples of projects and programs 
which illuminate the concepts discussed above. Our focus is on research in mathe-
matics teacher education which has revealed and/or contributed to development in 
teaching mathematics and in which teachers and teacher educators have learned 
from each other. We draw particularly on projects with which we are familiar 
through our own engagement as researchers and practitioners with mathematics 
teachers in diverse parts of the world, seeking to develop mathematics teaching 
practice. We consider the development of teaching knowledge for both teachers and 
teacher educators. 

 In what follows, we use the structure of three main headings and a number of sub-
headings. The three main headings correspond to teachers learning from teachers as a 
result of participating in: (a) large-scale projects; (b) small-scale professional learn-
ing; and (c) preservice programs. These will be applied loosely as some studies could 
appear under more than one heading. Under the structure, in each of the modes of 
teachers’ learning it is likely that teacher educators will be involved, sometimes as 
leaders in the education of teachers and sometimes as researchers. Such roles are 
not unproblematic and so we take up issues of teacher educators’ roles and indeed 
teacher educators’ learning alongside those relating to the learning of teachers. 

   Teachers Learning from Teachers in Large-Scale Projects 

 In this section, recent studies arising from large-scale professional development or 
research projects are presented. The adjective “large-scale” was considered to include 
those studies that drew upon systemic, state-wide, or multi-country projects as well as 
studies or projects in local areas that involved schools and non-school environments 
such as universities. The focus for these projects is their impact on the professional 
learning of teachers, on curriculum reform and on improved student outcomes. 

 All of the programs described in this section except the  Learner ’ s Perspective 
Study  (LPS) possessed, to varying degrees, the following common features con-
cerning the working process and the results (hereafter “CFPR” for common fea-
tures of process and results). To avoid duplication, these common features will be 
assumed and only unusual or unique aspects will be highlighted. What were the 
common features? Firstly all programs incorporated workshops involving mathe-
matics teachers and MTEs. These workshops were conducted at universities, 
schools or other institutions. All involved teachers conducting research into aspects 
of their own practice within their own schools, and communicating their activities 
and  fi ndings in the workshops. All involved MTEs who contributed, to the work-
shops, relevant material from research and other literature related to the teachers’ 
own explorations, or expectations arising from mandated curriculum reform. 
Common features of the reported results were learning improvement of teachers in 
developing knowledge of theories and research, and insights into new approaches in 
the classroom. MTEs developed greater awareness of teachers’ ways of thinking and 
of the challenges and limitations within schools and classrooms. Thus mathematics 
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teachers and MTEs modi fi ed their ways of being and thinking to accommodate 
those of other teachers and MTEs, and this accommodation resulted in challenges 
to existing practices and new ways of perceiving each other. This growth of aware-
ness led to a greater depth of understanding between mathematics teachers and 
MTEs which enabled them to deal with the issues that arose and to work towards 
productive development. 

 The theoretical ideas involving community of inquiry and critical alignment 
were the basis for two government funded, 4-year projects in Norway: “Learning 
Communities in Mathematics” (LCM) and “Teaching Better Mathematics” (TBM). 
The  fi rst involved 14 didacticians of mathematics (mathematics educators) from one 
university and about 30 teachers from 8 local schools in exploring the development 
of mathematics teaching in their schools; the second, building on the  fi rst, involved a 
consortium of 5 universities in different cities in Norway and schools local to each, 
extending the developmental process across the country. These programs followed 
CFPR with the workshops using collaborative inquiry-based activities between the 
mathematics teachers and didacticians. An uncommon feature involved the design 
of teaching and video-recording of innovative activities in classrooms. These video 
records formed part of a large bank of data from all aspects of the project which was 
a source of analysis for didacticians as outsider researchers in relation to a range of 
research questions. 

 The results of the program were very positive in the areas described in CFPR. 
Publications from the LCM project documented the learning processes in which 
both teachers and didacticians were engaged (e.g., Jaworski et al.,  2007  ) . The 
project demonstrated that learning in both groups was necessary in order to form 
a community of inquiry, and when there appeared to be a con fl ict a sincere desire 
to make the project work led to activity to resolve the con fl ict (Jaworski & 
Goodchild,  2006  ) . The stakes were important for both groups and both groups felt 
ownership of and responsibility for the activity involved, albeit in differing ways. 
The implications for other programs lie in the relationships that evolved and the 
ways in which the program managed to foster equity. This is an important chal-
lenge for all those currently engaged, or about to be engaged, in teacher education 
programs. 

 Resonating with research in many western countries, Australasian research 
literature has focussed on the structures and  fi ndings of a number of large early 
numeracy programs—such as the Australian  Count Me In Too  (CMIT) project in 
the state of New South Wales, the  Early Numeracy Research Project  (ENRP) in the 
state of Victoria, and New Zealand’s  Numeracy Development Projects  (NDP). These 
projects were funded by governments seeking to establish research priorities and 
methodological approaches. The projects aimed to deliver professional development 
teaching programs using a variety of strategies that included MTEs and extensive 
use of ICT while improving student achievement with early mathematical concepts. 
When these three programs were compared, researchers were able to extract com-
mon structures as well as identify the unique aspects of each project. Each featured: 
(a) a research-based framework for children’s mathematical learning; (b) the use of 
individual student thinking assessment interviews; and (c) intensive whole-school 
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professional development programs (Bobis et al.,  2005  ) . The process described in 
CFPR was evident in the workshops, and the results listed gains in knowledge, and 
improvement of relationships between teachers and MTEs. 

 Each of these large early numeracy programs had unique features, and we will 
consider just one, CMIT, as an example. The program regarded the identi fi cation, 
sharing and activation of knowledge of how children learn mathematics as a long-
term, whole-school, classroom-based learning process. The interplay of researcher 
knowledge and teacher knowledge was an expectation of the CMIT program which 
used a design research model (Cobb,  2003  )  that collapsed the four groups of insid-
ers and outsiders into one group of co-learners (the academic facilitators; the 
Departmental consultants (who were mostly former teachers); the teachers; and the 
students). The unique feature of using an on-going evaluation process conducted by 
external researchers (outsiders) meant that insights developed in collaboration with 
teachers and MTEs were used to “feed forward” into the theory development and 
instructional design loops that were implemented by the teachers and MTEs. Thus, 
theoretical knowledge was shared with teachers as active learners in their schools to 
be trialled and developed with their colleagues with the participation of their stu-
dents. It was regarded as a factor in keeping the program dynamic and sustainable. 

 An extension to CMIT was the large system-wide  Counting On  (CO) program, 
also based in NSW. CO was designed to support the professional learning of teach-
ers in identifying and addressing the learning needs of those students in the middle 
years who were having dif fi culties with early mathematical concepts and skills. 
The process and results of CFPR were recorded in a number of external evaluation 
studies (White,  2008,   2009,   2010  ) . These evaluations used a framework of  fi ve 
critical levels (Guskey,  2000  ) : participants’ reaction; participants’ learning; organi-
zational support and change; participants’ use of new knowledge and skills; and 
student learning outcomes. All evaluations reported positive teacher reactions and 
gains in organizational support, teacher learning, teacher use of new knowledge, 
and student achievement outcomes. 

 CO also had other unique features concerning the workshops, model of dissemi-
nation; and the greater autonomy given to the teachers. Each participating school 
sent a volunteer teacher (facilitator) to a 2-day training course. The facilitator then 
returned to organize and run the program in the school, supported with resources 
(publications, website, DVDs, and money), with mentoring being available through 
a Departmental consultant. Although this might  fi rst appear to be an application of 
a “train-the-trainer” model, the correct term is a “facilitated model,” as the quality 
of the program was dependent on the school facilitators and their skills in leading 
their teams as they conducted their research and developed teaching strategies 
according to their needs and context. Whereas cascade models of train-the-trainer 
suffer from “dilution” as the process moves from level to level, by contrast the 
facilitated model has the potential to be better (but also worse) than what was pro-
vided with original facilitator workshops. 

 With CO, the school team was expected to operate using the  lesson study  (LS) 
model developed in Japan to enable and encourage collaborative professional 
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learning and sharing between teachers (Stigler & Hiebert,  1999  ) . A more detailed 
description of the LS model will be given later in this chapter (see Figure  13.4 ). 

 The “feed forward” in the CO process provided an excellent example of the 
interplay between teachers and MTEs in developing teaching that led to the improve-
ment of student learning outcomes. For example, in response to teacher concerns 
involving student interactions with, and attitudes towards, mathematics word prob-
lems, Newman’s diagnostic error analysis procedure (Newman,  1977 ;  1983 ; 
Clements,  1980  )  was introduced to the program. Teachers worked with MTEs to 
develop strategies to remedy the student dif fi culties revealed by this form of analy-
sis. Initially in many classrooms, teachers displayed the diagnostic questions as a 
hand-made poster and the prompts were used to assist a problem-solving process. 
After teacher requests, a professionally designed poster was produced for dissemi-
nation throughout all schools by the NSW Department of Education Curriculum 
Support Directorate (see Appendix  1 ). Another dif fi culty reported by teachers was 
how to assist students who could not transform (or “mathematize”) written mathe-
matics problems into a suitable procedure. Teacher material involving the use of what 
are known as “tape diagrams” was developed by teachers and MTEs as a pedagogi-
cal strategy which assisted the teachers. Tape diagrams are visual representations 
(see Appendix  2 ) that are used extensively in Japanese schools (Murata,  2008  ) . The 
success of the collaboration and co-learning between the mathematics teachers and 
MTEs in sharing a common goal were evident in the completed evaluation reports. 

 The next two cases, situated in Brunei Darussalam and Iran, shared similar CFPRs 
with other programs, but exhibited uniqueness in the roles of mathematics teachers, 
researchers and MTEs, which became blurred and interchangeable. In Brunei 
Darussalam, the  Active Mathematics in Classrooms  (AMIC, see Figure  13.3 ) was a 
national project designed to provide upper-primary teachers with ongoing profes-
sional learning and support (Mardiah & Shimawati,  2004 ; White,  2004b  ) .  

 An unusual feature involved 14 practising primary teachers (called “the 
writers”)—who were enrolled in an upgrading B.Ed program at Universiti Brunei 
Darussalam. These teachers adopted the roles of mathematics teachers and MTEs at 
different times. The writers developed, trialled, and revised AMIC workshop notes 
and materials for the nine topics, under the supervision of their MTE. After develop-
ing the 9 AMIC workshop units, the 14 writers then led trial workshops in which 10 
future “AMIC workshop teacher leaders” (each representing a school) participated. 
Following these workshops the materials were revised and were then published by 
the Ministry of Education (Ha fi zah & Rosmawati,  2003 ; Haslina,  2003 ; Kamsiah, 
 2003 ; Lim & Zarinah,  2003 ; Maria & Ramnah,  2003 ; Mohammad Arif fi n,  2003 ; 
Norjah, Rozaimah, & Tini,  2003 ; Rozina,  2003 ; Yunaidah,  2003  ) . The school lead-
ers then conducted the workshops in their schools with the help of the writers. This 
cycle continued, with teachers from other schools being involved, and a widening 
number of AMIC “graduates” becoming workshop teacher leaders. 

 Due to the unique geographical spread of schools, initial AMIC workshops were 
conducted in  fi ve schools and involved 60 upper-primary teachers. Thus a commu-
nity of practice was formed in each school involving teachers, teacher leaders, writ-
ers and the MTE. Results resonated with the CFPR. 
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 The next example in this section relates to a national mathematics curriculum 
reform process in Iran that developed as a response to signi fi cant changes in secondary 
school education during the early 1990s. This reform process and the new curriculum 
challenged mathematics teachers and in particular, those who had taught geometry, 
and only geometry, for years. In response to teacher concerns, 11 national teacher-
education sessions were planned and delivered by MTEs between 1994 and 1999. 
One session relating to geometry was the most controversial (Gooya,  2007  ) . The 
direction and purpose of high school geometry had changed and there was an 
increase in the number of mathematics teachers involved in teaching geometry. 
Many of the new teachers were female. Previously, in Iran, geometry had been a 
male-dominated subject, and there was a concern that it might lose status if it 
became accessible to both male and female mathematics teachers and students 
(Gooya & Zangeneh,  2005  ) . The most notable implication of this event for teachers’ 
learning and their professional practices was that young mathematics teachers’ 
views and insights about their own mathematics learning evolved and their self-
con fi dence towards teaching geometry, in particular, was greatly improved. 

 Sharing the CFPR, from the outset the intention was for teachers and MTEs 
to work together and to integrate theoretical and practical knowledge with the 

9 units were prepared by
“writers”and presented to
future workshop leaders.

Saturday meetings were held at
MOE as preparation for school
workshops—writers and leaders

Leadership Cycle

School workshops in 5
schools—Wednesdays

Teachers prepare a report
for next workshop

Teacher cycle

Teachers and leaders 
implement lessons and 
conduct pre- and post-tests

Teachers and leaders
complete between-unit tasks
and readings

  Figure 13.3.    AMIC cycle for teacher writers, workshop leaders and classroom teachers (from 
White & Clements,  2005 , p. 152).       
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teachers’ craft knowledge. The results were those listed in CFPR. As well, small 
research projects were conducted to reveal teachers’ concerns. One involved an 
action-research approach in which a number of graduate students, and one of the 
present authors (Gooya) worked with mathematics teachers from different cities. 
These projects involved mathematics teachers and MTEs collaborating to a degree 
that in some cases blurred the line between “insiders” and “outsiders,” particularly 
when the teacher was also an MTE (Gooya,  2006  ) . This happened quite naturally as 
the collaborations became more genuine and more meaningful for both groups. 

 The  fi nal study in this section is a large-scale study that differs from the earlier 
ones in the focus upon the relationships between teachers and researchers. In its 
original form, the  Learner’s Perspective Study  (LPS) sought to document the class-
room practices of competent mathematics teachers and to identify the meanings that 
participants held for those practices and the meanings that arose out of those prac-
tices (Clarke,  2001a,   2001b ; Clarke, Keitel, & Shimizu,  2006 ; Clarke, Shimizu 
et al.,  2006 ; Shimizu,  2002  ) . LPS was originally a nine-country study (Australia, 
Germany, Hong Kong, Israel, Japan, the Philippines, South Africa, Sweden and the 
USA) of learner practices within the practices and meanings associated with “well-
taught” Grade 8 mathematics lessons. LPS sought to uncover and to make explicit 
the cultural values and beliefs that framed the educational endeavours of teachers, 
researchers and policy makers in each country in order to contribute to the optimiza-
tion of their effectiveness as sites for learning while acknowledging that optimiza-
tion is shaped by the cultures of those classrooms. 

 LPS collected data using video and various texts such as classroom dialogue 
(“public” and “private”), teacher and student written material, and teacher and stu-
dent post-lesson reconstructive interviews. The collaboration and sharing between 
MTEs and teachers through the post-lesson video-stimulated interviews contributed 
to accounts of the practices of classrooms and re fl ected teachers’ intentions, actions 
and classroom consequences of these actions. The study challenged international 
comparative research practices (see, e.g., Stigler & Hiebert,  1999  )  by developing 
ways to accommodate the cultural differences through attending more closely to 
context and voice. The roles of teachers and learners in the examination of practice 
were explained using attempts to include the realities of political, societal needs and 
cultural plurality that were present in any particular classroom. “Teachers in 
Australia, Japan, The Philippines and South Africa face very different challenges 
with regard to cultural diversity of the communities they serve—class size, instruc-
tional resources, and societal and political priorities” (Clarke, Shimizu et al.,  2006 , 
p. 378). Many participating teachers described their participation as a powerful pro-
fessional development experience. There is anticipation that value will accrue from 
research reports with different cultural authorship. 

 Although there were some differences in the last study (LPS) considered in this 
section, all the studies were explored in relation to the growth in learning of teachers 
and MTEs while they were involved in large-scale projects. The next section looks 
at smaller-scale studies.  
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   Teachers Learning from Teachers in Small-Scale Professional 
Learning Projects 

 In this section, smaller studies involving learning by mathematics teachers and 
MTEs are considered. These studies included such things as teaching experiments, 
self studies, and small-group learning communities. They relied generally on self-
reported data. 

 The structure of this section has two subsections. The  fi rst involves studies con-
ducted within schools in which teachers worked individually or collaboratively to 
improve teaching practice with the aim of improving student learning outcomes. 
The second involves studies which focussed on the impact of teacher-development 
programs and activities which occurred both within and away from the school, and 
in which teachers from different schools worked together. 

   Knowledge growth within the school context.   In order to explore the 
complexities inherent within school contexts, studies have used a range of samples 
of large to small numbers of mathematics teachers, sometimes involving MTEs. 
This then permitted the collection and analysis of rich, detailed data from multiple 
sources. Small sample studies can contribute to the building of a larger data set from 
which a synthesis across cases can form a more convincing body of evidence. 

 Hunter  (  2008,   2010  )  reported on a one-year-long study which involved four pri-
mary school teachers and herself, as the teacher–educator–researcher. The  fi ve par-
ticipants worked together as a collaborative partnership to investigate how 
communication and participation patterns in the classroom might be best consti-
tuted to support student engagement in ef fi cient and correct mathematical reasoning 
discourses. The study was conducted in a New Zealand primary school where the 
majority of students were of Pasi fi ka or New Zealand Maori ethnic groupings. Data 
were collected both from study-group sessions, which took place regularly through-
out the year, and from classrooms, through videotapes, done by the teachers, and 
researcher observations. Interviews with the teachers and re fl ective diaries also pro-
vided important forms of data. 

 Hunter  (  2008,   2010  )  described, powerfully, the gradual and, sometimes, circu-
itous and challenging journey through which one of the teachers, Moana, in a cul-
turally responsive manner, shifted her positioning in the classroom culture from 
teacher in control of the discourse, to participant in, and facilitator of, the discourse. 
Inquiry of both teachers and the MTE was facilitated by the use of a speci fi cally 
designed “Communication and Participation Frame.” A community of inquiry 
focussed on how to structure and support the development of communication and 
participation patterns in their mathematics classrooms. The MTE inquired both into 
the teacher’s learning and into her own practice as a colleague and supporter of the 
teachers in their journey of change of their pedagogical practices. Evident in this 
project was “a notion of teaching as learning in practice” through the overt use of 
“inquiry” in mathematics learning, mathematics teaching and “the development of 
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practices of teaching in communities involving teachers and [teacher] educators” 
(Jaworski,  2006 , p. 187). 

 In recent years, there has been a growing interest, particularly in western countries, 
in how Japanese teachers learn from each other when they are involved in the process 
of  lesson study  (LS). LS became highly visible beyond Japanese shores and strongly 
associated with mathematics education initially due to the in fl uence of a number of 
American researchers and writers collaborating with Japanese counterparts (see, 
e.g., Fernandez,  2002 ; Fernandez & Yoshida,  2004 ; Lewis & Tsuchida,  1998 ; 
Shimizu,  1996,   1999a,   1999b ; Stigler & Hiebert,  1998,   1999  ) . This interest was 
stimulated by the publication of results from the Third International Mathematics 
and Science Study (TIMSS). The TIMSS Video Study made clear that differences 
did, in fact, exist not only in the mathematical achievement of American and 
Japanese students, but also the manner in which students were taught. One important 
result was a better understanding of the Japanese problem-solving teaching methods 
which improved student achievement on complex and novel mathematical prob-
lems. These teaching methods are now globally recognized as models for teaching 
that resonate with constructivist philosophical principles (Isoda,  2007  ) . 

 Simon  (  2008  )  considered Japanese LS as having only process goals as there was 
an expectation that teachers would learn through engaging with the process and so 
the content was not speci fi cally de fi ned. LS provided a process whereby teachers 
could develop their professional learning and skills in order to improve classroom 
teaching and the learning outcomes of their students. The LS process enables and 
encourages collaborative professional learning and sharing between teachers and 
MTEs. The focus is upon the lesson instead of starting from learning theories and 
then trying to apply them to the classroom (Stigler & Hiebert,  1998  ) . 

 LS spread throughout the world and particularly the Asia Paci fi c region—it has had 
a global in fl uence upon the teaching of mathematics. The spread of LS has received 
support through the growth of information communication technologies and the ease 
of international travel. For example, the World Association of Lesson Studies (WALS: 
  http://www.worldals.org/    ) was formed and this promoted LS at many levels from 
systems to individual schools across a range of countries. Another project, one 
which was supported by the Asian Paci fi c Economic Cooperation (APEC:   http://
hrd.apecwiki.org/index.php/Lesson_Study#Lesson_Study_in_Mathematics    ), was 
designed to encourage the spread of LS across the region. More recently LS has 
been promoted by the Southeast Asian Ministers of Education Organisation 
(SEAMEO) through their regional centres of excellence such as the Regional Centre 
for Education in Science and Mathematics (RECSAM) in Penang, Malaysia, and 
the Regional Centre for Quality Improvement of Teachers and Educational Personnel 
(QITEP) in Yogyakarta Indonesia (Hartono,  2010 ; Muchtar & Sutarto,  2010  ) . 
However, different countries have adapted aspects of LS to their context (Isoda, 
Stephens, Ohara, & Miyakawa,  2007  ) , so that: “The term Lesson Study has become 
an umbrella term for a variety of adaptations or glocal responses” (White & Lim, 
 2008 , p. 916). 

 The distinctive steps and iterative nature of the LS process are illustrated in 
Figure  13.4 . It should be noted that some “glocal” model studies do not include an 
iteration process. Re-teaching is a common LS feature in the USA, but is only an 

http://www.worldals.org/
http://hrd.apecwiki.org/index.php/Lesson_Study#Lesson_Study_in_Mathematics
http://hrd.apecwiki.org/index.php/Lesson_Study#Lesson_Study_in_Mathematics
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occasional feature of Japanese LS (Lewis et al.,  2009  ) . Other LS studies differ over 
whether teachers are volunteers or are conscripted, and for other studies there are 
considerable differences in the composition of the teams (Hart et al.,  2011  ) . There 
are some “glocal” models that have a content focus and serve as counter-examples 
to Simon’s assessment of LS as having only process goals. The following discussion 
will attempt to describe just three from a large number of available studies in order 
to highlight the growth in learning of teachers and MTEs, as well as the vast differ-
ences in the forms by which Japanese LS has been applied. We discuss studies from 
the USA (Lewis, Perry, & Hurd,  2009  ) , from Australia (White,  2004a,   2006 ; White 
& Southwell,  2003 ; Southwell & White,  2004  )  and from Malaysia (Chiew,  2009 ; 
Lim, White, & Chiew,  2005 ; White & Lim,  2007  ) .  

 The context of the US study was that it was part of a 2-week summer workshop 
in a North American school district. In Australia, the LS was situated within the 
context of a state-wide change of a mathematics syllabus, and the Malaysian context 
was as part of a doctoral study of a two-school professional development program. 

 The US study involved one team of  fi ve teachers, a teacher-coach, an MTE and 
two researchers. The use of an experienced and knowledgeable mathematics teacher 
as a coach in LS groups was regarded as important to the effectiveness and sustain-
ability of the program (Lewis et al.,  2009  ) . The Australian study involved a large 
number of teams situated in schools scattered around the state, each team compris-
ing  fi ve to six teachers, of whom one served as the facilitator. Access was limited to 
only one MTE and only one external researcher for all the teams. The Malaysian 
study consisted of one team of six and another team of eight teachers, with both 
teams having access to an MTE and a researcher. Membership of the US and 
Australian teams was voluntary, but the Malaysian participants had been directed to 
join by their school leaders. 

START
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Team plans each lesson

One teaches lesson,
others observe 

Another member teaches refined
lesson, others observe 

Write up
and share
with others
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lesson

Team
Satisfied

Team defines the learning goals

  Figure 13.4.    LS cycle (from White & Lim,  2007 , p. 568).       
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 In the US study the teachers chose to focus on the goal of helping primary school 
students indentify and express, mathematically, patterns, by working collaboratively 
through a sequence of activities. There were two iterations involving fourth-grade 
classes. The Australian teachers chose their own focus area within the new syllabus, 
and conducted varying numbers of iterations, depending upon the team. The 
Malaysian teachers were in fl uenced by their head of mathematics in their choice of 
topic and iterations. 

 Data in the US study were collected through videotaping,  fi eld notes and artefacts 
such as student work samples. The Australian study collected data through ques-
tionnaires, interviews and document analysis, and the Malaysian study used obser-
vations, interviews and questionnaires. 

 The US study reported three types of changes produced by LS: changes in teachers’ 
knowledge and beliefs, changes in professional community, and changes in teaching-
learning resources. The Australian study reported improvements to teachers’ learning 
and use of new knowledge, the establishment of stronger and on-going professional 
relationships among team members, and increased recognition and organizational 
support from the school leadership. The Malaysian results were mixed depending 
upon differences in the degree of administrative or executive support which directly 
affected teacher commitment in both schools. 

 This short discussion has highlighted the diverse range of LS “glocal” models. 
The studies reported improvements in the learning of teachers. Other studies, such 
as those reported by Arbaugh  (  2003  )  and Slavit and Nelson  (  2010  ) , have gener-
ated similar bene fi ts among teachers participating in LS groups. However, none of 
the three discussed here reported improvements in the learning of the MEs or 
researchers. 

 The existence of various variations to the Japanese LS model around the world 
has led to many other designs of professional development programs which although 
resonating with some of the aspects of the LS process cannot be strictly classed as 
an LS model. For example, in modern Iran there are examples of teachers collabo-
rating and learning from each other within approaches and structures that resemble 
aspects of Japanese LS. In 1960, the teachers’ council of an elementary school in a 
small Iran–Iraq border town called Paveh, located in the west end of Iran, began to 
discuss teaching methods and curriculum organization with respect to mathematics 
in Grades 4, 5 and 6. The council agreed to make changes and all members of the 
council signed an agreement. An analysis of the minutes of one of these meetings 
has indicated that the process of planning was similar to LS (Gooya,  2010  ) . However, 
the activities that were planned and implemented would be best seen as re fl ecting 
local insights into how practice might be improved, and the aim was not to develop 
generally applicable  fi ndings.  

   Knowledge growth in and beyond school contexts.   Research studies have 
explored the impact of professional development offered beyond the school context 
as teachers attended meetings, workshops or courses with teachers from other 
schools. In many studies there has been a synergy between out-of-school activity 
and related activity taking place in school. 
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 In the Mathematics Teacher Enquiry project that ran for two years, Jaworski 
 (  1998  )  described teachers’ learning through engaging in research into aspects of 
their own teaching, and the concomitant learning of the MTEs conducting the proj-
ect, and studying the developmental processes involved. The project brought teach-
ers and MTEs together in both school and university environments in which they 
developed mutual respect and common understandings. The program successfully 
used workshops in schools and university, focussing on CFPR. Thus MTEs and 
mathematics teachers worked together as colleagues and co-researchers in a joint 
professional environment which was theorized subsequently, by the MTEs as a 
“community of inquiry” (Jaworski,  1998,   2006  ) . 

 In the nation of Colombia, a program was developed and implemented with the 
acronym PROMESA (Creating Science and Mathematics Connected Learning 
Experiences that Open Opportunities for the Promotion of Algebraic Reasoning—in 
Spanish, the corresponding acronym is PROMICE) (Agudelo-Valderrama & Vergel, 
 2009a,   2009b  ) . In PROMESA, school mathematics and science teachers, and 
teacher educators, worked together as a developing community of inquiry with the 
shared aim of promoting students’ meaningful and connected learning of mathemat-
ics and science. Eleven well-quali fi ed mathematics and  fi ve science teachers, at 
three schools which served students from disadvantaged socioeconomic communi-
ties in Bogotá, and two teacher educators, worked together over a 14-month period 
on issues that they had identi fi ed after discussions among themselves and with their 
school principals. Following the teachers’ participation in a series of workshops, 
which provided ample opportunity for analysis and discussion of ways and means 
of connecting science and mathematics in their schools, the teachers from each 
school organized themselves into sub-groups (each sub-group had one science and 
two mathematics teachers). These sub-groups then worked collaboratively with the 
teacher-education researchers on the processes of designing, implementing and 
documenting classroom innovations. The purpose of these innovations was always 
to engage the students in connected science and mathematics learning experiences 
which would generate opportunities for the promotion of algebraic reasoning. 
During the process, the teachers and the teacher educators met regularly, at each 
school and at the university, for whole-group-discussion and sharing sessions. 

 Throughout the project, data on teachers’ knowledge, conceptions, beliefs and 
attitudes with respect to school mathematics and science, and of teaching speci fi c 
concepts, were gathered using a variety of data collection methods. The students of 
the participating teachers were also involved in the study, and data were collected, 
by the teachers, in a longitudinal study of two Grade 8 groups, from different 
schools. 

 In this project, the teachers and teacher educators were both insiders and outsid-
ers: as insiders, teachers inquired into their own thinking and their understandings 
of speci fi c mathematics and science concepts. They participated in planned inter-
views and kept diaries in which they re fl ected on their own teaching practices, and 
expressed their feelings. As outsiders, they inquired into their students’ thinking and 
learning in relation to the classroom work. The teacher educators were also simul-
taneously insiders and outsiders: as insiders, they inquired into their own practices 
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in order to be in a better position to make informed decisions; they acted as supporters 
and orchestrators in the complex task of researching the various contexts and issues 
which emerged during the project. At the same time, they acted as MTEs in a col-
laborative and supportive manner. As outsiders, they inquired into the development 
of the teachers’ thinking and teaching practices, for “in order to ful fi l the task of 
collaborators and members of a community of inquiry, insights into the teachers’ 
thinking processes were key” (Agudelo-Valderrama & Vergel,  2009a , p. 33). The 
teachers and MTEs both inquired into the students’ learning, and sought to enhance 
and maximize student learning, which was their ultimate shared goal. 

 In this Colombian study there was considerable evidence of improved student 
learning and gain in the students’ sense of purpose related to learning. The evaluations 
which project members carried out indicated that participants grew in their apprecia-
tion of the connections between science and mathematics knowledge and their 
enacted co-teaching practices during the project. Agudelo-Valderrama and Vergel 
 (  2009a  )  emphasized the important professional lessons MTEs learned in relation to 
various areas of their roles and duties as teacher educators. 

 Implications of the study were identi fi ed for those intending to participate in 
programs of initial mathematics and science teacher education, for continued pro-
fessional learning, and for Local Education Authorities. As in the study by Lewis 
et al.  (  2009  ) , there emerged issues that related not only to the sustainability of 
teacher professional learning, but also to possibilities and barriers affecting teacher 
participation in professional learning projects. For example, Agudelo-Valderrama 
and Vergel  (  2009a  )  drew attention to the need to establish a coherent policy in rela-
tion to the administration of school staf fi ng and participation in inservice profes-
sional learning programs. The head teachers in the project found it dif fi cult to allow 
the participating teachers to attend a weekly one-hour group meeting, citing lack of 
staf fi ng and the requirements of staff management policies. As a result, the regular 
work sessions of teachers and teacher educators at school sites had to take place 
after school hours and prevented teachers from engaging in further collaborative 
work at the end of the 14-month period, despite this having been included as a 
requirement in the design of the project. Nevertheless, many of the participating 
teachers expressed their willingness to continue working with the researchers in 
order to write papers, to report on their classroom project  fi ndings and on their own 
learning, and to prepare these reports for publication.   

   Learning of Preservice Teachers and Teacher Educators 

 This section summarizes a collection of studies which explored teachers involved 
in preservice programs (including early-career teachers), focussing on the learning 
of all participants. It gives a brief discussion of some research models that relate the 
learning of teacher educators to the learning of preservice and early-career teachers 
with whom they worked. 
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 In the  Second International Handbook of Mathematics Education,  the issue of 
teachers as mentors to early career teachers and their roles in relation to university 
MTEs with whom they worked was explored. Three levels of knowledge for teachers, 
mentors and MTEs were suggested as follows.

    Level 1.   Mathematics and the provision of classroom mathematical activities for 
students’ effective learning of mathematics. This included socio-cultural 
mathematics education, such as the wider in fl uences on pupils’ learning, 
and reasons why pupils need to learn mathematics.  

   Level 2.   Mathematics teaching and ways in which teachers think about develop-
ing their approaches to teaching.  

   Level 3.   The roles and activities of teacher-educators in contributing to develop-
ments in (1) and (2) and including constraints on teacher education and 
how they can be tackled (Jaworski,  2001 ; Jaworski & Gellert,  2003  ) .    

 Each of the fi rst two levels incorporates those below it. Teachers operate largely 
(but not exclusively) at Level 1, mentors at Level 2, incorporating Level 1, and 
teacher educators at Level 3, incorporating Levels 1 and 2. What this framework 
misses is the areas of knowledge indicated earlier in this chapter in Figure  13.2 —
that is teachers’ knowledge of students and schools and teacher educators’ knowl-
edge of theory, research and educational systems. What we recognize in considering 
such a different framework is the complexity of the developmental scene and the 
areas of knowledge on which it draws. These areas of knowledge are far from dis-
tinct and it seems important to recognize that preservice and early-career teachers 
and the MTEs share the knowledge in complex ways. 

 Perks and Prestage  (  2008  )  recognized links between their own knowledge as 
MTEs and the knowledge of the preservice teachers whom they taught. They offered 
a model for teacher learning in a teacher-education program aimed at preservice 
mathematics teachers, and a version of the same model aimed at teacher educators 
(see Figures  13.5  and  13.6 ). In the  fi rst case, teacher learning draws on teachers’ 
knowledge of classroom events, professional traditions, learner knowledge and 
practical wisdom. The parallels for teacher educator learning draw on mathematics 
education sessions in the teacher-education program, professional traditions, own 
learner knowledge as a classroom teacher, and practical wisdom. Perks and Prestage 
commented particularly on the teacher educators who had experience of being 
teachers themselves in earlier professional practice—but of course this is not the 
case with all teacher educators.   

 An alternative way of seeing relationships between teacher educator learning and 
teacher learning was offered by Zaslavsky  (  2008  ) , and is represented in Figure  13.7 . 
The main idea is that the educator (or facilitator) designs activities to promote 
teachers’ learning and then s/he learns from re fl ecting on the teachers’ activities.  

 These models from Perks and Prestage and from Zaslavsky suggest that MTEs 
learn through engagement in and re fl ection on their own practice, in working with 
teachers, and there are parallels with teachers’ learning through practice (see Even 
& Ball,  2009  ) . 
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 In some parts of the world, programs have been especially designed for the learning 
of MTEs—an example of this was the  Manor  program in Israel (Even,  2008  ) . 
This program included an introduction to research, theoretical ideas and issues 
related to practice, and provided professional opportunities for prospective MTEs to 

  Figure 13.5.    Teacher learning in a teacher-educator program with preservice mathematics teach-
ers (from Perks & Prestage,  2008 , p. 270).       

  Figure 13.6.    Teacher-educator learning in a teacher-educator program with preservice mathemat-
ics teachers (Perks & Prestage,  2008 , p. 271).       
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engage with teachers in professional development programs. In doing so, the program 
modelled ways in which those becoming teacher educators might themselves work 
with teachers. 

 These three examples related to taught programs that developed the learning of 
MTEs. The programs with Perks and Prestage  (  2008  )  and with Zaslavsky  (  2008  )  
were for the education of teachers in which MTEs learned overtly through scrutiny 
of their own practice. In the third case, Even  (  2008  )  described a program for MTE 
learning with a model that could be adapted for teacher learning. These  fi t into what 
Simon  (  2008 , p. 18) called teacher-education programs with  content and process  
goals where there is something to be taught and teachers are expected to learn.   

   Concluding Comments 

 This chapter has attempted to convey the complexity and diversity of research 
focussed upon teachers learning from teachers. Our range of examples reveals the 
complexity of settings in which teachers learn, and the related knowledge that grows 
through the various developmental programs. This complexity is in fl uenced by both 
global and local forces, such as the recent pressure on teachers to meet different 
demands imposed on them either directly by politicians and national laws such as 
value-added and No Child Left Behind in the United States of America, or indi-
rectly by politicians and policy makers such as in Iran (Gooya,  2011  ) . 

 Central to all the settings described were the relationships between mathematics 
teachers and MTEs which varied according to the nature of the program. Within 
three sections used to group programs of similar features we have further used the 
framework of Jaworski and also Simon’s distinction between programs to illumi-
nate certain important issues. In some, MTEs had a greater teaching role in guiding 
teachers in relation to pre-de fi ned content, be it mathematical, didactical or peda-
gogical. In others, MTEs and teachers worked together in developmental roles, 
often in inquiry-based practices and sometimes using LS models; teachers often 

  Figure 13.7.    Relationships 
between teacher-educator 
learning and teachers’ learning 
(from Zaslavsky,  2008 , p. 95).       
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worked together to design their own developmental activities. Both the learning of 
teachers and the learning of MTEs were addressed. We can see a range of similarities 
and differences between the knowledge that these two groups bring to the learning 
interface. Importantly, neither group had all the knowledge that was needed for the 
development of teaching, but working together they could become a uni fi ed, power-
ful developmental force. Undoubtedly, both learned from each other as a result of 
their interactions in a research process. 

 Mutual respect and collaboration allow the input of critical elements of knowl-
edge, often by MTEs, that are seen to be valuable to developmental practice. 
Although this input might take place in out-of-school contexts, it is within the in-
school situations that knowledge can be tested and developed in practice. Here 
teachers’ knowledge is pre-eminent and MTEs have much to learn about the sys-
temic factors and issues that in fl uence what can happen in schools and what is 
needed to put research-based knowledge into practice.       

   Appendix A. Appendix 1 

 The classroom poster (following Newman’s error analysis procedure): New 
South Wales Department of Education and Training Curriculum Support 
Directorate 

          

   Appendix B. Appendix 2 

 A tape diagram for the problem:
   Sue paddled 402 km along a river in her canoe over 6 days.  
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  She paddled the same distance each day.  
  How far did Sue paddle each day?
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  Abstract   This chapter addresses, from various perspectives, issues associated with 
teacher education and its development. Several categories of mathematics educators 
are characterized and their development and roles in the teaching/learning processes 
are summarized. Cooperation between teachers and researchers as well as the con-
cept of teachers as researchers are discussed from different points of view. The 
crucial role that observations play at all levels is analyzed and illustrated by two 
different models of implementation of observations into teachers’ and researchers’ 
practice. Throughout the chapter the in fl uence of the research of Guy Brousseau on 
mathematics education research is recognized.      

   Introduction 

   One of the functions of didactics could be … to contribute to the deceleration of the process 
of transformation of knowledge into algorithms … To sacri fi ce to the god of contemporary 
worship to the so-called ef fi ciency, education follows the path of algorithmic reduction and 
demathematization. I deeply hope that didactics will be victorious in the battle of this dis-
possession and dehumanization. 

 Guy Brousseau,  1989  (translation from French, p. 68)   

 Our  fi rst task, in this re fl ection upon the development of mathematics educators, 
is to consider the question: “Who is a mathematics educator?” In fact, different 
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answers have been given to this question by different authors. In the  fi rst part of this 
essay, we will discuss different ways of thinking about mathematics education and 
about mathematics educators, and will establish the crucial concept of “observation” 
in de fi ning a mathematics educator. 

 The second part of the chapter will focus on the role of observation in the devel-
opment of mathematics educators of various kinds. We will show how different 
vantage points in mathematics education can in fl uence observational schemes and 
approaches to teaching mathematics. In order to illustrate different aspects of the 
cooperation of teachers and researchers, we will present two examples of the use of 
observations in mathematics education research and in the search for phenomena in 
mathematics. The  fi rst will be COREM (Centre for Observation and Research in 
Mathematics Education— Centre d’Observation et de Recherche sur l’Enseignement 
des Mathématiques ), which is an example of successful cooperation of teachers and 
researchers; the second example will be the Learner’s Perspective Study (LPS). 
These two projects have presented examples of different ways of observing and 
researching realities in mathematics classrooms. There are other perspectives that 
have been successfully applied in this  fi eld—for instance the ongoing comparative 
study of teacher education, “Teacher Education and Development Study in 
Mathematics” (TEDS-M) focusses on the preparation of teachers of mathematics at 
the primary and lower secondary levels (for more details see teds.educ.msu.edu). 
We do not intend to provide an exhaustive list of these other examples. Later in the 
chapter we will consider the role of observation within the increasingly important 
issues associated with the use of information and communication technologies (ICT) 
in mathematics education. 

 As mentioned by Adler, Ball, Krainer, Lin, and Novotná  (  2005  ) , there is much 
less written about mathematics teacher educators than about teacher education 
itself. So in the third part of this chapter we will focus on mathematics teacher edu-
cators. The central question is “How does a person become a mathematics educator 
and/or a mathematics education researcher?” Based on two examples, some impor-
tant aspects are identi fi ed, and these are more deeply discussed in the fourth part of 
the chapter. This fourth part offers a discussion of the central question of relation-
ships between research and mathematical education, especially in didactics. This 
discussion will provide a synthesis of the themes covered in the chapter. We will 
argue that it is important to enhance teachers’ didactical cultures without damaging 
their pedagogical beliefs.  

   Mathematics Education and Mathematics Educators 

 In this  fi rst part of    the chapter, we consider different meanings of the term 
“ mathematics education” and address the question of who mathematics educators are. 
In fact, various institutions involved in teacher education have their own meanings for 
“educator” and “mathematics educator,” and if we can better understand these differ-
ent meanings, then we might understand more fully what knowledge is important or 
required of mathematics educators. That is the main issue for this chapter. 
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   Mathematics Education: Education to Mathematics 

 Although mathematics is a very old body of knowledge it is always growing. 
It has a history of having strong relationship with the mastery of vital aspects of 
reality (quanti fi cation, measures, etc.). Furthermore, the development of physics, 
chemistry, biology, and also economics, etc. has revealed other aspects of mathe-
matics which offer the possibility of secure deductive reasoning. Therefore, math-
ematics quali fi es as a body of knowledge which is universally transmitted inside 
various societies across the world. In this sense, “mathematics education” can be 
taken to mean “education to mathematics.” 

 It can be argued that mathematics has a recursive or “Russian doll” structure: a 
concept that was initially constructed as a tool in order to anticipate the result of an 
action (e.g., integer as a tool to describe two sets of the same quantity) is considered 
as an object in another situation (e.g., integer as an already constructed object in the 
problem “what number must be added to 5 in order to obtain 22?”) (Douady,  1991  ) . 
Brousseau  (  1997  )  considered these two aspects as a part of the dialectic between 
knowledge and knowing. This aspect of mathematics is one of the reasons for the need 
to learn mathematics at an early stage and to continue learning it over a very long 
period. Mathematics is at the same time “independent of the world” (Wittgenstein, 
 1983  )  and yet something which contributes to the formation of citizens. 

 Therefore, if we consider “mathematics education” as the social answer to the 
need to educate people in mathematics, the  fi rst meaning of “mathematics educator” 
is “a person who is in charge of mathematics education.” That meaning de fi nes a 
very large category that includes parents and more generally those adults who are in 
charge of children’s care, and teachers at all levels (from primary to tertiary education). 
In this chapter we consider all teachers that are in charge of teaching mathematics 
at any level to be mathematics teachers. 

 It is well known that many people have opinions, mostly based on observations 
of their own children, about what mathematics teachers ought to learn in order to 
improve their teaching. They may in fact be considered as the most basic kind of 
mathematics educators. However, often their point of observation is very limited, 
since they implicitly consider their own teaching practices as the central basis for 
their re fl ections on the nature of mathematics education.  

   Mathematics Education: Observing the Learning 
of Mathematics 

 Within the development of human sciences, every aspect of human activity may 
be subject to observation. “Learning mathematics” is therefore a legitimate  fi eld 
of investigation. The elements involved are the subject—child, pupil, person in 
general—the mathematical knowledge, and the observers of interactions. 

 Since mathematics is learned by children in their early years, observers of the 
learning of mathematics are sometimes psychologists, who consider mathematics 
as a system of “logic.” Psychologists generally do not question the mathematics 
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involved (which is considered to be a permanent body of knowledge) and prefer to 
focus on the development of children in relation to their environment (Piaget,  1985  )  
and in relationship to parents, siblings and early childhood mathematics educators 
(Bruner,  1966 ; Vygotsky,  1962  ) . 

 In school, mathematics is taught and the teachers themselves observe their own 
students as those students are learning mathematics. The teachers are especially 
concerned with whether their students are learning what they have been taught. 
Under certain conditions, teachers may develop further their observations by 
re fl ecting on what their students are actually learning. They might also consider 
which variables are involved in the learning process, and what might be the effects 
on learning if certain conditions were to be modi fi ed. 

 Since a transmission of mathematics occurs when someone learns mathematics, 
mathematicians may be interested in observing the learning of mathematics. Such 
observations would, most likely, be centred on the nature of the mathematical 
knowledge involved: what does this child know about the mathematics? Is the 
knowledge that the learner has acquired adequate with respect to my own experience 
and understanding of mathematics? 

 Therefore, if we consider mathematics education as the  fi eld of observation of 
the learning of mathematics, the second meaning of “mathematics educator” is “a 
person who observes mathematics learning.” This category of mathematics educa-
tors includes teachers, mathematicians, researchers in psychology, and researchers 
in mathematics education. Psychology, in particular, has had a strong in fl uence on 
mathematics teacher education. Often, theories from psychology have been assumed 
to provide satisfactory theoretical backgrounds for mathematics education, with 
actual mathematics teaching being regarded as an application of such theory. What 
has been lacking in all of this has been the teaching processes, which include both 
the didactic transposition that interrogates the mathematics itself (Chevallard,  1985  ) , 
and some consideration of teachers’ attempts to cope with the different resources 
and constraints within their teaching situations (Margolinas,  2002  ) .  

   Mathematics Education: Observing the “Learning 
and Teaching” of Mathematics 

 As we stated above, the learning of mathematics mainly depends on the teaching 
of mathematics. The teaching is a conscious attempt to help learners acquire math-
ematical knowledge. Therefore, another  fi eld of investigation might be focussed 
on “learning and teaching mathematics.” The elements involved are: pupil, teacher 
(in a broad sense: a parent, when deliberately educating his or her child about math-
ematics, is a teacher; university professors in mathematics are also teachers, etc.), 
setting, mathematical knowledge, observer. 

 When considering the “learning and teaching” system we can place the observer 
as an “outsider,” someone who observes the interactions between pupil–teacher–
mathematics (see Figure  14.1 ).  
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 The status of the observer has some important consequences. The teacher herself 
or himself may be an observer, and in this case she or he is a self-observer, which is 
a dif fi cult vantage point in which to be placed. Or, the “outside” observer may be 
another teacher, who may be inclined to identify with the teacher. Or the observer 
may be a mathematician, and in that case will be likely to focus on the knowledge 
involved and the explicit formulation of this knowledge. The observer could also be 
a teacher educator who wants to give advice to the teacher about how to cope with 
the situation, or the teacher’s supervisor who has the speci fi c task of evaluating the 
teacher’s effectiveness. 

 The focus of the observer, then, is partly determined by his or her professional 
occupation. But the focus can also be determined by the theoretical framework of 
the observer or the purpose of the observation. This kind of observation may be 
made by a researcher who wants to increase knowledge about phenomena which 
occur in the learning and teaching situation. That person might be called a mathe-
matics education researcher. 

 Therefore, if we consider mathematics education as the  fi eld dealing with the 
observation of the learning and teaching of mathematics, the third meaning of 
“mathematics educator” is “a person who observes mathematics learning and 
teaching.” This category of mathematics educator can include the teacher (as a 
self-observer), a teacher educator, a mathematician, the teacher’s supervisor, or 
a mathematics education researcher. What mathematics education and in particular 
mathematics didactics has stressed is that we need to take into account the whole 
didactic system (pupil–teacher–mathematics) in order to understand mathematics 
teaching. It is possible to focus on some of the relations (e.g., pupil–mathematics) 
but one should not forget the role of the teacher altogether. It is therefore crucial 
for mathematics teacher education that a scienti fi c  fi eld that focusses on the 
phenomenon that are speci fi c of the  entire  didactic system be developed and that 
mathematics educators are well informed of its main theoretical perspectives and 
results.   

  Figure 14.1.    An observer outside the interactions between pupil–teacher–mathematics.       
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   Observation as an Ef fi cient Tool for the Knowledge 
Development of Mathematics Educators 

 What are the sources which assist a mathematics educator’s development? 
They cannot be the same for all categories of mathematics educators mentioned 
in the  fi rst part of this chapter. We now summarize some of the sources associated 
with the different categories. The summary will not be exhaustive but it will provide 
some idea of the complexity of the domain. 

   Student Teachers 

 When preparing and teaching mathematics lessons, prospective teachers are 
profoundly in fl uenced by mentor teachers (Cavanagh & Prescott,  2007 ; Vacc & 
Bright,  1999  ) . Nathan and Petrosino  (  2003  )  point to the intersection between the 
two knowledge bases, pedagogical and mathematical; they state that preservice 
teachers with advanced content knowledge in mathematics have the tendency to 
think beyond their own content expertise when considering their students’ possible 
reactions to the content.  

   Teachers 

 Here we draw on the burgeoning research literature on the sources of information 
concerning the ways teachers in fl uence student thinking and understanding (e.g., 
Carpenter, Fennema, & Franke,  1996  ) . Kinach  (  2002  )  emphasized the importance 
of a teacher’s content knowledge when asking questions of students, anticipating 
likely responses, and evaluating students’ responses. Feiman-Nemser  (  2001  )  drew 
attention to the in fl uence on teachers of the knowledge and experiences of mentors and 
colleagues. Several other writers have contrasted experienced and novice teachers: 
when anticipating students’ likely mathematical responses, experienced teachers 
mobilize a number of resources that novices do not have, including their past obser-
vations of students learning mathematics and their self-observations of their own 
teaching (Sherin,  2002  ) . Experience in anticipating responses can help teachers 
identify and state learning goals embedded in a mathematical task. Research sug-
gests that novice teachers bene fi t greatly from opportunities to gain experience in 
this domain (Morris, Hiebert, & Spitzer,  2009  ) . 

 It is important for teacher educators to understand the ways in which teachers 
make use of available resources in their everyday teaching practices. An intermedi-
ary between research and teaching may become  journals . In general, journals dealing 
with mathematics education may be classi fi ed into three groups—those aimed at (a) 
students and non-specialists interested in mathematics; (b) teachers of mathematics; 
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and (c) mathematics education researchers. When the focus is on mathematics 
educators, the last two categories are of the special interest. 

 The objective of many professional development activities is the improvement of 
teachers’ knowledge of mathematics. But teachers often consider content knowl-
edge as being less valuable to them than getting acquainted with the practical ideas 
for teaching (Wilson & Berne,  1999  ) . Observations offer mathematics educators a 
wide range of both practical and theoretical information. 

 In the  fi rst part of this chapter we noted that different kinds of observations can 
be associated with different meanings for the term “mathematics educator.” In this 
part, we show that different kinds of observations are necessary to develop the 
knowledge of these different kinds of mathematics educators (including mathemat-
ics education researchers). We also discuss different structures that have been used 
for observing mathematics education. We show that different observational vantage 
points can be somehow connected, even with mathematics education research. 
Thus, for example, when observing the educational system a researcher may 
adopt a position of “expert” which is very similar to the position adopted by 
institutional decision makers. Different vantage points can provoke different 
types of “observations.” 

 Here we restrict our focus to teachers and researchers as the two main groups 
of mathematics educators. We show that many activities precipitate observations 
of different kinds. These may have the same nature and purpose, but are not 
based on the same knowledge and do not call into play, or monitor, the same set 
of variables. 

 The different vantage points and interests of teachers and researchers in the 
observation processes have been studied by authors from different perspectives. 
Thus, for example, Margolinas, Coulange, and Bessot  (  2005  )  focussed on teachers’ 
learning from different situations, and Novotná, Lebethe, Rosen, and Zack  (  2003  )  
focussed on differences between the roles of teachers and researchers. 

 In Figure  14.1 , the general scheme for observation was presented. But, if we 
consider the different foci for the two groups of mathematics educators—teachers 
and researchers—we see substantial differences. Figure  14.2  represents possible 
perspectives for a teacher, and Figure  14.3  for a researcher.   

Pupil

Situation

Teacher as an observer

Mathematics

  Figure 14.2.    Interactions between pupil–teacher–mathematics, from a teacher’s vantage point.       
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 The main differences are in the observational role of the observer—the purpose 
of observation—and in the knowledge that the observer possesses. Although the 
teacher is interested mainly in a posteriori analysis of the teaching unit (comparison 
of the lesson plan and a priori analysis with the realities in the classroom and expli-
cation of differences among them leading to modi fi cations of the unit design), the 
researcher’s fundamental interest is in discovering general phenomena that 
in fl uenced the development of the educational situation. 

 We also wish to focus, here, on mutual relationships between and in fl uences 
of mathematics educators. We also discuss different structures that have been used 
in order to observe mathematics education, especially in COREM and in the LPS 
project.  

   Differences Between Teachers’ and Researchers’ 
Positions in Mathematics Education 

 The similarities and differences in school and research vantage points and prac-
tices were described by Brousseau  (  2002  )  in the following terms:

  When I am a  didactician , the interpretation of every step of teaching begins with a systematic 
informing, a complex work of the analysis a priori and the confrontation with various 
aspects of contingency, of observations viewed and rejected later, etc. There is not an evident 
separation of what is relevant but inadequate, adequate but inadaptable, eligible but incon-
sistent, as well as transformations of appearance and certainties in falsi fi able questions, etc. 
When I am a  teacher , I have to take a number of instantaneous decisions in every moment 
based on the real information got in the same moment. I can use only very few of the subtle 
conclusions of my work as didactician and I have to  fi ght with starting to pose myself ques-
tions which are not compatible with the time that I have and that  fi nally have the chance to 
be inappropriate for the given moment. I react with my experience, with my knowledge of 
my pupils, with my knowledge of a teacher of mathematics which I am treating. All these 
things are not to be known by the didactician.   

 Differences between the roles of a teacher and a researcher were addressed in a 
panel session at the 27th annual PME conference held in Honolulu in 2003 (Novotná 
et al.,  2003  ) . We now consider some of the differences.  

Pupil

Mathematics

Researcher as an observer

Situation

Teacher

  Figure 14.3.    Interactions between pupil–teacher–mathematics, from a researcher’s vantage point.       
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   Teacher as a Researcher 

 In the text  Navigating Between Research and Practice: Finding My Own Way  
(Novotná et al.,  2003  ) , Vicki Zack described development as a mathematics educa-
tor in the following way:

  My questions emanate from neither theory nor practice alone but from the juxtaposition of 
the two, and from critical re fl ection on the intersection between the two (Cochran-Smith & 
Lytle,  1993 , p. 15) in areas which are of intense and enduring interest to me. There is recur-
siveness in the process, wherein questions are continuously reformulated, extended, 
re-visited, methods are revised and analysis is on-going. … I recognize the value of practical 
knowledge, and also respect the place research can hold in informing practice. However, 
I emphasize the challenge involved in understanding others’ ideas. (p. 87)   

 Although this process in the development of a mathematics educator is individual 
it has common features. As Zack and Graves  (  2001  )  have emphasized, each person 
appropriates, reworks, re-accentuates while making her or his own way. A funda-
mental part of this development should be making meaning of the research and 
associated theoretical issues, and seeing what they might mean for the teacher’s 
work, and for the children, who are making meaning of the mathematics as they 
work together with their teacher, with their peers in the classroom and, at times, 
with their parents at home. 

 Questions which become important for teachers are: How do my students 
proceed when asked to “prove” that they are correct? What do they consider valid 
arguments for proving their case and convincing others? What language do they use 
when presenting their arguments? What kinds of reasoning do they use: inductive, 
deductive, other? (Novotná et al.,  2003  ) .  

   Cooperation of Teachers and Researchers 

 The cooperation of teachers and university-based educators (in the following text 
we refer to them as researchers) in research teams in mathematics education is a 
broad and relevant topic. In most cases, the focus is on improving the quality of 
mathematics teaching and learning (see, e.g., Brown & Coles,  2000  ) . Many discus-
sions have been carried out within the last decade about the impact of this type of 
cooperation in mathematics education (see, e.g., Goos,  2008  ) . Identifying and con-
trasting the different experiences and knowledge of teachers and researchers have 
been a focus of investigation in numerous studies (see, for example, contributions 
by Bennie, Breen, Brown, Hošpesová, Coles, Lebethe, Eddy, Macháčková, Novotná, 
Pelantová, Poirier, Reid, Rosen, Tichá, Zack in Novotná et al.,  2006  ) . Chris Breen 
 (  2003  )  drew attention to the contrasting views on the contributions that teachers are 
making to the  fi eld of mathematics education. Although there is a movement for 
more teachers to become involved in critical explorations of their practice, through 
such methods as critical re fl ection, action research, and lesson studies, some 
sceptics claim that these activities have done little to add to the body of knowledge 
in mathematics education. 
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 Despite such controversy, there seems to be little doubt that cooperation within 
and between communities of practice enriches research in mathematics education. 
However, the components of this type of cooperation, and how the interactions of 
these components change teachers’ opinions and approaches, are much less investi-
gated. Without paying attention to teacher change, the results of many research 
activities can seem to be less signi fi cant than they actually are. 

 We now summarize an example of fruitful cooperation between teachers and 
researchers. The research project was originally designed by Guy Brousseau and 
Jarmila Novotná, and data collection, analysis and evaluation of the experiment 
were carried out in cooperation with secondary school teachers in Prague, the Czech 
Republic. 

 The experiment which was designed incorporated the following steps:

   Design of the didactical situations that were intended to change learners’ • 
approaches to solving problems.  
  Development and implementation of the proposed didactical situations.  • 
  Analysis of the implementation and, based on the experiment results, and • 
re fl ections on possible modi fi cations.    

 Even though the primary target group of the research comprised secondary 
school students, the research provided an opportunity for the participating teachers 
to develop their professional competences. 

 The in fl uence of teacher attitudes and teaching has been formulated by Jaworski 
 (  2003  ) :

  The action research movement has demonstrated that practitioners doing research into their 
own practice … learn  in  practice through inquiry and re fl ection. There is a growing body of 
research which provides evidence that  outsider  researchers, researching the practice of 
other practitioners in co-learning partnerships, contribute to knowledge  of  and  in  practice 
within the communities of which they are a part. (p. 2)   

 We illustrate changes that were identi fi ed among teachers in this collaborative 
group exercise through the examples of two teachers, who will be referred to as 
Teacher  A  and Teacher  B  in the following text. The following extracts are from their 
self-re fl ections: 

   Teacher  A ’s re fl ections. 

     • Experienced a “new” role as a teacher during the adidactical situation.  
The teacher should rather become an observer, moderator of discussions and of 
the work in the classroom. This role is demanding, and from the perspective of 
traditional teaching, unusual. When you listen to students during group work and 
see that they are very close to the solution, it is not easy to answer their question 
without intervening in their work.  
   • Gained experience in moderating students’ discussion.  I learned to listen and 
intervene only when it was a must. If I intervene too soon there is a danger that I 
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divulge to students something that they could  fi nd out themselves if I had given 
them more space.  
   • Gained experience with group work.  Before the project, I used groups very 
rarely. I was afraid that I would not succeed in involving all students in the activ-
ity, to be able to get all of them actively participating. The experiment showed 
that with an appropriate choice of activities, this is possible.  
   • Gained experience with the student peer control.  The teacher is not the only one 
who can tell students what is correct and what is not. It proved to be more ef fi cient 
when this evaluation was formulated by the students’ own schoolmates.     

   Teacher  B ’s re fl ections. 

     • Realized that I tended to underestimate my students’ abilities  .  This experiment 
showed me the con fl icts between my expectations and what the students could 
really do. At the beginning, I was embarrassed that I did not manage to get from 
them what I wanted, but it motivated me to a deeper re fl ection on the ways of 
presenting the stages to students. At present, I  fi nd that it is not a negative if stu-
dents do something differently, because we can all learn from it.  
   • Bene fi ted from gaining feedback from students.  The experiment made me want 
to get feedback from the students. Getting feedback should become an integral 
part of my work as a teacher. Before the project, I could not imagine that more 
fruitful discussions can took place in mathematics lessons than in lessons for 
other subjects.  
   • Gained experience in organizing research projects.  I noticed a shift. In the 
beginning, I devoted myself solely to organizational items, such as the number of 
problems, or dividing students into groups. After gaining experience I found that 
I was attending to more fundamental issues, such as the de fi nition of a mathemat-
ical model for a problem, or exploring conceptual links between aspects of the 
mathematics.    

 We observed a change in the teachers’ perceptions with respect to the use of 
student problem posing: observing their own students in these situations broadened 
their knowledge about students learning mathematics. Before participation in the 
project, teachers were used to assigning problems to students themselves; they saw 
it mostly as the only appropriate way for managing the teaching/learning process. 
Their fears had almost certainly been in fl uenced by their own experiences in their 
own schooling. 

 Indeed, the project considerably in fl uenced all members of the collaborative 
group—the teachers as well as the researchers. It was recognized that if the work 
of the team was to be successful then all the participating persons needed to collabo-
rate fruitfully. The result was changes could be observed, and not only on the teach-
ers’ side, or on the students’ side, or on the researchers’ side. The researchers 
certainly gained much from the collaboration, and the teachers’ inputs helped to 
consolidate the experimental settings and to analyse the project results.    
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   Interaction Between Observation and the Development 
of Theory in Mathematical Education: COREM 

and the Theory of Situations 

 Brousseau’s ideas were successfully implemented at the Jules Michelet School, 
Talence, France, between 1973 and 2000. The overall project is referred to as 
COREM, which was created in 1973 with the following objectives (from Salin & 
Dreslard Nédélec,  1999  ) :

   To conduct research necessary for the advancement of knowledge of mathematics • 
education phenomena.  
  To conceive and study new educational situations that will generate better learning • 
of mathematics by pupils.  
  To develop in this way a corpus of knowledge necessary for teacher education.    • 

 It is important to stress that Jules Michelet School was never an experimental 
school conceived to improve mathematics teaching or to educate the teachers of 
this particular school (even if it may have also this result in both cases). The Centre 
was conceived in order to allow a vast community of researchers to observe the real 
teaching process in an entire school. The scope was from the beginning a typical 
scientifi c project: to understand better didactical phenomena and not to directly 
implement any innovative teaching. In COREM there was always close collabora-
tion between researchers from the university, teacher educators, elementary school 
teachers, pupils aged from 3 to 11, school psychologists and students of didactics 
of mathematics (Novotná et al.,  2003  ) . Two major data sets were generated: (a) a 
longitudinal collection of qualitative and quantitative information about the teach-
ing of mathematics at the elementary level; and (b) records of two types of obser-
vations which were destined to assist in the  fi nding and explaining of phenomena 
of didactics that were relevant to teaching and to research. 

 Michelet School consisted of 4 kindergarten and 10 elementary school classes. 
The school was not selective, and pupils came from a very heterogeneous popula-
tion. The curricula followed in all subjects were those that applied in all other French 
schools. The teaching staff consisted of “ordinary” teachers without any special 
training. Their task was to teach, not to do research. They worked in teams, three 
teachers for two classes. One-third of their working hours were devoted to COREM. 
This time consisted of four types of activities: (a) coordinating and preparing the 
ordinary work of the pupils and discussing all the problems of the school (educa-
tional, administrative, social, and so on); (b) directly observing the work in the 
classroom, for research purposes and for normal feedback; (c) participating with 
the researchers in the design of sessions to be observed and collecting data about the 
pupils’ behaviours in mathematics; and (d) participating in a weekly seminar at 
which themes selected by the teachers were discussed. 

 The daily mathematics activities were designed in collaboration with one teacher 
educator from a Bordeaux institute for teacher education—before 1991 this was 
called the Ecole Normale, but in 1991 it became the  Institut Universitaire pour la 
Formation des Maîtres  (IUFM). The teacher educator monitored the mathematics 
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that the students studied during the whole school year. He was expected to make 
sure that the research program did not compromise the normal educational activities 
of the school. 

 There was one important rule in the decision-making processes practised in the team—
speci fi cally, in the case of consensus  not  being reached among participants on any issue, 
the normal teacher would have the  fi nal say about what would be done. Detailed analyses 
of the teaching units were carried out by the whole team, including the teachers. 

 The observations were of two types:

    1.    The  fi rst type was of observations of sequences prepared by researchers, together 
with teachers. In this case, the researcher was responsible for elaborating the 
project’s teaching sequences. The researcher presented the project’s sequence to 
the teachers, including the knowledge it was presumed the pupils would attain 
by the end of the teaching sequences, the problems to be presented to pupils, and 
a register of the expected pupils’ strategies. When the project was accepted by 
the team, the next step was the elaboration of teaching sequences. The ideal situ-
ation was if the teacher was able to accept the scenario of the lesson directly from 
the project. If this was not the case, other questions were discussed—like, for 
example: “What vocabulary should be used in each phase and how and when?” 
“Should the teacher intervene in the pupils’ validation of strategies, and if so, how, 
and when?” “What should be done if pupils do not respond as expected?” “Are the 
application exercises necessary?” This collective preparation was set out in the 
form of a written description and was distributed to the observers in advance. 

 The teacher was completely responsible for what happened in the classroom. 
It included the right to make decisions different from those presumed. 

 After the planned sequence of events had been carried out, a  fi rst analysis of 
what had transpired occurred immediately. In this analysis, all participants recon-
structed as precisely as possible all the events of the session. Analyses proceeded 
according to a prescribed order: First the teacher summarized, from her or his 
point of view, what had been good, and what had not been good, and why. The 
team discussed any issues that arose, and for unusual happenings looked for 
explanations of why these had occurred. In such a way the observation strategy 
included the need for involvement. The discussions provided the researcher with 
a considerable amount of additional information.  

    2.    The second type was of observations of sequences prepared by teachers them-
selves. Regular  weekly observation of a series of “ordinary”  lessons—that is to 
say, observations of lessons that had not been prepared with a researcher—served 
to identify and explain contingent decisions of “all” teachers. The researcher, 
who was interested in the overall teaching sequences and patterns during a cer-
tain period, organized the observations.

Teachers and researchers were members of one team at least in the prepara-
tory phase. Their roles were different. In the class, the teacher had the responsi-
bility for pupils. Various distortions could happen: for instance, the researcher 
might not have formulated expectations adequately, or the teacher might not have 
understood what had been formulated. Sometimes, the teacher had to make 
important decisions in order to reach the teaching goals.     
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 The successful functioning of COREM depended on the collaboration of all par-
ticipating persons as well as much administrative and managerial work. Structures 
and  fi ndings were disseminated in various ways; from allowing interested persons 
to participate in the whole process, to presenting the organization, functioning and 
results at conferences and symposia in France and abroad. The teaching processes 
prepared for observation have never been published or given as a model for use in 
ordinary classroom conditions. 

 It is important to remark that although the functions expected of teacher and of a 
researcher differed, these were not differentiated so far as personal status was con-
cerned. In COREM some persons were both teacher and researcher, but never at the 
same time or for the same activity. The outcomes of these interactions between an 
entire school and a team of researchers are enormous. The COREM research was 
recognized as groundbreaking—The quality and uniqueness of Guy Brousseau’s 
work was quickly recognized, and in 2004, he was the  fi rst person to be awarded the 
prestigious Félix Klein medal by the International Commission on Mathematical 
Instruction. The importance of Brousseau’s work is mainly the development of the 
Theory of Didactical Situation (Brousseau,  1997  ) , that is considered by a great 
number of researchers as providing a paradigm for mathematics didactics. Further 
details about mathematics teaching in COREM have been published for the infor-
mation of interested researchers or teacher educators (Brousseau, & Warfi eld,  1999 ; 
Brousseau, Brousseau & Warfi eld,  2001 ,  2002 ,  2004a ,  2004b ,  2007 ,   2008 ,  2009 ). 

   Researchers Observing “Ordinary Classrooms”: 
The Learner’s Perspective Study 

 There exist many papers describing and analysing observations of a single lesson in 
a single classroom. Undoubtedly, many of these provide important sources of ideas and 
phenomena. In this section of the chapter we will focus on another type of observation 
of ordinary classrooms, by researchers—the Learner’s Perspective Study (LPS). 

 LPS methodology has been developed and applied for teaching mathematics in the 
eighth grade (Clarke,  2001 ; Clarke, Keitel, & Shimizu,  2006  ) . The main goal of LPS 
has been to examine classroom practices in a more integrated and comprehensive way 
than in other international studies. Originally, the project was designed for in-depth 
analysis of mathematics classrooms in four countries (Australia, Germany, Hong 
Kong and the USA), but quickly other countries joined the project. In 2006 there were 
more than 12 countries contributing to the project materials and analyses. 

 The Learner’s Perspective Study was designed to document the processes and 
events in mathematics classrooms, but not just the obvious set of events that might 
be recorded on a videotape. A decision was made to determine how the participants 
construed those events, including their memories and feelings, and the mathemati-
cal and social meanings and practices which arose as a consequence of their beliefs 
and conceptions. The power of the project has been greatly enhanced by the match-
ing of LPS data from different countries. 
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 A series of research questions were formulated in the initial phase of the project. For 
example: “Is there evidence of a coherent body of student practice(s), and to what 
extent are these practices culturally-speci fi c?” “To what extent does an individual 
teacher employ a variety of pedagogical approaches in the course of teaching a lesson 
sequence?” “What degree of similarity or difference (both locally and internationally) 
can be found in the learner (and teacher) practices occurring in classrooms?” “To what 
extent are teacher and learner practices in a mutually supportive relationship?” “To 
what extent are particular documented teacher and learner practices associated with 
student constructions of valued social and mathematical meanings?” (Clarke,  1999  ) . 

 A major characteristic of this study is its documentation of the teaching of a 
series of lessons instead of just one single lesson. For each participating teacher, 
documentation includes video from 10 consecutive lessons, obtained through three 
cameras in the classroom, together with post-lesson video-stimulated interviews. 
The common database of materials from the participating countries, with access 
offered to those who contribute to the project, together with their materials, repre-
sents a rich source of materials for analyses and comparative studies of classroom 
practices from both teachers’ and learners’ perspectives. 

 The materials obtained by LPS methodology serve as a rich source of materials 
for researchers. But at the same time, they represent extremely important material 
for teachers themselves. Combining video-recordings, the teacher’s own prepara-
tion of the lessons, the real situation in the classroom and the post-lesson interviews 
with students provides a teacher with huge feedback and impulse for further devel-
opment of her or his approaches to teaching.  

   Observation as a Part of Mathematics Teacher Education 

 The observation of classroom episodes, in both forms—observation of real class-
rooms or video-recordings of teaching episodes, is an irreplaceable part of teacher 
education (Stehlíková,  2007  ) . In contrast to experienced teachers, student teachers 
usually have not obtained enough experience from real classrooms. So, when they 
observe lessons, their observations have a modi fi ed structure, with the mathematics 
content being separated from the classroom (see Figure  14.4 ).  

Pupil

Teacher

Student teacher as an observer

Mathematics

  Figure 14.4.    Student teacher as an observer.       
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 It is often the case that before a student teacher observes a class she or he is asked 
to focus on certain features of the lesson that will be observed. Such foci could be 
any of the following:

  Input 

  Scaffolding  
  Advance organizers and outlines  
  Dual code model (verbal and non-verbal representational systems)  
  Multiple verbal representations  
  Inductive approaches to learning  
  Textual support  
  Graphic organizers   

  Learner Differences 

  Varying methods according to the learners’ age  
  Multidimensional model: something intellectual, plus something emotional  
  Additional time and support during writing assignments  
  Multiple-abilities treatment (sharing responsibilities)   

  Learner Processes 

  Strategy training (cognitive): Teaching the learners how to learn  
  Strategy training (social): Group-worthy tasks, cooperative strategies, peer 
support   

  Output 

  Support for communication  
  Norms of collaboration and cooperation (turn-taking; rotating roles: facilitator, 
materials manager, reporter, harmonizer; status treatment to equalize participation)  
  Inclusion of similar components in every lesson/series of lessons  
  Explicit evaluation criteria    

 The requirement of focussed observations from student teachers has obvious 
advantages for the development of future teachers. Student teachers will meet, and 
learn to recognize, a variety of teaching strategies during their study. During the 
observations, non-experienced student teachers will be expected to develop and 
interpret their theoretical knowledge and skills, linking it to real and relevant situa-
tions (Santagata, Zannoni, & Stigler,  2007  ) .   

   Mathematics Educators and ICT 

 The use of computers in mathematics is a very up-to-date topic—see Chapter   17    . 
Computers have become tools of motivation, and can foster comprehensible inter-
disciplinary links between mathematics and other subjects. However, the use of 
computers in teaching asks for new approaches to exposition and to mathematical 

http://dx.doi.org/10.1007/978-1-4614-4684-2_17
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content (Artigue,  2002  ) . This might be one of the reasons why recent studies in 
mathematics education show that, despite many national and international actions 
aiming at integrating ICT into mathematics classrooms, such integration in schools 
remains underdeveloped. 

 There are several reasons for the discrepancy—ranging from the huge diversity 
of ICT resources (Lagrange,  2011  )  to the lack of experience among teachers, at all 
levels, in using technology in mathematics lessons. A vital part of the knowledge of 
mathematics educators, indeed of teacher educators, is knowledge of potential, 
advantages and dangers of inclusion of activities using ICT into teaching (Jančařík 
& Novotná,  2011  ) . 

 There are many projects, seminars and conferences dealing with this topic. As a 
recent example, aspects of Working Group 15 (“Technologies and Resources in 
Mathematics Education”) at the Seventh Congress of the European Society for 
Research in Mathematics Education (CERME 7), held in Poland in 2011, is consid-
ered. A common focus of several contributions in the Working Group was on the 
challenges that teachers encounter when teaching mathematics supported by ICT 
for developing mathematical understanding and skills. Teaching with ICT is a com-
plex activity, requiring insight in the subject, knowledge of the ICT tools, and 
understanding of pupils’ thinking (Fuglestad,  2011  ) . Shulman  (  1986  )  introduced 
the term pedagogical content knowledge, PCK, to denote the intersection of peda-
gogical and content knowledge in order to consider the complex interaction 
between pedagogy and subject content. Mishra and Koehler  (  2006  )  extended 
Shulman’s model to include technology and introduced the term technology peda-
gogical content knowledge, TPACK; Figure  14.5  (retrieved from   http://tpack.org/
tpck/index.php?title=TPCK_-_Technological_Pedagogical_Content_Knowledge    ) 
is a scheme indicating several areas of knowledge. Using ICT effectively in teaching 
requires more than just learning to handle the computers with software and other 
digital tools.  

 But what are the implications of TPACK for teacher-education programs? How 
can this specialized pedagogical content knowledge be best developed? When a 
student teacher observes a lesson within a technology-rich environment, what 
should she or he observe? That question, and many other like questions in the area 
of mathematics education and ICT, urgently need attention.  

   Mathematics Educators in the Position 
of Teacher Educators 

 Obviously, it would be disappointing if the results of mathematics education 
research did not have important implications for theory and practice in mathematics 
education. On the other hand, researchers often have no direct access to teachers, 
and vice versa; therefore, mathematics educators, viewed as a speci fi c body of 
teachers (they teach teachers, and in that sense they are teacher educators) form an 
extremely important category in fl uencing a great deal the spreading of theoretical 

http://tpack.org/tpck/index.php?title=TPCK_-_Technological_Pedagogical_Content_Knowledge
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knowledge in the domain of mathematics education. In this part of the chapter we 
consider issues surrounding the development of mathematics teacher educators. 

   How Does Someone Become a Mathematics Teacher Educator? 

 There is no well-de fi ned and unique pathway for becoming a teacher educator. 
Some teacher educators were originally teachers in schools and took up appoint-
ments in teacher-education institutions after years of classroom practice. Others 
became teacher educators immediately after completing their PhD studies (or even 
during their PhD studies). In cases where the PhD is completely set inside the  fi eld 
of education research, it has been possible to become a teacher educator without 
having had much experience teaching in schools. Others were originally mathemat-
ics specialists who became mathematics teacher educators without any special 
training in relation to psychological, pedagogical and didactical issues. The follow-
ing question arises: What  basic  requirements should we expect of someone who 
wants to become a teacher educator (regardless of what we understand by the term 
“good” teacher educator), with respect to mathematics, pedagogy, psychology and 
mathematics education? This is a complex question, already dealt with in many 
papers and discussions. 

  Figure 14.5.    Technology pedagogical content knowledge—TPACK (Mishra & Koehler,  2006  ) .       
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 It is generally accepted that mastering mathematics itself is not suf fi cient for 
successfully teaching it at any level (see, e.g., Nieto,  1996  ) . In teacher education, it 
is necessary to determine the balance between the following components: 

   Speci fi c knowledge.   Four main areas are identi fi ed:

   Knowledge of mathematics (mathematical concepts and procedures, methodology, • 
relationships with other areas);  
  Psychological–pedagogical knowledge (general aspects of teaching/learning • 
processes, getting to know students, planning and management of lessons, cur-
riculum creation, knowledge of teaching contexts);  
  Knowledge of learning/teaching mathematics (learning/teaching strategies for • 
speci fi c topics, curricular and pedagogical materials); and  
  Knowledge, beliefs and attitudes towards mathematics.     • 

   Practical skills.   These components are only general; they do not answer the 
basic question about the content and extent of knowledge required from teachers. 

 Teachers who become teacher educators have the experience of practice but usu-
ally lack any theoretical background. Mathematicians who wish to become teacher 
educators often have a tendency to overlook the importance of pedagogical–psycho-
logical components and prefer to focus on the deep and precise knowledge of the 
subject content; from their perspective, issues associated with the depth and extent 
of the mathematics to be mastered are crucially important, and other matters are 
much less important. 

 Until recently, little was known about the professional learning or development 
of mathematics teacher educators (Llinares & Krainer,  2006  ) . As Chapman  (  2008  )  
reported, even in cases where mathematics teacher educators have researched their 
own practice, not much is known about their learning, for example, how they 
re fl ected to gain self-understanding, what practical knowledge they acquired, and 
how this knowledge had an impact, or is likely to have an impact, on their future 
behaviour in working with students. 

 Despite the views of some sceptics, the importance of theoretical perspectives on 
the learning and development of university-based mathematics teacher educators is 
well recognized by the International Group of Psychology in Mathematics Education 
(IGPME). This topic arose from interactions between PME conference participants, 
and editors and authors of a special issue on “Teacher Change” of the  Journal of 
Mathematics Teacher Education . The learning and development of mathematics 
teacher educators were explored in a PME discussion group in 2010, and in a PME 
working session in 2011 (see Goos, Brown, Chapman, & Novotná,  2010,   2011  ) . 

 Instead of striving to identify a general framework, which could be a fruitless 
task, an example of a teacher becoming a teacher educator is presented. The following 
written statement was prepared by a teacher from South Africa who described the 
dif fi culties she had after she took steps to become a teacher educator (quoted in 
Novotná et al.,  2003  ) .

  As a teacher educator teaching teachers, my practice has often been constructed for me. 
Course content is sometimes prescribed and so have been the models of delivery. 
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 During the last 2 years I have found myself strangled and twisted in a thread of tension. 
The Department of Education embarked on a national strategy to train and equip mathe-
matics, science and technology teachers. They developed a  fi ve-year programme to train a 
substantial amount of educators in each of our provinces. The programme targeted 
Intermediate Phase (Grade 4 to 6) and Senior Phase (Grade 7 to 9) to ensure an early and 
solid foundation for learners at higher levels. The intention is that teachers will emerge 
with an Advanced Certi fi cate in Education (ACE). The National Education Department set 
out the following outcomes for the programme and for the institutions that would deliver 
the programme:

   A progressive through-put of well-trained mathematics, science and technology educators • 
per province, who can:

   demonstrate competence and con fi dence in classroom practice;   –
  assess teaching and learning in line with curriculum stipulations;   –
  demonstrate understanding of policy imperatives impacting on teacher development; and   –
  become professionally quali fi ed educators with an ACE. (p. 78)        –

 The course attempted to integrate theory and practice but at a very super fi cial level. My 
concerns were that as teacher educators:

   • We need to think very carefully about what kind of theory is most useful and how we should 
teach this theory so that teachers can use it to deepen their understanding of educational 
processes.  
  We also need to consider the educative roles of experience.  • 
  And, how exactly should theory and practice be related when the Education authorities • 
want well-trained maths educators?    

 Theories will die if they remain disconnected from me (my practice) and my practice would 
be lifeless if not inspired by theory. 

 My experience with practice has included researching my own practice. To distil the 
tensions I embarked on a research process that allowed me to probe my own assumptions 
and to investigate how these in fl uenced the ACE course. I tried to pay attention to the voices 
of some of my students from the course so that this knowledge could be shared with col-
leagues with the possibility of reshaping the ACE programme and contributing to our 
understanding of professional development and teacher education. The purpose of the 
research was to  fi nd out from the teachers what it meant to be a mathematics teacher in their 
everyday, lived situations. 

 I do have a slight problem. I am not sure about the role that generalizability will play in the 
research. At this stage I remain undecided whether to use the stories (the teachers’ and 
mine) to re fl ect further on the ways that individuals and institutions construct courses in 
teacher education in South Africa (pp. 79-80). 

 Theory and practice can exist separately and they can belong to the same world. 

 People do not stay neatly in a role: at times, setting aside the role of practitioner or of theo-
rist. The educational theorist is a practitioner of education (a teacher); at times the teacher 
(as educational practitioner) is a theorist (Carr,  1995  ) . (p. 83)      

   Who Teaches Mathematics Educators? How Does Research 
Contribute to Mathematics Education? 

 In the previous parts of the chapter we tried to  fi nd answers to the following 
questions: “Who is a mathematics educator?,” “What are the most common paths 
for becoming a mathematics educator?,” and “What is the main role of observations 
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in mathematics educators’ work and in mathematics education generally?” We have 
seen that, to a great extent, mathematics education is determined by “mathematics 
educators.” The category of “mathematics educators” includes all the individuals, 
regardless of their status, who contribute either intentionally or non-intentionally to 
establishing or transforming the relationship of a subject with situations that may be 
modelled by mathematics. This is the place where mathematics education takes 
place, because knowledge of mathematics is always manifested as an expression of 
this relationship. But it is also the place of their establishing. As Wittgenstein  (  1980  )  
stated: “Teach it to us and you established it” (p. 381). 

 But immediately, the paradox that Marx posed in his third thesis on Feuerbach 
appears:  Who will teach the educators?  Although Marx never really answered his 
question, Morin  (  1999  )  proposed a number of paths including that of “providing a 
culture that allows organizing knowledge” (p. 118). This path is promising because 
in fact, it allows the incorporation of the question of knowledge and its transition in 
the domain of educational policy and more largely in the culture: the set of ways of 
reacting, thinking or doing, proper to nations and communities. It is linked with 
considering this question in the set of strongly diverse dimensions: historical, epis-
temological, political, etc. These dimensions determine, but not mechanically, what 
pupils learn and the ways that they learn it. 

 In fact, although mathematics can be considered as universal, the kinds of math-
ematical experience pupils gain, are diverse, set in different contexts and periods, 
in fl uenced by educational style (Sarrazy,  2002 ; Sarrazy & Novotná,  2005  ) . Although 
it is possible to include questions related to mathematics education to broader dis-
cussion on education and educational policy, we can also study the speci fi c modali-
ties of contribution of research in social sciences and more particularly of didactics 
of mathematics to mathematics education. That will be our focus in the following 
discussion, which is a follow-up to the previous parts of the chapter. It provides a 
more general, more philosophical re fl ection on mathematics education, mathemat-
ics teachers and the education of mathematics educators. The ideas presented show 
the variety of possible approaches and sources. The discussion is based on the notion 
of didactical situation as that was introduced by Guy Brousseau in the Theory of 
Didactical Situations in mathematics (Brousseau,  1997  ) . 

   A Necessary But Not Exclusive Speci fi city 

 From the end of the 1960s the theory of didactical situations (Brousseau,  1997  )  
asked for mathematics education and the sciences of education to be seen in a new 
way. Didactical problems needed to be speci fi c for the considered domain of educa-
tion. Learning mathematics has no relationship with, for example, learning to cook 
or learning to play football! We will not focus on that aspect, which is largely con-
sensual today. But if in their practice, mathematics educators (in the large sense) 
have no room for manoeuvre for mathematics, this room considerably increases if 
they examine the situations for communicating them. 
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 This  fi rst aspect will be quickly illustrated by an anecdote. Two doctoral students 
were assistants in a big school in Rome; both of them were good mathematicians. 
The  fi rst was a perfectionist and for his lessons he always chose problems whose 
success was delicate and strongly clear for his pupils. The second was disordered 
and had no so clear and explicit vision of what he wanted his pupils to develop; he 
taught something because he found it interesting and useful. Despite that, the exam-
ination results of the second were regularly much better than these of the  fi rst one. 
A possible explanation could be that the perfect organization of the  fi rst one’s teach-
ing from the perspective of mathematics did not leave any space for interrogation 
with his pupils, whereas pupils of the second had to  fi nd for themselves relation-
ships between diverse problems that looked to be entirely independent. 

 Fully  fi nished mathematics (rules, algorithms, theorems etc.) might be thought 
of as dead mathematics. A big part of the work of teachers consists in creating 
speci fi c conditions of their “resurrection” for pupils. For doing it, they do not have 
any other choice than to create situations enabling them to show their pupils the use, 
interest, and meaning of mathematics. The reason is that the concept of situations, 
their managing, their organization, their evaluation, their regulation, etc. have 
fundamentally one speci fi c dimension. They are of an immense complexity, taking 
into account their multiple determinations, conscious or not, that lay stress on the 
structures, declared or effective functions and the dynamics of these situations: 
observations, evaluations, regulations. These determinants are situated at various 
levels of organization according to excessively complex modes of relations—polit-
ical, epistemological, pedagogical, scienti fi c, etc.—that create an ideological frame-
work that is relatively in fl uential in its effects. It is very dif fi cult, if not impossible, 
not only to build hierarchies of the forms of determination but also to evaluate their 
pertinence and their course of action for mathematics education. The reason is that the 
theory of situations allowed isolating (in the sense of Stengers,  1995  )  the didactical 
dimension of pedagogical, social, psychological, anthropological etc. aspects; it 
allowed making efforts and having success in modelling properties and conditions, 
speci fi c for mathematics, of pupils’ interactions with the environment and thus 
contributing to the emergence of the didactics of mathematics. We believe that one 
of the conditions of mathematics education development is certainly the identi fi cation 
of its non-limiting speci fi city; this speci fi city is proper to the epistemology of math-
ematics but narrowly linked with anthropological dimensions that are not speci fi c 
for mathematics but nevertheless necessary for understanding social (economical, 
statistical etc.) use of mathematics.  

   Education and Mathematical Education 

 It is banal to say that mathematical education does not focus merely on creating 
mathematicians or on communicating mathematics that is useful for social and 
domestic life. It is less banal to say, as many mathematicians—Bertrand Russell, for 
example—have said, that mathematics contributes to the creation of citizenship in 
its way of being in the world and of taking it into consideration. 
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 Besides, it is suf fi cient to compare, in the diachrony and synchrony, forms of 
teaching, curricula, the roles of mathematicians in the social and school selection, 
for taking into account the extreme diversity of the conception of mathematics edu-
cation. An equally important diversity can be found in the conceptions of mathemat-
ics by mathematicians themselves. It is not to be accepted that mathematics education 
could be placed under the control of one discipline or trend only. Specialists of the 
discipline and of its education enrich democratic discussions about the social, school 
and more largely political uses of mathematics from the perspective of their science. 
In the same way, one could imagine that researchers could clarify political decisions 
by their capacity for anticipating the consequences of certain political measures 
to the conditions of their dissemination. Unfortunately, we can con fi rm without 
much risk that the legitimate care for rationalization, ef fi ciency and equity of educa-
tion leads to the exponential development of evaluation; moreover, individualism as 
it appeared in the 1980s and the 1990s, together with liberalism had more impact on 
the ways of disseminating mathematics and mathematical culture than results of 
research in mathematics education accumulated during the last 40 years. 

 For example, Nichols and Berliner  (  2005  )  have clearly demonstrated the serious 
impact of evaluation policy on all the levels of the educational system. In the USA, 
the  No Child Left Behind  legislation envisages sanctions against teachers and insti-
tutions that do not reach the level required on mandatory high-stake tests. This policy 
has had serious consequences:

    1.    The growth of discrimination by the closing of schools in the poorest environments.  
    2.    Teachers being forced to operate in untenable pedagogical and social 

environments.  
    3.    The weakest pupils becoming frustrated, which can result in their exclusion.  
    4.    The important development of corruption within social relationships (e.g., result 

 fi ddling).     

 Over two decades ago, Brousseau  (  1989  )  explained how, in such situations:

  Teachers are led to leave the objectives of high taxonomical levels for the bene fi t of objec-
tives of a low level: learning algorithms and isolated facts. Each of these measures grows the 
teaching/learning time and presents cumulative dif fi culties: metadidactical shifts, repeti-
tions and individualization swallow the collective educative time, fragmentation of knowl-
edge cuts the comprehension and the  fi eld of its utilization, etc. This degrading form of 
lessons was developed since the trivialization of tests,  fi rst for the tools of information and 
soon as the tool for the management of educational policy. In this system, the measures of 
failure are a priori denounced as unsupportable and designated responsible are pupils and 
particularly teachers. Against all reasons, present methods are disapproved, opposed to others 
that are said to be forgotten, and declared better against any proof, but only for justifying 
the accusation of general incompetence. (Quoted in Sarrazy,  2009 , p. 13)    

   Didactical Culture and Social Anticipation 

 Should education result in a “full head” or a “head well done”? Should we look 
for a good mastery of algorithms or allow pupils to be creative and use algorithms 
in new situations? This recurrent and often counterproductive debate not only has 



454 Novotná, Margolinas, and Sarrazy

scienti fi c overtones, it is also political because it poses questions about the type of 
men and women who are to be formed. If these two intentions appear together, 
they appear in a paradoxical relationship. In fact, the more pupils are sure of the 
ef fi ciency of an algorithm, the less they authorize themselves to invent other uses 
than those they met originally. Like a disciple to whom a teacher shows the moon, 
they see the  fi nger. 

 This is the place of mathematics education, between the academic dimension of 
knowledge and mathematical activity. The theory of didactical situations is born from 
the theorization and scienti fi c study of conditions that allow exceeding this paradox. 
Although its recognition among the scienti fi c community is manifest, its dissemina-
tion and use in teacher education remain strongly limited. Should we regret it? 

 What are the consequences for teacher and mathematics educators’ education? 
Teacher education appears as an important lever enabling teachers to step out from 
the discussion between the “full head” and the “head well done.” We think that it 
would be desirable to expand teachers’ didactical culture signi fi cantly but we would 
make a mistake if we push them to expel their pedagogical ideas. It would be a seri-
ous mistake because teachers, as well as pupils, need a certainty and illusion at the 
same time. Researchers in didactics of mathematics, whose agreement on ideas is 
far from being uni fi ed, contribute to clarifying conditions enabling the creation of 
knowledge that is new for the pupil (that does not depend on the pupil but on the 
culture). Pedagogues are responsible for fostering such conditions under which 
pupils have a chance of active participation in the adventure that nobody else can 
experience for them, the adventure of reinventing the world by her or his activity. 
Pupils can hardly be expected to produce anything new unless they have had some 
direct experience of this process. Fostering discussions on the de fi nition of educa-
tional policies, of clari fi cation of the possible consequences of certain political deci-
sions would be of much bene fi t for research in mathematics education in general 
and for teacher education.       
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  Abstract   Mathematics has maintained an enduring image as a  fi eld of knowledge 
lending its resources to many intellectual pursuits and utilitarian enterprises. School 
mathematics, however, has increasingly learned to respond to a commonly con-
ceived purpose of supplying the world’s workforce with the resources needed to 
support economic wellbeing. The emergent regulation in support of this response 
has in some instances tempered more humanistic or idealistic conceptions of why 
we want to study mathematics. What had been introduced to measure school math-
ematics now de fi nes and polices its boundaries. It has also privileged Western con-
cerns in setting internationalized agenda. Mathematics, mathematics education and 
mathematics education research, this chapter suggests, are each conceptualized 
according to their location, re fl ecting and shaping each other, yet with each being 
governed by slightly different priorities. It is argued that schooling is increasingly 
shaped and judged by its perceived capacity to deliver success in terms of interna-
tional competitiveness linked to economic agenda. This results in school mathemat-
ics being shaped to meet assessment requirements. The chapter shows how research 
increasingly  fi nds its terms of reference set according to measuring delivery in these 
terms. It also shows how researchers become complicit in promoting particular con-
ceptions of teaching and in constructing the  fi eld as an ideological battleground. 
Such complicity, it is suggested, combined with the relative insularity of the  fi eld, 
prevents us from occupying other worlds that might de fi ne us and serve us in differ-
ent ways. The chapter concludes with a consideration of the prospects of research in 
mathematics education and the extent to which this activity is enabled or restricted 
by existing institutional contexts in re-shaping its ambitions to engage with the 
diversity of future needs.      
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   Mathematics, Mathematics Education, and Mathematics 
Education Research 

 Is mathematics de fi ned by local conditions or can it be understood more univer-
sally as spanning nations and generations? Mathematics has maintained an enduring 
image as a  fi eld of knowledge lending its resources to many intellectual pursuits and 
utilitarian enterprises. School mathematics, however, has increasingly learned to 
respond to a commonly conceived purpose of supplying the world’s workforce with 
the resources needed to support economic wellbeing. Research intended to inform 
the practices of mathematics classrooms has often re fl ected local interpretations of 
this fundamentally economic agenda. Since the advent of international compari-
sons, governments have been jockeying for a better position in the resulting league 
tables. The success of particular school systems in international testing programs 
such as the OECD  Programme for International Student Assessment  (PISA) or 
 Trends In Mathematics and Science Study  (TIMSS) has been variously interpreted. 
Good performance in these league tables has sometimes been taken as being indica-
tive of wider economic competitiveness. Yet such comparisons can transform the 
content of what they compare.

  TIMSS contributes to the misrecognition of terrain where global politics motivates policy 
makers to apply national security responses to education. The assessment casts students as 
passive, nameless metaphors of national economies, whose performance in school will predict 
the future relations among nations. (Thorsten,  2000 , p. 72)   

 Governments and the people they govern have been seduced by the appeal of raising 
standards in a statistically de fi ned world. What had been introduced to measure school 
mathematics now de fi nes what it is and polices its boundaries. This regulation has 
tempered more humanistic or idealistic conceptions of why we want to study math-
ematics. It has also done much to alter how we understand research in the area. 

    Howson and Mellin-Olsen  (  1986  )  documented some of the history of mathemat-
ics’ evolution as a school subject for which, since the beginning of school mathe-
matics education, the subject was strati fi ed according to the type of student 
concerned, and the expectations held for them. Over the past few decades, though, 
the bounded vision of the measurable mathematics preferred by international testing 
programs (whether TIMSS or PISA), a climate of competition has been created in 
which nations compete for status and governments take credit or apportion blame 
according to these quanti fi cations of student achievement. Among the consequences 
of international competition and the attendant commitment to national typi fi cation 
we suggest that national means of performance are given priority over the local 
inequalities they conceal. The success of less af fl uent nations in optimizing the 
effectiveness of their minimally resourced educational systems may go unrecog-
nized. More informed analyses of the data generated by international testing are 
capable of pointing to idiosyncrasies in school systems that address, ignore or even 
amplify the educational dif fi culties experienced by particular population sectors. 
Our interest in this chapter is less to bewail the misuse of research in mathematics 
education as to examine the institutional contexts that in fl uence the form taken by 
that research and explore the consequences of that in fl uence. 
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 Mathematics, mathematics education and mathematics education research are 
each conceptualized according to their location. It will be argued that they re fl ect 
and shape each other, with each being governed by slightly different agenda. For 
example, the assessment of school mathematics through  fi lters such as international 
tests of student performance has changed the priorities of school mathematics in 
many countries. These changes have in turn had an impact on how the  fi eld of math-
ematics education research is conceived internationally. The international industry 
that has arisen around the assessment of student mathematics achievement has 
simultaneously enacted and shaped local and international conceptions of accom-
plished practice in mathematics and in mathematics education. Research is judged 
by its perceived capacity to deliver success in the prescribed terms. 

 For instance, the goal of comparative international measurement of student math-
ematics achievement is sometimes conceptualized as the raising of standards. These 
standards, however, result from a very speci fi c conception of mathematical learning, 
often based on what US policy makers have deemed to be important through their 
reference to TIMSS in evaluating performance in US schools (see Bishop,  1990  ) . 
Other countries have readily subscribed to these priorities, apparently with minimal 
questioning, or because the priorities have become the international currency to 
which their governments can reference their own schools’ achievements in elector-
ate-friendly terms. The assumptions about what is valuable have been encrypted 
into the measuring devices themselves. The results are then subject to consider-
ations of alignment with valued mathematical performances, the affordances and 
limitations of the measuring devices (the test), and assumptions about levels or 
composition of achievements appropriate to particular age cohorts. Mathematical 
activity or performance, in school, workplace and other settings, is the medium by 
which the purposes of mathematics education are realized. Mathematics education 
research meanwhile draws its identity from an interest in optimizing and informing 
both mathematical activity and mathematics education. The focal concern of this 
chapter lies with those institutions that provide the context and the agenda for math-
ematics education research. 

 The scale of international research efforts and the political status of the  fi ndings 
have popularized a distinctive genre of mathematics education research. Accordingly, 
the image of the lone researcher  fi nding out how mathematics might be taught has 
been eclipsed by more collective conceptions of mathematics in schools and of the 
research tasks developed to investigate and inform educational practice. These con-
ceptions result from shifts in pedagogical attitudes, such as those attitudes manifest 
in the reform movements in the USA, China and Singapore, which combine reform 
zeal with very differently targeted initiatives. Associated activities can include the 
working through of regulative demands on curriculum de fi nition, as in China and 
Australia, and the changing roles of universities in preparing teachers, as in the 
United Kingdom and Singapore. Researchers continue to produce knowledge and 
this knowledge is open to appropriation by those seeking to maintain current ideolo-
gies or by those seeking to critique and contest current ideologies. For example, 
Piaget and Vygotsky have been variously deployed to underwrite constructivist 
reforms in the USA. Freudenthal’s work has been marketed as an alternative school 
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mathematics scheme. Yet knowledge is a function of the world that produces it, 
which can prevent us occupying other worlds that might de fi ne us and serve us in 
different ways. International research has the potential to afford access to alternative 
visions of curriculum and practice, but  fi lters the study of such alternatives through 
the normalizing demands of common measurement instruments and the use of 
English as the lingua franca of international education and educational research. 

 There are dif fi culties for research in exploring good practice when governments 
are de fi ning what good practice is according to policy driven priorities and budget-
ary constraints. Research carried out according to the preferences of these govern-
ments is frequently about supporting “improvement” within the current model rather 
than being about producing and testing new models. Researchers can become 
subservient to the latest governmental vision. We suggest that such institutional 
contexts (a) determine the criteria by which good practice is recognized; (b) prescribe 
the manner in which good practice can be researched; and (c) frame and constrain the 
channels by which research can inform the promotion and realization of “evidence-
based good practice.” Central to this discussion is the determination of what consti-
tutes evidence for the purposes of informing practice and generating policy. This 
shaping of the direction of research determines what mathematics and mathematics 
learning are considered as legitimate objects of that research. 

 Insistence on the universality of mathematical activity, however, represents a 
denial of the heterogeneity that characterizes mathematics and the way in which it 
is shaped to  fi t diverse locations. Mathematics means different things to different 
people, where groups may prefer particular perspectives that solidify in certain 
communities, according to culture, ethnicity, af fl uence, gender, and social class, as 
alternative contexts. Mathematics is held in place by its appearances in speci fi c 
locations (particular pedagogical forms, representations in popular media, its use in 
accountancy procedures, etc.). We may ask, however, what remains if we take away 
these speci fi c examples of localized cladding that at once disguise mathematics and 
make it recognizable and functional in those speci fi c locations? There may be noth-
ing left. Mathematics resides in its localized appearances addressing speci fi c 
demands. Yet, not all voices or ways of life are equal on the international stage. The 
tension between local priorities, values and needs and the normalizing demands of 
international comparability make clear the sensitivity of mathematics education 
research to the demands of context. 

 Research in mathematics education has increasingly turned to issues of context, 
while being situated itself in many contexts. Far from being the province of the lone 
researcher, research these days takes place increasingly in small and large teams, 
usually but not always at universities, and frequently drawing membership from 
several educational contexts and traditions. Each stakeholder group participant in 
research brings its own agenda: governments, funding agencies, school systems, 
community groups, business, universities, research centres, research teams, teach-
ers, students, parents, and individual researchers. But, most importantly, research 
takes place within communities of people governed by collective arrangements that 
de fi ne, regulate and normalize the practices that take place. This chapter examines the 
bene fi ts and drawbacks, the affordances and the constraints, of these institutional 
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contexts for the training and education of researchers but chie fl y for the development 
of the  fi eld itself. Above all, it seeks to show how there are political dimensions that 
pertain to the practice, funding, researching and training for mathematics education, 
and which shape what it is. For research to be meaningful and useful it must exam-
ine the ways in which these political dynamics constitute the basic entities that 
make up mathematics education, namely teachers, students and mathematics itself 
(Otte,  1979  ) . 

 The chapter commences with a preliminary account of the wider domain of 
mathematics education research with respect to its institutionalized contexts across 
and within nations, and the tools that they employ (international achievement tests; 
the criteria for funding deployment; conceptions of mathematics curricula). A useful 
approach is to examine the domain in relation to the ideological movements that 
legitimize mathematics as a school subject and the research carried out in this area. 
We have anchored this discussion on an account of “reform” mathematics as it has 
been conjured in the USA and, more recently, in China; as an ideology acting 
through the social practices in each country and beyond to produce conceptions of 
mathematics and its teaching. The chapter continues by examining the de fi nition of 
the  fi eld of mathematics education in relation to its manifestation in speci fi c institu-
tional contexts: curriculum development and evidence-based policy initiatives, pub-
lication networks, academic networking and research community de fi nition and the 
training and education of researchers. The chapter concludes with a consideration 
of the prospects of research in mathematics education and the extent to which this 
activity is enabled or restricted by existing institutional contexts in re-shaping its 
ambitions to engage with the diversity of future needs.  

   “Reform” as a Context for Mathematics 
Education Research 

 There is a common assumption that research in mathematics education is about 
informing movement towards some improved conception of teaching. But how 
might we conceptualize improvement? Can we agree on some set of shared aspira-
tions? Or, alternatively, could we agree on a greater tolerance of difference? 
Collective movement might be harmonized towards “improvement,” whether that is 
about being more the same, through curricular consensus or standardization of 
achievement measures, or more responsive to local conditions and thereby more 
diverse. Different goals require different approaches. What mechanisms, for exam-
ple, might allow individuals to join together in such a way that a collective vision is 
conjured and coordinated practice is realized? What mathematics education research 
might inform practice within such collective arrangements? The teaching of school 
mathematics typically takes place within some curricular structure set for a particu-
lar community of people. The scope for individual teachers to interpret their task is 
tempered by their susceptibility to having their work evaluated according to local 
criteria. That is, teachers serve administrations aspiring to some model of teaching 
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and take steps to align their practice with those aspirations. In turn, research is often 
commissioned to support or enhance practice consistent with that agenda. 

 Modern conceptions of “reform” as a notion within mathematics education 
research have developed new meanings linked to the guidelines of the US National 
Council of Teachers of Mathematics. Mathematics educators in the USA, the United 
Kingdom, and Australia have associated the term “reform” with the transition from 
a transmission to a constructivist pedagogical approach (Fennema & Nelson,  1997  )  
and curricular reform in China, Korea and Singapore is now taking a similar path. 
By comparison, Japanese mathematics educators were making an effort in the 1960s 
and 1970s “to develop ways of making students discover new ideas and construct 
knowledge on their own” (Hino,  2007 , p. 508). The result of these Japanese efforts 
was the development of a lesson structure called “structured problem solving” that 
has been the subject of much subsequent research (Hino,  2006 ; Sekiguchi,  2006 ; 
Shimizu,  2006  ) . What is perceived as abrupt transformative reform in many countries 
is seen as the continuation of a long-term process of research and development in 
Japan. This contrast is important because it suggests that the reception accorded to 
the same instructional (or curricular) advocacy will differ according to the educa-
tional history of the community. 

 Constructivism, as a conception of learning, though centred in the USA, domi-
nated international mathematics education research for some two decades (Brown, 
 2001 ; Steffe & Kieran,  1994  ) . The pedagogy associated with constructivism 
involved the promotion of student agency and active engagement in advancing their 
own learning, through “genuine mathematical problems for students to solve” 
(Lloyd,  1999 , p. 228) with a focus on “conceptual understanding” (Wilson & 
Goldenberg,  1998 , p. 269). Research in the area had sometimes been conceptual-
ized as tracking progress towards some improved state of affairs (Simon & Tzur, 
 1999 ; Tzur, Simon, Heinz, & Kinsel,  2001  ) . Other studies focussed on how teachers 
responded to curriculum changes. These studies centred their analyses on individu-
als shaping their practice in response to the perceived reform agenda (Remillard & 
Geist,  2002 ; van Zoest & Bohl,  2002  ) . Many of the authors identi fi ed and openly 
subscribed to this agenda. That is, the researchers were complicit in the promotion 
of a particular conception of teaching: inclined towards researching its optimization 
rather than towards the development of any form of critique. This is not an irrational 
position: if the ef fi cacy of an instructional approach is demonstrated by research, 
then further research into its optimization is a logical next step. In the context of 
educational research, this simple rationality can be quali fi ed by questioning: (a) the 
legitimacy of generalizing such instructional advocacy to all settings; and (b) the 
clarity and uniformity with which the advocated practice and associated theory is 
understood, even by those advocating its implementation. Educational advocacy—
that is, reform—is always subject to contingencies of context and of consensus. 

 Not surprisingly, such reform did not offer a trajectory with universal appeal or 
applicability. There were widespread disputes within the USA itself, centred on 
debates that have come to be known as the “math wars.” These disputes have since 
been replicated in other countries (in China, for example) in response to similar 
curricular initiatives. The “inquiry” methods associated with constructivist reform, 



46515 Institutional Contexts for Research in Mathematics Education

characterized by greater learner and teacher autonomy directed at conceptual 
understanding, have been resisted by more traditional teachers, who preferred an 
emphasis on computational skills, and by some mathematicians, who saw in the 
new approach a loss of mathematical rigour. Similar battles continue to be fought 
as other countries, such as China and Korea, implement national mathematics cur-
ricula that embrace “real-life and open-ended problems” in curricular contexts 
dominated by examinations (Cai & Nie,  2007  ) . 

 More theoretically grounded objections to constructivism pointed to the confu-
sion caused by interpreting a theory of learning as a theory of instruction. Disputes 
over the effectiveness of new instructional approaches have been compounded by 
lack of agreement on what constitutes accomplished mathematical activity. Research 
in mathematics education became a weapon of the math wars, to be used (as in 
Andrew Lang’s happy phrasing) “as a drunken man uses lampposts—for support 
rather than illumination” [from:   http://www.brainyquote.com/quotes/authors/a/
andrew_lang.html    ]. Since researchers in mathematics education are simultaneously 
members of the mathematics education community, they become complicit in the 
construction of the  fi eld as an ideological battleground and in the use of research as 
a weapon in that war. Perhaps it is inevitable that education, as a value-laden and 
culturally encumbered  fi eld, should be so prone to ideological division. It is not only 
unreasonable, but actually a misrepresentation of the nature of research, to expect 
educational researchers to adopt a form of ideological neutrality. The activities of 
mathematics education researchers are just as ideologically, politically, historically 
and socially situated as any other members of society: that is, just as subject to the 
in fl uences of context. 

 Research must address not only the basic questions of teaching ef fi cacy and 
learning, but also the processes and impediments by which any research-based 
advocacy might be actioned. For example, a few researchers sympathetic to con-
structivism noted resistance in some quarters, such as “veteran” or “traditional” 
teachers who were unable to shift so fundamentally in terms of their beliefs in what 
it is to be a teacher (Cohen,  1990 ; Lloyd,  1999 ; Wilson & Goldenberg,  1998  ) . The 
inquiry methods would also have been less acceptable in many Eastern or Paci fi c 
cultures, where curricula, teacher/student roles and the collective good are de fi ned 
differently (Brown et al.,  2007  ) . Further, the alleged autonomy understood within 
the “reform” agenda con fl icts with the reality teachers have come to accept in many 
countries, assessed as they are through legislative documentation and recognized 
through the  fi lter of their compliance with this. Such differences are profoundly 
cultural and re fl ect histories of educational practice that pose substantial obstacles 
to any reform movement predicated on autonomy, agency, dialogical reasoning and 
the legitimacy of contesting prevalent beliefs. The role of research and the researcher 
in such contested domains becomes itself the matter of debate and the authority of 
research and the credibility of the researcher will be equally acclaimed and decried 
by vested interests. 

 In England, for example, student-centred pedagogies emphasizing problem 
solving, investigations and project work dominated curriculum reform agendas 
some 30 years ago. The rhetoric of this tradition was largely commensurate with 
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constructivism. A later backlash in England resulted in prescribed curricula for both 
teachers and students in which student-centred approaches became tightly struc-
tured. Reasons cited for this backlash included right-wing politicians—such as 
Kenneth Clarke, a Conservative Minister of Education—claiming that given 
dif fi culties with teacher supply the average teacher could not teach to such high-
minded ideals. Left-wing commentators, meanwhile, argued that aspirations to 
child-centred approaches merely replaced overt regulation with a form of covert 
regulation (Walkerdine,  1984  ) . The heightened status of student agency was accom-
panied in several Western school systems by a commensurate reduction in the 
importance attached to teacher agency (Chazan & Ball,  1999 ; Clarke,  1994 ; Lobato, 
Clarke, & Ellis,  2005  ) . The prioritization of “higher-order thinking, self-re fl ection 
and self-regulation” in countries such as Singapore (Fan & Zhu,  2007  )  has been 
identi fi ed with the problematization of “traditional teaching” and the implicit deval-
uing of established tenets of teacher expertise.  

   The Ideological Bases for Improvement 

 Conceptions of “improvement” can be very localized. Trajectories of improve-
ment do not apply across all people and all phases of development. Success depends 
on the criteria one uses for judging success. Many alternative criteria have been 
entertained in recent years, each governed by their own respective and reasonable 
assumptions. Relative positions on TIMSS and PISA league tables have encouraged 
school systems and funding agencies in the USA to adapt mathematics textbooks 
from Singapore for American use and to appropriate Japanese “lesson study” as a 
professional development tool in the hope of emulating the achievements of math-
ematics students in Japan and Singapore. Yet the same league tables are not inter-
preted in Singapore or Korea as demonstrating unequivocal educational success, 
where new value is being placed on creativity, imagination, and problem solving 
ability. Lin  (  2010  )  pointed out that Hong Kong, Korea, Japan and Taiwan, who 
performed well in TIMSS, “showed very poor[ly] in learning interests and self-
ef fi cacy” (p. 85). PISA has attempted to give assessment recognition to the situated 
nature of mathematics activity to a greater extent than TIMSS (Askew, Hodgen, 
Hossain, & Bretscher,  2010  ) . The attempt within international student achievement 
initiatives such as PISA to honor the situatedness of mathematical activity within an 
international testing instrument is wholly commendable. Of course, this same situ-
atedness renders attempts at cross-curricular measurement of student mathematical 
performance somewhat problematic (see Clarke,  1996  ) . The implicit recognition 
that mathematics can only be assessed “in use” and that such use implies a context 
re fl ects the underlying assumptions of the Dutch  Realistic Mathematics Education  
curriculum (De Lange,  1987  ) , among others. The consequences of integrating such 
a perspective into an instrument intended to measure student mathematics achieve-
ment internationally can be seen in the observation that “national rankings on 
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TIMSS and PISA differ substantially” (Törner, Schoenfeld, & Reiss,  2007 , p. 353). 
It is clear that “improvement” cannot be de fi ned in absolute terms.

  In a special issue of the journal  Educational Research and Evaluation , Cheng and Cheung 
 (  1999  )  provided a critique of a series of articles addressing the general theme of “TIMSS in 
a Western European Context.” Their critique raised several concerns: (1) Challenges to the 
validity of country ranking; (2) Problems in relevance of TIMSS to national curriculum; (3) 
Methodological limitations; (4) Lack of high quality process data at classroom level; (5) 
Lack of contribution to theory building; and (6) Limited policy implications. The culmina-
tion of Cheng and Cheung’s argument was that limitations and methodological concerns 
with TIMSS meant that “the policy implications for improvement of educational practices 
are inevitably quite limited” (Cheng & Cheung,  1999 , p. 233). Given all the issues raised 
above, it appears that there has been suf fi cient consistency in the concerns raised about 
TIMSS to make the policy recommendations problematic. (Clarke,  2003 , p. 174)   

 As research and the framing of policy and curriculum become more distant 
from the activities of the classroom, there is always a cost in the form of local 
preferences being suppressed resulting from one-size- fi ts-all suppositions. 
Generalized consensual aspirations, framed at the level of the state, the country or 
globally, lose local relevance, and alignment with them is not always so easy to 
grasp in the immediacy of everyday practice. There is a need to build a theoretical 
frame that accommodates alternatives to consensual aspiration. Utilization of such 
a frame would have signi fi cant impact on the way research into student achieve-
ment and instructional effectiveness was conceived and conducted. To consider 
alternatives to consensus is to undertake a form of ideological reconstruction. 
“Improvement,” “success” and “quality” become pluralities contingent on context, 
rather than singular prescriptions. 

 Recent neo-Marxist theory has questioned notions of human progress being 
shaped by ideals relevant across all communities (Mouffe,  2005  ) . This is hardly a 
radical proposal. Mathematics education, for example, might be best seen as sup-
porting the needs of the students concerned. These needs would be culturally depen-
dent, with each country basing its curricular aspirations on alternative conceptions 
of mathematics according to local need. Yet, international comparative testing has 
resulted in many countries teaching to those international tests, matching the style 
and content preferred by certain Western countries. Both curriculum content and 
styles of teaching have been adjusted to meet this model. For example, in the name 
of conformity, the United Kingdom has sacri fi ced its earlier facility with problem-
solving approaches. Since problem solving is not assessed focally within TIMSS, 
this has resulted in problem solving being less common in schools (Askew et al., 
 2010  ) . And recent policy has been directed towards enabling British children to be 
successful in the sorts of questions one  fi nds in TIMSS. Although England suc-
ceeded in moving from 18th to 7th position on TIMSS in 2007, it dropped in its 
rankings from 8th to 25th on the more problem focussed PISA in 2006 (Brown, 
 2011 ; Department for Education (DfE),  2010  ) . Tea-pickers in Sri Lanka meanwhile 
do not get an education suited to their local needs. The curriculum they have been 
obliged to follow is governed more by “internationalized” objectives than by the skills 
that would support the local economy. And, for those who succeed, this usually 
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translates into a move away from their local area to work in a city, within the 
country, or beyond. The education intended to enable graduate mobility functions 
to enforce it. 

 Laclau  (  2005  )  has rejected the notion of the “people” as a collective actor, and, 
by extension, the same could apply to the possibility of a research “community” or 
a set of governments being able to de fi ne a common interest with regard to the 
purposes of school mathematics. For example, to what extent is it possible for 
the mathematics education research community to assume some consensus in its 
purposes? Examination results, facility with mathematics and enjoyment of math-
ematics do not always pull in the same direction (Pampaka et al.,  2011  ) . Conceptions 
of graduate competencies will vary from school system to school system as mathe-
matics curricula attempt to anticipate vocational and personal capabilities likely to 
be required by graduates. 

 Instead, Laclau has examined the nature and logics of the formation of collective 
identities and suggested that such collectives can be seen as being held together 
through identi fi cation with speci fi c populist aspirations. In mathematics education 
we might reference our activities to raising standards, making children happier, sup-
porting the economy, or building richer mathematical experiences. Mathematics 
would then be shaped according to how it could be read against such aspirations; a 
quanti fi able version of mathematics so that a standard can be shown to have been 
raised, an aesthetically pleasing version of mathematics for those more concerned 
with the beauty of mathematics, etc. Group af fi liations might be centred on particu-
lar shared values or beliefs. Research design will re fl ect populist aspirations and 
mirror societal norms and cultural values, since society’s rewards (e.g., funding) 
will re fl ect society’s values. Government grants may be awarded to those promising 
to advise on how standards could be raised across a population. Self-elected research 
time might be directed at sharing with other like-minded people the intrinsic plea-
sures and aspirations of the individual’s own teaching. The essential point is recog-
nition of the correspondence between values and practice and the willingness to 
countenance and accommodate a diversity of motives to undertake research. 

 Some years ago, Althusser  (  1971  )  focussed on how the individual understands 
herself through  ideology . Here an  ideology  is understood as a speci fi c conception of 
life, a particular version of common sense. One can only inspect an ideology from 
the perspective of another ideology, “we are ‘naturally’ in ideology, our natural 
sight is ideological” (Žižek,  2008 , p. xiii). We always occupy an ideologically 
derived position. We never have the luxury of speaking from outside an ideology. 
Althusser described schools as an instrument within the “ideological state apparatus.” 
Here schools are seen as a hegemonic device through which the preferred ways of 
the state are disseminated with general consent. For many pupils and their parents, 
progression through school is an ideological movement to which they are readily 
mobilized. Sensitivity to such perspectives can focus research attention on the inves-
tigation of inequity. Mathematics and mathematics education have roles in the 
creation or maintenance of power differentials. These re fl ect societal norms or 
established social divisions along socio-economic lines. The role of mathematics in 
the entrenchment of such narratives of social reproduction has been variously stud-
ied (Anyon,  1981 ; Boaler,  1997 ; Sztajn,  2003  ) . 
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 Of course, the dominance of such hegemonic societal structures can act to 
impede any critical function that research might serve. To be published in a repu-
table journal a research article must typically position itself in relation to existing 
work and be cast in a form recognizable to a mainstream audience in the  fi eld. 
That is, the tools of the established order must be used to argue for anything new. 
There is a dynamic between the societal constraints that research might legiti-
mately deconstruct and the action of those constraints to inhibit such critical 
research. This dynamic is at the heart of the dialectic whereby research becomes 
complicit in the structuring and maintenance of the systems it might inform. For 
example, research in mathematics education on gestures, teaching techniques in 
fractions, or the promotion of group work, may normalize the assumption that 
adjusting teacher classroom intervention is the main tool of mathematics educa-
tion, rather than say curriculum reform, adjusting social inequalities, setting teacher 
education programs, etc. Research participates in constructing the boundaries of its 
own practice. 

 It is not only research as an endeavour that is seen to re fl ect the institutional con-
text in which it is undertaken. Education, Mathematics, and Mathematics Education 
continue to evolve in ways that re fl ect their cultural–historical origins. The struc-
ture of a discipline such as sociology, for example, re fl ects its cultural–historical 
origins and cannot be understood without recognition that it was formed within the 
culture of imperialism, and embodied an intellectual response to the colonized 
world (Connell,  2007  ) . Research in Mathematics Education  fi nds itself inheritor of 
particular views regarding the aspirational goals of education, the legitimacy of 
curricular partitioning, and the role served by research to understand and optimize 
the realization of those goals in speci fi c cultural settings. Within such a framework, 
conceptions of improvement are pre-determined to a signi fi cant extent, circum-
scribing the capacity of research to critique the structures from which it draws its 
identity. 

 Althusser was not persuaded by consensual aspirations where dif fi culties are 
ironed out. He saw the supposition that you could get to a consensual ideal beyond 
con fl icting ideologies as the biggest ideology of all. The individual may recognize 
herself in some ideologies but not others. But, there is always a gap in this 
identi fi cation, a distance between the person and the story in which she sees herself. 
This gap stays there. For example, some American teachers may truly believe that 
they are subscribing to the reform agenda and following such approaches in their 
practice, whether or not others see it this way (Cohen,  1990  ) . But, at the same time, 
some other American teachers may be sceptical about reform projecting them higher 
up the international league tables or they may not even agree with that ambition. 
Yet, both groups  fi nd their working practices de fi ned and evaluated in line with that 
agenda, securing compliance at a practical level. Brown and McNamara  (  2011  )  
have provided an account of how trainee and new teachers in the United Kingdom 
begin to include of fi cial curriculum descriptors into accounts of their own practices 
as they move through the accreditation process. The study demonstrated how teach-
ers in England were  subject  to the policy framework and the terminology it employed. 
Their validity, professionalism and identities as teachers were understood through 
the  fi lter of their compliance with this regime. 
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 The purpose of these examples is to demonstrate that judgments of effective 
practice or program success, or of any other outcome that might provide a focus for 
educational research, are contingent on the value system structuring the construc-
tion, selection and processing of data. These value systems are determined by the 
context in which the research is conducted. In such circumstances, we may ask 
whether it is appropriate to celebrate any supposed “improvements” in the quality 
of mathematical learning .  Such “improvements” may simply be indicative of suc-
cess in the administration’s project of convincing the public that the administra-
tion’s understanding of mathematics is the correct one and, for example, that the 
content of standardized tests de fi ne what mathematics is. 

 American, Chinese, or any other “reform” functions as an ideology, in Althusser’s 
sense, a speci fi c version of common sense, insofar as it determines the key param-
eters shaping discussion relating to curriculum innovation. In many instances of 
mathematics education research, “reform” functions as a supposed consensual aspi-
ration. However, even within each culture: “Based on their concepts of students’ 
needs, teachers select which parts of the reform documents are appropriate for their 
students,” which translates as “children from upper socioeconomic backgrounds get 
problem solving, those from lower socioeconomic backgrounds undergo rote learn-
ing” (Sztajn,  2003 , p. 53). These narratives of social reproduction have been regu-
larly revived in research studies from Anyon’s  (  1981  )  seminal study to Boaler’s 
 (  1997  )  more recent analysis. International research assists us to situate such local 
variation within the parameters of national boundaries, compulsory schooling infra-
structure, economic status and a host of other societal assumptions. International 
perspectives help us guard against the temptation to over-generalize the regularities 
and repetitions that we  fi nd in local curriculum reform research and to recognize 
how the dictates of locally dominant ideologies can over-determine the processes 
and outcomes of our research.  

   Curriculum Development Initiatives 
and Evidence-Based Policy 

 Mathematical learning in schools cannot be understood fully in terms of individual 
students encountering idealized mathematical objects. Those objects are formed 
across a much broader context, and can be understood in many different ways. The 
“meanings circulating in the classroom cannot be con fi ned to the interactive dimen-
sion that takes place in the class itself; rather they have to be conceptualized accord-
ing to the context of the historical–cultural dimension” (Radford,  2006 , p. 23). 
Mathematical objects in a school context are typically de fi ned in relation to a cur-
riculum that prescribes roles for students and teachers. The extent to which such 
role de fi nitions are culturally and linguistically determined is only now becoming 
recognized (Brown,  2011 ; Clarke,  2010  ) . The actions of teachers and students are 
designed, recognized and assessed according to how they conform to these 
de fi nitions. This pedagogical housing of mathematics in fl uences the objects that are 
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studied. The housing sets the conditions for learning and the resulting apprehension 
of mathematics. 

 More generally, teacher capabilities are not merely dependent on their “delivering” 
mathematical ideas. The capabilities derive from a broad range of factors. The picture 
is much bigger. For example, the setting of policy to bring about widespread adjust-
ment to teacher practices towards raising “standards” or national test scores is a 
persistent aspiration, so often disappointed (Sammons et al.,  2007  ) . Policy makers 
do not work to a consistent agenda in governing school mathematics, and other 
stakeholders, such as, advisory groups, regulators, trainers, research and develop-
ment funding agencies, and potential employers and universities, work according 
to a variety of perspectives and priorities. At the risk of sounding repetitive, all 
stakeholders in the mathematics education research endeavour contribute to that 
endeavour in ways that are highly context-speci fi c and mutually constitutive. 

 Curriculum decisions are thus divided and shared between these various stake-
holder groups, which do not necessarily see eye to eye, resulting in potential dis-
junctions between policy formulation, implementation by teachers and the 
conceptualizations made of such implementations by researchers (Saunders,  2007 ; 
Whitty,  2006  ) . In addition, much research effort is dissipated across countless small 
studies from which it is dif fi cult to produce a coherent picture. As a consequence, 
the theoretical underpinning of such processes has been somewhat fragmentary, 
sometimes switching between cognitive psychology at the level of the individual 
student learning mathematics, to an array of policy sciences and budgetary-led 
political expediency at the macro level. And these various areas of work each have 
their own specialists, who rarely meet with specialists from other areas to swap 
notes. The fragmentation of the education community into specialist groups poses a 
challenge for the development of either an integrative or a normative narrative of 
curricular reform, evaluation or policy development. For the moment, the best we 
can hope for is that each ideologically or theoretically situated research narrative 
is, at least, internally coherent and transparent with respect to its underlying 
principles and the processes of its gestation. This gives research, evidence and 
evidence-based policy a contingent character unlikely to meet political demands 
for generalizability. 

 How then might we conceptualize the role of research in supporting curriculum 
development? Much research in the  fi eld of mathematics education is targeted at 
individual teachers or teacher educators, from the perspective of how they might 
adjust their individual practices with students, yet at the same time an array of pol-
icy interventions split between diverse stakeholders operate in the wider domain. 
Might alternative perspectives or points of leverage offer more effective models of 
curriculum change? How might we conceptualize mathematics education research 
having an impact on populations of teachers through affecting policy decisions? 

 Research is often predicated on identifying de fi ciencies in current practices as 
part of a rationale for implementing a new approach. Hargreaves  (  1996 , p. 5) has 
rather optimistically suggested that educational research must demonstrate “conclu-
sively that if teachers change their practice from  x  to  y  there will be a signi fi cant and 
enduring improvement in teaching and learning.” Hence, a history of research would 
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be characterized as a series of projects, papers and books, with many arguing the 
case for some sort of improvement against various priorities. Yet looking back at 
any one time it is not easy to argue how we might assess retrospectively the nature 
of this cumulative improvement over any given period of time. It is quite dif fi cult to 
provide evidence of improvement except in narrow terms. With the introduction of 
any new initiative there comes an implicit assumption that it will bring improve-
ment over the previous regime. Yet priorities are not always consensual and evalua-
tion strategies change over time. Alternative versions of history craft their heroes, 
objects and time phases differently. The term “improvement” can be understood 
in many different ways and resists stability across time, space and circumstances. 
The very conceptions of progress may have moved on to be understood in differ-
ent terms. 

 Teacher biographies are typically characterized by engagements with a number 
of teaching approaches throughout any one career. Each shift from one to another 
entails mathematics being framed in a slightly different way that perhaps results in 
a different teaching style and, perhaps also, in a different conception of mathemat-
ics. Elements derived from each phase feed into composite experience and contrib-
ute to that teacher’s modes of practice and emergent, and perhaps convergent, 
professional identity. These elements might be attributed variously to fashions in 
school practices, learning theories, assessment preferences, career phase of the indi-
vidual teacher, etc. The shifts in teaching approach would normally be locally nego-
tiated on the basis of some supposed improvement on the previous model. 

 Asking teachers to move from one teaching approach to another can, it seems, 
never be regarded as a straightforward substitution (cf., Fullan,  2001  ) . Nevertheless, 
for those charged with setting policy, there is often a perceived obligation to do 
something. And often this involves doing something big. In the United Kingdom, 
New Zealand and Australia, for example, governments have prescribed detailed cur-
ricula for students and teachers alike, along with associated industries concerned 
with preparing materials. Analogous to such support provision, the Chinese curricu-
lum addresses the problem of scaffolding instructional innovation slightly differ-
ently. The mathematics curriculum itself contains sample activities, illustrative of 
approaches that Chinese teachers might employ in implementing the curriculum. 
State-orchestrated textbook construction provides Chinese teachers with an authori-
tative body of de fi nitions, explanations and tasks that can be interpreted con fi dently 
as embodying the aspirations of the of fi cial curriculum. 

 In terms of research literature, more information is readily available about the 
effect of major curriculum reform in the USA, where there is also a considerable 
emphasis on the widespread adoption of new curriculum materials as a primary 
strategy for improving mathematical education (Remillard,  2005 ; Remillard & 
Bryans,  2004  ) . Such is the extent and diversity of curriculum evaluation research in 
the USA that the National Research Council (USA) commissioned a meta-evalua-
tion of mathematics curriculum evaluation studies (National Research Council, 
 2004 ; Towne, Wise, & Winters,  2005  ) . The report of this meta-evaluation proposed 
clear criteria for the conduct of curricular studies employing different methodologi-
cal approaches. In addition to its substantive  fi ndings, the report provides a model 
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of effective, scholarly consideration of curricular evaluation (see also United States 
Department of Education,  2008  ) . 

 The sheer volume of research carried out within the USA has resulted in the 
conceptions of teaching and curriculum implementation pertaining to this country 
seeping beyond its boundaries. Despite a diversity of context in the USA that de fi es 
simplistic summation, there is a sense in which it provides a context for the rest of 
the world. The country prescribes the parameters (through TIMSS, dominance in 
international research journals, setting political normalcy, promotion of the indi-
vidual) whereby teaching might be classi fi ed, analyzed and informed. Ironically, 
American interest in Asian classrooms has stimulated a more widespread interna-
tional interest in educational systems in the Asian region and encouraged researchers 
in Japan, China and Singapore, for example, to investigate their own practices and 
share the results with the international education community (Fan, Wong, Cai, & Li, 
 2004  ) . The cultural speci fi city not only of the  fi ndings but also of the educational 
value systems on which the  fi ndings are predicated has perturbed the existing inter-
national acquiescence to a US-centric educational agenda. Emergent resonances of 
educational value and practice among European and Asian school systems may 
further destabilize the homogenization of international education threatened by the 
prominence of the international testing of student achievement and the educational 
imperialism of the OECD. 

 Conceptualizations of mathematical learning emerge through alternative curricu-
lum models and development initiatives. Teachers, more or less, make sense of their 
practices adjusted in line with new descriptive lenses. They identify with successive 
curriculum models and the way in which these identi fi cations frame mathematical 
learning. Within any curriculum implementation, both the teachers’ sense of what 
they are doing and the curriculum itself are reconstituted through the encounter, 
thwarting any supposed convergence to an endpoint. This argument has implica-
tions for how we think about initiatives designed to work at creating consensus in 
teaching approaches. In particular, we need to question how or if research agenda 
encourage teachers to align with a particular model or philosophy of practice con-
ceptualized in advance. Af fi nity with any particular model does not necessarily  fi x 
the mode of association or how that is viewed. 

 Remillard  (  2005 , pp. 215–223) examined alternative ways in which teacher/cur-
riculum interfaces have been understood within the research literature. She con-
trasted “following or subverting” a curriculum text with “drawing on” a curriculum 
text or “interpreting” a curriculum text. In these three alternatives, the text is present 
in some form and teachers respond to it. Finally, however, Remillard considered 
how curricula might be understood as teachers participating with the text. For a 
teacher “enacting” a curriculum in this mode, she suggested that teacher and cur-
riculum might be seen as mutually constitutive. Here, curriculum use was under-
stood as participation with the text (pp. 221–223). She identi fi ed this with 
“Vygotskian notions of tool use and mediation, wherein all human activity involves 
mediated action or the use of tools by human agents to interact with one another 
and the world” (cf., Cole,  1996  ) . Such an approach is familiar within mathematics 
education research (e.g., Blanton, Westbrook, & Carter,  2005 ; Goos,  2005  ) . 
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 Ultimately, understood in terms of Foucault’s  (  1989  )  notion of “discursive 
formation,” both teacher and curriculum would be functions of how they are impli-
cated in the stories that unite them. Both change as a result of curriculum develop-
ment activity. Remillard  (  2005  )  identi fi ed some studies where teachers changed or 
learned from their use of resources (Lloyd,  1999 ; Remillard,  2000 ; van Zoest & 
Bohl,  2002  ) . Yet teacher change can also be understood as being the result of 
increased compliance with respect to a curriculum initiative. Aspirations to consen-
sus can suppress the speci fi cities of alternative needs, responses, etc., and thereby 
serve those who are already the most powerful. We  fi nd ourselves, yet again, cau-
tioning against the possibility that research not only reproduces values pre-deter-
mined by the institutional context of the research but also becomes complicit in the 
further rei fi cation of those values as universal.  

   Publication Networks 

 Journals of long-standing quality, serving different purposes and different audi-
ences, such as  Educational Studies in Mathematics , the  Journal of Research in 
Mathematics Education , and  For the Learning of Mathematics , continue to  fi nd a 
readership. Some journals, such as  ZDM—The International Journal of Mathematics 
Education , successfully rede fi ne their purpose and audience in addressing the 
concerns of the international research community in mathematics education. Other 
journals, such as the  Journal of Mathematics Teacher Education , focus their efforts 
on a specialized readership within the mathematics education community. The via-
bility of such journals is threatened by national measures that base their hierarchies 
on citation indices and impact factors. 

 Electronic publications have now established themselves within the  fi eld of rec-
ognized publication outlets. Government research productivity guidelines, such as 
that for the  Excellence in Research for Australia,  make no distinction among publi-
cations by mode of delivery and explicitly include e-books, for example, in the list 
of acceptable research publications. Such publications are subject to the same qual-
ity criteria as other forms of research output. Electronic publications have neither 
distorted nor diluted the quality of available outlets through which we might dis-
seminate our research. Publication in electronic form now routinely precedes publi-
cation in hard-copy for most major journals and expedites the community’s access 
to research. 

 High status conferences producing a published conference proceedings docu-
ment employing a rigorous peer-review process can serve at least three essential 
functions: (a) Such conferences provide a forum at which the most topical issues 
and the most recent research can be reported and discussed; (b) The provision of an 
immediate publication outlet for the research reported at such conferences provides 
a more ef fi cient documentation of advances in the  fi eld than that typically provided 
through the lengthy review and revision processes employed by journals; and 
(c) Provided the peer-review process is suf fi ciently rigorous, the resulting proceedings 



47515 Institutional Contexts for Research in Mathematics Education

publication receives recognition within most measures of research productivity. 
The International Group for Psychology in Mathematics Education (PME) has long 
provided such a high-status research forum and publication outlet. Other confer-
ences, such as the Congress of the European Society for Research in Mathematics 
Education (CERME), the  Commission Internationale pour l’Étude et l’Amélioration 
de l’Enseignement des Mathématiques  (CIEAEM, International Commission for 
the Study and Improvement of Mathematics Teaching) or the Research Pre-session 
of the annual conference of the National Council of Teachers of Mathematics 
(NCTM, USA), perceive their purposes differently and accord less priority to a peer-
reviewed proceedings publication, placing greater emphasis on providing an interac-
tive forum, where the contribution of research to contemporary issues in mathematics 
education can be critically examined. Participation by members of the mathematics 
education community in major international conferences of a more general nature, 
such as the annual conference of the American Educational Research Association 
(AERA) or the biennial conference of the European Association for Research in 
Learning and Instruction (EARLI), provides an important connection between 
research in mathematics education and the general  fi eld of educational research. 
National and regional research conferences such as the Southern African Association 
for Research in Mathematics, Science and Technology Education (SAARMSTE), 
the Mathematics Education Research Group of Australasia (MERGA) and the East 
Asian Regional Conference On Mathematics Education (EARCOME) all provide 
opportunities for the reporting and discussion of research and all produce peer-
reviewed conference proceedings of high quality.  

   Academic Networking and Research Community De fi nition 

 As with any other professional activity, mathematics education research is under-
taken within a community membership that de fi nes itself and the  fi eld through its 
research activities. Advances in technology have enabled entirely new forms of 
international research collaboration and thereby reconstructed research communi-
ties, both in terms of their membership and the nature of their activities. Regional 
networks have led to the establishment of major conferences such as EARCOME 
and SAARMSTE, mentioned above. The availability of a regional forum where 
research can be reported and possibilities explored for research partnership is an 
essential element in the promotion and maintenance of regional research networks. 
Independent of participation in more global international gatherings, regional con-
ferences provide an opportunity to develop a regional research agenda, addressing 
issues more immediately pertinent to school systems in the region. 

 Participation in international research is constrained by many factors. One of 
these is access to the technological resources required to generate, store and analyze 
large data sets. Large databases generated by projects such as the Trends in 
International Mathematics and Science Study (TIMSS) and the Learner’s Perspective 
Study (LPS) are now available to participating researchers anywhere in the world 
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through high-speed, secure, Web-mediated connection. Not only does this transform 
the nature of international research collaboration, by providing distributed access to 
storage facilities hosted within a single institution, but also less af fl uent research 
groups or institutions are saved the expense of costly storage facilities and are more 
able to participate in international research studies. It was previously noted that 
“when less af fl uent countries participate in international studies, it is frequently as 
the objects of investigation rather than as partners in the research” (Clarke,  2003 , 
p. 177). Advances in technology and the growing emergence of international col-
laborative research networks are increasingly replacing such differentiated partici-
pation with true research partnership. 

 These emerging international research partnerships have the potential to catalyze 
a broadening in perceptions of the goals of research in mathematics education 
beyond the pragmatics of local utility. Recent curricular developments in Asian 
school systems, such as in China, Korea and Singapore, occur in parallel with 
advances through adaptation by countries such as the USA and Australia of 
approaches to instruction and teacher education originating in Japan and in China. 
These activities have been accompanied by the emergence of major research part-
nerships between researchers in Australia, the USA, and Europe with their counter-
parts in Japan, China, Korea and Singapore. This recognition of the mutual bene fi t 
afforded by international academic collaboration is an essential component in the 
reconceptualization of the mathematics education community as an international 
cross-cultural endeavour, of the manner in which research might be conducted and 
coordinated internationally, and of the contribution that research might make to 
particular school systems.  

   The Training and Education of Researchers 

 Mathematics education research is a function of the people who do it. At a local 
level a teacher might be concerned with doing research to teach in a more satisfying 
way at a personal level, or to develop or meet the demands of a school teaching 
scheme understood as shared guidance for a speci fi c group of colleagues. At a 
national level research might be carried out by teacher educators addressing more 
generic issues, perhaps associated with externally de fi ned targets or policy docu-
mentation. Or the research might be commissioned and shaped by administrators 
charged with managing a population of teachers and students through prescriptive 
curricular apparatus. At an international level, other aspirations may intervene, such 
as the need to speak effectively in an area of interest to a discernible group of 
researchers. In some countries, professional advancement in academic work is 
assessed by its perceived international status. Getting such an audience may be less 
about improving one’s teaching or meeting an externally de fi ned target through 
conforming to good practice, but more about learning to write or talk convincingly, 
even if it means neglecting one’s teaching! Bordo  (  1999  )  argued that academia is 
often susceptible to mediatizing its image.
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  Academics sometimes use the accessories of theory (for example, specialised forms of 
jargon, predictable critical moves, references to certain authors) less in the interests of 
understanding the world than to proclaim themselves members of an elite club. In the pro-
cess they create caricatures of themselves and of those who don’t belong, peopling the 
scholarly world with typecast players and carving out narrow theoretical niches within 
which all ideas and authors are force- fi t. Certain theoretical preferences, moreover, run 
throughout disciplines like incurable diseases, often carrying invisible racial and gender 
stereotypes and biases along with them. (p. 24)   

 A more charitable interpretation might be that academic  fi elds get to be learnt 
through caricatures as it would be too overwhelming to do otherwise. Nevertheless, 
the impact of Bordo’s comments seems to hold in educational research. The “pro-
duction of educational theory and research is itself a site of ideological and political 
struggle” (Britzman,  2003 , p. 68—citing McCarthy & Apple; see also DeFreitas & 
Nolan,  2008  ) . 

 In parallel with the reconstruction of the international mathematics education 
research community, the mathematics education researcher has also undergone 
signi fi cant change. The contemporary researcher in mathematics education is much 
more likely to be well-versed in a variety of methodologies and theories than to be 
a doctrinaire adherent of a single theory or to engage in research restricted to a 
single methodological approach. In part, this ecumenical approach to research 
re fl ects the more team-driven nature of the contemporary enterprise. In many coun-
tries, such research teams combine researchers from a variety of cultural (and there-
fore educational) backgrounds, bringing usefully diverse perspectives to the research 
endeavour. 

 It has been changes to the institutional context of research, such as those already 
discussed, that have fuelled the reconstruction of the educational researcher from 
solitary worker to active member of a research community. It is to be hoped that the 
evolution of educational research (and mathematics education research, in particu-
lar) from cottage industry to international collegial enterprise will not discard cot-
tage charm and individual creativity for a sort of industrialized and mechanical 
anonymity. Educational research will continue to draw many of its initiates from 
school settings, with a higher proportion of part-time involvement than would be 
found in early-career researchers in the sciences. This part-time research commu-
nity brings with it a vocational situatedness that should act to the bene fi t of the  fi eld 
of mathematics education research by locating research activity in the hands of 
those most likely to bene fi t from it and best placed to implement its  fi ndings. 

 The argument parallels that of the action-research community and appropriately 
so. Nonetheless, the participation of part-time research students presents challenges 
for the construction of a research community that universities and research centres 
address with uneven success. “There are signi fi cant dif fi culties in in fl uencing the 
professional learning of educational researchers themselves towards changing 
the practices of educational research” (Rees, Baron, Boyask, & Taylor,  2007  ) . 
The slightly pessimistic note of this quotation should not lead us to disregard the 
advantages now available to the beginning researcher in mathematics education. 
The same technology that facilitates international networking can be exploited to 
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create distributed research communities that integrate less and more experienced 
members in less and more vocationally-situated contexts. Rather, the recursiveness 
implicit in the research community’s management of the on-going learning of its 
own constituents should be seen as an opportunity for continual regeneration and 
re fl ective interrogation rather than potential stagnation. 

 Available technologies offer the opportunity for early-career researchers to 
access the expertise of established researchers independent of the constraints of 
geography, culture or school system. Those responsible for the learning environ-
ments of beginning researchers have the opportunity to create and nurture richer, 
more interactive, and more diverse educational experiences for new members of the 
research community. The affordances provided by new connectivities and commu-
nicative networks act in the opposite direction to the constraining effects of some of 
the politically motivated dictates of legislation, accountability and funding provi-
sion discussed earlier. 

 The institutional context must be considered at least in local, national and inter-
national terms. With regard to the education of researchers, we have a tension 
between the local experience of improved access to the rich international diversity 
of theories, methodologies, issues, values, agendas, and research expertise and the 
potentially limiting in fl uence of national and international political agendas (and 
ideological positions) that seek to channel research activity into of fi cially sanc-
tioned forms. In parallel with tensions in the framing of mathematics curricula, 
standardization in the name of accountability leads either to an impoverished cur-
riculum offered to the beginning educational researcher or to a graduate community 
of mathematics education researchers, whose sophisticated research expertise is 
unable to be realized within the incentive schemes currently dominating the educa-
tional research landscape.  

   Conclusion 

 Mathematics education research typically seeks to inform the social interactive 
processes that locate but also transform teachers, students and mathematics. 
The task of such research can be understood from a range of perspectives that can 
mark out various operational levers, not just changes to teacher practice. As research-
ers we need to be aware of how our work is governed and formatted by a range of 
agencies, from employers allowing limited space between other duties, to funding 
agencies being speci fi c about the perspectives they want to be depicted, to research 
assessment exercises or journals de fi ning what is of value to the research commu-
nity. But more generally we need to be attentive to the assumptions built into the 
locations of our work that restrict our scope of interest. The recommendations for 
practice arising from educational research are always situated recommendations, 
even if they are not presented as such. 

 Recognition of this emphasis on situated practice has implications for the sort of 
evidence likely to inform either educational policy or practice. Yet, the widespread 
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enthusiasm for evidence-based policy development frequently begs the essential 
question as what constitutes evidence. Where this question is addressed, the answer 
may take the form of a prescription of valued and non-valued research paradigms. 
Shavelson and Towne  (  2002  )  explicitly advocated “evidence-based education” and 
particularly encouraged research in the social sciences to adopt if not the methods 
at least the principles of medical research. Subscription to such a medico-scienti fi c 
standard locates research and the researcher within a discourse predicated on the 
identi fi cation and evaluation of educational “treatments” as the focus of the research 
endeavour—classifying research participants as the doing and the done-to. This leads 
to an inevitable emphasis on “What works?” and the implication that this can be 
answered in some context-free fashion. The implied parallels between physiological 
phenomena and socio-cognitive phenomena suggest aspirations to a misleading gen-
eralizability that educational research can seldom justify except in the reporting of 
trivial descriptive  fi ndings. In contrast, the practitioner research tradition has sought 
to emphasize how research needs to be worked into practice through time. 

 Either educational research accepts a responsibility to express its  fi ndings in 
more practical terms, so that research evidence takes the form of endorsed practices, 
or research itself needs to be made a part of practice (Somekh,  2006  ) . Research also 
needs to attend to the mediation of teacher education so that teachers can be pre-
pared for particular understandings of practice. What teacher education programs 
would need to be put in place and how would this be achieved? There is little point 
having a thesis on “what works” if teachers cannot access this knowledge or are 
insuf fi ciently skilled to bring it about. 

 Structural models are often seen, through cultural bias, as ones that should be 
aspired to more generally or internationally. For example, any given strategy implies 
resource constraints and one size  fi ts all models potentially deny key aspects of 
diversity. Speaking from an African context, Swanson  (  2010 , p. 245) asked the 
question: What are the implications for education and mathematics education, in 
particular, when industrialization and economic growth are the foremost policy 
objectives of a nation state? We have surveyed some of the implications in Western 
countries and those in the Paci fi c Rim. This, however, is only part of the picture. 
“Eighty per cent of the world’s children are in developing countries. Yet, much of 
the research in mathematics education backgrounds this reality” (Adler,  2008 , 
p. 241). Few schools/countries could supply the teachers who could offer the sensi-
tivities and skills required in so many proposed models of mathematical learning 
(cf., Skovsmose,  2005  ) . For example, for all their rhetoric, U.S.-oriented liberal 
individualist constructivism and also Chinese authoritarian collectivism, support 
capitalism. Yet in answer to her own question, Swanson  (  2010  )  argued that this 
capitalism “has failed to provide the alluring ‘rewards’ for millions of people living 
in abject poverty who have little agency in relation to the hierarchy of access it has 
produced and which it serves to reproduce” (p. 246). 

 Students and teachers are not only (successful or unsuccessful) recipients of cul-
tures but also creators of cultures insofar as their fresh perspectives on mathematical 
situations can be voiced, rather than being merely evaluated with respect to existing 
registers. Knijnik  (  2010  )  insisted on the intrinsic connection of mathematics education 
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to culture. In discussing her work with the Landless Peasant Movement in Brazil, 
she described culture as a “con fl ictive, unstable and tense terrain, undermined by a 
permanent dispute to impose meanings through power relations” (p. 413), where the 
very concept of a unit of land remains contested. We need to ask what mechanisms 
might enable populations of teachers to support student creativity in challenging 
and renewing the cultures or contexts they occupy. As we have shown many facets 
of these cultures derive from externally imposed prescription, perhaps derived from 
norms that favour those in power. 

 Students and teachers are not things in themselves but are consequential to 
educational situations being read against speci fi c discursive frames that shape the 
political domain and the priorities that domain confers. The term “teacher,” for 
example, is constituted with respect to a particular social construction of that term 
and the expectations or aspirations that go with it, expectations and aspirations that 
differ markedly across schools and countries. As an individual teacher, I may have 
all sorts of personal optimism, but if I want a government job I have to  fi t in with the 
regulative structures pertaining to the context I am in, and understand myself through 
the terms of that regulation. Mathematics education research has a duty to enable 
teachers to assert a professionalism that meets yet transcends local regulative 
demands. To meet this duty we must reach beyond the context-speci fi c meanings 
that research is obliged to service. Research might be seen as the task of rethinking 
mathematical teaching and learning with a view to changing them to meet or resist 
emerging demands. Through considering how teachers, teacher educators, trainees, 
pupils and researchers themselves make sense of their worlds, research can support 
work on how linguistic and socio-cultural contexts link to prevalent conceptions of 
mathematics education. Research itself can be seen as participation in cultural 
renewal, where the very worlds it encounters are becoming something new. This 
contemplates trajectories of change into fresh ways of being for teachers, teacher 
educators and researchers. 

 To represent mathematics as universal, spanning nations and generations, comes 
at a price. TIMSS and PISA were introduced to measure and compare school math-
ematics in different countries on a singular scale. Yet the resultant conceptions of 
school mathematics now de fi ne and police the boundaries of school mathematics. 
At a conference in 2011, a Mexican delegate spoke of how the exercises made her 
country subservient to American priorities for school mathematics (Garcia, Saiz, & 
Rivera,  2011  ) . An Ethiopian educator depicted a situation in which teachers and 
students were obliged to engage with a form of mathematics encased in pedagogical 
formations largely unrecognizable in their country situation (Gebremichael,  2011  ) . 
As seen, the United Kingdom has sacri fi ced its earlier facility with problem-solving 
approaches in order to meet newly understood “mathematical” objectives. 
Meanwhile, a Finnish commentator indicated that her country’s high performance 
in the exercises did not release her colleagues from having to reevaluate their prac-
tices in terms of the newly dominant international discourse (Krzywacki, Koistinen, 
& Lavonen  2011  ) . School mathematical knowledge has come to be a function of 
this newly described world, backed up by governments using these conceptions of 
mathematics to set their policies. 
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 Educational research distinguishes itself from research in the sciences by its 
tendency to recommend the replacement rather than the augmentation of existing 
practice. These new ways of understanding mathematics education that throw the 
baby out with the bath water de fl ect us from occupying alternative worlds, which 
might de fi ne us and serve us in different ways, according to priorities that may vary 
from one location to another. Excessive belief in uni fi ed objectives can simultane-
ously disregard more localized needs and corrupt the truly universal. Researchers 
have become complicit in promoting and reifying the values that support these par-
ticular conceptions of teaching and thereby restrict the trajectories for change that 
we are able to conceive. Also, research itself in many locations is increasingly 
obliged to follow formal regulation, setting the ways in which educational practices 
can be legitimately described. Since researchers in mathematics education are 
simultaneously members of the mathematics education community, they have 
become complicit in the construction of the  fi eld as an ideological battleground, in 
a terrain with features falsely identi fi ed as universal.      
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  Abstract   Researchers often pursue their own interesting and speci fi c mathematics 
education research questions without engaging with the practical and policy issues 
that may have considerable bearing on mathematics education. The  fi nal chapter of 
this section deals with this situation by considering three interrelated themes: devel-
opments in education policy that have implications for mathematics education 
research; the potential for engaging the mathematics education community in pur-
suing research questions that have implications for policy; and the relevance, utility, 
and accumulation of mathematics education research  fi ndings to support policy and 
practice. In particular, questions are raised about the role of standards in the speci fi cs 
of mathematics teaching and learning, and the challenges of making research pro-
fessionally and publicly available in ways that might be used to inform the decisions 
and the practices of policy makers and teachers.  

      Introduction 

 The teaching and learning of mathematics occur largely within classrooms, 
schools, and universities that are in fl uenced far more strongly by educational 
policies—“rules and regulations promulgated in state capitals and the federal gov-
ernment” (Sykes, Schneider, & Ford,  2009 , p. 1)—than by mathematics education 
research. In most countries, the importance of mathematics education is judged 
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as critical. It is presumed to be “a vehicle toward social and political progress” 
(Gates & Vistro-Yu,  2003 , p. 62), and central to the development of a well-trained 
workforce that can advance the economic standing of a country. Governments face 
a range of distinct but related policy challenges that include providing universal 
mathematical literacy for all, ensuring a mathematical foundation to support the 
study of other subjects that are increasingly demanding higher levels of mathemat-
ics, and stimulating the most able to continue with mathematics study after it is no 
longer compulsory and into university. 

 At the same time, mathematics education research is largely conducted to take 
forward theory and knowledge of the domain, although impact on teaching and 
learning practice is a distinct purpose (e.g., Lester & Wiliam,  2002  ) . Yet, there 
remains often a mismatch between questions pursued by researchers and questions 
facing policy makers and practitioners. It seems unlikely that most mathematics 
education researchers have the potential impact of their work in mind on, for 
example, major national economic debates or workforce capability. This has tended 
to mean that if mathematics education research has had rather little signi fi cant 
in fl uence on practice, its in fl uence on policy has been even less. 

 However, Smith and Smith  (  2009  )  have argued that policy research does in fl uence 
practice but maybe not directly and obviously. As one example, Welch  (  1979  )  (cited 
in Smith & Smith,  2009  )  made a case that research on science and mathematics 
learning indirectly in fl uenced the US-based K–12 curricular reforms of the 1960s 
and 1970s, resulting in their emphasis on hands-on instruction and inquiry-oriented 
approaches. A similar case can be made for comparable reforms in UK and Europe 
over the same period, where more investigative approaches were promoted and the 
need for appropriate teacher interventions recognized. Research in design experi-
ments repeatedly reported that in such contexts, scaffolds and guidance for the 
teacher were needed (Noss & Hoyles,  1996  ) . Thus, history would suggest that there 
is considerable untapped potential for productive interaction between the mathe-
matics education community globally and those concerned with the development 
and implementation of policy that affects mathematics teaching and learning. 

 Education policy is de fi ned in various ways. Wikipedia uses: “the collection of 
laws and rules that govern the operation of education systems” (retrieved from 
  http://en.wikipedia.org/wiki/Education_policy    ). Education policies are established 
at the country, region, state or province, and local levels, and they are guided and 
communicated by documents such as national curriculum frameworks, required 
assessments and examinations, curriculum materials, and non-statutory guidance 
for use in schools. The institutions involved in setting policy “include, but are not 
limited to, legislatures, courts, nonpro fi t agencies, and national, state, and local gov-
ernmental agencies” (William T. Grant Foundation,  2011  ) . Ferrini-Mundy and 
Floden  (  2007  )  provide additional discussion of this area. 

 Policies in many countries span the range of areas of schooling (e.g., compulsory 
schooling policies, or assessment and examination policies that determine higher 
education pathways), and some are quite speci fi c to mathematics education. In both 
cases—generic policies and mathematics-speci fi c policies—there is little evidence 
that the mathematics education research community has engaged consistently and 

http://en.wikipedia.org/wiki/Education_policy
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systematically in research that is used to formulate the policies. Nor is there a strong 
body of policy implementation or impact research that has examined policies that 
are particularly germane to issues in mathematics education. A research-like activ-
ity, policy analysis, has been undertaken in recent years by some mathematicians 
and mathematics educators: this might involve, for instance, assigning “grades” to 
standards in the USA, which often invokes comparison to standards around the 
world (e.g., Klein et al.,  2005  )  and could be construed as a policy analysis activity 
(Clarke,  2003  ) . 

 In this chapter, we explore the policy implications of developments in mathematics 
education research: the potential for engaging the mathematics education research 
community in pursuing questions that have relevance for policy, and the relevance, 
utility, and accumulation of mathematics education research  fi ndings to support 
policy and practice. The chapter will be grounded in two elaborated examples where 
the potential for intersection of mathematics education research and policy appears 
particularly fruitful, and where policy has been developed, and is developing, that 
is directly relevant to mathematics education. The  fi rst example is the story of 
the K–12 mathematics standards and related standards-based accountability in the 
USA. The second example traces the evolution of a national infrastructure for 
evidence-driven mathematics teacher professional development in England. These 
examples are presented as windows to illustrate how mathematics education research 
might relate to policy and are used to raise questions, such as: Who is involved in 
determining, implementing, and tracing the impact of policy? How might these 
stakeholders be more fully engaged with the mathematics education community? 
What is the role of research in these areas of policy? 

 With respect to these questions, we will also discuss what is available, in the 
research literature and elsewhere, about how policies are formed and used, focus-
sing on the types of policies that are particularly relevant for mathematics educa-
tion. In our conclusion we will discuss directions of policy, the prospects for research 
funding, and offer commentary on how mathematics education research agendas 
might embrace the possibility that mathematics education research results can 
inform and improve mathematics teaching, learning, and policy.  

   The Case of National Mathematics Standards in the USA 

 Efforts by the mathematics education and mathematics communities over the past 
two-and-a-half decades in the USA to create and implement curriculum standards as 
a strategy for improving K–12 mathematics education have stimulated the most vigor-
ous policy debates and, more recently, the most widely coordinated policy incentive 
systems, possibly ever seen in US K–12 education within a particular discipline. 
The story of US mathematics standards, consistent in concept with the work of Smith 
and O’Day  (  1991  )  about systemic reform, illustrates a number of key policy issues 
that relate to research in mathematics education. In particular, these are: How does 
research on teaching and learning intersect with the development, implementation, 
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and assessment of such policy levers as standards? What does research tell us about 
the most effective means of designing and implementing standards? What new 
questions become more salient when there is a lively national environment in math-
ematics education in the standards context? How have mathematics education 
researchers played key roles in this arena, and what are the prospects? 

 In the USA, responsibility for education is constitutionally delegated to the 50+ 
states and territories, which comprise about 14,000 school districts and almost 99,000 
K–12 schools (see   http://nces.ed.gov/pubs2011/pesagencies09/ fi ndings.asp     and   http://
nces.ed.gov/pubs2011/pesschools09/ fi ndings.asp    ). Different states have different 
policy approaches, ranging from states with highly directive statewide curriculum 
standards whose adoption is expected by all districts, to states with more general stan-
dards that are then interpreted and adapted widely across school districts. Policies 
about such relevant matters as the required mathematical preparation of teachers, 
the number and nature of required mathematics courses in secondary school, and 
the selection of textbooks, are left to the discretion of states and vary widely. 

 The No Child Left Behind Federal legislation of 2001 imposed stronger Federal 
accountability requirements than the country had previously had, including require-
ments about annual assessment of students for each of Grades 3 through 8 and high 
school in mathematics, using instruments developed by states and aligned with state 
standards, and also introducing new requirements about teacher quali fi cations. 
At the same time, there have been policy in fl uences that have emanated from the 
Federal level. The US Department of Education administers several billion dollars 
that pass directly to states, in some cases where use is highly speci fi ed. Currently 
the Department of Education sponsors the Mathematics and Science Partnerships 
program, which is heavily focussed on teacher professional development. And, the 
current state-led Common Core State Standards Initiative is an option that states can 
use in response to US Department of Education incentives to adopt standards. 

   A Brief History of Mathematics Education Standards 
in the USA 

 In 1989 the National Council of Teachers of Mathematics (NCTM) issued the 
 fi rst set of standards for curriculum guidance produced by a professional organiza-
tion in the USA. The  Curriculum and Evaluation Standards for School Mathematics  
(NCTM,  1989  )  not only speci fi ed the details of what should be taught in mathemat-
ics within grade bands, but also provided substantial guidance about instructional 
approaches, and offered examples and illustrations to guide teachers. The perspec-
tive re fl ected in this document was consistent with a constructivist view of knowl-
edge, with a strong emphasis on “meaningful” engagement with mathematics, the 
use of “real-world” examples, and the role of technology. Although the 1989 NCTM 
standards document is not replete with references to research, a number of its 
authors were active researchers, and have commented that the development of the 
document was in fl uenced by research  fi ndings at the time. A history of that develop-
ment is recounted in McLeod, Stake, Schappelle, Mellissinos, and Gierl  (  1996  ) . 

http://nces.ed.gov/pubs2011/pesagencies09/findings.asp
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 The document was developed over several years, with an elaborate public reac-
tion and comment process. NCTM leaders enlisted the endorsements of key pro-
fessional organizations in mathematics. The standards were hailed by teachers and 
mathematics educators as a major step forward in guiding school mathematics 
instruction and placing issues of student engagement and understanding in the 
foreground. NCTM followed these initial curricular standards with three additional 
versions: the  Professional Standards for Teaching Mathematics   (  1991  ) , the 
 Assessment Standards for School Mathematics   (  1995  ) , and  Principles and 
Standards for School Mathematics  in  2000 . Various ancillary materials were devel-
oped by the organization, including resources for teachers and instructional sup-
port materials. And standards development in other  fi elds followed, including the 
 National Science Education Standards  developed by the US National Academy of 
Sciences  (  1996  ) . 

 The US National Science Foundation, a Federal agency that funds grants in 
science and education through competitive processes, issued a call for proposals in 
1990 to produce comprehensive instructional materials at grades K–6, 6–8, and 
9–12 that would re fl ect national standards. Some of the programs developed under 
this call were commercially distributed. During this same period, states developed 
their state curriculum standards in mathematics. Anecdotal evidence suggests that 
many states attempted to align their standards with the NCTM document, and a 
series of policy-related tools to assess alignment of standards and curriculum were 
developed (Ferrini-Mundy,  2004  ) . Notable among these were the curriculum 
framework analysis tools developed by Schmidt and colleagues for the Third 
International Mathematics and Science Study (TIMSS) for examining curriculum 
and standards around the world (see Schmidt, McKnight, Valverde, Houang, & 
Wiley,  1997  ) . Following a careful comparative analysis, in which NCTM’s  (  1989  )  
 Standards  were considered, Schmidt and his colleagues dubbed the US mathe-
matics curriculum as being “a mile wide and an inch deep” (Schmidt, McKnight, & 
Raizen,  1997 , p. 62). 

 The convergence of many factors, perhaps including the visibility brought to the 
 Standards  by the funding of curricula to instantiate them, the international compari-
sons, the groundswell of activity from the NCTM teacher constituency, and the 
designation in 1999 of some of the NSF-funded and standards-based instructional 
materials as exemplary in a US Department of Education report (see   http://www.
k12academics.com/education-reform/us-department-education-exemplary-mathe-
matics-programs    ) drew the attention of several prominent US mathematicians to the 
messages of the NCTM document. The concern of the mathematicians reached a 
high point in 1999, when an open letter to the US Secretary of Education, Richard 
Riley (see Klein et al.,  1999 ), protested against the Department’s designation of the 
materials as exemplary (  http://www.mathematicallycorrect.com/riley.htm    ). 

 Thus the pathway of  Standards , developed by the professional association for 
mathematics teachers, led to signi fi cant policy debates at the state and national level, 
engaging mathematicians, mathematics educators, local policy makers at the school 
district level, and state and federal leaders, in a new era of discussion about what 
school mathematics education should be. Despite the signi fi cance of the policy 
decisions—about standards, curriculum, and assessment—throughout this period, 
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the de fi nitive positions that were visible came largely from experts in mathematics, 
or in mathematics education, and represented professional judgment and opinion. 
Mathematics education research appears to have had little place or role in these 
debates and activities. In part, this was because the mathematics education research 
community’s interests and inclinations in research—in the two decades spanning 
the release of the 1989 standards—were focussed in deep ways on important ques-
tions about student learning and understanding. Those concerned with policy were 
willing to use NCTM’s  (  1989  )   Standards  as an interesting site for understanding 
policy change (e.g., Fuhrmann,  2001  ) , but were not necessarily driven by particular 
questions about the role of standards in the speci fi cs of mathematics learning. 

 These circumstances, along with widespread US concern about international 
competitiveness and the science and mathematics education achievement of the 
nation’s youth (articulated in  Rising Above the Gathering Storm ,  2007 , a National 
Academies report) led in part to an Executive Order by the US President George 
Bush in 2006, establishing a National Mathematics Advisory Panel, charged to pro-
duce a report that contained

  … recommendations, based on the best available scienti fi c evidence, on the following: 
(a) the critical skills and skill progressions for students to acquire competence in algebra 
and readiness for higher levels of mathematics; (b) the role and appropriate design of stan-
dards and assessment in promoting mathematical competence; (c) the processes by which 
students of various abilities and backgrounds learn mathematics; (d) instructional practices, 
programs, and materials that are effective for improving mathematics learning; (e) the train-
ing, selection, placement, and professional development of teachers of mathematics in 
order to enhance students’ learning of mathematics; (f) the role and appropriate design of 
systems for delivering instruction in mathematics that combine the different elements of 
learning processes, curricula, instruction, teacher training and support, and standards, 
assessments, and accountability; (g) needs for research in support of mathematics educa-
tion; (h) ideas for strengthening capabilities to teach children and youth basic mathematics, 
geometry, algebra, and calculus and other mathematical disciplines; (i) such other matters 
relating to mathematics education as the Panel deems appropriate; and (j) such other matters 
relating to mathematics education as the Secretary may require. 
 (Retrieved from   http://georgewbush-whitehouse.archives.gov/news/releases/2006/04/
20060418-5.html    )   

 The goal of this panel was to produce a report that could guide policy makers, 
and to employ a high standard of evidence for the inclusion of results from any 
research studies. The panel members represented a range of perspectives, and 
focussed on several aspects of mathematics education, including curricular content, 
learning processes, instructional practices, teachers and teacher education, instruc-
tional materials, and assessments. The report concluded that the research base for 
making policy decisions was not adequate:

  Systematic reviews of research on mathematics education by the task groups and subcom-
mittees of the Panel yielded thousands of studies on important topics, but only a small 
proportion met standards for rigor for the causal questions the Panel was attempting to 
answer. The dearth of relevant rigorous research in the  fi eld is a concern. First, the number 
of experimental studies in education that can provide answers to questions of cause and 
effect is currently small. Although the number of such studies has grown in recent years due 
to changes in policies and priorities at federal agencies, these studies are only beginning to 

http://georgewbush-whitehouse.archives.gov/news/releases/2006/04/20060418-5.html
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yield  fi ndings that can inform educational policy and practice. Second, in educational 
research over the past two decades, the pendulum has swung sharply away from quantita-
tive analyses that permit inferences from samples to populations. Third, there is a need for 
a stronger emphasis on such aspects of scienti fi c rigor as operational de fi nitions of con-
structs, basic research to clarify phenomena and constructs, and discon fi rmation of hypoth-
eses. Therefore, debates about issues of national importance, which mainly concern cause 
and effect, have devolved into matters of personal opinion rather than scienti fi c evidence. 
(National Mathematics Advisory Panel,  2008 , p. 63)   

 In summary, perhaps the most important message to come from this report was that 
there was not enough evidence from research in mathematics education to inform or 
guide some of the most pressing policy areas in the USA relevant to mathematics 
education. 

 The Higher Education Opportunity Act of 2008 included consistent emphasis on 
scienti fi cally-based research, scienti fi cally-valid research, and empirically-based 
practice. Earlier, in 2002 the US Department of Education had launched the “What 
Works Clearinghouse” (  http://ies.ed.gov/ncee/wwc/    ), which was charged with the 
task of identifying instructional materials for which suitably rigorous effectiveness 
studies had been conducted and had resulted in positive evidence. Only a small 
number of mathematics instructional programs, however, were judged to have met 
the What Works Clearinghouse standard. 

 So, in the space of two decades, the paths of policy, mathematics education 
research, and curriculum standards had crossed and become intertwined. And, in 
2009, with Federal policy support for of the NCTM standards waning, with the 
ascendency of “evidence-based” practices and policy, and with legislation in effect 
requiring high-stakes frequent assessment of K–12 mathematics learners in all 
states, a new phase in the US standards movement was initiated—the Common 
Core State Standards Initiative.  

   Common Core State Standards: A Policy Effort Led by States 
for National Impact 

 Over the past 15 years there have been efforts in the USA for states to build coalitions 
for the improvement of K–12 STEM (i.e., “Science, Technology, Engineering, and 
Mathematics”) education. In 1996 a group of governors founded Achieve, Inc., a bipar-
tisan organization that “helps states raise academic standards and graduation require-
ments, improve assessments and strengthen accountability” (  http://www.achieve.
org/ fi les/AboutAchieve-Feb2011.pdf    ). In 2006–2007, then-Arizona governor Janet 
Napolitano, as President of the National Governors Association, addressed the impor-
tance of STEM education as an issue for states in the document “Innovation America” 
(  http://www.nga.org/Files/pdf/0707INNOVATIONPOSTSEC.PDF    ). A related report, 
 Building a Science, Technology, Engineering and Math Agenda  (  http://www.nga.org/
Files/pdf/0702INNOVATIONSTEM.PDF    ), though falling short of advocating national 
standards, set the stage for the introduction of a national curriculum with its very strong 
focus on the importance of standards and international benchmarking. These discussions 
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about standards reached the highest US policy levels when President Obama, in 
March 2009, outlined his education plan and discussed the need for “Encouraging 
better standards and assessments by focussing on testing itineraries that better  fi t 
our kids and the world they live in” (see   http://www.whitehouse.gov/blog/09/03/10/
Taking-on-Education/    ). By this time, a partnership between Achieve and the 
National Governors Association had been established to launch the Common Core 
State Standards Initiative (CCSSI). 

 The following, which is taken from the CCSSI Web site (  http://www.corestan-
dards.org/     about-the-standards), provides a sketch of the development process used 
in preparing the CCSSI:

  The Common Core State Standards Initiative is a state-led effort, launched more than a year 
ago by state leaders, including governors and state commissioners of education from 48 
states, 2 territories and the District of Columbia, through their membership in the National 
Governors Association Center for Best Practices (NGA Center) and Council of Chief State 
School Of fi cers (CCSSO). 

 The process used to write the standards ensured they were informed by:
   The best state standards;  • 
  The experience of teachers, content experts, states and leading thinkers; and  • 
  Feedback from the general public.    • 

 To write the standards, the NGA Center and CCSSO brought together content experts, 
teachers, researchers and others. 

 The standards have been divided into two categories:
   College and career readiness standards, which address what students are expected to • 

learn when they have graduated from high school; and  
  K–12 standards, which address expectations for elementary through high school.    • 

 The NGA Center and CCSSO received nearly 10,000 comments on the standards during 
two public comment periods. Comments, many of which helped shape the  fi nal version 
of the standards, came from teachers, parents, school administrators and other citizens con-
cerned with education policy.

   The draft college and career ready graduation standards were released for public com-• 
ment in September 2009; and  
  The draft K–12 standards were released for public comment in March 2010.  • 
  The  fi nal standards were released in June 2010.    • 

 An advisory group has provided advice and guidance to shape the initiative. Members of 
this group include experts from Achieve, Inc., ACT, the College Board, the National 
Association of State Boards of Education and the State Higher Education Executive 
Of fi cers. (Retrieved from:   http://www.corestandards.org/about-the-standards/process    ).    

   Using Policy to Incentivize Adoption of Common Core State 
Standards in Mathematics 

 The USA faces an interesting juncture in the standards trajectory, in that there is 
powerful momentum growing to support the use of the common core mathematics 
across states. Perhaps the  fi rst signal that the Federal government was supportive of 
this state-led effort appeared in the summer of 2009 when the US Department of 
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Education launched a competitive grants program among states called “Race to the 
Top,” by which $4.35 billion dollars were made available to states to reform K–12 
education. Although there was no speci fi c focus on mathematics, the application for 
funding awarded points for states that were “developing and adopting common 
standards.” The following information is from the application form.

     Race to the Top 
 ( Race to the Top Application for Initial Funding  

 CFDA Number: 84.395A 
 (  http://www2.ed.gov/programs/racetothetop/application.doc    )

   (B)     Developing and adopting common standards  ( 40 points ) 
 (1) The extent to which the State has demonstrated its commitment to adopting a 

common set of high-quality standards, evidenced by (as set forth in Appendix B):    

   (i).    The State’s participation in a consortium of States that— ( 20 points )
   (a).    Is working toward jointly developing and adopting a common set of K–12 

standards (as de fi ned in this notice) that are supported by evidence that they are 
internationally benchmarked and build toward college and career readiness by 
the time of high school graduation; and  

   (b).    Includes a signi fi cant number of States; and      

   (ii).    — ( 20 points )
   (a).    For Phase 1 applications, the State’s high-quality plan demonstrating its commit-

ment to and progress toward adopting a common set of K–12 standards (as 
de fi ned in this notice) by August 2, 2010, or, at a minimum, by a later date in 
2010 speci fi ed by the State, and to implementing the standards thereafter in a 
well-planned way; or  

   (b).    For Phase 2 applications, the State’s adoption of a common set of K–12 stan-
dards (as de fi ned in this notice) by August 2, 2010, or, at a minimum, by a later 
date in 2010 speci fi ed by the State in a high-quality plan toward which the State 
has made signi fi cant progress, and its commitment to implementing the stan-
dards thereafter in a well-planned way.         

  Common set of K–12 standards  means a set of content standards that de fi ne what students 
must know and be able to do and that are substantially identical across all States in a 
consortium. A State may supplement the common standards with additional standards, 
provided that the additional standards do not exceed 15% of the State’s total standards for 
that content area.   

 At the time of writing this chapter, As of summer 2012, 18    States and the District 
of Columbia had been awarded Race to the Top grants (  http://www2.ed.gov/pro-
grams/racetothetop/awards.html    ). The Federal Department has launched a compe-
tition for two major assessment consortia to “develop a new generation of tests.” 
   The new tests will be aligned to the higher standards that were recently developed 
by governors and chief state school of fi cers (  http://www.ed.gov/news/press-releases/
us-secretary-education-duncan-announces-winners-competition-improve-student-
asse    ). The standards have been adopted by 45 States and 3 territories (  http://www.
corestandards.org/in-the-states    ). It would appear that the USA is on the verge of 
having widely used, yet voluntary, national standards in mathematics. This is a 
remarkable opportunity for a wide range of policy research endeavours in which the 
mathematics education community could take the lead.  
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   The Role of Research 

 Following on the lessons of the “math wars” and the  fi ndings from the National 
Mathematics Advisory Panel, it seems that the organizers of the Common Core 
State Standards Initiative were sensitive to the need for research and evidence to 
provide validation for the standards. Indeed, there was, as mentioned above, a 
Validation Committee whose major task was to examine the evidence used to sup-
port each set of standards. Confrey  (  2010  )  summarized the types of evidence used: 
“Data from ACT and SAT scores and performance in 1st-year college courses; 
analysis of college syllabi and surveys; surveys with business members; exami-
nation of college level math and math-client  fi elds; whether the standards are 
benchmarked to international standards; and evidence from student learning 
studies” (p. 11). Student learning studies that may prove useful in the continuing 
standards implementation may include work on learning progressions, though it 
appears that there remain important research questions needing the attention of 
policy makers and mathematics education researchers.   

   Mathematics Education in England: Policy and Research 

 The example from England traces some recent efforts to transform practice by 
brokering partnerships among mathematics education researchers, mathematicians, 
policy makers and teachers. It touches on similar issues to the US case study in rela-
tion to the research and the standards agenda but also considers the role of research 
more broadly in promoting the teaching and learning of mathematics in the country. 
The theoretical basis underpinning the case study— although this was rarely made 
explicit—is learning design that involves valuing the need for all parties to build their 
solutions to problems at hand together, to re fl ect on them together and, crucially, to 
allow all the groups to feel empowered to shape any innovation to  fi t their own goals 
and purposes. Cobb and Jackson  (  in press  )  noted that the learning design perspec-
tive directs us to “analyze the soundness of the intended learning supports prior to 
implementation” (p. 10), and policy implementation must take account of these 
planned supports and how they are effectively operationalized. 

 Mathematics presents a challenge for policy makers. The subject is highly 
regarded. Tests are high stakes. In addition, mathematics is widely conceived as 
hard and procedural by those outside the mathematics community. Mathematics is 
a subject that offers diverse and unique ways by which students can express them-
selves in creative ways. Yet this broad agenda for    teaching and learning mathe-
matics is often invisible to those outside the community, especially, it is conjectured, 
policy makers, who most likely only value test results and performance measures. 
Yet progress in improving mathematics education can only be achieved when 
teachers do not narrow the mathematical diet of their students to procedures to 
pass tests. Rather, teachers must have the con fi dence to introduce a broader range 
of tasks and activities. 
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 To achieve this goal in England, leaders in mathematics education have struggled 
over many years to set up a national infrastructure for mathematics continuing 
professional development (CPD) in order to confer status, priority and obligation 
for evidence-based professional learning that is recognized by all “layers of the 
system” and beyond: head teachers, mathematicians, politicians at national and 
regional levels, as well as teachers themselves. Thus the goal was that mathematics 
professional development would become an expectation and a responsibility for all 
those involved in teaching the subject with politicians, local leaders and head teachers 
in schools all supporting this agenda. 

 This agenda for mathematics inevitably raises the question whether mathematics 
has a special place in schools—because of the widespread uses of mathematical 
knowledge, but mainly because mathematics is a core part of the “standards agenda”: 
an agenda that monitors student performance, schools and the system over time. 
Measures used for this monitoring exercise included results from national tests for 
all students in England at the ages of 7, 11, 14 and 16 (  http://en.wikipedia.org/
wiki/National_Curriculum_assessment    ), although the national testing at 14 years 
was ended in summer 2009. Performance of English students in international com-
parative studies, such as Trends in International Mathematics and Science Study 
(TIMSS) (  http://nces.ed.gov/timss/index.asp    ), the Program for International Student 
Assessment (PISA) (  http://nces.ed.gov/surveys/pisa/    ), and data about adult numer-
acy (see the Leitch Report,  2006 ,  Prosperity for All in the Global Economy—World-
Class Skills ), were also to be taken into account (  http://www.dius.gov.uk/
publications/leitch.html    ). The agenda was driven by what was called National 
Strategies (primary and secondary), alongside a system of school inspection. 

 The challenge that educators in England have faced is how to support children to 
perform better at mathematics, that is, to achieve success in tests and examinations, 
without sacri fi cing creativity and inquiry and without exerting so much pressure on 
students that they are put off the subject. Too much pressure can result in teaching 
and learning procedural rituals for getting right answers, which bypasses the need 
to appreciate the structure and pattern of the subject. Teachers and researchers alike 
have worked hard to develop among students a mathematical way of thinking while 
not neglecting to support them to succeed in public examinations and high-stakes 
tests. This balance between learning and performance is dif fi cult to achieve. It 
requires teachers who focus on teaching and learning, who know their subject and 
its pedagogy, and are con fi dent enough to focus on longer-term subject appreciation 
alongside short-term performance outcomes. One cause of imbalance can be traced 
to policies that have meant that the subject agenda for teaching/learning/curriculum 
and the standards agenda may not have been appropriately aligned due to their dif-
ferent goals and management structures. 

 In contrast to many other countries, students in England are only allowed to drop 
mathematics at the age of 16 years, at the end of compulsory schooling (   Hodgen, 
Pepper, Sturman, & Ruddock,  2010 ). However, it is increasingly accepted that there 
is a need for more engagement with mathematics, so the numbers who choose to 
study mathematics post-16 have been added as another government target for 
schools alongside the standards agenda. This has been one result of the general push 
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to work for more success in mathematics, across the policy agenda and with a better 
alignment of the needs of practitioners with the realities of policy makers. We now 
document these policy initiatives in slightly more detail. 

   Some History: Giving Mathematics a Policy Voice 

 The Advisory Committee on Mathematics Education (ACME) was established 
in 2002 by the Joint Mathematical Council of the United Kingdom and the Royal 
Society (RS), with the explicit support of all major mathematics organizations. It 
comprises seven members, including teachers at different phases, and has a part-
time Chair, who is a Fellow of the RS, to act as a single voice for the mathematical 
community. Its goal is to seek ways of improving the quality of education in schools 
and colleges (  http://www.acme-uk.org    ). ACME was formed after a period of many 
years during which there had been no conduit through which the mathematics com-
munity could have dialogue with government, despite a standards agenda that 
included mathematics. Like the former Mathematical Sciences Education Board 
within the US National Academy of Sciences, ACME’s membership includes math-
ematicians, teachers in different phases, mathematics advisers at local or govern-
ment level, and a member of the mathematics education research community. 

 At the time of its formation, ACME had to acquire the commitment of govern-
ment to provide appropriate contacts, as well as secure some funding for meetings 
to pay for the time of committee members. ACME now advises government on 
issues such as the curriculum, assessment, and the supply and training of mathemat-
ics teachers through face-to-face meetings and a series of highly in fl uential reports 
(see   http://www.acme-uk.org/the-work-of-acme/publications-and-policy-documents/
policy-reports    ). In 2011/2012, there is to be new national curriculum for mathemat-
ics and ACME will play a leading advisory role in its development and formation, 
thus providing a mediating layer for mathematics education research. 

 Over a period of two decades, a number of signi fi cant education reports of rele-
vance to mathematics have been commissioned by the UK government to inform and 
drive the policy agenda. Most were in fact about science, which of course impinged 
on mathematics but only in a secondary way. In fact, a major breakthrough in policy 
circles was the transformation of a SET agenda (science, engineering and technology) 
in which mathematics was largely invisible, to a STEM agenda (science, technology, 
engineering and mathematics) in which mathematics was acknowledged as playing an 
important part. Some reports speci fi cally focussed on mathematics, with  Making 
Mathematics Count   (  2004  )  and the  Review of Teaching in Early Years Settings and 
Primary Education   (  2008  )  being pivotal. The latter’s main recommendation called 
for a major policy change—that there should be a trained specialist in mathematics 
in every primary school, a recommendation that was accepted and led to agreement 
about a program of training to be delivered by consortia of universities. However, 
later  fi nancial constraints caused this program to be tapered, with funding being 
shifted away from Government to schools over a period of 3 years. 
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  Making Mathematics Count   (  2004  ) , which will be abbreviated to “MMC,” was 
particularly signi fi cant not least because it received almost universal support from 
all the diverse stakeholders that comprise the mathematics community, including 
researchers in mathematics education and mathematicians. The government of the 
time accepted most of the recommendations of the report, possibly because the 
Secretary of State was a strong supporter of mathematics and, as a result of his uni-
versity background in mathematics, appreciated that mathematics was much more 
than arithmetic and procedural technique. This placed the mathematics community 
in a strong position, at least in the short term. 

 The MMC report underlined the need for a strategy and strong focus for mathe-
matics. Its recommendations included issues around stimulating the supply of spe-
cialist mathematics teachers, the designation of different mathematics pathways for 
the 14–19-year-old age range depending on career aspirations, and support for 
teaching and learning. At the time, there was also considerable concern about the 
numbers who were opting for specialist study in advanced mathematics (A-level), 
following a dramatic drop in student numbers in 2001. This decline was largely due 
to a new policy leading to an overarching shift in curriculum structure at A-level, 
which had a particularly negative effect on mathematics results. The change was 
bought in too quickly with students examined too soon after they had met new 
mathematical ideas. Many students failed the new modules leading to a general loss 
in con fi dence among students and teachers alike, and a move away from taking 
what was perceived as a high-risk subject. Numbers entering A-level fell from over 
70,000 to just over 50,000 in a matter of years. A government target of 56,000 
A-level entries in 2014 was set in 2006, a target that was judged to be quite ambi-
tious at the time, but was in fact reached well before that date (see Figure  16.3 ). 

 One recommendation of MMC was that a post of Chief Adviser for Mathematics 
to the UK Government should be established to provide Ministers with direct advice 
on the needs and requirements of the subject. This was not a political appointment 
but rather involved advising the Secretary of State and relevant ministers (and their 
civil servants) about mathematics across all phases, performance, participation and 
the curriculum, drawing on all available evidence—thus providing reports verbal 
and written that served to mediate results and “research wisdom.” The  fi rst author of 
this chapter was selected to take up this position in 2004 and served (part-time) until 
2007 when her secondment ended. At this point, the post was discontinued, mainly as 
a result of a shift in policy context to STEM with a new Secretary of State in charge, 
combined with the fact that the overall situation in mathematics had improved quite 
dramatically, and that ACME had been established as a voice for policy. 

 Another recommendation in MMC was that there should be a better alignment of 
the standards agenda with the mathematics curriculum and teaching agenda. This 
was to be achieved by merging the existing standards team, that is the National 
Mathematics Strategy for the Lower Secondary School and its funding, into a new 
national infrastructure, the National Centre (see below), with serious consideration 
to be given to similarly incorporating the national numeracy strategy for primary 
schools, into the proposed Centre. As already mentioned, these National Strategies 
had substantial budgets and huge political in fl uence within the standards agenda, 
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and this recommendation proposed quite a radical policy shift. However, it was not 
accepted. The two structures, one around teaching and learning mathematics gener-
ally, and the other around mathematics as part of the standards agenda, remained 
distinct, and with distinct roles for the Strategies and for the Chief Adviser for 
Mathematics. Nevertheless, during the period 2004–2007 the two structures became 
better aligned due to efforts from both communities. 

 Another focus of the MMC was on the potential role for university mathematics 
departments in providing enrichment in and out of school as part of the policy drive 
for more mathematics. This enrichment might involve organizing national competi-
tions, mathematics clubs, and master classes, and included the promotion of math-
ematics careers. In addition, at the time of the report, it was also becoming evident 
that Further Mathematics (an optional course of post-16 mathematics that is more 
advanced than A-level mathematics) was a “dying subject” as fewer and fewer 
schools had the capacity to offer it. There were two main reasons for this: (a) many 
schools did not have the specialist staff needed; and (b) schools could not afford to 
teach the small groups who selected it. A pilot initiative to address this challenge 
was supported for role-out by the Government, and this was to set up a Further 
Mathematics (FM) Network (  http://www.fmnetwork.org.uk/    ), a national network of 
FM Centres to enable every student who would bene fi t from it to have the opportu-
nity to study for Further Mathematics quali fi cations through distance learning and 
mentoring. Forty-six FM Centres came into operation across England. 

 Along with these larger developments, a variety of smaller initiatives were also 
put in place, all to promote mathematics. We only mention a couple that appeared 
to have widespread support in the mathematics community and relevance to the 
thrust of this case study: a range of extra-curricular activities for gifted and talented 
students which provided links to universities and to employment; a national pro-
gram of one-on-one tutoring for students of all ages who were falling behind in 
mathematics, with a particularly well-funded program, for children under 5 years, 
called Every Childs Counts (see   http://www.everychildachancetrust.org/counts/    ). 

 Thus, during this period, expert practitioners, mathematicians, and mathematics 
education researchers were able to in fl uence policy direction together and were able 
to communicate across the boundary of policy/practice largely through government-
sponsored boards set up to work with the Chief Adviser, speci fi cally to take forward 
the recommendations of the MMC. As part of this endeavour, the importance of 
effective teaching of mathematics in England was not only recognized, but also 
what this actually meant in practice was widely agreed. In addition, the country had 
long suffered (and still does) from an overall shortage of mathematics teachers, 
limited specialist capacity among mathematics teachers at every level, constant 
turnover, and dif fi culties of retention. There was therefore a manifest and distinct 
need for an agenda for professional development of teachers of mathematics 
throughout their careers, so not only could expertise be bought into the profession 
through changes in entry standards, but also through promoting professional learn-
ing for those already teaching. And, because of structures that had been established 
to align the goals and policies of government with the knowledge and expertise of 

http://www.fmnetwork.org.uk/
http://www.everychildachancetrust.org/counts/
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the mathematics and mathematics education communities, it was possible to move 
forward and agree to a new agenda of professional development to support effective 
teaching in the subject. 

 In England, professional development for teachers of mathematics had existed 
but had tended to be rather ad hoc and geographically patchy. It was decided at a 
policy level that what was needed was an infrastructure that monitored and coordi-
nated the provision nationwide. This was a recommendation of the MMC and which 
led to the establishment of the National Centre for Excellence in the Teaching of 
Mathematics (NCETM).  

   The National Centre for Excellence in the Teaching 
of Mathematics (NCETM) 

 The NCETM was set up in 2006 by the UK government and continues to the time 
of writing (November 2011). The Centre has a clear and ambitious vision. It aims to 
meet the professional aspirations and needs of all teachers of mathematics so that 
they can realize the potential of learners. It is a constant struggle to encourage teach-
ers to see professional learning, not as a threat or a punishment for not doing well or 
being in some way de fi cient according to a standards agenda   , but as something that 
is geared to their needs, and inspiring. 

 To this end, the NCETM’s objectives were formulated as follows:

   To stimulate demand for mathematics-speci fi c continuing professional devel-• 
opment (CPD), contributing to the strengthening of the mathematical knowl-
edge of teachers;  
  To lead and improve the coordination, accessibility and availability of • 
mathematics-speci fi c CPD;  
  To enable all teachers of mathematics to identify and access high quality CPD • 
that will best meet their needs and aspirations.    

 The NCETM set out to meet these aims through a sustainable national infrastruc-
ture for mathematics-speci fi c CPD that starts from the needs and goals of teachers. 
As such, it provided a counterbalance to the top-down constraints of the much more 
politically powerful standards agenda, which monitored student performance in the 
country. It is possible that these concurrent initiatives, as they gradually became 
more aligned, had a surprisingly positive and synergistic impact. 

 The NCETM provides and supports a wide variety of mathematics education 
networks in the country, which include universities, subject associations and the 
whole range of CPD providers. At the same time, the National Centre encourages 
schools and colleges to learn from their own best practice through collaboration 
among staff and by sharing good practice locally, regionally and nationally. These 
collaborations take place face-to-face at national and regional events and in local 
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network meetings across England, or virtually, through interactions on the NCETM 
portal,   http://www.ncetm.org.uk    . 

 Figure  16.1  shows the overall structure of the professional learning framework 
that underpins the portal, and Figure  16.2  provides a snapshot of the portal’s home-
page. Any portal has to be regularly updated and improved to introduce new func-
tionality, including Web 2.0, new design, and improved tools so as to meet the needs 
of teachers. The portal is concerned to help teachers meet virtually in professional 
communities to discuss issues facing them (e.g., how to ask open questions in math-
ematics, how to design good formative assessments). It also implements “behind-
the-scenes” speed increases and improved search facilities. The aim has been to 
make the portal experience user-friendly and above all useful. The statistics for 
NCETM portal continue on an upward trend with over 85,000 regular users in July 
2012. Another statistic of interest is that, at that time, only eight countries had not 
visited the NCETM portal—French Guiana, Western Sahara, Mauritania, Chad, 
Congo Brazzaville, Guinea, North Korea and Turkmenistan.    

  Figure 16.1.    Overall structure of the framework that underpins the NCETM portal.       

 

http://www.ncetm.org.uk
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   Framework that Underpins the Portal 

 The NCETM signposts high quality resources usually organized into microsites 
that support the professional development of teachers. Microsites include depart-
mental workshops that help secondary school teachers examine together a range of 
mathematical topics that “are hard to teach,” and sector-based magazines that offer 
monthly articles that are stimulating and timely. The site also points to useful CPD 
opportunities and courses offered by a range of providers in a constantly updated 
Professional Development Directory, which also identi fi es providers that hold a 
quality standard for CPD that is regularly monitored. There is also the NCETM 
 Mathemapedia,  a wiki designed by and for mathematics education. This acts as a 
vehicle for improving teachers’ awareness of research issues in teaching mathemat-
ics, of sharing ideas, as well as providing easy access to a range of references and 
interesting ideas, both theoretical and practical. The range of topics—written by 
NCETM portal users and moderated by the NCETM—is huge. Almost 400 articles 
exist, accessed over 30,000 times per month. 

 A later innovation, the result of teachers’ requests, was to  fi nd ways to support 
teachers in accessing research by supporting the production of Research Study 
Modules (  https://www.ncetm.org.uk/enquiry/35990    ). Each study module is based 
on a particular, carefully chosen, and annotated research paper which was written by 

  Figure 16.2.    A snapshot of NCETM’s portal homepage.       
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a collaborative group of researchers and teachers to present a structure that would 
support teachers more generally to think about the ideas and  fi ndings reported, re fl ect 
on their own views and practice, and consider the implications for their own practice. 
The starting point for the production of each module is to present questions raised by 
teachers when reading the papers and to support and frame their interpretations. 

 A complementary approach has been used by the Institute of Effective Education, 
which produces research articles across different areas on “what works”—in a 
journal named  Better: Evidence-Based Education.  These articles are concise and 
written for a teacher and policy audience. However, at the time of writing only one 
such journal has been produced for mathematics in England and that was in 2009 
(Hoyles,  2009  ) . 

 A Web presence for CPD is a relatively new development—at least when the 
NCETM began in 2006—and one that needs to be the object of research and devel-
opment in its own right as new functionalities become available. The NCETM por-
tal is not simply a provider of online learning activities, but also provides a record 
of a personal learning journey. Once logged in, teachers can access their own per-
sonal learning space, in which they can store a snapshot of their own CPD experi-
ences and re fl ections. Research suggests that self-evaluation is a powerful and 
productive way to catalyze professional development. This self-evaluation can be 
undertaken in the privacy of home, or as part of a professional development group 
in a school—anywhere, in fact, where there is time to think and re fl ect on what a 
piece of mathematics might mean, how it might be represented, or how it might be 
taught and assessed in new ways. The NCETM has developed self-evaluation tools 
(SETs) in each of the following areas: Mathematics Content Knowledge, 
Mathematics-speci fi c Pedagogy, and Embedding in Practice. There are many hun-
dreds of pages of self-evaluation steps structured in age-related phases based in the 
English National Curriculum. If teachers record limited con fi dence in any area, they 
are sign-posted to possible activities, on and off the portal, with which they might 
wish to engage to help them make progress. 

 One policy implication is clear and is not widely recognized by policy makers, 
and that is that professional development is not only about courses. Teachers can 
and do, with appropriate tools, learn from each other and from research about 
effective mathematics pedagogy and practice. The policy environment for mathe-
matics education has made it possible in England to implement such new tools and 
approaches. The challenge remains for mathematics education researchers to 
develop the research methodologies and evidence to help improve this teacher 
learning system and ensure its continued growth on the basis of what elements are 
most effective. 

 The NCETM has attempted to take forward into practice research that has indi-
cated that involving teachers in collaborative re fl ection and enquiry pays dividends 
in producing real results in the classroom, and thus is an evidence-based initiative 
ripe for the policy arena. Four international reviews of evaluations of CPD over a 
10-year period have consistently shown that the CPD that makes a difference is: 
collaborative and sustained, draws on evidence from research and practice, and 
involves participants in experimenting with new approaches and observing effects 
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(for a review of this research see EPPI systematic reviews of evidence about CPD: 
  http://eppi.ioe.ac.uk     and Best Evidence Synthesis *BES; Teacher Professional 
Learning and Development;   http://www.educationcounts.govt.nz/publications    ). 
Almost all of the research reported in both reviews is generic and not subject-
speci fi c, although mathematics was not excluded. Another obvious instance of this 
type of teacher enquiry is Japanese lesson study methodology, which has been 
undertaken in mathematics classrooms and shown to be effective (Krainer,  2011  ) . 

 To attempt to take this teacher enquiry agenda forward, the Centre has provided 
a range of opportunities and frameworks through its NCETM Funded Projects 
Scheme. Over 300 projects have been funded and their reports can be accessed at 
  http://www.ncetm.org.uk/enquiry/funded-projects/view-all    ). The Funded Projects 
Scheme provides resources to scaffold the research teachers may wish to carry out 
in collaborative groups within or across schools and colleges. Teachers bid for funds 
to pursue an enquiry and are provided with useful research “starting points” and 
references to try to promote building on previous work in the research community. 
The teachers have to write a report on their work and reports and  fi ndings of the 
projects are posted on the portal and disseminated at NCETM events. Thus, learning 
is shared, and the impact maximized. Teacher groups are expected to present the 
results of their work and are supported in doing this (if they wish). Most, if not all, 
 fi nd the experience of the research and the communication to others valuable. The 
projects usually include a member who is an “outside catalyst” or mentor—for 
example a researcher from a university—who supports the team of teachers, brings 
a broader perspective to the work, and helps the teacher group to plan the enquiry 
and summarize the  fi ndings in project reports. The NCETM also produces high-
lights from several projects describing their impact on teachers and learners for wider 
dissemination in annual Teacher Enquiry Bulletins, which are widely read by teachers 
and researchers alike. Further reading, and the full reports and bulletins, can be found 
on the portal under Teacher Enquiry (  http://www.ncetm.org.uk/enquiry    ). 

 The 300 or so reports from the funded projects are a tribute to the diversity of 
the endeavour, although many topics were in fact revisited by different groups—
inevitably as selections were shaped by the policy landscape. Topics have included, 
for example, how to support rich mathematical questions in the classroom (that is, 
more open-ended investigative work); using digital tools for sharing practice or to 
support mathematical learning; how children’s play can enrich early mathematical 
experience; assessment for learning; and the impact on teaching and learning of col-
laborative planning and review. 

 Independent evaluation studies of the Centre contribute to the evidence base out-
lining the importance of developing and supporting the practice of guided teacher 
enquiry. One study, in particular, documented the impact of the NCETM-funded 
networks on teachers, on their knowledge and practice, on their schools/colleges, 
and on their colleagues, pupils and students (Gouseti, Noss, Potter, & Selwyn, 
 2011  ) . Another study noted that the success of the Centre stemmed from its local 
focus, its collaborative nature and the fact that it was driven by evidence (Shef fi eld 
Hallam University,  2010  ) . 

http://eppi.ioe.ac.uk
http://www.educationcounts.govt.nz/publications
http://www.ncetm.org.uk/enquiry/funded-projects/view-all
http://www.ncetm.org.uk/enquiry
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 The  fi ndings of these evaluation studies have broad signi fi cance for policy. First 
the authors noted the distinct “added-value” of an external independent organization 
supporting the activities that take place in individual schools and colleges. The 
modest amounts of funding provided by NCETM could have been provided using 
internal school funds. However, the researchers found clear bene fi ts of having an 
external organization providing the funding as a lever on school and district man-
agement and to confer status on the teachers’ work. Thus, funds and the recognition 
and validation of the process and outcomes through conferences, accreditation and 
award schemes together proved a powerful incentive for professional learning. 
The importance of the role of the “leading” and “coordinating” teachers was recog-
nized as fundamental to the success of the networks and projects. This pointed to the 
need for a policy strategy to develop the organizational and inter-personal skills-sets 
required to guide groups of teachers successfully. Mentoring a group of teachers in 
research requires specialized skills over and above those needed in teaching, as does 
supporting teachers to report to audiences beyond immediate colleagues. There is also 
the constant challenge in the research community as well as in teacher research to 
work out how to ensure  fi ndings are, to some extent at least, cumulative. It is clear that 
making research reports more accessible through careful tagging and easy availability 
is helpful, but although this might be necessary, it is in no way suf fi cient. 

 Several other countries have either set up or are in the process of setting up similar 
national centres, the most recent being in the Federal Republic of Germany, where 
a national centre for mathematics teacher education has been established, funded by 
Deutsche Telekom Foundation. An important research effort for the international 
mathematics education community might be to assess the impact of these centres 
and identify factors underpinning any successes that transcend national boundaries. 
Each country has different goals, strategies, funding regimes and expected outcomes 
but if meta-analysis pulls out overarching research  fi ndings that document the suc-
cesses and challenge, they would have powerful implications for policy. 

 The question remains: what type of evidence is needed to convince policy mak-
ers about needed resources or infrastructure in any one country, and can research 
form part of this evidence and, if it can, what form should it take and how can the 
 fi ndings be mediated so as to be meaningful for policy makers? In England, the 
picture of participation in mathematics shows quite dramatic improvement. 
Figures  16.3  and  16.4  display the number of entries in A-level and Further 
Mathematics A-level over a number of years. They show the signi fi cant downturn in 
2000 and 2003 mentioned earlier and the continuous and signi fi cant upward trend 
since 2003 in the number of entries and the proportion of the cohort opting for math-
ematics. But which of the many initiatives were crucially important in this upturn? 
Or, was it a matter of a cumulative effect? Those are important questions, worthy of 
investigation by future research.   

 Policy development processes are often “top down,” coming from levels of gov-
ernment for implementation at the school and classroom levels. Yet, the two exam-
ples provided above—the professional society and state-led standards movements in 
the USA, and the collaborative community-led CPD structure in England—provide 
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evidence that signi fi cant policy change can occur from a bottom-up perspective. 
Jacobsen  (  2009  )  discussed how the “voices of the people” are essential in develop-
ment of policy. In both the US and UK examples the development of the policy has 
had varying levels of engagement of stakeholders and key constituencies. In con-
trast to these highly collaborative and inclusive processes, we offer two abbreviated 
examples where the approaches to policy reform have especially interesting, and 
different, characteristics.  

  Figure 16.4.    Proportion of the cohort opting for mathematics.       

  Figure 16.3.    Number of entries in A-level and Further Mathematics A-level (in England).       
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   Curriculum Reform in Portugal and Educational Reform 
in Mexico 

 In a fascinating account of reform in mathematics education in Portugal, Abrantes 
 (  2001  )  provided a description of a process of educational reform driven by a national 
debate about curriculum, in which schools were invited to participate. The “ultimate 
goal of the movement was to support the gradual creation of a new curricular orga-
nization based on a more autonomous and responsible role of the teachers and their 
collective structures in school” (p. 127). Given the  fl exibility to propose their own 
curricular programs, schools and teachers collaborated and formed networks over a 
period of years, and the activity culminated in legislation in 2001 relaxing the previ-
ously prescriptive government directions about curriculum and content, and leaving 
great  fl exibility to schools. 

 In contrast, the Organisation for Economic Co-operation and Development 
(OECD)  (  2011  )  has described an interesting partnership between the country of 
Mexico and OECD, an instance of an apparent trend for countries to seek collabora-
tion from international resources to improve their educational activity. The report 
noted: “International organizations such as the OECD are increasingly being asked 
by member countries and partners to provide an analysis of state-of-the-art educa-
tion policies and reform processes” (p. 30). The Mexico-OECD partnership focussed 
on the evaluation of schools and teachers, with efforts to draw on OECD resources, 
considering local issues, in developing a continual improvement strategy. The 
OECD team reported drawing on material in international comparative studies, on 
international best practices, on results of research that focussed on the speci fi c top-
ics of interest, and on a variety of country-based areas. 

 This “customized” approach to policy reform, bringing together local policy 
makers with teams that can bring additional research and policy evidence to the 
discussion, is similar to the model used in the US-based Strategic Education 
Research Partnership (SERP), originally grounded in work of the National 
Academies (2003). SERP’s mission is “to conduct a program of “use-inspired” 
research and development, with a goal of developing, testing, and mobilizing effec-
tive programs and practices” (see   http://www.serpinstitute.org/about/overview.php    ). 
The SERP partnerships involve local leaders and policy makers in school districts 
along with researchers concerned with the challenges faced by individual districts. 
Such models may offer a promising approach for more productive and in fl uential 
connections between mathematics education policy needs and researchers.   

   In fl uences in the Policy Process: Considerations 
for Mathematics Education Researchers 

 How can members of the mathematics education research community interna-
tionally play a more in fl uential role in the shaping of policy that affects mathematics 
education? Using the examples presented above, we will discuss some of the 

http://www.serpinstitute.org/about/overview.php
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considerations that might be relevant as researchers become interested in undertaking 
studies that can intersect more directly with the world of policy formulation and 
implementation. 

   Stakeholders in the Policy Process 

 For mathematics education researchers contemplating how their work might be 
more in fl uential in policymaking and implementation, an important context is 
awareness of the points of interaction by various stakeholders in the policy develop-
ment and implementation process. As the previous examples illustrate, a clear 
understanding of the national policy context is essential in framing research agendas 
that will be most likely to inform future directions. Part of that context involves 
understanding the “intermediaries.” We expand on Osborne  (  2011  ) , who noted that 
“individuals who act as intermediaries between researchers, on the one hand, and 
policy makers and teachers of science on the other” (p. 27) can be important in the 
ways in which research might in fl uence policy. Osborne included developers of 
instructional materials, local education leaders, teacher educators, and other science 
educators in this list. We note that in the UK, ACME serves this role. Peterson 
 (  2011  )  additionally suggested that advocates and lobbyists (some of whom come 
from professional societies) are also key intermediaries. In addition, in many coun-
tries the most important in fl uences on policy are central ministries and depart-
ments of education. 

 Other entities outside of university academe have key roles—“think tank” orga-
nizations such as the RAND Corporation, the International Association for the 
Evaluation of Educational Achievement (IEA), and OECD provide substantial 
research and analysis for policy makers, and are especially skilled at the formats of 
policy briefs that can appeal to policy makers who are attempting to become 
informed quickly about a range of issues. Fowler (2004, cited in DeBoer,  2011 , pp. 
3–4) highlighted the importance of “issue de fi nition,” something often accomplished 
by intermediary groups. 

 In ongoing work funded by the William T. Grant Foundation, Tseng  (  2010  )  
pointed out that Daly and Finnigan are studying the role of intermediary organiza-
tions in bringing research directly to policymakers. Interestingly the authors have 
found that grantees report that relationships have been more in fl uential than written 
materials for making policymakers and practitioners aware of the results and impli-
cations of research. It seems that many policymakers and practitioners prefer to seek 
out information from trusted but knowledgeable personnel who are aware of com-
parable situations. 

 Prestigious national academies and high-level government panels provide author-
itative reports aimed at policy makers, and international groups that engage in 
assessments and international comparative studies  fi gure prominently in the direc-
tions of policy in many countries (DeBoer,  2011  ) . Advocacy groups, professional 
organizations, and other interest groups also strive to be in fl uential with policy makers. 
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In the USA, professional societies help to provide this function; Mexico is working 
with an international intermediary, OECD. And, as we have seen in the UK exam-
ples, and in Portugal, citizens and teachers can greatly in fl uence policy makers by 
assembling evidence and examining key questions emerging from policies. 
Relationships and personal contact with those who have access to policymakers are 
important; indeed, in the research of Finnigan, Daly, and Che ( 2012 ) and Palinkas 
et al. ( 2011 ), the ways in which such relationships work in shaping policy, using 
social networking and other approaches, has been a subject of study. Thus, for 
research to inform policy, it is important that the research be useful to these “inter-
mediaries.” Using the two cases presented earlier, we explore how this happened, or 
could have happened in the two examples. 

 In the case of the US standards movement, the policy makers who in the end will 
either ensure successful implementation or not of the Common Core State Standards 
Initiative will be state leaders—governors, state boards of education, and legislative 
bodies—as well as local district of fi cials, including superintendents, principals, and 
curriculum coordinators. Indeed, the development team was something of a micro-
cosm of the appropriate intermediary groups. The team was headed by a mathemati-
cian with a history of working collaboratively with mathematicians and mathematics 
educators at both K–12 and with the undergraduate curriculum at the national level. 
Throughout the process there was substantial engagement of mathematicians, along 
with teachers and mathematics educators. This process is relatively well aligned 
with development processes used in the NCTM  Standards  activities, so it remains 
to be seen whether or not these efforts will have a role in translating to effective 
implementation at the state and local level—this would be an important subject of 
research that would require collaboration between policy makers and mathematics 
education experts. 

 In the UK, for the CPD infrastructure to be sustained, the Government and 
Ministers will need to be convinced of its utility, not only in terms of building a 
professional teacher community but also ultimately in relation to its impact on pupil 
learning, and the standards agenda. In this case, the “indirect” approach of engaging 
teachers in undertaking action research to examine the questions of interest to them 
in their classrooms, or even questions shaped by the policy context, is ambitious. It 
aims to build a network of evidence that is drawn from use-inspired research. But 
will the data prove convincing in the face of new political priorities? Its potential 
for informing future policy is as yet untested. A new contract was awarded by the 
Government for the NCETM to continue until 2015.  

   Meeting Policy Makers’ Needs 

 There is considerable literature available indicating that if researchers better 
understood both the needs of policy makers and the characteristics of research and 
evidence that render it useful to policy makers, then their research efforts might 
have more impact. What mathematics education researchers might count as research 
and evidence are indeed only components of the various types of evidence that 
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policy makers will use. According to Honig and Coburn  (  2008  ) , school district staff 
were prepared to take into account evidence from social science research, from 
student achievement data, from practitioners, and from expert testimony, including 
parent and community input. In related work, Nelson, Lef fl er, and Hansen  (  2009  )  
found that policymakers tended not to use research evidence as a primary source of 
guidance. They reported:

  The study revealed a surprising absence of interest by policymakers and practitioners in 
using research evidence. In fact, focus group members and interviewees exhibited a high 
degree of skepticism about the value of research. And, they did not draw a distinction 
between evidence based on empirical  fi ndings and “research  fi ndings” derived from the 
media, popular professional journals, the experiences of others, gut instinct, and their per-
sonal experience. In looking at both the research literature and the study  fi ndings, we 
found  fi ve common types of evidence used to inform educational policy and practice: 
research evidence, local data, public opinion, practice wisdom, and political perspectives. 
(pp. 50–51)   

 There are a number of factors under the control of researchers that might help 
ensure more visibility and usability of their work. Several authors call for framing 
the issue in a broader policy context (Smith & Smith,  2009 ; Gates & Vistro-Yu, 
 2003  ) . For the UK situation, this might mean reconsidering both theoretically and 
practically the relationship of work in CPD to the broader standards requirements. 
Others call for attempting to describe causal links (Smith & Smith,  2009  ) ; in the US 
standards efforts, this would mean  fi nding ways to relate student achievement to 
implementation of standards. Still others call for including stories to ground the 
claims (Smith & Smith,  2009  ) . The evidence from this chapter suggests that 
both systematic evidence along with rich and interpretative narrative are needed. 
McDonnell  (  2009  ) , suggested that researchers develop more sophisticated survey 
research techniques in order to address the needs of policy makers. That approach 
might be especially useful in mathematics, where there is a need to develop a 
stronger grasp of public attitudes to the importance of mathematics, including its 
in fl uence on employment opportunities. 

 Policymakers are often forced into the situation of creating policy despite the fact 
that the evidence, one way or another, is inconclusive. They need tools to justify 
their proposed policies to other decision makers (legislators, or school board mem-
bers, for example) who may not have deep familiarity with the issues. Within the 
educational research literature there is guidance about the needs of policymakers. 
For instance, Beaton and Robitaille  (  1999 , p. 30, cited in Clarke,  2003  ) , observed: 
“Educational policymakers around the world recognize the need for more and better 
information about the effectiveness of schools.” Clarke  (  2003  )  speculated that this 
was a reason for the great interest of school policymakers internationally in interna-
tional comparative studies such as TIMSS and PISA. In the USA, legislators have 
sometimes conveyed interest in identifying factors which positively in fl uence prac-
tice. In a recent example, the US Congress requested that the National Science 
Foundation commission a study that would examine the characteristics of US K–12 
schools that are especially effective in the areas of science, technology, engineering, 
and mathematics (STEM). The resulting report,  Successful STEM education: 
Identifying effective approaches in science, technology, engineering, and mathematics  
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(National Research Council,  2011  ) , was aimed at policy makers at the local level, 
and represented a synthesis of available research about effective practices (see   http://
www.stemreports.com/wp-content/uploads/2011/06/NRC_STEM_2.pdf    ). This is a 
current example of an intermediary entity responding to a direct request from a 
government policymaking body. 

 Tseng et al.  (  2008  ) , in writing about the various ways in which policymakers use 
research, drew attention to the following  fi ve categories (p. 13):

     1.     Instrumental  use occurs when research evidence is directly applied to decision-
making.  

   2.     Conceptual  use refers to situations in which research evidence in fl uences or enlightens 
how policymakers and practitioners think about issues, problems, or potential 
solutions.  

   3.     Tactical  use, also called political and symbolic use, occurs when research evidence is 
used to justify particular positions such as supporting a piece of legislation or challeng-
ing a reform effort.  

   4.     Imposed  use refers to situations in which there are mandates to use research evidence, 
as when government funding requires that practitioners adopt programs backed by 
research evidence.  

   5.     Process  use differs from the preceding terms; it does not refer to how research evidence 
is used but rather to what practitioners learn when they participate in conducting 
research.       

 In the case of the development of the US Common Core Curriculum Initiative, it 
seems that there is evidence of both conceptual use (e.g., the development of the 
standards using knowledge gained from research investments in learning progres-
sions) and tactical use (e.g., the components of the validation activity calling on 
experts to validate whether the research cited for inclusion of particular standards 
was adequate). In the UK example, concerning the policy initiatives generally, and 
the CPD and NCETM examples, in particular, it seems that instrumental, concep-
tual, and process uses are all in play.   

   Concluding Discussion 

 In order for mathematics education research to be more likely to in fl uence policy, 
scholars may need to consider several notions. First, deriving research questions 
from larger contextual circumstances that transcend mathematics education could be 
more important than presenting results that are directly attractive to teachers and to the 
mathematics education research community. As Smith and Smith  (  2009  )  noted:

  Studies designed to provide information about how to teach a speci fi c, important concept in 
elementary mathematics will not be useful to policy makers in federal and state govern-
ments or even in most district of fi ces, though they may be useful to teachers, principals, and 
publishers. (p. 376).   

 Second, the methodological preferences that are often used in mathematics 
education in order to address the questions of interest to researchers are dominated 
by descriptive work, design studies, teaching experiments, and implementation 

http://www.stemreports.com/wp-content/uploads/2011/06/NRC_STEM_2.pdf
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studies, which do not provide direct evidence about the potential effectiveness of 
innovations at scale. That limits the potential for the studies to in fl uence policy, 
unless they are interpreted and seen to be valid by powerful intermediaries. 

 US government agencies, through policies about K–12 educational change as 
well as research funding policies, have placed greater emphasis on assembling 
research results of large-scale interventions than of small-scale studies as a source 
of policy guidance. Both the What Works Clearinghouse and US National Math 
Advisory Panel examples provide indications about what might be needed: is the 
methodological bar the “right one,” and then what are the directions for mathemat-
ics education research that will meet the evidence standards that are put in place for 
in fl uencing policy makers? 

 Third, it must be recognized that the particular educational challenges that a 
particular country is facing are essential context for framing the more speci fi c math-
ematics education research questions for which an accumulation of research might 
well guide policy. For instance, Gates and Vistro-Yu  (  2003  )  observed that in devel-
oping countries, transforming the mathematics education system from one that was 
modeled originally on a system to “serve the European elite” to a system that offers 
universal access to mathematics education, is a key challenge faced by policy mak-
ers. Addressing both ambitious mathematics and equity is a crucial challenge in the 
USA. It relates closely to the global mathematics education policy challenge of how 
to formulate mathematics education to meet the needs of all subcultures in a society 
and to build on the mathematical assets inherent in those subcultures. 

 Finally, most Governments acknowledge the need to prepare the next generation 
for a world that is very different from ours. That world will innovate in mathematics 
teaching and learning speci fi cally around the use of digital technology. Education in 
general and mathematics education in particular has been slow to grasp and exploit 
the  fi ndings of technology-related research into teaching and learning. This area is 
ripe for innovation and research with promising avenues to pursue emerging in the 
international scene (see, e.g., Hoyles & Lagrange,  2009  ) . 

 In a world facing global challenges of unprecedented seriousness, the impor-
tance of scienti fi c and mathematical literacy and expertise has never been more 
central. Around the world, nations have recognized that the mathematical education 
of their young people is critical to personal, societal, and economic well-being. The 
policies that govern education, and mathematics education in particular, have enor-
mous relevance and implications for the effectiveness of the mathematical educa-
tion of our students. Research in mathematics education stands to contribute to the 
shaping, implementation, analysis, and revision of these policies, and is doing so in 
many cases. Through strong collaborations among researchers, practitioners, and 
policy makers, it is possible to achieve convergence and synergy so that policies, 
research, and practice can address similar problems in mutually synergistic ways. 
The international mathematics education community has collective experience and 
is beginning to accumulate policy-relevant research, and the opportunities to do so 
more systematically and to achieve more impact in the future should be a focus in 
the years to come.      
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     Part III 
  Introduction to Section C: Technology 

in the Mathematics Curriculum 

        Frederick   K.   S.   Leung         

  Abstract   The eight chapters in Section  C  were prepared by 23 scholars from 13 
different nations. The  fi rst chapter provides historical perspectives, not only on the 
use of technology through the ages, but also in relation to the rapid development of 
digital technologies over the past decade. The “middle chapters” discuss theoretical 
and practical developments with respect to the implications of emerging technolo-
gies for curriculum development, teaching, learning, and researching mathematics 
education. For example, what new things in algebra and geometry education can—
and should—we do now, given the availability of Computer Algebra Systems, and 
dynamic geometry software? Will the position of statistical reasoning in the math-
ematics curriculum change? Will a modelling approach to mathematics problem 
solving be facilitated by technological developments? What about equity issues? 
Are we at the beginning of a new era when online and distance forms of mathemat-
ics education will become dominant? From a mathematics education perspective, 
how can students, teachers, schools and researchers take advantage of facilities 
 provided by the Internet? Do technological developments profoundly affect concep-
tions of proof, and approaches to dealing with proof in school mathematics? How 
should the ready availability of technology affect the assessment of mathematics 
learning? The section closes with a provocative discussion of policy implications 
for mathematics education arising from technological developments.    

Keywords   Internet and mathematics education  •  Technology and modelling  • 
 Technology in mathematics education  •  Tools in mathematics education            

 Since the publication of the  Second International Handbook , in 2003, it has 
become increasingly evident that technology is slowly changing the way school 
mathematics is taught and learned, at least in some countries. There can be no doubt 

  F. K. S. Leung
The University of Hong Kong ,   Pokfulam ,  Hong Kong, People’s Republic of China   



518 Leung

that the increasing availability of more and more powerful and portable computers, 
and  versatile interactive software, have enabled many complex mathematics tasks 
to be accomplished much more easily. Furthermore, the Internet allows nearly 
instant access to knowledge and information worldwide. The result is that students 
of the modern technological era have the possibility of learning more exciting forms 
of mathematics more effectively than ever before. Whether this is the case or not 
can be traced in the literature reviewed and discussed in some of the chapters of 
this section. 

 But the more signi fi cant impact of technology on mathematics education, as will 
be discussed in most of the chapters in this section, is that technology is changing the 
very nature of the mathematics we are teaching, learning and assessing. This may be 
frightening for some people who perceive mathematics as eternal truth and hence a 
stable entity. But if we look at the issue from the perspective of history provided in 
the  fi rst chapter in this section, this idea that the nature of mathematics is changing 
because of the changing technological tools that have become available, not all that 
alien. In the past, compasses, the chalk board, and the abacus all changed the nature 
of the mathematics being represented. But, in the past few decades technology has 
been developing at such a fast pace that we have been able to observe the changing 
nature of mathematics within a relative short span of time. So, in essence, modern 
technology is changing both the way we learn “traditional” mathematics and, simul-
taneously, the nature of the mathematics that we learn. The chapters in this section 
portray these changes from different perspectives. 

 In the  Second International Handbook , we dealt with a selected group of topics 
to “provide a good pro fi le of the kinds of issues … that researchers have been tack-
ling” on the responses in mathematics education to technological developments 
(Leung,  2003 , p. 233). These topics included technology and research in mathemat-
ics education, the school and undergraduate mathematics curriculum, and teacher 
education. In this  Handbook , instead of selecting the same or another group of top-
ics for this section, we decided to focus on the impact of technology on the school 
mathematics curriculum—in the last  Handbook  we only devoted one chapter 
speci fi cally to that theme (Wong,  2003  ) . 

 Although all the chapters in this current section obviously draw on research, and 
the issues discussed have clear implications for research, we have not devoted any 
chapter to address speci fi cally the issue of technology and mathematics education 
research. That differs from the situation with the last  Handbook,  in which two chap-
ters (Lagrange et al.,  2003 ; Hoyles & Noss,  2003  )  were directly related to research. 
In the last  Handbook  there was also a chapter on technological tools for teaching 
undergraduate mathematics (Thomas & Holton,  2003  ) . In this  Handbook , Chapter 
  20    , by Heid, Thomas and Zbiek, touches slightly on tertiary mathematics, but the 
main focus of that chapter, as well as that of all other chapters, is on school mathe-
matics. Also, although the discussions in the majority of the chapters in this section 
of the  Handbook  have implications for mathematics teacher education, we have not 
devoted a chapter speci fi cally to mathematics teacher education—although we did 
have such a chapter in the last  Handbook  (Mousley, Lambdin & Koc,  2003  ) . By 
focussing on the school curriculum, this section of the  Third  International  Handbook  
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covers the impact of technology on the school mathematics curriculum comprehen-
sively and in some depth. 

 In his Introduction to this  Third International Handbook  Ken Clements pointed 
out that all sections of the  Handbook  follow a pattern of starting with a chapter that 
provides a historical analysis, and ending with a chapter that deals with policy 
implications. For this section it starts with a chapter that surveys the evolution and 
curricular in fl uence of technology in mathematics instruction, and ends with a chap-
ter on the implications of technology-driven developments for policies on the school 
mathematics curriculum. In between these two chapters, there are chapters which 
deal with the major strands of school mathematics: Geometry (dynamic geometry 
and geometric proof); algebra (computer algebra systems and the role of school 
algebra); and statistics (technology and statistical reasoning). There are also chap-
ters on speci fi c technology-related issues in the school mathematics curriculum. In 
addition to the chapter on proof, there is a chapter on technology and mathematical 
modelling, one on learning mathematics with the use of the Internet, and one on 
technology and assessment. These chapters raise matters of central importance with 
respect to school mathematics education. 

 Although there is a chapter that deals speci fi cally with the impact of the Internet 
on school mathematics, a topic of emerging importance which has not been covered 
in this  Handbook  is that of the impact of mobile technology or devices on mathe-
matics teaching and learning. In the past few years, the ubiquitous presence of 
mobile technology and devices (smart phones, tablet PC, etc.) is affecting the lives 
of people tremendously, especially among the younger generation. As early as 2003, 
there were attempts to study the potential of mobile technology for mathematics 
teaching and learning (Roschelle,  2003  ) , and scholars argued that the potential was 
immense. Experiments with wireless hand-held technology reported some success 
in Australia (Roschelle et al.,  2010 ; Main & O’Rourke  2011  )  and in Israel (Daher, 
 2010  ) , and there are a number of interesting ongoing projects (e.g., Geogebra 
Mobile:   http://www.geogebraorg/trac/wiki/GeoGebraMobile    ; Multitouch Interactive 
Cinderella:   http://www.youtube.com/watch?v=qraL4nIfkbI    ; Geometer’s Sketchpad 
iPad version:   http://www.dynamicgeometry.com/General_Resources/Sketchpad_
Explorer_for_iPad.html    ). 

 However, the use of mobile technology in mathematics education is still in its 
infancy (Rismark, Sølvberg, Strømme & Hokstad,  2007  )  and has not yet reached the 
everyday classroom. It would be a somewhat premature to review the development 
yet, and so we have not devoted a chapter to the topic. But it is de fi nitely a new area 
of research that is extending the current bounds of research on technology and 
mathematics education. My prediction is that in the years to come, as mobile tech-
nology permeates more and more into the everyday lives of members of various 
societies, education institutions will be bound to capitalize on the power of mobile 
technology and exploit its use for mathematics education. 

 In the  fi rst chapter in this section (Chapter   17    ), Roberts, Leung and Lin, provide 
historical perspectives on the interaction between technology and mathematics edu-
cation. When talking about technology in the mathematics curriculum, one might 
immediately think of the Internet and computer educational software, etc. The Internet 

http://www.geogebraorg/trac/wiki/GeoGebraMobile
http://www.youtube.com/watch?v=qraL4nIfkbI
http://www.dynamicgeometry.com/General_Resources/Sketchpad_Explorer_for_iPad.html
http://www.dynamicgeometry.com/General_Resources/Sketchpad_Explorer_for_iPad.html
http://dx.doi.org/10.1007/978-1-4614-4684-2_17
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and computer software are indeed part of technology, and much of what is covered 
in this section of the  Handbook  deals with these two important components of tech-
nology. However, technology is much more than these, and it is instructive to look 
at technology from a historical perspective. Roberts et al. enable us to become aware 
of the roots of modern technology and the role it plays in the contemporary class-
room. Their chapter provides a historical survey of technological tools, from inter-
esting historical calculation devices to the modern virtual tools, and discusses how 
technology has shaped mathematics and mathematics education in the different 
stages of history, and the potentials technology have offered in different ages for 
mathematics teaching and research. Roberts et al. discuss technology as tools for 
information storage, information display, demonstration, and calculation, and argue 
that all these functions are combined in the modern computer. But their chapter also 
reminds us that technology is not just about the computer, and the historical per-
spective sets the stage for the rest of the chapters in the section. 

 Chapter   18    , by Williams and Goos, looks at the interaction between technology 
and modelling—a contemporary aspect of mathematics teaching and learning that is 
assuming greater importance as it becomes obvious it can harness the support of new 
technologies. Adopting an activity theory perspective, Williams and Goos offer a 
theoretical framework integrating mathematical modelling and technology within a 
social and cultural-historical context. The authors argue that when learning through 
modelling, students should be taught within their zones of proximal development 
(ZPDs) to solve problematic and authentic mathematics tasks within a socio-cultural 
context. Technology allows for an expanded concept of ZPD. The relationship 
between technology and mathematical modelling is then illustrated with two exam-
ples where there is a “breakdown” of the modelling and/or technology within the 
mathematical-technological context, showing that mathematics learning is in essence 
an amalgamation of technology, mathematics and the social-cultural context. 

 While modelling is considered an important characteristic of mathematics learn-
ing, proof is often considered  the  primary characteristic of mathematics. Technology 
is sometimes conceived of as contributing only to the calculation and manipulation 
aspect of mathematics, and has little or nothing to do with mathematics proof, which 
is reserved for the human brain. But the development of dynamic geometry tools 
has raised serious questions about such a view, and has forced us to re-examine the 
notion of mathematical proof. Chapter   19    , by Sinclair and Robutti, reviews develop-
ments over the past decade within dynamic geometry environments (DGEs) and 
suggests implications for the process of proving. Most relevant, are the dragging 
and measuring functions in DGE. Both the potentials and challenges of DGE for 
students’ learning and understanding of proof and proving are discussed, and illus-
trated with examples. The discussion highlights the fact that technology is not 
merely an aid for studying mathematics. The use of technology affects the very 
nature of the mathematics we are studying, and in this case, it challenges our tradi-
tional notion of proof in mathematics. 

 While DGE is most relevant to the learning of geometry, the software tools that 
have had the greatest impact on the teaching and learning of algebra are computer 
algebra systems (CAS). In Chapter   20    , Heid, Thomas and Zbiek offer a brief review 

http://dx.doi.org/10.1007/978-1-4614-4684-2_18
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of the history of CAS and then discuss three issues arising from CAS—namely, the 
effects on algebraic concepts, effects on algebraic procedures (or skills), and effects 
on algebraic thinking and reasoning. One pertinent aspect of mathematical thinking 
enhanced by CAS is generalization, which is considered to be one of the most 
important characteristics of algebra. It is argued that CAS not only helps students to 
understand symbols and to reason, but also facilitates their development of alge-
braic concepts and number sense. It helps to connect symbolic and graphical rea-
soning through its ability to link, dynamically, multiple representations of concepts. 
Most importantly, CAS changes the role of algebra in the curriculum. It helps to 
make symbolic work more achievable as students blend different areas and pro-
cesses of mathematics. Some implementation issues on the curriculum and teacher 
training are then discussed. The latter includes the knowledge teachers need for 
teaching in a CAS environment (the notion of Pedagogical Technology Knowledge 
or PTK is introduced), and the educational signi fi cance of communities of practitio-
ners linked through online networks, etc. The chapter ends by discussing a possible 
research agenda in this area. 

 Another major area of the school mathematics curriculum on which technology 
is having an impact is that of statistics. Chapter   21    , by Biehler, Ben-Zvi, Bakker and 
Makar, focusses on the impact of technology on statistical reasoning. The chapter 
starts by reviewing the different technological tools for the teaching and learning of 
statistics. Two speci fi c tools,  Fathom  and  TinkerPlots 2.0 , are then further discussed 
as examples of how technological tools can support statistical reasoning. Concrete 
examples are given to illustrate how the dynamic and visual nature of the software 
aids statistical reasoning through data exploration, connecting data and chance, and 
statistical inference. The chapter ends with a “wish list” for future development and 
research in the area of technology for statistical reasoning. To what extent that wish 
list will be ful fi lled in the near future is perhaps something that we should look 
forward to in the next  Handbook ! 

 Chapters   19    ,   20     and   21     testify to how technology is slowly impacting all main 
domains of school mathematics. Outside of school, the most pervasive technology 
in the past decade has been undoubtedly the Internet, and Chapter   22    , by Borba, 
Clarkson and Gadanidis, discusses how the Internet is interacting with mathematics 
education. In the last  Handbook , we only brie fl y alluded to the role of the Internet 
in mathematics education, and with the rapid growth in the number of Internet users 
in the past decade, and in the power of Internet facilities, it is pertinent to ask if there 
has been a corresponding growth in the application of the Internet in mathematics 
teaching and learning contexts. Borba et al. argue that the emergence of the Internet 
has enormous potential for improving all aspects of mathematics education, with 
radical changes to curriculum and method not only becoming possible, but also 
feasible. 

 In Chapter   22     Borba et al. review the history of the emergence of the Internet and 
its impact on education. It offers examples illustrating education affordances of the 
Internet in three main areas: collaboration, multimodality and performance. The 
examples show how the Internet has enhanced collaborative learning, how the mul-
timodality that the Internet affords can provide rich opportunities for learning, and 
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how performance facilitated by and broadcasted through the Internet are ushering in 
new realms of possibility in mathematics learning. 

 As Borba et al. point out, the examples they provide draw attention to what might 
be possible. But Chapter   22     also discusses the limitations and problems associated 
with the use of the Internet for mathematics teaching and learning. The authors 
emphasize that the limitations and problems must be dealt with if educators are to 
capitalize on the potential of the Internet for mathematics teaching and learning. 
Although the authors do not explicitly identify the in fl uence of the Internet on the 
nature of mathematics that students learn, the examples given in this chapter suggest 
that the Internet has ushered in an era when a much more creative approach to math-
ematics curricular design will become possible. But, teaching and learning 
approaches are likely to change drastically, and this will challenge mathematics 
educators to identify the essence of mathematics teaching and learning. What is 
disposable, what is possible, and what must remain? 

 The chapter by Stacey and Wiliam, Chapter   23    , discusses the important issue of 
assessment, and addresses issues associated with how technology is not only having 
an impact on assessment of “traditional” mathematics but is also ushering in an era 
when serious attention will have to be given to the kind of new and important math-
ematics knowledge that can now be learned and assessed. Although technology is 
being employed to assess traditional mathematics ef fi ciently—through enhancing 
item presentation, allowing more convenient and reliable scoring, and providing 
immediate and personal feedback—it must be recognized that there are still obsta-
cles and challenges with computer-based assessment of mathematics (e.g., limita-
tions related to a reliance on keyboard input). But, as educational technology 
matures, it is envisaged that such problems will be resolved, and that should happen 
in the near future. 

 The more important question is, since technology changes (or has the potential 
to change) the learning and teaching of mathematics, are there corresponding devel-
opments in the technology for assessment so that it will be possible for new learning 
skills and approaches to be appropriately assessed? As assessment usually has a 
strong backwash effect on teaching, developments in assessment technology will in 
turn lead to innovations in teaching and learning. Indeed, technology is changing, 
and will continue to change, the very nature of mathematics itself. This echoes the 
theme above that technology is not merely something which can enhance the teach-
ing, learning and assessment of standard mathematics. It has the potential to change 
the nature of the mathematics taught, learned and assessed. 

 Although many of the chapters discussed above explicitly or implicitly touch on 
policy implications associated with the various sub fi elds of technology in the math-
ematics curriculum, the last chapter in this section, Chapter   24    , by Trouche, Drijvers, 
Gueudet and Sacristán, focusses on policy implications of technology-driven devel-
opments in mathematics education. A three-dimensional model is put forward for 
analyzing different aspects of policy. The chapter traces the historical development 
of policies on technology in the mathematics curriculum in different countries, and 
in so doing introduces the concept of learning and teaching space. Technology 
brings about a new paradigm of learning, but a full exploitation of available techno-
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logical resources is not yet evident among most teachers. With the profusion of 
technological resources, policy implications for the teaching, learning and assess-
ment of mathematics, as well as for teacher education, urgently need to be identi fi ed 
and acted upon. Some examples of the in fl uence of policies on preservice and inser-
vice teacher education, especially those that stress collaborative work in technologi-
cal environments, are described. The chapter ends with some discussion on the 
issues concerning how new technologies are in fl uencing curricular policies. 

 Altogether, the chapters in this section portray the state of the art in terms of 
technology in the school mathematics curriculum. The potential or affordance of 
modern technology for different areas of mathematics curriculum development, and 
for mathematics teaching and learning, is discussed. It is clear that what is happen-
ing at the moment is still a mere exploration of the affordance. The potential of 
modern technology for effective teaching and learning of mathematics is far from 
being realized in any large scale. Nevertheless, it is increasingly being recognized 
that not only has technology great potential for helping students learn “traditional” 
mathematics, it also opens up new fronts on mathematics learning which were not 
possible before the advent of the new technologies. 

 Most importantly, as pointed out in the beginning of this introduction, in many 
cases, the use of technology to study mathematics has changed the very nature of 
the mathematics we are studying. So technology in the mathematics curriculum 
should not be characterized by how the evolving technology will have an impact on 
the learning and teaching of mathematics from the curricula of previous eras. Rather, 
curriculum and teaching and learning methods will need to be regularly reconcep-
tualized to take advantage of the power of modern technology to improve mathe-
matics education in, possibly, spectacular ways.         
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  Abstract   The employment of physical tools to assist teaching and learning of 
mathematics did not begin with electronic devices, and has a much longer history 
than is often recognized. At times, technology has functioned as the inventive 
embodiment of mathematical ideas, progressing somewhat in step with the evolu-
tion of mathematics itself. At other times, technology has entered mathematics from 
outside, notably from commerce and science. This chapter surveys the evolution 
and curricular in fl uence of technology in mathematics instruction in the Eastern and 
Western worlds from ancient times to the present day, with the primary focus being 
on the last 200 years. Past technology is categorized into tools for information storage, 
tools for information display, tools for demonstration, and tools for calculation. It is 
argued that today’s computing technology offers teachers and students the potential 
to move beyond these categories, and to experience mathematics in ways that are 
different from traditional school mathematics curricula. A window is opened 
through which mathematics teaching and learning might enter into a new epistemo-
logical domain, where knowledge becomes both personal and communal, and in 
which connective and explorative mathematical knowledge becomes vastly more 
accessible.      
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   Introduction 

 Since the advent of the electronic calculator it has become customary for discussion 
of “technology” in mathematics education to refer almost exclusively to use of 
electronic devices. However, this represents a manifestation of historical amnesia. 
The employment of physical tools to assist teaching and learning of mathematics 
has a much longer history, and this history provides a valuable perspective on cur-
rent proposals and debates. At times technology has functioned as the inventive 
embodiment of mathematical ideas, progressing somewhat in step with the evolu-
tion of mathematics itself. But technology also enters mathematics from the larger 
world outside, notably from commerce and science. Moreover, technological tools 
used by mathematical practitioners need not translate immediately into mathemat-
ics education, and tools useful in an educational setting need have little appeal for 
professional users of mathematics. Educational use of technology is also subject to 
overarching educational philosophies prevailing at any given time and place; some 
would call these fads and fashions. The interactions among technology, mathematics, 
and education are thus unavoidably complex, and cannot be described by any simple 
model of historical progress over time. 

 The historical record suggests that the use of tools always has been inseparable 
from expressing and doing mathematics. In the ancient Western world the 
Babylonians carved solutions to geometric problems on small pieces of round clay. 
Possibly students did these as assessment tasks—for instance to  fi nd the length of a 
diagonal of a square using the square root of two. The ancient artefact depicted in 
Figure  17.1a  might have been the work carried out by such a student. Another 
Babylonian student may have used a “calculator” to work out a rather complex 
arithmetic problem. In this case his tool was a counting board made from a slab of 
stone with groups of markings (parallel lines, semi-circles) on it. The student put 
pebbles on it to work out his answer. A version of this counting board, which dated 

  Figure 17.1.    ( a ) Mathematical exercise to  fi nd diagonal of square, using the square root of 2 [Yale 
Babylonian Collection   http://www.yale.edu/nelc/babylonian.html    ], ( b ) The Salamis Tablet: The oldest 
counting board. It is made of marble. Photo from the National Museum of Epigraphy, Athens.       
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back to 300  bce , was found on the Greek island of Salamis in 1846 (Figure  17.1b ). 
In these ancient artefacts mathematics seems to have been embodied and was being 
preserved under the inventiveness of ancient craft.  

 Looking to the Eastern world, there was a different type of embodiment. In 
ancient Chinese mythology, there were demigods  Nuwa  and  Fuxi  who were the 
progenitors of mankind and shapers of human society. Legends say that  Nuwa  and 
 Fuxi  invented  guī  (compasses) and  ju  (set-square) to shape the world. On an ancient 
stone carving found inside a tomb from the East Han dynasty (25 to 220  ce ) there is 
engraved an intertwined image of  Nuwa  and  Fuxi  with  Nuwa  holding a  guī  and  Fuxi  
holding a  ju  (Figure  17.2a ).  

 For the ancient Chinese, the basic concept of the world was “heaven is round, 
earth is square” and there was an ancient motto saying that “without  guiju , there are 
no square and circle.” This geometrical intuition about the physical world became 
metaphoric in the human world. The connotative usage of the word  guiju  refers to 
orderliness according to underlying rules, and even applies to human affairs. Hence, 
for the Chinese, circle and square were elemental shapes and rules of the universe 
and they were embodied and symbolized by the tools that produced them. Notice that 
the two arms of the Chinese set square were not of the same length (Figure  17.2b ). 
This might indicate that the ancient Chinese were already familiar with a Pythagorean-
type relation about right-angled triangles. (The Chinese version of Pythagoras’ 
Theorem was  Gougu : Chapter 9 of the ancient Chinese mathematics treatise  The 
Nine Chapters ). Thus, behind the design of  ju  there lay an embodiment of a piece of 
mathematical knowledge. This kind of knowledge mediation, using tools embodying 
mathematics, was even more deep-seated in another Chinese traditional knowledge 
system mediated by symbolic visual tools. Ancient Chinese used dot and line pattern 
diagrams to represent and interpret the phenomenological world. In Figure  17.3  
there are three elemental number pattern diagrams that constituted the root of 
Chinese thought and culture. Chinese used these diagrams (and derivations of them) 
as coding tools to decipher the hidden laws of the universe.  

  Luò Shū  (The Luò River Writing) and  He Tu  (The River Map) were two different 
but related arrangements of 1, 2, 3, 4, 5, 6, 7, 8 and 9 using black and white dots. 

  Figure 17.2.    ( a )  Nuwa  ( left ) and  Fuxi  ( right ) with  Nuwa  holding a  gu   and  Fuxi  holding a  ju  [  http://
sunrise.hk.edu.tw/~planning/sm/images/exect-1/book-j002.JPG    ]; ( b ) A Chinese set-square.       
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There were mythical stories about their origins signifying that these patterns were 
indeed very ancient and sacred.  Luò Shū  is a three-by-three magic square. It has 
intriguing mathematical properties and has had a deep in fl uence in Chinese culture 
(Berglund,  1990  ) .  He Tu  is a derivation of  Luò Shū:  it emphasizes the concept of 
duality (even and odd,  yin  and  yang ).  Bā guà  is the kernel of a binary coding system 
that classi fi es natural and human phenomena and is intimately connected to  Luò 
Shū . These were the fundamental symbolic tools by which the ancient Chinese 
derived their concept of the world. They are supposed to embody numerical and 
geometrical information that guided the development of Chinese civilization. In 
particular, these diagrams were instrumental in facilitating mathematical calcula-
tions to predict occurrences of human affairs and natural phenomena. 

 The above examples from ancient Babylon and China illustrate that humans 
invent tools, symbols, and technology that embody mathematics. By this we mean 
that an object has been created, possibly simple, possibly very complex, which in 
some sense contains a mathematical idea or procedure. The object is capable of 
illustrating the idea for an observer, of facilitating the procedure, or of providing 
some combination of these services. Such tools can in turn endow users of the tools 
with enhanced ability to deepen their mathematical experiences. Mathematical 
experience can be thought of as “the discernment of invariant pattern concerning 
numbers and/or shapes and the re-production or re-presentation of that pattern” 
(Leung,  2010  ) . Moreover, mathematical concepts are often developed in the process 
of using tools, whether the tools were designed for mathematical purposes or not. 
Tools used for the general betterment of social conditions, or for encapsulating 
features of a cultural worldview, often carry with them indigenous mathematical 
knowledge. In ancient India (800–500  bce ), notions of geometric shape and mea-
suring techniques emerged in Sanskrit texts on ritual practices, such as prescriptions 
for constructing  fi re altars:

  The footprints for the altars were laid out on leveled ground by manipulating cords of various 
lengths attached to stakes. The manuals described the required manipulations in terse, cryptic 
phrases—usually prose, although sometimes including verses—called  sūtras  (literally 
“string” or “rule, instruction”). The measuring cords, called ś ulba  or  śulva , gave their name 
to this set of texts, the Ś ulba-sūtras , or “Rules of the cord.” (Plofker,  2008 , p. 17)   

 The Mayan calendar wheels (1000  bce ) in Central America, based on a vigesimal 
(base 20) number system, formed a complete philosophy of cyclic time that was 

  Figure 17.3.    Three fundamental symbolic tools that form the basis of Chinese culture.       
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believed to guide human destiny (Coe,  1993  ) . The Incas, in the 1400s and 1500s in 
what is now Peru, used a complex system of knotted strings ( quipus ) as a data col-
lecting and recording device which in effect served as a numerical calculator (Ascher 
& Ascher,  1997  ) . The Marshall Islanders of the South Paci fi c used palm ribs and 
coconut  fi ber to construct navigation stick charts to represent the behaviour of wave 
fronts (refraction, re fl ection and diffraction) as they approach land (Ascher,  2002  ) . 

 It must be acknowledged that our understanding of the educational practices 
associated with the above examples is very sparse. We see also from these examples 
that “technology,” if interpreted broadly, can encompass a vast range of human 
activities, including mathematical notation and language in general. To make our 
discussion manageable, we therefore de fi ne technology in education more narrowly, 
con fi ning ourselves to physical devices used with the aim of enhancing or amplifying 
the abilities of the teacher or the student in the mathematics classroom. Thus, although 
for our purposes we will not count a tool such as logarithms as a technology, the slide 
rule, a physical device embodying logarithms, will fall under our purview. Electronic 
devices, and algorithms realized on electronic devices, digital or analog, are also 
within our scope, inasmuch as there is a physical object involved. In the remainder 
of this chapter we offer brief histories of several representative devices that have 
been used in classrooms around the world. To make this survey more relevant to the 
present day, we furthermore focus mainly on the last 200 years, when mathematics 
education began to become (haltingly and unevenly across the globe) not merely an 
acquirement of a small elite, but a mass phenomenon. 

 We introduce a simple categorization to provide a framework for discussing 
these tools: tools for information storage, tools for information display, tools for 
demonstration, and tools for calculation. These categories are admittedly not entirely 
distinct, and we will see that they become less useful as we move into the electronic 
era—but they serve well for setting the stage. 

   Tools of Information Storage 

 The quintessential information storage tool is the book, which retains a powerful 
presence in worldwide mathematics education to the present day. The book has a 
history almost as old as civilization itself, from clay tablets, to the papyrus scroll, to 
the handwritten codex, to the printed book, and on to the modern e-book (Hobart & 
Schiffman,  1998  ) . But the history of the mathematics textbook is much shorter, and 
falls almost entirely within the 200-year window mentioned above, especially if we 
neglect advanced monographs in favour of books actually used in schools. Certainly, 
for many centuries individuals learned mathematics independently from books, and 
likewise tutors used books to teach mathematics to individuals and small-groups, 
but a new era began with the advent of mass schooling and the mass-produced text-
book. These interconnected phenomena did not become prominent until the 19th 
century in Europe and the Americas, and were materially aided by both political and 
economic developments. On the political side there was rising support for providing 
education for a larger proportion of children. On the economic side, there were 
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increasing ef fi ciencies in the production of paper and books, and increasing facilities 
for transporting goods over long distances, resulting in the ability to manufacture 
and distribute large numbers of books relatively cheaply (Cordasco,  1976  ) . 

 When books were scarce, if a class had a book at all it would frequently be the 
exclusive possession of the teacher. If the class was of any appreciable size this led 
to the recitation method of teaching, which often meant the teacher simply reading 
aloud from the book and the pupils attempting, through writing or sheer memoriza-
tion, to retain what was read, and then to recite it back to the teacher. Notable attempts 
to scale this system up were made in England and its colonies in the late 18th 
and early 19th centuries with the so-called monitorial system, in which the teacher 
would  fi rst teach a group of more advanced students, who would in turn teach less 
advanced students. In mathematics, in particular, the recitation method and the 
monitorial system primarily supported a curriculum centred on the rote learning of the 
rudiments of arithmetic (Butts,  1966  ) . 

 But with cheaper books came the possibility (though still often not the reality) 
that not merely the teacher but also many students would have individual access to 
a textbook. A student with a book could now be asked to read that book both inside and 
outside of class and to work problems assigned from the book. More sophisticated 
mathematics instruction for a classroom of pupils was now far more feasible than 
previously. Thus the rising presence of algebra and geometry in addition to arithme-
tic in the curriculum of 19th-century schools surely owes a good deal to the prolif-
eration of textbooks. The use of textbooks could also serve to hide problems arising 
from inadequate teacher preparation. This was certainly the case in the 19th-century 
USA (Tyack,  1974  ) . 

 Moreover, the system ampli fi ed itself: a greater supply of books produced a 
greater demand for books, which in turn produced yet more books, and so on. 
In mathematics this resulted not merely in the creation of individual textbooks, 
but entire series of textbooks covering the whole range of the curriculum from the 
lowest grades to the colleges: basic arithmetic to the differential and integral calcu-
lus. In Europe and North America by the end of the 19th century there was a well-
established textbook industry, and there were specialist authors who became wealthy 
writing textbooks. In the USA, notable 19th-century authors of mathematics text-
books included Charles Davies, Joseph Ray, and George Wentworth (Kidwell, 
Ackerberg-Hastings, & Roberts,  2008  ) . Seymour and Davidson  (  2003  )  asserted that 
“until the late 1960s, the textbook was virtually the exclusive curricular and peda-
gogical approach to the teaching and learning of mathematics in the United States 
and Canada” (p. 990). A study at the close of the 20th century concluded that in the 
USA the textbook remained the main source used by mathematics teachers to plan 
daily classroom instruction (Harel & Wilson,  2011  ) . 

 One effect of textbook proliferation should be especially noted: the assistance 
provided to standardization of the curriculum, and the dif fi culty of dislodging cur-
riculum topics once they were printed in widely distributed textbooks. This is espe-
cially striking in the USA, which despite a long tradition of local control of schools, 
and avoidance of an of fi cial national curriculum, rapidly converged on a de facto 
standard curriculum in mathematics, as a relatively small number of textbooks 
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began to dominate the market. Genuinely innovative mathematics textbooks have 
never fared well in the US market. Even during the “New Math” era of the1950s 
and 1960s, supposedly a time of major upheaval, there was substantial continuity 
in high school textbooks from earlier decades (Dolciani, Berman, & Freilich,  1965 ; 
Freilich, Berman, & Johnson,  1952  ) . Many students today have access to textbooks 
in electronic form, as a supplement to or instead of the traditional paper book. 
Whether this transition will have a marked effect on the mathematics curriculum 
is unclear.  

   Tools of Information Display 

 The book of course functions as a display device for individuals, as well as a 
storage device, but with mass education came a pressing need for multiple individu-
als to view the same display simultaneously. Here the representative tool is the 
blackboard or chalkboard and its offshoots. Prior to the wall-mounted blackboard, 
there had been a slow evolution of handheld writing surfaces, culminating in the 
slate, which could be written on with chalk. In Europe and North America this was 
often a facet of the recitation method of instruction. The teacher could read a problem 
from the book and the students could copy and display their solutions on their slates 
(Burton,  1850 ; Cajori,  1890  ) . 

 Prior to the emergence of both the textbook and the blackboard, it was also common 
practice in many schools in Europe and North America for each student to produce 
a “copybook” or “cipherbook.” Beginning with a collection of blank pages (paper 
and binding quality could vary widely, depending on economic circumstances) the 
student would copy out the material spoken aloud by the teacher. In the case of a 
teacher reading from a printed book this could often mean that the student was 
almost literally producing a handwritten copy of the book, or the problems from the 
book. Here again the use of copybooks primarily supported arithmetic instruction, but 
in some cases this could be fairly elaborate, including square and cube roots and com-
plicated problems from commerce and business. The teacher could periodically inspect 
the copybooks, so that they could have functioned as what more recent educators 
would term a “portfolio.” But how rigorously 18th- and 19th-century copybooks 
were evaluated for mathematical correctness is unclear, and some may have been 
assessed more on aesthetic grounds, such as penmanship (Clements & Ellerton,  2010 ; 
Cohen,  1982  ) . 

 The erasable blackboard, written on with chalk, spread quietly into schools in the 
early 1800s and was well established by the end of that century (Kidwell et al.,  2008  ) . 
It allowed the teacher to display complicated verbal or pictorial details with far more 
exactitude than merely reading aloud from a book. Moreover, it allowed students to 
work out problems on the board themselves, displaying their efforts for both the 
teacher and other students to see and comment on, thus changing the personal dynam-
ics of the classroom. In mathematics the blackboard worked in conjunction with the 
textbook to promote the rise of both algebra and geometry in the curriculum. 
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 Blackboards have continued in use in mathematics classrooms to the present 
time. In many cases the chalkboard has been replaced by the “dry-erase” or “white-
board,” but with no essential change in functionality. The interactive whiteboard, 
developed in the late 20th century, represents a major innovation, allowing the mate-
rial displayed on the board to be connected directly to a computer. Opinions vary 
widely on the value of this technology in the classroom (Smith, Higgins, Wall, & 
Miller,  2005 ; Wood & Ash fi eld,  2008  ) . Tablet personal computers offer similar 
functionality, including handwriting recognition, whereby the computer is able to 
interpret handwriting drawn on the screen, not merely type entered via a keyboard 
(Anderson,  2011  ) . 

 Another signi fi cant classroom display technology is the overhead projector. 
It came to classrooms in the USA after World War II (Kidwell et al.,  2008  ) . Much 
more than the blackboard, this technology usually remained the exclusive domain 
of the teacher. It had two primary attractions. First, it allowed the teacher to con-
tinue to face the students while displaying materials to them. Second, it allowed the 
teacher to display elaborate transparencies created before class. For example, a 
teacher of solid geometry could prepare complicated diagrams with an exactitude 
that could never be hoped for in hand-drawn diagrams quickly improvized while 
watched by the students. On the other hand, reliance on prepared slides sometimes 
encouraged a too rapid succession of material that overloaded the students’ ability 
to assimilate the information presented. 

 Overhead projectors have continued in use to the present, but in many cases have 
been superseded by new technologies allowing greater ease of use and a greater 
range of display functionality. Computer projection systems permit the display of 
any image, static or moving, available to the host computer, and in particular allow 
slide shows formerly done via transparencies on an overhead projector to be accom-
plished via software such as PowerPoint. Another new technology is the document 
camera (also known as an image presenter or visualizer), which permits any docu-
ment, or even a three-dimensional object, to be displayed on the overhead screen 
without any prior preparation of the document or object (Ash,  2009  ) . 

 Many classrooms in the 21st century provide not only a computer and projector 
for the teacher but also a computer for each student, networked with the teacher’s 
computer. In some ways this is a return of the handheld slate, with a vast increase in 
functionality. Its potential for mathematics instruction is just being tapped.  

   Tools of Demonstration 

 By tools of demonstration we refer to objects to be handled (physically, or, in 
more recent times, virtually) by either the teacher or the student, with the aim of 
conveying increased understanding of a concept or procedure. Rather than being 
tools of education in general, such tools have usually been more unique to mathe-
matics than the tools of information storage and display. However, bringing new 
demonstration tools into the classroom has often only occurred in conjunction 
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with some larger movement in educational philosophy that has affected more than 
mathematics alone. 

 The history of demonstration tools has been strikingly uneven. A few have been 
deeply imbedded for millennia, while others have come and gone with little trace. 
We have already noted the important place of the compass in Chinese thought, and it 
is well known that the classical geometric drawing instruments in the European 
tradition are the straightedge and the compass (often referred to as a pair of com-
passes). The Greek mathematician Euclid, in his  Elements  (ca. 300  bce ), gave priority 
to constructions based on these instruments. Probing the limits of such construc-
tions (squaring the circle, trisecting the angle, etc.) was a spur to mathematical 
researchers from antiquity to the 19th century. Indeed, although other instruments 
were often used for various practical purposes, such uses were long considered 
illegitimate for mathematical demonstration (Knorr,  1986  ) . Since Euclid served as 
the basis of geometry instruction in Europe and its colonies for centuries, the 
straightedge and the compass became regular features of this instruction. 

 In the 17th century, René Descartes, the great French philosopher and mathema-
tician, strenuously challenged the straightedge-compass tradition, and made free 
use of more complicated mechanisms for geometric constructions. However, this 
had little in fl uence on education. The discovery of linkages capable of producing 
exact straight lines in the 1870s produced a brief  fl urry of interest among mathema-
ticians, and even prompted some to propose a refashioning of geometry education. 
In 1895 the mathematician G. B. Halsted unsuccessfully called for the Hart inversor 
(see Figure  17.4 ) to be a standard part of every elementary geometry course. Such 
devices have periodically created excitement among mathematics teachers and 
teacher educators in more recent years, but they have never become more than an 
enrichment topic (Kidwell et al.,  2008  ) .  

  Figure 17.4.    The Hart Inversor, a linkage which translates rotary into straight line motion [National 
Museum of American History collections, gift of Department of Mathematics, University of 
Michigan. Smithsonian Negative no. 2006–3].       
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 In Europe and North America, there has been a discernable increased use of 
demonstration tools from the beginning of the 19th century, driven by greater 
emphasis on using sense data, especially visual, to convey the abstract concepts of 
mathematics. This has remained a feature, at least in theoretical pronouncements, of 
much mathematics education to the present day (Bartolini Bussi, Taimina, & Isoda, 
 2010  ) . The empirical side of the 17th-century scienti fi c revolution appears to have 
been crucial, with knowledge coming to be understood to depend not only on reason 
but also on careful sifting of material evidence; induction in addition to deduction. 

 But although there were some precursors, it was not until the 19th century that this 
stimulus was widely felt in education. Swiss educator Johann Pestalozzi and his fol-
lower Friedrich Froebel were especially in fl uential in bringing material objects into the 
classroom to be seen or touched by the students. These included objects associated with 
mathematics, such as geometric solids. Froebel, teaching in Swiss and German towns in 
the 1830s and 1840s, pioneered the concept of kindergarten for very young children. He 
recommended organized play with blocks, which would introduce the child to geometric 
shapes and to arithmetic ideas up to simple fractions. Froebel’s ideas spread across Europe 
and to the USA in the late 19th century (Allen,  1988 ; Butts,  1966  ) . 

 One 19th-century educational tool which may have bene fi ted from Froebel’s 
in fl uence was the cube root block, now little remembered. It is based on a method 
of extracting cube roots based on the binomial expansion of ( a  +  b ) 3 , which can be 
illustrated with a cube of side  a  +  b . (There is a better-known corresponding method 
for extracting square roots which can be illustrated with a diagram of a square of 
side  a  +  b ). Illustrations of this cube can be found in English arithmetic texts from 
the 17th century (e.g., Recorde,  1632  ) , but it was not until the middle of the 19th 
century that it became an actual classroom device (see Figure  17.5 ). With the aim of 
helping students understand the aforementioned cube root algorithm, scienti fi c 

  Figure 17.5.    Illustration of a cube root block.       
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instrument companies in the USA began to produce and market wooden cube root 
blocks that could be dissected into constituent parts.  

 These blocks, for advanced arithmetic students, were often advertized with other 
classroom objects, such as cones for displaying conic sections, and Froebel’s blocks 
for kindergarten children. Diagrams based on the blocks were a staple of school 
arithmetic textbooks for many years, but the approach had detractors. The cube root 
block algorithm never gained any favour with engineers and other users of mathe-
matics for practical purposes, since the ef fi ciency of the algorithm is low compared 
to other methods, such as logarithms or Newton’s method. Moreover, how often did 
mathematical practitioners even need to compute cube roots? By the 1890s many 
mathematics educators in the USA were campaigning against cube root extraction, 
but it persisted in the curriculum well into the 20th century. Cube root blocks were 
still being sold in the 1920s (Kidwell et al.,  2008  ) . Since no studies of the effective-
ness of the cube root block as a teaching technique are known, it must be judged a 
demonstration tool of unclear bene fi t to support an algorithm of dubious value. 
Nevertheless for a time it was well ensconced in the curriculum. 

 The end of the 19th century and the beginning of the 20th saw another surge of 
interest in concrete instructional methods, at both the highest and lowest levels of 
the curriculum. For advanced instruction this was strongly in fl uenced by a felt need 
to better align mathematics with science and engineering. In France, the mathemati-
cian Émile Borel, concerned that mathematics might lose its place in education due 
to a public perception that it was useless, called for more practical instruction, 
including augmenting geometry teaching with surveying exercises. He recom-
mended “laboratories de mathématiques,” which would make many connections 
with physics (Borel,  1904  ) . In the United Kingdom, the engineer John Perry pro-
moted a more concrete and visual approach to mathematics education, helping to 
break the unquestioned dominance of formal Euclidean geometry in British educa-
tion. His in fl uence extended to both Japan (where he worked for a time in the 1870s) 
and the USA (Brock,  1975 ; Brock & Price,  1980  ) . In the USA, Perry’s most promi-
nent disciple was pure mathematician Eliakim Hastings Moore of the University of 
Chicago, who championed a “laboratory method” of teaching mathematics at both 
the secondary and college levels. This involved strong emphasis on developing intu-
ition in the student through physical models, weighing and measuring, and drawing 
on squared paper (an uncommon classroom item up to that time). Moore saw Perry’s 
ideas as helping students aiming to be scientists and engineers, while at the same 
time supporting future teachers of mathematics and research mathematicians. His 
curricular program was brie fl y signi fi cant in the USA, but other than an increased use 
of graphs in algebra instruction, its long-term stimulus was slight (Roberts,  2001  ) . 

 Moore was also greatly in fl uenced by the German mathematician Felix Klein, 
who likewise sought to make mathematics education more supportive of engineering. 
Klein championed the use of geometric models in classroom instruction. This built 
on a tradition originating in France in the early 19th century, especially with mathe-
matician Gaspard Monge. Models made of plaster, string, wood, and paper were 
developed in France and Germany. These went beyond the simple solids of Pestalozzi 
and Froebel to include hyperboloids and other more advanced structures, all the way 
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to objects at the forefront of mathematical research, such as Riemann surfaces. Some 
of the string models were even dynamic; that is, they could be manipulated to change 
shape. With Klein’s instigation, German models, mainly of plaster, were manufac-
tured and sold worldwide. Colleges and universities in the USA were among the 
buyers, but there is little evidence to support extensive classroom use of these mod-
els; more likely they were treated more as museum pieces. There were also isolated 
enthusiasts at the secondary school level in the USA, who enjoyed training students 
to create geometric models, but their effectiveness is very hard to gauge (Committee 
on Multi-Sensory Aids,  1945 ; Kidwell et al.,  2008  ) . 

 Meanwhile in Italy, Maria Montessori inherited Froebel’s emphasis on teaching 
young children through tactile experience, buttressing her theories by appealing to 
more recent developments in psychology and anthropology. She advised that begin-
ning students be given the opportunity to handle objects of various shapes—such as 
cylinders of varying heights and diameters—continually. Colored cubes and rods 
were a central feature of her approach to arithmetic. Montessori schools were 
opened in Italy and Switzerland. After an initially rapid growth of interest in her 
work in the USA in the 1910s, her in fl uence declined, in part due to criticism from 
American educational theorists such as William Heard Kilpatrick of Columbia 
University (Kramer,  1976 ; Whitescarver & Cossentino,  2008  ) . 

 The USA experienced a Montessori revival beginning in the 1950s, and this 
closely coincided with, and perhaps helped to support, renewed interest in both the 
USA and Europe in using physical objects speci fi cally in teaching mathematics. 
Other sources of support were found in the work of educational psychologists 
whose in fl uence extended well beyond mathematics, such as the Swiss, Jean Piaget, 
and the Russian, L. S. Vygotsky. Among those in the 1960s who helped popularize 
what came to be called “manipulatives” in mathematics instruction were the Belgian 
educator Emile-Georges Cuisenaire, the Egyptian-born British educator Caleb 
Gattegno, and the Hungarian-born educator Zoltan Dienes, who worked in Great 
Britain, Australia, Canada, and elsewhere (Jeronnez,  1976 ; Seymour & Davidson, 
 2003  ) . This period also saw the rise of the “New Math,” a conglomeration of cur-
riculum reform programs initially centred in the USA but eventually extending well 
beyond. Some would see manipulatives such as Cuisenaire rods as incongruous 
with the emphasis on axiomatics and abstraction characteristic of many of the New 
Math programs, although Dienes ( 1960,   1971   ), for one, saw no contradiction. In 
any case, the popularity of certain manipulatives to some extent rose and fell with 
public perceptions of the New Math as a whole. Nevertheless, while New Math 
programs often experienced severe backlash, the use of manipulatives never went 
into total eclipse. 

 The presence of manipulatives in classrooms during the last 50 years is testi fi ed 
to by the fact that the topic has been an active subject of empirical research from the 
1960s to the present (Karshmer & Farsi,  2008 ; McNeil & Jarvin,  2007 ; Moyer, 
 2001 ; Sowell,  1989  ) . This research has painted a mixed picture of the effectiveness 
of manipulatives. Although some studies have detected very positive effects, others 
have found that these effects were negated by poor teaching techniques. Some 
research even suggested that manipulatives could harm students by burdening them 



53717 From the Slate to the Web: Technology in the Mathematics Curriculum

with the problem of “dual representation.” According to McNeil and Jarvin  (  2007  ) , 
“a given manipulative needs to be represented not only as an object in its own right, 
but also as a symbol of a mathematical concept or procedure” (p. 313). 

 The computer, especially as connected to the Internet, makes readily available to 
students and teachers all of the objects mentioned above, and many more, in virtual 
form. Whether this will prove to have a signi fi cantly more positive in fl uence on the 
mathematics curriculum than physical models that students can hold in their hands 
remains to be seen. We will note some recent efforts in this direction in the last section 
of this chapter.  

   Tools of Calculation 

 To the consternation of many mathematicians and mathematics educators, calcu-
lation is often considered to be synonymous with mathematics by many members of 
the general public, so these tools naturally loom large in public discussion of math-
ematics education. Here we brie fl y discuss the history of three devices—the abacus, 
the slide rule, and the calculator—that have had a global impact in mathematics 
education, as it evolved from mechanical to electronic. It should be noted that the 
slide rule, though intermediate chronologically, is in no sense intermediate concep-
tually between the abacus and the calculator. This shows the dif fi culty of imposing 
any straightforward conception of linear progress in the use of technology in math-
ematics education. 

   The abacus.   The abacus depicts numbers by means of beads on wires. It apparently 
evolved from marks in sand or counters on a board. The device seems to have 
developed somewhere in the eastern Mediterranean world in antiquity, moved east 
to Asia, then moved back west via Russia into Europe and thence to the Americas. 
The transmission to Asia is conjectural, and it is possible that it originated there 
independently. What is clear is that whereas the abacus became a widely used tool 
of calculation in China and Japan, without a serious competitor until very recent 
times, it never attained the same level of popularity in this role in Europe and North 
America. Instead, in the last-named regions, it was primarily con fi ned to use as a 
demonstration tool for teaching elementary arithmetic to young children. 

 The Chinese abacus ( suanpan ) appears to have been in substantial use by 1200 
and probably much earlier. Transmission to Japan, seems to have occurred via 
Korea. The Japanese modi fi cation of this instrument (called the  soroban ) was in use 
by 1600 (Smith,  1958  ) . Although the abacus has been a part of education in both 
Japan and China for centuries, in the decades after World War II major efforts were 
undertaken in both nations to modernize and formalize this instruction (Hua,  1987 ; 
Shibata,  1994  ) . The device has continued to be part of the mathematics curriculum 
in many East Asian nations to the present day. In Malaysia, for example, although 
abacus use in schools declined for a time after handheld calculators became 
widely available, the abacus ( sempoa  in Malay) has more recently experienced an 
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educational resurgence in connection with an increased emphasis on mental arithmetic 
(Siang,  2007  ) . 

 In China and Japan the beads move on vertical wires, but the version of the abacus 
that became common in Russia featured horizontal wires. This would prove advan-
tageous for using it as a display device for young children, since the teacher could 
hold the abacus up in front of the class and the beads would remain in place. It was 
used in Russia for early education until recent decades. The French mathematicians 
Jean Victor Poncelet encountered the abacus while imprisoned in Russia following 
Napoleon’s invasion of 1812 and introduced it to France on his return. It spread 
widely across France as a teaching tool in the 19th century (Gouzévitch & 
Gouzévitch,  1998 ; Régnier,  2003  ) . 

 A similar teaching device began to appear in the USA in the 1820s, likely inspired 
at least in part by the French version. Here it meshed well with the Pestalozzian 
object-teaching philosophy that was gaining in popularity, and by the 1830s it was 
being sold under various names, including “numeral frame,” by companies catering 
to the growing education market. These teaching abaci were not without detractors, 
however, some of whom felt they might even sti fl e the imagination of the child. 
They remained as a tool for only the youngest learners of arithmetic (Kidwell et al., 
 2008  ) . In more recent years, some educators (e.g., Ameis,  2003  ) , apparently reacting 
to the perceived success of Asian students in mathematics, have advocated more use 
of the Asian abacus in Western schools.  

   The slide rule.   The slide rule was a direct embodiment of the theory of logarithms 
pioneered by Scottish mathematician John Napier and English mathematician Henry 
Briggs in the early 1600s. By marking two straightedges with logarithmic scales 
and sliding one with respect to the other it was possible to calculate approximate 
answers to multiplication problems quickly. Even more complicated problems could 
be handled with suf fi cient ingenuity, although the fact that the slide rule was an 
analog instrument meant that it always provided only approximate answers, and thus 
was not appropriate for most business applications of mathematics or for accounting. 
Variations involving circular rules were also possible, and both possibilities had been 
explored by the middle of the 17th century in England. These slide rules were slowly 
improved over the next century, and became a tool used by engineers, such as James 
Watt, in the UK. By the early 1800s they had spread to the European continent and 
to the USA (von Jezierski,  2000  ) . 

 It was not until the late 19th century that the slide rule became an educational 
tool, beginning  fi rst with colleges featuring an engineering curriculum, such as 
Rensselaer Polytechnic, the US Military Academy, and the Massachusetts Institute 
of Technology. In the early 20th century the slide rule began to  fi lter down into the 
secondary schools, helped by the movement to establish mathematical “laborato-
ries” which emphasized the mathematics of measurement and applications to the 
physical sciences. Instrument makers were selling slide rules to the high school 
market by the 1920s and some were also selling oversized models that could be 
displayed in front of a classroom for all students to see. The slide rule remained a 
recognized feature, although in most cases not a central one, of many mathematics 
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and science classrooms until the advent of cheap electronic calculators in the 1970s 
(Kidwell et al.,  2008  ) .  

   The calculator.   Unlike the slide-rule, the calculator is fundamentally a digital 
instrument, which seems to have given it a decided advantage in achieving a place 
in mathematics instruction. Its fate in the classroom is still being written. European 
development of mechanical calculators dates from the 17th century, with such 
notable mathematicians as Pascal and Leibniz prominently involved (Goldstine, 
 1972  ) . But it was not until the middle of the 19th century that industrial processes 
were suf fi ciently advanced to allow construction of calculating devices on a 
commercial basis, both in Europe and the USA. By the 1920s they had become a 
standard feature of many of fi ce settings. But it appears that it was not until after 
World War II that they received much consideration as educational devices. In the 
1950s there was some minor experimentation in classrooms with mechanical 
calculators, or mechanical calculators with electrical assistance, but the size of these 
machines made them inconvenient as personal devices (Kidwell et al.,  2008  ) . 

 The major breakthrough occurred in the 1970s, with the arrival of inexpensive, 
fully electronic calculators. Initially these calculators were still relatively bulky, and 
were able to perform little beyond the familiar four operations of arithmetic. But by 
the 1980s calculators had become readily portable, and were able to compute trigo-
nometric and other transcendental functions and to display graphs, thus far surpass-
ing the functionality of mechanical calculators and slide rules. Classroom use 
became practical, and although very uneven, soon became widespread enough to 
create disputes between enthusiasts and detractors. Calculators greatly increased the 
range of feasible problems that could be given to students, but concern was expressed 
about the effect on basic arithmetic skills, and doubts were raised about the readi-
ness of teachers to use calculators effectively (Kelly,  2003 ; Waits & Demana,  2000  ) . 
By the mid-1990s computer algebra systems (CAS) were available on hand-held 
devices, leading to further debate. Now, in the 21st century, although the generic 
name persists, high-end devices referred to as “calculators” in fact provide a huge 
range of information storage, information display, and demonstration capabilities, 
in addition to pure calculation (Aldon,  2010 ; Trouche,  2005  ) . Some controversy has 
persisted, but in recent years the use of calculators has been increasing around the 
world in secondary and elementary schools, and at the college level as well.    

   The Virtual World: The Potential of 21st-Century 
Technology for Mathematics Education 

 During the past two decades, pedagogical theories in mathematics education, 
such as instrumental genesis and semiotic mediation, have placed tools, artefacts, and 
technology at the centre stage of discussion on mathematics knowledge acquisition 
(see, e.g., Artigue,  2002 ; Bartolini Bussi & Mariotti,  2008  ) . Studying the pedagogical 
potential of technology is a major research  fi eld of study in mathematics education 
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(see, e.g., Blume & Heid,  2008 ; Heid & Blume,  2008  ) . The question arises, regarding 
the plethora of electronic devices now available to mathematics teachers and stu-
dents, and the evident integration of these devices into what appears is becoming a 
comprehensive technology platform: is this something fundamentally new for math-
ematics education or does it merely provide the means for delivering the services of 
the older technologies more quickly and ef fi ciently? It would certainly appear that 
the distinctions made earlier in this chapter among classes of technologies are 
increasingly irrelevant. The computer can function simultaneously as an informa-
tion storage device, an information display device, a demonstration device, a super 
calculator, and much more. In the remainder of this chapter we describe some indi-
cations that the new technology environment does indeed provide unprecedented 
opportunities. 

 Tools from the past are far from irrelevant to the new environment, since the Web 
can function as a window to access information on historical mathematical tools 
instantly. This provides the potential to construct mathematical knowledge via simul-
taneous attention to the multifarious facets in the evolution of that knowledge, as 
re fl ected in the tools, thereby creating a virtual thematic museum of mathematical 
artefacts. One could, if one wished, virtually go back in time, by constraining students 
to use only the tools available in a certain era in a speci fi c geographic locale. This 
powerful capability for integrating history, pedagogy and mathematics opens a vast 
range of intriguing possibilities in conceptualizing the mathematics curriculum. 

 Research into integrating the history of mathematical tools with the school math-
ematics curriculum, by having students visit and study historical mathematical tools 
via present day accessible technology, has been carried out in teacher education and 
in mathematics classrooms (Bartolini Bussi et al.,  2010 ; Maschietto & Trouche, 
 2010  ) . On the one hand, this can assist students to acquire mathematical under-
standing in a techno-cultural context, which raises the relevance of school mathe-
matics as a part of social development. On the other hand, students can re-visit and 
re-think (even re-conceptualize) familiar mathematical concepts in an old-meets-new 
context. This simultaneity may bring about awareness of invariants that constitute 
the core of abstract mathematical concepts. This looking back to  re -interpret and 
 re -present the mathematics embodied in historical tools somewhat echoes Hans 
Freudenthal’s  (  1991  )  idea of mathematization, in which mathematical concepts are 
re-invented using tools that are more powerful than our predecessors possessed. 
According to Freudenthal, “children should repeat the learning process of mankind, 
not as it factually took place but rather as it would have been done if people in the 
past had known a bit more of what we know now” (p. 48). 

 There have been substantial recent efforts to study classroom use of historically 
signi fi cant tools, both as originally conceived and in a digital form. Maschietto and 
Trouche  (  2010  )  have revisited the idea of the mathematics laboratory in classroom 
practice, explicitly citing Borel’s early 20th-century proposal. They studied the use 
of both “old” technology (the mechanical calculator of Blaise Pascal, the abacus) 
and “new” technology (networked electronic calculators) in such laboratory situa-
tions, while exploring notions of good contexts and good teaching practices. Cornell 
University (USA) has digitized and enhanced its collection of kinematic models, in 
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what they call the Kinematical Models for Design Digital Library (KMDDL). 
These models (including linkages generating straight lines, mentioned earlier in this 
chapter), were originally created as physical models in the 1870s by the German 
engineer Franz Reuleaux. At Cornell they are being used to teach the mathematics 
of machine design. In the 1990s at the Centre for Research on International 
Cooperation in Educational Development (CRICED) at Tsukuba University (Japan), 
there was a rebirth of interest in using mechanical instruments in mathematics 
instruction, facilitated by LEGO blocks and dynamic geometry software. The project 
has also made use of e-textbooks to weave together historical books and interactive 
dynamic simulations. And the University of Modena (Italy) has established a 
Laboratory of Mathematical Machines, which provides digitizations of familiar 
mathematical instruments, including the compass. Dynamic simulations are avail-
able on the Web as a source for teaching and learning activities with prospective 
mathematics teachers (Bartolini Bussi et al.,  2010  ) . 

 There are several key research questions for this historical pedagogy. How can this 
re-invention process be best realized in a pedagogic process? Will the re-invention 
embody “more” or “less” mathematical knowledge? How can this pedagogical per-
spective be integrated into the curriculum? We illustrate and discuss an example in 
geometry. 

 As just noted, the Laboratory of Mathematics of the University of Modena in 
Italy holds a large collection of replicated mechanical “geometrical machines” from 
different historical periods—where by geometrical machine is meant a tool that 
forces a point to follow a trajectory or to be transformed according to a given law 
(Bartolini Bussi & Maschietto,  2008  ) . These geometrical machines were re-con-
structed based on old scienti fi c and technical literature, and after experimentation 
on their possible pedagogical potential. In the Museum’s Web site, beside the pic-
tures of some of the replicated geometrical machines, there are corresponding vir-
tual animations, constructed by dynamic geometry software, showing what the 
machines do. Such a parallel representation is depicted in Figure  17.6 , which shows 
a replica of a Scheiner pantograph, a device invented in Germany in 1603 by 
Christoph Scheiner for making a scaled copy of a given  fi gure.  

 This juxtaposition of old and new technology (wooden craft and virtual craft) 
provides a good context for implementing historic re-invention pedagogy in the 
mathematics classroom. Figure  17.7  has four equal rods hinged by adjustable pivots 
at A, B, C and P with OA = AP and PC = P ¢ C = AB. It is fastened by a pivot at O. 
Placing a pencil at P (or P ¢ ) to trace a  fi gure, a dilated image is obtained at P ¢  (or P). 
Note that APCB is a parallelogram, O, P and P ¢  are collinear, and OP ¢ /OP = OB/
OA = constant. Antonini and Martignone  (  2011  )  have studied the didactical poten-
tial of the pantograph in proof and argumentation for geometrical transformations.  

 In a mathematics classroom, students can construct a make-shift pantograph 
using geometry sticks, appropriate fastening pivots and writing implements 
(Figure  17.8 ), which can be used as an explorative tool to investigate the geometry 
of similarity (homothety/dilation). The pivot points of this tool can be readily 
adjusted, which enables students to access, easily, different ratio variations between 
the sides of parallelogram ABCP. Since all pivot points are free, students can choose 
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  Figure 17.7.    A modern day pantograph [Sources:   http://www.isaacwunderwood.com/gallery2/
displayimage.php?album=4&pos=0       http://www.datavis.ca/milestones/index.php?group=1600s    ].       

  Figure 17.8.    A classroom make-shift pantograph constructed using geometry sticks.       

  Figure 17.6.    A wooden replica of a Scheiner pantograph and a dynamic animation of how it works 
[Source:   http://www.museo.unimo.it/theatrum/macchine_00lab.htm    ].       

 

 

 

http://www.isaacwunderwood.com/gallery2/displayimage.php?album=4&pos=0
http://www.isaacwunderwood.com/gallery2/displayimage.php?album=4&pos=0
http://www.datavis.ca/milestones/index.php?group=1600s
http://www.museo.unimo.it/theatrum/macchine_00lab.htm
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which one to be the fastened one, and which to be where the pens are. Furthermore, 
the shape of ABCP can be changed to other shapes. These different degrees of freedom 
of the tool open up a vast pedagogic space for teachers and students.  

 For more advanced lessons, students can construct dynamic geometry panto-
graphs and use the construction activity to explore the mathematics that can be 
embodied in a pantograph—an example of which is depicted in Figure  17.9 .  

 For this virtual pantograph, the lengths of OB and AP are adjustable variables 
and points O and P are free. These features facilitate students experiencing the vari-
ation that this virtual tool can offer, providing opportunities for them to discover 
geometrical properties (Leung,  2008  ) . We have here an example of old and new 
technologies meeting together in the mathematics curriculum, enabling meaningful 
mathematics teaching and learning. Such examples suggest that by utilizing the 
multi-functional nature of the computer, and the connectivity power of the evolving 
virtual technology, mathematics pedagogy could take on a new paradigm that supports 
connective and explorative knowledge building in a powerful way. By “connective 
knowledge building” is meant the ability of teachers and students to (re)construct 
mathematical knowledge connectively and collectively, and in particular, through 
the idea of “webbing.” Webbing refers to “the presence of a structure that learners 
can draw upon and reconstruct for support—in ways that they choose as appropriate 
for their struggle to construct meaning for some mathematics” (Noss & Hoyles, 
 1996 , p. 108). 

 Thus, webbing can be interpreted as an affordance in the virtual world to facilitate 
mathematics pedagogy, where connective structures that empower mathematical 
experience can be built by teachers and students, utilizing multi-functional tools 
present in the virtual environment. As Web technology advances in terms of speed, 
accessibility and information content, one can easily surf the Web to connect to 
information on mathematical artefacts, ancient or new, like those described earlier 
in this chapter. 

 The virtual platform can be designed to collect students’ perception of mathe-
matical concepts, thus forming a “knowledge database” that serves as a source to 

  Figure 17.9.    A dynamic geometry pantograph constructed in Sketchpad™.       
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connect students’ different ways of understanding. This collective understanding 
via a virtual environment can then be used pedagogically for developing mathemati-
cal concepts in the classroom. Leung and Lee (Lee, Wong, & Leung,  2006 ; Leung 
& Lee,  2008  )  have been conducting research on such a platform in an ambient 
dynamic geometry environment to categorize visually students’ perceptions of geo-
metrical concepts. This kind of platform may be extended to become a virtual forum 
(or community of practice) where teachers and students co-construct mathematical 
knowledge and even formulate curriculum decisions. 

 By explorative knowledge building is meant students engaging in explorative 
activities in speci fi c virtual environments like spreadsheets, dynamic geometry soft-
ware, computer algebra systems, and other purpose driven software that support 
mathematics knowledge construction. Students are empowered in these environ-
ments to develop tool instrumentation schemes, to discern mathematical patterns 
and to develop situated discourses. In this connection, Leung  (  2011  )  has proposed a 
framework of  techno-pedagogic task design  that aims to organize and capture tra-
jectories of learning in a technology-rich pedagogical environment by a sequence of 
progressively inclusive epistemic modes: establishing practice mode, critical dis-
cernment mode, and situated discourse mode. This technology-dependent cognitive 
sequence can empower learners to see mathematics in situated abstract ways and 
hence enlighten their understanding of traditional mathematics by providing alter-
native passages to mathematical knowledge (Leung,  2011  ) . 

 Using the mathematics knowledge embodied in computing technology, teachers 
and students can potentially experience mathematics in ways that are different from 
traditional school mathematics curricula. A window is opened through which math-
ematics teaching and learning might enter into a new epistemological domain, 
where knowledge becomes both personal and communal, and in which connective 
and explorative mathematical knowledge becomes vastly more accessible. 

 How soon or how fully this vast potential might be utilized for mathematics edu-
cation is a dif fi cult question. The historical examples given earlier in this chapter 
suggest that we should be cautious about predicting revolutionary changes. 
Moreover, it is entirely possible that the most profound effects will come not from 
explicit efforts to design technologies for mathematics education, but rather from 
the side effects of technologies adopted by the wider society. This has certainly been 
the case with the book, which did not originate as a special tool of mathematics 
education, but became ubiquitous both inside and outside mathematics classrooms. 
And while there is little inherently mathematical about the blackboard, its in fl uence 
on the mathematics curriculum has been substantial. The computer, with its off-
shoots and allied technologies, represents an especially intriguing case, and a huge 
challenge for those who attempt to forecast the future. The computer surely does 
explicitly embody mathematical concepts and processes (e.g., base two arithmetic), 
but it does not follow that the primary applications in education will come from this 
direction, especially as the computer is such a versatile device. As we have indi-
cated, mathematics educators are proposing exciting pedagogical innovations based 
on the newest technologies, but meanwhile the pace of technological evolution may 
be changing the overall place of mathematics within education and within society in 
ways that we cannot yet foresee.      
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  Abstract   This chapter seeks to provide an integrating theoretical framework for 
understanding the somewhat disparate and disconnected literatures on “modelling” 
and “technology” in mathematics education research. From a cultural–historical 
activity theory, neo-Vygtoskian perspective, mathematical modelling must be seen 
as embedded within an indivisible, molar “whole” unit of “activity.” This notion 
situates “technology”—and mathematics, also—as an essential part or “moment” of 
the whole activity, alongside other mediational means; thus it can only be fully 
understood in relation to all the other moments. For instance, we need to understand 
mathematics and technology in relation to the developmental needs and hence the 
subjectivity and “personalities” of the learners. But, then, also seeing learning as 
joint teaching–learning activity implies the necessity of understanding the relation of 
these also to the teachers, and to the wider institutional and professional and political 
contexts, invoking curriculum and assessment, pedagogy and teacher development, 
and so on. Historically, activity has repeatedly fused mathematics and technology, 
whether in academe or in industry: this provides opportunities, but also problems for 
mathematics education. We illustrate this perspective through two case studies where 
the mathematical-technologies are salient (spreadsheets, the number line, and CAS), 
which implicate some of these wider factors, and which broaden the traditional view 
of technology in social context.      
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   Introduction 

 Most experienced mathematics educators probably believe they know what is 
meant by mathematical modelling and how this relates to problem solving, and per-
haps even how it situates or is mediated by “technology.” Yet, Lesh, and Zawojeski 
 (  2007  )  reported that there was no consensus on this issue among authors and we 
agree with that reading of the wider literature. 

 The literature on mathematical modelling is already huge, and is growing in 
extent, touching on almost the whole of mathematics education and its concerns: 
epistemology, learning sciences, curriculum, pedagogy, assessment, teacher devel-
opment, innovation and change, and so on. Several attempts to help the newcomer 
to this literature must be mentioned. For example, the review by Lesh and 
Zawojewski  (  2007  )  addressed modelling with problem solving, and that by Kaiser 
and Sriraman  (  2006  ) , among others, provided an overview and categorization of 
perspectives on modelling, especially as related to the literature from the International 
Conference on Teaching Mathematics and its Applications (ICTMA) (Kaiser, Blum, 
Ferri, & Stillman,  2011  ) . 

 Blum, Galbraith, Henn, and Niss  (  2007  )  set out to present a state-of-the-art review 
on modelling in mathematics education, but their volume revealed even less conver-
gence, suggesting the diversity of views is ever growing. There are those who see 
modelling as a new name for Deweyan “inquiry” (Confrey & Maloney,  2007  ) , those 
from the Freudenthal tradition who see modelling as an emergent, dialectical process 
(e.g., Gravemeier, Lehrer, van Oers, &Verschaffel,  2002 , whose approach is close in 
spirit to that of this chapter), and others who more or less de fi ne modelling “tradition-
ally” through its heuristics and the modelling process, often schematized in a cyclic 
diagram. Those in this third category are generally guided by modelling as a metacog-
nitive process, as a set of coordinated heuristics in the fashion of Polya  (  1957  ) , as a 
tool for categorizing competences and thus assessment of various kinds, as an analyti-
cal tool for examining learning, and/or as a guide to teacher intervention. But then 
there is also a signi fi cant literature in the learning sciences, much of which is inspired 
as we are by cultural historical literatures, including Freudenthal, but also by Vygotskian 
activity perspectives (typi fi ed by authors such as Cobb, van Oers, and Gravemeier). 

 We will consequently certainly not try here to provide a state-of-the-art summary 
of mathematical modelling as a whole, but rather begin to develop an integrative, 
theoretical perspective (with examples and “cases” to help make “sense”) that we 
believe can help conceptualize this  fi eld, particularly as regards the topic of this sec-
tion, that is to say, “technology.” Methodologically, because this approach aims for 
generative insight, it involves “theory and case study” of the phenomenon rather 
than “sampling and survey.” This chapter, in this section of the  Handbook , will 
mainly provide theory (with exempli fi cation) while those that follow will likely 
provide deep “case studies.” 

 We will take a risk here and de fi ne a model and modelling in a broad way that 
builds on a de fi nition put forward by Lesh but also includes most perspectives dis-
cussed by Lesh, Blum, Kaiser and others: actually it was inspired by Wartofsky 
 (  1979  ) . “A model (or modelling) is a means of seeing a situation (the target domain, 
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sometimes called the ‘real’) through the lens of another situation (the source domain 
or ‘model,’ sometimes the ‘mathematics’).” Then modelling activity will be “activity” 
(a concept to be developed below) that involves modelling in a signi fi cant way. 

 Note that this may include all forms of re-presentation, akin to the metaphorical 
use of language, for instance, and tends to be “two-way”, as most mathematical 
modellers say. Thus, just as the brain can be said to be modelled as a “computer”, in 
computer science the computer is modelled as a brain, and our modern cultural 
model of computers and brains actually emerges from this two-way dialectic. For an 
introduction to “cultural models” see Holland and Quinn  (  1987  ) , and on metaphori-
cal modelling, see Black  (  1962  )  and Lakoff and Johnson  (  1980  ) . This view of course 
also includes the representation of mathematics by physical models (e.g., counting-
beads or the abacus as a model for arithmetic). It even includes much pure mathe-
matical work, even proof, as invoking “modelling” (Hanna & Jahnke,  2007  ) . 
Importantly, it allows for emergent modelling, and modelling within mathematics, 
in the sense of those such as Gravemeier and Cobb (see, e.g., Cobb, Yackel, & 
McClain  2000 ; Gravemeier,  2007 ; Gravemeier et al.,  2002 ; Van Oers,  2002  )  as well 
as modelling in real problem solving in the continental European and British 
“trends” (e.g., Blum et al.,  2007 ; Burkhardt,  1981 ; Pollak,  1969  ) . 

 Similarly, the term “technology” is often taken for granted and is ill-de fi ned and 
ill-theorized in the mathematics education literature, though most who address this 
issue argue that new technologies can be a powerful aid to enriching modelling and 
provide many examples and innovative approaches in mathematics education. 
An approach we will  fi nd fruitful comes from the analysis of mathematics in the 
workplace, where mathematics is found embedded or black-boxed in technological 
artefacts and tools, and mathematical competence may be better described as a form 
of techno-mathematics or techno-mathematical literacy put forward by Hoyles, 
Kent, and Noss (e.g., Kent, Guile, Hoyles, & Bakker  2007 ; Noss, Bakker, Hoyles, 
& Kent  2007 ; Noss & Hoyles,  2011  ) . 

 We can de fi ne technological knowledge broadly as practical or scienti fi c “knowl-
edge of tools, machines, techniques, crafts, systems or methods of organization in 
order to solve problems” (a Wikipedia de fi nition). Thus, technology includes the 
instruments, techniques and organisation that often embed mathematics “materi-
ally” in tools and methods involved in practical activity. In a sense, the “technology” 
available in a given context is a combination of the tools and the know-how to use 
them; these may embed the “ideal” mathematics in various forms, as a pair of com-
passes embeds the mathematics of “locus” of a circle. We will argue that mathemat-
ics in practice is always mediated by such technology, and indeed generally becomes 
fused with technology through such practice (such an argument was attributed by 
Vygotsky and others to Spinoza, who suggested that in a deep sense a circle really 
 is  that which is made by a pair of compasses or the equivalent). 

 While the literature on modelling and technology has to date emphasized the use 
of technical  instruments —usually computer technology—in mathematical model-
ling, it usually sees the infrastructure including the “forms of organization” in 
schooling as something separate, a matter of learning and assessment, or pedagogy 
and teacher education, etc., rather than part of the technology. We will refer to these 
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aspects as part of  educational technology , or the technology of the industry we call 
“schooling” or “academe”, which the modelling literature has become increasingly 
concerned with in recent years. In recent volumes of ICTMA proceedings one  fi nds 
increasing concern for these aspects of modelling: teaching, teacher education, 
organisation of assessment, etc. These all centrally confront educational technol-
ogy, the institution of schooling, and even politics of assessment and cultural 
reproduction. 

 In this situation, we seek to develop a theoretical perspective integrating modelling 
and technology in its educational,  essentially social and cultural–historical , context. 
We aim thereby to help researchers to see the role of technology and mathematical 
modelling within activity “as a whole.” We try to see how they relate to the develop-
ment of youth, and to see how they essentially relate to educational institutions and 
systems in wider contexts. We suspect that the perspective of this chapter might 
challenge many readers from the  fi eld of mathematical modelling. Therefore, we 
will provide some examples, so as to make our proposed perspective more concrete, 
and perhaps more palatable. 

 Thus, if we provoke some to see “modelling” and “technology” in a new, broader 
theoretical perspective we will have succeeded in our aim. Language and mathemat-
ics, for instance, in this view, could be understood as the supreme modelling tools 
(Bruner,  1960  ) , while “writing/inscribing”, “sitting in rows in classrooms and copy-
ing the scribe,” and later “paper-and-pencil mathematics” were perhaps historically 
humanity’s most important technological evolutions in mathematics education—and 
still seem even today to be remarkably resilient.  

   Cultural–Historical Perspectives on Modelling 
and Technology 

 We want to conceive “mathematical modelling” as a kind of “activity”, in the 
activity-theoretical sense. We draw on the revolutionary thinking of Vygotsky—said 
to be the Mozart of educational psychology—and his followers and contemporaries, 
especially Leontiev and Bakhtin, and those more modern, such as Cole, Engeström, 
and Wertsch (see the review by Roth and Lee,  2007  ) . The unit of cultural life is “activ-
ity”, prototypically that of culturally-historically situated and mediated “human 
labor.” Labor and activity are understood to be constituted socially by a collective 
of joint actions on “objects”, with the goal to produce previously idealized (and so 
planned, envisaged, initially “ideal”) outcomes that ful fi l a human “need.” The 
“motive” and the “object” of activity ensure that activity is meaningful, and 
integrate both emotional and cognitive aspects. Activity is always mediated by 
the cultural artefacts that have been produced by prior generations of cultural 
production. Thus, mathematical work is mediated by artefacts that were produced 
historically by “old” mathematical technologies, and in turn produce new artefacts 
that embed this mathematical work in new ways. Thus, for example, one sees on the 
most modern computer screen an icon that looks like a pair of scissors for “cutting”, 
a brush for “pasting,” and a pair of compasses for constructing a circle. 
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 We would like to be able to take Vygotsky’s legacy—which we will call cultural–
historical activity theory or CHAT—for granted. But, although Vygotsky (usually 
 1978 , 1986) is widely cited and “well-known” in the educational literature, even in 
mathematical modelling literature, this whole corpus of activity theory seems to be 
often treated somewhat simplistically or super fi cially, and sometimes degraded to 
the trivial (there are certainly exceptions such as Bartolini Bussi, van Oers, Cobb 
and colleagues, etc.). Yes—Vygotsky thought that intellectual functions arise on the 
social plane  fi rst, and the intra-mental plane second; so, yes, the sociality of the 
classroom is fundamental to learning–teaching activity. But, even if he was incon-
sistent, so also thought Piaget, if we read his later work on children’s development 
of logic with any care. Yes, Vygotsky explained that internalization was of funda-
mental importance to development, and revealed some of its essential transforma-
tions. But activity theory has much more to offer, especially regarding educational 
psychology, culture, history, technology, and even modelling. 

 For Vygotsky, the task was to formulate an educational, social-psychology, along 
dialectical materialist principles. This is indeed a social or cultural psychology; 
it invoked Marx at least as the founder of the concept of sociology and social prac-
tice in its modern sense. Thus, when Vygotsky referred to scienti fi c concepts (some-
times translated as “academic” concepts) in contrast to “everyday” concepts, he was 
pointing to the speci fi c cultural–historical, and even institutional conditions in 
which academe grew. Schools and academies were the source of a speci fi c and very 
formal-abstract way of practising, talking and thinking that he contrasted with the 
“everyday” language and work of production and consumption. The leisured classes 
in academies escaped the immediate concerns of the poor populace (for a fascinating 
account of leisure and academic cultures, see the new edition of  Crest of the Peacock , 
Joseph,  2010  ) . This allowed the academy to engage in lengthy periods of scienti fi c 
study, to develop and explore formal concepts and codes, and so uncover the 
scienti fi c essence of things that was not super fi cially visible or tied to everyday 
practice and its associated pragmatic language use (see also Bernstein,  2000  ) . 

 But, said Vygotsky  (  1986  )  and Leontiev  (   1981  ) , let it be noted how this kind of 
academic study can lead to teaching that is excessively “verbal” and indeed “sense-
less” to learners. Only by “ascending to the concrete” can these academic concepts 
become “true”, scienti fi c concepts (for more on this theme, see Blunden’s preface to 
Hegel in Wallace,  2008  ) . Only through the resolution of the dialectical contradiction 
between everyday and academic practices can the truly scienti fi c-yet-practical con-
ceptions (and so new more advanced forms of social practice) emerge. As we per-
ceive the sun “going down” in a glorious blaze of pink and orange over the blackening 
ocean horizon, we might still conceptualize this experience in its “academic” 
scienti fi c model, and appreciate that the sun is not moving, but rather the earth is 
rotating, and that the light from the sun is not changing much, but rather the depth 
of atmosphere it must penetrate is slowly changing, leading to parts of the spectrum 
(blue, indigo and violet actually) being more absorbed than when the incidence is 
normal (thus having a more than usual proportion of red, orange and yellow). Thus, 
one might integrate subjective, concrete experience of the everyday with academic 
physics learning of planetary motion and light, and achieve a synthesis of “scienti fi c” 
analysis and concrete, subjective, embodied grasp of this experience. The subjective 
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experience gives “sense” to the academic theory and concepts; yet, the physics 
extends experience and potentially allows one to “see” beyond the immediate. 
Because it penetrates deeper into the objective reality, it tells one that the experience 
of sunset would be different if one were observing this phenomenon on Mars or the 
moon; it extends the imagination of reality far beyond the immediate perceptions 
and surface knowledge of the “everyday.” 

 When the  fi rst moon-landers conducted the experiment of dropping a feather and 
a spanner simultaneously, they knew and we knew, in a scienti fi c, abstract-formal 
way, that the two should, against all intuitive, everyday experience, fall together. 
This is why we watched this experiment and perceived this theoretical knowledge 
with such joy: we “saw” it for the  fi rst time and made this scienti fi c knowledge both 
cognitively and intuitively, practically “true,” in Vygotsky’s (Hegelian) sense. 

 This then is what “modelling” means in its most general, scienti fi c activity-
theoretical, sense and this implicates what appropriate technology might do for the 
construction of true, scienti fi c concepts. According to Davydov  (  1990  ) , mathemat-
ics has a special role in this process: mathematics provides the formal language that 
distances a model theoretically from its everyday content, and allows a domain of 
investigation where everyday intuition can be helpfully set aside. The scienti fi c 
essence of a situation or task can thus be investigated without—for the moment—
the interference of the surface, and potentially dangerously misleading contents. 
Thus the mathematical model of the falling spanner/feather may be given by a sim-
ple table of data, or a set of related equations or their graphs: d V/ d T  =  g ;  V = gT ; 
 S  = ½  gT  2 , which in turn relate to the similar model for the parallel situation on earth, 
with the appropriate modi fi cation of  g . But, then, the model works less well here, 
where we often require a modi fi cation such as d V/ d T  =  g  −  f ( V ) or the like, allowing 
us—if we have the mathematical technologies to solve such equations—to explain 
why the feather and spanner fall differently here. Thus mathematical-technologies 
provide the means for modelling in problem solving in just the way that Vygotsky’s 
highest level of scienti fi c, or “theoretical” thinking speci fi es, though Vygtosky most 
often used formal language as the technology of choice in his own examples. 

 Notice in this developing formulation that the term “mathematics” is here and 
there substituted by “mathematical-technologies”—we could have said techno-
mathematics which is not far off in meaning (Noss et al.,  2007  ) . But also in some 
cases we might say just “mathematics”, as if mathematics itself  is  the technology for 
solving the problem. The danger is that we forget that mathematics is always 
mediated by the technology, even though in the most extreme case this is, as in Erdos’ 
 fi ne formula for pure mathematical activity, just “paper + pencil + coffee = mathe-
matics.” To this we will shortly add the educational technology, which often remains 
invisible in the accounts of mathematics in schools and universities. 

 Davydov  (  1990  ) , in particular, developed the mathematical side of Vygotsky’s 
argument, claiming that the goal of mathematics education should be to teach theo-
retical thinking to all children as the central goal of schooling. He believed that the 
gifts that talented mathematicians demonstrated in Krutetskii’s  (  1976  )  studies were 
exactly those of good “theoretical thinking” in mathematics, available potentially to 
all; and Davydov’s work went some way to showing this. 
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 An example: Wason’s reasoning task has come to be widely known in the psy-
chology literature. It involves deciding which cards to turn over to test a hypothesis. 
Each card is said to have a number on one side, and a letter on the other side. The 
hypothesis to be tested is: “Every vowel has an even number on the reverse side.” 
Which cards, out of “ A ,” “ D ,” “4,” and “7”,  must  be turned over to check if this 
hypothesis is true for all these cards? Very few adults, even those with training in 
mathematics and science, can answer this question as put (though when presented 
in more obvious everyday contexts its equivalent proves much easier.) Why is this 
such a dif fi cult problem? One reason, we suspect, is that few apply a mathematical 
model to the problem. The hypothesis has the form “ X  implies  Y ”, and its truth table 
is the same as Not [ X  and Not ( Y )] which is always true unless both  X  is true (i.e., 
the letter is a vowel, e.g., “ A ”) and  Y  is false (i.e., the number is not even, e.g., “7”). 
Those that don’t produce such an argument, then, either do not know logic, do not 
consider mathematical modelling with truth tables relevant to logic, or are not dis-
posed to use this knowledge in such a task—although it must be admitted that the 
problem can be solved perhaps more easily analogically, especially by those who 
have been taught empirical scienti fi c methods for testing hypotheses; however, our 
solution here is the most powerful, formal, mathematical solution to this general 
class of problems, and arguably underpins the whole scienti fi c logic of empirical 
hypothesis testing. 

 But let us look a bit closer—we have addressed the notion of scienti fi c concep-
tions, as this pertains to the advancement of society and culture, but not really its 
developmental, psychological content in schooling activity. As Engeström  (  1991  )  
explained, Vygotsky and Leontiev understood that schooling was an arti fi cial insti-
tutional activity that always tended towards empty, pre-conceptual, or pseudo-con-
ceptual “verbalism.” Yet this emptying of everyday knowledge is also what makes 
academia essential for the specialist development of academic, scienti fi c concepts. 
Thus, the social context of school is apparently historically essential, but always 
dangerous: what is the solution to this contradiction? In practice, the answer to this 
is that school must always be directed to real, problematic situations. Vygotsky and 
Leontiev’s experiments, and Davydov’s curriculum, were always directed to tough 
problems, just beyond the immediate grasp of the learner, in a zone of proximal 
development (hereafter “ZPD”) where problems required the new conceptual tools 
or signs that the teacher (or other more advanced peers, or even research and study 
perhaps) could offer. Much of the best in the mathematical modelling literature and 
practice over the last half century has been in this mould. Thus, we conclude, new 
mathematics should be taught in such a zone of proximal development, where the 
mathematics is necessary for the learner to solve genuinely engaging, problematic, 
“authentic” and “meaningful” tasks (thankfully terms common in the modelling lit-
erature). This, then, is what learning through mathematical modelling should mean. 

 Technology may allow, however, an expanded ZPD in various ways, as case 
studies in the literature show. Technological instruments that embed mathematics 
include calculators of all kinds (from times-tables and Napier’s bones to electronic 
and algebraic calculators and computers) that can make historically-produced math-
ematics “present” in all kinds of learning–teaching activity. The usual argument is 
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that all learners might then  fi nd some task that truly motivates them, but also one 
that becomes accessible. 

 Implicit in this view is the consideration of the learner as engaging in “activity”, 
that is de fi ned as joint, collective activity on “objects” with substantial social 
“motives.” In activity theory, schooling is considered to be activity in which the 
students may engage to please the teacher, to pass examinations, and so on, and so 
dangerously cut off from socially important and useful adult motives. But if the cur-
riculum is properly directed and managed, the activity has a potential for a more 
advanced motive: thus, Leontiev explains, a student studying a history book, if told 
that it is no longer on the syllabus, may throw it aside in disgust—in which case they 
are clearly motivated by schooling, and examinations. But they may, perhaps, put 
the book aside reluctantly, or decide to read it anyway, perhaps out of a more devel-
oped “interest.” In this case Leontiev considers the student to be developing adult 
motives, interests and capabilities—see Black, Williams, Hernandez-Martinez, 
Davis, and Wake  (  2010  )  for a fuller discussion. The most advanced theoretical 
thinking which arises in activity, then, is motivated by highly adult motives, to 
understand the deepest challenges of the scienti fi c and social world. In this view, 
mathematical modelling is not just “intellectual” but involves social motives, affect, 
passion, and dispositions to act theoretically on the world. 

 This, then, is what mathematical modelling means, at least for adolescents 
(Davydov argues that it remains true for the whole of schooling after the age of 
seven). Or rather, we argue, this is what it might ideally mean; the implications for 
educating and developing youth for the school curriculum, and for pedagogy, are 
quite profound, we think. It involves viewing mathematics as the soft side of tech-
nology (in the sense of a semiotic tool) as well as a real theoretical world of its own, 
but one which is made concrete and material through the use of mathematical-tech-
nologies in socially meaningful activity. This view will be recognizable by those 
regarded as being in the emancipatory, critical trend in mathematical modelling and 
mathematics education generally. To our knowledge the literature recognizes only 
one serious critic of this position—Badiou argues that it is the mathematics that is 
“material” and the “real world” is that of “appearance.” We will leave this philoso-
phy to one side—but see Brown  (  2011  ) . 

 But then, there are many social and political reasons why this ideal vision may 
not be realizable or realistic in practice: we discuss some of these below (and see 
Williams,  2011  ) . We claim only that such an ideal view can provide us with a basis 
from which to examine and critique practice.  

   Reviews of Research on Problem Solving and Modelling 
from an Activity Perspective 

 The modern problem-solving literature in mathematics education really began 
with Polya  (  1957  ) , and became a researched endeavour in the modern sense with 
Schoenfeld [see his review, Schoenfeld  (  1992  ) ]. Research on modelling then 
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followed this pattern: modelling being guided by heuristics that may make applied/
real problems accessible, while affective issues arise from the social context and 
context of curriculum. The whole genre of research and curriculum development in 
ICTMA conferences has represented this development well. Recent conference pro-
ceedings from, say, ICTMA-13 and ICTMA-14, offer a history and bibliography—
see, e.g., Kaiser et al.  (  2011  ) , Lesh, Galbraith, Haines, and Hurford  (  2010  ) . 

 Rigorous educational research was slow to catch up with practice, but Schoenfeld’s 
 (  1992  )  review of educational research concluded that problem-solving strategies 
must be made concrete in speci fi c classes of problems to become intelligible, and so 
of any practical value in problem solving. Very general heuristics were also believed 
not to be instrumentally useful to problem solvers in the  fl ow of practice, but might be 
more salient in metacognitive re fl ection on problem solving with classes of problems. 
Schoenfeld (after Lampert,  1990  )  also raised the issue of beliefs about the nature of 
problem solving, and the hidden curriculum of problem solving: like, for example, 
the belief that a “mathematics problem” is one that has one answer, one best method, 
and can usually be completed alone without lengthy working (thus revealing how 
signi fi cant is the institutional aspect of schooling, the educational technology). 
Bartolini Bussi  (  1998  )  raised this also in her development of substantial, culturally-
historically based mathematical project practices in classrooms, such as the explo-
ration of perspective in history and art. This approach is typical of many in Italy 
(such as within Boero’s group and that of Arzarello) and elsewhere in ethnomathe-
matics and the history of mathematics traditions. In the case of the Italians, this is 
usually done explicitly as part of an attempt to make mathematics classrooms social 
and culturally “mathematical”, following a Vygotskian perspective; texts, tools and 
technologies, often in historical contexts, have an important place. 

 So, we argue the traditional genre of research may make a crucial mistake in 
isolating the “modelling processes or heuristics” for research and evaluation, much 
less teaching: removing processes from the substantive mathematics on the one side 
and the contexts of practical activity in which they make “sense” on the other, may 
leave the metacognitive aspect high-and-dry as a new mathematical “verbalism.” 
As we argued in our previous section, the actual mathematics provides a language 
for theoretical thinking, a crucial “point” of schooling in the development of the 
learner. But concretely, heuristics like “set up a simple model” may be too general 
to mean much except through the study of speci fi c mathematical theory on one hand 
and a space of useful activity contexts on the other. Start with a simple, linear function 
as a model for a relationship before being more “realistic with a non-linear function” 
makes lots of sense only when it is attached to practical experience in activity. 
However, this concretization of the general heuristic of “choosing a simple model 
 fi rst” implies a certain depth of understanding and expertise of the mathematics of 
functions themselves. 

 Thus the relation of heuristic and mathematics with the context, or contextual 
range, is also pertinent: modelling in physics in general, and kinematics in particu-
lar, is perhaps rather special and even ideal for certain pedagogic purposes. But this 
is very different from modelling the economy, in which even basic constructs of 
money supply are disputed. Additionally, this is all crucially sensitive to the technical 
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and cultural tools at hand; the way that processes become objects (rei fi cation through 
automation) has a long history in activity theory itself (Leontiev,  1978  )  but has 
entered science and mathematics education through work by Latour  (  1987  )  and 
Sfard  (  1998,   2008  ) . The dangers involved are that conscious awareness of what is 
hidden in the black box may become crucial at certain moments—see, for example, 
the literature on breakdown, but also Sfard’s work, and Strässer  (  2007  ) . 

 As we also argued, the “context” may provide a societal need, and so a “motive” 
that allows school study to expand beyond the traditional con fi nes of “schooling” as 
an activity, because it can provide a social motivation for the student, especially but 
not solely the adolescent student (see, e.g., Engeström,  1991 ; Ryan & Williams, 
 2007  ) . As such, the kind of problem solving or modelling research which isolates 
heuristics, while making sense in its time, represents a serious limitation in terms of 
understanding modelling activity within the whole mathematics-educational devel-
opmental process. It elevates metacognition but detaches it from the context and the 
affective (i.e., the motives and emotions). 

 More recently, Lesh and Zawojeski  (  2007  )  similarly summarized the  fi eld of 
research and called for another paradigm shift: based on Lesh and Doerr  (  2003  ) , they 
proposed a new way of implementing modelling activity, one which incorporated 
traditional problem solving but engaged with a broader class of open, engineering- 
or design-type activities. These invoke complexity, fuzzy problems and can con-
front instability and inconsistency, which they regard as an essential component of 
modern life. The argument is that problem solving in practice, as revealed by anthro-
pological studies of situated cognition, for instance, show that real problem solving 
in practice is unlike the most “realistic” and “authentic” school problems (e.g., 
Lave,  1988  ) . Furthermore, they suggested that the engagement of students—follow-
ing the social learning perspective of Lave and Wenger  (  1991  )  and Wenger 
 (  1998  ) —requires that students engage in learning via “communities of practice”: 
arguably very dif fi cult to simulate and perhaps impossible to realize in schooling 
institutions (but see studies in Watson and Winbourne,  2007  ) . 

 Then there is the Freudenthal tradition which has emerged in (mainly and origi-
nally) Dutch schools, in fl uenced by cultural–historical theory: this genre of devel-
opmental research makes explicit that the structure of the mathematics at issue is 
crucial: the point is to provide contexts and problems that are “realistic” (i.e., expe-
rientially real to the learners and so engaging) but which “beg to be organized” with 
the appropriate mathematics to be learnt (Freudenthal,  1983 ; Stree fl and,  1991 ; 
Treffers,  1987  ) . The emphasis here is most obviously appropriate in the early years, 
and has the virtue of proven realizability—ecological validity. From our perspec-
tive, the notion of “realistic” is about developing “activity” in a schooling context 
that engages learners: inherent in this is the contradiction inherent in all schooling 
that tends to get cut off from “life” (Engeström,  1991 ; Williams,  2011  ) . The ques-
tion of societal motivation especially during adolescence seems underplayed in the 
Freudenthal perspective (though there are clear signs in Freudenthal-inspired prac-
tice that this has a place, as witness their various texts and materials). The argument 
laid at the door of socio-cultural theory by Cobb  (  2007  )  is worth considering here, 
i.e., there may indeed be too much “internalisation” and not enough “emergence.” 
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In the next section we will look at a case of modelling with the empty number line 
in a social context where school mathematics was deployed in trying to understand 
a workplace mathematical practice (for more examples see Wake,  2007  ) .  

   Modelling the Workplace with College Mathematics: 
An Illustration 

 In this mini case study we explore the relation between technology, mathematical 
modelling and education in an expansive setting. The aim is to illustrate modelling-
technologies in activity as a whole, in particular how they are both shaped by and are 
shaping the workplace “knowledge” and the educational experience of the visitor. 

 Williams and Wake  (  2007a,   2007b  )  described an engineer called Dan who was 
trying to explain a spreadsheet formula to a researcher and two students who were 
visiting his plant. The formula is designed to compute an estimate of the gas a 
worker would need to order for the plant to use over the night shift. It is important 
he gets this right, or as near as possible, since there will be penalty charges from the 
gas supplier for drawing more or less than the amount ordered. The mysterious 
formula is shown in Figure  18.1 .  

 The formula is based on a forward projection of how much gas was used (the 
difference between the 1st and 2nd integrating readings, taken at times which are T2 
apart) in the last period of the day before the worker goes off shift, on the assump-
tion that the rate of consumption overnight (a period of time T4) will be the same 
(a crucial assumption that only became clear later). A simple enough mathematical 
model … it therefore uses two “readings” to calculate the rate of consumption, then 
multiplies the rate of consumption by the time period remaining for the shift. Here 
we have a not untypical mathematical-technology model in daily use, that had been 
produced quite some time before by Dan, the engineer, and one that is shaped by the 
history of workplace technology in the sense of its instruments, but also its form of 
organization (the times of day, etc.). But the formula is so cluttered—by the “every-
day” signs that connected the formula to “practice”—that the mathematics, and the 
theoretical thinking behind it, are opaque to the visiting students (and the research 
team, and indeed to the workers themselves, and even its author!). 

 Dan feels obliged to explain: in order to do so he sketches a timeline, an intuitive 
model but an excellent pedagogical choice (Figure  18.2 ). He marks in the salient 
times on the line, then starts to mark the gas readings at each pertinent moment in 
time; the number line thus emerges in his explanation as a double number line. At 
this point the light dawns on the researcher (and the reader, perhaps?), that there is 

{{{{{2ndIntegratingReading – 0600IntegratingReading} +{{{ 2ndIntegratingReading} –
{1stIntegratingReading}/T2}*TIME4}}/3.6*CALCV*1000000/29.3071}

  Figure 18.1.    Dan’s formula for estimating the gas needed overnight (adapted from Williams and 
Wake,  2007a ,  2007b ).       
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an assumption of linearity, and the double number line represents an appropriate 
ratio model. For us outsiders this linearity was counter-intuitive, as we expected gas 
consumption might decline when the workers go off shift for the night. 

 In a later episode the researcher was able to recapitulate the explanation Dan 
gave in a discussion in which she made sure the students “followed” the argument. 
The students commented, and we too found this interesting, that the assumption of 
linearity had not been mentioned by Dan, but they had been left to discover this for 
themselves. Presumably in his working life this fact of work-process knowledge 
was too obvious to need explanation. In fact, much mathematics that has been 
produced historically disappears like this in artefacts and remains hidden from con-
scious attention there, unexposed until for some reason there is a “breakdown” (e.g., 
in nursing and drug dosages—see Hoyles, Noss, & Pozzi  2001  ) . The breakdown 
arose here because of our research “archaeology”—digging up this formula and 
seeking to understand it. 

 Despite the workers there present, the key element of the model lies implicit, too 
obvious in the practice to be spoken of. Thus mathematics, as Strässer  (  2000,   2007  )  
has pointed out, disappears from conscious attention in the workplace, but actually 
is hidden everywhere in technological artefacts, in the work process, and of course 
also within mathematics itself. In activity theory this feature of the automation of 
processes is known as fossilization, or sometimes crystallization: we see it also in 
the artefacts of “schooling” (in the curriculum, in assessment, etc.) that make cur-
riculum development and change so dif fi cult. 

 This explains perhaps the dif fi culty in motivating mathematics: one can appar-
ently get by “everyday” without any but the most minimal mathematics, until the 
everyday “breaks down,” the historic mathematical work that went into the produc-
tion of the everyday is suddenly required to be understood, by someone at any rate. 
This often involves quite “high-level” mathematics (when the reactor overheats, we 
call in specialists with “advanced quali fi cations”); but not always, even in the every-
day workplace, we  fi nd examples of mathematical work done by workers like Dan. 

 This kind of breakdown was constructed arti fi cially by a social situation where 
students and researcher were situated as questioners, and the workers felt obliged to 
try and explain their systems. Thus, it put a premium on mathematical communica-
tion and, indeed pedagogical discourses (informal: worker with team, formal: 
researcher-teacher with students). In such contexts pedagogical models such as the 
double number line were, perhaps naturally, prominent. But it might be argued that 
the model was useful to Dan’s explanation for us because he already used such a 
model in constructing the formula in the  fi rst place. We will never know for sure, of 

“0600Int” “1stInt”“ 2ndInt”

T2 TIME4

  Figure 18.2.    The double number line sketch of gas used ( above the line ) and times elapsed 
between 0600 and the same time next day ( below the line ) (adapted from Williams and Wake, 
   2007a,   2007b  )        
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course, but this is plausible and consistent with our theoretical framework: here Dan 
externalized the “mathematical thought” for our bene fi t, and the group understanding, 
insofar as it constituted group understanding, was an emergent property of the group’s 
questions and Dan’s—and then again later the researcher’s own—explanations. 

 We argue that this kind of communication is not just “internalisation” by students 
in a zone of proximal development, but actually is a collective work in which emer-
gence is constituted by internalisations  and  externalisations—in just the sense that 
Cobb argued is not synergetic with socio-cultural, activity theory (Cobb,  2007  ) . 

 It is not a coincidence, we argue, that the double number line emerged as a 
powerful explanatory tool alongside the symbolic mathematics (albeit mediated by 
the spreadsheet, we call this a “genre” of mathematics, in the linguistic, Bakhtinian 
sense). As Lakoff and Núñez  (  2000  )  argued, the number line itself provides power-
ful affordances pedagogically in building up mathematics: these types of models are 
especially powerful when they allow the user to insert their body into the space the 
model occupies, even if only in imagination. In this case, Dan and the teacher were 
able to indicate segments of the timeline gesturally, and we assume the students 
could thereby identify the different points and intervals in time necessary to make 
sense of the formula. 

 Finally we note that the social and cultural context in the case seems vital to the 
students’, the researcher’s, and the workers’ motivation and to their joint sense of 
the mathematical work as well. Regarded as a pedagogical episode, it broke with all 
the norms of schooling as an activity. Additionally, even in a narrow sense the 
spreadsheet formula broke all the norms about appropriate school mathematics and 
use of advanced technology. Yet, it is consistent with our Vygotskian perspective: 
making sense of adults’ working practices and how mathematics is embedded there, 
constructing the relation with school mathematics, and perhaps even allowing for 
some discussion of its peculiar idiosyncrasies (the sorcery of the engineers’ math-
ematics that kept all the other workers, including management, in the dark!). All this 
seems well suited to our activity perspective on modelling and technology. We argue 
that this adds a critical social context, an often missing element, to the case for 
mathematical modelling. Can this kind of expansive learning occur within the 
con fi nes of schooling? 

 In the next example the integration of new technology in a manner more conso-
nant with chapters later in this section will be described; and the expansive nature of 
mathematical-technology for mathematics education is exempli fi ed (Figure  18.2 )   .   

   Modelling and Expansive New Technology: 
Mathematical Technology 

 This case comes from a year-long study of the use of CAS-enabled technologies 
(TI  Nspire ) in senior secondary school mathematics classrooms (see Geiger, 
Faragher, & Goos  2010  ) . The teacher had some experience with CAS but had not 
used it previously in his teaching. His students had begun to make use of CAS from 
the beginning of the school year, about 2 months before the vignette outlined below. 
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 The students were working on the following question: “When will a population 
of 50,000 bacteria become extinct if the decay rate is 4% per day?” 

 One pair of students developed an initial exponential model for the population  y  
at any time  x  days after the initial population calculation:  y  = 50,000 × (0.96)  x  . They 
then equated the model to zero in order to represent the point at which the bacteria 
would be extinct, with the intention of using CAS to solve this equation. When they 
entered the equation into their CAS calculator, however, it unexpectedly responded 
“ false”  (see Figure  18.3 ).  

 The students thought this response was a result of a mistake with the syntax of 
their command. When they asked their teacher for help, he con fi rmed their syntax 
was correct, but said they should “think harder” about their assumptions. Eventually, 
when he realized that the students were making no progress, the teacher directed the 
problem to the whole class and one student commented: “You can’t have an expo-
nential equal to zero.” This resulted in a whole-class discussion of the assumption 
that “extinction” should be represented by a population equal to zero. It was decided 
to modify the original assumption by representing extinction as “any number less 
than one.” Students then used their CAS calculators to solve this resulting equation 
and obtain a numerical solution. 

 In a follow-up interview, directly after the lesson, the researcher asked the teacher 
(Teacher 1) about the episode.

   Researcher:  I saw an element of what we just talked about today when con fl ict 
was generated by an interpretation of the question about bacteria. 
Students developed an equation and then, because no bacteria were 
left, they equated it to zero. The calculator responded with a false mes-
sage. In some ways you could think it was a distraction and that the 
procedure didn’t work; some kids might just give up. But on the other 
hand, what it provoked in your class was an opportunity to discuss. 
“Did you push the wrong buttons? Oh, you think you did—let’s look 
at the maths. Well your maths is right! Do you understand why it 
couldn’t be? Let’s talk about the assumption.”  

  Teacher 1:  Simon was one of those, he said—“No way you could get that to 
equal zero,” without necessarily understanding why. Not that he 
couldn’t solve it when it equalled zero, it was that concept he couldn’t 
see; that population couldn’t become zero.  

  Figure 18.3.    The CAS responds to a request to “solve” 50,000 × (0.96)  x   = 0: “false.”       
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  Researcher:  Yes, they didn’t need CAS to understand that, they just understood 
it because they knew their maths well enough.  

  Teacher 1:  Yeah we actually use the CAS to create the confrontation.    

 In this episode the teacher exploited the “confrontation” created by the CAS 
output to promote productive interaction among the class and develop a broader 
understanding of the role of assumptions in the mathematical modelling process. 

 In a later focus group interview, all teachers who participated in the project 
con fi rmed that similarly productive discussion arose from instances where technol-
ogy produced unexpected, problematic results or responses. This is seen in the 
following transcript where Teacher 1 commented on events during the lesson on the 
decay of bacteria.

   Teacher 1:  It was pretty obvious to me why it didn’t work but I deliberately 
made a point of that with a student to see what their reaction would 
be. And it was a case of pretty much what I expected. That they just 
grasped this new technology  Nspire  and were so wrapped up in it 
that they believed it could do everything and they didn’t have to 
think too much. And so suddenly, when it didn’t work, it took a fair 
amount of prompting to get them to actually go back and think 
about the mathematics that they were trying to do and why it did 
not give a result.  

  Researcher:  … Interestingly you didn’t just go over and tell them what to do. 
You just looked at it and said the syntax is all right—go and have a 
think about it. And they did for quite a while, and I don’t know if 
anyone sorted it out. They may have but they didn’t say. You then 
brought it back to the whole class and said, “What’s gone wrong 
here?” Someone eventually said that you can’t have an exponential 
equal to zero. What happened out of that—you might want to  fi ll in 
more—is that there was quite a protracted discussion about what 
happened. Extinction is zero isn’t it? So there is a little bit of a 
con fl ict between the way students think about it mathematically 
and the way it works in context. The context implies zero but there 
are other answers that could still make it work. So, you have to do 
this bit of a fudge and say the equation has to be equal to anything 
less than one—if it is a bacteria.  

  Teacher1:  Even if the kids were solving that by traditional methods, they 
would still need to have that discussion. It was an issue with CAS 
that they were just expecting an instant answer and they didn’t want 
to go and think about what was really going on.  

  Researcher:  What is it about CAS-enable(d) technologies that would be differ-
ent to ordinary technology, in this instance?  

  Teacher 1:  I’ll just reiterate and say with CAS that kids are looking for the 
quick solution, the immediately obvious without looking at what is 
underlying the discussions and the decisions that they are making. 
And they assume—like I did—that the machine can handle it.    
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 In this discussion, the teacher identi fi ed a “blackbox” use of CAS (Drijvers, 
 2003  )  as the source of the impasse that the students experienced when attempting to 
determine when the bacteria would become extinct. Interestingly, then, students’ 
expectation of technology’s ability to produce “an answer” can potentially under-
mine any expected bene fi ts of technology making challenging problems more 
accessible. As the teacher noted, students would have had to think carefully about 
their assumptions regarding extinction, whether or not they used CAS technology 
to tackle this task. A traditional approach might have led equally problematically to the 
logarithm of zero. What matters most is how the teacher responded. Such instances 
can be used to the advantage of students’ learning if the teacher has the disposition, 
mathematical expertise, technological competence and con fi dence to manage such 
serendipitous opportunities. 

 The CAS black box here may usefully be thought of as a “mathematical-technology” 
which was instrumental in their modelling of bacteria-decay; but the zero value in 
the model here causes a “breakdown,” a problematic, one which required the black 
box to be re-opened. As such we can argue the students had a problem in their zone 
of proximal development. When the students tried to enter an illegal value, the 
machine’s response could be diagnosed as either a technology breakdown or a math-
ematical breakdown—the technology and the mathematics were here “fused”! They 
initially opted for a technology breakdown, that they had the wrong “code/syntax.” 
The teacher said “think again/harder,” because he saw the mathematical, conceptual 
issue, and this helped create a zone of proximal development from which, through 
joint exploration, there emerged a way forward, arguably a solution. 

 In contrast to the previous workplace case, this case revealed a naturally-occurring 
breakdown moment in a classroom, caused apparently by the mathematical-technology 
which declined to cooperate with the students and give them a solution to the equation: 
50,000 × (0.96)  x   = 0. It is interesting that the students’  fi rst thought was to question their 
own CAS technical competence, and this is probably quite general (cf., dividing 1 by 
zero and getting “error” on a numeric calculator, or sketching  y  = sin( x ) on a graphics 
calculator and getting a straight line through the origin). 

 Teacher 1, who happened to have acquired a reasonable technical mastery of CAS, 
was able to see that the syntax is valid, but also had the mathematical competence to 
see a mathematical reason for CAS’s resistance. He was thus competent to diagnose 
this as a moment to “think again.” It seems the students and the teacher reached oppo-
site diagnoses: the students looked to a technical fault, the teacher to a mathematical 
fault, and between the two there was “joint” problem-solving activity. 

 But actually things were a little more complex: the mathematics here was argu-
ably not “wrong,” in that the equation itself has no answer (except, perhaps, in fi nity). 
Rather, it was the mathematical modelling of the real situation that was problematic. 
The teacher persuaded the class—in what was (in the above account) called “whole-
class discussion”—that a more sensible estimate would have been obtained by 
 fi nding the time at which the model would predict a population value of one (or less) 
which resolved the problematic for the time being (getting a number that would be 
more satisfying than “in fi nity”). 

 But actually, even this was questionable: one might rather ask whether the model 
was valid as a description of what happens to a single bacterium, and in what sense 
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the problem of “extinction” is a “real problem” for which we need to formulate a 
model “ fi t for the purpose.” A critical mathematics educator might like to run with 
this broader issue, and consider the purpose of such population models and the 
problems they can usefully address. Often, arguably, such exponential models arise 
at a population level (large number of particles/bacteria) of what is thought of as a 
probabilistic model at the micro-level (actually the probability of a bacterium dying 
or radioactive particle decaying in a given time is modelled as  p  = 0.04  t ) and so when 
a large population becomes small one needs properly perhaps to switch back to the 
probabilistic model, predicting a range of time over which the last particles are likely 
to decay (and then maybe the time for the last few particles to decay becomes a 
Poisson approximation to the binomial). But whether an analyst is pushed to such 
model re fi nements really depends on the “real problem”—which is not speci fi ed in 
this case. A satisfactory “critical” endpoint to the class discussion might best have 
been “why do they want to know?” or “what really is the real problem at issue?” 

 The point here is that the fusion of mathematics with technology generated a 
problematic which was not entirely technical, not entirely mathematical, not entirely 
contextual, but an amalgam of all three. As such, the activity of “mathematical mod-
elling with technology” can be trebly rich in complexity, i.e., when it is three-
dimensional (mathematics, technology, activity-or-problem-context). In this case it 
was not just the pupils/learners who were challenged, and this case shows how such 
“joint problem solving” or “joint study” can become joint activity of learning and 
teaching, and maybe even research. 

 We noted here the demands this kind of work places on the teacher, to which we 
could add also strains on the curriculum and assessment, and the school organisa-
tion. In the ZPD both the students and the teacher were working hard at the problem 
from two distinct points of view; that of learning (and of engaging with the teacher) 
on the one hand and that of teaching (and modelling the learner) on the other (see 
Roth & Radford,  2011  ) . This is truly a joint activity. 

 We explain this by suggesting that what is involved in “breakdown” is not so much 
the mathematics but the breakdown of modelling with mathematical-technology in 
context. Activity theory insists that “activity” is an indissoluble whole, and that any 
change in or neglect of one of its “moments” implies a change in all the other 
moments and transformation of the whole: thus an apparently innocent change in 
the “tools” may induce a treacherous change in the mathematics, in the subject’s 
consciousness (the teacher’s and learners’ perceptions of the mathematics) and the 
relations and norms of behaviour in the activity system (the educational technology, 
curriculum/assessment, etc.) In complex systems of activity, small changes in one 
apparently “distant” moment can induce treacherous hurricanes downstream.  

   Conclusion 

 We have argued that mathematical modelling should ideally be conceived as 
adding “theoretical thinking” to real, practical problem-solving activity, and that 
this should have developmental consequences for students. We have used this ideal 
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conceptualisation to situate modelling and technology within a Vygtoskyan, CHAT 
theoretical frame, and thus to criticize—or at least to develop a perspective from 
which to criticize—previous and contemporary research and practice. 

 It also provides a vantage point from which to see mathematics itself as a re fl exive 
“tertiary” modelling artefact (Wartofsky,  1979 , also adopted and developed by Cole, 
 1996  ) , and hence as a problem-solving technology itself. We have suggested the term 
mathematical-technology to remind ourselves that activity tends to fuse the two in 
practice, and often in black boxes, and how these can provide expansive opportunities 
at breakdown moments. We argued that mathematics inevitably, as part of produc-
tive activity, appears alongside and even fused with, technologies in the solution of 
problems, producing new objects (that also may in turn hide mathematics) as out-
comes. These mathematical-technological objects typically become instrumental in 
their turn, and provide new tools for future actions, which tend to new breakdowns. 
This cultural cycle fuses and re-fuses mathematics with technology, perhaps helping 
to solve but also causing contradictions and problems in new contexts of activity. 

 Particularly powerful new technologies have arisen lately (many described in the 
following chapters) which expand the language of mathematics, and allow learners 
wider scope for theoretical thinking and modelling in practice. Potentially, these 
may allow a wider appreciation of theoretical thinking in practical work than has 
been common previously, in part through the breakdowns and problems they intro-
duce into activity. But we must not ignore the wider social context which also medi-
ates change in educational technology, and which so often has provided the key 
obstacles to progress. We have only begun to touch on these here, hinting at the 
demands that working with mathematical-technology make of teachers and research-
ers, and so implicitly curriculum, assessment, and educational technology generally.      
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  Abstract   This chapter brings together two intersecting areas of research in 
mathematics education: teaching and learning with dynamic geometry environ-
ments (DGEs) and the teaching and learning of proof. We focus on developments in 
the literature since 2001 and, in particular, on (a) the evolution of the notion of 
“proof” in school mathematics and its impact on the kinds of research questions and 
studies undertaken over the past decade—including increasing use of DGEs at the 
primary school level; and (b) the epistemological and cognitive nature of dragging 
and measuring as they relate to proof.      

   Section A: Introduction 

 This chapter brings together two intersecting areas of research in mathematics 
education: teaching and learning with dynamic geometry environments (DGEs) and 
the teaching and learning of proof. Given that both of these areas of research have 
been predominantly related to the study of geometry, our chapter focuses mainly on 
this strand of the curriculum. 

 We begin by making a comment on terminology, and some brief remarks on 
recent history. In this chapter we use the term “dynamic geometry” broadly. The 
phrase was originally invented (and trademarked by Key Curriculum Press) to 
describe  The Geometer’s Sketchpad  (Jackiw,  1991  ) .  Sketchpad  and  Cabri-Géomètre  
(Baulac, Bellemain, & Laborde,  1988  )  were independently invented in the late 
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1980s, and were the  fi rst software systems to offer the dragging capacity described 
by the term. There now exist many software packages that use these seminal ideas. 
Our paper loosely targets all of them, but given the importance of intellectual attri-
bution in academic writing, we feel it important to acknowledge similarly the 
sources of software innovation within our  fi eld. We have opted for the term 
 dynamic geometry environment  (which has been used at least since 1996) over 
 dynamic geometry software  to underscore the fact that we are dealing with micro-
worlds (including pre-existing sketches and designed tasks) and not just a soft-
ware program. 

 The  Second International Handbook of Mathematics Education  (Bishop, 
Clements, Keitel, Kilpatrick, & Leung,  2003  )  included several chapters focussing 
on the use of digital technologies. Within these, Chapter 9 (Hoyles & Noss,  2003  )  
considered DGEs in particular and documented the way in which research was 
focussing less on geometric constructions and more on the way DGEs mediate 
explanation, veri fi cation and proof. The authors commented on the “commonplace” 
understanding that students often spontaneously articulate when using DGEs, but 
opined that it was “not obvious that the facility to drag and conjecture will necessar-
ily encourage an engagement with proof” (p. 335). They cited research showing 
how novel activities aimed at generating surprise and uncertainty can strengthen 
students’ need for deductive proof (Hadas, Hershkowitz, & Schwartz,  2000  ) ; how 
12-year-old students can move from everyday to mathematical explanations through 
DGE interactions (Jones,  2000  ) ; and, how DGEs can help 14–15-year-old students 
connect their informal geometric explanations with logical, deductive arguments as 
long as the tasks used are undertaken with teacher support, including a teacher-
introduction to writing proofs (Healy & Hoyles,  2001  ) . 

 The present chapter thus focusses on developments in the literature since 2001 
and, in particular, on (a) the evolution of the notion of “proof” in school mathematics 
and its impact on the kinds of research questions and studies undertaken over the 
past decade—including increasing use of DGEs at the primary school level; and 
(b) the epistemological and cognitive nature of dragging and measuring as they 
relate to proof—thus taking up the Hoyles and Noss issue. 

 In preparing this chapter, we found several other overview studies in each of our 
primary areas of focus. Mariotti  (  2006  )  provided an overview of the past 30 years of 
research reports presented at the annual conferences of the International Group for 
the Psychology of Mathematics (PME) on “Proof and Proving in Mathematics 
Education,” and this included a signi fi cant section on the role of DGEs. Similarly, 
Hollebrands, Laborde, and Sträßer  (  2008  )  offered a chapter on “Technology and the 
Learning of Geometry at the Secondary Level,” which focussed primarily on DGEs 
and included a signi fi cant section on proof and proving. This chapter also includes a 
detailed account of the main theoretical approaches currently being used in research 
on the role of DGEs in proving. The two main approaches are instrumental genesis, 
which draws on the work of Rabardel  (  1995  ) , and Verillion and Rabardel  (  1995  ) , and 
has been elaborated by Mariotti  (  2002  ) , and semiotic mediation, which draws on the 
work of Vygotsky  (  1978  ) . These two approaches are discussed in detail in Drijvers, 
Kieran et al.’s  (  2010  )  overview chapter in the ICMI Study on Technology. 
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 Brie fl y, a DGE can be seen, in an instrumental framework, as an “artefact” in the 
hands of the users. The DGE artefact can be transformed into an “instrument” by the 
user, according to the “schemes of use” that are activated. And the instrument 
obtained thus differs among users and contexts according to the particular schemes 
of use activated. Several studies have documented how this works in the contexts of 
DGE (see, e.g., Olivero,  2006 ; Baccaglini-Frank & Mariotti,  2010  ) . If the students 
“internalize” (Vygotsky,  1978  )  the use of a DGE, the artefact DGE becomes a means 
of semiotic mediation (Mariotti,  2010  )  that gives rise to problem resolution. 

 In Section B below, we outline the perspective on proof that has emerged in the 
mathematics education literature during the past decade. We connect this literature 
to the previous theorizing on the epistemological and cognitive status of DGE dia-
grams and tools. While some of this theorizing dates back to the late 1990s, it was 
not taken up in the  Second International Handbook  and its connection to emerging 
perspectives on proof is new. 

 In section C, we identify and connect previous studies on the use of DGEs in 
proving in terms of the particular and distinctive tools shared by all the more widely 
used DGEs. We have chosen this somewhat unusual approach in order to emphasize, 
as well as better understand, the epistemological, cognitive and didactic implica-
tions of these tools—implications that have been studied in much more depth over the 
past decade than in previous research. This section will enable us to investigate the 
effects of DGEs on the proving process. 

 Having analyzed the tools in this way, we turn in section D to two case studies in 
which we illustrate instances of the proving process in which these tools play a 
signi fi cant role. Our goals are threefold: at one level, we aim to exemplify the most 
common theoretical perspectives, methodologies and protocols currently used—
instead of merely reporting results from existing studies, we would like to show the 
context in which these results have emerged, as they are central to the  fi ndings prof-
fered. At a second level, these case studies can permit us to enter into a level of 
detail about the proving process using DGEs that would otherwise not be possible. 
At a third level, given our focus on the particular tools of section C, we hope that the 
case studies more authentically illustrate the way in which these tools are often used 
in concert by learners. 

 In the  fi nal section, we highlight some of the major themes of sections C and D, 
and point to emerging questions and theoretical approaches that are likely to take 
centre stage in the next decade, with a particular focus on the role of teachers in 
classrooms using DGEs.  

   Section B: Proof as a Process 

 Policy makers, curriculum designers and researchers concurrently agree with the 
necessity of proof not only at the high levels of schooling, where it has traditionally 
occupied an important position, but also, for better continuity, at the primary level 
(see Bartolini Bussi,  2009 ; Stylianides,  2007 ; Stylianou, Knuth, & Blanton,  2009  ) . 
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In many countries, teachers are being encouraged to offer activities favouring 
exploration, conjecture, argumentation, discussion and also proof (see, e.g., Centre 
de Recherche sur l’Ensignement des Mathématiques,  1995 ; Japanese Society of 
Mathematics Education,  2000 ; Ministry of Education and People’s Republic of 
China,  2001 ; National Council of Teachers of Mathematics,  2000 ; Unione 
Matematica Italiana,  2004  ) . 

 The notion of proof in school mathematics has changed enormously during the 
past century—see Herbst  (  2002  )  and Sinclair  (  2003 ,  2008  )  for overviews. The 
shift is due in part to a greater awareness of the way in which proving is done in 
the mathematics discipline (see Borwein & Bailey,  2008 ; Hanna, Jahnke, & Pulte, 
 2010  )  and, in part, we believe, to the affordances of new digital technologies, 
which greatly facilitate experimentation (de Villiers,  2010  ) . 

 In this chapter, we have opted to frame our discussion about proof and proving 
in terms of the notion of the “proving process,” which has been de fi ned as a process 
of constructing and entering the relation “B follows from A” until the agents are 
satis fi ed with the explanation for the truth of the statement (see Rav,  1999  ) . This 
explanation is a proof if it satis fi es the rules of logical consequence. 

 The proving process consists of two phases: the formulation of a conjecture and 
the construction of a proof (Arzarello, Olivero, Paola, & Robutti,  1999 ; Leung & 
Or,  2007  ) . In the  fi rst phase, a person explores the situation and formulates a conjec-
ture, and searches for elements (e.g., properties) that will be organized later on. 
In the second phase, these elements are to be put in order according to the rules of 
logical consequence. As we emphasize below, the shift to the focus on the “proving 
process” is especially relevant to DGEs in the sense that the  fi rst phase of the pro-
cess differs radically from pencil-and-paper environments, which, in turn, affects 
the way in which the second phase evolves. 

 The proving process also involves back-and-forth moves between the spatio-
graphical  fi eld and the theoretical  fi eld (Laborde,  2004  ) . Given the back-and-forth 
nature of the proving process, it is not viable to abandon visual representations in 
order to encourage the move toward the theoretical  fi eld—instead, learners need 
to be able to coordinate different semiotic resources (Duval,  2006  ) . Once again, as 
we elaborate below, the status of the dynamic diagrams supported in DGEs, as well 
as their insistence on the spatio-graphical  fi eld, presents both opportunities and 
challenges when working with learners on the proving process. 

   The Proving Process in DGE 

 In terms of the back-and-forth nature of the proving process, we focus on the 
status of geometric objects in DGEs. Laborde  (  2000  )  considered dynamic diagrams 
(such as a dynamically draggable parallelogram) as scaffolding the drawing/ fi gure 
divide in the sense that it remains a material object (albeit virtual on the screen), but 
the invariances it carries in dragging can represent its basic properties. 

 But Jones  (  2000  )  argued that learners in DGEs “can get ‘stuck’ somewhere 
between a drawing and a  fi gure” (p. 58). This led Battista  (  2008  )  to conclude both 
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that the drawing/ fi gure distinction might not be suf fi cient in working with geometry 
objects and that more attention needs to be paid to the ways in which learners 
 perceive  and think about DGE objects. We focus here on the latter issue: Battista 
drew attention to two subtly different perspectives. One was captured by Marrades 
and Gutierrez  (  2000  )  when they wrote: “The main advantage of DGS learning envi-
ronments” is that “students have access to a variety of examples that can hardly be 
matched by non-computational or static computational environments” (p. 95). This 
theoretical perspective tends to treat examples as  representations  of the  fi gure. The 
second theoretical perspective, articulated by Laborde  (  1992  )  and Battista  (  2008  ) , 
focusses on the continuous transformation of the draggable object rather than on the 
set of characteristics that can be abstracted from a given set of examples. This sec-
ond perspective treats the object as an entity whose behaviour can be investigated 
and described—not as an entity that can be represented by particular diagrams. 

 It is still unclear whether learners somehow naturally see the draggable diagrams 
as a series of examples or as one continuously changing object, and whether this 
depends on their previous exposure to the static geometric discourse of the typical 
classroom (see also Lehrer, Jenkins, & Osana,  1998  ) . Whatever the case may be, 
there is strong evidence to show that dynamic diagrams support students’ transition 
from an exclusively spatio-graphical  fi eld to a more theoretical one by helping them 
attend to the visual invariance of the dynamic diagram, which can be verbally medi-
ated through classroom discussion or teaching intervention (Battista,  2008 ; Laborde, 
Kynigos, Hollebrands, & Sträßer,  2006 ; Sinclair, Moss, & Jones,  2010  ) . 

 Dynamic draggable diagrams can strongly affect the proving process in the sense 
of mediating what kinds of conjectures will be made ( fi rst phase), and what kinds of 
properties will be identi fi ed and then organized (second phase). In this sense, the 
diagram constructed in a DGE and the schemes of use activated on it by the students 
can be considered an actual mediator between the  fi rst and second phases, thus pro-
viding continuity—despite the epistemological discontinuity—between a conjec-
ture (hypothetic statement) and the corresponding proof (logical deductive sequence 
of statements). The internalization of the schemes of use in the artefact and its trans-
formation into an instrument help them in building the proof as  fi nal product 
(Arzarello, Micheletti, Olivero, Paola, & Robutti,  1998 ; Boero, Garuti, Lemut, & 
Mariotti,  1996 ; Olivero,  2002  ) . 

 The role of DGEs in the proving process also depends on the underlying goal of 
proof, as perceived by teachers and students. Some have suggested that the use of 
DGEs could inhibit proof since students may think that a fact is empirically evident, 
and they do not feel the necessity of proving it (Frant & de Costra,  2000  ) . However, 
as many studies have shown, exploratory experiences with DGEs do not necessarily 
jeopardize the development of deductive proof (Bruckheimer & Arcavi,  2001 ; 
Christou, Mousoulides, Pittalis, & Pitta-Pantazi,  2005 ; Guven, Cekmez, & Maratas, 
 2010 ; Hadas et al.,  2000 ; Healy & Hoyles,  2001 ; Mariotti,  2006 ; Oner,  2008,   2009  ) . 
The work of de Villiers  (  1990,   1997,   1998  ) , in articulating the different functions of 
proof, has brought some nuance to the question of whether or not DGE’s inhibit 
proof. He listed the following functions: veri fi cation, explanation, systematization, 
discovery, communication and intellectual challenge. The explanatory function of 
proof has been particularly prevalent in the DGE literature. In particular, proving 
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through surprise involves appealing to the explanatory function of proof, as described 
by de Villiers  (  1990,   1997,   1998  ) . For example, instead of questioning the convic-
tion empirical methods can give, de Villiers invited students to accept the evi-
dence, but then to ask  why  the relationships they were seeing must hold. In answer 
to that question they were expected to  fi nd a logical chain for going from hypoth-
esis to thesis. 

 DGEs are used not only in Euclidean geometry but also in non-Euclidean geometry 
as a means of offering representations and interactive models (such as the Poincaré 
disc model of hyperbolic geometry) that are more powerful than paper (Jones, 
Mackrell, & Stevenson,  2010  ) . Hollebrands, Conner and Smith  (  2010  )  examined 
the structure of arguments that students created using a DGE in light of Toulmin’s 
theory and presented evidence of the supporting value of DGEs in such a context. 

 This section has focussed on the general role of DGEs in the proving process 
and, in particular, the important role of open problems and the teacher’s insistence 
on explanation in supporting this proving process. In the next section we examine in 
more detail the nature of the dynamic geometry tools that relate to the process of 
proving.   

   Section C: Roles of Different Instruments Typical in DGEs 

 The role of the tools students have at their disposal in a DGE (as for example 
dragging, measures, locus, trace, and so on) can be that of a bridge between the 
spatio-graphical and the theoretical way of looking at a diagram. This point of view 
is supported by data from teaching experiments at different school levels (Arzarello 
et al.,  1998 ; Jahn,  2002 ; Laborde,  1998,   2004 ; Olivero & Robutti,  2007 ; Sinclair 
et al.,  2010 ; Vadcard,  1999  ) . In the next three sections, we focus on two central tools 
of DGEs, that of dragging and measuring, isolating each of them (even if they can 
be used together in exploration), in order to provide a more  fi ne-grained analysis of 
the epistemological, cognitive and didactical implications of each one. 

   Focus on the Dragging Tool 

 Dragging is the most central and distinctive tool of DGEs and allows users to 
select one or more objects and to move them continuously on the screen. We are 
concerned with the way the dragging may mediate the process of proving, in par-
ticular focussing on the epistemological and cognitive implications of it. (There are 
also didactical implications, but these will be considered in section D.) 

   Epistemological implications of dragging.   Dragging changes the  fi gural aspect 
of a construction such as an equilateral triangle (the representation changes) but not 
the conceptual one (since all the properties of the equilateral triangle are being 
maintained). This duality does not arise in a static pencil-and-paper environment, 
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since the  fi gural aspects are handled in a visual register and the conceptual one in 
the discursive register. 

 Since geometric proofs are meant to concern theoretical objects—and not just 
speci fi c drawings—the role that dragging can play in managing the  fi gural/concep-
tual duality is of particular interest. Making a conjecture about any con fi guration 
depends on the expectation of some sort of invariance under  fi gural change. And 
any conjecture about an equilateral triangle must assume that the conjecture will 
hold true for any con fi guration of an equilateral triangle. 

 Taken as a tool of semiotic mediation, Mariotti  (  2006  )  wrote that dragging fos-
ters students’ access to the world of Geometric theory, citing Jones’  (  2000  )  study of 
students working with quadrilaterals, with the task of constructing a quadrilateral 
and modifying it into a special case with dragging. By dragging a rectangle, say, the 
students could observe that “A rectangle … becomes a square” and “You can make 
a rectangle into a square by dragging the side shorter …” At the end of the unit, 
when asked to classify quadrilaterals into a family tree, the students were also able 
to answer questions of the form “why is one quadrilateral a special case of another?” 
However, they persisted in saying that the set of more general quadrilaterals to 
which they were referring excluded the special case. This reveals an epistemologi-
cal gap between the pragmatic, inductive argument enabled by the dragging (a 
square is a special case of a rectangle because you can turn the rectangle into a 
square) and the property-based, deductive inference required for a proof (a square is 
a special case of a rectangle because a square has four right angles). 

 Erez and Yerulshalmy’s  (  2006  )  study showed that with some guidance from the 
teacher, drawing attention to the relevant properties, 5th grade students (aged 10 and 
11) can, with dynamic geometry, view a square as a rhombus. In his study of Grade 
5 children using the  Shape Maker  microworld, Battista  (  2007  )  theorized the effec-
tiveness of dragging in terms of a two-folding assumption: fi rst, subconscious visual 
transformations “are one of the mental mechanisms by which we spatially structure 
shapes” (p. 150). For example, the opposite sides of a parallelogram are subcons-
ciously seen as parallel through a translation of one side onto another. 

 Battista’s second assumption, which he called the  transformational-saliency 
hypothesis , related more centrally to dragging. This hypothesis essentially stated 
that people notice invariance. As students drag the rhombus maker, they notice what 
stays invariant, namely the fact that all four sides are equal. For Battista, it was not 
just that one  might see  invariance in dragging but that one cannot help but notice it. 
He thus conjectured that “investigating shapes through  Shape Maker  transforma-
tions make the essence of the properties more psychologically salient to students 
than simple comparing examples of shapes as in traditional instruction” (p. 152). 
Dragging thus changes the way shapes are perceived, moving from a static visual 
apprehension to a temporal attention to what remains invariant. This hypothesis 
might explain the tendency students have to compare shapes using transformations, 
as reported both in DGE environments (Jones,  2000 ; Sinclair et al.,  2010  )  and in 
non-DGE ones (Lehrer et al.,  1998  ) . 

 Leung’s  (  2008  )  approach to theorizing dynamic geometry experiences—and 
particularly the temporal and spatial changes involved in dragging—also accorded 
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a central role to invariance. Leung  (  2008  )  used Marton & Booth’s ( 1997 ) theory of 
variation to analyze the different ways in which dragging might help a learner come 
to know mathematics. According to Leung ( 2003 ), “in DGE, it is possible to 
de fi ne a way of seeing (discernment) in terms of actually seeing invariant critical 
features (a visual demarcation or focussing) under a continuous variation of certain 
components of con fi guration” (p. 198). He elaborated Marton and Booth’s notion of 
 simultaneity —experiencing different temporal or spatial “instances” of a phenom-
enon at the same time—which he saw as a promising agent to help bridge the gap 
between experimental and theoretical mathematics. Leung described two different 
types of simultaneity: (a) the spatial type involves experiencing different features of 
the same thing simultaneously; and (b) the temporal type involves experiencing 
instances that have previously been encountered at different points in time, at the 
same time (for example, seeing three animations that had been viewed one after the 
other, all at the same time). Interestingly, these loosely correspond to Battista’s two 
perspectives on dynamic diagrams: the spatial type corresponds to the multiple 
example perspective and the temporal type to the continuous transformation 
perspective. In Leung’s example of the temporal simultaneity, two things were 
varying simultaneously and the observer was trying to identify some kind of invari-
ance. The spatial simultaneity will involve comparing and contrasting the similari-
ties and differences among the four types dragging experiences. Dragging is central 
to both types of simultaneity, as is the experience of invariance. Indeed, simultaneity 
can only enable discernment and awareness if invariances can be seen, an assump-
tion that relates strongly to Battista’s  transformational-saliency hypothesis . 

 Leung’s  (  2008  )  case study showed how these two types of simultaneity not only 
lead to the generation of a conjecture but also to the construction of what he calls a 
“DGE proof” (p. 146). Although Leung did not dwell on the transition from conjec-
ture to “DGE proof,” it is worth attending to the epistemological nature of the transi-
tion, particularly in terms of the role of dragging. The conjecture identi fi es an 
invariance. In Leung’s case study, very brie fl y, the problem is as follows: For a 
quadrilateral  ABCD , under what conditions is ∠ ABC  = 2∠ ADC  (see Figure  19.1a ). 
Through explorations in dragging, Leung saw that if  A, B, C  are left  fi xed and  D  is 
dragged, then ∠ABC = 2∠ADC when  D  seems to be on a circle passing through  A  
and  C . Moving to a DGE proof then, involves  fi rst constructing the circle  c  

4
  through 

 A ,  B  and  C , then constructing the perpendicular bisector of  AC , then  fi nding the 
intersection  E  of this perpendicular bisector with  c  

4
  (see Figure  19.1b ). If  D  is 

merged to the circle passing through  A  and  C , centred at E, then ∠ ABC  = 2∠ ADC .  
 The role of dragging has shifted from interrogation to declaration. The construc-

tion process is  declarative,  in that it asserts the circle, as well as  demonstrative  
in that it shows how the geometric con fi guration can be put into action (much like 
Euclid’s  fi rst proposition, which shows how an equilateral triangle can be con-
structed). As Jackiw  (  2006  )  wrote, the DGE proof follows a long tradition of 
mechanical demonstration in the history of science and mathematics, one that is 
replete with personal agency and aesthetic satisfaction. While not providing the 
propositional sequence of deductions required in a formal, written proof, the “DGE 
proof” is epistemologically much closer to the explanation than to veri fi cation and, 
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as such, may fruitfully become an object of study in further research on the role of 
DGEs in the proving process.  

   Cognitive implications of dragging.   Dragging can be seen as semiotic tool used 
to express meanings and solve problems (Mariotti,  2002  ) . It can also reveal students’ 
thinking processes as they work on tasks. By observing students solving open 
problems, Arzarello, Olivero, Paola, and Robutti  (  2002  )  identi fi ed several distinct 
dragging modalities that were used, and that revealed speci fi c features of their 
thinking. They have been widely cited and used by researchers trying to understand 
students’ problem solving and proving activity. We highlight some of them here in 
order to stress the links to proving. Consider the blackbox situation given in 
Figure  19.2 . If students are asked to identify the transformation leading from  A  to 
 A  ¢ , they may begin by wandering dragging in which they drag point  A  more or less 
randomly on the screen. They have no plan yet, and no conjectures about how  A  and 
 A  ¢  are related. In their wandering dragging, they may notice that there are places 
where the two points meet. They may therefore engage in “dummy locus” dragging 
in which they attempt to drag  A  along a path that keeps  A  and  A  ¢  together; here they 
are following a hidden path (the dummy locus, in this case a line) even without 
being aware of it. In order to keep track of these places where  A  and  A  ¢  overlap, they 
may engage in line dragging, in which they draw new points on the spots of overlap, 
or in guided dragging, in order to obtain and observe a particular situation (for 
example moving  A  towards  A  ¢ ). They will thus see that the spots form a line, at 

  Figure 19.1.    ( a ) The general con fi guration; ( b ) Under what conditions is ∠ABC = 2∠ADC.       
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which point they may construct a line and use linked dragging to merge the point to 
the line and move it along that line.  

 These drag modalities structure a situated hierarchical scheme that, as suggested in 
the above example, are indicative of different modes of thinking such as exploring, 
forming conjectures, testing conjectures, and verifying conjectures. 

 The  fi nal type of dragging identi fi ed by these researchers is called the  dragging 
test , and involves dragging points in order to verify whether a  fi gure keeps its initial 
properties: if a student constructs an equilateral triangle, he/she then uses the drag 
test to see whether moving one vertex maintains the triangle as equilateral. 

 These modalities can be grouped in two broad categories, characterizing the 
moves between the spatio-graphical  fi eld and theoretical  fi eld: dragging for exploring/
conjecturing and dragging for validating a conjecture or proof. In the  fi rst case, 
students drag objects observing the  fi gure in search for regularities and invariants 
(e.g., wandering dragging): once they have found one and they express it through a 
conjecture, they shift from the spatio-graphical  fi eld to the theoretical  fi eld. And 
vice versa, they shift backward if they drag objects to check a conjecture already 
discovered (e.g., guided dragging). 

 To this list of drag modalities, Leung  (  2008  )  added one that relates to the para-
metric colour tool, which enables users to make the colour of an object depend on a 
measured quantity. For example, one could have the colour of a circle depend on its 
distance from a  fi xed point: dragging the circle, its colour would thus change. While 
this  spectral dragging  often involves moving the mouse (as in the example given 
above), it is not fundamentally about motion; rather, its power is more in the chro-
matic feedback offered. Leung’s study focusses less on the cognitive dimension of 
dragging than, as he says, on the mathematical relevance of dragging strategies. He 
identi fi ed different types of dragging that are based on different ways of attending 
to variation: dragging for contrast, for separation, for generalization and for fusion. 
As with the dragging modalities of Arzarello et al.  (  2002  ) , these are all related to 
conjecturing and proving.   

   Focus on the Measurement Tool 

 Measuring is a powerful tool of dynamic geometry environments, and also a 
complex one that requires appropriate management and interpretation, and may be 

  Figure 19.2.    Moving from wandering to dummy dragging.       
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used by students with varying degrees of con fi dence and awareness. Actually, 
students using a DGE in geometry tasks can utilize measures in different ways, 
according to the description given for dragging: in the spatio-graphical  fi eld, if they 
are more concerned with the perception of the drawing, or in the theoretical  fi eld, if 
they are more concentrated with the properties of the  fi gure. According to their use 
of measurements, students can construct mathematical meanings, formulate conjec-
tures, check them or use them to construct a proof, in a continuous process from 
exploration to the  fi nal product of a formal proof. 

   Epistemological implications of measurements.   One of the speci fi c features 
available in a DGE, the measuring tools, within the context of open geometry 
problems, can offer deep insight on the  fi gures and ideas for the formulation of 
conjectures, especially if used with the dynamicity offered by dragging. However, from 
an epistemological point of view, the double meaning of measuring (in mathematics 
and in physics) can also cause misunderstanding or con fl ict in the proving process, 
in the interplay between theoretical and graphical aspects of  fi gures. Actually, if we 
consider the meaning of measures in mathematics, we have a function that gives a 
unique real number associated to a quantity (that can be rational or irrational): for 
example, in the case of diagonal of a square measured with its side, it is irrational 
(the square root of 2). Measuring in physics and experimental sciences has a different 
epistemological status, because it depends on the kind of tool and its sensibility, on 
the number of measurements, and on calculation of uncertainty. In this case, 
measuring never provides an irrational number, but always a rational number, with 
a precision (number of signi fi cant digits) that depends on the tool and on the process, 
and gives as result a number in an uncertainty interval. 

 When using a DGE, things are more complex, and go further than this double 
meaning, because measurements are given as in physics (using a virtual ruler), but the 
software simulates a geometric environment (the Euclidean one) where the measure 
is mathematics (Olivero & Robutti,  2001  ) . In a DGE, users can construct geometric 
 fi gures according to Euclidean properties, but it is not the Euclidean plane, because 
there is no continuity, but a  fi nite number of pixels. In this plane, computations do 
not have in fi nite precision, but they are approximate. For these reasons, coordinates 
of points, amplitudes of angles, and measurements in general are written with a 
 fi nite number of decimal digits. The user can increase that number of digits, how-
ever the precision of the tool does not increase, because there is a technological 
limit to the precision of the measuring tools: the dimension of the pixel. 

 The outcome of these features is that many different things may happen when 
students are measuring in a DGE (length of segment, amplitude of an angle, and so 
on). For example, one might see on the screen two equal lengths corresponding to 
segments that are known to be not equal from a theoretical point of view, or the 
additive property of measures is not always satis fi ed (Figure  19.3 ). These examples 
show that some geometric properties may appear not to be satis fi ed when looking at 
measurements in a DGE.  

 When students approach problems in a DGE and  fi nd a situation like the one in 
Figure  19.3 , they may remain stuck and attribute the mistake to the software, or may 
re-consider again their work from the beginning, thinking they have made a mistake. 
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Otherwise, if they are aware of the epistemological implications of the use of 
measures in a DGE (approximation, pixels, calculation, and so on), they can look at 
their  fi gure in a theoretical way, in order to interpret it with the constraints of soft-
ware use. From a didactic point of view,    de Villiers ( 1999 ) showed that one can also 
use the  fi nite limitations of a DGE to design speci fi c situations where students are 
not absolutely certain in order to motivate a need for proof as a means of further 
veri fi cation.  

   Cognitive implications of measures.   The epistemological implications 
described above imply a complexity where measure interpretation and management 
surely creates opportunities for construction and exploration, but it can also be a 
source of con fl ict. Actually, the double meaning of measure in a DGE is not always 
transparent to students, and can sometimes act as a black box, where students accept 
as “true” a value of a measurement they read on the screen, without treating it 
contextually with some uncertainty or approximation. Students’ competence in 
managing measures depends on their awareness of their epistemological status, for 
which the teacher’s role is fundamental. 

 As for dragging, also for measure in a DGE, the different uses of the tool can 
correspond to different cognitive activity, from a spatio-graphical level to a theoreti-
cal one, or backwards. In fact, students may use the measure tool at times for dis-
covering and conjecturing and at times for validating a conjecture. This was shown 
by Vadcard  (  1999  ) , in his study on the use of measuring in  Cabri , which distin-
guished between  mesure exploratoire , used mainly as a heuristic tool and  mesure 
probatoire , used as a checking tool. Furthermore, it is possible to split each category 
in different modalities (Olivero & Robutti,  2007  ) . The  fi rst category ( mesure explor-
atoire ), related to the shift from the spatio-graphical  fi eld to the theoretical  fi eld, can 
be divided into different modalities. One of them is  wandering measuring , when 
students do not have any precise ideas about the con fi guration—so they explore the 
situation randomly: they take measurements of some elements of the con fi guration, 
in the same way as they might use wandering dragging, in order to identify quantita-
tive relations, invariants, congruencies, etc. Of course, it seems to be important 
 which  quantitative relationships will be identi fi ed: as Sinclair  (  2002  )  argued, only 
certain ones will be deemed interesting enough—for example, in wandering dragging 
that involves measuring angles, certain values (such as 90°, 120°, etc.) will seem 
much more relevant than others, because of an aesthetic component in conjecturing, 

  Figure 19.3.    The length of AB is not equal to the sum of the lengths of AC and CB.       
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in the sense that only some con fi gurations, invariances, or measures are worth 
attending to. If students trust measurements and they believe measurements are 
absolutely exact, they stay at a spatio-graphical  fi eld. Instead, if they use the informa-
tion provided by the reading of the measurements to formulate a conjecture in the 
standard form “if … then …” and in a general case (“generic example,” in the sense 
of Balacheff,  1987  ) , they connect the spatio-graphical  fi eld with the theoretical one. 

 Another modality is  guided measuring  (echoing guided dragging), when stu-
dents do a guided exploration of the con fi guration, examining particular cases one 
after the other: measurements are used in order to obtain a particular  fi gure from a 
generic con fi guration; for example a generic quadrilateral can be transformed into a 
parallelogram by looking at the length of the opposite sides. This modality can be 
useful to put in order (Guala & Boero,  1999  )  a set of different cases, with the aim of 
exploring them—from, for example, the most particular to the most general. 

 A third is  perceptual measuring , when students use measurements as a means of 
checking the validity of a perception: having the intuition on a property, but not 
being sure of it, they use measurements to validate the perception, by transforming 
a qualitative relationship into a quantitative one, and remain in the spatio-graphical 
 fi eld. They may jump to the theoretical  fi eld if they then transform that perception 
into a conjecture. 

 On the opposite side, the second category is related to the shift from the theoreti-
cal  fi eld to the spatio-graphical  fi eld, when students need to check the validity of an 
intuition, a conjecture, even a proof, and use  mesure probatoire . In the  validation 
measuring  modality, students use measures to check whether a conjecture should be 
accepted or refuted. This use is very similar to the dragging test, for checking a 
construction. Another modality is  proof measuring , not frequently used, where 
students go back to the DGE after having constructed a proof, in order to check it or 
gain conviction. In this case, new experiments are made in the DGE and measure-
ments are used to “validate” the proof from an experimental point of view, or to 
have data against the proof itself. 

 Students’ competencies in using measurements discriminate their approach to 
proof. If they read values in the DGE, giving them a proper approximation and 
range of uncertainty, it could be useful both in the passage from spatio-graphic to 
theory and backwards, otherwise some problems may occur (one is described in the 
data below). In terms of the use of the measuring, researchers have studied the ways 
students use measures in the proving process (perceptually or theoretically?), with 
their awareness in doing so (knowing its epistemological status and its role in a 
proof or not?), and the relation of their use of measures to the construction of a proof 
(support or against?). We exemplify some  fi ndings of this research in section D.   

   Other DGE Tools 

 The dragging and measurements tools are central in DGEs, and have been studied 
extensively, but they are not the only ones: there are many other tools at a learner’s 
disposal including trace, locus, transformation, animation, parametric colours, 
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macro-constructions or custom tools, iteration and graphing. Mariotti  (  2002  )  
described the way in which tracing and locus can work together with the former 
providing exploratory evidence of a relationship and the latter a con fi rmatory con-
struction. While trace guides a student to the solution of the problem, locus supports 
investigation on speci fi c characteristic of the  fi gure or relationships among its compo-
nents. Locus and tracing have been shown to be effective in problems where students 
construct and use transformation, and are engaged in  fi nding invariants (Jahn,  2002  ) , 
or in problems where they are involved in guessing what kind of transformation is 
at the basis of a given construction—as in Laborde’s  (  2001  )  black boxes. While 
dragging and measurement will remain the focus of attention, we anticipate more 
work in the next decade on the use of these other tools in the proving process.   

   Section D: Protocols in DGE Research Around Proving 

 In this section we offer two case studies of student interactions with a DGE. 
In section C we focussed on the two tools of dragging and measuring, charting out 
their cognitive and epistemological implications across a range of topic areas and 
grade levels—particularly as they relate to the proving process. Here we consider 
particular classroom situations dealing with speci fi c content, tasks and grade levels, 
as well as speci fi c theoretical lenses that can be used to study geometric thinking. 
The  fi rst example, reported by Sinclair et al.  (  2010  ) , involved primary grade chil-
dren engaging in geometric argumentation in the context of a whole classroom 
exploration around identifying triangles. Dragging is a central feature of this exam-
ple but the analysis focusses less on the modality of dragging used than on the dis-
cursive changes in students’ talk about triangles. The second example, reported by 
Olivero and Robutti  (  2007  ) , involved high school students working at a more sophis-
ticated level of the proving process, in the context of a teaching experiment in which 
pairs of students solved an open problem that centrally involved the use of the mea-
sure tool. 

   Dragging at the Elementary School Level 

 This case study involves children 4–5 years old who had never seen the software 
before, and had not engaged in any formal work on geometry at that point in the 
year (January). The task was designed in such a way to promote exploration, con-
jecturing and argumentation. Although the episode is not directly about proof, we 
include it because we see it as belonging to the initial stages of the proving process, 
including the move to the theoretical and the use of de fi nitions. The episode involved 
students engaged in identifying triangles. We focus attention on the different ways 
that students talked about the shapes they see and their developing discourse as they 
encountered a broader range of dragged triangles.
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  The teacher began by asking “What is a triangle?” The children use their hands and 
bodies to form triangles. There was no reference to speci fi c properties of the shape. The 
teacher then constructed a triangle with its vertex facing down using the segment tool. Most 
of the children did not think this was a triangle. Some turned around, and said it was a tri-
angle only if they looked at it upside down. The teacher then dragged one of the vertices of 
the triangle.  

 34.  T:  I’m going to ask you to tell me what you see when I’m doing this. 
 35.  Ss:  Ooh. Wow. [ some laughing ] 
 36.  T:  What do you see? 
 37.  Abigail:  That’s actually a triangle. 
 38.  Leah:  A triangle. 
 39.  John:  It is. 
 40.  T:  Why is it a triangle? [ continuing to drag ] 
 41.  Robert:  You can stretch it out. 
 42.  T:  And that’s what makes it a triangle? 
 43.  Robert:  Yeah. 
 44.  Dasia:  Every triangle 
 45.  John:  You’re going to make 
 46.  T:  Just wait. Dasia, what are you saying? 
 47.  Dasia:  Every triangle could be, um, a different shape but it just has three corners. 

 Although brief, this exchange was long enough to show a process of discourse 
change in real time. The change was signalled with a collective expression of sur-
prise (see “Ooh. Wow” in [35]). Abigail’s statement “That’s actually a triangle” [37] 
signalled that what so far was considered to be a triangle only  potentially , pending 
a person’s position with respect to the shape, now became a triangle as-is, uncondi-
tionally. Since it was now obvious, even if not actually shown, that this animated 
thing could easily reincarnate into the canonical shape she had always considered as 
a triangle, that canonical shape became but one of the possible images of the  moving  
object called triangle. The follow-up comments by Leah [38] and John [39] sug-
gested the same interpretation. Most notably, Robert explicitly signalled having 
changed his mind when he explained that whatever he could see on the screen, 
including the original “upside-down” shape, was a triangle simply because it could 
be obtained from one basic triangular shape by “stretching it out” [41]. A signi fi cant 
aspect of the children’s talk was that it shifted toward the hypothetical and the 
abstract: so far, a triangle used to be something that was present visually, but the 
children now spoke of it as an object that changes over time. 

 Dasia’s talk stood out in three respects. First, she spoke in plural, mentioning 
many triangles rather than just one (see her expression “every triangle” in [44]). 
Second, she referred explicitly to properties of a triangle (see her mention of “three 
corners” in [47]; this is similar to, but still different from Abigail’s earlier mention of 
three sides). Finally, she turned Robert’s statement around into a more general 
description of a triangle. On the basis of [47] we can conclude that having three 
corners was, for her, the only condition a shape had to ful fi l to be called “triangle.” 
With the word “just” in her requirement of “just has three corners” Dasia communicated 
the idea that a triangle can have many other characteristics (be upside down, stretched, 
etc.), but having three corners was the only property that was really indispensable. 
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 Wishing to elicit the dif fi culty that children might have in identifying stick-
shaped triangles as triangles, the teacher asked the students to close their eyes so 
that she could drag the triangle into a more “monstrous” (very long and skinny) 
shape. When asked whether it is a triangle, some students say “no” and others “yes.” 
After some discussion, Morgan remained the only dissenter.    

 82.  Dasia:  It’s a triangle for me though. 
 83.  Robert:  It’s a triangle for me too. 
 84.  Other Ss:  Me too. 
 85.  T:  But we have to try and explain why it’s a triangle for Morgan. You have 

to convince her. Why do you think it’s a triangle because she’s not sure? 
 86.  Dasia:  Because it has three corners. 
 87.  T:  What else does it have? 
 88.  Nadia:  Three lines. 
 89.  T:  We need to come up with a de fi nition we all agree on and so far your 

de fi nition is three vertices, or you can call them corners, and three sides. 
 90.  Michael:  Well it’s a triangle as long as it has a point and as long as it had three dots 

and as long as it has three lines. 
 91.  Leah:  Yeah whatever you do with it, it’s still a triangle. 

 Dasia, whose utterance [86] showed once again that for her deciding whether a 
drawing was a triangle required just checking whether it was showing three corners. 
In contrast, Morgan’s use of triangle included a broader class of transformations of 
the canonical one, the routine of identi fi cation was still exclusively visual, with no 
appeal to properties. The rest of the class, however, could now speak about a  family  
of triangles rather than a single one, and the family was uni fi ed by common proper-
ties. Dasia’s and Michael’s utterances [82] and [90], respectively, showed an inter-
esting discursive gap: whereas Dasia appealed only to properties that were both 
necessary and suf fi cient, Michael added to the “three dots” the requirement that 
there must also be “a point” and “three lines,” thus making his statement more of a 
description than a de fi nition. 

 The children’s talk bore clear evidence of its being developed in a DGE. With the 
phrases “as long as,” (Michael, [90]) and “still” (Leah, [91]) the children communi-
cated their reliance on transformability in trying to identify a triangle—thus sup-
porting Battista’s hypothesis. Leah, in particular, used a dynamic, material language 
in which a triangle was something you could do to things. Her “whatever you do” 
referred to what could be done with one of the triangle’s corners. Unlike Michael, 
she did not draw on the properties; her statement spoke to the variability she thought 
the triangle had. 

 We see this episode as relevant to the proving process in that the development 
of the notion of triangle is not achieved through memorization of vocabulary 
but, instead, through a back-and-forth between the visual and discursive registers. 
In prompting the students to use words, to compare their visual identi fi cations with 
their verbal statements, and to consider counter-examples, the teacher supported the 
use of explanation. The students moved toward deductive statements such as “that 
shape is a triangle  because  it has three sides.” Further, this excerpt revealed the way 
in which the work on identifying shapes as simple as triangles, in the primary grades, 
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can be vectored toward the development from description to de fi nition—a crucial 
one in the proving process.  

   Measurement in a High School Setting 

 Students in the 10th grade were involved in a teaching experiment aimed at 
introducing the proving process as a continuing activity from construction of a 
 fi gure in a DGE and its exploration until the formulation of a proof, via some con-
jectures. The teacher emphasized the need for proof as the explanation of  why  a 
statement is valid within some hypothesis. The students, adopting this didactic con-
tract, knew that once they have found one or more conjectures in the geometric situ-
ation, they had to justify and explain them. The research study started from the 
hypothesis (Arzarello et al.,  1998,   2002  )  that the DGE can support a cognitive con-
tinuity from conjecturing to proving, whereas conjecture and proof have two differ-
ent epistemological statuses 

 In the classroom sessions (each of them lasted about two hours) the students 
were engaged in solving an open problem working in pairs with  Cabri  and sharing 
their solution at the end of the group session. Discussion was coordinated by the 
teacher. Data collected were  fi eld notes and videotapes of the work, made in  Cabri  
and in paper and pencil. With these data, researchers can pay attention to students’ 
approaches to measurements and to their cognitive role during the activity. The data 
showed students’ frequent passages from the spatio-graphical to the theoretical  fi eld. 

 In the example we present here, two students (Alessandra and Tiziana) in their 
working group explored a geometric situation, made conjectures and proved one of 
them. After having done this, they used measurements to check their proof. So, they 
did a passage from their theoretical approach (doing the proof) to a spatio-graphical 
approach again (checking the proof with measures), which showed the use of the 
measurement tool in modality  proof measuring  of the list above. At this point, students 
were surprised to  fi nd that the two results, coming from theory and experiment, 
were not coherent (Olivero & Robutti,  2002,   2007  ) . These students were medium 
achievers; they had not used  Cabri  very often before, and had no substantial experi-
ence with open problems before this one. 

 The problem given to the students is “Varignon’s problem,” formulated as follows: 
Draw any quadrilateral  ABCD . Draw the midpoints  L, M, N, P  of the four sides.

    1.    Which properties does the quadrilateral  LMNP  have?  
    2.    Which particular con fi gurations does  LMNP  assume?  
    3.    Which hypotheses on the quadrilateral  ABCD  are needed, in order for  LMNP  to 

assume those particular con fi gurations? Make conjectures and prove them.     

 At the beginning the two students explored the situation in  Cabri  and formulated 
the following conjecture: if the external quadrilateral is a square, the internal quad-
rilateral is a rhombus. After that, they proved the conjecture, based on Figure  19.4  
drawn on paper. Note that it is not surprising that the students  fi rst call the “inside” 
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shape a rhombus, because their shape identi fi cation strategies were visually oriented, 
namely based on a visual association with a prototypical shape—they do not call it 
a “square” because its sides are not vertical and horizontal.     

 181     Tiziana  All this stuff…these…they are congruent (the halves of the sides of  ABCD ). 
[ Then Tiziana writes down the thesis :  LM equals   MN ,  equals NP ,  equals 
PL .  Meanwhile Alessandra uses a ruler to measure  the sides of  LMNP .) ] 

 189  Tiziana  So  NC  is congruent to  MC PAL  (angle) is congruent to  NCM  (angle) 
because  ABCD  is square [ she writes down all this ]. And so it has got 
right angles, right? [ She marks the right angles in ABCD ]. We didn’t 
write this in the hypothesis, but shall I explain this? 

 193  Tiziana  So  PL  equals  MN . The same for  PDN  triangle and  LBM  triangle then  PN  
equals  LM . Should I do a cross comparison?  PDN  triangle and  PAL  
triangle then  PN  equals  PL . What’s missing? These two are done, these 
two are done 

 195  Tiziana   NCM  triangle and  MBL  triangle so  NM  congruent to  ML  
 197  Tiziana  They all have equal sides. So it is a rhombus! OK! 

 The students constructed a proof with all the logical passages required at their 
school level. They used the congruence of triangles in which the  fi gure was decom-
posed (Figure  19.4 ) and the congruence theorem SAS. At the end of their proving 
process, they were sure of the validity of their conjecture, because they had proved 
it, i.e., they had deduced the thesis (the quadrilateral inside the square is a rhombus) 
from the hypothesis (the starting quadrilateral is a square)—thus appealing to the 
veri fi cation function of proof. 

 To be convinced of their theoretical approach, at this point, after the construction 
of their  fi nal proof, the two students went back to  Cabri  to look for validation—that 

  Figure 19.4.    Proving that 
“If ABCD is a square then 
HKLM is a rhombus.”       
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is, empirical evidence. So, a new episode started up, marking a passage from the 
theoretical to the spatio-graphical  fi eld:    

 207  Tiziana  Try to make  ABCD  a square 
 208  Alessandra  [ Drags A and B trying to obtain a square with a side of  6.17  cm ] 
 209  Tiziana  Is it a rhombus? 
 210  Alessandra  Well … [Alessandra points at the sides of  LMNP ]. A rhombus 

has got equal sides oh no! It’s not a rhombus! (see Figure  19.5 ) 

 The two students dragged  ABCD  into a square (using guided dragging, along 
with a guided use of measurements), to check if  LMNP  is a rhombus. And to do this, 
they dragged  ABCD  not randomly, but checking measures of its sides, in order to 
obtain equal values. They were transforming a generic quadrilateral  ABCD  into a 
square just by dragging (and looking at the side measures), not by constructing it. 
Moreover, they used the  proof measuring  modality in that they wanted to  fi nd the 
empirical evidence of their theoretical  fi nding. This passage from theoretical to 
spatio-graphical was not so unusual (even for mathematicians!) and could give dif-
ferent results. The two students were surprised when they found that such numbers 
were not equal ( PN  and  PL , for example, in Figure  19.5 ). These students had more 
con fi dence in the measurements taken by  Cabri  than in the correctness of their 
proof. In fact, they immediately checked each passage of the proof but concluded 
that the software was right—and so they rejected their proof:     

 257  Tiziana  Because if this is the midpoint [ she points at P ] then it divides this side 
in two equal parts.[ She points at AD  and  AP  and  PD ]. 

 263  Tiziana  So it should be: if it is a square, the quadrilateral inside is a square too. 
 264  Teacher  Right! 
 265  Tiziana  Why doesn’t the  fi gure show that? 
 274  Teacher  I’ll try to pose the problem from a different perspective: this  fi gure. 

[Points at the Figure  19.4  on the screen] Is it a square? Really? 

  Figure 19.5.    Measuring the 
sides of the inner 
quadrilateral.       
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 The teacher’s intervention focusses students’ attention on the link between the 
spatio-graphical and the theoretical, helping them to realize that their  fi gure 
(Figure  19.5 ) was  not  properly a square. Furthermore she suggested that they  con-
struct  a square, and check if it was in accordance with the proof. In the sense of 
Laborde, these students were looking at a square as a sketch, not at a  Cabri -square 
(a dynamic construction). After the teacher’s suggestion, the students constructed a 
square and thus overcome the con fl ict. The use of measurements described above 
seemed to detach the students completely from the theoretical  fi eld and made them 
dependent on the spatio-graphical one. 

 For these students, the intervention of the teacher was crucial for overcoming the 
con fl ict and using the  fi gure in a theoretical way, accepting the proof and going 
further in solving the problem. This case study thus illustrates the epistemological 
and cognitive implications of the measuring tool in relation to the proving process 
and offers a speci fi c example of the kind of work that a teacher must do to support 
this process.   

   Section E: Conclusion and Implications 

   Didactic Implications of DGEs 

 As observed in Hoyles and Noss’s  (  2003  )   Second Handbook  chapter, research 
has focussed not just on the affordances of the tool, but also on the role of the 
teacher in the classroom. In both of the case studies shown above, the teacher played 
a crucial role in emphasizing relationships between objects, while trying to intro-
duce students to the theoretical world of geometry, which is similar to Mariotti’s 
 (  2000  )  thesis. However, as shown in Sinclair and Yurita  (  2008  ) , it can be challeng-
ing for teachers to play this role, particularly when their way of thinking and talking 
about geometry is static in nature. Although it is clear that teachers must help stu-
dents move towards explanation and deduction, there is still a great deal of research 
to be done on how teachers should deal with the epistemological and cognitive 
implications of DGE tools such as dragging and measuring. Should, for example, 
the various dragging modalities be modelled by the teacher? How might a teacher 
choose tasks that can scaffold dragging modalities in such a way to better support 
the proving process? Do teachers need to be more careful about how and when they 
introduce measure tools? How can teachers carry out in class an instrumentation 
of the different tools present in a DGE, in the sense of giving students schemes of 
use of these tools and awareness of their use according to the kind of problem 
(construction, exploration, modelling, and so on)? 

 The orchestration of different materials and technologies (Trouche,  2004  ) , and the 
use of new teaching practices (working groups, discussions, distance education), are 
dif fi cult and can create confusion for teachers. However, many national and interna-
tional projects of teacher education are directing their efforts at supporting teachers in 
changing (see Sinclair, Arzarello, Gaisman, & Lozano,  2009  ) . More research, along 
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the lines of Laborde’s  (  2001  ) , needs to focus on developing better teacher integration, 
including supporting the development of new tasks that are suitable to DGE use and 
new modes of assessment that do not simply fall back to pencil-and-paper testing.  

   Research Implications of DGEs 

 Hoyles and Noss  (  2003  )  stated that “attention is turning away from the investiga-
tion of the process of construction and conjecturing with DGS, and towards consid-
eration of how the new tools mediate the nature of explanation, veri fi cation and 
even proof” (p. 335). Since the early 2000s, we have seen a strong emphasis on how 
those two processes are related, which has led to an increasing range of contexts of 
study, across the grade levels (from primary school to university level, including 
pre-service teacher education—see Lassak,  2009  ) . This may lead to more longitudi-
nal research on the way in which the proving process might develop over the school 
curriculum—such longitudinal studies have been quite rare in the  fi eld of technol-
ogy, but they would be particularly helpful in elucidating the nature of the proving 
process. In particular, as anticipated in the  fi rst case study, we need new models, or 
learning trajectories, that can account for the impact of DGE use in the development 
of student thinking. 

 Attention is also turning to the ways by which DGEs can mediate the objects of 
geometric investigation and the ways students can think about these objects, as dis-
cussed in section C. With the  fi ne-grained analyses of dragging and measuring already 
undertaken, we tried to show that the dynamicity and the measure give students the 
opportunity to pass from the exploration phase, characterized by conjectures, to the 
proving phase, characterized by the construction of proof, with continuity. 

 Over the past decade, researchers have identi fi ed some of the more subtle aspects 
of learning to use and teach with DGEs. For example, the literature suggests that 
teachers need to help students develop “schemes of use” (Rabardel,  1995  ) —not just 
how to drag a point, but why a point or an object is not draggable, how and when to 
use a measure to infer a property, how to read a measure in a proper way, and how 
to use dragging to obtain a particular con fi guration. This awareness of the schemes 
of use enables students to master the problem, from the hypothesis to the thesis, 
during the various solution phases (Sträßer,  2009  ) . More research is needed to study 
how (and how much) teachers should “instrument” their students in the use of tech-
nologies. A delicate balance is needed since, on the one hand, it is important to 
introduce schemes of use in a cognitive and metacognitive way, but on the other, this 
activity should not become a sequence of instructions and rules, but an investigation 
methodology. In fact, tools are active elements of the culture in which they are used 
as they involve cognitive structures (schemes) and also introduce cultural systems 
that are products of cultural evolution. For this reason, we have to examine the 
closeness of the notion of “scheme” to that of “situated abstraction” (Noss & Hoyles, 
 1996  )  as a complex product of activity, context, history and culture. And we have to 
examine the complexity of the relation between humans and technology (Borba & 
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Villarreal,  2005  ) —not only as one subject interacting with one tool, but as  more 
subjects  interacting together and with  more tools . 

 For what concerns  more subjects , Trouche  (  2004  )  notes that: “an instrument is 
the result of a construction by a subject, in a community of practice, on a basis of a 
given artifact, through a process, the instrumental genesis” (p. 289). The social 
dimension of the tool can be analyzed according to different theoretical perspec-
tives, such as semiotic mediation (Mariotti,  2010  )  or the human, embodied, cultural 
and multimodal perspectives put forward by Radford  (  2010  )  and Arzarello and 
Robutti  (  2010  ) . These frames consider all the signs introduced by students (verbal 
utterances, gestures, bodily movements, actions on the computer, etc.), during a 
classroom activity to be relevant for understanding cognitive processes. 

 In terms of  more artefacts , we again point to Trouche’s emphasis on the impor-
tance of “instrumental orchestration,” which involves the design of tasks, the guid-
ance of students’ instrumental genesis, and the environmental organization (Trouche, 
 2004  ) . Instrumental orchestration is achieved by “didactic con fi gurations” (layout 
of available artefacts in the environment), “exploitation modes” of these 
con fi gurations (decisions for carrying out the activities with artefacts) and “didactical 
performance” (ad hoc decisions taken while teaching on how actually to perform in 
the chosen didactic con fi guration and exploitation mode). Recent trends in research 
study the types of instrumental orchestration that emerge in technology-rich class-
room teaching and to what extent are teachers’ repertoires of orchestrations related 
to their expressed views on mathematics education and the role of technology 
(Drijvers, Doorman, Boon, Reed, & Gravemeijer,  2010  ) . They should inform 
research on the use of DGEs in the proving process.       
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  Abstract   Computer Algebra Systems (CAS) are software systems with the capability 
of symbolic manipulation linked with graphical, numerical, and tabular utilities, and 
increasingly include interactive symbolic links to spreadsheets and dynamical 
geometry programs. School classrooms that incorporate CAS allow for new explo-
rations of mathematical invariants, active linking of dynamic representations, 
engagement with real data, and simulations of real and mathematical relationships. 
Changes can occur not only in the tasks but also in the modes of interaction among 
teachers and students, shifting the source of mathematical authority toward the stu-
dents themselves, and students’ and teachers’ attention toward more global mathe-
matical perspectives. With CAS a welcome partner in school algebra, different 
concepts can be emphasized, concepts that are taught can be done so more deeply 
and in ways clearly connected to technical skills, investigations of procedures can 
be extended, new attention can be placed on structure, and thinking and reasoning 
can be inspired. CAS can also create the opportunity to extend some algebraic pro-
cedures and introduce and assist exploration of new structures. A result is the enrich-
ment of multiple views of algebra and changing classroom dynamics. Suggestions 
are offered for future research centred on the use of CAS in school algebra.      

 Developing an understanding of algebra is central to school mathematics, and the 
teaching and learning of algebra is receiving increasingly greater attention in a 
range of national settings. In the USA, for example, the President convened a 
National Math Panel, a central purpose of which was to provide the best advice on 
preparing children for the study of algebra. As nations attack the issue of enhancing 
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students’ understanding of algebra, it becomes important to de fi ne what is meant by 
algebra. Textbooks dedicated to algebra identify topics to be covered, and national, 
state, and local goals identify the algebraic skills that students must master. But 
algebra is more than a list of topics. It is also a way of thinking and reasoning. In this 
chapter, we consider algebra to consist not only of a set of mathematical topics but 
also ways of thinking. 

 Just as it is important to examine strategies for improving students’ understanding 
of algebra, it is important to do so in the context of the technological resources 
available for assisting the learning of algebra. As algebra-speci fi c software becomes 
increasingly available in school mathematics classrooms, it becomes more and more 
important to examine the ways in which such software can affect the teaching and 
learning of algebra and the part that algebra plays in developing students’ under-
standing of mathematics. One con fi guration of software that is particularly relevant 
to the learning of algebra is what has come to be known as a Computer Algebra 
System (CAS). The CAS can, on command, perform symbolic manipulations that 
often comprise much of a student’s algebra skill set. The basic utilities of a CAS are 
enhanced by the linking capability among its components. A CAS links graphical, 
numerical, and tabular utilities with that of a symbolic manipulator, and interactive 
symbolic links to spreadsheets and dynamical geometry programs are becoming a 
more common part of CAS con fi gurations. Communication among these latter 
components opens the possibilities for decreasing barriers that have at times sepa-
rated the study of algebra from the study of other areas of the mathematical sci-
ences. The capability of linking symbolic mathematics capabilities to graphical and 
dynamic geometry, for example, opens the possibility of symbolic experimentation 
supplemented by graphical parametric exploration and corroborated through geo-
metrical construction and measurement. Networking with the capacity to collect and 
display results from a large group of students allows experimentation more easily to 
become a group project instead of an individual investigation. The ever-increasing 
possibilities for connections and interactions open the door for an algebra that links 
traditional notation systems and representations to new ones. The myriad current 
possibilities for CAS encourage substantial changes in the role of algebra in the 
school curriculum. This chapter discusses those potential changes. 

   Brief History of CAS in Mathematics Education 

 To provide a context, before examining how CAS might affect the role of algebra 
in the school curriculum, it seems useful to review how the use of technology in 
mathematics education has evolved. The evolution has been threefold. The type of 
technology available has evolved, the ways in which that technology is used have 
evolved, and research and theories about teaching and learning in the context of that 
technology have evolved. These evolutions have been interdependent with limitations 
on the available technologies constraining the ways that they could be used, and 
limitations on uses constraining the  fi eld’s ability to investigate and explain learning 
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in the context of technology. For each phase of this evolution and each general type of 
technology, there was initially a time during which there was experimentation with 
what could be done. This was generally followed by the development of curricula 
and instructional approaches and investigation of the effects of the technology’s use 
in the consequent range of settings. Finally, often after periods of experimentation 
and development, theory was developed or expanded to explain the use of that tech-
nology. For CAS, the initial work was limited by the platforms on which the CAS 
was built. Early versions consisted of only symbolic manipulation programs. 

 Work in use of technology in mathematics education has evolved in the areas of 
curriculum and instruction. Neither of these foci replaced the others, but the consid-
eration of CAS in each enriched the  fi eld’s perspective on what was involved with 
the incorporation of technology in mathematics education. This evolution has been 
re fl ected in work with CAS as well, and the development of theories about technol-
ogy use was accelerated by CAS-related work. Initial curriculum work focussed on 
development of CAS approaches to algebra by students as exempli fi ed early in 
small trials of Computer-Intensive Algebra (CIA) (early versions of Fey & Heid, 
 1995  ) , later in widespread use of CAS calculators in Austrian (Böhm,  2007  )  and 
Australian schools (see   http://extranet.edfac.unimelb.edu.au/DSME/CAS-CAT/
publicationsCASCAT/Publications.shtml#2009     for an extensive publication list 
related to Australian CAS-CAT work), and  fi nally in the incorporation of CAS work 
in widely used curricula such as those of the University of Chicago Mathematics 
Project (Usiskin,  2004  ) . Various con fi gurations were tried in the course of experi-
mentation with CAS in school algebra, ranging from supplements to an entire cur-
riculum. Theory related to instruction has evolved from characterizing the nature of 
technical work with CAS (Artigue,  2002 ; Lagrange,  1999  ) , to describing the work 
methods of students using CAS (Guin & Trouche,  1999 ; Trouche,  2005a  ) , and to 
developing theory describing the relationships between the instructor, students, and 
CAS (Trouche,  2005b  ) . Attention is now turning to the networking and connected-
ness possibilities with the advent of the TI Navigator for TI-Nspire with CAS 
(see Roschelle, Vahey, Tatar, Kaput, & Hegedus,  2003 , for a discussion of network-
ing and connectedness in mathematics instruction). 

 In spite of the long history of work with CAS in educational settings, the impact 
of technology on school mathematics has to date been marginal, and the incorpora-
tion of CAS in classrooms has been even slower. Some would attribute this slow 
movement to the time it takes to implement fully any change (Drijvers & Weigand, 
 2010  ) . Others would attribute it to the dif fi culty of making such radical change in 
the nature of school mathematics or to the dif fi culties involved in preparing teachers 
to work effectively with such changes (Zbiek & Hollebrands,  2008  ) . Barriers to 
incorporation of CAS in school mathematics, however, could also have been related 
to the nature of the tool itself and its potential uses in school mathematics. The 
prospect of incorporating CAS as a constant resource in students’ algebra experi-
ences has been regarded with trepidation by those who imagined students replacing 
by-hand facility with symbolic manipulation resulting in a need to depend on 
technology for transformation of symbolic expressions and equations. They may 
have suspected that what had been the essence of school algebra would, in 

http://extranet.edfac.unimelb.edu.au/DSME/CAS-CAT/publicationsCASCAT/Publications.shtml#2009
http://extranet.edfac.unimelb.edu.au/DSME/CAS-CAT/publicationsCASCAT/Publications.shtml#2009
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CAS-enabled classrooms, be set aside. On one side, the debate regarding the nature 
of the change needed in fully integrating the CAS into school mathematics curricula 
is fuelled by the supposition that a curriculum that does not focus primarily on by-
hand symbolic manipulation would deprive students of the insights that could be 
gained from re fi ned by-hand symbolic manipulation. On the other hand, Dick  (  1992  )  
pointed out that “to realize the savings in time and to harness the power of computa-
tion that a symbolic calculator can provide, students need to pay more, not less, 
attention to understanding the meaning of the symbols and notation they use” (p. 2). 

 Throughout its history in school mathematics classrooms, CAS has offered a 
range of new opportunities for the teaching and learning of algebra and the resultant 
effects on the nature and depth of mathematical content as well as on the nature of 
assessment. Researchers have investigated the effects of CAS on the content, teach-
ing, and assessment of school algebra. With constant access to CAS, the nature of 
tasks, classroom interactions, and views of mathematics could be transformed. 
Pierce, Stacey, and Wander  (  2010  )  illustrated, and richly conveyed, pedagogical 
opportunities in classrooms that have constant access to CAS (see Figure  20.1 ). 
Because of the CAS capacity to execute symbolic procedures rapidly and accu-
rately, time is available to engage students regularly in an expanded range of task 
types. The symbolic manipulation capacity of the CAS allows for exploration of 
different mathematical ideas in ways that were either not possible or not feasible 
without such technological help. These new opportunities involve exploration of 
mathematical invariants, active linking of dynamic representations, and engagement 

  Figure 20.1.    Pedagogical 
opportunities in classrooms 
that had constant access to 
CAS (from Pierce, Stacey, & 
Wander,  2010  ) .       
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with real data and simulations of real and mathematical relationships. With the wel-
coming of CAS in school classrooms, changes can occur not only in the tasks but 
also in the modes of interaction among teachers and students. With powerful tools 
in students’ hands, the source of authority can shift toward the students themselves 
and teachers and students can engage in a newly de fi ned relationship that includes 
not only the teacher, the tasks, and the students but also the technology. Students’ 
and teachers’ attention can turn toward more global mathematical perspectives, 
such as recognizing the affordances and constraints of work with technology and 
maintaining a balance of procedural and conceptual knowledge.  

 Our examination of literature across the history of CAS in mathematics education 
suggests three topics that are central to discussions of research, theory, or practice: 
the interaction of concepts and procedures; new concepts, extended procedures, and 
structures that can be approached with CAS; and the thinking and reasoning that 
CAS use inspires or requires. In the following sections, we undertake each of these 
three topics before we come to terms with the role of algebra in the school curricu-
lum and address associated issues and needed research.  

   The Role of CAS in Calibrating the Conceptual–Technical 
Balance of Algebra Instruction 

 In considering the potential for CAS to affect the role of algebra in the school 
curriculum, it is the symbolic manipulation capacity of CAS that has drawn the 
most attention. Initial concern was directed at what was perceived to be the imbal-
ance of procedures and concepts in the algebra curriculum, even though subject 
matter content may not be readily categorizable into either of these subject matter 
types. Researchers recognized that often the classroom focus was on procedures 
with little attention to concepts that would signal when those procedures were called 
for. They experimented with relegating large parts of the symbolic manipulation to 
the CAS and concentrating attention on understanding fundamental concepts and 
when particular symbolic manipulations were appropriate. They investigated whether 
such a shift in focus would result in atrophy or failure to develop by-hand symbolic 
manipulation skills, whether such re-balancing could result in a more in-depth 
development of conceptual understanding, and whether a re-balanced approach 
would result in improved success in problem solving that required execution of 
particular procedures. 

 As described in research syntheses focussed on technology in mathematics 
instruction (e.g., Heid,  1997 ; Heid & Blume,  2008  ) , early studies examined the 
effects of various approaches to using CAS on the balance of mathematical proce-
dures and concepts in the curriculum. Studies by Heid  (  1984,   1988  ) , Palmiter 
 (  1991  ) , and Judson  (  1990  )  provided evidence that calculus courses at the collegiate 
level could be designed to use symbolic calculation programs to foster the develop-
ment of concepts and understanding regarding when to use particular procedures 
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without harming the development of students’ skill at transforming and using 
symbolic forms. Similar results were obtained in early studies of students’ learning 
of algebra using CIA—see early versions of Fey and Heid  (  1995  ) —a functions-
based algebra curriculum used at the school and college levels that gave students 
constant access to some form of CAS (Boers van Oosterum,  1990 ; Heid,  1992 ; 
Heid, Sheets, Matras, & Menasian,  1988 ; Matras,  1988 ; O’Callaghan,  1998 ; Sheets, 
 1993  ) . Early research on CAS use centred on using symbolic manipulation pro-
grams, sometimes supplemented by graphing and spreadsheet programs. In these 
and other studies of CAS use in algebra instruction (e.g., Hollar & Norwood,  1999 ; 
Mayes,  1995  ) , a fairly consistent result was that, in a curriculum that prioritized 
concepts and applications of algebra, fundamental concepts of algebra could effec-
tively be learned without detriment to symbol manipulation procedures. 

 Researchers have experimented with using CAS in a variety of curricular 
con fi gurations, ranging from supplements for an existing curriculum to replacement 
of all or some of the existing curriculum. For example, the CIA project investigated 
a completely reconceptualized introductory algebra curriculum. An investigation by 
Edwards  (  2001  )  studied effects of regularly supplementing the traditional algebra 
curriculum with CAS activities, and Kieran and colleagues (Kieran & Drijvers, 
 2006 ; Kieran & Saldanha,  2008  )  studied the effects of speci fi cally designed CAS 
activities on students’ work with symbolic investigations. It should be noted that 
each of these studies occurred in the context of a curriculum designed to capitalize 
on the opportunities provided by the CAS. The question was not whether the incor-
poration of CAS in and of itself made a difference, but whether the CAS could 
enable the design of algebra curricula that exempli fi ed particular perspectives on the 
teaching and learning of algebra. Although these studies gave evidence that a different 
type of learning could occur in the context of CAS-intensive algebra classrooms, 
analysis of the speci fi c nature of the learning in those settings was largely unex-
plored. Not every study resulted in superior performance by the CAS group 
(e.g., Thomas & Rickhuss,  1992  ) , and it became evident that one of the factors that 
mattered was the particular way in which CAS was integrated into the curriculum. 
Developers and mathematics educators became wary of the potential for CAS to 
obscure the symbolic work and popularized a white box–black box analogy to 
describe the projected role of CAS in school mathematics (Buchberger,  1989  ) . Soon 
thereafter, the focus of the debate shifted from the question of what effects CAS 
would have on understanding of concepts and procedures to the nature of the inter-
active balance of concepts and skills fostered in CAS-intensive environments. 

 Analysis of the types of mathematical knowledge involved in use of CAS in 
school mathematics led to the consideration of  computational transposition . 
Computational transposition refers to the formation of additional mathematical 
knowledge that the use of a particular computational artefact involves (Artigue,  2002 ; 
Balacheff,  1994 ; Hoyles & Noss,  2009  ) . Concerned about the danger of considering 
technical work and conceptual understanding as separable, French researchers 
shifted the attention of CAS research to the construct of  technique , which accentu-
ated the development of integral links between procedures and conceptual re fl ection 
(Artigue,  2002 ; Lagrange,  2003  ) . These researchers pointed out that, within a 
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CAS-enhanced setting, concepts and techniques are intertwined and embedded 
within a context. In a landmark book based on the work of this research team, Guin, 
Ruthven, and Trouche  (  2005  )  provided a language to describe how the relationship 
of user to tool played out in the integration of CAS into school mathematics. 
Drawing on the  fi eld of ergonomics (Vérillon & Rabardel,  1995  ) , the authors of 
chapters in that book explained that CAS was an artefact that needed to develop into 
an instrument for teachers and students. They used the phrase  instrumental genesis  
to describe the development of an artefact into an instrument, and noted that this 
genesis involves the transformation of the individual ( instrumentalization ) as well 
as the transformation of the artefact ( instrumentation ). This attention to the devel-
opment of the relationship between the CAS and the CAS user accentuated the 
importance of recognizing that the nature of the use of a tool such as the CAS was 
not independent of the activity and experience of the user. These constructs hold 
considerable promise in explaining the range of effects in individual settings and 
situations for CAS-enhanced instruction. 

 As Artigue  (  2002  )  noted, “any technique, if it has to become more than a mechan-
ically-learned gesture, requires some accompanying theoretical discourse” (p. 261). 
In the case of tool-assisted procedures, an additional participant in the discourse is 
the tool itself, and the tool brings with it its own mathematical system. The chal-
lenge for students and teachers is to account for the mathematics of the tool as well 
as the mathematics that students are intended to learn. At the elementary algebra 
level, for example, the user of a CAS needs to be aware of how the particular CAS 
being used handles extraneous roots and expressions that are unde fi ned for particu-
lar input values. 

 The question raised by Artigue is how to determine the theoretical discourse 
needed for adequate student control of the artefact. Hasenbank and Hodgson  (  2007  )  
suggested that the development of procedural understanding, presumably in the 
style of technique, can be aided through the implementation of a meta-analytical 
approach to procedures. They suggest that students engage in a series of questions 
about their procedural work:

  What is the goal of the procedure? 
 What answer should I expect? 
 How do I carry out the procedure? 
 What other procedures could I use? 
 Why does the procedure work? 
 How can I verify my answers? 
 When is this the “best” procedure to use? 
 What else can I use this procedure to do?   

 Questions about the role of CAS in developing mathematical knowledge and 
about the nature of the balance of technical and conceptual understanding has per-
meated research on CAS-assisted mathematics, yet such research needs both theory 
that could inform the development of those approaches and venues for trying those 
different approaches. Empirical advances have been made with the creation and 
testing of CAS-intensive approaches, and the development of theoretical perspec-
tives and frameworks have re fi ned the  fi eld’s approach to research on the effects of 
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CAS-assisted approaches to the learning of algebra. Yet, progress has sometimes 
been slowed by a general reluctance to welcome CAS into the regular school math-
ematics curriculum. Nevertheless, the  fi eld is positioned to engage in theory-based 
research with the potential for making signi fi cant advances in its understanding of 
the ways in which CAS can affect the balance and interplay of procedural and con-
ceptual knowledge.  

   CAS Effect on Changing Emphasis on Concepts, Extending 
Procedures, and Attending to Structure 

 Incorporation of CAS in school algebra has the capacity to affect both the content 
of school algebra and how that content is developed. Different concepts can be 
emphasized, concepts that are taught can be studied more deeply, investigations of 
procedures can be extended, and new attention can be placed on structure. In this 
section we provide illustrations of each of these potential changes. 

   Changing Treatment of Concepts 

 The subgroup of the ICMI algebra study that focussed on the use of CAS in 
algebra learning suggested that one of the crucial questions to ask when considering 
implementation of CAS was “How does CAS use in fl uence student conceptualiza-
tion?” (Thomas, Monaghan, & Pierce,  2004 , p. 166). One possibility is that CAS 
offers the opportunity to investigate concepts more deeply and to emphasize con-
cepts that might not otherwise be prominent. In reality, in classrooms where CAS 
has been used by teachers themselves (rather than by researchers who involved 
teachers in their work), some research (e.g., Thomas & Hong,  2005b  )  has suggested 
that student activity with CAS rarely involves investigating a conceptual idea but is 
mostly used to obtain procedural answers and check work completed by-hand. This 
is an example of what Artigue  (  2002  )  called “the transmission of the bases of math-
ematical culture” (p. 246), passing on the socially constructed norm of what consti-
tutes mathematical activity, which has traditionally been primarily by-hand 
procedural work. In this section we consider some possible activities in which CAS 
might be used to extend student engagement with mathematical conceptualization. 

 One of the keys to accessing mathematical concepts with CAS is the set of tech-
niques that is promoted in the classroom. For many teachers these techniques are 
often perceived and evaluated in terms of their  pragmatic value  (Artigue,  2002  ) , or 
how much can be ef fi ciently accomplished using them. Artigue  (  2002  )  described 
the  pragmatic value  of techniques as their “productive potential (ef fi ciency, cost, 
 fi eld of validity)” (p. 248) and the  epistemic value  as their contribution “to the 
understanding of the objects they involve” (p. 248). She stressed that techniques are 
most often considered and appreciated for their pragmatic value. An example would 
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be the formula for solving quadratic equations, which has high pragmatic value in 
schools. However, in addition to this value for producing answers, drawing graphs, 
and other activities, a CAS instrument also has an  epistemic value ; that is, it has the 
capability to be used to produce knowledge of the object under study and to give rise 
to new questions that in turn promote new knowledge (Lagrange,  2002,   2003  ) . It is 
particularly this area of how CAS can assist in construction of knowledge of mathe-
matical concepts that is the subject of this section. We consider three main areas: how 
the CAS can allow some concepts in the current algebraic content in the curriculum 
to take on a different emphasis and importance, while emphasizing others that might 
not otherwise be prominent; how the CAS can create the opportunity to extend some 
algebraic procedures; and how the CAS can be used to assist exploration of new 
structures from outside the immediate curriculum. 

 There are two overarching principles that guide the examples presented here. 
One is that of using the CAS to assist in generalization. Mason, Graham, and 
Johnston-Wilder  (  2005  )  claim that expressing generality lies at the heart of mathe-
matics and hence “a lesson without the opportunity for learners to express a general-
ity is not in fact a mathematics lesson” (p. 297). They maintain that every page of a 
textbook should not only contain such opportunities but should clearly signal the 
need for generalization. This aim lies at the heart of the following examples. 

 The second principle used here is that, as teachers and researchers, we need to 
look for ways to use the epistemic value of CAS to improve students’ mathematical 
understanding. Employing it as a “black box” in the context of which the student 
has little or no idea how the outputs relate to the inputs does little for students’ learn-
ing of mathematics. In contrast, using the CAS as a tool for investigation can lead 
students to engage to some extent with the essential core of mathematical thinking. 
In this manner students will be encouraged to develop both mathematical  ways of 
thinking  and  ways of understanding  (Harel,  2008  ) .  

   Delving More Deeply into Concepts 

 Understanding forms a crucial part of the mathematical experience for a number 
of fundamental, ubiquitous algebraic concepts. Examples of these concepts are 
variable, function, expression, and equation. CAS can offer an opportunity to 
engage with these concepts in a more comprehensive and deeper way than has often 
been the case. 

 One manner in which algebraic concepts can be explored more deeply is 
through a consideration of how they relate to other representations. In this regard 
Duval  (  2006  )  reminded us of two important classes of cognitive activity involving 
representational transformations (transformations within or between registers or 
representation systems). Duval designated transformations that happen within the 
same register as  treatments , and those that consist of changing a register without 
changing the object as  conversions . Although Duval  (  2006  )  recommended priori-
tizing conversions over treatments for those studying mathematical learning, and 
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especially when analyzing student dif fi culties, CAS environments are capable 
assistants in both treatments and conversions. Important conceptual aspects arise 
from relating, through conversions, corresponding elements of conceptual repre-
sentations. In the context of algebra, the manipulation of expressions or formulas 
and algebraic solution of equations would be treatments, whereas drawing a graph 
or producing a table of values for a given algebraic representation of a function 
would be conversions. CAS environments in which representation systems are 
linked and interactive are capable of conversion actions in which students need 
only to choose or enter appropriate commands and then observe the effects of the 
conversions. Opportunities for student engagement with conversion actions in 
CAS settings must be carefully crafted. From conversion activity, important 
aspects of epistemology, and understanding, of a mathematical object can arise, 
contributing to the goal of helping students attain  versatile thinking  in mathemat-
ics (Thomas,  2008a,   2008b  ) , which involves at least three abilities:

   to switch at will in any given representational system between a perception of a • 
particular mathematical entity as a process and the perception of the entity as an 
object;  
  to exploit the power of visual schemas by linking them to relevant logico/ana-• 
lytic schemas; and  
  to work seamlessly within and between representations, and to engage in proce-• 
dural and conceptual interactions with representations.    

 This third component of the framework for versatile thinking, called  representa-
tional versatility  (Thomas,  2008a  ) , incorporates more than Duval’s treatments and 
conversions. The idea of conceptual interactions with representations is one that is 
highly relevant to CAS use and is exempli fi ed in the following paragraphs. 

   Algebraic transformations.    In a CAS environment the technology can help 
students to engage with novel (to them) mathematics through conversions. One 
example of a task that engages students with novel mathematics is the task of 
asking what algebraic form a function would take when its graph is re fl ected in 
the line  y  =  k , for some real  k . Applying the aforementioned principles by 
approaching the general through the speci fi c we might ask students to re fl ect the 
graph of, say,  y  =  x  2  + 3 x  in the line  y  = 2. The CAS can be used to draw the graphs 
(see Figure  20.2 ). A number of routes and their associated techniques are then 
possible to attempt to answer the problem. For example, we know that the points 
of intersection of  y  =  x  2  + 3 x  and  y  = 2 are invariant under re fl ection, so we can start 
by determining these points. Likewise the vertex remains at the same  x -value, and 
this may give ideas for an approach. However, students may develop a strategy 
involving translating the graph vertically by −2, then re fl ecting in the  x -axis, and 
then translating vertically by +2. This nicely links the graphical transformations, 
such as a translation and re fl ection, with algebraic concepts  f ( x ) +  k  and − f ( x ), and 
can be accomplished with the CAS (Figure  20.2 ). The correct answer of 
    = - - +2 3 4y x x   is seen in Figure  20.3 , along with the graph(s) in Figure  20.2  to 
check that it works.   
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 Of course the key question is whether one can generalize this, both graphically 
and, more importantly, algebraically. The key idea here is shown in Figure  20.4 . 
Since  g ( x ) is a re fl ection of  f ( x ) in  y  =  k every  point of the plane is re fl ected. Thus for 
a general point ( x ,  f ( x )), distance  n  above the line,  n  =  f ( x ) −  k , and so 
    ( )= - = - - = -( ) ( ) 2 ( )g x k n k f x k k f x   . Hence, the result of re fl ecting the graph of 
a continuous, well-behaved function  f ( x ) in the line  y  =  k  is to obtain a function 
    = -( ) 2 ( )g x k f x   . For example, the re fl ection of the graph of  f ( x ) =  x  3  − 2 x  in the line 
 y  = −1 gives the graph of the function     = - - - = - -3 3( ) 2 ( 2 ) 2 2g x x x x x   . Involving 
students in a few examples with the CAS might serve as a model for them to engage 
with mathematics at this deeper level.   

   Equation and equivalence.   The constructs of number, symbolic literals, 
operators, the “=” symbol itself, and the formal equivalence relation, as well as the 
principles of arithmetic, all contribute to building a deep understanding of equation. 
However, there is evidence (Godfrey & Thomas,  2008  )  that many students have a 
surface structure view of equation (Laborde,  2002  ) , looking  at  the equation rather 
than  through  it (Mason,  1995  ) , and hence failing to integrate the properties of the 
object with that surface structure (Thomas,  2008a  ) . An example of this provided by 
Godfrey and Thomas  (  2008  )  is the way in which an embodied input–output, 
procedural or operational view of equation persists for approximately 25% of 
secondary school students, even when they reach the university level. In addition, 
charting student progress through the concepts, Godfrey and Thomas  (  2008  )  point 

  Figure 20.2.    Using graphs in CAS to con fi rm the re fl ection of function in  y =  2.       
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out that equivalence is not well understood, and that the re fl exive, symmetric, and 
transitive properties forming an equivalence relation are rarely considered in 
schools, even though they are often assumed. 

 For example, when solving an equation we may go from  x  + 6 = 3 x  + 1 to 2 x  + 1 = 6, 
rather than 6 = 2 x  + 1, using the symmetric property applied to the  conditional  equa-
tion. Or we may reason along the lines that if  y  = 2 x  + 1 ( identical  equation, de fi ning  y ), 
then when  y =  0 ( conditional  equation), 2 x  + 1 = 0 ( conditional  equation), employing 
the transitive property to do so. Note that  identical  equations are ones that are true 
for all values of the variable(s) and conditional equations are ones that are true for 
certain values only. However, we may not explicitly highlight these properties, or 
the kinds of equations employed, leaving students to abstract these themselves 
(Godfrey & Thomas,  2008 , p. 89). 

 One study that addressed the issue of CAS use for equivalence, equality, and 
equation in algebra is that of Kieran and Drijvers  (  2006  ) . As they comment about 
equivalence, “On the one hand, equivalence of two expressions relates to the numeric 
as it re fl ects the idea of ‘equal output values for all input values.’ On the other hand, 
the notion of equivalence of expressions from an algebraic perspective means that the 
expressions can be rewritten in a common algebraic form” (Kieran & Drijvers,  2006 , 
p. 214). This is another way of describing the proceptual nature of the symbols (Gray 
& Tall,  1994  )  as having the dual faces of process (input and output) and object 
(expression) (Tall, Thomas, Davis, Gray, & Simpson,  2000  ) . As part of Kieran and 
Drijvers’ experiment, 10th-grade students (15-year-old students) considered the 
equivalence of the expressions in Figure  20.5  and used by-hand techniques to test 

  Figure 20.3.    Using algebra in CAS to re fl ect a function in  y =  2.       

  Figure 20.4.    Generalizing a 
re fl ection in  y = k.        
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their conclusions and tried to “reconcile the techniques in the two media.” The 
researchers describe the different techniques arising from each and arrive at several 
conclusions: 

  Two notions of the equivalence of two expressions can be distinguished: an algebraic view 
as having a common form, and a numerical view on equivalence as having—always, in 
most cases, or even just in some cases – the same numerical output values. The latter view 
is related to the previous item, and is re fl ected in the language issue related to the words 
equivalent and equal. 

 … The issue of restrictions on equivalence is an important theoretical aspect of the concept 
of equivalence. It involves both the particularities of the way the CAS deals with restric-
tions, and the somewhat strange de fi nition—at least possibly strange in the eyes of the 
students—of equivalence involving a set of admissible values. 

 … The relation between solving an equation and the notion of equivalence of expressions, 
and between restrictions on equivalence and solutions of the equation, could be confusing 
for students. Both restrictions and solutions have a sense of “exceptions,” but in a kind of 
complementary way. This issue needs coordination…. (p. 220)   

 The following activity, from Thomas  (  2009  )  was designed to assist students to 
distinguish equivalent equations.

  Which of the following equations have the same solutions? Explain how you worked out 
your answers and write down reasons for your answers. Use a graphic calculator to help you 
work out and support your answers with an explanation.

   (a)        + + = - -2 21 2 3x x x x     
   (b)        + + = - +2 25 2 1x x x x     
   (c)        - + = - -2 21 2 3 3x x x x     
   (d)        + + = - -2 22 1 2 2 3x x x x     
   (e)        + - = + -2 22 3 1 3 5x x x x          (p. 153)   

  Figure 20.5.    Using CAS to consider equivalence of expressions (adapted from Kieran & Drijvers, 
 2006 , p. 216). After they carry out CAS techniques, students compare the results. The purpose is 
to develop understanding of equivalence.       
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 Thomas maintained that the theory underpinning this task is to understand the 
difference between  legitimate transformations  of an equation—those that are 
mathematically correct and preserve the solutions—and  productive transforma-
tions —those that also move rapidly towards  fi nding the solutions. This distinction 
is often not understood by students. Linking to the graphical representation can sup-
port the students’ understanding of the invariance of solutions under legitimate 
transformations.  

   Continuity.   CAS can also help to use algebraic representations to make concepts 
such as limits and connecting limits to continuity (and possibly differentiability) 
more prominent in the curriculum. If we consider, for example the function 

    
2 3
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6 3

x x
f x

x x

ì £
= í

+ >î
  , then the question arises whether the function is continuous at 

 x  = 3. We can de fi ne the function piecewise in the CAS using “De fi ne 
 f ( x ) = piecewise( x ̂ 2,  x   £  3,  x  + 6,  x  > 3)” and get the CAS to draw the graph of the 
function (see Figure  20.6 ). Looking at the left and right limits provides 
corroborating evidence that the limit exists and is equal to 9, which is also clearly 
 f (3) [which is equal to 3 2 ]. If the students know about derivatives, and we are 
beginning to discuss their existence, then getting the CAS to draw the graph of the 
derived function shows clearly the discontinuity in the derived function at  x  = 3. 
Finding the limits con fi rms this (see Figure  20.7 ).   

  Figure 20.6.    Graph of a piecewise-de fi ned function.       
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 One area in which the CAS output needs careful scrutiny involves the continuity 

of functions such as     
-

=
- -

2

2

1
( )

2 3

x
f x

x x
  . Here the graph (see Figure  20.8 ) does not 

show the discontinuity at  x  = −1, although the CAS generates a warning that the 
“Domain of the result may be larger than the domain of the input.” Encouraging 
students to use the CAS to link representations provides the opportunity for further 
insight. The table of values shows that the function is not de fi ned at  x  = −1, and this 
is then con fi rmed by attempting to generate a value for  f (−1). The continuity of 
other interesting functions can be similarly investigated.    

   Extending Procedures 

 In mathematics one of the most important ideas that students need to develop is 
an understanding that all mathematical processes and constructs have conditions or 
limitations that in fl uence their use. For example, consideration of the domain of a 
function is a vital part of its study. One way to build appreciation of this is to extend 
student knowledge by engaging them in areas of mathematics that lie just beyond 
their current understanding. In this section we consider some algebraic examples for 
which CAS may assist with extending procedures to objects beyond those they have 
experienced or by encouraging generalization of procedures. 

  Figure 20.7.    Symbolic and graphical con fi rmation of discontinuity of the derived function at  x  = 3.       
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   Moving toward generalization through extension of factoring.   A task used by 
Kieran and colleagues (Kieran & Drijvers,  2006 ; Kieran & Saldanha,  2008  )  
considered the use of the factoring command in CAS to get students to move towards 
a generalization regarding the factorization of ( x   n   − 1). Students worked in both 
directions, factoring expressions of the form   ( x    j   − 1), for  j  = 2, … 6, and expanding 
    - + - + +2( 1)( 1), ( 1)( 1)x x x x x   , and so on. The outcomes suggested that:

  The notion of complete factorization can come to the fore as soon as students attempt to 
factor an expression with a non-prime even exponent, such as  x  4  − 1, according to the gen-
eral rule [using only a factor of  x  − 1], and are confronted with a CAS factorization that they 
do not anticipate [e.g., ( x  − 1)( x  + 1)( x  2  + 1)]. (Kieran & Drijvers,  2006 , p. 243)   

 Thus by-hand techniques are helpful in reconciling these differences. In turn this 
can elicit further conjectures, such as ( x  + 1) is always a factor of ( x   n   − 1) for even  n , 
which then requires proof. Kieran and Drijvers proposed that this CAS-based 
approach led to theoretical development for the students in at least four areas:

    1.    Resolution of the con fl ict between by-hand and CAS results led to enhanced 
theoretical perception of the structure of expressions of the form ( x   n   − 1).  

    2.    Noticing in CAS output structure that they had not noticed in prior examples.  
    3.    Improved re fl ection through tentative conjectures based on the examples they 

generated, and testing the conjectures by means of CAS techniques.  
    4.    Deepening of theoretical thinking involving the coordination and integration of 

several discrete pieces of theory.     

  Figure 20.8.    Con fi rmation that the function is not de fi ned at  x  = −1.       
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 The researchers conclude that technique and theory emerge in mutual interaction, 
with CAS playing a crucial epistemic role.  

   Extending polynomial investigations.   One general question in engaging 
students in investigations with CAS is whether activities should start with a general 
case or not. Since the CAS allows one to consider such cases, for example a cubic 
    + + + =3 2 0x ax bx c   , it is tempting to make this a starting point. However, there 
appears to be a stronger case for beginning with speci fi c examples, encouraging 
students to form conjectures and gradually to motivate them to move their thinking 
towards the general cases, as seen in the previously described example from the 
research of Kieran and Drijvers. This again relates to the Task–Technique–Theory 
(TTT) framework that Kieran and Drijvers  (  2006  )  espoused, based on ideas from 
Artigue  (  2002  )  and Lagrange  (  2002,   2003  ) , namely that it is through the construction 
of techniques required to perform tasks that the understanding of mathematical 
objects arises, often through the production of new questions. This deepening of 
understanding may also arise through re fl ective comparison of the technique with 
other techniques (Lagrange,  2003  ) . This is precisely the epistemic role of 
techniques. 

 Most school students will at some time be shown the formula for the solutions of 
a quadratic equation. However, if we are thinking about using CAS to extend what 
may be considered, then the zeros of a cubic function (or the solutions of a cubic 
equation) should be a topic for investigation. Careful structuring of the process of 
considering the Tartaglia-Cardano method of solution may be needed, but this 
investment would allow for a valuable extension of algebraic thinking and capabil-
ity. For example, given the cubic equation:

     + - + =3 23 6 9 0x x x     

 (with some discussion of why the coef fi cient of  x  3  is 1) one could ask how a general 
method to solve such an equation could be derived (rather than using a black-box 
approach), and what mathematics would arise from doing so. 

 Using the CAS we can de fi ne the function  f  such that     = + - +3 2( ) 3 6 9f x x x x   . 
Then our  fi rst task is to remove the term in  x  2 . This can always be done and the result-
ing production of a depressed cubic is the  fi rst fundamental idea in the Tartaglia-
Cardano method of solution. This draws nicely on the mathematical idea of composite 
function, which is usually introduced in school but may often  fi nd few applications. 
Here we want to  fi nd a  k  such that  f ( z  +  k ) avoids a term in  z  2 . Students could experi-
ment until they  fi nd one that works (see Figure  20.9 ). Trying other cubics they will 
be asked to generalize and  fi nd a “rule” for a substitution that works. In fact for

    = + + +3 2( )f x x ax bx c  , making the substitution     = -
3

a
x z   (which can be done

relatively easily with the CAS to con fi rm the generalization) gives 

     

æ ö æ ö æ ö æ ö- = - + - + - +ç ÷ ç ÷ ç ÷ ç ÷
è ø è ø è ø è ø

3 2

.
3 3 3 3

a a a a
f z z a z b z c
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 And this can be seen to result in an equation of the form  z  3  +  mz  +  n  = 0, as shown in 
the example in Figure  20.9 . 

 Then we may ask how do we solve this equation? Why is it easier than the original 
one? Here is where the beauty of the method comes in. If we let  z  =  u  +  v  then, as 
Figure  20.9  shows,  g ( u  +  v ) does not, at  fi rst sight look very useful, and trying to 
factor with the CAS does not work. But factoring the terms other than  u  3 ,  v  3 , and 17 
is the key to the method (although seeing why it would be useful requires a leap of 
insight in the original formulation), since it gives a “nice” factorization. It is this that 
suggests the idea of setting     = 3uv   to remove these terms (but why?). Doing so we 
can reduce the cubic to a quadratic and hence  fi nd the solution. At each stage of a 
number of examples the student is encouraged to ask “Is this a special case or will 
it always happen?” and to  fi nd evidence to support their conclusions. 

 One may ask, why bother to do this when the original cubic can be solved on the 
CAS in an easy step? We remind the reader who thinks this way of our second prin-
ciple above. Using CAS to investigate a method such as the one just described will 
lead students to engage in mathematical thinking and reasoning and will divert 
attention away from a purely answer-driven approach to mathematics. 

 Another area whereby known procedures can be extended is that of solving 
Diophantine equations. Of course, Pythagoras’ theorem could be the springboard 
for this since it is often studied and there are readily accessible integer solutions to 
 x  2  +  y  2  =  z  2 . Although, as has been proved by Andrew Wiles (and as was stated in 
Fermat’s Last Theorem), there are no other integer values of  n  > 2 for which any 
triple ( x, y,   z ) of non-zero integers, gives a solution for  x   n   +  y   n   =  z   n  , there are similar 
looking equations that do have positive integer solutions. One of these,  x   n   +  y   n   =  z   n+ 1 , 

  Figure 20.9.    TI-Nspire computer screen of the Tartaglia–Cardano method of solving cubic 
equations.       
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which is accessible with CAS, was described by Hoehn  (  1989  ) . Once again we 
might start with a particular equation, say  x  2  +  y  2  =  z  3 , and ask students to try to  fi nd 
a solution using the CAS. A function of two variables could be de fi ned (see 
Figure  20.10 ), introducing a new mathematical construct. After a few trial-and-error 
attempts using  x  = 1 or 2, the use of a spreadsheet with values of  n  2  and  n  3  could help 
to  fi nd two of the squares that add up to a cube (for example  x  = 2,  y  = 2 and  z  = 2 may 
be seen immediately). In this way  x  = 5 and  y  = 10 can also easily be found. Hence, 
there is at least one solution. If students start to  fl ounder, then some teacher direc-
tion could suggest trying something of the form  f ( ak ,  bk ) for given integers  a  and  b . 
However, the teacher might aim for this conjecture to come from the class.  

 In Figure  20.10  we can see examples with  a  = 2 and  b  = 3, and  a  = 3,  b  = 5. Now in 
each case we get an answer of the form  ck  2  and since we are looking for something 
of the form  z  3  the idea is to set  c  =  k , giving  k  3 . We soon get some large values and 
the spreadsheet could be extended to check     3 39304   , and so on, or the CAS will do 
it even better. So now the generalization question comes into play. Will this always 
work? With the CAS we can try general  a  and  b  of course, as seen in Figure  20.10 . 
In this case it still works if we set  a  2  +  b  2  =  k , and the  fi nal step shown in the CAS 
screen shows that this gives  z  3 , with  z  =  a  2  +  b  2 . 

 The  fi nal step of a complete generalization to the solution of  x   n   +  y   n   =  z   n  + 1  is likely 
to be a step too far for all but the most able school students, but we comment on it 
here for the sake of completeness and the principle of generalizing results. 
Figure  20.11  shows an attempt to use the TI-Nspire to apply the same method as above. 

  Figure 20.10.    CAS screens showing a method of solving  x  2  +  y  2  =  z  3 .       
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De fi ning a function  h ( x ,  y ) =  x   n   +  y   n   and considering  h ( ak ,  bk ) with  k  = ( a   n   +  b   n  ) leads 
to the expression     + + +( ( )) ( ( ))n n n n n na a b b a b   , which by hand can readily be seen 
by an experienced eye to factor to     + +( ) ( )n n n n na b a b   and hence equal     ++ 1( )n n na b   . 
However, the TI-Nspire program does not seem to be able to cope with this factor-
ization, making this a good example to help the students to see that CAS has its limi-
tations and to realize that they cannot rely on it to do everything for them. Thus, in 
the above manner, for a given  n , we can construct solutions of  x   n   +  y   n   =  z   n +1 . One 
example with  n  = 5,  a  = 3 and  b  = 7 is shown in Figure  20.11 , where we see evidence 
that 51150 5  + 119350 5  = 17050 6 .  

 The previous examples focussed on determining solutions to given equations. 
Tasks that require the generation of equations with particular features, including 
given solutions, are another way in which work with polynomial functions might be 
extended. Relatively early in their experience with factoring polynomials and solving 
equations, students might be asked the following task, from Böhm  (  2007  ) :

  Given is a set of solutions L = {3, −1, 1/2} 
 Find two equations of degree 5 with L = set of solutions. (p. 3)   

 Although a CAS Solve command or graphical means could be applied in the 
hope of determining solutions for an equation of degree 5, the CAS work needed to 
generate an equation from information about the solutions is not obvious, especially 
to beginning algebra students. Figure  20.12  shows what we might do as starting 
points for symbolic, tabular, graphical approaches.  

 We know other things that are possible or not possible in each approach. 
For example, the complete symbolic form is ( x  − 3)( x  + 1)( x  − 1/2)( x  −    )( x  − ) = 0 
where each box represents one of 3, −1, and 1/2. Choosing one of the solutions for 
each of the boxes produces an equation that satis fi es the conditions. 

 The question of producing two equations that meet the conditions then allows for 
generalization at a level appropriate for students.    For example, we could see how 

  Figure 20.11.    CAS screens showing a method of solving  x   n   +  y   n   =  z   n +1 .       
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many distinct equations are possible when the equation ( x  − 3)( x  + 1)( x  − 1/2)( x  − )
( x  − ) = 0 is expressed in expanded form. The results of testing all nine combina-
tions of two solutions and looking for distinct results could be done with nine CAS 
Expand commands or, as shown in Figure  20.13 , with a CAS-generated table.  

 The task provides an opportunity for predetermining two or more distinct equa-
tions but also to characterize the number and nature of possible equations by reason-
ing symbolically. Filling both boxes with one of the three solutions yields three 
distinct quintic expressions. Filling the two boxes with different solutions yields 
three more distinct quintic expressions. So, there are six possible equations of the 
form     + + + + + =5 4 3 2 0x bx cx dx ex f   that satisfy the given conditions. 

 To this point, an underlying assumption might be that the equation is in the form of 
a polynomial of degree 5 with leading coef fi cient 1 set equal to 0. Students familiar 
with factoring might produce additional equations by using a constant factor with 
the quintic polynomial.    In fi nitely many more are possible when any nonzero real 
number,  k , is used as a factor, as in the expression  k ( x  − 3)( x  + 1)( x  − 1/2)( x  − )
( x  − ) = 0 or     + + + + + =5 4 3 2 0kx kbx kcx kdx kex kf   . 

 Graphically, as in Figure  20.14 , we could think about the situation in terms of 
behaviour at each of the three points. If it touches the  x -axis at one point, then it 
must touch without crossing at another point and simply intersect at the third point; 
there are three ways in which this can happen. If the graph has an in fl ection point at 
one point, it simply crosses at the other two, which happens in three ways. If the 
graph simply crosses at one point, we  fi nd it falls into one of the other two cases. 

  Figure 20.12.    Initial symbolic, graphical, and table attempts to produce an equation of degree 5.       

 



618 Heid, Thomas, and Zbiek

As with the symbolic form, we have six general patterns and the graph can draw 
attention to the meaning of the solution set. Taking amplitude into consideration, we 
have the effects of the constant factor and in fi nitely many choices.  

 Böhm’s task requires students to think about characteristics of equations and 
their solutions. Extending the task with a question about the number and nature of 
possible equations yields a generalizing experience in elementary algebra.   

  Figure 20.13.    Testing nine symbolic options using a CAS-generated table to determine six distinct 
results.       

  Figure 20.14.    Graphs representing quintic functions which lead to six different equations.       
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   Exploring “New” Structures 

 Using CAS there is an opportunity to investigate the structure of other “abstract” 
algebras where the “rules” or axioms governing the structure of the algebra of gen-
eralized arithmetic no longer apply. It can demonstrate that the rules that we take for 
granted do not extend to all systems. In introducing the following examples we employ 
some of the appropriate mathematical language describing the structures, although 
teachers may not want to use this language with students. Some examples are:

    1.    Students expect  AB  =  BA ; that is, that multiplication is commutative;  
    2.    Students expect  AB  = 0 if and only if  A  = 0 or  B  = 0, since there are no non-zero 

divisors of zero.  
    3.    Extending 2 we can see we expect that if  AB  −  AC  = 0 then  A ( B  −  C ) = 0 and  A  = 0 

or  B  =  C .     

 Using CAS it is easy to set up a situation for which this can be investigated. For 
example we may consider the following 2 by 2 matrices:

     
- - - -æ ö æ ö æ ö æ ö æ ö

= = = = =ç ÷ ç ÷ ç ÷ ç ÷ ç ÷-è ø è ø è ø è ø è ø

1 2 3 8 5 2 2 1 4 4
, , , ,

3 6 2 3 1 2 3 3 2 2
A B C D E     

 Using a CAS, students can generate the products,  AE ,  BD ,  DB ,  AB , and  AC,  and 
can  fi nd that  BD   ¹   DB ,  AE  = 0 even though  A   ¹  0 and  E   ¹  0, and  AB  =  AC  even though 
 A   ¹  0 and  B   ¹   C .

     

3 8 2 1 18 27

2 3 3 3 13 7
BD

- - - -æ ö æ ö æ ö
= =ç ÷ ç ÷ ç ÷è ø è ø è ø    

     

2 1 3 8 4 19

3 3 2 3 15 15
DB

- - -æ ö æ ö æ ö
= =ç ÷ ç ÷ ç ÷è ø è ø è - ø   

     

1 2 4 4 0 0

3 6 2 2 0 0
AE

- -æ ö æ ö æ ö
= =ç ÷ ç ÷ ç ÷è ø è ø è ø    

     

1 2 3 8 7 2

3 6 2 3 21 6
AB

- -æ ö æ ö æ ö
= =ç ÷ ç ÷ ç ÷è ø è ø è - ø    

     

1 2 5 2 7 2

3 6 1 2 21 6
AC

-æ ö æ ö æ ö
= =ç ÷ ç ÷ ç ÷è ø è - ø è - ø     

 Then students can be asked to state a conjecture and continue their investigation, 

possibly considering a proof of it, using, for example,     
æ ö

= ç ÷
è ø

a b
A

c d
  . For instance, 

they may  fi nd that in the ring of 2 by 2 matrices the zero divisors are singular, that 
is, with determinant 0. Questions arise about whether the order matters for the zero 
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divisors, and they may  fi nd that there are left and right zero divisors (e.g., we can 
ask whether we can  fi nd two non-zero matrices  P  and  Q  such that  PQ  = 0 but  QP   ¹  0). 
Figure  20.15  shows that this is possible.    

   Thinking and Reasoning that CAS 
Use Inspires or Requires 

 A striking feature of the examples in the previous section of how CAS allows 
students to engage with new concepts is the extent to which the mathematical work 
involves generalization, including generalization of properties, strategies, and other 
relationships. As Arcavi  (  1994  )  observed, CAS is “a tool for understanding, express-
ing, and communicating generalization, for revealing structure, and for establishing 
connections and formulating mathematical arguments” (p. 24). The impact of CAS 
on thinking about connections and formulating arguments can be considered in 
terms of the objects about which students reason and the tools they employ in their 
reasoning. 

   Objects About Which to Reason 

 Reasoning opportunities with CAS seem to be related to the tool’s multiple repre-
sentation capacity. We begin with perhaps the most enticing CAS aspect—possibilities 
in the symbolic register. 

   Symbolic representations.   Arguably the most documented type of CAS-
generated opportunity for reasoning about symbols is the resolution of unanticipated 
symbolic results. Reasoning stems from the need to compare CAS-produced results 
to by-hand results or to a desired informative equivalent symbolic form. Alonso and 
colleagues  (  2001  )  provided several examples of unexpected results and their use to 
encourage students to reason about the results and about how they are using CAS. 

  Figure 20.15.    TI-Nspire computer screen showing left/right zero divisors with determinant zero.       
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The duality of reasoning about mathematics and about CAS functions is a common 
theme in CAS literature. 

 A related though less frequently mentioned reasoning opportunity is conjec-
turing and justifying theorems that underlie CAS procedures. Dana-Picard  (  2007  )  
drew attention to CAS commands that are implementations of theorems that do not 
typically appear in course syllabi. Her examples include Derive’s use of the follow-
ing theorem when computing     

π
= ò

2

0

n
nI x x

/
sin d ,     

     

-

-

+ +
+ ® -

-
+ +

ò

ò

1

2

SIN( · ) ·COS( · )
SIN( · )

·

1
· SIN( · )

p
p

p

a x b a x b
a x b dx

a p

p
a x b dx

p     

 (p. 223)   

 Supported by evidence of student symbolic reasoning, Dana-Picard contended 
that the user needs to learn new mathematics in order to understand well the CAS 
process. She referred to these situations as  motivating constraints,  and she con-
tended, despite the connotation of “constraint,” that these situations can be used to 
push the user towards mathematical insight. Her construct of motivating constraint 
is an addition to Guin and Trouche’s  (  1999  )  extension of Balacheff’s  (  1994  )  ideas 
regarding  internal constraints  of the hardware,  command constraints  of the soft-
ware, and  organization constraints  of the interface. Dana-Picard’s example illus-
trates how CAS features can motivate identi fi cation and justi fi cation of theorems 
beyond the standard syllabi. 

 Other uses of CAS can help develop student understanding of symbols and sym-
bolic reasoning. Cedillo and Kieran  (  2003  )  detail an experiment in which beginning 
algebra students generated the algebraic code needed for a CAS to produce given 
numerical patterns (e.g., input numbers 1, 4, 6, 9 with corresponding output num-
bers 1, 7, 11, 17). Students tested the code and used CAS results to revise it. Results 
of the study indicate that students developed the notion of “a letter as ‘serving to 
represent any number’” (p. 231). In this case, reasoning about symbols while using 
CAS was the means by which concepts were developed. 

 As another example of reasoning about symbols while using CAS, consider the 
following task from McMullin  (  2003  ) :

  Use the sequence operation to produce the sequence 3, 6, 9, 12, 15 as many different ways 
as you can. (p. 268)   

 Multiple possibilities, including several suggested by McMullin, appear in 
Figure  20.16 . The reasoning for a beginning algebra student that produces each of 
the options could include simply replicating the terms, attending to a linear pattern, 
and considering multiples of three—as exempli fi ed in the  fi rst three lines of 
Figure  20.16 . Subsequent examples indicate how the task could be differently han-
dled with additional mathematics experience.  

 Similar to activities used by Cedillo and Kieran, this task engages students’ 
understanding of equivalence through the production of CAS code. The concept 



622 Heid, Thomas, and Zbiek

under consideration in this case is not only sequence but also equivalence. The CAS 
seq expressions are equivalent because they represent the same  fi nite sequence, 
although the de fi ning expressions (e.g.,  n , 3 n ,  n  sin(0.5 p ), 20 −  n ) are not necessarily 
equivalent. These examples underscore the need to understand symbols both as 
algebraic expressions and as CAS code. They also highlight the importance of dis-
tinguishing among the mathematical objects being represented (in this case, 
sequences and expressions). 

 Attention to symbolic understanding and the symbolic capacity of CAS fore-
grounds consideration of symbolic sense. According to Arzarello and Robutti 
 (  2010  ) , who built on Arcavi’s  (  1994  )  notion of symbol sense as they described 
students working with handheld CAS,

  Students have symbol sense if they are able, for example: to call on symbols in the process 
of solving a problem and, conversely, to abandon a symbolic treatment for better tools; to 
recognize the meaning of a symbolic expression; and to sense the different roles symbols 
can play in different contexts. (p. 720)   

 Arzarello and Robutti claimed that the symbolic power of a CAS-empowered 
spreadsheet supports the development of symbol sense in a way that tables of 
numerical examples cannot. Examples of student work—including the spontaneous 
use by two students—supported their claim. In generating a table of numerical val-
ues for second differences of  y  =  ax  2  +  bx  +  c  for integer values of  x  from 0 to 15, 
students could see a constant numerical second difference (e.g., −4) for a speci fi c 
quadratic case. However, a table of symbolic results for second differences for 
 x -values of  x  

0
 ,  x  

0
  +  h ,  x  

0
  + 2 h , …,  x  

0
  + 15 h  showed that the constant difference in 

the general case was 2 ah  2 . CAS results made it easier for students to see symbolic 
patterns and then reason about them. 

 Reacting to CAS results that are produced in intended or spontaneous ways 
appears useful in helping students to develop meaning for symbols as they reason 
with and about these results. Some of the observations in the symbolic register seem 
to have parallels in other registers. For example the potential of immediate feedback 
has long been acknowledged in other registers, such as its impact in graphical tasks 

  Figure 20.16.    Sequence commands that yield 3, 6, 9, 12, 15.       

 



62320 Computer Algebra Systems, and Algebra in the Curriculum

(e.g., Ruthven,  1990  )  and geometric environments (e.g., Hillel, Kieran, & Gurtner, 
 1989  ) . We turn now to consideration of how CAS facility with graphical representa-
tions generates opportunities and supports reasoning.  

   Graphical representations.   Graphical reasoning can be an alternative to symbolic 
reasoning, but connecting graphical and symbolic actions and results is one way in 
which CAS use provides opportunities that transcend affordances of simpler graphing 
utilities. For example, recall the reasoning with transformations of functions in the 
example of re fl ecting a quadratic about a horizontal line. Students could reason 
graphically about translating the graph vertically by −2 then re fl ecting the result in the 
 x -axis and then translating that result vertically by +2. Application of this reasoning to 
the graph as a set of points using three points to generate a quadratic expression connects 
graphical and symbolic images in a solution that crosses registers. 

 A second example of integrated graphical and symbolic reasoning involves 
solving equations by graphical intersection. Such methods generalize to equations 
for which symbolic methods are not available. Zbiek and Heid  (  2011  )  illustrated the 
reasoning process that draws on characteristics of functions to reason through a 
solution for ln  x =  5 sin  x  that required manipulating graphical images, acknowledg-
ing approximate nature of values, and reasoning about the behaviour of the loga-
rithmic and trigonometric functions. Reasoning graphically allows students to 
expect and identify intersection points beyond those that are produced by a direct 
solve command (see Figure  20.17a ) or that appear in a typical viewing window 

  Figure 20.17.    Typical direct solve results ( a ) and viewing window image ( b ) suggesting three approx-
imate solutions for ln  x =  5 sin  x .       
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(see Figure  20.17b ) and to justify why there is a  fi nite number of solutions. By reasoning 
about the monotonic behaviour of the logarithmic function in contrast to the bounded 
values of the sine function, students concluded that, although there are many solu-
tions that they can illustrate by scrolling to see what happens for larger values of  x , 
there are not in fi nitely many solutions. They also came to terms with the dif fi culty 
of representing the solutions in compact symbolic forms due to their non-periodic 
values. Although it might seem that reasoning about graphs overshadows symbolic 
reasoning in this example, there are two important elements that symbolic forms 
offer. First, reasoning about properties of functions requires the symbolic forms. 
Unlike graphs that provide only approximate values and convey a function relation-
ship for only a subset of a domain, symbolic forms provide the needed speci fi city 
for con fi dence in the argument. Second, examples like this provide opportunities for 
students to experience instances in which symbolic forms (or graphical forms) fall 
short as they coordinate among different techniques.  

 Graphical reasoning related to equation solving might be done not only to identify 
solutions but also to make sense of how properties of real numbers and properties of 
equality are used to make sense of steps in symbolic procedures. For example, Zbiek 
and Heid  (  2011  )  assumed a beginning algebra context and use the equation 
6 x  + 3 = 12 + 3 x  to illustrate how these two types of properties differently affect the 
values of the two expressions but not the solution of the equation. Figure  20.18a  
contains a set of steps executed with CAS. The sequence of graph pairs of the mem-
bers of each equation appears in Figure  20.18b–f .  

 Figure  20.18b, c  shows that application of properties of real number operations 
does not change the graphs, as it does not change the values of the expressions for 
any value of  x . In contrast, Figures  20.18d–f  illustrate that application of properties 
of equality leave the solutions unchanged but expression values changed. A com-
parison of these two types of graphical situations illustrates differences as well as the 
relationship between equivalent expressions (produced by application of properties 
of real numbers) and equivalent equations (produced by application of properties of 
equality and properties of real numbers). 

 CAS-supported reasoning across graphical and symbolic domains can target 
aspects of student understanding other than equation solving and problem solving. 
Kidron  (  2010  )  shared an example of a discussion of resolving a de fi nition of 
horizontal asymptote in a calculus course. Nathalie, who previously offered exam-
ples and rules but not a de fi nition for asymptote, was asked what an asymptote is. 
The college calculus student then worked through a specially designed set of tasks 
to challenge her concept image of asymptote. Kidron described how Nathalie’s 
understanding progressed beyond her initial notion of asymptote as “some kind of a 
line” such that the “function tends to it—not touching it, but approaching it.” Tasks 
provided instances in which a graph intersected a horizontal asymptote and in which 
there were in fi nitely many such intersections. As a result, Nathalie revised her 
concept de fi nition to acknowledge that “‘tending to’ is not only when the graph of 
the function looks like a line which approaches steadily the asymptote, but when the 
value of the function at in fi nity equals some number, approaches some speci fi c 
value.” From this example, we suggest that tasks that challenge concept images 
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through the use of graphical representations can help students develop and under-
stand rich, symbolically stated de fi nitions in addition to common and generalized 
symbolic solution methods. Reasoning supports symbol sense while capitalizing on 
CAS multiple representation capacity in developing techniques.   

  Figure 20.18.    Symbolic ( a ) and graphical ( b–f ) representations of steps in solving 6 x  + 3 = 12 + 3 x .       
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   Tools for Reasoning 

 Although CAS, with its symbolic emphasis and multiple representation capacity, 
has potential as a tool for reasoning, recent technology developments raise new 
questions. Use of the previously mentioned CAS-generated tables whose elements 
can be symbolic algebraic expressions is one way in which students have expedient 
ways to generate multiple instances within and across registers. 

   Dynamically linked representations.   CAS environments feature not only 
multiple representations but also dynamically linked representations in ways that 
allow users to progress quickly through multiple examples by clicking or dragging 
an element of one representation and seeing corresponding changes in other 
registers. Scholars working outside of CAS environments (e.g., Hegedus & Kaput, 
 2007  )  have emphasized the potential of dynamically linked representations to allow 
students to see how a phenomenon in one representation might not be apparent in 
another. Duncan  (  2010  )  indicated that teachers believe that linked dynamic 
representations provide students with evidence to support their reasoning. As Kieran 
 (  2007  )  noted, research on effects of controlled change on dynamically linked 
representation is an underdeveloped research domain. 

 Relating both dynamically linked representations and reasoning about results 
come into play as users can generate multiple values of a parameter by manipulating 
a “slider.” Zbiek and Heid  (  2001  )  provided an example with a task that was initially 
developed in a dynamic geometry setting and was subsequently moved to a CAS 
slider environment. Students used sliders to explore the family of functions gener-
ally represented by     = + +( ) / (1 )cxf x a be d   , where  a ,  b ,  c , and  d  are real numbers. 
When students dragged a slider to change the value of  b  (as represented by the 
sequence of graphs in Figure  20.19 ), they observed a sudden “break” in the graph. 
The surprise was not as striking when produced with static selection of particular 
values for the parameter in the absence of a slider. Spurred by the sudden event in 
the dynamic setting, students reasoned symbolically to justify why such a break 
would occur. Although empirical research is not extensive, dynamically linked rep-
resentations have promise as tools to elicit and support reasoning that links the 
symbolic register to other registers.   

   Integrated technology environments.   Dynamic elements underlie questions 
that might be leading CAS-focussed researchers to work in broader technology 
environments. Lagrange and Chiappini  (  2007  )  describe the work of two research 
groups with digital tools that blend CAS with other dynamic elements. A promising 
feature of one of the artefacts, Cassyopée, 1  is its inclusion of geometry and a 
connection of algebra to other domains. The integrated or linked nature of 
representations with current CAS leads to the question of how one reasons within 
and across different representations. Lagrange and Gelis  (  2008  )  describe two lesson 

   1   Cassyopée is the spelling used in the referenced paper.  
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  Figure 20.19.    Sequence of 
graphs representing dragging 
slider to change the value of 
 b  in     = + +( ) / (1 )cxf x a be d   .       
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sets from the Casyopée project, a project involved in adapting or altering CAS 
to allow students a way to access mathematical symbols. The lessons target 
dif fi culties that students have with function ideas (e.g., notation, covariation, linked 
representations). CAS allows for geometrical calculations and parameter 
manipulation and supports conjecturing and proving, allowing symbolic work to 
go with graphical work. Lagrange and Gelis not only  fi nd the CAS connection to 
dynamic geometry in Casyopée important but they also note that a notepad feature—
which is a communication medium rather than a mathematical one—allows users to 
give an account of their work, which is particularly useful for proof work. 

 As illustrated in these last instances, current research on the nature and potential 
of CAS is now conceptualized in terms of broader technology environments. Given 
the evolution of CAS technology, we question what to call tools that include CAS 
capability among a more extensive suite of tools. Holton, Thomas, and Harradine 
 (  2009  )  use  collection of technologies  (COT) rather than CAS to label calculators 
and computer software with symbolic manipulation in addition to other capabilities. 
Pierce and Stacey  (  2010  )  refer to calculators or computer software that perform 
algorithms necessary to execute routine procedures from any branch of mathemat-
ics, including but not limited to algebra, as  mathematics analysis software  (MAS). 
The examples of reasoning in CAS environments that appear in the literature suggest 
the potential of COT or MAS to support reasoning across registers about algebraic 
entities and their counterparts in other areas of mathematics.    

   Role of Algebra in the School Curriculum 

 We described three foci central to CAS research, theory, and practice: the interac-
tion of concepts and skills, the concepts that can be approached with CAS, and the 
thinking and reasoning that CAS inspires or requires. With these themes from the lit-
erature and issues around teachers and other factors as background, we turn to the 
question of how CAS change the role of algebra in the school curriculum. Multiple 
perspectives, approaches, and conceptions of algebra are represented in the literature, 
including algebra as: generalization (Lee,  1996 ; Mason,  1996  ) , a study of function 
(Chazan & Yerushalmy,  2003 ; Fey & Heid,  1995 ; Heid,  1996 ; Mayes,  2001 ; Yerushalmy 
& Chazan,  2002  ) , a problem-solving tool (Bednarz & Janvier,  1996 ; Rojano,  1996  ) , a 
study of structure (Cuoco,  2002  ) , and a modelling tool (Nemirovsky,  1996  ) . 

 Introducing CAS into algebra seems to have a direct effect on a functions 
approach to algebra. Multiple and now dynamically linked symbolic forms, graphs, 
and tables facilitate the study of functions. The ease of sliders and other tools to 
study parameter effects facilitates exploration of function families. Most CAS work, 
like the examples previously reported, involves functions and clearly enriches a 
functions approach to algebra. However, CAS also enriches other views of school 
algebra. The capability to construct and alter different symbolic expressions yields 
modelling possibilities. The ability to build and manipulate complex expressions 
and the new concepts introduced encourage generalization. Symbolic results to 
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interpret and control provide a venue for algebra as a study of structure. In short, 
CAS allows each of the views of algebra that we have identi fi ed to be enriched. 

 Many of the examples we have provided have focussed on school mathematics 
that is likely beyond the capability of beginning algebra students. However, entire 
curricula have been constructed for beginning algebra students based on the premise of 
availability of CAS. The aforementioned CIA (Fey & Heid,  1995  )  curriculum is an 
example. In the case of the CIA curriculum, integration of CAS allowed the devel-
opment of a curriculum that took as its central theme the construct of function. 
For example, solutions of linear equations were taken as the input value,  x , for the 
point of intersection of the functions de fi ned by  f ( x ) and  g ( x ). Equations in two 
unknowns were viewed as statements about the relationship between two functions 
of two variables. [See Heid,  1996 , for results regarding student learning in the 
context of the CIA curriculum.] Through attention to blended concepts and proce-
dures, techniques, and new concepts, CAS supports more seamless thinking across 
arithmetic, algebra, and calculus. Newer CAS-inclusive technologies allow other 
areas of mathematics, such as geometry and data analysis, to be more closely tied to 
the symbolic power of algebra. The impact of CAS on the role of algebra in the 
school curriculum seems to be as a means to make symbolic work more prevalent as 
students blend procedures and old and new concepts and reason symbolically across 
the mathematics curriculum and within the sciences.  

   Issues Related to Implementation of CAS 

 In this section we brie fl y address some of the issues that may arise when teachers 
consider implementation of CAS in their classroom. These include unfavourable 
attitudes of students, their parents, and society in general regarding the use of CAS 
calculators in mathematics teaching; the in fl uence of external assessment practice 
on CAS use; the problems inherent in integration of CAS into current practice; and 
especially, the attitude and capabilities of the teachers themselves and the changing 
dynamics of the didactic contract when CAS is present. This last issue covers a 
number of aspects that must converge to enable the kinds of conceptual use of CAS 
previously described. 

 One issue with regard to CAS use relates to student attitudes, which in turn may 
tend to re fl ect those of parents and of society in general. The common misconception 
that use of any calculator is detrimental to the acquisition of mathematical skills 
appears widespread and persistent. A number of studies have demonstrated that a 
signi fi cant minority of students show some resistance to CAS use, often because they 
are satis fi ed with by-hand methods, or believe that this is the only proper way to do 
mathematics (Ball & Stacey,  2005 ; Pierce, Herbert, & Giri,  2004 ; Stewart,  2005  ) . In a 
study of university students using computer-based CAS, Stewart, Thomas, and Hannah 
 (  2005  )  categorized student attitudes toward CAS, describing one group whose 
 members are openly opposed to computers and believe strongly in the superiority of 
by-hand work for doing and understanding mathematics. They also described students 
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who use CAS primarily for checking by-hand answers, a practice that has also been 
noticed among school students (Stewart & Thomas,  2005 ; Thomas & Hong,  2004, 
  2005b  ) . 

 Researchers have identi fi ed a number of factors that in fl uence teacher adoption 
and implementation of technology in mathematics teaching. These include, for 
example, previous experience in using technology, time, opportunities to learn, pro-
fessional development, access to technology, availability of classroom teaching 
materials, support from colleagues and school administration, pressures of curricu-
lum and assessment requirements, and technical support (Forgasz,  2006a ; Goos, 
 2005 ; Thomas,  2006  ) . Hence, although teachers may acknowledge that technology 
such as CAS may be used to improve students’ learning, many teachers perceive a 
variety of barriers to the use of the technology (Pierce & Ball,  2009  ) . Forgasz 
 (  2006a  )  lists access to computers and/or computer laboratories as the most prevalent 
inhibiting factor, with lack of professional development and technical problems, 
including lack of technical support next. Thomas  (  2006  )  agrees, citing availability 
of technology as the major issue, followed by a lack of resources, training, and 
con fi dence. There is also some evidence that a teacher’s personal beliefs, values, 
and attitudes related to mathematics and technology, what Schoenfeld calls  orienta-
tions  (Schoenfeld,  2008,   2011  )  could in fl uence perspectives on obstacles to CAS 
use. Positive orientations include a strong belief in the value of technology in learn-
ing mathematics, con fi dence in using technology to teach, enjoyment of technology, 
and an openness to personal learning (Forgasz,  2006a ; Hong & Thomas,  2006 ; 
Pierce, Stacey, & Wander,  2010 ; Thomas & Hong,  2005a  ) . Schoenfeld  (  2011  )  holds 
that the teachers’ orientations not only shape the goals that they set but also the 
priority attached to the goals. Schoenfeld further posits that, once the teacher has 
oriented herself and set goals for the current situation, she then decides on the direc-
tion necessary to achieve the goals, and calls on the resources, including technology, 
to meet them. Goals can emerge in the process of teaching, and Monaghan  (  2004  )  
claims that the presence of technology can in fl uence goals that emerge during a les-
son. Once the goals have been set decisions are made in order to meet them, and it 
is the quality of this decision making that affects how successful a teacher is in 
attaining the goals. Since the whole process is underpinned by teacher beliefs as a 
major part of their orientations, there is a need to focus on what teachers believe 
about technology use, and how this may change over time (Lagrange et al.,  2003  ) . 
Whereas beliefs are generally stable, and so attempts to in fl uence them have to be 
long term, appropriate, targeted professional development may be able to shift 
beliefs about technology, leading to more positive use, as has been noted in other 
areas (Paterson, Thomas, & Taylor,  2011  ) . 

 The pressure teachers are under to have their students perform well on external 
assessment has a strong in fl uence on what they do, or do not do, in the classroom. 
Many feel that there is a time burden associated with adding technology to their 
already overcrowded lessons. This perspective is unlikely to change unless CAS use 
in examinations is sanctioned by educational authorities. Two issues that come to 
the fore with regard to using CAS in examinations are,  fi rst, the effect on what is 
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actually being assessed, given the capability of the calculators, and second, the per-
ceived lack of equality of access caused by the cost of handheld CAS. The latter was 
reported by Thomas and colleagues  (  2008  )  to be of only minor concern to teachers 
surveyed in New Zealand, but the same research showed that the former does worry 
teachers. There has been research on the use of CAS in examinations, much of it 
emerging from Victoria, Australia, where VCE Mathematical Methods (CAS), a 
CAS-permitted examination, has been in place for some years. The research from 
Victoria suggests that CAS scaffolds students, helping them engage with extended 
response analysis examination questions and achieve relatively good success (Evans, 
Norton, & Leigh-Lancaster,  2005 ; Norton, Leigh-Lancaster, Jones, & Evans,  2007  ) . 
In addition there is support for the claim that students who use CAS develop at least 
the same level of skills as those who use graphic calculators, countering the loss of 
skills argument. However, to achieve this positive outcome, Ball and Stacey  (  2004, 
  2005  )  concluded that since new mathematical practices and processes of learning 
emerge when CAS is employed, communicating this to students requires active 
participation of teachers and a different curriculum emphasis. One aspect of this is 
the rubric RIPA ( Reasons–Inputs–Plan–(some) Answers ) proposed as a guide for 
teaching students how to record their solutions when they use CAS. The integration 
of CAS in the curriculum, including assessment practice, is a crucial issue imping-
ing on CAS use. Research by Oates  (  2004,   2009  ) , although focussed on tertiary 
mathematics, pointed out the need for a re fi ned taxonomy to describe what is really 
meant by such a technology-integrated curriculum. 

 To use CAS in teaching to its full potential requires a particular set of skills and 
attitudes on the part of teachers, and so addressing teacher-related issues is crucial. 
One of these is that while many teachers claim to support the use of technology in 
their teaching (Forgasz,  2006a ; Thomas,  2006  )  the degree and type of use in the 
classroom are variable (Zbiek & Hollebrands,  2008  ) . There is also a sizeable minor-
ity of teachers who are either not convinced of its value (Forgasz,  2006b  )  or actively 
oppose its use (Thomas, Hong, Bosley, & delos Santos,  2008  ) . This latter study 
reported that 60.5% of teachers disagreed with the statement that “All types of cal-
culators should be allowed in examinations,” with only 21.7% in favour, and that 
27% of teachers thought that using calculators can be detrimental to student under-
standing of mathematics. There are many intrinsic factors that may in fl uence a 
teacher’s decision to use (or not to use) technology. These include their orientations; 
their instrumental genesis of the tools (Artigue,  2002 ; Guin & Trouche,  1999 ; 
Rabardel,  1995 ; Vérillon & Rabardel,  1995  ) ; their perceptions of the nature of 
mathematical knowledge and how it should be learned (Zbiek & Hollebrands, 
 2008  ) ; their mathematical content knowledge; and their mathematical knowledge 
for teaching (Ball, Hill, & Bass,  2005 ; Hill & Ball,  2004 ; Zbiek, Heid, Blume, & 
Dick,  2007  ) , which includes Shulman’s pedagogical content knowledge (PCK) 
(Shulman,  1986  ) . PCK refers to understanding not only the mathematical ideas in a 
particular topic but also how these relate to the principles and techniques required 
to teach and learn the topic, including appropriate structuring of content and rele-
vant classroom discourse and activities. 



632 Heid, Thomas, and Zbiek

 Considering these factors led Thomas (Hong & Thomas,  2006 ; Thomas,  2009 ; 
Thomas & Chinnappan,  2008 ; Thomas & Hong,  2005b  )  to propose the notion of 
 pedagogical technology knowledge  (PTK) as a useful way to think about what 
teachers need in order to use technology, such as CAS, when teaching mathematics. 
He also suggests that the level of a teacher’s PTK may be a key driver of CAS use. 
The teacher development of PTK for mathematics involves adding a number of 
attributes to mathematical PCK. The most important of these, enabled by a strong 
mathematical content knowledge, is a shift in focus, from seeing the technology as 
simply something added to the teaching of mathematics to putting the mathematics 
at the centre of activity, and asking how the CAS can enable students to understand 
the mathematical concepts better. To attain this may require a change in orientations 
with regard to mathematics and CAS technology. Hence, the affective domain is 
also involved, with personal con fi dence in teaching with CAS one dimension of 
PTK (Thomas et al.,  2008  ) . Another aspect of PTK is instrumental genesis of CAS 
(comprising both instrumentation and instrumentalization), by which CAS tools are 
transformed into epistemic instruments. Guin and Trouche  (  1999  )  argue that instru-
mental genesis and conceptualization should occur concurrently in the classroom, 
and, in order for this to happen, teachers need to have developed their PTK 
suf fi ciently to be able to focus CAS activity on speci fi c mathematical conceptions, 
such as those suggested in this chapter. It seems reasonable that teachers who have 
strong PTK are likely to feel comfortable in accessing CAS when designing math-
ematical learning experiences. Pierce, Stacey, and Wander  (  2010  )  report that ini-
tially teachers principally regarded the CAS as a tool for doing, rather than exploring 
mathematics. However, they believe that this may change as teachers grow in 
con fi dence and skills with the CAS. According to Pierce  (  2005  )  a teacher who can 
discern strategic use of CAS and model its effective use to students will make 
qualitative progress in technology use. One way in which strong PTK may in fl uence 
teachers is in the use of CAS to mediate student learning through development 
and use of innovative mathematical tasks and approaches (Clark-Wilson,  2010  ) . 
In turn, teacher privileging of the technology (Kendal & Stacey,  1999,   2001  )  has 
been shown to have a positive impact on students’ uptake of technology in explor-
ing mathematics. 

 How can teachers be assisted to develop PTK further? One critical element in 
the promotion of teacher PTK, which might lead to improved use of CAS for 
development of activities that encourage conceptual thinking, is focussed preser-
vice training and inservice professional development (PD) of mathematics teachers 
(Fitzallen,  2005 ; Forgasz,  2006b  ) . One suggestion by Goos and Bennison  (  2005  )  
for improving PD is to employ online discussion by teachers to build a community 
of practice. It also appears that giving teachers personal experience of using CAS 
in their own classroom as a component of PD may help them develop their PTK 
(Ball & Stacey,  2006  ) . 

 Even when teachers have a high level of PTK, studies show that there are issues 
involving the didactic contract that arises in classrooms when technology is intro-
duced. Monaghan  (  2004  )  suggests that there is no common structure for teacher–
student interactions in CAS classrooms, and this can lead to a disconnect between 
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students and teachers with regard to the didactic contract (Pierce, Stacey, & Wander, 
 2010  ) . While both students and teacher agree that the teacher has a responsibility to 
teach technology skills, students may see these skills as the main point of the lesson, 
while teachers view the lesson as primarily about teaching mathematics. An exam-
ple of how things may change is seen in Duncan’s  (  2010  )  study, in which teachers 
recognized that when using CAS they changed the didactic contract, moving from a 
general class teaching style to greater use of student investigation and discussion. It 
has also been shown that CAS technology can play a role in the conceptualization 
of mathematical models rather than simply being a tool that is used to solve a math-
ematical problem after it has been abstracted, and this can also provoke a change in 
student–student and student–teacher interactions (Geiger, Faragher, Redmond, & 
Lowe,  2008  ) . In the light of these and other in fl uences on classroom dynamics and 
relationships there is likely to be a need for negotiation to adapt didactic contracts.  

   Needed Research 

 As we examined the empirical and theoretical literature on the use of CAS, we 
found promising strands of research. We also realized that there is much yet to be 
learned about how the incorporation of CAS can affect the teaching and learning of 
school algebra. We end with a few suggestions for what we see as promising direc-
tions for future research centred on the use of CAS in school algebra. 

 Each of these suggestions requires developing school settings in which CAS tech-
nologies are welcome and available. In these environments, we need to know more 
about how CAS can affect the ways in which students reason about mathematics:

  What does research across COT or MAS suggest about student reasoning, such as the role 
of representations and moving across registers? 

 How does use of dynamically linked representations motivate reasoning, facilitate reason-
ing, and contribute to the development of a capacity to reason? 

 How does prolonged experience with CAS (COT or MAS) affect how students understand 
and use algebraic symbols? 

 How can CAS be used to in fl uence student conceptualization? What factors can improve 
the epistemic value of CAS? 

 Are there long-term conceptual bene fi ts from CAS use? If so what are they?   

 We need to know more about instructors and instructional strategies in CAS-
present classrooms.

  Can we improve the student construction of CAS-related schemes through classroom pre-
sentation and discussion of techniques, and, if so, how? 

 What is the relationship between teacher con fi dence and pedagogical technology knowl-
edge (PTK)? Along what trajectories does PTK develop? Can PTK be validly and reliably 
measured, and, if so, how? 

 How does the introduction of CAS change student–student and student–teacher interac-
tions? Can these changes be captured by descriptions of the didactic contract?   
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 We need to know more about CAS-intensive mathematics curricula.

  What does it mean to have a CAS-integrated curriculum? What would it look like? How can 
we describe what is really meant by a CAS-integrated curriculum at any level?        
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  Abstract   The purpose of this chapter is to provide an updated overview of digital 
technologies relevant to statistics education, and to summarize what is currently 
known about how these new technologies can support the development of stu-
dents’ statistical reasoning at the school level. A brief literature review of trends 
in statistics education is followed by a section on the history of technologies in 
statistics and statistics education. Next, an overview of various types of techno-
logical tools highlights their bene fi ts, purposes and limitations for developing stu-
dents’ statistical reasoning. We further discuss different learning environments 
that capitalize on these tools with examples from research and practice. Dynamic 
data analysis software applications for secondary students such as  Fathom  and 
 TinkerPlots  are discussed in detail. Examples are provided to illustrate innovative 
uses of technology. In the future, these uses may also be supported by a wider 
range of new tools still to be developed. To summarize some of the  fi ndings, the 
role of digital technologies in statistical reasoning is metaphorically compared 
with travelling between data and conclusions, where these tools represent fast 
modes of transport. Finally, we suggest future directions for technology in research 
and practice of developing students’ statistical reasoning in technology-enhanced 
learning environments.      
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 The pervasiveness of data in everyday life is in part due to global advances in 
technologies. Citizens are bombarded with statistics in the media and must be savvy 
consumers of data (Watson,  2002  ) . In the workplace, data are vital for quality control, 
monitoring and improving productivity, and anticipating problems (Bakker, Kent, 
Noss, & Hoyles,  2009  ) . With data increasingly being used to add or imply credibility, 
there are new pressures for schools to prepare both citizens and professionals to be 
able to create and critically evaluate data-based claims (Gar fi eld & Ben-Zvi,  2008  ) . 
Progress in the understandings of teaching and learning of statistical reasoning and 
the availability of high quality technological tools for learning statistics have enabled 
the relatively young  fi eld of statistics education to integrate and readily capitalize 
on these advances (Gar fi eld & Ben-Zvi,  2008  ) . 

 The purpose of this chapter is to provide an updated perspective of advances in 
digital technologies and to summarize what is currently known about how these new 
technologies can support the development of students’ statistical reasoning. We 
con fi ne this chapter to the school level as other recent publications have provided 
discussions of technologies in statistics in tertiary settings (Chance, Ben-Zvi, 
Gar fi eld, & Medina,  2007 ; Everson & Gar fi eld,  2008 ; Gar fi eld, Chance, & Snell, 
 2000 ; Gould,  2010  ) , the workplace (Bakker et al.,  2009 ; Hoyles, Noss, Kent, & 
Bakker,  2010 ; Noss, Bakker, Hoyles, & Kent,  2007  ) , public sector (Gal & Ograjenšek, 
 2010 ; Sandlin,  2007 ; Trewin,  2007  ) , assessment (Gar fi eld et al.,  2011  )  and the 
development of teachers’ teaching and learning of statistical reasoning using tech-
nologies (Ben-Zvi,  2008 ; Burrill & Biehler,  2011 ; Lee & Hollebrands,  2008 ; 
Madden,  2011  ) . 

 This chapter is divided into  fi ve sections. First, we provide a brief literature 
review of trends in statistics education relevant to the topic of statistical reasoning. 
Next, the historical role of technologies will be addressed, with an emphasis on how 
technological tools have changed the evolution of the  fi eld. Third, an overview of 
various types of technological tools will be covered by highlighting their bene fi ts, 
purposes and limitations for developing students’ statistical reasoning. In the fourth 
section, we will discuss different learning environments that capitalize on these 
tools in unique ways with exemplars from research and practice. Finally, we suggest 
future directions for technology in research and practice of developing students’ 
statistical reasoning in technology-enhanced learning environments. 

   Trends in Statistics Education 

 The study of statistics provides students with competencies, tools, ideas and 
dispositions to use in order to respond intelligently to quantitative information in the 
world around them. These are considered important for all citizens to have and 
therefore learn as part of their education (Watson,  2006  ) . “Statistics is a general 
intellectual method … because data, variation, and chance are omnipresent in 
modern life” (Moore,  1998 , p. 134). It has therefore become a worldwide standard 
for statistics to be incorporated in school education (e.g., Australian Curriculum, 
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Assessment and Reporting Authority,  2010 ; cTWO,  2007 ; KMK,  2004 ; National 
Council of Teachers of Mathematics,  2000 ; New Zealand Ministry of Education, 
 2007 ; Quali fi cations and Curriculum Authority,  2007 ). 

 Many research studies over the past several decades, however, indicate that most 
students and adults do not think statistically about important issues that affect their 
lives (Gar fi eld & Ben-Zvi,  2007  ) . Gal  (  2002  )  argued that understanding, interpret-
ing, and reacting to real-world messages that contain statistical elements go beyond 
simply learning statistical content. He suggested that these skills are built on an 
interaction between several knowledge bases and supporting dispositions. Statistical 
literacy skills must be activated together with statistical, mathematical and general 
world knowledge. Unfortunately, traditional approaches to teaching statistics have 
focussed almost exclusively on mathematical skills and procedures that are 
insuf fi cient for students to reason or think statistically (Ben-Zvi & Gar fi eld,  2004  ) . 
If students equate statistics with mathematics, they may expect the focus to be on a 
single correct outcome. However, statistics offers distinctive and powerful ways of 
reasoning that are distinctly different from mathematical reasoning (Cobb & Moore, 
 1997 ; delMas,  2004  ) . Unlike mathematics, where the context can obscure the under-
lying abstractions, context provides meaning for the data in statistics and data 
cannot be meaningfully analyzed without paying careful consideration to their con-
text, including how they were collected and what they represent (Cobb & Moore, 
 1997  ) . To improve their statistical reasoning, Moore  (  1998  )  recommended that 
students gain multiple experiences with the messy process of data collection and 
exploration, discussions of how existing data are produced, experiences which ask 
them to select appropriate statistical summaries and draw evidence-based conclu-
sions (delMas,  2002  ) . 

 In their landmark paper, Wild and Pfannkuch  (  1999  )  provided an empirically-
based comprehensive description of the processes statisticians use in the practice of 
data-based enquiry from problem formulation to conclusions. Their paper provided 
the  fi eld with important research on which to build students’ key experiences in 
learning statistics. These processes now form the foundation of much of the current 
research in mathematics education by focussing on the nature and development of 
statistical literacy, reasoning, and thinking (e.g., Ben-Zvi & Gar fi eld,  2004  ) . Moore 
 (  1997  )  summarized new recommendations in terms of changes in  content  (more key 
concepts, and data analysis, less probability),  pedagogy  (fewer lectures, more active 
learning), and  technology  (for data analysis and simulations). Gar fi eld and Ben-Zvi 
 (  2008  )  provided a comprehensive background on this “reformed” approach, the his-
tory that led to this change and speci fi c examples of ways to implement this change. 

 The key concepts of statistics include data, distribution, centre, variability, com-
paring groups, sampling, statistical inference, covariation, and statistical models 
(Burrill & Biehler,  2011 ; Pfannkuch & Ben-Zvi,  2011 ; Watson,  2006  ) . Statistical 
reasoning (Ben-Zvi & Gar fi eld,  2004  )  can then be developed through inquiry-based 
pedagogies and data-based activities (Gar fi eld & Ben-Zvi,  2009  )  that integrate and 
elicit students’ active engagement with these statistical concepts through the inves-
tigative processes described by Wild and Pfannkuch  (  1999  ) . Throughout this chapter, 
we provide examples of how technology can be used to develop students’ statistical 
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reasoning. Since advances in computer software have had a major in fl uence on how 
students can learn to reason statistically, we re fl ect historically on these advances in 
the next section.  

   A Brief History of Technology in Statistics 
and Statistics Education 

 The development of statistics has always been intertwined with the development 
of technology. Tukey  (  1965  ) , Yates  (  1971  )  and Chambers  (  1980  )  were among the 
early visionaries describing the nature of future changes in doing statistics that 
would emerge as a result of technological advances. Moreover they envisioned the 
nature of new tools that were to be developed and required to support statistical 
practice. We will show that statistics education has also met the challenge of devel-
oping tools that are suitable to support the learning of statistics better than already 
existing tools. 

   The Emergence of New Styles of Data Analysis 

 A key milestone in the development of statistical reasoning was the reinterpretation 
of statistics into separate practices comprising exploratory data analysis (EDA) and 
con fi rmatory data analysis (CDA) (Tukey,  1977  ) . EDA emphasizes the practical 
strategies of analyzing, representing and interpreting data and developing hypothe-
ses while interacting with data. CDA is the next step, where  fi ndings are checked 
before the court of statistical inference and where the extent of uncertainty of infer-
ences is quanti fi ed. This is in contrast to the more theoretical approaches to statisti-
cal inference under ideal and simpli fi ed conditions emphasized in traditional 
statistics. Tukey’s EDA  (  1977  )  was already a step towards a more realistic account 
of statistical practice as was conceptualized by Wild and Pfannkuch  (  1999  )  decades 
later. This dramatic change in conceptualizing separate purposes for interpreting 
statistical information was made possible by the affordances of the new technolo-
gies which allowed for the interactive style of EDA and the practical application of 
graphical tools such as box plot and scatter plot, while the technological tools were 
concurrently re-shaped and revised by the growing popularity of EDA practices. 

 In the late 1970s and early 1980s, the statistical programming language  S  (which 
has evolved into the now widely used  R ) was initially created in parallel with devel-
oping the “new statistics” at Bell Labs in the USA (Becker,  1994  ) .  S  was created 
speci fi cally to support new graphical, interactive and experimental styles of EDA 
and designed to be able to support the development and exploration of new statisti-
cal methods by being an extensible programmable system. Another example that 
highlights the interaction between completely new statistical methods and new 
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technological tools was the development of computer-intensive statistical methods, 
such as the bootstrapping (Diaconis & Efron,  1983  ) . Simulation capabilities like-
wise played a central role as a new means of theoretical exploration of statistical 
methods. Following this, randomization and permutation tests became a practical 
option as the simulation capabilities of the new technologies expanded. 

 Inferential statistics under the heading of CDA also found itself adapting to new 
technological opportunities. Previously, model assumptions (independence, linearity, 
normality) had to be oversimpli fi ed because alternative methods were impractical to 
use without computers. New technological tools supported the careful checking of 
more complex assumptions of traditional procedures, for instance by residual analy-
sis or graphical data exploration. More robust methods could therefore be developed 
and implemented by the support of technology. The method of least squares, for 
example, was relatively straightforward and computationally simple for  fi tting lines. 
Fitting curves by minimizing the sum of absolute deviations is computationally 
much more complex and then became a computationally feasible alternative. 
Moreover, the new technological support allowed the user more easily to locate pat-
terns in the association of two variables, select an appropriate functional model, and 
then check the residuals for deviation from the model. This is a much more chal-
lenging process of statistical reasoning than just applying the algorithm of least 
squares. Moreover, this more complex process is more adequate to solve real prob-
lems and thus technology indirectly contributed to the empowerment of statistics to 
solve such problems.  

   Access to Statistical Practices Through Statistical Software 

 In parallel to these developments, statistical “packages” such as  SPSS  (  http://
www.spss.com    ) and  BMDP  (  http://www.statistical-solutions-software.com    ) were 
developed for supporting the statistical practitioner. For many decades these two 
tools were characterized as a “black box” with a collection of statistical methods, 
where the user analyzed the statistical problem, selected the appropriate method 
(predominantly numerical), and obtained the corresponding results. However, nei-
ther interactive working styles nor statistical graphs were very much supported with 
these packages at that time. A third line of development of professional tools started 
in 1985 with  DataDesk  (  http://www.datadesk.com    ; Velleman,  1998  ) , an early pro-
totypical tool that used the graphical user interface of Apple Macintosh creating a 
new quality of interactivity and user friendliness.  DataDesk  was designed to support 
the interactive, heavily graphical working style of EDA, replacing the command-
driven interface of  S , although with a loss in adaptability (Biehler,  1993  ) . From the 
1980s until today, borders between these three types of tools ( R ,  BMDP  and 
 DataDesk ) have become permeable. For instance,  R  can be also used with graphical 
user interfaces. And,  SPSS  comes with an interface to  R , so that newly developed 
methods can be incorporated.  

http://www.spss.com
http://www.spss.com
http://www.statistical-solutions-software.com
http://www.datadesk.com
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   Technologies for Learning Statistics: Beyond the “Black Box” 

 Eventually, discussions took place to update statistics education that would 
take into account the changes in statistics (content), pedagogy and technology 
(Biehler,  1993 ; Moore,  1997  ) . Two perspectives arose from these discussions. 
One perspective is based on the view that technologies for learning statistics should 
mirror the theory and practice of professional statistics packages to keep the gap 
between learning statistics and using statistical methods professionally as small as 
possible. Another perspective is to use technology to improve the learning of statis-
tics. The focus in this second perspective is on other affordances of technology, such 
as making statistics visual, interactive and dynamic, focussing on concepts rather 
than computations, and offering the opportunity to experiment with data to make it 
engaging for students (Olive & Makar,  2010  ) . 

 These two perspectives still exist today. A typical statistics text book at the ter-
tiary level from the  fi rst perspective would be packaged with data  fi les for different 
statistical tools or packages. The exercises would require students to use one of the 
supported software tools to apply the methods learned to real data sets. A typical 
text book from the second perspective may use a set of applets independent of a 
software tool, with which the students can interactively explore properties of statis-
tical concepts and methods as visual–experimental support for learning. Of course, 
some textbooks would situate themselves somewhere between these two perspec-
tives, including both applets for exploration and data  fi les speci fi c to a particular 
statistical package (e.g., Rossman & Chance,  2008  and their various editions for 
speci fi c software such as  Fathom ,  Minitab  and graphic calculators). Some adaptable 
and programmable professional tools such as  R ,  Minitab , and also spreadsheets pro-
vide the option to create interactive visualizations and experiments with and within 
the tool itself. The advantage is that learners and teachers can adapt these experi-
ments to their own needs if they know how to use the tool, so that they do not need 
knowledge for programming applets (see Verzani,  2005  for one of the examples for 
using  R ). One tool can support a whole course in doing and learning statistics (see 
Biehler,  1997  for more details).  

   New Technological Tools Designed for Children’s Learning 

 A group of statistics educators developed the vision that to realize the potential of 
technology at school level would require the creation of speci fi c tools adapted to inex-
perienced students’ needs that could also grow up with them as they gained expertise 
(bottom-up design vs. top-down design; Konold,  2010  ) . In the early 1990s,  ProbSim  
and  DataScope  were developed by Cliff Konold’s team for doing probability simula-
tions and data analysis, respectively, that were easy to learn and simple enough for 
students. The drawback was that they did not support conventional statistical experi-
ments or the creation of new methods (Ernie,  1996  )  and that they were two separate 
tools. Chris Hancock developed  TableTop  (Hancock,  1995  )  with a new interface, 
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representing data on a virtual table where the data can be rearranged. The current 
successor is  InspireData  (  http://www.inspiration.com    ) which is a commercial 
extended version of  TableTop  that also focusses on visual representations in helping 
grade 4–8 students create meaning as they explore data in a dynamic inquiry software 
environment. Another example of software for inexperienced students is the series 
of  Minitools  (Cobb, Gravemeijer, Bowers, & Doorman,  1997 ; an updated version 
was designed by Bakker, Gravemeijer, & van Velthoven,  2001 ; see also Bakker & 
Gravemeijer,  2004  ) . These  Minitools  were designed as limited experimental environ-
ments to support the development of ideas for data display and comparison.  

   Requirements of Software Tools 

 Many technological tools are available for statistics instruction. Choosing 
technology or a combination of technologies that is most appropriate for the student 
learning goals, could involve a complex set of considerations and decisions about 
how to best choose and use these tools, how often to use them, and for what purposes 
and activities (Chance et al.,  2007  ) . Therefore, we next discuss—from an educa-
tional perspective—issues related to the requirements for software to help students 
learn and reason about statistics. 

 Based on a conception of professional statistical practice and of educational tools 
for learning statistics, Biehler  (  1993,   1997  )  developed requirements for a more 
 fl exible tool that would support both doing and learning statistics. The vision was to 
have one tool that would support students in doing exploratory and con fi rmatory 
data analysis and in exploring statistical methods. Moreover it should provide fea-
tures by which teachers can de fi ne exploratory interactive experiments, visualiza-
tions, simulations, and applets (de fi ned as “microworlds”) that support students in 
active learning processes. This is similar to using pre-prepared spreadsheet  fi les for 
exploratory learning. These requirements can be used to evaluate tools for support-
ing doing and learning statistics. The following types of student activities and related 
requirements have to be distinguished:

    1.     Students can practise graphical and numerical data analysis by developing an 
exploratory working style . An exploratory working style would require the 
software to support the collection of these graphical and numerical results in an 
organized workspace in a multi-window system. Annotations, selection of results 
for a report and the ability to interact with and modify results should be possible.  

    2.     Students can construct models for random experiments and use computer 
simulation to study them . Whereas the  fi rst requirement is increasingly met by 
professional software tools, this second requirement is often supported only by 
programmable tools such as  R  or  Excel . At that time, this was seen as a major 
challenge of software design, to provide a simulation tool that would support 
the kind of simulation and modelling that are relevant in introductory statistics 
education, with a much simpler interface than what  Excel  and  R  provide, and at 
the same time supporting elementary notions of model building and simulation.  

http://www.inspiration.com
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    3.     Students can participate in “research in statistics,” that is to say they participate 
in constructing, analyzing and comparing statistical methods.  Although many 
tools provide a collection of ready-made methods, the third important require-
ment implied that learning statistics bears similarities to creating new  methods in  
statistical research, not just using methods made by others. Biehler  (  1997  )  there-
fore evaluated statistical software by the extent to which it allowed for the con-
struction and analysis of new methods. However, de fi ning new methods typically 
requires the input of formal notation, formulas or micros, which is challenging 
for students.  

    4.     Students can use, modify and create “embedded” microworlds in the software for 
exploring statistical concepts.  We use “microworld” as a notion that comprises 
exploratory interactive experiments, visualization, and simulations, and applets. 
This fourth requirement concerns the capacity of the tool to function as a meta-
tool and meta-medium for teachers by supporting the teacher’s construction of 
microworlds within the software. We then speak of “embedded microworlds” 
that can be used by students on various levels:
   (a)    Use the microworld as a ready-made black box;  
   (b)    Understand the construction of the microworld by means of their knowledge 

of the software (transparency of the microworld);  
   (c)    Modify the microworld according to own needs by means of their knowledge 

of the software;         

 If teachers have software competence on level (a) and level (c) they will be able 
to adapt the microworlds to their teaching goals. 

 The software  Fathom  (Finzer,  2001 ;   http://www.keypress.com    ) was later devel-
oped for secondary and tertiary statistical learning and realized and extended many 
of the envisioned features. Soon after,  TinkerPlots  (Konold & Miller,  2005 ;   http://
www.keypress.com    ) was developed by Cliff Konold’s team as a kind of little sibling 
of  Fathom  for younger children.  TinkerPlots  1.0 was built on ideas from  Minitools , 
 DataScope  and  TableTop  in that all these tools for learning statistics can be “emu-
lated” in  TinkerPlots , yet at the same time allow students to address more general 
statistical problems.  TinkerPlots  2.0 (Konold & Miller,  2011  )  added a simulation 
feature that built on  ProbSim’s  and  Fathom’s  capabilities by integrating simulation 
and data analysis as an overall tool for younger children. We will elaborate on 
 Fathom  and  TinkerPlots  in the next two sections.   

   Types of Technological Tools for Teaching of Statistics 

   Characterizing Technological Tools for Teaching of Statistics 

 As hinted at in the previous section, there are many types of technological tools 
and resources to support the learning and teaching of statistics. These include: (a) 
statistical software packages, (b) spreadsheets, (c) applets/stand-alone applications, 

http://www.keypress.com
http://www.keypress.com
http://www.keypress.com
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(d) graphing calculators, (e) multimedia materials, (f) data repositories, and (f) 
educational software. The goal of this section is to provide an overview of these 
types of tools and common examples of each, and to highlight the requirements for 
software from an educational perspective. This will be followed by thorough 
description of two speci fi c educational tools,  Fathom  and  TinkerPlots . For more 
comprehensive reviews of the capabilities of these tools and their possible educa-
tional uses, we refer readers to Chance et al.  (  2007  ) . Some older reviews which 
are still instructive can be found in Ben-Zvi  (  2000  ) , Biehler  (  1997  ) , and Gar fi eld 
et al.  (  2000  ) . 

   Statistical software packages.   Statistical packages are computer programs 
designed for performing statistical analyses. Several packages are commonly used by 
statisticians, including  SAS  (  http://www.sas.com    ),  SPSS  (  http://www.spss.com    ), and 
 Minitab  (  http://www.minitab.com    ). Although these packages were mainly designed 
for use by science and industry, they have evolved into statistics learning tools for 
students and are increasingly used in introductory statistics classes. For example, the 
statistical package  Minitab  allows student exploration of statistical ideas, e.g., writing 
“macros” for repeated sampling and graphics that update automatically as data values 
are added or manipulated. The  DataDesk  package ( fi rst version in 1985, cf., Velleman, 
 1998  )  focusses on data exploration and interactive graphing by providing unique tools 
that allow students to look for patterns, ask more detailed questions about the data, etc. 
 DataDesk  supports the construction of microworlds by means of multiple linked 
representations (see Biehler,  1997  ) . Several stand-alone statistical packages are also 
now available for free or at minimal cost, online. The increasingly used  R  package 
(Verzani,  2005 ;   http://www.r-project.org    ) is freely accessible and provides a wide 
variety of statistical and graphical techniques and its programmability and 
extensibility makes it also an ideal tool for creating microworlds for students and for 
supporting students’ method exploration (Requirement 3 and 4 from above). 
However, the command-driven interface is a major obstacle for secondary students. 
 StatCrunch  (West,  2009 ;   http://www.statcrunch.com    ) is a fully functional, 
inexpensive, Web-based statistical package with an easy-to-use interface and basic 
statistical routines suited for educational needs.  

   Spreadsheets.   The widely available spreadsheets (such as  Excel , of fi ce.microsoft.
com or  Google Spreadsheet ,   http://www.google.com/apps    ) are frequently used for 
 fi nancial information crunching and reporting in business. Spreadsheets are frequently 
used as a statistical educational package to help students learn to organize and represent 
data, and use “automatic updating” of calculations and graphs (Hunt,  1996  ) . There is a 
possibility to create microworlds within spreadsheets, the Internet is full of examples 
for this. However, care must be exercised due to their poor calculation algorithms 
and choice of graphical displays (Cryer,  2001 ; McCullough & Wilson,  1999  ) . For 
example, it is still very dif fi cult to make a box plot in  Excel . Moreover, spreadsheet 
interfaces are less well adapted to statistical concepts (Requirement 1 and 2 are not 
deeply met). A recent new development is the combination of  Excel  with  R  that tries 
to combine advantages of both tools (Heiberger & Neuwirth,  2009  ) .  

http://www.sas.com
http://www.spss.com
http://www.minitab.com
http://www.r-project.org
http://www.statcrunch.com
http://www.google.com/apps
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   Applets and stand-alone applications.   Free on-line applets can help students 
explore concepts in a visual, interactive and dynamic environment. Although many 
of the applets are easy for students to use and often present an interesting challenge 
for students, they are not often accompanied by detailed documentation to guide 
teacher and student use. There are exceptions to that typical drawback of applets; 
for example, the Web-application  GapMinder  (  http://www.gapminder.org    ) is an 
innovative visualization tool displaying time series of development statistics for all 
countries with animated and interactive graphics that offer Web-based tools and 
guides for use in classrooms. In addition, a large number of computer programs can 
be downloaded from the Internet and run without an Internet connection that allow 
students to explore a particular concept (e.g.,  Sampling SIM,    http://www.tc.umn.
edu/~delma001/stat_tools /     ). The  Consortium for the Advancement of Undergraduate 
Statistics Education  (CAUSE,   http://www.causeweb.org    ) provides a peer-reviewed 
annotated list of such tools.  

   Graphing calculators.   A graphing calculator is used in statistics education 
as a learning tool for analyzing and exploring data, performing statistical 
procedures and calculations, including inference procedures and probability 
distributions (Kuhn,  2003  ) . Many graphing calculators can function as data loggers 
by downloading data from the Web or collecting data from sensors like electronic 
thermometers, decibel and light meters. Simulations can also be run allowing 
students to explore concepts such as sampling distributions (Flores,  2006 ; Koehler, 
 2006  ) . Graphing calculators are used in secondary statistics classrooms in some 
countries but are not a full substitute for statistical packages beyond the introductory 
statistics course and have problematic pitfalls (Lesser,  2007  ) . In addition, the output 
given by the graphing calculator often does not provide suf fi cient communication of 
statistical results (e.g., graphs with no labels and scales). Some recent graphic 
calculator incorporate features of educational software, such as  TI-Nspire,  which 
incorporates features of  Fathom .  

   Multimedia materials.   Multimedia materials combine several different types of 
content forms (such as, text, audio, still images, animation, video, and interactive 
media) to teach statistics (Alldredge & Som,  2002 ; Mittag,  2002 ; Sklar & Zwick, 
 2009  ) . For example,  ActivStats  combines videos of real-world uses of statistics, 
mini-lectures accompanied by animation, links to applets, and the ability to launch 
a statistical software package and analyze a data set instantly.  ActivStats  (  http://
www.datadesk.com/products/mediadx/activstats/    ) was originally designed to work 
with  DataDesk  but has now interfaces to other tools as well. An advantage of such 
a learning environment is that students only need to learn one type of technology. 
In fact, more and more, entire lessons and even textbooks are written around these 
types of embedded technology to make them “living” textbooks, e.g.,  CyberStats  
(Symanzik & Vukasinovic,  2006  ) . In addition, an ever-growing format of statistics 
teaching today is over the Internet, in the form of a Web-based course with video-
taped lectures, interactive discussions, collaborative projects, and electronic text 
and assessment materials (e.g., Everson & Gar fi eld,  2008  ) .  

http://www.gapminder.org
http://www.tc.umn.edu/~delma001/stat_tools/
http://www.tc.umn.edu/~delma001/stat_tools/
http://www.causeweb.org
http://www.datadesk.com/products/mediadx/activstats/
http://www.datadesk.com/products/mediadx/activstats/
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   Data and materials repositories.   Pedagogically rich data sets and explorative 
student activities are widely available in the Internet (e.g., Schafer & Ramsey,  2003  ) . 
Data repositories include data sets with “stories” outlining their background and 
classroom uses. Examples include  The Data and Story Library  ( DASL , lib.stat.cmu.
edu/DASL), the  Journal of Statistics Education  (JSE)  Dataset and Stories  feature 
(  http://www.amstat.org/publications/jse/jse_data_archive.htm    ),  CAUSE  (  http://
www.causeweb.org    ), as well as some of the of fi cial statistical agencies Websites 
(e.g., Statistics Canada,   http://www.statcan.gc.ca    ).  

   Educational software.   Different kinds of statistical software programs have 
been developed exclusively for helping students learn statistics.  Fathom  (see below) 
is a  fl exible and dynamic tool designed to help students understand abstract concepts 
and processes in statistics.  TinkerPlots  was developed to aid younger students’ 
investigation of data and statistical concepts (see below).  TinkerPlots  has been 
widely  fi eld tested in mathematics classes in grades 4–8 in the USA and in other 
countries (e.g., Ben-Zvi,  2006  )  with very positive results. Some of these educational 
packages make it easier for students to access large data sets (e.g., census data) and 
for teachers to access pre-developed classroom exercises.    

    Fathom  and  TinkerPlots 2.0  

 In this section, we brie fl y summarize important points and argue why we think 
that  Fathom  and  TinkerPlots 2.0  are tools that have met the above requirements in 
an exemplary way. This explains why quite a number of researchers in statistics 
education, including the authors of this chapter, frequently use these tools in their 
research and development work. 

   Fathom 

  Fathom Dynamic Statistics  is software for learning and doing statistics in sec-
ondary and tertiary levels that enables students to explore and analyze data both 
visually and computationally. It has a menu-driven and drag-and-drop computa-
tional environment with a general formula editor incorporated in a central place. 
This supports the creation of new attributes and numerical procedures that open new 
possibilities for model and method construction. Its strengths are in the opportunities 
it provides students to:

   Quickly  • drag-and-drop  variables into a graph to visualize distributions and rela-
tionships between variables;  
  Through  • dragging , visualize how dynamically changing data and parameters 
affect related measures and representations in real time;  
   • Link multiple representations  of data to informally observe statistical tendencies;  
  Create  • simulations  to investigate and test relationships in the data.    

http://www.amstat.org/publications/jse/jse_data_archive.htm
http://www.causeweb.org
http://www.causeweb.org
http://www.statcan.gc.ca
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 First, we discuss theory that emphasizes the opportunities and insights that 
dynamic learning software can provide over the static statistical measures, tests and 
representations used by most statistical software programs. We then provide a 
short overview of each of the four features above in the context of learning statistics 
with  Fathom . 

   Drag-and-drop graphing.   A key deterrent when learning new software is the 
time it takes to become competent to use a tool productively, which is based on 
perceived usefulness, ease of use and attitude (Premkumar & Bhattacherjee,  2008  ) . 
One feature of  Fathom  that makes it easy to learn and become productive is the 
ability to  drag-and-drop  variables into a graph. This provides an easy way, through 
synchronous interaction, to check the distribution of a variable or its association 
with another variable quickly. This action of dragging and dropping is familiar to 
most computer users, even young children (Agudo, Sanchez, & Rico,  2010  ) , making 
it more user-friendly and natural than menu-driven systems. For example, to check 
the amount of time students were spending on their mathematics per week, a dot 
plot of this variable can be examined in a few seconds. In Figure  21.1a , the number 
of hours per week spent working on their mathematics (variable: Hrs_Wk) is 
selected and dragged to the horizontal axis of a blank graph (Figure  21.1b ).   

   Dragging points.   A second key feature of  Fathom  is its ability to drag. Dynamic 
dragging is a feature of multiple mathematical learning software programs developed 
over the past two decades, primarily in geometry (e.g.,  Geometer’s Sketchpad ,  Cabri 
Geometry ,  GeoGebra ). Finzer and Jackiw  (  1998  )  highlighted three key bene fi ts that 
“dynamic manipulation” (dragging) enables:

    1.     Direct manipulation . In dynamic dragging, the user is able to click on a point 
and manipulate it directly. If a point is dragged left, the user  sees  it move to the 
left on the screen. Even though this action is not directly applied to the pixels 
on the screen, to the user, who is unaware of computer systems running in the 
background, it appears that they are dragging the point directly. This allows 

  Figure 21.1.    Drag-and-drop graphing in  Fathom . ( a ) Selecting and dragging the variable  Hrs_Wk  
from a case table to the horizontal axis. ( b ) Distribution of  Hrs_Wk  after drag-and-drop on the 
horizontal axis.       
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the user to focus on the effect of dragging rather than the systems which enable 
them to drag.  

    2.     Continuous motion . The relationships between the points being dragged, whether 
they are vertices of a triangle (as in  Geometer’s Sketchpad ) or data in a box plot 
(as in  Fathom ), are invariant. This continuity of dragging means that changes in 
objects or related measures change as the dragging takes place. This provides 
immediate feedback to the user on the effects of their dragging.  

    3.     Immersive environment . The objects being dragged are not isolated but part of an 
environment in which the user is exploring. The interface is minimal to allow the 
focus to be on the exploration rather than the technology.     

 For example, suppose in  Fathom  the learner is exploring the relationship between 
the location of points in a scatterplot and the resulting correlation and regression 
line. If the learner wonders, “if the points near the centre of the scatterplot had been 
further out, how would this affect the correlation and regression line?,” then they 
can test this theoretical “I wonder” question by dragging the points and observing 
the effect of their location on the strength (correlation coef fi cient) and direction 
(regression line) of the association (Figure  21.2 ).  

 In the example in Figure  21.2 , when the student  directly  drags a point ( Z ), they 
can immediately see the equation and correlation change  continuously  and  immedi-
ately  as the point is dragged. This allows the feedback to support immersion in the 
exploration environment and not require overt focus on the software interface. 
Finzer  (  2006  )  discussed the effect of direct and continuous dragging of data and 
statistical objects (e.g., sliders, movable lines and axes) and of observing its effect on 
measures (e.g., mean, median), statistical tests (e.g.,  p -value), graphs and distributions. 

  Figure 21.2.    Using dragging in  Fathom  to investigate the relationship between the location of 
points and the direction and strength of the association. ( a ) As part of an investigation, a point is 
dragged from the cloud of points ( Y  = 0.572 X  + 5.6;  r  2  = 0.18) … ( b ) to the left of the cloud, while 
the students observe the change in the slope of the line and correlation coef fi cient ( Y  = 0.718 X  + 4.1; 
 r  2  = 0.35).       
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He noted three opportunities that  Fathom  provides through dragging that elaborates 
on three elements of dragging more generally (see, also, Finzer & Jackiw,  1998  ) . 
First, that the ability to drag provides multiplicity of examples in a few seconds of 
dragging. Second, the learner can observe the direction and magnitude of their drag-
ging and of its effect in real time. This allows them to build a “cause–effect” rela-
tionship between the elements being dragged and their related measures or objects. 
Important intermediate stages can be “frozen,” so that a multitude of graphs can be 
simultaneously compared as well. With an emphasis on the invariance of these 
dynamic relationships, students can build stronger foundations of generalization 
and abstraction. Third, the act of dragging “draws the learner in,” engaging them in 
the exploration and facilitating them in following up on “I wonder” questions. These 
features are also important for constructing embedded microworlds in  Fathom , 
which we will discuss later.  

   Linked multiple representations.   A third key feature of  Fathom  that makes it a 
productive tool for learning statistics is its ability to  link multiple representations  
dynamically. We can use this feature in data analysis, as is shown in Figure  21.3 , 
where the relation between three variables is studied. The scatterplot shows the 
relation between height and weight. If we select the females in the bar graph on the 
right side, the females are also highlighted in the scatterplot and the somewhat 
different relations between height and weight in the two subgroups are shown.   

   Simulations.   Another fairly elementary use of  Fathom  is to simulate a random 
experiment, in order to estimate an unknown probability by relative frequencies. 
Maxara and Biehler  (  2007  )  analyzed the typical stepwise structure of elementary 
simulations (Table  21.1 ).  

 We judge software with regard to how easily it supports this standard process of 
simulation. Let us take the following problem as an example. 

 Students have to pass a test with 10 yes or no questions. The test is passed when 
70% of the answers are correct. What is the probability of passing the test just by 
guessing? 

  Figure 21.3.    Linking multiple representations in  Fathom .       
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 For Step 1 (Table  21.1 ; Figure  21.4 ), we use the function randomPick (“correct,” 
“incorrect”) and de fi ne a column “Answer.” The 10 rows stand for the 10 responses. 
In Step 2 we de fi ne a “measure”—a speci fi c functionality provided by  Fathom —by 
the formula count (Answer = “correct”). We name it  Number_Correct . A “collect 

   Table 21.1 
  Four-Step Design as a Guideline for Stochastic Modelling (Maxara & Biehler,  2007  )    

 Step  Probabilistic Concepts   Fathom  Objects and Operations 

 1  Construct the model, the random 
experiment 

 Choose type of simulation; de fi ne a 
(randomly generated) collection 
representing the random experiment 

 2  Identify events and random variables of 
interest ( Events and random variables as 
bridging concepts ) 

 Express events and random variables as 
“measures” of the collection 

 3  Repeat the model experiment and collect 
data on events and random variables 

 Collect measures and generate a new 
collection with values of the measures 

 4  Analyze data: relative frequency (events); 
empirical distribution (random variables) 

 Use  Fathom  as a data analysis software 

  Figure 21.4.    Performing a standard simulation process using  Fathom.        
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measures” functionality allows to collect as many ( N ) measures as one wants (Step 3). 
 Fathom  then can be used to display and analyze the distribution of the random 
variable  Number_Correct . Figure  21.4  shows a screen display of this simple simula-
tion. The scope of simulations that can be realized depends on the available functions 
for de fi ning measures. The ease depends on how simply these steps can be executed 
and how easily students can make sense of the various objects on the screen and 
their linkage structure.  

 We have seen how easily the four steps can be implemented in  Fathom  in this 
example. The broad potential of  Fathom’s  simulation capabilities including its 
strengths and limitations were analyzed by Maxara  (  2009  ) . Maxara and Biehler  (  2006  )  
pointed out dif fi culties students had with performing simulations along these lines.   

   TinkerPlots 

  TinkerPlots  is a data analysis tool with simulation capabilities (since version 2.0) 
that has especially been designed for supporting young students’ development of 
statistical reasoning (Grade 4 of primary school to middle-school students, students 
from the age of 9 onwards). It is built upon the same platform as  Fathom , which may 
smooth a transition to  Fathom  at an older age.  TinkerPlots  is designed for creating 
many simulation models without the necessity of using symbolic input. In addition, 
 TinkerPlots  meets the third requirement of Biehler’s  (  1997  )  framework by making 
students participate in the construction and evaluation of methods by providing a graph 
construction tool for young students who can invent their own elementary graphs, 
whereas most other tools provide only a readymade selection of standard graphs. 

   Organizing and representing data.    TinkerPlots  was inspired by features of 
older technology, in particular  TableTop  (Hancock,  1995  )  and the  Minitools  (Cobb 
et al.,  1997  ) . What it shares with  TableTop  is the metaphor of data cards––providing 
a case by case dynamic view of a data set (Figure  21.5 )––scattered on a table, to be 

  Figure 21.5.    Data cards in 
 TinkerPlots  provide a case by 
case view of a data set. The 
student can add or change 
data, drag attributes into 
plots, and change the color 
scheme of attributes.       
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organized, changed, displayed in a table or a plot and analyzed by students. The data 
table metaphor eases a transition from working with real data cards to reorganizing 
virtual data cards (Harradine & Konold,  2006  ) .  

 What  TinkerPlots  shares with the  Minitools  are many of its representations. 
However,  TinkerPlots  is an application (rather than a series of applets) with much 
more  fl exibility and possibilities to support the construction of students’ statistical 
knowledge in a bottom-up manner (Konold,  2010  ) . For example, it helps to visual-
ize the transition from the naturally unorganized virtual data cards (Figure  21.5 ) 
represented as unorganized data icons (Figure  21.6a ) to graphical representations 
such as dot plot (Figure  21.6b ) and histogram (Figure  21.6c ). By using multiple plot 
windows, various plots (including unconventional ones invented by children) can 
also be compared with other plots of the same data set. Like in  Fathom , plots can be 
easily adapted (e.g., making bins narrower for histograms) and data values can be 
changed to see the effect on the resulting plot or measures of center or variation.  

 Like most other educational software,  TinkerPlots  offers computational options 
such as arithmetic mean, median, mode, counts, and percentages in numerical and 
graphical modes. What is typical of  TinkerPlots  is the possibility to transform any plot 
into almost any other plot using the basic actions on data of Order, Stack, and Separate 
(Figure  21.6a ). Only some of these plots are conventional ones (bar graph, pie chart, 

  Figure 21.6.    Organizing data in  TinkerPlots . ( a ) Unorganized case icons in a plot window can be 
rearranged with three basic operations (Separate, Order and Stack), shown on the  upper plot tool-
bar . Operations can be applied in any order to make a particular graph. ( b ) Backpack weight grouped 
by bins (intervals) of 10 pounds. The plot is created from the previous plot by “separating” the icons 
by pack weight into bins and “stacking” them. ( c ) The same backpack weight data organized as a 
histogram by fusing the icons in the previous plot (using the “fuse rectangular” function).       
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histogram, box plot, etc.). Figure  21.7  shows how a dot plot can be overlaid by a box 
plot. This can help students to see for example that larger “boxes” of the boxplot do 
not necessarily represent more data points (Bakker et al.,  2005  ) . The dots can also 
be hidden.   

   Multivariate representations and analysis.   Another feature that is typical of 
 TinkerPlots  is the use of color gradients: When clicking on a variable all data icons 
are color graded according to the value of this variable. This allows students to 
compare three variables simultaneously, for example when having arm span on the 
 x -axis, height on the  y -axis and foot length color graded (Figure  21.8 ).  

 Typically students produce different graphs for a data set that can be compared 
in the multi-window environment (Figure  21.9 ). There may not be an optimal graph, 
but several graphs may show different aspects of the data. Sometimes it may be 
clear that one graph is superior to another when a certain purpose is given. For instance, 
the top left (unsorted) graph is inferior to the bottom left graph if we are interested in 
 fi nding out what properties animals with high (low) heart rates have in common. By 
providing such a richness of standard and non-standard elementary graphs, students 
can actively participate in selecting most suitable graphs, and can better understand to 
which extent the conventions in standard graphs are reasonable ones.  

 Graphical two-way tables can be easily produced using the commands Separate 
and Stack. In Figure  21.10  the level of interest in certain computer games depending 
on gender is displayed.  

 First steps in reasoning from such two-way tables can start in early grades. 
 TinkerPlots  makes pie charts accessible for children without any explicit knowledge 
about fractions by assigning circle sectors to individual cases. Figure  21.11  shows 

  Figure 21.7.    Adding box plots to dot plots and the option of hiding the individual data values in 
 TinkerPlots .       
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the display before (Figure  21.11a ) and after ordering according to gender 
(Figure  21.11b ). Such intuitive pie chart displays are also useful when young stu-
dents are required to compare theoretical probabilities and empirical relative fre-
quencies (see, for instance, Pratt,  1998  ) .   

   Simulations.    TinkerPlots  2.0 includes a simulation interface to de fi ne a random 
experiment by using a “sampler.” The sampler is used by students for modelling 
probabilistic processes and for generating their data. For example, you can build a 
sampler to model  fl ipping a fair (or biased) coin; run the sampler to collect data in a 
results table; and analyze the data in a plot to explore questions about the probability 
of various events. 

 For example, in Figure  21.12  we simulate the same example that we used for 
 Fathom  above. We start with ten random draws of “c(orrect)” and “f(alse)” answers 
that simulate guessing in a ten question test: The resulting table (Figure  21.12b ) 
contains a column with a compound outcome (“join”) of 1,000 repetitions. We 
apply a  TinkerPlots  function (“matchCount”) by choosing from a menu to the “join” 
column in order to count the number of “c”s and represent this count in a new column 

  Figure 21.8.    The use of  color gradients  in  TinkerPlots  to compare three variables simultaneously, 
arm span, height and color-graded foot length.       
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(Figure  21.12c ). With drag-and-drop, this column can be represented as a dot plot. 
The percentage of those passing the test can be found graphically by marking the 
respective cases (Figure  21.12d ).  

 Creating this simulation is obviously easier than in  Fathom . The example shows 
the kind of detailed support (visual sampler, “join”-outcome, matchCount com-
mand) that we would need from a simulation tool for students (Requirement 2).   

  Figure 21.9.    Different graphs presenting heart rates (per minute) of animals. Source of data: 
Ogborn and Boohan  (  1991 , p. 35).       

 



66321 Technology for Enhancing Statistical Reasoning at the School Level

   Microworlds 

 A microworld is a term that means, literally, a tiny world inside which a student 
can explore alternatives, test hypotheses, and explore facts about that world. In sta-
tistics, it comprises interactive experiments, exploratory visualizations, and simula-
tions. Students can use these microworlds on various levels: (a) use it as a ready-made 
black box, (b) study the construction of the microworld, and (c) modify it according 
to own needs (Biehler,  1997  ) . If teachers have software competence on levels 2 and 
3 they can adapt the microworlds to their teaching goals. If a microworld is embedded 

  Figure 21.10.    Two-way table of a student survey for German students, grades 3–8: Playing shoot-
ing games vs. playing strategy games.       

  Figure 21.11.    Interest in shooting games by gender.  Dots  on the side represent missing values. ( a ) 
Un-ordered pie chart. ( b ) Ordered pie chart by gender.       
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in  Fathom ,  TinkerPlots ,  Excel  or  R  instead of being programmed in Java, teachers 
(and students) can modify the microworld with their tool knowledge. 

 To illustrate these points, we present a simulation microworld developed with 
 Fathom . Let us assume as an example that we wish to estimate the unknown 
proportion  p  of mp3-player owners in a student population. We take a random 
sample  n  and observe a relative frequency  f  of mp3 owners. A 95% con fi dence 
interval for the unknown  p  can be calculated by using the approximate formula

    ⎡ ⎤− −− +⎢ ⎥
⎢ ⎥⎣ ⎦

(1 ) (1 )
1.96 , 1.96

f f f f
f f

n n
  . This interval depends on the observed 

frequency  f,  which itself is a random outcome. When we repeat the calculation of 
con fi dence intervals many times for different samples, the procedure will capture 
the true probability 95% of the time. 

 For understanding this idea we construct a simulation microworld developed 
with  Fathom  for exploring the random nature of con fi dence intervals and how their 
width depends on the sample size  n.  This is a very common visualization found 
in most applet collections for introductory statistics. Therefore our example also 
illustrates an important use of technology for understanding a central concept in 
inference statistics. We assume a certain true probability  p , draw a random sample 

  Figure 21.12.    Modelling probabilistic processes in  TinkerPlots  2.0. ( a ) A sampler that simulates 
10 random draws of “ f ” and “ c .” ( b ) The resulting data organized in a table. ( c ) Counting the num-
ber of correct answers in each test. ( d ) Visualizing the distribution of “number of correct answers” 
when repeated 1,000 times.       
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of  n , observe the relative frequency of success, calculate the respective con fi dence 
interval and check how often our random interval captures the true probability  p . 

 We start the simulation in Figure  21.13  with two variables,  n  for sample size 
(e.g., 200) and  p  for the probability (e.g. 0.5), which can be changed using sliders. 
In the data table, the  fi rst column simulates the observed relative frequency ( f ) of 
success in  n  repetitions by means of binomial distributions. Columns 2 and 3 are 
used to calculate the lower and upper con fi dence bounds according to the above-
mentioned rule. Column 4 checks whether the random con fi dence interval contains 
the “true  p .” After 100 repetitions, the bottom graph shows the 100 con fi dence bounds 
as two line graphs, with a comparison line at  p  inserted for reference.  

 The resulting table and bar graph to the right show the distribution of the attribute 
 p_in_CI . We would expect 5 out of 100 not to be correct, and in this simulation 6 
out of 100 were not correct. The false cases are selected (highlighted) in the right 
graph and therefore highlighted in all other displays as well. In the bottom left graph 
we see that the highlighted cases do not contain  p . The learner can re-randomize to 
observe the effect of chance variation on the con fi dence intervals, and can change 
the sample size  n  to observe that the con fi dence intervals get smaller as  n  increases; 
likewise,  p  can be varied to visually explore other true probabilities. 

  Figure 21.13.    Stepwise simulation of the random nature of con fi dence intervals.       
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 We have used the following features of  Fathom  to construct this microworld:

    1.    Sliders for easy change of parameters;  
    2.    Formula input for de fi ning derived variables of interest;  
    3.    Random number generator for statistical distributions with easy re-randomization 

options;  
    4.    Standard displays (line graphs, bar graphs, frequency tables);  
    5.    Possibility of enhancing graphs, e.g., plotting more than one variable in one plot; 

inserting reference lines depending on parameters;  
    6.    Multiple linked displays: highlighting cases in one display will be propagated 

into all other displays; and  
    7.    Multiple windows that let us see the data from various perspectives.     

 These features are important elements for tools that are to support the construction 
of microworlds for learning statistics. 

 We can also illustrate the advantage of microworlds being embedded in a software 
environment by this example. Imagine that a teacher wants to modify the microworld 
so that he can illustrate, how the widths of the con fi dence interval depend on the 
con fi dence level alpha. So far we had set alpha = 0.95, which has resulted into the 
coef fi cient 1.96, which is calculated from the standard normal distribution as the 97.5% 
percentile. The teacher can adapt the microworld by introducing a new slider  alpha  
and replacing 1.96 by a formula depending on alpha as is shown in Figure  21.14 .    

   Supporting Statistical Reasoning 

 In this section we focus on three main areas of statistical reasoning and how they 
can be supported by computer tools: (a) data exploration, (b) connecting data and 
chance, and (c) preparing for statistical inference. We use classroom episodes from 
recent empirical research to illustrate each area. 

   Data Exploration with TinkerPlots 

  TinkerPlots  1.0 was mainly used for data exploration. Research at the middle-
school level has been carried out in many countries, for example in Australia 
(Fitzallen & Watson,  2010 ; Harradine & Konold,  2006 ; Ireland & Watson,  2009 ; 

  Figure 21.14.    Making the con fi dence level a variable in the microworld.       
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   Watson & Donne,  2009  ) , Canada (Hall,  2011  ) , Cyprus (Paparistodemou & Meletiou-
Mavrotheris,  2008  ) , Germany (Biehler,  2007c  ) , Israel (Ben-Zvi, Gil, & Apel,  2007 ; 
Gil & Ben-Zvi,  2011  ) , and the USA, where it was developed and  fi rst tested (Bakker, 
 2002 ; Bakker & Frederickson,  2005 ; Friel,  2002 ; Konold,  2002 ; Konold & Lehrer, 
 2008  ) . However, it has also been used at the elementary level (Ben-Zvi et al.,  2007  )  
and in the workplace (Bakker, Kent, Noss, & Hoyles,  2006 ; Hoyles, Bakker, Kent, 
& Noss,  2007  ) . 

 One type of statistical reasoning that is dif fi cult for students is to make conclusions 
about differences between groups. It is well documented that students who know 
how to compute the arithmetic mean and median are mostly not inclined to use such 
measures when comparing groups (Konold & Higgins,  2002  ) . However, Bakker and 
Derry  (  2011  )  showed how sixth-grade students who gained experience with 
 TinkerPlots  when exploring data sets came to use means and medians to compare 
groups, even though the teacher never asked them to do so. In their learning trajec-
tory, students repeatedly compared groups while making different plots that helped 
them answer the question. They gradually developed a richer language to note many 
aspects of data sets in different representations. 

 In one of the latest lessons, they had to check a  fi sh farmer’s claim that genetically 
engineered (GE)  fi sh grew twice as long as normal  fi sh. Using  TinkerPlots , one 
student, Tom,  fi rst separated the dots representing the different  fi sh types vertically, 
ordered the lengths horizontally, stacked the dots, and used the mean button and 
reference lines to compare the types of  fi sh (Figure  21.15 ). Like his fellow students, 
he used the term “clump” for the majority of the data. He explained further: 

  I clicked the mean value and the reference line, because it shows kind of where the clump 
is. And that helps me because it is easier for me to see where most of them are. And this one 

  Figure 21.15.    The graphs Tom used to explain his statistical inference that the GE  fi sh were about 
1.5 times the normal size. The blue triangles give the position of the mean values, and the movable 
vertical red lines are called reference lines and are used to indicate the means.       
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[the normal  fi sh] there is a lot more, there is 292 [using the Count option]. And this one 
[GE], there is 67, so there is about a fourth, a little under a fourth. This one [GE] is a lot 
more gradual, it is spread out, but they grow a lot bigger and this one [normal] is very steep 
[points with the mouse along the slope of the distribution shape] and then is really steep, 
going down. And you can see that it is not really twice. These ones [GE] aren’t twice the 
size of these ones. It is more like one and a half times.   

 Note that Tom included many observations in his reasoning. For example, it is 
valuable that Tom used the means to indicate where the clumps were while taking 
into account the different types of variation—variation between and within data 
sets as well as variation in sample size and perhaps even variation around an ideal 
shape. 

 A large research project in which  TinkerPlots  was used for data exploration is the 
 Connections  Project, which took place in a science-focussed primary school in 
Israel during the period 2005–2011 (Ben-Zvi et al.,  2007  ) . The project extended for 
5 weeks of 6 hr per week each year (Grades 4–6, age 10–12) during which time 
students actively experienced some of the processes involved in experts’ practice of 
data-based inquiry. Students conducted authentic data investigations through peer 
collaboration and classroom discussions using  TinkerPlots . 

 Students who participated in the  Connections  Project gained a considerable 
 fl uency in techniques common in EDA (e.g., generating a research question to drive 
their investigation, organizing, analyzing and interpreting data, and drawing conclusions 
based on data evidence), use of statistical concepts (such as, data, distribution, 
statistical inquiry, comparing groups, variability and centre, sample and sampling), 
statistical habits of mind, inquiry-based reasoning skills, norms and habits of inquiry, 
and  TinkerPlots  as a tool to extend their reasoning about data (Makar, Bakker, & 
Ben-Zvi,  2011  ) . In the inquiry-based learning environment, statistical concepts are 
initially problematized—that is, rather than  fi rst teach students directly about these 
concepts and then ask them to apply in investigations, the investigations themselves 
were designed to raise the need to attend to these concepts, hence deepening students’ 
understandings of both their relevance and application. 

 The tasks undertaken by students in the  Connections  Project were typically a 
combination of semi-structured data investigations which provided students with 
rich and motivating experiences in inquiry, including meaningful use of statistical 
concepts assisted by  TinkerPlots  followed by autonomous, open-ended and extended 
data investigations. A key idea behind the design of activities is that of growing 
samples (Bakker,  2004 ; Ben-Zvi,  2006 ; Konold & Pollatsek,  2002  ) , to support 
coherent reasoning with key statistical concepts. Starting with small data sets 
(e.g.,  n  = 10), students are expected to experience the limitations of what they can 
infer from them about the population. They are next asked to draw conclusions by 
resampling additional small random samples or by increasing the sample size while 
speculating on what can be inferred about the population. 

 Students were highly motivated to present their  fi ndings in short presentations 
during the project and at the  Statistical Happening , a  fi nal festive event with 
their teachers and parents. From this event we cite three boys (aged 12) to illustrate 



66921 Technology for Enhancing Statistical Reasoning at the School Level

what kind of statistical reasoning was supported by the software and the learning 
experiences. They started their presentation as follows:  

 Eli:  Our research questions are: What are the long jump results in grades 6 and 7? 
 Asi:  And does the favourite sport affect these results? 
 Eli:  Is there an association between favourite sport and long jump results? 
 Odi:  Our hypothesis was that seventh-graders jump farther because they are apparently 

stronger and bigger. 
 Asi:  And they are also more experienced than us. Therefore, we thought they’ll jump farther. 
 Odi:  And we also hypothesized that favourite sports that include jumps, like basketball and 

gymnastics, will have a greater effect on long jump results. 

 After talking the audience through what they have learnt from analyzing two 
random samples ( n  = 20) (Figure  21.16 ), the boys concluded:   

 Odi:  Well, in light of the results of the two samples (Figure  21.17 ), we discovered as a matter of 
fact that the inference was similar, and there was not really a change [ between the samples ], 
and we also found that sixth-graders as a matter of fact jumped farther than seventh-graders, 
and that basketball and gymnastics really in fl uenced [ the long jump results ]. 

 Asi:  OK, Inferences. From these two samples, we infer that the physical  fi tness in sixth grades is 
probably higher than in seventh grades or that more sixth-graders are engaged in sport 
subjects that can support long jump. We are certain about our inferences since… due to the 
reason that the two samples have revealed almost the same thing, so our inference is probably 
correct and we are con fi dent in our inference [in the level of] something like 9 of 10. 

  Figure 21.16.    Dot plots representing long jump results by grade of two random samples created by 
the boys in  TinkerPlots . The means of the two groups are represented by  blue circles     and horizontal 
reference lines. The icons on the right represent missing values. ( a ) First random sample: Icons 
colored by long jump values. ( b ) In the second random sample, the boys colored the icons by 
gender to test their hypothesis that the surprising difference in means is related to gender.       
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 Makar and her colleagues  (  2011  )  characterized Asi’s conclusion as an informal 
statistical inference. Note that the boys have both generalized from the  fi ndings and 
speculated on a causal explanation for their  fi ndings (that if students play basketball 
or do gymnastics, it in fl uenced their long jump results).The latter does not necessarily 
come from the data, but may assist students in making meaning of their  fi ndings and 
seek further explanations (Gil & Ben-Zvi,  2011  ) . After the boys presented their inves-
tigation process and inferences, the population graph was exposed for the  fi rst time 
(Figure  21.17 ). The sixth grade mean turned out bigger than the seventh grade mean, 
but the mean difference was smaller than in the samples. The boys’ responses:   

 Asi:  We see a smaller difference [ in means ], but still a difference. One explanation can be the 
number of boys compared to the number of girls. 

 R.:  Is your previous conclusion reinforced or weakened by what you see in the population? 
 Eli:  In fact, it reinforces it, but it also weakens it. It reinforces it since we see that the sixth-grade 

average is really bigger than the seven-grade average, but on the other hand it weakens it 
since the gap between the two averages here [ in the population ] is not so big. 

 R.:  What do you think about this whole process of sampling and inference that you went through? 
 Odi:  I think that perhaps the [  fi rst ] sample [Figure  21.17a ] was biased since we got different 

numbers of boys and girls. 

  Figure 21.17.    The population of long jump results by grade in  TinkerPlots .       
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 By playing a major role in helping students learn new ways to organize and 
represent data, and to develop statistical reasoning,  TinkerPlots  gradually became a 
thinking tool for these students; it scaffolded their on-going negotiations with data, 
statistical ideas, inferences, and their meanings.  

   Connecting Data and Chance Through Modelling 

 For a long time, researchers (e.g., Biehler,  1994  )  have argued that the connection 
between statistics and probability should be rethought, because the emergence of 
EDA has led to a looser connection between probability and statistics. Tukey  (  1972  )  
stated for instance, that “data analysis,” instead of “statistics,” is a name that allows 
us to use probability where it is needed and avoid it where we should (p. 51). 

 Probability can be taught “data-free.” Under the assumption of equiprobable 
single events the probability of compound events can be calculated using combina-
torial reasoning or tree diagrams. Data analysis can be taught “probability and 
model free,” just doing EDA on given data sets. Data and chance, probability and 
statistics were traditionally brought together, when inferential statistics was taught 
at upper secondary level or tertiary level. Inferential statistics can also be taught 
nearly data-free as an ideal inference process under idealized model assumption, far 
away from the processes of statistical reasoning of practising statisticians that were 
described by Wild and Pfannkuch  (  1999  ) . 

 In recent discussions about statistics education, a stronger early connection 
between data and chance have been suggested, in order to achieve a better founda-
tion of inferential statistics and to make students aware how probability is used to 
model real data generating processes (Burrill & Biehler,  2011 ; Konold & Kazak, 
 2008  ) . Other researchers argue for the introduction of informal statistical reasoning 
(Pratt & Ainley,  2008  )  or for more accessible ways to transition to statistical infer-
ence (Wild, Pfannkuch, Regan, & Horton,  2011  ) . 

 Technology can have various roles in connecting data and chance. Students 
can construct simulations of probability models that produce pseudo-real data 
(that behave similar to data drawn from real processes), and study how these 
processes behave. A further step is to compare data from real experiments with 
predictions from probability models in order to validate these models. Both 
approaches require tool software for doing simulations and for comparing mod-
els and real data. 

  TinkerPlots  2.0, which has a sampling unit, supports students to make such con-
nections between data and chance. Konold, Lehrer, and their colleagues (Konold, 
Harradine, & Kazak,  2007 ; Konold & Kazak,  2008 ; Lehrer, Kim, & Schauble,  2007  )  
have chosen a modelling approach in which they help seventh- and eighth-grade 
students see the “data in chance” and the “chance in data.” Their teaching focussed 
on four main ideas: model  fi t, distribution, signal-noise, and the law of large numbers. 
Their teaching materials capitalized on three main activities: repeated measures, 
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production processes, and different individuals. Such situations are helpful when 
introducing students to the idea of data as comprising signal and noise. Here we 
highlight a well-reported activity of repeated measures to show how  TinkerPlots  2.0 
capabilities can support students to make connections between data and chance. 

 This activity is to model a distribution of measurements around a “true” foot 
length. Lehrer et al.  (  2007  )  engaged students to reason about measures of centre and 
spread, and think about what might cause the variation in the data sets that students 
produced. Next they used the  TinkerPlots  Sampler to create a distribution that 
matched the one they found empirically. The “data factory” comprised several 
causes of variation such as random error, reading angle, and rounding error, where 
each spinner models −.1, 0, or .1 mm deviation with particular probabilities. The 
model is then run 60 times to check the match with the empirical data set, after which 
the model is adjusted. Konold and Kazak  (  2008  )  argued that in this way students are 
engaged in making models  fi t while discussing distribution features and distinguish-
ing signal (true value) and noise (measurement errors). The law of large numbers 
comes into play when students start to use larger numbers of repetitions and re fl ect 
on the effect of the distribution shapes (which become smoother with larger  n ). 

 Activities can even start with the simple question of throwing two dice. Students 
can make different models. Some students suggest a model where they do not dis-
tinguish between the cases of the type 1 + 5 and 5 + 1. In that way they suggest that 
there are 21 equally probable cases (model 1). The standard model distinguishes 36 
equally probable case (model 2). Experiments and simulations can be used to judge 
between these models. Here we take an activity from Biehler  (  2007a,   2007b  ) . 

 Figure  21.18a  shows the deviations between the probabilities and relative 
frequencies from model 1 with 5,000 iterations, Figure  21.18b  shows the 
deviations between probabilities and relative frequencies from model 2 with 
5,000 iterations.  

 Randomization can be used to see that this structure of the residuals is typical, 
which speaks in favour of model 2. This approach however emphasizes the sig-
nal + noise approach, and students can gather experiences about the size of “legiti-
mate” random  fl uctuations. This activity shows that model 2 is better in predicting 
the simulated dice. We have to analyze real data from dice experiments in a similar 
way to validate the model. 

 We will show two further examples, where technology is used to compare real 
data with model predictions. The data are taken from the German federal state 
North Rhine-Westfalia (NRW) in 2002. For every community the number of 
children born was recorded as well as the number of boys and girls. The propor-
tion of males was calculated from the data and plotted against the number of 
children born. A line was inserted with the overall proportion of males in NRW 
(0.5141). The data are compatible with the law of large numbers: the higher the 
number of children born (sample size), the lower is the deviation from the 
expected proportion of males. We could have used simulated data for this pur-
pose, but it is most important to use patterns in real data to show the reality of the 
law of large numbers and that the deviation from the expected value decreases 
with sample size (   Figure  21.19 ).  
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  Figure 21.18.     (a: top graph ) Graphs from the two-dice microworld produced     in  Fathom  using 
model 1 with 5,000 cases. ( b: bottom graph ) Graphs from the two-dice microworld produced in 
 Fathom  according to the correct model 2 with 5,000 cases.         

  Figure 21.19.    Proportion of male babies born in a community against (absolute) number of babies 
born in that community. Every point stands for a different community of the federal state NRW.       
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 We brie fl y refer to another example taken from Biehler  (  2005  ) . We start from 
data on the gender distribution in German 19th century families who had exactly 12 
children. We can estimate the probability of a male birth from the data as being 
.5168. Fitting a binomial model with these parameters leaves systematic residuals 
that show that the probability model is only an approximate  fi t and that there are 
fewer families with “non-extreme” gender distributions than expected. This can be 
partly, but not fully, explained by the occurrence of identical twins. 

 Simulation could be used to visualize the random  fl uctuation that would be 
expected if the model were true. This can substantiate the judgment that Figure  21.20  
shows non-random deviations and can be an informal intermediate step towards 
formal inference supported by goodness-of- fi t tests.   

   Pathways to Statistical Inference 

 Statistical inference is an area of particular dif fi culty for students when they 
reach secondary and tertiary study.  Fathom Dynamic Statistical  software has been 
used as a way to support students in their transition to formal hypothesis testing. 
Building on the discussion above, we focus in this section on the kinds of informal 
inferential reasoning that can be supported with  Fathom . In particular, we discuss 
the use of simulations to build students’ experiences with concepts of sampling 
distributions and con fi dence intervals. 

 Most traditional approaches to teaching statistical inference move from descriptive 
statistics over probability directly into formal methods of statistical inference such as 

  Figure 21.20.    Family data; residuals from binomial  fi t.       
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hypothesis testing. Several studies have suggested the dif fi culty that students have 
with this transition (e.g., Gar fi eld & Ben-Zvi,  2008  ) . For example, students often 
oversimplify the leap from sample statistics as a single value (e.g., mean) to popula-
tion estimates (con fi dence interval) as a point estimate through direct proportional 
scaling, ignoring the important in fl uences of sample size and sampling variability 
(Burrill & Biehler,  2011 ; Chance, delMas, & Gar fi eld,  2004  ) . Alternatively, several 
researchers have suggested that students need to build on their experiences with 
descriptive statistics through exploratory data analysis, comparing distributions, and 
developing informal inferential reasoning (Makar et al.,  2011 ; Wild et al.,  2011  ) . 

 As an example of how  Fathom  can assist students in developing inferential rea-
soning in a less formal setting, we draw on a research project which uses the classic 
“The Hospital Problem” in statistics formulated by Kahneman, Slovic, and Tversky 
 (  1982  )  and widely explored by Sedlmeier  (  1999  ) . Researchers often use this prob-
lem to exemplify the counterintuitive nature of the relationship between sample size 
and level of con fi dence (Gar fi eld,  2003  ) . Maxara and Biehler  (  2010  )  used modi fi ed 
versions of this problem (Figure  21.21 ) with their students in building a learning 
trajectory to better support students in transitioning to statistical inference.  

 Initially, they found that about half of students struggled with this problem, 
answering incorrectly that either the larger casino was more likely to record over 
40% of games won (arguing, for example, that it would have more games played, so 
more chance of exceeding 40% winning) or that the two casinos were equally likely 
to produce this result (arguing, for example, that the probability of winning is the 
same for both casinos and the higher number of games in the larger casino is taken 
into account by taken the percentage of 40% in both casinos). 

 A simulation built in  Fathom  can be used to illustrate the outcomes in the two 
casinos. Figure  21.22  shows a simulation for a single day’s results for each casino. 
Although each casino has a 30% chance of producing a win in any single game, 
secondary students are usually comfortable with the idea that on any given day the 
total number of wins and losses will not be exactly 30%. What they don’t have a 
good feel for, however, is by how much this  fi gure will vary and what range of values 
is reasonable to expect from each casino. By  fi rst building the single case using a 
random number generator, students can generate what a single day’s return may 
look like in the two casinos. They can re-randomize this data to observe data on 
several days and develop a sense of the variability that might occur from day to day. 
This kind of experience is helpful to begin to build students’ underlying beliefs 

  Figure 21.21.    Casino problem (Maxara & Biehler,  2010  ) .       
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about which casino may more likely produce 40% winning games on a given day. 
Once students are comfortable with the kinds of values that might be expected, they 
are often ready to move on to quantify their  fi ndings. The single case is important to 
assist them initially, but does not help them to develop more sophisticated processes 
for quantifying this likelihood, as is needed in formal hypothesis testing.  

 Once students develop a sense of how the data change from day to day in each 
casino, they can collect these outcomes, thereby creating a sampling distribution, 
where each data point represents a single day’s result. Students  fi rst record 
the outcomes by hand before automating this process to understand the process. 
To automate the recording of the winnings from day to day, students can build a 
data set out of the daily results. This action is straight-forward in  Fathom  de fi ning 
a “measure”  PropWin  (proportion of wins) and then using the  collect measures  
button. For example, in Figure  21.23 , the graph shows the proportion of wins 
recorded in the small casino over 1,000 days. Using this distribution, students 
can estimate the likelihood that the casino will generate more than 40% wins by 
counting the number of days that  PropWin  is at least 0.4 (7.6% in the small casino 
and 0.2% in the large casino). Students can repeat simulating 1,000 days or 
increase the number of days sampled (e.g., to 5,000 days) to see how stable this 
 fi gure is and from this to generate an estimate of how probable it is that the small/
large casino will have to re fi ll their machines on any given day.  

 For comparing the two distributions it is important to use exactly the same 
scales in both graphs. If this is done as in Figure  21.23 , students can see that the 
reason for the lower probability in the large casino: The sampling distribution of 
the proportion concentrates around the expected value much more than in the small 
casino. The spread is smaller in the large casino. From this insight students can 
progress in the direction that the standard deviation of the sampling distribution of 
the proportion decreases with     1 / n   , where  n  is the sample size (see Biehler & 
Prömmel,  2010 , who used this progression of ideas in their introductory course to 
statistics). 

  Figure 21.22.    A single day’s result of winnings from the small ( left ) and large ( right ) casino. 
The win/lose data are represented in a table, bar graph and summary table for each casino.       
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 These experiences repeated multiple times allow students to begin to develop a 
better understanding of the relationships between sample size and sampling variability. 
Through generating and interpreting these simulations in different contexts and 
under different conditions, the confusion that students often experience between 
sample size and number of samples drawn, between data distributions and sampling 
distributions, between interval estimates and con fi dence levels can be avoided. 

 A deep understanding of sampling distributions is the basis for making sense of 
statistical inference. Basic ideas of hypothesis testing with  p -values can be intro-
duced on top of this. The historical example of the tea tasting lady, who claimed that 
she can distinguish whether milk was poured in the cup before the tea or vice versa 
(Salsburg,  2001  ) , can be presented to students in various setting such as whether 
they can distinguish Pepsi Cola from Coca Cola, or milk with normal milk vs. low 
fat milk, music with CD vs. music with MP3 quality, etc. If we set up an experiment 
with 20 trials, the question is whether a person does better than “just guessing.” 

  Figure 21.23.    Simulations recording the proportion of winning games for each casino for 
1,000 days. These proportions are represented in a histogram. The proportion of days for which at 
least 40% of games were winning is calculated.       

 



678 Biehler, Ben-Zvi, Bakker, and Makar 

If someone gets 15 correct out of 20, we can ask “What is the probability that someone 
gets 15 or more (75% or more) correct just by guessing?” Technology can be used to 
simulate a guessing person with the varying results of guessing. We can use the 
same simulation and graphs as in the casino example, display the sampling distribution 
and estimate the probability of having at least 75% correct (this will be about 2%). 
Such a result throws deep doubts on the assumption that the person is just guessing. 
Simulation makes the set of hypothetical cases to which the concrete person is 
compared to much more real than when such probabilities are just calculated by 
using the binomial distribution. The fact that 20 persons out of 1,000 people just 
guessing can pass the test became a reality for the students as in the experimental 
course of Meyfarth  (  2006,   2008  )  and the related empirical study of Podworny 
 (  2007  ) . From the casino problem, students can learn that to exceed a boundary set at 
75% just by guessing becomes more dif fi cult the higher the sample size  n  (instead 
of 20) is chosen. 

 Using technology in such ways aims at improving students’ intuitive understanding. 
Of course, on the basis of this understanding, software can then be used to apply 
statistical procedures in the process of statistical work as described by Wild and 
Pfannkuch  (  1999  ) , where many practical steps can effectively be performed only by 
the support of statistical tools, which can serve both supporting the learning and the 
doing of statistics.   

   Conclusions and Discussion 

 In this chapter we intended to summarize what is currently known about how 
new digital technologies can support students’ statistical reasoning. In this last 
section we address some of the main themes, limitations of software and speculate 
on what might be future directions for the  fi eld. 

   Statistical Reasoning as Travelling: A Metaphor 

 To summarize some of the main issues of using technology to support student 
reasoning, we use a metaphor. Like any metaphor it only highlights some issues and 
has its limitations. We compare statistical reasoning metaphorically with travelling 
from particular points (statements) to other destinations (conclusions based on data) 
while staying aware of the environment (e.g., uncertainty, variation, lurking vari-
ables). Our travelling is never ending: reaching a conclusion can raise further ques-
tions; con fl icting conclusions can raise doubts, caveats, or even rebuttals. In short, 
inquiry involves a lot of metaphorical travelling—not only from  A  to  B  but also 
back, further, and going round in circles. The role of a computer tool is to make 
travelling (whichever way) easier and faster, inevitably with some “black box” 
effect: when travelling by plane or train we see fewer details along the road than 
when walking or cycling.  
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   Main Themes 

   Hands-on or computer use?   One of the recurring themes in the literature is when 
students should use the  software  and when they should do something by  hand . 
Several researchers have argued that manually organizing data cards (Harradine & 
Konold,  2006 ; Watson & Callingham,  1997  )  or drawing data cards from hats 
(Bakker & Frederickson,  2005  )  can be a useful experience for students to understand 
what the software is doing for them. Once a student knows how to draw a dot plot, 
box plot, or histogram, making these by hand becomes boring and tedious. 
Metaphorically, students should know what it is to walk or cycle, stimulated to think 
about minor issues (which way to take) before they really appreciate what it is to 
arrive somewhere fast without knowing about all the decisions taken for them (when 
travelling by train, the direction can be chosen but the rails have been laid down 
somewhere by other people). 

 We are not recommending that hands-on experience should always precede the 
use of a computer tool. Metaphorically, travelling slowly can also hinder the  fl ow of 
reasoning. It can be exciting to get somewhere quickly, see a lot and get to know 
about the world—even if only super fi cially. Getting somewhere quickly, and back, 
and further, can support both  exploratory data analysis (EDA)  and  statistical inquiry  
(Ben-Zvi & Sharett-Amir,  2005  ) .  

   Dynamic, visual, and personal nature of software.   The  dynamic  nature of the 
educational software such as  TinkerPlots  and  Fathom  allows students to switch 
easily between many types of plots. Only some of these are conventional ones (bar 
graph, pie chart, histogram, box plot, etc.). One powerful advantage is that students 
have control over their plots and can transform any plot into almost any other. We 
argued that this might help them  fi nd a plot that makes sense to them and to gain 
insight into how data can be organized. This experience provides a good basis for 
meta-representational skills (diSessa, Hammer, Sherin, & Kolpakowski,  1991  ) . 

 The  visual  nature of the tools discussed above is in line with Wild et al.’s  (  2011  )  
advice for students “never to take their eyes off the graphs” (p. 252). However, there 
is one pitfall: students may be busy making graphs but not reasoning. This reason-
ing can be lost in the process of graphing, but has to be promoted by useful tasks and 
classroom discussion. Leading good whole-class discussions is well known to be 
dif fi cult; however, with a data projector and the students making the plots, it becomes 
easier to keep their attention (Ben-Zvi,  2006  ) . 

 In the context of  TinkerPlots  use, students typically name particular plots after 
their inventors (the “Ryan plot”) or after their shapes (“snake plot”), which helps to 
give them a sense of ownership of their representations (Bakker & Derry,  2011 ; 
Bakker & Frederickson,  2005  ) . Teachers can then sometimes tell them that their plot 
is also used by famous statisticians, who call it a histogram or value-bar graph. This 
could be an example of guided reinvention (Freudenthal,  1991  ) . The many options to 
 personalize  icons and working documents give students a sense of agency that is 
favoured, for example in the games literature (Rosa & Lerman,  2011  ) . Metaphorically, 



680 Biehler, Ben-Zvi, Bakker, and Makar 

dynamic, visual and personal features of educational software packages seem to 
help students  fi nd their own way in the landscape of statistical reasoning.  

   Reasoning with aggregates and statistical key concepts.   One of the main 
themes in promoting statistical reasoning is how to help students develop an 
 aggregate  view on data sets beyond their initial point-value views (Konold, Higgins, 
Russell, & Khalil,  2003  ) .  TinkerPlots , for example, offers ample opportunities to 
enhance students’ initial point-value views of data by aggregate views. As shown in 
Figure  21.6c , dots in bins can be fused to make a histogram; dot plots can be combined 
with box plots so that students can still see the distribution of individual data points; 
and students can draw distribution curves with the drawing tool to indicate the shape 
of a data set represented in a dot plot. Of course, it is not suf fi cient to have the 
software affordances: such technical capabilities also need to be incorporated into 
cognitive habits. The teaching and learning process in the classroom has to be 
orchestrated such that an adequate instrumental genesis can take place (see, e.g., 
Trouche,  2004  ) . 

 In  TinkerPlots , the small steps between plots and the option to combine individual 
and aggregate representations support students to become tangibly aware of the 
 variation  inevitably involved in data. In fact, attention to  key statistical concepts  
seems to be easier if the cognitive load required for computation and graph drawing 
is minimized by software (cf. Chance et al.,  2007  ) . We discuss a few key concepts: 
distribution, association, and sampling. 

  Distribution  shapes easily emerge if we grow sample sizes with a slider (cf., work 
by Bakker,  2004 , and Ben-Zvi,  2006  ) . Thereby students can step forward to a deeper 
understanding of empirical and theoretical (probability) distributions.  Association  
(e.g., correlation) typically comes rather late in the curricula, but as Ridgway, 
Nicholson, and McCusker  (  2007  )  have argued, real questions often involve  multi-
variate  data—and some educational software packages allow young students to 
make plots that help them study multivariate data with a minimal baggage of formal 
techniques (e.g., in  TinkerPlots,  by using colors and their gradients instead of 
numerals). Konold  (  2002  )  for example, argued that even two value-bar graphs side 
by side can help students see a relationship between, say, length of brushing your 
teeth and the amount of plaque on them (cf., Biehler,  2007c  ) . And by using color 
gradients, students can explore a third variable in a scatterplot (Makar et al.,  2011  ) . 
These points emphasize that even without learning formal techniques, students are 
able to explore key statistical questions that they care about through many travelling 
options. Moreover, informal approaches allow teachers and designers to have stu-
dents make connections between concepts from an early stage onward—something 
desirable from an epistemological view (Bakker & Derry,  2011  ) . 

 New educational software is also handy when drawing random  samples  of 
prede fi ned sizes. In  Fathom  and  TinkerPlots , sliders can be made for changing sam-
ple size so as to explore effects on stability of statistical measures and to gain a feel 
for the  law of large numbers . Because  computations  of mean, median, mode and 
other statistics are available at the click of a button, they require little attention. 
Instead students can focus on the meaning and utility of an arithmetic mean within 
the problem context. This seems to help them use means for comparing groups 
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rather than see them as computations on data only—something that proves to be 
hard for many students (Konold & Higgins,  2002  ) . 

 Technologies such as  TinkerPlots ,  Fathom , and  Excel  allow students to see the 
effect of changing data (e.g., outliers) on statistics such as mean and median. 
Metaphorically speaking, students can go back to the data and see where they would 
have gone if they had taken a different route—and what different conclusions they 
might have reached. This possibility of exploring “ what–if questions ” is a major 
advantage of travelling fast, even if this means that some details of the statistics are 
bypassed in the black box. 

 Not all “what–if reasoning” should be carried out with a computer tool. For 
example, Bakker  (  2004  )  noticed that inventing data to match a particular hypothetical 
situation helped students better understand the relation between statistical concepts 
and patterns in data. Moreover, he noticed that the quality of reasoning was better in 
the discussions without computers around than when students were clicking buttons 
at a computer.  

   Tool for learning or learning the tool?   One question teachers often ask is 
whether it takes long for students to learn to use the software at stake. In our 
metaphor, some modes of transport require very little learning investment (walking, 
cycling, taking a train) whereas others do (e.g., driving a car). The  instrumentation  
process (Trouche,  2004  )  seems to be quite different for different tools such as 
applets, spreadsheets and educational applications. Applets typically require very 
little learning investment but are con fi ned in their usage and adaptability. An 
advantage of  Excel  is that students typically encounter it often and in many situations, 
but as mentioned before, such spreadsheet programs have limited capabilities and 
do not offer the dynamic and visual features of educational software such as  Fathom  
or  TinkerPlots . One of the considerations when selecting an application such as 
 Fathom  is whether instruction time for statistics is long enough to justify learning 
about the tool. Results from implementation studies of  Fathom  in Germany led to 
the creation of  eFathom  (  http://efathom.math.uni-paderborn.de/    ), a multimedia 
environment for self-regulated learning of basic features of  Fathom  for data analysis 
and simulation (Biehler & Hofmann,  2011  ) . In our experience, middle-school 
students typically learn to use  TinkerPlots  without much effort, but we have also 
observed super fi cial use of this tool when students are not well scaffolded.   

   Future Directions: A Wish List 

 Following Shaughnessy’s  (  1992  )  example, we end with a wish list for future 
development and research in the area of technology for statistical reasoning.

    1.     More insight into task design when using new technologies . It is clear that new 
tools require new didactics (domain-speci fi c pedagogy). One dilemma could be 
categorized as route versus landscape. Bakker  (  2002  )  distinguished between 
route-type software such as the series of  Minitools  and landscape-type software 
such as  TinkerPlots . He conjectured that many teachers prefer a more controlled 

http://efathom.math.uni-paderborn.de/
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learning progression that they can both predict and oversee. They do not want 
students to be “all over the place,” because it makes leading classroom discus-
sions challenging and learning outcomes unpredictable and harder to assess 
(Makar & Fielding-Wells,  2011  ) . Yet, there seem to be ways when using 
 TinkerPlots  to steer the plots used by students through the instructional materials 
and classroom discussions (Ben-Zvi,  2006  ) .  

    2.     More insight into how teachers can be supported to use new statistics technology 
in their classrooms . First of all, there are barriers to using computer laboratories 
(networked computers, password protection, dependency on an IT person, pri-
vate folders, etc.). Computer problems at school typically require many staff to 
solve problems in the network. Web applets are one nice way to get around some 
of these issues. Connecting a dynamic plot on a computer with its static printed 
version is hard; something gets lost in the transformation from dynamic to static. 
Another challenge is that teachers have to learn the software, know how to orga-
nize a classroom for computer-based tasks, and  fl uidly switch between whole-
class and individual computer work. Then there are the students’ multiple 
approaches to tasks. Working with computers de fi nitely adds a layer of complex-
ity to organizing learning. With landscape-type software especially, teachers 
often feel uncomfortable with the many options and the variety of plots and con-
clusions that students might create or reach. This emphasizes the importance of 
supporting their professional development, and in some cases, helping them to 
 fi nd ways to limit possibilities and steer students along some trajectory.  

    3.     Dissemination and implementation at larger scales . Almost all recent research 
on the use of technology in statistics education has been design-based, typically 
in close collaboration with excellent teachers in mostly favourable conditions. 
The growing body of research provides insights into what and how relatively 
young students can learn to reason statistically. However, if we want larger 
groups of students to enjoy the use of such dynamic tools, we also need more 
research on curricular issues, assessment, teacher professional development, 
with larger numbers of students and teachers in various contexts. We also need 
more insights into how successes in small-scale research projects can be repli-
cated at larger scales.     

 Our personal wish is that our overview will contribute to understanding the use 
of technology in statistics education for both purposes: supporting meaningful 
learning of statistical concepts and procedures and supporting students in doing 
authentic statistical inquiries.       
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  Abstract   In this chapter we discuss how the Internet is interacting with mathematics 
education. After brie fl y discussing the rise of the Internet and its impact on education, 
we suggest that it has the potential to disrupt mathematics teaching and learning. 
Moving far beyond its used as a data resource, we suggest the Internet will provide 
on-demand access to mathematics knowledge through the collaborative, multimodal 
and performative affordances of the media that it supports. We note that such affor-
dances will not come to fruition until pedagogical practices have adapted to the 
rapid pace of this technological change. We conclude by noting that such funda-
mental change in the teaching of mathematics does have many obstacles, not least 
that approximately two-thirds of the world’s population does not have suf fi cient 
access to the Internet–– and in societies where access is available, access to the 
Internet often remains limited in classroom settings, particularly for students in low 
socio-economic areas.      

   Introduction 

 Imagine a mathematics classroom before the widespread use of the Internet. 
Mathematics knowledge was the property of teachers and textbooks and mathemat-
ics teaching happened in formal classroom settings under the control of teachers 
and a mandated curriculum. Now imagine a mathematics classroom where students 
and teachers have constant access to the Internet. What changes might we see? 
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 Consider a parallel. Imagine society before the widespread use of the Internet. 
Information was the property of governments and news media and for the most part 
it was disseminated through their control. Today (in 2012) governments and news 
media still control and disseminate information, but they no longer have a 
monopoly. Every person with a cell phone can connect to some aspect of the 
Internet, not only to access information but also to share information with others 
who have Internet access. What changes as a result? 

 The Internet has facilitated the emergence of information sharing that is for 
the most part beyond the control of governments and traditional news media (Khine 
& Salleh,  2010 ). Wikileaks is one example of this, where government records and 
communications have been made public in unprecedented ways, by individuals 
posting them on the Internet. Such public sharing of typically secret information 
adds a level of transparency to government. But there is something else that is at play 
here that is more than just who controls and disseminates information. Schrage 
 (  2001  )  suggested that the commonly-used label of  information revolution  misses 
the essence of the paradigm shift due to new media. He suggested that a more accu-
rate description of the paradigm shift is  relationship revolution . For example, in the 
case of the Middle East and North Africa, it was the creation and organization of new 
communities through Internet tools like Facebook and Twitter that played a signi fi cant 
role in challenging existing government structures over the past three years. 

 Returning now to our initial question of what changes might we see in mathematics 
classrooms where students and teachers have ready access to the Internet, we can 
imagine some of the following occurring which in some respects are analogous with 
the above examples of socio-political developments at large:

   Mathematics knowledge in all its enormity is no longer just the property of teachers • 
and textbooks, nor is it constrained by the communication forms of traditional 
textbooks. It also exists in publicly available information sites such as Wikipedia 
and the numerous mathematics education sites that offer textual, multimodal and 
interactive mathematics content.  
  Mathematics teaching is not limited to formal classroom settings. The Internet • 
has become a vast resource of information. For example, a student can search on 
YouTube for “factoring” and  fi nd numerous videos that “teach” mathematics 
content related to this topic.  
  Online mathematics courses have created a new form of “classroom,” in which • 
no physical space exists as the classroom. The  new classroom  is a combination 
of the place where each student-computer is a virtual environment where mes-
sages, videos, drawings are posted synchronously or asynchronously. In this 
sense, the classroom is in the Internet. Thus pedagogical designs need to take 
into account affordances of the Internet such as collaboration, multimodality and 
performance (which we discuss later in this chapter).    

 We suggest that these three fundamental foci within mathematics education—
mathematics knowledge, teaching and the context of classrooms—can all undergo, 
individually and together, radical change with the emergence and use of the Internet. 
We have noted above some recent (2010–2012) actions in society that most likely 
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would not have occurred in the way they did without the Internet. Events such as 
these have prompted us to speculate on the impact of the Internet on mathematics 
education. In doing so, we are mindful that classrooms do function differently from 
society as a whole, but clearly being an artefact of society there are overlaps. Rather 
than using the three foci outlined above as our organizing structure for this chapter, 
we use a structure that incorporates possibilities that are not being practised widely 
as yet, a structure that the authors believe offers possibilities for mathematics educa-
tion in the 21st century. Our approach will be based on three key affordances of the 
Internet: collaboration, multimodality and performance. But we will  fi rst start with 
a general discussion about the Internet.  

   The Internet 

 In the  Second International Handbook of Mathematics Education  of this series, 
Atweh, Clarkson, and Nebres  (  2003  )  acknowledged the international nature of 
mathematics and mathematics education, picking up threads of an argument they 
had mounted some years earlier (Atweh & Clarkson,  2001  ) . They also detailed 
some aspects of the impact of globalization on mathematics education which they 
argued had both advantages and disadvantages, although often it seemed that this 
multi-pronged process seems overwhelming, unstoppable and often associated with 
forces that were “impersonal and beyond the control and intentions of any individual 
or groups of individuals” (Waters,  1995 , p. 2). Later, Clarkson  (  2011  )  noted that the 
impact of globalization is not always easy to identify in real time, but often only 
becomes apparent on re fl ection. Within this argument, clearly the use and power of the 
Internet was formidable—both useful and at times overpowering of local initiatives 
and thinking. 

 Much of the hardware that is utilized in education was developed for other areas 
of society. Education is forever playing catch-up. Film, television, audio recording, 
video and then digital recording, overhead projectors, all of which have been used 
to varying degrees in schools, were developed  fi rst for business, and then later mar-
keted as valuable resources for education. Some, such as video recordings, proved 
to be useful, but others such as television and  fi lm proved far more problematic. 

 When it comes to information and communication technologies (ICT), again 
they were invented for business and some for scienti fi c/engineering applications, 
with education a secondary market. The Internet in particular was originally invented 
for military purposes. Hence, unlike resources that have from the start been devel-
oped for education purposes, these technologies are being utilized as best- fi t possi-
bilities in education. It is, therefore, no surprise that there are unexpected occurrences 
along the way. But the same is true in business. For example, a report from India on 
the utilization of ICT in micro-businesses shows that it is the cheap digital phones 
that are the most used and adaptable to that situation, not the far more powerful 
desk-top computer technology (Ilavarasan & Levy,  2010  ) . Hence, in working 
through how to use ICT in mathematics education, researchers and curriculum 
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developers should employ investigative techniques that do not lack rigor, but at the 
same time are designed to capture unexpected outcomes. 

 It is starting to become dif fi cult to think of schooling, including doing mathemat-
ics, without the Internet. The Internet seems to be present when students do work at 
home, when they communicate with colleagues, and so on. The 2011 worldwide 
estimate of the number of Internet users was at more than 2.25 billion people, and 
rising (   Internet World Stats,  2011 ). This is a signi fi cant growth since 1995 when 
there were “only” 16 million Internet users. The popularization of the Internet, 
which offers new popular and specialized forms of representation and communica-
tion of ideas, has an impact on mathematics education.  

   The Internet and Education 

 The use of computer technology in schooling has a long history. In the late 1960s 
and early 1970s enthusiastic teachers found ways to introduce students to the use of 
computers. This meant collecting hand-punched cards and sending or taking them 
to some central main-frame computer for processing (Clarkson,  1980  ) . However, 
the question of whether this technology advanced the quality of teaching and learn-
ing for students was never far away. One issue was whether students’ performances 
on assessment tasks increased over time with access to this technology, but this 
proved to be a very hard and not always productive type of question. It was also 
recognized at a social level that students needed to know about this technology and 
its impact, since it was seen to be the start of a revolution in our society. 

 Throughout the mid-1980s computers themselves began to change. They became 
smaller and therefore more portable. They became relatively far less expensive and 
hence, affordable by many more people in many societies. Their power grew expo-
nentially meaning that small laptops could compute faster than the old giant main 
frames of the 1960s. A laptop now has far more computing power than the computer 
at Houston, in Texas, that had control of the moon landing in 1969. This rise in 
computer power allowed the rise of multi-function computers that not only com-
plete mathematical calculations, but also easily handle numerical databases and 
alpha databases. They also became a facility for playing games. Game playing took 
off with the interactive screen which allowed for point and click, utilizing high qual-
ity graphics, rather than having to remember speci fi c code to type in from the key-
board. When, in the early- to mid-1990s, easy access to the Internet using the World 
Wide Web (WWW) became available, anyone with a computer and a modem that 
connected it to the copper wire telephone cable system could have access to virtu-
ally unlimited information, and contact anyone who had an email address. 

 An immense amount of research has focussed on the use of computers (without 
the Internet). The two ICMI studies (Churchhouse,  1986 ; Hoyles & Lagrange,  2010  )  
and PME proceedings (e.g., Pinto & Kawasaki,  2010  )  provide a representative col-
lection of papers on the subject. Interestingly, these collections do not make clear 
how widespread the use of these computers is in everyday classrooms. This rather 
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fundamental issue of the place and use of computers in everyday school education 
worldwide is a project that is still to be undertaken. 

 The popularization of the Internet which offers new popular and specialized 
forms of representation and communication of ideas has an impact on mathematics 
education and education in general. DeBell and Chapman  (  2006  )  suggested that 
“children and adolescents commonly use computers for playing games, completing 
school assignments, word processing, email, and connecting to the Internet. The most 
frequent online activities for students are using email, playing games, using social 
network sites, and  fi nding news and product information” (p. 37) (see also Smith & 
Caruso,  2010  ) . 

 When it comes to education, Head and Eisenberg  (  2010  )  found that “college 
students use  Wikipedia . But, they do so knowing its limitation. They use  Wikipedia  
just as most of us do—because it is a quick way to get started and it has some, but 
not deep, credibility” (para. 4). The role of Facebook in education has also been 
discussed by researchers (Ellison, Stein fi eld, & Lampe,  2007 ; Idris & Wang,  2009 ; 
Lampe, Ellison, & Stein fi eld,  2008 ; Tay, Tan, & Tan,  2009  ) . Selwyn  (  2007  ) , looking 
at the cohort of middle-class university students, saw:

  Facebook as being a highly signi fi cant but also an unremarkable means of social network-
ing and communication in the everyday lives of the young people. … The Internet has 
become enmeshed into daily lives and the social interactions of this generation … We have 
seen how students were using Facebook to communicate with friends in the same house, 
library or computer lab in an asynchronous and sometimes quasi-synchronous manner. 
Conversations appeared to skip across Facebook walls, text messaging, MSN and face-to-
face contact, leaving the wall postings as just one part of a seamless, multimodal exchange. 
(p. 17)   

 The use of short text messages and images through mobile technologies and social 
network has also become a very popular medium for communication among adoles-
cents and college students (Nanyang Technological University,  2010  ) , and represents 
a shift away from communication through email. One thing that is consistent about 
student use of Internet-based resources is an uncertainty about what the next popular 
mode of communication might be. There is no doubt whatever that when it arrives it 
will have an impact on education, and mathematics education in particular.  

   The Internet and Mathematics Education 

 It is more than 25 years since the interface between information technology (IT) 
and mathematics education started to become an issue for research. This became more 
important since personal computers  fi rst became available (for a few) in the mid-1980s. 
Nevertheless it is still not clear in terms of research whether, and if so how, informa-
tion communication technology (ICT) transforms the teaching and learning of math-
ematics. It was with the rise of the Internet that the IT changed to ICT. We do know 
that access to computers is very uneven in schools worldwide. Not surprisingly, ICT 
is even more unevenly present in education than the presence of computers, since 
many schools that have computers have limited or no access to the Internet. 
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 Software that allows students to investigate features of functions or geometric 
 fi gures has become popular in mathematics education conferences, as has the explo-
ration of using spreadsheets in the teaching of algebra. But there is no account, 
to our knowledge, about how widespread their use is in classrooms (Borba & 
Villarreal,  2005 ; Hoyles & Lagrange,  2010 ; Kieran & Yerushalmy,  2004  ) . There is 
some suggestion in the literature that the widespread use of scienti fi c and then 
graphical calculators from the late 1990s led to a reduction in the use of computers 
in mathematics classrooms compared to their use in other subject areas (Clarkson & 
Toomey,  2001  ) . We do know they have not been used in international comparative 
assessments, even though there are movements for international surveys like PISA 
to introduce computer-based items in their assessment tasks. 

 We suspect that research on software development in mathematics education has 
helped to shape mathematics education technology that is available on the Internet, 
for example in the form of applets. However “could the Internet be fully accepted 
in (mathematics education)?” is a question posed by Borba  (  2009  ) . At that point in 
time he had no comprehensive answer. But it seems that some practices, other than 
using it as source of reference, have been developed which have the potential to 
transform the way mathematics is taught and learned. 

 In the previous section we brie fl y discussed some of the research related to com-
puters (without the Internet) and mathematics education. We also reviewed very 
brie fl y some research in education in general, regarding the use of social networks 
and other affordances of the Internet to provide learning and to enhance teaching. 
From this sampling of the research it is clear that ICT, and the Internet, in particular, 
are changing society, and hence there are radical implications for education, includ-
ing mathematics education. However, Maltempi and Malheiros  (  2010  )  in a survey 
showed that until 2007 there were few studies published in English text journals, 
conference proceedings and books about online mathematics education, although 
they suggested the situation was slightly better in countries like Brazil. 

 There is a wide variety of free mathematics education resources that students and 
teachers can use for developing mathematical understanding. For example:

    1    The National Council of Teachers of Mathematics (NCTM) maintains the 
Illuminations Web site (  http://www.illuminations.nctm.org    ) which offers activ-
ities, lessons and interactive content for grades K-12.  

    2    Utah University has developed the National Library of Virtual Manipulatives for 
mathematics education (  http://www.nlvm.usu.edu/en/nav/vlibrary.html    ).  

    3    Drexel University runs the Mathematics Forum (  http://www.mathforum.org    ) 
which offers a bank of math questions and answers, and a free online math help 
service.  

    4    Other sites, such as the following, are not run by institutions or professional 
organizations, but are also of interest for the discussion we will develop in this 
chapter:

    •  http://www.ted.com/talks/salman_khan_let_s_use_video_to_reinvent_edu-
cation.html    , and  
   •  http://www.wolframalpha.com/    .        

http://www.illuminations.nctm.org
http://www.nlvm.usu.edu/en/nav/vlibrary.html
http://www.mathforum.org
http://www.ted.com/talks/salman_khan_let_s_use_video_to_reinvent_education.html
http://www.ted.com/talks/salman_khan_let_s_use_video_to_reinvent_education.html
http://www.wolframalpha.com/
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 In addition, Engelbrecht and Harding  (  2005  )  identi fi ed a number of other online 
resources that are likely to bene fi t students: math dictionaries, libraries of puzzles 
and other enrichment content, online learning or extension material to support face-
to-face courses—online material made available by textbook publishers and supple-
mentary notes made available by the teacher—and exploration and demonstration 
sites with interactive animations. 

 From the early days when the Internet was beginning to be utilized in class-
rooms, there were issues in students’ learning that were new but still remain on 
today’s research agenda. Gerber, Shuell, and Harlos  (  1998  )  noted that when using 
the Internet “students did not seem to have a clear cut plan for their projects or for 
locating data prior to using the Internet” (p. 123). They added: “students approached 
the task of searching in different ways. … [but they] did not search the Internet 
with a clear plan in mind. … Most of them needed a good deal of scaffolding to 
focus their searches and  fi nd relevant data” (p. 127). A similar comment might 
also be appropriate for any project which demands students collecting data, whether 
this involves the Internet or not. But if they are to utilize the Internet, then peculiar 
issues come into play. Pritchard and Wilson  (  1999  )  alluded to this when they 
noted:

  The Web’s very popularity is becoming one of its major weaknesses. To go about looking 
for data on a particular topic is fairly easy—the dif fi cult part of sifting through the often 
thousands of documents a search has generated for an article which will contain something 
which is genuinely helpful or interesting. The fact that the authenticity or veracity of the 
data or information provided cannot be guaranteed is another failing. (p. 44)   

 Nevertheless, Herrera  (  2001  )  and Engelbrecht and Harding  (  2005  )  asserted that 
the Internet’s hands-on environment enables students to see and explore mathemati-
cal concepts. Martinovic  (  2005  )  suggested that there are a number of potential 
bene fi ts to students of mathematics using online help sites. According to Martinovic, 
the Internet

   has a greater potential for students to develop questions that will engage them in • 
a process of self-diagnosis and re fl ection;  
  provides students with answers that may provide models of  • thinking through  
problems;  
  through online help sites offer vicarious bene fi ts even for visitors that do not • 
ask questions, by helping them learn the language of mathematics, how to ask 
questions, and how to answer them; and  
  provides different approaches in answering similar mathematics questions • 
which may help students realize that there is more than one way to solve 
problems.    

 Although there are many claims for online learning, those who are teaching such 
courses have not indicated that the learning of students is without dif fi culty. 
Guberman-Glebov, Baruch and Barabash  (  2003  ) , re fl ecting on their teaching in this 
environment, suggested that “students in such a course left on their own, do not man-
age to make a suf fi cient progress and need permanent instruction, which renders the 
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distant learning approach (online) in this case time consuming and not ef fi cient” (p. 161). 
Wadsworth, Husman, Duggan and Pennington  (  2007  )  later noted:

  Although students in online courses are implementing many of the same strategies as their 
counterparts in traditional classrooms, there has been little evidence to show what strategies 
are most useful in this new environment and how some strategies may translate to a new 
learning environment. (p. 13)   

 The role of teacher and the form of teaching when the Internet is utilized to any 
degree is also of interest. Again there is much in the literature that asserts that the 
context has changed for the better, but there seems to be little hard research evidence 
on which these conclusions are based. 

 Stahl  (  2009b  )  called for a new way of teaching when using the Internet because:

  Students learn math best if they are actively involved in discussing math. Explaining their 
thinking to each other, making their ideas visible, expressing math concepts, teaching peers 
and contributing proposals are important ways for students to develop deep understanding 
and real expertise. There are few opportunities for such student-initiated activities in most 
teacher-led classrooms. (p. 24)   

 Although the Internet does afford new pedagogical possibilities, “the teacher’s 
role in the use of the Internet is one of signi fi cant importance and not to be taken 
lightly” (Loong & White,  2003 ; p. 2). As Guberman-Glebov, Baruch, and Barabash 
 (  2003  )  noted:

  The computer and Internet provide some unquestionable advantages as a learning environment, 
if one learns to use them properly. We assert by that the technology usage is not self-evident 
for every course and every context, and one needs tools and skills for decision-making as to 
the choice of teaching methods and strategies involving these techniques. (p. 160)   

 There is another potential affordance offered by the Internet that may help teach-
ers explore the new roles that are open to them. In a unique way, not available previ-
ously, the Internet affords the creation of networks of teachers. Some researchers 
see it as a venue for developing ideas to improve mathematics teaching. Chinnappan 
 (  2006  )  suggested that “by sharing the problems and concerns of their own school 
context, teachers can better understand, anticipate, and develop potential solutions 
to the learning demands of children in their classroom” (p. 357). And yet this asser-
tion hardly needs the Internet for this to occur. 

 But even in large cities with many schools, teachers have often found it hard to 
meet and share professionally in a manner that is frequent and continuous over a 
long period of time. Most inter-school professional meetings of teachers only occur 
when there is a speci fi c task to be accomplished. Changes may be possible with the 
Internet.

  Through the Internet, teachers can share expertise, offer one another their ideas on lesson 
plans and projects, even chat across continents about common problems and interests. 
Lessons made for one cultural setting may not be suitable for another, but they may still 
suggest ideas that can be revised and molded for your classroom. (Herrera,  2001 , p. 26)   

 Thus building a professional community of support without having to leave your 
of fi ce, which can meet asynchronistically if necessary, becomes a possibility with 
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the Internet. But how often this occurs, and the gain teachers have from such a com-
munity, has not been made at all clear in the research literature. 

 A critical aspect of teaching is the utilizations of resources that will help develop 
a useful context for student learning. The traditional resource for mathematics 
teaching has been the textbook. Unfortunately, many of the resources for mathe-
matics teaching on the Internet essentially are just a reproduction of practices 
which are based on a paper-and-pencil medium such as downloading books or 
downloading exercises, a practice that does not take full advantage of possibilities 
of the Internet (Engelbrecht & Harding,  2005  ) . Herrera  (  2001  )  suggested that there 
are alternatives:

  An in-depth treatment of a topic in this medium can include interactive animation, links to 
related material, video clips, and opportunities to email experts on the topic. Not all these 
elements are necessary, and certainly you do not want them included for their “glitz” value, 
but used properly they enrich the learning experience. (p. 28)   

 Borba and Villarreal  (  2005  )  discussed how there are new forms of communica-
tion in an online course taught via chat (see also Beatty & Geiger,  2010  ) . Cazes, 
Gueudet, Hersant, and Vandebrouck  (  2006  )  used the Web to post exercises that they 
claimed changed the didactical contract in the classroom. However it is not clear 
whether their exercises just reproduced paper-and-pencil exercises, or whether they 
took advantage of alternative Internet possibilities. Hoyles et al.  (  2009  ) , when dis-
cussing the Internet, emphasized a notion that they had developed in previous work 
on microworlds—how  connectivity  within a regular classroom changes the nature 
of collaboration. 

 It was recognized some time ago that “using the Internet would allow the chil-
dren to locate ‘real-world’ data, and perhaps promote a greater understanding of 
instances in which one encounters such data, thereby fostering an appreciation for 
the use of mathematics in the real world” (Gerber et al.,  1998 , p. 116). The Internet 
has developed beyond the point where it represents merely a huge accessible data-
base, although that advantage has not changed. Now the availability of dynamic 
geometry software can transform the types of tasks that can be developed in the 
classroom (Arzarello & Edwards,  2005 ; Arzarello, Olivera, Paola, & Robutti,  2002 ; 
Ferrara, Pratt, & Robutti,  2006 ; Laborde, Kynigos, Hollebrands, & Strasser,  2006 ; 
Mariotti,  2002 ; Marrades & Gutierrez,  2000  ) . The relatively new Interactive 
Whiteboards (IWBs), although used in some countries (e.g., England and the USA) 
for more than a decade, have only now come to be used in classrooms more widely; 
they offer exciting opportunities to explore the use of such applications in conjunc-
tion with the Internet. Although the use of IWBs have rightly been criticized in 
general, as well as in mathematics teaching (Clarkson,  in press ; Zevenbergen & 
Lerman,  2008  ) , their facility of being able to archive the records of a class’s group 
thinking, including any use made of the Internet, and to display this quickly and 
easily in subsequent lessons, will be something to watch for the future. 

 Even with the many advantages of the Internet, there are some issues that are 
beyond the control of the teacher. For example, there have been critiques of the 
design and pedagogical quality of online interactive mathematics content. Gadanidis, 
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Sedig, and Liang  (  2004  )  noted that designing online mathematical investigations as 
pedagogical tools is not a simple undertaking. In their opinion many “do not appear 
to be well designed, neither from a pedagogical nor from an interface design 
perspective” (p. 294). They suggest that good design becomes possible when math-
ematics education and human–computer interaction design experts work together, 
rather than in isolation, simultaneously taking into account pedagogical goals and 
interface design principles. 

 Rather than analyzing in detail work such as the above, we have chosen another 
path. Technologies and modes of communication are rapidly changing, as we have 
alluded to in earlier sections, making the study of their impact on mathematics edu-
cation both challenging and exciting. In the next section we discuss some of the 
themes that appear in the literature regarding the affordances of using the Internet in 
mathematics education. We have chosen not to report on studies that are predomi-
nately text based and/or use rapid response modes aimed mainly at testing students’ 
abilities. Rather, we brie fl y report on studies that seem to push the boundaries of 
how the Internet can be used creatively and with worth in mathematics education.  

   Collaboration, Multimodality and Performance 

 Collaboration, multimodality and performance are the three new affordances that 
we have identi fi ed and discuss brie fl y using some case studies in this section. These 
features are not affordances only of the Internet. But we claim that the Internet 
transforms them. Hence in one sense they are all objective capabilities of the 
Internet. 

 Collaboration has changed with the use of the Internet not only because people 
who are in different geographic location can interact, but because even when they 
are face-to-face, collaboration involving the use of the Internet changes its nature. 

 Multimodality, understood as the combination of different kind of texts, has 
de fi nitely been changed by the Internet. It is easy to combine video, drawings and 
music with regular text. Hence with the Internet one is able to bring information to 
online courses or to face-to-face courses in ways undreamed of in pre-Internet 
days. 

 The third subsection deals with performance. We characterize here all kind of 
performances (such as YouTube videos) that can be found on the Internet that are 
directly connected to mathematics education. 

 Clearly there is overlap between these three issues which we recognize. We are 
not trying to set out a classi fi cation system with these headings. Rather, we are 
identifying labels through which we can discuss what we believe are affordances 
arising through the Internet for mathematics education. Before we go into a more 
detailed discussion of collaboration, multimodality and performance in the fol-
lowing subsections, we note that our own teaching experiences with the Internet 
have signi fi cantly altered our notion of  classroom . First, all authors have been 
teaching online courses for at least six years. In online courses, all the interaction, 
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or most of it, takes place in virtual environments. Normally teacher and students 
never meet face-to-face. Nevertheless, often some of the students from each 
course have mentioned that they “feel close” even without meeting face-to-face 
(Borba & Gadanidis,  2008 ; Borba, Malheiros, & Zulatto,  2010 ; Engelbrecht & 
Harding,  2005  ) . The second type of teaching environment that we have experi-
enced for much longer and has relevance to this discussion is that of the  blended 
learning  environment in which, for the most part, the use of the Internet is com-
bined with face-to-face regular interactions. Lin and Ponte  (  2008  )  discussed dif-
ferent ways of how this can help in communities of prospective mathematics 
teachers. Recently there has been Working Groups on  online teacher education  at 
PME conferences (Borba & Llinares,  2008 ; Borba, Llinares, Clay, & Silverman, 
 2010  ) . Overall, it seems that both online courses and the blended courses seem to 
suit both continuing teacher education and preservice teacher education programs 
(Maltempi & Malheiros,  2010  ) . 

 Clearly, our own experiences of teaching in various ways with the Internet, 
colours the following discussion. As noted above, many of the practices that involve 
the use of the Internet are not taking advantage of the changing possibilities that it 
offers. They are simply mimicking practices of the paper-and-pencil medium. 
Hence, as we discuss collaboration, multimodality and performance, we will also 
note some of the reactions from students and explore possibilities for teaching 
mathematics—such as Math and Science Performance Festival (see   http://www.
MathFest.ca    )—that we believe are offering new perspectives regarding how stu-
dents and teacher can express their mathematical ideas. 

   Collaboration 

 What does online collaboration look like in the case of mathematics education? 
The two cases we present below illustrate how new technologies can help foster 
collaboration in online mathematics education settings. 

   Case 1: “Pass the pen, please”.   Online mathematics teaching and learning can 
be in synchronous, asynchronous as well as hybrid environments. In a synchronous 
environment, all students and the teacher are present using video, text, and/or audio. 
But how does one explore mathematics in such an environment? Rather than 
reverting to traditional modes when the instructor simply lectures and the students 
listen, it is possible for a synchronous environment to provide a shared collaborative 
workspace, where the teacher and students work together on mathematics problems. 
One such possibility we call “pass the pen please.” The  fi rst author has developed 
and used a platform that allows the screen of any of the participants to be shared 
with everyone else. For example, we could start by showing a screen of  Geometricks  
on our computer. At the same time the class of students, no matter their geographic 
location, could see the dragging that is performed on a given geometrical construction. 
To this point there is nothing of real interest. In many ways we as the instructors 

http://www.MathFest.ca
http://www.MathFest.ca
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have control of what is happening with the students simply watching. However a 
special feature of the application, which is important for the theme of collaboration, 
is the capability to “pass the pen” to another participant who could then add to 
what was done on the  Geometricks  construction. In this case, technology 
transforms the nature of the interaction and enables a form of collaborative problem 
solving to happen (see Borba & Gadanidis,  2008 , for more details). This example 
illustrates how an online environment can support the convergence of different ideas 
and generate the collective construction of knowledge about geometry. 

 A particular example involved consideration of symmetry. A  Geometricks   fi le 
had already been given to students with the  fi gure MNOPQ (see Figure  22.1 ) and 
they were asked to  fi nd the symmetric  fi gure, in relation to  axis-q .  

 Borba and Zulatto  (  2010  ) , the professors from the university teaching the courses 
in which this example arose, report on how they began to learn mathematics from 
the interaction with the students. That is, once the authors “passed the pen” to the 
students and let them take the lead in the online activity, both groups, students and 
professors, became learners in a joint collaborative act. 

 However this collaborative online mathematics learning environment of “pass the 
pen, please” involved more than collaboration between teacher and students, and 
more than collaboration between students. It also involved collaboration between 
humans and digital mathematics tools. Borba and Villarreal  (  2005  )  have developed 
the theoretical notion of  humans-with-media , as a means of stressing the idea that 
knowledge is constructed by collectives which involve humans and different tech-
nologies of intelligence such as orality, paper-and-pencil, and ICT (Lévy,  1993  ) . 

 Hence it is hypothesized that different combinations of teachers, students and 
technologies result in different kinds of knowledge production. Although we do not 
at this stage want to make the case that new medium, such as the Internet incorpo-
rated into collectives of humans-with-media, enhance student learning, we have 
evidence that suggests that the Internet is a media that transforms practices of 
learners and teachers involved with mathematical educational practices. The 
research group GPIMEM (  http://www.rc.unesp.br/gpimem    ) has documented some 
of these changes. For example, in online courses that use chat rooms, it is not easy 
to use mathematical symbolism. Participants have to resort to writing “integral of 
2 x  d x ” instead of using the normal concise mathematical symbolism for such an 
expression. Santos  (  2006  )  in discussing research into such phenomena suggests that 

  Figure 22.1.     Geometricks.        
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this change in writing such expressions online may change the nature of students’ 
mathematical thinking.  

   Case 2: Annotating learning objects.   Learning objects are typically viewed as 
“read-only” interactive content. That is, a user can explore the content but there is 
typically no method for annotating a particular state with ideas or questions, and 
then sharing these states and annotations with others. That would be a more dif fi cult 
to do, as it would require more sophisticated programming and also the use of a 
database. Through a project called  Digital Windows into Mathematics  (  http://www.
edu.uwo.ca/dwm    ) the third author has developed learning objects (see Figure  22.2 ) 
that allow for remote collaboration (Gadanidis, Jardine, & Sedig,  2007  ) .  

 Users have the ability to add their personal annotations (after obtaining a user-
name and a password), and to incorporate personal metadata into the mathematics 
content. That is, the user can mark-up a learning object using text or freehand draw-
ings and then save these annotations for later reference or for sharing with others. 
When saving annotations, the current state of the interactive environment is also 
saved (for example, the current values of the coef fi cients of the function being plot-
ted, as well as the matching graph, will be saved along with the annotation). Saved 
annotations may be shared with others. Thus a student can share his/her ideas or 
questions about a certain state of the learning object, or a teacher may draw student 
attention to a particular aspect of a concept being explored.  

   Discussion.   Collaboration for the purpose of learning is a prominent goal in 
mathematics education. Lerman  (  2000  )  has noted an emergence of a social-
perspective on teaching and learning mathematics, and in particular an emphasis on 

  Figure 22.2.    Digital Windows into Mathematics.       
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collaborative learning, in mathematics curriculum documents such as NCTM’s 
 (  2000  )   Principles and Standards for School Mathematics . 

 Some have suggested that the impact of new media, of which the Internet is an 
integral part, is less about the information it carries and more about the relationships 
that can be built. Schrage  (  2001  )  suggested that the commonly used label of  infor-
mation revolution  misses the essence of the paradigm shift due to new media.

   In reality, viewing these technologies through the lens of “information” is dangerously 
myopic.  The value of the Internet and the ever-expanding World Wide Web does not live 
mostly in bits and bytes and bandwidth. To say that the Internet is about “information” is a 
bit like saying that “cooking” is about oven temperatures; it’s technically accurate but fun-
damentally untrue. (p. 1; original emphasis)   

 Schrage argued that a more appropriate label is relationship revolution. Hence:

   The so-called “information revolution” itself is actually, and more accurately, a “relationship 
revolution.”  Anyone trying to get a handle on the dazzling technologies of today and the 
impact they’ll have tomorrow, would be well advised to re-orient their worldview around 
relationships …  When it comes to the impact of new media, the importance of information 
is subordinate to the importance of community.  The real value of a medium lies less in the 
information that it carries than in the communities it creates. (pp. 1–2; original emphasis)   

 Lankshear and Knobel  (  2006  )  argued that the relatively recent “development and 
mass uptake of digital electronic technologies” represented changes on an “histori-
cal scale,” which “have been accompanied by the emergence of different (new) 
ways of thinking about the world and responding to it” (pp. 29–30). These new 
ways of thinking can be characterized as more “participatory,” “collaborative,” and 
“distributed” and less “published,” “individuated,” “author-centric,” or “expert-
dominated” (Knobel & Lankshear,  2007 , p. 9). 

 In this same vein, online mathematics learning is beginning to be associated with 
collaboration, suggesting a de fi nite (which may be causal) relationship between the 
collaborative affordances of new media and the new emphasis on collaboration in 
mathematics education. For example, Stahl  (  2009a  )  noted:

  We found that participants in virtual math teams spontaneously began to explore their problems 
together, discussing problem formulations, issues, approaches, proposals and solutions as a 
group. Moreover, students generally found this interaction highly engaging, stimulating and 
rewarding. (p. 13)   

 Likewise, Sarmiento-Klapper  (  2009  )  stated:

  In our study of mathematics collaboration online we observe collective creative work as 
manifested in a wide range of interactions extending from the micro-level co-construction 
of novel resources for problem solving to the innovative re-use and expansion of ideas and 
solution strategies across multiple teams. (p. 227)   

 Another way of approaching the emerging association of online mathematics 
learning with an increased level of collaboration is to look at an online mathematics 
course that is taught asynchronously. In such a course, there is no set class time, and 
the instructor and students can join the course at their convenience. Two aspects of 
such an asynchronous course may increase online collaboration. First, the instructor 
needs all students to actively participate online if only to show that they are “present.” 
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In contrast, in a typical face-to-face class (or for that matter a synchronized meeting 
online), many students do not have to participate actively to be “present.” Second, 
when students participate online in an asynchronistic manner, chances are that the 
 fi rst person to read and possibly respond to another student’s contribution or to offer 
assistance to their question will be another student. The teacher-centred communi-
cation norms of face-to-face classrooms are disrupted in an online asynchronous 
environment and there is an increased potential for student-to-student interactions. 

 A number of researchers have suggested that there are positive implications 
associated with the collaborative affordances of such an environment. Charles and 
Shumar  (  2009  )  stated:

  The social action that is encouraged is creative and draws upon the participants’ imagina-
tions to see knowledge production as an enjoyable, stimulating activity that is accessible by 
ordinary people. Understanding how to harness this agentic behavior and to leverage it for 
scalable, sustainable learning will be a next step for this research. (p. 224)   

 Sarmiento-Klapper  (  2009  )  reported:

  Group remembering and the bridging of interactional discontinuities allowed the teams to 
expand the referential horizon so that the objects created by themselves or by other teams 
could be expanded, reconsidered, or challenged. These methods allowed the teams to evolve 
a sense of collectivity engaged in building new knowledge and made it possible for them to 
interlink their collaborative interactions with those of other teams. (p. 235)   

 Cakir, Zemel, and Stahl  (  2009  )  also noted the bene fi ts of collaborative online 
learning:

  The coordination of visual and textual realizations of the mathematical objects that the 
students co-construct provides a grounding of the algebraic formulas the students jointly 
derive using the line drawings that they inspect visually together. As the students individu-
alize this experience of group cognition, they can develop the deep understanding of math-
ematical phenomena that comes from seeing the connections among multiple realizations. 
(p. 147)   

 Annetta, Folta, and Klesath  (  2010  )  suggested that young people in today’s world

  … are competing and collaborating on a global scale. New technologies, or at least new to 
education, provide the opportunity to rebuild the collaborative social structures that we have 
begun to lose in our educational communities. … it is high time to rethink learning. (p. 21)   

 However, the concept of collaboration in online environments is complex. Issues 
surrounding the design of online mathematics learning require more research on 
how best to use and support collaboration. For example, Stahl  (  2009a  )  noted that 
“group size has an enormous impact on the effectiveness of different media” (p. 13). 
He added that most research on online mathematics learning had focussed on indi-
vidual learning and commented that “there is not much research on, for instance, 
math collaboration by different size groups” (p. 13). 

 Kotsopoulos  (  2010  )  noted that when we look closely at student interactions in 
what appears on the surface to be collaborative learning, we  fi nd instances that are 
“predominantly non-collaborative despite the pedagogical efforts and intentions of the 
teacher and the task” (p.129). Kotsopoulos identi fi ed instances of non-collaboration 
while students work in groups (in a classroom setting) where “non-collaborative 
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learning sent a message of incompetence and exclusion” to some of the students in 
the group (p. 138). The author continued:

  [Some] students … received little support from their peers during collaborative learning. 
Moreover, efforts by these students to collaborate were thwarted by one or more members 
of the group. The group served to sustain a particular normalized way of collaborating that 
was exclusionary. (p. 138)   

 Kortsopoulos concluded that:

  Schools are public places of learning that ought to ensure safe and accessible learning for 
all students. Consequently, pedagogical strategies should work towards neutralizing the 
effects of power relations that restrict some learners. (p. 138)   

 This recent report suggested that in the classroom setting care needs to be taken 
with assumptions made regarding collaborative learning. It may be seen as a warn-
ing that students may not bene fi t from all online collaborative settings. For example, 
there, one can  fi nd problematic dynamics, such as bullying, occurring in group set-
tings. These dynamics take on new forms in online settings. Cyber bullying is not 
uncommon among adolescents (Agatston, Kowalski, & Limber,  2007  ) . Weigel, 
Straughn, and Gardner  (  2010  )  drew attention to the possibility that “bullying, which 
may have been limited to a small cadre of perpetrators and victims, can now spread 
more quickly and easily to a larger population” (pp. 17–18). 

 Dewey  (  1938  )  noted a long time ago that not all school experiences are educa-
tive. Some experiences are mis-educative. Similarly, we cannot assume that online 
interactions among students are necessarily collaborative in the positive sense. 
Again we note that this is an issue that needs to be worked through in the relatively 
new online environment for learning mathematics.   

   Multimodality 

 A challenge in teaching and learning mathematics online has been that in its 
initial manifestation; Internet communication was text-based. Not being able to use 
graphs and diagrams limited the possible representations of mathematical ideas. 
Although this problem has not been fully solved, as the support for communication 
using mathematical symbols and diagrams varies widely among e-learning platforms, 
the cases below point to developments that help incorporate multimodal elements 
to online mathematics. 

   Case 1: “Pass the pen” and  Digital Windows into Mathematics.    The two cases 
shared in the previous subsection on collaboration are also examples of how 
multimodal content may be used in online mathematics education. In the case of 
“pass the pen,” the shared, collaborative geometric construction space allowed for 
communication using text, audio and geometric  fi gures that could be manipulated. 
In the case of the  Digital Windows into Mathematics  project, the learning objects 
communicated mathematics ideas using text, diagrams, interactive content and 
videos of mathematicians talking about the mathematics explored.  
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   Case 2: A multimodal online learning platform.   For the purpose of offering 
online mathematics courses, the third author developed a learning platform called 
 Idea Construction Zone  (Gadanidis,  2007 ; Gadanidis & Geiger,  2010  ) . This had the 
following multimodal features:

    1.    A rich text editor similar to ones used in word processors like  Microsoft Word ;  
    2.    Users can embed the following within postings: video and audio recordings; 

graphics;  Flash  (swf); diagrams (using the built-in  Draw Tool ); hyperlinks ( fi les 
and Web pages).     

 In addition, users have the option of making their posting  Peer Editable , allow-
ing other users to edit their ideas. Figure  22.3  shows what one Grade 8 student 
shared in the online discussion environment using the  Draw Tool  about one of the 
graphs he discovered while exploring an online graphing program.  

 Gadanidis, Hughes, and Cordy  (  2011  )  studied the nature of student learning in a 
classroom setting where students had ongoing access to the Internet while in a 
mathematics class and access to an online discussion board between classes using 
 Idea Construction Zone . While exploring the graphs that were generated for miss-
ing number equations like __ + __ = 10 and __ + __ = 7, they wondered if they could 
create their own equations that would make the graphs point in a different direction 
or make the graphs curve. Using function plotters freely available on the Internet 
they investigated graphs that were well beyond the grades 7–8 mathematics curricu-
lum: polynomial, trigonometric and even implicit, parametric and polar equations. 

  Figure 22.3.    Sketch of graph of  x   4  +  y   4  + 6 = 10.       
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 One example is shown in Figure  22.3 . Gadanidis, Hughes, and Cordy  (  2011  )  
suggested that:

  There was evident energy in the computer lab when students were creating and sharing 
graphs, as depicted by their eagerness to share ideas within and among groups and their 
willingness to take up and explore the ideas of others. Students seemed to enjoy working 
with equations that they initially did not understand, exploring their graphs and trying to 
make sense of the relationships between the equations and the graphs. Students also used 
Google and Wikipedia to  fi nd information about the various new equations they were 
encountering. (p. 418)   

 However, on a less positive note, this study also noted that there was a challenge 
in maintaining online discussion between classes. Although part of the reason had to 
do with poor pedagogical planning rather than the affordances of the online environ-
ment, this experience drew attention to the fact that classroom use of the Internet is 
not necessarily simply a positive or a negative. Rather, it also depends on how it is 
used pedagogically.  

   Discussion.   Some research suggests that the collaborative aspects of online 
mathematics learning are supported by the multimodal online environments that are 
becoming increasingly available. For example, Cakir, Zemel, and Stahl  (  2009  )  
stated:

  Multimodal interaction spaces—which typically bring together two or more synchronous 
online communication technologies such as text chat and a shared graphical workspace— 
have been widely used to support collaborative learning activities of small groups. … 
Engaging in forms of joint activity in such online environments requires group members to 
use the technological features available to them in methodical ways to make their actions 
across multiple spaces intelligible to each other and to sustain their joint problem-solving 
work. (p. 140)   

 Horstman and Kerr  (  2010  )  suggested that multimodal content adds a further level 
of complexity when designing online learning environments. They stated:

  Perhaps the biggest conceptual transition for e-learning designers is to envision the content 
and learning objectives through graphical imagery and user interactions rather than by 
explaining content through text. (p. 196)   

 Despite the fact that the Internet is increasingly  fi lled with multimodal content, 
the original text-based communication still persists for many online math courses. 
Martinovic  (  2005  )  noted:

  Text-based communication has little means for presenting graphs, diagrams, and tables. 
Both tutors and students suffered from an inability to use proper mathematical symbols and 
sometimes had to put in extra effort to use text editing capabilities for visual presentations. 
(p. 34)   

 Because of the original limitations posed by text-only communication, 
Engelbrecht and Harding  (  2005  )  suggested that “at the most basic level of mathe-
matics on the Web is the practice of what has become known as  computerese , using 
a text equivalent for formulae such as  sqrt ( x ) for the square root function” (p. 237). 
Clearly this formulation was needed in the early days of the Web, but nevertheless 
it did build another layer of complexity for communicating mathematics. 
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 However, despite the  computerese  limitations of mathematics communication on 
the Internet, online communication is generally becoming increasingly multimodal 
in nature. This stands in contrast with many school-based experiences, especially in 
mathematics, which continue to rely on discourses that are monomodal or bimodal 
(in cases where diagrams or graphs are employed). Kress and van Leeuwen  (  2001  )  
pointed out that in a digital environment “meaning is made in many different ways, 
always, in the many different modes and media which are co-present in a communi-
cational ensemble” (p. 111). 

 The shift from text-based communication to multimodal communication is not 
simply a quantitative change. It is not just a case of having more communication 
modes. It can be seen as a qualitative shift, analogous to the change that occurred 
when we moved from an oral to a print culture. In the case of mathematics, we are 
seeing an emergence of online resources that combine text, symbols, animation, 
interactivity and videos. Such communication, which mirrors what young people 
are expecting in their overall Web-based interactions, will also be needed in their 
online mathematics experiences. Much is still to be done in researching this 
development.   

   Performance 

 Kress and van Leeuwen  (  2001  )  and Hughes  (  2008  )  noted that the multimodal 
nature of new media offers performative affordances. This is evident in the multi-
media authoring tools used to create online content, such as  Flash , which often use 
performance metaphors in their programming environments. For example, one pro-
grams on what is referred to as the  stage , one uses  scenes  to organize  actors  or 
 objects  and their relationships, and one controls the performance using  scripts . The 
Web as a performative medium is evident in the popularity of portals like YouTube. 
Hughes suggested that new media that has infused the Web draws us into performa-
tive relationships with and representations of our  content . To use new media is to, in 
part, adopt a performative paradigm. Below we present two cases of Internet-based 
mathematics performance. 

   Case 1: Performing new images of mathematicians.   The images of 
mathematicians performed in the media are typically narrow and negative. Picker 
and Berry  (  2000  )  have found that mathematicians are essentially invisible for 
students, and students rely on stereotypical images from media for their images of 
mathematicians. How might the Internet be a venue for offering students new views 
of mathematicians? The  Windows into Elementary Mathematics Project  of the 
Fields Institute (Gadanidis,  2010 ; Gadanidis & Scucuglia,  2010  )  uses new media 
tools to make mathematicians visible and offers a more positive image of mathematics 
and mathematicians (see Figure  22.4 ). In the videos, mathematicians spoke of their 
feelings about mathematics. Lindi Wahl stated that “One of the things that I really 
love about … mathematics … is that I’m creating something new all the time.” Peter 
Taylor talked about choosing “the problems I do based on beauty.” 
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  When one is doing mathematical biology, there are a lot of things to pay attention to, and 
there are a lot of papers to read, and a lot of ideas to think about, but the things I choose to 
work on, and the things I give to my graduate students, are the things where the structure 
 fi lls me with a sense of beauty, where the aesthetics speak to me and lead me on.   

 Megumi Harada noted that:

  I love mathematicians. I can say that without any doubt that the math students were the most 
fun to be around, and I think it’s because, as a group, mathematicians love what they do 
more than many, many other groups of people I know.   

 This online resource disrupts stereotypical images of mathematics as cold and 
abstract (Ernest,  1996  )  and views mathematics as a fun, interesting, imaginative, 
aesthetic and fully human activity (Sinclair,  2001 ; Sinclair, Pimm, & Higginson, 
 2006 ; Upitis, Phillips, & Higginson,  1997  ) . 

 There is a little evidence that the new images of mathematicians do have some 
effect. The third author teaches fully online math-for-teachers courses for teachers 
who self-identify as “fearing or disliking mathematics.” In these courses, teachers 
explore some of the mathematics problems explored by the mathematicians in the 
 Windows into Elementary Mathematics  project discussed above, and also view the 
video interviews with the mathematicians. It is interesting that teachers with initial 
negative outlooks towards mathematics end up making unsolicited positive com-
ments about the mathematicians. For example, here are two teacher comments about 
mathematician Lindi Wahl:

  It is evident that she truly loves her job. She enjoys the challenge of creating brand new 
formulas to explain concepts. She loves collaborating with others who are specialists in 
their respective  fi elds.   

  Figure 22.4.    Windows into elementary mathematics.       
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 I love the way she talks about math! It’s great to hear someone talk so passionately about it 
for once! 

 This engagement of teachers who “fear or dislike” mathematics with mathemati-
cians who are passionate about their subject, and the resulting positive impact on 
teacher attitudes, has been made possible by the Internet.  

   Case 2: Performing classroom mathematics.   In traditional mathematics 
classrooms, students communicate their ideas to fellow students and to their teacher. 
It is rare that the classroom mathematics experience spills over beyond the classroom 
walls. Our informal surveys of students and parents have suggested that when a 
student is asked “What did you do in math today?” the typical response is “Nothing” 
or “I don’t know.” In some of our work we have been exploring the idea of students 
as performance mathematicians, where the audience for their learning is expanded to 
include students in other classes, family and friends, and the wider world through the 
use of the Internet (Gadanidis & Borba,  2008 ; Gadanidis, Hughes, & Borba,  2008  ) . 
An example of this is available at   http://www.edu.uwo.ca/mpc/bigideas/bbw     (see 
Figure  22.5 ). Here, a Grade 2 teacher relates the experience of his students: 

    (a)    Scripting dialogues of mathematics conversations they might have at home 
when someone asks, “What did you do in math today?,”  

    (b)    Performing their mathematics learning for a Grade 7 class,  
    (c)    Performing their learning as a song and music video posted on the Internet, at 

the  Math and Science Performance Festival  (see   http://www.MathFest.ca    ).     

 Another example of a performance from the online  Math and Science Performance 
Festival  in Canada that has been supported by the Fields Institute, the Imperial 
Oil Foundation and the Canadian Mathematical Society is  Now I’m a Trapezoid  
(available at   http://www.edu.uwo.ca/mathscene/geometry/geo1.html    ). This is a 

  Figure 22.5.    Students as performance mathematicians.       

 

http://www.edu.uwo.ca/mpc/bigideas/bbw
http://www.MathFest.ca
http://www.edu.uwo.ca/mathscene/geometry/geo1.html
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song by a  fi fth-grade student about a triangle that has lost its head. Saddened by this 
loss, the triangle laments that it is now a trapezoid (see Figure  22.6 ). The creation of 
such performances involves pedagogical shifts for mathematics teachers, putting a 
greater emphasis on mathematics communication through the arts and mathematics 
communication for a public audience.  

 Such pedagogical shifts are supported by the assertion of Gadanidis and Borba 
 (  2008  )  and Gadanidis, Hughes, and Borba  (  2008  )  that students might be viewed 
as  performance mathematicians  and that a performance (as in the Arts) lens might 
be useful in framing the teaching, learning and doing of mathematics, especially in 
a technology-rich setting. Such a lens helps us see and judge mathematics activity 
as we would see and judge a  fi lm. For example, if a mathematics activity was to be 
judged as we might judge a  fi lm, then Gadanidis and Borba  (  2008  ) , using the work 
of Boorstin  (  1990  ) , suggested that it would “work” if it offered us opportunities to 
experience the following pleasures:

   the pleasure of seeing the new and the wonderful in mathematics;  • 
  the pleasure of being surprised mathematically;  • 
  the pleasure of feeling emotional moments in doing and learning mathematics; and  • 
  the pleasure of sensing mathematical beauty.     • 

   Discussion.   Borba and Villarreal  (  2005  )  suggested that humans-with-media form a 
collective where new media serves to disrupt and reorganize human thinking. Likewise, 
Lévy  (  1993  )  saw technology not simply as a tool used by humans, but rather as an 
integral component of a  cognitive ecology  of the humans-with-technology. He added 
that technologies  condition  thinking. Can we imagine  what might be  if students and 
teachers, through their immersive experiences with performative affordances of 
new media, were  conditioned  to think about learning and teaching in performative 
ways? Lévy  (  1998  )  also claimed “as humans we never think alone or without tools. 
Institutions, languages, sign systems, technologies of communication, representation, 
and recording all form our cognitive activities in a profound manner” (p. 121). 

  Figure 22.6.    A performance from the  Math and Science Performance Festival.        
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 Pineau  (  2005  )  suggested that “[t]he claim that teaching is a performance is at 
once self-evident and oxymoronic” (p. 15). However, as a theoretical claim, it is 
highly problematic. Pineau maintained that the typical interpretations of teaching-
as-performance as (a)  teacher-as-actor  and (b)  teacher-as-artist  are weak, as the 
former reduced teaching to “teaching like an actor,” and the latter equated it with 
“intuition, instinct, and innate creativity” (pp. 18–21). As an alternative, Pineau 
raised issues of power and authority and saw performance as political struggle and 
resistance. 

 Performance as a form of political struggle and resistance has been the centre-
piece of the work of Boal  (  1985  ) , namely his book  Theatre of the Oppressed . In one 
of Boal’s Forum Theatre performances, a person in poverty shopped for groceries 
and was confronted by the cashier as he did not have the money with which to pay 
for the food his family needed to survive. As the play unfolded, members of the 
audience (spect-actors) could at any time replace an actor and navigate the play in 
directions they deemed to be appropriate. There were at least two important things 
 at play  in such a performance. First, the common script of “shop, pay, take home” 
was disrupted. A second important thing at play was the agency of the audience. 
A spect-actor had the same right as the actor to be a part of the play. 

 Viewing students as performance mathematicians helps disrupt the traditional 
hierarchy of knowledge and authority in the mathematics classroom. Internet-
based performances of mathematics help bring to public light the mathematical 
thinking of students themselves, who have traditionally been silenced outside the 
con fi nes of mathematics classrooms. Just as importantly, seeing public perfor-
mances of student mathematics raises the question, “What makes for a good math-
ematical performance?” 

 Boorstin  (  1990  )  identi fi ed three pleasures that we derive from performances such as 
at the movies: (a) the new and the surprising; (b) emotional moments; and (c) visceral 
sensations. It is interesting that Norman  (  2004  )  stated that his principles for techno-
logical design “bear perfect correspondence” (p. 123) to the principles of what make 
movies work, identi fi ed by Boorstin. These principles have been used in Canada 
and in Brazil to research how they might be used as a basis for pedagogical design 
in mathematics education and how they might help us see teachers and students as 
performance mathematicians (Gadanidis, Borba, Hughes, & Scucuglia,  2010  ) . 

 Our focus on performance in mathematics parallel our immersive work with 
Internet-based new media. Although we cannot make a strong claim of effect, anec-
dotal records of our experience suggests that the performative affordance of Internet-
based media helped in fl uence and support our thinking; or, as Borba and Villarreal 
 (  2005  )  suggested, disrupt and reorganize our thinking in this direction.    

   Final Re fl ections 

   The most recent information will be easily and directly available through online databases 
and the World Wide Web. Students will be able to participate in deterritorialized virtual 
conferences, where the best researchers in the  fi eld will be present. The primary role of 
education will no longer be the distribution of knowledge that can now be obtained more 
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ef fi ciently by other means. It will help provoke learning and thinking. Education will 
become a driving force of the collective intelligence for which it is responsible. It will focus 
on managing and monitoring learning: encouraging people to exchange knowledge, rela-
tional and symbolic mediation, personalized guidance for apprenticeship programs, and so 
forth. (Lévy,  2001 , p. 151)   

 Philosophers such as Pierre Lévy have made several predictions about the world 
with the Internet. In the above quote, from a book originally published in French in 
1997, Lévy foresaw some of the transformations powered by the Internet that have 
already occurred, such as the availability of databases with almost any information. 
It is still not quite clear how this will transform education overall as the Internet 
shapes more and more of our world. It is not quite clear either what consequences it 
will have for schooling. As already noted in this chapter, traditionally teachers and 
books were the main source of information for students. School could be seen as the 
place where information would possibly become knowledge, collective knowledge. 
As the Internet plays an increasing role in education, including mathematics educa-
tion, classrooms will be transformed or “dissolved” in the Internet (Borba,  2009  ) . 

 However at present it is not clear how widespread the use of the Internet in 
schooling has become. But with its ever-growing presence, critical questions arise. 
It is fair to say that most of what is asked in mathematical examinations is easily 
found with the help of a search device on the Internet. How schools deal with this 
issue, given that all students have been born into the Internet-world, is still an open 
question. Will textbooks and regular lectures disappear, or just continue to be repli-
cated online, as authors such as Engelbrecht and Harding  (  2005  )  have documented? 
It is too early to know. 

 We have tried to show how some practices are already being developed, merging 
arts, and particularly performance, in a way that students can post their work with 
little expense and can change the usual way they participate in mathematical studies. 
But the change in places of teacher and students is not the only result of the partici-
pation of the Internet in the production of mathematical knowledge in schools. 
Multimodality seems to be another key word. Students have the possibility of 
expressing mathematics using simulators, animations and pictures, combined with 
usual text and mathematical formulas. We still do not know the place that this kind 
of activity will have in regular schooling. The observation by Castells  (  2009  )  is 
worth noting, as he reminded us that advances in communication systems can not 
only generate possibilities but also create problems:

  Each one of the components of the great communication transformation represents  the 
expression of the social relationships, ultimately power relationships that underlie the evo-
lution of the multimodal communication system . This is most apparent in the persistence of 
the digital divide between countries and within countries, depending on their consumer 
power and their level of communication infrastructure. … Even with growing access to the 
Internet and to wireless communication, abysmal inequality in broadband access and edu-
cational gaps in the ability to operate a digital culture tend to reproduce and amplify the 
class, ethnic, race, age, and gender structures of social domination between countries and 
within countries. (p. 57; original emphasis)   

 Although, in this chapter, we have tried to show possibilities of the use of the 
Internet, we have also hinted at various points the disproportionate spread of 
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Internet access. As in early 2011, still two-thirds of the world’s population does not 
have access to the Internet. Hence although the Internet is accessible by two billion 
people, this also means that it is not available for between four and  fi ve billion 
people! In this sense the Internet can be seen as a double-edged sword: opening pos-
sibilities for some, but increasing the gap between those who have access and those 
who do not. In this sense, the Internet creates a new educational divide in the world. 
There are now the “haves” and “have nots” related to their educational access to 
the Internet. 

 Different countries have come up with different policies to include all or most of 
its citizens, in a time that having an electronic address seems to be as important as 
having a street address. But this divide is not just in terms of countries. Castells 
 (  2001  )  predicted that the Internet could increase the creation of a  fourth world  in 
many big cities. He developed the idea that the old division between  fi rst, second 
and third world was being modi fi ed and that we could actually have all the different 
worlds in almost every country. New York would have areas with high Internet 
access and others with low or not at all. This would coincide with the  fi rst and the 
fourth World respectively, in terms of economic power. We suspect this is happen-
ing and it does have implications for mathematics education. 

 This requires public policies that help all to be able to take advantage of such 
technology. The  market forces  on their own can take too long to reach the “do-not-
have-Internet” since they are for the most part the ones with very little economic 
power. In addition, just as one aspect of Internet technology seems to become popu-
lar, another quickly and sometimes unexpectedly takes its place. For example, 
although most adults in developing countries continue to rely on the use of email for 
person-to-person communication, many students are keeping track with friends 
using social networking sites, such as Facebook or Twitter. All of this rapid and 
unpredictability makes the adoption of current Internet technology a daunting task. 
Nevertheless, as we have noted in this chapter, these developments, with all their 
hopes and confusions, do have an impact on mathematics education. 

 The case studies we have presented in this chapter represent not what is typical 
mathematics learning in today’s classrooms but what might be possible. Will the 
Internet help transform mathematics education and enhance student learning? Past 
experiences with  new  technologies (such as television) indicate that the promises 
that they held for enhancing student learning were not ful fi lled, at least not on a 
broad scale. Will it be different with the Internet? 

 We  fi nish the chapter with one dimension of the changes brought by the Internet 
that has only been noted in passing but could have profound rami fi cations for math-
ematics education: assessment. The Internet has brought multimodality, which we 
noted may transform the nature of how we express mathematical ideas. If that 
occurs, what will this do to the manner in which we assess mathematics in the future? 
Furthermore, if most students ultimately have access to the Internet, and most 
answers for most mathematical problems are published on the Internet, what then 
becomes a challenging mathematical problem with which we can assess students’ 
knowledge? Again, we have no answers. Nevertheless, elaborating problems that, as 
yet, have no answers may make us think more clearly about the potential worlds that 
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may open before us. We will have to wait a few more years yet before we can see 
clearly the place the Internet will occupy in the educational scenario, including 
within mathematics education.      
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  Abstract   This chapter reviews the way that the decreasing cost and increasing avail-
ability of powerful technology changes how mathematics is assessed, but at the same 
time raises profound issues about the mathematics that students should be learning. A 
number of approaches to the design of new item types, authentic assessment and auto-
mated scoring of constructed responses are discussed, and current capabilities in terms 
of providing feedback to learners or supported assessment are reviewed. It is also shown 
that current assessment practices are struggling to keep pace with the use of technology 
for doing and teaching mathematics, particularly for senior students. The chapter con-
cludes by discussing how a more principled approach to the design of mathematics 
assessments can provide a framework for future developments in this  fi eld. Speci fi cally, 
it is suggested that assessment in mathematics should: (a) be guided by the mathematics 
that is most important for students to learn (the mathematics principle); (b) enhance the 
learning of mathematics (the learning principle); and (c) support every student to learn 
important mathematics and demonstrate this learning (the equity principle).      

   Introduction 

 This chapter addresses the use of technology in the assessment of mathematics. 
Using technology calls for new emphases in the learning of mathematics and 
the goals of the curriculum which, in turn, require different kinds of assessment to 
probe students’ anticipated new skills and capabilities. New technology can also 
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provide new assistance for the work of assessment both for the teacher within the 
classroom and for monitoring standards at the system level. This chapter reviews 
the challenges and opportunities for mathematics assessment posed by the use of 
technology. It examines issues concerning what should be assessed under these new 
modes of learning; the potential for deeper, more informative assessment; and how 
assessment might be conducted. Throughout this chapter, the term mathematics is 
used to refer to all of the mathematical sciences, including statistics. 

 There is a large literature on research and development in computer-based testing, 
which identi fi es many different approaches to all components of testing. In this 
literature, distinctions are sometimes made between testing for summative and 
formative purposes, between  fi xed and adaptive item presentation (where the items 
presented to students depends on their success on previous items), between Web-
based and other delivery systems which differ in the nature and timing of feedback 
to the student (if any), according to the measurement theory employed (if any), and 
on many other features. In this broad literature, mathematics is often selected as the 
content domain for research. In the present article, all forms of testing using elec-
tronic technology are included (and referred to) as “computer-based” and issues are 
chosen for discussion because of their relevance to mathematics teaching, learning 
and assessment rather than to general issues of assessment practices or measure-
ment theory. Computer-based testing is also at the heart of intelligent tutoring, since 
it links the “student model” and the “tutor model,” but again this is not considered 
beyond the issues that arise speci fi cally in mathematics. 

   The Potential of Technology 

 Technology has potential to alter all of the aspects of the assessment process. There 
are new possibilities for the ways in which tasks are  selected  for use in assessments, 
in the way they are  presented  to students, in the ways that students  operate  while 
responding to the task, in the ways in which evidence generated by students is 
 identi fi ed , and how evidence is  accumulated  across tasks (Almond, Steinberg, & 
Mislevy,  2003  ) . Technology can improve the ways we assess the traditional mathe-
matics curriculum, but it can also support the assessment of a wider “bandwidth” of 
mathematical pro fi ciency to meet the changes in emphases of learning for the future. 

 Computer-based testing allows the automated generation of different items with 
similar psychometric properties. This allows different students to take different 
items or students to take the same test at different times without giving them access 
to items before taking the test (Irvine,  2002  ) . 

 Acting as a communications infrastructure, computer-based platforms enhance 
item presentation, as will be demonstrated below. For the student, there may be a 
dynamic stimulus, three-dimensional objects may be rotated, and  fl exible access to 
complex information from multiple sources can be provided. A particularly important 
feature of computer-based testing is that it can ensure students comply with con-
straints in a problem to ensure engagement with the desired mathematics. A wider 
range of response types is now possible. For example, “drag-and-drop” items or the 
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use of “hotspots” on an image may allow students to respond to more items non- 
verbally, giving a more rounded picture of mathematical literacy. In paper-based 
assessment, the validity of assessment in mathematics for some individuals has been 
limited by the necessity to decode written instructions for mathematical items and to 
express mathematical answers and ideas clearly. The software may also take into 
account the steps taken by a student in reaching a solution, as well as the solution 
itself. Computer-based platforms also support the presentation of problems with large 
amounts of (possibly redundant) information, mimicking the real-world scheduling 
and purchasing problems that are common in everyday life in the Internet age. 

 Automated scoring of responses has been possible for multiple-choice items for 
80 years (Wiliam,  2005  ) , but in recent years there have been signi fi cant advances in the 
automated scoring of items where students have to construct an answer, rather than just 
choose among given alternatives (see, e.g., Williamson, Mislevy, & Bejar,  2006  ) . 
Computer-based assessment offers possibilities for providing more detailed informa-
tion to students and teachers at lower cost, including pro fi le scoring and other forms of 
diagnostic feedback that can be used to improve instruction. Automated scoring is also 
increasingly used in online learning systems, both “stand-alone” instructional packages 
and supplements to classroom instruction with integrated assessments. Such systems 
can give diagnostic feedback to the student during the instructional activity, as well as 
providing information about the  fi nal outcomes, as a single  fi nal score, or a detailed 
breakdown. Some interactivity may also be possible. Automated scoring also makes it 
easier to supply reports showing trends in performance over time. For the assessor and 
teacher, sophisticated reports on the assessment enable ready tracking of progress of 
individuals, classes and systems. Unobtrusive measurement of new aspects of student–
task interaction may also be reported. Features of student-constructed drawings, dis-
plays and procedures that are impractical to code manually, can be ef fi ciently assessed, 
and strong database facilities are available for statistical analysis. 

 Acting as a computational and representational infrastructure, the computer-
based platform can enable students to demonstrate aspects of mathematical literacy 
that bene fi t from the use of the mathematics analysis tools embedded in computer 
and calculator technology. Without the “burden of computation,” student attention 
can be focused on problem-solving strategies, concepts, and structures, rather than 
mechanical processes. They can work with multiple representations that are “hot-
linked” so that a change in one representation automatically produces a change in 
another (e.g., a change in a data table produces a change in a chart).  

   Chapter Outline 

 The  fi rst major section of this chapter examines assessment in situations where 
the technology is principally used for the purpose of assessment, rather than by 
students in an open way for solving the mathematics items. There are subsections 
on items and item types, increasing the bandwidth of assessment, scoring, feedback 
to students, and reporting to teachers, and the comparison of computer-based and 
paper-based assessment. As Threlfall, Pool, Homer, and Swinnerton  (  2007  )  note, 
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“the medium of pen-and-paper has been an inseparable part of assessment, and a 
change to the medium of presentation threatens that highly invested arrangement, 
and seems to risk losing some of what is valued” (p. 335). Most of the studies 
reviewed in this section assume that the mathematics curriculum and approved 
mathematical practices are unchanged, and what changes are the opportunities to 
assess these. 

 The second major section of this chapter considers assessment when students 
can use the mathematical capabilities of technology in the mathematical perfor-
mance that is being assessed. This section responds particularly to the advent of 
mathematically-able calculators and computer software and the need to accommo-
date them in learning, teaching and assessment. From such a perspective, it is gener-
ally accepted that both curriculum goals and accepted mathematical practices will 
change. 

 The themes of both the major sections (the ability to use new tools for mathematics, 
and the changing nature of mathematical tasks) are being re fl ected in mathematics 
assessment at all levels. For example, the OECD’s 2012 international PISA survey 
of mathematics will include an optional computer-based assessment of mathematics 
(Programme for International Student Assessment Governing Board,  2010  ) . Some 
of the computer-based items would be suitable for paper-based delivery but the 
presentation will be enhanced by computer delivery. Most of the items in the com-
puter-based assessment, however, will test aspects of mathematical literacy that 
depend on the additional mathematical tools that are provided by information 
technology, and the whole PISA assessment is now on a trajectory towards com-
puter delivery. The intention is to move “from a paper-based assessment towards 
a technology-rich assessment in 2015 as well as from the traditional items to the 
innovative assessment formats which computer-delivery would enable” (p. 6). 

 The chapter concludes with re fl ections on the state of the art and presents some 
principles that can be used to guide future work in this  fi eld.   

   Using Technology to Assess Mathematics 

 This major section examines changes technology is making to assessment, orga-
nized under the various components of assessment. The  fi rst subsection examines 
the new possibilities for items. The following section looks at developments in auto-
mated scoring of responses. The third subsection examines progress in providing 
feedback to students, especially in the context of formative assessment, which has 
been shown to be a major strategy for improving learning (Black & Wiliam,  1998  ) . 
In this  fi rst main section, technology is principally being used for enhanced item 
presentation, more convenient and reliable scoring, and for immediate and personal-
ized feedback to students. In the subsequent section, attention is focused on assess-
ments where the technology is being used by the student as a mathematical assistant, 
with the associated issues of changed goals for the curriculum in addition to changed 
procedures. As will be seen in both main sections, computer-based assessment can 
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serve traditional goals as well as providing new opportunities to assess aspects of 
mathematical pro fi ciency that relate to higher-order thinking and greater real-world 
relevance. 

 Before beginning the section proper, we note that computer-based assessment 
is often adopted because such test administration provides multiple points of 
convenience for students, teachers and educational systems. Students can often 
take tests at a time and place to suit themselves, and may receive immediate 
feedback. Teachers (and even school systems) may be freed from the burden of 
grading, and can receive well-designed reports by class, student or item. The 
expansion of online learning systems has also encouraged the use of computer-
based assessment and the major commercial products have teacher-friendly tools 
for constructing straightforward computer-based assessment within them. Many 
reports in the literature discuss these features. For example, Pollock  (  2002  )  
reported on a change of the teaching and assessment of “basic mathematics 
skills” in a course for prospective teachers. The course already used a computer-
aided learning system and so adopted an associated computer-based assessment 
system to enable a switch from assessing with examinations to continuous assess-
ment. Previously, such a system had been regarded as too demanding of staff 
time. Since the aspects of computer-based assessment related to test administra-
tion are for the most part not speci fi cally related to mathematics, they are not 
discussed further. 

 Similarly, although access to the substantial infrastructure required for computer-
based assessment is certainly a barrier to its use (by individual students, classes 
within schools, schools as a whole, and systems) because this does not speci fi cally 
relate to mathematics, the dif fi culties of access are recognized but not further dis-
cussed here. 

   Expanding Assessment: Items and Solutions 

   New possibilities for computer-based items.   Consider Figure  23.1  below, 
which shows part of two versions of an item on estimating with percentages, taken 
from the developmental work on “smart-tests” (see Stacey, Price, Steinle, Chick, & 
Gvozdenko,  2009  ) .  

 The paper-based item is multiple choice. The pom-pom tree in year 1 is shown and 
students have to select A, B, C D, or E to indicate the height of the pom-pom tree in 
year 2, when its top has blown off and it is 35% shorter. This item is easily scored by 
hand or by computer. On the right hand side, a new version only feasible in computer-
based assessment is shown. Students indicate their estimate of the height by pulling up 
a slider. In the  fi gure, a student has pulled up the slider for the  fi r tree, but has not yet 
started on the pom-pom tree. The handle of its slider is visible near ground level. There 
are at least three advantages to the computer-based item. First, estimation is tested in a 
direct and active way, without guessing from alternatives (and, possibly, with less 
 cognitive load because the choices do not need to be processed). Second, whereas such 
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an item would be very tedious to mark by hand, it is easily marked by computer, and 
partial credit based on the accuracy of the estimate can easily be allocated. Third, the 
image can be in colour, so the presentation is more attractive to students, without the 
substantial cost of colour printing. 

 Figure  23.2  shows an online mathematics question for 12–14 year olds from 
the example items for the “World Class Tests” (World Class Arena,  2010  ).     These 
tests are designed to challenge able students, requiring creative thinking, logic 
and clear communication of thought processes. Solving the item in Figure  23.2  
requires using the interface  fi rst in an exploratory way, gradually coming to 
understand the effect of certain moves (e.g., rotating twice around one point) and 
 fi nally assembling a strategy to make the required shift in less than 12 moves. 
The computer provides the dynamic image, and itself counts the number of 
moves (other features of the solution could also be tracked). The item stem 
requires many fewer words than would be required in a paper-based version, and 
the item response is entirely non-verbal, which means that the mathematical 
pro fi ciency of students with less developed verbal skills can be better assessed. 
It is hard to imagine a feasible paper-based version of this item, although it could 
be the basis for a mathematical investigation producing a report for teacher 
assessment. 

 As noted above, a computer-based assessment platform offers an infrastructure 
for communication that can enhance item presentation, the range of mathematics 
assessed, interaction between the student and the item, the way in which the response 
is provided by the student and the information that is extracted from the response. 

  Figure 23.1.    Computer-based assessment allows a wider range of item types.       
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There is great potential for creatively expanding the nature of assessment items and 
students’ experience of engaging with assessment.   

   Authentic Assessment 

 We live in a society “awash in numbers” and “drenched with data” (Steen,  2001  ) , 
where “computers meticulously and relentlessly note details about the world around 
them and carefully record these details. As a result, they create data in increasing 
amounts every time a purchase is made, a poll is taken, a disease is diagnosed, or a 
satellite passes over a section of terrain” (Steen,  2001  ) . Knowledge workers need to 
make sense of these data and citizens need to be able to respond intelligently to 
reports from such data. This requires a change in the mathematics being learned. 
Full participation in society and in the workplace in this information-rich world, 
therefore requires an extended type of mathematical competence. For this reason, 
there has been increased interest in recent years in the development of “authentic” 
assessment in mathematics—assessment that directly assesses the competence of 
students in performing valued mathematics rather than relying on proxies such as 
multiple-choice tests that may correlate well with the desired outcomes, but may 

  Figure 23.2.    Computer screen for “Rotato,” an example item from the  World Class Arena .       
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create incentives for classroom practice to focus on the proxy measures, rather than 
the valued mathematics. 

 Medication calculation is an important part of the numeracy required for nurses, 
since patients’ lives can depend on this.  NHS Education for Scotland  funded the 
development by Coben et al.  (  2010  )  of a computerized assessment of medication 
calculations related to tablets, liquids, injections and intravenous infusions, using 
high- fi delity images of hospital equipment. In this “authentic assessment,” the task 
for the student replicated the workplace task as faithfully as possible. As well as 
facilitating item presentation, computer-based administration of the test included 
automatic marking, rapid collation of group and individual results, error determina-
tion and feedback. A concurrent validity study compared the computer-based test 
with a “gold-standard” practical simulation test, where the students also prepared 
the actual dose for delivery (for example in a syringe). The two methods of assess-
ment were essentially equivalent for determining calculation competence and abil-
ity to select an appropriate measurement vehicle (e.g., syringe, medicine pot). 
However, the computer assessment did not assess practical measurement errors, 
such as failing to displace air bubbles from a syringe. Coben et al. concluded that 
medication calculation assessment can be thought of in two parts: computational 
competence (which is best assessed by computer, especially since the whole range 
of calculation types can be included) and competence in practical measurement. 
Performance assessment, being very labour-intensive, should be restricted to assess-
ing practical measurement. 

 In many cases, authentic assessment is undertaken through setting investigative 
projects. This is a longstanding practice, for example, in statistics education and in 
mathematical modelling. Since these assessments usually involve the use of mathe-
matically-able software, they are discussed in the second main section of this paper.  

   Assessment with Support 

 A standard paper-based assessment generally aims to measure what a student can 
do alone and with a very limited range of tools. In the second main section, we dis-
cuss the changes when students have access to mathematically-able software when 
they are undertaking assessment. However, there are many other possibilities for 
including tools in computer-based assessments. Two educational concepts are par-
ticularly relevant here. The  fi rst is the idea of distributed cognition. Pea  (  1987  )  and 
others have pointed out that much cognitive activity is not carried out “in the head” 
but is distributed between the individual and the tools that are available for the task. 
The obvious consequence is that assessment of what a person can do should 
acknowledge tool use. The second important idea is Vygotsky’s distinction between 
the psychological processes an individual can deploy on his or her own, and those 
that can be deployed when working with a teacher or a more advanced peer (see, 
e.g., Allal & Pelgrims Ducrey,  2000  ) . These two ideas raise the possibility of using 
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technology to create very different kinds of educational assessments—those that are 
focussed on the supports that are needed for successful performance rather than the 
degree of success when unsupported (Ahmed & Pollitt,  2004  ) . 

 For example, Peltenburg, van den Heuvel-Panhuizen, and Robitzsch  (  2010  )  
were concerned to improve the assessment of students with special education 
needs. Traditional assessments of these students indicated that they were operat-
ing several years below grade level, but the researchers were keen to investigate 
what the students might do with support. The study compared a standardized 
assessment with a computer-based “dynamic assessment” (Lidz & Elliott,  2001  ) , 
which provided digital manipulatives that students could use to assist with sub-
traction questions. Students’ results were better when the manipulatives were 
available, because the assessment showed more of what the students knew than 
could be inferred simply from an incorrect answer. Software running in the back-
ground also captured data on how the students used the manipulatives. Interestingly, 
in several instances these were not the methods that had been predicted when 
designing the tools.  

   Scoring and Gathering Other Data on Performance 

 In this subsection, we  fi rst examine progress in automating the work that a teacher 
does in evaluating the work of a student. Then, we look at non-traditional measures 
of the interaction between students and items that may contribute to a fuller assess-
ment of student performance and learning. 

   Scoring constructed response mathematics items.   Computer-based 
assessment, since its inception in the 1970s, has been limited by the nature of 
responses that can be scored reliably. The dominance of the multiple-choice 
format and single entry number answers, which still persists today, highlights the 
problem. Yet there is much more to mathematics than producing such simple 
responses: ideally, assessment across the full bandwidth of mathematics should 
deal with multiple-step calculations, checking each step as a teacher might, 
analyzing arguments and explanations, and certainly, as will be illustrated below, 
providing full credit for all solutions that are mathematically correct but differ in 
mathematical form. Although automated scoring that is as good as the best human 
scorers, if it can ever be achieved, is many years away, considerable progress has 
been made in recent years on assessing certain kinds of constructed-response 
mathematics items. 

 An advertisement for the commercial product  WebAssign  in the March 2011 
edition of the  Notices  of the American Mathematical Society showed grading by 
two automated assessment systems of a student’s response to a constructed response 
item. The item was “Find the derivative of  y =  2sin(3 x –  p  ),” and the response given was 

    = −
d

6cos3
d

y
x

x
  . The expected pen-and-paper response (by applying the chain rule) 
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to this item would be     ( )6cos 3x π−   , which is of course equivalent to the given 
response of     −6cos3x   . The advertisement made the point that the online assessment 
system  WebAssig n correctly graded this “unexpected” simpli fi ed response, whereas 
many other online grading systems would have graded it as incorrect (see WebAssign ,  
 n.d.  ) . The difference lies in the computational engine (if any) being used for scoring 
complex constructed response mathematical answers. A powerful computer algebra 
system (CAS) can create items  fi tting speci fi ed criteria, compute the correct answer, 
and check students’ responses. 

 Within the limited realm of school mathematics, less powerful mathematical 
software is effective. The equivalence of different algebraic expressions can be 
established by numerically evaluating the correct response (supplied by the item 
setter) and the student response at a number of points. The “m-rater” scoring 
engine developed by the Educational Testing Service does just this, by choosing 
the points to be evaluated at random, but also allows item creators to specify 
additional points to be evaluated. This approach has roughly the same level of 
accuracy as symbolic manipulation (Educational Testing Service,  2010  ) . 

 In the report of the 17th ICMI Study on technology in mathematics education, 
only one paper speci fi cally focussed on assessment. Sangwin, Cazes, Lee, and 
Wong  (  2010  )  considered the use of technologies such as CAS and dynamic geom-
etry to generate an outcome from a student response that is a mathematical object 
(e.g., an algebraic expression, a graph, or a dynamic geometry object). The outcome 
may be right/wrong feedback to the student, a numerical mark along with auto-
mated written feedback to the student, or statistics for the teacher about the cohort 
of students. 

 Sangwin et al.  fi rst made the point that a CAS needs a range of additional capa-
bilities to support good computer-aided assessment (CAA). As a simple example, 
they noted that a mainstream CAS recognizes  x  2  + 2 x  + 1 and  x  + 1 +  x  +  x  2  as algebra-
ically equivalent (and hence can mark either as correct), but for useful feedback to 
a student, a CAA system should be able to recognize the incomplete simpli fi cation 
and provide appropriate feedback to the student. Another simple example was an 
item where students needed to rotate one point about a central point. The resulting 
dynamic geometry diagram could be analyzed to see if the student has the correct 
distance and the correct angular position, opening possibilities for both partial credit 
and informative feedback. Drawing on examples of classroom observations the 
article described the development of quality feedback, useful cohort data for teach-
ers, and new styles of mathematical tasks for which informative feedback can be 
given. It also described the pitfalls when a system can only examine the end product 
instead of examining the strategies that students use. Technology in this area is 
developing rapidly, and product development cycles often overtake educational 
research. Sangwin et al. concluded that new CAA tools require new modes of 
thought and action on the part of institutions, teachers and students alike. 

 Interest in assessment of constructed responses has been given further impetus 
by the shift towards integrated online learning and assessment systems, especially 
in tertiary education. For example, the  WebAssign  system mentioned earlier identi fi es 
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its strongest features as convenience, reliability and security, compatibility with 
popular learning management systems, automated and customizable reporting to 
teachers by student or item, and easy creation or selection of assessment items. 
Partnerships with major textbook companies provide prepared databases of practice 
and assessment items and tutorial materials linked to popular textbooks, and ques-
tions can also be selected from open resources or those created by the teacher. 

 Another example is Maple T.A. (Maplesoft,  2011  ) , which, being powered by the 
long-standing computer algebra system Maple, is speci fi cally designed for technical 
courses that involve mathematics. Advertised strengths include the capacity to use 
conventional mathematical notation in both questions and student responses, the 
comprehensive coverage of mathematics and its capacity to support complex, free-
form entry of mathematical equations and intelligent, automated evaluation of stu-
dent responses graded for true mathematical equivalence with feedback available 
for the student. Maple T.A. can support open-ended questions with in fi nitely many 
answers,  fl exible partial credit scoring, and offers the assessment designer a high 
degree of mathematical control over randomly generated items, so that different 
students see different items testing the same content or to provide virtually unlim-
ited on-demand practice. Maple visualization tools such as 2D and 3D plots are 
available to test creators and test takers. 

 Reports on the use of Maple T.A. and other systems are now appearing. For 
example, Jones  (  2008  )  reported on its ability to provide regular feedback and prac-
tice questions to engineering students. The article discussed how partial credit may 
be awarded, how account had been taken of techniques for designing good ques-
tions that incorporate randomly generated parameters, the coding required by the 
instructor, and strategies for reducing cheating in the on-line environment. Students’ 
dif fi culties with the syntax for entering mathematics into the computer are com-
monly reported across much of the computer-based mathematics literature. Jones 
 (  2008  )  recommended the use of practice questions at the beginning of the course to 
reduce this. In this way, some of the barriers to a more expert computer-based scoring 
of constructed mathematical responses are now being overcome. 

 Awarding of partial credit is an important feature of human scoring in mathemat-
ics, but this presents signi fi cant challenges for automated scoring (Beevers, 
Youngson, McGuire, Wild, & Fiddes,  1999  ) . In view of the dif fi culty of replicating 
the judgments made by humans in awarding partial credit, designers of computer-
based assessments have explored a range of ways of approximating partial-credit 
scoring with simple dichotomous scoring.   Ashton, Beevers, Korabinski, and 
Youngson  (  2006  )  trialled two methods of awarding partial credit in automatically-
scored high-stakes pass/fail examinations. In the “steps method,” some questions 
required the student to choose whether to enter a single response, which would be 
scored as correct or incorrect, or to opt to answer a series of sub-questions that led 
to the full answer, each of which would be assessed individually. For example, stu-
dents asked to  fi nd the equation of a tangent to a curve could either choose to input 
the equation (for which they would either get full credit or no marks), or they could 
answer a series of sub-questions, requiring the coordinates of the point of tangency, 
the general form of the derivative, the slope of the tangent at the point and then its 
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equation. Fewer marks were awarded for the structured approach because students 
did not demonstrate the ability to plan a solution strategy for themselves. The second 
method of approximating human-scored partial credit assessment explored by 
Ashton et al. simply informed students whether their submitted answer was correct 
or incorrect and gave them the opportunity to resubmit. The logic here is that par-
tial credit is commonly awarded when students make small slips and so feedback 
would enable students to correct these small slips, bringing their score up closer to 
a human-assessed score. Although the total marks awarded in both methods were 
statistically indistinguishable from standard partial credit marking, Ashton et al. 
recommended adoption of the “steps” method because the correct/incorrect feed-
back method appeared to promote guessing rather than careful review. 

 The choice of a digital tool as a mathematical assistant depends on many aspects 
of the teaching context. For example, the Digital Math Environment (  http://www. fi .
uu.nl/wisweb/en/    ) has been designed to help secondary school students as they learn 
pen-and-paper algebra. It provides students with a facility to solve problems (e.g., 
to solve a quadratic equation) step by step, with the program providing feedback on 
accuracy at each step. In this way, it is primarily a learning tool, providing immedi-
ate formative assessment as the student works through problems, but summative 
assessment is also available.   

   Unobtrusive Measurement of Student–Task Interaction 

 Computer-based testing allows the collection and analysis of a range of data 
beyond a student’s response, including response time and number of attempts. 
In cognitive psychology, response time has for many years been regarded as an 
important measure in the investigation of mental processing (Eysenck & Keane, 
 2005  ) , and computer-based testing allows data on response times on a larger scale, 
and in naturalistic settings. Response time has been used for many purposes, includ-
ing to inform item selection by complementing accuracy data, to identify cheating, 
to monitor test takers’ motivation (for example, by  fl agging rapid guessing), and to 
track the development of automaticity, which is especially relevant to consolidating 
mathematical skills. 

 Gvozdenko  (  2010  )  studied the uses that teachers and test designers can make of 
information about student response times, using data from preservice primary 
teacher education mathematics courses. He found that response–time measurements 
provide a valuable supplement to performance data for: (a) evaluating difference in 
cognitive load of items; (b) identifying the presence of multiple solution strategies;  
and (c) monitoring the impact of teaching on speci fi c cohort sub-groups across a 
teaching period. 

 Figure  23.3  gives an example from Gvozdenko  (  2010  )  of three versions of a 
test item that were intended to be classically parallel (i.e., the items should be 
interchangeable). The facility (percentages of students correct) and mean  question 

http://www.fi.uu.nl/wisweb/en/
http://www.fi.uu.nl/wisweb/en/
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response times (MQRT) of versions 1 and 3 were both similar. Version 2 looks 
similar from the facility data (only 6% lower) but it has a substantially greater 
MQRT. The 50% greater MQRT draws attention to the greater cognitive load in 
version 2, probably due to having two different rotated elements and a higher 
order of rotational symmetry.  

 Gvozdenko’s  (  2010  )  study of preservice primary teacher education students 
also showed how response time can provide a supplementary measure of learning. 
Many students in such a course are able to solve primary-school level problems on 
entry, but their knowledge is not suf fi ciently automatic, robust, and strongly 
founded for  fl exible use in the immediacy of teaching a class. Measuring response 
time can give an additional indicator of developing competence for teaching. 
Another item from Gvozdenko  (  2010  )  involved the conversion of square metres to 
hectares. Conversion of 12,560 m 2  to hectares (answer 1.256) had a facility of 
77%, but conversion of 690 m 2  to hectares (answer 0.069) had a facility of 72%. 
This group of students seems equally competent at these items. However, the 
MQRT of the  fi rst was 44 s, and for the second 62 s. This reveals a difference in the 
robustness of the knowledge that may show up in the pressured environment of the 
classroom.  

   Providing Feedback 

 The provision of feedback that is focussed on what a learner needs to do to 
improve, rather than on how well the individual compared with others, has been 
shown to impact signi fi cantly on learning (Wiliam,  2011  ) . Indeed, over the last 

  Figure 23.3.    Three versions of a task, and associated mean question response times (MQRT) and 
facility (Adapted with permission from Gvozdenko,  2010  ) .       
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quarter century, a number of reviews of research have demonstrated that there are 
few interventions that have such a great impact on student achievement (Hattie, 
 2008  ) . It is not surprising, therefore, that a major priority in the development of 
computer-based assessment software has been providing detailed feedback to test 
takers. Traditionally, assessment has been concerned with placing a student at a 
particular point on a scale. Although this may be adequate for many of the functions 
that assessments serve, it does not give feedback to students about what to do next. 
Rather, a feedback system needs to focus less on measurement, and more on 
classi fi cation—the assessment should indicate that the student has a particular state 
of knowledge that is likely to bene fi t from a speci fi c intervention. 

 Livne, Livne, and Wight  (  2007  )  developed an online parsing system for students 
preparing to take college-level courses in mathematics designed to classify errors in 
student numerical answers, mathematical expressions, and equations as either struc-
tural (indicating the possibility of a conceptual dif fi culty) or computational (for 
example, the kinds of errors that would result from transcription errors). In terms of 
overall scoring, correlation between the automated scoring system and human scor-
ing was very high (0.91). However, the automated scoring system appeared to be 
considerably better than human scorers at identifying patterns of errors in students’ 
responses. 

 Shute, Hansen, and Almond  (  2008  )  investigated how summative and forma-
tive assessment could be linked by examining how an assessment system might 
be modi fi ed to include some elements of instruction for 15-year-old students 
learning algebra. They investigated the impact on student learning when feed-
back was added to an assessment system and when the presentation of items in 
the assessment was adaptive (responding to student answers) rather than in a 
 fi xed sequence. They found that the validity, reliability and ef fi ciency of the sum-
mative assessment was unaffected by the provision of feedback, even when the 
feedback was elaborated (i.e., showing detailed solutions immediately after the 
item was completed). Students who received adaptive items learned as much as 
students who received items in the  fi xed sequence and students who received the 
elaborated feedback learned more than those who received no feedback or 
received feedback only on the correctness of their answers. The results suggest 
that it may be possible, in the near future, to derive data for summative purposes 
(e.g., for accountability) from experiences primarily designed to promote learn-
ing. In the authors’ phrase, it may be possible to fatten the hog with the same 
instrument used to weigh it. 

 A particularly fruitful area for such research in recent years has been the devel-
opment of Bayesian inference networks, or Bayesian nets for short. The basic idea 
is that for a particular domain, a pro fi ciency model is speci fi ed that details the ele-
ments needed for successful performance in that domain. For each individual, a 
student model is constructed by observing the student’s performance on a number 
of tasks, and using Bayes’ theorem to update the likelihood that the student does 
indeed possess particular knowledge given the performance evidence. Such models 
are widely used in intelligent tutors, both to track student competence (the assess-
ment task) and also to make decisions on what tasks a student should tackle next 
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(Korb & Nicholson,  2011 ; Stacey, Sonenberg, Nicholson, Boneh, & Steinle,  2003 ; 
VanLehn,  2006  ) .  

   Diagnostic Feedback for Teachers 

 Although diagnostic feedback direct to students has proven educational bene fi ts, 
there is also a case for providing detailed diagnostic feedback to teachers, especially 
when it is able to enhance their pedagogical content knowledge. Stacey et al.  (  2009  )  
described a system, now in use in schools, of “Speci fi c Mathematics Assessments 
that Reveal Thinking” (SMART,  2008  ) . These “smart-tests” are designed to provide 
teachers with a simple way to conduct assessment to support learning. Using the 
Internet, students undertake a short test that is focussed narrowly on a topic selected 
by their teacher. Students’ stages of development are diagnosed, and are immedi-
ately available to the teacher. 

 The programming behind the diagnosis links individual student’s answers across 
questions to pool the evidence for particular misconceptions or missing conceptions 
in a way that would be impractical for teachers to do manually. Where possible, 
items have been derived from international research and then adapted for computer-
based delivery. Online teaching resources (when available) are linked to each diag-
nosis, to guide teachers in moving students to the next stage. Many smart-tests are 
now being trialled in schools and their impact on students’ and teachers’ learning is 
being evaluated.  

   Comparing Computer-Based and Paper-Based Assessment 

 When an important goal of an assessment is to compare results over time with an 
unchanged content expectation, the question of how a computer-based assessment 
compares with a paper-based assessment for mathematics is important. One common 
example of such a context is when governments monitor achievement standards in 
schools from year to year. In response to such concerns, the European Commission 
Joint Research Centre commissioned a report (Scheuermann & Björnssen,  2009  )  on 
the transition to computer-based assessment for a wide range of purposes. 

 Research studies comparing effects of modes of assessment have shown mixed 
results (Hargreaves, Shorrocks-Taylor, Swinnerton, Tait, & Threlfall,  2004 ; Threlfall 
et al.,  2007  ) . There were differences in student performance in both directions and 
also no differences. Kingston  (  2009  )  conducted a meta-analysis of studies for 
10 years up to 2007 and found that the comparability between traditional mathemat-
ics tested with computer-based and paper-based formats is slightly less than the 
comparability between tests of reading and science in these two formats. This dif-
ference was attributed to the need, in many items in the mathematics test, for stu-
dents to shift their focus between the computer screen and writing paper. The 
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dif fi culty of typing mathematics into a computer means that students undertaking 
computer-based mathematics assessment still usually need to do a lot of the work on 
paper, and transfer this to the computer when it is complete. 

 Hargreaves et al.  (  2004  )  found no signi fi cant difference between computer-based 
and paper-based testing for 10-year-old children and no advantage for students with 
greater familiarity with computers. In a study of complex problem solving involving 
fractions content, Bottge, Rueda, Kwon, Grant, and LaRoque  (  2009  )  found no 
difference by mode of presentation in the results of the assessment for any ability 
group. In general, computer-based testing creates both constraints  and  affordances 
for students; computer-based presentation can limit the strategies that students can 
use for solving problems, but can also afford more interesting and dynamic 
approaches to assessment. Items often change when converted from paper-based to 
computer-based assessment, but it does not seem possible to predict, in general, 
whether such conversion is likely to make items easier or more dif fi cult. 

 Threlfall et al.  (  2007  )  explored how changing items designed originally for 
paper-based tests into a computer-based form altered what students do, and there-
fore what the items assess. The study examined only a narrow range of computer-
based items, created by transferring paper-based items to the screen as closely as 
possible and marking as similarly as possible. Overall results were similar but some 
items showed large differences in facility. Computer-based items that supported 
exploratory solutions, and which enabled a solution to be adjusted, generally had 
higher facilities than the paper-based equivalent. For example, students ordering 4 
lengths by size could drag the symbols into position and then check all of the pair-
wise comparisons, rearranging if necessary. Students placing circles to make a 
 fi gure symmetric could drag them into position, and then check if the result looked 
symmetric, whereas on the paper-based item this approach was not possible. The 
computer-based presentation for such items enabled more sequential processing and 
hence effectively reduced cognitive load. However, some items where the computer 
allowed exploratory activity were less well done than in the paper-based version; an 
example was given of how the computer program did not provide exploration that 
was well controlled. Items where performance was better in the paper-based mode 
included those in which students did written calculation on scrap paper but where 
students tried to work mentally in the computer-based assessment. Students often 
do not use paper in a computer-based assessment even if it is available. Threlfall 
et al. concluded that each item needs to be examined to see which of the solution 
methods afforded by the media most closely correspond to the behaviours that the 
item is designed to assess. Using different item presentation media can affect per-
formance, but the relationship with validity is complex—higher scores do not nec-
essarily indicate greater validity. 

 The awkwardness of using the computer palette or other input device to con-
struct mathematical expressions remains a potential source of construct-irrelevant 
variance for assessing mathematics by computer. A study of beginning tertiary 
quantitatively-able students by Gallagher, Bennett, Cahalan, and Rock  (  2002  )  
found that ability to use the entry interface did not affect performance on a test 
where all answers were symbolic mathematical expressions. However, examinees 
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overwhelmingly expressed a preference for taking a paper-based rather than com-
puter-based test, because inputting mathematical objects was so cumbersome. The 
dif fi culties arising from the sharp contrast between hand written mathematics and 
keyboard-entered mathematics is a recurring theme in reports of computer-based 
assessment of all types and at all levels of education. Written mathematics is two-
dimensional rather than strictly linear, there are symbols that are not standard on a 
keyboard, and different representations such as equations, graphs, diagrams, text, 
and symbols are used together in presenting a solution. All of these features mean 
that even the best of the current systems is far from ideal. Keyboard input remains 
a major barrier to computer-based assessment of mathematics. 

 In addition to whether the mode of presentation affects performance overall, it 
is also important to examine whether certain kinds of student are disadvantaged, 
or advantaged, by particular modes of presentation. Martin and Binkley  (  2009  )  
suggested, for example, that the presentation of dynamic stimuli will advantage 
boys. Other groups of concern (see, for example, Scheuermann & Björnssen, 
 2009  )  include students with disabilities, members of different ethnic groups and 
students with certain cognitive characteristics. It is likely that there is too much 
variation in styles of computer-based assessment to obtain simple answers to such 
questions.   

   Assessing Mathematics Changed by Technology 

 The advertisement for  WebAssign  mentioned above appears to assume that the 
student differentiates the given expression using pen and paper, then enters the 
answer into a computer system. However the computer into which the student enters 
the response has the capacity to carry out the differentiation itself. If the online 
assessment system has access to a CAS for grading the work, it seems odd that 
access to this system should be denied to the student. Indeed, the widespread avail-
ability of powerful software for  doing  mathematics, rather than just checking the 
correctness of mathematics done on paper, raises fundamental issues about what 
mathematics is valued, how it should be taught and how it should be assessed. This 
has been a major preoccupation in many countries in recent years, and is the theme 
of this second major section of the chapter. 

 There are several reasons why assessment should take into consideration the 
tools that are used for mathematics outside school. As noted earlier, Pea  (  1987  )  has 
pointed out that tools that assist students in undertaking cognitive tasks have knowl-
edge embedded within them, so the most meaningful unit for assessing competence 
is the user with the tool, rather than the user arti fi cially working alone for the pur-
pose of assessment. Another argument for the use of technology in formal assess-
ment arises from the principle of validity—the context of the assessment should not 
differ signi fi cantly from the context of instruction. Indeed, where the context of 
assessment differs greatly from the context of instruction, assessment results are 
uninterpretable. 
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 The College Board  (  2010  ) , in the USA, explicitly made the point that the limita-
tions of the use of technology in examination-based assessment should not limit the 
use of technology in classrooms, but the examination remains a powerful driver of 
what happens in schools. As will be demonstrated below, assessing mathematics 
when students are allowed to use technology has been shown to require substantial 
experimentation, research and a critical examination of values. Speci fi cally, it 
requires clarity about the constructs to be assessed (Wiliam,  2011  ) . Among other 
reasons, this is because research has led to a growing realization that mathematical 
thinking is almost impossible to separate from the tools with which it is learned and 
practised (Trouche & Drijvers,  2009  ) . Doing mathematics with new tools leads to 
different ways of thinking about mathematical problems, and, indeed, to somewhat 
different mathematics. 

   Mathematical Competence and Computer Technology 

 Mathematics has a special relationship with computer technology, as its origins 
lay in the need to deal with extensive computation. An important part of mathemat-
ics has always been to develop algorithms for solving problems, and the design of 
effective algorithms has always had a two-way relationship with the technology of 
the day, from the abacus, to Napier’s “bones,” to ready reckoners, logarithm tables 
and slide rules to today’s calculators and computers. Working with electronic tech-
nology, whether packaged as calculators, computers or special purpose machines, is 
now an essential component of doing and using mathematics in everyday life and in 
the workplace. 

 The impact of electronic technology on the ways in which individuals use math-
ematics, and consequently should learn it, has long been discussed, and continues to 
change rapidly. Thirty years ago, the Cockcroft enquiry into mathematics in UK 
schools (Committee of Inquiry into the Teaching of Mathematics in Schools,  1982  )  
pointed to a change in the relative importance of methods of arithmetic calculation 
for personal and occupational use. Pen-and-paper algorithms had diminished in 
importance, being replaced by mental computation and estimation wherever appro-
priate and backed up by computer/calculator use when an exact answer to a dif fi cult 
computation was required. This was an early indication of the need for mathematical 
competence to be rede fi ned, in relation to electronic technology, with consequent 
impact on assessment. As Trouche and Drijvers  (  2009  )  pointed out, whereas the 
introduction of computers into mathematics education appears to have had limited 
impact on classroom practice, the use of handheld technology rapidly overcame the 
infrastructure limitations in schools and has made a greater difference to practice in 
mathematics classrooms. In the hands of students, for use at home and school when 
required rather than housed in a distant computer laboratory, handheld calculators 
(now with considerable mathematical and statistical power) are now used routinely 
in assessment in many countries. Much of the research reviewed in this section is 
therefore centred on the role of handheld technology for senior school mathematics. 
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 The mathematical functionality of mathematically-able software such as 
graphics calculators, CAS, and statistics programs (especially those focussed on 
exploratory, rather than con fi rmatory data analysis) render many of the questions 
asked in the pen-and-paper era obsolete when looked at from a purely functional 
point of view. The availability of mathematically-able software shifts signi fi cant 
parts of the work from the student to a machine. For example, a student may 
decide a problem can be answered by solving two simultaneous equations and so 
inputs the equations to a graphics calculator using appropriate syntax, requests 
the graph with a suitable range and domain, examines the output and interprets 
the coordinates of intersection in terms of the original question. The machine 
does the graphing and zooming as requested, supported by a myriad of hidden 
numerical calculations. The student selects the method, establishes the equa-
tions, and interprets the output. This example demonstrates that assessment with 
technology tests very different skills from assessment without technology. 
Routine calculations and routine graphing can be by-passed by the student, who 
is left in charge of the strategic plan of solution. Hopefully, with the burden of 
calculation removed, emphasis can then shift to assessing more than routine 
skills to encompass a much broader bandwidth of mathematical pro fi ciency, 
including reasoning, problem solving, modelling and argumentation. Some 
expansion of the range of assessable mathematical content might also be pre-
dicted. For example, non-linear equations can be treated similarly to linear mod-
els when graphical, rather than algebraic, methods are used.  

   Applying Three Principles for Assessment 

 In the USA, the National Research Council Mathematical Sciences Education 
Board  (  1993  )  published a conceptual guide for assessment which emphasized 
that assessment should make the important measurable rather than making the 
measurable important. To this end, they proposed the following three principles 
for the assessment of mathematics that are relevant at the personal, class and 
system level.

    • The mathematics principle:  Assessment should re fl ect the mathematics that is 
most important for students to learn. (This was called the “content principle” by 
MSEB)  
   • The learning principle:  Assessment should enhance mathematics learning and 
support good instructional practice.  
   • The equity principle:  Assessment should support  every  student’s opportunity to 
learn important mathematics. (p. 1)    

 While these three principles are statements of values, rather than the more familiar 
principles of educational measurement, they do, in effect, subsume traditional con-
cerns such as validity. The main value in the three principles presented above is that 
the focus was shifted from measurement to education (Carver,  1974  ) . 
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 These three principles do, of course, have implications for assessing traditional 
mathematics with technology, discussed in the  fi rst major section of this chapter. 
However, the major implications of the three principles, and the interactions between 
them, are more signi fi cant for the kinds of mathematics that can be assessed.  

   The Mathematics and Learning Principles 

 The issues at the heart of the mathematics principle and the learning principle are 
evident when school systems grapple with how to introduce technology into exami-
nations. What mathematics is valued and how can good learning of mathematics be 
promoted? Drijvers  (  2009  ) , for example, reported on the use of mathematically-able 
software (principally graphics calculators and CAS calculators) in 10 European 
countries. Consistent with earlier studies, he found four policies: technology not 
allowed; technology allowed but with examination questions designed so that it is 
of minimal use; technology allowed and useful in solving questions but without any 
reward for such work; and technology use allowed and rewarded in at least some 
components of the assessment. Drijvers concluded that the 10 countries he studied 
were probably moving towards consensus on the policies allowing the use of tech-
nology: (a) including some questions where it is de fi nitely useful, and (b) ensuring 
pen-and-paper algebra/calculus skills are tested in some way, either by not rewarding 
certain technology-assisted work, or by including a special component of assessment 
without technology. This is consistent with the policy of several university-entrance 
examinations, including AP Calculus (College Board,  2010  )  and some Australian 
examinations (Victorian Curriculum and Assessment Authority,  2010  ) . 

 The mathematics principle states that assessment should focus on the mathemat-
ics that is most important for students to learn, but of course exactly what this is may 
be strongly contested. A review of the policies above con fi rms that there are divided 
opinions on the use of technology to “do mathematics,” so that compromises (e.g., 
to have separate components some of which allow and some of which disallow 
technology) are common. The learning principle is also signi fi cant here. The need 
for students to have basic pen-and-paper competence is widely recognized, even 
among strong advocates for the use of technology. It is essential, for example, to 
recognize equivalent algebraic forms when the technology generates an unexpected 
result. Having a separate component of an examination that does not allow technol-
ogy is defended by some to ensure that these basic skills are not overlooked in 
schools. Exactly what skills should be tested and whether such a component is nec-
essary, however, is also a contested matter. It is an interesting contrast that in the 
statistics education literature, the question whether students should use statistics 
software is rarely debated (see for example Gar fi eld et al.,  2011  ) . 

 Given the enhanced computational power in the hands of students, one might 
hypothesize that end-of-school and university-entrance examinations allowing 
mathematically-able software would show a shift from mechanical questions 
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(requiring students to perform some standard procedure that is cued in the wording 
of the question) towards questions requiring application in new situations and more 
complex construction of solutions. This might be seen as a natural outcome of the 
mathematics principle. However, Brown  (  2010  )  observed that the introduction of 
mathematically-able tools does not necessarily change the character of mathematics 
being assessed (and hence taught). Brown compared six end-of-school examina-
tions in three jurisdictions,  fi rst at a point in time when students could use only a 
standard scienti fi c calculator and later when students were permitted to use graphics 
calculators. He found that there was less emphasis on mechanical questions in two 
of the later examinations, but not in the other four. 

 Mechanical questions dominated all of the examinations before and after, even in 
examinations that were supplemented by an additional component where graphics 
calculator use was not permitted. Brown attributed the general lack of change to the 
unchanging mathematical values of the question writers, many of whom continue to 
place a high value on the accurate performance of pen-and-paper procedures. This 
may not however be the whole reason. For example, Flynn  (  2003  )  demonstrated that 
designing new questions that take advantage of technology requires creativity and 
experimentation, and it takes time for teachers and assessors to develop the neces-
sary expertise. In a case study of “problems to prove,” Flynn analyzed many sample 
examination questions, and identi fi ed dif fi culties that arose when the solution tools 
changed. With symbolic manipulation software (CAS), the key issue is what Flynn 
called “gobbling up” steps. For example, a student without CAS who shows that 
(sin  x  + cos  x ) 2  = 1 + sin 2 x  demonstrates knowledge of the identities sin 2  x  + cos 2  x  = 1 
and 2sin  x ·cos  x  = sin 2 x . For the student with CAS, these steps are “gobbled up” by 
the CAS, and the result is given immediately. Flynn’s paper provided some ways 
forward for assessing complex reasoning. However, there is much to be done to 
improve all assessment of the full bandwidth of mathematical pro fi ciency. Having 
new technologies provides an extra dimension to this challenge as well as new but 
still embryonic opportunities. 

 Flynn  (  2003  )  also provided a case study of the way in which the symbolic manip-
ulation facility of CAS calculators can actually be used in examinations that permit 
their use. He analyzed the two  fi rst such examinations in Victoria, Australia. Flynn 
found that questions yielding 12% of the total marks could not be answered with 
CAS features. These questions typically tested knowledge of features and properties 
of unspeci fi ed mathematical functions such as identifying the graph of  f (− x ) from 
multiple-choice options, given the graph of a function with an  unspeci fi ed rule  for 
 f ( x ). This style of question came to prominence when graphics calculators were 
 fi rst permitted, to test understanding of the fundamental relationship between the 
graphs of  f ( x ) and  f (− x ). Previously, this understanding may have been assessed by 
asking students to sketch the graph for a speci fi ed  f ( x ), but graphics calculators 
changed the cognitive demand of this task from mainly mathematical knowledge to 
mainly syntax and button pushing because they can automatically graph  f ( −x ) 
where  f ( x ) is given. 
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 Flynn found that symbolic manipulation would have advantaged students in 
questions worth 31% of the total marks. Most of these questions were similar to 
those that Brown  (  2010  )  termed mechanical questions, requiring rehearsed pro-
cedures such as factoring or differentiation—with CAS they require little more 
than button pushing. Perhaps surprisingly, these questions were generally well 
within the pen-and-paper algebraic skills of most students and hence many stu-
dents would have completed them most ef fi ciently without CAS. In fact, since 
examiners had probably derived the answers by hand, it was sometimes the case 
that multiple-choice questions presented answers in algebraic forms that favour 
pen-and-paper methods. There were no clear examples of questions that required 
algebra skills beyond expected pen-and-paper competence and in this sense 
took full advantage of the CAS, although subsequently this has occasionally 
occurred. 

 In questions leading to 56% of the marks, Flynn judged that a CAS calculator 
would give no advantage to a good student, although for a large proportion of such 
questions, the symbolic capability offered an additional solution or checking 
method, a phenomenon known as “explosion of methods.” Figure  23.4  illustrates an 
examination question of this type.  

 For the question in Figure  23.4 , the following methods are available:

    1.    Locating when the maximum temperature occurs from the graph of the 
function;  

    2.    Solving sin(  p t/ 12) = −1 (the known minimum value of sine) using either the 
symbolic capabilities of CAS, with pen-and-paper, or directly from knowledge 
that the sine function has a minimum value at 3 p /2;  

    3.    Solving d y /d t  = 0 for  t  either with pen-and-paper or by using the symbolic capa-
bilities for differentiation and/or solving;  

    4.    Using a built-in facility on some calculators to  fi nd the maximum of a function;     

 For a student without technology, only the pen-and-paper versions of methods 2 
and 3 are feasible; having a graphing facility adds methods (1) and (4), whereas 
with symbolic manipulation as well, all of the algebraic work is supported, as it 
would be in a question with parameters instead of speci fi c values, when algebra 
would be the only viable solution method. 

A. 3.00 pm
B. 6.00 am
C. 12.00 noon
D. 6.00 pm
E. 12.00 midnight

  Figure 23.4.    VCAA  2002  Mathematical Methods (CAS) Examination 1, Part I, Question 3.       
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 The large proportion of marks for questions where the newly permitted CAS 
facility had little or no impact demonstrate a continuity in examination practice, a 
continuity in what mathematics is valued, and the need for time and experience to 
develop a range of new question types. A broadening of the range of available solution 
methods is a main effect of the introduction of CAS into this examination system. 
Other effects of having CAS available are that it can compensate for some students’ 
algebraic weakness, or enable them to check their own work, or simply be a strategic 
decision to save time.  

   Equity Principle 

 The purpose of assessment is to allow valid and reliable inferences about student 
learning to be made. For this reason, it is imperative that all students be given a fair 
chance to show what they have learned. In assessment with technology, there are 
many dimensions where the equity principle is relevant, including socio-economic 
circumstances, and certain physical disabilities. The College Board  (  2010  )  makes 
the point that teacher professional development is an important equity issue, as is 
convenient access to calculators or computers and the ancillary equipment (e.g., data 
projectors, calculator view screens, networks, etc.) to make the most of the technol-
ogy in class. Education systems have tended to manage the latter issues by slowing 
the pace of change that might otherwise be desirable. 

 Gender is a potential equity issue, since boys are often said to be more “technically 
minded” than girls, and there are numerous research studies which con fi rm this “digi-
tal divide.” Pierce, Stacey, and Barkatsas  (  2007  )  showed that although secondary 
school boys and girls (on average) approach learning mathematics with technology 
differently, this does not seem to affect their school use of technology for learning. 
Others, however, proposed that examinations with advanced technology disadvantage 
girls. Forgasz and Tan  (  2010  ) , for example, proposed, on the basis of results from a 
special sample, that girls are disadvantaged when the more advanced CAS calculators 
are used instead of graphics calculators: this proposal awaits con fi rmation with a well-
constructed sample, and a theoretical explanation of why the addition of symbolic 
manipulation to an already powerful technology might have such an effect. 

 One of the most important questions facing assessment with technology is how 
it can be conducted fairly if students use equipment of different quality or different 
brands or models with different capabilities. Of course, this is hardly a new issue. 
When fountain pens were  fi rst available, some worried that students rich enough to 
afford one would be at an advantage compared to those who had to dip the pen 
repeatedly in the ink-well. The examinations in Australia discussed above require 
students to have a calculator from a list of approved models (Victorian Curriculum 
and Assessment Authority,  2010  ) , and the list is created with students’ economic 
circumstances in mind. Any capability of the calculator can be used. Because modern 
calculators have the ability to store text (some more than others, and with different 
ease of access), students are permitted to bring notes into examinations. In other 
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settings such as AP Calculus (College Board,  2010  ) , any calculator can be used but 
only a restricted range of their capabilities can be used, with pen-and-paper working 
required for other processes. 

 As with the mathematics principle and the learning principle, the equity principle 
requires that assessors have a strong knowledge of the capabilities of the permitted 
technologies. Even when there is a list of approved calculators which have the same 
broad capabilities, assessors need to be certain that students are not advantaged by 
using one calculator over another, certainly over the whole examination and prefer-
ably in individual questions. Differences between brands and models can occur in 
architecture (e.g., ease of linking of representations or accessing commands, menus 
and keys), user-friendliness of syntax, capabilities (e.g., operations and transforma-
tions) and outputs (e.g., privileged forms and possible inconsistencies). The study of 
Victorian Certi fi cate of Education questions by Flynn  (  2003  )  cited above found that 
20% of available marks were affected by differences between the three permitted 
calculators, although when the examination was considered as a whole, these differ-
ences cancelled out. A major source of differences is that a symbolic manipulation 
package auto-simpli fi es mathematical expressions. A good example from Flynn and 
Asp  (  2002  )  is provided in Figure  23.5 . To solve part (c) (ii),  a  = tan −1 (3/4) can be 
substituted into the expression for the derivative. One CAS calculator produces the 
answer nearly as required, but another gives an answer that is disconcerting to both 
students and teachers (see Figure  23.6 ).   

 In fact, the CAS2 solution can be simpli fi ed to give the same answer, but few 
students (or for that matter, teachers) are likely to be con fi dent that the initial answer 

The diagram [not reproduced here] shows part of the graph of the curve with equation
y = e2x cos x.

(a) Show that = e2x (2 cos x–sin x).
dx

dy

(b) Find 
dx2

d2y
.

(c) There is an inflexion point at P(a, b).Use the results from (a) and (b) to prove that
(i) tan a = 3/4 and 

(ii) the gradient of the curve at P is e2a

  Figure 23.5.    International Baccalaureate Mathematical Methods Standard Level 2000 Paper 2, 
Question 7.       

CAS1:  f ′ (tan–1 (3 / 4)) = e2 tan–1
 (3 / 4)

CAS2:  f ′ (tan–1 (3 / 4)) = e2 tan–1
 (3 / 4) (2 cos(tan–1 (3 / 4)) – sin(tan–1 (3 / 4)))

  Figure 23.6.    Different answers from different CAS calculators.       
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is on the correct path. This interesting example raises another issue related to the 
Mathematics Principle: does this technology-assisted solution constitute the proof 
required for this question? 

 After noting that users of different brands and models of technology may have 
“unfair” advantages on some questions, Flynn  (  2003  )  concluded that the most 
important goal is a fair examination, where small advantages to some on some ques-
tions balance out, thereby providing a fair overall result. This requires examinations 
to be rigorously scrutinized by assessors knowledgeable about all the technologies 
in use and about how students are likely to use them.  

   Assessing Project Work that Is Supported by Technology 

 In classroom projects and investigations, students can use technology to explore 
mathematical ideas for themselves, undertake more substantial work than is possi-
ble in a timed examination and deal with complex data sets, including real data, or 
undertake mathematical modelling of real problems, formulating relationships and 
interpreting results. For example, dynamic geometry programs provide excellent 
assistance for students to experiment, make hypotheses and test them, before creat-
ing formal proofs. In this way, students can demonstrate a wide range of abilities. 
Spreadsheets and statistics programs similarly enable students to search for relation-
ships in authentic data and provide excellent graphical representations of datasets, and 
are ideal tools to use in project work. These are important aspects of mathematics and 
statistics that are dif fi cult, if not impossible, to assess validly in traditional examina-
tions. Since both the mathematics principle and the learning principle invite us to 
ensure that these “higher-order” skills do indeed feature in assessments, assessment of 
students using technology in investigations is important. 

 Rijpkema, Boon, van Berkum, and Di Bucchianico  (  2010  )  described how the 
program  StatLab  can be used to teach and assess engineers about the design of 
experiments. The  StatLab  program assists in assessing application of theoretical 
knowledge to practical situations by providing part of the grading and feedback to 
students. Bulmer  (  2010  )  described a course based around a virtual island with many 
inhabitants who were used by his students as subjects in virtual experiments. 
He described how this provided support for rich tasks that engaged students in real-
istic scienti fi c practice where they confronted statistical issues, and he also described 
how Internet technology facilitated the assessment of project work for a large num-
ber of students by providing ready access to peer and tutor feedback. Bulmer com-
mented that students could carry out the virtual experiments without access to 
statistical software, although the realism and modelling of good statistical practice 
would suffer from the necessarily limited samples. Callingham  (  2010  )  surveyed 
assessment of statistics using technology, giving examples of technology used in 
various phases of the assessment process, including an instance where Grade 9 stu-
dents used technology to create graphs of data. Callingham concluded that more 
research is needed, especially on the assessment of statistical concepts. 
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 The lack of research is surprising, given that for several decades many practitioners 
have expected students to use technology in statistics assignments, as a tool for 
calculation and for handling data. For example, the Victorian Certi fi cate of Education, 
which combines both timed written examinations and school-based assessments, 
requires students to use statistical analysis systems in relevant topics and has done so 
for over 20 years (Victorian Curriculum and Assessment Authority,  2010  ) .  

   Assessment from Classroom Connectivity 

 The vision of a connected classroom where teachers and students can exchange 
electronic information instantaneously and in a usefully collated form has been 
around for many years. In 1990, a software package called  Discourse  enabled teachers 
to set tasks for students, for students to respond, for teachers to monitor students’ 
responses as they were generated, and, in later versions, to select an individual 
student’s work and display it for the whole class, either with or without attribution 
(Heller Reports,  2002  ) . This provides substantial opportunities for immediate for-
mative assessment. However, the promise of such “classroom aggregation technolo-
gies” (Roschelle, Abrahamson, & Penuel,  2004  )  is still to be fully realized. 

 There have been several studies of the use of classroom aggregation technology 
for mathematics, such as the wireless-based Texas Instruments Navigator system, 
which has features like  Discourse  along with CAS and graphics calculator capabili-
ties. Clark-Wilson  (  2010  )  reported on her own and other studies which found more 
opportunities for students to peer-assess other work and self-assess their own. They 
found that teachers used student responses to make decisions about the direction of 
subsequent work. In her study of seven teachers, Clark-Wilson found that all teach-
ers reported new opportunities for formative assessment. By providing better oppor-
tunities to monitor students’ work as entered into calculators, teachers gained 
additional insights, which enabled them to provide thoughtful interventions. They 
reported various mechanisms by which the discourse in the classroom was enhanced 
(e.g., discussing an interesting approach by a student to a problem), and in turn this 
enriched the teacher’s awareness of student thinking. Additionally teachers reported 
many instances where students changed their opinions and moderated their responses 
when they saw other students’ work: this provided additional opportunities for peer-
assessment and self-assessment. However, learning to teach well with data arriving 
throughout the lesson appeared to challenge some teachers. 

 King and Robinson  (  2009  )  found that the use of electronic voting systems 
(which can also be used for immediate formative assessment providing information 
to teachers and students) in undergraduate mathematics classrooms was viewed 
positively by most students, and did increase student engagement—even for those 
students who did not view the electronic voting systems as positive. However, they 
found no relationship between increased use of electronic voting systems and student 
achievement.   
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   Re fl ections 

 This review of the ways in which technology is changing assessment in mathe-
matics was organized around two broad themes. First, the increasing sophistication 
and power of technology has supported  fi ve main categories of changes in the ways 
that assessment is conducted:

    1.     Item preparation and selection : better understanding of what makes items 
dif fi cult has enabled the automated generation of items with predictable psycho-
metric properties that reduce the cost of assessments, and make it easier to pro-
duce practice tests for students to prepare for high-stakes assessments. Technology 
also permits adaptive testing where the items are selected according to student 
responses to earlier items, thus increasing test reliability (or, equivalently, reducing 
test length).  

    2.     Item presentation : technology allows items to be presented to students in ways 
that would not be possible with paper alone—for example, through the use of 
assessment models that focus not on how far through an item a student pro-
gresses, but the amount of support needed for successful completion of the task, 
thus improving the assessment experience for the student.  

    3.     Operation : technology allows students to engage in tasks in different ways, and 
can also ensure that students adhere to constraints imposed on solutions, thus 
improving the validity of the assessment and expanding characteristics that are 
assessed, especially by reducing the reliance on verbal communication. 
Possibilities for authentic assessment are expanded.  

    4.     Evidence identi fi cation : technology allows automatic scoring of some responses 
constructed by students, thus reducing the cost of scoring and supporting auto-
mated diagnostic analysis of response patterns. It allows different types of evidence 
(e.g., response time) to be collected unobtrusively, analyzed and reported.  

    5.     Evidence accumulation : technology supports the development of models of 
student pro fi ciency that go beyond simple unidimensional scales measuring 
competence to multidimensional models that allow the provision of detailed 
feedback to students and teachers.     

 These changes are blurring the boundaries between teaching and assessment, 
allowing assessment to become better integrated with instruction, and ultimately offer 
the prospect of integrated systems of assessment that can serve both formative and 
summative functions. However, several major obstacles still exist. What is possible 
now is a promise rather than a reality even in rich countries, not least because existing 
assessment systems tend to be well accepted in the contexts in which they operate, 
so change tends to be slow (Black & Wiliam,  2005  ) . Furthermore, moving from 
pen-and-paper, human-scored systems to technology-based systems involves sub-
stantial initial investment costs. Perhaps most signi fi cantly, most current human–
computer interfaces for mathematics require non-intuitive keyboard-based inputs, and 
students’ solution processes need to combine paper-based work with computer input. 
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 The second major theme of this chapter has been that technology prompts 
signi fi cant changes in the nature of mathematics that is assessed, and this creates 
new challenges for teachers and examiners. Creativity is needed to design assess-
ment items which show what mathematical values are held important, and to design 
systems that are equitable, encourage good learning and focus the attention of teach-
ers and students on mathematical knowledge that is important for the future. 

 Assessment should focus on the mathematical knowledge and skills that are most 
valuable. Technology, including dynamic geometry, spreadsheets, and calculators, 
enables students to explore mathematical ideas for themselves, formulating and 
testing and resolving hypotheses, so some assessment with technology needs to be 
without time pressure so that students can show these abilities. Similarly, some 
extended assessment can look at the whole modelling cycle, from formulating a 
problem mathematically, to solving it and interpreting the results; a process which 
technology assists at a number of points. Since technology takes over much of the 
routine work of solving, even examinations now need to look beyond assessing a 
narrow bandwidth of mathematical activity. Good assessment practices which per-
mit technology use will be powerful in ensuring that systems achieve the higher-
order thinking bene fi ts that educators seek from technology in schools. Designing 
good assessments with technology also needs to pay attention to equity. High per-
formance in school mathematics is often associated with social advantage, so it is 
important that use of technology in class or in assessment does not operate to limit 
further the achievement of socially and economically disadvantaged students. 
To accomplish all of these goals, assessors need to be very familiar with the capa-
bilities of the technologies permitted and the sometimes unexpected ways in which 
students might use them. 

 In summary, new technologies offer considerable potential to provide the capability 
to support authentic assessments of complex mathematical activity, and to monitor 
unobtrusively how students interact with the tasks, thus supporting the development 
of sophisticated models of student pro fi ciency that support the provision of high-qual-
ity feedback. Although recent developments in assessment with technology seems to 
have focussed primarily on the delivery of rich audio–visual content, the real power of 
computerized assessment is likely, in the future, to be in the creation of learning envi-
ronments in which students use a range of information resources, engage with power-
ful software for problem solving, and collaborate with other students.      
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  Abstract   The advent of technology has done more than merely increase the range 
of resources available for mathematics teaching and learning: it represents the 
emergence of a new culture—a virtual culture with new paradigms—which differs 
crucially from preceding cultural forms. In this chapter, the implications of this 
paradigm shift for policies concerning learning, curriculum design, and teacher 
education will be discussed. Also, the ubiquitous possibility of emergence of 
ever-new forms of technology brings about both new opportunities for learning and 
collaborative work (involving students and teachers), as well as potential dangers. 
Policy measures may give priority to technological access and developments, over 
the intellectual growth of learners and the professional development of teachers—
which should be more demanding goals of mathematics education. Such policy 
issues will be discussed.      

   Introduction 

 The previous chapters in this section of the  Third Handbook  suggest that the 
emergence and dissemination of digital technology provides opportunities for 
mathematics education and affects teaching and learning practices in different ways. 
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The in fl uence on different mathematical  fi elds has been discussed: for example 
geometry (Chapter   19    ), algebra and calculus (Chapter   20    ), statistics (Chapter   21    ); as 
well as on different aspects of mathematics education, such as curriculum design 
(Chapter   17    ), modelling (Chapter   18    ), proving (Chapter   19    ), the use of interactive 
resources (Chapter   22    ), and assessment (Chapter   23    ). 

 The impact on mathematics education, however, is not just a matter of individual 
teachers and students  fi nding their ways to use and bene fi t from the affordances 
offered by technological means; the integration of technology in mathematics edu-
cation involves setting standards (International Society for Technology in Education, 
 2011  )  and is also a matter of institutional and national policies with regard to edu-
cational reform (UNESCO,  2008  ) . Therefore, this  fi nal chapter of this section in the 
 Handbook  addresses technology-driven developments and policy implications for 
mathematics education. 

 Let us begin by clarifying how we understand the expressions used in the 
chapter’s title. By  technology-driven developments  we refer to two levels of devel-
opments. At a  fi rst level, we consider the developments of digital technology that 
can be used in mathematics education. For example, interactive whiteboards have 
been integrated to many mathematics classrooms nowadays. Students have hand-
held technological devices at their disposal such as calculators, netbook or laptop 
computers, in the classroom as well as at home. Through the Internet, both students 
and teachers have access to online content and resources, to communication facili-
ties and to student management systems which monitor student progress. These 
 fi rst-level developments foster second-level developments, namely individual stu-
dents and teachers learning to work in new technological contexts. For example, 
students may change the way they work on tasks and in preparing for tests. Teachers 
may be tempted to develop new teaching and/or assessment practices. The avail-
ability of technology confronts both teachers and students with questions on the 
relation between paper-and-pencil work and work with technological tools, and on 
the approach to mathematics––as an experimental science or as a more structural, 
formal science. 

 These types of technology-driven developments have repercussions initially at 
local and individual scales. However, they also have an impact on more global, 
institutional and national policy levels. Therefore,  policy implications  need to be 
considered. For example, a school, a group of schools, or a regional school board 
may decide to abandon textbooks and to use—and eventually co-design—online 
resources that cover the curriculum. Also, national authorities may decide to allow 
speci fi c types of technology in centralized assessments. As a third example, teachers 
may bene fi t from online collaboration with their colleagues, so as to share, and col-
lectively develop, resources and practices. 

 Two dimensions seem to be of particular interest in describing policies related to 
the development of educational technology, namely the top-down/bottom-up dimen-
sion and the access/support dimension. The top-down/bottom-up dimension refers 
to the differences between policies that, on the one hand, may emerge from the 
needs expressed by students, teachers, parents and other persons involved in math-
ematics education, and on the other hand may be imposed on the mathematics 
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education community as a result of political choices made by top-level administrations 
and, thus, at a distance from educational reality. For example, a top-down policy 
could be a national directive to impose access to graphing calculators during national 
examinations; whereas support for teachers who start to design their own online 
resources can be seen as a bottom-up policy. 

 The access/support dimension refers to the difference between, on the one hand, 
policies which focus primarily on providing teachers and students with access to 
technology, and leave the implementation up to the educational  fi eld itself; and, on 
the other hand, policies that focus on supporting teachers and students in the process 
of integrating technology. For example, providing schools with high-speed Internet 
connections is typically an access policy, whereas measures for professional devel-
opment and guidelines for implementation may be more supportive. This access/
support dimension is manifest in different statements on the integration of technol-
ogy in mathematics education. For example, in the USA, the National Council of 
Teachers of Mathematics (NCTM), in a 2008 Position Statement, claimed that “all 
schools must ensure that all their students have access to technology” and that 
“programs in teacher education and professional development must continually 
update practitioners’ knowledge of technology and its classroom applications” 
(NCTM,  2008  ) . 

 The two policy dimensions are depicted in the left part of Figure  24.1 . We believe 
that policies are more effective if they emerge from, and respond to, bottom-up 
developments rather than resulting from top-down initiatives, as will be illustrated 
in this chapter.  

 Merely providing access to technology is not enough for promoting educational 
change; support for teachers’ professional development is a necessary precondition 
for a thoughtful and fruitful integration of technology. In line with this position, the 
right part of Figure  24.1  shows a potential trajectory towards effective policies, and 

  Figure 24.1.    The two policy dimensions ( left ), with potential orientation towards bottom-up and 
supporting policies ( right ).       
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as such represents a policy shift. Whether these types of shifts can be observed in 
national developments will be discussed in this chapter. Policy shifts do not fall out 
of the blue, but re fl ect or intend to support underlying views on learning, and are 
mediated by new paradigms of teaching and learning. Therefore, we cannot address 
policy shifts without discussing, as well, shifting paradigms of learning. 

 The issue of educational policies and learning paradigms related to technological 
developments is addressed through the next four sections of this chapter, each offer-
ing a different view and illustrated through related national experiments or  windows  
on experiences. Part 2 addresses some challenges of policy, curricula and assess-
ment implementation. The shifting learning paradigm that underpins policy changes 
is addressed in Part 3, and illustrates how new spaces for learning can be opened. 
Part 4 then describes the role of digital resources in policy making, questioning the 
two articulated issues of design and quality. Then, since teachers are of crucial 
importance in mathematics education policies, Part 5 delves more deeply into 
teacher education, and highlights the new opportunities—such as through network-
ing possibilities— that technology may offer for this. Finally, in the conclusion, we 
propose an extension to the two-dimensional top-down/bottom-up and access/
support model.  

   Part 2: Policy, Curricula and Assessment Implementations: 
Evolution and Challenges 

 In this section we discuss how policies and curricula have tended to integrate 
technologies for mathematical education and their evolution linked to developments 
in technologies. We present some cases that illustrate the two-dimensional model 
discussed above; the policy tendencies in different regions; and how different poli-
cies (even within a same region) have different emphases. Finally we address the 
issue of technological assessment policies. 

   Historical Evolution of Technology Integration and the Shift 
Away from Technologies for New Educational Paradigms 

 The incredibly rapid development and dissemination of technology in society 
has led to a demand for policies for incorporating technologies into education—
such as was proposed in UNESCO’s  (  2005  )  World Report or in the  Bento Gonçalves 
Declaration for Action  (Carvalho, Kendall, & Cornu,  2009  ) —and of setting stan-
dards at national and international levels (International Society for Technology in 
Education,  2011 ; UNESCO,  2008  ) . However, though there is a generalized political 
discourse that emphasizes the need to incorporate technology, there seems to be 
limited visions on  how  to carry this out (Fonseca,  2005  ) . A comprehensive meta-review 
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on research on the integration of technologies (ICT) into education in general 
(LeBaron & McDonough,  2009  )  pointed to a gap between educational practice and 
policies with background theory and research; and calls for research strategies that 
will support educators to make the best use of the resources that are emerging. It 
also calls for policies that will help teachers go beyond a technical focus and think 
of technologies as a means for improving teaching and learning. In fact, as we will 
illustrate here, it would seem that many policies focus on  digital power , rather than 
contemplating a rethinking of educational paradigms in the light of what technologies 
can bring and change. 

 Historically, mathematics education was one of the  fi rst  fi elds to glimpse the 
potential of digital technologies, and consider them for mathematics education cur-
ricula: For instance, in the 1980s, following the publication of  Mindstorms  (Papert, 
 1980  ) , the Logo programming language was introduced into mainstream schools 
and programs, particularly for developing mathematical thinking, in many coun-
tries, including the USA and UK (Agalianos, Noss, & Whitty,  2001  ) . Other tech-
nologies, such as calculators, spreadsheets and dynamic geometry, also were seen 
early on as having great potential (as evident in the  fi rst ICMI Study—Churchhouse 
et al.,  1986  ) . 

 Pimm and Johnston-Wilder  (  2004  )  provided an interesting historical account, 
from a UK perspective, of the evolution of the inclusion, policies and relationship in 
and with school mathematics of technology—from the  fi rst calculators and com-
puter programming, to the recent interactive whiteboards. They narrated that, even 
before the advent of microcomputers, computer programming was part of the UK’s 
mathematics syllabus because of the  special relationship of computers and mathe-
matics . In fact, technologies and computer programming (e.g., with Logo) were 
used as a means to develop mathematical thinking (e.g., through  construction and 
expression ) and to seek deep educational transformations (as inspired by the Logo 
philosophy). But as computer science evolved, school mathematics distanced itself 
from it, as explained by Ruthven  (  2008  ) :

  The rise of Logo … was facilitated by an educational climate receptive to progressive 
educational ideas … the majority of classrooms took up Logo as part of an incremental 
view of educational change and were quick to absorb it into existing modes of work … In 
terms of  disciplinary congruence , during the period of Logo’s rise the  algorithmic thinking  
associated with computer programming was being proposed as a modern equivalent of 
Klein’s  functional thinking  … However, this position … lost ground as a wider range of 
software became available with new types of user interface which pushed programming 
into the background … In terms of  adoptive facility , … the lack of a viable platform suited 
to conventional classroom use was an important barrier … Finally, in terms of  educational 
advantage , the perceived value of Logo diminished as the place of more open and extended 
work in school mathematics was downplayed. (p. 99)   

 Thus, with the evolution of the nature of the technologies involved, and mathe-
matics increasingly hidden in the software used (Pimm & Johnston-Wilder,  2004  ) , 
there has been a shift in the past 15 years in how technology and its role is conceived 
in policy and curricula. In many cases, rather than harnessing the potential of tech-
nologies for creating new paradigms of thinking about mathematics and/or of school 
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mathematical practices, technologies are often used to assist in existing traditional 
mathematical practices (used as tools for visualization, presentation, or for their 
computational power—see Julie et al.,  2010  ) . 

 Also with the increasing availability of hardware and the development of online 
resources, Web sites, and the possibilities of networking, there is a focus—at least 
at top or national levels—to  access,  seeking to provide schools and pupils with 
technologies (both in terms of equipment and resources). In the case of many devel-
oping countries, as discussed in the next section, access seems to be the priority, 
together with developing computer “literacy,” which in some countries implies 
developing technical competencies for the use of pervading software (e.g., of fi ce 
suites). In fact, as some of the general research reviewed by LeBaron and McDonough 
 (  2009  )  pointed out, there has been a lack of suf fi cient technological resources in 
classrooms, as well as of professional development. We will now discuss some 
cases of national policies with regard to the incorporation of technologies in math-
ematics education.  

   Some National Curricula Recommendations and Policy 
Implementations 

 In developed countries, technology has been part of national mathematics educa-
tion policies for several decades. For example, in the USA, as far back as 1980, the 
NCTM had as one its main recommendations that “mathematics programs must 
take full advantage of the power of calculators and computers at all grade levels,” 
and that access to those tools should be provided in classrooms (NCTM,  1980  ) ; in 
2000 it claimed, boldly: “Technology is essential in teaching and learning mathe-
matics; it in fl uences the mathematics that is taught and enhances students’ learning” 
(NCTM,  2000 , p. 24; see also Ferrini-Mundy & Breaux,  2008  ) . 

 In France, mastering common information and communication technologies is 
considered one of the major seven competencies of the curriculum (Ministère de 
l’Éducation Nationale, de l’Enseignement Supérieur et de la Recherche,  2006  ) . 
At the end of 2009, reforms were announced proposing to offer two weekly hours 
of computer science in the last-year of high school ( Terminale S ) to science and 
mathematics students (Ministère de l’Éducation Nationale,  2009  ) . 

 Julie et al.  (  2010  )  described some developments of access to and implementation 
of technologies in mathematics education in various countries or regions—for 
example, government initiatives in Hong Kong and South Africa were described, as 
well as three types of integration in Latin America—the  fi rst two, bottom-up, and 
the third top-down: (a) due to the initiative of individual teachers and/or schools; 
(b) privately-funded projects (IBM, Microsoft, Intel, etc.); and (c) government-
sponsored projects. The paper offered a vision of large-scale projects in several 
countries (such as those expanded below in Windows 1 and 2, for the case of 
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Mexico), highlighting the dif fi culty of such projects, and the problem of the digital 
divide. It concluded:

  The outstanding similarity is the acceptance at political and bureaucratic level of the use of 
digital technologies for mathematics teaching and learning in all the countries. However, 
the translation of policy into practice is a much more daunting task. … Even under massive 
government implementation, there remain unequal access, unequal resources, and sporadic 
use of the digital technologies in schools. Political decisions and administrative issues also 
affect the implementations, the quality of the training of teachers as well as its continuity 
and that of the projects themselves. (Julie et al.,  2010 , p. 380)   

 More recently, many developing countries have ordered hundreds of thousands 
of  One Laptop per Child  (OLPC) computers, particularly Peru, Uruguay, Argentina 
and Rwanda (OLPC Foundation,  2011  ) . Though some early reports (Australian 
Council for Educational Research,  2010  )  pointed to some positive results, careful 
evaluations of the effects of activities with these machines—on teacher training, and 
on mathematics teaching and learning in schools—still need to be carried out. 

 It is worthwhile taking up the case of Mexico in terms of its national top-down 
policies for the integration of technologies for mathematical teaching and learning. 
Between 1997 and 2007, the Mexican Ministry of Education (SEP) launched, in this 
respect, two very different initiatives with opposite pedagogical and implementa-
tion strategies (as explained below): The  Teaching Mathematics with Technology  
(EMAT) program (Window 1) and  Enciclomedia  (Window 2). These examples 
offer insight into the dimensions discussed at the beginning of the chapter, with 
 Enciclomedia  having a top-down and access nature, whereas  EMAT  conceived as 
a bottom-up implementation, supporting integration. With government changes in 
2007, federal support for both  EMAT  and  Enciclomedia  was discontinued, though 
 EMAT  continues at regional levels. In 2003, there were 731 schools of fi cially 
participating in the  EMAT  program.  

  The availability of  Enciclomedia  resources is limited nowadays (and is no longer 
available from  Enciclomedia’s  of fi cial Web site,   http://www.enciclomedia.edu.
mx/    ). However, some teachers still use them. The government has now conceived a 
 program called  Habilidades Digitales para Todos  (Digital Abilities for All) with 
very different aims from those of past projects: this program aims to provide all 

    Window 1: A First Case of Mexico’s National Implementations: 
The EMAT Project  

  EMAT , which began in 1997 (together with parallel sciences programs—
 ECIT-ECAMM ) aimed to incorporate technologies in middle schools (for 
students from 12 to 15 years) in order to transform educational practices 
from the traditional teacher-to-student, top-down approach towards student-
centred, exploratory, bottom-up practices. An international team of mathe-
matics education researchers designed a constructivist, pedagogical model 

(continued)

http://www.enciclomedia.edu.mx/
http://www.enciclomedia.edu.mx/
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Window 1: (continued) 

and activities. Universal open tools (that allowed different objectives) were 
preferred, such as spreadsheets, dynamic geometry ( Cabri-Géomètre ), the 
TI-92 algebraic calculator and, later, Logo. Emphasis was put on changes in 
the classroom structure, on collaborative exploratory work, and on a teach-
ing model based on mediation and guidance (Ursini & Rojano,  2000  ) .  EMAT  
was designed to be implemented gradually—beginning with eight schools in 
1997, and gradually expanding over the course of several years—so that 
adjustments and support could be provided, and the quality of teacher education 
and implementation in classrooms would be optimized. 

 Though the implementation in schools was not as straightforward as 
planned (for example, preservice and inservice education were limited in 
scope— see Trigueros & Sacristán,  2008  ) — EMAT  was groundbreaking in the 
ways it opened doors to integrate technologies in schools. Its use was recom-
mended in the of fi cial national mathematics curriculum, and has extended 
beyond the originally-conceived policies. Some teachers who have been work-
ing with  EMAT  over many years, have been able to integrate the use of diverse 
tools and develop their own long-term projects—like, for example, the series 
of long-term  Painless Trigonometry  projects (Jiménez-Molotla & Sacristán, 
 2010  ) , which was developed by a couple of teachers on the basis of EMAT’s 
triangle activities. In  Painless Trigonometry  projects, students participated in 
activities which helped develop their trigonometric concepts and ideas through 
complementary explorations and constructions with the  EMAT  tools and other 
software (Figure  24.2 ). This led, in one case, to the construction, by the students 
themselves, of 3D computer models of triangle-based  fi gures (such as 
pyramids).  

 In some regions, local of fi cials still coordinate and support teachers’ com-
munities of practice for  EMAT , hold monthly workshops, develop new mate-
rials, and have developed anthologies of  EMAT  activities for different 
tools—see Figure  24.3  (Sacristán & Rojano,  2009  ) .  

(continued)

  Figure 24.2.    Complementary trigonometrical explorations with Cabri, Excel and Logo.       
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 Window 2: A Different National Implementation in Mexico: 
Enciclomedia 

 Unlike  EMAT ,  Enciclomedia  was the result of an ambitious political deci-
sion, made in 2004, to implement digitalized versions of of fi cial Grade 5 and 
Grade 6 textbooks in all subjects in all primary schools in Mexico. It included 
accompanying digital resources and interactive whiteboards. For this project, 
a huge number of ad hoc interactive resources (applets) were produced in a 
very short time. However, the use of open universal tools, such as those used 
in EMAT, did not occur (Rojano,  2011  ) . A view of this production of interac-
tive resources for the mathematics curriculum (such as the one illustrated 
Figure  24.4 ) has been presented by Trigueros and Lozano  (  2007  ) .  

 One of the most successful (and popular) mathematics resources from 
 Enciclomedia  was  La Balanza  (“The Scale,” see Figure  24.4 ), for which users 
input numbers (e.g., fractions, decimals) and, using the scale metaphor, inves-
tigate notions such as equivalent fractions. Trigueros and Lozano  (  2007  )  found 
that this applet gave students and teachers freedom to explore mathematical 
situations through interesting mathematical activities and challenges. 

 Despite some successes, the haste with which  Enciclomedia  was imple-
mented resulted in shortcomings. Rojano  (  2011  )  explained that there was an 

(continued)

  Figure 24.3.     EMAT  activities from the state of Hidalgo.       

Window 1: (continued) 
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students with laptops (the access dimension) and promotes the view that all teachers 
should have competencies in basic software, speci fi cally in MS Of fi ce (Bernáldez, 
 2011  ) . 

 The case of Mexico draws attention to an issue that arose in many 
implementations—speci fi cally, a lack of continuity in policies. Mexico is an example 
of a country where policies increasingly shifted towards  access , and away from 
meaningful and supportive  integration  for mathematical learning. It also points to 
how social, adoptive, practical and other factors can affect policy implementation 
with respect to technology. Many other factors come into play (for examples, see 
Julie et al.,  2010  )  and these can create gaps between political will and school and 
teacher implementation (Ruthven,  2007  ) . Assude, Buteau, and Forgasz’s  (  2010  )  
classi fi cation into levels of factors in fl uencing this contradiction included the social 
and political levels, the mathematical and epistemological level, the school and 
institutional level, and the classroom and didactical level. Dif fi culties arising 

obvious jump from resource availability to its use in the classroom, with many 
teachers not ready to experiment and appropriate the tools in ways suggested by 
Artigue’s  (  2002  )   instrumental genesis  theory. Artigue  (  2002  )  had called for a 
 gradual implementation  that allowed for feedback from research as well as the 
inclusion and linking with other types of resources, such as those from EMAT. 

  Figure 24.4.    Screen capture of Enciclomedia’s  La Balanza .       

Window 2: (continued)
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from the need to develop technological competencies among teachers, and asso-
ciated pedagogical dif fi culties, proved to be especially important (Trigueros & 
Sacristán,  2008  ) . 

 A further consideration, related to policy and curricular changes, is that of the 
role of technologies for assessment. This is now discussed.  

   Assessment Policies 

 Assessment is an important and widely debated aspect of national policies, with 
respect to the use of technology in mathematics education. It is beyond any doubt 
that assessment drives teaching and affects educational reform. This particularly 
holds in countries where national, externally-set  fi nal examinations are used as a 
main form of assessment. Meanwhile, research  fi ndings on this topic are limited. 
In the frame of the ICMI Study 17, Sangwin, Cazes, Lee, and Wong  (  2010  )  focussed 
on computer use for automatic feedback during online assessment, but did not dis-
cuss policy aspects of the use of technology in assessment—issues related to the 
kinds of tasks that might be appropriate, and implications for pedagogy, were not 
considered in depth. 

 Leigh-Lancaster  (  2010  ) , by studying how CAS technology has been incorporated 
into upper secondary mathematics curriculum and examinations since the year 2000 
in Victoria (Australia), offered a broad perspective of the challenges and experiences 
of assessment that is congruent with technology integration in mathematics pro-
grams. One issue is that standard models of assessment seem to be incompatible with 
new educational paradigms that are promoted by the use of technologies (Stroup & 
Wilensky,  2000  ) . The rationale for assessment related to these new paradigms per-
haps needs further elaboration which takes into account the learner’s development 
(Lesh, Hoover, Hole, Kelly, & Post,  2000  ) . Some research (e.g., Hernandez-Sánchez, 
 2009  )  has delved into the issue of how to evaluate students’ work and learning in 
classrooms in which contemporary technology tools are being used (Window 3).  

 As mentioned in the last chapter (Chapter   23    ) of this  Handbook , concerning the 
role of technology in national mathematics examinations, Drijvers  (  2009  )  distin-
guished between four assessment policies:

    1.    Technology is (partially) not allowed;  
    2.    Technology is allowed, but offers no advantage;  

 Window 3: A Search for Developing Assessment Methodology for 
Work with Technology  

 Hernandez-Sánchez  (  2009  )  identi fi ed three areas to assess: (a) development 
of abilities and mathematical content knowledge, (b) use of resources, and 
(c) collaboration and participation. In order to observe the work in progress 

(continued)
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    3.    Technology is recommended and useful, but its use is not rewarded; and  
    4.    Technology is required and its use is rewarded.     

 With the fourth of these policies, conceptual skills, such as interpretation, rea-
soning, mathematization, justi fi cation and modelling, are examined. However, 
designing appropriate examination tasks for such goals is not trivial. Brown ( 2010  )  
developed a similar scheme of analysis that identi fi ed four categories for technology 
in assessment: namely active required, active optional, active neutral and active 
excluded. 

 Drijvers  (  2009  )  investigated policies in some countries in Western Europe, and 
concluded that although many countries have Type 3 and Type 4 policies, they 
 nevertheless concentrate on assessing paper-and-pencil skills, either through a non-
technology part of the examination (consistent with a Type 1 policy) or through the 
use of speci fi c vocabulary in the wording of items that indicates that paper-and-
pencil methods are required. If technology is allowed during the assessment, a com-
mon limitation concerns communication facilities. An exception to this can be 
found in experimental examinations in Denmark, in which students have Internet 
access during the session. However, in France, after attempting to organize an 
“experimental test” for the  baccalauréat  in mathematics, the national authorities 
 fi nally decided it was too dif fi cult to organize both the assessment itself and the 
class preparation (Sur l’épreuve pratique,  2007  ) .  

   Some Closing Remarks to Part 2 

 In this section we have presented part of the evolution of technology integration 
into mathematics education and related policies, which shows a shift-away from the 

with technology in a classroom, she developed a series of instruments for her 
own assessment and for students’ self-assessment and co-assessment (with 
student in teams evaluating each other—see Figure  24.5 ).  

  Figure 24.5.    A co-assessment form to be used by a team of students.       

Window 3: (continued)
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early tendencies where technologies and computer programming were viewed as 
means to innovate education towards constructivist—and  constructionist  (Papert, 
 1991  ) —educational paradigms. Social and implementation dif fi culties, as well as 
the profusion of technological resources (to be discussed in Part 3 of this chapter) 
have brought about a change in these tendencies (Agalianos et al.,  2001 ; Ruthven, 
 2008 ; Pimm & Johnston-Wilder,  2004  ) . 

 We have also presented some examples of national policies. The contrast between 
the Mexican  EMAT  and  Enciclomedia  policies, not only illustrated some of the sup-
port/access, and bottom-up/top-down dimensions but also highlighted the contrast 
between focus on individual learning versus a collective approach, a dimension 
which we will discuss in the concluding section of this chapter. 

 Finally, concerning assessment, we claim that this is an important, but underes-
timated, aspect of policies on the integration of technology in mathematics educa-
tion. As Kaye Stacey and Dylan Wiliam have pointed out in Chapter   23    , issues 
relating to technology and assessment deserve more attention from the research 
community.   

   Part 3: Mathematics Learning and Teaching Spaces 

 The impact of national policies and strategies  fi nally come down to teachers, 
either individually or collaboratively, getting involved in the design of digital 
resources, and facing the challenge of how to turn the available resources into effec-
tive education. Such design and integration processes, however, are not neutral, in 
the sense that they re fl ect views on learning and teaching. These views may be 
affected by the new opportunities technology offers. In the present section, there-
fore, we elaborate on this by considering relationships between the integration of 
technology in mathematics education, and the paradigms of its learning and 
teaching. 

 Let us  fi rst focus on learning. Technology offers opportunities to enlarge stu-
dents’ learning spaces. As such, it potentially extends the scope of learning, the 
repertory of forms of learning, and offers opportunities for new paradigms for learn-
ing. But what do we mean when we speak about “enlarging learning spaces” for 
mathematics? We now address some aspects of this multi-faceted concept. 

   Mathematical Learning Spaces 

 What are potential dimensions of an enlarged technology-supported learning 
space? A  fi rst obvious, but non-trivial, dimension that technology may bring 

http://dx.doi.org/10.1007/978-1-4614-4684-2_23
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about, concerns the learning space, in the literal sense of distance and time: tech-
nology offers new means for  ubiquitous learning , in which students can access 
resources at every moment, in every place, and in a variety of synchronous as well 
as asynchronous modes. As an anecdotal example, it is not uncommon, these 
days, to see students sitting in the bus to the university campus watching video 
recordings of last week’s class on their smart phones. Learning becomes indepen-
dent from time and location, becomes  mobile , and this is indeed an extension of 
the learning space. Thanks to technology, and to online resources in particular, 
distant learning has become quite common. The learner decides on what, where 
and when to learn. 

 A second, related aspect of the enlarged learning space concerns the opportuni-
ties for organized forms of  out-of-the-classroom  or  out-of-school learning . Students 
equipped with handheld devices can go outside classrooms to gather real-life data 
that inform their biology or chemistry lessons. More speci fi cally for mathematics, 
students can use GPS technology for a mobile geometry game in the school-yard 
(Window 4).  

 A third and more subtle aspect of the extended learning space brought about by 
technology, concerns what we would like to call the student’s  mental learning 
space . The use of technology may, on the one hand, invite mental activity, and on 
the other, free students from basic mental activities that may distract them from 

 Window 4: MobileMath Game with Handheld GPS Technology 
 In this example, taken from Wijers, Jonker, and Drijvers  (  2010  ) , teams of 

Grades 7 and 8 students used handheld GPS devices to play an outdoor game 
in which they had to construct parallelograms and try to destroy other groups’ 
geometrical shapes. The aims were to make students experience properties of 
geometrical  fi gures in a lively, embodied game context. 

 Student actions while playing the game include looking at the map to 
imagine where they want to make a shape, walking to the location for the  fi rst 
vertex to enter this location in the mobile device, which generates a dot on the 
map, walking again to the location of the second vertex of their imagined 
shape which provides a line on the screen connecting the  fi rst vertex with the 
current (moving) location, etc. 

 The map in Figure  24.6  illustrates some student constructions. The results 
of the pilot experiments suggest high student engagement and motivation. 
Students learned how to use the GPS, to read a map, and to construct quadri-
laterals. The study suggested mathematical learning opportunities that need 
further investigation.  

(continued)
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higher goals. Depending on the task, technology may provide space for explora-
tion, for discoveries in microworlds, for dynamical investigation of variance and 
invariance, for design of—and links between—representations; in short, for knowl-
edge construction. Through technology, students can have early access to advanced 
mathematical ideas in a non-structured or nonlinear way (see Sacristán et al., 
 2010  ) , as expressed by the  webbing  idea proposed by Noss and Hoyles  (  1996  ) . A 
point of concern here, however, is that these challenging potentials are not easy to 
exploit in every-day mathematics teaching. For example, the seemingly trivial 
techniques for using technological tools are often interrelated to conceptual aspects 
(Lagrange,  2000  ) . 

 A fourth, interesting aspect of how technology can enlarge the learning space, 
concerns the opportunities technology offers for  collaborative learning . Thanks to 
online connectivity and social media, communication, exchange, and collaborative 
work are not limited to face-to-face meetings but can take place at a distance. This 
affects the paradigm of learning as an individual activity and widens the horizon to 
more intensive online collaborations (Hoyles et al.,  2010  ) . 

 A  fi fth and  fi nal aspect is that technology also enlarges the  learning space for 
teachers , who are confronted with challenging questions on how to exploit the 
opportunities technology offers, how to organize the learning, and how to learn 
to organize the learning. This aspect is addressed in more detail later in the 
chapter. 

 To summarize all of the above, a new paradigm for learning has emerged, one 
which is in fl uenced by the seemingly unlimited learning spaces generated by new 

  Figure 24.6.    Map of students’ parallelogram constructions using GPS.       

Window 4: (continued)
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technologies. The more classical view on learning as an individual, in-school, linear 
process has been challenged. Learning is now being seen: as ubiquitous, rather than 
in-school; as involving active construction, rather than passive reproduction; as a 
Web-like, rather than a linear process; as bottom-up, rather than top-down; as self-
dependent, rather than teacher-dependent; as collaborative, rather than individual; 
and,  fi nally, as aiming at conceptual, rather than procedural knowledge. 

 Even if this new paradigm for learning may sound very appropriate for the 21st 
century, as well as appealing in the light of new demands for workers and citizens, 
its realization in classroom practice—within its institutional constraints—turns out 
to be far from a trivial matter (Ruthven & Hennessy,  2002  ) . Therefore, we now 
consider the exploitation of the teaching space as it is opened up by the availability 
of educational technology.  

   Mathematical Teaching Spaces 

 If technology has the potential to enlarge students’ learning spaces, how does 
this affect teaching practice? How can teachers manage the learning spaces and 
 orchestrate  classroom situations to exploit them? What are the consequences of new 
paradigms for learning and for educational formats, classroom organization, peda-
gogical approaches and teaching strategies? 

 As a means to address these questions, Trouche and colleagues developed the 
notion of  instrumental orchestration  (Drijvers & Trouche,  2008 ; Trouche,  2004  ) . 
An instrumental orchestration is a teacher’s intentional and systematic organization 
and use of the various artefacts available in a—in this case computerized—learning 
environment for a given mathematical task; it includes setting up the scene, exploit-
ing it and taking ad hoc decisions. Other models are available. For example, Ruthven 
and Hennessy  (  2002  )  designed a  practitioner model  for the use of technology in 
mathematics teaching. Pierce and Stacey  (  2010  )  offered a  pedagogical map , which 
may guide teachers in their articulation of tools, task and teaching techniques. 
Finally, the notion of  Technological Pedagogical and Content Knowledge  (TPACK, 
Koehler, Mishra, & Yahya,  2007  )  identi fi es different types of knowledge that teach-
ers need, as well as their interactions, and as such may help teachers to position their 
knowledge and identify possible weaknesses. Whether these models really can help 
teachers in their professional development on the issue of teaching with technology, 
is still to be investigated. 

 Earlier, we claimed that technology offers opportunities for ubiquitous and out-of-
school learning, for widening students’ learning spaces and for collaborative learning. 
How can these opportunities be dealt with in teaching? The idea of  ubiquitous and 
out-of-school learning  challenges the traditional teaching formats, as it is dif fi cult for 
the teacher to know what students do and learn. Learning trajectories may take differ-
ent directions at different speeds. However, technology also offers solutions to this 
through the availability of student monitoring systems, which allow teachers to access 
online students’ computers or devices. This allows for the preparation of face-to-face 
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teaching that takes into account the students’ proceedings and bene fi ts from the differ-
ent approaches they could have developed during their out-of-class work. Window 5 
sketches such an approach, in what was called a  Spot-and-Show  orchestration 
(Drijvers, Doorman, Boon, Reed, & Gravemeijer,  2010  ) . It illustrates the way in which 
the availability of technology can enlarge the mathematical teaching space, by offer-
ing the opportunity to access students’ work and monitor students’ progress through 
digital means, and  fi ne-tune the face-to-face teaching to that.  

 Window 5: The “Spot-and-Show” Orchestration 
 In this example, taken from Drijvers et al.  (  2010  ) , we imagine a teaching 

situation in which ICT allows a teacher to access digital student work while 
preparing his lesson. As he does that, he notices something special in the 
work of one of the students—such as a remarkable mistake, a misconception, 
or a surprisingly original solution. The teacher decides to exploit this during 
the lesson and shows the student’s work to the whole class by means of a 
projection. Next, he may ask the student to explain his approach or reasoning. 
Peers can comment and the teacher can explain why he considered that this 
particular solution was worthy of special attention. 

 As an example of Spot-and-show, Grade 6 students had compared dot 
graphs of the square and the square root function (Figure  24.7 ). One pair of 
students typed in the digital environment: “And the square of a number is 

(continued)

  Figure 24.7.    Comparing the square and the square root.       
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 Concerning the widening of  students’ mental learning space , the question of how 
best to exploit this is not an easy one to answer. Of course, students’ mental activity 
is not stimulated by the availability of technology in itself, but largely depends on 
the task, the affordances and constraints of the tool, and orchestration of all this by 
the teacher. As a teacher, one needs to be aware of the subtle interaction between 
techniques for using the tool and mental activity, as it is re fl ected in the notion 
of instrumental genesis (Artigue,  2002  ) . To enhance this, new organizational forms 
of teaching might be designed. Some studies suggest that teachers are less drawn to 
whole-class teaching in technology-rich education than they are in regular lessons 
(Drijvers,  2012  ) . We strongly believe, however, that interactive forms of whole-class 
teaching are crucial for exploiting, making explicit and re fl ecting on students’ indi-
vidual hands-on experiences. For enhancing such whole-class interactive teaching 
formats, classroom connectivity tools are available, such as the  TI-Navigator , voting 
boxes or different types of digital pen technology (Hoyles et al.,  2010  ) . 

 Technology opens new horizons for addressing  collaborative learning  in teaching. 
Collaborative work can be part of assessment and students could be encouraged to 
use online chat while working on their mathematical tasks at home or to have other 
types of online peer interaction. The teacher himself may be engaged in these types 
of collaboration. An online consultation hour for students might increase student–
teacher interaction. As will be explained later in this chapter, collaborative learning 
also applies to teachers’ collaborative work and their professional development. 
Technology may support teacher education through the sharing of experiences and 
the collaborative design and use of online resources. In this sense, technology also 
enlarges the teachers’ own learning space. Results from the nationwide evaluation 
of  EMAT , discussed earlier, showed that teachers’ learning is enhanced (Trigueros 
& Sacristán,  2008  ) . 

 To summarize this section, we claim that, on the one hand, the availability of 
technology enlarges students’ learning spaces in several aspects and leads to new 
paradigms of learning. On the other hand, ways by which teachers can fully 
exploit the potential of these resources are not yet evident. Nevertheless, the 
design and diffusion of teaching resources is a major issue within educational 
policies. This relationship between the dissemination of resources and educational 
policy is the main theme of the next section.   

always right above the root.” The teacher wanted to draw attention to the fact 
that the value of the dependent variable is always positioned vertically above 
the value of the independent variable, and that this has nothing to do with the 
type of function involved. Therefore, she projected this answer to the class-
room. After a whole-class discussion, one of the students said: “That’s because 
the line underneath, that’s got a number on it, which you take the square root 
of and square, so it’s on the same line anyway.”  

Window 5: (continued)
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   Part 4: A Profusion of Resources, Opportunities 
and Questions 

 We now turn to a central issue for educational policy: as in the case of the exam-
ples in Mexico, provision of resources has often been seen as a way to in fl uence 
what happens in the classroom (see, e.g., Ball & Cohen,  1996 ; Pepin,  2009  ) . 
Although traditional textbooks remain central, digital textbooks are becoming much 
more prevalent, and there is a profusion of other available digital resources: Web 
sites, interactive applications, online videos, forum discussions, etc. The devisers of 
these resources and participants in these online exchanges may be professional 
designers, teachers, educators and educational researchers. 

 This situation raises new policy questions, such as the following:

   What are the key design modes of these new resources? Who designs and what • 
do the design processes look like?  
  How to assess the quality of the resources? Which criteria are set for linking • 
quality and design mode, and by which assessing authority?    

 In the course of discussing these questions, we draw, in particular, on two exam-
ples of innovative projects in Europe:  Sesamath  and  Intergeo . 

   Towards New Design Modes 

 From a technical point of view, designing and broadcasting online resources is 
within the scope of most teachers. The networking possibilities foster the devel-
opment of online communities, designing resources. For example, the Geogebra 
community [  http://www.geogebra.org/    ] (Lavicza, Hohenwarter, Jones, Lu, & 
Dawes,  2010  )  gathers teachers and researchers all over the world, designing 
resources, organizing training sessions, and conferences around this educational 
software. In France, an example of such an online community is the  Sesamath  
association (see Window 6), whose Web site records more than 1.3 million visitors 
each month. 

 Window 6: From Drill-and-Practice to Virtual Environment: Sesamath 
  Sesamath  [  http://www.sesamath.net/    ], a French online association of 

mathematics teachers (most of them teaching in Grades 6–9), started in 2001. 
Its spirit is summarized on its Web site as “Mathematics for all.” It offers 
several kinds of free resources: online exercises, dynamic geometry software, 
online textbooks, etc. 

(continued)
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  Sesamath  started with a gathering of some 20 mathematics teachers, who 
shared their personal Web sites and then designed together a drill-and-practice 
piece of software called  Mathenpoche  (Gueudet & Trouche,  2012a  ) . 
 Mathenpoche  was immediately very successful, in the sense that it was used 
by many teachers and students. In some regions, the local educational or 
political authorities supported its development by offering dedicated servers. 

 Several changes took place between 2005 and 2006. The association 
started to collaborate with researchers (Kuntz, Clerc, & Hache,  2009  )  and the 
designed resources integrated results of these collaborations. For example, a 
virtual abacus [  http://cii.sesamath.net/lille/exos_boulier/boulier.swf    ] was 
developed for primary school, and new exercises, with several solutions, were 
added in  Mathenpoche . At the same time,  Sesamath  decided to develop text-
books and, through the use of an online platform, involved others teachers—
outside of the association—as authors. The resulting textbooks, freely 
available online, were also published on paper, and sold for half of the price 
of regular textbooks. Some commercial publishers attempted legal action. 
Due to the importance acquired by  Sesamath  resources, some educational 
authorities started to question their quality. 

 The development of the association’s activities continued with a Web site, 
 Sesaprof , allowing users to contribute to the design of resources (Sabra,  2009  ) . 
The main current  Sesamath  product is  LaboMEP  (see Figure  24.8 ), a virtual 
environment where teachers can choose various kinds of activities: online 
exercises, dynamic  fi gures, extracts of textbooks. They can, among a range of 
possibilities, combine some of them, or assign them to speci fi c pupils.  

 Explaining the reasons for the success of  Sesamath  requires speci fi c 
research. The existence in France of the IREMs (Institutes for Research on 
Mathematics Education), a national network that involves many mathematics 
teachers, has played an important role. A similar project could perhaps not 
succeed in countries were such a network, linked with mathematics education, 
did not exist. 

  Figure 24.8.     LaboMEP,  a virtual environment for the teacher.       

Window 6: (continued)
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  In France, no “of fi cial” online resources exist. Though  fi les can be downloaded 
from several institutional Web sites (such as those of the Ministry of Education or 
regional academic authorities), they only concern speci fi c topics. This is different 
from the  Enciclomedia  project in Mexico (Window 2), directed by the government, 
and providing ad hoc resources to support the of fi cial textbook; or the  Enlaces  proj-
ect [  http://www.enlaces.cl    ] in Chile that has similar features to  Enciclomedia . 
Although the  Sesamath  example shows how new, bottom-up modes of design and 
collaboration can emerge, the examples in Latin America show that traditional cen-
tralized modes of expert production for system-wide dissemination also exist. 

 The availability of free resources is of economic importance, as it raises the issue 
of competition with commercial resources (in countries where commercial teaching 
resources are allowed). In some countries, governmental institutions themselves 
design resources, or offer opportunities for teachers to engage in the creation of 
resources, competing with the commercial productions (for example Wikiwijs in 
the Netherlands [see   http://www.wikiwijs.nl/sector    ]). 

 Design issues should not be seen merely as a simple bottom-up versus top-down, 
or private versus public confrontation; they are more complex, involving a variety 
of agents. Communities of designers and users of resources include members with 
different positions: including regular teachers, expert teachers (with the status of 
teacher trainers, in some countries), and researchers. 

 The collaborative design of online resources is important for educational research. 
That is not only because research is needed to enlighten the new design modes, but 
also because many researchers are actively involved in the design process. This 
involvement is rooted in a long tradition, both in the  fi eld of research on technolo-
gies and in the  fi eld of task design (Watson & De Geest,  2005  ) . Digital networks 
offer new possibilities for large projects associating teachers and researchers. Below 
we discuss the case of the  Intergeo  project (Window 7). Another important example 
of such collaboration is the UK’s National Centre for Excellence in the Teaching 
of Mathematics (NCETM—see Chapter   16    ). Joint work for the design of online 
resources can enhance relations between researchers and teachers. 

 Window 7: Quality of Dynamic Geometry Resources: The Intergeo 
Project 

  Intergeo  [see   http://i2geo.net/    ] (Kortenkamp et al.,  2009  )  is a European 
project that began in 2007. It has three aims: (a) inter-operability of the main 
existing DGS (Dynamic Geometry Systems); (b) sharing pedagogical 
resources; (c) quality assessment of resources (Trgalovà, Jahn, & Soury-
Lavergne,  2009 , p. 1162). 

 Any user logged on the  Intergeo  platform can propose a resource, which will 
be immediately published online (more than 3,500 resources were published 

(continued)
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in January 2011). This feature makes the resource quality assessment essential. 
This quality assessment in  Intergeo  draws on the users’ opinion, considering 
that the quality of a resource can only be de fi ned in relation with a given 
teaching context. 

 The main assessment tool is a questionnaire (Figure  24.9 ) proposed on the 
user’s platform (Trgalovà et al.,  2009  ) . This questionnaire takes into account 
nine different dimensions: metadata, technical aspect, mathematical content, 
instrumental content, added-value of dynamic geometry, didactical imple-
mentation, pedagogical implementation, integration in a teaching sequence, 
ergonomic aspects.  

 A user can choose to answer only a simple version of the questionnaire 
(giving an opinion on each dimension) or to give more details. For each 
dimension there are several precise statements. For example: “The activities 
are appropriate, given curricular and institutional constraints” (mathematical 
content); “The DG provides an experimental  fi eld for the learner’s activity” 
(added-value of DG); and, “The resource describes possible students’ strategies 
and answers” (didactical implementation). The answers are automatically 
collected and treated, and this treatment leads to a label (a number of  stars ) 
associated to the resource on the Web site. 

 The authors can freely modify their resources. If a participant, who is not the 
original author, wants to modify a resource, he/she has to copy it. The system 
allows following and connecting all the versions. Modi fi cations can help 
improve the resource’s quality; moreover, the questionnaire itself also contrib-
utes to this improvement, by raising the awareness of designers (who completed 
the questionnaire as users) on important dimensions of the resources. 

 In June 2011,  Intergeo  gathered 1,200 registered members. It contains 
around 3,500 resources; and altogether 700 evaluations have been proposed. 
This amount might seem to be limited; but the evaluation process only started 
in 2009. 

  Figure 24.9.     Intergeo  questionnaire on the platform, short version.       

Window 7: (continued)
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  The evolution of design modes also has an impact on the articulation of design/
use as well as on the very notion of authorship. Users send their comments and sug-
gestions; and designers modify the resources according to these contributions. A given 
initial resource can lead to many different versions, and identifying the contributors 
of one of these versions is often impossible. Moreover, teachers naturally adapt 
resources to their own use. This process is not new: teachers have always selected 
parts of textbooks, extracts from students’ productions, etc. Nevertheless, the tech-
nical possibilities foster this process: teachers download  fi les, and can easily copy 
and paste parts of these to produce their own  fi les. This  documentation work  
(Gueudet & Trouche,  2009  )  views teachers as designers of their own resources; and 
generally points to a need to reconsider borders between design and use. 

 These evolutions introduce a paradigm shift for the design of resources: the 
resources are never complete, but always involved in design processes. Directing 
this permanent move towards an increased  quality  is an essential policy issue that 
we discuss in the next section.  

   Assessing and Improving Resources Quality 

 Choosing a resource, for a given teaching or learning objective, is a dif fi cult task. 
It is,  fi rstly, linked to the issue of  indexation , investigated by many computer scien-
tists and also educational researchers (Lee, Tsai, & Wang,  2008  ) . But the choice 
problem is not restricted to indexation; the metadata cannot certify the resource’s 
 quality  that is considered both in terms of  intrinsic  quality and for its  adequacy  with 
respect to a user’s expectations. 

 De fi ning the intrinsic quality of an online resource, for the teaching of mathemat-
ics, is not straightforward. Which criteria can guarantee this quality? Naturally, such 
criteria have to take into account three dimensions:  mathematical ,  didactical , and 
 ergonomic  (ease of use). But even these dimensions do not fully take into account the 
 appropriation  by a user. Quality also encompasses the  potential  of a resource: poten-
tial for uses in class, for further design, and even for teacher professional development 
(see later in this chapter). In fact this question cannot have a general, unique answer. 
With the  Intergeo  project (Window 7) quality criteria were de fi ned, with a focus on the 
added-value of dynamic geometry, particularly in terms of investigation possibilities 
for the students. Other criteria could be used for other foci. 

 Beyond the choice of criteria, the issue of  who assesses the quality  can also be 
delicate. In some countries educational authorities have developed certi fi cations 
(in France, a national label, attributed by the Ministry of Education, indicates a 
resource of “Recognized Pedagogical Interest”). Different kinds of agents can inter-
vene in the assessment process: like, for example, stakeholders such as teachers 
(expert or not) and researchers. In some cases, the Ministry of Education calls for 
researchers to intervene as experts in quality assessment tasks (as in the  Pairform@nce  
program—see Window 10). 

 Answering the “who assesses the quality?” question drives us back to the 
bottom-up versus top-down confrontation and to all the intermediate possibilities. 
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In the  Intergeo  project, the quality assessment is grounded on the users’ opinions 
(as these opinions are expressed by a carefully designed questionnaire). Quality and 
design issues are intertwined. The involvement of users in the design of a resource 
and the organization of  design loops  (design-use-feedback-new design) are pre-
sented by several authors (see, e.g., Hegedus & Lesh,  2008  )  as likely to contribute 
to quality, in particular by fostering the resource’s appropriation potential.  

   Resources, Policies and Practices 

 We developed, in the previous sections, two important—and articulated—aspects 
of educational policies, concerning digital resources: their design and their quality 
(assessment, and improvement of quality). 

 These aspects can help to situate a given policy in our 2D system of axes. Indeed 
the design of resources can be more top-down, linked with of fi cial resources, 
designed by experts; or bottom-up, with a support for communities of teachers 
designing resources. Web sites (whoever the designers are) can propose ready-made 
resources, expecting the users’ alignment, or can take into account the complexity 
of the appropriation processes, offering possibilities of adaptation. The quality 
assessment can be in the hands of experts; it can also be entrusted to the resources 
users (as in  Intergeo ). 

 A new important dimension appears here, concerning the production paradigm: 
the design of resources seems to be an increasingly collective process. We could 
thus complement the initial two axes displayed in Figure  24.1  with a third one, 
representing an individual/collective evolution, and could  fi gure the paradigm’s 
shift, concerning the production of resources for teaching, as a move in this 3D 
system of axes. 

 This third axis, individual/collective, is also very important for characterizing the 
teacher education aspects of a policy, an issue that will now be discussed. 

 As a  fi nal remark on designing and integrating resources, we notice that, whereas at 
the present time, students can be considered  digital natives , most teachers are learn-
ing to speak  technological language  as their second, third, fourth, …, language. 
This brings us to the issue of teacher education and pre- and inservice professional 
development.   

   Part 5: Teacher Education Strategies, Policies and Practices 

 Technology opens the horizon for new forms of orchestrations, but “the process of 
orchestrating technology-integrated mathematics learning is neither a spontaneous 
nor a rapid one” (Healy & Lagrange,  2010 , p. 288). This certainly requires new 
resources and new competencies for teachers. To what extent do the resources for such 
a development exist? To what extent do new teacher education programs help teachers 
build such competencies? In this  fi nal section of the chapter we shall examine these 
questions, drawing special attention to two examples of innovative programs. 
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   Teacher Education: Back to the Future 

 In the  Second International Handbook of Mathematics Education , Mousley, 
Lambdin and Koc  (  2003  )  anticipated some major features of the present situation:

  There are many ways of using technology in teacher education. Generally, these meet three 
different purposes: … the creation and use of videotape, videodisc and multimedia resources 
…; varied facilities such as the Internet and communication software packages, …; the use 
of computers, calculators and other electronic resources for doing mathematics. … It is now 
not dif fi cult to foresee a time when today’s tools for meeting all three of the purposes 
outlined above will be able to be attended to in one apparently Internet-based seamless, 
interactive technological environment. (p. 396)   

 The time, mentioned by these authors, has apparently come (Window 8), providing 
resources freely, guaranteed … or not.  

 Window 8: Video Resources for Helping Teachers to Integrate Technology 
 Figure  24.10 , below, shows iTunes U, a guaranteed repository of videos 

linked to the results of research (videos from Universities, well-known institu-
tions, etc.). Figure  24.11 , on the other hand, shows a video obtained from the 
Google “jungle,” via a search using as keywords “teacher education for math-
ematics with technology.” One resource is  supporting integration  (cf., the 
introduction to this chapter), and the other is  offering  (magic)  access…    

  Figure 24.10.    Screen capture of iTunes U.       

  Figure 24.11.    Video capture from a source obtained via Google.       
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 More generally, looking at the mathematics teacher education landscape, we 
can now observe a wide range of resources, situations and devices: individual 
versus collective, associative ( Sesamath , see Window 6) versus institutional 
( Enciclomedia , see Window 2), with various content–strategy privileging. Grugeon, 
Lagrange, and Jarvis  (  2010 , p. 344) pointed out different strategies focussing on: 
mathematical knowledge, teaching skills, technology potentialities, virtual com-
munication or dialectic old/new tasks. Throughout this diversity, some new trends 
appear:

   After a time of  • institutional injunctions  (“teachers  have to  integrate technologies, to 
change their way of teaching”), there emerges a  consciousness of the complexity  
of the technology integration into mathematics teaching. The perpetual and rapid 
technological and social changes impose the idea of  lifelong learning  by which 
teacher education becomes an  ongoing process.  These evolutions push a meta-
morphosis of  teacher training  to  teacher supporting  along deep evolutions of 
mathematics teacher work.  
  The question is no more to privilege content, or pedagogy, or technology, but to • 
articulate these three components: “Good teaching with technology requires 
understanding the mutually reinforcing relationships between all three elements 
taken together to develop appropriate, context speci fi c strategies and representa-
tions” (Koehler et al.,  2007 , p. 741)  
  The  • Second Handbook  underlined a dominant point of view on teacher education 
as  introducing , in a relevant way,  resources to  teachers:

  How technological resources are introduced to teachers and used in teacher education is just 
as important as what they are designed to do and how well they are constructed … Most 
authors stress the need to use the resources in the same way as one would expect teachers 
to use them with children (Mousley et al.,  2003 , p. 401).   

 The idea of  • supporting  teacher work implies, not only  providing  resources, but 
 helping them to design  their own resources. This is in line with the tendency 
towards  supportive policies  discussed in the introduction to this chapter.  
  Helping teachers, as “instructional designers” (Visnovska, Cobb, & Dean,  • 2012  ) , 
to design their own resources, is in line with the tendency towards bottom-up 
approaches presented in our introduction. It leads to conceive new devices for 
continuous exchanges (via Web sites or platforms) and to take into account 
different agents of resource design: existing resources available, particularly 
via the Web; student and classroom interactions, as well as teachers’ 
interactions.    

 It is this new landscape that we want to illustrate now, through two contexts, one 
about preservice teacher education; the other, concerning inservice teacher education. 
Even if the border between both, in the context of lifelong learning, is vanishing, 
there remain some speci fi cities: entering, and moving within, a profession, are not 
the same “thing.”  
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   Preservice Teacher Education: Towards New Modes 
of Articulating Classroom Practice and Training 

 In this section we want to draw attention to the role of technology for supporting 
teachers at the beginning of their career. This theme raises important questions that 
need to be faced at this time when, for economic reasons, in some countries (in 
France, since 2010) persons intending to be teachers are “dropped” into classrooms 
at the end of their academic studies, before completing their education in the  fi eld. 
In these conditions, new forms of training emerge, often driven by researchers, 
where video can have a major place, in forms of training that aim collectively to 
work on  cases  and to develop a re fl ective stance (see Window 9). 

 There is therefore a move “from videotape to interactive multimedia,” as antici-
pated by Mousley et al.  (  2003 , p. 398). The use of video is combined with the poten-
tialities of an interactive platform, and carefully orchestrated by teacher educators. 
As Santagata, Zannoni, and Stigler  (  2007  )  emphasized: “The responses pre-service 
teachers gave to the analysis task prior to the course con fi rm the need for a frame-
work to guide their observations” (p. 138). The use of video can be found in both 
preservice and inservice teacher education. In this case it seems to be ef fi cient for 
supporting discussions, through excerpts of video, on each other’s practice—see, 
for example, the experience of  video clubs  related by Van Es and Sherin  (  2010  ) .   

 Window 9: Teacher Education Through Online Discussions 
 Llinares and Valls  (  2010  )  relate an experiment of integrating video-clips 

from videotaped mathematics lessons, and asynchronous, computer-mediated 
discussion groups (online discussions and workshops) for prospective primary 
teachers. 

 By using resources of an interactive environment (Figure  24.12 ), video cases 
and excerpts of interviews with the teacher who was “in the video,” these teach-
ers—prospective or already practising—have to: (a) notice aspects of teaching 
that might in fl uence the development of primary pupils’ mathematical compe-
tence; and (b) design a mathematical task to foster mathematical understanding 
by taking into account primary pupils’ thinking. The task is realized through 
online discussions and online workshops, with the help of a tutor, providing the 
young teachers with questions and theoretical information on demand.  

 The authors underline the ef fi ciency of this program, enabling the prospective 
teachers to re fl ect on, and integrate, multiple aspects of teaching. For them, 
this success results from the structure of the learning environment, articulat-
ing video-clips of actual mathematics lessons, providing structured guidance 
(task and discussion questions), participating in online debates, collaborating 
for designing a task; and providing theoretical background. 

(continued)
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   Inservice Teacher Education: Teachers as  Actors  of Their Own 
Development 

 After examining the use of digital resources for teacher education, in this section 
we study  teacher education for technology integration . To illustrate this, we choose the 
French Pairform@nce program (Window 10), because it relies on two principles, 
characteristic of what we consider as new trends in teacher education:

    1.     Collaboration  among teachers: Professional development, especially related to 
technology; results from collective activity and experience with peers, that is in 
line with the importance of teams; communities and networks as participants in 
mathematics teacher education (Krainer & Woods,  2008  ) .  

    2.     Resources design and implementation in class : A development program for 
teachers necessarily implies experimentation of resources in the  fi eld and, after-
wards, a shared re fl ection that is in line with the strategy. As emphasized by 
Fugelstadt, Healy, Kynigos, and Monaghan  (  2010  ) , “centre activities around the 
process of elaborating and experimenting with new instruments aimed to support 
new mediations of mathematics and/or teaching practices” (p. 308).     

 A program such as Pairform@nce would be in line with the evolutions in the 
 fi eld of teacher education, by considering teachers as  actors  of their own 
development. 

  Figure 24.12.    An online environment, including videos, for teacher training.       

Window 9: (continued)
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 Window 10: Pairform@nce, Promoting Teachers Collaborative Work 
on Resources 

 Pairform@nce is a French national inservice teacher education program 
featuring paths available on an online platform [  http://national.pairformance.
education.fr/    ] (Gueudet & Trouche,  2012b  ) . Each path is structured in seven 
stages, combining face-to-face sessions and distance work: (1) Introduction 
to the training session; (2) Selection of teaching contents and organization of 
teams; (3) Collaboration and self-development; (4) Collaborative design of a 
lesson; (5) Trial of the lesson in each teacher’s class; (6) Shared re fl ection 
about feedbacks of class experience; (7) Evaluation of the session. This orga-
nization seems to be close to what Fugelstadt et al.  (  2010 , p. 297) describe as 
an “ inquiry cycle  … seen as consisting of the main steps: plan, act, observe, 
re fl ect and feedback.” 

 Each stage comes with speci fi c resources, suggestions for teacher activi-
ties, and collaboration tools. On the program’s platform (see Figure  24.13 ), 
the seven stages are accessible on the left side; and some collaborative tools, 
like chat or forum, are accessible on the right side. Depending on the 
designer’s choices, the tools may be speci fi c to each stage of the path. The 
middle of the page displays path contents, and guidelines for the work of the 
participants.  

  Figure 24.13.    Presentation of the  fi rst stage of a training path on the Pairform@nce 
platform.       
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  Analyzing the development and effects of a teacher education program constituted 
a “burning question,” according to Mousley et al.  (  2003  ) , who stated that:

  Most reporting of uses of technology in mathematics teacher education—as in teacher 
education more generally and school and adult education—is descriptive; such reporting, 
however, generally concentrates on how speci fi c tools were used, rather than on how learning 
took place and the broader question of how teachers learn. (p. 425)   

 Ten years after, it seems that new projects are looking more carefully at the effects 
of what is actually done in the programs (see, e.g., Sacristán, Parada, Sandoval, & 
Gil,  2009 ; Soury-Lavergne, Trouche, Loisy, & Gueudet,  2011  ) . Analyses of recent 
programs indicate that the following approaches can assist in providing valid feed-
back mechanisms.

   The importance of the  • collective  teamwork of teacher education students for 
fostering their involvement in the process of designing and implementing 
resources in their own classrooms.  
  The importance of the work on resources for supporting evolution of practices, • 
con fi rming the importance of what Koehler et al.  (  2007  )  called  design talk —that 
is to say, “the kinds of conversations that occur in design teams as they struggle 
with authentic problems of technology integration in pedagogy” (p. 741).  
  The complexity of designing a development pathway that needs to be strong • 
enough to support teachers’ work, yet open enough to allow for teacher 
creativity.  
  The necessity of conceiving a teacher education program as a “lived” entity that • 
needs to be permanently renewed by the actors involved (both the teacher educa-
tors and the preservice and inservice teacher education students).  
  The necessity of accompanying such lived entities by hybrid teams which asso-• 
ciate researchers, designers and teacher educators and teachers with the program 
at stake.  
  The importance of tracking the work of teacher educators and teacher education • 
students for long enough to be able to catch real changes (a) during a program, 
(b) immediately after the program, and (c) one or more years later.  
  Another way of monitoring the effects of a program is for outsiders to keep in • 
touch with the continuing work of participants by means of questionnaires, inter-
views, “visits” of resources, and classroom observations, and for insiders to 
become re fl ective practitioners through the use of  logbooks  or diaries (prepared 
by teacher educators and the teachers themselves).     

   Networking and Professional Geneses 

 We agree with Grugeon et al.  (  2010  ) , that “research about teacher development 
courses in technology and mathematics is still in infancy” (p. 343). For us, it is 
more than a matter of merely developing “appropriate” courses—it is a matter of 
 supporting  the course of teacher development. The move seems to be clearly from 
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“teacher education for technology integration,” to “teacher (co)-education in/to 
designing–appropriating resources (integrating technologies under various forms) 
for teaching mathematics.” From this point of view, there has been certainly a pro-
found evolution since the  Second Handbook . The institutional recognition of the 
complexity of teaching in complex environments (continuous evolution, abundance 
of resources) has led to emergent forms of teacher education programs where task 
design, development of re fl exivity (e.g., via case studies) and collaborating, play a 
crucial role. 

 New technological means have been part of these metamorphoses: for example, 
the role of videos for sharing and analyzing practices; or the role of distant plat-
forms for collaborating and continuing work. The possibilities of networking appear 
as a major support for such evolutions, with this networking involving teachers and 
trainers, and also researchers in many experimental contexts. 

 It seems to be a time of blending: face-to-face with distance; communities involving 
teacher education students–teacher educators–researchers, etc. These metamorphoses 
renew the regard for teacher education, considered more as a  professional genesis , 
resulting in teachers (individually and collectively) acting with/on resources.   

   Conclusion 

 We have come here to the end of our journey through the “mathematics educa-
tion with technology” universe. We made four stops, successively visiting policies 
(including curricula and assessment); available resources; learning and teaching 
spaces; and  fi nally teacher education strategies. It is time to close our journey’s 
logbook, keeping in mind the main impressions. 

 The  fi rst impression is that the landscape we discovered through the opened 
windows is a  complex  one. Technology represents a deep change in mathematics 
learning and teaching conditions; educational policies can draw on it, but also must 
face associated evolutions. The two dimensions that we have distinguished in this 
chapter, namely the  top-down/bottom-up  dimension and the  access/support  dimen-
sion, helped us to analyze these policies. But we found that it was not always pos-
sible to characterize policies according to these dimensions. In the same country, 
the of fi cial institution can support the design and/or availability of resources by 
communities of teachers, and at the same time develop and/or provide “of fi cial 
resources.” Also, the involvement in the design and in the provision of resources 
can lead some teachers to make career switches, (for example, taking on responsi-
bilities in a district). Thus, policies do not seem to move along the neat straight 
lines sketched in our model. 

 The second impression is that technology could enlarge the digital divide 
between developed and developing countries. It is certainly naïve to imagine that 
the worldwide profusion of resources solves the essential problem of access. 
Access includes access to machines and access to Internet; and that is not the case 
in many regions. Moreover, access is dependent on of fi cial recommendations: if 
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policies offer access to  poor  resources, this access naturally leads to dead-ends for 
mathematics education. 

 The third impression came from considering the mathematics and technology 
education universe as a 3D space—adding to the previous two dimensions a third 
axis positing an  individual/collective  dimension (Figure  24.14 ). For instance, the 
 EMAT  activities, in Mexico, were designed with the aim of developing individual 
learning, while most  Enciclomedia  resources were meant to be presented to the 
collective classroom. Our journey reveals an evolving landscape where work on 
resources (designing as well as offering, using or adapting) seems to be increasingly 
collective. We could thus complement the initial two axes with a third one, rep-
resenting an individual/collective evolution, and can represent the paradigm’s 
shift concerning the production of resources for teaching as a move in this 
3D space.  

 Our fourth impression is that resources are never   fi nished , but always involve, in 
the design processes, an appropriation process—individual, as well as collective—
leading to a renewal of resources. Monitoring this permanent move towards 
increased  quality  is an essential policy issue. 

 Finally our journey evidenced a need for a deep re fl ection on what  initial  
resources are required to learn and teach mathematics in technology-rich environ-
ments. How can we best give access to and support the appropriation of such criti-
cal resources? Which are the missing resources, and how can we initiate and 
support their design? Such re fl ections, which may guide future policies, do not 
seem to exist yet. 

 Each of mathematics, education, and technology is a rich world. The combina-
tion of these three worlds constitutes a very complex universe. We have tried to 
explore this universe. A single journey always gives a limited access to the visited 
universe. We are conscious of this limitation. Other chapters in this  Handbook  have 
enlarged this visit, and supported our re fl ection about what was, what is, what could 
be, and what should be.      

  Figure 24.14.    From two policy dimensions to three policy dimensions.       

 



78524 Technology-Driven Developments and Policy Implications

      References 

    Agalianos, A., Noss, R., & Whitty, G. (2001). Logo in mainstream schools: The struggle over the 
soul of an educational innovation.  British Journal of Sociology of Education, 22 (4), 479–500. 
doi:  10.1080/01425690120094449    .  

    Artigue, M. (2002). Learning mathematics in a CAS environment: The genesis of a re fl ection about 
instrumentation and the dialectics between technical and conceptual work.  International Journal 
of Computers for Mathematical Learning, 7 , 245–274. doi:  10.1023/A:1022103903080    .  

   Assude, T., Buteau, C., & Forgasz, H. (2010). Factors in fl uencing implementation of technology-
rich mathematics curriculum and practices. In C. Hoyles & J.-B. Lagrange (Eds.),  Mathematics 
education and technology—Rethinking the terrain. The 17th ICMI study  (Vol. 13, New ICMI 
Study Series, pp. 405–419). New York, NY: Springer. doi:   10.1007/978-1-4419-0146-0_19    .  

   Australian Council for Educational Research (ACER). (2010).  Evaluation of One Laptop per Child 
(OLPC) trial project in the Solomon Islands.  Retrieved from   http://www.box.net/key-
dox/1/31970050/418415076/1%20#keydox/1/31970050/601916856/1    .  

    Ball, D., & Cohen, D. K. (1996). Reform by the book. What is—or might be—the role of curricu-
lum materials in teacher learning and instructional reform?  The Educational Researcher, 25 (9), 
6–14. doi:  10.3102/0013189X025009006    .  

   Bernáldez, M. (2011, February 18).  Habilidades digitales para todos: Los retos de democratizar 
la tecnología en las escuelas mexicanas.  Address presented at 4o Seminario Internacional de 
Educación Integral: Habilidades digitales, retos para el aprendizaje, la enseñanza y la gestión 
educativa, Hotel Hilton, Mexico, D.F.  

    Brown, R. (2010). Does the introduction of the graphics calculator into system-wide examinations 
lead to change in the types of mathematical skills tested?  Educational Studies in Mathematics, 
73 (2), 181–203. doi:  10.1007/s10649-009-9220-2    .  

   Carvalho, A., Kendall, M., & Cornu, B. (2009, December 18).  The Bento Gonçalves declaration 
for action . WCCE 2009 IFIP TC3. Retrieved from   http://www.i fi p-tc3.net/IMG/pdf/
BGDeclaration.pdf    .  

    Churchhouse, R. F., Cornu, B., Howson, A., Kahane, J., Van Lint, J., Pluvinage, F., & Yamaguti, 
M. (Eds.). (1986).  The in fl uence of computers and informatics on mathematics and its teaching  
(ICMI Study Series, Vol. 1). Cambridge, UK: Cambridge University Press.  

    Drijvers, P. (2009). Tools and tests: Technology in national  fi nal mathematics examinations. In C. 
Winslow (Ed.),  Nordic research on mathematics education, Proceedings from NORMA08  (pp. 
225–236). Rotterdam, The Netherlands: Sense Publishers.  

    Drijvers, P. (2012). Teachers transforming resources into orchestrations. In G. Gueudet, B. Pepin, 
& L. Trouche (Eds.),  From text to “lived” resources: Mathematics curriculum materials and 
teacher development  (pp. 265–281). New York, NY: Springer.  

    Drijvers, P., Doorman, M., Boon, P., Reed, H., & Gravemeijer, K. (2010). The teacher and the tool: 
Instrumental orchestrations in the technology-rich mathematics classroom.  Educational Studies 
in Mathematics, 75 (2), 213–234. doi:  10.1007/s10649-010-9254-5    .  

    Drijvers, P., & Trouche, L. (2008). From artefacts to instruments: A theoretical framework behind 
the orchestra metaphor. In G. W. Blume & M. K. Heid (Eds.),  Research on technology and the 
teaching and learning of mathematics  (Vol. 2, pp. 363–392). Charlotte, NC: Information Age.  

    Ferrini-Mundy, J., & Breaux, G. A. (2008). Perspectives on research, policy, and the use of tech-
nology in mathematics teaching and learning in the United States. In G. W. Blume & M. K. 
Heid (Eds.),  Research on technology and the teaching and learning of mathematics  (pp. 427–448). 
Charlotte, NC: Information Age Publishing.  

   Fonseca, C. (2005).  Educación, tecnologías digitales y poblaciones vulnerables: Una aproxi-
mación a la realidad de América Latina y el Caribe .  Consulta Regional del Programa Pan 
Américas . Montevideo: IDRC. Retrieved March 15, 2011, from   http://www.idrc.ca/uploads/
user-S/117776589014_Paper_TIC_EDU__Fonseca_FOD.pdf    .  

   Fugelstadt, A. B., Healy, L., Kynigos, C., & Monaghan, J. (2010). Working with teachers. 
In C. Hoyles & J.-B. Lagrange (Eds.),  Mathematics education and technology—Rethinking the 

http://dx.doi.org/10.1080/01425690120094449
http://dx.doi.org/10.1023/A:1022103903080
http://dx.doi.org/10.1007/978-1-4419-0146-0_19
http://www.box.net/keydox/1/31970050/418415076/1%20#keydox/1/31970050/601916856/1
http://www.box.net/keydox/1/31970050/418415076/1%20#keydox/1/31970050/601916856/1
http://dx.doi.org/10.3102/0013189X025009006
http://dx.doi.org/10.1007/s10649-009-9220-2
http://www.ifip-tc3.net/IMG/pdf/BGDeclaration.pdf
http://www.ifip-tc3.net/IMG/pdf/BGDeclaration.pdf
http://dx.doi.org/10.1007/s10649-010-9254-5
http://www.idrc.ca/uploads/user-S/117776589014_Paper_TIC_EDU__Fonseca_FOD.pdf
http://www.idrc.ca/uploads/user-S/117776589014_Paper_TIC_EDU__Fonseca_FOD.pdf


786 Trouche, Drijvers, Gueudet, and Sacristán

terrain. The 17th ICMI study  (Vol. 13, New ICMI Study Series, pp. 293–310). New York, NY: 
Springer. doi:   978-1-4419-0145-3    .  

   Grugeon, B., Lagrange, J.B., & Jarvis, D. (2010). Teacher education courses in mathematics and 
technology: Analyzing views and options. In C. Hoyles & J.-B. Lagrange (Eds.),  Mathematics 
education and technology—Rethinking the terrain. The 17th ICMI study.  (Vol. 13, New ICMI 
Study Series, pp. 329–345). NY: Springer. doi:   10.1007/978-1-4419-0146-0_15    .  

    Gueudet, G., & Trouche, L. (2009). Towards new documentation systems for teachers?  Educational 
Studies in Mathematics, 71 (3), 199–218. doi:  10.1007/s10649-008-9159-8    .  

    Gueudet, G., & Trouche, L. (2012a). Communities, documents and professional geneses: 
Interrelated stories. In G. Gueudet, B. Pepin, & L. Trouche (Eds.),  From text to “lived” 
resources: Mathematics curriculum materials and teacher documentation  (pp. 305–322). New 
York, NY: Springer.  

    Gueudet, G., & Trouche, L. (2012b). Mathematics teacher education advanced methods: An exam-
ple in dynamic geometry.  ZDM—The International Journal on Mathematics Education, 43 (3), 
399–411. doi:  10.1007/s11858-011-0313-x    .  

   Healy, L., & Lagrange, J.-B. (2010). Introduction to section 3. In C. Hoyles & J.-B. Lagrange 
(Eds.),  Mathematics education and technology—Rethinking the terrain .  The 17th ICMI study . 
(Vol. 13, New ICMI Study Series, pp. 287–292). New York, NY: Springer. doi:   10.1007/978-1-
4419-0146-0_12    .  

   Hegedus, S., & Lesh, R. (Eds.). (2008). Democratizing access to mathematics through technology: 
Issues of design, theory and implementation—In memory of Jim Kaput’s work. Special issue 
of  Educational Studies in Mathematics ,  68 (2), 81–193.  

   Hernandez-Sánchez, M. (2009).  Incorporación de herramientas tecnológicas a la enseñanza de 
las matemáticas: Cambios en el aula y búsqueda de nuevas formas de evaluación  (Master’s 
thesis). Cinvestav-IPN, Mexico.  

   Hoyles, C., Kalas, I., Trouche, L., Hivon, L., Noss, R., & Wilensky, U. (2010). Connectivity and 
virual networks for learning. In C. Hoyles & J.-B. Lagrange (Eds.),  Mathematics education and 
technology—Rethinking the terrain. The 17th ICMI study  (Vol. 13, New ICMI Study Series, pp. 
439–462). New York, NY: Springer. doi:   10.1007/978-1-4419-0146-0_22    .  

   International Society for Technology in Education. (2011).  Standards for global learning in the 
digital age.  Retrieved June 26, 2011, from   http://www.iste.org/standards.aspx    .  

   Jiménez-Molotla, J., & Sacristán, A. I. (2010). Eight years of journey with Logo leading to the 
Eiffel tower mathematical project. In J. Clayson & I. Kalas (Eds.),  Constructionist approaches 
to creative learning, thinking and education: Lessons for the 21st century—Proceedings 
Constructionism 2010  ( 12th EuroLogo conference ) [CD] (pp. 1–11). Paris, France: AUP/
Comenius University.  

   Julie, C., Leung, A., Thanh, N., Posadas, L., Sacristán, A. I., & Semenov, A. (2010). Some regional 
developments in access and implementation of digital technologies and ICT. In C. Hoyles & J. 
B. Lagrange (Eds.),  Mathematics education and technology—Rethinking the terrain. The 17th 
ICMI study  (Vol. 13, New ICMI Study Series, pp. 361–383). New York, NY: Springer. doi: 
  10.1007/978-1-4419-0146-0_19    .  

    Koehler, M. J., Mishra, P., & Yahya, K. (2007). Tracing the development of teacher knowledge in 
a design seminar: Integrating content, pedagogy and technology.  Computers & Education, 
49 (3), 740–762. doi:  10.1016/j.compedu.2005.11.012    .  

   Kortenkamp, U., Blessing, A. M., Dohrmann, C., Kreis, Y., Libbrecht, P., & Mercat, C. (2009). 
Interoperable interactive geometry for Europe: First technological and educational results and 
future challenges of the Intergeo project. In V. Durand-Guerrier, S. Soury-Lavergne, & F. 
Arzarello (Eds.),  Proceedings of the Sixth European Conference on Research on Mathematics 
Education  (pp. 1150–1160). Lyon, France: INRP. Available from   http://www.inrp.fr/editions/
cerme6    .  

    Krainer, K., & Wood, T. (Eds.). (2008).  Participants in mathematics teacher education: Individuals, 
teams, communities and networks  (Vol. 3). Rotterdam, The Netherlands: Sense Publishers.  

    Kuntz, G., Clerc, B., & Hache, S. (2009).  Sesamath : Questions de praticiens à la recherche en 
didactique. In C. Ouvrier-Buffet & M.-J. Perrin-Glorian (Eds.),  Approches plurielles en 

http://dx.doi.org/978-1-4419-0145-3
http://dx.doi.org/10.1007/978-1-4419-0146-0_15
http://dx.doi.org/10.1007/s10649-008-9159-8
http://dx.doi.org/10.1007/s11858-011-0313-x
http://dx.doi.org/10.1007/978-1-4419-0146-0_12
http://dx.doi.org/10.1007/978-1-4419-0146-0_12
http://dx.doi.org/10.1007/978-1-4419-0146-0_22
http://www.iste.org/standards.aspx
http://dx.doi.org/10.1007/978-1-4419-0146-0_19
http://dx.doi.org/10.1016/j.compedu.2005.11.012
http://www.inrp.fr/editions/cerme6
http://www.inrp.fr/editions/cerme6


78724 Technology-Driven Developments and Policy Implications

didactique des mathématiques  (pp. 175–184). Paris, France: Laboratoire de didactique André 
Revuz, Université Paris Diderot.  

   Lagrange, J.-B. (2000). L’intégration d’instruments informatiques dans l’enseignement: une 
approche par les techniques. [The integration of technological instruments in education: an 
approach by means of techniques.]  Educational Studies in Mathematics, 43 , 1–30. doi: 
  10.1023/A:1012086721534    .  

    Lavicza, Z., Hohenwarter, M., Jones, K. D., Lu, A., & Dawes, M. (2010). Establishing a profes-
sional development network around dynamic mathematics software in England.  International 
Journal for Technology in Mathematics Education, 17 (4), 177–182.  

   LeBaron, J., & McDonough, E. (2009).  GeSCI meta-review research report on ICT in education 
and development . Dublin, Ireland: Global e-School and Communities Initiative. Available from 
  http://www.gesci.org/publications.html    .  

    Lee, M. C., Tsai, K. H., & Wang, T. (2008). Practical ontology query expansion algorithm for 
semantic-aware learning objects retrieval.  Computers & Education, 50 (4), 1240–1257. 
doi:  10.1016/j.compedu.2006.12.007    .  

   Leigh-Lancaster, D. (2010). The case of technology in senior secondary mathematics: Curriculum 
and assessment congruence? In C. Glascodine & K.-A. Hoad (Eds.),  ACER Research Conference 
Proceedings 2010  (pp. 43–46). Camberwell, Australia: Australian Council for Educational 
Research. Retrieved from   http://research.acer.edu.au/cgi/viewcontent.cgi?article=1094&conte
xt=research_conference    .  

    Lesh, R., Hoover, M., Hole, B., Kelly, A., & Post, T. (2000). Principles for developing thought—
Revealing activities for students and teachers. In A. Kelly & R. Lesh (Eds.),  Research design 
in mathematics and science education  (pp. 591–646). Mahwah, NJ: Lawrence Erlbaum 
Associates.  

    Llinares, S., & Valls, J. (2010). Prospective primary mathematics teachers’ learning from on-line 
discussions in a virtual video-based environment.  Journal of Mathematics Teacher Education, 
13 (2), 177–196. doi:  10.1007/s10857-009-9133-0    .  

   Ministère de l’Éducation Nationale, de l’Enseignement Supérieur et de la Recherche (MENESR). 
(2006).  Le socle commun des connaissances et des compétences . Retrieved from   http://media.
education.gouv.fr/ fi le/51/3/3513.pdf    .  

   Ministère de l’Éducation Nationale. (2009, November 19).  Vers un nouveau lycée en 2010. 
Conférence de presse.  Retrieved from   http://media.education.gouv.fr/ fi le/11_novembre/06/8/
Conference_de_presse_lycee_127068.pdf    .  

    Mousley, J., Lambdin, D., & Koc, Y. (2003). Mathematics teacher education and technology. In A. 
J. Bishop, M. A. Clements, C. Keitel, J. Kilpatrick, & F. K. S. Leung (Eds.),  Second interna-
tional handbook of mathematics education  (pp. 395–432). Dordrecht, The Netherlands: Kluwer 
Academic Publishers.  

   National Council of Teachers of Mathematics. (1980).  An agenda for action: Recommendations 
for school mathematics of the 1980s.  Reston, VA: Author. Retrieved from   http://www.nctm.
org/standards/content.aspx?id=17278    .  

    National Council of Teachers of Mathematics. (2000).  Principles and standards for school math-
ematics . Reston, VA: Author.  

   National Council of Teachers of Mathematics. (2008, March).  The role of technology in the teach-
ing and learning of mathematics. A position of the National Council of Teachers of Mathematics.  
Retrieved from   http://www.nctm.org/uploadedFiles/About_NCTM/Position_Statements/
Technology%20 fi nal.pdf    .  

    Noss, R., & Hoyles, C. (1996).  Windows on mathematical meanings . Dordrecht, The Netherlands: 
Kluwer Academic Publishers.  

   OLPC Foundation. (2011, January). Deployments.  OLPC . Retrieved from   http://wiki.laptop.org/
go/Deployments    .  

    Papert, S. (1980).  Mindstorms: Children, computers, and powerful ideas . New York, NY: Basic 
Books.  

    Papert, S. (1991). Situating constructionism. In I. Harel & S. Papert (Eds.),  Constructionism  
(pp. 1–11). Norwood, NJ: Ablex.  

http://dx.doi.org/10.1023/A:1012086721534
http://www.gesci.org/publications.html
http://dx.doi.org/10.1016/j.compedu.2006.12.007
http://research.acer.edu.au/cgi/viewcontent.cgi?article=1094&context=research_conference
http://research.acer.edu.au/cgi/viewcontent.cgi?article=1094&context=research_conference
http://dx.doi.org/10.1007/s10857-009-9133-0
http://media.education.gouv.fr/file/51/3/3513.pdf
http://media.education.gouv.fr/file/51/3/3513.pdf
http://media.education.gouv.fr/file/11_novembre/06/8/Conference_de_presse_lycee_127068.pdf
http://media.education.gouv.fr/file/11_novembre/06/8/Conference_de_presse_lycee_127068.pdf
http://www.nctm.org/standards/content.aspx?id=17278
http://www.nctm.org/standards/content.aspx?id=17278
http://www.nctm.org/uploadedFiles/About_NCTM/Position_Statements/Technology%20final.pdf
http://www.nctm.org/uploadedFiles/About_NCTM/Position_Statements/Technology%20final.pdf
http://wiki.laptop.org/go/Deployments
http://wiki.laptop.org/go/Deployments


788 Trouche, Drijvers, Gueudet, and Sacristán

    Pepin, B. (2009). The role of textbooks in the “ fi gured world” of English, French and German 
classrooms—A comparative perspective. In L. Black, H. L. Mendick, & Y. Solomon (Eds.), 
 Mathematical relationships: Identities and participation  (pp. 107–118). London, UK: 
Routledge.  

    Pierce, R., & Stacey, K. (2010). Mapping pedagogical opportunities provided by mathematics 
analysis software.  International Journal of Computers for Mathematical Learning, 15 , 1–20. 
doi:  10.1007/s10758-010-9158-6    .  

   Pimm, D., & Johnston-Wilder, S. (2004). Technology, mathematics and secondary schools: A 
brief, UK, historical perspective. In S. Johnston-Wilder & D. Pimm (Eds.),  Teaching secondary 
mathematics with ICT  (pp. 3–17). Maidenhead: Open University Press. Retrieved from   http://
www.mcgraw-hill.co.uk/openup/chapters/0335213812.pdf    .  

    Rojano, T. (2011). Recursos multimedia y el libro de texto gratuito: entre las herramientas univer-
sales y los desarrollos ad-hoc. In R. Barriga (Ed.),  Entre paradojas: A 50 años de los libros de 
texto gratuitos  (pp. 627–643). Mexico: Colegio de México-SEP-Conaliteg.  

   Ruthven, K. (2007). Teachers, technologies and the structures of schooling. In D. Pitta-Pantazi, & 
G. Philippou (Eds.),  Proceedings of the Fifth Congress of the European Society for Research in 
Mathematics Education  (pp. 52–67). Larnaca, Cyprus: CERME 5.  

    Ruthven, K. (2008). Mathematical technologies as a vehicle for intuition and experiment: A foun-
dational theme of the International Commission on Mathematical Instruction, and a continuing 
preoccupation.  International Journal for the History of Mathematics Education, 3 (2), 91–102.  

    Ruthven, K., & Hennessy, S. (2002). A practitioner model of the use of computer-based tools and 
resources to support mathematics teaching and learning.  Educational Studies in Mathematics, 
49 (1), 47–88. doi:  10.1023/A:1016052130572    .  

    Sabra, H. (2009). Entre monde du professeur et monde du collectif: Ré fl exion sur la dynamique de 
l’association Sesamath.  Petit x, 81 , 55–78.  

   Sacristán, A. I., Calder, N., Rojano, T., Santos, M., Friedlander, A., & Meissner, H. (2010). The 
in fl uence and shaping of digital technologies on the learning—and learning trajectories—of 
mathematical concepts. In C. Hoyles & J.-B. Lagrange (Eds.),  Mathematics education and 
technology—Rethinking the terrain. The 17th ICMI study  (Vol. 13, New ICMI Study Series, pp. 
179–226). New York, NY: Springer. doi   10.1007/978-1-4419-0146-0_6    .  

    Sacristán, A. I., Parada, S., Sandoval, I., & Gil, N. (2009). Experiences related to the professional 
development of mathematics teachers for the use of technology in their practice. In M. Tzekaki, 
M. Kaldrimidou, & H. Sakonidis (Eds.),  Proceedings of the 33rd Conference of the International 
Group for the Psychology of Mathematics Education  (Vol. 5, pp. 41–48). Thessaloniki, Greece: 
International Group for the Psychology of Mathematics Education.  

   Sacristán, A. I., & Rojano, T. (2009). The Mexican national programs on teaching mathematics 
and science with technology: The legacy of a decade of experiences of transformation of school 
practices and interactions. In A. Tatnall & A. Jones (Eds.), WCCE 2009,  IFIP Advances in 
information and communication technology: Education and technology for a better world  (pp. 
207–215). Boston, MA: Springer. doi:   10.1007/978-3-642-03115-1_22    .  

   Sangwin, C., Cazes, C., Lee, A., & Wong, K. L. (2010). Micro-level automatic assessment sup-
ported by digital technologies. In C. Hoyles & J.-B. Lagrange (Eds.),  Mathematics education 
and technology—Rethinking the terrain. The 17th ICMI study  (Vol. 13, New ICMI Study 
Series, pp. 227–250). New York, NY: Springer. doi:   10.1007/978-1-4419-0146-0_10    .  

    Santagata, R., Zannoni, C., & Stigler, J. W. (2007). The role of lesson analysis in pre-service 
teacher education: An empirical investigation of teacher learning from a virtual video-based 
 fi eld experience.  Journal of Mathematics Teacher Education, 10 (2), 123–140. doi:  10.1007/
s10857-007-9029-9    .  

   Soury-Lavergne S., Trouche, L., Loisy, C., & Gueudet, G. (2011).  Parcours de formation, de for-
mateurs et de stagiaires: Suivi et analyse . Rapport à destination du Ministère de l’Education 
Nationale, INRP-ENSL. Available from   http://eductice.inrp.fr/EducTice/equipe/PRF-2010/    .  

    Stroup, W. M., & Wilensky, U. (2000). Assessing learning as emergent phenomena: Moving con-
structivist statistics beyond the bell curve. In A. E. Kelly & R. Lesh (Eds.),  Handbook of 

http://dx.doi.org/10.1007/s10758-010-9158-6
http://www.mcgraw-hill.co.uk/openup/chapters/0335213812.pdf
http://www.mcgraw-hill.co.uk/openup/chapters/0335213812.pdf
http://dx.doi.org/10.1023/A:1016052130572
http://dx.doi.org/10.1007/978-1-4419-0146-0_6
http://dx.doi.org/10.1007/978-3-642-03115-1_22
http://dx.doi.org/10.1007/978-1-4419-0146-0_10
http://dx.doi.org/10.1007/s10857-007-9029-9
http://dx.doi.org/10.1007/s10857-007-9029-9
http://eductice.inrp.fr/EducTice/equipe/PRF-2010/


78924 Technology-Driven Developments and Policy Implications

research design in mathematics and science education  (pp. 877–912). Mahwah, NJ: Lawrence 
Erlbaum Associates.  

   Sur l’épreuve pratique de mathématiques au baccalauréat en France (2007, September 21). 
 Educmath . Retrieved from   http://educmath.inrp.fr/Educmath/en-debat/epreuve-pratique/    .  

   Trgalovà, J., Jahn, A.-P., & Soury-Lavergne, S. (2009). Quality process for dynamic geometry 
resources: the Intergeo project. In V. Durand-Guerrier, S. Soury-Lavergne, & F. Arzarello 
(Eds.),  Proceedings of the Sixth European Conference on Research on Mathematics Education  
(pp. 1161–1170). Lyon, France: INRP. Available from   www.inrp.fr/editions/cerme6    .  

    Trigueros, M., & Sacristán, A. I. (2008). Teachers’ practice and students’ learning in the Mexican 
programme for Teaching Mathematics with Technology.  International Journal of Continuing 
Engineering Education and Life-Long Learning (IJCEELL), 18 (5/6), 678–697. doi:  10.1504/
IJCEELL.2008.022174    .  

    Trigueros, M., & Lozano, M. D. (2007). Developing resources for teaching and learning mathe-
matics with digital technologies: An enactivist approach.  For the Learning of Mathematics, 
27 (2), 45–51.  

    Trouche, L. (2004). Managing complexity of human/machine interactions in computerized learn-
ing environments: Guiding students’ command process through instrumental orchestrations. 
 International Journal of Computers for Mathematical Learning, 9 , 281–307. doi:  10.1007/
s10758-004-3468-5    .  

   UNESCO (2005).  Towards knowledge societies  (UNESCO World Report). Retrieved from   http://
www.unesco.org/en/worldreport    .  

   UNESCO (2008).  Policy framework: ICT competency standards for teachers . Retrieved from 
  http://cst.unesco-ci.org/sites/projects/cst/The%20Standards/ICT-CST-Policy%20
Framework.pdf    .  

    Ursini, S., & Rojano, T. (2000).  Guía para integrar los talleres de capacitación, EMAT . Mexico: 
SEP-ILCE.  

    Van Es, E., & Sherin, M. G. (2010). The in fl uence of video clubs on teachers’ thinking and practice. 
 Journal of Mathematics Teacher Education, 13 , 155–176. doi:  10.1007/s10857-009-9130-3    .  

    Visnovska, J., Cobb, P., & Dean, C. (2012). Mathematics teachers as instructional designers: What 
does it take? In G. Gueudet, B. Pepin, & L. Trouche (Eds.),  From text to “lived” resources: 
Mathematics curriculum materials and teacher development  (pp. 323–341). New York, NY: 
Springer.  

    Watson, A., & De Geest, E. (2005). Principled teaching for deep progress: Improving mathemati-
cal learning beyond methods and materials.  Educational Studies in Mathematics, 58 (2), 209–
234. doi:  10.1007/s10649-005-2756-x    .  

   Wijers, M., Jonker, V., & Drijvers, P. (2010). MobileMath: Exploring mathematics outside the 
classroom.  ZDM—The International Journal on Mathematics Education, 42 (7), 789–799. doi: 
  10.1007/s11858-010-0276-3    .      

http://educmath.inrp.fr/Educmath/en-debat/epreuve-pratique/
http://www.inrp.fr/editions/cerme6
http://dx.doi.org/10.1504/IJCEELL.2008.022174
http://dx.doi.org/10.1504/IJCEELL.2008.022174
http://dx.doi.org/10.1007/s10758-004-3468-5
http://dx.doi.org/10.1007/s10758-004-3468-5
http://www.unesco.org/en/worldreport
http://www.unesco.org/en/worldreport
http://cst.unesco-ci.org/sites/projects/cst/The%20Standards/ICT-CST-Policy%20Framework.pdf
http://cst.unesco-ci.org/sites/projects/cst/The%20Standards/ICT-CST-Policy%20Framework.pdf
http://dx.doi.org/10.1007/s10857-009-9130-3
http://dx.doi.org/10.1007/s10649-005-2756-x
http://dx.doi.org/10.1007/s11858-010-0276-3


     Part IV 
  Introduction to Section D: International 
Perspectives on Mathematics Education 

        Jeremy   Kilpatrick         

  Abstract   International perspectives are presented by the 17 scholars—based in 9 
different nations—who prepared the 7 chapters in Section D. As an academic  fi eld, 
mathematics education treats a universal school subject situated in vastly different 
local and national contexts. One can look at the  fi eld internationally from at least 
three perspectives: that of practice, policy, or profession. The chapters in this section 
take these perspectives, placing special emphasis on the last and demonstrating how 
the concerns of mathematics educators drive the approach they take to international 
studies. The chapters show dramatically not only how the international dimension of 
mathematics education research has developed since 1908—and especially during 
the last  fi ve decades—but also how far it has to go in studying the in fl uence these 
studies are having on the teaching and learning of mathematics around the world.   

 Keywords   Local  •  National  •  International   • Internationalization  •  Globalization 
•   Practice •   Policy   • Profession            

 Mathematics has commonly been seen as the one school subject that is universal and 
therefore unaffected by local circumstances. Whether schoolchildren are in North Korea, 
East India, South Africa, or West Germany, 23 is a prime number, 24 composite, and 25 
a perfect square. The theorem bearing the name of Pythagoras was as true for learners in 
ancient China as it is in Brazil today. The ratio of the circumference to the diameter of a 
circle remains constant over time and across borders. In contrast, a nation’s education 
system is embedded in its history and culture. Schooling operates locally, and education 
policy is made at the local or national level but not beyond. Consequently, mathematics 
education always ranges between universality and singularity. 

 During the last half of the 20th century, mathematics began to lose some of its 
presumed universality. Philosophers of mathematics began to advance fallibilist and 
quasi-empiricist views of the subject (Tymoczko,  1998  ) ; views, however, that were 
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certainly not accepted by all mathematicians. At about the same time, mathematics 
educators began to recognize that although their  fi eld had been among the  fi rst to 
hold international meetings, school mathematics—as a cultural artifact—ought to 
be seen as embedded in the practice of a particular social group (Bishop,  1988 ; 
D’Ambrosio,  1985  ) ; again, a view that not all accepted. Today, when one looks 
across national boundaries, one sees practices and policies based on assumptions 
ranging from “school mathematics is the same everywhere” to “school mathematics 
is different everywhere.” 

 The chapters in this section of the handbook survey mathematics education from 
various international perspectives that can be grouped into three categories: the per-
spective of practice, the perspective of policy, and the perspective of profession. The 
perspective of  practice  is the teacher’s view, the ways in which mathematics educa-
tion can be seen in action by looking in classrooms around the world. Observations 
yielding  fi eld notes and videographic records have allowed activities in mathemat-
ics classrooms to be analyzed in detail and compared so that generalizations can be 
made and unique features celebrated. The perspective of  policy  takes a different 
view; it is the policymaker’s angle of vision, the perspective of one who wants to 
improve mathematics education not merely by learning how it is being conducted 
more effectively elsewhere but also by importing or adapting those characteristics 
that seem to make a difference. Finally, the perspective of  profession  operates along 
a different dimension; it is the view of the researcher in mathematics education who 
attempts to see beyond the local and the national. What characterizes the ways we 
in our country teach and learn mathematics? And how does our professional enter-
prise resemble or differ from what others do? Over the past century or so, as math-
ematics education has developed as an academic  fi eld (Kilpatrick,  2008  ) , mathematics 
educators in every country have continually attempted to understand simultaneously 
what is being taught and learned in nearby school classrooms and how mathematics 
educators in other countries might be organizing and conducting their work. 

 As Alexander Karp notes (Chapter   25    ), 1908 was the year that the  Commission 
Internationale de l’Enseignement Mathématique  (reincarnated later as the 
International Commission on Mathematical Instruction) was established, and that 
year proved to mark a crucial point for the establishment of the  fi eld as well as the 
beginning of collaborative international research. The last  fi ve decades, especially, 
have seen enormous growth in the scope and sophistication of international research 
studies, beginning with the International Study of Achievement in Mathematics 
(later known as the First International Mathematics Study; Husén,  1967  ) . In recent 
years, the Trends in International Mathematics and Science Study (TIMSS) and the 
Programme for International Student Assessment (PISA) have come to dominate 
much of the discourse about international studies in mathematics education. In fact, 
every chapter in this section mentions both. In particular, the chapters by Parmjit 
Singh and Nerida Ellerton (Chapter   26    ); Vilma Mesa, Pedro Gómez, and Ui Hock 
Cheah (Chapter   27    ); Mogens Niss, Jonas Emanuelsson, and Peter Nyström (Chapter 
  30    ); and John Dossey and Margaret Wu (Chapter   31    ) contain, with different empha-
ses, detailed treatments of TIMSS and PISA. But many other studies, large and 
small, with an international dimension are also cited in the chapters in the section. 
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   The Perspective of Practice 

 The development of video recording has enabled researchers to capture and study 
events in a variety of mathematics classrooms in different countries. The best known 
of these studies are the TIMSS Video Studies of 1995 and 1999, which are discussed 
by Singh and Ellerton (Chapter   26    ), Mesa et al. (Chapter   27    ), and Niss et al. (Chapter 
  30    ). Opinions have differed on whether teachers in a given country are following 
something like a national script, but all agree that the video records open a new win-
dow that allows teachers and researchers to view mathematics teaching in their own 
country and elsewhere. Another study that makes use of video records is the so-called 
Learner’s Perspective Study (LPS), discussed by Singh and Ellerton and by Niss et al. 
The latter authors note that the LPS is different from other large-scale international 
studies in that it is driven by the interests of researchers in mathematics education and 
is not conducted under the auspices of an international organization. 

 Mesa and her colleagues (Chapter   27    ) attempted to gauge the effects at the classroom 
level of international studies, whether or not they included a video component. They 
were unable to  fi nd evidence that international studies were in fl uencing classroom teach-
ing and learning, and they concluded that the international mathematics education 
research community has not done enough to study possible in fl uences. Studies such as 
TIMSS and PISA are extensively reported in the media in many countries, but any 
effects on school mathematics in those countries have yet to be documented.  

   The Perspective of Policy 

 The International Association for the Evaluation of Educational Achievement 
(IEA), which conducts TIMSS, and the Organisation for Economic Co-operation and 
Development (OECD), which conducts PISA, undertake those studies to help pro-
mote their goals. In the case of the IEA, the goal is to understand the effects of policies 
and practices within and across systems of education. The TIMSS results in mathe-
matics are intended to help policymakers identify strengths and weaknesses in their 
education systems. In the case of the OECD, the goal is to stimulate economic prog-
ress and world trade, and the PISA results in mathematics provide policymakers with 
an indicator of how well their countries are doing in promoting mathematics literacy. 

 TIMSS and PISA, as the international studies relevant to mathematics education 
receiving the most attention in the mainstream media, are not surprisingly the stud-
ies that apparently have had the most in fl uence on education policy. Dossey and Wu 
(Chapter   31    ) report on the effects of a variety of international studies at the policy 
level, with TIMSS and PISA at the forefront. They present case studies from the 
USA, Germany, Finland, and Singapore of differing reactions to reports of 
the results of these studies and consequent policy decisions. Dossey and Wu con-
clude that these international studies have had both positive and negative effects in 
policy arenas, and they raise several concerns about the manner in which survey 
results have been translated into policy changes. They see a fruitful agenda for 
research by policy researchers as well as mathematics education researchers.  
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   The Perspective of Profession 

 One might easily conclude that any international study involving school mathemat-
ics can be seen from the perspective of profession. Researchers in mathematics 
 education should presumably see any such study as speaking to their concerns. Not 
every study quali fi es, however. For example, the IEA’s First International Mathematics 
Study (Husén,  1967  )  was a study in comparative education and not mathematics edu-
cation (Kilpatrick,  1971  ) . The researchers were interested in the productivity of vari-
ous national systems of education. They wanted to address such issues as the effects 
of school organization (e.g., selective vs. comprehensive education, class size, and 
school leaving age) on mathematics achievement, and mathematics was essentially 
taken as a black box. In subsequent IEA studies, including TIMSS, that box was 
opened up, and the results had many more implications for the profession. 

 One might also conclude that any international study involving school mathe-
matics that can be seen from the perspective of profession can also be seen from the 
perspectives of practice or policy. For example, the LPS discussed by Singh and 
Ellerton (Chapter   26    ) clearly deals with practice while simultaneously addressing a 
variety of research topics of interest to professionals in the participating countries 
(see the  fi rst table in Chapter   26    ). But not every international study can be seen from 
multiple perspectives. As one example, a comparative study of teachers’ knowledge 
of elementary mathematics in the USA and China (Ma,  1999  )  need not address 
classroom practice or have direct implications for education policy in order to be of 
value. As another example, an analysis of how the concept of function is treated in 
textbooks from 18 countries (Mesa,  2009  )  can address concerns of professionals in 
mathematics without examining teaching practice or promoting policy change. 

 One of the topics of principal concern to professionals in mathematics education 
is the school mathematics curriculum. That topic is addressed in the chapters by 
Karp (Chapter   25    ), Mesa et al. (Chapter   27    ), Niss et al. (Chapter   30    ), and Dossey and 
Wu (Chapter   31    ), and it is the theme of the chapter by Jinfa Cai and Geoffrey 
Howson (Chapter   29    ). Like Karp, Cai and Howson discuss the processes of global-
ization (which integrates economies, societies, and cultures to link people around 
the world) and internationalization (which develops products and services so that 
they can be adapted to local conditions). Cai and Howson see both processes as 
powerful in fl uences on curriculum development although not necessarily leading 
toward an international curriculum. They argue for the bene fi ts of individual coun-
tries having the freedom to experiment with the curriculum and undertake new ini-
tiatives within it. 

 In their chapter, Bernard Hodgson, Leo Rogers, Stephen Lerman, and Lim-Teo, 
Suat Khoh (Chapter   28    ) survey a great variety of international and multinational 
organizations, showing how those organizations provide niches within which math-
ematics education professionals can pursue their diverse interests. Hodgson et al. 
focus on organizations connected to research in mathematics education, and they 
present case studies to illustrate the various bases on which groups have been orga-
nized. They are especially struck by the proliferation of disparate subcommunities 
within the  fi eld, and they expect that proliferation to continue.  
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   Conclusion 

 In Chapter   25    , Karp looks at how the process of internationalization in mathe-
matics education has developed over the decades. He sees the local and national as 
still developing, and as he notes, internationalization has its limits. Just as education 
systems are in  fl ux, so international perspectives on mathematics education are 
shifting as well. Nonetheless, one inevitably concludes that the  fi eld has not done 
enough to study the effects international research studies are having on the teaching 
and learning of mathematics.          
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  Abstract   This chapter is devoted to a historical overview of the process of 
 internationalization in mathematics education. The development of mathematics 
education is analyzed as a part of social history, and therefore the discussion 
 inevitably touches on history and even politics. The concepts “international,” “inter-
nationalization,” and “globalization” themselves may be understood in different 
ways, and this is also discussed in the chapter. The chapter sequentially, albeit very 
brie fl y, analyzes various stages of the development of international collaboration, 
wherever possible identifying similar processes in the development of mathematics 
education in different regions that have facilitated such collaboration. The problem 
of the growth of scholarly articles from different regions is examined, as is the 
appearance and development of various international conferences and organizations 
of mathematics educators. The chapter also considers criticisms of internationaliza-
tion as well as its limits.      

   Introduction 

 This chapter is devoted to a historical overview of the internationalization of 
mathematics education. Contemporary mathematics educators usually relate their 
work to a considerable degree to what is happening beyond the borders of their 
countries, and examples of the way in which education is constructed in other coun-
tries are usually a standard part of the professional discourse. This was not the case, 
or not exactly the case, at the beginning of the 20th century, when Americans were 
unlikely to become particularly interested in algebra lessons in East Asia, and even 
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if any did develop such an interest for whatever reason, it would have been dif fi cult 
for them to obtain information about the subject—different parts of the world were 
far more isolated from each another than they are now, and there were no interna-
tional organizations, or any of the other institutions or instruments that are so famil-
iar to mathematics educators in the 21st century, by which one could gather the 
knowledge required. 

 The process of the formation of increasingly close ties across national boundar-
ies is often called  globalization . By using this word, we inevitably enter into a 
thicket of controversies about globalization, which sometimes assume forms that 
are quite contentious. The aim of this chapter, of course, is not to offer support to 
this or that side or perspective. Nevertheless, it must be recognized that the prob-
lems discussed below are politicized, and that even when they concern mathematics 
and mathematics education, this politicization cannot be avoided. Thus, it is impor-
tant to analyze what occurred in mathematics education against the background of 
what occurred in the world in general. The Iron Curtain separated different systems 
of mathematics education as much as it did everything else, although naturally its 
fall did not imply an automatic convergence between these systems. 

 Atweh, Clarkson, and Nebres  (  2003  )  wrote that they had discovered “very few 
references to globalization in mathematics education” (p. 187). In the ensuing years, 
in addition to the work just cited and the chapters in the monograph  Sociocultural 
Research on Mathematics Education: An International Perspective  (Atweh, Forgasz, 
& Nebres,  2001  ) , we have seen the appearance of a monograph by Atweh et al. 
 (  2008  ) , as well as such publications as Baker and LeTendre  (  2005  ) , in which consid-
erable attention has been devoted to the teaching of mathematics. We have also seen 
the appearance of historical works, which rely on completely different methodolo-
gies and which shed light on the formation of the international education community 
(e.g., Coray, Furinghetti, Gispert, Hodgson, & Schubring,  2003  ) . Finally, a number 
of books about mathematics education in the non-English-speaking world have come 
out (e.g., books from the Series on Mathematics Education, published by World 
Scienti fi c). My remarks are not intended in any way to be a full overview of the cur-
rent literature which, especially as far as it concerns international comparative stud-
ies, is quite large. And yet, I would argue that the movement  from the local to the 
international in mathematics education  has not yet been suf fi ciently investigated at 
the level of different countries, which inevitably limits the general overview as well. 

 The present chapter, of course, cannot offer a complete description of what has 
occurred in different countries—I will con fi ne myself merely to a general sketch, 
especially since many of the organizations, events, and studies that are important for 
international collaboration and interaction are discussed in greater detail in other 
chapters of this  Handbook . A crucial watershed in the development of such collabo-
ration was the year 1908—the year that saw the establishment of ICMI, the 
International Commission on Mathematics Instruction. In this chapter I will use the 
now familiar acronym, ICMI, but when the Commission was founded it was much 
more common to refer to it in French—as  Commission Internationale de 
l’Enseignement Mathématique  (CIEM)—or in German—as  Internationale 
Matematik Unterricht Kommission  (IMUK). In English, it was known as the 
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 International Commission on the Teaching of Mathematics  (ICTM). The name 
ICMI became standard after the Commission’s “rebirth” in 1952, which will be 
discussed below. 

 In what follows, I will sequentially analyze the periods before 1908, from 1908 
until the end of the Second World War, from 1945 until the collapse of the Soviet 
Union and the “of fi cial” end of the Cold War and  fi nally the current period.  

   Did International Collaboration in Mathematics Education 
Exist Before 1908? De fi ning the Terminology 

 Schubring  (  2003  )  noted that “communication between different countries regard-
ing the teaching of mathematics had been practically non-existent up to the end of 
the 19th century” (p. 49). At  fi rst glance, this statement may appear false. Indeed, it 
is not dif fi cult to cite examples that would seem to contradict this statement. Long 
before 1908, the in fl uence of foreign materials for teaching mathematics could be 
very great, and cases of the direct borrowing of such materials—above all, text-
books—were not few in number. In Japan, translations of foreign textbooks began 
appearing after the Meiji Restoration. The Russian writer Herzen recalled using the 
French textbook of Francoeur as a student in the 1820s, and this was by no means 
the only foreign textbook used in Russian mathematics education (Karp,  2007b  ) . 
And American textbooks were initially based on British and French models, which 
were themselves also widely used. American textbooks’ foreign origins were even 
emphasized at times in their titles, as in Colburn’s famous textbook,  An Arithmetic 
on the Plan of Pestalozzi  (Cohen,  2003  ) . 

 Foreign travelers not infrequently took an interest in the educational systems of 
the countries they visited, including approaches to mathematics education (one such 
traveler, for example, was Francisco de Miranda, the forerunner of the Latin American 
liberation movement, who in his diaries described his visits to educational institu-
tions). Moreover, teachers of mathematics not infrequently moved from one country 
to another—Euler, who among other things created several basic sections of the tra-
ditional school course in mathematics, taught both in Russia and Prussia. Euler’s 
experience can in no way be considered local, and there were many hundreds of less 
brilliant foreign teachers in many countries. Furthermore, going beyond the boundar-
ies of speci fi cally mathematical education, one might recall that the history of com-
parative education begins at the very latest in the 1820s (Brickman,  1960  ) . 

 Nonetheless, I would argue that on the whole Schubring is right. And not only 
because there really were no international mathematics education organizations or 
international studies in mathematics education at the time, but also because the 
professional contacts just mentioned were part of a completely different organiza-
tion of education. Jesuit educational institutions, widespread from Latin America to 
Russia, could be regarded as international, but it would be more natural to consider 
them extra-national—the national element, that which is distinctly characteristic of 
speci fi c countries, did not play a role of any importance in them. Much else that 
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took place in the 19th century, and in the 18th or 17th centuries and earlier, could be 
characterized as similarly extra-national. The evolving national systems of mathe-
matics education naturally looked for models in other countries, and although these 
models were by no means always simply appropriated, and frequently went through 
a kind of adaptation, this process should still be distinguished from a process of 
communication among already-developed national educational systems (Schubring, 
 1989  ) . 

 The national systems of mathematics education developed differently in differ-
ent countries, not at the same time and not at all quickly. Consequently, in talking 
about the history of mathematics education communication, the theoretical distinc-
tion between what went on among already developed national systems and what 
went on among national systems that were not yet fully formed, to which I have just 
referred, is not so easy to discern in practice. Elements of different historical pro-
cesses may be present simultaneously. For example, when in 1892 Andrey Kiselev’s 
textbook in geometry, which subsequently became a kind of icon and symbol of 
Russian mathematics education (Karp,  2002  ) , was published in Russia, the review-
ers ingenuously praised it for following French models, and their very tone implied 
that Russia still had a long way to go until it reached the level of Western European 
countries with their more developed and established national systems of mathemat-
ics education. The Russian national system of mathematics education was still in its 
formative stage, although a great deal had already been done and much had already 
taken shape in this system which could be communicated in international profes-
sional relationships. 

 Recognizing the great differences between the processes that could hide behind 
the term  internationalization,  Atweh et al.  (  2003  )  even considered it necessary to 
elucidate that they did not consider “internationalization” to be synonymous with 
“homogenization” or “universalization” (p. 189). To put it another way, the move-
ment from the “local” to the “international,” to which this chapter is devoted, in 
principle presupposes that the “local” has already largely taken shape, and that its 
distinctive characteristics and originality are recognized and respected. Again, for 
the sake of precision, I should point out that in reality the local (national) systems 
of mathematics education are not today equally fully developed everywhere—in 
some places, this process is still going on and may be helped by collaboration with 
other countries and international organizations. This development only happens, 
however, if the collaboration does not turn into a kind of cultural imperialism that 
fails to take into account the local characteristics present at every stage, and instead 
imposes general, “international” schemas. 

 The experience of interactions among mathematics educators prior to the end of 
the 19th century developed along the lines indicated above—textbooks were read and 
translated; foreign educational institutions were studied by educators or administra-
tors who were sometimes even sent abroad speci fi cally for this purpose;  fi nally, even 
an international labour market existed to some degree, in the sense that individuals 
could  fi nd work teaching in other countries as well as their own. This experience was 
not unimportant, since it gave at least some number of mathematics educators some 
notion of what was happening outside the borders of their countries. 
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 However, what went on in mathematics education in different countries, even in 
Western Europe, differed widely. It is precisely these differences that Schubring 
 (  2003  )  sees as the reason for the lack of more developed forms of international com-
munication. In fact, even in Germany, the teaching of mathematics differed substan-
tially from one federal state to another, while in Britain comparable differences 
might be observed between schools that were located not far from one another—
according to one report from 1868,  fi ve schools in Yorkshire offered wide-ranging 
mathematics courses while two others limited their teaching to Euclid Book I only 
(Howson,  2010  ) . For all the variety of teaching models that existed within each 
country by itself, the differences across national borders were still more substantial. 
In discussing the differences between Britain and Germany, one cannot omit the 
differences in college preparation, as we would say today, of technical experts and 
engineers, and thus in the understanding of the role of mathematics in such prepara-
tion, including the role played by mathematics at the school level. The British uni-
versities of Oxford and Cambridge were radically different from German institutions 
of higher learning, remaining effectively theological seminaries. It is true that, from 
the second half of the 19th century on, a greater and greater number of educational 
institutions devoted speci fi cally to engineering began to appear in the UK (Howson, 
 2010  ) ; but it would nonetheless not be incorrect to say that within the rigidly struc-
tured British educational system, with its pronounced differentiation between edu-
cation in the higher and lower social classes, the signi fi cance of mathematics was 
not especially great. 

 Differences with other European countries—let alone non-European ones—were 
usually not smaller, but even greater. In some sense, it was indeed true that at some 
time there was not all that much to communicate across national borders in mathe-
matics education—the conditions and problems in each country were simply too 
different. Nonetheless, at the very end of the 19th century, in 1899, the journal 
 L’Enseignement Mathématique  appeared; and in 1908, at the International 
Mathematical Congress in Rome, David Eugene Smith, a professor at Teachers 
College, Columbia University, proposed the creation of the International Commission 
on Mathematics Instruction (ICMI). 

   International Collaboration in Mathematics Education from 
the Beginning of the 20th Century Until the Second World War 

 The appearance of  L’Enseignement Mathématique  and ICMI represented a turn-
ing point in the development of communication in the international mathematics 
education community. For the  fi rst time, organizations and a periodical appeared 
that had such communication as their goal. To provide a detailed history of their 
appearance is not the purpose of the present chapter (see Furinghetti,  2003 ; 
Schubring,  2003,   2008  ) . Let me merely note that this event was quite in keeping 
with the spirit of the time (although the path to the formation of the Commission 
was not without obstacles—see Schubring,  2008  ) . 
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 The roles played by D. E. Smith, Henry Fehr, Felix Klein, and other  fi gures of the 
age were, of course, extremely large, but the movement beyond the national borders 
was at that time by no means characteristic of mathematics education alone, and there-
fore it would be misguided to reduce the collaboration that evolved—in spite of all the 
differences between the various national systems—to the initiative of speci fi c indi-
viduals. Several decades prior to the appearance of ICMI, the slogan “Workers of the 
world, unite!” had already become popular. In spite of all the obvious differences 
between those who were urged to unite in these cases and the reasons for their 
uni fi cation, this slogan illustrates a recognition of the fact that life—economic life and 
cultural life alike—was now being built on new, no longer purely national founda-
tions. The world was by this time settled and divided, and interaction with neighbors 
near and far—whether collaborative or hostile—was becoming unavoidable. The list 
of international organizations and regular international conferences established from 
the early 1870s on is quite long—the Universal Postal Union was founded in 1874, the 
International Committee for Weights and Measures in 1875, the International 
Statistical Institute in 1885, and the Olympic Committee in 1894. Starting in 1900, 
congresses of historians began to be held on a regular basis, and so on. 

 It should not be forgotten that contact—in the simple, technical sense of the 
word—became far easier at the time than it had been earlier. D. E. Smith crossed the 
ocean dozens of times (Donoghue,  2008  )  and, although this travel certainly says 
something about Smith’s own personality, it also demonstrates the fact that travel 
had become much easier to do. Indeed, there was often even no need to travel in 
person—the telegraph already existed, and the telephone was coming. 

 Among the numerous international unions and alliances that appeared at this 
time, I cannot fail to mention the International Mathematical Union (IMU) (Lehto, 
 1998  ) . It was out of the IMU that ICMI was born, and the overwhelming majority 
of its members were originally individuals who did not work in schools and had 
never done so, but were familiar with higher education only. Informal contacts 
among mathematicians had been maintained since ancient times—mathematics 
knew no borders, whether in the provinces of the Roman Empire or in the nation 
states of Europe. The  fi rst of fi cial international mathematics congress took place in 
1893 in Chicago as part of the World’s Fair, and at this congress Felix Klein empha-
sized the importance of cooperation: “What was formerly begun by a single master-
mind, we now must seek to accomplish by united efforts and cooperation” (quoted 
in Albers, Alexanderson, & Reid,  1987 , p. 2). 

 Mathematics education was seen by those who were laying the foundations for 
international collaboration in it as something far more closely connected with 
national and state administrative systems than mathematics was. That was why 
plans were initially made to establish the Commission and to select its participants 
with the help of the states and governments involved (Schubring,  2003  ) . But the 
processes taking place in the world did not bypass education. As Brickman  (  1960  )  
stated, at the beginning of the 20th century, after important publications had 
appeared, a new era of scienti fi c comparative education commenced. At that time, 
certain fundamental problems in mathematics education that different countries 
shared, despite all of their obvious differences, began to be recognized. 
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 The most important of these problems was the need to reform the school 
 curriculum. The fact that many topics were obsolete, the fact that the school curricu-
lum was disconnected from practical needs, the need to include new mathematical 
ideas in the school curriculum—above all, ideas connected with the concept of 
function—and the importance of new pedagogical and methodological approaches 
were discussed in different countries, both under the in fl uence of the development 
of mathematics and under the in fl uence of the development of education. These 
discussions were stimulated by the need to  fi nd solutions to the new problems of 
mass education (or, at least, education on a much larger scale than anything that had 
existed previously). 

 I am not concerned here with exactly when, where, and how this or that reformist 
idea was  fi rst expressed (much later, in the years of the Cold War, educators argued 
passionately about such issues, usually defending their country’s priority—Karp, 
 2007a  ) . What is important is that these ideas were heard and received in different 
countries. 

 What is noteworthy, therefore, is not simply the fact that representatives of dif-
ferent countries began coming together to discuss the problems of mathematics edu-
cation and to publish relevant materials, but also what in fl uence these discussions 
and materials had on different countries. Because it is impossible to trace how and 
when this process unfolded in different countries, I will con fi ne myself to a descrip-
tion of these developments in just one country—Russia. The Russian representa-
tives in ICMI prepared and published the reports that ICMI called for, but what is 
important is that these and other ICMI reports were also translated and published in 
Russia. Thus, for example, the preliminary report, which was published in 
 L’Enseignement Mathématique  in November 1908, was reprinted in four Russian 
periodicals, including such leading journals as  Zhurnal Ministerstva Narodnogo 
Prosveshcheniya  ( Journal of the Ministry of Education)  and  Moskovskiy matemat-
icheskiy sbornik  ( Moscow Mathematics Compendium) , and in addition the report 
was sent “to all societies and organizations that had a relation to the teaching of 
mathematics” 1  (Sintsov,  1913 , p. 4). In this way, very broad sections of the popula-
tion became informed both about the work of international organizations and about 
the view of Russia that was expressed in international documents. 

 Even more importantly, the development of international contacts spurred the 
development of national education and discussions about it—in 1911–1912 and in 
1913–1914, countrywide congresses of mathematics teachers took place in Russia. 
The proceedings of the  fi rst of these congresses began with an account of the cre-
ation of ICMI, and stress was laid on the fact that the “international movement 
aimed at investigating methods for teaching mathematics has also found an echo in 
Russia” (Maksheev,  1913 , p. vi). Indeed, during the course of both congresses, dis-
cussions of speci fi cally Russian problems—whether school textbooks or teacher 
preparation or the use of more visually-oriented manuals—took place against a 

   1   This and later translations from Russian in this chapter are by the present author.  
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background of comparisons with what was being done in other countries and what 
could be appropriated. The participants of the congresses put together plans for new 
research and studies in accordance with international models (Sintsov,  1913  ) . 

 To be sure, the responses to ICMI’s activities were not identical in all of the coun-
tries that participated in ICMI, and indeed only relatively few countries took part in 
its work at  fi rst (Schubring,  2003  ) ; nonetheless, it appears plausible to conclude that 
evolving international cooperation developed and enriched national education. 

 The war of 1914–1918 interrupted this incipient development. Even D. E. Smith 
 (  1918  )  was forced at that time to prove his patriotism and defend himself against 
accusations of excessive connections with citizens of enemy states. The defeated 
states remained in isolation for several more years (e.g., German scholars were not 
invited to mathematics congresses in 1920 and 1924). To this isolation was added 
the gradually emerging new dividing line that walled off the Soviet Union. 

 Even so, attempts to develop what had been done continued, at the organizational 
level (the renewal of ICMI), at the level of personal contacts—Smith conducted a 
vast correspondence with mathematics educators around the world—and through 
publications about what was taking place in different countries [e.g., the articles 
about teaching in Germany published in the USA by Lietzmann  (  1924  )  and Malsch 
 (  1927  ) ]. The most important of such publications, perhaps, was the fourth NCTM 
 Yearbook  (Reeve,  1929  ) , which offered descriptions of the state of mathematics 
education in 13 countries. Nor should it be forgotten that seeds planted earlier con-
tinued to yield fruit. For example, in Brazil reformist ideas came into use and were 
realized after a lag by comparison with Europe (Pitombeira de Carvalho,  2006  ) . The 
impending Second World War prevented efforts to develop international collabora-
tion from coming to fruition.  

   From 1945 Until the Collapse of the Soviet Union 

 During the period after the Second World War the movement from the local to 
the international effectively began anew. International organizations and mecha-
nisms for international collaboration sprung up once more. Even more signi fi cantly, 
however, national education systems underwent substantial changes. It was at this 
time that the colonial system collapsed, and new states appeared—and new school 
systems along with them. Around the world, education became much larger in scale. 
And even in the countries of Western Europe and North America, mathematics edu-
cation began to be understood and implemented in new ways. The processes of 
change taking place in different countries often resembled one another, both because 
these changes were brought about by similar causes, and because what had been 
done in one country became an asset to others. Bass  (  2008  )  has noted that the period 
of the 1950s–1960s (part of what he called the “Freudenthal Era”) already “wit-
nessed the emergence of mathematics education (didactics) as an international aca-
demic discipline” (p. 10). An enormous role in this process was played by ICMI, 
which was re-established at the 1952 meeting of the IMU general assembly in Rome 
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(Kilpatrick,  2008  ) , and which from 1969 on began holding International Congresses 
on Mathematics Education on a regular basis. 

 All around the world, however, the movement from the local to the international 
came up against the Iron Curtain, which separated opposed groups of countries. At 
certain moments during the Cold War and in certain countries, this opposition was 
especially emphasized in mathematics education, and what was international, that 
is, what came from abroad, was invariably regarded as erroneous and hostile (Karp, 
 2007a  ) . Even during more peaceful periods, no common perspective on existing 
problems was possible, if only because of the dif fi culty of establishing contacts and 
communication. 

 This observation does not mean, however, that there was no movement across the 
Iron Curtain at all. Books from the countries of the Soviet bloc were published in 
the West (Kilpatrick,  2010  ) , and something from the West did manage to penetrate 
into the countries of the Soviet bloc as well. Moreover, the opposition between the 
two blocs to some extent stimulated the development of mathematics education in 
both (recall the Sputnik). Below, I offer brief descriptions of the processes that 
unfolded during this period in  fi ve regions—Western Europe and North America, 
Eastern Europe, Latin America, Africa, and Asia/Australia. 

   Western Europe and North America.   Along with the rebirth of ICMI, this 
period witnessed the appearance of organizations, conferences, and seminars which 
subsequently went on to become international in the full sense of the word, that is, 
encompassing the whole world, but which initially had a narrower audience of 
Western Europe and North America. A typical example was the Commission for the 
Study and Improvement of Mathematics Teaching (CIEAEM), which is of fi cially 
considered to have been founded in 1952, although it  fi rst appeared in 1950. 
International collaboration and, in particular, the coming together of different 
countries in mathematics education, was naturally stimulated by growing 
collaboration in other  fi elds, but they had their own causes as well, stemming above 
all from a recognition of the similarity of the problems being faced and their 
solutions (given all the existing differences). 

 Freudenthal  (  1978  )  began his overview of the changes taking place in education in 
the Netherlands with the observation that after the Second World War this predomi-
nantly agricultural country greatly changed economically, which required changes in 
education. New economic and social living conditions, even if they were somewhat 
different from those found in the Netherlands, spurred changes both in education in 
general and in mathematics education in particular in other countries as well (Keitel, 
Damerov, Bishop, & Gerdes,  1989  ) . Howson  (  1978  )  stressed that even in the UK, with 
its formerly rigidly structured system which catered only to the academic child, a sys-
tem intended for the average child began to develop. The idea of “mathematics for all” 
(Damerow, Dunkley, Nebres, & Werry,  1984  )  turned out to be consonant with what 
was taking place in many countries, but it led to changes in the traditional curriculum. 

 Another powerful and general movement in the direction of changing the cur-
riculum was stimulated by the development of mathematics. As early as 1956, the 
well-known mathematician G. Choquet compared mathematics teachers to museum 



806 Karp

guards demonstrating archaic objects that were of no use to anyone (Charlot,  1989  ) . 
A great deal in the traditional program appeared merely to obscure the essence and 
structure of mathematics, leaving no room for clarifying it and for introducing 
important new knowledge. In France, the seminar held in Royaumont in 1959, at 
which the famous slogan “Euclid must go!” was voiced, became an important land-
mark in this movement. In the USA, the new math appeared on the scene, supported 
and developed by the School Mathematics Study Group (Fey & Graeber,  2003  ) ; in 
the UK, reforms were conducted within the School Mathematics Project and by 
other groups of experimenters (Cooper,  1985  ) ; in Spain, analogous changes were 
implemented on the orders of the Ministry of Education (Ausejo,  2010  ) , and so on. 
Similar (despite all their differences) movements also took shape beyond the bound-
aries of the region being examined here, and I shall come back to them below. Here, 
one should just note that the reform movement, despite the  fi erce and often justi fi ed 
criticism directed against it, signi fi cantly and universally enriched the school pro-
gram: Fey  (  1978  )  noted that even at the time when his article was written, it was 
“hard to imagine that so many ingredients of the ‘New Math’ proposals were com-
pletely foreign to most mathematics programs and teachers in 1960” (p. 341). 

 Another movement, which is quite often mistakenly considered to have been 
necessarily opposed to the one just described, and which also found support in many 
countries, may be characterized as a struggle for “realistic mathematics.” This ter-
minology appeared in the Netherlands (Gravemeijer,  1994  ) , but attention to model-
ling, and to real-world problems in general, continued to grow in many other 
countries also (Pollak,  2003  ) . Again, the reasons for this growth—shared by differ-
ent countries—included, on the one hand, the fact that the curriculum was now 
being adapted to all students, including those who had no need of mathematics for 
college but who needed mathematics for everyday life and, on the other hand, the 
fact that it was recognized how often mathematics (and mathematics of a rather high 
level!) turned out to be indispensable for everyday life. 

 Similar conceptions of the psychological–pedagogical foundations of mathemat-
ics education were developed in different countries which were based on similar 
changes in the understanding of the value of the individual human personality. The 
ideas of the Swiss Jean Piaget or of the American Jerome Bruner were accepted in 
different countries and consequently, at least in educational rhetoric, the value, for 
example, of active discovery learning came to be universally acknowledged. An 
understanding of the more complex nature of education, which could not be reduced 
to the simple transmission of knowledge from teacher to student, also became wide-
spread. Among the publications that in fl uenced the formation of views shared by 
mathematics educators in different countries, the works of the Russian Lev Vygotsky 
 (  1962  )  must be mentioned, although only about half of the book written by Vygotsky 
came to be available in its  fi rst translation, and quite an imperfect translation at that. 
But here I must turn to what went on in the countries of the Soviet bloc.  

   Eastern Europe.   Howson  (  1980  )  once posed the question, in his review of 
Swetz’s  (  1978  )  book: “Does socialist mathematics education exist?” Indeed, as 
Howson rightly noted, the similarities between the curricula of countries belonging 
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to different geopolitical camps were, at least at  fi rst glance, very great. In fact, it is 
natural to regard the term  socialist  itself merely as a technical designation of the 
countries of the Soviet bloc. Still, mathematics education in these countries deserves 
to be addressed separately if only because of their separation from the rest of the 
world, whose repercussions could be seen even in mathematics itself (see, e.g., 
Lohwater,  1957  ) , and all the more so in education. 

 In the Soviet Union, after the Second World War, there was a return to the style of 
mathematics education that had existed at the beginning of the 20th century—both in 
terms of the pedagogical system and in many respects in terms of the content—with 
the difference, however, that now this education was offered to an incomparably 
greater number of children than had been the case previously (Karp,  2010  ) . During 
the 1960s and 1970s, a campaign of reforms spearheaded by Andrey Kolmogorov, 
which in many ways resembled the reform movements in the West, transformed 
education in the country (Abramov,  2010 ; Karp & Vogeli,  2010,   2011  ) . No analogue 
to “mathematics for all” appeared, however. The educational system strove to become 
less selective (especially by the late 1970s and into the 1980s) and, in particular, to 
ensure a much higher pass rate in mathematics, but that was achieved less by restruc-
turing the curriculum than by simply lowering the actual requirements. 

 Some works of Western mathematics educators reached Soviet readers. Thus, for 
example, Polya’s  How to Solve It  was translated and published as early as  1959 . 
Such works, however, were few in number. Contacts with foreign, especially 
Western, colleagues were also extremely limited. 

 Matters were more complicated with mathematics education in the other so-
called socialist countries, where mathematics education developed as a result of 
exposure to various in fl uences. First, many of these countries had their own strong 
national schools, to whose traditions educators strove to adhere even after the 
Second World War; second, the in fl uence of the “older brother”—the Soviet 
Union—was inevitable (Alonso, Fried, & Pardala,  2010  ) ; and third, to one degree 
or another, the in fl uence of what was taking place in the West also made itself felt, 
for example, through participation in CIEAEM and other international organiza-
tions (Ehrenfeucht,  1978  ) , in which representatives from these countries usually 
participated to a greater extent than Soviet mathematics educators did. The scale of 
mathematics education, in terms of the number of students who received it, grew 
substantially in these countries (see, e.g., Halmos & Varga,  1978  ) , but its structure 
and the directions of its development often turned out to be different from both 
many Western countries and the USSR. Halmos and Varga, for example, empha-
sized how different Hungarian reforms were from the new math.  

   Latin America and the Caribbean.   In many countries of Latin America and the 
Caribbean, poverty and extreme social inequality have reigned for decades, preventing 
the development of education in general and mathematics education in particular. For 
this reason, Lluis  (  1986  )  wrote that, with regard to Latin America, it was necessary to 
pose such speci fi c questions as: “What kind of geometry should be taught in primary 
schools, since 90% of pupils do not pursue their education any further?” (p. 38). Thus, 
for example, Colombia acquired its  fi rst group of graduates in mathematics only 
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in 1934, and it was not until 1956 that Costa Rica had a single institution for the 
preparation of secondary school teachers—and those cases represented the rule for the 
region rather than the exception (Sangiorgi,  1962  ) . Interactions with foreign and 
international in fl uences in countries of this region therefore possessed a somewhat 
different character from that in the countries discussed above. 

 This does not mean that countries in this region had no educational traditions of 
their own. Such traditions did arise, taking shape in part through the adaptation of 
borrowings from abroad (Lluis,  1986 , mentioned that “the admirable [textbook] of 
Wentworth and Smith” (p. 32) was used in the region 40 and 50 years after its publi-
cation). Assistance for mathematics education from abroad, which was actively 
offered during the years in question, did not always take these traditions into account, 
however (although assistance both from such international organizations as UNESCO 
and from individual countries—the USA, the UK, the USSR, and many others—was 
undoubtedly substantial). Arguments to the effect that Latin American countries had 
no “national culture” did not at that time appear dubious even to mathematics educa-
tors engaged in fruitful work in the countries of the region (Rosenberg,  1989  ) . The 
study of ethnomathematics arose, to some degree, as a counterweight to these argu-
ments (D’Ambrosio,  1977,   2006  ) ; it stressed the importance of the cultural context 
in mathematics education and quickly won recognition around the world. 

 Foreign trends, including the reform movement, not infrequently reached the 
countries of Latin America after a delay and, even more importantly, the changes to 
which they gave rise sometimes amounted to nothing more than “the introduction of 
long and unfamiliar names for simple ideas.” In addition, sometimes these changes 
went no further than articles or academic discussions, while in actual schools every-
thing remained as before (Wilson,  1978  ) . At the same time, although the role of 
international agencies was indeed considerable, it would be wrong to attribute 
everything to their doings (Brito,  2008  ) . Reformist ideas resonated with the mathe-
matics educators of Latin America, who were developing their own teaching materi-
als and curricula for teacher preparation (Búrigo,  2009  ) . The region, although 
constrained by its own speci fi c characteristics, nevertheless participated in the 
worldwide movement to renew and reform school curricula.  

   Africa.   Until the late 1950s and the  fi rst half of the 1960s, almost the entire 
African continent was divided among European powers. Although European formal 
education began to penetrate into the continent virtually from the moment of the 
appearance of European missionaries there, it usually amounted to religious 
propaganda with only very minor additions—even during the  fi rst half of the 20th 
century, the ability to perform the four arithmetical operations was usually the 
summit of any education that was carried out on a large scale. The European powers 
established more advanced educational institutions, if only to prepare functionaries 
for colonial administrations (Cross,  2001  ) , but the number of such institutions was 
very small—even at a considerably later date, when African countries had become 
independent. In Sudan in 1975–1976, for example, 81.3% of all students were 
enrolled in elementary schools, but so-called general secondary and higher secondary 
schools accounted for only 13.8% and 4.9% of all students, respectively (El Sawi, 
 1978  ) . A similar situation existed in other countries on the continent (see, e.g., 
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Mwakapenda,  2002  ) . Nor should it be forgotten that even elementary education was 
by no means received by all children. 

 The system of education left behind by the colonial powers could in no way be 
considered local. To a very great extent, it reproduced the system of the colonial 
power, using, for example, British curricula, textbooks, and systems of examina-
tions (Doku,  2003  ) . In many ways and in many places, the system inherited from the 
colonial period continued to function after the colonized countries acquired inde-
pendence. The subsequent development of education in African countries relied 
considerably on international aid. An important step forward was the UNESCO-
sponsored Conference of African Ministers of Education in 1961. As Ohuche  (  1978  )  
noted: “Rapid expansions of primary, secondary and teacher education followed. 
But the push for quality and appropriateness fell behind and more stress came to be 
put on minor modi fi cations of foreign curricula than on bold and innovative educa-
tional experiences dictated by the African environment” (p. 272). 

 Through the joint efforts of a number of African countries and economically 
more developed states, quite ambitious projects were implemented in order to 
improve mathematics education (such as the African Mathematics Program, also 
known as the Entebbe Project, to name just one example). Aid in education came 
from both Western countries and the countries of the Soviet bloc—the struggle for 
in fl uence which was taking place around the world did not bypass African mathe-
matics education. In some countries, one could  fi nd American or British textbooks; 
in others, textbooks from the USSR. 

 The workshops and seminars that were conducted or the textbooks that were 
prepared within the framework of these projects were undoubtedly bene fi cial 
(Ohuche,  1978  ) , although some participants in such projects noted that they could 
have been more effective (Karp,  2008  ) . Although political and economic circum-
stances were largely to blame for this ineffectiveness, criticisms of methodological 
approaches were also heard. 

 El Sawi  (  1978  )  noted that while Western countries were going through a techno-
logical revolution, African countries were only approaching an industrial revolu-
tion. Consequently, attempts to introduce the latest Western developments—new 
math—into African schools met with dif fi culties. In curricula, the “over-dose of 
abstraction has been too much for the African child to assimilate” (p. 318). The liv-
ing conditions of African children, quite different from the living conditions of their 
Western peers (and their peers in the USSR, too), caused them to develop in a dif-
ferent direction, and those differences could not be ignored. 

 To counterbalance foreign or international in fl uences, educators voiced a desire 
“to create curricula based on the local culture or society” (Davis,  1992 , p. 31). The 
study of such cultures achieved certain results (e.g., Zaslavsky,  1973  ) ; nonetheless, 
Davis  (  1992  )  expressed a quite skeptical view concerning achievements in 
“Africanizing” mathematics education.  

   Asia/Australia.   This most densely populated region is likely also the most 
diverse in terms of the characteristics of its systems of education. Some of the 
region’s countries (e.g., Australia) resemble, albeit with certain differences, the 
countries examined above in the section on Western Europe and North America, 
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and consequently they actively participated in the processes described in that 
section. On the other hand, many of the region’s countries acquired independence 
only after World War II, and the legacy of a colonial or semi-colonial past could be 
fully felt in them for the duration of the period that I am examining. In particular, 
certain countries in the region were plagued by mass poverty, which is inevitably 
destructive for mathematics education. 

 Perhaps the only process that was to some degree common to practically all of 
the region’s countries was the growth of the population that was being taught math-
ematics. In China, the region’s most populous country, approximately 80% of the 
population was illiterate in 1949 (Ziqiang & Monroe,  1991  ) . Kapur  (  1978  )  noted 
that in India “after independence in 1947, enrollments in schools have increased 
30–40 times” (p. 245). Gunawardena  (  1978  )  noted that in Sri Lanka, by the end of 
the colonial period, only 10% received any school mathematics education at all, 
whereas by the end of the 1950s this number had doubled. 

 Nonetheless, although mathematics education continued to spread, not all chil-
dren were encompassed by it even by the end of the period discussed here. Nor are 
all children encompassed by it at present. Moreover, certain countries in the region 
went through a dramatic period of regress and destruction in their educational sys-
tems, the Chinese Cultural Revolution being one important example (Ziqiang & 
Monroe,  1991  ) . 

 The literature (admittedly, starting at a somewhat later date, the mid-1990s) often 
emphasizes the resemblances between the countries if not of the entire region, then 
of a large part of it—East Asia (Leung,  2001 ; Leung, Graf, & Lopez-Real,  2006  ) . 
According to the studies cited, many of these countries are united by their shared 
Confucian culture, which stretches far beyond the borders of the local and the 
national. In mathematics education, it manifests itself, for example, in the prefer-
ence given to hard school work over the principle of pleasurable learning, which the 
authors consider typical of the West. 

 Over the last decade and a half, international attention to East Asian countries 
has noticeably grown, if only because of their high results in the Third International 
Mathematics and Science Study (TIMSS) and the subsequent Trends in International 
Mathematics and Science Studies (TIMSS, also). The culture referred to by the 
researchers, however, evolved long before this. Its appearance may be explained in 
different ways. For example, it seems reasonable to suppose that an important role 
is played by the fact that education in the region’s countries is very selective, whereas 
the wealth gap between those who do and those who do not receive it is quite con-
siderable. In general, while recognizing the deep cultural connections between, say, 
Taiwan and mainland China, one cannot but notice substantial political and eco-
nomic differences between them during the period examined here, which also found 
expression in mathematics education. 

 Interactions with other countries took place in different ways across the region. 
The former colonial powers continued to exert a considerable cultural in fl uence. This 
in fl uence was exercised both through special organizations, such as the British 
Council (Gunawardena,  1978  ) , and simply because the colonial powers’ universities 
and publications remained the most natural sources of learning in the former  colonies. 
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Consequently, many of the region’s countries became involved, even if often with a 
certain lag, in broad international movements, including reform movements and the 
 fi ght for modern mathematics (see, e.g., Kapur,  1978 ; Purakam,  1978  ) . 

 Aid given by Western countries was not infrequently criticized in this region, 
too, and Western countries were rebuked, for example, for their lack of attention to 
cultural distinctions and their ill-considered application of Western theories in a 
region where corresponding  fi ndings might not apply (Clements & Ellerton,  1996  ) . 
It is also clear that when graduates of Oxford or the Sorbonne returned to their 
homelands, they often encountered problems that were quite different from those 
found in Britain or France. What is noteworthy, however, is that when reforms began 
to be carried out in China and an open-door policy was established, Chinese math-
ematics educators tirelessly emphasized the importance of disseminating in their 
countries knowledge about the achievements of international educational theory 
and familiarity with the best foreign (American, British, Russian, etc.) practices 
(Quan,  1992 ; Ziqiang & Monroe,  1991  ) . 

 The region’s countries collaborated with the countries of the Soviet bloc, too. 
“Aid” for countries that had “embarked on the path of socialism” included assis-
tance in organizing mathematics education. Ziqiang and Monroe  (  1991  )  noted that 
in China “older teachers are grounded in Russian educational theory” (p. 206). 
Russian in fl uences on the Chinese secondary school mathematics curriculum were 
also evident (Leung,  1987  ) . 

 One must also note collaboration within the region itself. Regional organizations 
and centres, such as the Mathematics Education Research Group of Australasia 
(MERGA) or the Regional Centre for Education in Science and Mathematics 
(RECSAM), have functioned effectively (and continue to do so to this day). 
Consequently, regional conferences, workshops, and seminars are held, and jour-
nals that bring together the region’s mathematics educators are published.   

   Some Conclusions 

 The period examined above was extremely important for the formation of the 
international mathematics community. The degree of involvement in common or 
similar activity, as well as the nature of that involvement, differed from country to 
country and from region to region. 

 Strangely, although the period in question is still relatively recent, the channels 
of communication that existed among mathematics educators at the time have not 
been fully determined. In particular, it is not entirely clear how and to what extent 
the exchange of ideas developed in general during the period of reforms corre-
sponding to the American new math. For example, the director of the School 
Mathematics Study Group in the USA, Edward G. Begle, was a guest speaker at the 
seminar in Royaumont, and Andrey Kolmogorov in the USSR was also well aware 
of it. But the degree to which these and other educators analyzed this or that speci fi c 
idea—born and spread in this or that speci fi c country—remains  uninvestigated. 
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The existence of mutual in fl uences, however, cannot be denied, which is why this 
movement as a whole may be considered international. 

 Examples of the international exchange of ideas are not few in number. Thus, 
for example, Isaak Wirszup, who did much to popularize the works of the 
Netherlands’ van Hieles in the USA, himself learned about them from Soviet lit-
erature (Roberts,  2010  ) . On a more fundamental level, I must mention the contribu-
tion of such international organizations as UNESCO, which facilitated such 
exchanges and international collaboration in mathematics education in general 
(Hodgson,  2009 ; Jacobsen,  1993  ) . 

 Although noting “a growing mutual in fl uencing of ideas, methods, practices and 
expectations,” Bishop  (  1992  )  emphasized that they did not lead to “uni fi cation and 
conformity of research, although there are similarities in approach to be seen in dif-
ferent countries” (p. 710). He saw the international perspective as being embodied 
in “increased researchers’ awareness of a number of key issues arising from the 
historically, culturally, and socially different approaches to mathematics education 
seen around the world” (p. 711). Bishop identi fi ed the basic types of research and to 
some degree even indicated which types were more widespread in various coun-
tries, although he added that this did not preclude other types of research from being 
carried out in these countries. 

 The growth of the international element in research in mathematics education in 
the sense indicated above is evident at the very least simply because research in 
mathematics education in general underwent a rapid development during these 
years (Clements & Ellerton,  1996 ; Kilpatrick,  1992  ) . The number of researchers, 
studies, and publications grew along with the belief in “the role of research in the 
improvement of mathematics education”—as Begle  (  1969  )  titled his in fl uential 
address—and with growing expectations concerning the scienti fi c quali fi cations of 
those who were involved in mathematics teacher preparation. At the same time, 
educators in different countries sometimes studied similar topics, sometimes differ-
ent ones; sometimes employed similar methodologies, sometimes different ones; 
sometimes knew about research being done abroad, and sometimes did not. It is 
possible to identify groups of countries, based on social-economic, linguistic, or 
cultural-historic principles, such that within each group awareness about what was 
taking place in other countries was higher. The growth of such awareness, however, 
has accelerated in the contemporary period, which we now consider.   

   The Contemporary Period 

 I date the contemporary period from the collapse of the Soviet Union, although of 
course this date is not always precise—many processes that are discussed below 
were already underway, in one form or another, even before this event. Still, since the 
end of the 1980s, since the fall of the Berlin Wall, the world has been perceived as 
uni fi ed to a much greater extent than it was previously, and this view could not fail to 
in fl uence mathematics education. Another important feature of the new period is the 
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technological revolution which has occurred. The Internet has gradually reached, if 
not every household, then at least every university. Atweh and Clarkson  (  2001  )  
painted a picture of collaboration among Spanish, American, and Canadian educa-
tors helping Salvadoran students from home—and that picture, at least from a techni-
cal point of view, is absolutely plausible and realistic. If in times past information 
about what was happening in one or another country could be tracked down only in 
special reports prepared by special commissions—if it could be tracked down at 
all—then now this, too, can be done without leaving the house, provided one has the 
desire, knowledge of the language, and ability to understand a foreign culture. 

 Against the background of greater openness and interconnectedness among different 
countries, researchers have been conducting increasing numbers of various international 
studies, beginning with TIMSS, PISA (Programme for International Student Assessment) 
and ICMI studies, all of which have attracted an enormous amount of attention. 
International studies and their results have to some degree become a part of mass culture, 
inheriting all of its positive and negative aspects. An article by Romberg  (  1971  )  about an 
international comparative study carried out over 40 years ago pointed out certain phe-
nomena and tendencies which have since that time only continued to grow. 

 In developed countries, mathematics education has clearly become organized 
along more similar lines. In Western countries, tendencies toward centralization had 
risen even at the end of the last period that I examined above—a national curriculum 
had appeared in the UK, and the standards movement had been gaining strength in 
the USA. On the other hand, in countries with a rigid curriculum designed by a cen-
tralized authority (such as the USSR), certain requirements had begun to be eased. 

 The idea of assessing performance in mathematics education (by no means new) 
has gained new momentum virtually everywhere since computer technologies 
opened up substantial new possibilities in this respect. The formation of new inter-
national organizations of mathematics educators, a process that had begun earlier, 
continued during these years. (I might mention as examples the recently formed 
World Federation of National Mathematics Competitions, WFNMC, and the 
International Group for Mathematical Creativity and Giftedness, IGMCG). Research 
in mathematics education, as an academic  fi eld, has been generally speaking more 
international than mathematics education itself, which preserves close ties to local 
traditions. Below, I attempt brie fl y to trace certain aspects of the processes and dis-
cussions which have occurred. 

   Exchange of People and Ideas 

 The borders which opened up (or even slightly opened up) in the early 1990s made 
easier the exchange of people and ideas in mathematics education as well as other 
 fi elds. Below, I have occasion to address scholarly publications, participation in confer-
ences, and so on. However, there is another development that must be addressed  fi rst. 

 The “brain drain,” which is discussed below, is on the whole a phenomenon with 
negative consequences for the development of those countries which scientists are 
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leaving; at the same time, however, it provides new possibilities for the growth of 
international awareness concerning the achievements and problems of those coun-
tries. The number of mathematics educators who live in English-speaking countries or 
countries where the English language has long been used as a language of scholarship 
and science, and who speak and read  fl uently in Chinese, Spanish, or Russian, has 
grown dramatically over the past 20 years. Moreover, even emigrants who seemingly 
have no connection with mathematics education bring with them traditions and views 
that are widespread in their countries of origin, thus facilitating deeper understandings 
of the organization of mathematics education in the countries from which they came. 

 As an example illustrating the changes taking place, consider the statistics in 
Table  25.1  relating to the foreign-born population of the USA in 1980 and 2008 
(Pew Hispanic Center,  2008 ; U.S. Census Bureau,  1999  ) .  

 From another perspective, more foreigners have started visiting or working in 
countries that were closed off previously (An,  2008 ; Watson,  1993  ) . Western coun-
tries have seen an increasing number of students, including doctoral students, from 
Asia, Eastern Europe, and Latin America. Although I have no data about the num-
bers of students specializing in mathematics education, it will be useful to examine 
Table  25.2 , which shows the number of foreign students in all  fi elds in the USA for 
the years 1984–1985 and 2009–2010 (see Institute of International Education,  2010 ; 
Zikopoulos,  1985  )  and offers an illustration of the processes taking place.  

 To this must be added the fact that contacts which are established today are 
incomparably easier to maintain than they were in the past, thanks once again to 
new technologies.  

   The Process of Internationalization in Mathematics 
Education Research 

 Mathematics education research as a scholarly  fi eld has developed rapidly over 
recent decades at least in terms of numbers of publications. The number of mathe-
matics education journals has grown (Hanna,  2003  )  and continues to grow, which 

   Table 25.1 
  Size of Foreign-Born Population in the USA in 1980 and 2008   

 Born in …  1980  2008 

 China  289,079  1,339,131 
 Mexico  2,199,221  11,451,299 
 Nigeria  25,528  200,001 
 USSR a   500,728  1,096,905 
 World Total  14,079,906  38,016,102 

  a The  fi gures opposite “USSR” in both columns represent the total number 
of immigrants from all of the now-independent countries which in 1980 
were part of the Soviet Union.  
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undoubtedly is made easier by the possibility of publishing online. At the same 
time, the distribution of these publications among different countries is by no means 
proportional to their population. 

 Adler, Ball, Krainer, Lin, and Novotná  (  2005  ) , in studying scholarly articles 
about mathematics teacher education, noted that “research in countries where 
English is the national language dominates the literature” (p. 372). More precisely, 
the share of such articles about the topic in question between 1998 and 2003 was 
71% in the  Journal for Research in Mathematics Education  (JRME), 80% in the 
 Journal of Mathematics Teacher Education  (JMTE), and 43% in Psychology of 
Mathematics Education (PME) proceedings. 

 Adler et al.  (  2005 , p. 373) provided more detailed data (see Table  25.3 ).  
 Naturally, one might ask how representative these statistics are and whether a 

different period or a different area of mathematics education research would yield 
similar  fi gures (note, too, that in such comparisons among numbers of articles, etc., 
and their distribution across regions—and even more so, across countries—one 
must always bear in mind that these regions’ population sizes may be considerably 
different). In certain journals which have recently appeared, the proportion of arti-
cles from English-speaking and non-English-speaking countries differs somewhat 
from that in the journals analyzed above. Thus, of the 39 articles published in the 
“Research Papers” section of the  International Journal for the History of Mathematics 
Education , only 31% came from English-speaking countries. Of the 50 articles pub-
lished in 2010 in the  International Journal of Science and Mathematics Education , 
articles such that all authors resided in English-speaking countries constituted 
merely 32% of the total. 

 Generally speaking, the fact that in a journal published in English many of the 
authors are from English-speaking countries is not surprising. What is interesting is 
the change over time in the share of articles from non-English-speaking countries. 
Consider, for example, the data pertaining to  JRME,  which is not of fi cially an 
 international publication even though its sponsor, the National Council of Teachers 

   Table 25.2 
  Number of Foreign Students in the USA   

 Nation of Origin  1984–1985  2009–2010 

 Africa  33,778  37,062 
 China  8,637  127,628 
 Europe  28,508  85,084 
 Latin America  41,519  65,632 
 USSR  196  12,707 a  
 World total  292,479  690,923 

  a This  fi gures opposite “USSR” represent the total number of students 
from all of the independent countries that formerly made up the Soviet 
Union. For 2009–2010, the number of students from the largest of these 
countries, Russia, was 4827.  
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of Mathematics, encompasses the USA and Canada. These data indicate that even 
in this journal a tendency toward internationalization is present (evidently, varying 
from year to year) (Table  25.4 ).  

 The number of conferences is likewise growing. “Specialized” conferences are 
being organized—that is, conferences devoted to this or that speci fi c topic (often 
such conferences are organized by international organizations, or conversely, they 
serve as foundations out of which international organizations subsequently arise—
the former case may be illustrated by PME, the latter by IGMCG). General subject 
conferences are organized as well, including regional conferences such as Inter-
American Conferences or the Congresses of the European Society of Research in 
Mathematics Education (regional conferences are also often conducted by organiza-
tions of mathematics educators, which frequently receive support from ICMI). 

 The spectrum of countries represented at conferences is usually quite broad, 
although countries and regions are usually represented unequally. Consider, for 
example, the following data about presentations at two CIEAEM conferences held 
in Italy and Hungary (in the latter case, I do not include data about poster presenta-
tions). With respect to Table  25.5 , it should be recalled that CIEAEM initially arose 
 fi rst and foremost as a Western European organization. As we can see, the confer-
ence remains predominantly European (at least, when it is held in Europe), although 
other regions are also represented. It is noteworthy that the differences between 
Eastern and Western Europe are no longer very signi fi cant.  

   Table 25.3  
  Distribution of Published Articles About Mathematics Teacher Education, by Region Where Research 
Was Conducted (from Adler et al.,  2005  )    

 Region  JMTE ( n  = 65)  PME ( n  = 88)  JRME ( n  = 7) 

 North America  68% (65% USA)  30% (24% USA)  57% (all USA) 
 Oceania  8%  9%  0 
 Europe  15% (5% UK)  25% (6% UK)  14% 
 Africa  3% (all South Africa)  8% (6% South Africa)  14% (all South Africa) 
 Asia  5%  9% (7% Taiwan)  0 
 South and Central 

America 
 0  3% (all Brazil)  0 

 Inter-continental  0  0  0 
 Middle East  2% (all Israel)  14% (all Israel)  14% (all Israel) 

   Table 25.4 
  Statistics on Research Articles Published in JRME   

 Category  1975  1985  1995  2005 

 Number of articles per year in which at least one 
author is not from the USA 

  2   4   3   7 

 Number of articles per year in which at least one 
author is not from an English-speaking country 

  1   4   2   5 

 Total number of research articles analyzed  23  17  19  12 
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 Whereas the expansion of the geography of scholarly work in the  fi eld of mathemat-
ics education may be demonstrated without much dif fi culty (although, to repeat, the 
representation of different regions is still far from proportional), the growing similarity 
among styles and methods of scholarly studies (described by Bishop,  1992  ) , as well as 
their topics, in different countries is more dif fi cult to show, although there is evidence 
of that, too. At the same time, the differences between the approaches accepted in dif-
ferent countries remain quite considerable (see, e.g. Karp & Leikin,  2011  ) . 

 It would be interesting to attempt to measure the growth of awareness about what 
is taking place in research in mathematics education in other countries. In particular, 
one would like to assess the degree to which the achievements of researchers are 
known in those countries in which the research was  not  conducted. As a  fi rst step 
toward such a study, I point out that in the 92 summaries of Russian doctoral disserta-
tions in mathematics education mentioned by Karp and Leikin,  2011  (each of these 
summaries is in the order of 80,000 characters), I identi fi ed only three references to 
scholars who received ICMI’s top awards, the Freudenthal and Klein Medals. For the 
sake of comparison, the names of outstanding Western mathematics educators of 
earlier periods, such as Polya and Freudenthal, were mentioned far more fre-
quently—45 and 28 times, respectively, whereas the names of leading Russian schol-
ars were usually mentioned several times in each work. An analysis of the 
Russian-language Google Scholar gives similar results. At the time of the writing of 
this chapter, there were three references to scholars who received ICMI’s top awards, 
828 references to Polya, and 90 references to Freudenthal (many of the references to 
Polya and Freudenthal, however, appeared in purely mathematical works). A similar 
picture emerges from an analysis of the Chinese-language Google Scholar, in which 
there were only 27 references to scholars who received ICMI’s top awards. 

 Naturally, the data above may be explained in different ways. One explanation 
actually has already been given: the Russian-language Google Scholar in the 
 fi eld of mathematics education (as separate from mathematics) is still very poorly 

   Table 25.5  
 Statistics Relating to Countries with Which the Authors of the Presentations at the 
CIEAEM Conferences Are Af fi liated   

 CIEAEM 57 
 (2005) a  

 CIEAEM 59 
 (2007) a  

 Africa  1  0 
 Asia  1  1 
 Australia and New Zealand  1  2 
 Eastern Europe  23  13 
 Western Europe  30  27 
 Latin America  1  4 
 North America  5  13 
 Middle East  6  2 

  a See CIEAEM  (  2005,   2007  ) . In those very few cases in which an author gives 
two countries of residence or in which an article has authors from two coun-
tries, both countries are counted.  
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 developed. Nonetheless, one may conclude that there is a degree of delay in adopting 
the achievements of other countries—due, in the very least, to the fact that they 
require translation.  

   Is Internationalization Useful? 

 Atweh and Keitel  (  2008  )  posed the question: Can international collaboration be 
unjust? They offered examples in which greater openness in the world led to a brain 
drain from less industrialized countries to industrialized countries, resulting in the 
loss of the best teachers. They also discussed the dominant role played by certain 
groups in international collaboration and consequently in the marginalization of 
other groups. The literature also points out the complicated role played by various 
international institutions that were designed to offer assistance in developing 
national education and indeed invest considerable resources in such development. 
For example, Atweh and Clarkson  (  2002  )  have written about the not-always-posi-
tive role played by the World Bank in education in Latin America. There have been 
presentations about the harm caused to Mongolian mathematics education by subsi-
dies from Asian Bank, which spurred educators to restructure the system in a for-
eign and, in the critics’ opinion, ineffective manner (Shevkin,  2010  ) . Ernest  (  2008  )  
compared such aid with what was once done by the Great Powers in their colonies, 
rebuking the education system thus being organized with harboring a “hidden cur-
riculum in the form of views of knowledge, values and ideologies” (p. 32). 

 Evidently, these negative in fl uences are felt most strongly in those places where 
national systems of mathematics education have not yet fully taken shape. However, 
even in countries with  fi rm and old traditions of mathematics education, complaints 
about the negative in fl uence of internationalization can also be heard. Thus, 
Hungarian mathematics educators have reported on the negative impact of transfor-
mations in higher education, carried out in order to bring Hungarian education in 
line with general European requirements, and organizational changes in the system 
of school education, also clearly in fl uenced by foreign models (Connelly,  2010  ) . 

 Probably the harshest criticism of globalization in mathematics education came 
from Igor Sharygin  (  2004  ) , a former member of the ICMI executive committee. In 
his view, globalization has led to social polarization and to a division of mathemat-
ics education into several levels, from the serious and fundamental level, which is 
accessible to very few, to the mass level oriented at carrying out highly specialized 
and simple work. Sharygin denounced the destruction of the Russian system of 
mathematics education and pinned the blame for what is going on in Russia on the 
USA, which he sees as carrying out an ideological occupation of Russia. 

 In such rhetoric, one can detect the in fl uence of Cold War propaganda, which 
always reduced all problems to the enemy’s underhanded schemes. Nonetheless, 
there can be no doubt that the internationalization of mathematics education not 
only addresses existing problems but also creates new ones. As Atweh and Keitel 
 (  2008  )  noted, from the other side one hears voices that warn against investing too 
much in a  fi ght “for the preservation of national culture,” which according to this 
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view can turn into a  fi ght against the teaching of the new, thereby condemning the 
population of a country to falling behind in the future. While acknowledging the 
existence of tensions between traditional and imported cultures, Ernest  (  2008  )  
pointed out that such tensions may also be quite productive, an example of this 
being English-language  fi ction, which has undoubtedly been enriched by the work 
of writers from former colonies. 

   How great are national differences really? 

 Baker and LeTendre  (  2005  )  commented: “Whether you  fi nd them in Mexico City, a 
small town in Pennsylvania, or in rural Kenya, schools all over the world appear to run in 
much the same way everywhere” (p. 3). And indeed, it is impossible not to agree that 
“widespread understanding repeatedly communicated across nations, resulting in common 
acceptance of ideas, leads to standardization and similar meaning, all happening in a soft, 
almost imperceptible, taken-for-granted way” (p. 10). No matter how much one might 
deplore the fact that schoolchildren in Uruguay, Poland, and South Korea are watching the 
same, low-quality  fi lms, this is a fact that cannot be denied, just as it is impossible to think 
that those  fi lms do not exert a similar in fl uence on them. Consequently, Baker and LeTendre 
maintained that “emphasis on ‘national cultures’ of teaching is too simplistic” (p. 105). 

 More precisely, Baker and LeTendre  (  2005  )  did not deny certain differences, but it 
was differences within countries that they viewed as being the far more signi fi cant ones; 
as for differences between countries, these derived, in their view, not so much from 
national cultures, which, as they rightly point out, are not stable across time, as from 
various organizational details. Thus, analyses of TIMSS video recordings of classes 
taught by American, German, and Japanese mathematics teachers (Stigler & Hiebert, 
 1999  )  suggest that the differences “are not just the product of a different culture of teach-
ing, they re fl ect basic contrasts in educational policy and school organization” (pp. 
107–108), and in particular, different systems of organizing the work of the teacher. 

 Putting that idea somewhat more directly, one might conclude that if the Japanese 
system were to be introduced in the USA, mathematics lessons in the USA would 
become the same as mathematics lessons in Japan. Without even discussing whether 
this is in fact true, I should point out that the Japanese system, however, is not being 
introduced in the USA. I believe that the principal reason for this is the cultural dif-
ferences between the two countries. The culture of education is a complex notion, 
which cannot be reduced to a list of the topics studied or to a system of scheduling 
classes that is common to practically all countries, and so on. 2  The culture of educa-
tional policy and school organization is a part of the culture of education. 

   2   On that matter it is pertinent to re fl ect on Leo Tolstoy’s description of Natasha Rostova, one of the 
characters in  War and Peace , who presumably had been educated in an education system that was 
incomparably more similar to foreign education systems than what we observe today, even given all 
the communication across nations: “Where, how, when had she—this little countess, educated by an 
émigrée French governess—imbibed from the Russian air she breathed that spirit and obtained these 
mannerisms, which the  pas de chale  was supposed to have supplanted long ago? But the spirit and 
the mannerisms were the very same ones, inimitable, unlearned, Russian” (Tolstoy,  1980 , p. 277).  
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 It would be extremely interesting, although beyond the aims of this chapter, to 
investigate the formation of national cultures (see, e.g., Miliukov,  1960  ) , including 
the national cultures of mathematics education, and the role played in their forma-
tion by foreign in fl uences—Egyptian in fl uences in Ancient Greece, Italian in fl uences 
in French culture, Chinese or American in fl uences in Japanese culture, and so on. 
For all of these in fl uences, however, the differences between the cultures are not 
hard to spot. I would agree with Leung  (  2001  )  and Leung et al.  (  2006  )  that the dif-
ferences between the East Asian and, say, the American classroom are quite sub-
stantial. These differences may be seen in the way lessons are structured, in the 
behaviours of the teacher and the students, in what is considered important in exam-
inations, and in the aims of education in general, in the role allocated to mathemat-
ics among other subjects, and in a great number of other details. 

 Undoubtedly, national cultures (including national cultures of mathematics edu-
cation) are not stable. If today the characteristic trait of Western education, includ-
ing British education, is considered to be the striving to make learning pleasurable 
(Leung,  2001 ; Leung et al.,  2006  ) , then in the educational institutions described by 
Dickens or Charlotte Bronte this trait is impossible to  fi nd. On the contrary, teachers 
from classic British novels are often remembered as vicious sadists. The changes in 
values, goals, and objectives in education that have taken place were brought about 
by a complex combination of existing traditions and social-economic, political, and 
psychological changes. Changes in values, goals, and objectives in education are 
possible now, too, in all countries, but it would be misguided to think that they could 
take place merely as a result of students watching certain movies. 

 One may talk about national differences that are peculiar to mathematics education and 
hence about distinctive dif fi culties that give rise to the danger of oversimpli fi cation in 
comparative studies (Keitel & Kilpatrick,  1999  ) . One may inquire what it is that sustains 
national differences in mathematics education and does not let them fade away (e.g., one 
may ask about the role played by “shadow education”—all kinds of conceivable additional 
extracurricular activities, whose signi fi cance was noted by Baker and LeTendre,  2005  ) . At 
this point, however, one would be going beyond the bounds of mathematics education 
itself and coming up against a broader problem. At a certain time—during the euphoria 
that followed the end of the Cold War—it seemed that the same values, and hence the same 
organization of economic, political, and cultural life would triumph all over the world 
(Fukuyama,  1992  ) . Speculatively, one might suppose that in such a relatively homoge-
neous world, mathematics education would also be relatively homogeneous. Without 
making futurological claims, I merely say that so far this has obviously not happened. 
Consequently, the internationalization of mathematics education has its limits as well.    

   Conclusion 

 International collaboration in mathematics education over the past 100 years 
has grown immeasurably. There is no reason to think that this process is com-
pleted or that mathematics educators in China, the Caribbean, Denmark, and Iran 
necessarily read the same books or value the same things in lessons. But the very 
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rise in the number of countries whose representatives take part in international 
meetings, conferences, and congresses is telling in itself, pointing to the fact that 
the concept “international” now implies a far broader geographic range than it did 
100 years ago. 

 Different countries are involved in international collaboration in different ways, 
have come to it along different paths, and expect different things from it. Mathematics 
is taught differently in different countries  fi rst and foremost because the need for 
mathematics education differs from country to country—it would be strange to pre-
pare people for a future that they could only have abroad. For this reason alone, 
there is no cause to expect a mechanical transfer of what has been developed in one 
country into another. What we are looking at is a complex process, in which educa-
tion facilitates the development of the country, but itself develops only to the extent 
that this development allows. 

 It would be naïve to think, therefore, that the growth of collaboration in mathe-
matics education can be explained merely by the good will and inquisitiveness of 
mathematics educators. Mathematics education is developing in this direction fol-
lowing general processes taking place in the world. And yet, not a little depends on 
mathematics educators when it comes to discovering what is taking place abroad 
and making it accessible to those who are interested. 

 Much depends on genuine interest and the ability to go beyond the bounds of 
narrow frameworks that are suitable for only one or a few countries, and that do 
not take into account the existence of different understandings of the very same 
terms. Also important are relatively simple practical steps: Deborah Ball (in 
Adler et al.,  2005  )  has spoken of the importance of studying foreign languages 
for future researchers in the  fi eld of mathematics education, for that might help 
them to become better acquainted with what is being done in other countries. 
There is also a need, I would argue, for a far wider abstracting, indexing and 
translating of scholarly articles—mathematics remains a model in this respect: 
there are widely available databases of a broad range of mathematics articles in 
different languages, but nothing of the kind yet exists in mathematics education. 
It is noteworthy that school textbooks in mathematics from different countries, of 
which vast numbers of copies are printed, are usually far less available in librar-
ies than, say, collections of lyric poetry from the same countries, let alone books 
on mathematics. 

 And yet, let me stress once again that the path covered over the past century has 
been enormous. To an incomparably greater degree than before, the mathematics 
education community is now conceived of as being international, and more and 
more one turns to international work with the same hope that spurred David Eugene 
Smith to say that examining questions from an international point of view “would 
result in some very useful suggestions, without bringing about a uniformity in the 
organization of studies” (cited in Donoghue,  2008 , p. 37).      
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  Abstract   This chapter focusses on the concept of “collaboration,” with particular 
reference to mathematics education research in which the participating scholars are 
from different nations. After commenting that collaboration involves more than 
sharing, uniting, or cooperating, the concept is discussed in the light of the work of 
ICMI, IEA, PISA, RECSAM   , MERGA, PME, LPS, and international aid programs. 
After providing summaries of the work undertaken in these programs and organiza-
tions, the following seven dimensions that in fl uence the quality of “collaboration” 
within a program or organization were informally identi fi ed: (a) clear statement of 
raison d’être, (b) consistency of actions with raison d’être, (c) level of democratic 
governance, (d) whether wider international discussion is stimulated, (e) the extent 
of in fl uence on policies, (f) the extent of in fl uence on practices, and (g) the extent of 
in fl uence on research directions. Using these dimensions as criteria, we assessed the 
quality of collaboration in the work of each of the above-named programs or orga-
nizations. Our conclusion is that, whereas the early work of ICMI did not feature 
high-quality collaboration, the ongoing work of most aspects of the other programs 
and organizations does feature high-quality collaboration.      

   Introduction 

 Mathematics education, and research related to mathematics education, lie at the 
crossroads of many well-established knowledge domains such as mathematics, 
psychology, sociology, epistemology, and linguistics and may be concerned with 
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problems imported from one or more of those  fi elds (Sierpinska et al.,  1993  ) . Each 
of the disciplines mentioned typically employs a range of research paradigms and 
methodologies, and each has well-established traditions governing research ques-
tion formulation, research design and development, and the manner in which 
research results are reported. 

 Research in mathematics education can be distilled to mean a disciplined inquiry 
into the structure and content of mathematics curricula and the teaching and learning 
of mathematics. The ultimate goal of all research in mathematics education is to 
improve the quality of mathematics curricula and the quality of the teaching and learn-
ing of mathematics. In order to achieve those ends a strong research base is needed. 

 Throughout most of the 20th century, it was accepted that, of the disciplines 
mentioned in the  fi rst paragraph, two were of paramount importance for those wish-
ing to conduct research in mathematics education. The  fi rst was mathematics, which 
in relation to mathematics education is concerned with the kind of content that is 
taught and learned; the second was psychology, which deals with cognitive and 
affective factors in fl uencing mathematics learning. 

 During the last 25 years of the 20th century, mathematics education researchers 
became increasingly convinced that the research agenda of the international mathe-
matics education community needed to be concerned with far more than mathematical 
content and personal factors affecting learning. In order to learn mathematics well, for 
example, researchers recognized that an understanding of relationships between sym-
bols, signs, and abstract entities was required. Linguistic factors therefore needed to 
be examined. In addition to quantitative research methodologies, qualitative method-
ologies were needed since research in mathematics education inevitably involved 
groups of people, within different societies, and different cultures. 

 Various postmodern approaches to research, which took into account critical 
theory, feminist scholarship, Vygotsky-inspired activity theories, and anti-colonial-
ist theories (   Sefa Dei    & Kempf   ,  2006 ) also began to make their presence felt as a 
“mathematics for all” mentality swept across the planet. Indeed, within the span of 
the last 25 years, it has been increasingly recognized that in the past, traditional 
methods and traditional thinking about mathematics education resulted in the vir-
tual exclusion from serious mathematical learning of many “marginalized” groups. 
Political dimensions of mathematics were taken up, replete with questions like: 
“What mathematics should be learned by whom, and in what education settings?” 
These questions had been studied in the past, but now research designs extended 
beyond studies that would use well-established inferential statistical approaches 
greatly favoured in the 1960s and 1970s. Research which teased out the implica-
tions for mathematics education, at different levels, of the incredible advances in 
technology was being called for. Questions associated with the educational implica-
tions of simple electronic calculators, graphing calculators, computer algebra sys-
tems, and the Internet, suddenly loomed large. 

 Research can be undertaken by individuals, or through collaboration with others, 
and such collaborations can be with others in the same institution or country, or with 
others in different countries. Given the diverse intersections of research into the 
teaching and learning of mathematics, collaborative research becomes a potentially 
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important approach. In particular, international collaboration has the potential to 
bring together a rich diversity of perspectives. Although international collaboration 
can originate because two or more individuals of complementary interests make 
contact and plan research, the focus of this chapter is on structures that nurture and 
support collaborative research that crosses national borders, and what these struc-
tures have meant (and might mean in the future) for the products of that research. 

 In this chapter we  fi rst discuss the concept of collaboration and what this has 
involved for mathematics education research, both in terms of organizations that 
have the potential to nurture cooperation between researchers, and through exam-
ples of research studies that have involved collaboration. Through this discussion, 
criteria for the quality of collaboration emerge. The chapter concludes with a sum-
mary of the effectiveness of the various forms of international collaboration cited, 
and with a brief projection of what the future might hold for collaboration across 
international borders.  

   Collaborative Research in Mathematics Education 

 When invited to write this chapter, we were entrusted with the responsibility of 
exploring the meanings and importance of collaborative research in mathematics edu-
cation. Early in our deliberations we began asking ourselves: What does the term 
 collaborative research  embrace? We found that common dictionary de fi nitions of  col-
laboration  typically referred to a group of like-minded individuals working together 
to achieve a common goal. Such de fi nitions triggered the re fl ection that over the last 
30–40 years the  fi eld of mathematics education has witnessed an escalating interest in 
the place of mathematics education in education policy decisions and in the notion of 
collaborative research, especially in comparative studies in mathematics. 

 Mathematics education researchers around the world have become aware that 
planning, conducting, and evaluating mathematics education research is not a sim-
ple matter. Although researchers sometimes struggle to admit it, even to themselves, 
the fact is that individual researchers often lack the comprehensive knowledge and 
range of skills needed to conduct mathematics education research projects effec-
tively. And, even when they do, their own pre-suppositions can stand in the way of 
well-triangulated research  fi ndings. There is, therefore, a well-founded demand for 
collaborative research in which teams of researchers combine their talents, knowl-
edge, and beliefs, for the good of all. Terms like  action research ,  design research , 
and  mixed-methods research , as well as creative research designs associated with 
concepts like  lesson study , have become commonplace. Researchers are learning 
how to operate, together, in new ways, on new challenges. 

 Collaboration in itself can take various forms ranging from offering general 
advice and insights, to active participation in speci fi c pieces of research. Several 
reasons, and accrued bene fi ts, have been attributed to escalating levels of research 
cooperation in mathematics education during the 20th century. Intuitively, collab-
orative research should facilitate and promote communication and cooperation 
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among all interested parties, including education researchers and practitioners. An 
inherent part of any collaborative research effort is the process of reaching agree-
ment on who should be involved in the research team, and of de fi ning the roles of 
individual members. Usually, it will be decided that different team members will 
specialize according to their  fi elds of expertise. Decisions about the research meth-
odologies adopted will arise through collaborative discussion. 

 Collaborative research that involves participants from different nations provides a 
platform from which researchers can forge ongoing networks; it should link issues in 
mathematics education to those in the wider  fi eld of educational research. It should 
also explore issues in mathematics education that are of scienti fi c interest, particu-
larly those that bene fi t from the combined expertise available within the collabora-
tive research team. Finally, collaborative research should increase the visibility of 
mathematics education research within the wider education research community 
(Katz & Martin,  1997  ) . 

 However, historical antecedents and tensions within the broad  fi elds of math-
ematics and mathematics education have often made it dif fi cult for appropriate 
research teams to be formed. Mathematicians, for example, still believed that 
issues associated with mathematical content should take precedence in any think-
ing about mathematics education research, and they were concerned that too many 
mathematics education researchers lacked adequate mathematical competence. 
Psychometricians who have conducted research in mathematics education have 
been particularly interested in the research design, the validity and reliability of 
instruments, and analyses of data. Education administrators, for their part, have 
focussed on the mathematical performances of their students from one year to 
another, and in comparisons with students in other systems. Although mathemat-
ics teachers have also been concerned about their students’ performance, they 
have often concentrated on their own teaching approaches, on textbooks, and on 
the design and implementation of curricula. Frequently, there was a gulf between 
researchers concerned with pre-school and elementary school mathematics, on 
the one hand, and mathematicians and those wishing to research the teaching and 
learning of secondary school and college mathematics, on the other. The former 
tended to believe that they had little to learn from anyone who did not have a 
strong background in working with young children, and the latter believed that it 
was dangerous for those without strong mathematical content knowledge to con-
duct mathematics education research at any level. 

 Such disparate emphases have left the way open for psychologists, psychometri-
cians, and government education of fi cials, who have often known little about math-
ematics education, to call for the development of higher quality mathematics 
education research.  Higher quality  has been de fi ned in terms of investigations which 
feature random trials, coupled with “objective” statistical evaluations of data carried 
out by persons remote from the teacher and the classroom. Such calls have usually 
been bolstered by reference to medical research (Kaiser, Luna, & Huntley,  1999 ; 
Mosteller & Boruch,  2002  ) . For, unless such “higher quality” investigations are 
designed and conducted, they claimed, results from mathematics education research 
would likely be untrustworthy, and often invalid. 
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 The fundamental criterion for the success of any research in mathematics educa-
tion is that ultimately its  fi ndings should enhance the quality of mathematics curri-
cula, or a general understanding of mathematics teaching and learning. Like research 
communities operating in other domains, mathematics education researchers must 
take up the challenge of  fi nding ways to expand the channels of communication, of 
improving the ways in which they communicate what has been learned from their 
own research and from the research of others, in order to affect practice in positive 
ways. Although no one is better quali fi ed than a team of researchers to explain the 
practical implication and theoretical signi fi cance of their own research, such expla-
nations still need to be suitably presented. 

   International Comparative Studies in Mathematics 

 At  fi rst glance it might be assumed that all international comparative studies in 
mathematics education must be fundamentally collaborative in nature, for they involve 
like-minded researchers working together as a collective unit. Such studies are usually 
large-scale studies which reach across national boundaries in order to achieve the 
common goal of generating scienti fi cally-validated knowledge in mathematics educa-
tion that is independent of geographical and cultural boundaries. In this chapter, we 
argue that not all aspects of the best-known international comparative studies con-
ducted in mathematics education have been positive. It is instructive to identify and 
re fl ect on the positive as well as the negative features of such research, and to ponder 
the implications of these re fl ections for the concept of collaborative research. 

 Some of the major comparative studies in mathematics education include the 
early ICMI comparison studies (conducted between 1908 and 1915), the First 
International Mathematics Study (FIMS) conducted in the 1960s, the Second 
International Mathematics Study (SIMS) conducted in the late 1970s, and the 
Third International Mathematics and Science Study (TIMSS) conducted in the 
1990s. In the present century we  fi nd Trends in Mathematics and Science Studies, 
the Programme for International Student Assessment (PISA), and the Learner’s 
Perspective Study (LPS). 

 Although we analyze components of each of these studies, we do not con fi ne our 
attention to those studies only. Put simply, our aim is to identify features of high-
quality “collaborative research” in mathematics education, rather than elaborate 
details of the methods, results or recommendations of such studies. 

 Reports on international collaborations—whether these are in the form of publi-
cations, presentations, discussion groups, or meetings—are not ends in themselves. 
In this chapter, we accept the premise that the term  collaboration , as it is used in 
mathematics education research literatures, implies more than a mere coming 
together of bodies and minds. We accept a point of view put forward by Schwarz, 
Dreyfus, and Hershkowitz  (  2009  )  ,  that  “ unity comes from the fact that researchers 
belong to a common adventure—changing school practices and norms. This adven-
ture is moved by societal ideals of reason and equity” (p. 1). 
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 Thus, in this chapter we look at the work of teams of researchers who have coop-
erated across national borders for the purpose of constructing new entities and con-
cepts in the  fi eld of mathematics education. These teams recognized that their work 
could take unexpected turns. In other words, they assumed that collaboration in the 
 fi eld of mathematics education involved a conscious coming together of minds, to 
work out new ways of thinking or operating. 

 One  fi nal clarifying comment on the concept of collaboration is in order. The con-
cept embraces several familiar related concepts—for example, sharing, uniting, and 
cooperating—but in this chapter it outstrips each of those sub-concepts. As we have 
come to see it, the term  collaborative research  implies that participants share an 
agreed aim or mission. This aim may or may not be tightly de fi ned from the outset, 
but it should be consistent with the name of the organization and with its raison d’être. 
The research workload should be shared by participants, but there does not have to be 
an equal division of labor. The term  collaborative  does not imply that all participants 
are in total agreement with what takes place within the agreed collaborative structure. 
Just as a successful marriage has its ups and downs, so too a successful collaborative 
venture may often have its differences of opinion, and its successes and failures.  

   The Scope of This Chapter 

 The editors of the  Third Handbook  requested that we survey, analyze, and cri-
tique collaborative studies conducted across national borders by teams of research-
ers who had worked together in examining and illuminating facets of mathematics 
education as a social practice. We were asked to examine collaborative practices 
that have permitted the interplay of different perspectives in mathematics education, 
and to tease out the implications of how the cross-national character of many of the 
studies have permitted the examination of trends and special cases. 

 It has not been possible for us to examine every international study that has con-
tributed to the  fi eld’s present understandings of how social and cultural forces 
impinge upon mathematics education locally, nationally and internationally. In this 
chapter we look, necessarily brie fl y, at case studies relating to the establishment and 
ongoing work of the following seven programs or organizations, each of which is 
still in existence and would claim to work in collaborative ways.

    1.    The  Commission Internationale de l’Enseignement Mathématique  (also known 
as the International Commission on Mathematical Instruction, or ICMI);  

    2.    The International Association for the Evaluation of Educational Achievement 
(IEA);  

    3.    The Programme for International Student Assessment (PISA);  
    4.    The Regional Education Centre for Science and Mathematics (RECSAM   ), in 

Penang, Malaysia;  
    5.    The Mathematics Education Research Group of Australasia (MERGA);  
    6.    The International Group for the Psychology of Mathematics Education (PME);  
    7.    The Learner’s Perspective Study (LPS).     
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 In addition, we brie fl y consider forms of collaborative research carried out in 
international aid programs. Following our brief surveys of, and commentary on, the 
work of the programs and organizations, we close the chapter with some comments 
on the type of “collaboration” that each features.   

   The Commission Internationale de l’Enseignement 
Mathématique 

   The Early ICMI as an Exclusive European/North American, 
Male, Mathematicians’ Club 

 It has become received tradition among some historians of mathematics educa-
tion that the  fi rst formal moves toward international cooperation in mathematics 
education came with the launching of the journal  L’Enseignement Mathématique  in 
1899, and with the establishment of the International Commission on Mathematical 
Instruction (ICMI) at the Fourth International Congress of Mathematicians held in 
Rome in 1908 (Schubring,  2008a  ) . Although we acknowledge this tradition, we feel 
it is important to raise serious questions, here, about the quality of collaboration 
involved in this early example of international co-operation. 

 From its creation in 1908, the  Commission Internationale de l’Enseignement 
Mathématique  has also been known by its English name, the International 
Commission on Mathematical Instruction, or ICMI, and in this chapter we hence-
forth refer to it as ICMI. The establishment of ICMI occurred at a meeting of the 
International Congress of Mathematicians (hereafter ICM) held in Zurich in 1908. 
Although the conference organizers had hoped to gather in Zurich “mathemati-
cians from all countries on earth” (Curbera   ,  2009 , p. 9), the 208 who actually 
attended (204 males, 4 females) came from just 16 nations, 15 of which were 
European. The non-European nation was the USA (pp. 15–16), which had seven 
conference attendees. 

 Much has been written about the set of events that took place at Zurich by which 
ICMI was established and about how a small “Central Committee” was chosen to 
oversee the work of ICMI (see, e.g., Donoghue,  1987 ; Schubring,  2008b  ) . Here it 
suf fi ces to say that much power was placed in the hands of a handful of people on 
the initial Central Committee, and this committee decided that ICMI’s decisions 
would need to be rati fi ed by 36 voting delegates: three each from Austria, France, 
Germany, Great Britain, Hungary, Italy, Russia, Switzerland, and the USA, and one 
each from Belgium, Denmark, Greece, The Netherlands, Norway, Portugal, 
Romania, Spain, and Sweden. Thus, 33 of 36 delegates (i.e., persons with voting 
rights at ICMI meetings) were to be from European nations, and the other three 
from the USA (Schubring,  2008b  ) . 

 What is striking is how the early governance structure of ICMI was dominated 
by European mathematicians and educators, and subject to the control of ICM. It is 
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easy to understand how this happened, of course, but that does not hide the fact that 
although ICMI identi fi ed eight “associated countries” (Australia, Brazil, Bulgaria, 
Canada, Cape Colony, Japan, Mexico, and Serbia), the voting nations for ICMI had 
a total population of about 480 million, or only about 30% of the world’s popula-
tion. Voting considerations aside, the following nations were among those not rep-
resented at ICMI meetings: China, India, Indonesia, Iran, Korea, Nigeria, The 
Philippines, Thailand, and Viet Nam—nations that accounted for more than half the 
world’s population. 

 From the outset, ICMI was not representative of the worldwide body of mathe-
matics teachers. Despite the best intentions, the Central Committee and its voting 
members were largely white, European, and male, and mathematics teachers in 
schools were not represented. Although ICMI intended that its vision would be 
 international , its structure belied that vision. The principal form of collaboration in 
ICMI operations was little more than a sharing of information between its members. 
It was not truly global in its outreach, and its restricted mission arose out of an 
unfortunate internal belief that only certain mathematically advanced people in cer-
tain mathematically advanced nations possessed suf fi cient knowledge and wisdom 
about mathematics and mathematics education to be worthy of being admitted to 
ICMI’s “inner circle.” This belief would permeate ICMI for more than 50 years 
(Furinghetti,  2008  ) . 

 We do not dwell on the early work of ICMI except to say that ICMI’s initial 
mandate was to analyze the teaching of mathematics in secondary schools in vari-
ous countries (Schubring,  2008b  ) . One of the most tangible outcomes of the early 
work of ICMI was the production of a series of reports on the state of mathematics 
education in a number of countries. These reports would subsequently be published 
through various vehicles, including the French-language journal  L’Enseignement 
Mathématique  and the National Council of Teachers of Mathematics’  Fourth 
Yearbook  (Reeve,  1929  ) . Among the national reports to appear were papers on 
school mathematics in the following countries: Australia, Austria, Czechoslovakia, 
England, France, Germany, Holland, Hungary, Italy, Japan, Russia, the Scandinavian 
countries, and the USA. The inclusion of reports from Australia and Japan testify to 
a widening vision of ICMI. 

 In 1907, David Eugene Smith   , the North American mathematics educator who 
was signi fi cantly involved in the establishment of ICMI, had visited Japan with the 
aim of adding Japanese texts to his collection of rare books. Smith    would subse-
quently have a large in fl uence on what would be included in NCTM’s  Fourth 
Yearbook , and therefore the inclusion of a report on what was happening in Japan 
was not surprising. With the exception of Japan and the USA, all the other nations 
represented in the  Yearbook  were European. The impression given was that, from a 
mathematics education perspective, the USA had most to learn from European 
nations, although, perhaps, the Japanese mathematics education scene might also be 
of some interest. 

 When we studied these early summary national reports we were particularly 
struck by the report on the teaching of mathematics in Japan (Fukisawa,  1912  ) . 
Whereas the other national reports often comprised tedious summaries of recent 
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curricular and examination changes (see, for example, Young, Osgood, Smith, & 
Taylor,  1915  ) , the Japanese report concentrated on pedagogical matters. It offered 
rich commentary on methods for teaching dif fi cult topics in mathematics (e.g., 
fractions, ratio, elementary algebra), and for us the comments continue to have 
freshness and relevance even a century after they were written. These reports came 
from school teachers, mathematicians, school and college administrators, and gov-
ernment of fi cials from all over Japan. The English version of the  fi nal Japanese 
report comprised 15 chapters, prepared by 17 educators and mathematicians, and 
occupied 238 pages. Within Japan, this was truly a collaborative effort, and was an 
achievement all the more remarkable because Japanese respondents were given 
very little time to prepare the report and have it translated into French and English 
(Fukisawa,  1912  ) . 

 There was much to be learned from the Japanese report, but the general method 
of collaboration adopted by ICMI meant that the important ideas in the Japanese 
report would rarely, if ever, be discussed by those outside Japan. The issue of 
whether the West had much to learn from the East was not to be taken very seriously 
in a largely Eurocentric organization like ICMI, which seemed to be convinced that 
the best mathematicians, and therefore, probably, the best teaching of mathematics, 
were to be found mainly within Europe or North America. ICMI was of fi cially part 
of ICM, and during its early existence, in the  fi rst half of the 20th century, it remained 
 fi rmly under the wing of mathematicians (Furinghetti,  2008  ) .  

   New Mathematics, Royaumont, and a Revival 
of an Exclusive Club 

 Following the Soviet Union’s launching in 1957 of Sputnik, the US government 
worked with the Organisation for European Economic Cooperation    (OEEC) to 
organize an international conference, held in Royaumont, France, to develop new 
thinking in mathematics and mathematical education (Moon,  1986  ) . Attendance at 
this conference was by invitation, with each participating country being asked to 
send three delegates: a mathematician, a mathematics educator, and a secondary 
school teacher (OECC,  1961a,   1961b,   1961c  ) . In fact, most of those who attended 
the Royaumont Conference were university-based mathematicians or mathematics 
educators, with the leadership coming from mathematicians. 

 The Royaumont conference was attended by representatives from 18 countries, 
16 of which were European, the other 2 being Canada and the USA. From an inter-
national mathematics education perspective, the structure and attendance closely 
resembled the  fi rst ICMI conferences held before World War I. African, Asian or 
Australasian nations were not invited to send delegates who would make presenta-
tions to the conference. We see this episode as evidence of a revival of the old-boy, 
mathematics-dominated, European/North American club that had controlled the 
only moderately successful earlier attempts at international collaboration in math-
ematics education (OECC,  1961a,   1961b,   1961c  ) .  
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   The “New” ICMI 

 The much more encouraging and largely successful activities of a revived and 
restructured ICMI from around 1970 is only touched upon here, because they are 
dealt with in other chapters in this section, especially Chapter 28. It should be noted, 
though, that the new ICMI has used its in fl uence and  fi nancial muscle to develop 
numerous impressive collaborative research activities in mathematics education. 
For example, in 2006 a 596-page book entitled  Mathematics Education in Different 
Cultural Traditions—A Comparative Study of East Asia and the West  was published 
as an outcome of the 13th ICMI Study Conference, which was held in Hong Kong 
in 2002 (Leung, Graf, & Lopez-Real,  2006  ) . This book, which provided, among 
many other things, important commentary on historical, cultural and contextual 
background factors, offered well-argued debate surrounding issues like whether the 
West has much to learn from the high performance of Confucian-background stu-
dents in international comparative studies. The book had 40 chapters contributed by 
authors from all continents. Quite a few of the authors prodded existing structures 
and attempted to shape future directions. The genre of this text was in stark contrast 
to that of the early ICMI reports which focussed on comparing programs, curricula, 
textbooks, and examinations. Other publications in the ICMI Study Series dealt 
with issues such as assessment, gender equity, mathematics education as a research 
domain, the teaching of geometry, the teaching and learning of mathematics at uni-
versity level, history in mathematics education, and the teaching and learning of 
algebra. These publications typically were preceded by associated conferences in 
which recognized contributors to the issues under consideration were invited. 

 ICMI regional conferences on mathematics education have been held in many 
parts of the world, including Africa, South America, East Asia and Southeast Asia. 
Often the language of a conference has been English, but on other occasions the 
main language has been French, or some other language. Since the late 1960s, inter-
national congresses on mathematics education (ICMEs) have been conducted, every 
4 years. Of the 12 ICMEs held so far, six were held in Europe, two in Asia, three in 
North America, and one in Australia. The last four ICMEs were held in Korea 
(2012), Mexico (2008), Denmark (2004) and Japan (2000). Although there has still 
been a tilt towards European/American leadership, there has been a noticeable 
change from the early 1900s.   

   Unexpected Outcomes of IEA Activities 

 In 1958, a group of scholars—mostly educational psychologists, sociologists 
and psychometricians, but not necessarily mathematicians or mathematics educa-
tors—came together at a UNESCO of fi ce in Germany to discuss problems of 
school and student evaluation. These scholars were especially interested in the 
evaluation of student learning outcomes, and they decided to gather international 
data on school students’ knowledge of key mathematical concepts, their attitudes 
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towards mathematics, and the extent of their participation in mathematics 
(Postlethwaite,  1967,   1993  ) . They had the bright idea of requiring participating 
nations to contribute to the costs of the studies. In 1967, this group became formally 
known as the International Association for the Evaluation of Educational 
Achievement (hereafter IEA). The ongoing activities of IEA are dealt with in other 
chapters of this  Handbook , and here it suf fi ces to draw attention to some unexpected 
outcomes from IEA activities that have in fl uenced thinking about what constitutes 
high-quality international collaboration in mathematics education research. 

 The design of IEA studies required consultation with local educators from all 
participating nations. Careful attention was given to creating pencil-and-paper 
instruments that corresponded to curricula adopted in participating nations, and to 
the delicate issue of translating tests so that, as far as possible, equivalent tests in 
different languages would be produced (Ellerton & Clements,  2000,   2002  ) . 
Participating nations had to agree to allow strati fi ed random samples to be selected. 
Although the designs were, from a psychometrical perspective, satisfactory, math-
ematics educators were unhappy that they had not been more fully and carefully 
consulted and involved in what were, after all, international mathematics education 
research studies (Keitel & Kilpatrick,  1999  ) . 

 Governments of participating nations, however, were content to leave FIMS, 
SIMS, and TIMSS largely to the acknowledged expertise of IEA psychometricians 
and psychologists, who were assisted by carefully chosen curriculum experts, 
including some well-regarded mathematics education researchers. Those adminis-
tering education systems, and politicians, wanted to know how well their students 
performed in comparison with corresponding students in other nations, and were 
prepared to pay to make sure that the forms of statistical analyses that were used 
were suf fi ciently authoritative for legitimate comparisons to be made. 

   IEA and OECD International Studies 

 IEA’s First International Mathematics Study (FIMS) targeted 13-year-old stu-
dents and pre-university students. Participating nations were Australia, Belgium, 
England, Finland, France, Germany (FRG), Israel, Japan, the Netherlands, Scotland, 
Sweden, and the USA. Students from Japan performed very well, and those from 
Australia and Israel performed at least as well as, if not better than, European stu-
dents (Husén,  1967  ) . It was a matter of interest, and perhaps surprise, that it appeared 
to be the case that Japanese students were learning school mathematics better than 
their European and American counterparts. The international education community, 
including mathematicians and mathematics educators, wanted to know if that was 
indeed the case, and if so why? 

 The Second IEA Mathematics Study (SIMS) was conducted between 1977 and 
1981. Participating nations were Belgium, Canada, England and Wales, Finland, 
France, Hong Kong, Hungary, Israel, Japan, Luxembourg, Netherlands, New Zealand, 
Nigeria, Scotland, Swaziland, Sweden, Thailand, and the USA. SIMS examined the 



838 Singh and Ellerton

intended, implemented and attained curricula in mathematics, at two levels: (a) 
13-year-olds, and (b) students in their last year of secondary education. Student per-
formance was measured and reported separately for arithmetic, algebra, geometry, 
measurement, and statistics (Burstein,  1992 ; Robitaille & Garden,  1989 ; Travers & 
Westbury,  1989  ) . Analyses of SIMS data showed that at the 13-year-old level, stu-
dents from Japan and Hong Kong achieved the highest means. The concern raised by 
FIMS was now magni fi ed, and Western mathematicians, educators, and parents 
began to demand that something be done to improve the situation (Clements,  2003  ) . 

 IEA’s Third International Study of Science and Mathematics (TIMSS) was con-
ducted in the early 1990s. Over 500,000 students, in more than 15,000 schools in 45 
participating nations, were involved, with students being mainly at three levels, 
Grade 4, Grade 8, and end-of-secondary school. Supposedly equivalent tests were 
developed in more than 30 different languages, and strict sampling procedures were 
followed within most of the participating nations. In addition, a TIMSS video study, 
which focussed on eighth-grade mathematics classes in three nations—Germany, 
Japan and the USA—was conducted (Hiebert, Stigler, & Manaster,  1999  ) . 

 TIMSS analyses indicated that at both the fourth- and eighth-grade levels, the 
four best-performing nations were the four participating Confucian-background 
nations: Singapore, Korea, Japan, and Hong Kong. The mean for US fourth-grade 
students was slightly above the international average, and the mean for students 
from England and Wales was slightly below the mean. At the eighth-grade level, the 
means for US students and for students from England and Wales were below the 
international mean. The lowest national mean score was from South Africa. 

 The outstanding TIMSS results from Confucian-heritage nations struck a chord 
with educators and politicians around the world, who renewed their efforts to dis-
cover the Asian nations’ “secret” (Menon,  2000  ) . For example, curricular analyses 
suggested that US mathematics curricula were “a mile wide and an inch deep” 
(Schmidt et al.,  2001  ) , and video analyses (Hiebert et al.,  1999  )  suggested that 
Japanese teachers taught in qualitatively different ways from their US and German 
counterparts. Japanese teachers did not rely wholly on drill and practice, as some 
had previously believed, but regularly engaged students in challenging problem 
solving and problem creation exercises. Such was the publicity given to TIMSS’s 
1995  fi ndings that IEA has subsequently been funded, by numerous governments, 
to conduct new international comparative studies. IEA has continued to use the 
acronym TIMSS (now standing for “Trends in Mathematics and Science Study”) 
and many Asian, Australasian and some African nations have participated in TIMSS 
assessments over the past decade (Stacey,  2010  ) . Confucian-heritage nations have 
always topped international performance league tables. 

 The success of TIMSS encouraged the Organisation for Economic Co-operation 
and Development    (OECD) to inaugurate its Programme for International Student 
Assessment (PISA) studies, which compared nations on problem solving and appli-
cations of mathematics and science. Forty-one nations participated in the second 
PISA study, conducted in 2003, which focussed on mathematical problem solving. 
Once again, students from Confucian-background nations excelled, although stu-
dents from some other nations (e.g., Finland) also performed well. In a 2009 PISA 
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study, about 75 nations participated, including Japan, Korea, Australia, New 
Zealand, Indonesia, Thailand, Singapore, Chinese Taipei, and three parts of China 
(Hong Kong, Shanghai, Macao) (Stacey,  2010  ) . From the outset, the PISA studies 
have seen a greater involvement of mathematics education researchers than the IEA 
studies (Stacey,  2010  ) . To help readers to appreciate the extent to which collabora-
tive actions underlie the working structure of PISA, the following extract is quoted 
from the Foreword of the report of PISA 2009 results (OECD,  2010  ) :

  This report is the product of a collaborative effort between the countries participating in 
PISA, the experts and institutions working within the framework of the PISA Consortium, 
and the OECD Secretariat. The report was drafted by Andreas Schleicher, Francesca 
Borgonovi, Michael Davidson, Miyako Ikeda, Maciej Jakubowski, Guillermo Montt, 
Sophie Vayssettes and Pablo Zoido of the OECD Directorate for Education, with advice as 
well as analytical and editorial support from Marilyn Achiron, Simone Bloem, Marika 
Boiron, Henry Braun, Nihad Bunar, Niccolina Clements   , Jude Cosgrove, John Cresswell, 
Aletta Grisay, Donald Hirsch, David Kaplan, Henry Levin, Juliette Mendelovitz, Christian 
Monseur, Soojin Park, Pasi Reinikainen, Mebrak Tareke, Elisabeth Villoutreix and Allan 
Wig fi eld. Volume II also draws on the analytic work undertaken by Jaap Scheerens and 
Douglas Willms in the context of PISA 2000. Administrative support was provided by 
Juliet Evans and Diana Morales. The PISA assessment instruments and the data underlying 
the report were prepared by the PISA Consortium, under the direction of Raymond Adams 
at the Australian Council for Educational Research (ACER) and Henk Moelands from the 
Dutch National Institute for Educational Measurement (CITO). The expert group that 
guided the preparation of the reading assessment framework and instruments was chaired 
by Irwin Kirsch. The development of the report was steered by the PISA Governing Board, 
which is chaired by Lorna Bertrand (United Kingdom), with Beno Csapo (Hungary), Daniel 
McGrath (United States) and Ryo Watanabe (Japan) as vice chairs. Annex C of the volumes 
lists the members of the various PISA bodies, as well as the individual experts and consul-
tants who have contributed to this report and to PISA in general. (p. 3)   

 IEA and OECD have generated some healthy, collaborative research studies 
within the domain of mathematics education research. One thing that these studies 
have made clear is that high-quality intended and implemented school mathematics 
curricula have often involved participants from both inside and outside of Europe 
and North America. 

 Mathematics education researchers, everywhere, quickly recognized that it was 
their responsibility to play a leading role in discussions about what the implications of 
the IEA and PISA results might be, locally, nationally and internationally. They also 
decided that more worthwhile discussion and associated actions were likely to emerge 
from collaborative research where all participants were regarded as equals. At the 
29th Conference of the International Group for the Psychology of Mathematics 
Education, for example, there was a plenary panel session on “What Do Studies Like 
PISA Mean to the Mathematics Education Community?” Acknowledged leading 
mathematics education researchers provided the plenary addresses (see, Jones,  2005 ; 
Kieran,  2005 ; Neubrand,  2005 ; Shimizu,  2005 ; Williams,  2005  ) , but all present were 
encouraged to participate in the keen discussions which these addresses precipitated. 

 Any claims that mathematics education researchers comprised a closed, largely 
European/North American club were no longer sustainable. Despite important criti-
cisms of international comparative studies (e.g., Keitel & Kilpatrick,  1999  ) , leaders 
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of many national educational systems now wanted to learn from such studies. The 
lesson here is this: The mathematics education research community must recognize 
that even unsatisfactory approaches to collaboration can often generate structures 
and results that can underpin future, more successful collaborative research. The 
international mathematics education research community should continually seek 
to tweak existing research efforts so that better research will be conducted. 

 The IEA studies certainly generated much discussion and debate in relation to 
the quality of mathematics education offered in different nations. Inevitably, the 
performance league table raised questions about the merits and demerits of the ped-
agogies utilized in developed nations like the USA, Germany, and Britain in which 
students’ performances were regarded as dismal (Stevenson & Stigler,  1992 ;    Stigler 
& Hiebert,  1999  ) . However, a range of methodological issues dealing with the 
nature and conduct of the surveys, the comparability of the populations tested, and 
the quality of the data obtained raised questions about the validity and applicability 
of the  fi ndings (Torney-Purta,  1987  ) . 

 Then, when it was found that the attitudes towards mathematics, and the mathe-
matics self-concepts, of many students in the high-performing Confucian-
background nations were poor, important questions were raised that had not really 
been addressed in the IEA reports (Ellerton & Clements,  2010 ; Leung,  2006  ) .   

   From Local Effort to a Cooperative Form of International 
Endeavour: The Case of RECSAM    

 We now turn to a completely different kind of collaboration, one which is only 
partly to do with mathematics education research. Since the beginning of the 20th 
century, mathematics education researchers within Asia, Africa, and Australasia 
have worked hard at becoming well-regarded members of the international mathe-
matics education community. Their efforts have been facilitated by rapid improve-
ments in transport (from rail and ship to automobile and to air transport), and 
escalating use of modern communication technologies. It is important to document 
how educators in these nations have overcome the tyranny of distance and have suc-
ceeded in developing a “local to national to international” progression in the quality 
of their research. We now discuss, very brie fl y, the case of the Regional Centre for 
Education in Science and Mathematics (RECSAM   ), a case which, we claim, has 
featured high-quality collaborative procedures from the outset. 

 RECSAM   , located in Penang, Malaysia, has worked according to a model for 
international cooperation in which a wide range of participants from co-operating 
nations have successfully contributed to local, national and international research in 
mathematics education over a long period of time. 

 At the beginning of the 20th century, some Southeast Asian nations (e.g., Brunei 
Darussalam) did not have any formal schools—primary or secondary—and less 
than one percent of Southeast Asian children had ever attended a secondary school 
(Horwood & Clements,  2000  ) . When schools were set up, they tended to be based 
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on colonialist models (Asante,  2006 ; Clements, Grimison, & Ellerton,  1989  ) . Over 
the past 50 years, however, Southeast Asian nations have taken giant strides toward 
achieving the goal of providing a quality mathematics education for all (Horwood 
& Clements,  2000 ; Singh & Lim,  2005  ) . 

 RECSAM    began in 1966 as a co-operative venture of the Southeast Asian 
Ministers of Education (SEAMEO). At  fi rst, SEAMEO was administered by Lao 
PDR, Malaysia, the Philippines, Singapore, Thailand, and Vietnam, but subsequently 
other nations—Brunei Darussalam, Cambodia, Indonesia, Myanmar, and Timor-
Leste—have become full members. SEAMEO’s achievement in establishing a cross-
national science and mathematics education centre, which has been active 52 weeks 
of each year for 45 years, is noteworthy. Although, between 1966 and 2012, Southeast 
Asian nations differed in terms of religion, race, language, and development, at 
RECSAM those differences have always been celebrated as a positive feature of the 
diversity and challenge inherent in mathematics education in the region. 

 From the outset, SEAMEO-RECSAM    personnel agreed to a mission statement 
by which it would provide for the needs of SEAMEO member countries in the 
development of expertise in science and mathematics education. Well-quali fi ed sci-
ence and mathematics education specialists have always been seconded to RECSAM 
from participating nations, with most serving as full-time, resident instructors and 
workshop leaders at RECSAM for at least 3 years. The language of instruction at 
the Centre has always been English. International consultants, chosen by RECSAM, 
have assisted RECSAM instructors in workshop- and research-based programs for 
practising teachers, who have stayed at RECSAM, for periods of up to 8 months. 
This work has been  fi nanced partly by international aid money, but mainly by those 
nations sending the teachers. The curricula for programs have been developed by 
RECSAM personnel (Clements & Ellerton,  1996  ) . 

 In the 1960s, SEAMEO-RECSAM    embarked on activities in  fi ve main areas, 
namely: (a) training, (b) research and development, (c) consultancy work, (d) 
designing, offering and evaluating conferences, seminars and workshops pertaining 
to science and mathematics education, and (e) publication. Its subsequent efforts in 
each of these areas have been noteworthy (Clements & Ellerton,  1996  ) . 

 RECSAM   ’s facilities are extensive. They include residence halls; spacious din-
ing and sports amenities; a large administration block; science, mathematics and 
computer laboratories; a library; a printing facility; and numerous lecture theatres 
and classrooms. The decision that the Centre should be largely self- fi nancing has 
presented a continuing challenge, but the aim has been achieved. International semi-
nars are regularly conducted, and for many years, RECSAM has continued to pub-
lish its refereed  Journal of Science and Mathematics Education in Southeast Asia.  
It has also regularly published summaries of Southeast Asian mathematics educa-
tion research (see, e.g., RECSAM,  1991 ; Roadrangka & Liau Tet Loke,  1993  ) . It 
was a proud moment for Southeast Asia when Singaporean students gained the 
highest mean scores in the 1995 TIMSS. The world suddenly learned that Southeast 
Asian education authorities must be doing something right. 

 Clements    and Ellerton     (  1996 ) and Ellerton and Clements (    2000  )  have argued that 
the  fi ndings of mathematics education research conducted in Western nations might 
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not apply in Southeast Asian nations. Western theories might “represent an essen-
tially Eurocentric view of education, in general, and of mathematics education in 
particular” (p. vii). Thus, for example, summaries of “cognitive stages of develop-
ment,” “hypothetical learning trajectories,” and rubrics for “levels” supposedly “vali-
dated” in Western nations might not be helpful in SEAMEO nations. A valid and 
reliable test in one culture might not be valid and reliable in another. When a test 
instrument written in one language is translated into another, the dif fi culty of items 
can change dramatically, and claims of “equivalent” tests across languages could be 
spurious. The other side of the coin is that the rest of the world might learn something 
by studying mathematics curricula, teaching practices, and factors in fl uencing learn-
ing in Southeast Asian nations. Similarly, mathematics textbooks written speci fi cally 
for students in one nation are unlikely to be suitable for students in other nations. 

 RECSAM    has provided, and continues to provide, an effective working, collab-
orative model whereby mathematics education scholars from different countries, 
often with very different cultural backgrounds, can walk and talk with each other on 
a daily basis. Seen in this way, collaborative research in perhaps its purest form has 
been going on for decades, and has helped to improve the teaching and learning of 
mathematics in all SEAMEO nations.  

   The Australian Association of Mathematics 
Teachers (AAMT) and the Mathematics Education Research 

Group of Australasia (MERGA) 

 Australia became a federated nation in 1901, when six states were brought 
together to form one nation. Each of these states was responsible for de fi ning and 
administering its own education system. Because of the isolation of Australia from 
other continents (Blainey,  2001  ) , and because of the states’ large areas and rela-
tively small populations, most teachers of mathematics remained out of the national 
and international education mainstreams. However, state mathematical associations 
were soon formed (e.g., the Mathematical Association of Victoria began in 1907), 
and in the early 1920s the Australian Mathematical Society (AMS) was formed. 

 The Australian Association of Mathematics Teachers (AAMT) was formed in 
the 1940s, and this brought Australian school teachers of mathematics into greater 
contact with each other. For the  fi rst three decades of its existence, AAMT held 
occasional conferences which were attended by mathematicians, mathematics edu-
cators, and mathematics teachers from the various states. In the mid-1940s, AAMT 
began publishing its journal  The Australian Mathematics Teacher.  As of 2012, 
AAMT is a composite association comprising 12 local and state mathematics 
teacher associations. Like the National Council of Teachers of Mathematics (NCTM) 
in the USA, it publishes teacher education journals, and conducts national confer-
ences. It represents mathematics teachers on relevant education issues. Most of its 
members teach mathematics in schools rather than in universities or colleges 
(Ellerton & Clements,  1994  ) . 
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 The Mathematics Education Research Group of Australasia (MERGA) grew out 
of the Mathematics Education Research Group of Australia, which was established 
in 1976. MERGA conducts an annual conference, and publishes two refereed inter-
national journals [ Mathematics Educational Research Journal  ( MERJ ), and 
 Mathematics Teacher Education and Development  ( MTED )]. In recent years, an 
increasing number of international mathematics educators have reported their 
research in these journals. 

 Most MERGA members are mathematics educators working in Australia or New 
Zealand. So, in one sense, MERGA only just quali fi es as an international organiza-
tion. There is another sense, though, in which MERGA, like NCTM, is an interna-
tional organization. Its members have been, and continue to be, active in international 
circles, being particularly well represented at annual conferences of the International 
Group for the Psychology of Mathematics Education. A life-member, and former 
president of MERGA, Gilah Leder of Australia, was awarded the Felix Klein Award 
for 2009 by ICMI; a former editor of  MERJ , Bill Barton, of New Zealand, served as 
president of ICMI between 2008 and 2012; Lyn English, an Australian member of 
MERGA, was the founding editor (and continues as editor) of the American-based 
journal  Mathematical Thinking and Learning . Mathematics Education researchers 
from all over the world attend the annual MERGA conferences, and submit articles 
to  MERJ  or to  MTED . Evidence that MERGA is seeking to develop a more fully 
collaborative international pro fi le is attested to by the fact that, in 2012, the annual 
MERGA Conference was not only held in Singapore, but was jointly organized by 
the Singaporean mathematics education community. 

 MERGA is a shining example of how a body that was established mainly with 
national agendas in mind was able to tweak its structure so that it evolved from being 
a national body to an international body which provides its members with the oppor-
tunity to collaborate with mathematics education researchers from all over the world.  

   The International Group for the Psychology 
of Mathematics Education (PME) 

 Other chapters in this  Handbook  outline the ongoing work of PME. The focus 
in this chapter is on forms of collaboration encouraged by PME. At the third 
ICME conference, held in Karlsruhe, Germany, in 1976, it was decided to estab-
lish PME, and the  fi rst PME annual conference was held in the Netherlands in 
1977. Between 1977 and 2012, 36 annual PME conferences were held—19 in 
Europe, 6 in Asia, 6 in North America, 2 in South America, 2 in Australia, and 1 
in Africa. Of the 6 conferences held in Asia, 2 were in Israel, 2 in Japan, 1 in 
Korea and 1 in Taiwan. From the outset, those attending PME conferences were 
mainly professional mathematics educators. 

 The last  fi ve PME conferences have been held in Mexico (2008), Greece (2009), 
Brazil (2010), Turkey (2011) and Taiwan (2012). By contrast, the  fi rst  fi ve PME 
conferences were held in the Netherlands (1977), Germany (1978), the UK (1979), 
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the USA (1980), and France (1981). The geography of those data suggests that a sea 
change occurred within PME in its thinking about the responsibilities of an organi-
zation with the word  international  in its title. Both ICME and PME have adopted 
policies whereby a percentage of all conference registration fees is allocated to 
assist persons from less af fl uent regions of the world to attend. 

 Internationalism in mathematics education is now being interpreted among 
mathematics educators as implying that all mathematics educators in all parts of the 
world should be involved if they so wish. The emphasis at annual PME conferences 
is less on mathematics per se than on psychological and sociological issues associ-
ated with the intersection between mathematics and education, especially issues 
pertaining to the teaching and learning of mathematics. 

 One of the perennial areas of controversy among PME members and supporters 
has been the raison d’être of the organization. Every now and then there has been an 
attempt to change “Psychology of Mathematics Education” (PME) to something 
like “Research in Mathematics Education” (RME), the main reason being that many 
mathematics education researchers who want to attend PME conferences are not 
comfortable and do not identify themselves easily with the term  psychology . Some 
of these scholars regard themselves more as sociologists, linguists, historians, and 
so on, or more generally as mathematics educators. These scholars tend to argue 
that retaining the term  psychology  in the name of the organization denies it the 
“inclusivity” that many would like to see it have, and tends to restrict the type of 
collaborative research that can be fostered by PME. However, despite numerous 
debates over the years on the matter, the original name of the organization has 
remained inviolate. Many of those who worked hard to establish the organization in 
its early days do not believe that it is fair for subsequent PME members to want to 
change the image of the organization by changing its name. 

 Although PME does much more than organize annual conferences, nevertheless 
the fact that PME annual conferences have been successfully held in many parts of 
the world has contributed in a large way to the growing internationalization of math-
ematics education research. Having an international PME conference hosted in one’s 
own country helps members to believe that they belong. Marcelo Borba  (  2010  ) , a 
PME member from Brazil, stated that although PME has gradually become “a more 
inclusive group,” “the challenge for PME is how to become more international” 
(p. 2). Zahra Gooya  (  2010  ) , a PME member from Iran, called for “PME to be a truly 
international community” (p. 4), and commented that “with the help and support 
from the greater community” (p. 4), countries in all regions of the world should be 
invited to host PME conferences. So perhaps even more tweaking is needed! 

 PME conferences are deliberately arranged so that they provide a forum for 
international cooperation. Not only are there numerous plenary forums at which 
acknowledged leaders discuss research associated with recent changes or ideas, but 
there are also working groups which provide opportunities for small-group discus-
sion on members’ areas of research interest. Often, international publications arise 
out of these working groups. 

 Thus for example, for several years during the 1990s, the second author of this 
chapter chaired a PME mathematics teacher development working group. A natural 
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outcome of the often-animated discussions in this group was a 256-page edited 
 collection of research articles titled  Mathematics Teacher Development: International 
Perspectives  (   Ellerton   ,  1999 ). There were 16 contributing authors from 14 different 
countries. 

 The book provided robust commentary on the following seven controversial 
issues relating to pre-service and professional development mathematics teacher 
education programs:

    1.    Is it feasible to expect mathematics teachers and teacher educators to keep up 
with, and harness, the potential of the new technologies? If yes, then what are the 
responsibilities of their present or likely future employers to provide them with 
adequate time and expert training to engender the con fi dence and competence 
necessary to use and teach with the new technologies?  

    2.    What do mathematics teachers and teacher educators need to do in order to make 
mathematics more meaningful for an ever-widening spectrum of students?  

    3.    With the domain of mathematics expanding rapidly, and in directions which are 
often quite different from those which confronted mathematics teachers when 
they received their formal training in mathematics, what can mathematics teach-
ers and mathematics teacher educators do to keep abreast of contemporary math-
ematics developments? Or, should that not really be a concern of most teachers 
of mathematics, who should only be concerned with mastering the content, and 
methods of teaching, the traditional basics?  

    4.    More generally, to what extent should mathematics specialists (in contrast with 
mathematics education specialists) be solely responsible for teaching the content 
of mathematics to students enrolled in pre- and inservice mathematics education 
programs? Should mathematicians teach the mathematical content and leave the 
pedagogical aspects to mathematics teacher educators?  

    5.    What are the implications of constructivist theories for mathematics teachers and 
mathematics teacher educators?  

    6.    Should mathematics curricula and mathematics teacher education curricula be 
the same the world over? Should these be treated as if they are culture-free 
domains?  

    7.    How should mathematics teacher educators respond to calls for standards-based 
mathematics curriculum and assessment regimes, and competency-based math-
ematics teacher education programs?     

 These issues were heavily researched in the 1990s, with PME contributors taking 
the lead. These research agendas are still alive, with collaborating researchers from 
different nations working together (Schmidt et al.,  2011  ) . 

 PME has attempted to extend its reach to all continents. The  fi rst PME annual 
conference to be held in Africa was PME-22, which took place in 1998. The 4-vol-
ume proceedings of PME-22, edited by two South African mathematics educators 
(Olivier & Newstead,  1998  ) , included 5 plenary addresses, 117 refereed research 
reports, 84 short oral communications, and 34 poster presentations (calculations 
based on data reported in Olivier and Newstead,  1998  ) . Altogether, 51 South 
Africans made presentations at the Conference—including 2 plenary addresses 
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and 15 refereed research reports. This remains by far the greatest number of papers 
from an African nation ever accepted at any single PME conference. Somewhat 
disappointingly, however, only 13 of the remaining 215 presentations at PME-22 
were made by African scholars—and 10 of those were by scholars from 
Mozambique. The only other African presenters came from Botswana, Swaziland, 
and the Cameroons. At the 2009 PME Conference held in Thessaloniki, Greece, 
there were only eight presenters from nations within the continent of Africa, and 
all eight were from South Africa (calculated from data reported in Tzekaki, 
Kaldrimidou, and Sakonidis,  2009  ) . Clearly, the locations of prestigious confer-
ences can in fl uence the growth of a mathematics education teaching and research 
culture within a nation. 

 It would be wrong, however, to give the impression that South Africa is the only 
nation in Africa contributing to international movements in mathematics education. 
The ICMI West African Report for 2010 can be found at   http://mathunion.org/icmi    , 
and the African Mathematical Union (AMU) is active across Africa. AMU was 
founded in Morocco in 1976, and although this is primarily a union of African 
mathematicians, it has a working education committee called the Commission of 
Mathematics Education in Africa. AMU seeks to establish international partnership 
agreements with organizations such as IMU, ICMI, and UNESCO, and in 2011 an 
international symposium on mathematics education was held in Tunisia. In 2009 
and 2010, ICMI, UNESCO, AMU, and the French Embassy collaborated to present 
exhibitions on “Experiencing Mathematics” in Senegal, Benin and Burkina-Fasco. 

 Undoubtedly, the international mathematics education community still has 
much to do before many African mathematics educators will feel welcome in the 
international mathematics education community (Howson & Kahane,  1990 ; 
Persens,  2006  ) . In 1996, Sitsofe Anku   , an African mathematics educator who was 
then working in Singapore, stated that “current PME members will not know what 
they are missing unless they learn to listen to those who have been excluded (by 
whatever reasons) for so long” (Anku,  1996 , p. 8). According to Anku   , “an atmo-
sphere of trust and encouragement” (p. 8) will be needed. Anku   ’s comment 
reminded his readers that once upon a time many of the world’s leading mathe-
matics education researchers did not realize that mathematics education research-
ers had much to learn from educators and researchers in nations like Japan, China, 
and Singapore. 

 A 2010 Internet report indicated that Sitsofe Anku    was the President of the Ghana 
Mathematics Society (  http://www.ghanaweb.com/GhanaHomePage/NewsArchive/
artikel.php?ID=176590    ) and, in May 2010, he was a presenter at the ICMI-sponsored 
Third African Congress on Mathematics held in Botswana. In September 2011, the 
eleventh Mathematics Education into the 21st Century Project International 
Conference was held at Rhodes University in South Africa. It would be interesting 
to analyze attendance data for those conferences to see if they attracted more African 
mathematics education scholars from Northern, Western, Eastern and Central Africa 
than did PME-22, which was held in South Africa in 1998. Meanwhile, the interna-
tional mathematics education research community would do well to involve African 
mathematics scholars actively in collaborative research efforts.  

http://mathunion.org/icmi
http://www.ghanaweb.com/GhanaHomePage/NewsArchive/artikel.php?ID=176590
http://www.ghanaweb.com/GhanaHomePage/NewsArchive/artikel.php?ID=176590
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   The Learner’s Perspective Study 

 The book  Mathematics Classrooms in Twelve Countries :  The Insider’s Perspective  
(Clarke, Keitel, & Shimizu,  2006  )  presents data from the Learner Perspective Study 
(hereafter LPS), from mathematics classrooms in 12 countries: Australia, China, 
Czech Republic, Germany, Israel, Japan, Korea, the Philippines, Singapore, South 
Africa, Sweden, and the USA. Each author of a county report was a participating 
researcher, and local participants chose their own perspectives and modes of opera-
tion within the agreed LPS research framework. 

 The LPS framework did have tight procedural speci fi cations that provided struc-
tural uniformity in LPS research, which is now taking place in many nations. In 
each participating nation, local researchers identify three highly competent teachers 
teaching in demographically diverse urban government schools. The data generated 
comprise a sequence of ten successive lessons that each of the three teachers give to 
their regular classes. This approach is intended to allow each participating teacher’s 
“normal” development of a topic, as well as student growth in understanding, to be 
monitored. 

 Three cameras (and operators) are required in each LPS lesson to capture devel-
opments in the whole class, as well as the teacher’s contributions and the students’ 
actions. In addition, teachers are interviewed about what they do in class, and stu-
dents are interviewed about their perceptions of what happens in their lessons, their 
memories of events being heightened by video recall techniques during interviews. 
Students and teachers also respond to questionnaires. 

 Although the teachers who participated in the research described in existing LPS 
publications agreed to work within LPS requirements, they were not fully involved 
in the formulation of those requirements. So, in that sense, this collaborative research 
did not involve an equal partnership. There is also the issue of authenticity, whether 
teachers who are aware that their every word and action will be captured on video can 
be expected to generate anything that resembles representative, “normal” classroom 
data. Thus, although Clarke, Keietel, and Shimizu           (  2006  )  claimed that they presented 
“detailed portrayals of the practices of individual well-taught mathematics class-
rooms over sequences of ten lessons” (p. 6), doubts can arise about the extent of the 
authenticity of the recorded lessons and how much one would have to look beyond 
the actual classes and teachers studied. On the other hand, Clarke   , Keitel    and Shimizu    
took pains to emphasize that it was  not  intended that the lessons would be representa-
tive of mathematics lessons in the various participating countries. Rather, the crite-
rion for selection of participating teachers was that their lessons would represent 
high-quality teaching. That distinction seems rather incongruous, however, given 
that the sub-title of one of the LPS reports is “Comparing Mathematics Classrooms 
around the World” (Clarke, Emanuelsson, Jablonka, & Mok,  2006  ) . 

 LPS reports took pains to highlight that their modes of analyses contrasted 
sharply with those used in the 1995 Video Study of the Third International 
Mathematics and Science Study, and in the subsequent 1999 TIMSS Video Study. 
In those studies, statistically representative samples of classrooms were used in par-
ticipating countries (Japan, Germany and the USA in 1995, and Australia, the Czech 
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Republic, Hong Kong SAR, Japan, the Netherlands, Switzerland and the USA in 
1999), and lessons focussed on the teacher and on teacher practices were videotaped 
(Hollingsworth, Lokan, & McCrae,  2003 ; Stigler & Hiebert,  1997,   1999  ) . 

 It is interesting to re fl ect on the type of collaboration embodied in the LPS design. 
It is possible that the researchers’ and teachers’ selection process for choosing class-
rooms and teachers for the study introduced biases into the data and the analyses. 
That raises issues associated with the design of collaborative research that is intended 
to generate high-quality data. With LPS one sees a delicate balance between allow-
ing researchers to choose what they consider to be the “most typical representation 
of school mathematics” in their country and what that choice then means to interna-
tional readers when they interpret the report for their own purposes. 

 In comparison with other international classroom studies, one of the most out-
standing aspects of LPS was the freedom given to researchers in the different coun-
tries to use analytical tools of their own choice. Most likely, this freedom would 
have heightened the researchers’ enthusiasm to discuss and compare their approaches 
with other LPS researchers. Also, the researchers would have felt that their contri-
butions to the LPS study were genuinely those of independent researchers, rather 
than those of minor players within a large, formula-driven study. 

 Table  26.1 , from Ellerton     (  2008 , p. 131), provides a country-by-country listing 
of chapters in Clarke, Keietel, and Shimizu           (  2006  ) . Note that in Chapter 1, seven 
generally-worded LPS research questions are listed, and chapters are grouped under 
those questions based on what the editors felt would be most appropriate for that 
report. This breakdown, however, does not assist readers interested in a particular 
topic or country. The general phrasing of the research questions indicates a need to 
maximize the opportunities for each group of researchers to select and apply inter-
pretations consonant with their own unique contexts. Whether the loss of opportuni-
ties for answering more speci fi c research questions applied to each of the different 
contexts is greater than the  fl exibility offered by the more generally-phrased research 
questions is open to debate.  

 Entries in Table  26.1  draw attention to the huge conceptual differences driving 
LPS research, on the one hand, and the early ICMI work on the other. The concept of 
collaboration embodied in LPS research means that many participants have the 
opportunity to report on the way they view the data. In the early ICMI comparative 
studies, most of the reports were prepared by detached experts who attempted to 
synthesize data that had been gathered. The IEA studies (FIMS, SIMS, and TIMSS) 
were such that it was expected that tight generalizations would be made, to permit the 
creation on international league tables in performance. Thus, careful attention had to 
be given to obtaining strati fi ed random samples, and to generating supposedly cul-
ture- and linguistic-free comparisons. There can be little doubt that IEA did create 
the impression, even among mathematicians and statisticians, that legitimate gener-
alizations could be made from their  fi ndings. But this impression came at a cost. 

 The research summarized in Table  26.1  speaks volumes about the directions 
mathematics education research needed to take. Despite claims made by those 
with extensive access to IEA data about the teaching power to be found in 
Japanese mathematics classrooms (see, e.g., Stevenson & Stigler,  1992 ; Stigler 
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& Hiebert,  1999  ) , we believe that IEA research failed to answer the key question 
of why  Confucian-heritage nations performed so well at the elementary and sec-
ondary levels. 

 Although Clarke, Keitel, and Shimizu  (  2006  )  state “that research into class-
rooms, and into learning in classrooms, in particular, must address the interactive 
and mutually dependent character of teaching and learning” (p. 6), they fail to put 
to rest concerns about the effect of the intrusion of three video cameras, as well as 
researchers/observers, on the very interaction and mutual dependence that is the 
object of their study. In Chapter 11, for example, Begehr  (  2006  )  noted that the les-
son (in a German school) discussed in her chapter, was the  fi fth lesson of a total of 
14 recorded in the school, “so that students and teacher had already had the oppor-
tunity to develop a certain level of familiarity in dealing with the three video cam-
eras” (p. 174). So, what was reported was  not  what normally happened, but rather 
what happened with the presence of three video cameras in the classroom. It is 
instructive, nevertheless to re fl ect carefully on the locations of the many countries 
involved in LPS research (see the  fi rst column of Table  26.1 ). LPS research has 
welcomed the long-overdue participation of mathematics education scholars from 
many of the emerging, and of some of the “forgotten,” nations of the world. 

 In their book  Teaching Mathematics in Australia,  TIMSS Video Study research-
ers Hollingsworth, Lokan, and McCrae  (  2003  )  included a short discussion on the 
in fl uence of videotaping in classrooms. They asked teachers who were part of the 
TIMSS 1999 Video Study whether the presence of a single camera affected their 
teaching of the lesson. They reported that teachers in Australia, the USA and 
Switzerland thought that their lessons were “about the same,” whereas teachers in 
the Czech Republic, Hong Kong and the Netherlands felt that their lessons were 
“worse than usual.” There are two strong reasons why such self-report data should 
be questioned as evidence to support the use of video cameras in classroom research. 
First, not all teachers in all countries surveyed thought that their lesson would have 
been essentially the same if no camera had been present. And second, the teachers’ 
self-report comments may not necessarily have re fl ected what happened in their 
classrooms. For example, teachers’ self-report data indicated that the majority of the 
teachers involved in the TIMSS 1999 study in Australia and the USA believed that 
their lessons were in accord with contemporary  Standards -based ideas about teach-
ing and learning mathematics (Hollingsworth et al.,  2003  ) . However, there is ample 
evidence to suggest that teachers’ perceptions of what went on in their classrooms 
were at variance with what independent researchers observed (see, e.g.,    McIntosh, 
 2003 ; Wood, Shin, & Doan,  2006 ). 

 Clearly, LPS leaders are committed to the methodology they have developed, 
including the use of three video cameras, and video-stimulated interview data. But 
that commitment of itself does not dispel doubts about the effects of the cameras on 
the validity of the data generated. Concern about the use of three video cameras will 
not simply disappear by continued assertions that their presence does not really 
affect the nature or quality of the data. We believe that the researchers would be 
wise to give serious consideration to working through and reporting alternative and 
less-intrusive ways of gathering classroom data. 
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 According to the LPS design, researchers in each country were expected to 
explore each research question through relevant data sets leading to the possibilities 
of interesting cross-cultural comparisons. Clearly, however, with the non-random 
sampling employed in each country, generalizations about features of the mathe-
matics classrooms in any one country, or identi fi cation of cross-cultural differences 
on a wide scale, could not validly be undertaken. This limitation is acknowledged 
by the LPS researchers themselves. Nevertheless, in  Making Connections: 
Comparing Mathematics Classrooms Around the World , Clarke, Emanuelsson et al. 
 (  2006  )  sought to derive comparisons between classroom practices in different coun-
tries based on LPS  fi ndings. 

 In her review of LPS, Ellerton  (  2008  )  stated that there is a sense in which this set 
of studies could be considered as a pilot study on a grand scale. Ellerton    viewed LPS 
as a study which (a) explored its techniques of data collection; (b) identi fi ed areas 
of interest and signi fi cance for further study within each country; (c) explored simi-
larities and differences of learning and teaching environments in culturally different 
settings, and (d) provided initial responses to the various general research questions 
which were posed. She commented that if LPS were viewed as a pilot study, it 
would be easier to forgive areas of weakness. It would also be easier to celebrate 
strong  fi ndings in each of the chapters and to acknowledge that these represent 
exciting possibilities for further research. According to Ellerton   , “pilot studies often 
appear to be fragmented in some way—and that description could easily be applied 
to the diverse  fi ndings presented in the various chapters” (p. 132). 

 High-quality collaborative international research involves more than the mere par-
ticipation of large numbers of people from different nations. It seems that higher degrees 
of understanding of the signi fi cance of the data will occur if as many participants as 
possible are involved in the interpretation of the data and the reporting of  fi ndings.  

   International Aid Organizations and the Concept 
of International Community 

 Since the 1950s, international aid organizations, like UNESCO, UNICEF   , the 
World Bank, the African Development Bank, and the Asian Development Bank, 
have often negotiated contracts with nations to assist educators in so-called develop-
ing nations to modernize their curricula and update their approaches to teaching 
mathematics. The typical model has been for expert consultants from so-called 
advanced nations to form a team to work with local educators and administrators. 
Naturally, however, these experts have usually tended to recommend the “latest” 
curricula and teaching approaches used in their own nations (Berman,  1992 ;    Carnoy, 
 1974 ; Clements & Ellerton,  1996 ; Karp,  2008 ; Kitchen,  1995  ) . Thus, for example, 
British new math approaches were still being introduced into Africa in the late 
1960s and into Malaysia as late as the 1980s (Lee,  1982  ) . 

 Often, local educators were  fi nanced by aid money to undertake higher degrees 
in “advanced” countries, and when they returned to their nations, armed with their 
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graduate degrees, they took steps to introduce curricula and methods to which they 
had been exposed during their studies abroad. Such an approach sometimes subcon-
sciously bypassed culturally appropriate ideas of local educators (Ellerton & 
Clements,  1989 ; Kitchen,  1995  ) , and looked backwards to colonialist times. What 
was needed most was to look forward to current reform efforts which employed 
more democratic, more collaborative methods for working toward improvement. 
The intentions of most participants in most aid programs may have been noble 
(Karp,  2008  ) , but too often the top-down model for interventions has been inappro-
priate. What was needed was better quality collaborative designs in which all inter-
ested parties had a voice. 

 Given the politically-fraught nature of this kind of work, and the  fi nancial entan-
glements that can arise, it would not be prudent to pursue this dif fi cult theme fur-
ther, here. It should be emphasized, though, that the results of education aid have not 
been entirely negative. For example, UNICEF   ’s  (  2010  )  work among people living 
in remote and mountainous regions of Vietnam has carefully and sensitively taken 
local culture into account, and has helped to improve the education prospects of 
many children. 

 The main point, though, is that the “local to national to international” trend in 
mathematics education has not always generated improved curricula and teaching 
and learning approaches in countries receiving aid. Stronger forms of collaborative 
research are needed, for there have been too many examples in which outsiders have 
controlled the interventions, and they have been keen to impose their own nations’ 
preferred models and materials on local cultures (Bishop,  1988  ) . Such a model of 
collaboration needs to be consigned to history. 

 However, one of the messages of this chapter is that work featuring inadequate 
models of collaboration should not always be simply discarded. Creative tweaking 
can often pick out what has been good in the past, discard the bad, and pave the way 
for much more successful, pro fi table collaboration.  

   Quality of Collaboration for International Mathematics 
Education Research: A Rubric 

 In the preceding discussion we have identi fi ed and isolated particular aspects of 
collaboration that were applied in the development of certain international mathe-
matics education research programs or organizations. During the discussions, we 
implied that certain programs or organizations had structures which varied in rela-
tion to the quality of collaboration that occurred. We implied that these structural 
features not only in fl uenced the quality of relationships between researchers but 
also the research that was produced in the associated research exercises. Much of 
these discussions were implicit in the ways we viewed the work of the organizations 
and programs under consideration. 

 We thought it might be of interest if we attempted to formalize our thinking on 
this matter. By way of disclaimer, let us state from the outset that what follows is 
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speculative, being based as it is on our own assumptions and conclusions. If it 
offends any reader we sincerely apologize. It is our hope that others will tighten the 
ideas that we now present. 

 Having considered the work done in all the programs and organizations we 
identi fi ed the following seven aspects that might be assessed in relation to “degree 
of collaboration” for each:

   How well de fi ned were the purposes of the program or organization, in other • 
words, its raison d’être?  
  To what extent was the name of the program or organization consistent with its • 
raison d’être?  
  To what extent was the governance of the program or organization democratic, in • 
the sense that all participants had a voice that might in fl uence future directions?  
  To what extent did the program or organization stimulate wider creative discus-• 
sion, internationally, on issues raised in the work of the program or organization?  
  To what extent did the program or organization in fl uence policies, nationally and • 
internationally, in relation to mathematics education practices?  
  To what extent did the program or organization in fl uence practices, nationally • 
and internationally, in relation to mathematics education?  
  To what extent did the program or organization in fl uence research directions, • 
nationally and internationally, in relation to mathematics education?    

 We decided to offer our joint assessment of the quality of collaboration evident 
in each of the main programs or organizations under consideration in this chapter, 
as mirrored within the scope of the above seven aspects that relate to collaborative 
research. We developed and used a 5-point rubric in which “0” indicates “hardly 
any,” 1 indicates “a little bit,” 2 indicates “a reasonable amount,” 3 indicates “a fair 
bit,” and 4 indicates “a great deal” (see Table  26.2 ).  

 We recognize and acknowledge the high level of subjectivity involved in the 
above exercise, and would remind the reader, again, that Table  26.2  is nothing more 
than  our  joint assessments. We hope, though, that the table stimulates re fl ection, not 
only with respect to the nine programs or organizations involved and the seven 
rubric properties for collaboration that we identi fi ed, but also with respect to col-
laborative research in which readers have some involvement of their own. It is 
through such re fl ection that all researchers can strive to make their collaborative 
efforts more effective in each of the different domains identi fi ed. 

 The entries in Table  26.2  re fl ect our belief that although the early efforts of ICMI 
(before World War I) established a basis for future collaboration in international 
mathematics education research, the quality of the early collaboration left much to 
be desired. However, the quality of collaboration in each of the later efforts—those 
of ICMI, IEA, PISA, RECSAM   , MERGA, PME, LPS and international aid pro-
grams or organizations has been uniformly good, with each having succeeded in 
in fl uencing the intended, implemented and attained school mathematics curricula 
within or across nations, as well as in fl uencing the direction of international math-
ematics education research.  
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   A Final Comment 

 In closing this chapter, we want to dispel the notion that international collabora-
tive research in mathematics education necessarily involves large teams of specialist 
researchers from different nations. That idea tends to suggest that effective interna-
tional collaborative research cannot be conducted unless there is large enabling 
research funding. We do not think that such a point of view is appropriate in this era 
of globalization. 

 To be fair to those involved in the early collaborative attempts we have discussed 
in this chapter, we would point out that collaborative international research is more 
easily facilitated in the present, globalized world than ever before. But therein lies a 
challenge: What can we learn from current and previous projects about historical 
consequences of unbalanced collaboration? What makes collaboration across 
national borders productive, ef fi cient and effective? 

 Just because researchers can communicate quickly, freely and openly, does not 
guarantee that they each understand each other’s cultures. Nor does it guarantee that 
they can relate to and interpret the research contexts in the respective nations in 
which they work. Cultural sensitivity is essential, as is mutual support and encour-
agement. As we gaze into the crystal ball, looking to the future of collaborative 
mathematics education research ventures across national boundaries, some visions 
are in sharp focus—like the need for genuine attempts at collaboration, for con-
structive criticism or review of the work of others from other nations, and for sup-
port for those whose  fi rst language is not English (or the language in which the 
research is being conducted or reported). 

 Other visions may not yet be as clear, but represent possibilities that might facilitate 
collaboration—for example, one can ponder how future revolutions in technology 
might create even closer links with researchers in other nations. But there are shadows 
across all of the visions. Do the researchers with whom one would like to work all have 
easy access to the Internet? Will researchers’ focussed visions stay focussed, and will 
others become sharply focussed? Which visions will come to productive fruition? 

 The crystal ball is likely to be shattered if one disregards, by design or by acci-
dent, any of the essential ingredients for collaboration that we have identi fi ed in this 
chapter. In a very real sense, the crystal ball of collaboration across national bound-
aries is in our collective hands.      
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  Abstract   In this chapter, we present  fi ndings regarding the ways in which the 
results of international studies of student achievement have in fl uenced the teaching 
and learning of mathematics in the classroom. We put forward a model of curricu-
lum composed of four levels (global, intended, implemented, and attained) and four 
dimensions (conceptual, cognitive, formative, and social). This model allows us to 
describe the differences between two major international studies of student achieve-
ment—the Trends in the International Mathematics and Science Study (TIMSS) 
and the Programme for International Student Assessment (PISA)—and to situate 
the in fl uences of these studies on classroom practice. Our search revealed that the 
question of how these studies have directly affected practice has not been systemati-
cally addressed. Although we found that there have been some in fl uences of the 
international studies on classroom practice—for example, in the language used in 
public documents, in the localization of curriculum design, and in the impact of 
using imported textbooks—research on these in fl uences has been conducted mostly 
in isolation, without any coherent plan. We use our curriculum model to propose a 
research agenda on three major issues: the impact of the notion of competency and 
the use of the studies’ frameworks; curriculum control, design, and management; 
and teacher preparation and development and textbook use.      
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 Our charge for this chapter is to present an account of efforts that have been made 
to take advantage of the information that international studies of student achievement 
offer to affect practice: the day-to-day of teaching and learning mathematics in class-
rooms. The chapter is complementary to Dossey and Wu’s Chapter   31    , in this  Handbook , 
which speaks about the impact that these studies have had at the policy level. 

 Comparative education in mathematics is an old enterprise (e.g., Cairn,  1935 ; 
Young,  1900  ) . Only after the 1960s did efforts to investigate how students from dif-
ferent countries perform in mathematics become more systematic and collaborative, 
and begin to involve a larger number of nations and educational systems (Bottani, 
 2006 ; Husén,  1967 ; Robitaille & Travers,  1992 ; Schmidt & McKnight,  1995 ; Travers 
& Westbury,  1989  ) . Although there are many arguments for and against participating 
in studies that compare and contrast student attainment across countries (see, e.g., 
Bracey,  1998 ; Freudenthal,  1975 ; Husén,  1983 ; Keitel & Kilpatrick,  1998 ; Kilpatrick, 
 1971 ; Robitaille & Travers,  1992  ) , there is an anticipation that the community will 
bene fi t from these studies, from the “research  fi ndings, the methods used in research, 
and [their] theoretical constructs” (Ferrini-Mundy & Schmidt,  2005 , p. 169). 

 Indeed, Robitaille and Travers  (  1992  )  argued that these studies (p. 707, emphasis 
added). 

 “ can  serve as valuable sources of data and information against which educators in a given 
country  can  compare and contrast the curriculum, the teaching practices, and the outcomes 
attained by students in their own system. The possible impact of alternative curricular offer-
ings, teaching strategies, administrative arrangements, and the like  can  be estimated 
ef fi ciently by examining their implementation in other jurisdictions, even when the coun-
tries are quite dissimilar culturally or economically. … Achievement comparisons  can  also 
provide indications about what is possible … what  can  be accomplished. They  should  serve 
as a spur and incentive for improvement.” 

 As the emphasized words suggest, these are hypothetical expectations that research-
ers have formulated about comparative studies. This chapter presents our efforts in 
assessing the extent to which these studies have indeed in fl uenced practice, directly or 
indirectly; whether alternative “curricular offerings, teaching strategies, administra-
tive arrangements, and the like” have indeed occurred, and if they have, whether they 
have resulted in the changes or real effects on learning and attitudes toward mathemat-
ics of students and on the teaching of school mathematics in the participating coun-
tries and elsewhere. We discuss the ways in which these studies have been “catalysts” 
for research that informs certain levels of practice (Ferrini-Mundy & Schmidt,  2005  )  
and the ways in which they have been sensitive to cultural variation (Clarke,  2003  ) . 

 The chapter is presented in three sections. We start by presenting a conceptual-
ization of curriculum that allows us to organize our  fi ndings regarding ways in 
which the Trends in International Mathematics and Science Study (TIMSS) and the 
Programme for International Student Assessment (PISA) have exerted in fl uences at 
different levels. This section is followed by illustrative examples of these in fl uences, 
which leads to a  fi nal section in which we propose research ideas that would move 
our community toward a better understanding of the actual impact that these studies 
can have on classroom processes. 

 Readers who wish to learn more of the histories of TIMSS and PISA are referred 
to Chapter   31     by Dossey and Wu. A third group of studies, those conducted by 

http://dx.doi.org/10.1007/978-1-4614-4684-2_31
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86327 In fl uence of International Studies on Mathematics Teaching and Learning

UNESCO, focus on Latin America and Africa, and are part of the “Education for 
All” initiative, which seeks to have all the world’s primary-aged children enrolled in 
school by 2015. The studies collect information on third- and sixth-grade students’ 
attainment in mathematics, science, and reading. In addition, there are question-
naires for students (attitudes and background), teachers (content coverage and peda-
gogy), principals, and parents. A Sub-Saharan study also tested teachers’ knowledge 
of the content on which the students were tested. There are very few reports on the 
results of these studies (among them are Bonnet,  2008 ; Lee & Zuze,  2010 ; Saito, 
 2010 ; Valdés et al.,  2008  ) , and those that exist are mostly descriptive, although some 
seek to interpret variability using the contextual variables collected. The Centre for 
Innovation in Mathematics Teaching at the University of Exeter has conducted two 
other longitudinal international studies of mathematical achievement for Innovation 
in Mathematics Teaching in the UK, the Kassel Project (  http://www.cimt.plymouth.
ac.uk/projects/kassel/default.htm    ), and the International Project on Mathematical 
Attainment (  http://www.cimt.plymouth.ac.uk/projects/ipma/default.htm    ). The data 
have been given to heads of the departments of participating schools, but there is no 
information on their effects in the classroom. For examples of reports in Singapore, 
see Kaur and Yap ( 2009 ) and Kaur, Koay, and Yap ( 2009 ). 

   Conceptualizations of Curriculum 

 An interesting feature of international collaboration is the need to clarify terms 
and concepts in order to make the work transparent. This was the case in writing this 
chapter. As our writing progressed, it became increasingly clear that we were using 
different de fi nitions for  curriculum . From the Latin  currere —to run—the word can 
refer to the sequences of courses that a student can take, the topics that are covered 
in a given grade, or the content, skills, competencies, and habits of mind that a per-
son needs to acquire through schooling in order to participate successfully in soci-
ety. The classical distinction between intended, implemented, and attained curricula 
(Travers & Westbury,  1989  )  was useful to describe how either notion of curriculum 
is transformed, but it did not differentiate other aspects that play signi fi cant roles in 
de fi ning a curriculum. Thus, in this section, we propose a de fi nition that will help us 
situate the in fl uences that we found. We depart from a de fi nition of curriculum 
encompassing only content or competencies by de fi ning curriculum as a teaching 
and learning plan that can be described at different levels and that has different 
dimensions. We start with a description of how curriculum is understood by the 
studies that are the central to this chapter, namely, TIMSS and PISA. 

   Curriculum in the International Studies 

 The International Association for the Evaluation of Educational Achievement 
(IEA) has conceptualized curriculum as a tripartite model consisting of the intended, 
implemented, and attained curriculum (see Figure  27.1 ). The  intended  curriculum 

http://www.cimt.plymouth.ac.uk/projects/kassel/default.htm
http://www.cimt.plymouth.ac.uk/projects/kassel/default.htm
http://www.cimt.plymouth.ac.uk/projects/ipma/default.htm
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corresponds to the goals for learning mathematics that students are expected to attain, 
goals that may be established by national organizations (bureaus) or central minis-
tries, states, departments, districts, or schools, and explained through course outlines, 
of fi cial syllabi, and textbooks. Some systems differentiate goals according to types 
of students (e.g., Gymnasium, Hauptschule, and Realschule in Germany), others pro-
duce the textbooks that all children should use (e.g., Cyprus), and others use achieve-
ment tests and diagnostic assessments that children take at different stages of their 
schooling (e.g., South Korea) to de fi ne learning expectations. The  implemented  cur-
riculum corresponds to what is actually taught to students in classrooms by teachers; 
it refers to the interpretations of the intended curriculum made by teachers, who are 
directly responsible for helping students learn. The  attained  curriculum corresponds 
to what students have learned (as assessed by standardized tests, including interna-
tional tests, and classroom assessment) as a consequence of the teaching received.  

 This view of curriculum presupposes different degrees of expertise in curriculum 
design at each level and assumes that teachers and students have little agency in 
designing the curriculum, accepting and agreeing with the information from the pre-
vious level. In particular, teachers are expected to use what is given to them (goals for 
society, goals for schooling, textbooks, of fi cial syllabi) to make decisions about what 
is best for the students they have. This view of curriculum also suggests that the stud-
ies are expected to exert a major in fl uence at the policy level; that is, that the results 
will be used to shape intentions of the whole system that in turn will in fl uence what 
will happen in the classrooms and with students, as those intentions get transformed 
into actions. As a side note, we acknowledge that this model excludes the possibility 
that after implementation, changes can be made to the intention of the curriculum. 
This local view of curriculum transformation is not accounted for in this model. 

 The mathematics framework developed for the 1995 Third International 
Mathematics and Science Study (TIMSS) consisted of three aspects:  content 
domains  (numbers; measurement; geometry; proportionality; functions, relations 
and equations; data representations, probability, and statistics; elementary analysis; 
and validation and structure),  processes or performance expectations  (knowing, 
using routine procedures, investigating and problem solving, mathematical reason-
ing, and communicating), and the  affective outcomes or perspectives  of school 
mathematics and science (attitudes, careers, participation, increasing interest, and 

Intended Curriculum:

What the society expects their
students to learn. Described in:
- National or state standards
- Master syllabi
- Textbooks
- Lesson Plans

Implemented Curriculum:

What teachers and students do
in their classrooms. Described
in:
- Surveys of time spent on
  different topics
- Descriptions of quality of
  activities done in the classroom
- Video

Attained Curriculum:

What students learn. Described
in:
- Student performance on
  standardized tests
- In class examinations (tests,
  homework, quizzes, projects)

  Figure 27.1.    Different versions of the curriculum; adapted from Travers and Westbury  (  1989  ) .       
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habits of mind). The participating countries agreed upon the content domains, 
whereas the performance category was “aligned to the US National Assessment of 
Educational Progress’s (NAEP’s) concepts of mathematical abilities and mathemat-
ical power, both with roots in the National Council of Teachers of Mathematics’ 
(NCTM’s) standards” (Mullis,  1999 , p. 15). Note that this de fi nition encompassed 
more than content, although content was a major component of the framework. 

 The Organisation for Economic Co-operation and Development (OECD) 
departed from this content-focussed approach when setting out its assessment 
framework for its Programme for International Student Assessment (PISA). The 
 fi rst paragraph in the framework stated:

  The aim of the OECD/PISA assessment is to develop indicators of the extent to which the 
educational systems in participating countries have prepared 15-year-olds to play construc-
tive roles as citizens in society.  Rather than being limited to the curriculum content students 
have learned,  the assessments focus on determining if students can use what they have 
learned in the situations they are likely to encounter in their daily lives. (OECD,  2003 , p. 
24, emphasis added)   

 The PISA mathematics framework used three components to describe a domain 
to be assessed in relation to the problems that students were expected to solve: (a) 
the situations or contexts in which the problems were located; (b) the mathematical 
content that had to be used to solve the problems, organized by certain overarching 
ideas, and, most importantly, (c) the competencies that had to be activated in order 
to use mathematics to solve real-world problems.  Content  was organized into four 
overarching ideas: quantity, space and shape, change and relationships, and uncer-
tainty. Mathematical competence was described in terms of eight speci fi c  compe-
tencies : (a) thinking and reasoning, (b) argumentation, (c) communication, (d) 
modelling, (e) problem posing and solving, (f) representation, (g) using symbolic, 
formal and technical language and operations, and (h) use of aids and tools. The 
cognitive activities encompassed by these competencies were structured in three 
 competency clusters : (a) reproduction, (b) connection, and (c) re fl ection. 

 The PISA framework introduced the idea of  mathematical literacy  in order to 
emphasize a functional view of school mathematics, and de fi ned the term as the tools 
that should enable students to make well-founded judgments and be useful in stu-
dents’ lives as citizens. Thus, conceptually, PISA sought to assess the extent to which 
schools had prepared students for participation in the society, whereas TIMSS 
assessed the extent to which students showed pro fi ciency with particular mathemati-
cal content at speci fi c points in their school lives. We take these differences into 
account by situating the two studies as attending to two different aspects of what we 
will propose as curriculum.  

   The Concept of Curriculum in This Chapter 

 So far, we have identi fi ed three levels for the curriculum: the intended, imple-
mented, and attained. Within the intended level, we distinguish several sublevels: 
the  fi rst is the education system that is particular to each individual country and in turn 
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can be differentiated by national or federal, regional and state, or district mandates 
or guidelines; second, at the school level, we include the plans that schools use, 
perhaps adapted or adopted directly from federal, national, or regional mandates or 
guidelines; and third is the classroom level which refers to the plans that teachers 
create for teaching particular lessons, using their institutional, district, state, or 
national guidelines or other sources. 

 In contrast to these multiple sublevels, the implemented curriculum manifests 
mainly in the classroom, whereas the attained curriculum manifests mainly through 
student performance on class assessments and on standardized tests when these are 
available (see Figure  27.2 , in which a gray arrow, in the background, shows the  fl ow 
of suggested in fl uences). Other aspects of the curriculum (e.g., “hidden,” “null”) are 
also identi fi able at the school level—however, we shall concentrate only on the cur-
riculum within the classroom, as that was the task for this chapter.  

 Concurrently with these levels, the curriculum is composed of four dimensions: 
conceptual, cognitive, formative, and social (Rico,  1997  ) , each of which deals with 
four fundamental and interrelated questions: “What is knowledge, what is learning, 
what is teaching, and what is useful knowledge” (p. 386). We acknowledge, of 
course, that other conceptualizations of curriculum can be embedded within this 
de fi nition (see, e.g., Beyer & Liston,  1996 ; Lattuca & Stark,  2009  ) . 

 The  conceptual  dimension refers to content and topics that are speci fi c to a given 
discipline; it de fi nes those elements particular to a discipline (e.g., mathematics, the 
sciences) that are a synthesis of historical and cultural traditions; this dimension is 
informed by epistemology and the history of mathematics and de fi nes larger cultural 
aims. The  cognitive  dimension refers to learning and the learner, and deals with 
understanding what learning is, how it happens, and how different people learn; it 
also has particular manifestations depending on a given discipline; it is directly 
informed by learning theories and de fi nes speci fi c expectations, development, and 
learning aims. The  formative  dimension refers to teaching and the teacher; it deals 
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  Figure 27.2.    Levels of the curriculum considered in this chapter.       
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with aspects such as what teaching is and, in particular, what mathematics teaching 
is; it speci fi es practices that are believed to be useful for teaching (e.g., planning, dif-
ferentiating instruction), and it provides the basis for generating programs for future 
and practicing teachers; it is informed by pedagogical theories and de fi nes formative 
aims. The  social  dimension refers to the value that a society places on the utility and 
usefulness of the mathematical knowledge; it deals with questions such as:

  Which instruments are used to judge the mathematical capacity of an individual? What 
social mechanisms support that judgment? How and with what criteria are teachers’ capac-
ity and curriculum materials judged? [And] which criteria are used to assess the effective-
ness of a curriculum? (Rico,  1997 , p. 385)   

 This dimension is informed by sociology and other disciplines, and it de fi nes 
social aims. 

 Hence, curriculum can be conceived as involving levels—from the national edu-
cational system through to the classroom—and four dimensions, as described above. 
At any given level, each dimension of curriculum acquires a speci fi c meaning. At the 
classroom level, which is of particular interest for this chapter, the conceptual dimen-
sion of the curriculum refers to the mathematics topics that con fi gure the content of 
a given grade or teaching unit; the learning goals of such grade or teaching unit are 
the expression of the cognitive dimension of the curriculum; the formative dimension 
of the curriculum refers to the teaching methodology set up for the grade or teaching 
unit;  fi nally, the assessment instruments and criteria selected for the grade or teach-
ing unit con fi gure the social dimension of the curriculum at the classroom level. 

 For the purposes of this chapter, we include in our model two additional elements. 
First, there is a global level, which in the abstract refers to the possibility of having a 
curriculum that transcends individual systems and that could operate, in fact, as a 
global curriculum—a curriculum that is common to many education systems. 
Although not curricula themselves, the frameworks of the international studies can 
be seen as part of a global level because they represent the agreements across several 
education systems and nations towards a common set of content and learning expec-
tations that will be used to assess students (Clarke,  2003  ) . Second, in the attained 
level we focus on and distinguish between students’ performance as assessed via 
national standardized tests and via tests prepared for international studies. 

 Because each of these dimensions manifests at different levels—at the level of 
classroom practice, at the administrative level of a particular school, and at the 
larger level of an educational system—we have combined these de fi nitions with the 
tripartite version of the curriculum to generate a matrix that situates the different 
manifestations of curriculum, and have added several levels in order to represent 
better the different in fl uences that we identi fi ed (see Figure  27.3 ).  

 Figure  27.3  allows us to situate different documents and aspects of the interna-
tional comparison studies. In spite of their differences in emphasis, we situate the 
frameworks of TIMSS and PISA at the global level; and because both TIMSS and 
PISA are concerned with what students have learned and suggest content (TIMSS) 
and competencies (PISA) that are considered relevant, these studies relate to the 
conceptual and cognitive dimensions only. NCTM’s  (  2000  )   Principles and Standards 
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for School Mathematics  and of fi cial syllabi in individual countries with centralized 
curricula can also fall into the conceptual and cognitive dimensions. NCTM  (  1991, 
  1995  )  also published professional teaching standards and assessment standards. 
These documents explicitly describe what is knowledge, what is learning, what is 
teaching, and what is useful knowledge, thus spanning all the dimensions of the 
curriculum at the national level. 

 The  Common Core State Standards , recently released in the USA following an 
agreement among 48 governors, are an attempt to de fi ne content and learning out-
comes for the country, and are situated at the conceptual and cognitive dimensions 
of the national level. At the time this chapter was being prepared, 40 states and the 
District of Columbia had adopted these  Standards.  

 Some countries (e.g., Spain) include speci fi c mandatory norms at the national 
level for each of these dimensions, whereas others (e.g., Colombia) only give guide-
lines and suggestions at the cognitive level (learning expectations). In Asian nations, 
many ministries of education oversee the development of mandatory national cur-
ricula which, although attending primarily to content, have over the last 10 years 
placed greater emphasis on mathematical processes. In some countries (e.g., Cyprus, 
South Korea), there are national teachers’ guides that include ideas about how stu-
dents can learn and about how topics should be taught. In some countries (e.g., the 
USA), there might be similar information, but this appears only in teachers’ editions 
of student textbooks and might be totally unregulated. 

 With this de fi nition of curriculum as backdrop, we turn now to the main task for 
this chapter.   
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  Figure 27.3.    Levels and dimensions of the curriculum as understood in this chapter.       
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   In fl uences of Comparative Studies 

 To address the question driving this chapter, we searched numerous sources 
seeking to locate reports, documents, and articles related to the topic. We approached 
key informants in academia and in ministries or bureaus of education in several 
countries seeking information about possible studies into the impact of international 
comparative studies at the classroom level. These informants pointed to knowledge-
able researchers and other relevant sources. Library searches provided links to dis-
sertations, conference presentations, reports, books, and journal articles. 

 In the  fi rst group of studies that we found the majority, provided primary and sec-
ondary analyses of the results of international studies. Studies in this group mined the 
richness of the data sets in order to establish connections between the variables col-
lected at country, school, classroom, teacher, and student level with the scores obtained. 
Because international comparison studies have been increasing in their sophistication, 
more powerful analyses have been conducted. These studies did not document chang-
ing practices or study possible changes to practice; rather, they sought to understand 
and explain the sources of differences in scores within and between countries. For this 
reason, we did not include these studies. We also excluded studies that mentioned 
students’ performance (either high or low) to justify attending to a speci fi c issue of 
educational interest, but we kept studies in which substantive elements of the studies 
(the frameworks, the test items, or the  fi ndings) were used. 

 We discuss here the only study that was very close in nature to the charge that we 
had for this chapter, and which anticipates our  fi ndings. That study, by Saracho 
 (  2006  ) , described in detail some of the policies adopted by countries to improve 
their PISA results as consequence of their participation in PISA 2000 and 2003. It 
was commissioned by the OECD in Latin America and conducted by the Mexican 
foundation IDEA [Implementation, Design, Evaluation and Analysis of Public 
Policies]. Saracho used documents, secondary sources, and news, together with 
phone interviews and questionnaires answered by specialists, public of fi cers, and 
university professors in the countries involved. The 14 countries analyzed (Austria, 
Belgium, Brazil, England, France, Germany, Ireland, Luxembourg, Mexico, The 
Netherlands, Norway, Poland, Spain, and Sweden) were selected according to the 
availability of information, the “size” of their reactions to the PISA 2000 results, 
and their relevance to the Mexican case. 

 Even though the Saracho  (  2006  )  report focussed on policy reactions, it consid-
ered issues related to the in fl uence of PISA in the classroom and provided an over-
view of how each country reacted to the publication of the 2000 and 2003 results. 
However, he stated explicitly that he did not  fi nd any evidence of the impact of PISA 
on schools or classrooms. Nevertheless, he documented some reactions that could, 
indirectly, in fl uence the teaching and learning of mathematics in the classroom, and 
where pertinent, we have included these  fi ndings in our review. 

 A second group of documents used elements of the international comparison of 
achievement studies—their frameworks, the released items, or the videos—to 
induce some change and to test the impact of those changes. Included in this group 
are studies that capitalized on the logic of “data-driven” analyses, by which changes 
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at the local level can be initiated and evaluated using information that is of interest 
to the participants. We included these studies in the review even though they do not 
assess the impact of the changes. 

 A third group of studies reported actions taken as a result of looking at what suc-
cessful countries do and consequently adopting salient elements believed to be 
directly associated with that success. The three most prominent cases are the shift 
of the locus of control for curriculum development from higher to lower levels, the 
incorporation of Japanese lesson study, and the adoption of Singapore mathematics 
textbooks. We included these studies, and in the case of the textbooks, we included 
available information about their impact in the classroom. 

 Thus, what we offer is an inventory of projects, activities, and programs whose 
impetus can be traced to either PISA or TIMSS and could have a direct or indirect 
connection to classroom practice. We believe that the inventory is not comprehen-
sive, as many reports may not have been available to us. The majority of the initia-
tives have not been formally studied to assess their impact: How are they used? By 
how many people? What do teachers and students perceive about their effective-
ness? And how are they related to student and teacher performance? Nevertheless, 
we believe that they merit consideration for their potential to generate substantive 
research in the future. Because both PISA and TIMSS have tests on science, when 
available we included works conducted in science education because they suggest 
possible uses that may have been given in mathematics, although we have not been 
successful in  fi nding documentation of these uses. 

 We provide selected examples, classi fi ed by the main categories of in fl uences that 
we were able to document. Within each category, we include details of how it was 
exempli fi ed in individual countries as a consequence of either PISA or TIMSS. 
Readers will notice that most of the examples related to PISA focus on two regions, 
Europe and Latin America, and that most of the examples related to TIMSS focus on 
South East Asia and the USA. This re fl ects the regional impact of these studies. 
Dossey and Wu (Chapter   31    ) note that in terms of reactions to the studies, some coun-
tries (usually the high-performing ones) assume a congratulatory approach, and in 
general may not worry about making speci fi c changes in their own systems; other 
countries assume an indifferent position, taking the results as yet another indicator of 
performance, with little interest in making changes; a third group of countries use 
their students’ performance as a justi fi cation for engaging in activities that would alter 
practice. These last countries provide the examples of in fl uences that we report here. 

 Our conceptualization of curriculum has allowed us to better understand and 
situate the in fl uences that we identi fi ed in our search. We start with the model pre-
sented in Figure  27.3  and use numbered arrows to depict those in fl uences (see 
Figure  27.4 ). We have identi fi ed two sets of in fl uences by looking at where they 
originate: at the global level (In fl uences 1 and 2) or at the attained level of the inter-
national studies (In fl uences 3 to 7). Each in fl uence starts at a particular dimension 
of these levels and ends in more than one level and dimension, illustrating that a 
speci fi c aspect of the international studies can in fl uence different features of a coun-
try’s mathematics curriculum. The  fi rst set of in fl uences start at a global level, with 
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the frameworks proposed by the international studies. The two in fl uences that can 
be tracked down to each level of the intended curriculum are as follows: 

    1.    Competencies and standards in of fi cial documents; and  
    2.    the adaptation and adoption of the frameworks and the items used in these 

studies.     

 In fl uence 1 starts at the cognitive dimension of the global level; it represents how 
the frameworks that have been used by the international studies, concretely PISA’s, 
have had an effect on the cognitive dimension at all the other levels of the intended 
curriculum via the notion of  competencies . In Spain, for example, a number of doc-
uments have been written at all the levels of the intended curriculum, targeting stu-
dent learning of these competencies. In fl uence 2 starts at both the conceptual and 
cognitive dimension of the global level to show how the content and learning expec-
tations in these studies have been used as benchmarks for standards and attainment, 
in fl uencing various levels of the intended curriculum. 

 The second set of in fl uences corresponds to those that we could track as conse-
quence of the results of students’ performance in the tests. The in fl uences originate 
at the attained level, but they refer mainly to the results of tests generated by the 
international studies, rather than to the results of tests created by individual educa-
tion systems, and go “up” to the intended level. We identi fi ed  fi ve different types of 
in fl uences:

    3.    Localization of curriculum design (by which we refer to what is sometimes 
known as the pedagogical aspect of school autonomy);  

    4.    National changes in assessment processes;  
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  Figure 27.4.    In fl uences of international studies on different aspects of the curriculum.       
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    5.    The implementation of cycles of data analysis to design, enact, and assess changes;  
    6.    Professional development and teacher education; and  
    7.    Use of textbooks from other countries.     

 In Figure  27.4 , the concept of localization of curriculum design is represented 
with Arrow 3, from the social dimension of the attained level (results of the interna-
tional studies) to the intended national/federal level expressing the in fl uence the 
results of the studies have had, in some countries, in giving more freedom to schools 
to design dimensions of the mathematics curriculum. Arrow 4, on the other hand, 
represents in fl uences of the results of the tests on assessment processes at the 
intended national level, and Arrow 5 represents the in fl uence of the results of the 
tests on curriculum on all the dimensions of curriculum at the intended school level. 
Arrows 6 and 7 represent in fl uences of the results of the tests on teaching methods 
both at the school and classroom intended levels. 

 The reader may, by now, have noticed that the arrows start at strategic points 
from which the in fl uences could be expected according to the conceptualization of 
the international studies—a global, overarching level—and that the arrows end at 
various places in the intended level, none of them reaching the implemented level. 
This is in itself an important  fi nding for us. As far as we know, there have been no 
systematic investigations on how these studies have reached the classroom. 

 In the next two sections, we describe these two sets of in fl uences. Readers should 
note that the sections are  uneven  in the amount of information provided. This 
unevenness is a consequence of the types of documentation that we were able to 
secure; the differences in  depth  reveal, indirectly, the amount of information avail-
able about each type of in fl uence. 

   From the Global Level to the Intended Curriculum 

 In this section, we describe the in fl uences we established in Figure  27.4  that 
originate in the global level of our curriculum model and affect the intended curricu-
lum. We brie fl y describe the studies and documents that illustrated the ways in 
which these in fl uences were operating. 

   Competencies and standards in of fi cial documents (In fl uence 1).   An important 
in fl uence of these studies in several countries (mostly Latin American and European) 
has been on the language used in public and political discussions of education. The 
notion of  competencies  has gained currency, presumably because it is the word used 
in the PISA frameworks. The word  competencies  has been included in several 
national documents and in a European directive (Education Council,  2006  ) , where 
it refers to competencies for lifelong learning. Competencies are meant to go beyond 
speci fi c school content or skills:

  The assessment of student performance in selected school subjects took place with the 
understanding, though, that students’ success in life depends on a much wider range of 
competencies. … A competency is more than just knowledge and skills. It involves the ability 
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to meet complex demands, by drawing on and mobilising psychosocial resources (including 
skills and attitudes) in a particular context. For example, the ability to communicate effec-
tively is a competency that may draw on an individual’s knowledge of language, practical 
IT [information technology] skills and attitudes towards those with whom he or she is com-
municating. (OECD,  2003 , pp. 3–4)   

 In reality, and perhaps unsurprisingly, a noticeable change in of fi cial rhetoric 
might have little impact on actual classroom practices, as a number of concrete 
cases suggest. In Europe, the 2006 directive for the development of competencies 
for lifelong learning (Education Council,  2006  )  recommended that “Member States 
develop the provision of key competences for all as part of their lifelong learning 
strategies, including their strategies for achieving universal literacy” (p. L 394/11). 
Since then, most European countries have introduced the idea of competency in 
their curricula, giving rise to what can be called a  competency-clash :

  Not only do different notions of competence clash with each other, but the new educational 
“gospel” of standards, competencies, and outcome-orientation is at odds with [the coun-
tries’] traditions, such as content-based curricula and input-orientation (i.e., regulating the 
structures, processes and conditions of teaching and learning). (Sloane & Dilger,  2005 , 
cited by Ertl,  2006 , p. 628)   

 Spanish authorities explained the country’s PISA results by arguing that because 
the Spanish curriculum was centred in content, and Spanish teaching focussed on 
teaching such content (Arias,  2006  ) , Spanish students were not well prepared for the 
PISA tests. One action taken to address this concern was to distribute translations of 
the PISA’s executive summary and framework to all schools nationwide. As a result, 
the idea of competency entered the Spanish educational discourse. Rico  (  2011  )  has 
noted that “the PISA assessment model has been determinant for the Spanish educa-
tional system” (p. 4). In fact, the new national curriculum seeks that students improve 
their command of basic competencies and introduces  competency  as the basis for cur-
riculum innovation (Blanco & Rico,  2011 ; Maestro,  2006 ; Rico & Lupiáñez,  2008  ) . 
This was also the case in the most autonomous regions in Spain (Ferreras,  2006 ; Graña, 
 2006  ) , with many deciding to participate in future PISA tests with a representative 
sample or a census of their students (Gómez,  2006  ) , making the need to prepare stu-
dents on those competencies more pressing. Naturally this shift in language has also 
had an impact on the preparation of teachers and the design of textbooks in Spain. 

 PISA 2000 marked a milestone in Germany because the country ranked 21st 
among the 31 countries that participated in the study. The reactions to these results 
were known as the “PISA shock.” No other country had a bigger reaction to the 
results (Gruber,  2006  ) . Besides the media reaction, there was also a reaction in aca-
demic and political circles. Many articles and books were written on the results and 
on possible strategies to improve them; new teacher preparation and development 
courses were offered, and several educational policies were implemented. In par-
ticular, new standards were introduced for middle schools based on the idea of com-
petency, together with standardized tests assessing students’ performance on those 
standards (Neumann, Fischer, & Kauertz,  2010  ) . 

 Colombia, which has participated in TIMSS since the  fi rst study in 1995, and will 
take part in PISA for the  fi rst time in 2012, adopted the notion of standards in the late 
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1990s, along with other Latin-American countries (Palamidessi,  2006  ) . In 2006, the 
National Ministry of Education published its  Basic Standards of Competencies  
(Ministerio de Educación Nacional [MEN],  2006  ) . This document introduced some 
 general processes  that were similar in nature to PISA’s competencies and set stan-
dards for pairs of grades, organized by types of mathematical knowledge—for 
instance, communicating; modelling; and formulating, treating, and solving prob-
lems (MEN,  2006 , pp. 51–55). The Colombian standards are supposed to contribute 
to the development of competencies. This document has been distributed to most 
schools and teachers in the country. The Ministry has organized conferences and 
teacher-training events with the purpose of explaining the standards and the idea of 
competency. But, “teachers do not use the standards” (Monica López, personal com-
munication, March 16, 2010). Because schools are autonomous in designing and 
developing curricula based on these standards, and most public schools do not pro-
vide or require textbooks, the responsibility of curriculum design and development 
has been passed to teachers, who usually produce so-called teaching guides for 
implementing instruction in their classrooms. A study by Gómez and Restrepo 
 (  2012  )  found that the word  competency  seldom appears in the school planning for 
any given grade. Furthermore, when the word appears, it is interpreted in many ways, 
usually differently from what the  Basic Standards of Competencies  document 
intended and most notably to refer to learning goals for a speci fi c content topic and 
grade level, which is not consistent with the original meaning of  competency . 

 In contrast, the use of standards and competencies does not seem to be a trend in 
Asia. Singapore, Hong Kong, and Japan, three of the Asian countries with outstanding 
results in TIMSS and PISA, do not refer to standards or competencies in the mathe-
matics curriculum. Singapore’s mathematics curriculum is based on its problem-solv-
ing curricular framework that focusses on  fi ve key components: skills, attitudes, 
concepts, metacognition, and processes. This framework has been used since it as  fi rst 
proposed 1990. Since then, there have been some changes to the curriculum in order 
to keep abreast of the shift in global trends towards a knowledge-based economy. For 
example, in 1998, there was an increased focus placed on thinking and processes as 
well as a trimming of some content (Kaur,  2003  ) . However, there was no speci fi c 
reference to TIMSS or PISA. There have, however, been numerous secondary analy-
ses using the TIMSS data, which indicate that TIMSS has been used as an interna-
tional benchmark to gauge the success of the mathematics curriculum in Singapore 
(e.g., Kaur,  2002,   2005,   2009 ; Kaur & Pereira-Mendoza,  2000a,   2000b  ) . 

 Likewise, Hong Kong’s curriculum does not refer directly to standards or com-
petencies but rather focusses on the main aims of developing interest, communica-
tion, lifelong abilities, numeracy, spatial skills and understanding, and the acquisition 
of basic skills (Curriculum Development Council,  2000  ) . In Japan, the mathematics 
curriculum has been undergoing a process of revision since 2005. One of the main 
purposes of the revision is to address weaknesses indicated by PISA results—such 
as students having dif fi culty writing problems that require thinking, decision mak-
ing, expressing, and lacking motivation to learn (Ministry of Education Culture 
Sports and Science,  2010  ) . The new revised course of study in the Japanese curricu-
lum aims to prepare students through the acquisition of basic knowledge and skills 
and the development of abilities to think and to express ideas mathematically. 
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Although concerns arising from PISA results were considered, the new curriculum 
was not structured according to standards and competencies. 

 We found one Asian country, Indonesia, which has explicitly mentioned standards 
and competencies. The Indonesian mathematics standards use competencies to map 
the curriculum. The curriculum lists core competencies and corresponding student 
outcomes that can be used to indicate the achievement of these competencies 
(Departemen Pendidikan Nasional,  2003  ) . There were no clear references to PISA 
frameworks in the mathematics curriculum, but because Indonesia has regularly par-
ticipated in PISA studies since 2000, the use of standards and competencies in the 
curriculum provides some evidence of the effects of PISA on the curriculum. 

   Adaptation and adoption of frameworks and items (In fl uence 2).   Besides the 
in fl uences noted above, in terms of the language used and how it has affected 
curriculum standards, we have anecdotal evidence that the TIMSS frameworks have 
in fl uenced the redesign of U.S. curriculum guidelines at the state level. The extent 
of this in fl uence is unknown, although one dissertation (Landry,  2010 ) looked at the 
alignment between the TIMSS or PISA frameworks and the content standards in 
several states in relation to the high or low performance of countries and states. 
Landry found that, from the content point of view, most of the standards in most of 
the states in the United States cover a wide variety of topics that were repeated year 
after year—a  fi nding that is consistent with results of the curricular analysis for 
TIMSS conducted by Schmidt and colleagues (Schmidt, McKnight, Valverde, 
Houang, & Wiley,  1996 ), which showed that in the United States topics tend to enter 
and stay longer in the curriculum than in other countries. Landry also found that 
high levels of alignment to the curriculum in high-performing countries and their 
assessments did not absolutely equate to high performance at the state level. 

 We have found that, in science education, researchers have used sections of the 
published questionnaires to create new instruments that are used in pre-/post-test 
designs to establish effectiveness of interventions (Lee, Deaktor, Enders, & Lambert, 
 2008 ; Lee, Deaktor, Hart, Cuevas, & Enders,  2005 ; Shymansky, Yore, & Anderson, 
 2004  ) . However, we could not locate similar papers produced by members of the 
mathematics education community.    

   From the Attained to the Intended Curriculum 

 In this section, we discuss the second set of in fl uences: documents and reports 
that speak about the ways in which results of the international studies—especially 
the scores that students obtained—have in fl uenced different levels of the intended 
curriculum. 

   Localization of curriculum design (In fl uence 3).   Most countries that perform 
well in PISA give local authorities the freedom to adapt curriculum (Schleicher & 
Shewbridge,  2008 , p. 20). In PISA, school autonomy for curriculum is measured 
with an index of school responsibility for curriculum and assessment. This index is 
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derived from categories that school principals classify as being the responsibility of 
schools—establishing student-assessment policies, choosing textbooks, determining 
which courses are offered, and the content of those courses (OECD,  2010  ) . For 
instance, in reading literacy, school autonomy has a statistically signi fi cant positive 
relationship with student performance (OECD,  2005  ) . However, when these  fi ndings 
are controlled for student and school-level factors, the relationship between school 
autonomy and student performance is weak. 

 Nonetheless, these results have led countries to push for more school autonomy, 
assuming that such change might have a larger effect on students’ learning than other 
aspects of schooling. In Germany, for example, the decision was taken not only to 
give more authority to the states, with the central bureau prescribing a few core ideas 
(rather than all the curricular content), but also to give schools the  autonomy for 
 fi nishing the curriculum (Ertl,  2006  ) , with both “external and internal assessments 
(of schools and students)” (p. 626) being required. Such a shift has resulted in teach-
ers in some states becoming responsible for developing the whole curriculum for 
their schools, thus localizing the design of the curriculum. Although it is too early to 
establish the impact of such reform in Germany (Kotthoff & Pereyra,  2009  ) , the per-
ception is that the process is problematic, because German teachers are not quali fi ed 
to assume responsibilities as curriculum designers and developers. Similar claims 
about the positive impact of giving more autonomy to schools to design curriculum 
have been made in Australia (Liberal Party of Australia,  2010  ) . 

 Spain is also moving towards localization of curriculum design. In early March 
2011, two major autonomous regions in Spain, Madrid and Catalonia, decided to 
transfer the authority of deciding 35% of the curriculum to schools—pending 
approval by the autonomous region (Alcaide & Álvarez,  2011 ; Bassells,  2011  ) —as 
a means to improve teaching. According to Alcaide and Álvarez  (  2011  ) :

  The autonomy of schools for looking for better solutions for their context is being recog-
nized recently as one of the most recurrent strategies for improving teaching; that is what 
can be assumed, for instance, from several OECD studies, like the PISA report. (p. 38, 
trans. by authors of this chapter)   

 The movement towards localization of curriculum design is not necessarily a 
consequence of the studies. Colombia is an example of curriculum localization that 
occurred prior to its participation in the international studies. The 1994 Colombian 
Education Law established that “the autonomy is a consequence of the will for dif-
ferentiating each educational community, paying attention to different needs and 
expectations; it seeks that each educational institution educate citizens that can 
solve the problems of their own environment” (MEN,  1994 , article 77, trans. by 
authors of this chapter).  

   Assessment (In fl uence 4).   A common justi fi cation for low performance on the 
PISA examinations has been that students have little experience with standardized 
tests. According to Saracho  (  2006  ) , although the in fl uence of PISA has been limited, 
mainly because of the absence of a mechanism to inform schools about individual 
results, schools and teachers are feeling more inclined to agree about the need for 
accountability of results and are more willing to have standardized test results 



87727 In fl uence of International Studies on Mathematics Teaching and Learning

disaggregated at the school and classroom level, something that “was an alien notion 
until recently” (p. 27, see also Dossey and Wu, Chapter   31    ). 

 The case of Poland illustrates an indirect in fl uence of the results of PISA on 
the de fi nition of a standardized test, MATURA, which is administered at the end of 
the secondary school and serves both as a diagnostic tool of the performance of the 
education system and as an admission test for postsecondary education. The annual 
character of the test allows for tracking the effectiveness of changes and the 
identi fi cation of areas that need further change. The Polish results in PISA were 
useful in overcoming the public’s and the schools’ skepticism about the usefulness 
of the proposed test (Saracho,  2006  ) . 

 Danish students obtained results that were close to the OECD average, which 
raised concerns in Denmark given its high expenditure in education. A government 
study named the lack of a standardized assessment culture in the country and low 
levels of satisfaction with the education system as possible reasons for the outcomes 
(OECD,  2004  ) . In Brazil, another country whose PISA scores were low, the govern-
ment recently introduced a new system of periodic standardized assessment of stu-
dents’ performance (Saracho,  2006  ) . 

 Some Spanish regions (e.g., Andalusia) have introduced, by decree, diagnostic 
assessments in schools based on competencies (Junta de Andalucía,  2007  ) . These 
diagnostic assessments have no in fl uence on students’ grades and are designed and 
implemented by schools. Their purpose is to establish the level at which students 
have developed basic competencies and help schools make decisions about their cur-
riculum. Likewise, the Department of Education of the Autonomous Region of 
Navarra is promoting self- and external-assessment in schools. The Department 
anticipates that external assessments will encourage new teaching practices and that 
the PISA framework can be used to enrich the curriculum. In order to ensure coher-
ence between the school assessments and the PISA tests, the Department has de fi ned, 
for each knowledge domain, speci fi c guidelines for improving reading competencies 
at all grade levels. It has also published standards in language, mathematics, and sci-
ence based on the PISA framework. Regarding competency in mathematics problem-
solving, the guidelines proposed that teachers use, during instruction, problems 
modelled on the PISA items, a suggestion in the formative dimension at the regional 
level. A Web page has been set up with information concerning PISA with proposals 
for improvement in each area (Ferreras,  2006  ) . This is a  fi rst step in the data-driven 
approach to reform that we discuss next.  

   Data-driven approaches to reform (In fl uence 5).   A report by the US National 
Research Council  (  1999  )  suggested that a way to capitalize on the results of these 
large-scale studies of achievement at the ground level (namely, schools and 
classrooms) is by using local results to initiate a process of self-re fl ection. This 
report was a direct outgrowth of the TIMSS study, and its focus was on the training 
of professional developers who could direct and assist schools in initiating the data-
driven, self-re fl ection process. The process starts with teachers (schools or districts) 
getting acquainted with TIMSS, its design and its  fi ndings, analyzing the implications 
in their own contexts, and  fi nding a particular focus of attention (e.g., student 
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achievement or curriculum alignment). Teachers (schools or districts) can analyze 
data about student achievement in the TIMSS test or carry out a content analysis 
(guided by the TIMSS content analysis process) by which they can determine the 
extent to which the content is aligned with the framework that guided the design of 
the TIMSS test. This analysis should lead to the identi fi cation of a speci fi c problem 
to work on: an area in which there is low student performance combined with an 
analysis of the content coverage for that area, and may result in a suggestion for a 
change (e.g., emphasize or de-emphasize instruction on certain topics). The change 
is monitored in order to determine its effectiveness, and this analysis starts the cycle 
again (see Figure  27.5 ). An important step in this cycle is benchmarking: testing a 
large sample of students to generate a baseline for later comparisons (similar to the 
Andalusian diagnostic tests). According to the report, several efforts emerged from 
this initial work (e.g., the Chicago area’s First in the World Consortium, the Lake 
Shore school district in Michigan, and an urban school in Patterson, New Jersey). 
We found some documentation of these efforts in newspaper articles (e.g., Dunne, 
 2000  )  and descriptive reports (Kimmelman et al.,  1999  ) , but little in terms of 
assessment of their outcomes.  

 We found one dissertation that studied how a group of teachers immersed in a 
professional learning community in one school took advantage of this cycle of data 
analysis to improve their practice and collected data on the impact of this process. 
In her dissertation, Figueroa  (  2008  )  used information from the analysis of lessons 
from the TIMSS Video Study (Stigler, Gonzalez, Kawanaka, Knoll, & Serrano, 
 1999 ; Stigler & Hiebert,  1997,   1999  )  to generate a modi fi ed version of a TIMSS 

  Figure 27.5.    The data-driven inquiry process (Source: National Research Council,  1999 , p. 398).       
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lesson plan that was piloted and used by several elementary teachers in a school in 
Arizona. 

 In Figueroa’s  (  2008  )  study, the teachers engaged in a 2-year process of learning 
about the process of creating the lessons, presenting them, getting feedback, and 
redesigning the lessons for a new application using a multi-step approach that had 
17 stages expanding on each of the 8 steps shown in Figure  27.5 . Several elements 
of a lesson study process were present, including time that allowed the teachers to 
learn the method, seek resources, plan lessons, and observe each other’s teaching. 

 In this very prescribed process, the observer teachers were trained to take notes on 
the percentage of students who could remember the strategies taught, were engaged 
in the problem-solving process, articulated the strategy, applied the strategy, were 
assessed for mastery/nonmastery of the learning strategy, and could relate the activi-
ties to the learning strategy. An evaluation of the impact of this two-year initiative 
followed a pre-/post-test design with a group of 65 fourth-graders in the school. The 
analysis revealed a statistically signi fi cant increase in the post-test scores with respect 
to the pre-test scores and a statistically signi fi cant association between time of test 
and categories of performance in the state test. But although Figueroa  (  2008  )  sug-
gested that the method could be useful in helping districts improve their students’ 
scores on state tests, unfortunately the study’s design was problematic because it did 
not control for students’ prior knowledge, for other students’ characteristics, or for 
the quality of implementation of the lessons. Furthermore, the process relied on 
external funding, and there were no indications of attempts to sustain the effort. 

 In the USA, a large study led by William Schmidt and Joan Ferrini-Mundy from 
Michigan State University, titled “Promoting Rigorous Outcomes in Mathematics 
and Science Education” (PROM/SE), might provide information about the effec-
tiveness, for achieving reform, of the approach which was adopted. PROM/SE 
 (  2006a,   2006b,   2008,   2009a,   2009b,   2009c  )  is funded by an 8-year grant that uses 
assessment of students and teachers for the purpose of improving standards and 
content coverage, and simultaneously building capacity among teachers and admin-
istrators. It involves over 300,000 students and 18,000 teachers in two states, 
Michigan and Ohio. The reports produced to date apply the logic model used to 
design TIMSS, capitalizing on many of their analytical strategies to deal with those 
data. In addition, the reports illustrate vividly the kind of educational system that 
exists in the USA—a system characterized by extreme variation that leads to sub-
stantial inequalities, not only between districts but within schools as well. This 
variation appears to be strongly determined by the differential access to resources 
(economic, cultural, and intellectual) of the community.  

   Teacher education and professional development (In fl uence 6).   An example 
of in fl uence on teacher education comes from Germany, as a reaction to unsatisfac-
tory results in PISA (Ertl,  2006  ) . The purpose of the SINUS project ( Steigerung der 
Ef fi zienz des mathematisch-naturwisschenschaftlichen Unterrichts , trans. “Increasing 
the Ef fi ciency of Science and Mathematics Instruction,”   http://sinus.uni-bayreuth.
de/2956/    ) is to implement better learning environments at more than 1,000 schools. 
The project de fi ned a strategy that was tested and later disseminated to schools 

http://sinus.uni-bayreuth.de/2956/
http://sinus.uni-bayreuth.de/2956/


880 Mesa, Gómez, and Cheah

(Lindner,  2008  ) . The strategy was based on curriculum design, through teachers’ 
meetings, implementation in the classroom, and sharing of experiences. The purpose 
was to develop and share a new teaching and learning model that broke the German 
tradition, which was characterized by a strong emphasis on practising rules and algo-
rithms, little attention to competencies such as modelling, compartmentalization of 
subjects, teaching methods that induce students to be passive, and an inappropriate 
mixture of learning and assessment (Blum,  2004 , p. 1). Teams of three to ten teachers 
met six to eight times a year for 2–3 years. The meetings dealt speci fi cally with sub-
ject issues and teaching methods, and teachers were expected to produce curriculum 
designs that would be implemented in their classrooms. Once the learning environ-
ments were established, the team evaluated the experience and improved the original 
design (Blum,  2004  ) . The program had positive effects as shown in a large-scale 
comparison schools tested in PISA 2003 (Ostermeier, Prenzel, & Duit,  2010  )  This 
process is similar to that of lesson study (described in the next section), and also to 
some aspects of the data-driven approach. 

 Poland used the PISA results for validating its educational reform. Poland’s 
approach to reform included several policies related to teacher education, develop-
ment, and promotion: encouraging the improvement of teachers’ social and eco-
nomic status, introducing transparent mechanisms for promotion, improving teacher 
knowledge and competencies for the classroom, and offering permanent opportuni-
ties for teacher development. The improvement of Poland’s PISA results seem to 
give credence to the need and importance of maintaining these policies (Barber & 
Mourshed,  2007 ; Saracho,  2006  ) . 

 In addition, we found at least three ways in which professional development and 
teacher education have bene fi ted from the results of the international studies. First, 
many initiatives have capitalized on the availability of videos of mathematics lessons in 
several countries collected through the TIMSS video study. Second, the Japanese les-
son study has been used to engage teachers in improving mathematics lessons over 
time. And third, materials have been produced that assist teachers to explain the mean-
ing of the changes in the curriculum and offer suggestions about using new textbooks.   

   Videos 

 The potential to generate change by observing practice has been the basis for 
developing professional development programs that make the analysis of video an 
important component (Kersting, Givvin, Sotelo, & Stigler,  2010 ; Roth & Givvin, 
 2008  ) . It is undeniable that the availability of the TIMSS videos has been useful to 
many activities in which instruction is analyzed, both in programs of preparation of 
future teachers and in professional development, although the practice had been in 
place before the availability of these videos. However, there is no documentation 
about how these videos have been used in any of these settings. 

 Most of the  fi ndings of the analysis of the TIMSS video study are descriptive, 
characterizing the nature of instruction in different countries and documenting 
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what has been termed the  lesson signature  (Givvin, Hiebert, Jacobs, Hollingsworth, 
& Gallimore,  2005 ; Stigler & Hiebert,  1999  ) . This lesson signature reveals the par-
ticular ways in which lessons are deployed in each country and allows observers to 
understand other practices. Watching substantially different ways to organize 
instruction helps make visible features that are often taken for granted in one’s own 
culture. Only recently, a Web site (  http://timssvideo.com/videos/Mathematics    ) pre-
senting full lessons from different countries participating in TIMSS (in Australia, 
the Czech Republic, Hong Kong, Japan, the Netherlands, Switzerland, and the USA 
for mathematics, and in Australia, Czech Republic, Japan, the Netherlands, and the 
USA for science) has been made public. In this Web site, viewers can watch and 
listen to a variety of English-subtitled eighth-grade lessons and download the lesson 
plans, a map of the class, and a one-page visual description of the lesson. There are 
four mathematics lessons per country, covering a wide range of topics from geom-
etry, measurement, and algebra. 

 The lessons illustrate the many differences between countries in terms of instruc-
tion. A main purpose of this site is to offer video study readers a way to corroborate 
the main  fi ndings about instruction in these countries. The site also anticipates the 
likelihood that it will generate new ideas that will assist teachers as they prepare 
lessons. Naturally, teachers, teacher educators, and professional developers use 
these lessons in a variety of ways, and it may be informative to keep track of those 
uses and their connections to changes in classroom instruction. 

 Several practical suggestions have been derived from the analysis of the video 
component of TIMSS. For example, in a leadership journal targeting principals, 
Roth and Givvin  (  2008  )  summarized four main  fi ndings from the video study, two 
for mathematics and two for science, and made recommendations for taking action. 
In the case of mathematics, Roth and Givvin emphasized that in all countries except 
Japan, there was a strong emphasis on solving problems with the intention of learn-
ing procedures, and that “teachers in higher-achieving countries implement making 
connections to problems differently from teachers in the United States” (p. 24). 
They indicated that US teachers tended to simplify a problem rather than allow 
students to struggle with it, to make links across ideas and concepts, to generalize, 
or to conjecture. They offered suggestions for principals, in terms of having teach-
ers participate in professional development opportunities that would increase their 
mathematical content knowledge, give them opportunities to observe how some 
teachers challenge “students to think about mathematics,” and to help them “break 
the pattern of simplifying problems” so that they would become more likely to rein-
force the idea that “students should struggle with important mathematics” (p. 24).  

   Lesson Study 

 The Japanese lesson study is a process by which teachers collectively plan 
lessons that are then implemented in the classroom; teachers observe and take notes, 
and the observations and notes are used for improving the lesson. The lessons 
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become “research lessons” which are re fi ned over time. This strategy has a very long 
tradition in the Japanese educational system. Lesson study was brought to the atten-
tion of US researchers in the late 1980s (Lesson Study Research Group,  n.d.  ) , thus 
predating both TIMSS and PISA. The high performance of Japanese students in 
TIMSS prompted questions about Japanese instruction, and in particular about the 
possibility of using lesson study as a professional development strategy that could 
spur changes in instruction in the USA (Hiebert & Stigler,  2000  ) . A Web site is 
maintained by Teachers College at Columbia University (  http://www.teacherscol-
lege.edu/lessonstudy/index.html    ) for archival purposes and contains many docu-
ments, research papers, and manuals about lesson study. According to that site, by 
May 2004 nearly 2,300 US teachers in 32 states and 335 schools had been engaged 
in some form of lesson study. Most of the documentation on this site is concerned 
with understanding the method itself: What are the challenges for implementation? 
And what are the potential outcomes of using it in professional development (Lewis, 
Perry, & Hurd,  2004 ; Lewis & Tsuchida,  1998  ) ? The papers on the site highlight the 
need for collaboration and for school reorganization (Watanabe,  2003  )  and, in par-
ticular, the need of allowing teachers time to meet and study (Liptak,  2002  ) . 

 In Australia, the New South Wales (NSW) Department of Education and Training 
initiated a lesson study project in 2001 in which there was an attempt to adapt lesson 
study principles into a professional development program. Initially only three second-
ary schools took part, but by the end of the project in 2004, the number of schools in 
the project had grown to 200. The analyses of data derived from 117 teacher reports 
from 81 schools gathered in 200 to evaluate the lesson study program—showed that it 
had succeeded in changing teacher practices and beliefs. The teacher participants, 
when comparing the focus lessons to their normal practice, reported using more prac-
tical activities, concrete materials and technology, adopting new teaching procedures, 
focussing more on intellectually challenging mathematics, and collaborating more 
with fellow teachers. In a follow-up survey conducted 6 months later, 63% of the 
respondents ( n  = 64) reported continuing to use the lesson study model of planning, 
evaluating, and re fi ning to develop further lessons (White & Southwell,  2003  ) . Lesson 
study has continued to be promoted in NSW government schools across many subject 
discipline areas—although mathematics remains the main subject of study. Examples 
of lessons are displayed on:   http://www.curriculumsupport.education.nsw.gov.au/sec-
ondary/mathematics/prolearn/windows/public_lesson_study.htm    . 

 Over the past decade, lesson study has increasingly been used as a professional 
development program in many countries. Some of this increase in dissemination 
has been due to the efforts of the Japan International Cooperation Agency (JICA), 
which provides international aid to developing economies. Through the collabor-
ative efforts of JICA and lesson study experts, lesson study has been introduced to 
Cambodia, Colombia, Egypt, Ghana, Honduras, Indonesia, Kenya, Laos, the 
Philippines, and Thailand (Hattori,  2007 ; Inprasitha,  2007 ; Kimura,  2007 ; Koseki, 
 2007 ; López & Toro-Álvarez,  2008 ; Odani,  2007 ; Okubo,  2007 ; Saito,  2007 ; 
Shimizu,  2007 ; Yoshida,  2007  ) . In addition, the Asia-Paci fi c Economic 
Cooperation (APEC) has, since 2006, hosted a project in conjunction with the 
University of Tsukuba, Japan, and Khon Kaen University, Thailand, to popularize 
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lesson study. The project grew out of a recognition that lesson study constitutes an 
important approach towards developing human resources, especially the expertise 
of teachers in mathematics classroom instruction. As of 2011,  fi ve cycles of con-
ferences had been held. Reports of the activities related to lesson study in the 
APEC countries can be found on the conference Web site:   http://www.criced.tsu-
kuba.ac.jp/math/apec/    . 

 Much of the available literature documents challenges that can arise when the 
lesson study approach is used in professional development programs. Its use in 
Japan has very much been intertwined with the culture. Compared with teachers in 
Australia, for example, Japanese teachers hold less to the notion that the classroom 
is a private professional space (White & Lim,  2008  ) . Thus, although the lesson 
study approach to professional development may be versatile, there are cultural 
challenges that need to be addressed in its adoption and implementation. 

 Hiebert and Stigler  (  2000  )  proposed that in order to change instruction, teachers 
need to “learn in context,” that is, in their actual practice, and locate “substantive 
decisions for improving teaching within the schools and classrooms where teaching 
occurs” rather than having those decisions made “up the bureaucratic ladder” (p. 9). 
After reminding educators that although systemic and cultural change occurs slowly 
it does happen, they proposed using the process of lesson study as an ongoing pro-
fessional development program that would be carried out in schools—where teach-
ing happens and students learn. 

 Lewis  (  2011  )  reported the use of toolkits and Japanese textbooks in lesson study 
groups in the USA. The toolkits were used to provide support for elementary teach-
ers to teach various mathematical concepts. The initial  fi ndings of a randomized 
controlled trial on the topic of fractions showed that, when compared with teachers 
in other professional development programs, there were signi fi cant improvements in 
both students’ and teachers’ knowledge when lesson study was used (Perry, Lewis, 
Friedkin, & Baker,  2011  ) . 

 The spread, implementation, and success of lesson study as a professional devel-
opment strategy can be traced back to the  fi rst TIMSS Video Study. The link is 
indirect, but it was the TIMSS Video Study that  fi rst drew worldwide attention to 
lesson study as a viable teacher professional development approach that had proved 
to be very successful in Japan. As with other cross-national adaptations, there are 
always limitations and challenges because of different cultural settings. Through the 
hard work, efforts, and creativity of teachers and researchers, lesson study has 
proven to be a sustainable teacher development approach, as is shown in the case of 
the USA (Perry et al.,  2011  ) .  

   Texts for Teachers 

 One way in which countries have attempted to reach teachers is by making more 
information available for their use, typically translations of frameworks and reports. 
We found in addition, however, two cases—Mexico and the USA—in which there 
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were textbooks developed with the intention of training teachers in speci fi c aspects 
of practice. 

 Mexico has participated in PISA since the  fi rst PISA study, and its results have 
motivated many reactions within the country (Rizo,  2006  ) . One reaction has been in 
relation to informing and training teachers for PISA. The Web page of the INEE 
(National Institute for Educational Assessment) contains many documents (see 
  http://www.inee.edu.mx    ) of different types: national reports, results analysis, 
research protocols, and materials for teachers.  PISA in the Classroom: Mathematics  
(Aguilar & Loejo,  2008  )  explains the PISA project and the notion of mathematical 
competency. The core of the book contains several curriculum designs for the class-
room on quantity, change and relations, and probability. These designs contain tasks 
that follow the PISA framework. 

 The remarkable and consistently high performance of Singapore in the interna-
tional tests has led many to inquire about their curricular organization. Their math-
ematics textbooks, being in English, have certainly facilitated their incorporation 
into classroom practice in many nations. In the USA, for example, there is a profes-
sional development package that includes booklets, videos, and lessons that teach-
ers can use in their classrooms if they wish to capitalize on the “Singapore method” 
for solving problems. With titles such as:  Place Value, Computation & Number 
Sense  (Chen,  2010  ) ;  8-Step Model Drawing: Singapore’s Best Problem-Solving 
MATH Strategies  (Hogan & Forsten,  2007  ) ;  Problem-Solving Secrets from the 
World’s Math Leader  (Hogan,  2005  ) ; and  Step-by-Step Model Drawing: Solving 
Word Problems the Singapore Way  (Forsten,  2010a,   2010b ; Walker,  n.d.  ) , the books 
seek to illustrate how Singapore textbooks organize content across strands, how 
models are used, and in what ways can such a presentation and way of thinking 
reach all students and increase students’ understanding of mathematical notions. 
There are also publications urging teachers to include parents in the process (Chen, 
 2008  ) . All these efforts have been made at the elementary level, however, and, 
except for testimonials on the back covers of the actual books, there are no reports 
about the impact of the use of Singapore methods in the classroom. 

   Textbooks (In fl uence 7).   Some countries use their own curriculum frameworks 
to design textbooks based on texts written in other nations, and others directly 
import them into their classrooms. In Spain, for example, textbooks are now based 
on the PISA conceptual framework (Lupiáñez,  2009 ) and, as in Mexico, a number 
of books for teachers have been published which explain the PISA framework and 
relate the idea of competency to curriculum (see, e.g., Rico & Lupiáñez,  2008  ) . 
Recent studies have shown that the majority of tasks proposed by the textbooks are 
at a low level of competency, the reproduction cluster, with very few tasks from the 
connection cluster, and almost none from the re fl ection cluster (González, 
Monterrubio, Delgado, & Codes,  2011  ) . 

 The consistently high performance of Singapore and Hong Kong students has led 
to the development of programs that encourage US districts and teachers to adopt 
and use their textbooks. Singapore textbooks have received more attention. A search 
using terms such as “Singapore,” “Hong Kong,” “adoption,” “mathematics,” 
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“ textbooks” produced about 20 results, with only three referring to Hong Kong. One 
study documented results of a pilot study investigating the impact of using 
Singapore’s textbooks on student achievement. The study was conducted in differ-
ent sites in the USA (Ginsburg, Leinwand, Anstrom, & Pollock,  2005  ) . The main 
conclusion was that “under favorable conditions, Singapore mathematics textbooks 
can produce signi fi cant boosts in achievement, but introducing textbooks alone is 
insuf fi cient to achieve improvement” (p. 127). 

 The results were conditioned by two factors: the mobility of the student popula-
tion and the amount of professional development received. Schools with relatively 
small and stable populations showed large improvements over the 2-year period; 
similarly, there was a correlation between “improvements in the Singapore pilot 
schools and the intensity of the schools’ participation in professional training, sug-
gesting that teacher acceptance and commitment to the new Singapore mathematics 
program may be key to its success” (p. 127). A second important  fi nding related to 
how con fi dent the teachers using the Singapore textbooks were, which was corrobo-
rated with classroom observation. The researchers found that:

   Elementary teachers felt underprepared to teach with the materials and admitted • 
that they had not understood many of the concepts they were supposed to teach.  
  Nearly 40% of the teachers struggled with implementing the curriculum.  • 
  About one- fi fth of the teachers who received intense training successfully imple-• 
mented the curriculum, whereas only 7% of teachers who received less training 
were successful.    

 In general, the teachers noticed that the Singapore textbooks offered a deeper 
treatment of mathematical topics, and that if a textbook returned to a topic it was 
treated with greater depth. They liked the numerous multistep problems included 
in the textbook and the visual explanations because they  made abstract concepts 
concrete. 

 Nevertheless, the teachers identi fi ed challenges in bringing the Singapore text-
books and methods into US classroomssuch as teachers’ lack of understanding of 
the method and their lack of knowledge of strategies to deal with students who have 
a weak background or who have not been exposed to the Singapore curriculum 
before. Other problems included the lack of real-world examples, the use of unfa-
miliar terms, and the unclear alignment between the Singapore content coverage 
and the state-mandated standards, all of which might require using supplemental 
material. In addition, because the Singapore curriculum assumed a spiral progres-
sion, a successful implementation would require an adoption as early as kindergar-
ten. Finally, the Singapore textbooks did not revisit topics later on, something that 
is very typical in US textbooks, and thus there were no provisions for teaching or 
reteaching notions that had not been mastered. 

 The study concluded with suggestions for further studies in relation to  fi ve issues: 
(a) comparison of content coverage and sequencing at the state level with those of 
Singapore; (b) extensive textbook analysis to identify features that could be used in 
US textbooks (the emphasis on pictorial representations appears to be a feature that 
would bene fi t special education or limited English students); (c) comparison of 
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performance on assessment by Singaporean students with national tests, such as 
NAEP, and by US students with Singaporean examinations; (d) changes in how 
teachers are tested with the PRAXIS teacher certi fi cation test, suggested by an 
examination of the alignment of this test with the entrance tests used in Singapore 
to select students for Singapore’s National Institute of Education; and (e) extending 
the piloting of the Singapore textbooks in other schools, using the versions prepared 
for the American market.   

   Summary 

 It appears to us that the in fl uences of TIMSS and PISA on teaching and learning 
within participating nations has been varied. Clearly there has been more reaction in 
countries that did not show outstanding student performance with either TIMSS or 
PISA, although there were countries (e.g., Denmark) for which an average perfor-
mance was also a trigger for re fl ection. Results on the international studies seem to 
have stimulated action in the USA, Spain, and Germany, and certainly effects have 
been felt in other countries as well. It is possible that the availability of more orga-
nized and advanced facilities in the USA, Spain and Germany has made it possible 
for reform initiatives, arising from TIMSS and PISA results, to be planned and 
implemented with some success. In the USA, it is a story of many efforts, borne out 
of speci fi c interests, rather than from common concerted collaborations aimed at 
addressing speci fi c issues. There are many initiatives, but they seem to be carried 
out without any agreed-upon plan or goal. They appear to be left to individual states, 
researchers, schools, and practitioners. In countries with a more centralized organi-
zation, the efforts appear more coherent, with possibly Germany being the country 
in which efforts were most focussed. 

 There are two salient themes at the policy level that have important, and perhaps 
immediate, implications for the classroom: the increased interest in centrally de fi ned 
standardized testing and the increased autonomy given to schools for designing cur-
riculum that  fi ts their local conditions. Central agencies are moving away from pre-
scribing what should be learned, when, and how; limiting their prescriptions to a 
few core content topics and competencies; and giving schools and teachers the 
responsibility to complete the design of their curriculum. The appearance of stan-
dardized tests is the mechanism by which bureaus can control and verify that core 
content and competencies are indeed being implemented and achieved. One peril of 
this approach might be the convergence towards a narrower list of content and com-
petencies, which might over time determine what schools and teachers will “design” 
locally for their classrooms. These initiatives seem to  fl ourish in countries where 
there are no centralized curricula, such as the USA. These initiatives have not been 
documented in countries that fully prescribe a national curriculum, although 
Singapore is starting to experiment with the idea of giving more autonomy to schools 
while maintaining the central control of examinations. 
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 It is unclear what the impact of the studies in the classrooms can be for countries 
in which student performance is high. In Singapore, for example, the Centre for 
International Comparative Studies (CICS) was set up in 2009 within the National 
Institute of Education. The aim of the CICS was to encourage further comparative 
analyses, using the results from international studies to provide stakeholders with 
 fi ndings that could predict the factors that affect student achievement. Being situ-
ated within the National Institute of Education, which conducts teacher develop-
ment, the CICS could see that the  fi ndings were more immediately used and thus 
in fl uence the content of teacher education courses. But although the TIMSS may 
play a signi fi cant role in mathematics education in Singapore, local educators have 
also been quick to point out that “local stakeholders are more likely to use as main 
indicators the performance of students in the public examinations” (Wong, Lee, 
Kaur, Foong, & Ng,  2009 , p. 7), noting that local public examinations are high 
stakes, especially in the Asian region. Student performance is used as a criterion for 
university entrance and for awarding scholarships, which is very highly valued in 
Asian countries. It would therefore be safe to say that teachers in these countries are 
more likely to refer to items from the public examinations than from TIMSS in plan-
ning their lessons.  

   Proposing a Research Agenda to Investigate These Effects 

 The reader will have realized by now that we have been unable to document the 
ways in which the international comparative studies of student performance in 
mathematics have exerted an in fl uence on learning and attitudes toward mathemat-
ics of students in the participating countries and elsewhere. Indeed, we have been 
able only tangentially and indirectly to  fi nd traces of such in fl uence on the teaching 
of school mathematics. We did not  fi nd evidence of in fl uence at the student level. So 
we have only partially ful fi lled our task for this chapter. 

 Ferrini-Mundy and Schmidt  (  2005  ) , referring to TIMSS, invited the mathematics 
education community to capitalize on the many elements of the studies to further our 
understanding by using the results, research methods, and theoretical constructs that 
were generated. As has been the case with other endeavours, the research community 
has been the main direct bene fi ciary of these studies. Because of their complexity, 
studies of this magnitude require substantial know-how at all levels: from design to 
application and from data management to analysis and reporting. The collaboration 
between participating countries becomes the vehicle by which new researchers could 
learn new techniques and generate research agendas that would use the data that had 
been obtained. It seems to us, however, that although there have been large and tan-
gible bene fi ts for the research community, the studies have not had much effect at the 
classroom level. For example, researchers have not explored suf fi ciently how different 
mathematics education stakeholders have interpreted the visions behind the interna-
tional studies. The lack the coherence among those visions could pose constraints in 
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the manner in which they get expressed in individual teachers’ practices in the class-
room (McNab,  2000  ) . 

 Nor has the research community looked carefully enough at the effects of inter-
national studies from a global perspective. Yore, Anderson, and Chiu  (  2010  )  
claimed, in relation to the PISA study, that

  many in the mathematics and science education research communities lament the lack of 
in fl uence that research results have on the education profession, schools, and teaching. 
Academic research done in isolation of end-users—with the faint hope that teachers, politi-
cians, and bureaucrats will access and utilise these results to inform curriculum, assess-
ment, and instruction and to in fl uence public policy—has not worked. (p. 593)   

 We believe that as researchers of student achievement in international contexts, 
we need to take responsibility for improving the knowledge transfer of the results 
from these studies into the places in which it matters—the schools, the classrooms, 
and the students—and to do so in a concerted and planned way. Isolated work runs 
the risk, as we see here, of not having an impact at the ground level, where all the 
policies, mandates, and guidelines are enacted. In what follows, we propose and 
re fl ect on several areas that we believe merit attention from the research community 
and can have direct impact on classroom practice. Our intention is to provide some 
coherence to the work that needs to be done to understand the impact that results of 
international studies might have at the classroom level.   

   Some Research Questions 

 In the following, we propose work that is geared towards understanding how 
important curricular ideas (e.g., competencies) and processes (e.g., localization 
of curriculum design) get interpreted and used differently at each of the intended 
levels, and how those interpretations mediate what teachers do for planning and 
enacting lessons. We assume that the in fl uences we have described here (repre-
sented with gray arrows in Figure  27.6 ) are real, and propose to study how they 
might in fl uence teachers’ work, and hence, students’ learning and attitudes (repre-
sented by a black continuing arrow in Figure  27.6 ).  

 The arrows make a connection to the classroom, both in the intended and the 
implemented levels of curriculum, because it is at these levels where teaching is 
planned and implemented and learning takes place. We  fi rst propose questions 
related to the idea of competencies and about the use of frameworks: that is, we 
consider how the in fl uences represented by Arrows 1 and 2 affect the level of inten-
tion for the classroom and the implementation processes. The next set of questions 
refer to in fl uences represented by Arrows 3, 4, and 5, regarding three related aspects 
of curriculum control, design, and management—namely, the localization of cur-
riculum design, the emergence of standardized testing, and the use of data-driven 
approaches in local reform. Finally, we consider in fl uences from Arrows 6 and 7, 
regarding teacher preparation and development and textbook use. Figure  27.6  draws 
attention to two levels of our curriculum framework: the intended classroom level, 
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and the implemented. We mark this attention by the dark line surrounding these two 
levels. This is why all the arrows, except 4, point to this area in the drawing. In what 
follows, we identify these questions by the corresponding numbers in Figure  27.6 . 

   Competencies and Frameworks 

 Our  fi rst set of questions refers to the impact of the notion of competencies in the 
curriculum and the use of the studies’ frameworks. Concretely, we ask:

    1.    How is the idea of competency that guides the PISA framework being interpreted 
and transformed at the national, regional and district levels of curriculum? And 
how do schools and teachers interpret and use this idea when they plan and 
develop the curriculum in the classroom?  

    2.    How are the frameworks of the international studies interpreted and implemented 
at national, regional and district levels of curriculum? And how are these inter-
pretations and implementations used by schools and teachers at the classroom 
levels?     

 There is a growing interest in the notion of competencies—particularly in 
Europe—as a way of establishing long-term learning expectations by students that 
will empower them for participating in society. It will be important to see how this 
notion plays out in countries in which content has been traditionally more valued 
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  Figure 27.6.    Proposed areas for further research on the impact of international studies in classrooms.       
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than competencies and, in particular, to understand how competencies are playing a 
role in moves towards localization of curriculum design. Because some initial infor-
mation suggests that teachers’ interpretations might be at odds with original intent 
of competencies, understanding the way in which teachers interpret and use the 
notion of competencies in their daily work (for planning and for delivering instruc-
tion) will be very important. We envisage analyses of the transformation of the idea 
of competencies at different levels of the curriculum; how it is interpreted at the 
national, regional, or local levels; and how these interpretations in fl uence teachers’ 
work. This knowledge would help researchers in organizing professional develop-
ment strategies that can be more effective in making the idea of competencies more 
transparent, and thus generating potential bene fi ts for planning and implementing 
instruction in the classroom. 

 The different nature of the TIMSS and PISA frameworks also calls for contrasts 
of their in fl uence on classroom processes. The frameworks are fundamentally the 
studies’ backbones; yet, although we know that they have had some impact, there is 
little documentation on the nature of such in fl uence. We do not know how these 
frameworks are interpreted at the different levels of the curriculum, and in particular, 
whether and how teachers use them for planning and teaching, or whether the differ-
ent natures of these frameworks are enacted differently in practice. If such differences 
were documented, then education systems could decide whether an approach that is 
more content-oriented, such as with TIMSS, would be better suited for its needs than 
an approach like PISA’s, which values the development of life-long skills.  

   Curriculum Control, Design, and Management 

 Our second set of questions refers to studying the process of localization of cur-
riculum design, the role of standardized tests, and the ways in which data-driven 
approaches support change. We ask:

    3.    What is the in fl uence of localization of curriculum design on the work of teachers 
in schools and what is its impact on the teaching and learning of mathematics? 
Why does it seem that this policy works in some countries and not in others?  

    4.    How are national standardized tests being aligned with tests used in international 
studies? And how is this in fl uence re fl ected on what is taught and learned in 
classrooms?  

    5.    In which ways do data-driven approaches in fl uence the teaching and learning of 
mathematics?     

 We start by proposing a study of the impact of the localization of curriculum 
design, by which we mean the movement towards having schools and teachers pro-
duce the curriculum they will teach. Because greater responsibility is placed on 
schools and teachers for generating curriculum and because of concerns in some 
countries that teachers are not ready to assume this work, it is very important to 
document how such a process happens. Therefore, the studies that we propose are 
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descriptive: What does it mean for school and teachers to produce the curriculum? 
What resources do they use? What are the characteristics of such a curriculum? Are 
there variations across communities that take into account the local contexts in 
which the curriculum is developed? What is the impact on students’ learning and 
attitudes? Such studies would provide important information about how teachers 
are interpreting the task of curriculum design, the role that textbook companies play 
in the process, and the quality of the curriculum proposed. As mentioned before, 
there is some indication that in some countries teacher education programs are not 
preparing teachers to do this work (e.g., Gómez & Restrepo,  2012  )  and that schools 
have little resources to engage in this process. A second key aspect is to understand 
more fully why the localization of curriculum design is so successful in some coun-
tries and why it is harder to carry it out in others. The current status of this process 
presents itself as ripe for such studies, as some countries have a long tradition of 
localized curriculum design (e.g., Finland) and some are entering this process (e.g., 
Colombia, Germany, and Spain). 

 Next, we ask about the alignment of national standardized tests and the tests used 
in the international studies. Because of the increased push to localize the process of 
curriculum design in some countries, and because of growing concerns that educa-
tors are moving slowly into a “global curriculum” de fi ned by the content and com-
petencies assessed in these tests, it would be important to determine the rationale 
behind and the extent to which newly created (and already existing) standardized 
tests align with the international tests. For some education systems, this alignment 
is not an issue, because the international tests do not have the same prominence as 
their national tests. In countries in which new tests are being created, and in coun-
tries in which the tests are being revised, the issue is fundamental. A close align-
ment would suggest a strong in fl uence from the international studies on the education 
system. 

 Studies such as those outlined above would require effective collaboration 
between researchers in charge of the international studies in each country and their 
counterparts in the bureaus of education or assessment agencies. In the cases where 
this alignment is strong, it would be important to study the extent to which the tests 
are becoming an important in fl uence on what teachers do in planning and imple-
menting lessons. We need to know the extent to which teachers feel it is important 
to prepare their students for the tests, Do they feel pressured to do so? What do 
teachers do to prepare their students for these tests? 

 Finally, we ask about the extent to which data-driven approaches that use the 
results from the TIMSS and PISA studies can indeed in fl uence classroom practice. 
Earlier, we described the PROM/SE project, an effort to bring the strategy to a large 
number of US schools to generate processes of administrative, curricular, and peda-
gogical change. This project is not directly tied to an international study, but it is 
tied to results of local standardized tests (which might become more aligned to 
international studies tests!). It would be important to see the extent to which such 
high investment of resources in collecting information about student learning, study-
ing ways to modify practise, implement and study the changes, and revise plans, is 
feasible for organizations like schools, whose primary mission is to teach children. 
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 These three issues are closely connected: The localization of curriculum requires 
accountability through national or common standardized tests, and the tailoring of 
the curriculum requires a sustained study approach in order to obtain high results on 
the standardized tests. A danger associated with this close relationship is the conver-
gence towards an impoverished view of content and competencies both in the 
de fi nition of the curriculum and in the de fi nition of the tests (Moss,  2004  ) . In other 
words, the quality of the results will depend substantially on the quality of the inter-
national studies tests and the national standardized tests. That is because experience 
in many countries that have national standardized tests has shown that what is taught 
and partially learned is essentially what the agents (schools, teachers, and students) 
know will be assessed. National and international standardized tests more and more 
are not just assessing the students; the tests also assess teachers, schools, districts, 
and regions, and thus, students act as informants for assessing educational systems 
at all levels.  

   Teacher Preparation and Development and Textbook Use 

 Perhaps the most important area for research relates to the preparation of the 
teaching force, its continued development, and the resources that are being made 
available to teachers. In particular, we ask:

    6.    In which ways have international studies in fl uenced the design and implementa-
tion of teacher education and professional development programs? And how do 
these new programs get re fl ected in what is taught and learned in the 
classroom?  

    7.    How have textbooks from other countries been adapted and used? And what 
impact have these textbooks had on classroom processes?     

 A  fi rst step to answer questions about teacher preparation and development is 
documenting how widespread the use of international studies frameworks and 
research  fi ndings is in this area; this documentation can provide information about 
the ways in which the design and development of programs for teacher preparation 
and development have been in fl uenced by the studies, and in which places each 
study has been more in fl uential. 

 Beyond documenting the use of the international studies frameworks, it would be 
important to  fi nd out how teacher educators and teachers use resources such as lesson 
study, videos, or texts geared to teachers in planning and delivering their programs. 
It is unclear from our conversations with various teacher educators the extent to 
which these resources are being used. This area is particularly important because it 
is the closest to studying the teaching and learning processes as they are transformed 
from intentions to enactment in teacher education programs. Such studies, however, 
require continuous involvement with teachers, from the moment teachers begin to 
participate in a teacher education program or in a professional development course, 
to the process of planning, enacting, and assessing a lesson. Collecting information 
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about all the aspects of this  learning process, including measures of student learning, 
would be necessary to understand the impact of these resources in the classroom. 

 Finally, there are the textbooks that have been “imported” into many classrooms 
and used in many different ways. If the Ginsburg et al.  (  2005  )  study is illustrative, 
we can anticipate many barriers to seamless adoption. Yet more interesting will be 
to understand how teachers use these textbooks as additional resources for planning 
and teaching their lessons. Because the artefacts that teachers use get transformed 
over several iterations (Gueudet & Trouche,  2009  ) , longitudinal studies are funda-
mentally important if we are to begin to understand such transformations and how 
they affect the ways lessons are designed and enacted.   

   Concluding Remark 

 The intricate connection that exists between these three areas—competencies 
and frameworks; curriculum control, design, and management; and teacher prepara-
tion and development and use of textbooks—is evident in our proposed research 
agenda. The international studies are playing an important, although subtle, role in 
shaping the landscape of curriculum design, implementation, and attainment. The 
lack of concerted efforts to trace their in fl uence at the classroom level should be a 
cause for concern. To paraphrase an old saying, “All roads lead to the classroom.” 
In the end, therefore, the substantial investments of money and effort that the inter-
national studies of student achievement require ought to have one single purpose: to 
improve teaching in order to improve learning. Collecting evidence in a systematic 
way may prove bene fi cial to achieving this ultimate goal.      

  Acknowledgements   The authors thank Ms. Heejoo Suh for her invaluable bibliographic research 
skills and the three reviewers who raised important points that helped us clarify our argument.  

      References 

   Aguilar, M., & Loejo, A. (2008).  PISA en el aula: Matemáticas  [PISA in the classroom: 
Mathematics]. México, DF, México: Instituto Nacional para la Evaluación de la Educación 
(INEE).  

   Alcaide, S., & Álvarez, P. (2011, March 4).  Madrid ofrece a los colegios decidir un tercio del 
programa escolar  [Madrid offers to let schools decide a third of the school program] (p. 38) .  El 
País.  

   Arias, R. M. (2006). La metodología de los estudios PISA [Methodology in the PISA studies]. 
 Revista de Educación  (Extraordinario), 111–129.  

    Barber, M., & Mourshed, M. (2007).  How the world’s best-performing school systems come out on 
top . New York, NY: McKinsey.  

   Bassells, F. (2011, March 4).  Cataluña se prepara para que cada centro  fi je el contenido y el orden 
de las materiasl  [Catalonia gets ready for each center to set subject matter contents and 
sequencing] (p. 38) .  El País.  

    Beyer, L., & Liston, D. (1996).  Curriculum in con fl ict: Social visions, educational agendas, and 
progressive school reform . New York, NY: Teachers College Press.  



894 Mesa, Gómez, and Cheah

   Blanco, L., & Rico, L. (2011, January 8).  ¿Qué hacer con los datos de PISA?  [What to do with 
PISA data?] .  El País. Retrieved from   http://www.elpais.com/articulo/sociedad/hacer/datos/
PISA/elpepusoc/20110108elpepusoc_9/Tes    .  

   Blum, W. (2004, July).  Opportunities and problems for “quality mathematics teaching”: The 
SINUS and DISUM projects . Paper presented as a regular lecture at the International Congress 
on Mathematical Education (ICME) 10. Retrieved from   http://www.icme10.dk/proceedings/
pages/regular_pdf/RL_Werner_Blum.pdf    .  

    Bonnet, G. (2008). Do teachers’ knowledge and behaviour re fl ect their quali fi cations and training? 
Evidence from PASEC and SACMEQ country studies.  Prospects, 38 (3), 325–244.  

   Bottani, N. (2006). La más bella del reino: El mundo de la educación en alerta con la llegada de un 
príncipe encantador [The fairest of them all: The world of education on alert with the arrival of 
a prince charming].  Revista de Educación  (Extraordinario), 75–90.  

    Bracey, G. W. (1998). TIMSS, rhymes with “dims,” as in “witted”.  Phi Delta Kappan, 79 (9), 
686–687.  

    Cairn, W. D. (1935). Advanced preparatory mathematics in England, France and Italy.  American 
Mathematical Monthly, 42 (1), 17–34.  

    Chen, S. (2008).  The parent connection for Singapore math: Tools to help them “get it” & get 
behind it . Peterborough, NH: Crystal Springs Books.  

    Chen, S. (2010).  Singapore math: Place value, computation, & number sense . Peterborough, NH: 
Crystal Springs Books.  

    Clarke, D. J. (2003). International comparative studies in mathematics education. In A. J. Bishop, 
M. A. Clements, C. Keitel, J. Kilpatrick, & F. K. S. Leung (Eds.),  Second international hand-
book of mathematics education  (pp. 143–184). Dordrecht, The Netherlands: Kluwer.  

   Curriculum Development Council. (2000).  Mathematics curriculum guide  (P1–P6). Hong Kong, 
China: Author. Retrieved from   http://www.edb.gov.hk/index.aspx?nodeID=4907&langno=1    .  

   Departemen Pendidikan Nasional. (2003).  Standar kompetensi: Mata pelajaran matematika  
[Competency standards: Subject of mathematics]. Jakarta, Indonesia: Author.  

   Dunne, D. W. (2000, July 21). Why are Chicago-area students tops in the world in math and sci-
ence?  Education World . Retrieved from   http://www.educationworld.com/a_curr/curr251.
shtml    .  

   Education Council. (2006). Recommendation of the European Parliament and the Council of 18 
December 2006 on key competencies for lifelong learning.  Of fi cial Journal of the European 
Union, L (394), 10–18.  

    Ertl, H. (2006). Educational standards and the changing discourse on education: The reception and 
consequences of the PISA study in Germany.  Oxford Review of Education, 32 (5), 619–634.  

   Ferreras, V. (2006). Participación de Navarra en la evaluación PISA [Participation of Navarra in the 
PISA assessment].  Revista de Educación  (Extraordinario), 531–542.  

    Ferrini-Mundy, J., & Schmidt, W. (2005). International comparative studies in mathematics educa-
tion: Opportunities for collaboration and challenges for researchers.  Journal for Research in 
Mathematics Education, 36 (3), 164–175.  

   Figueroa, M. (2008).  Examination of a new method to teach elementary students mathematics  
(Doctoral dissertation). Northern Arizona University.  

    Forsten, C. (2010a).  Solving word problems the Singapore math model-drawing strategy . 
Peterborough, NH: Crystal Springs Books [CD-ROM].  

    Forsten, C. (2010b).  Step-by-step model drawing: Solving word problems the Singapore way . 
Peterborough, NH: Crystal Springs Books.  

    Freudenthal, H. (1975). Pupils’ achievement internationally compared.  Educational Studies in 
Mathematics, 6 , 127–186.  

    Ginsburg, A., Leinwand, S., Anstrom, T., & Pollock, E. (2005).  What the United States can learn 
from Singapore’s world-class mathematics system and what Singapore can learn from the 
United States: An exploratory study . Washington, DC: American Institutes for Research.  

    Givvin, K. B., Hiebert, J., Jacobs, J. K., Hollingsworth, H., & Gallimore, R. (2005). Are there 
national patterns of teaching? Evidence from the TIMSS 1999 video study.  Comparative 
Education Review, 43 (3), 311–343.  

http://www.elpais.com/articulo/sociedad/hacer/datos/PISA/elpepusoc/20110108elpepusoc_9/Tes
http://www.elpais.com/articulo/sociedad/hacer/datos/PISA/elpepusoc/20110108elpepusoc_9/Tes
http://www.icme10.dk/proceedings/pages/regular_pdf/RL_Werner_Blum.pdf
http://www.icme10.dk/proceedings/pages/regular_pdf/RL_Werner_Blum.pdf
http://www.edb.gov.hk/index.aspx?nodeID=4907&langno=1
http://www.educationworld.com/a_curr/curr251.shtml
http://www.educationworld.com/a_curr/curr251.shtml


89527 In fl uence of International Studies on Mathematics Teaching and Learning

   Gómez, J. A. (2006). La Rioja hacia la evaluación censal de PISA [Rioja towards a census 
assessment with PISA].  Revista de Educación  (Extraordinario), 521–529.  

   Gómez, P., & Restrepo, A. (2012, August).  Procesos de plani fi cación en matemáticas y autonomía 
escolar  [Planning processes in mathematics and school autonomy] .  Paper presented at the III 
Congreso Internacional y VIII Nacional de Investigación en Educación, Pedagogía y Formación 
Docente, Bogotá, Colombia.  

   González, M. T., Monterrubio, M. C., Delgado, M. L., & Codes, M. (2011, June).  Tipos de situa-
ciones de las actividades de análisis matemático en los libros de texto de Educación Secundaria 
en España  [Types of situations in mathematical analysis activities in secondary education text-
books in Spain]. Paper presented at the XIIIth Inter American Conference on Mathematics 
Education.  

   Graña, J. (2006). El estudio PISA en Galicia: Pasado, presente y futuro [The PISA study in Galicia: 
Past, present and future].  Revista de Educación  (Extraordinario), 515–520.  

    Gruber, K. H. (2006). The German “PISA-shock”: Some aspects of the extraordinary impact of the 
OECD’s PISA study on the German education system. In H. Ertl (Ed.),  Cross-national attrac-
tion in education. Accounts from Germany  (pp. 195–208). Didcot, UK: Symposium Books.  

    Gueudet, G., & Trouche, L. (2009). Towards new documentation systems for mathematics teach-
ers?  Educational Studies in Mathematics, 71 (3), 199–218.  

    Hattori, K. (2007). Lesson study in South Africa. In M. Isoda, M. Stephens, Y. Ohara, & T. 
Miyakawa (Eds.),  Japanese lesson study in mathematics: Its impact, diversity and potential for 
educational improvement  (pp. 226–229). Singapore: World Scienti fi c.  

    Hiebert, J., & Stigler, J. W. (2000). A proposal for improving classroom teaching: Lessons from 
the TIMSS video study.  Elementary School Journal, 101 (1), 3–20.  

    Hogan, B. (2005).  Singapore math: Problem-solving secrets from the world’s math leader . 
Peterborough, PA: Crystal Springs Books.  

    Hogan, B., & Forsten, C. (2007).  8-step model drawing: Singapore’s best problem-solving MATH 
strategies . Peterborough, PA: Crystal Springs Books.  

   Husén, T. (Ed.). (1967).  International study of achievement in mathematics  (Vols. 1 & 2). New 
York, NY: Wiley.  

    Husén, T. (1983). Are standards in U.S. schools really lagging behind those in other countries?  Phi 
Delta Kappan, 64 (7), 455–461.  

    Inprasitha, M. (2007). Lesson study in Thailand. In M. Isoda, M. Stephens, Y. Ohara, & T. 
Miyakawa (Eds.),  Japanese lesson study in mathematics: Its impact, diversity and potential for 
educational improvement  (pp. 188–193). Singapore: World Scienti fi c.  

    Junta de Andalucía. (2007). Resolución de 10 de diciembre de 2010, de la Dirección General de 
Ordenación y Evaluación Educativa, por la que se establecen determinados aspectos de la 
Orden de 27 de octubre de 2009, por la que se regulan las pruebas de la evaluación de diagnós-
tico, para su aplicación en el curso 2010-2011 [Resolution of December 10, 2010, of the 
Directorate General of Educational Planning and Evaluation on establishing certain aspects of 
the Order of October 27, 2009, which regulates the testing for diagnostic evaluation applied 
during 2010–2011].  BOJA, 12 , 22–23.  

    Kaur, B. (2002). TIMSS-R: Mathematics achievement of eighth graders from Southeast Asian 
countries.  Journal of Science and Mathematics Education in Southeast Asia, 25 (2), 66–92.  

   Kaur, B. (2003, March 31).  Evolution of Singapore’s secondary school mathematics curricula.  
Paper presented to the National Academy of Sciences. Retrieved from   http://www7.nationala-
cademies.org/mseb/workshop_background_materials_kauer_spores.pdf    .  

    Kaur, B. (2005). Schools in Singapore with high performance in mathematics at the eighth grade 
level.  Mathematics Educator, 9 (1), 29–38.  

    Kaur, B. (2009). Performance of Singapore students in Trends in International Mathematics and 
Science Studies (TIMSS). In K. Y. Wong, P. Y. Lee, B. Kaur, P. Y. Foong, & S. F. Ng (Eds.), 
 Mathematics education: The Singapore journey  (pp. 439–463). Singapore: World Scienti fi c.  

    Kaur, B., Koay, P. L., & Yap, S. F. (2009). International project on mathematical attainment. In K. 
Y. Wong, P. Y. Lee, B. Kaur, P. Y. Foong, & S. F. Ng (Eds.),  Mathematics education: The 
Singapore journey  (pp. 494–511). Singapore: World Scientifi c.  

http://www7.nationalacademies.org/mseb/workshop_background_materials_kauer_spores.pdf
http://www7.nationalacademies.org/mseb/workshop_background_materials_kauer_spores.pdf


896 Mesa, Gómez, and Cheah

    Kaur, B., & Pereira-Mendoza, L. (2000a). Singapore primary school TIMSS data: Data representa-
tion, analysis and probability and patterns, relations and functions.  Mathematics Educator, 
5 (1/2), 180–193.  

    Kaur, B., & Pereira-Mendoza, L. (2000b). TIMSS: Performance of Singapore secondary students 
(Part B): Proportionality, measurement, fractions and number sense.  Journal of Science and 
Mathematics Education in Southeast Asia, 23 (1), 54–70.  

    Kaur, B., & Yap, S. F. (2009). Kassel project on the teaching and learning of mathematics: 
Singapore participation. In K. Y. Wong, P. Y. Lee, B. Kaur, P. Y. Foong, & S. F. Ng (Eds.), 
 Mathematics education: The Singapore journey  (pp. 479–480). Singapore: World Scienti fi c.  

    Keitel, C., & Kilpatrick, J. (1998). The rationality and irrationality of international comparative 
studies. In G. Kaiser, E. Luna, & I. Huntley (Eds.),  International comparisons in mathematics 
education  (pp. 242–257). London, UK: Falmer.  

    Kersting, N. B., Givvin, K. B., Sotelo, F. L., & Stigler, J. W. (2010). Teachers’ analyses of class-
room video predict student learning of mathematics: Further explorations of a novel measure 
of teacher knowledge.  Journal of Teacher Education, 61 (1–2), 172–181.  

    Kilpatrick, J. (1971). Some implications of the International Study of Achievement in 
Mathematics for mathematics educators.  Journal for Research in Mathematics Education, 
2 (2), 164–171.  

   Kimmelman, P., Kroeze, D., Schmidt, W., van der Ploeg, A., McNeely, M., & Tan, A. (1999).  A 
 fi rst look at what we can learn from high performing school districts: An analysis of TIMSS 
data from the First in the World Consortium  (ERIC Document Reproduction Service No. ED 
433 243). Jessup, MD: U.S. Department of Education.  

    Kimura, E. (2007). Lesson study in Honduras. In M. Isoda, M. Stephens, Y. Ohara, & T. Miyakawa 
(Eds.),  Japanese lesson study in mathematics: Its impact, diversity and potential for educa-
tional improvement  (pp. 230–235). Singapore: World Scienti fi c.  

    Koseki, K. (2007). Lesson study in Indonesia. In M. Isoda, M. Stephens, Y. Ohara, & T. Miyakawa 
(Eds.),  Japanese lesson study in mathematics: Its impact, diversity and potential for educa-
tional improvement  (pp. 214–215). Singapore: World Scienti fi c.  

    Kotthoff, H.-G., & Pereyra, M. A. (2009). La experiencia del PISA en Alemania: Recepción, refor-
mas recientes y re fl exiones sobre un sistema educativo en cambio [The experience of PISA in 
Germany: Response, recent reforms and re fl ections on a changing educational system]. 
 Profesorado. Revista de Currículum y Formación de Profesorado, 13 (2), 1–24.  

   Landry, S. D. (2010).  Degrees of alignment among K-12 mathematics content standards of instruc-
tion: An analysis of high-performing and low-performing data sets  (Doctoral dissertation). 
Texas Christian University, Fort Worth, TX.  

   Lattuca, L. R., & Stark, J. (2009). Shaping the college curriculum: Academic plans in action. San 
Francisco: Jossey-Bass.  

    Lee, O., Deaktor, R., Enders, C., & Lambert, J. (2008). Impact of a multiyear professional develop-
ment intervention on science achievement of culturally and linguistically diverse elementary 
students.  Journal of Research in Science Teaching, 45 (6), 726–744.  

    Lee, O., Deaktor, R., Hart, J. E., Cuevas, P., & Enders, C. (2005). An instructional intervention’s 
impact on the science and literacy achievement of culturally and linguistically diverse elemen-
tary students.  Journal of Research in Science Teaching, 42 (8), 857–887.  

   Lee, V. E., & Zuze, T. L. (2011). School resources and academic performance in Sub-Saharan 
Africa. Comparative Education Review, 55(3), 369–397.  

   Lesson Study Research Group. (n.d.). Timeline of U.S. lesson study. Retrieved from Teachers 
College, Columbia University   http://www.teacherscollege.edu/lessonstudy/timeline.html    .  

   Lewis, C. (2011, February 20).  Lesson study with Japanese curriculum materials: A randomized 
controlled trial.  Paper presented at the APEC Tsukuba International Conference on Lesson 
Study, Tsukuba, Japan.  

    Lewis, C., Perry, R., & Hurd, J. (2004). A deeper look at lesson study.  Educational Leadership, 
61 (5), 6–11.  

   Lewis, C., & Tsuchida, I. (1998). A lesson is like a swiftly  fl owing river: How research lessons 
improve Japanese education.  American Educator, 22 (4), 12–17, 50–52.  

http://www.teacherscollege.edu/lessonstudy/timeline.html


89727 In fl uence of International Studies on Mathematics Teaching and Learning

   Liberal Party of Australia. (2010, December 7). PISA  fi ndings back school autonomy . Liberal . 
Retrieved from   http://www.liberal.org.au/Latest-News/2010/12/07/PISA- fi ndings-back-school-
autonomy.aspx    .  

    Lindner, M. (2008). New programmes for teachers’ professional development in Germany: The 
programme SINUS as a model for teachers’ professional development.  Interacções, 4 (9), 
149–155.  

    Liptak, L. (2002). It’s a matter of time.  Research for Better School Currents, 5 (2), 6–7.  
    López, L. S., & Toro-Álvarez, C. (2008). Formación de docentes en la enseñanza de las matemáti-

cas a través de la resolución de problemas en la red de comprensión lectora y matemáticas–
CCyM, segunda etapa [Teacher preparation in mathematical thinking through problem solving 
in reading and mathematics comprehension, CCyM, network, second stage].  Universitas 
Psychologica, 7 (3), 753–765.  

   Lupiáñez, J. L. (2009).  Expectativas de aprendizaje y plani fi cación curricular en un programa de 
formación inicial de profesores de matemáticas de secundaria  [Learning expectations and cur-
ricular planning in a secondary mathematics teacher preparation program] (Doctoral disserta-
tion). Universidad de Granada, Spain.  

   Maestro, C. (2006). La evaluación del sistema educativo [The evaluation of the education system]. 
 Revista de Educación  (Extraordinario), 315–336.  

    McNab, D. (2000). Raising standards in mathematics education: Values, vision, and TIMSS. 
 Educational Studies in Mathematics, 42 (1), 61–80.  

   Ministerio de Educación Nacional [MEN]. (1994).  Ley 115 de Febrero 8 de 1994. Por la cual se 
expide la ley general de educación  [Law 115 of February 8, 1994. In virtue of which the gen-
eral law of education is issued]. Bogotá, Colombia: Author.  

   Ministerio de Educación Nacional [MEN]. (2006).  Estándares básicos de competencias en len-
guaje, matemáticas, ciencias y ciudadanas  [Basic standards of competencies in language, 
mathematics, science and citizenship]. Bogotá, Colombia: Author.  

   Ministry of Education Culture Sports and Science. (2010).  Elementary school teaching guide for 
the Japanese course of study: Mathematics (Grade 1–6)  (M. Isoda, Trans.). Tsukuba, Japan: 
Center for Research on International Cooperation in Educational Development (CRICED), 
University of Tsukuba.  

   Moss, P. (2004). The risks of coherence. In M. Wilson (Ed.),  Towards coherence between class-
room assessment and accountability  (103rd Yearbook of the National Society for the Study of 
Education, Part 2, pp. 217–238). Chicago, IL: University of Chicago Press.  

   Mullis, I. (1999).  Attaining excellence: TIMSS as a starting point to examine mathematics assess-
ment. An in-depth look at geometry and algebra . Washington, DC: U.S. Department of 
Education, Of fi ce of Educational Research and Improvement.  

    National Council of Teachers of Mathematics (NCTM). (1991).  Professional standards for teach-
ing mathematics . Reston, VA: Author.  

    National Council of Teachers of Mathematics (NCTM). (1995).  Assessment standards for school 
mathematics . Reston, VA: Author.  

    National Council of Teachers of Mathematics (NCTM). (2000).  Principles and standards for 
school mathematics . Reston, VA: Author.  

   National Research Council. (1999).  Global perspectives for local action: Using TIMSS to improve 
U.S. mathematics and science education—Professional development guide . Washington, D.C.: 
National Academy Press.  

    Neumann, K., Fischer, H., & Kauertz, A. (2010). From PISA to educational standards: The impact 
of large-scale assessments on science education in Germany.  International Journal of Science 
and Mathematics Education, 8 (3), 545–563.  

    Odani, K. (2007). Lesson study in Cambodia. In M. Isoda, M. Stephens, Y. Ohara, & T. Miyakawa 
(Eds.),  Japanese lesson study in mathematics: Its impact, diversity and potential for educa-
tional improvement  (pp. 206–209). Singapore: World Scienti fi c.  

    Okubo, K. (2007). Lesson study in Egypt. In M. Isoda, M. Stephens, Y. Ohara, & T. Miyakawa 
(Eds.),  Japanese lesson study in mathematics: Its impact, diversity and potential for educa-
tional improvement  (pp. 216–217). Singapore: World Scienti fi c.  

http://www.liberal.org.au/Latest-News/2010/12/07/PISA-findings-back-school-autonomy.aspx
http://www.liberal.org.au/Latest-News/2010/12/07/PISA-findings-back-school-autonomy.aspx


898 Mesa, Gómez, and Cheah

    Organisation for Economic Co-operation and Development (OECD). (2003).  The PISA 2003 
assessment framework: Mathematics, reading, science and problem solving knowledge and 
skills . Paris, France: Author.  

    Organisation for Economic Co-operation and Development (OECD). (2004).  Learning for tomor-
row’s world: First results from PISA 2003 . Paris, France: Author.  

    Organisation for Economic Co-operation and Development (OECD). (2005).  School factors 
related to quality and equity: Results from PISA 2000 . Paris, France: Author.  

    Organisation for Economic Co-operation and Development (OECD). (2010).  Education at glance 
2010 . Paris, France: Author.  

    Ostermeier, C., Prenzel, M., & Duit, R. (2010). Improving science and mathematics instruction: 
The SINUS Project as an example for reform as teacher professional development.  International 
Journal of Science Education, 32 (3), 303–327.  

   Palamidessi, M. (2006).  Desarrollos curriculares para la educación básica en el Cono Sur: priori-
dades de política y desafío de la práctica  [Curriculum development for basic education in the 
Southern Cone: Policy priorities and challenges to practice]. Geneva, Switzerland: United 
Nations Educational, Scienti fi c and Cultural Organization (UNESCO).  

   Perry, R., Lewis, C., Friedkin, S., & Baker, E. K. (2011).  Improving the mathematical content base 
of lesson study: Interim summary of results.  Retrieved from   http://www.lessonresearch.net/
IES%20Abstract_01.03.11.pdf    .  

   Promoting Rigorous Outcomes in Mathematics and Science Education [PROM/SE]. (2006a). 
 Knowing mathematics: What can we learn from teachers  (Research Report, Vol. 2). East 
Lansing, MI: Michigan State University.  

   Promoting Rigorous Outcomes in Mathematics and Science Education [PROM/SE]. (2006b). 
 Making the grade: Fractions in your schools  (Research Report, Vol. 1). East Lansing, MI: 
Michigan State University.  

   Promoting Rigorous Outcomes in Mathematics and Science Education [PROM/SE]. (2008). 
 Dividing opportunities: Tracking in high school science  (Research Report, Vol. 4). East 
Lansing, MI: Michigan State University.  

   Promoting Rigorous Outcomes in Mathematics and Science Education [PROM/SE]. (2009a). 
 Content coverage and the role of instructional leadership  (Research Report, Vol. 7). East 
Lansing, MI: Michigan State University.  

   Promoting Rigorous Outcomes in Mathematics and Science Education [PROM/SE]. (2009b). 
 Opportunities to learn in PROM/SE classrooms: Teachers’ reported coverage of mathematics 
content  (Research Report, Vol. 6). East Lansing, MI: Michigan State University.  

   Promoting Rigorous Outcomes in Mathematics and Science Education [PROM/SE]. (2009c). 
 Variation across districts in intended topic coverage: Mathematics  (Research Report, Vol. 5). 
East Lansing, MI: Michigan State University.  

   Rico, L. (Ed.). (1997).  Bases teóricas del currículo de matemáticas en educación secundaria  
[Theoretical basis for mathematics curriculum in secondary education]. Madrid, Spain: 
Síntesis.  

    Rico, L. (2011). El estudio PISA y la evaluación de la competencia matemática [The PISA study 
and the assessment of mathematical competency].  Matematicalia, 7 (1), 1–11.  

   Rico, L., & Lupiáñez, J. L. (2008).  Competencias matemáticas desde una perspectiva curricu-
lar  [Mathematical competencies from a curricular perspective]. Madrid, Spain: Alianza 
Editorial.  

   Rizo, F. M. (2006). PISA en América Latina: lecciones a partir de la experiencia de México de 
2000 a 2006 [PISA in Latin America: Lessons from the Mexican experience from 2000 to 
2006].  Revista de Educación  (Extraordinario), 153–167.  

    Robitaille, D. F., & Travers, K. J. (1992). International studies of achievement in mathematics. In 
D. A. Grouws (Ed.),  Handbook of research on mathematics teaching and learning  (pp. 687–
709). Reston, VA: National Council of Teachers of Mathematics.  

    Roth, K., & Givvin, K. B. (2008). Implications for math and science instruction from the TIMSS 
video study.  Principal Leadership, 8 (9), 22–27.  

http://www.lessonresearch.net/IES%20Abstract_01.03.11.pdf
http://www.lessonresearch.net/IES%20Abstract_01.03.11.pdf


89927 In fl uence of International Studies on Mathematics Teaching and Learning

   Saito, M. (2010). Have gender differences in reading and mathematics achievement improved? 
 Southern and Eastern Africa Consortium for Monitoring Educational Quality (SACMEQ) 
Policy Issues Series, 4 , 1–3.  

    Saito, N. (2007). Lesson study in Laos. In M. Isoda, M. Stephens, Y. Ohara, & T. Miyakawa (Eds.), 
 Japanese lesson study in mathematics: Its impact, diversity and potential for educational 
improvement  (pp. 210–213). Singapore: World Scienti fi c.  

   Saracho, A. (2006).  Casos de estudio de reacciones a PISA 2000 y 2003: Alemania, Polonia, 
Brasil y otros  [Case studies of reactions to PISA 2000 and 2003: Germany, Poland, Brazil and 
others]. México, DF: Fundación IDEA.  

   Schleicher, A., & Shewbridge, C. (2008).  What makes school systems perform? Seeing school 
systems through the prism of PISA . Paris, France: Organisation for Economic Co-operation and 
Development (OECD).  

    Schmidt, W. H., & McKnight, C. C. (1995). Surveying educational opportunity in mathematics 
and science: An international perspective.  Educational Evaluation and Policy Analysis, 17 (3), 
337–353.  

   Schmidt, W. H., McKnight, C. C., Valverde, G., Houang, R. T., & Wiley, D. E. (1996).  Many 
visions, many aims  (Vol. 1: A cross-national investigation of curricular intentions in school 
mathematics). Dordrecht, The Netherlands: Kluwer.  

    Shimizu, S. (2007). Lesson study in the Philippines. In M. Isoda, M. Stephens, Y. Ohara, & T. 
Miyakawa (Eds.),  Japanese lesson study in mathematics: Its impact, diversity and potential for 
educational improvement  (pp. 202–205). Singapore: World Scienti fi c.  

    Shymansky, J. A., Yore, L. D., & Anderson, J. O. (2004). Impact of a school district’s science 
reform effort on the achievement and attitudes of third- and fourth-grade students.  Journal of 
Research in Science Teaching, 41 (8), 771–790.  

   Sloane, P. F. E., & Dilger, B. (2005). The competence clash—Dilemmata bei der Übertragung des 
‘Konzepts der nationalen Bildungsstandards’ auf die beru fl iche Bildung, Berufs- und 
Wirtschaftspädagogik [The competence clash—Dilemmas in conveying the “concept of 
national education standards” to vocational, professional, and business education].  Berufs- und 
Wirtschaftspädagogik, 8 , 1–32. Retrieved from   http://www.bwpat.de/ausgabe8/sloane_dilger_
bwpat8.pdf    .  

    Stigler, J. W., Gonzalez, P., Kawanaka, T., Knoll, S., & Serrano, A. (1999).  The TIMSS videotape 
classroom study: Methods and  fi ndings from an exploratory research project on eighth-grade 
mathematics instruction in Germany, Japan, and the United States (NCES 1999-074) . 
Washington, DC: U.S. Department of Education, National Center for Education Statistics.  

    Stigler, J. W., & Hiebert, J. (1997). Understanding and improving classroom mathematics instruc-
tion: An overview of the TIMSS video study.  Phi Delta Kappan, 78 (1), 14–21.  

    Stigler, J. W., & Hiebert, J. (1999).  The teaching gap . New York, NY: Free Press.  
    Travers, K. J., & Westbury, I. (Eds.). (1989).  The IEA Study of mathematics I: Analysis of mathe-

matics curricula . Oxford, UK: Pergamon.  
   Valdés, H., Treviño, E. G., Acevedo, C., Castro, M., Carrillo, S., Costilla, R., et al. (2008).  Student 

achievement in Latin America and the Caribbean: Results of the Second Regional Comparative 
and Explanatory Study (SERCE) . Santiago, Chile: Laboratorio Latinoamericano de Evaluación 
de la Calidad de la Educación, United Nations Educational, Scienti fi c and Cultural Organization 
(UNESCO).  

   Walker, L. (n.d.).  Model drawing for challenging word problems: Finding solutions the Singapore 
way . Peterborough, NH: Crystal Springs Books.  

    Watanabe, T. (2003). Lesson study: A new model of collaboration.  Academic Exchange Quarterly, 
7 (4), 180–184.  

    White, A., & Lim, C. S. (2008). Lesson study in Asia Paci fi c classrooms: Local responses to a 
global movement.  ZDM: International Journal for Mathematics Education, 40 (6), 
915–939.  

    White, A., & Southwell, B. (2003).  Lesson study project: Evaluation report . Ryde, Australia: 
Department of Education and Training, Professional Support and Curriculum Directorate.  

http://www.bwpat.de/ausgabe8/sloane_dilger_bwpat8.pdf
http://www.bwpat.de/ausgabe8/sloane_dilger_bwpat8.pdf


900 Mesa, Gómez, and Cheah

    Wong, K. Y., Lee, P. Y., Kaur, B., Foong, P. Y., & Ng, S. F. (2009). Introducing the landscape of 
Singapore mathematics. In K. Y. Wong, P. Y. Lee, B. Kaur, P. Y. Foong, & S. F. Ng (Eds.), 
 Mathematics education: The Singapore journey  (pp. 1–9). Singapore: World Scienti fi c.  

    Yore, L., Anderson, J., & Chiu, M.-H. (2010). Moving PISA results into the policy arena: 
Perspectives on knowledge transfer for future considerations and preparations.  International 
Journal of Science and Mathematics Education, 8 (3), 593–609.  

    Yoshida, M. (2007). Lesson study in Ghana. In M. Isoda, M. Stephens, Y. Ohara, & T. Miyakawa 
(Eds.),  Japanese lesson study in mathematics: Its impact, diversity and potential for educa-
tional improvement  (pp. 222–225). Singapore: World Scienti fi c.  

    Young, J. W. A. (1900).  The teaching of mathematics in the higher schools of Prussia . New York, 
NY: Longmans, Green.      



901M. A. (Ken) Clements et al. (Eds.), Third International Handbook of Mathematics Education, 
Springer International Handbooks of Education 27, DOI 10.1007/978-1-4614-4684-2_28, 
© Springer Science+Business Media New York 2013

  Abstract   Although the history of internationalization in mathematics education 
goes back more than a century, the last few decades have witnessed a notable accel-
eration in the establishment of bodies aiming at grouping together members of the 
community. The purpose of this chapter is to survey international or multinational 
organizations created to support and enhance re fl ection and action about the teaching 
and learning of mathematics at various levels of education systems, worldwide or in 
some speci fi c regions of the world. The oldest and best-known international organi-
zation in mathematics education is the International Commission on Mathematical 
Instruction, but there are many others established over the years, serving different 
purposes and covering various aspects of the  fi eld. Focussing on those connected to 
research in mathematics education, this chapter highlights the diversity thus encoun-
tered in connection with the aims of these organizations, their functioning, or the 
speci fi c niche they occupy in the mathematics education landscape.      

   Introduction 

 A number of papers have appeared in the past few decades related to various 
aspects of internationalism in mathematics education. Three examples, taken from 
recent handbooks on mathematics education or the history of school mathematics, 
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are Jacobsen  (  1996  ) , Robitaille and Travers  (  2003  ) , and Atweh, Clarkson, and 
Nebres  (  2003  ) . In the  fi rst paper, Jacobsen offered a survey from the perspective of 
international cooperation in mathematics education, the emphasis being on the role 
with respect to developing countries of institutions such as UNESCO or ICMI and 
its af fi liates (see Appendix  A  for a list of acronyms used in this chapter). Robitaille 
and Travers emphasized international connections notably from the vantage point of 
comparative studies such as the Trends in International Mathematics and Science 
Study (TIMSS), recognized as contributing signi fi cantly to international debate and 
collaboration in mathematics education. In the third paper, concerned with interna-
tional and global contexts, Atweh et al.  fi rst described what they understand by 
 globalization  and  internationalization,  the former term being connected to aspects 
essentially beyond one’s control (e.g., a rising “global curriculum”), whereas the 
latter allows for a greater autonomy in participation. They then examined several 
cases of internationalization and globalization in mathematics education, ICMI and 
TIMSS standing among the examples proposed for the former. The tandem interna-
tionalization/globalization was also discussed in Atweh et al.  (  2008  ) . 

 The present survey addresses the issue of internationalization in mathematics 
education by examining organizations created to support and enhance re fl ection and 
action about the teaching and learning of mathematics at various levels of education 
systems, worldwide or in some speci fi c regions of the world, and by discussing how 
these organizations have affected, and continue to affect, mathematics education 
around the world. Except for a few, all organizations surveyed here came into exis-
tence since the mid-1970s, and since 2000 for six of them. (A chronological listing 
of these 30 or so organizations is given in Appendix  B .) 

 ICMI, the International Commission on Mathematical Instruction, was estab-
lished in 1908 and is the earliest example of an international institution related to 
mathematics education. Although its own activities were at times jeopardized—in 
particular around the two World Wars—ICMI remained for almost its  fi rst 50 years 
the only international organization aiming at fostering the development of mathe-
matics education in all its aspects. The Commission has a long and rich history that 
offers a privileged way of understanding aspects of the evolution of mathematics 
education over the past century. ICMI was at times being in fl uenced by or accom-
panying the evolution in mathematics education, and at times even fostering this 
evolution. From the 1950s, other international players came into the picture. To 
name a few: CIEAEM in Europe in 1950, then CIAEM in Latin America in 1961, 
and later the  fi rst Study Groups af fi liated to ICMI. The domain of mathematics 
education was maturing and expanding, and new international organizations were 
created to re fl ect and better address the new needs. 

 An obvious dif fi culty encountered when approaching the topic of this chapter is 
the choice of organizations to be included. Of necessity, we need to be selective. 
Although some bodies unequivocally ought to be part of such a survey—the reader 
may probably easily identify a number of those—the matter becomes much less 
evident as the list expands. On what ground is selection to be made? And how is the 
information to be structured? 

 Our choice was to focus on organizations connected to research in mathematics 
education, while trying to remain eclectic as regards the kind of bodies, size, 
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 organizational infrastructure, or type of activities. We have understood the word 
 international  to be as inclusive as possible, from organizations aiming at reaching 
people worldwide to others concerned with collaboration among a few countries, 
sometimes on a regional basis (our use of the term  multinational  is often related to 
these latter cases). Some of these organizations are “general purpose,” so to say, and 
aim at covering mathematics education in general (e.g., ICMI, CIEAEM), but some-
times with a focus on speci fi c regions of the world (e.g., CIAEM, MERGA, 
AFRICME), whereas others are connected to speci fi c areas or interests (e.g., 
ICTMA, Delta, MCG). A common concern among many of these organizations is 
to  fi nd a proper balance between high quality standards for the presentation and 
publication of research work, and inclusiveness of the community, particularly of 
newcomers to the  fi eld. Examples of initiatives related to this perennial issue are 
offered below (e.g., MERGA, ERME, MES, Delta). 

 This chapter thus addresses the history of the development of the mathematics 
education research community across the world over a not-inconsiderable period of 
time, and particularly over the last 35 years or so. As such, that development is not 
a matter of educational research, and certainly not of didactical research, but of 
historical appraisal. There are cases where a group has set itself up in opposition to 
existing groups for theoretical or ideological reasons (e.g., Mathematics, Education 
and Society, MES) or in support of existing groups (e.g., PME-NA), but we see 
these as social and historical phenomena partly motivated by local issues rather than 
entirely research-driven phenomena. 

 We attempt to do justice to the range of organizations that come under the umbrella 
of mathematics education research groups by charting their emergence, achievements 
to date, state of their current existence, the reasons that they were formed, and their 
current role and function. A most striking aspect of this work is the diversity thus 
encountered in connection with the aims of these organizations, their functioning, or 
the speci fi c niche they occupy in the mathematics education landscape. 

 The chapter is organized around categories of mathematics education organiza-
tions active on the international scene. The  fi rst section is devoted exclusively to 
ICMI, an institution clearly of prime importance, both in itself and with respect to its 
multiple relations to other organizations, and which will play a pivotal role throughout 
the chapter. We then discuss  fi ve organizations among the  fi rst that were established 
after ICMI, from 1950 to the mid-1970s, namely CIEAEM, CIAEM, PME, HPM, and 
MERGA. Such a selection conveys a certain historical or chronological coherence, 
and also represents important cases already manifesting a rich diversity of contexts, 
aims, and functioning. The next section is based on the notion of af fi liation to ICMI 
and displays other facets of diversity in mathematics education, as it can currently be 
seen among the ICMI community. The organizations discussed are ERME, IOWME, 
ICTMA, WFNMC, and MCG. We  fi nally consider, in the last major section, various 
contexts in which given sub-communities emerged on the basis of regional or the-
matic interests. Ten different cases are surveyed, including the so-called ICMI 
Regional Conferences, organizations focussed on a given topic, like IASE, or 
regional structures of a general scope, such as NoRME. Among the organizations 
then discussed are some functioning on a regular basis but in a somewhat loose 
environment, without a formal body in the background (MES, Delta). 
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 It is unavoidable, in such a paper, to use a plethora of acronyms, as we have 
already done. As noted above, Appendix  A  lists all acronyms used here, both for the 
organizations that we survey and for associated elements (related institutions, jour-
nals, conferences). In each case, we indicate the year of establishment and the URL 
to access the relevant Web site.  

   The Internationalization of the Mathematics Education 
Community: The Birth (and Rebirth) of ICMI 

 The International Commission on Mathematical Instruction (ICMI) undoubtedly 
distinguishes itself among international organizations by both its age and its global 
impact on the  fi eld of mathematics education. Established in 1908, ICMI is the old-
est body speci fi cally related to the teaching and learning of mathematics in a multi-
national perspective, and is reckoned to be the  fi rst international organization 
concerned with the teaching of a given scienti fi c discipline. (A few international 
conferences on teaching, however, were held before the inception of ICMI, such as 
the congress organized in Paris on the occasion of the 1889 International Exposition, 
as reported by Buisson,  1911 .) Over the years, the mission and in fl uence of ICMI 
have evolved in such a way that the celebration of its centennial was seen as an 
opportunity “to investigate how key and perennial issues of mathematics education 
have developed during the existence of ICMI as shaped and/or re fl ected by ICMI 
activities” (Schubring,  2008a , p. 1). 

 A substantial literature deals with aspects of the history of ICMI, many of these 
documents being of recent vintage. Of particular interest are the following: the sur-
vey Howson  (  1984  )  published for the 75th anniversary of ICMI; ICMI-related sec-
tions from the book by Lehto  (  1998  )  on the history of the International Mathematical 
Union (IMU); the papers of Furinghetti  (  2003  )  and Schubring  (  2003  ) , written for 
the centennial symposium of the journal  L’Enseignement Mathématique  (L’EM); 
the paper that Schubring  (  2008b  )  presented at the ICMI centennial celebration (see 
Menghini, Furinghetti, Giacardi, & Arzarello,  2008 , for the proceedings of that sym-
posium); and various ad hoc papers such as Bass and Hodgson  (  2004  ) , Furinghetti 
 (  2008a  ) , Arzarello, Giacardi, Furinghetti, and Menghini  (  2008  ) , Hodgson  (  2009  ) , 
and Hodgson  (  2011  ) —the comments in this section borrow from the latter. To these 
sources must be added the ICMI History Web site (  http://www.icmihistory.unito.it/    ), 
an important on-going project devoted to the history of ICMI. Furinghetti and 
Giacardi  (  2010  )  offer a “walk” through the Web site’s biographical gallery of key 
 fi gures in ICMI history, as well as a schematic presentation of  fi ve periods structur-
ing the  fi rst century of ICMI: (a) foundation in 1908 and early period up to the First 
World War; (b) crisis, dissolution, and ephemeral rebirth between the two World 
Wars; (c) rebirth in 1952 as a commission of IMU; (d) “renaissance” in the late 1960s 
and consolidation; (e) increased autonomy from IMU and new trends in ICMI action 
in recent decades. The place of women in the life of the Commission up to the 1970s 
is discussed by Fulvia Furinghetti  (  2008b  ) . Historical information on ICMI is also 
found in this volume in Chapter   25    , by Alexander Karp. Before examining what 
ICMI is today, we concentrate brie fl y on a few salient points from its history. 

http://www.icmihistory.unito.it/
http://dx.doi.org/10.1007/978-1-4614-4684-2_25
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   The Establishment of ICMI 

 The birth of ICMI happened in a social and intellectual environment where the 
idea of internationalism was gaining prominence. Such a context was in no way 
speci fi c to mathematics education (see Chapter   25    ) and can be seen as related to a 
larger tendency of associating

  the world of teaching to the “ great movement of scienti fi c solidarity ” which was emerging 
at the end of the 19th century, notably through the organization of international meetings 
such as the  fi rst International Congress of Mathematicians held in Zurich in 1897. (Coray 
& Hodgson,  2003 , pp. 11–12)   

 A discussion of internationalism in relation to mathematics can be found in 
Parshall  (  2009  ) . 

 Aspects such as the origins of ICMI; the links with the previous creation of the 
journal L’EM, the of fi cial organ of ICMI since its inception; and the roles played by 
Henri Fehr, Charles-Ange Laisant, and David Eugene Smith, to name a few key  fi gures, 
have been discussed, for instance, in Coray and Hodgson  (  2003  ) , Furinghetti  (  2003  ) , 
and Schubring  (  2003,   2008b  ) . It was during the fourth International Congress of 
Mathematicians (ICM), held in Rome in 1908, that ICMI was founded through a reso-
lution asserting the importance of initiating a comparative study of the methods and 
programs of mathematics teaching in secondary schools and appointing to that effect a 
committee, under the presidency of the eminent German mathematician Felix Klein. 
ICMI was mainly known in those days via its French or German acronyms, CIEM and 
IMUK, or under its  fi rst English acronym, ICTM (Lehto,  1998 ; Schubring,  2003  ) . 

 As noted by Lehto  (  1998  ) , the  fi rst years of existence of ICMI were marked by 
much activity so far as curricular comparisons were concerned. However, interna-
tional tensions provoked by the First World War, and the resulting decrease in inter-
national scienti fi c contacts, brought ICMI to a quasi-stagnation (see Schubring, 
 2008b  ) . It was only after the Second World War, in a context where the scienti fi c 
community wanted to escape the dif fi culties encountered in the aftermath of the 
previous war, that the rebirth of the Commission occurred. In 1951, IMU formally 
came into existence (for a second time), and at its  fi rst general assembly, in March 
1952, it was agreed that ICMI should be attached to the union as its education com-
mission (see Sections 4.3, 5.1, and 5.4 of Lehto,  1998  )    —there had been a  fi rst 
incarnation of IMU during the period 1920–1932 (see Chapter 2 of Lehto,  1998  )   

   ICMI as a Permanent Commission of IMU 

 Bass  (  2008  )  used the expression “Klein era” to describe a  fi rst phase in the his-
tory of ICMI, from its inception to the Second World War. The main actors in ICMI 
life were then mathematicians who, like the  fi rst ICMI president, had developed “a 
substantial, but peripheral interest in education … plus some secondary teachers of 
high mathematical culture” (Bass,  2008 , p. 9). Furinghetti  (  2008a  )  commented that 
at the beginning of the second life of ICMI as a permanent IMU commission, the 
emphasis of its activities quickly went beyond the mere comparative analysis of 

http://dx.doi.org/10.1007/978-1-4614-4684-2_25
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school curricula, as done previously, in order to meet the challenges provoked by 
the “developments of society and schools” and the resulting increased “complexity 
of the educational problems” (p. 49). Bass  (  2008  )  called this new phase the 
“Freudenthal era,” from the eighth president of ICMI. This was a time that wit-
nessed substantial changes in re fl ections about the teaching and learning of mathe-
matics; namely, a shift from mathematics education considered as a “national 
business” concerned with curricular comparisons, to a “personal business” centred 
on learners and teachers (Furinghetti,  2008a , p. 50). 

 The presidency of Hans Freudenthal, from 1967 to 1970, was a turning point in 
this renewal of ICMI, as two major events then occurred, essentially through his 
personal initiative: the launching of a new journal ( Educational Studies in 
Mathematics , ESM) and a new series of congresses (the International Congress on 
Mathematical Education, ICME), both speci fi cally devoted to the then-emerging 
discipline of mathematics education—see Hanna and Sidoli  (  2002  )  for a history of 
ESM. These spectacular undertakings of Freudenthal re fl ected, and at the same time 
nurtured, the ongoing development of a new  fi eld of research, with its actors often 
new as well. These were no longer mathematicians with an occasional interest in 
educational matters, but professional researchers in the teaching and learning of 
mathematics (known as  didacticians  in most languages except English). In the words 
of Bass  (  2008  ) , “This period witnessed the emergence of mathematics education 
(didactics) as an international academic discipline, and of the corresponding scholarly 
community, for which ICMI was a major resource and agent” (p. 10). 

 Much more could be said about these remarkably active moments in the life of 
ICMI and the following post-Freudenthal years (Hodgson,  2009  ) . Two points are 
especially worth mentioning. This deep evolution of ICMI under Freudenthal’s 
in fl uence did not happen without some tension with IMU—more details on this are 
given in Lehto  (  1998  )  and Hodgson  (  2009  ) . Also, whereas the  fi rst years of the rebirth 
of ICMI as a commission of IMU still showed a strong preponderance of European 
countries, as in its early days (see Schubring,  2003 , p. 56), ICMI soon became more 
worldwide-oriented. Attention was particularly given to the objectives of spreading 
ICMI actions in Asia, Latin America, or Africa, notably as regards the needs of 
developing countries, and of fostering the emergence of regional networking. It was 
in such a context, to take one example, that ICMI, via its president Marshall H. 
Stone, played a crucial role in the founding in the early 1960s of the  Comité 
Interamericano de Educación Matemática  (CIAEM; see below).  

   ICMI Today 

 In contrast with most other bodies discussed in this chapter, the members of 
ICMI are not individuals but countries, following the IMU model. ICMI currently 
has 92 members, 80 of which are de facto members through their IMU membership. 
The annual budget of ICMI is provided by IMU as part of the dues collected from 
its member countries. As a commission of IMU, ICMI belongs to the family of the 
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International Council for Science (ICSU), which entails that ICMI is to abide by the 
ICSU statutes, one of which establishes the fundamental principle of universality of 
science, based on nondiscrimination and equity. 

 ICMI is today a major institution in the  fi eld of mathematics education and it can 
arguably be considered as “perhaps the international organization that has the most 
direct effect on mathematics education” (Atweh et al.,  2003 , p. 192). A peculiarity of 
ICMI is its position “at the interface between mathematics and mathematics educa-
tion,” to borrow from the title of Artigue  (  2008b  ) . Such an interface could be con-
sidered in relation to these  fi elds of knowledge per se and the various ways they 
connect, as well as with regard to the mathematicians and mathematics educators 
interacting at that interface. Still another aspect is related to structures; that is, to the 
existence of ICMI as a commission of IMU. This connection de fi nes ICMI legally 
and speci fi es the global context behind its actions. 

 This existence of ICMI at the interface with the community of mathematicians as 
represented by IMU provides a rich, albeit at times uneasy, framework for ful fi lling its 
mission. Beyond the Freudenthal episode mentioned above, Artigue  (  2008b  )  spoke of 
an “increasing distance” (p. 188) between the two bodies in the 1980s and 1990s which 
eventually led to somewhat strained relations, in particular around the 1998 ICM (see 
also Hodgson,  2009 , pp. 85–86). In spite of “voices asking ICMI to take its indepen-
dence” (Artigue,  2008b , p. 189) from IMU, a decision was then made by the ICMI 
Executive Committee (EC) to build on “the strength of the epistemological links between 
mathematics and mathematics education” (p. 190), and to renew and reinforce the con-
tacts and collaboration with IMU. Artigue and Hodgson report that the combined efforts 
of both bodies eventually resulted in robust and productive links between ICMI and 
IMU. A spectacular outcome, totally unexpected at the beginning of this century, was 
the approval at the 2006 IMU General Assembly (GA) of a new election procedure for 
ICMI transferring to the ICMI GA the decisive vote on the composition of the ICMI EC. 
Such a development points to the maturity not only of ICMI as an organization and the 
community it serves, but also of mathematics education as a scienti fi c domain. 

 The two most widely familiar activities of ICMI are the series of ICME con-
gresses, organized quadrennially, and the ICMI Study program, launched in the 
mid-1980s. The ICMEs are general conferences dealing with all aspects of mathe-
matics education and are, as such, important vehicles for enabling mathematics 
educators (including, importantly, teacher educators and teachers) to come together 
and experience each other’s ideas, cultural differences, and problems. Each ICMI 
Study, on the other hand, is devoted to a speci fi c theme and aims at developing a 
state-of-the-art view of the topic at stake. Whereas the ICMEs typically attract some 
two to three thousand participants, (yet more than 3,600 people attended ICME-12 
in Seoul in 2012) the studies are of a much smaller scale, with about 100 attendees 
taking part in an invitation-only working conference. Some of the recent ICMI 
Studies have been organized jointly with other bodies (IASE and ICIAM). ICMI is 
also involved in some ad hoc activities, such as the Pipeline Study or the Klein Project, 
both organized jointly with IMU, or the exhibition Experiencing Mathematics!, ini-
tiated and supported by UNESCO. (More details on these initiatives are available 
on the ICMI Web site:   http://mathunion.org/icmi/    ) 

http://mathunion.org/icmi/
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 Another strand of ICMI actions rests on the role of ICMI as a sort of umbrella 
organization offering a niche and support to various bodies. One example is the 
series of ICMI Regional Conferences, launched in the mid-1970s, gathering educa-
tion communities in Latin America, Asia, Africa, and the Francophone world. 
Another is connected to a network of organizations af fi liated to ICMI. These 
include  study groups  such as PME or HPM, af fi liated in the 1970s, and also  multi-
national mathematical education societies  such as CIEAEM and CIAEM, estab-
lished a while ago but af fi liated to ICMI only recently. This is an evolving network, 
as it now comprises 10 bodies, 5 of whom got af fi liation to ICMI in the years 
2009–2011, thus re fl ecting the vitality and the diversity of the  fi eld of mathematics 
education nowadays. These regional conferences and af fi liates are discussed sepa-
rately below. 

 Other facets of the ICMI role can be seen by considering speci fi c issues 
addressed at various moments. One such example with a long history, one that 
recently received renewed attention as a major aim of current ICMI actions, relates 
to outreach initiatives towards developing countries, as discussed by Artigue  (  2008b  )  
and Hodgson  (  2009  ) . The successful integration of colleagues from developing 
countries into the ICMI network requires a necessary evolution from the traditional 
“North–South” model towards “more balanced views and relationships” (Artigue, 
 2008b , p. 195). The Capacity and Networking Project aimed at developing coun-
tries was launched in 2011 jointly by ICMI, IMU, and ICIAM, in partnership with 
UNESCO. The objective of this initiative is to foster teacher development, both in 
mathematics and as professionals, and to help create and sustain networks of math-
ematicians, teachers, and mathematics educators in each region. A prerequisite for 
the acceptability of a given proposal is evidence of existing collaboration between 
local mathematicians and mathematics educators. 

 Although the publication of a research journal of its own is not part of its modus 
operandi, ICMI, as mentioned above, has strong historical connections with two 
major journals: L’EM, its of fi cial organ, and ESM, a journal deeply linked to the 
research community served by ICMI. 

 ICMI has clearly played, and continues to play, a leading role in mathematics 
education considered internationally. The number and scope of its activities are 
quite remarkable, especially bearing in mind its limited budget. Still, some issues 
can be raised when re fl ecting on its actions and mission. Atweh et al.  (  2003  ) , for 
instance, stressed the  fi nancial dif fi culty for educators from developing countries to 
attend the ICMEs, in spite of the 10% “Solidarity Tax” now raised on registration 
fees since ICME-8 to support participation from less af fl uent countries. They also 
questioned the format of the forums provided by such international conferences and 
pointed to linguistic and cultural barriers leading, in ICMI’s activities, to a domination 
“by educators and issues from Anglo-European countries” (p. 195). Artigue  (  2008b  )  
discussed a series of “crucial challenges” that ICMI must face when looking at the 
future. These concern mainly thematic, cultural, and regional underpinnings of 
the mission of ICMI, for instance: improving and extending ICMI outreach and the 
accessibility to its activities, furthering new relationships between centres and 
peripheries, understanding cultural diversity, and bene fi ting from it. 
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 Analogous comments are found in Hodgson  (  2008,   2009  )  concerning the 
 challenges faced by ICMI in its renewed partnership with IMU. But as pointed out 
in the concluding words of Artigue  (  2008b  ) , there are reasons to be con fi dent about 
the capacity of ICMI to adapt to the new challenges. ICMI is “still at the interface, 
but today at a much wider interface, fostering exchanges and collaboration between 
the diverse communities which, all over the world, can contribute to the improve-
ment of mathematics education” (p. 197). Observing that ICMI, as an institution, 
has in the past been able to “progress modestly and slowly, but … with coherence” 
(p. 197), Artigue concluded that this evolution has not come to an end and that ICMI 
“will go on moving and improving” (p. 197).   

   An Emerging Diversity of Interests and Structures 
in Mathematics Education: The 1950s to the 1970s 

 The previous section highlighted the long-standing presence of ICMI in the inter-
national mathematical education landscape and the scope and broad-ranging nature 
of its actions and mission, as well as the evolution it went through over the years. For 
more than 40 years, ICMI was essentially the sole international organization active 
in the  fi eld—although as already mentioned, it was itself at times in dormancy. When 
ICMI was reconstituted in 1952 as a commission of IMU, it was no longer the only 
player, as a new international organization was being established, partly, it must be 
stressed, in reaction to ICMI. It is thus with an agenda substantially different from 
that of the “traditional” ICMI that CIEAEM was launched in the early 1950s. That 
arrival provoked a context that eventually fostered a substantial evolution in ICMI 
itself, in connection with the Freudenthal era discussed above. 

 Ten years passed before the inception of another international organization in 
mathematics education, on that occasion with a substantial contribution from ICMI. 
In 1961, the  fi rst CIAEM conference was held, with the aim of fostering the devel-
opment of mathematics education in Latin America. Such a regional structure 
proved to be a very fruitful model through which more attention could be paid to 
local needs as well as to linguistic speci fi cities. 

 The next important movements in mathematics education infrastructure, consid-
ered internationally, happened during the 1970s. These were connected with the 
new activities, and more importantly the new spirit, resulting from the evolution of 
ICMI and re fl ect an increase in both strength and diversity inside mathematics edu-
cation during the so-called post-Freudenthal era of ICMI, as discussed by Hodgson 
 (  2009  ) . The birth of the  fi rst study groups af fi liated to ICMI, in 1976, is directly 
connected to the ICME congresses launched in 1969 by Freudenthal. We discuss in 
this section the cases of PME and HPM, and examine another regional structure, 
MERGA, launched in Australasia in the second half of the 1970s. 

 This section thus presents  fi ve organizations that are somewhat “early,” chrono-
logically speaking, as they are among the  fi rst groups, besides ICMI, to come into 
existence, all having been established before 1980. But they also exemplify 
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signi fi cant aspects of the structuring of the mathematics education community, as 
one can already identify in these  fi ve cases a variety of important models and scopes. 
They pre fi gure in a way the emergence in the following years of quite a few other 
organizations and their richness, both in number and diversity. 

 The  fi ve bodies that we discuss in this section are all linked to ICMI as af fi liate 
organizations. But we delay a discussion of this notion of af fi liation to the next 
section. 

   CIEAEM 

 In their discussion of the context that eventually led, in the late 1960s, to what 
they call the ICMI Renaissance, Furinghetti, Menghini, Arzarello, and Giacardi 
 (  2008  )  stressed the crucial role played in that connection by a new player in the  fi eld 
of mathematics education, the  Commission Internationale pour l’Étude et 
l’Amélioration de l’Enseignement des Mathématiques  (CIEAEM/International 
Commission for the Study and Improvement of Mathematics Teaching, ICSIMT). 
According to their comments, the “old ICMI,” with its focus on curricular compari-
sons, was not seen as providing a context suitable for pertinent re fl ections on arising 
educational issues, so that the need was felt for a new arena. 

 Already in 1950, a small group of people concerned with the improvement of 
mathematics teaching  fi rst met at the initiative of Caleb Gattegno. This group was 
the nucleus of a community eventually assembled under CIEAEM, of fi cially 
founded 2 years later during the fourth meeting of the group. From the outset, 
CIEAEM gathered people from various  fi elds (mathematicians, educationalists, 
psychologists, epistemologists, secondary schoolteachers), mostly from Europe ini-
tially. French was the main language of communication inside CIEAEM in its early 
years, and it is still today one of its two of fi cial languages, alongside English. 
Among the early members were many distinguished scholars: Gustave Choquet, 
Jean Dieudonné, Hans Freudenthal, André Lichnerowicz, Georges Papy and Jean 
Piaget, to name a few, as well as eminent secondary schoolteachers like Emma 
Castelnuovo and Lucienne Félix. The group aimed at modernizing mathematics 
teaching and achieving a complete reconstruction of school mathematics “from kin-
dergarten to university.” Its thinking was in fl uenced by the Bourbakist ideas of 
abstraction and structure, as well as by the importance of the link, advocated by 
Gattegno and others, between the learner’s mental activity, mathematical knowl-
edge, and the pedagogy of the classroom. CIEAEM soon in fl uenced the evolution 
of mathematics education through the emphasis it placed on students and on the 
teaching process, in contrast to educational work typical of the time, as well as by the 
presence among its principles of a fundamental mathematics component, eventually 
crystallized under the “new mathematics.” 

 Examples of innovative ideas promoted by CIEAEM were mentioned by 
Furinghetti et al.  (  2008  ) , including the relevance of psychology in mathematics edu-
cation, the key role of concrete materials, and the importance of empirical research. 
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These authors also claimed that “the collaboration between people of different 
backgrounds,” central to the early actions of CIEAEM, fostered “the emergence of 
a new  fi gure, the researcher in mathematics education” (p. 135), which in turn was 
a catalyst for a context favourable to “the emergence of mathematics education as a 
 fi eld of research” (p. 140). With regard to ICMI, all these developments were clearly 
instrumental in paving the way for the Freudenthal era discussed above. 

 Elements of the CIEAEM history are found in Félix  (  1986  ) , Grugnetti  (  1996  ) , 
and Bernet and Jaquet  (  1998  ) , as well as in  Manifesto 2000,  which CIEAEM  (  2000  )  
published to mark its 50th anniversary. This last document also describes the aims 
and functioning of CIEAEM. Information on the annual conferences is found in 
Bernet and Jaquet, and on the CIEAEM Web site (  http://www.cieaem.net    ). In addi-
tion to Furinghetti et al.  (  2008  ) , the role and in fl uence of CIEAEM has been dis-
cussed in recent papers (e.g., Atweh et al.,  2003 ; Furinghetti,  2008a,   2008b  ) . 

 One contrast between CIEAEM and ICMI is the informal character of the group; 
for instance, it was only in 1996 that CIEAEM adopted a constitution. Moreover, 
membership is at the individual level and by cooption only. Although the annual 
conference of CIEAEM, its main activity, now attracts up to 300 or 400 participants, 
the membership remains rather small, of the order of 50 from about 15 countries. 
In spite of such a limited size, CIEAEM can be seen today as occupying a speci fi c 
niche in the mathematics education landscape through the framework it proposes and 
the atmosphere of discussion and debates it aims at fostering in its conferences. 

 Central to CIEAEM’s  (  2000  )  philosophy is the recognition, as asserted in the 
 Manifesto 2000,  of the importance of “creating links between scienti fi c knowledge 
and craft wisdom and reinforcing the collaboration of mathematics education research 
and practice” (p. 2). This aspect, presented as “what distinguishes the organisation 
from others,” (p. 2) gets re fl ected, it is claimed, “in all of its work and at all the meet-
ings” (p. 2). Consequently the annual conference is intended as a study and working 
event where working groups, the “heart of the conference,” aim at fostering contacts 
between researchers and teachers. The presence of schoolteachers among the 
CIEAEM community is still seen today as a distinctive feature and has been pre-
sented by Furinghetti  (  2008b  )  as having been instrumental in promoting the interna-
tional visibility of women, especially in periods when, “as teachers, [they] previously 
had few opportunities to participate in the international debate” (p. 532). 

 The relationship between CIEAEM and ICMI has varied considerably over the years, 
as discussed in Furinghetti et al.  (  2008  ) . Formal relations were reinvigorated after a long 
period of indifference, when CIEAEM became the second multinational organization 
af fi liated to ICMI under the expanded af fi liation scheme adopted by ICMI in 2009.  

   CIAEM 

 The  Comité Interamericano de Educación Matemática  (CIAEM/Inter-American 
Committee on Mathematics Education, IACME) is arguably the main multinational 
organization in mathematics education in Latin America (Ruiz,  2010  ) . This regional 

http://www.cieaem.net
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organization was founded in 1961 by a group of mathematicians and mathematics 
educators from the three Americas under the leadership of the distinguished 
American mathematician Marshall H. Stone, at that time ICMI president. The con-
text of the creation of CIAEM has been discussed in Barrantes and Ruiz  (  1998  )  and 
Ruiz and Barrantes  (  2011  ) . The great interest by Stone in Latin America and his 
speci fi c role in building CIAEM and bringing it international support through his 
personal reputation were stressed by Barrantes and Ruiz. 

 The  fi rst  Conferencia Interamericana de Educación Matemática  (CIAEM/
Interamerican Conference on Mathematics Education, IACME) was organized in 
1961 under the auspices of ICMI and the Organization of American States (OAS). 
This was the time of the new math movement, with a strong in fl uence of the 
“Bourbaki ideology” (Barrantes & Ruiz,  1998 , p. 3), and the main objective was to 
bring together educators from the Americas to evaluate and reformulate mathemat-
ics curricula, with special attention to Latin America. A second conference was held 
5 years later to analyze the progress made in the reforms identi fi ed during the  fi rst 
congress. It was during the  fi rst congress that the CIAEM committee was formed 
with Stone as president, originally as a pro tempore committee and later formalized 
during the second conference. 

 The list of the CIAEM conferences, now regularly held quadrennially, is found 
in Barrantes and Ruiz  (  1998  )  as well on the CIAEM Web site (  http://www.ciaem-
iacme.org    ). Jacobsen  (  1996  )  pointed to the support provided by UNESCO in pub-
lishing the proceedings for many of these conferences. The 13th conference, 
coinciding with the 50th anniversary of CIAEM, was held in 2011 and attracted 
more than 1,800 participants from 30 countries, substantially more than the typical 
CIAEM conference. 

 In early documents, CIAEM described itself as “a non-governmental body 
af fi liated with the International Union of Mathematicians [sic] through the 
International Commission on Mathematical Instruction” (Barrantes & Ruiz,  1998 , 
p. 25). A “Memorandum on Af fi liation of IACME to ICMI” was later adopted by 
the ICMI Executive Committee (ICMI,  1975  ) , but its actual impact on the relation-
ship between the two bodies is not so clear, as the intensity of the contacts between 
ICMI and CIAEM varied over the years. In 2009, CIAEM became the  fi rst multina-
tional mathematics education society linked to ICMI under the expanded af fi liation 
scheme then adopted, thus launching a new era of collaboration going much beyond 
the mere recognition of CIAEM conferences as ICMI regional activities, as typi-
cally done earlier. It may be noted that the president of CIAEM at the time of this 
writing, Ángel Ruiz, is also vice-president of ICMI. 

 CIAEM does not have a formal notion of membership and relies for its network-
ing on a set of representatives from different countries, mostly in Latin America. 
The mission of CIAEM is centred mainly around the series of CIAEM conferences, 
which can arguably be seen as a major contributor to the shaping of mathematics 
education in Latin America through its in fl uence on researchers, teacher educators, 
and teachers. If CIAEM was born with an aim of “bridging” the Americas, and 
especially the countries in Latin America, despite substantial geographical or eco-
nomic obstacles, it has evolved as a body providing as well links with the international 

http://www.ciaem-iacme.org
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community, as argued by Barrantes and Ruiz  (  1998  ) . The recently reinvigorated 
relationship of CIAEM with ICMI can be seen as relevant in that connection. 
Another organization related to Latin America, CLAME, is discussed below.  

   PME 

 This section presents a modi fi ed version of the brief history of PME by Nicol and 
Lerman  (  2008  ) . The International Group for the Psychology of Mathematics Education 
(IGPME, or PME) was recognized as of fi cially af fi liated to ICMI in 1976 at ICME-3. 
The impetus to develop an organization with a psychological focus on mathematics 
education began much earlier when, at the  fi rst International Congress on Mathematical 
Education in 1969, Efraim Fischbein, as reported in Fischbein  (  1990  ) , was invited by 
ICMI president Hans Freudenthal to chair and organize a round table on psychology 
and mathematics education. A cognitive psychologist, Fischbein was very keen to 
take up Freudenthal’s call to improve mathematics education in schools by going 
beyond philosophical discussions of mathematics teaching and learning to planning 
and implementing empirical scienti fi c research in the  fi eld. 

 Participants attending this  fi rst round table were very enthusiastic to continue the 
discussion on psychological aspects of mathematics education. A working group 
dedicated to the psychology of mathematics education was offered at the second 
ICME in 1972. Hundreds of participants attended that workshop, recognizing, as 
Fischbein  (  1990  )  did, “that the psychological problems of mathematical learning 
and reasoning are scienti fi cally exciting and at the same time genuinely relevant for 
mathematics education” (p. 4). Four years later at ICME-3, participants decided to 
organize a permanent group that would meet yearly to discuss and explore issues 
related to the psychology of mathematics education. So began PME, with Fischbein 
as  fi rst president and Richard Skemp as second president 4 years later in 1980. The 
 fi rst annual meeting was held in 1977 in Utrecht. 

 As PME developed, its focus broadened to include new ways of thinking about 
learning mathematics. There were periods where particular ideas were prominent in 
PME research, including the ideas of instrumental/relational thinking, Realistic 
Mathematics Education, constructivism as a theory of knowing, visualization, alter-
native forms of assessment, and others. These and other research agendas chal-
lenged previous ways of thinking about mathematical activity and provided new 
implications for instruction. 

 With time, there was growing discussion on the scienti fi c direction of PME, with 
some members advocating a broadening of the focus of PME to go beyond psycho-
logical considerations to include also the process of teaching and teacher education, 
the epistemology of mathematics from a teaching/learning perspective, and equity 
and sociocultural issues of teaching and learning mathematics. At the 2005 General 
Meeting, with recognition that the group’s stated aims over the previous 10 years 
had moved beyond the purely psychological aims of the early years, the member-
ship voted to amend the statement of major goals to include the study of aspects of 
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teaching and learning that drew upon disciplines other than psychology, such as 
sociology and anthropology. Nevertheless, the group kept its acronym PME for his-
torical reasons and because it was so well established within the  fi eld with that 
name. 

 A strong vision of the  fi eld of mathematics education, as re fl ected through the 
research done by the PME community, can be developed from what Hershkowitz 
and Breen  (  2006  )  call the two “PME milestone publications” (p. ix); namely, the 
“research synthesis” of the  fi rst decade of PME work by Nesher and Kilpatrick 
 (  1990  ) , and the “handbook of research” of Gutiérrez and Boero  (  2006  ) , published 
on the occasion of the celebration of 30 years of existence of PME. These two vol-
umes show how the trends, scope, and collected research in mathematics education 
among the PME community have expanded. 

 PME conferences, the main activity of the group, are held every year and consist 
of a range of forms of presentation, including plenary lectures, a plenary panel, 
research forums, working groups, discussion groups, and poster sessions. 
Membership during the beginning years of PME consisted mainly of mathemati-
cians, mathematics educators, and psychologists from Europe and North America. 
Gradually, membership grew so that by the mid-1980s representation also included 
participants from other countries. Currently, members and conference participants 
represent more than one-third of the countries around the world. PME has between 
700 and 800 individual members, and membership is open to all persons in active 
research interested or involved in furthering the group’s direction. 

 From the early days of PME, national groups with a similar orientation were set 
up, some being af fi liated to PME. For instance, PME-NA, the North American 
chapter of PME, started in 1979 and has met annually ever since. 

 The development of mathematics education as a research  fi eld over the last 
decades has been greatly in fl uenced by the work done in the PME community. PME 
continues today to be a vibrant organization with international members contributing 
to mathematics education worldwide.  

   HPM 

 The idea of introducing historical components into mathematics education has a 
long history, as is shown by the preamble to a resolution from the third International 
Congress of Mathematicians held in Heidelberg in 1904:

  Considering that the history of mathematics nowadays constitutes a discipline of undeni-
able importance, that its bene fi t—from the directly mathematical viewpoint as well as from 
the pedagogical one—becomes ever more evident, and that it is, therefore, indispensable to 
accord it the proper position within public instruction. (Krazer,  1905 , p. 51; trans. in 
Schubring,  2000 , p. 91)   

 The establishment of the International Study Group on the Relations between the 
History and Pedagogy of Mathematics (ISGHPM, or HPM) recognized the impor-
tance of history of mathematics in educational issues. This movement was initiated 
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during the 1972 ICME by Phillip S. Jones and Leo F. Rogers through a working 
group devoted to a similar theme, with the encouragement and support of Kenneth 
O. May, and led to the launching of HPM as a permanent study group and its 
af fi liation to ICMI at ICME-3 in 1976. Information on the origins of HPM is given 
by Fasanelli and Fauvel  (  2006  ) . 

 The aims of HPM concern mathematics education at all levels. They include the 
production of materials for teachers promoting awareness of history of mathematics 
as relevant for education and as a signi fi cant part of the development of cultures, 
and the furtherance of “a deeper understanding of the way mathematics evolves, and 
the forces which contribute to this evolution” (Rogers,  1978 , pp. 26–27). 

 Since its inception, HPM has grown in in fl uence and has produced a wide range 
of publications, from accounts of classroom experiences to research papers in a 
number of languages. The conviction that history of mathematics relates to our cul-
tural and social background underlies the development of many lines of investiga-
tion and has brought a more socially aware style to the writing of the history of 
mathematics. Different cultures, be they past or present, have different histories, and 
the awareness of these necessarily has implications for education. 

 Very soon after its of fi cial establishment, HPM began contributing to the 
International Congresses of Mathematicians in connection with history of mathe-
matics in university education, and stimulated meetings on history and pedagogy of 
mathematics at joint meetings of the MAA/AMS in the USA. In 1984, the North 
Americas Section of HPM was formed and has usually held its meetings alongside 
the annual meetings of NCTM. 

 HPM has also organized and collaborated with activities in Europe. On the foun-
dation of the IREM network in France in the early 1970s, a number of universities 
decided to research the history and epistemology of mathematics in education. 
A considerable number of publications have been produced by the IREMs, sup-
ported by the inter-IREM Commission on Epistemology and History of Mathematics, 
established in 1975. From 1993, and supported by the IREMs, the European 
Summer University on History and Epistemology in Mathematics Education (ESU) 
has met almost triennially and has been the main venue for HPM in Europe. Further 
collaboration with European colleagues led to the regular occurrence of a Working 
Group on history in mathematics education at ERME congresses, starting at CERME 
6 in 2009. 

 Among the activities of HPM are “satellite meetings” organized regularly in con-
junction with ICME congresses. This tradition started with ICME-5 in 1984 and has 
resulted in a number of publications, listed on the HPM Web site (  http://www.clab.
edc.uoc.gr/HPM/    ). 

 Publications related to HPM activities also include the volume by Fauvel and 
van Maanen  (  2000  )  resulting from the Tenth ICMI Study. Background was pre-
sented in Fasanelli and Fauvel  (  2006  ) , who claimed:

  ICMI’s support for and promotion of this Study can thus be seen as recognition of how the 
HPM Study Group had encouraged and re fl ected a climate of greater international interest 
in the value of history of mathematics for mathematics educators, teachers and learners. 
(p. xxiii)   

http://www.clab.edc.uoc.gr/HPM/
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 To disseminate information among its community, HPM has published a regular 
newsletter since 1972. Starting with Issue 45 (2000), it is available from the HPM 
Web site, where links to Web sites with similar interests are also found.  

   MERGA 

 The idea of an Australian national group in mathematics education research 
developed in the mid-1970s, and its  fi rst conference took place in 1977, where par-
ticipants voted to establish the Mathematics Education Research Group of Australia 
(MERGA). The beginnings of MERGA are told in Clements  (  2007  )  and Mousley 
 (  2009  ) . According to Mousley, this was the  fi rst national mathematics education 
research group formed anywhere in the world. A decade after its inception, the 
group became the Mathematics Education Research Group of Australasia, thus bet-
ter re fl ecting its regional and multinational scope. At its 2011 annual meeting, the 
ICMI Executive Committee of fi cially approved the af fi liation of MERGA to ICMI 
as a multinational organization involved in mathematics education. MERGA 
describes its main aims as promoting quality research on the teaching and learning 
of mathematics at all levels, with a focus on Australasia, providing means for shar-
ing of research results through publications and conferences, and fostering the 
implementation of research  fi ndings, particularly in the preparation of teachers. 
MERGA’s  (  2002  )  policy statement maintained, in particular, that the conduct of 
research in mathematics education must be sensitive to the diverse cultural back-
grounds in a given educational environment, and that support should be offered to 
“early researchers.” 

 Concerns have been expressed in that connection about achieving a balance 
between high standards for research publications, and enabling researchers (both 
young and experienced) to improve via feedback and support from the MERGA 
community. As an accepted paper is typically needed to gain  fi nancial assistance for 
attending a conference, Mousley  (  2009  )  reported on different reviewing procedures 
recently implemented, including one distinguishing between papers meeting very 
basic criteria and accepted for presentation only (with publication of an abstract), 
and others for presentation and publication. The effects of such changes remain to 
be seen. 

 MERGA’s annual conferences have been held regularly since 1977, the 35th 
being hosted in 2012 in Singapore–the  fi rst occurrence of a MERGA conference 
held outside Australia or New Zealand, thus demonstrating the increasing regional 
scope of the organization. 

 Besides its annual conference proceedings (available on its Web site   http://www.
merga.net.au    ), MERGA publishes quadrennial reviews of mathematics education 
research in Australasia, the most recent being Forgasz, Barkatsas, Bishop, Clarke, 
Keast, Wee, and Sullivan  (  2008  ) , as well as two refereed journals. 

 One of these journals is  Mathematics Teacher Education and Development  
(MTED),  fi rst published in 1999, the outcome of the amalgamation with MERGA in 

http://www.merga.net.au
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1997 of the Mathematics Education Lecturers’ Association (MELA), started in 1973 
as an organization of lecturers in teachers’ colleges. Klein, Putt, and Stillman  (  1999  )  
stressed the need that was identi fi ed “to maintain an avenue for the dissemination of 
innovative practices in mathematics education and discussion of issues which 
affected lecturers and their roles” (p. 1), which led to the founding of MTED 
(   Mousley,  2009  ) . The authorship has evolved, so that Way, Anderson, and Bobis 
 (  2010  )  claimed, in a recent editorial of MTED, that “international authors [now] 
account for about 34% of the total content. … While the journal maintains a focus on 
publishing material of interest and application to the Australasian context, encourag-
ing a global perspective on mathematics education is also important” (p. 1). 

 A similar concern is found in the other MERGA refereed journal, the  Mathematics 
Education Research Journal  (MERJ), launched in 1989 and described as “an 
Australasian-based international mathematics education journal” (Forgasz,  2004 , p. 1). 
By publishing “high-quality papers” presenting research on mathematics education 
at all levels, MERJ aims to attract an international readership but, as indicated on its 
Web site (  http://www.merga.net.au/publications/merj.php    ), “papers exploring 
speci fi cally Australasian issues are welcome.” Forgasz  (  2004  )  invited authors “to be 
inclusive of the Australasian and the wider readership [and to] consider … illustrat-
ing how  fi ndings from the studies discussed in articles are relevant to the Australasian 
as well as broader mathematics education contexts” (p. 2). MERJ is clearly among 
highly regarded research journals in mathematics education. However, its ambition 
to address the total Australasian context is still partly problematic, in particular with 
respect to the origins of its editorial board members, reviewers, and authors.   

   Diversity Inside the ICMI Community: The ICMI Af fi liates 

 The  fi ve organizations of the last section all belong to the network of ICMI 
af fi liates. Two of these, PME and HPM, were in fact the very  fi rst study groups 
af fi liated to ICMI in 1976, and were established having that status at the very begin-
ning. Typically, however, a body would not become an ICMI af fi liate right at the 
time of its inception, but only somewhat later. Artigue  (  2008b  )  maintained that the 
creation of the  fi rst ICMI Af fi liated Study Groups provided evidence of the “increas-
ing number of communities that tended to be institutionalized inside the mathemat-
ics education world” (p. 189) in the 1970s, thus pointing to a growing diversity in 
the  fi eld and the way it was being structured. In addition to PME and HPM, four 
other study groups became af fi liated to ICMI over the years: IOWME (1987), 
WFNMC (1994), ICTMA (2003), and MCG (2011), each being of a thematic nature 
and focussing on the study of a speci fi c aspect of mathematics education. 

 Although implemented in practice since the mid-1970s, it is only with the 2002 
revision of the ICMI terms of reference that the notion of af fi liation was formally 
introduced within the structure of ICMI (see Hodgson,  2002  ) . In 2009, it was enlarged 
to include not only study groups devoted to a speci fi c  fi eld of interest and study in 
mathematics education, but also multinational mathematical education societies. 

http://www.merga.net.au/publications/merj.php
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There are currently four organizations af fi liated to ICMI under the expanded 
af fi liation scheme (three of which were established before 1980 and discussed in 
the previous section): CIEAEM, CIAEM, ERME, and MERGA. Except for 
CIEAEM, these multinational societies are all of a regional nature. Both CIEAEM and 
CIAEM have a very long history intermingling regularly with that of ICMI, as 
already indicated. 

 Through the notion of af fi liation, ICMI acts as an umbrella organization for bodies 
active in mathematics education and having an existence of their own. These af fi liates 
are not created by ICMI, nor are they  fi nancially supported by it. But ICMI promotes 
their activities through its various channels of information and also ensures that 
speci fi c slots are dedicated to them on the program of the ICME congresses. This is a 
way for ICMI to enlarge the scope of its actions and encourage the development of the 
 fi eld, and for the organizations to have their credibility supported internationally by a 
well-respected body. The Guidelines to the 2009 ICMI Terms of Reference (accessi-
ble on the ICMI Web site   http://www.mathunion.org/icmi    ) also point to af fi liation as 
facilitating “jointly sponsored activities” involving ICMI and its af fi liates. 

 The ICMI Af fi liate Organizations, whether study groups or multinational societ-
ies, thus provide niches where speci fi c segments of the international mathematics 
education community may feel at home. The 10 current af fi liates represent a great 
diversity, not only in size and in the type or frequency of their activities but also in 
the facets of mathematics education that each of them aims to foster. 

   ERME 

 Discussions about forming a speci fi cally European society for research in math-
ematics education were initiated in the 1990s. A small conference was organized in 
Germany in 1995, and from this, the idea found a wider audience during ICME-8 in 
1996. Representatives from 16 European countries met in 1997 in Osnabrück, 
Germany, to establish the European Society for Research in Mathematics Education 
(ERME). The spirit of the new society can be seen from the following comments by 
one of the founding members, Jaworski  (  2008  ) :

  In true European spirit, we decided that we wanted a society that would bring together 
researchers from across Europe, particularly including colleagues from Eastern Europe, fos-
tering communication, cooperation and collaboration. We wanted a conference that would 
explicitly provide such opportunity. We especially wanted to encourage and contribute to the 
education of young researchers. Thus ERME was born and began to take shape. (p. 43)   

 The society held its  fi rst congress in 1998, when Guy Brousseau  (  1999  )  and 
Jeremy Kilpatrick  (  1999  )  gave the keynote addresses. 

 ERME aims at promoting communication, cooperation, and collaboration (the 
“three Cs,” Arzarello,  2009  )  in mathematics education research in Europe, espe-
cially through its main activities: the congresses, covering a wide spectrum of 
themes to pro fi t from the diversity in European research, and the summer schools, 
where experienced researchers work together with beginners. 

http://www.mathunion.org/icmi


91928 International Organizations in Mathematics Education

 A chief aim of the Congress of the European Society for Research in Mathematics 
Education (CERME), held every other year since the second in 2001, is to move 
away from individual research presentations towards collaborative group work 
involving scholarly debate (Jaworski,  2008  ) . The intensive working groups are a 
distinctive feature of CERME. Although criticisms are sometimes heard about the 
requirement to stay within a single group for the whole conference, the consensus 
shows that this format bene fi ts the quality of debates, so that the CERME con-
gresses “have remained faithful to the initial conception,” as reported by Jaworski 
in the general introduction to Durand-Guerrier, Soury-Lavergne, and Arzarello 
 (  2010  ) . Jaworski added: “Many participants have said in evaluation of the events 
that the opportunity to spend serious time in one group allowed them to really get to 
know researchers from other countries, and that this contributed signi fi cantly to the 
depth of thinking that was possible” (p. xx). 

 Jaworski  (  2008  )  mentioned issues facing the ERME community in its efforts to 
support and develop the language of communication used in its scienti fi c work, so 
as not to disadvantage those for whom English is a second language, and also to 
achieve a balance between scienti fi c quality and the will to be inclusive. This qual-
ity/inclusiveness dichotomy remains a point at issue, and various schemes are being 
tried, in particular in the review process, to include as many participants as possible 
by helping them to bring their paper to acceptable standards (Arzarello,  2009  ) . 

 Another strand of the ERME mission is the community of Young European 
Researchers in Mathematics Education (YERME), established at CERME 2 
(Krainer,  2002  ) . As stated by Arzarello and Tirosh  (  2009  ) , “The main idea of 
[YERME] initiatives is to support young researchers in their  fi rst years of work, 
particularly during and immediately after their PhDs” (p. 43), in a friendly and 
cooperative style and with support from highly quali fi ed experts. A YERME day is 
held just prior to CERME, and since 2002 a YERME Summer School (YESS) has 
been held in alternation with the CERME congresses. 

 Early in 2010, ERME became the second multinational mathematical education 
society linked to ICMI under the expanded scheme of af fi liate organization.  

   IOWME 

 In 1976, a meeting was arranged during the course of the ICME-3 congress to 
discuss the issue of “Women and Mathematics.” A vivid description of this event is 
found in Shelley  (  1984  ) , where some on-site adverse reactions to the meeting were 
reported. It was agreed at that meeting to launch IOWME. A resolution was approved 
concerning “the poor representation of women at all levels [in the Congress]: in 
delivering main papers, on panels, as reporters, and in the planning of this 1976 
Congress” (p. 20). This resolution was presented at the  fi nal session of ICME-3. 

 Further contacts with ICMI, described by Shelley  (  1984  ) , led to the af fi liation of 
IOWME to ICMI in 1987. Part of the motivation for this af fi liation, as reported in 
Mendick  (  2008  ) , was to gain of fi cial recognition from ICMI, so to foster  consultation 
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between ICMI and IOWME and facilitate the input of the Group in the planning of 
events such as the ICME congresses. 

 The IOWME leadership is headed by an  international convenor,  supported by a 
team of  national coordinators,  and the aims of the group are centred on the relation-
ship between gender and mathematics, emphasizing development and dissemina-
tion of research related to the participation of women in the mathematical sciences 
and factors in fl uencing that participation. On its Web site (  http://extra.shu.ac.uk/
iowme/    ), IOWME describes itself as “an international network of individuals and 
groups who share a commitment to achieving equity in education,” which includes 
the links between gender and the teaching and learning of mathematics. 

 The main activities of IOWME are related to components of the programs of 
ICME congresses, other sessions sometimes being held in association with 
PME conferences. The group was also involved in the ICMI Study on gender and 
mathematics education that resulted in books by Grevholm and Hanna  (  1995  )  and 
Hanna  (  1996  ) .  

   ICTMA 

 The acronym ICTMA represents three different (but closely related) entities: the 
International Community of Teachers of Mathematical Modelling and Applications, 
established in 1983; the International Conferences on the Teaching of Mathematical 
Modelling and Applications, which are the biennial congresses organized by this 
community since its inception; and  fi nally the International Study Group for 
Mathematical Modelling and Applications, the name under which the community 
chose to be known for the purpose of its af fi liation to ICMI in 2003, keeping the 
same acronym already in use for two decades. 

 ICTMA aims at promoting applications and modelling at all levels in mathemat-
ics education, being concerned with these issues from different perspectives: 
research, teaching and practice. Galbraith  (  2004  )  presented fostering work with a 
“clear application/modelling content, contextualized within an educational frame-
work appropriate to the issue being addressed” (p. 67) as the mission of ICTMA. He 
stressed this “double aspect” in distinction to a strictly mathematical focus, or a 
mathematics education context disconnected from applications and modelling. He 
concluded with the following assertion about the ICTMA community:

  A distinctive aspect of ICTMA is the interface it provides for collaboration between those 
whose main activity lies within mathematics, but who have an informed interest in educa-
tional issues, and those whose institutional af fi liations are within education, but who have a 
commitment to promoting the application of quality mathematics. (p. 68)   

 The theme of the 14th ICMI Study was directly related to the Group’s interests. 
The resulting volume (Blum, Galbraith, Henn, & Niss,  2007  ) , prepared with substan-
tial input from members of the ICTMA community, re fl ected to a large extent the 
vision of the group. The biennial ICTMA conferences, on the other hand, have resulted 
in a series of books which are listed on the group’s Web site (  http://www.ictma.net/    ).  

http://extra.shu.ac.uk/iowme/
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   WFNMC 

 Founded reportedly by “an international band of enthusiasts” (Taylor,  2009 , p. 11), 
the World Federation of National Mathematics Competitions was established in 
1984 on the occasion of a mathematics competitions session at ICME-5, mainly 
through the inspiration of Peter O’Halloran. Fundamentally, the main idea was to 
share experiences among those involved in mathematics competitions in different 
parts of the world. 

 The name of the Federation might imply goals related only to competitions, but 
the spirit of its actions concerns how competitions may contribute to the improve-
ment of mathematics education in general. The WFNMC constitution describes its 
aims as promoting excellence in mathematics education and supporting those inter-
ested in the development of mathematics education through mathematics contests. 
A policy statement issued in 2002 presented competition activities for students at all 
levels as central to the interests of WFNMC, and listed related activities that the 
Federation aims to support—such as enrichment courses, mathematics clubs, math-
ematics camps, and the development of resources to meet the needs of talented 
students. Kenderov  (  2009  )  suggested that af fi liation of WFNMC to ICMI, in 1994, 
can be seen as “a recognition for what it does for mathematics education” (p. 19). 

 The  fi eld of interests of WFNMC was taken as a starting point for the 16th ICMI 
Study (Barbeau & Taylor,  2009  ) . A crucial issue for ICMI was to ensure that the 
study was not restricted to, say, “olympiad-type” competitions and included a wider 
re fl ection. An appropriate description of “mathematical challenges” was agreed 
upon that coincided with the general aims of WFNMC (ICMI,  2004  ) :

  A challenge occurs when people are faced with a problem whose resolution is not apparent 
and for which there seems to be no standard method of solution. So they are required to 
engage in some kind of re fl ection and analysis of the situation, possibly putting together 
diverse factors. Those meeting challenges have to take the initiative and respond to unfore-
seen eventualities with  fl exibility and imagination. (p. 33)   

 The word  challenge  denotes here a relationship between a question or situation 
and an individual or a group, so that what is a challenge for some may not be for 
others. Barbeau and Taylor  (  2008  )  reported that about one-third of the contributors 
to the study were “competition types” (p. 82), with others representing a range of 
activities and interests in mathematics education. 

 The Federation meets every other year, as the WFNMC conferences take place 
quadrennially and are intertwined with meetings held in between on the occasion of 
the quadrennial ICMEs.  

   MCG 

 In contrast to the ICMI Af fi liated Study Groups discussed above, all of which 
had their roots in the 1970s or 1980s, the International Group for Mathematical 
Creativity and Giftedness (MCG) began in 1999, when the  fi rst conference of a 



922 Hodgson, Rogers, Lerman, and Lim-Teo

series known as the International Conferences on Creativity in Mathematics 
Education and the Education of Gifted Students (CMEG) was organized by Hartwig 
Meissner. The MCG Group was of fi cially established at the 6th CMEG conference 
in 2010 and became af fi liated to ICMI in 2011. 

 MCG aims to encourage research and dissemination of information on how cre-
ativity and giftedness can be identi fi ed, nurtured, and supported. It recognizes the role 
and needs of teachers as well as the ways educational systems are able to react to situ-
ations in order to develop the full potential of all students. The CMEG conferences are 
held typically every two years, and members of its community are important contribu-
tors to the working groups devoted to this theme at the ICME congresses. 

 The MCG community may be regarded as numerically modest. Nonetheless, the 
establishment of the Group, as well as its af fi liation to ICMI, are indications of the 
importance in mathematics education of the speci fi c needs MCG aims at address-
ing. Gifted students may not form the most visible or pressing segment of the stu-
dent population, but they are there, and neglecting their case would lead to a 
substantial loss of human resources. On the other hand, all students should be 
enticed to ful fi l their full potential, whatever the level of such potential may be. 
Making sure teachers are more and more sensitive to such needs and that they are 
well equipped to face them can only be to the bene fi t of society.   

   Regional and Thematic Communities: A Selection of Ten 
Organizations from the Mid-1980s to Today 

 The proliferation of international organizations related to mathematics education 
in the 1970s was not an accidental phenomenon doomed to exhaust rapidly. As a 
matter of fact, as is clearly seen from Appendix  B , the following decades witnessed 
the establishment of several new organizations, each being aimed at addressing 
quite speci fi c needs of the community. 

 This section will concentrate on a selection of 10 international organizations created 
between the mid-1980s and today. By regrouping these bodies together into a single 
section, we do not mean to suggest a strong similarity among them, although they all 
result either from a regional approach or a thematic focus. Our aim is rather to use this 
context to stress again the remarkable diversity achieved in the structuring over the 
years of the mathematics education community and its many sub-communities. 

 It is possible to identify some strands among the organizations discussed in this 
section. We start by discussing three communities meeting in the context of regional 
conferences organized under the auspices of ICMI. An interesting phenomenon to 
be observed is that to a large extent these groups, in spite of the regularity of their 
scienti fi c meetings, have not felt the need to formalize the general infrastructure 
behind their activities via the establishment of a bona  fi de bureau or suchlike. Two 
additional examples of a similar informal situation, but with bodies centred on a 
thematic perspective, are also given. We conclude the section by discussing  fi ve 
organizations established in recent decades, some thematically oriented and the 
 others regionally, but which rely on a fully  fl edged formal setting for their actions. 
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   ICMI Regional Conferences 

 The ICMI policy of supporting regional conferences was of fi cially launched in the 
1970s, although its origin may be traced back to the establishment of CIAEM in the 
early 1960s. In his 1971–1974 presidential report, James Lighthill  (  1975  )  wrote: 
“ICMI adopted a new policy of holding Regional Symposia to facilitate wider discus-
sion of mathematical education outside those areas of Europe and America where 
international meetings on the subject have mainly been held hitherto” (p. 330). This 
outreach initiative can also be seen as a way of addressing a “crucial challenge” for 
ICMI: the need to foster among the education community the development of a greater 
“sensitivity to the cultural and contextual dimensions of mathematics education” 
(Artigue,  2008b , p. 191). A region, however it may be delineated, can often be consid-
ered as a reasonable environment for dealing with such issues. Basic guidelines and 
criteria were adopted by ICMI about granting the status of ICMI Regional Conference 
to a conference under planning, including having a genuinely international confer-
ence, albeit maybe at a regional level, and ensuring quality standards through a broadly 
representative international scienti fi c committee responsible for the program. 

 Over the years, meetings of different natures were recognized by ICMI as 
regional conferences organized under its auspices, sometimes on an ad hoc basis. 
Four current series of conferences correspond to stable regional networks that 
emerged within ICMI circles: the CIAEM conferences, EARCOME, EMF, and 
AFRICME (in chronological order). The  fi rst was discussed above, and we now 
consider the other three. 

   EARCOME . The East Asia Regional Conference in Mathematics Education 
(EARCOME) had its immediate roots in two ICMI Regional Conferences hosted by 
China in 1991 and 1994 which attracted participants mostly from China, Japan, and 
South Korea. It was then agreed to meet outside China and be more inclusive of 
other Northeast Asian countries. The first of these new conferences was held in 
Korea in 1998 under the name ICMI-EARCOME.

 But the EARCOME as it now stands also results from combination with an older 
series, the Southeast Asian Conference on Mathematical Education (SEACME), 
begun in 1978 and hosted by almost every Southeast Asian country before it was 
subsumed under the EARCOME series at EARCOME-2 in 2002. Lim-Teo  (  2008  )  
provided more information on the evolution of these conference series. 

 As noted by Nebres  (  2008  ) , the SEACME series was initiated at the recommen-
dation of Yukiyoshi Kawada, ICMI secretary-general from 1975 to 1978. The inau-
gural 1978 SEACME in Manila was a resounding success in the learning that took 
place, not only from the conference itself but also through series of activities lead-
ing up to the conference and follow-up actions afterwards. In the words of Nebres, 
this “led to a burst of mathematics education activity in Southeast Asia” (p. 149). 

 Each SEACME conference was organized by the host nation, which chose its 
own theme, invited speakers, and encouraged attendance by school mathematics 
teachers. It could be seen as “a national conference with regional and perhaps some 
international participation” (Lim-Teo,  2008 , p. 248). She further commented: “The 
host country bene fi ted … through providing their teachers and other participants the 



924 Hodgson, Rogers, Lerman, and Lim-Teo

opportunity to learn from the regional and international speakers and participants” 
(p. 248). Lee  (  1992  )  stressed the importance of the pre- and post-conference 
activities connected to the  fi rst SEACME conference, “something which a regional 
conference could accomplish that no international conference could do” (p. 28). 
He also asserted that those involved “found that [they] could learn a lot from each 
other perhaps even more so than from the developed countries” (p. 28). 

 Although the SEACME host nations had roughly common contexts such as post-
colonial independence which in turn generated educational issues, the North-Eastern 
Asian nations shared substantial similarity in their longer histories of civilization/
structured governance, their greater homogeneity within each country, and a common 
Confucian-heritage culture with long educational traditions. In the  fi rst ICMI-China 
conference, in 1991, an oft-heard theme was the need for educational reform with 
more constructivist approaches to education. This conference was from a political 
perspective a crucial milestone in the ICMI relations with the North Asian nations, 
and a breakthrough in terms of cross-cultural understanding and cooperation. 

 Whereas the ICMI-China Regional Conferences and the SEACME initial confer-
ences were “national” conferences with some international participation, the 
EARCOME series moved to a format rather similar to “Western” conferences, with 
a substantial number of foreign and local keynote speakers and paper presentations 
organized along various strands. This was a natural outcome of globalization and 
not unwelcome, since it enabled the academic discourse to be enriched with wider 
perspectives and diversity, to stay current and relevant. Foreign participation also 
increased. Nevertheless, the local–regional–international balance was maintained, 
and local participation remained strong, with many paper presentations being from 
local participants, discussing local issues and research and with parallel workshops 
for development of local teachers. 

 The role of EARCOME conferences can pro fi tably be considered from the vantage 
point of  centres  and  peripheries , as found in Artigue  (  2008b  )  or Nebres  (  2008  ) . 
Discussing the development of mathematics education activities in East/Southeast Asia 
from the late 1970s, Nebres described countries from the region as remaining “in the 
periphery in the sense that, say in ICMEs, their unique voices are only heard in special 
sessions on mathematics education in developing countries” (p. 150). The EARCOME 
series has considerably helped the “periphery voices” in East/Southeast Asia to be 
heard more clearly and more coherently, both in the region and internationally.  

   EMF . The ICMI Regional Conferences  Espace mathématique francophone  (EMF, 
Francophone Mathematical Space), instigated in 2000, have as a peculiarity that they 
rest on a notion of region defined in linguistic rather than geographical terms, French 
being the common language among participants. This initiative originates from the 
 Commission Française pour l’Enseignement des Mathématiques  (CFEM), the French 
subcommission of ICMI. The EMF conferences are held triennially, and the principle 
of alternation of sites between developed and developing countries has hitherto been 
respected (France, Tunisia, Québec, Senegal, and Switzerland).

 In a context where a majority of the participants in international mathematics edu-
cation forums have English, today’s lingua franca, as a second-or even  third-language, 
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it is de fi nitely appropriate, from an ICMI perspective, to support collaboration and 
interactions in speci fi c linguistic contexts, when the language at stake is shared in 
many regions around the world. Being “more and more sensitive to linguistic issues” 
is presented by Artigue  (  2008b  )  as a way for ICMI to increase its outreach, “all the 
more as the discussion of educational issues within a given language requires much 
more  fl uency than mathematical discussion” (p. 194). Such an argument was at the 
origin of the EMF network, whose success among the French-speaking community 
suggests that this may correspond globally to a genuine need. As the community gath-
ered, EMF has felt no need to of fi cialize its network via the establishment of an execu-
tive or a bureau. The presence of CFEM as a stable body closely supporting the 
network has greatly facilitated the passing of the baton from one conference to the 
next, something always an issue in such informal settings. At the EMF 2012 confer-
ence, it was decided to establish an “EMF Executive Bureau” composed of eight 
people representing North and South countries of the Francophonie and in charge of 
the general functioning of the EMF conferences.  This body is responsible in particu-
lar for the selection of the site of a given conference as well as the transition from one 
scienti fi c committee to the next.  

   AFRICME . Our final example of ICMI Regional Conferences is the Africa 
Regional Congress of ICMI on Mathematical Education (AFRICME), the first of 
which was organized in 2005 in South Africa largely at the initiative of Jill Adler, then 
ICMI vice-president. For ICMI, this project was most timely, as its executive committee 
had been reflecting for some time on ways to increase ICMI’s role and impact in regions 
of the world where it was hardly present—Africa clearly fitted that description. The 
next AFRICME congresses were held in Kenya in 2007 and Botswana in 2010.

 The main aim of AFRICME is to stimulate interactions among mathematicians, 
mathematics educators, and teachers across African countries, with a focus on the 
needs and speci fi cities of the region. Because of the global African situation, a spe-
cial emphasis is placed on issues pertinent to mathematics education in developing 
countries, but without neglecting the importance of keeping the re fl ections congru-
ent with a more global framework, so as not to allow their impact and value to be 
trivialized or marginalized. 

 The AFRICME network is centred in Anglophone Africa, and efforts are being 
made to reinforce its links and collaboration with a subnetwork of the EMF com-
munity based in African Francophone countries.   

   Other Informal Structures 

 Most of the international organizations discussed in the previous sections had 
some form of “legal” existence connected to their status as constituted bodies, 
sometimes even as formally incorporated associations: one such example is 
MERGA, whose of fi cial name, as indicated in its constitution, is “The Mathematics 
Education Research Group of Australasia Incorporated.” 
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 But the organizational and legal frameworks supporting the missions of cer-
tain other groups are much more informal. A group may even exist essentially 
via a set of activities (typically a conference occurring periodically), without the 
presence of a formalized body in the background. There is usually a clearly 
identi fi ed and lively community supporting the group’s activities, but for various 
reasons the need has never been felt for the creation of an organization with a 
constitution, a bureau, and so on. As a consequence, many such organizations do 
not have a centralized Web site, and Internet links move from one congress to the 
next. Many of these have not developed a formal notion of membership (with 
accompanying dues)—a group serves a given community via the organization of 
speci fi c activities. 

 The three ICMI Regional Conferences we have just described provide good 
examples of this kind of informality. We next discuss two other groups independent 
of ICMI that support regular cycles of conferences but do not have formal structures 
de fi ning their existence. 

   MES . In 1998, the first meeting of what has become a regular series of mathematics 
education conferences was set up explicitly as a challenge to the International Group 
for the Psychology of Mathematics Education (PME). Important aspects of the 
research field, it was felt, were not represented at PME, because of its insistence on 
a psychological focus. This meant that papers with a sociological, political, or 
philosophical focus were rejected by reviewers and therefore did not appear in PME’s 
discussions and proceedings.

 The original acronym of the new conferences was MEAS, standing for 
Mathematics Education And Society, but from the second meeting this was changed 
to MES. In his plenary talk at the  fi rst meeting, Alan Bishop marked MES’s debt to 
the so-called Fifth Day Special Programme on Mathematics, Education and Society 
at ICME-6 (Keitel, Damerow, Bishop, & Gerdes,  1989  ) . 

 The group has no formal management structure, no elections, no president or 
chair, and no standing committee. At each meeting, there is a general gathering at 
which a future meeting is proposed. A committee is then formed by volunteers with 
experience in organizing prior meetings and by new members. 

 Following the inaugural meeting in the UK, further meetings have been held in 
Portugal (2000), Denmark (2002), Australia (2005), Portugal (2008) and Germany 
(2010)—see Gellert, Jablonka, and Morgan  (  2010  ) . There have been some discus-
sions about whether the change in the constitution of PME in 2005, opening beyond 
psychology the theoretical perspectives that can inform research in mathematics 
education represented at PME conferences, should lead to the end of MES, but it has 
now a life and traditions of its own. The 7th MES meeting has been  fi xed for South 
Africa in 2013. 

 Meetings include plenary lectures, which are discussed subsequently by small 
groups. These groups stay together for those discussions throughout the meetings. 
Points from those discussions are fed back to the presenters at an open meeting. 
Other forms of interaction include presentations of reviewed papers and symposia. 
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 Great emphasis is placed on participation from under-represented countries and 
social groups within countries, and a strong theme of all meetings is a concern for 
social justice issues. There is a tension between the inclusive ethos of the whole 
group’s raison d’être, on the one hand, and the need for peer review of submitted 
papers and publication of proceedings respecting quality standards so that participants 
can secure funding from their institutions, on the other. Participants would probably 
describe the meetings as always challenging and inspiring, and supportive of 
research and researchers in the under-researched areas of working for human rights 
and social justice through mathematics education. 

 Some past proceedings of MES conferences are available at the Web site of the 
last meeting (  http://www.ewi-psy.fu-berlin.de/en/v/mes6    ).  

   Delta . Delta is an informal collaboration network among Southern Hemisphere 
countries, focussing on the teaching and learning of mathematics and statistics at 
the undergraduate level. Its action is based on biennial conferences, the main 
organizer of the next conference acting as the chair of an informal steering committee 
for the community gathered through these conferences. Although the Delta 
conferences may attract educators involved in research about undergraduate 
mathematics and statistics education, their main aim is to address the community of 
research mathematicians and mathematics lecturers who are possibly not involved 
themselves in formal research, according to standard educational paradigms, but 
who are nevertheless committed to improving their own teaching. A central idea of 
Delta is to provide a forum in which mathematicians feel comfortable in discussing 
issues related to tertiary mathematics teaching and learning without being intimidated 
by what some may consider educational jargon or constructs. Many participants at 
the conferences are thus mathematicians wishing to report about a teaching 
experience or experiment that would normally not classify as bona fide research in 
mathematics education, but may still be helpful in inspiring those who want to 
reflect on their teaching.

 Some of the contributions submitted to the Delta conferences are research reports 
by experts publishable as peer-reviewed material in standard education research 
journals. Selected papers from recent conferences have, for instance, appeared in 
special issues of the  International Journal of Mathematical Education in Science 
and Technology  (iJMEST). But in order to achieve inclusiveness, the conference 
organizers propose channels for other types of publications. Reports on pedagogical 
experiments can appear in the conference proceedings, whereas other contributions 
may take the form of posters. In all cases, mathematicians are provided with an 
opportunity to discuss their own practice in an environment where the teaching and 
learning issues are at the core of the discussion. This is the case at the Delta confer-
ences to a much larger extent than at typical congresses of mathematical societies, 
even when an educational strand appears on the program. 

 Although Delta welcomes participants from all continents, they are predomi-
nantly from the Southern Hemisphere. As a matter of fact, all conferences since the 
 fi rst in 1997 have been held in Southern Hemisphere countries. 

http://www.ewi-psy.fu-berlin.de/en/v/mes6
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 In contrast to most bodies discussed in this chapter, the name  Delta  does not 
constitute a set of initials but simply refers to the famous “delta” of higher 
mathematics, thus re fl ecting the idea of continuous change in university math-
ematics and statistics education which is at the core of the group interests (Oates 
& Engelbrecht,  2009  ) .   

   Stable Structures with a Thematic or Regional Scope 

 In contrast to those just discussed, the  fi ve organizations discussed in this section 
offer activities that take place in environments supported by well-established infra-
structures. We start by considering two thematic groups whose scope of action is 
built around a particular facet of the teaching and learning of mathematics: the con-
cerns of ISGEm lie in the cultural basis of much mathematics learning, whereas 
those of IASE have relatively recently become more signi fi cant in mathematics edu-
cation. We conclude the section by discussing three regional organizations of a more 
general nature which arose because of needs felt by speci fi c language groups: 
NoRME, CLAME, and FISEM. 

    ISGEm.   The term  ethnomathematics  was coined by Ubiratan D’Ambrosio 
 (  1985  )  in the late 1970s in the context of his research concerning

  the mathematics which is practised among identi fi able cultural groups, such as national-
tribal societies, labor groups, working children, professional classes, and so on, [that is] 
practices which are typically mathematical … [but] done in radically different ways than 
those which are commonly taught in the school system. (pp. 44–45)   

 He linked the ethnomathematical approach to mathematical practices related to 
counting, ordering, classifying, measuring, inferring, or modelling that can be seen 
as existing “outside the school”:

  This is a very broad range of human activities which, throughout history, have been expro-
priated by the scholarly establishment, formalized and codi fi ed and incorporated into what 
we call academic mathematics. But which remain alive in culturally identi fi ed groups and 
constitute routines in their practices. (p. 45)   

 Research in ethnomathematics quickly became an important strand in the  fi eld of 
mathematical education, as shown by the ICME-5 plenary of talk D’Ambrosio, 
 (  1986  ) , or by the Fifth Day Special Programme on Mathematics, Education and 
Society at ICME-6 (Keitel et al.,  1989  ) . This last activity, it has been claimed, hap-
pened in a context of “a growing awareness of the importance of ethnomathematical 
activities as a means to overcome Eurocentrism and cultural oppression in mathe-
matical learning” (p. 1). Re fl ections by D’Ambrosio on ethnomathematics, its 
reception by the community, and its place in mathematics education were offered in 
the ICME-10 plenary interview by Michèle Artigue  (  2008a  ) . 

 At the annual NCTM meeting in 1985, a group of mathematical educators, including 
D’Ambrosio, founded the International Study Group on Ethnomathematics (ISGEm). 
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In 1990 it became an af fi liate of NCTM. Quadrennial International Conferences on 
Ethnomathematics (ICEm) are organized under the auspices of ISGEm. 

 The ISGEm Web site (  http://isgem.rpi.edu/    ) presents the main centres of activity 
and interests of the group in eight broad areas of ethnicity and geography: Africa, 
Paci fi c Islands, Asia, Native and African America, European, Latino, and the Middle 
East. Information is available in English, Spanish, Italian, and Portuguese, and there 
are 21 diverse subgroups of special interests classi fi ed, in addition to ethnicity/
geography, by utility (including ethnomathematics in the classroom) and by social 
categories (including social studies of professional mathematics, multicultural 
mathematics, ethnomathematics in peace and social justice, and indigenous knowl-
edge systems). 

 ISGEm has three chapters: in North America (NASGEm), Brazil (BR.ISGEm), 
and Southern Africa (SAEmSG). In addition to a newsletter, it has published, since 
2006, via its North American Chapter, the  Journal of Mathematics and Culture , a 
peer-reviewed journal examining “the intersections between mathematics and cul-
ture in both western and non-western societies” and with particular interest in “ped-
agogical applications of ethnomathematics” (from the NASGEm Web site:   http://
nasgem.rpi.edu/    ).  

   IASE . The International Association for Statistical Education (IASE) is an 
organization whose formal existence takes place in a context analogous to that 
linking ICMI to its mother organization IMU, as IASE is the Education Section of 
the International Statistical Institute (ISI).

 Its precursor was the ISI Education Committee, launched in 1948. Vere-Jones 
 (  1995  )  observed that “although statistical education had been a concern of the ISI 
since its inception in 1885, it was the setting up of the Education Committee which 
marked the beginning of a systematic education programme” (p. 4) among ISI activ-
ities. Actions of the ISI Education Committee include the Round Table Conferences, 
launched in 1968 and now held as satellite meetings associated with the ICME con-
gresses, and the International Conferences on Teaching Statistics (ICOTS), held 
quadrennially since 1982 and arguably the major international event in statistical 
education. Of particular signi fi cance, added Vere-Jones, was the resulting change in 
the focus of the ISI education program, “from the relatively narrow one of training 
statistical staff for developing countries to the broadest consideration of statistical 
education” (p. 10). This shift stimulated a greater emphasis on research in education 
and eventually the birth of IASE, in 1991, as a new section of ISI in charge of edu-
cational matters. 

 IASE has approximately 500 individual members, mainly lecturers and professors 
of statistics, applied and government statisticians, education researchers, and some 
teachers. It aims at supporting the development of effective and ef fi cient educa-
tional services through international contacts among individuals and organizations. 
Phillips  (  2002  )  presented IASE as the main international organization devoted to 
the improvement of statistical education at all levels. Besides being the educational 
arm of ISI, it also provides a forum for the furtherance of research in statistical 
education in its own right. 

http://isgem.rpi.edu/
http://nasgem.rpi.edu/
http://nasgem.rpi.edu/
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 Ottaviani and Batanero  (  1999  )  discussed the role of IASE in the promotion and 
development of statistical education research, notably through ICOTS and the round 
table conferences, which play a central role by providing regular forums where 
research problems, methodologies, and results are presented and discussed. Of par-
ticular interest was the round table organized in 2008 as a satellite conference to the 
ICME-11 congress. This was a conference for the study of “Statistics Education in 
School Mathematics: Challenges for Teaching and Teacher Education,” organized 
jointly by IASE and ICMI (the 18th ICMI Study). This collaborative project, a 
 success from the point of view of both organizations, has resulted in the study 
 volume edited by Carmen Batanero, Gail Burrill and Chris Reading  (  2011  ) . 

 The  Statistics Education Research Journal  (SERJ), launched in 2002, is a freely 
accessible peer-reviewed electronic journal published twice a year, and is a joint 
publication of IASE and ISI. The aims of SERJ are “to advance research-based 
knowledge that can help to improve the teaching, learning, and understanding of 
statistics or probability at all educational levels and in both formal (classroom-
based) and informal (out-of-classroom) contexts” (from SERJ Web site   http://www.
stat.auckland.ac.nz/~iase/publications.php?show=serj    ). 

 The IASE Web site (  http://www.stat.auckland.ac.nz/~iase/    ) provides links to 
resources around the world in statistics education. These are grouped by categories, 
including research, learning, assessment, curriculum guidelines, journals, software, 
and organizations. 

 In their paper on the role of IASE, Ottaviani and Batanero  (  1999  )  summarized 
recent and current trends as heralding a substantial growth in statistical education, 
interpreted in the broadest sense. IASE, they claimed, has a central role through its 
program of activities and the research fostered among its community. This role 
concerns not only statistical education in the school environment, but also the under-
standing of the fundamental concepts of statistics in society at large, as well as in 
other discipline areas or among professional bodies.  

  NoRME .    The Nordic Society for Research in Mathematics Education (NoRME), 
established in 2008, rests on a tradition of regional cooperation in mathematics 
education going back to the 1960s, when a Nordic committee was created to collabo-
rate in developing curricula in “modern” mathematics. This led to a series of confer-
ences for mathematics teachers circulating among the Nordic countries. A more 
recent initiative organized between 1988 and 1993, the Danish project Mathematics 
Education and Democracy, “paved the way for the continued Nordic collaboration in 
the 1990s and the 21st century” (Niss, personal communication, June 2011). Nissen 
and Blomhøj  (  1993  ) , a widely known publication stemming from this project, was 
connected to a symposium described as “one of the [important] starting points for 
the Nordic collaboration in the  fi eld” (Blomhøj, Valero, & Häggström,  2009 , p. 2). 
Nordic colleagues also attended meetings of international organizations like PME 
and CIEAEM, and among the outcomes of all these activities was the launching of 
both the journal  Nordic Studies in Mathematics Education  (Nomad or  Nordisk 
Matematikdidaktik ) in 1993, and a series of Nordic research conferences in mathe-
matics education (NORMA) in 1994. 

http://www.stat.auckland.ac.nz/~iase/publications.php?show=serj
http://www.stat.auckland.ac.nz/~iase/publications.php?show=serj
http://www.stat.auckland.ac.nz/~iase/
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 NoRME was founded at a meeting held in 2008, during the  fi fth NORMA con-
ference. Grevholm  (  2009a  )  presented the background to that event, stressing the 
need felt, after ICME-10, to create an umbrella organization linking the various 
organizations supporting mathematics education research in the region. Members of 
NoRME are thus national or regional societies, and the Nomad association. Among 
arguments supporting the creation of NoRME, Grevholm emphasized the impor-
tance of offering a “home” for the journal Nomad, of supporting the NORMA con-
ferences, of continuing the collaborative activities for doctoral studies carried out by 
the Nordic Graduate School in Mathematics Education (NoGSME), and in general 
the need to strengthen and widen regional cooperation. Launched in 2004 with a 
time-limited funding from the Nordic Research Board, NoGSME formally existed 
for a mere period of 6 years but during that period was highly infl uential–both 
Grevholm (personal communication, June 2011) and Niss (personal communica-
tion, June 2011) claim that NoRME can be seen as an offspring of NoGSME. 

 Besides the more than 50 doctoral dissertations successfully defended in its 40 
institutions from Nordic and Baltic countries, other activities of NoGSME have 
included workshops, seminars, and summer schools, as discussed by Grevholm 
 (  2009b  )  in her  fi nal report on the graduate school. A responsibility inherited by 
NoRME is thus “to administer the legacy … handed down from NoGSME” 
(Grevholm & Rønning,  2010 , p. 97), that is, to ensure the survival of the NoGSME 
network and the kind of activities that built up during those years of collaboration 
(Grevholm,  2009b  ) . 

 As stated in its constitution, the raison d’être of NoRME is to support and raise 
the quality of Nordic and Baltic research in mathematics education, especially 
through regional collaboration. A recent Nomad editorial emphasized the need for 
the journal to maintain and develop its regional identity, as “the authors or the 
contents of the published papers have connections to, or speci fi c relevance for, the 
mathematics education milieus in the region” (Blomhøj, Rønning, & Häggström, 
 2010 , p. 1). Although they welcomed the increasing number of submissions in 
English, the editors argued for “the publishing of research papers in the Scandinavian 
languages” as a way for the journal to be more closely connected to the regional 
mathematics teacher education community. This expectation can be seen as an 
interesting illustration of the possible dif fi culties, at least linguistically speaking, 
in balancing regional action and international scope. MERGA publications, as was 
discussed above, also need to  fi nd a proper regional/international balance. Still, 
they do not face the additional issue of English being today’s lingua franca.  

  CLAME .    Besides CIAEM, other organizations are concerned with mathematics 
education in Latin America. One is the  Comité Latinoamericano de Matemática 
Educativa  (CLAME, or Latin American Committee on Mathematics Education), 
established to support the attendance of a series of annual conferences on teacher edu-
cation and mathematics education research in Central America and the Caribbean. 
Launched in 1987, these meetings provided a forum for colleagues who, although 
geographically close, did not have regular opportunities for exchange of views using 
Spanish as a language of communication. CLAME was formally created at the 1996 
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conference. Since 1997, the conferences, typically attended by some 1,500 partici-
pants, have become the  Reunión Latinoamericana de Matemática Educativa  (RELME). 
CLAME is thus both an outcome and a catalyst of an increasing professionalization of 
the Spanish-speaking mathematics education community in Latin America. It has indi-
vidual members and collaborates, through its Web site (  http://www.clame.org.mx/    ), 
with national mathematics education societies and graduate schools in the region. 

 CLAME supports two important publications: the  Acta Latinoamericana de 
Matemática Educativa  (ALME), an annual collection of reviewed papers resulting from 
the RELME conferences, and  Revista Latinoamericana de Investigación en Matemática 
Educativa  (Relime), a research journal having three issues each year. Launched in 1997, 
Relime aims at fostering the publication of quality research contributing to the develop-
ment of a Latin American school of mathematics education of an international level 
principally connected with the regional culture and educational systems. Papers appear 
mainly in Spanish, but they also appear in Portuguese, French, and English.  

  FISEM .    Another recently established body, with a larger geographical scope, is 
the  Federación Iberoamericana de Sociedades de Educación Matemática  (FISEM), 
aiming at the coordination of efforts among Spanish- and Portuguese-speaking 
countries. From the mid-1990s, leaders of various Ibero-American mathematics 
education bodies discussed the federation of their societies. In 2003 they created 
FISEM, which now covers national organizations from 13 different countries. 
Among the FISEM projects is the electronic journal  UNIÓN , launched in 2005 and 
aimed at teachers from all levels in the Ibero-American landscape. Another project 
fostering “cross-fertilization between Latin American, Spanish and Portuguese 
mathematics educators” (Jacobsen,  1996 , p. 1242), is the  Congreso Iberoamericano 
de Educación Matemática  (CIBEM). 

 The focus of CIBEM conferences is to contribute to the development of mutual 
knowledge about the teaching and learning of mathematics within the cultural frame-
work of Ibero-America (including Spain and Portugal), as well as those countries where 
Spanish and Portuguese are spoken (Sánchez Vázquez & García Blanco,  1991  ) . The 
 fi rst CIBEM congress took place in 1990 at the instigation of the Spanish community, 
and in particular of the then recently established FESPM ( Federación Española de 
Sociedades de Profesores de Matemáticas ), and in collaboration with CIAEM. The 
inception of the CIBEM series also received support from UNESCO, which published 
the proceedings of the  fi rst conference. The CIBEM conferences are now taking place 
quadrennially under the auspices of FISEM, alternating with the CIAEM conferences.    

   Coda: A Glimpse at Other Facets of Diversity 
Among Organizations 

 A survey like the present one is bound to lead to dif fi cult decisions about the 
organizations to be included. We next mention a few bodies clearly of interest to our 
topic but not given fuller consideration in this chapter because of space limitations. 

http://www.clame.org.mx/
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These offer additional illustrations of the richness and diversity of contexts and 
structures among institutions concerned with international aspects of mathematical 
education. 

 This chapter being devoted to international organizations, the question arises how 
this internationalism is to be enacted. Could, for instance, a body whose existence 
is primarily of a national nature be included? One approach is to assess the extent to 
which its activities contribute substantially beyond the country’s boundary. To take 
a concrete case, what about the National Council of Teachers of Mathematics 
(NCTM), possibly the world’s largest organization in mathematics education, with 
more than 90,000 members and 230 Af fi liates throughout the United States and 
Canada (  http://www.nctm.org/about/content.aspx?id=174    )? 

 Although NCTM is primarily concerned with the U.S. scene, the positions that it 
regularly takes on mathematics education issues, for instance via documents such as 
its  Principles and Standards for School Mathematics  (NCTM,  2000  ) , undoubtedly 
have an impact of an international nature. But more to the point for our discussion, 
NCTM launched in 1970 the  Journal for Research in Mathematics Education  (JRME), 
considered today among the most in fl uential journals in the  fi eld internationally. From 
that perspective, NCTM de fi nitely belongs to the scope of this survey. 

 NCTM is not the only national organization publishing a research journal of 
international stature. Other examples of such tandems, each with its own speci fi city, 
are the following:

   The British Society for Research into Learning Mathematics (BSRLM), in the • 
United Kingdom, and its journal  Research in Mathematics Education  (RME);  
  The Canadian Mathematics Education Study Group (CMESG) and  • For the 
Learning of Mathematics  (FLM); and  
  The  • Association pour la Recherche en Didactique des Mathématiques  (ARDM), 
in France, which publishes  Recherches en Didactique des Mathématiques  
(RDM).    

 Another possible question about international organizations is the kind of infra-
structure on which they rely. We have seen in this survey a great variety among 
models for the existence, more or less formal, of the various institutions. In some 
cases, a certain community would even gather on a regular basis without having a 
well-de fi ned body supporting it. Membership in some organizations was aimed at 
individuals and, in other cases, at associations or even countries. Another variation 
of the same vein is the case of a selective group with membership by invitation only. 
Such is the situation of the BACOMET group (for  BA sic  CO mponents of  M athematics 
 E ducation for  T eachers), launched at the end of the 1970s and which ceased its 
activities about 10 years ago. According to Silver and Kilpatrick  (  1994  ) , its working 
style and organizational scheme are of interest. Its membership, international and 
representing a high degree of scholarship, was always small (about 15–20 people at 
a given time) and varied over the years, being based on an invitation to collaborate 
on a speci fi c project. Those involved in a given project were also generally respon-
sible for setting up a team for the next one. BACOMET was active for a little more 
than two decades, during which time it carried out  fi ve projects and produced four 

http://www.nctm.org/about/content.aspx?id=174
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books, published between 1986 and 2005. Further information on BACOMET is 
given by Biehler  (  2005  ) . 

 Another community with a substantial level of activity in the 1980s and early 
1990s but which, like BACOMET, has now ceased to function, organizationally 
speaking, is the International Study Group on Theory of Mathematics Education 
(TME). As opposed to other bodies discussed in this paper, TME never developed 
into a full- fl edged organization, and the notion of an actual membership did not 
become an issue. TME remained a kind of ad hoc group connected to a vision and 
a program of its founder, Hans-Georg Steiner, and corresponding to the community 
of those attending the conferences organized by Steiner around the concept of “the-
ories of mathematics education.” The in fl uence of the TME group is visible through 
a landmark book devoted to the development of “didactics of mathematics as a 
scienti fi c discipline” (Biehler, Scholz, Strässer, & Winkelmann,  1994  ) , whose gen-
esis is directly connected to the activities of TME. 

 Our  fi nal example concerns the International Council on Mathematics in 
Developing Countries (ICOMIDC), initiated during the 1983 International Congress 
of Mathematicians with the objective of fostering both mathematics teaching and 
research in mathematics in less af fl uent countries. Its brief existence was discussed 
by Lehto  (  1998  ) , who linked the beginnings of ICOMIDC to the lack of satisfaction 
at that time in some circles with outreach activities towards less af fl uent countries 
under the auspices of IMU. Lehto also pointed to some of the dif fi culties that led to 
the disappearance of ICOMIDC, some being  fi nancial but the most serious being 
those of a political nature. 

 The interested reader is referred to Hodgson and Rogers  (  2011,   2012  )  for further 
details about the organizations mentioned in this section.  

   Conclusion 

 Writing a survey demands selectivity, if only because of space limitations. We are 
aware that some organizations playing a substantial role internationally in mathemat-
ics education are absent from this chapter. In some cases, this omission results from 
choices we made about the kind of bodies to be discussed. For instance, we decided 
not to review per se a specialized governmental institution like UNESCO, in spite of 
the major role that it has played, and continues to play, in educational matters, includ-
ing mathematical education. (UNESCO was brie fl y mentioned above, notably in 
connection with ICMI, and is treated extensively by Jacobsen  (  1996  ) . See UNESCO 
 (  2011  )  for a recent UNESCO publication, written by Michèle Artigue, on mathemat-
ics in basic education.) The same remark applies for major international education 
assessment organizations such as OECD’s PISA, or the IEA’s TIMSS, in spite of 
their strong in fl uence on the school curriculum and on political decisions within 
individual countries. We also chose not to consider institutions directly resulting 
from policy decisions of governments, such as the IREM network in France, despite 
their possible impact on mathematics education internationally (however, IREMs 
have been mentioned above in connection with HPM). Our choice was to concentrate 
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on autonomous, academic organizations supporting research in mathematics educa-
tion and whose actions are close to the community of mathematicians, mathematics 
educators (including researchers), those involved in the preparation of schoolteachers, 
and teachers actually involved in the teaching and learning of mathematics. 

 It may happen that some newcomers to research in mathematics education 
develop the impression that it all began sometime in the 1970s with organizations 
like PME. By looking back at the “prehistory” of research in mathematics teaching 
and learning, which witnessed the inception of bodies such as ICMI, CIEAEM, and 
CIAEM, to name three famous forerunners, one does grasp a better understanding 
of the background that led to the emergence of didactics of mathematics as a bona 
 fi de research domain and as an international academic discipline. It does not belong 
to this paper to review the evolution of mathematics education research per se, and 
the interested reader should consult the papers by Niss  (  2004  ) , by Kilpatrick  (  1992, 
  1999,   2008  ) —plus the reaction of Dorier  (  2008  )  to the last—and the ICMI Study 8 
volume (Sierpinska & Kilpatrick,  1998  ) . 

 A large proportion of international organizations in mathematics education are 
of a rather recent vintage (see Appendix  B ). Particularly striking on that account 
is the decade starting in 1976, the year of ICME-3. The proliferation then happen-
ing can be seen as a re fl ection of, and also a stimulus to, both the growth of 
research in mathematics education and the emergence of a new community sup-
porting that research. It is also a testimony to an increasing diversity of interests 
within this community, to a growing sensitivity to cultural and contextual charac-
teristics, and to the development of new, or renewed, perspectives and approaches 
on issues at stake in various contexts for the teaching and learning of mathemat-
ics. A typical example is the creation of the  fi rst three ICMI Af fi liated Study 
Groups—PME, HPM, and IOWME—each corresponding to a particular strand in 
the mathematics education landscape. The presence of such subcommunities 
wanting to become institutionalized within the mathematical education world can 
be interpreted as a sign of the vitality of the  fi eld and the diversity of its global 
community. 

 Clearly, what strikes anyone looking at the organizations that constitute the 
mathematics education research community today is their sheer proliferation. 
A “one size  fi ts all” approach to the problems of mathematics teaching and learning is 
obviously not viable. The whole educational enterprise has become more complex, 
more specialized. This has been accompanied by the development of various sub-
communities, often quite naturally, in support of those involved in that endeavour. 
The institutionalization of those communities in an international setting has materi-
alized through a variety of models, as seen above. The resulting web of organiza-
tions is still evolving and expanding so as better to re fl ect the changing contexts for 
mathematics education. 

 One can map some of these developments, as we have tried to do in this chapter, 
as owing to representations of local activity; some to the growth of theoretical per-
spectives, sometimes competing; others to the establishment of special interest 
groups, or other patterns that might be identi fi ed. We can suggest, for example, that 
there was an early development of thematic interest groups in the period 1975–1990 
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(HPM, IOWME, PME, ICTMA, WFNMC, and ISGEm). Perhaps under the in fl uence 
of localizing theoretical perspectives, whether ethnomathematical, liberationist, 
inspired by critical theory, or of the death of universalist goals within postmodern-
ism, there has been a growth in organizations with regional emphases (CIAEM, 
MERGA, EARCOME, and EMF, to name a few). Such regional structures may be 
related to special sensitivities about culture and identity, whereas others, like 
AFRICME, are explicitly addressing speci fi c needs for solidarity and outreach. 
Interestingly, a majority of the organizations established over the last 15 years or so 
are of a regional nature, including ERME and NoRME. 

 Individuals are likely to belong to several groups, since many of these organi-
zations have overlapping values and aims. One might say they are competing for 
the same ecological niche in a context where the resources (both human and mate-
rial) are limited. For instance, one could think that PME, created in the mid-1970s, 
may have attracted some of those previously participating in the CIEAEM com-
munity. Others may have preferred to remain with CIEAEM, possibly because of 
the speci fi c role played by schoolteachers in that community. Similar questions 
could be raised about CIAEM and CLAME, for example. Or one may see a com-
petition about actual participation in conferences, between, for example, general 
“all-encompassing” events like the ICME congresses, and more specialized activ-
ities like the satellite conferences organized at each ICME by groups such as PME 
and HPM. 

 Is this, possibly astonishing, proliferation of organizations a good thing or a bad 
thing? This may seem a strange question to ask, given that there is no “United 
Nations” of mathematics education to engage with such a phenomenon. However, 
questions are certainly being asked by some academics about the potential danger 
of the proliferation of theoretical perspectives in our  fi eld (Sriraman & English, 
 2010  ) . These questions are raised both in terms of possible incommensurability 
between perspectives, making communication dif fi cult, and in the sense that with 
competing perspectives the community will never be able to build the kind of body 
of scienti fi c knowledge that one sees developed and developing in medicine, for 
example, to take another  fi eld that is engaged in both practice and theory. But, then, 
education is sometimes characterized as being linked to the social sciences rather 
than the traditional sciences, and thus this situation may be inevitable. We can 
expect the proliferation to continue. It will be of great interest to historians of the 
 fi eld in years to come to see what patterns and directions are discernible in those 
developments.      
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   Appendix A: Glossary of Acronyms 

 The following list gives the acronym (or set of initials) for the organisations, 
conferences or journals mentioned in this paper. In each case, the year of establish-
ment is indicated, as well as the Web site address. For periodic conferences, the 
Web site of the last or the next one may be indicated, when no common site was 
found. General information on the ICMI Regional Conferences and the ICME con-
gresses is accessible via the ICMI Web site. (These URLs were valid at the time of 
publication.) 

  AFRICME     Africa Regional Congress of ICMI on Mathematical Education/2005. 
Recent conference: AFRICME-3, Gaborone, Botswana, 2010.    http://
www.mat.uc.pt/~jaimecs/icmi/AFRCME3_2ndCall.doc        

  ALME      Acta Latinoamericana de Matemática Educativa  [Latin American Acts 
of Mathematics Education]—published yearly by CLAME in connec-
tion with the RELME conferences.    http://www.clame.org.mx/alme.htm        

  AMS    American Mathematical Society/1888.    http://www.ams.org/        
  ARDM      Association pour la Recherche en Didactique des Mathématiques  

[Association for Research on the Didactics of Mathematics]/1992. 
   http://www.ardm.eu        

  BACOMET     Basic Components of Mathematics Education for Teachers/1979. 
   http://lama.uni-paderborn.de/personen/rolf-biehler/projekte/
bacomet.html        

  BR.ISGEm      Seção Brasileira do International Study Group on Ethnomathematics  
[Brazilian Chapter of ISGEm]   

  BSRLM     British Society for Research into Learning Mathematics/1978 as 
BSPLM (British Society for the Psychology of Learning 
Mathematics), renamed BSRLM in 1985.    http://www.bsrlm.org.uk/        

  CERME     Congress of the European Society for Research in Mathematics 
Education—see ERME/1998. Recent conference: CERME 7, 
Rzeszów, Poland, 2011.    http://www.cerme7.univ.rzeszow.pl/        

  CFEM      Commission Française pour l’Enseignement des Mathématiques  
[French Subcommission of ICMI]/1975.    http://www.cfem.asso.fr/        

  CIAEM      Comité Interamericano de Educación Matemática  [Inter-American 
Committee on Mathematics Education]/1961.    http://www.ciaem-iacme.org        

  CIAEM      Conferencia Interamericana de Educación Matemática  
[Interamerican Conference on Mathematics Education]—see the 
CIAEM Committee/1961. Recent conference: XIII CIAEM, Recife, 
Brasil, 2011.    http://www.cimm.ucr.ac.cr/ocs/index.php/xiii_ciaem/        

http://www.mat.uc.pt/~jaimecs/icmi/AFRCME3_2ndCall.doc
http://www.mat.uc.pt/~jaimecs/icmi/AFRCME3_2ndCall.doc
http://www.clame.org.mx/alme.htm
http://www.ams.org/
http://www.ardm.eu
http://lama.uni-paderborn.de/personen/rolf-biehler/projekte/bacomet.html
http://lama.uni-paderborn.de/personen/rolf-biehler/projekte/bacomet.html
http://www.bsrlm.org.uk/
http://www.cerme7.univ.rzeszow.pl/
http://www.cfem.asso.fr/
http://www.ciaem-iacme.org
http://www.cimm.ucr.ac.cr/ocs/index.php/xiii_ciaem/
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  CIBEM      Congreso Iberoamericano de Educación Matemática  [IberoAmerican 
Congress on Mathematics Education]/1990. Next conference: VII 
CIBEM, Montevideo, Uruguay, 2013.    http://www.cibem7.semur.
edu.uy/        

  CIEAEM      Commission internationale pour l’étude et l’amélioration de 
l’enseignement des mathématiques  [International Commission for 
the Study and Improvement of Mathematics Teaching]/1950.    http://
www.cieaem.org/        

  CIEM      Commission internationale de l’enseignement mathématique —see 
ICMI   

  CLAME      Comité Latinoamericano de Matemática Educativa  [Latin American 
Committee on Mathematics Education]/1996.    http://www.clame.org.
mx/        

  CMEG     International Conference on Creativity in Mathematics Education 
and the Education of Gifted Students—see MCG/1999. Recent con-
ference: CMEG-7, Busan, Korea, 2012.    http://www.mcg7.org/        

  CMESG     Canadian Mathematics Education Study Group/1977.    http://cmesg.
math.ca        

  Delta     Southern Hemisphere Conference on Undergraduate Mathematics 
and Statistics Teaching and Learning/1997. Recent conference: 8th 
Delta Conference, Rotorua, New Zealand, 2011.    http://www.
delta2011.co.nz/        

  EARCOME     East Asia Regional Conference in Mathematics Education/1998. 
Recent conference: EARCOME 5, Tokyo, Japan, 2010.    http://www.
sme.or.jp/earcome/        

  EM    See L’EM   
  EMF      Espace mathématique francophone  [French Mathematical 

Space]/2000. Recent conference: EMF 2012, Geneva, Switzerland, 
2012.    http://www.emf2012.unige.ch/        

  ERME     European Society for Research in Mathematics Education/1998. 
   http://www.mathematik.uni-dortmund.de/~erme/        

  ESM      Educational Studies in Mathematics  – journal launched under the 
auspices of ICMI/1968.    http://www.springer.com/journal/10649        

  ESU     European Summer University on the History and Epistemology in 
Mathematics Education/1993. Recent conference: Sixth ESU, 
Vienna, Austria, 2010.    http://educmath.ens-lyon.fr/Educmath/dossier-
manifestations/archives/esu-6/        

  FESPM      Federación Española de Sociedades de Profesores de Matemáticas  
[Spanish Federation of Associations of Mathematics Teachers]/1988. 
   http://www.fespm.es/        

  FISEM      Federación Iberoamericana de Sociedades de Educación Matemática  
[Iberoamerican Federation of Societies of Mathematics 
Education]/2003.    http://www. fi sem.org/        

  FLM      For the Learning of Mathematics —journal published by CMESG/1980. 
   http:// fl m.math.ca        

http://www.cibem7.semur.edu.uy/
http://www.cibem7.semur.edu.uy/
http://www.cieaem.net
http://www.cieaem.net
http://www.clame.org.mx/
http://www.clame.org.mx/
http://nms.lu.lv/MCG/
http://cmesg.math.ca
http://cmesg.math.ca
http://www.delta2011.co.nz/
http://www.delta2011.co.nz/
http://www.sme.or.jp/earcome/
http://www.sme.or.jp/earcome/
http://www.emf2012.unige.ch/
http://www.erme-soc.eu
http://www.springer.com/journal/10649
http://www.algebra.tuwien.ac.at/esu6
http://www.algebra.tuwien.ac.at/esu6
http://www.fespm.es/
http://www.fisem.org/
http://flm.math.ca


93928 International Organizations in Mathematics Education

  HPM     International Study Group on the Relations between the History and 
Pedagogy of Mathematics/1976 (Af fi liated to ICMI in 1976).    http://
www.clab.edc.uoc.gr/HPM/     . HPM-Americas/1984.    http://www.
hpm-americas.org/        

  IACME     Inter-American Committee on Mathematics Education—see the 
CIAEM Committee   

  IASE     International Association for Statistical Education/1991.    http://www.
stat.auckland.ac.nz/~iase/        

  ICEm     International Conference on Ethnomathematics—see ISGEm/1998. 
Recent conference: ICEm-4, Towson, MD, USA, 2010.    http://pages.
towson.edu/shirley/ICEM-4.htm        

  ICIAM     International Council for Industrial and Applied Mathematics/1987. 
   www.iciam.org        

  ICM     International Congress of Mathematicians—see IMU/1897. Next con-
ference: ICM 2014, Seoul, Korea, 2014.    http://www.icm2014.org/        

  ICME     International Congress on Mathematical Education—see 
ICMI/1969. Recent conference: ICME-12, Seoul, Korea, 2012. 
   http://www.icme12.org/        

  ICMI     International Commission on Mathematical Instruction/1908.    http://
www.mathunion.org/icmi        

  ICOMIDC     International Council on Mathematics in Developing Countries/1983. 
(Originally International Committee on Mathematics in Developing 
Countries)   

  ICOTS     International Conference on Teaching Statistics—see IASE/1982. 
   http://icots.net/        

  ICSIMT     International Commission for the Study and Improvement of 
Mathematics Teaching—see CIEAEM   

  ICSU     International Council for Science (Formerly International Council of 
Scienti fi c Unions)/1931.    http://www.icsu.org/        

  ICTM     International Commission on the Teaching of Mathematics—see 
ICMI   

  ICTMA     International Community of Teachers of Mathematical Modelling 
and Applications—International Study Group for Mathematical 
Modelling and Applications/1983 (Af fi liated to ICMI in 2003). 
   http://www.ictma.net/        

  IEA     International Association for the Evaluation of Educational 
Achievement/1967.    http://www.iea.nl/        

  ICTMA     International Conference on the Teaching of Mathematical Modelling 
and Applications—see ICTMA community/1983.    http://www.ictma.
net/conferences.html        

  IGPME    See PME   
  iJMEST      International Journal of Mathematical Education in Science and 

Technology /1970.    http://www.tandf.co.uk/journals/tmes        
  IMU     International Mathematical Union/1920, 1951.    http://www.mat-

hunion.org/        

http://www.clab.edc.uoc.gr/HPM/
http://www.clab.edc.uoc.gr/HPM/
http://www.hpm-americas.org/
http://www.hpm-americas.org/
http://www.stat.auckland.ac.nz/~iase/
http://www.stat.auckland.ac.nz/~iase/
http://pages.towson.edu/shirley/ICEM-4.htm
http://pages.towson.edu/shirley/ICEM-4.htm
http://www.iciam.org
http://www.icm2014.org/
http://www.icme12.org/
http://www.mathunion.org/icmi
http://www.mathunion.org/icmi
http://icots.net/
http://www.icsu.org/
http://www.ictma.net/
http://www.ictma.net/
http://www.ictma.net/conferences.html
http://www.ictma.net/conferences.html
http://www.tandf.co.uk/journals/tmes
http://www.mathunion.org/
http://www.mathunion.org/


940 Hodgson, Rogers, Lerman, and Lim-Teo

  IMUK     Internationale mathematische Unterrichtskommission  – see ICMI   
  IOWME     International Organisation of Women and Mathematics Education/1976 

(Af fi liated to ICMI in 1987).    http://extra.shu.ac.uk/iowme/        
  IREM      Instituts de Recherche sur l’Enseignement des Mathématiques  

[Research Institutes on Mathematical Education]/1969.    http://www.
univ-irem.fr/        

  ISGEm     International Study Group on Ethnomathematics/1985.    http://isgem.
rpi.edu/        

  ISGHPM    See HPM   
  ISI     International Statistical Institute/1885.    http://www.isi-web.org/        
  JRME      Journal for Research in Mathematics Education— published by 

NCTM/1970.    http://www.nctm.org/publications/jrme.aspx        
  L’EM      L’Enseignement Mathématique  [Mathematics Teaching]—of fi cial 

organ of ICMI since the inception of the Commission/1899.    http://
www.unige.ch/math/EnsMath/        

  MAA     Mathematical Association of America/1915.    http://www.maa.org/        
  MCG     International Group for Mathematical Creativity and Giftedness/2010 

(Af fi liated to ICMI in 2011).    http://www.igmcg.org/        
  MEAS    Mathematics Education and Society—see MES   
  MELA     Mathematics Education Lecturers’ Association (Australia)/1973. 

(Amalgamated with MERGA in 1997)   
  MERGA     Mathematics Education Research Group of Australasia/1977.    http://

www.merga.net.au        
  MERJ      Mathematics Education Research Journal— published by 

MERGA/1989.    http://www.merga.net.au/publications/merj.php        
  MES     Mathematics Education and Society/1998.    http://mes.crie.fc.ul.pt/     . 

   http://www.ewi-psy.fu-berlin.de/en/v/mes6        
  MTED      Mathematics Teacher Education and Development —journal pub-

lished by MERGA/1999.    http://www.merga.net.au/node/42        
  NASGEm     North American Study Group on Ethnomathematics—Chapter of 

ISGEm.    http://nasgem.rpi.edu/        
  NCTM     National Council of Teachers of Mathematics/1920.    http://www.

nctm.org/        
  NoGSME     Nordic Graduate School in Mathematics Education/2004.    http://

www.nogsme.no/        
  Nomad      Nordic Studies in Mathematics Education  (Nordisk 

Matematikdidaktik)— journal published by NoRME /1993.    http://
ncm.gu.se/nomad        

  NORMA     Nordic Research Conferences in Mathematics Education—see 
NORME/1994. Recent conference: NORMA 11, Reykjavik, Iceland, 
2011.    http://vefsetur.hi.is/norma11/        

  NoRME     Nordic Society for Research in Mathematics Education/2008.    http://
www.norme.me/        

  OAS    Organization of American States/1889.    http://www.oas.org/        

http://extra.shu.ac.uk/iowme/
http://www.univ-irem.fr/
http://www.univ-irem.fr/
http://isgem.rpi.edu/
http://isgem.rpi.edu/
http://www.isi-web.org/
http://www.nctm.org/publications/jrme.aspx
http://www.unige.ch/math/EnsMath/
http://www.unige.ch/math/EnsMath/
http://www.maa.org/
http://www.igmcg.org/
http://www.merga.net.au
http://www.merga.net.au
http://www.merga.net.au/publications/merj.php
http://mes.crie.fc.ul.pt/
http://www.ewi-psy.fu-berlin.de/en/v/mes6
http://www.merga.net.au/node/42
http://nasgem.rpi.edu/
http://www.nctm.org/
http://www.nctm.org/
http://www.nogsme.no/
http://www.nogsme.no/
http://ncm.gu.se/nomad
http://ncm.gu.se/nomad
http://vefsetur.hi.is/norma11/
http://www.norme.me/
http://www.norme.me/
http://www.oas.org/
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  OECD     Organisation for Economic Co-operation and Development/1961. 
   http://www.oecd.org/        

  PISA     Programme for International Student Assessment—see OECD/2000. 
   http://www.pisa.oecd.org/        

  PME     International Group for the Psychology of Mathematics 
Education/1976 (Af fi liated to ICMI in 1976).    http://igpme.org/        

  PME x     PME Annual Conference—see PME/1977.    http://igpme.gandi-site.
net/#/past-conferences/3807862        

  PME-NA     North American Chapter of the International Group for the 
Psychology of Mathematics Education—see PME/1979.    http://www.
pmena.org/        

  RDM      Recherches en Didactique des Mathématiques  [Research in 
Mathematics Education]—journal published by ARDM/1980.    http://
rdm.penseesauvage.com/        

  Relime      Revista Latinoamericana de Investigación en Matemática Educativa  
[Latin American Journal of Research in Mathematics Education]—
published by CLAME/1997.    http://www.clame.org.mx/relime.htm        

  RELME      Reunión Latinoamericana de Matemática Educativa  [Latin American 
Meeting on Mathematics Education]—see CLAME/1987.    http://
www.clame.org.mx/relme.htm        

  RME      Research in Mathematics Education —journal published by 
BSRLM/1999.    http://www.tandf.co.uk/journals/rrme/        

  SAEmSG     Southern African Ethnomathematics Study Group—Chapter of 
ISGEm.    http://www.rpi.edu/~eglash/isgem.dir/texts.dir/SAEmSG.htm        

  SEACME     Southeast Asian Conference on Mathematical Education—see 
EARCOME/1978   

  SERJ      Statistics Education Research Journal  – published by IASE/2002. 
  http://www.stat.auckland.ac.nz/~iase/publications.php?show=serj       

  TIMSS     Trends in International Mathematics and Science Study/1995.    http://
www.iea.nl/timss2011.html        

  TME     International Study Group on Theory of Mathematics Education/ 
1984   

  UNESCO     United Nations Educational, Scienti fi c and Cultural Organization/
1946.    http://www.unesco.org/        

  WFNMC     World Federation of National Mathematics Competitions/1984 
(Af fi liated to ICMI in 1994).    http://www.wfnmc.org/        

  YERME     ERME community of Young European Researchers in Mathematics 
Education—see ERME/2001.    http://www.mathematik.uni-dortmund.
de/~erme/index.php?slab=yerme        

  YESS     YERME Summer School—see YERME/2002. YESS-6, Faro, 
Portugal, 2012.    http://www.ese.ualg.pt/yess6/           

http://www.oecd.org/
http://www.pisa.oecd.org/
http://igpme.org/
http://igpme.gandi-site.net/#/past-conferences/3807862
http://igpme.gandi-site.net/#/past-conferences/3807862
http://www.pmena.org/
http://www.pmena.org/
http://rdm.penseesauvage.com/
http://rdm.penseesauvage.com/
http://www.clame.org.mx/relime.htm
http://www.clame.org.mx/relme.htm
http://www.clame.org.mx/relme.htm
http://www.tandf.co.uk/journals/rrme/
http://www.rpi.edu/~eglash/isgem.dir/texts.dir/SAEmSG.htm
http://www.stat.auckland.ac.nz/~iase/publications.php?show=serj
http://www.iea.nl/timss2011.html
http://www.iea.nl/timss2011.html
http://www.unesco.org/
http://www.wfnmc.org/
http://yerme.eu
http://yerme.eu
http://yerme.eu/summerschools
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   Appendix B: List of Organisations 

 The following table gives the mathematics education organisations included in 
this survey, listed according to the year of their inception.  

 1908  ICMI 
 1950  CIEAEM 
 1961  CIAEM 
 1976  HPM 

 IOWME 
 PME 

 1977  MERGA 
 1978  BSRLM 
 1979 BACOMET
 1983  ICOMIDC 
 1984  WFNMC 
 1983  ICTMA 
 1985  ISGEm 
 1991  IASE 
 1992  ARDM 
 1996  CLAME 
 1997  Delta 
 1998  EARCOME 

 ERME 
 MES 

 2000  EMF 
 2001  YERME 
 2003  FISEM 
 2005  AFRICME 
 2008  NoRME 
 2010  MCG 
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  Abstract   This chapter revisits the notion of an international curriculum, analyzing 
the various forces that might push countries toward one and reasons why countries 
should develop their own distinct curricula. We  fi rst describe the term  curriculum  to 
set the stage for our later discussion. We then discuss, in turn, common in fl uences 
for curriculum change, common learning goals, common driving forces of public 
examinations, common emphases and treatments, and common issues for future 
curriculum development. Although the tendency for countries to include a more-
and-more internationally-accepted core selection of topics in their national curri-
cula is to a great extent both to be welcomed and expected, this move has had a 
potential negative effect on curriculum development. Signi fi cant work also remains to 
be done to explore the way in which new technology (especially digital technology) 
could affect both the mathematics included in the curriculum and how it could more 
effectively contribute to the teaching and learning of mathematics in general.      

 The main purpose of the Second International Commission on Mathematics 
Instruction (ICMI) Study “School Mathematics in the 1990s” was to provoke and 
stimulate discussion about the school curriculum and directions it might take. In the 
study report, Howson and Wilson  (  1986  )  noted the manner in which a canonical 
school mathematics curriculum, in fl uenced by industrial and commercial needs, 
“has been adopted practically everywhere” (p. 19), although there were still consid-
erable differences of opinion on how the word  geometry  should be interpreted 
(p. 38). This claim was made despite the drastic variations of socio-economic 
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circumstances to be found between countries, as the report showed by its comparison 
of the situations in Japan and Mexico. In Japan, almost all students enrolled in 
elementary school, and nearly 95% of them completed secondary education. In con-
trast, in Mexico, about 60% of children enrolled in elementary school, and only 
about 3% of them completed secondary education. However, the two countries had 
quite similar mathematical topics at each grade level. Furthermore, the coverage of 
certain mathematical topics in each grade level in Japan and Mexico was deter-
mined by adopting syllabuses developed elsewhere, where students resembled 
neither students in Japan nor in Mexico. This argument and example clearly showed 
a trend toward an international curriculum at that time. 

 However, caution was expressed about the results of such a trend. The bene fi ts of 
countries learning from each other when developing a mathematics curriculum were 
acknowledged, but the study report warned about the direct adoption of a curriculum 
developed elsewhere, because “local circumstances” matter. Curriculum developers 
were advised to “pay more attention to their own actual circumstances and needs 
than to consideration of international ‘standards’ and issues of comparability … 
since the goals of school mathematics will not be identical everywhere” (Howson & 
Wilson,  1986 , p. 21). This ICMI study took place not long after the world had seen 
a wave of curriculum development in mathematics (“the new math(s)” or “modern 
mathematics”), yet the curricula, or to be more exact the mathematical syllabuses, 
of the various countries had already assumed a near common standard form. 
Therefore, the caution was timely. 

 Today, more than 25 years since the ICMI report was published, mathematics 
educators are still experiencing technological revolutions, even greater than those in 
the 1980s. In fact, the world has been changing dramatically, and these changes are 
happening much faster than many anticipated. The change in the past 25 years has 
gone way beyond a technological revolution. 

 Historically, across the nations, changing the curriculum has been viewed and 
used as an effective way to change classroom practice and to in fl uence student 
learning to meet the needs of the ever-changing world (Cai, Nie, & Moyer,  2010 ; 
Howson, Keitel, & Kilpatrick,  1981 ; Senk & Thompson,  2003  ) . In fact, curriculum 
has been called a changing agent for educational reform (Ball & Cohen,  1996 ; 
Darling-Hammond,  1993  ) . In the preface to the 72nd Yearbook of the National 
Council of Teachers of Mathematics (NCTM), Reys, Reys, and Rubenstein  (  2010  )  
correctly pointed out that one thing does not change about the mathematics curri-
culum: The school mathematics curriculum remains a central issue in efforts to 
improve students’ learning. The curriculum plays a signi fi cant role in mathematics 
education because it effectively determines what students learn, when they learn it, 
and how well they learn it. But what aspects of the curriculum should be changed, 
and how might a curriculum be improved to meet the needs of the ever-changing 
world? Educators, researchers, and policy makers around the globe are constantly 
seeking answers to that question (Usiskin & Willmore,  2008  ) . 

 Given the sensitive and critical roles of the curriculum in a changing world, in 
this chapter we revisit the notion of an international curriculum, analyzing the 
various forces that might push countries toward one and reasons why countries 
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should develop their own distinct curricula. This chapter has seven major sections, 
and in the  fi rst we try to de fi ne what a curriculum is. A curriculum can be inter-
preted in different levels, and the term  curriculum  may have different meanings. 
We plan to describe the term  curriculum  to set the stage for our later discussion. 
We then consider, in turn, common in fl uences for curriculum change, common 
learning goals, common driving forces of public examinations, common emphases 
and treatments, and common issues for future curriculum development, before 
offering a summing-up conclusion. 

   What Is a Curriculum? 

 In mathematics, we usually want to start with a de fi nition of a concept. To set the 
stage for discussing an international curriculum, it is natural to de fi ne what a cur-
riculum is. However, in searching for a de fi nition of  curriculum,  we quickly found 
that it is almost impossible to give a universally acceptable de fi nition. The notion of 
curriculum can be discussed at different levels and in different ways, and there are 
different conceptions about curriculum (Jackson,  1992  ) . After surveying over 1,100 
curriculum books, Cuban  (  1992  )  found “each with different versions of what ‘cur-
riculum’ means; many of the de fi nitions con fl ict” (p. 221). 

 Although there is no consensus about the actual de fi nition of  curriculum,  two 
things are quite clear. The  fi rst is that one can talk about the curriculum from differ-
ent levels. The International Association for the Evaluation of Educational 
Achievement [IEA] (Travers & Westbury,  1989  )  distinguished between three levels 
of curriculum (intended, implemented, and attained), and these distinctions have 
been widely accepted and used in mathematics education. This categorization high-
lights the differences in what a society would like to have taught, what is actually 
taught, and what students have actually learned (National Research Council,  2004 ; 
Pinar,  2003 ; Senk & Thompson,  2003 ; van den Akker, Kuiper, & Hameyer,  2003  ) . 

 The intended curriculum refers to the formally written documents that set system-
level expectations for the learning of mathematics. It usually includes goals and 
expectations set at the educational system level along with of fi cial syllabi or 
curriculum standards, and, in some countries, approved textbooks. The intended 
curriculum, then, is concerned with the  system level . The implemented curriculum 
refers to school and classroom processes for the teaching and learning of mathemat-
ics as interpreted and implemented by teachers, according to their experience and 
beliefs for particular classes. It, then, operates at the  classroom level . The classroom 
is, of course, central to students’ learning since it is there that students acquire most 
of their mathematical knowledge and form their attitudes to the subject (Robitaille 
& Garden,  1989  ) . Regardless of how well a curriculum is designed, its ultimate 
value depends on how it is implemented in the classroom. The attained curriculum 
refers to what is actually learned by students and is manifested in their achievements 
and attitudes. It is at the  student level . It deals with those aspects of the intended 
curriculum that are taught by teachers and learned by students. In addition to the 
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intended, implemented, and attained curriculum, researchers have also talked about 
the  ideal  curriculum, the  hidden  curriculum, relating to the values stressed and their 
social and political implications, and, perhaps most importantly, the  tested  curricu-
lum (Burkhardt, Fraser, & Ridgway,  1990  ) . 

 The second problem is that the term  curriculum  can be used as both a product 
and a process. A curriculum is a product: a set of instructional guidelines and mate-
rials for students’ acquisition of certain culturally valued knowledge and skills. In 
many countries, for example, the curriculum is based on a so-called syllabus, which 
is usually referred to as a summary of the mathematical topics and skills which 
students need to know at a particular grade level (Hershkowitz et al.,  2002  ) . A cur-
riculum can also be viewed as a process. In this sense the curriculum is not a physi-
cal thing, like textbooks, but rather the interaction of teachers, students, and 
knowledge. In this view, teachers are an “integral part of the curriculum constructed 
and enacted in classrooms” (Clandinin & Connelly,  1992 , p. 363). In other words, 
the curriculum is what actually happens in the classroom. In this sense, a curriculum 
is a particular form of speci fi cation about the practice of teaching. It is not a set of 
topics covered in the classroom. Instead, it is a way of translating any educational 
idea into a hypothesis testable in practice (Smith, 1996/ 2000  ) . The teachers’ role is 
as curriculum maker—to engage in the process of developing a coherent sequence 
of learning situations, together with appropriate materials, the implementation of 
which has the potential to bring about intended changes in learners’ knowledge 
(Clandinin & Connelly,  1992 ; Hershkowitz et al.,  2002  ) . 

 In this chapter, for discussion purposes, we do not distinguish between several 
related terms:  curriculum, curriculum materials, standards, syllabus,  and  textbooks . 
Rather, we view the curriculum from different levels (intended, implemented, and 
attained), and as both a product and a process.  

   Toward Common In fl uences for Curriculum Change 

 Curriculum development is the process of developing a coherent sequence of 
learning situations, materials, and student assessment procedures, which has the 
potential to bring about desired changes in students’ learning (Hershkowitz et al., 
 2002  ) . In the  fi rst  International Handbook of Mathematics Education,  Clarke, 
Clarke, and Sullivan  (  1996  )  discussed two broad areas of in fl uence on commonality 
of contents in mathematics curriculum. The  fi rst area is related to the uniformity of 
contents based on the notion of a canonical curriculum (Howson & Wilson,  1986  ) . 
The second is related to common external in fl uences. These two broad areas are still 
the driving forces towards an international curriculum. 

 During the past 25 years, however, two unique in fl uences have reinforced a move 
toward an international curriculum: (a) globalization, and (b) internationalization. 
In this section, we speci fi cally discuss these two in fl uences. 
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   Globalization 

 Globalization refers to a process by which regional economies, societies, and 
cultures have become integrated through a global network of communication, col-
laboration, transportation, and trade. Indeed, the increasing global connectivity, 
integration, and interdependence in so many aspects of our life require educators to 
think again about mathematics education. People of the world are inextricably 
linked in such a way that local happenings are shaped by events happening around 
the globe. Mathematics and science education communities have been responding 
to this challenge by developing frameworks for understanding globalization and 
analyzing its impact on education (Atweh et al.,  2007  ) . Yet globalization has not 
brought homogeneity. Vast differences still exist between, and in some cases within, 
countries concerning resources available for education, let alone curriculum renewal, 
and these differences, of course, necessitate different responses (Skovsmose & 
Valero,  2008 ; Vithal & Volmink,  2005  ) . 

 Such globalization requires us to rethink not only the content topics and sequencing 
of topics in the school mathematics curriculum but also the goals of school mathe-
matics. More than ever, the mathematics curriculum needs to be designed so as to 
assist students not only to develop the abilities to think critically and to solve prob-
lems but also to foster cross-cultural communication and collaboration, and nurture 
creativity and innovation.  

   Internationalization 

 In economics, internationalization refers to a process of planning and imple-
menting products and services so that they can easily be adapted to speci fi c local 
contexts or markets. In mathematics education, internationalization is not a new 
phenomenon. It takes several different forms: the most apparent being the use in 
colonial days of textbooks, or “local adaptations” of these, originally written with 
students from very different backgrounds in mind. Yet it has also meant studying in 
other countries, the formation of international organizations such as ICMI (formed 
in 1908), and visits to study other countries’ schools. For example, Arnold 
(1868/ 2008  ) , commissioned by a UK government worried by the increasing indus-
trial and military power of continental rivals, provided an account of the then vastly 
superior educational systems of France, Prussia, and Switzerland. More recently, 
emphasis has switched to international comparative studies, and in particular to the 
Trends in International Mathematics and Science Study (TIMSS) and the Programme 
for International Student Assessment (PISA), which seek to assess students’ knowl-
edge and then to rank countries by their students’ performances. The results of 
these, but not their processes and effects, are readily and frequently quoted and 
acted upon by politicians. Yet, the TIMSS studies, in particular, have, thrown 



954 Cai and Howson

much light on classroom practices and textbooks worldwide and have highlighted 
the fact that the curricula developed in individual countries greatly in fl uence the test 
results of their students. The actual test results of TIMSS and PISA also have 
importance for educators. However, to quote one warning:

  The main conclusion from this study, therefore, is that little is to be gained from studying 
the ranking lists of countries to be found in Mullis et al.  (  1998  ) . Indeed, their simplicity may 
well prove a tempting trap into which politicians might fall. There are some clear warnings 
in such tables, of which heed should be taken—but they, by themselves, do not provide 
“value for use.” A country wishing to use TIMSS data to improve its mathematics teaching 
must carry out a careful study of responses to individual items; to the validity and impor-
tance they assign to these; and to the way that students’ successes or failures can be linked, 
not only to speci fi c topic areas given the country’s curriculum content and pedagogy, but, 
perhaps more importantly, to the varying cognitive demands of the individual items. 
(Howson,  2002 , p. 123)   

 Comparative studies can, indeed, not only provide information on students’ 
achievements but also, and less controversially, help to identify effective aspects of 
educational practice. Postlethwaite  (  1988  )  identi fi ed four objectives of comparative 
studies: (a) identifying what is happening in different countries that might help 
improve education systems and outcomes; (b) describing similarities and differences 
in educational phenomena between systems of education and interpreting why these 
exist; (c) estimating the relative effects of variables that are thought to be determinants 
of educational outcomes (both within and between systems of education); and (d) 
identifying general principles concerning educational effects. These four objectives 
have been sought in many comparative studies, especially in the designs of IEA 
studies such as TIMSS (Medrich & Grif fi th,  1992  ) . 

 The US Board on International Comparative Studies in Education identi fi ed the 
following six reasons why the USA should participate in international studies 
(Bradburn & Gilford,  1990  ) :

    1.    Improving understanding of education systems;  
    2.    Providing information on the students’ achievement in relation to the much 

broader range of the world’s education systems;  
    3.    Identifying the factors that do and do not promote educational achievement;  
    4.    Enhancing the research enterprise itself;  
    5.    Recording the diversity of educational practice; and  
    6.    Promoting issue-centred studies.     

 These are reasons that understandably are very similar to those to be found in 
Postlethwaite  (  1988  ) . 

 Internationalization and globalization are powerful in fl uences for curriculum 
development, instructional design, and educational policy, and compel countries 
and educators critically to examine themselves with respect to intended, imple-
mented, and attained curricula. These two forces have, then, provided mechanisms 
for better understanding concerning how different education systems address simi-
lar problems, and accordingly allow educational policy makers, researchers, and 
practitioners to look beyond experiences evident in their own systems and thus to 
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re fl ect upon issues in curriculum and instruction which could facilitate educational 
improvement. 

 Yet these factors in themselves should not necessarily cause a movement towards 
an international curriculum. Although countries might well simply pick and choose 
what, of what they see, would seem most suitable for them, this does not always 
appear to have been the case. Vithal and Volmink  (  2005  )  discuss this problem with 
post-apartheid South Africa in mind. They remark on the different forces which 
shaped curriculum development in the Western countries in the 1960s, the new 
mathematics movement and its counterpart back-to-basics, behaviourism, structur-
alism, formalism, problem-solving and integrated curriculum approaches (Howson 
et al.,  1981  ) , all of which left their mark on the South African curriculum. Note that 
some of these forces sprang from mathematical considerations, others from psycho-
logical ones. Then came constructivism, which they describe as  strong epistemol-
ogy  but with a  weak pedagogy , and ethnomathematics, which by its very nature did 
not  fi t comfortably with an international curriculum, and perhaps was thought of as 
the acceptance of something weaker, or second-rate. Now outcome-based education 
is in the ascendancy. But how are the “outcomes” to be decided? 

 Globalization cannot solve the problems of a country where large inequalities 
exist in access to mathematical education, provision of resources, and opportunities 
to learn: Alternatives have to be found (Skovsmose,  2003  ) . Yet the Organisation for 
Economic Co-operation and Development [OECD]  (  1999  ) , which through its name 
emphasizes economic rather than education considerations, has, through its presen-
tation of the results of PISA, promoted comparisons that national governments have 
interpreted as a need to improve mathematics education for the sole purpose of cre-
ating a quali fi ed workforce that will be competitive in a globalized economy. This 
interpretation can militate against any curriculum development that seeks to meet an 
economically hard-pressed country’s true educational and mathematical needs and 
also serves to restrict the way in which curriculum design and curricular aims are 
viewed in more economically-fortunate countries. This aspect of internationaliza-
tion is, then, a strong in fl uence towards a common international curriculum—but 
one that would be restricted both mathematically and socially.   

   Toward Common Learning Goals 

 Education is a goal-directed activity, and a curriculum speci fi es learning goals. 
It is assumed that the effectiveness of curriculum and instruction is related to the goal 
of high achievement for all students (National Academy of Education,  1999  ) . In the 
complex endeavour of schooling, teachers encounter many unexpected events. 
Although a teacher has an overall plan, she or he naturally cannot exactly follow the 
detailed script for action. With a clear learning goal or goals for a lesson, the teacher 
can make immediate decisions to address the unexpected and guide students toward 
the learning goals. Determination of learning goals for each lesson requires that 
teachers know mathematics, curriculum emphasis, students as learners, and peda-
gogical strategies. It also depends on teachers’ beliefs about mathematics and 
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conceptions about teaching mathematics. If mathematics is viewed as a collection of 
isolated facts and skills, then teachers may just focus on rules, procedures, rote mem-
orizations, and practice. Instead, if mathematics is viewed as a way of thinking with 
wide applications, then teachers must teach it with that in mind. 

 Across the nations, mathematics is in the central place in school curricula. We can 
justify the need to study mathematics in school from different perspectives 
(Christiansen, Howson, & Otte,  1986 ; Romberg,  2002  ) . There was a reasonable 
convergence of views until the 1960s; a view which was widely based on the 
assumption that different courses were needed for the students in different types of 
schools. Then, the coming of the new mathematics brought new ideas on what the 
aims of mathematics teaching should be, particularly for students in schools with 
“high ability,” and this led to a wide divergence of views on what the school curricu-
lum should contain. In recent years, some of the reform material has been accepted 
into the curriculum and some has been rejected, leading towards more commonly 
accepted learning goals in school mathematics. In addition to developing tradition-
ally accepted mathematical knowledge and skills through mathematics instruction, 
increasing emphasis has been placed on developing students’ higher-order thinking 
skills. Although there are no commonly accepted de fi nitions of such skills, the fre-
quently cited list to be found in Resnick  (  1987  )  might help. According to Resnick, 
higher-order thinking:

    1.    Is  non-algorithmic . That is, the path of action is not fully speci fi ed in advance.  
    2.    Tends to be  complex . The total path is not “visible” (mentally speaking) from any 

single vantage point.  
    3.    Often yields  multiple solutions , each with costs and bene fi ts, rather than unique 

solutions.  
    4.    Involves  nuanced judgment  and interpretation.  
    5.    Involves the application of  multiple criteria , which sometimes con fl ict with one 

another.  
    6.    Often involves  uncertainty ; not everything that bears on the task at hand is 

known.  
    7.    Involves  self-regulation  of the thinking process.  
    8.    Involves  imposing meaning ,  fi nding structure in apparent disorder.  
    9.    Is  effortful ; considerable mental work is involved in the kinds of elaborations and 

judgments required.     

 This list clearly shows that higher-order thinking skills involve the abilities to 
think  fl exibly so as to make sound decisions in complex and uncertain problem situ-
ations. In addition, such skills involve self-monitoring one’s own thinking—meta-
cognitive skills. In particular, ideally, mathematics instruction should provide students 
with opportunities to: (a) think about things from different points of view, (b) step 
back to look at things again, and (c) consciously think about what they are doing and 
why they are doing it. Resnick’s list does not include the ability to collaborate with 
others, but being able to work together with others is also an essential higher-order 
thinking skill. Collaborative work encourages students to think together about ideas 
and problems as well as to challenge each other’s ideas and ask for clari fi cation. 
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 This desirable aim of developing such skills is related to the view that mathematics 
education should be seen as something more than just contributing to the intellec-
tual development of individual students. Certainly, preparing them to live as 
informed and functioning citizens in contemporary society, and providing them 
with the potential to take their places in the  fi elds of commerce, industry, technol-
ogy, and science are important objectives (Robitaille & Garden,  1989  ) . In addition, 
mathematics education should seek to teach students about the nature of mathemat-
ics. Mathematics, then, is viewed no longer as simply a prerequisite subject but 
rather as a fundamental aspect of  literacy  for a citizen in contemporary society 
(Mathematics Sciences Education Board [MSEB],  1993 ; NCTM,  1989  ) . Ideally, 
with this view of school mathematics, teachers need to move toward mathematical 
thinking, reasoning, and problem solving and away from merely memorizing proce-
dures; move toward conjecturing, inventing, generalizing, proving, and problem 
posing and away from an emphasis on mechanistic answer- fi nding; and move 
toward connecting mathematics, its ideas, and its applications and away from treat-
ing mathematics as a body of isolated concepts and procedures. 

 Here it is valuable to pause, however, and contemplate how many these qualities 
and of Resnick’s higher-order skills are tested—indeed, are capable of being 
tested—by TIMSS, PISA, and the examination systems to be found in individual 
countries. Until such skills are featured in the examined curriculum, there is little 
chance of their being widely accepted into the implemented curriculum. Indeed, it 
could be claimed that as a result of recent pressures and changes within school sys-
tems, educators are further away from attaining such goals than ever. Are these 
suitable goals for all students, goals at which countries should continue to aim, or 
should the emphasis be on improving current practice in less demanding ways? 

 This question of goals is also related to the needs of an ever-changing world. 
Today, possessing a large amount of knowledge and information is not suf fi cient. 
Instead, the most important qualities that teachers can help their students develop 
are the abilities to think independently and critically, to learn, and to be creative, as 
well as to learn how to learn. In his best-selling book,  The World Is Flat , Friedman 
 (  2005  )  pointed out that “there may be a limit to the number of good factory jobs in 
the world, but there is no limit to the number of idea-generated jobs in the world” 
(p. 230)—again an economically generated reason for the teaching of mathematics. 
Education in general and mathematics education in particular have the responsibil-
ity for nurturing students’ creativity and critical thinking skills not only for their 
lifelong learning but also for their general bene fi t and pleasure. Again, it is essential 
to ask whether or not educators are any nearer to achieving those goals. 

 In the USA, NCTM speci fi ed  fi ve goals for students in its monumental standards 
document published in 1989:

    1.    To learn to value mathematics;  
    2.    To learn to reason mathematically;  
    3.    To learn to communicate mathematically;  
    4.    To become con fi dent of their mathematical abilities; and  
    5.    To become mathematical problem solvers.     
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 NCTM also speci fi ed major shifts to achieve these goals in teaching mathematics, 
including movement toward:

   Classrooms as mathematical communities—away from classrooms as simply • 
collections of individuals;  
  Logic and mathematical evidence as veri fi cation—away from the teacher as the • 
sole authority for right answers;  
  Mathematical reasoning—away from merely memorizing procedures;  • 
  Conjecturing, inventing, and problem solving—away from an emphasis on • 
mechanistic answer- fi nding;  
  Connecting mathematics, its ideas, and its applications—away from treating it as • 
a body of isolated concepts and procedures.    

 In China, there have been notable movements in mathematics education in recent 
years. The most recent curriculum reform in China began in 2001 and has focussed 
on developing new curriculum standards, textbooks, teaching methods, and assess-
ment systems. In 2001, the Chinese Ministry of Education published  Curriculum 
Reform Guidelines for the Nine-Year Compulsory Education . The main objectives 
of the new curriculum reform included the following:

    1.    Shifting from overemphasizing knowledge transmission to placing more emphasis 
on students’ active participation and to developing such mathematical abilities as 
collecting and processing new information, gaining new knowledge indepen-
dently, analyzing and solving problems, and communicating and cooperating 
with others;  

    2.    Shifting the curriculum structure from an overemphasis on separate school 
subjects to emphasizing more on the integration of school mathematics; and  

    3.    Shifting from complicated and outdated curriculum content to curriculum 
content that re fl ects students’ life and the new developments of modern science 
and technology. (Basic Education Curriculum Material Development and Chinese 
Ministry of Education,  2001  )      

 Ni, Li, Cai, and Hau  (  2012  )  have analyzed the goals in the new mathematics 
curriculum standards in China. These goals include helping students to (a) acquire 
important knowledge and the basic problem-solving skills in mathematics that are 
important for their lifelong learning; (b) apply knowledge of mathematics and 
related skills to observe, analyze, and solve problems in daily life and in other sub-
jects by using mathematical methods; and (c) to appreciate the close relationship 
between mathematics, nature, and society. As Ni et al. pointed out, these new goals 
not only require students to acquire basic mathematical knowledge and skills; they 
also aim to provide them with the opportunities to reason about evidence and 
explanation, evaluate knowledge claims, use acquired knowledge and skills to solve 
real-life problems, and develop interest and con fi dence in learning and using 
mathematics. 

 In the UK, the Cockroft  (  1982  )  Report advocated problem solving as a means of 
developing mathematical thinking as a tool for daily living. Developing problem-
solving ability lies at the heart of doing mathematics because it is the means by 
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which mathematics can be applied to a variety of unfamiliar situations. In the 2000 
revised English National Curriculum, the key skills of communication, application 
of number, information technology, working with others, improving one’s own 
learning and performance, problem solving and other skills such as thinking skills, 
 fi nancial capability, enterprise and entrepreneurial skills and work-related learning 
were elaborated (Department for Education and Employment and Quali fi cations 
and Curriculum Authority,  2000  ) . This list, however, was in response to a  fi rst 
attempt to establish a National Curriculum some 10 years earlier. Since 2000, the 
mathematics curriculum has seen yet more changes, and still more are promised. 
This does not mean that the early, overall aims were misjudged, but rather that it is 
relatively easy to set out well-intentioned objectives for a curriculum. However, the 
ensuing dif fi culties of determining the details of such a curriculum, of establishing 
appropriate assessment procedures, and of implementing change in classrooms have 
yet to be fully comprehended by politicians. Moreover, it is the politicians’ view of 
educational aims in general that will, to a large extent, determine how mathematics 
curricula will develop. This is a matter in which mathematics educators have a great 
role to play, but their voices will not always prove to be the dominant ones. 

 Through analyzing curriculum documents, Wong  (  2004  )  compared the goals of 
school mathematics in various countries/regions, including Western nations 
(Australia, France, Germany, the UK, and the USA) and far Eastern ones (Mainland 
China, Hong Kong, Taiwan, Singapore, and Japan). In his re fl ection, he listed 
“higher-order thinking skills” as the most important common goal across the nations/
regions in his analysis. However, governmental reasons for developing students’ 
higher-order thinking skills are, clearly, to increase economic and political competi-
tiveness. Sriraman and Törner  (  2008  )  analyzed European didactic traditions. They 
found that there are some commonalties in curricular changes in the European coun-
tries and also concluded that a “good mathematics education was regarded as favor-
ing industrial and economic, hence political, competitiveness” (p. 680). Given such 
common goals, they asked if a common European curriculum were possible. Since 
such learning goals are even more commonly shared, this could lead to a call for an 
international curriculum. 

 But could one have such a curriculum at even a “system” level, for how could 
this be implemented across classrooms in even, say, Europe? Good education and, 
in particular, curriculum development depends upon sound  fi nancial support—how 
could this be achieved when many countries are on the brink of bankruptcy? What 
would happen in countries with totally different educational systems: comprehen-
sive in many countries, tripartite in Germany, multilateral in the Netherlands. 
In England, the “public”—that is, independent private—schools do not have to fol-
low the National Curriculum and increasingly do not use the state examinations, 
believing that these are insuf fi ciently ambitious and do not cater for the needs of the 
more able student. Howson  (  1991  )  surveyed the curricula of the then 12 European 
Union countries, plus Japan and Hungary, and found not only interesting national 
deviations, but also differences within Germany. The “canonical” international cur-
riculum is only the basic, shared common curriculum that is tested in international 
tests. Each country has its own individual add-ons and countries vary greatly 
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concerning the hours devoted to mathematics teaching, the age at which they wish 
to introduce topics, and the length of time they consider it desirable to devote to a 
topic immediately after it is introduced (see, e.g., Howson,  1991,   1995 ; Howson, 
Harries, & Sutherland,  1999  ) . It would appear that an “international curriculum,” 
equally suited to the educational traditions (see, e.g., Leung, Graf, & López-Real, 
 2006  ) ,  fi nances and aspirations of all countries, is a chimera that should not be 
chased. Moreover, the dif fi culties of actually effecting curriculum development 
even within a single country are so great that, if such an international curriculum 
could be established worldwide, it would prove almost impossible to change and 
develop it in any signi fi cant manner.  

   Toward a Common In fl uence of Public Examinations 

 The division into the intended, implemented, and attained curriculum is a useful 
one. It is clear where the responsibility lies for the curriculum that is intended, but 
the notion that the teacher is responsible solely for the implemented curriculum is 
far from the case in countries with public examinations, for it is those who set the 
examinations who carry considerable responsibility for what content is taught and 
the level of demands made for the analysis and synthesis of mathematical content 
and capabilities. Moreover, in some countries, for example, Denmark and England, 
of fi cially-controlled testing now occurs more frequently throughout a student’s 
school career than was the case 20 or so years ago. Again, the variety of means of 
examining at their disposal (e.g., oral, computer marked, and coursework) can either 
strengthen or limit examiners’ abilities to examine important factors in mathematics 
learning. All these factors have had an immediate feedback in the classroom and 
have become a major in fl uence on the implemented curriculum and classroom 
instruction. That is, if the testing does not include the assessment of certain topics, 
it is unlikely that classroom instruction will cover them. 

 For example, in the last 50 years arguments in favor of including mathematical 
modelling in the curriculum have frequently been advanced (Blum, Galbraith, Henn, 
& Niss,  2006  ) . Recently, the Common Core State Standards in the USA clearly 
emphasized the importance of mathematical modelling (National Governors 
Association Center for Best Practices, & Council of Chief State School Of fi cers, 
 2010  ) . Yet how can mathematical modelling be adequately tested in a relatively 
short, timed examination? This was attempted in England by the School Mathematics 
Project in the 1960s, but the constraints imposed by the examination and the 
demands made on students by asking them to think under examination conditions 
about genuine modelling, as opposed to solving more involved yet still routine 
“real-life” problems, proved too great. Coursework could provide the answer, but 
problems then arise concerning plagiarism, and in a public examination, taken by 
tens of thousands of students, those marking the scripts have to have  fi rm guidelines laid 
down for the awarding of marks. There is an inevitable recession to examinations 
containing only questions having a single correct answer. Yet public examinations 
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in mathematics receive comparatively little attention from researchers. The research 
emphasis on assessment tends to veer towards teacher assessment—an important 
aspect of mathematics teaching—but, it could be argued, secondary to the overall 
control of the curriculum frequently exercised by the public examination. Brown 
 (  2006  )  explained how it was intended to assess primary school students’ attainment 
under the National Curriculum then just imposed in England. Again, though admi-
rable in its aims, this arrangement proved too costly and time-exhausting to imple-
ment. Simpler, less-informative, and essentially less-educational, methods replaced 
it. If by  curriculum  one means  syllabus content,  then there was no great loss, but if 
 curriculum  is taken to include the generation and cultivation of means of thought 
and expression, then little was left in the assessment and one suspects, accordingly, 
in the implemented curriculum. 

 There are particular concerns in China, which is one of the many countries where, 
to a great extent, the scores on examinations can determine one’s opportunity of 
additional education and even one’s future career (Cai & Nie,  2007  ) . Many Chinese 
parents (and even teachers) believe that obtaining higher scores in examinations 
means being intellectually elite (Zhang, Tang, & Liu,  1991  ) . At the same time, most 
students view examinations as competitions and  fi lters for better opportunities. To a 
great degree, therefore, one of the main goals of classroom instruction is to prepare 
for examinations and to ensure high scores in examinations. The vast majority of 
problems in any examinations are related to basic knowledge and skills. Thus, the 
principal purpose of instruction in problem solving is interpreted in terms of helping 
students grasp basic knowledge and skills, so that, when examined, they can receive 
higher scores. Starting in the early 1990s, however, it was recommended to include 
some modelling (open-ended and real-life) problems in both the College Entrance 
Examinations and Senior High School Entrance Examinations. 

 Two reasons were advanced for integrating modelling problems into the Chinese 
College and Senior High School Entrance Examinations (Cai & Nie,  2007  ) . First, 
the current mathematics curriculum reform in China emphasizes the development 
of students’ abilities to pose, analyze, and solve problems. This new emphasis 
requires a corresponding response within assessment and evaluation. Second, given 
the nature of examination-driven instruction in China, the inclusion of such ques-
tions could be used as the driving force to integrate more modelling problems into 
school mathematics. That is, examinations were being used to in fl uence classroom 
instruction in a positive way. Yet even this presents inherent problems, for using 
examinations as a means to in fl uence teaching not only succeeds in driving teachers 
to teach what is examined (for that is in a sense desirable), but to teach  only  those 
aspects of modelling it is possible to examine within traditional examination con-
straints—and that will not necessarily achieve all the stated curricular aims. 

 Public examinations play, then, a great role in determining what actually happens 
in the classroom, and their in fl uence can feed back into the intended curriculum. 
This process is almost certainly happening as a result of what are now “public 
examinations” shared between many countries; namely, TIMSS and PISA. Both of 
these were launched with the objectives of assisting the attainment of educational 
objectives, and to a certain extent these have been achieved, but perhaps more 
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successfully away from the actual tests, for example, in the work on comparative 
curriculum analysis and the study, using video, of classroom methods in various 
countries, carried out by TIMSS. 

 A detailed critique of TIMSS can be found in Keitel and Kilpatrick  (  1998  ) , and 
the whole problem of comparisons in mathematics education is considered in Kaiser, 
Luna, and Huntley  (  1998  ) , the book in which Keitel and Kilpatrick’s critique is 
included. More recently criticisms have also been raised concerning PISA and, in 
particular, the extent to which its “real-life” problems do, in fact, re fl ect real life for 
all those students tested and, in particular, the range of participating countries in 
which this is the case (Jablonka,  2007  ) . 

 It is essential, then, that any country wishing to use TIMSS and PISA data to 
improve its mathematics teaching must carry out a careful study of responses to 
individual items. It is these, and their validity, that will carry “value for use.” This, 
however, is not the view that ministers of education in many countries have taken: 
To them, the country’s rank in the “league table” is all important. The result is that 
in some countries the mathematics curriculum is in danger of being circumscribed 
by what can be effectively examined by PISA and TIMSS. This change will ease the 
way “toward an international curriculum,” but the losses could be huge.  

   Toward a Common Emphasis 

 Over the past 30 years there appears to have been some common emphases affect-
ing school mathematics. Here we discuss two of these: the teaching of statistics and 
probability, and the teaching of algebra. 

 Statistics and probability began to enter the secondary school curriculum of some 
countries during the reforms of the 1960s. In the late 1980s and early 1990s, there 
were calls to increase the teaching of these subjects. Jones, Langrall, and Mooney 
 (  2007  )  analyzed curriculum documents from Australia, the USA, and the UK, and 
found remarkable similarities of big ideas for probability content across the three 
nations: nature of chance and randomness, sample space, probability measurement, 
and probability distribution. Jones et al. concluded that the presence of fundamental 
ideas in the three national curriculum documents “adds further grist to the argument 
that researchers across the international arena were in fl uenced in comparable ways” 
(p. 915). A similar analysis of Chinese curriculum documents was recently under-
taken and interestingly, there were similar emphases to be found in them. 

 Initially probability and statistics were thought of as secondary school mathe-
matics (Jones & Tarr,  2010 ; Jones et al.,  2007 ; Li,  2004  ) . However, in recent years, 
statistical work on data display (e.g., bar charts, pictograms, pie charts) and analysis 
has been introduced and emphasized in elementary schools. For example, in the 
USA, the National Assessment of Educational Progress (NAEP) showed an 
increased emphasis on “data analysis” from 1996 to 2000 to 2003 (Kloosterman & 
Walcott,  2010  ) . As part of the NAEP survey, teachers were asked to report curricu-
lar emphasis on particular strands. In 1996, only 8% of the fourth-grade teachers 
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reported heavy emphasis of data analysis, but the percentage increased to 18% in 
2000, and 23% in 2003. Elementary school work on probability has been more lim-
ited and has not proved so successful—perhaps because of the teachers’ lack of 
understanding. 

 A second visible development is the early introduction of algebraic ideas (Cai & 
Knuth,  2011 ; Stacey, Chick, & Kendal,  2004  ) . An important curricular emphasis, 
common around the globe, is the development of students’ algebraic thinking in 
earlier grades. This is not a particularly new idea; in China and Russia, for example, 
algebraic concepts were introduced to elementary school students in the 1950s and 
1960s. In other countries (e.g., in Europe and in North America), the discussion of 
integrating algebraic ideas into mathematics curricula in the earlier grades started in 
the 1970s. In the past decade, however, there has been an increased emphasis on and 
a wider acceptance of the advantages of developing students’ algebraic ideas and 
thinking in earlier grades, and this new degree of acceptance is re fl ected in a number 
of in fl uential policy documents. 

 There is a common theme in different countries that the curriculum is designed 
to help students see algebra in the context of arithmetic (Britt & Irwin,  2011 ; Cai, 
et al.,  2010 ; Russell, Schifter, & Bastable,  2011 ; Subramaniam & Banerjee,  2011  ) . 
For example, in the Chinese curriculum, elementary school students are asked to 
solve problems using both an arithmetical approach (no variables involved) and an 
algebraic one (involving variables), in the belief that this practice will help students 
develop ways of thinking about problem solving better than would be the case when 
such tasks were separated by some years. 

 In Singapore, the elementary mathematics curriculum provides a wide variety of 
experiences to help younger children develop algebraic thinking, and this develop-
ment is made possible by using “model methods” or “pictorial equations” to ana-
lyze parts and wholes, generalize and specify, and do and undo. The model method 
is diagram- or model-drawing (Cai, Ng et al.,  2011 ; Kho,  1987  ) . It was believed that 
if children were provided with the means to visualize a word problem—be it a 
simple arithmetical word problem or an algebraic one—the structural underpinning 
of the problem would be made more apparently overt (Kho,  1987  ) . In the earlier 
grades, pictures of real objects are initially used to model problem situations, but 
then the pictures are replaced by the more abstract rectangles. Elementary students 
solve word problems using the “model method” to construct pictorial equations that 
represent the relationship in word problems as a cohesive whole, rather than as dis-
tinct parts. The aim of using the model method described above is to provide a 
smooth transition from working with unknowns in a less abstract form to the more 
abstract use of letters in formal secondary-school algebra. 

 In India, the key aspect of early algebra learning is focussing on symbolic arith-
metic as a preparation for algebra. Students work with numerical expressions (with-
out letter variables), with the goal of building on the operational sense acquired 
through the experience of arithmetic. The aim is not just to compute the value of an 
expression, but to understand the structure of the expressions (Subramaniam & 
Banerjee,  2011  ) . In the USA, similarly, students are provided with opportunities to 
develop algebraic thinking in the context of arithmetic (Russell et al.,  2011  ) . 
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 These two examples serve to illustrate not only common international moves in 
curriculum development but also how these can spring from different forces. 
Knowledge of probability and statistics is of great importance for a well-educated 
citizen today; by providing this, educators are meeting national needs. Yet the 
changes in the teaching of algebra have been dictated by pedagogical reasons: the 
realization that the teaching of algebra, which is not intended to meet the same citi-
zenship needs as that of probability and statistics, can be improved by the subject’s 
early introduction. Here, then, we see examples of how two major pressures help 
generate curriculum development.  

   Toward Common Issues in the Mathematics Curriculum 

 In this section, we speci fi cally focus our discussion on three common issues that 
need to be addressed in curriculum development: (a) nurturing creativity and think-
ing skills; (b) developing conceptual understanding and procedural skills; and (c) 
mathematics for all and mathematics for the gifted. The  fi rst two of these issues 
have been chosen because of their importance notwithstanding the dif fi culty that 
would seem to lie in their successful implementation. The last is a longstanding 
problem that changes in the organization of school systems in many countries in the 
last half of a century have tended to intensify. 

 It should be understood, however, that many other issues arise and can be 
approached in alternative ways. Thus, for example, Zalman Usiskin  (  2010  )  dis-
cussed several general issues in curriculum development, including pure versus 
applied mathematics, deduction versus induction versus statistical in fl uence, algo-
rithms versus problem solving,  fl uency versus  fl ippancy, culture free versus culture 
dependent, and hard versus easy. While Usiskin situated his discussion in the con-
text of curricula developed in the USA, these issues would, for example, also appear 
applicable when discussing an international curriculum. 

   Nurturing Creativity and Thinking Skills 

 We base the discussion of creativity and thinking skills on comparative research 
relating to the USA and some Asian countries. Early studies appear to suggest that 
although Chinese students perform better than their US counterparts on tasks requir-
ing knowledge routinely learned in school, they may not be better creative thinkers 
than US students (Cai,  2000,   2001  ) . For example, when solving process-open tasks, 
US students actually had higher mean scores than their Chinese counterparts. In fact, 
educators and government of fi cials tend to believe that the USA does a better job of 
nurturing students’ creativity than Asian countries do. Some Chinese leaders have 
openly criticized education to the age of 16 for giving students knowledge but not 
the ability to think creatively. In India, Prime Minister Manmohan Singh stated that 
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two-thirds of the nation’s universities and 90% of its degree-granting colleges failed 
to perform at expected norms and that university curricula typically failed to give 
emphasis to the educational skills and attitudes required by employers or job seekers 
(Bharucha,  2008  ) . Yet, in the USA, several recent reports call for the nation to learn 
from Asia because it is believed that Asian countries such as China, India, and 
Singapore provide much more effective mathematics and science education, thus 
posing a major threat to the global competitiveness of the USA (Asian Society,  2006  ) . 

 In contrast, some Asian-born scholars believe that Asian countries should learn 
from the USA about science, technology, engineering and mathematics (STEM) 
education (e.g., Bharucha,  2008 ; Zhao,  2008  )  because, it is argued, the USA does a 
better job of nurturing creativity. It is well-documented that classroom instruction in 
Asian countries is very traditional in many ways. It is often content-based, exami-
nation-driven, and teacher-centered (Fan, Wong, Cai, & Li,  2004  ) . Classroom 
instruction is usually conducted in a whole-classroom setting, with a large class of 
50–60 students and with little interaction among the students. In contrast, classroom 
instruction in the USA is usually conducted in small classes that encourage class 
participation. Students are encouraged to take intellectual risks and challenge 
accepted wisdom. Therefore, the learning environment in the USA may be per-
ceived as nurturing students’ creativity better than that in China, India, or other 
Asian countries, since students in the USA are nurtured better to tolerate deviation 
from tradition and the norm. Yet, the classrooms may simply re fl ect different cul-
tures and traditions. Societies may even view creativity and the ways to nurturing 
creativities quite differently (Gardner,  1989  ) . 

 Although it is generally believed that students in the USA are more creative than 
are those in Asian countries, the  fi eld lacks empirical studies to assess directly 
Chinese, Indian, and US students’  creativity,  however one chooses to interpret that 
word in general and, in particular, in mathematics. The real question is the follow-
ing: Can a curriculum be designed and developed to nurture creative thinking skills, 
and how can those skills best be examined and assessed? This is, of course, a ques-
tion faced in all countries, not simply in the USA and Asia. There is no obvious 
answer, although it is easy to determine methods and trends that militate against the 
achievement of such goals.  

   Developing Conceptual Understanding and Procedural Skills 

 The learning of mathematics involves both understanding an idea conceptually 
and being able to perform related procedures  fl uently. Experience and research have 
ably demonstrated that expertise in carrying out routine applications does not imply 
expertise in complex and novel problem solving. Routine applications can often be 
solved using procedural knowledge; in contrast, complex and novel problem solving 
usually requires that the solver uses conceptual knowledge and a synthesis of ideas 
in order to  fi nd a solution. 
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 In a longitudinal study of curricular effect on students’ learning, Cai, Moyer, 
Wang, and Nie  (  2011  )  found differential effects of “reformed curricula” on students’ 
conceptual understanding and procedural skills in their LieCal Project (Longitudinal 
Investigation of the Effect of Curricula on Algebra Learning). The LieCal Project 
examined the similarities and differences between a reformed curriculum in the 
USA, called the Connected Mathematics Program (CMP), and more traditional cur-
ricula, called non-CMP curricula. CMP is a complete middle-school mathematics 
curriculum (Grades 6–8) and differences between the CMP curriculum and more 
traditional curricula are analyzed by Cai and his associates (Cai et al.,  2010 ; Nie 
et al.,  2009  ) . The researchers investigated not only the ways and circumstances 
under which the CMP and non-CMP curricula promoted or hindered student 
achievement gains, but also the characteristics of the reform and traditional curri-
cula that contributed to those gains. The longitudinal analyses showed that students 
did not sacri fi ce basic mathematical skills if they were taught using a reformed 
mathematics curriculum like CMP, but across the three middle-school years, students 
using the CMP curriculum showed signi fi cant gains over the non-CMP students 
on assessment items measuring conceptual understanding and problem solving 
(Cai, Moyer et al.,  2011  ) . 

 Another recent longitudinal study investigated whether or not the current curricu-
lum reform in Mainland China brought about desirable student learning outcomes 
in elementary mathematics (Ni, Li, Cai, & Hau,  in press ; Ni, Li, Li, & Zhang,  2011  ) . 
Improved performance was observed in the students of both groups over time on 
measures of computation, simple problem solving, and complex problem solving, 
which included process-constrained and process-open questions. However, although 
the reform group performed better than the non-reform group did on the complex 
problem-solving tasks, they did not do as well as the non-reform group on computa-
tion and simple problem solving. The  fi ndings from Ni, Li, Cai, and Hau suggested 
that, when using reformed curricula, students’ conceptual understanding came at 
the expense of the development of basic mathematical skills; but is the tradeoff 
worth it? Ni, Li, Cai, and Hau argued that this tradeoff was indeed worthwhile and 
provided two reasons for their conclusion. The  fi rst reason was related to the new 
goals for the new curriculum: to improve students’ competence in solving non-
routine mathematics problems, an area of weakness in previous studies of Chinese 
students’ mathematics achievement. This goal had been achieved. The second 
reason was that the students receiving the new curriculum still performed adequately 
with basic computations. Thus, a more balanced development in mathematics 
achievement had been attained. 

 How can educators ensure that the development of students’ conceptual under-
standing does not come at the expense of the development of basic mathematical 
skills? Can students learn algorithms and master basic skills as they engage in 
explorations of mathematically intriguing problems? These are two of the funda-
mental questions that mathematics educators need to consider in curriculum devel-
opment and research. However, this is not a new issue. A committee was established 
in the UK in 1946 to report on the teaching of primary school mathematics, and it 
determined that “[we] plead for attempts to develop mathematical ideas through the 
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study of broad environmental topics and through the investigation of situations and 
phenomena at  fi rst hand” (Mathematical Association,  1955 , p. 20). The committee 
also stressed that “practice without the power of mathematical thinking leads 
nowhere; the power of mathematical thinking without practice is like knowing what 
to do but not having the skills or tools to do it; but the power of mathematical think-
ing supported by practice and rote learning will give the best opportunity for all 
children to enjoy and pursue mathematics” (p. 4). 

 It is possible to develop and implement a curriculum for fostering students’ con-
ceptual understanding and problem solving. Much effort is needed by the interna-
tional community to explore the ways of designing a curriculum that develops both 
basic mathematical skills and mathematical thinking.  

   Mathematics for All and Mathematics for the Gifted 

 Many countries are undergoing a mathematics education reform. These countries 
all face tensions and debates over issues involved in such a reform effort. One of 
these relates to the debate about mathematics for all and mathematics for the gifted. 
In some countries, such as the USA and Singapore, gifted education is regulated 
under state or national laws to develop systematically and strategically the potential of 
these students. In other countries, such as China, there is no law or policy pertaining 
to the education of gifted students. 

 In the USA, developing and discovering scienti fi c talent is a national strategic 
goal (National Science Board,  2010  ) . In a recent report, the National Science 
Foundation pointed out:

  The Board’s 2-year examination of this issue made clear one fundamental reality:  the U.S. 
education system too frequently fails to identify and develop our most talented and moti-
vated students who will become the next generation of innovators.  … The possibility of 
reaching one’s potential should not be met with ambivalence, left to chance, or limited to 
those with  fi nancial means. Rather, the opportunity for excellence is a fundamental 
American value and should be afforded to all. (p. 5)   

 Similarly, in China, developing a talent pool with creativity and innovation is the 
overarching goal of the China’s next 5-year plan for the nation. 

 The tension about education for all and for the gifted is a problem faced in all 
countries and one that has been exacerbated over the last 50 years by the growth of 
comprehensive education––in opposition to selective education, which apportioned 
students to different types of school at a comparatively early age. Although it is 
important to make mathematics accessible for all students, meeting the special 
needs of mathematically gifted students is also critical. It cannot be assumed that 
mathematically talented students can succeed on their own or will wish to continue 
with the study of mathematics if they are not provided with challenges appropriate 
to their capabilities. There is a clear need, then, for all countries to address the needs of 
gifted students within the context of mathematics for all. One strategy for countries 
is to have different curricula for different students. Where this strategy has been 
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ruled out, an important question arises: Should gifted students be accelerated 
through the grades, or should there be provision for their mathematics learning to be 
enhanced in some manner while they remain with their age group? Questions of 
equity and quality are indeed extremely important ones and are explored more fully 
in an international context in Atweh et al.  (  2011  )  and in Chapter   1    .   

   Conclusion 

 Education is commonly seen as the key to a nation’s economic growth and pros-
perity and to its ability to compete in the global economy. As already described, 
the curriculum plays a vital role in students’ education, and there is an increasing 
tendency for countries to include a more-and-more internationally accepted core 
selection of topics in their national curricula. This tendency is to a great extent both 
to be welcomed and expected. Students do need to gain mathematical literacy in the 
global arena, and what constitutes such literacy does not differ greatly across 
nations. This move has, however, had a potential negative effect on curriculum 
development, for overmuch attention is now being given to what can be covered in 
national examinations and international assessments such as TIMSS and PISA tests. 
That is, a wider view of mathematics learning, other than simply the acquisition of 
an acceptable degree of “literacy,” can become ignored. Indeed, a wider view of 
education, itself, is under threat. A concentrated basic curriculum, simply targeted at 
all students attaining good marks in tests of mathematical literacy, could be harmful 
for teachers, students, and mathematics education in general. 

 Nearly 30 years ago, at a talk given at a 1983 symposium organized by the ICMI 
at the International Congress of Mathematicians in Warsaw (see Damerow, Dunkley, 
Nebres, & Werry,  1984  ) , Jan de Lange asked the following question: “Does ‘mathe-
matics for all’ mean ‘no mathematics for all’?” His answer was no. We can ask a 
similar question nowadays: “Would an international mathematics curriculum mean 
no mathematics for all?” Again, the answer is no, but it could mean that vital ele-
ments of mathematics become neglected or ignored. Would there, for example, be 
geometry (other than mensuration) for all? Indeed, geometry (which has been rarely 
mentioned so far in this chapter) presents particular problems (Mammana & Villani, 
 1998  ) . There is, in fact, no agreement on what should comprise a geometry curricu-
lum within, for example, China, or England (Royal Society,  2001  ) . Seeking interna-
tional agreement on a geometry curriculum could be impossible, for since the “fall” 
of Euclid, countries have largely gone their own way. The only way ahead would 
seem to be through experiments in a number of separate countries in the hope that 
some satisfactory approach that can be more universally adopted emerges. However, 
it is clear that what at present constitutes the common core curriculum offers little 
insight into what mathematics can offer other than an extremely useful, indeed essen-
tial, tool kit. 

 The arithmetical and algebraic content now to be found in that curriculum has 
not changed signi fi cantly in the last century. It is, then, to be expected that there is 
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common agreement both relating to its acceptance and, to some extent, ways in 
which it should be taught. However, it should be noted that even so, the introduction 
of concepts and topics within a nation’s curriculum can differ considerably: “It is 
essentially a core mathematical  syllabus  that is, more or less, universally shared.” 
For example, Cai and his associates (Cai et al.,  2010 ; Nie et al.,  2009  )  analyzed the 
way in which the concepts of variables, equations, and equation solving were intro-
duced in reform and traditional mathematics curricula in the USA. They found 
totally different approaches to these concepts, with the reform curriculum focussing 
on a functional approach and the traditional curriculum focussing on a structural 
approach. Statistics at an elementary level has also reached a canonical degree of 
acceptance, although there are differences in how far one might develop the teach-
ing of that and probability at a higher school level. However, many important ques-
tions remain relating to a possible international curriculum to which we appear to 
be heading. Is there the mathematics that will catch the imagination or astonish, 
nurture creativity, prepare for logical proof and a search for generality? Such math-
ematics may well not be suitable for, or within the grasp of, all, but what will be the 
consequences for the future development of mathematics of not offering it to the 
most gifted? How, then, does one plan a curriculum to cope with students of widely 
differing mathematical abilities? 

 Signi fi cant work also remains to be done to explore the way in which new tech-
nology could affect both the mathematics included in the curriculum and how it 
could more effectively contribute to the teaching and learning of mathematics in 
general (Atkinson & Mayo,  2010 ; Clark-Wilson, Oldknow, & Sutherland,  2011  ) . 
The in fl uence of technology has still to be felt on the actual mathematics taught in 
schools. Even the pioneering work on how technology can assist in the teaching of 
well-established mathematical content, for example, in geometry, has had little 
take-up. With the growing emphasis on processes within national curricula 
(e.g., problem solving, communication), the impact of technology in terms of the 
kind of dynamic learning environment it can create merits more attention (Hoyles & 
Lagrange,  2010  ) . Most importantly, the impact of technology should also be 
examined with respect to the delivery format of a curriculum. With the advance of 
digital technology and accessibility of technologies, perhaps a digital form of an 
international  core  curriculum can be a reality in the near future (Atkinson & Mayo, 
 2010 ; Clark-Wilson et al.,  2011 ; Kim,  2011  ) , but here it is important to distinguish 
between a citizenship-based and politician-pleasing core and a sounder, more 
mathematically-inspired, complete curriculum. Already the national curricula of a 
growing number of countries can be found on the ICMI Web site, and these should 
provide guidance to countries wishing to renew their mathematics curricula. 

 In summary, curriculum development aimed at other ends than simply improving 
the teaching and learning of accepted curriculum content—although that in itself is 
a worthy aim—depends upon the freedom of individual countries to experiment 
within the con fi nes of their curriculum. The absence of that freedom, through the 
emergence of an all-embracing international curriculum, would seriously prevent 
any future developments in the curriculum as a whole. Here, it is signi fi cant to point 
out that following the curricular reforms of the 1960s, and despite the enormous 
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technological advances that have occurred since then, little, if any, new mathematics 
has entered the school curriculum and little, apart from logarithms for the gifted, has 
left it. Indeed, the most noteworthy attempt to spell out a model curriculum for the 
early 21st century, the Kahane Commission in France, was carried out as a hypo-
thetical exercise intended to justify and de fi ne the place of mathematics in the school 
curriculum, but whose  fi ndings, it was accepted, could never be implemented—see 
Merle  (  2003  )  for a brief description of the  fi ndings. 

 It is also essential that countries retain the freedom to decide upon the ages at 
which topics are introduced to students for this will vary much according to local 
social and environmental circumstances. Let countries then rejoice in what they 
share in common with other countries—that essential  core  of mathematical literacy—
and may comparative mathematics education fl ourish. But may they also be aware 
that the present international “common core” cannot constitute a satisfactory cur-
riculum in itself and that new initiatives within the curriculum must come from 
within individual countries and will only be accepted into an international core over 
the years. Most importantly, and a lesson from the 1960s, is that the school math-
ematics curriculum is not something that can be forever extended without some 
paring down of what already has a place in it. Moreover, in recognizing that tech-
nology is at the core of virtually every aspect of our daily lives and work, mathe-
matics educators must endeavour both to develop the content of syllabuses bearing 
in mind the new possibilities it presents, and also employ it to provide engaging 
and powerful learning experiences for students whatever topics in mathematics 
they may be studying.      
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  Abstract   The focus of this chapter is issues related to methods for studying math-
ematics teaching and learning internationally. The chapter identi fi es three sorts of 
overarching purposes and goals of international studies, namely to uncover and ana-
lyze, across a group of countries: differences in students’ learning outcomes, 
achievements and attitudes; differences in curricula, teaching approaches, resources 
and the environments of mathematics education; and possible links between the latter 
and the former. The chapter provides detailed accounts of the designs, methods, 
methodologies, and instruments that have been used in two kinds of studies—large-
scale international comparative studies, such as TIMSS and PISA, and so-called 
focal studies concentrating on more speci fi c  problématiques  or themes. The last 
part of the chapter offers re fl ections on the nature of international comparative 
studies with an emphasis on their strengths and potentials as well as on their chal-
lenges and limitations. One fundamental question in this context is the extent to 
which the results of such studies can be meaningfully interpreted, especially in 
view of the massive interest amongst politicians, administrators, media, and the 
general public, who often do not pay suf fi cient attention to the characteristics and 
conditions of the studies.      
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   Introduction: The Relationship Between Study 
Issues and Methodology 

 Since the creation of the International Commission on Mathematical Instruction 
(ICMI) in 1908 (Schubring,  2008  ) , there has been an interest in considering math-
ematics teaching and learning from an international perspective. Until the 1960s, 
the focus was on describing and comparing mathematics curricula across different 
countries, or on proposing—from normative points of view—new curriculum 
approaches or components (such as the notion of function in the early decades of the 
20th century or the so-called new math or modern mathematics movement from the 
mid-1950s to the mid-1970s). When the international congresses on mathematical 
education (the ICMEs) came into being (the  fi rst one was held in Lyon, France, in 
1969), the majority of the contributions in the early ICMEs were designed to 
exchange information, views, and experiences amongst delegates from different 
countries about the actual or potential structures of mathematics curricula, the 
orchestration of teaching, teaching materials and resources, teaching experiments, 
and—to a lesser extent—student reactions to the “diets” they were offered. 

 Even though it dates back to the beginning of the 20th century, the sharing of 
information, ideas, and experiences has never ceased to be of interest. For example, 
the so-called International Seminar at the Park City Mathematics Institute (PCMI), 
held under the auspices of the Princeton Institute for Advanced Study every summer 
in Park City, Utah, USA, has provided a platform for such exchange since 2001. 

 The goal of all these endeavours has been to allow participants to learn from each 
other in terms of ideas, approaches, materials for teaching, and the reported outcomes 
thereof. Even though selecting, collecting, and presenting the factual information 
involved in these activities may well have been dif fi cult and time consuming in places, 
it would not be reasonable to say that these endeavours amount to  studying  mathe-
matics teaching and learning internationally in a scholarly or scienti fi c sense. 
Studying something is closely linked to trying to come to grips with essential fea-
tures of or issues related to the objects, situations, or systems to be studied; in other 
words, seeking answers to pertinent questions by way of some investigation, a dis-
ciplined inquiry. Studying something is usually focussed on uncovering and explain-
ing relationships, with particular regard to mechanisms, correlations, and causalities. 
Therefore, any discussion of the choice and implementation of the methods to be 
put to use in a study must take its point of departure in the issues and questions that 
the investigation is designed to address. So, what are the issues addressed and the 
questions asked in studying mathematics teaching and learning internationally? 
And what are individuals’ and agencies’ (or even countries’) purposes of engaging 
in such studies? This is related to the question asked by Clarke  (  2003  )  with regard 
to  comparative research : “Who are the stakeholders of international comparative 
research?” (p. 151). 

 In the sections that follow, we provide more speci fi c and detailed answers to 
these questions as far as the most important international studies are concerned, of 
which the  fi rst seems to be the so-called FIMS—First International Mathematics 
Study—which was carried out in 1964 (see below). However, at an overall level it is 
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fair to claim that most international studies are designed to deal with three major 
 problématiques : The  fi rst is to uncover and analyze  differences in students’ learning 
outcomes, achievement, and attitudes  across a group of countries. The second is to 
uncover and analyze  differences in curricula, teaching approaches, resources for 
teaching, classroom cultures, teachers’ educational and other backgrounds, and 
more general cultural and socio-economic environments of mathematics education . 
The third, and often the most signi fi cant, is to  link  the former  problématique  to the 
latter; in particular, in order to come to understand, if possible, the former as a func-
tion of the latter. It goes without saying that the methodological deliberations and 
issues arising in this context (should) depend heavily on the quantitative and quali-
tative characteristics of the students considered; on the speci fi c learning outcomes, 
kinds of achievement, and sorts of attitude in focus; on the cultural, societal, eco-
nomic, and institutional conditions of the countries involved; and on those aspects 
of teaching approaches and resources, classroom cultures, and teacher backgrounds 
that are selected to be of interest in the investigation. Clarke  (  2003  )  adds a twist to 
the third  problématique ; namely, what he calls “evaluative comparisons: not just to 
document similarities and differences, but attaching value to performances judged 
as superior by some criterion” (p. 152). 

 Against this background, one may well raise the more general question of the 
extent to which it makes sense, and is methodologically feasible, to detect, investi-
gate, and interpret differences and to make comparisons across and among countries 
with particular regard to mathematics education, when multitudes of cultural, societal, 
and economic and other factors exert predominant in fl uences on the systems in which 
mathematics education takes place. We return to this issue later in this chapter. 

 In dealing with issues concerning study methods, a number of words almost 
automatically enter the stage:  design, method, methodology, instrument, technique,  
and  procedure,  among others. Transparency in deliberations and exposition requires 
some clari fi cation of what these terms are supposed to mean. If we take our point of 
departure in the idea that scholarly and scienti fi c studies are undertaken in order to 
answer certain more or less clearly delineated questions (Niss,  2010  ) , we propose 
the following de fi nitions in the present context. 

 By the term  design  of a study, we understand the entire  collection of approaches  
(whether conceptual, theoretical, or empirical) employed  to provide answers  to the 
set of questions that drive the study; in other words, the overall  layout  of the study. 
Each approach is focussed on answering a subset of the questions (but several 
approaches may be used, e.g., in combination, to answer the same question) and 
hence gives rise to issues of  methodology . By  methodology,  we understand the set 
of deliberations, re fl ections, and analyses involved in choosing, implementing, and 
assessing one or more  methods  with a potential to answer a certain class of ques-
tions. Typically this involves comparing, contrasting, and relating different actual 
and potential methods with particular regard to their potentialities, limitations, and 
tractability in the given context and under the circumstances present. So, we use the 
term  method  to designate a package of speci fi c undertakings by which a certain 
class of questions may be answered, and the term  methodology  to include all meta-
level considerations about methods. Adopting a particular method as a means for 
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answering certain questions presupposes the belief that the method actually can, or 
at least has the potential to, provide valid answers to the questions. A method may be 
established and well-described, but it may also be in a process of inception or under 
construction for a certain purpose. Implementing a method normally involves putting 
a number of  instruments  to use. Typically an instrument—say, a questionnaire—is 
not restricted to be part of a particular method but will be available for use in several 
different methods. Finally, using an instrument often requires the activation of various 
more or less speci fi c  techniques , some of which may take the form of standardized 
 procedures , whereas others may be more loosely de fi ned. In the following sections, 
these rather general de fi nitions are given  fl esh and blood when we deal with con-
crete studies. 

 This chapter is structured as follows: In the next two sections, we attempt to 
provide factual presentations, without much commentary, of the studies under con-
sideration in the chapter, including their goals, designs, and methods. In the last 
section, we offer our more analytic re fl ections on key issues related to those and 
other studies.  

   Different Kinds of Studies and Their Goals 

 In gross terms we deal with two kinds of internationally-oriented studies of 
mathematics teaching and learning. The  fi rst kind consists of  large-scale interna-
tional comparative studies , where the term  large-scale  refers to at least two 
features––the involvement of a multitude of countries and of large numbers of 
students. Sometimes  large-scale  also means “many dimensions,” such as student 
achievement and affect, socio-economic background variables, structure of educa-
tion systems, curriculum organization, approaches to teaching, and teacher back-
grounds. Studies of the second kind, let us agree to call them  focal studies , have a 
narrower focus—for example, problem solving, curriculum structure, textbooks, 
classroom interaction—and typically involve just a few countries. Large-scale 
studies—which almost by de fi nition require huge efforts and human and material 
resources, including funding, and are time consuming—tend to attract a lot of public 
interest and debate, especially if league tables are included in the reporting, whereas 
focal studies rather attract the attention of mathematics educators and researchers, 
and occasionally of politicians dealing with education. 

   Large-Scale Studies 

 We begin by listing the international large-scale studies that are taken into con-
sideration in this chapter. Because of the resources required to undertake large-scale 
studies, there are not so many of them. Although comparative international studies 
of education at large have a long history (Kaiser,  1999a  ) , as previously mentioned 
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the  fi rst large-scale comparative international study of  mathematics  was the FIMS. 
It was produced and published by the IEA, the International Association for the 
Evaluation of Educational Achievement, which was created by a group of educa-
tionists in 1958 and established as a legal entity based in the Netherlands in 1967. 
The study was designed and conducted during the years 1961–1964, and students’ 
achievements in mathematics in 12 countries were tested in 1964 (Freudenthal, 
 1975  ) . The outcomes were reported in 1967 (Husén,  1967  ) . Freudenthal  (  1975  )  
made the following comments on the aims of FIMS:

  The overall aim is, with the aid of psychometric techniques, to compare outcomes in differ-
ent educational  systems . The fact that these comparisons are cross-national should not be 
taken as an indication that the primary interest was, for instance, national means and disper-
sions in school achievement at certain age and school levels. …  

  The main objective of the study is to investigate the “outcomes” of various school systems 
by relating as many as possible of the relevant input variables (to the extent that they could 
be assessed) to the output assessed by international test instruments. (p. 131)   

 Two populations of students took part in the study, one consisting of 13-year-olds, 
and one consisting of students at the  fi nal year of upper secondary school. 

 It is worth noticing in the above quotation that the ultimate goal of FIMS was to 
compare different educational systems and that students’ achievements in mathe-
matics were used as  the  indicator of the outcomes of these different systems. 

 The next comparative IEA study, SIMS, the Second International Mathematics 
Study, was decided upon in 1976 (Travers & Weinzweig,  1999  ) , and data were col-
lected during 1980–1982 (Robitaille & Travers,  1992  ) . The  fi nal reports were pub-
lished some years later (Robitaille & Garden,  1989 ; Travers & Westbury,  1990  ) . 
SIMS was considerably more complex than FIMS. First and foremost, the goal was 
broader: “The overall objective was to produce an international portrait of mathe-
matics education, with a particular emphasis on the mathematics classroom” 
(Travers & Weinzweig,  1999  ) . More speci fi cally, the emphasis was on an in-depth 
study of the curriculum:

  The curriculum in many countries is mandated at the national or system level. This is 
spelled out in curriculum guides and presented in the approved textbooks. Teachers are then 
expected to translate these guides into actual classroom instruction. There is an implicit 
assumption that students will learn the material presented in the classroom. How well do 
teachers translate what has been mandated? How close a match is there between what actu-
ally goes on in the classroom and what has been mandated? How much and what do the 
students learn? (p. 20)   

 Thus the focus of this study was on mathematics education as an end in itself, not 
as a means to a different end as was the case with FIMS. Based on the intentions 
indicated in the quotation, SIMS introduced a distinction which since then has 
become standard in mathematics education: the distinction between the  intended  cur-
riculum, the  implemented  curriculum and the  attained  curriculum (a curriculum-
oriented version of Bauersfeld’s  (  1979  )  older distinction between the matter “meant,” 
the matter “taught,” and the matter “learned”). The student populations targeted in 
the study were roughly the same as the ones in FIMS; namely, 13-year-olds and those 
students at the  fi nal year of upper secondary school whose program had mathematics 
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as a substantial component. Seventeen countries took part in SIMS, and also the 
Canadian provinces Ontario and British Columbia. Of the 17 countries, the French- 
and Flemish-speaking parts of Belgium entered the study as separate entities. 

 TIMSS, The Third International Mathematics and Science Study, conducted in 
1995 under the auspices of the IEA, represented further growth of scale and complexity 
in comparison with SIMS. The focus on the intended, the implemented, and the attained 
curriculum and the relationships between them was maintained in TIMSS. Beaton and 
Robitaille  (  1999  )  listed four “research questions” that underlay the study design. First, 
as to the intended curriculum, the question concerns the ways in which countries vary 
in the intended learning goals for mathematics and how these goals are in fl uenced by 
the characteristics of the educational systems, the schools and the students, the ways in 
which the curriculum is articulated, and the locus of curricular decision-making. Next, 
when it comes to the implemented curriculum, the question concerns (possible) differ-
ences between the implemented and the intended curriculum and the multitude of fac-
tors that may be responsible for observed differences. Factors that in fl uence the attained 
curriculum form the concern of the third question, including students’ homework, 
investment of effort, classroom behaviour, attitudes and aspirations with regard to edu-
cation, and self-concept, as well as parents’ economic status and expectations for their 
children. The fourth and  fi nal question addresses the relationships between the three 
curriculum aspects and the social and educational contexts, including “arrangements 
for teaching and learning, and outcomes of the educational process” (p. 34). 

 The student populations addressed in TIMSS were three, roughly comprising 
9-year-olds, who were not included in FIMS or SIMS, 13-year-olds, and the stu-
dents in the  fi nal year of upper secondary schooling. Forty- fi ve countries took part 
in the study with at least one of these three populations. A huge body of reports 
were published about TIMSS in the late 1990s (c.f.,   http://timss.bc.edu    ), including 
one on mathematics achievement in the primary school years (1997), one on math-
ematics achievement in the middle-school years (1996) and one on mathematics and 
science achievement in the  fi nal year of secondary schooling (1998), in addition to 
various survey and technical reports (e.g. Martin & Kelly,  1996 ; Martin, Gregory & 
Stemler,  2000 ; and Martin, Mullis & Christowsky,  2004 ). Moreover, three so-called 
TIMSS monographs on curriculum frameworks for mathematics and science, research 
questions and study design, and textbooks, respectively, were published as well. 

 A follow up on TIMSS, called TIMSS-Repeat (TIMSS-R), was conducted in 
1999. It focussed on the 13-year-olds only (Population 2 in TIMSS), but slightly 
changed the de fi nition of the group. The four general research questions posed in 
TIMSS (1995) were also in focus in TIMSS-R: What kinds of mathematics and science 
are students expected to learn? Who provides the instruction? How is instruction 
organized? What have students learned? 

 Since then, taking advantage of the fact that the acronym TIMSS has become a 
brand in itself, IEA decided, rather than to insert still new  fi rst letters, to change 
the acronym to Trends in International Mathematics and Science Study, with the 
year in which it was conducted added to the acronym. Under that heading, sub-
sequent studies were conducted in 2003, 2007, 2008, and 2011. Accordingly, previous 
studies were renamed to TIMSS 1995 and TIMSS 1999. The change from  third  to 
 trends  also re fl ects a new focus on trends in the IEA studies. The de fi nition of 
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TIMSS target populations (Populations 1–3) has developed from a focus on age to 
a focus on grade level. By attempting to compare students’ achievements after the 
same amount of schooling, the researchers assume the results will be directly useful 
for educational purposes. 

 In 1964 FIMS targeted not only compulsory schooling but also post-compulsory 
secondary education. As previously described, TIMSS 1995 contained such an ele-
ment as well, and around 2005 initiatives were taken to establish a study enabling 
comparison with upper secondary school results from 1995. These initiatives led to 
TIMSS Advanced 2008, aimed at assessing the advanced mathematics (and phys-
ics) achievement of students in the  fi nal year of secondary schooling, which in most 
countries is the 12th year (Garden et al.,  2006  ) . For advanced mathematics, the tar-
get population was de fi ned as those students in the  fi nal year of secondary schooling 
who have taken courses in advanced mathematics. 

 During the writing of this chapter, TIMSS 2011 was well under way. This study 
aimed at Populations 1 and 2 with similar de fi nitions to those found in TIMSS 2007. 
A unique characteristic of this TIMSS cycle is that the IEA study PIRLS (Progress 
in International Reading Literacy Study) was done simultaneously in Grade 4. This 
created opportunities for research aiming at investigating and understanding rela-
tionships between language and mathematics. 

 TIMSS always took its point of departure in student achievement vis-à-vis school 
curricula. In contrast, the Organisation for Economic Co-operation and Development 
(OECD) decided in the late 1990s to mount a series of international comparative 
studies that focussed on the outcomes of schooling for students leaving compulsory 
education in most countries, settling on students of age 15, irrespective of the cur-
ricula according to which they have been taught. The purpose was to study educa-
tion systems’ ability to equip the youth in the participating countries with the 
capabilities needed for citizenship in a broad sense, but with particular regard to 
reading, mathematics, and science. This undertaking was given the name Programme 
for International Student Assessment, better known as PISA (for an in-depth com-
parison between TIMSS and PISA, see de Lange,  2007  ) . The  fi rst study was to 
take place in 2000, and then every three years a new study would be conducted. The 
introduction to the initiating publication of PISA,  Measuring Student Knowledge 
and Skills: A New Framework for Assessment  (OECD,  1999  )  reads:

  How well are young adults prepared to meet the challenges of the future? Are they able to 
analyse, reason and communicate their ideas effectively? Do they have the capacity to con-
tinue learning throughout life? Parents, students, the public and those who run education 
systems need to know. …  

  OECD/PISA will produce policy-oriented and internationally comparable indicators of stu-
dent achievement on a regular and timely basis. The assessments will focus on 15-year-
olds, and the indicators are designed to contribute an understanding of the extent to which 
education systems in participating countries are preparing their students to become life-
long learners and to play constructive roles as citizens in society. (p. 9)   

 Furthermore,

  PISA is the most comprehensive and rigorous international effort to date to assess student 
performance and to collect data on the student, family and institutional factors that can help 
to explain differences in performance. (p. 14)   
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 The international consortium chosen by the OECD to be in charge of conducting 
the study was the Australian Council for Educational Research (ACER). It was 
decided to adopt a cyclical study structure, such that for each round―cycle-one of 
the three domains reading, mathematics, and science would be the major domain, 
and the other two would be minor domains. Thus, reading was the major domain in 
2000, mathematics in 2003, science in 2006, reading again in 2009, and so on. 
Mathematics will be the major domain again in 2012. 

 The fact that the purpose of PISA is to uncover the capabilities for citizenship 
and lifelong learning that students gain from schooling in different countries, implies 
that the focus of the study is, and has been from the very beginning, expressed in 
terms of  literacy , including mathematical literacy. The  fi rst de fi nition of  mathematical 
literacy  was as follows:

  Mathematical literacy is an individual’s capacity to identify and understand the role that 
mathematics plays in the world, to make well-founded mathematical judgments and to 
engage in mathematics in ways that meet the needs of that individual’s current and future 
life as a constructive, concerned and re fl ective citizen. (OECD,  1999 , p. 43)   

 Very minor changes were made to this de fi nition in the frameworks for PISA 
2003, 2006, and 2009. However, as a result of changes in the composition and man-
agement of PISA instigated by the OECD in 2009, the U.S. organization Achieve 
became associated with the consortium with the speci fi c task to oversee the devel-
opment of a new framework for PISA mathematics in 2012. As part of this process, 
a new de fi nition of mathematical literacy was agreed upon. Its purpose was to spell 
out, in an explicit way, the main components involved in identifying and under-
standing the role of mathematics and in engaging with it:

   Mathematical literacy  is an individual’s capacity to formulate, employ, and interpret math-
ematics in a variety of contexts. It includes reasoning mathematically and using mathematical 
concepts, procedures, facts, and tools to describe, explain, and predict phenomena. It assists 
individuals to recognise the role that mathematics plays in the world and to make the well-
founded judgments and decisions needed by constructive, engaged and re fl ective citizens. 
(OECD,  2010b  )    

 In 2000 (OECD,  2001  ) , 32 countries participated in PISA, including 28 OECD 
countries. In 2002, another 13 countries joined the  fi rst cycle. In the 2003 round, in 
which mathematics was the major domain, 30 OECD countries and 11 non-OECD 
countries participated (OECD,  2004  ) . In 2006, the 30 OECD countries were joined 
by 27 other countries or “economies” (OECD,  2007  ) , whereas 34 OECD countries 
and 31 other countries or “economies” took part in PISA 2009 (OECD,  2010a  ) . In 
addition to the outcomes reports just referenced, OECD PISA has published hosts 
of other reports, some of which are technical reports, whereas others focus on 
speci fi c themes or issues (see   http://www.pisa.oecd.org    ).  

   Focal Studies 

 When it comes to what we here call international focal studies, there are quite a 
few of them. Some are accompanying or following up on large-scale studies, 

http://www.pisa.oecd.org
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whereas others are independent studies. A study of the former kind is the so-called 
Survey of Mathematics and Science Opportunities (SMSO), a four-year study on 
instructional practices in six countries (France, Japan, Norway, Spain, Switzerland, 
and the USA), “charged with developing the research instruments and procedures 
that would be used in the Third International Mathematics and Science Study 
(TIMSS)” (Cogan & Schmidt,  1999 , p. 69) with particular regard to 9- and 13-year-
old students. Although SMSO was conducted prior to TIMSS itself, the so-called 
TIMSS Video Study of eighth-grade classrooms in Germany, Japan, and the USA, 
and the so-called Case Study Project of TIMSS concerning the same three coun-
tries, were supplementary additions to TIMSS proper, even though they were funded 
by the US Department of Education, National Center for Education Statistics 
(Kawanaka, Stigler, & Hiebert,  1999 ; Stevenson,  1999  ) . Germany and Japan were 
chosen because they were, at the time, seen as major economic competitors with the 
USA, and because Japan was consistently obtaining scores at the top end of interna-
tional comparison tests (Kawanaka et al.,  1999 ; Stevenson,  1999  ) . Another related 
study (Schmidt et al.,  1997 ) surveyed the curricular intentions in school mathemat-
ics in a number of countries.  

 One driving force behind the development of the TIMSS Video Study was the 
ambition to go beyond international comparisons of students’ achievements as mea-
sured by tests. IEA wanted also to consider so-called contextual factors (Stigler, 
Gallimore, & Hiebert,  2000  ) . Previously, information on teaching processes had 
relied solely on the responses of teachers and students to questionnaires. 

 The overall goal of the Video Study was to provide a rich account of what hap-
pens inside Grade 8 classrooms in the three countries, and in that context:

   To develop objective observational measures of classroom instruction to serve as quantita-
tive indicators at a national level of teaching practices in the three countries.  

  To compare actual mathematics teaching methods in the US and the other countries with 
those recommended in current reform documents and with teachers’ perceptions of those 
documents.  

  To assess the feasibility of applying videotape methodology in future wider-scale national and 
international surveys of classroom instructional practices. (Kawanaka et al.,  1999 , p. 87)    

 The Video Study was later extended to include eight countries in the TIMSS-R 
video survey study. 

 The Case Study Project was included in TIMSS “in the hope that [the  fi ndings] 
would provide in-depth information about beliefs, attitudes and practices of students, 
parents and teachers that would complement and amplify information obtained 
through the questionnaires used in the main TIMSS study” (Stevenson,  1999 , p. 106). 
The research topics chosen were meant to “be of interest to US policymakers who 
deal with elementary and secondary schooling” (p. 107), and comprised “national 
standards, teachers’ training and working conditions, attitudes towards dealing with 
differences in ability and the place of school in adolescents’ lives” (p. 107). 

 So, the common task of the Video Study and the Case Study of TIMSS was to 
zoom in on factors in Germany, Japan, and the USA that might potentially serve to 
explain the differences in outcomes of mathematics (and science) education, including 
students’ achievements, in these countries. 
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 In the beginning of 2000, the Learner’s Perspective Study (LPS) was launched. 
Initially research groups from four countries―Australia, Germany, Japan and the 
USA―participated. The study was mainly funded by Australian means (Clarke, 
Keitel, & Shimizu,  2006  ) . There were different rationales behind the original study. 
One of the more important ambitions was to be able to situate Australian mathemat-
ics teaching in relation to results from the  fi rst TIMSS video survey study (Stigler 
& Hiebert,  1999  ) . Later the study was extended by research groups from several 
additional countries joining the project. At the time of writing this chapter the num-
ber of participating groups amounts to 15 (see the Web site of the project   http://
www.lps.iccr.edu.au    ). As a result, the original project has gradually been expanded 
and can today rather be seen as a network of researchers with a common interest in 
classrooms studies in an international context. 

 A broad range of research questions are addressed within the LPS. Since the 
project is a conglomerate of research groups belonging to different traditions, there 
is no unifying set of questions.    Clarke, Keitel, & Shimizu  (  2006  )  put forward a set 
of seven overarching questions ranging from addressing issues of the presence of 
coherent and culturally-speci fi c student and teacher practices, over relationships 
between these practices, to variability within classrooms and countries as well as 
among classrooms and countries. The questions also re fl ect ambitions of the project 
to provide information about the practices studied. 

 It is also worth mentioning that in comparison with the large-scale international 
studies described in this chapter, the LPS stands out by not being anchored in an 
international organization such as IEA, OECD, or ICMI. Instead, it is based on 
researcher-driven interests. Hence, LPS is an example of scholarly stakeholders 
working in the  fi eld of international comparative studies. 

 The US–Japan Cross-cultural Research on Students’ Problem-Solving Behaviours is 
an early example of another independent focal study with the researchers themselves as 
the stakeholders, emphasizing problem solving. It began by joint US–Japan seminars in 
1987 instigated by Jerry Becker and T. Miwa, and was subsequently developed into 
a research project, the purpose of which was “to collect descriptive data pertaining 
to the performance of Japanese and US students on certain kinds of problem-solving 
behaviours,” and “contrasts in these behaviours between students in the two coun-
tries were also sought” (Becker, Sawada, & Shimizu,  1999 , p. 121). The students 
under consideration were 4th, 6th, 8th, and 11th graders in the two countries. 

 A comparative study―called the Kassel Project―of secondary mathematics 
teaching in England and Germany was carried out in the 1990s. One of the ratio-
nales stated for this study (Kaiser,  1999b  )  was that European countries will, to an 
increasing extent, receive each others’ students. Therefore it will be important to 
know what students know and to develop a mutual understanding of the different 
education systems in the European countries. The goals were to provide

   an examination of the differences in the mathematical achievement of English and German 
students.  

  an analysis of the differences in the ways of teaching and learning mathematics in both coun-
tries. Based on this, the teaching methods will be questioned, and ideas gathered on how to 
improve the different ways of teaching mathematics. (p. 141)    

http://www.lps.iccr.edu.au
http://www.lps.iccr.edu.au
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 An entirely different kind of comparative study is found in the 13th ICMI Study 
 Mathematics Education in Different Cultural Traditions: A Comparative Study of 
East Asia and the West  (Leung, Graf, and Lopez-Real,  2006  ) . In this study, which is 
actually a collection of different theoretical and empirical contributions, numerous 
aspects of observed differences between the Confucian tradition and approach to 
mathematics education, which is predominant in East Asia, and the Western tradi-
tions are investigated. In contradistinction to what is common to several other inter-
national comparative studies, where the overall idea is, in some way or another, to 
provide lessons for learning from each other, the 13th ICMI study had a different, if 
not outright opposite, rationale:

  The globalisation processes are producing reactions from mathematics educators in many 
countries who are concerned that regional and local differences in educational approach are 
being eradicated. This is not just a mathematical ecology argument, about being concerned 
that the rich global environment of mathematical practices is becoming quickly impover-
ished. It is also an argument about education, which recognises the crucial signi fi cance of 
any society’s cultural and religious values, socio-historical background and goals for the 
future, in determining the character of that society’s mathematics education. (p. 6).   

 In other words, this study can be seen as an attempt to counteract (Western) cul-
tural and educational imperialism with regard to mathematics education. It did so by 
comparing and contrasting the contexts of mathematics education, the curricula, 
teaching and learning and,  fi nally, values and beliefs in Confucian and Western 
cultures and traditions. 

 Several other focal studies might have been mentioned, for example, Collaborative 
Studies on Innovations for Teaching and Learning Mathematics in Different Cultures 
in APEC Member Economies (cf.   http://www.criced.tsukuba.ac.jp/math/apec     and 
  http://www.crmekku.ac.th    ), but they would not fundamentally expand the set of 
purposes already encountered in the international studies mentioned.   

   Designs and Methods Adopted in International Studies 

 Based on the distinctions introduced in the  fi rst section, we concentrate here on 
presenting and discussing the  designs  (i.e., the set of approaches adopted to answer 
the questions that drive a given study) and the  methods  chosen and implemented for 
pursuing these approaches. Moreover, we consider the most important  instruments  
involved in these methods. 

   The IEA Studies 

 The  design  adopted for FIMS consisted of three approaches to answering the 
question driving the study (Robitaille & Travers,  1992  ) . As the fundamental idea in 
FIMS was to measure and compare outcomes of education systems by way of stu-
dent achievement in mathematics, the overarching and most important approach 

http://www.criced.tsukuba.ac.jp/math/apec
http://www.crmekku.ac.th
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was to  construct achievement tests . This was closely linked to the second approach, 
 choosing the student populations  in participating countries whose achievements 
were to represent countries’ school achievements at large. That constituted the sec-
ond approach. The third approach to answering the primary question was to  ask 
students, parents, and teachers  about attitudes, demographics, socio-economic 
backgrounds, and so on. 

 Considerations about which  student populations  to involve in FIMS led to the 
de fi nition of three student populations to be tested, but results were reported for 
only two of these: A younger population, consisting of students close to the very 
end of compulsory schooling in most countries (Postlethwaite,  1971  ) , roughly 
speaking consisting of 13-year-olds, and an older population, consisting of students 
at the end of secondary schooling. Both populations were divided into two subpopu-
lations, but the details are omitted here. Methods for identifying samples of these 
populations in the participating countries were employed nationally according to 
general guidelines, which included strati fi ed random probability sampling. 

 As to the  achievement tests , the method adopted was to construct them in accor-
dance with a matrix structure: “topics” by “cognitive behaviour levels.” Although 
the topics varied across the populations, the  fi ve cognitive behaviour levels were the 
same for all populations (Husén,  1967  ) : (a) knowledge and information: recall of 
de fi nitions, notation, concepts; (b) techniques and skills: solutions; (c) translation of 
data into symbols or schema and vice versa; (d) comprehension: capacity to analyze 
problems, to follow reasoning; and (e) inventiveness: reasoning creatively in math-
ematics. The sets of test items constructed with this matrix structure in mind were 
then administered to students in all participating countries after having been  fi ltered 
through elaborate piloting procedures. More speci fi cally, each student in a given 
population was required to do the same three-to-four one-hour item booklets―
forming the test  instruments ―such that each student had to complete a total of 
50 to 70 items (Postlethwaite,  1971 ; Robitaille & Travers,  1992  ) . Most of the items 
had a multiple response format, but a couple of open-ended items were included in 
each booklet. Included in the item booklets were also some scale-based questions 
concerning student attitudes to mathematics and its learning (   Postlethwaite,  1971  ) . 
More speci fi cally, these questions concerned “mathematics as a process,” “dif fi -
culties of learning mathematics,” “the place of mathematics in society,” “school and 
school learning,” and “man and his environment.” 

 Finally, the method to probe into institutional characteristics, socio-economic 
background variables, career perspectives, teacher backgrounds, and so on, was to 
make use of four types of questionnaires―each forming a sociological  instrument ―
student questionnaires, teacher questionnaires, school questionnaires, and a national 
case study questionnaire. 

 Given its focus on portraying mathematics education at large, and curricula in 
particular, SIMS had a somewhat different  design , which was based on an overall 
framework distinguishing between the intended, the implemented, and the attained 
curriculum. This framework gave rise to three  different approaches  to answering 
questions concerning the constitution of each type of curriculum across participating 
countries. However, the basic―and more overarching―approach was to decide on 
the student populations whose curricula were to be investigated in the study. 
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 Again, as part of the design of SIMS  target populations  had to be chosen. It seems 
as though the basic approach leading to the selection of these populations was to 
keep the de fi nitions of FIMS, whenever possible, but also to attempt to solve some 
of the delineation problems encountered with FIMS, especially with students in the 
older population. In most countries, the actual samples of students representing 
each population studied were selected by using probabilistic sampling methods at a 
national level. 

 As to the method adopted in the identi fi cation of  the intended curriculum  in 
participating countries, a matrix-based speci fi cation in terms of a content dimension 
and a cognitive behaviour dimension, similar to but not identical with that employed 
in FIMS, was chosen (Travers & Weinzweig,  1999  ) . Subdivided content strands 
were identi fi ed for the two populations ( fi ve for the younger and nine for the older 
population). As regards the cognitive behaviour dimension, SIMS deviated from 
FIMS in making use of a more hierarchical classi fi cation: computation, comprehen-
sion, application, and analysis. Considerable effort was made to avoid ambiguity, 
for example, by describing the resulting cells in the matrices by detailed examples 
of what the SIMS committee had in mind such that countries’ respondents were able to 
tell whether a certain cell was part of their curriculum or not. Moreover, countries’ 
respondents were asked to indicate the degree of importance of each cell for the 
curriculum at issue in their country. In other words, the instruments employed in 
this method were content-by-cognitive behaviour grids, together with illustrations 
and comments, which country respondents were asked to  fi ll out and return accom-
panied by importance degrees assigned to each cell. 

 When it came to investigating  the implemented curriculum  in the SIMS coun-
tries, that is, the second approach in the design of the study, the method employed 
was to ask teachers to  fi ll in detailed questionnaires―the instruments―about their 
classrooms, their teaching methods during the school year, their attitudes and beliefs, 
and the place and role of each cell in the above-mentioned grids. For “each topic, a 
detailed description of a large variety of teaching methods that could be utilized in 
the teaching of that topic” was provided (Travers & Weinzweig,  1999 , p. 22). 

 Finally, the core approach in the design was to capture  the attained curriculum  in 
participating countries. As in FIMS, the method to investigate this curriculum  fi rst 
of all consisted in written student achievement tests containing items referring to the 
content-by-cognitive behaviour grid mentioned above. The number of items belong-
ing to each cell was determined by the importance assigned to that cell by partici-
pating countries. The  fi nal pool of items also contained some anchor items in order 
to detect possible changes for the 11 countries that participated in both FIMS and 
SIMS. The actual instrument employed consisted of multiple item booklets, such 
that each student answered one or two booklets, at least one of which was from a set 
of rotated booklets. This rotation was introduced in order to ensure a broad coverage 
of grid cells across countries (Travers & Weinzweig,  1999  ) . Moreover, the instru-
ment also included, for each item, a student and a teacher question, asking whether 
the content implicated in the item had been taught or not, and if so when. 

 The  design  of the Third International Mathematics and Science Test (TIMSS) 
was a continuation of that of SIMS. For TIMSS, the design was focussed on answer-
ing what Beaton and Robitaille  (  1999  )  called Research Questions 1–4, using the 
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three-part model of intended, implemented, and achieved curricula. Methods used 
to describe and evaluate the different curriculum levels were similar to those of 
SIMS, but there were also some differences. In TIMSS 1995, a set of performance 
items was used as a supplement to the core paper-and-pencil tests given to students. 
Furthermore, the construction of the tests was based on a framework specifying three 
dimensions in a mathematics curriculum: content, performance expectations, and 
perspectives (Robitaille et al.,  1993  ) . The content dimension listed the mathematical 
content areas to be covered, performance expectations de fi ned competencies such as 
knowing and communicating, and perspectives covered other aspects such as atti-
tudes and habits of mind. The target populations in TIMSS 1995 were similar, 
though not identical, to those of FIMS and SIMS: Population 1 (9-year-olds), 
Population 2 (13-year-olds), and Population 3 (students in their  fi nal year of second-
ary schooling). All participating countries were required to enter Population 2, 
whereas the other two were optional. A two-stage random-sampling procedure was 
used as the method for identifying samples representing the sample populations in 
each participating country. In Populations 1 and 2, entire classrooms were sampled, 
whereas in Population 3, individual students were selected. 

 TIMSS 1999 is often described as a repetition of TIMSS 1995, using basically 
the same  design . The framework for constructing tests in TIMSS 1999 was the same 
as for TIMSS 1995. Thus the mathematical content covered was the same. The goal 
with TIMSS 1999 was “more modest in scope, focussing on one target population 
only.” Nevertheless, it “yielded valuable information on the curricular intentions of 
participating countries” (Martin, Gregory, & Stemler,  2000  ) . Even though the design 
was essentially unchanged, some important changes in the  methods  employed were 
introduced in TIMSS 1999, which proved signi fi cant for the development of succes-
sive TIMSS cycles. As far as the  achievement test  approach is concerned, additional 
items were developed since two-thirds of the items from TIMSS 1995 had been 
released and consequently had to be replaced by similar items in order to cover the 
framework. In so doing, TIMSS 1999 introduced the focus on trends which later 
became a “trademark” of TIMSS. In earlier studies, some items had been reused, 
but there had not been a focus on the trend aspect as such. Next, substantial and 
in fl uential changes in the third approach,  the questionnaires , were implemented. 
A curriculum questionnaire to be answered by the National Research Coordinator 
of each participating country, summarizing features of the school system on a 
national level, was introduced. Similar questionnaires were used in all subsequent 
TIMSS cycles. Whereas the TIMSS 1999 school questionnaire was very similar to 
the 1995 version, several changes were made to the teacher questionnaires for the 
1999 cycle, mainly because the previous ones were considered too lengthy. In the 
student questionnaire, questions dealing with student self-concept in mathematics, 
Internet access, and its use for mathematical activities were added. It is an interest-
ing fact that outcomes of the TIMSS Video Study helped frame a set of questions 
about activities in mathematics classes in TIMSS 1999. 

 TIMSS 2003 con fi rmed the focus on trends introduced in TIMSS 1999. 
Furthermore, the transition of de fi nitions of participating populations from age to 
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years of schooling was taken one step further. In addition to a basic de fi nition based 
on age, the population de fi nition stated that the identi fi ed grade level was intended 
to represent 4 and 8 years of schooling (Martin et al.,  2004  ) . In the  fi rst three cycles 
of TIMSS (1995, 1999, and 2003),  student achievement  in mathematics in addition 
to an overall result was reported in content domains (e.g., algebra, geometry). At the 
time, several other international studies (e.g., PIRLS―also conducted by IEA―and 
PISA) had introduced reporting of student achievement in different cognitive 
domains. TIMSS participating countries also expressed a need for comparative 
information about cognitive aspects of how students performed in mathematics (and 
science). An international group of mathematics experts was gathered to develop 
categories that could be the basis for meaningful reporting of achievement in cogni-
tive domains. Previous de fi nitions of four cognitive domains had been used in the 
development of items for the TIMSS assessments, but the existing model led to 
some overlap across these domains. The expert group worked to develop mutually 
exclusive cognitive domains for reporting the TIMSS 2003 results (Mullis, Martin, 
& Foy,  2005  )  leading to the de fi nition of three cognitive domains: knowing facts, 
procedures and concepts; applying knowledge and understanding; and reasoning. 
These domains, supported by categorization of items from TIMSS 2003 and reanal-
ysis of TIMSS 2003 data with respect to these categories, were published in 2005 
(   Mullis, Martin, & Foy,  2005  ) . 

 Further re fi nement of the assessment framework was done in the early stages of 
TIMSS 2007 as published in the TIMSS 2007 assessment frameworks (Mullis, 
Martin, Ruddock et al.,  2005  ) . Based on the development project mentioned above, 
the number of content domains and cognitive domains was decreased. The revision 
of the framework was at least partly a consequence of a decision made that, begin-
ning with TIMSS 2007, frameworks were to be updated with every cycle of the 
study, thereby permitting the frameworks, the achievement tests, and the procedures 
to evolve gradually into the future. Another small but still signi fi cant change from 
2003 to 2007 is found in the de fi nition of the study populations. An important fea-
ture of the research design that TIMSS represents is that these populations must be 
de fi ned rather precisely and can be viewed as “a collection of units to which the 
survey results apply” (Olson et al.,  2008 , p. 78). A subset of the target population 
was sampled for participation in the study, and a lot of effort was put into identi-
fying the sample in such a way that results from the sample can be generalized to 
the entire target population. 

 TIMSS Advanced 2008 focussed on a population which had not been targeted in 
IEA studies since TIMSS 1995––that is, students at the end of upper secondary 
education (Grade 12) who had taken courses in advanced mathematics. Apart from 
that, the basic  design  was essentially the same as for TIMSS 2007, the aim being to 
study the intended, the implemented, and the achieved curriculum. The  methods  
used were also similar to those of TIMSS 2007. The assessment framework guiding 
the development and construction of instruments de fi ned three broad mathematical 
content domains (algebra, calculus, and geometry) and three cognitive domains 
(knowing, applying, and reasoning) (Garden et al.,  2006  ) .  
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   PISA: Programme for International Student Achievement 

 PISA 2000 and studies which followed upon it, were not research studies as 
such even though they have given rise to several research questions, some of which 
have been pursued in follow-up studies. Instead, PISA is a survey designed to assess 
students’ “ability to complete tasks relating to real life, depending on a broad under-
standing of key concepts, rather than assessing the possession of speci fi c knowl-
edge” (OECD,  2001 , p. 19). Thus the  design  of PISA 2000 was focussed on charting 
students’ performance with regard to reading (the major domain), mathematical and 
scienti fi c (the minor domains)  literacy  (see the de fi nition of mathematical literacy 
above), and relating such performance to student and school background factors. 
Correspondingly, four approaches were pursued: constructing an assessment  frame-
work  for literacy (OECD,  1999  ) , constructing and administering  achievement tests , 
and constructing and administering  background questionnaires . Further, an approach 
to  ranking participating countries  according to various performance variables was 
part of the design as well. The basic decision to assess 15-year-olds in participating 
countries was taken much before the other design decisions. 

 The  method  undertaken in constructing the framework was to ask an expert group 
for each domain, to devise such a framework. As far as mathematics is concerned, 
the framework contained three dimensions: a content dimension, which for PISA 
2000 had two components “change and relations” and “space and shape”; a process 
dimension (called “competency clusters”) “reproduction,” “connections,” and 
“re fl ection”; and a situation dimension focussing on the spheres in which students 
live, that is, private/personal, school, work and sports, local community and society, 
and scienti fi c spheres of life. These dimensions then formed the platform for con-
structing the test items. The items were devised to be literacy items and were, more-
over, to be cast in one of three paper-and-pencil response formats: multiple choice, 
closed constructed, and open constructed response. A total of 64 items, chosen as a 
result of extensive  fi eld-testing, comprised the test. 

 The methods involved in identifying educational background factors and relating 
them to student performance consisted in devising two questionnaires: a student and 
a school questionnaire. Responses to those questionnaires were then correlated by 
way of several statistical analyses to student performance so as to explain a multi-
tude of performance variations. Also, the methods employed in ranking countries by 
way of certain ranking measures were probabilistic and statistical in nature, based, 
more speci fi cally, on the so-called Rasch model. In particular, the methods in item 
response theory were utilized. 

 The  instruments  adopted consisted of the actual student tests and questionnaire 
and a school questionnaire to be completed by the principals of the schools whose 
students were included in the sample. Each student was given one out of nine item 
booklets, containing items from the three domains (reading, mathematics, science) 
without any indication of which domain they belonged to. This rotation principle 
implied that different students were completing different booklets. Each student 
was given two hours to complete the booklet. The questionnaire that each student 
was asked to complete was a 30-minutes questionnaire containing questions about 
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students’ and parents’ economic, cultural, and social status; student characteristics 
and family backgrounds; and learning strategies and attitudes (OECD,  2001  ) . 
The school principals’ questionnaire―which also was meant to take 20 to 30 minutes 
to complete―contained questions concerning school policies and practices, class-
room practices, school resources and type of school. 

 In PISA 2003, mathematics was the major domain, the aims and overall design 
were not much different from those of PISA 2000, except in one respect:  trends  
from PISA 2000 to PISA 2003 were sought. As before, the primary aim of the 
OECD/PISA assessment was “to determine the extent to which young people have 
acquired the wider knowledge and skills in reading, mathematical and scienti fi c 
literacy” that they would need in adult life (OECD,  2003 , p. 12). 

 The  framework  part of the design was unchanged along the main lines. But there 
were minor changes in the content, process, and situations dimensions. Two new 
content categories, “overarching ideas,” were added to the ones in PISA 2000; 
namely, “quantity” and “uncertainty,” thus forming a total of four. The situation and 
context categories were slightly modi fi ed as well. As to the mathematical process 
dimension, the notion of eight mathematical competencies as developed in the 
Danish KOM-project (Niss & Hoejgaard,  2011 ; Niss & Jensen,  2002  )  was intro-
duced to underpin the competency clusters that were utilized in PISA 2000. 

 In the  achievement test , a rotated design was employed, with a total of 85 math-
ematics items included in the pool, 20 of which were also used in PISA 2000. These 
are called “link items.” Student and school  questionnaires  were included as in PISA 
2000, and also contained questions concerning students’ self-concept, learning 
strategies, and affects speci fi cally concerning mathematics. Again, the items were 
selected and the questionnaires  fi nalized after substantial  fi eld trialling. 

 The method adopted for  charting trends  in mathematics performance from PISA 
2000 to PISA 2003 was to establish common PISA 2000–2003 performance scales. 
This was done by using the detected changes of dif fi culty in the 20 link items from 
2000 to 2003 to construct a transformation of scores so as to  fi t a common scale 
(OECD,  2004  ) , having 500 score points as the OECD average. With that in hand, 
PISA 2000 and PISA 2003 subscales for the two content categories which were 
common to both cycles, “space and shape” and “change and relationships,” were 
constructed. It was then possible to see that the OECD average in space and shape 
grew from 494 to 496 score points, whereas in change and relationships, scores grew 
from 488 to 499. The 2003 score for quantity was 501, and for uncertainty 502. It did 
not make sense to make an overall comparison of mathematics performance from 
2000 to 2003, since the combined average score was set to be 500. 

 In PISA 2006 and PISA 2009, mathematics was again a minor domain. Therefore, 
only minor changes were made to the  design  of the study as far as mathematics and 
student and school questionnaires are concerned. In 2006 only 48 items were used. 
As these were also included in 2003, they were all link items. Each participating 
student received a randomly selected booklet. With regard to detection of trends the 
PISA 2003 scale with an average OECD score of 500 was used as the benchmark 
(OECD,  2007  ) , and again the link items were used to create a transformation that 
allowed for comparison between the two assessments. The OECD mathematics 
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score for 2006 was 498, which was not signi fi cantly different from the 500 in 2003. 
In 2009 the total testing time in mathematics was reduced and only 35 items were 
included in the test. The OECD average score in mathematics 2009 was 496, which 
was not signi fi cantly different from 2006. 

 Various changes were incorporated in PISA 2012, when mathematics was again 
the major domain, but it is premature to go into details with these changes. For current 
information consult OECD  (  2010b  ) . More changes are likely to occur from 2015 as 
a new contractor will be in charge of the future development of frameworks.  

   The TIMSS Video and Case Studies 

 In the TIMSS Video Study, the  design  adopted was chosen so as to reduce the 
conceptual and terminological ambiguities within and across cultures that could 
arise from using questionnaires, as well as to avoid dependence on coding schemes 
 fi xed beforehand and the impossibility of critical scrutiny of documentation of live 
observations (Kawanaka et al.  1999  ) :

  We needed data that could be analyzed and re-analyzed objectively by researchers working 
from a variety of perspectives. The idea of using videotapes began to emerge, and the  fi nal 
decision was made to collect direct information on classroom processes by videotaping 
instructional practices. (p. 88)   

 So, approaching the reality of classrooms by  videotaping  them was, of course, 
the fundamental approach in the study. This decision allowed researchers to engage in 
many iterations and related discussions between observations and post hoc coding 
of the observations. Teachers’ views of the representativeness of the lessons video-
taped and their goals were sought as well, by means of  questionnaires . The next 
key approach in the design was  analyzing and coding the data  generated by the 
videotapes, and the  fi nal approach was to devise ways to  represent and depict 
mathematics classroom reality  in a manner that would make sense to researchers 
outside the project. 

 Each of these approaches gave rise to its own set of  methodological issues  and 
decisions. First, how to  sample the classrooms  that were to be videotaped, and when 
and for how long should they be videotaped? Another important issue to decide 
upon was what to aim cameras at and hence what type of classroom activities to 
document. It was decided to focus on the middle TIMSS population only (eighth 
grade) in Germany, Japan, and the USA. The classrooms sampled were a subsample 
of the national random probability samples in TIMSS 1995. Eventually 100 German, 
50 Japanese, and 81 US classrooms were included in the study. Classrooms were 
videotaped in 1994–1995 (Stigler et al.,  1999  )  evenly across the school year in 
Germany and in the USA, but less so in Japan, where the sample was skewed towards 
a time of the school year when geometry was predominant in the curriculum 
(Kawanaka et al.,  1999  ) . 
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 When seeking a method for  coding the tapes , Kawanaka et al.  (  1999  )  had three 
dimensions in focus: the work environment in the classroom, the nature of the work 
students are engaged in, and the methods teachers use for engaging students in 
work. The coding schemes were developed with the aim to construct objective and 
reliable categories and codes that allowed for capturing, representing, and quantify-
ing characteristic features and patterns in the classrooms of the three countries. 

 In putting the method of videotaping into practice, the actual  instrument  employed 
was to  fi lm one complete lesson per classroom by one camera, representing the 
perspective of an ideal(ized) student, typically focussing on the teacher. Prior to that 
event, participating teachers were given a common set of information and instruc-
tions, and afterwards they completed the questionnaires mentioned above (Stigler 
et al.,  1999  ) . All videotapes were digitized, and lessons were translated into English 
and transcribed, linking the transcript to the video by time codes (Kawanaka et al., 
 1999  ) . The  fi nal instrument for coding was very elaborate. It focussed on what was 
called “lesson tables.”

  These lesson tables were skeletons of each lesson that showed, on a time-indexed chart, 
how the lesson was organized through alternating segments of classwork and seatwork, 
what pedagogical activities were used …, what tasks were presented and the solution strate-
gies for the tasks that were offered by the teacher and by the students. (p. 96)   

 The tables included several components: organization of the class; outside inter-
ruption; organization of interaction; activity segments; mathematical content refer-
ring to units (Stigler et al.,  1999  )  and to mathematical topics (numbers; measurement; 
geometry; proportionality; functions, relations and equations; data representation, 
probability and statistics; elementary analysis; validation and structure; other). Also, 
a very detailed coding of classroom discourse, based on a rather  fi ne-grained divi-
sion of public talk and private talk, respectively, was undertaken. Coding schemes 
were re fi ned along the road when warranted by the analysis of the videos and inter-
coder reliability checks (Kawanaka et al.,  1999  ) . In addition to being guides to the 
entire video of a classroom, the lesson tables also served as separate reporting out-
comes which could themselves be coded. Statistical analyses were conducted to 
capture and describe patterns for comparison across the three countries. 

 The  design  of the TIMSS Case Study encompassed three approaches to seeking 
in-depth answers to the initiating question “about the beliefs, attitudes and practices 
of students, parents and teachers” in Germany, Japan, and the USA (Stevenson, 
 1999  ) . The   fi rst approach  was to identify the topics on which information was to 
be sought. The method adopted was to select, after consultation with the funding 
agencies, four such topics: national standards, teachers’ training and working envi-
ronment, dealing with differences in students’ ability, and,  fi nally, the place of sec-
ondary school in adolescents’ lives. One of the  instruments  put to use in relation 
to this method was to attach a number (15 to 35) of predetermined tags, in terms of 
key concepts and words, to each topic so as to facilitate subsequent computerized 
retrieval of the tagged instances. It was further decided not to form a particular 
set of hypotheses from the outset but to let them be generated from the data col-
lected. The  second approach  was to identify the units from which information 
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should be collected. The method then was to concentrate on one primary and two 
secondary sites in each of the three countries, all chosen to be representative in 
demographic and socioeconomic terms. Each site would contain several schools. 
The  third― key ―approach  concerned the ways in which researchers were to gather 
information. Here the method was to make each researcher responsible for one of 
the four topics and to conduct a number of so-called encounters (i.e., interviews, 
observations, conversations) of a minimum duration of one hour. Moreover, each 
researcher was to produce and circulate weekly  fi eld notes―another instrument―to 
the other researchers. A total of more than 960 encounters were conducted in the three 
countries. In addition, 250 hours of observation of mathematics and science classes 
were carried out. All interviews were to be conducted according to a predetermined 
semi-structured format, which involved yet another instrument. Whenever possible, 
the encounters were tape-recorded, which constituted the  fi nal instrument involved 
in implementing the third approach.  

   The Learner’s Perspective Study 

 The design used within the TIMSS Videotape Study was extended for use in the 
Learner’s Perspective Study (LPS), and measures were taken to improve the possi-
bilities to capture not only teachers’ activities during lessons but also the students’ 
learning processes. The capturing of students’ learning processes―the   fi rst approach  
in the  design ―was operationalized by adding some features to the design of the 
TIMSS Videotape Study. An important such feature, which differs from earlier 
major studies with comparative possibilities, was that sequences of lessons rather 
than singular ones were documented. A minimum of 10 consecutive lessons were 
recorded at each site. The main characteristic of the method adopted in this approach 
is the use of video documentation of teachers’ and students’ work in eighth-grade 
mathematics classrooms. Three cameras were used in each classroom: one station-
ary camera equipped with a wide-angle lens capturing as much of the classroom as 
possible, a second one pointing to a group of so-called focus students, and  fi nally a 
manually operated camera following and documenting the activities of the teacher. 
Depending on the seating plan, one to four focus students’ work was video- and 
audio-recorded in each lesson. 

 In each city, three teachers’ classrooms were selected for recording. The relatively 
small number of classrooms investigated is a trade-off with the comparatively large 
number of consecutive lessons documented. The sampling of participating teachers, 
classrooms, and hence students was not made randomly but was based on the selec-
tion of “competent” teachers as de fi ned by the local community in each city and country. 
The focus students were interviewed in a stimulated recall interview―the  second 
approach  in the design―after the lesson. This decision was informed by the aim to 
explore learners’ practices and allow them to generate reconstructive accounts of 
classroom events. Three times during a lesson sequence the teachers, too, were inter-
viewed in a subsequent stimulated recall session. The actual recordings of the focus 
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student and the teacher cameras were used as recall stimulus in the interviews (Clarke, 
 1998,   2001,   2003,   n.d.  ) . The interviewees were invited to comment on each recorded 
lesson in terms of what they found signi fi cant in the classroom activities. They were 
in control of the replay of the videos and could freely choose when to use the fast 
forward (or rewind) buttons and when to stop and comment on the recordings. 

 Documenting sequences of lessons allows for analyses of single lessons but also 
analyses that stretch beyond those, hence making it possible to address questions on 
how both teaching and learning unfold over a longer period of time. When it comes 
to analyzing the data― the third approach ―there is no framework common to all 
the participating research groups in the network. However, the overall approach is 
informed by a Vygotskian point of view where teaching and learning are seen as 
mutually constitutive processes. 

 Complementarity is a distinguishing characteristic of the research design on four 
levels (Clarke, Emanuelsson, Jablonka, & Mok,  2006  ) :

  (a) At the level of data, the accounts of the various classroom participants are juxtaposed; 
(b) At the level of primary interpretation, complementary interpretations are developed by 
the research team from the various data sources related to particular incidents, settings, or 
individuals; (c) At the level of theoretical framework, complementary analyses are gener-
ated from a common data set through the application by different members of the research 
team of distinct analytical frameworks; and (d) At the level of culture, complementary 
characterizations of practice and meaning are constructed for the classrooms in each culture 
(and by the researchers from each culture) and these characterizations can then be com-
pared and any similarities or differences identi fi ed for further analysis, particularly from the 
perspective of potential cross-cultural transfer. (pp. 12–13)   

 All video materials were transcribed and translated into English. The transcripts, 
together with digitized videos, were included in a database which also contained 
seating plans describing students’ positions during class and so-called lesson plans; 
that is, rough summaries of each lesson. Survey materials such as short teacher 
questionnaires, performance tests compiled from released items from TIMSS 
studies, scanned copies of the focus students’ work, and textbooks were also part of 
the integrated datasets constructed by each participating research group.  

   The US–Japan Problem-Solving Study 

 In order to compare and contrast Japanese and US students’ abilities, behaviours, 
and views concerning problem solving in mathematics, the design of the US–Japan 
Cross-cultural Research on Students’ Problem-Solving Behaviors (Becker,  1992 ; 
Becker et al.,  1999  )  included the following  four approaches . First, the subjects to be 
studied had to be speci fi ed. Next, the ways in which they were to be studied had to 
be determined. More speci fi cally, it was decided to put the students selected to work 
on certain tasks, and they as well as their teachers were asked to complete question-
naires pertinent to the problems solved and to mathematics at large. Finally, student 
problem responses were coded by means of certain predetermined categories, and 
the questionnaire answers were analyzed. 
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 As to the   fi rst approach , the subjects to be studied formed a number of populations 
in the two countries. The method was to sample students―with their teachers―in 
4th, 6th, 8th, and 11th grades from large rural, small urban and large urban schools 
in Japan and the USA in the school year 1989–1990. The selection of the schools 
seems to have been made on pragmatic grounds, namely from districts near the 
researchers’ own institutions. At least two classes participated in each region in 
each country. Neither the schools nor the classes were randomly selected (Becker, 
 1992 ; Becker et al.,  1999  ) . The number of students involved in the study was several 
hundred from each population in both the USA and Japan. 

 The method employed to implement the  second approach  was to give all but the 
11th-grade students two problems to solve. The problems had been used and inves-
tigated by researchers in previous studies, and their  fi nal formulation and place 
in problem work booklets―the  instrument  employed―had been tried out in a pilot 
study (Becker,  1992  ) . The US 11th-graders also got an extra problem to solve. 
Each student was given exactly 15 minutes to solve each of the two problems, except 
that the US 11th graders got an additional 10 minutes to solve the third problem. 
For all problems, students were asked to solve them in as many different ways as 
possible—on separate answer sheets handed out to them—within the given time 
frame. This introduces an unusual feature in task-based studies, which usually only 
ask for single solutions. 

 As to the  third approach , students were asked to  fi ll out a questionnaire—form-
ing one  instrument  in this approach—after having worked on the problems. The 
questionnaire contained questions concerning students’ degrees of interest, dif fi culty, 
and familiarity with the problems they had just solved, and their attitudes and self-
concept with regard to mathematics. Teachers were asked to  fi ll out their question-
naires (another instrument) while the students were doing the problems. These 
questionnaires, in addition to seeking information about the school and the students, 
addressed the teacher’s view of the problems posed and of the students’ reactions to 
them (Becker et al.,  1999  ) . 

 The   fi nal approach  was to analyze the data collected. Individual or pairs of 
researchers were responsible for analyzing the data for one problem (Becker et al., 
 1999  ) . The focus of the analyses, which often made use of categories established by 
previous Japanese or American research, was on comparison of correctness of 
responses, solution strategies, and modes of explanation.  

   The Kassel Project 

 The so-called Kassel Project (Kaiser,  1999b  ) , aiming at comparing essential 
features of secondary mathematics teaching and learning in England and Germany 
and at explaining observed differences, had a  design  which in important respects 
differed from the designs adopted in most international studies, even though 
the study—as is often the case—is a combined quantitative and qualitative one. 
The quantitative part of the study was focussed on longitudinal student achievement, 
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and the qualitative part concentrated on capturing and charting key features of 
teaching and learning in the two countries. 

 In the achievement part of the study, the   fi rst approach  was to identify two com-
parable lower secondary cohorts in 1993 (a sample of about 800 students in Year 8 
in Germany and about 1,000 students in Year 9 in England) who were then followed 
and tested until Year 10 and, respectively, Year 11. Testing—the  second approach —
was conducted in 1993, 1994, and 1996 (Kaiser,  1999b  ) . Tests were informal, non-
standardized, and based on an analysis of curricula. All test rounds covered three 
large topic areas: number, algebra, and functions and graphs with geometry. 

 The main difference from other studies lies in the qualitative part of the project. 
The  third approach  adopted was to conduct participant observer classroom obser-
vations in about 240 lessons in 17 schools in England and about 100 lessons in 12 
German schools (Kaiser,  1999b  ) . Based on the entire set of observations, idealized 
descriptions— constituting the fourth approach —of typical mathematics teaching in 
German and English classrooms were constructed so as to encompass the following 
three foci: mathematical theory (including introduction of new concepts and methods, 
importance of theory and rules, organization by subject structure or a spiral curriculum, 
the role of proofs, rules versus examples, the role of precise language and formal 
notations); the role of real-world examples; and teaching and learning styles 
(for further details of the method adopted, see Kaiser,  1997  ) .  

   The 13th ICMI Study 

 The  fi nal study to be considered here is the 13th ICMI Study,  Mathematics 
Education in Different Cultural Traditions: A Comparative Study of East Asia and 
the West  (Leung et al.,  2006  ) . This study was not a uniform, coherent one, based on 
one single design, but rather an umbrella overarching a variety of speci fi c studies 
with different foci and perspectives, all seeking to compare and contrast fundamen-
tal features of mathematics education in East Asia and the West. 

 We con fi ne ourselves to outlining, in an aggregate manner, some of the most 
signi fi cant aspects of methodology involved in this study. One of the pertinent issues 
dealt with in the study was how it can be that East Asian students excel in interna-
tional comparative mathematics achievement tests such as TIMSS and PISA while 
at the same time possessing negative attitudes and low self-concept towards math-
ematics and its study (Leung et al.,  2006  ) . One of the methods adopted to answer 
this question is to undertake historico-cultural investigations of the origins and 
development of the fundamental traditions in East Asian and Western countries, 
in particular with regard to the role of the teacher. This was done, for example, in 
Hirabayashi’s and Ueno’s chapters, as far as Japan is concerned, and in Wong’s and 
Li Shiqi chapters concerning China. The Western tradition was depicted in Keitel’s 
chapter. Analytic comparisons between Eastern and Western  curricula  were made 
in Bessot and Comiti’s chapter on French and Vietnamese curricula, and in Wu and 
Zhang’s chapter, whereas comparative analyses of Eastern and Western  textbooks  
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were presented in Li Yeping and Ginsburg’s chapter and in Park and Leung’s chap-
ter. There was a focus on teachers’ beliefs and values in the last part of the book. 
Perry, Wong, and Howard’s chapter reported on a questionnaire-based study com-
paring Australian and Hong Kong primary and secondary teachers’ beliefs about 
mathematics, mathematics learning, and mathematics teaching, whereas middle-
school teachers’ beliefs in the USA and China were studied through a combined 
questionnaire–interview–observation approach reported in An, Kulm, Wu, Ma, and 
Wang’s chapter. 

 The ICMI study book also included chapters which surveyed the other compara-
tive studies referred to in the present chapter. In summary, a fair sample of the 
spectrum of research methods employed in international studies of mathematics 
teaching and learning were represented in the ICMI volume.   

   Re fl ections on Designs and Methods 

 Before we summarize, analyze, and re fl ect on the designs and methods encoun-
tered in the studies presented in this chapter, we consider a more fundamental ques-
tion which has been brie fl y touched upon above: To what extent are international 
comparative studies at all possible and meaningful? It goes without saying that the 
very carrying out of such studies presupposes that they appear as both meaningful 
and possible to those who conduct them. Otherwise they would not exist. As this is 
a deep and complex issue, which in a way deserves a chapter of its own, we have to 
con fi ne ourselves to sketching some basic deliberations. 

 First, one should bear in mind that the task of this chapter is to present and ana-
lyze—from a methodological perspective—studies that actually exist. The primary 
task is not to assess and judge them. The agencies and people who instigate and 
conduct the studies—the primary stakeholders—do so for a purpose, and to them 
the most signi fi cant issues therefore are whether a given study serves its purpose 
and can be said to be methodologically sound so as to produce results that are use-
ful, valid, and reliable relative to that purpose. What is likely to be less important to 
the stakeholders of a study is whether or not it is useful, valid, and reliable with 
respect to other sorts of purposes. So, any critique of a study should be more con-
cerned with the extent to which it lives up to what it purports to be, than with its 
capability of responding adequately to something else. 

 There are two components involved in “international comparative studies,” 
namely “international” and “comparative study.” The fundamental component in 
the question about the possibility of international comparative studies seems to be 
the very notion of comparative study. Whenever entities (such as objects, situations, 
conditions, relationships, mechanisms, phenomena, or categories of contents) are 
subjected to any form of comparison, certain features of the entities are deemed 
irrelevant or less important and left out of consideration, yet others are chosen to be 
in focus. How then can one be sure that the entities left out of consideration do 
not—behind the curtain, so to speak—exert a signi fi cant in fl uence on the features 
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actually considered in the comparison? In disciplined inquiry in general, and in 
science in particular, this may well be seen as the most essential question of all. 
Since it is usually extremely dif fi cult to guarantee that no hidden variables have an 
impact on the entities being compared, and hence on the outcomes of a comparative 
study, the most important thing is to subject the study to open discussion, critical 
scrutiny, alternative studies, methodological debate, and so on, much of which will 
concentrate on the balance between the factors left out, or kept in, in the comparisons 
undertaken. 

 When comparative studies deal with human beings and human behaviour, the 
issues just mentioned become aggravated. For instance, this is the case when we 
compare  n th-grade students in different schools in the same town, in different parts 
of the same country, in different socioeconomic, ethnic, cultural, or religious groups, 
and so on. Going beyond the borders of one country to involve other countries, con-
tinents, cultural traditions, and so on, implies further complexity. It introduces 
changes of degree or orders of magnitude, but not fundamental changes. Needless 
to say, even more openness, care, analysis, scrutiny, and alternative views or inves-
tigations are needed in international comparative studies than in other kinds of com-
parative studies. But it would be unreasonable to claim that whereas comparisons 
between  n th-grade students in two schools in neighbourhood  N  of municipality  M  
in county  C  in country  S  are perfectly possible and meaningful, the possibility and 
meaningfulness of comparisons disappear when national, regional, continental, or 
cultural borders are being crossed. 

 We now offer a number of more speci fi c observations concerning the designs and 
methodologies of international studies of the teaching and learning of mathematics. 
The  fi rst observation worth making is that a large fraction of the studies have inves-
tigated  student achievement on written tasks  as a key component of their design, not 
only when assessment of achievement  is  actually the primary subject of study but 
also when the purpose of the study is to come to grips with something else. Since 
the time allocated per test item is usually very limited, ranging from 1 to 2 minutes, 
to 15 minutes, only those kinds of achievement which can come to fruition within 
such a time frame are represented in the tests. It is remarkable that student achieve-
ment on tasks is taken to epitomize  mathematical competence at large . This fact is 
indeed worth discussing, not only because of the constrained spectrum of forms of 
achievement which can  fi nd their way into the test but also because mathematical 
competence possesses many more signi fi cant dimensions than the ability to do well 
in achievement tests. It can, of course, be very well justi fi ed to include achievement 
tests in a given study, and sophisticated test items may have been developed for the 
study according to the highest international standards. So, achievement tests are not 
a problem in and of themselves. However, a problem occurs when no other probes 
into mathematical competence are taken into account and employed. 

 The problem is aggravated when media, politicians, and other outsiders to math-
ematics education oversimplify things even further by equating mathematical com-
petence with success on achievement tests. It is not unusual to encounter the following 
line of argumentation: As the test results are numbers that speak for themselves, 
you are not allowed to interpret what they tell us, let alone to argue against them. 
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This way of reasoning is not very different from saying: The thermometer in my 
hand yields a result you can’t argue with. It displays the gravitational force on the 
spot where I’m standing! It may be seen as surprising that no international studies 
have devised methods to investigate aspects of students’ mathematical competence 
that cannot be accessed by tightly time-constrained achievement tests. It is conceiv-
able that future international studies would bene fi t considerably from the develop-
ment of new kinds of gauges of mathematical competence. There are, however, huge 
challenges in adopting more complex assessment situations in the wide variety of 
school contexts found among the many countries participating in large-scale interna-
tional studies such as TIMSS and PISA. 

 In cross-national achievement studies, the fact that all the items included in the 
tasks have to be meaningful and reasonable in participating countries leads to a fair 
amount of harmonization of items, item types, response formats, and score coding. 
This is true both of curriculum-referenced studies, such as TIMSS, where items at 
least to some extent have to be related to the curricula students have been exposed 
to, and of literacy or competency referenced studies, where some basic degree of 
familiarity with contexts and situations needs to be ascertained, as is the case in, for 
example, PISA. It poses particular challenges to test mathematics embedded in 
extra-mathematical contexts in a manner that is not  too  dependent on cultural, tech-
nological, or socio-economic contexts. All this being said, items in international 
studies are typically highly thoughtfully and carefully constructed, developed, 
piloted,  fi eld-trialled, score coded, and rated, sometimes with an impressive degree 
of sophistication. Also, sophisticated item analysis methods that allow for studying 
achievement conditioned on a variety of (sub-)population characteristics and other 
background variables are put into use in many studies, especially large-scale ones 
such as TIMSS and PISA. Against this background, the various pools of items from 
international studies are goldmines for research and practice, as are the multitude of 
achievement databases, many of which have already been subjected to several cor-
relation studies. However, unfortunately this happens too seldom, and the existing 
item pools and databases deserve to be put to use in new research. 

 The next observation is that even though student achievement tests are a major 
component in several international studies, tests never stand alone. They are  always 
accompanied by other approaches and instruments , such as student or teacher ques-
tionnaires and interviews, classroom observations, analyses of written materials 
such as curriculum documents, teacher education programs, textbooks, and assess-
ment instruments. There are three main reasons for making use of such other 
approaches in relation to achievement studies: to provide a means for interpreting 
and understanding what students had in mind in their solution processes and how 
these were related to what and how they had been taught, to provide causal or cor-
relational explanations of students’ achievement or of related observed phenomena 
in terms of background factors and variables, or to provide an entirely different sort 
of information from that sought in the achievement tests; for instance, about 
students’ attitudes, beliefs, and career perspectives. It goes without saying that the 
approaches listed above are not only utilized in connection with achievement 
studies, they also can, and often do, stand alone as independent approaches. 
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 As an independent approach, or in addition to other approaches,  questionnaires  
to students, teachers, school principals, or other target groups primarily serve two 
purposes. Sometimes the primary purpose is to gather information of intrinsic, sepa-
rate interest in the study. At other times, it is to constitute a platform to follow up on 
or lead into other approaches, say, classroom observations or interviews. 
Questionnaire questions come in different types. Some questions ask for factual, 
unambiguous, objective information such as student sex and age, number of stu-
dents in a class, types of school programs, and the like. Other questions may ask for 
multiple-choice responses representing predetermined, but not necessarily well-
de fi ned, entities, while other questions may ask the respondent to describe objects, 
phenomena, or situations in his or her own words, and still others may concern 
affective or attitudinal matters. 

 It is generally acknowledged that questionnaires give rise to many methodological 
issues, at least as far as nontrivial, nonfactual questions are concerned. One such 
issue is that the response categories offered in multiple-choice questions may often 
not be understood or accepted by respondents, for instance, because of ambiguity or 
problematic demarcation lines between response options. This becomes a special 
concern when questionnaire responses are subjected to subsequent quantitative 
aggregation. A related issue concerns questions in which respondents are asked to 
estimate the frequency of the occurrence of certain kinds of experiences or acts, 
where it may simply be dif fi cult to remember things well enough to provide reliable 
answers. Another issue is to do with questions that ask respondents to write com-
ments or statements which are likely to be dif fi cult to interpret by researchers. 
In some contexts, respondents may tend to  fi gure out which answers are “good” or 
“right,” or would impress or please those who administer the questionnaires, and 
then respond accordingly. Moreover, there may well be socio-cultural biases in the 
occurrence of this tendency. (Similar arguments are posed in relation to video obser-
vation and interviews considered below.) However, designed with re fl ection and 
care and treated with caution, questionnaires can be powerful instruments, both in 
quantitative surveys and in in-depth qualitative investigations. 

 As with questionnaires,  interviews  can be a method to gather information of 
independent research interest, and they may constitute an approach accompanying 
other approaches. To the extent interviews are used in large-scale studies, they are 
typically used for the latter purpose, as a method to probe deeper into issues or phe-
nomena which have emerged through other means, such as achievement tests, ques-
tionnaires, or classroom observations. It may be that students’ comments and 
re fl ections on their solutions to problems are sought, in order to shed light on their 
background knowledge, strategies, or solution processes. Or it may be that elabora-
tion on students’ responses to attitudinal questions in a questionnaire is needed, 
either as a means for ascertaining investigators’ interpretation of the responses or as 
a way to resolve possible inconsistencies in the responses. Or it may be that the 
reasons for teachers’ observed acts and decisions in classrooms need or deserve 
further elucidation. Usually interviews employed in large-scale studies address a 
much smaller subject sample than does the study itself. Therefore, such interview 
data are rarely aggregated in a quantitative form but remain qualitative data, possibly 
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subjected to some sort of classi fi cation. Since the interviews typically serve speci fi c 
purposes, seeking certain kinds of information, they often—but not always—take 
place according to some protocol, either a completely structured protocol, not 
admitting deviation from prede fi ned questions, or a semi-structured protocol that 
admits tangential excursions to follow up on the responses obtained while returning 
to the main track afterwards. 

 When interviews are used in focal studies, all the features just mentioned apply 
as well, but additional features become relevant. Most importantly, in some studies 
interviews are given the predominant role. This is typically the case when respon-
dents’ comments, experiences, or views are sought on a broad spectrum of topics or 
issues—for instance, when the aim is to obtain a multi-faceted and integral picture 
of the respondents selected. In such cases, loosely structured interviews may come 
into play; that is, in the shape of more freely  fl owing conversations in which the 
route taken by the interviewer depends on what happens along the road. 

 The conducting of interviews poses many challenges, as do their recording, 
registration, analysis, and sometimes coding. It is often demanding to “get what 
one is after,” because interviews are a form of human interaction and hence sub-
jected to implicit or explicit socio-cultural boundary conditions, which are likely 
to differ from country to country. It may not only be dif fi cult to obtain a fair 
degree of homogeneity across countries, but also challenging for the interviewer 
to steer the conversation according to the interview protocol and pose follow-up 
questions while paying close attention to the social relationship with the intervie-
wee and perhaps managing the equipment, taking  fi eld notes, and so on. Recording, 
registering, transcribing, coding, or otherwise analyzing the interviews conducted 
are enormously time-consuming and intellectually demanding activities, especially 
when it comes to selecting what to store and to interpreting what respondents said. 
No wonder that a huge body of research literature exists on interviews as a research 
method. 

 Comparative  classroom studies , too, have given rise to huge bodies of method-
ological considerations, many of which pay special attention to the instruments, 
procedures, and techniques involved in conducting such studies. As is the case with 
interviews, classroom studies can take place with varying degrees of structuring, 
ranging from unstructured studies in which observers, whether participant or neutral 
observers, focus on what appears to them to be signi fi cant along the road, to semi-
structured studies, in which researchers concentrate their attention (or intervention) 
on certain predetermined topics or issues but are also ready to follow up on interest-
ing opportunities or sidetracks that emerge during classroom sessions, through to 
completely structured studies, where researchers record and classify instances of 
certain sorts of phenomena or situations in prede fi ned categories and neglect every-
thing else. Since the mathematics classroom is an immensely complex organism, 
the set of potential objects of study is immensely complex as well. Forms and 
content of classroom interaction and communication between the teachers and 
the whole class, student groups or individual students, or among students, may be 
one possible focus point. Student activities and the teacher’s role in orchestrating 
them may be another focus point, as may student behaviour in particular respects, 
for example problem solving, hypothesis formation, or explanation of solutions. 
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Also the nature of the mathematics actually being dealt with in the classroom by 
teacher or students may be of interest to researchers. 

 The main reason that the technicalities of classroom research preoccupy researchers 
is that a classroom session is by de fi nition of a transient nature, so measures that make 
it possible to register and  fi x the signi fi cant components of the session, either for docu-
mentation or for later analysis, are crucial for the entire undertaking. Field notes or 
written forms to be  fi lled out by the researcher during class, audio or video recordings 
of whole sessions or episodes, are some of the instruments typically used alone or in 
combination in such research. Providing detailed information about the procedures 
followed and the circumstances under which the instruments have been employed is 
an important documentation task. The concurrent or post hoc coding of the class-
room entities identi fi ed, and the grounds on which the coding has been performed, are 
equally important tasks, as is the tracing of them in the analysis. This is not the place to 
go into details. It is worth noting, though, that some of the international method-
ological and technical standards for classroom study research in mathematics edu-
cation have to a large extent been established and moved forward by the international 
comparative studies, especially as regards to the handling of large samples. 

 Comparative  curriculum and textbook analyses  are conducted on written docu-
ments, and the methods employed therefore involve text analysis. However, apart 
from general aspects of such analysis and analysis of curricula in relation to educa-
tion systems—what students get what sort of education, where, with whom, and 
taught by whom—curriculum and textbook analyses in mathematics education have 
strong mathematical components in terms of content, exposition, processes, compe-
tencies, tasks, activities, and so on, which can be analyzed in a multitude of differ-
ent, and sometimes even con fl icting, ways. Therefore, frameworks for curriculum 
and textbook analyses in mathematics represent important methodological chal-
lenges and decisions, the outcomes of which have a decisive impact on the nature 
and results of the research conducted. Here, too, many of the international compara-
tive studies considered have contributed to setting and improving signi fi cant aspects 
of the standards of research internationally. 

  Tasks for students  are essential in teaching and learning of school mathematics 
and in international achievement tests, to such a degree that the nature of the tasks 
given to students to a large extent codetermines the outcomes of international stud-
ies. Against this background, task construction and task analysis become key meth-
odological issues. It is interesting to observe that already in FIMS a matrix-based 
framework (content-by-cognitive behaviour level) for selecting and analyzing test 
items was put into practice. In other words, test items were classi fi ed not according 
to more or less traditional content strands only, but according to other dimensions as 
well. This was the case with all subsequent large-scale studies, including TIMSS. 
The schemes adopted by PISA were the most elaborate of all. Item classi fi cation 
according to different dimensions gives rise to a variety of correlational item analysis 
studies of a statistical type. 

 In addition to the tasks employed in comparative studies, it is also interesting 
to study the kinds of tasks utilized in mathematics education in different countries. 
It is therefore somewhat surprising that only few publications of this kind exist. 
An exception is the book by Shimizu, Kaur, and Clarke  (  2010  ) .  
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   Concluding Comments 

 This chapter has attempted two things: (a) to provide a detailed account of the 
purposes and goals of a number of important large-scale or focal studies of mathe-
matics teaching and learning internationally and of the designs and methods 
employed to conduct these studies; (b) to analyze and re fl ect on those designs and 
methods. 

 We have found that most of the studies have adopted a  multi-faceted design , in 
which combinations of  different approaches  have been used to answer different 
subsets of the set of questions that gave rise to the study. These approaches are as 
follows: frameworks to conceptualize the domain being studied, especially as 
regards mathematics as a subject; construction and administering of student achieve-
ment tests; analysis of intrinsic item characteristics; analysis of student responses; 
student, teacher, or school questionnaires; sampling of the populations studied; 
interviews with students, teachers, or parents, and methods for analyzing the out-
comes; observation (participant or neutral) of real classrooms and methods for 
recording and analyzing the resulting data; analysis of curricula as part of education 
systems and as separate entities, textbooks, and assessment tasks; and analytic 
re fl ections on the traditions and cultural environments of mathematics education. 

 Together with these approaches comes a variety of different methods, each of 
which is implemented by the use of various speci fi c instruments. The methods and 
the instruments in turn involve a multitude of different procedures and techniques 
that we have had to leave aside in this chapter, even though quite a few of them are 
interesting in their own right. 

 It is a remarkable fact that most, if not all, of the studies considered have contrib-
uted to substantial progress in the development of the research designs, approaches, 
methods, and instruments applied in the studies. Among other things, this progress 
is due to the fact that several studies have had many human and material resources 
at their disposal, primarily because the stakeholders of the studies often attribute 
large amounts of prestige and impact to the outcomes and the politico-administra-
tive uses of the studies. 

 This phenomenon implies that several sorts of research not meant to deal with 
international comparisons of one kind or the other can bene fi t greatly from the con-
tributions to research methodology offered by the international studies. 

 We have found, however, that the studies display certain limitations as well. This 
is particularly true of the approaches to gauge student achievement in mathematics, 
where time and format constraints exclude essential aspects of mathematical com-
petence from being taken into consideration in the studies. This is an issue on which 
substantial new developments are sorely needed. 

 Another limitation has been that the overall cultural, economic, and structural 
contexts and boundary conditions of the education systems at large, and of schooling 
in particular, have only rarely entered the studies in a direct manner. Such factors 
in fl uence the classroom reality in ways that go beyond the reality being produced by 
participants in practice only. Here, too, new approaches directly linking classroom 
reality to the surrounding contexts are needed. 
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 A chapter such as this one cannot end without comments on the fact that 
international comparative studies attract a massive interest amongst politicians, 
media, and the general public. There is a clear tendency of these parties to summa-
rize things in a manner that is “clear, brief, and wrong.” This is on the boundary of 
involving misuse of the studies, but it is a misuse that is dif fi cult to counteract by 
those involved in them. However, it would probably contribute to more balanced 
and fact-based debates if researchers undertook to engage in them to a larger extent 
than is typically seen.      
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  Abstract   This chapter examines large-scale comparative studies of mathematics 
education focussed on student achievement in an attempt to explain how such 
investigations in fl uence the formation and implementation of policies affecting 
mathematics education. In doing so, we review the nature of comparative studies 
and policy research. Bennett’s (1991) formulation of policy development and imple-
mentation is used in examining national reactions to the results of international 
studies. Focus is given to the degree to which mathematics educators and others 
have played major roles in determining related policy outcomes affecting curricu-
lum and the development and interpretations of the assessment instruments and 
processes themselves.      

   International Studies of Mathematics Education 

 Writing in  1999 , Martin Carnoy stated:

  The  quality  of national educational systems is increasingly being compared internationally. 
This has placed increased emphasis on mathematics and science curricula, English as a 
foreign language and communication skills. Testing and standards are part of a broader 
effort to increase accountability by  measuring  knowledge production and using such mea-
sures to assess education workers (teachers) and managers. Yet, the way testing is used to 
“improve quality” is heavily in fl uenced by the  political  context and purposes of the evalua-
tion system. Again, to develop effective policies for education improvement, the ideological–
political content of a testing programme has to be clearly separated from its educational 
management content. (p. 16)   
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 Carnoy’s insightful comments are as true today as they were in 1999. The appearance 
of large-scale international comparative studies of mathematics education, starting 
with those of the 1960s, have engendered three signi fi cant changes to the math-
ematics education landscape at national, state/provincial, and local levels. The  fi rst 
is an ever present reliance on large-scale sample survey data as a policy-making 
base for curricular and mathematics instruction decisions. The second is the height-
ened role occupied by nonmathematical organizations, governmental and nongov-
ernmental, in the decision-making structure for what is important and what is not 
important in mathematics education programs, their design, and their implementation. 
The third is the use of comparative assessments as a lever for encouraging the conver-
gence of curricular plans toward “national” or “global” models. 

 These changes have brought with them a reliance on values based in numerical 
indicators emanating from surveys, rather than from a body of mathematics educa-
tion research based on a series of related research studies, be they quantitative or 
qualitative. Although expert panels who assisted in the design of these international 
assessments have involved knowledgeable mathematicians and mathematics educa-
tors, the resulting structure of the questionnaires and assessments used in the  fi nal 
collection of data has often then been modi fi ed to  fi t time, legal, or policy-based 
constraints which have distanced, in many cases, the data from classroom practice. 
Notwithstanding these disconnects, the global outcomes of international compara-
tive studies of school mathematics have emerged as powerful arbiters of educational 
policy discussions of student competence, teacher quality, the path to school 
improvement, and the structure of schooling itself. At national, state/provincial, and 
local levels, assessment systems similar to the international assessments have been 
instituted by legislative acts as primary monitors of trends. Decision making and the 
institution of “educational crises” have become major media events stemming from 
the release of participant rankings in league-like tables of student achievement 
results or teacher quali fi cations. 

 The  fi rst major international comparative work in mathematics education was 
initiated by the International Commission on the Teaching of Mathematics during 
the 4 years following the organization’s founding at the Fourth International 
Congress of Mathematicians in Rome in 1908. The study was created with the 
expressed purpose of conducting a comparative study on the methods and plans of 
teaching mathematics at the secondary and other levels of schooling. The study, 
spanning the years from 1908 through 1914, produced 187 volumes, containing 310 
reports from eighteen countries (ICMI,  2011a  ) . Excerpts based on data from the 
study can be found in the  Teaching of Arithmetic  and  Mathematics in the Elementary 
Schools of the United States  (Bidwell & Clason,  1970 ; Smith,  1909 ; United States 
Bureau of Education,  1911  ) . In 1954, the Commissions’ parent body, the International 
Mathematics Union, restructured and renamed the commission as the International 
Commission on Mathematics Instruction (ICMI). Along with the shift in the name, 
there was an implicit shift from the study of “the teaching of mathematics” to “math-
ematics instruction” in the activities of the organization (ICMI,  2011b  ) . 

 In 1967, a  New York Times  article provided, in a manner similar to a sport’s league 
standings table in a newspaper, the order of  fi nish of national student achievement 
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performances in the First International Mathematics Study (FIMS). This public 
release and the media’s presentation focussing on standings signalled the emer-
gence of a new way of examining and evaluating nation/state or provincial/local 
mathematics education programs. The in fl uence of this approach to policy-building 
and blame-directing has only increased over time with the quadrennial release of 
data from the Trends in International Mathematics and Science Study (TIMSS) of 
the International Association for the Evaluation of Educational Achievement (IEA) 
and the triennial release of data from the Programme for International Student 
Assessment (PISA) developed by the Organisation for Economic Co-operation and 
Development (OECD). Mixed among the output from these massive studies are 
 fi ndings emanating from United Nations Educational, Scienti fi c and Cultural 
Organisation (UNESCO), the World Bank, educational and economic think tanks, 
national assessments, doctoral dissertations, and education consortia and bureaus in 
individual countries. 

 These comparisons have grown over time to include comparisons of student 
achievement, teaching, teacher preparation, the context of mathematics education, 
and specialized topics included within or related to the mathematics curriculum 
such as problem solving, modelling, statistics, textbook contents, and information 
technology. A full discussion of all of these  fi ndings and their policy implications is 
beyond the scope of this chapter, which will focus on large-scale international stud-
ies of student achievement and the impact that they have had and continue to have 
on education policy in mathematics education. 

   International Association for the Evaluation 
of Educational Achievement (IEA) 

 The IEA was conceived in 1958 at an UNESCO meeting of sociologists, educa-
tional psychologists, and psychometricians. The IEA today, consists of a linked 
body of ministries of education and similar nationally-representative structures. 
Mathematically, the IEA became an important entity with the release of the  fi ndings 
of the First International Mathematics Study (FIMS) in 1967. This 12-nation study, 
based on data collected in 1964, focussed on 13-year-olds and students in the pre-
university year of schooling. Policy relevant constructs emerging from the study 
were the importance of student opportunity-to-learn and equity issues as they 
affected academic performance. Other issues focussed on particular national differ-
ences in the education of teachers (Husén,  1967 ; IEA,  2011  ) . 

 Seventeen years later, in 1981–1982, the IEA returned to mathematics assess-
ment with the 20-nation Second International Mathematics Study (SIMS). This 
assessment featured a sharpened design based on a mathematics content framework 
and substantially more input from the mathematics community. The SIMS design 
featured pre- and post-measures about student opportunities to learn and perform in 
mathematics for 13-year-olds and students in the  fi nal year of secondary school. 
This study aroused increased interest in students’ opportunity-to-learn, while 
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heightening the key roles of curriculum and number of topics students are exposed 
to in a given year of study. In-depth questionnaires were used to probe teachers’ 
coverage of key topics in the teaching of prealgebra at the middle-school level and 
content in precalculus and calculus at the end of secondary school (Burstein,  1993 ; 
McKnight et al.,  1987 ; Robitaille & Garden,  1989 ; Travers & Westbury,  1989  ) . 

 In 1995, the IEA returned to mathematics with the Third International Mathematics 
and Science Study (TIMSS). This time, the study cohort contained 45 countries, and 
the focal populations included 9- and 13-year-olds, as well as students in the  fi nal 
year of secondary education. In addition to focussing on major in- and out-of-school 
determinants of educational outcomes of schooling, TIMSS also conducted a special 
substudy comparing the mathematics curricula in the countries participating. The 
careful design and implementation of the design for the TIMSS 1995 study has 
provided an anchor for the subsequent IEA cycle of trend studies in mathematics, sci-
ence, and reading. These ongoing data collections also highlight the semi-permanent 
status of such studies (now reconceived and renamed under the same acronym: the 
Trends in International Mathematics and Science Studies). The  fi rst assessments in 
the new formulation of TIMSS were carried out in 1999, 2003, and 2007. In 2011, 
more than 60 countries and jurisdictions participated in TIMSS 2011. Results from 
these studies are available online at the TIMSS study centre (  http://timss.bc.edu/    ) 
and in a series of research monographs (Robitaille & Beaton,  2002 ; Schmidt, 
McKnight, Cogan, Jakwerth, & Houang,  1999 ; Schmidt, McKnight, Valverde, 
Houange, & Wiley,  1997 ; Schmidt, McKnight, & Raizen,  1997 ; Schmidt et al., 
 1996,   2001 ; Valverde, Bianchi, Wolfe, Schmidt, & Houang,  2002  ) . 

 Results from TIMSS increased interest in the teacher preparation policies and 
practices around the world. At writing, the IEA is involved in the Teacher Education 
and Development Study in Mathematics (TEDS-M). This IEA study is focussed on 
how teacher preparation policies, programs, and practices contribute to the capability 
of teachers to teach mathematics in elementary and lower secondary schools (Grades 
4 and 8). The framework, data, and  fi ndings from this study are available at the 
TEDS-M study centre (  http://teds.educ.msu.edu/    ).  

   Programme for International Student Assessment (PISA) 

 In 1997, the Organisation for Economic Co-operation and Development, a group 
of democratic countries sharing economic-related information, decided to initiate a 
program of literacy assessments for 15-year-olds in the domains of mathematics 
literacy, science literacy, and reading in the mother tongue. PISA conducted its  fi rst 
survey in 2000, with subsequent surveys following in a triennial cyclic pattern, with 
the three domains rotating in their degree of overall emphasis within each passing 
assessment cycle. As a result, mathematics was the major focus of the assessment in 
2003, in 2012, and will again be slated for 2021. In the intervening assessment 
cycles, mathematics is assessed only for trend reporting, with one of the other 
domains taking the role of primary focus. PISA also includes measures of general or 
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cross-curricular competencies such as problem solving, measured in 2003 and 2012, 
and  fi nancial literacy measured in 2012. 

 Unlike TIMSS’s focus on curricular-based knowledge, PISA focusses on 
measuring students’ mathematical literacy, envisioned as students’ ability to apply 
mathematical knowledge and skills and their developed capabilities to analyze, 
reason, and communicate effectively as they examine, interpret, and solve problems 
in contextualized settings. In PISA 2009, 34 OECD member countries and 41 partner 
countries participated. PISA is the only international education survey to measure 
the knowledge and skills of 15-year-olds, an age at which students in most countries 
are nearing the end of their compulsory time in school. Although PISA’s results 
provide a picture of students’ capabilities, they provide less direct relationships to the 
schooling students have received. At the same time, they may provide a better picture 
of the future capabilities of nations’ students to cope with everyday applications of 
mathematics and science. These results allow countries and economies to compare 
best practices and to further develop their own improvements—ones appropriate for 
their school systems (McGaw,  2008 ; OECD,  2004a ,  2004b  ) . 

 In addition to this difference in aim, the PISA governing board is made up of 
representatives of national governments or members of their national ministries of 
education. Although some of these individuals are researchers, many are policy and 
legislative leaders with responsibilities related to reporting on the output of their 
nation’s schools and status of the implementation of the approved curricula for 
mathematics. 

 Both the TIMSS and PISA assessments have had their share of proponents and 
detractors from within and outside of the educational world. From the foci of the 
assessments’ content and the publication of the assessment frameworks to what 
students are expected to do in responding to the items and  fi nally to the statistical 
analysis and reporting of the data, the studies have created a great amount of interest 
in student learning, performance, and achievement (   Hopmann & Brinek,  2007 ; 
Kang,  2009 ; Kilpatrick,  2009 ; Murphy,  2010 ; Prais,  2003 ; Sjøberg,  2007  ) . 
Supporting this interest, countries and professional societies have released special 
national studies, and the contractors carrying out the assessments have provided 
released items and other sample materials available along with other supporting 
documentation (Kilpatrick,  2009 ; materials on OECD/PISA Web site:   http://www.
pisa.oecd.org     and on the TIMSS Web site:   http://timss.bc.edu    ) .   

   Other International Assessments of Mathematics Education 

 The Educational Testing Service (Lapointe, Mead, & Askew,  1992 ; Lapointe, 
Mead, & Phillips,  1988  )  conducted the International Assessment of Educational 
Progress (IAEP) with 13-year-olds in 1988, and 9- and 13-year-olds in 1991 with an 
expressed purpose of comparing participating countries’ performances with that of 
US states through a statistical linking of the National Assessment of Educational 
Progress (NAEP) items common to NAEP and IAEP. This analysis showed wide 
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variation in the performance of US states, with some performing statistically as well 
as the Asian nations, whereas others performed at the level of developing countries 
(Pashley & Phillips,  1993  ) . Similar results were found in a special follow-up study to 
the TIMSS test conducted in 1998 (Kimmelman et al.,  1999 ; Mullis et al.,  2001  ) . 

 Another international comparative education project was the Kassel project. It 
was initiated in 1993 by England, Germany, and Scotland, and later joined by 
Australia, Brazil, the Czech Republic, Finland, Greece, Holland, Hungary, Japan, 
Norway, Poland, Russia, Singapore, Thailand, Ukraine, and the USA. This project 
is focussed on collecting longitudinal samples of pupil work from the participating 
countries. As such, it differs from the preceding studies in that it focusses on indi-
vidual student work over time rather than cross-sectional samples of student work. 
The analysis of the growth trajectories in these students is then used to ferret out key 
factors that lead to successful progress in mathematics within the participating 
countries (Blum & Kaiser,  2004 ; Burghes, Kaur, & Thompson,  2004  ) . 

 Three other international comparative studies of note are the International Project 
on Mathematical Attainment (IPMA) study, the Southern and Eastern Africa 
Consortium for Monitoring Educational Quality (SACMEQ) studies, and the First 
International Comparative Study of Language and Mathematics in Latin America. 

 The IPMA study focussed on student progress from the  fi rst year of primary 
school through secondary school, with data collected concerning student achieve-
ment, methods of teaching, resources available to teachers and students, and the nature 
of the curriculum studied. Countries participating for all or part of the study were 
Brazil, China, the Czech Republic, England, Estonia, Finland, Greece, Hungary, 
Ireland, Japan, Poland, Russian, Singapore, South Africa, Ukraine, the USA, and 
Vietnam. Reports from the study are available at (  http://www.cimt.plymouth.ac.uk    ) 
and through a summary volume (Burghes, Geach, & Roddick,  2004 ; IPMA,  2011  ) . 

 The SACMEQ series of studies report on student performance in reading and 
mathematics. The sponsoring organization consists of a consortium of the minis-
tries of education from Botswana, Kenya, Lesotho, Malawi, Mauritius, Mozambique, 
Namibia, Seychelles, South Africa, Tanzania (mainland and Zanzibar), Uganda, 
Zambia, and Zimbabwe. Starting in 1995, there have been three cycles of assess-
ment, with individual nation reports of recommendations derived from an overall 
data set representative of the member nations. The SACMEQ results report on the 
achievement of Standard 6 students (12–14 years of age). Cycle 1 reports were 
released in 2001, Cycle II reports in 2005, and Cycle III reports in 2010. These 
reports are available at the consortium Web site at (  http://www.sacmeq.org/index.
htm    ). SACMEQ began with support from UNESCO and has grown into a self-
suf fi cient organization through joint support and the development of internal capacity 
(Greaney & Kelleghan,  2008 ; SACMEQ,  2011  ) . 

 The First International Comparative Study of Language and Mathematics in 
Latin America was a project of the Latin American Laboratory for Assessment of 
the Quality of Education (LLECE) and involved a consortium of nations consisting 
of Argentina, Bolivia, Brazil, Chile, Colombia, Costa Rica, Cuba, The Dominican 
Republic, Honduras, Mexico, Paraguay, Peru, and Venezuela. The ministries of 
education of these Latin American and Caribbean nations were brought together in 
1994 through the coordinating efforts of the UNESCO Regional Of fi ce for Latin 
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America and the Caribbean to develop a study focussed on information on students’ 
achievements and associated factors that would be useful in establishing and imple-
menting education policies within countries. The OECD has assisted UNESCO in 
the actual collection, analysis, interpretation, and reporting of the LLECE data. The 
focal content areas for the assessment were the language and mathematics knowl-
edge and skills of third and fourth graders in the participating countries. In addition, 
information on a signi fi cant number of background and contextual variables was 
obtained from the schools and students (Casassus, Froemel, Palafox, & Cusato, 
 1998 ; LLECE,  2001  ) . Information on the study and reports can be found at the con-
sortium’s Web site at   http://www.llece.org/public/content/view/8/3/lang,en    .   

   International Studies and Educational Policy 

   Reach of Educational Policy 

 Comparative international educational research in its purest form involves empir-
ical work aimed at the revision of existing theories of the relationships within or 
between educational systems or between variables describing educational systems 
and economic indices or demographic data (Carnoy,  2006  ) . If this is the case, how 
do the international comparative assessments of mathematics education  fi t this 
model? One might argue that their purpose is to describe student achievement at 
national levels. However, such a response would be short sighted. In reality, their 
purpose appears to be the creation of a platform for illustrating and relating stu-
dents’ achievement to salient policy variables such as distribution of achievement 
across racial and cultural groups, the relative performance of different genders in 
mathematical situations, the distribution of resources and teachers across geograph-
ical units, the relationships between the  fl ow of students through the academic 
mathematics pipeline, and the relationship of various levels of output to national 
needs and labor projections. Within education, the output of such studies is of direct 
interest to curriculum experts, teacher educators, and those involved in professional 
development programs, and textbook writers and publishers of mathematical learn-
ing materials, as in Kilpatrick, Mesa, and Sloane  (  2007  ) . Other interested consum-
ers include governmental and policy experts, parents, and the public in general. As 
such, the results of national and educational comparative studies is a huge lever for 
those involved in educational policy, especially those interested in educational 
reform (Kellaghan, Greaney, & Murray,  2009  ) .  

   TIMSS and PISA Assessment Frameworks 

 Given the role that the IEA and PISA results play in serving as levers in interna-
tional and national discussions of educational policy, one might examine their geneses 
and stated purposes. IEA studies result from a cooperative group of research bodies, 
some of which are governmental and some not. In either case, the bodies are research 
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oriented  fi rst and policy oriented second. The TIMSS studies are closely linked to 
instructional processes in classrooms and the curricula of the participating nations. 
The mission of the TIMSS assessments is

  to provide high quality information on student achievement outcomes and on the educa-
tional contexts in which students achieve. … [In doing so, TIMSS is dedicated] to providing 
countries with information to improve teaching and learning in these curriculum areas. 
Conducted every four years on a regular cycle, TIMSS assesses achievement in mathemat-
ics and science at the fourth and eighth grades. The achievement data are collected together 
with extensive background information about the availability of school resources and the 
quality of curriculum and instruction. (Mullis et al.,  2009 , pp. 2, 7)   

 The mission statement for TIMSS places learning outcomes, teaching, and learning 
contexts at the forefront, with an implied goal of linking achievement to curricula 
and instructional practices. 

 PISA studies, on the other hand, assess how well 15-year-old students are pre-
pared to deal with contextualized situations where mathematics might provide assis-
tance in  fi nding resolutions. PISA refers to this capability as  mathematical literacy  
and de fi nes it as follows:

  An individual’s capacity to formulate, employ, and interpret mathematics in a variety of 
contexts. It includes reasoning mathematically and using mathematical concepts, proce-
dures, facts, and tools to describe, explain, and predict phenomena. It assists individuals to 
recognise the role that mathematics plays in the world and to make the well-founded judg-
ments and decisions needed by constructive, engaged and re fl ective citizens. (OECD, 
 2010c , p. 4)   

 Although PISA does not reject curricular links in developing students’ literacy, 
the assessment’s primary purpose is the determination and description of students’ 
capabilities to formulate, implement, and solve mathematical problems. 

 The linking of TIMSS to teaching and learning and PISA to literacy does not say 
that they ignore the other’s main focus. To do so would be a denial of the intrinsic 
link between the two goals and the huge overlap of outcomes that are examined by 
both programs. Many of the curricular and instructional research objectives in 
TIMSS are driven by policy considerations, and many policy objectives in PISA 
result in research themes linking PISA  fi ndings directly to school programs. In fact, 
over the past decade, the two large-scale assessment programs have moved toward 
one another in goals and in the nature of the items used in their assessments. In addi-
tion, their role in policy decisions also increased as nations, states and provinces, 
and local school districts have looked for guidance in forming curricular plans and 
selecting instructional approaches and materials.  

   Role of International Studies in Shaping Policy 

 The IEA international mathematics assessments came of age in the 1980s just in 
time to  fi ll the increased desire within UNESCO and, later, within OECD for a set 
of indicators of student performance. Indicators, viewed as variables taking on values 
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which describe inputs, processes, or outputs from the educational enterprise of some 
de fi ned country or de fi ned grouping of countries provided a way of quantifying 
education. Over time, such indicators became the source of policy, and at the same 
time, their values provided another lever for policy change. This recasting of indica-
tors in quanti fi able form further spread the in fl uence of indicator systems, especially 
those that had linked assessments, as a source of policy initiatives. 

 Reports portraying indicators from such studies have fuelled governmental 
and nongovernmental agency reports on educational outcomes for the past 50 years. 
The OECD indicators had their birth in the OECD’s International Indicators of 
Education Systems project (INES) in the late 1980s, a movement that coincided 
with a shift from research-based assessments of student performance within a nation 
to national assessments of educational progress. This shift was very evident with the 
maturing National Assessment of Educational Progress (NAEP) in the USA and the 
initiation of similar, but newer, assessment programs in New Zealand, Portugal, 
Spain, Sweden, and the UK. Central to the growth for the demand for data on educa-
tion was the UNESCO  (  1990  )  World Declaration on Education for All recognizing 
education as a human right and relating it to the physical and economic health of 
nations. Its foci on learning, equity, and supportive environments and resources for 
education promoted the need for more policy-based items as part of the background 
and demographic sections of national and international assessments (Moskowitz, & 
Stephens,  2004 ; Rutkowski,  2008 : UNESCO,  2011  ) . 

 In 1991, OECD began the publication of annual indices of indicators in its 
 Education at a Glance  series. This provided easy reference for policy analysts to 
countries’ pro fi les, as well as their comparative performances relative to other coun-
tries. The indicators and supporting data exhibit a wide range of outcomes discuss-
ing student performance when parental education, social-economic status, and other 
factors are considered and when national performances are adjusted for national 
economic indicators (OECD,  2010c  ) . 

 At the same time, the in fl uence of PISA was growing within OECD nations. 
Several non-member OECD nations participated in the 2003, 2006, 2009, and 2012 
PISA cycles. This participation multiplied the in fl uence PISA indicators have had 
on just the member states by including another group of developed nations and an 
even larger group of developing nations. These indicators do not just inform the 
leaders of these countries, they assist in the framing of policies and the direction of 
reforms. Nóvoa and Yariv-Masal  (  2003  )  noted:

  Such researches produce a set of conclusions, de fi nitions of “good” or “bad” educational 
systems, and required solutions. Moreover, the mass media are keen to diffuse the results of 
these studies, in such a manner that reinforces a need for urgent decisions, following lines 
of action that seem undisputed and uncontested, largely due to the fact that they have been 
internationally asserted. (p. 424)   

 Results from PISA 2000 and 2003 indicators supported the development of 
national goals for secondary-school curricula in Flemish-speaking regions of 
Belgium, strengthening mathematics program implementation by increasing the 
numbers of secondary-school mathematics advisors in New Zealand, and allocating 
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more resources for the mathematical and science education of prospective primary 
school teachers in Sweden (Owen, Stephens, Moskowitz, & Gil,  2004  ) . When the 
favourable results of PISA were announced in Finland, rather than re fl ect positively 
on them, the Finnish government moved to harmonize the system and to allocate 
more time to core subjects, potentially removing some of the advantage Finnish 
schools might be providing their students (Välijärvi, Linnakylä, Kupari, Reinikainen, 
& Arffman,  2002  ) . But, perhaps the most notable effect was the reception of the 
PISA 2000 results in Germany. The below median performance in overall literacy 
ranking stunned the nation, and German educational authorities called for urgent 
reform measures to right the ship and get Germany back on course. This outcry for 
reform was based on the argument that the PISA test measures outcomes associ-
ated with the emerging world and its workplace requirements (Ertl,  2006  ) .    Again, 
a governmental reaction, in this case was based partially on economics and partially 
in shock. 

 Parallel to the growth of indicators and assessments, national educational minis-
try personnel worldwide were becoming active in the administration, development, 
analysis, and reporting of  fi ndings of their own national assessments and national 
reports of TIMSS and PISA. This shift of ministry of fi cials into becoming players 
rather than consumers was aimed more at policy issues than research issues. In sev-
eral countries, the shift was also accompanied by a shifting from curriculum ques-
tions and research-oriented issues to sharpening background assessments to answer 
other less-curricular-centred issues that were more pressing nationally from a policy 
standpoint. This movement, in some cases, weakened the focus on content alone in 
favour of more general policy-centred questions within assessments. Within Europe, 
 fi rst, and then on a broader stage, concern began to arise about the shifting use of 
indicators from being a focal point for understanding the educational enterprise to 
potentially being used to shape and control the educational systems of nations from 
a normative standpoint (Grek et al.,  2011 ; Lester, Dossey, & Lindquist,  2007  ) . 

 With the advent of multinational industries and the easy international exchange 
of knowledge and data, there has arisen a demand for evidence-based research 
 fi ndings to quantify the adequacy of state or provincial and national educational 
systems. This demand is a side product of the advent of reform programs in math-
ematics based on standards (Chatterji,  2002 ; Steiner-Khamsi,  2006,   2007  ) . Further, 
the demand for information in the form of comparative data has grown to the point 
where data resulting from the output of large-scale comparative studies can be 
viewed as forming international knowledge banks which enter into the processes of 
borrowing and lending. This view of the outcome data serving as a knowledge bank 
was  fi rst broached at an educational meeting at the World Bank in 1996 (Eaton & 
Kortum,  1996 ; Jones,  2004 ; Jones & Coleman,  2005  ) . 

 The rise of such international knowledge banks has brought with it two new 
major policy in fl uences. The establishment of international means and indices for 
outcomes has resulted in funder/donor pressures to move country means above 
international averages on targeted indices. This has been especially true in develop-
ing countries. In many cases, such targeted indices are only marginally related to 
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national or local goals or to the culture of a given country. Such pressures are most 
prevalent in developing countries, where ministries themselves  fi nd continued funding 
associated with a “harmonization” of their programs and expectations to share the 
funders’ knowledge and approaches and to work together with partner countries to 
“converge” and improve their programs (World Bank,  2005  ) . With this pressure 
from large donors,  fi nancial lenders, or policy groups such as OECD comes a change 
in their behaviour. They begin to make a shift from being a lender of capital to 
becoming a lender of educational policy. 

 The second shift related to policy is directly tied to the emergence of the large 
knowledge banks of studies such as those associated with the IEA and OECD studies. 
This shift comes from within the affected countries themselves. As particular indi-
ces are seen as being associated with positive movement and successful transforma-
tion of curricula, national and local politicians and policy makers use the indices of 
the knowledge banks as fulcrums for change. Politicians and policy makers turn to 
the existence of such study-based indices as external justi fi cation for the policy 
points they are promoting as needed changes in their national or local programs 
(Cussó & D’Amico,  2005 ; Grek,  2009 ; Peters,  2002 ; Phillips & Ochs,  2003  ) . 

 Luhmann  (  1990  )  and Schriewer  (  1990  )  argued that the very existence of rankings 
provided by assessments such as the IEA and OECD studies provide a perceived 
base of scienti fi c rationality for policy proposals and their public explanation. In 
fact, it has been argued that this very perception of the large-scale studies answering 
questions about curriculum has led to the lack of other research on curriculum 
reforms (Vithal, Adler, & Keitel,  2005  ) . The use of indices as a basis for monitoring 
and leveraging change in countries, especially lower-performing nations, often 
leads to the declaration of crises and the increase in educational policy “borrowing” 
from league-leading nations. Such adoption of other countries’ policies is made 
without careful consideration of the internal system supports which have made 
the policy successful, the cultural differences between the programs of the lending 
and borrowing nations’ educational programs, and the impact such changes 
will make on the internal coherence of the curriculum of the “borrowing” nation 
(Nguyen, Elliott, Terlouw, & Pilot,  2009 ; Phillips & Ochs,  2003 ; Ripley,  2011 ; 
   Thomas,  2001  ) .  

   Policy Convergence 

 The concept of policy convergence was  fi rst introduced by Kerr  (  1983  )  as 
“the tendency of societies to grow, more alike, to develop similarities in structures, 
processes and performance” (p. 3). Over time, many have noted this tendency and 
attributed it to a number of causes. Bennett  (  1991  )  examined the topic at a level 
less general than “societal convergence” in his examination of policy conver-
gence. He claimed that policy convergence should be examined as a movement 
from varied positions to a common point over time. In examining the forces that lead 
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to convergence, Bennett ( 1991 ) posited a taxonomy of four processes that result in 
policy convergence in times of change:

    1.     Emulation.  This approach to convergence involves the utilization of evidence 
about another’s programs to modify one’s own programs. As it is the adoption of 
a blueprint, emulation can explain some policy changes, but not outcomes 
themselves.  

    2.     Elite networking and policy communities.  This form of policy convergence is 
based in the actions of a transnational group of policy makers sharing a common 
focus on a policy issue. Unlike emulation, there is shared engagement in working 
on and adopting similar policies. There may even be a group charged with dis-
cussing a set of issues around the topic central to an emergent policy; in other 
cases, such groups may be self-appointed.  

    3.     Harmonization.  This approach to convergence of policy involves interdepen-
dence of the policy-making bodies and the existence of a super-body responsible 
for shaping and monitoring the common policy. However, the harmonization 
provides a movement together without the need for external controls or over-
sight. The European Community (EC) and OECD were held up as examples of 
such linked policy-making bodies. Harmonization requires a balance of relin-
quished autonomy with a hope for a gain in unproductive diversity in cross-
national policies.  

    4.     Penetration.  Convergence through penetration occurs when the policy-adopting 
bodies are forced to implement an externally developed policy. Examples of pen-
etration exist when nations are forced to implement an international standard or 
be closed out of a market. In some cases, this may be the result of harmonization 
strengthened to a regulatory system that de fi nes who can participate or bene fi t in 
a given market of human activity—telecommunications, intercontinental avia-
tion, and measurement standards.     

 It is the latter, and more coercive, types of convergence that are causing concern 
among educational policy experts. External loan institutions (e.g., UNESCO, 
World Bank, International Monetary Fund) have the leverage of expected improved 
outcomes for continued funding. Internal politicians and policy makers have the 
leverage of the public press to achieve convergence through public opinion and 
political power. Such uses of IEA and OECD data are being questioned in many 
quarters of the comparative education and mathematics education communities 
(Alexiadou,  2007 ; Carnoy,  2006 ; Grek,  2009  ) . The results of research have also 
raised doubts about whether curricular convergence-focussed activities result in 
increased outputs (Grier & Grier,  2007 ; Mayer-Foulkes,  2010  ) . Studies of inter-
ventions aimed at convergence have often shown that although convergence to the 
mean occurred with several variables, signi fi cant, unwanted, and unexpected 
increases occurred in the variance of both the focus and related variables. Such 
patterns could be very counterproductive in educational settings struggling to 
improve across the board.  
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   Impact of Educational Policy in Different Countries 

 An examination of national reactions to the release of IEA or OECD data presents 
an opportunity to study the actual impact of large-scale international comparative 
studies on mathematics education programs at a national level. Reactions to the 
release need to be monitored from public, media, and policy levels, as the degree of 
knowledge and potential leverage differ greatly among these bodies as one moves 
from nation to nation. 

 In high-performing countries, at least as characterized by the study league-tables, 
the reaction has often been one of satisfaction, raised even to the point of self-
congratulation. This reaction is often accompanied by reference to performance on 
particular indices comparing their performance with that of other countries. In low-
performing countries, there are public calls for reform, which often take one of two 
forms. One is a call for a return to the basics; the other is a call for changes leading 
to harmonizing the national program with that of other countries having higher 
league-values in indices of comparison that are viewed as desirable. In other 
instances, the release in lower-performing countries is a governmental one calling 
for change in policy with speci fi c reference to a greater federal role. Sometimes, 
action has been called for to fold the perceived needs into supporting an even broader 
political agenda involving governmental roles and the roles of public–private educa-
tion within the country. A third reaction is one of indifference, suggesting that the 
results are just one way in which one could evaluate the outcomes of the national 
system. Such reactions might result in no action, the institution of a study to look 
into the results more deeply, or starting a small-scale study or group of projects 
examining alternatives without a great deal of fanfare.  

   Mini-Case Studies of Policy In fl uence of International Studies 
on Mathematics Education 

 The following mini-case studies of national performance at the Grade 8 (13-year-
old) levels of the IEA studies and the PISA 15-year-old literacy studies present brief 
histories of the reactions and policy decisions surrounding the release of results 
from these large-scale international comparative studies. Occasional comments will 
be made concerning issues tied to either Grade 4 or 12 aspects of the IEA program. 
The  fi rst country examined is the USA, a country where changes have traversed the 
full span of Bennett’s levels of convergence because of reactions to performance in 
international studies and recommendations from governmental studies and profes-
sional organizations. Next, Germany and Finland are examined for the differences 
they experienced in student results and reactions to public opinions. Finally, some 
comments are made concerning Singapore and past and present movements in 
mathematics education there.  
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   USA 

 Perhaps the region having the most public reactions to study releases has been 
the USA, where each national and international assessment has had the same level 
of reaction in the media as a major sporting event. These reactions have even trig-
gered national commissions whose reports have also created waves of interest and 
policy-related actions. 

 The USA has participated in every IEA mathematics study at some level. Our 
study of reactions to large-scale international assessments in the USA is presented 
in three phases: reaction to the 1967 release of FIMS, reaction to the 1987 release 
of SIMS, and reaction to the 1995 release of TIMSS and successive releases of IEA 
Trend studies and to OECD PISA studies. The USA performed signi fi cantly below 
the IEA average in FIMS and SIMS, at the international average in 1995, and above 
the international average in 1999, 2003, and 2007 (Beaton et al.,  1996 ; Husén,  1967 ; 
Mullis et al.,  2000,   2004,   2008 ; Robitaille & Garden,  1989  ) . 

 In the OECD PISA studies of 15-year-olds’ performances, the USA performed 
no differently from the PISA mean in the 2000 assessment and then signi fi cantly 
below the international mean in the 2003, 2006, and 2009 assessments (OECD, 
 2001,   2004a,   2007,   2010a  ) . 

   Phase 1.   Reactions to the 1967 release of the  fi rst IEA mathematics study (FIMS) 
began with the  New York Times  coverage. Although the notion of international 
comparative studies was new to the public, curricular and instructional scholars, and 
policy practitioners, each group immediately saw the data and  fi ndings as potential 
policy levers. 

 The USA was, at this time, about 10 years into the development of new curricular 
programs, which originated in the mid-1950s because of a perceived lack of skills 
of students entering scienti fi c, technology, engineering, and mathematics study at 
the collegiate level. The most notable of these was the School Mathematics Study 
Group (SMSG). Although the initial impetus for these new curricular programs had 
been the unpreparedness of entering university students in the broad sciences, the 
1957 launching of the Sputnik satellite by the Soviet Union was quickly given the 
credit for their creation. Financial support for these programs, and others, was pro-
vided by the National Science Foundation (NSF) and materials were quickly brought 
to  fi eld tests in the schools of the nation (NCTM,  1961,   1964  ) . 

 These programs, which were backed by many in mathematics education and the 
mathematics community, focussed on the development of new textbook series and 
supporting materials. School mathematics was to have a greater focus on its underly-
ing structure and the relationship between this structure and the algorithms that had 
dominated the content of the traditional programs. Instructionally, there was a shift 
from teacher presentation to an approach making greater use of guided discovery and 
manipulative materials to illustrate and motivate mathematics learning. Paralleling 
this work, the projects, universities, and school districts instituted a number of pro-
fessional development projects for teachers aimed at strengthening their understand-
ing of and capabilities to teach the newer curricula. Parents were also factored into 
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the change equation with workshops held in conjunction with school parent–teacher 
organizations. The press labelled the entire reform effort the  new math . 

 National reports were issued by the College Entrance Examination Board 
(CEEB—later to become the College Board) and a group of mathematicians and 
mathematics educators looking into the future. The CEEB  (  1959  )  Report of the 
Commission on Mathematics presented a review of secondary mathematics pro-
grams and made a call for mathematics for all students before turning to its main 
point—revising the secondary program for college-capable students. In particular, 
the report provided a call for a balanced treatment of concepts and skills with a 
stress on deductive reasoning throughout the secondary-school program. It also sug-
gested attention be given to structure, use of sets and functions as a unifying feature, 
combined with a functional approach to trigonometry (Jones & Coxford,  1970  ) . 

 Once the overall program of reform was well underway, the movement was not 
without its critics. Foremost among these was Morris Kline  (  1961  )  of New York 
University and a list of other mathematicians (“On the mathematics curriculum of 
the high school,”  1962  ) . This group of mathematicians was concerned about the 
undue emphasis on mathematical structure in the reforms, the lack of ties to the real 
world, and the lack of reasons for studying mathematics beyond mathematics itself. 
Another line of attack came from the Executive Director of the National Association 
of Secondary School Principals (P. Elicker, personal communication, January 23, 
1962), calling for cutting off of federal funds for SMSG, as it was creating a national 
curriculum which would usurp the state and local rights to educational policy. This 
trickle of dissatisfaction from some vocal voices in the mathematics community, 
coupled with the voices of teachers stressed by dealing with new curricula, and 
joined by the dissatisfaction of parents unable to assist their children with home-
work viewed as unfamiliar and abstract, set the stage for change. 

 The release of the results from IEA FIMS was accompanied by a headline on the 
 fi rst page of the March 12, 1967,  New York Times  which read: “United States Gets 
Low Marks in Math.” This headline, and the accompanying report that the USA had 
 fi nished 11th out of 12 at the 13-year-old level and 13th out of 13 at the  fi nal year 
secondary-school level, cast a signi fi cant blow to the reform movement in school 
mathematics in the USA. The trickle of dissatisfaction turned to a torrent, with crit-
ics pointing to a downplaying of the “basics” or arithmetic facts and computational 
algorithm pro fi ciency as the culprit. A crisis was proclaimed, the FIMS results 
served as the lever, and the result was a backlash against curricular reform in school 
mathematics. 

 Jeremy Kilpatrick  (  1971  )  presented a thoughtful analysis of the FIMS study, not-
ing especially the tradeoffs that a researcher makes in moving from very small sam-
ples to a large sample where the notion of the context of student learning is lost. 
Students’ opportunity-to-learn stood out as a salient, researchable topic to pursue in 
secondary and follow-up studies. It was clear that US students had far less exposure 
to advanced topics, and more review of previously studied topics, at both the 
13-year-old level and at the  fi nal year of the secondary-school level. Further, student 
performance on advanced topics indicated that they were potentially teachable and 
learnable at the levels where assessments were given. 
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 The following decade brought work on rede fi ning the basics, based in many 
cases on curricula from other countries. This work resulted in a gradual expectation 
for a greater focus on algebraic and geometric content in the middle school. More 
importantly, it led to the NCTM developing, with wide feedback, its  1980   An 
Agenda for Action  which laid out a new broad conception of the basics in school 
mathematics and moved problem solving to a pre-eminent position in the curriculum. 
The  Agenda  endorsed appropriate uses of technology in the curriculum and recom-
mended that assessment of students be expanded beyond the traditional algorithmic-
based approaches. Further, the  Agenda  called on teachers to exhibit greater levels of 
ef fi ciency and effectiveness in their instruction. 

 Employing Bennett’s  (  1991  )  model for convergence, one might indicate that the 
period from 1967 to 1980 was a period of re fl ection and emulation. Although there 
were smaller cycles of focus on manipulatives and the appearance of hand calculators 
during the interval, the policy focus was on de fi ning a new way forward in school 
mathematics based on looking at others, learning from the  fi rst  fi ndings of the  fl edgling 
National Assessment of Educational Progress which released its  fi rst  fi ndings in the 
early 1970s, and developing a more policy-oriented outlook in the mathematics and 
mathematics education community. As there was no national department of education 
in the federal government at this point, the focus was on opening a conversation 
and providing a model, the  Agenda , that the profession could examine and debate. 
The emergence of the professional community and its contacts at the  fi rst interna-
tional mathematics education congresses with leaders from other nations and the 
emergence of the research community in mathematics education during this same 
period began to lead toward the formation of elite networks of policy-minded indi-
viduals in the mathematics and mathematics education communities.  

   Phase 2.   The  Agenda  ushered in a decade of work which ultimately resulted in 
the development and release of NCTM’s  Curriculum and Evaluation Standards for 
School Mathematics  in the spring of 1989 (McLeod, Stake, Schappelle, Mellissinos, 
& Gierl,  1996  ) . Across the 1980s, prior to and immediately following the release of 
the in fl uential  Nation at Risk  report (National Commission on Excellence in 
Education,  1983  )  calling for reform in US education, the NCTM, along with other 
major mathematical groups, had been moving toward drafting a statement of what 
students should know and be able to do as a result of their mathematics education. 
This process was guided by an emerging group that Bennett  (  1991  )  would term an 
 elite . Formed by educationally-oriented members of the mathematics community 
and leaders of the National Council of Teachers of Mathematics, this group worked 
to form a community of teachers, researchers, and scholars fuelled by the notion of 
improving school mathematics and making the reform stick. 

 The report of the 1986 NAEP,  The Mathematics Report Card: Are We Measuring 
Up?  (Dossey, Mullis, Lindquist, & Chambers,  1988  ) , noted growth in students’ 
mathematics achievement since previous NAEP assessments. But the report also 
noted that students were frequently unable to work straightforward problems involv-
ing concepts of which they should have full command at their grade level. Since this 
was the  fi rst report of US student achievement after the  Nation at Risk  report and the 
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release of the results of the 19-nation IEA’s Second International Mathematics 
Study (SIMS) in the January 1987 publication of  The Underachieving Curriculum  
(McKnight et al.,  1987  )  ,  the nation could have shifted immediately into a crisis 
mode (K. J. Travers, personal communication, July 4, 2011). 

 However, the US mathematics community and mathematics education community, 
in conjunction with the National Research Council, had formed the Mathematical 
Sciences Education Board (MSEB) in 1985 to coordinate the nation’s response to 
the underperformance in mathematics education. The MSEB was structured to be 
broadly representative of the mathematics community from elementary school 
teachers to distinguished university professors, representatives of state and local 
boards of education, employers from the scienti fi c and technological sectors, and 
representatives of teacher, parent, and policy groups. In January  1989 , the MSEB 
released  Everybody Counts,  which set the stage for what US mathematics education 
programs needed to do, based on research and comparative studies, to reach the goal 
of mathematics for all and the goal of an increased  fl ow of quali fi ed students at all 
levels along the mathematics pipeline. This document served as a policy precursor 
for the release of the NCTM  Curriculum and Evaluation Standards for School 
Mathematics  in March 1989. This release was met with positive comments and a 
lack of crisis focus. States signed on to the standards, and within three years all but 
a few states had changed their curricular frameworks to parallel the recommenda-
tions of the NCTM standards. 

 This was a tremendous step forward for mathematics education policy in the 
USA. Although the nation now had a Department of Education, direction of schools 
was still vested in the state departments of education, which, to a large degree, abro-
gated their responsibilities for curriculum to the leaders of over 15,000 separate 
school systems spread across the country. This vast and dispersed responsibility for 
mathematics education at the local level has been a major and de fi ning feature of US 
mathematics education. The appearance of the  Curriculum and Evaluation Standards  
(NCTM,  1989  ) , and the year-long public vetting of the draft with special attention 
paid to state departments of education, led to 46 states setting or modifying, within 
three years, their written state curricula to parallel the recommendations of the  fi nal 
standards document. Further, professional development materials and training ses-
sions were provided to educate leaders to talk about the standards and work with 
state and local school districts in implementing the standards at the local level. With 
this effort and the formulation of the MSEB and its work with NCTM, the policy 
community focussed on convergence of the mathematics education curriculum and 
attempts at convergence moved to the harmonisation level of Bennett’s  (  1991  )  tax-
onomy. Leaders of the mathematics, mathematics education, and policy communi-
ties met regularly to shape and monitor activities aimed at strengthening US school 
mathematics. Although not everyone supported the standards-based movement, 
there was focussed change afoot.  

   Phase 3.   Subsequent releases of the IEA documents from TIMSS and from the 
IEA Trends studies in 1999, 2003, and 2007 were viewed as signals of distances to 
go, but not as imminent crises. The same could be said for the release of the OECD 
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PISA studies of 2000, 2003, 2006, and 2009. The scores show consistent 
underperformance at the OECD level. Although each release was met with media 
proclamations which spoke of doom and despair over the state of education, 
especially in reading, mathematics, or science, little direct action was taken at the 
local level. Teachers were involved in professional development, and the updating 
of the NCTM standards with recommendations shaped ever closer to grade/age-
level expectations appeared as the  Principles and Standards for School Mathematics  
(NCTM,  2000  ) . 

 In Washington, DC, the situation was different. With the change of administra-
tions in 2000, President George Bush pushed for and won legislative approval for 
his  No Child Left Behind  (NCLB) law that created a mandatory national testing 
program which held schools accountable for achieving speci fi c and increasing lev-
els of performance. Those levels were keyed to a new NAEP framework for math-
ematics that called for increased focus on algorithmic skills and a lessening of 
attention to measurement, geometry, and probability as targets for the NAEP assess-
ments. In addition, the legislation moved the NAEP to an annual testing program 
for all students in Grades 3 through 8 and at one level in secondary school. The law 
further instituted a requirement that all states ensure that the schools under their 
aegis bring their students up to the “pro fi cient” level of performance by 2014 (Olson, 
 2004  ) . Intervals de fi ning  below basic, basic, pro fi cient,  and  advanced  levels of 
performance were de fi ned psychometrically via achievement-level-setting proce-
dures working with the individual NAEP items, student percentages, and Item 
Response Theory (IRT) parameter information (Pellegrino, Jones, & Mitchell, 
 1999  ) . This focus on accountability by achievement levels had been growing 
across the 1990s parallel to the implementation of the NCTM standards, but NCLB 
brought it front and centre. 

 With the institution of the NCLB law, the federal NAEP testing program, and its 
framework, one had the essence, at least, of penetration in the policy community. 
However, at the time of this writing, the lasting impact of this legislation and its 
punitive aspects for schools that fail to achieve raising their students to the  pro fi cient  
level by 2014 is uncertain, as legislative forces are afoot to change NCLB. The path 
to convergence that had its roots in the IEA release of the FIMS data, the growth of 
the policy community within the mathematics and mathematics education commu-
nity through NCTM, MSEB, and the many state mathematics teacher groups, and 
the success of the standards showed a pattern of harmonization. However, the impact 
of the NCLB, the insertion of a NAEP assessment system not harmonized with the 
NCTM  (  1989,   2000  )  standards, but having punitive outcomes for noncompliance 
illustrates the power of the existence of policy groups which have the ability to force 
convergence through penetration. 

 At the time of this writing, US schools are working through another policy-
induced change to the mathematics curriculum and state level assessment systems. 
In 2010, the Council of Chief State School Of fi cers (CCSSO) and Achieve, an orga-
nization formed in 1996 by the state governors and corporate leaders and focussed 
on educational reform, released their  Common Core State Standards for School 
Mathematics  (CCSSM) (see CCSSO & NGA,  2010 ; Porter, McMaken, Hwang, & 
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Yang,  2011  ) . This set of recommendations was immediately adopted by 40 states as 
their state-level standards for school mathematics for K-12 public schools. As such, 
the CCSSM provides the framework for expected mathematics outcomes and 
becomes the state-level proxies for meeting the NCLB goals for student progress 
toward pro fi ciency. Although it is too early to judge the impact of this rapid inser-
tion of new materials into the mathematics reform and policy mix in the USA, it 
clearly shows that convergence by insertion is the order of the day, with the impetus 
for structural change originating outside the professional mathematics education 
community. Time will tell the outcome of the NCTM  (  1989,   2000  ) -standards-led 
move to convergence of the K-12 mathematics education curriculum in the schools 
of the USA and the in fl uence of the CCSSM movement on the trajectory the NCTM 
standards engendered.   

   Germany and Finland 

 Although Germany and Finland are close geographically, their experiences with 
the PISA assessments and policy reactions are quite dissimilar. Both countries place 
a high value on public education but toward different ends. Neither had been consis-
tent participants in the TIMSS 13-year-old (eighth grade) level assessments from 
1995 forward. Germany had an eighth-grade ranking of 23rd out of 41 countries 
in 1995, whereas Finland had an eighth-grade ranking of 14th out of 38 countries in 
1999. In PISA, both countries participated in each assessment from 2000 forward. 
The countries’ performances can be viewed in terms of place ranking out of the 
number of participating countries or by their PISA mathematical literacy score. 
Using this notation (ranking, literacy score), Germany’s results for the four assess-
ments were as follows: 2000 (21/41, 490), 2003 (19/40, 503), 2006 (17/48, 504), 
and 2009 (16/65, 513). Finland’s results were: 2000 (5/41, 536), 2003 (2/40, 544), 
2006 (1/48, 540), and 2009 (6/65, 565). 

   Germany.   Germany’s students’ performances in 2000 through 2006 were met 
with public outcries, and the nation was caught up in rethinking its educational 
structure, what other factors might have in fl uenced the scores, and a myriad of other 
possibilities (Miserable Noten fűr Dekutsche schűler,  2001 ; OECD,  2002 ; Stanat 
et al.,  2002  ) . Finland, on the other hand, had high performances, and its citizens 
were hardly aware of the PISA assessment program or their students’ achievements. 
The different reactions are re fl ective of the countries’ cultures and their approaches 
to educating their children. However, the policy reactions are somewhat surprising. 

 Prior to this time, Germany’s education expectations were organized at the state 
level, with each state developing and monitoring school outcomes within their own 
 Länder . The reaction was swift to the 2000 and 2003  fi ndings. By 2003, there was 
a report outlining recommended standards and assessments by which these expecta-
tions would be monitored (Klieme et al.,  2003  ) . This report was passed through the 
Standing Committee of  Länder  Ministers in December 2003 and became the law of 
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the land for implementation with the 2004–2005 school year. This was change, and 
unanimous change, at an unprecedented pace for German education. Unlike other 
reforms, the trade unions and businesses and industry quickly endorsed the changes 
as well (Ertl,  2006  ) . As a result, new curricular guidelines and texts had to be devel-
oped and teachers provided with professional development relative to the imple-
mentation of the new goals. Individual states in Germany still had the authority to 
react to the strictures of the new standards in their own fashion. Educators in 
Germany felt that the changes within the mathematics curricular recommendations 
moved the curriculum closer to an empirical and practice-focussed conception than 
to the more didactical–cultural conception that had de fi ned German education 
(Bohl,  2004  ) . The conception of OECD literacy as an outcome was not central to 
German schooling prior to the reactions to the national PISA outcomes. This, com-
bined with the notion of developing the competencies associated with the individual 
disciplines sampled by PISA, has furthered the stress in moving from traditional 
approaches to schooling (Sloane & Dilger,  2005  ) . 

 The process and changes that resulted in the convergence observed in Germany 
was a signi fi cantly compressed version of that observed in the USA. In the USA, the 
transitions occurred over a period of 40–50 years in moving from the uncoordinated 
curricula of the early 1950s to the adoption of standards-based outcomes by the 
states in the late 1990s. In Germany, these transitions were compressed into little 
over a 4-year span. Given that many of the mathematics educators in Germany were 
well linked to others in the international mathematics education community and that 
the notions of  competencies  de fi ning outcomes were part of the experience in 
Germany’s neighbouring country of Denmark (Niss,  1999 ; OECD,  2003  ) , clearly, 
communication was already in place between the leaders of the curricular areas in 
German education and other international policy players at the start of the period of 
reaction to the PISA results. However, the re fl ective convergence that usually 
accompanies change resulting from harmonization was sharply curtailed by the 
quick institution of new standards by the ministers of culture and education in 2003. 
Germany is a case where the  Länder  ministries and educational administrators were 
handed the new standards almost as a fait accompli to be inserted into a new nation-
wide mathematics curricular structure. 

 Not all sectors of the education establishment were happy with the decisions 
made by the ministers and the move to standards-based outcomes. Ertl  (  2006  )  noted 
that the

  Federal Ministry’s post-PISA agenda seems to be  fi rmly focused on raising national educa-
tional standards by pursuing measures that will improve Germany’s low ranking in the 
PISA league table. It places less emphasis on the solution of the other major problems 
identi fi ed by PISA, the strong connections between the socio-economic background of 
students and their education achievement. (p. 630)    

   Finland.   The situation in Finland, contrasted with that in Germany, shows 
another country where education was valued, but the philosophical view of the 
process was different. Finland did not participate in TIMSS 1995 but did participate 
in 1999, where their Grade 8 equivalent students performed signi fi cantly higher 
than the IEA average performance in mathematics for this level (Mullis et al.,  2000  ) . 
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Finland’s performances in the OECD PISA assessments have been stellar, with its 
students attaining the highest non-Asian country performance in each of the PISA 
assessments from 2003 through 2009 (OECD,  2001,   2004a,   2007,   2010b  ) . 

 Finland’s student achievements in the TIMSS and OECD assessments have gar-
nered considerable kudos in the international education community and the public 
press. This focus has brought attention to the differences in both curricular pro-
grams and quality of instructional staff found in Finnish schools. Many have asked 
what factors led to their consistently high achievement on the PISA mathematical 
literacy assessments. To answer that question, one can start with the fact that Finland 
has a National Board of Education (FNBE) which oversees the educational enter-
prise of the nation. Starting with the 1985 mathematical curricular framework, the 
FNBE started a movement away from the comprehensive school with a strong core 
curriculum in mathematics for Grades 1–9. Although the board still provided a 
framework with four mathematical strands (number concepts, expressions and 
equations, geometry, and applied mathematics), the focus shifted from an emphasis 
on basic concepts and structure to one emphasizing problem solving, applications, 
and everyday uses of mathematics. This change was accompanied by professional 
development for teachers on teaching through problem solving and the use of 
projects to involve students in using their mathematics to solve problems from 
everyday settings. Follow-up research indicated that this movement was a partial 
success, but it succeeded in moving teachers to teaching only about problem solving, 
not through problem solving. 

 To further aid teachers in the transition, the FNBE and the municipalities pro-
vided teachers with more professional development, publishers produced problem 
booklets keyed to grade levels, and special emphasis was given to Japanese-style 
“open-problems.” This change moved the agenda on problem solving and realistic 
applications of mathematics further. The biggest change which might have affected 
the PISA results, was the release of a revised framework for mathematics by the 
FNBE in 1994. This action decentralized the curricular oversight by removing 
the listing of speci fi c content and turned the task of developing the mathematics 
curriculum over to the local schools’ teachers. The FNBE did provide guidance that 
teachers should still examine the traditional content critically and thin the curricu-
lum of material that did not have any use in the further development of mathematics. 
The FNBE also stated that Grades 1–6 should master the basic concepts and be 
capable of performing calculations on paper, mentally, and through the use of a 
hand-calculator (Kupiainen & Pehkonen,  2008  ) . 

 In 1999, Finnish education of fi cials provided schools with a marking guide 
scaled from 4 (reject) to 10 (excellent) with advice to move students to at least the 
8 (good) level. Although there is no national assessment used to place each student 
in an achievement level bracket for mathematics, Finland does have an assessment 
given to a representative sample of ninth graders. These papers are analyzed, pub-
lished, and discussed. Further, individual schools can buy copies of these tests to be 
given locally and then compare their results, and marks, with those given on the 
national sample of tests. This information helps provide a degree of uniformity to 
outcomes at a national level. There is also an assessment given to a sample of sixth-
graders every  fi fth year. 
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 When Finnish educators re fl ect on what has enabled their system to perform so 
well, they cite the following factors: their comprehensive educational structure with 
heterogeneous grouping of students, the societal focus of the schools with free 
healthcare and cohesive group-focussed structure, the use of specialist teachers of 
mathematics at lower grades in many schools, the focus on equity and Co-operation 
rather than competition, the focus on problems and the use of mathematics, wide-
spread student belief that they can solve problems, and the strong and supported 
corps of teachers (Kupiainen & Pehkonen,  2008 ; Malaty,  2006 ; Rautalin & 
Alasuutari,  2009 ; Sahlberg,  2010  ) . 

 Teachers in Finland had a more advanced education than their peers in most 
countries, and this education is balanced between content knowledge and content-
based pedagogical knowledge. This advanced preparation for their teaching and for 
the professional ways in which they approach the tasks confronting them has 
resulted in teaching being one of the most respected careers in Finland. This 
con fi dence in teachers as a whole has allowed them to plan and implement curricula 
and assessment programs  fi tting to their individual schools. 

 Other nations might note the heavy focus on equity and Co-operation—not choice 
and competition—in Finnish schools. Also, when teachers are provided government-
paid educational preparation and are given signi fi cant recognition and public backing 
for their work, teaching becomes a desired profession by well-quali fi ed individuals. 
Although Finland is reticent to say “Do this and you, too, can have high scores,” 
their Ministry of Education has re fl ected on the differences in Finnish education and 
tried to provide some background that might explain the cultural differences and 
practices as reasons for their performances (Hautamäki et al.,  2008  ) . 

 As in other countries, there is some concern about the high PISA scores from the 
mathematics community in Finland. Citing students’ recent low performance on 
graduation tests, members of university faculty argue that PISA provides a view of 
everyday mathematics and note the value of such knowledge, but also argue that 
such knowledge does not include advanced concepts and skills in algebra and other 
core subjects necessary for study and gainful employment after secondary school 
(   Astala et al.,  2005  ) . 

 That said, there is still concern about the in fl uence of outside forces on Finnish 
education (Grek et al.,  2011 ; Rautalin & Alasuutari,  2009  ) . The development of the 
Finnish system of education and the changes made between 1985 and 2000 were 
based on within-country self-study and the selective importation and emulation of 
practices seen to work in other countries. These imports were carefully woven into 
the curricular and professional development work provided for teachers. The OECD 
PISA results are seen with some distrust, as they come with a cloak of data and 
information, but bear the impact of scienti fi c truth. Researchers notice that statisti-
cal comparisons can often lead to the emulation of some practice of a country placed 
above the average of other countries (Rautalin & Alasuutari,  2009  ) . Such compari-
sons and interpretations then become levers for change. In fact, in Finland, the out-
come that Finnish student achievement levels had the least variance as a system in 
the PISA assessments was read as suggesting that perhaps there should be more 
attention paid to the top students, perhaps they could achieve even more. Although the 
Finnish take the homogeneity as one of their strengths, the numerical interpretation 
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can be used to suggest a failing. In reaction to the 2000 results, Finnish of fi cials 
decided to add more emphasis to the curriculum and instituted a call for more core 
subject in fl uence (Välijärvi et al.,  2002  ) . Hence, the numerical results suggested a 
possible weakness, and hence, even in the face of superior achievement, changes 
antithetical to the historical culture of Finnish education were made. 

 In Finland, we again see a country growing out of its own educational history 
through emulation to develop a system drawing on the best practices of other coun-
ties and schools within its own borders. The FNBE directives on curriculum made 
changes across the 1980s and 1990s consistent with programmatic changes in other 
countries that seemed to  fi t Finnish schools, but did so by modifying those practices 
to the culture of Finnish education. Although this approach led to harmonization 
through curricular guidance, the Finnish Ministry in 1985 backed off a bit in decen-
tralizing the education system to provide more local control of curriculum within 
broader guidelines. It was only with the numerical results dealing with the homoge-
neity of results across the Finnish student body in the PISA assessment that one saw 
outside in fl uence reach Finland in the form of indicator in fl uence inducing local 
policy. Although the in fl uence did not have the impact of penetration noted in 
Germany, this is an instance of convergence of education structure as a result of 
international assessment and indicator results.   

   Singapore 

 Asian student performance has dominated the achievement charts as their countries 
have held the majority of top rankings in the international large-scale assessments 
of mathematics performance since their inceptions in the middle 1980s. Asian 
students’ stellar performances have originated from Hong Kong, Japan, Korea, 
Macau, Singapore, Taipei, and most recently Shanghai. Despite their high rankings 
in international assessments, Asian countries have not been complacent with their 
current education systems. 

 Singapore did not participate in the FIMS or SIMS studies; rather, it made its 
entry with the TIMSS 1995 study. In 1995 through 2007, Singapore’s students per-
formed in the top group of countries and had the highest means, with the exception 
of the 2007 study, when Chinese Taipei had the highest numerical position but not 
signi fi cantly higher than that of Singapore (Beaton et al.,  1996 ; Mullis et al.,  2000, 
  2004,   2008  ) . In the OECD studies, Singapore, a non-OECD country, has participated 
in only the 2009 assessment. The Singapore students  fi nished second numerically but 
not signi fi cantly lower than the students of Shanghai-China (OECD,  2010a  ) . 

 In Singapore, the gap between the intended and the implemented and achieved 
curricula is small. This alignment results from a close monitoring of teacher progress 
and student achievement. There is a strong and articulated program of professional 
development that parallels the curriculum, providing important, grade-speci fi c sug-
gestions in the same time frame where teachers can immediately implement them in 
their classrooms (Kaur,  2009  ) . The Singapore Ministry of Education noted three 
problems emanating from the TIMSS  fi ndings. The  fi rst was that students did not 
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perform well on mathematics that they had not speci fi cally learned and practised. 
The second was student dif fi culty in transferring learned knowledge to different 
contexts. The third dealt with comprehension problems rooted in language issues 
which arose when unfamiliar words appeared in problems. All three of these 
issues have found their ways into curricular reform for mathematics in Singapore. 

 Singapore leaders feel that the results of the studies can provide fresh perspec-
tives and benchmark their performance relative to other countries. However, there is 
some fear that the high performance levels may lead to feelings of complacency 
relative to local standards. Singapore feels that such participation provides opportu-
nities to participate in other international comparative projects which have the pos-
sibilities of enriching their programs. In particular, they have participated in the 
Kassell project, the multinational IPMA, and a bilateral project with Brunei 
Darussalam. Singapore mathematics educators also participate in study tours to 
other countries and attend conferences of professional mathematics groups interna-
tionally. All of these efforts are viewed as adding new vistas to their program’s 
possibilities (Wong, Lee, Kaur, Yee, & Fong,  2009  ) . 

 Unlike other top-performing Asian countries, Singapore students not only per-
formed well in mathematics, they also displayed a positive attitude towards learning 
mathematics. The high performance of Singapore students attracted the attention of 
many Western mathematics educators. The Singapore mathematics curriculum and 
textbooks have been the focus of a number of studies aimed at identifying factors 
contributing to the high performance of Singapore students (American Institutes for 
Research,  2005  ) . Such focussed cross-cultural studies are examples of many small-
scale international comparative studies initiated as a result of TIMSS and PISA 
 fi ndings. These again are illustrative of attempted emulation and harmonization pro-
cesses under Bennett’s  (  1991  )  model of policy convergence. But this time, other 
countries want to learn from Singapore’s success story.   

   Concerns Regarding the Impact of International Studies 

 From the case studies, it is clear that international studies have had, and continue 
to have, a strong impact on policies for a number of countries. Although such an 
impact may lead to positive outcomes for mathematics education, there could also 
be consequences from international studies that are damaging to mathematics 
education. A critical review of the impact of international studies is essential. The 
following presents a discussion of concerns regarding the possible impact of inter-
national studies. 

   Concerns Regarding Statistical Precision of the Results 

 It is not unusual for policy makers to draw quick conclusions by looking at the 
change in country rankings from one assessment cycle to another. For example, if 



103331 Implications of International Studies for National and Local Policy

the ranking (or the country mean score) is worse than for the previous cycle, there 
may be an immediate outcry about the decline of mathematics standards in the 
country. This outcry in turn could lead to policy changes. What the policy makers 
have often missed is that there is always a margin of error in any reported measure. 
Although those who conduct international studies take great pains in articulating the 
con fi dence level surrounding performance measures, these margins of error are 
often ignored. A policy change may be totally unwarranted, as the change in coun-
try ranking could simply be the result of random  fl uctuation due to the sampling of 
students (Wu,  2010a,   2010b  ) . 

   Concerns regarding inferences on causal relationships.   International studies 
such as PISA and TIMSS are cross-sectional sample surveys. Such survey designs 
are not powerful in establishing causal relationships. Even though student and 
school background characteristics are captured and correlated with achievement 
measures, positive correlations do not establish causal relationships. A positive 
correlation between students’ interest in mathematics and test scores in mathematics 
may be expected. But it is dif fi cult to conclude whether higher interest in mathematics 
leads to higher achievement, or in fact, higher achievement raises interest. Similarly, 
better school resources could be positively correlated with higher achievement. But 
there could be mediating variables such as student socio-economic status (SES) that 
explain both student achievement and school resources. For example, private schools 
may have better resources and higher achievement scores, but both could be due to 
the higher SES of students in private schools. In general, translating survey results 
into policy measures relies on many assumptions and hypotheses. Some policy 
changes in response to international study results may be completely off the track.  

   Concerns regarding using mean scores only.   Often the main focus on results 
of international studies is the country mean score. Although the mean score 
summarizes overall performance, it could be the case that a country has a large 
group of low achievers because of geographical remoteness or immigrant 
composition. That is, the lower mean score could be the result of speci fi c factors 
rather than an inef fi cient education system across the board. Policy changes need to 
take into consideration a myriad of indicators and not just the ranking and mean 
score of a country. The emphasis on ranking and mean scores, often fuelled by the 
media, could lead to inappropriate policy changes (Hutchison & Schagen,  2007  ) .  

   Concerns regarding policy convergence.   Although there is a great deal of bene fi t 
arising from collaboration, whether internationally or between local communities, 
there are also a number of concerns in “borrowing” from other education systems, be it 
the curriculum, assessment, or a management approach. In Bennett’s  (  1991  )  model, 
policy convergence in the form of  emulation  appears to be the most  fl exible, and 
 penetration  appears to be the most rigid. An authoritarian approach to enforcing 
standards may work well, provided the standards are sound. The mini-case studies in 
this paper show that there are signi fi cant differences between education systems 
across the world, and that there are different success models. Finland has clearly 
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showed that a decentralized system with little emphasis on standardized testing can 
lead to high education attainments, whereas East Asian countries with highly 
centralized and examination-based education systems are also top performers. What 
works for one country may not work for another country because of cultural 
differences and local conditions. This variability is also the case for policy 
convergence within a country. A national curriculum brings uniformity across states 
or provinces but sti fl es diversity and innovation. If education systems are regarded 
as business models, then the importance of diversity and competition cannot be 
ignored, as educators have learned from the political and economic arena. When a 
borrowed system does not  fi t well within an education community, the consequence 
could range from a waste of resources to serious damages to the education system 
(Vithal et al.,  2005  ) .  

   Concerns regarding the use of assessment to drive teaching and learning.  
 Assessments of students should be undertaken as an evaluation of the outcomes of 
education. Assessments should be designed around teaching and learning, and not the 
other way round, where teaching and learning are designed around assessment. This 
direction of design is important as there are important differences between teaching 
and assessment. One may design an authentic task in assessment where multiple skills 
are required to solve a problem, but to teach those skills, basic building blocks of 
skills need to be taught separately, and often in a context-free mode. Only when 
students have mastered individual skills can they combine the skills and apply them. 
That is, the way mathematics is taught may be at variance with the way mathematics 
is assessed. As international studies like PISA and TIMSS are assessments, the 
adaptation or adoption of the PISA and TIMSS assessment frameworks as curriculum 
frameworks may not be desirable. For example, as PISA focusses only on problem 
solving and application in everyday settings, it would be an error for curriculum 
designers not to include skills involving abstract mathematics as well as basic 
foundations of mathematics which are often context-free. There is a particular 
concern when, in order to improve a country’s international test scores, the curriculum 
is changed to match the assessment frameworks of the international assessments. 

 Additional comments relative to design, interpretation, dif fi culties in conducting 
cross-cultural studies, and the drawing of inferences were the focus of a symposium 
held by the Board on Comparative Studies in Education at the National Research 
Council in Washington, DC, in 2000 (Porter & Gamoran,  2002  ) .    

   Retrospective 

 It is generally acknowledged that international studies such as TIMSS and PISA 
have an enormous impact on educational policy debates, if not on the policies them-
selves (Figazzolo,  2009  ) . However, it is not always straightforward to identify the 
impact of international studies on policies since many policy changes are in fl uenced 
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by international assessments in subtle and indirect ways. Sometimes policy changes 
evolve over a long period of time, moving slowly and thoughtfully through each of 
the steps to lasting educational reform. In such cases, it is dif fi cult to attribute a 
speci fi c lever that triggers a policy implementation. In other cases, media-induced 
crises lead to rapid, and often thoughtless, reforms lacking foundations in either 
research or practice. In this chapter, we have reviewed national and local reactions 
to international studies that are quite public, as well as political and economic pro-
cesses whose implications are less overt but nevertheless important in in fl uencing 
policies. Below, we provide a summary of different kinds of policy implications of 
international studies. 

 First, results of international studies have been used as policy levers. This trend 
has been increasing with recent data releases, most notably in the USA, Germany, 
and Japan. In some cases, the results are used simply as an opportunistic justi fi cation 
for some policies that have already been rolled out. In other cases, new policies have 
been devised in direct response to the poor performance of students. The policy 
changes range from changing curriculum content to providing resources to 
schools. 

 Second, international studies have been used as performance measures to gauge 
the success or otherwise of a policy. For example, a policy might be linked to an 
international study through the setting of a target level of a country’s performance 
in the study. More recently, national achievement measures have been used as eco-
nomic incentives or indicators by international funding organizations working with 
developing countries. 

 Third, international studies have provided a wealth of data and, with that, oppor-
tunities for mathematics education researchers to carry out in-depth analyses rang-
ing from classroom climate, gender equity, to curriculum design. Many of these 
studies are funded by policy bodies with a view that these analyses may in fl uence 
policies down the line, even if there may be no immediate policy changes based on 
the research  fi ndings. The authors of a number of chapters in this handbook have 
discussed the link between mathematics education research and policy 
implementation. 

 Fourth, international studies such as TIMSS and PISA have led to further trans-
national dialogs between researchers in assessment, curriculum, and instruction. In 
Bennett’s  (  1991  )  model of policy convergence, these are examples of emulation and 
harmonization. 

 Fifth, international studies have increased an awareness of the use of student 
performance measures, and, in some cases, led to the establishment of national sam-
ple-based or full-cohort standardized tests. Such enforced tests are examples of 
Penetration under Bennett’s  (  1991  )  model where, by law, achievement targets from 
the tests are set. 

 International studies have had both positive and negative impacts. On the one 
hand, it is encouraging to see increased discussion and debate on curriculum content 
in mathematics, teaching strategies in the classrooms, assessment methodologies, 
and a rethinking of the values and goals of education more generally. The discus-
sions have certainly stimulated a great deal of re fl ection, evaluation and constructive 
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criticisms. These have been positive outcomes from international studies. On the 
other hand, there have also been hasty reactions to study results and rash policy 
decisions based on unfounded inferences. In particular, the media and some policy 
makers have been prone to brush aside caveats clearly stated in the study reports, to 
ignore the degree of con fi dence one can have in the measures, and to launch into 
actions that have been typically politically motivated. There are often policy mea-
sures that are quick  fi xes to improve test scores rather than for long-term investment 
for a better education. These are examples of the negative impact of international 
studies. 

 Hopefully, the outcomes of international studies have fostered curricular consid-
erations and productive changes, a careful re fl ection on cross-cultural comparative 
methodology, and steps to the improvement of student learning of mathematics 
worldwide. Researchers and policy-inclined individuals in the mathematics educa-
tion community need to ask what should be and what are the policy rami fi cations 
associated with the TIMSS and PISA assessments, as well as those associated 
with other international and national assessments of mathematics education. 
What are the bene fi ts that can be obtained from a careful analysis of the tests, 
curricula, instructional patterns, opportunity-to-learn, instructional materials and 
other resources, teacher preparation and professional development and support 
programs, and related research  fi ndings? What are the positive and negative effects 
resulting from borrowing and promoting the TIMSS and PISA frameworks for 
developing countries and inducing the insertion of these frameworks into national 
curricular framework discussions? These questions shape an agenda for mathe-
matics education and policy researchers to examine in the coming decade, as the 
role of international assessments will surely continue to grow in the number and 
range of nations participating and in the sources of important indicators chosen 
(Jones,  2005  ) . For mathematics educators to dismiss the powerful force such 
assessment programs have on educational policy decisions worldwide would be a 
dangerous mistake from cultural, mathematical, and educational perspectives.      
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mathematics classroom practice and learners’ perspectives; political and social 
dimensions of research on mathematics classroom practice, internationalization and 
globalization of scienti fi c collaboration; dif fi culties faced by students and teachers 
in mathematics classrooms; mathematics education and values. 
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She has served as President of the International Group for the Psychology of 
Mathematics Education and as member of the International Program Committees 
for ICME-11, ICMI Study Group 12 on Algebra, and ICMI Study 22 on Task 
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Psychology of Mathematics Education  and the  Second Handbook of Research on 
Mathematics Teaching and Learning . 

  Jeremy Kilpatrick  is Regents Professor of Mathematics Education at the University 
of Georgia. He holds A.B. and M.A. degrees from the University of California, 
Berkeley, and M.S. and Ph.D. degrees from Stanford University. Before joining the 
Georgia faculty, he taught at Teachers College, Columbia University. He is a 
National Associate of the National Academy of Sciences and a Fellow of the 
American Educational Research Association, received a 2003 Lifetime Achievement 
Award from the National Council of Teachers of Mathematics, and received the 
2007 Felix Klein Medal honoring lifetime achievement in mathematics education 
from the International Commission on Mathematical Instruction. 

  Konrad Krainer  is Professor at the University of Klagenfurt, head of the Austrian 
Educational Competence Centre for Instructional and School Development 
(Klagenfurt and Vienna), and the leader of the nation-wide IMST project. He was 
associate editor of JMTE, co-editor of the  International Handbook of Mathematics 
Teacher Education , was a founding member of the ERME-Board (e.g., establishing 
a summer school for young researchers), and is a member of the Education 
Committee of the EMS. He gave plenary lectures at ICME 10 (co-presenter) and 
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PME 35. His research interests are mathematics teacher education, school develop-
ment, and educational system development. 

  Troels Lange  is Senior Lecturer in Mathematics for young children in teacher edu-
cation at Malmö University, Sweden. After teaching mathematics and science in a 
high school program for adults, he taught mathematics education in Danish teacher-
education programs. He has recently worked in Australian primary teacher educa-
tion. In 2009 he defended his PhD thesis, at Aalborg University, Denmark, on 
children’s perspectives on having dif fi culties with learning mathematics. Since 
then, he has published a number of peer-reviewed articles. He is now involved in 
research projects investigating preschools’ approach to mathematics education. 

  Stephen Lerman  was a secondary school teacher of mathematics in London and 
abroad, including fi ve years as a head of Mathematics. Since then he has been in 
mathematics teacher education and research, and he is now Professor of Mathematics 
Education at London South Bank University. He is a former President of the 
International Group for the Psychology of Mathematics Education (IGPME) and 
Chair of the British Society for Research in Learning Mathematics (BSRLM). 
His interests are in theories of learning and socio-cultural theory. His recent work 
has drawn on sociological theory to inform studies of disadvantage in school 
classrooms. 

  Allen Leung  is Associate Professor in Mathematics Education at the Hong Kong 
Baptist University. He obtained his PhD in mathematics at the University of Toronto 
and has been Assistant Professor at the University of Hong Kong and the Hong 
Kong Institute of Education. His main research areas are the pedagogical and epis-
temological aspects of dynamic geometry environments, the use of tools in mathe-
matics classrooms, the development of the Theory of Variation in mathematics 
pedagogy, and the development of lesson and learning studies. He is an IPC member 
of the 22nd ICMI Study on task design. 

  Frederick Koon-Shing Leung  is Professor in Mathematics Education within the 
Faculty of Education of the University of Hong Kong. Born and raised in Hong 
Kong, he obtained B.Sc., Cert. Ed. and M.Ed. quali fi cations from the University of 
Hong Kong, and Ph.D. from the University of London Institute of Education. His 
major research interests are in the comparison of mathematics education in different 
countries, and in the in fl uence of culture on teaching and learning. He is principal 
investigator of a number of major research projects, including the Hong Kong com-
ponent of the Trends in International Mathematics and Science Study (TIMSS), the 
TIMSS Video Study, and the Learner’s Perspective Study (LPS). He was a member 
of the Executive Committee of the International Commission on Mathematical 
Instruction (ICMI) and the Standing Committee of the International Association for 
the Evaluation of Academic Achievement (IEA). He was awarded a Senior Fulbright 
Scholarship in 2003, and is a honorary professor of Beijing Normal University, 
Southwest University, and Zhejiang Normal University in China. 
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  Jun Li  is Associate Professor within the Department of Mathematics at the East 
China Normal University. She has a special interest in studying students’ under-
standing of mathematics, especially in the  fi eld of statistics and probability. She is 
also interested in curriculum issues, teacher training, the use of technology in class-
rooms, and the in fl uences of culture on mathematics education. She is a member of 
the writing group of the Standards of Mathematics Curriculum for Senior High 
Schools issued by the Ministry of Education of China, and is also author of a math-
ematics textbook being used in junior high schools in China. 

  Abigail Fregni Lins  (Bibi Lins) is a permanent Lecturer in the Mathematics 
Department and in the Graduate Master Program in Mathematics Education at the 
State University of Paraíba, Brazil. She was born in the capital city of São Paulo, 
Brazil, and obtained her BSc in Pure Mathematics at the Catholic University of São 
Paulo-PUCSP in 1985, her MPhil in Number Theory at the University of Nottingham 
in 1992, and a PhD in Mathematics Education at the University of Bristol in 2003. 
She has taught at undergraduate and graduate levels in national and international 
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education with emphasis on the use of technologies in the teaching and learning of 
mathematics. She is President of the Brazilian Mathematics Education Society in 
the State of Paraíba and is involved in various national research projects. 

  Chap Sam Lim  is Professor of Mathematics Education in the School of Educational 
Studies at Universiti Sains Malaysia (USM), Penang, Malaysia. She taught mathe-
matics in secondary schools for 8 years and lectured at a teacher-training college for 
one and a half years before taking an appointment at USM in 1993. In 1999 she was 
awarded a PhD by Exeter University, in the UK. She gained the Asian Scholar 
award from the Asian Scholarship Foundation (2004–2005), and was Fulbright 
Scholar in 2008 and 2009. She has written or edited 7 books and more than 50 peer-
reviewed articles focusing on cross-cultural study, public images of mathematics, 
teaching mathematics in a second language, and lesson study as a form of profes-
sional development for mathematics teachers. 

  Lim-Teo, Suat Khoh  is Associate Professor at the National Institute of Education, 
Singapore. She has held various appointments there, including Head of Mathematics, 
Associate Dean for pre-service programs and Dean of Faculty Affairs. She was 
also a past President of Singapore’s Association of Mathematics Educators, a past 
Vice-President of the Singapore Mathematical Society, and has served on local and 
international conference committees. She was an IPC member for ICME10 
(Denmark, 2004) and IPC chair for EARCOME 2002. She has been a mathematics 
teacher educator for more than 20 years and her current research focus is on teacher 
education. 

  Katie Makar  is Senior Lecturer in mathematics education at the University of 
Queensland in Australia. She has authored over 40 peer-reviewed publications, pre-
sented her research on six continents and led several national projects researching 
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the teaching of mathematics through inquiry, statistical argumentation, and informal 
statistical inference at the school level. She has conducted consulting work for gov-
ernment agencies on innovative teaching of mathematics, promoting statistical rea-
soning and teacher professional standards, and teaches preservice secondary 
mathematics teachers as well as courses in mathematics education, interdisciplinary 
curriculum and statistics. She obtained her PhD in 2004, and before that she taught 
secondary mathematics for 15 years in the USA and in Asia. 

  José Manuel Matos  did his undergraduate studies in applied mathematics at the 
University of Lisbon, Portugal. For some years he worked as a certi fi ed teacher of 
mathematics in secondary schools in Portugal, and later he obtained his masters 
degree at Boston University and his doctorate at the University of Georgia, his dis-
sertation being in mathematics education. He currently works at the New University 
of Lisbon where he teaches undergraduate and graduate courses on education and 
mathematics education. His research interests are currently focused on learning, 
curricular issues, and the history of mathematics education. 

  Claire Margolinas  is “Maître de Conférence” and member of the  Acté  research 
center at Blaise Pascal University, France. Since 1993 she has taught mathematics 
education and mathematics for secondary and primary teachers at Auvergne 
University’s Institute for Teacher Education (IUFM: Institut Universitaire de 
Formation des Maîtres). Between 2003 and 2006 she was editor of the journal 
 Recherches en Didactique des Mathématiques  and she is currently a member of the 
editorial board of  Educational Studies in Mathematics.  She is known for her work 
about teachers’ situations. 

  Tamsin Meaney  is Professor of Mathematics for young children at Malmö 
University, Sweden. She has worked as a mathematics educator in Australia, 
Kiribati, and New Zealand. Before moving to Sweden, Tamsin worked as a teacher 
educator at the University of Otago, Dunedin, New Zealand, and at Charles Sturt 
University, Wagga Wagga, Australia, Much of her research interests have focused 
on issues associated with language in mathematics, particularly in relationship to 
the use of Indigenous languages for the teaching of mathematics. This includes a 
long-running research project within a Māori-immersion school in Rotorua, which 
has been the theme of her recent book, published by Springer. 

  Marta Menghini  is Associate Professor in the Department of Mathematics of 
Sapienza University in Rome. Her research interests are as follows: history of math-
ematics teaching, particularly of geometry teaching; relations between historical 
development, foundations, cognitive aspects and curriculum in the learning of math-
ematics; in fl uences of research in geometry on the teaching of geometry in the last 
century; the approach to de fi nitions in geometry, intuitive geometry and the use of 
concrete materials. She was the chief organizer of the international symposium, 
held in Rome in March 2008, marking the occasion of the centennial of ICMI, and 
she edited the proceedings of that symposium. 
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  Vilma Mesa  is Assistant Professor of Education at the University of Michigan. 
She is currently investigating the role that resources play in developing teaching 
expertise in undergraduate mathematics, speci fi cally at community colleges and in 
inquiry-based learning classrooms. She has conducted several analyses of textbooks 
and evaluation projects on the impact of innovative mathematics teaching practices 
for students in science, technology, engineering, and mathematics. She has a B.S. in 
computer science and a B.S. in mathematics from the University of Los Andes in 
Bogotá, Colombia, and holds a master’s degree and a Ph.D. in mathematics educa-
tion from the University of Georgia. 

  Elena Nardi  is a Greek-born researcher in mathematics education. She is currently 
Reader at the University of East Anglia in the UK. Her research is mainly on the 
teaching and learning of mathematics at university level, cognitive, social and affec-
tive issues of student engagement with mathematics, and, secondary mathematics 
teacher knowledge and beliefs. She is joint Editor-in-Chief of the Routledge journal 
 Research in Mathematics Education , the of fi cial journal of the  British Society for 
Research into the Learning of Mathematics  (BSRLM), and her monograph  Amongst 
Mathematicians: Teaching and Learning Mathematics at University Level  was pub-
lished by Springer in 2008. E-mail: e.nardi@uea.ac.uk 

  Mogens Niss  is Professor of Mathematics and Mathematics Education at Roskilde 
University, Denmark. Trained as a pure mathematician, his research interests 
turned towards mathematical modelling and mathematical education. Today, his 
main  fi eld of research is mathematics education, especially the justi fi cation prob-
lem in mathematics education; applications and modelling in the teaching and 
learning of mathematics; assessment; the nature of mathematics education research 
as a scienti fi c discipline; and mathematical competencies in mathematics educa-
tion. He has been member of several committees, including the Executive 
Committee of ICMI, 1987–1998 (Secretary General 1991–1998), the ICMI Awards 
Committee (chair 2008–2011), and the Education Committee of the European 
Mathematical Society. 

  Jarmila Novotná  is Professor at Charles University in Prague and researcher in 
 LACES , at Université Bordeaux Segalen. She was member of the IPC of the Fifteenth 
ICMI Study  Professional Education and Development of Teachers of Mathematics  
and of the ICME 10 Survey Team,  The Professional Development of Mathematics 
Teachers.  She coordinated the PME 27/PMENA25 plenary Panel:  Navigating 
Between Theory and Practice . She is a member of the Educational Committee of the 
European Mathematical Society. She is known for her work related to mathematics 
teacher training and to the transfer into practice of research results. 

  Peter Nyström  is Assistant Professor in the Department of Applied Educational 
Science at Umeå University, in Sweden. He is currently serving as the mathematics 
expert for TIMSS in Sweden, and since 2004 has led a group that has been developing 
national tests in mathematics for upper secondary schools in Sweden. He is an active 
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participant in, and a member of the board of, the Umeå Research Centre for Mathematics 
Education (UMERC). Although his research is mainly in the  fi eld of educational 
assessment with a special focus on mathematics and science, he has also taken interest 
in issues such as curriculum, ability grouping, and the teaching of mathematics. 

  Neil A. Pateman  is Professor in the Department of Curriculum Studies at the 
University of Hawai’i at Mānoa. His research interests are teaching and learning in 
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He is currently working with others on a project to recover traditional mathematical 
knowledge in Paci fi c island entities with a view to developing curriculum for schools 
in those entities in order to keep the traditional practices alive. 

  Arthur B. Powell  is Associate Professor, Department of Urban Education at Rutgers, 
the State University of New Jersey. He has taught in Brazil, China, and Mozambique, 
as well as in the USA, has authored or edited  fi ve books, and has published numerous 
articles. His research areas include ethnomathematics, critical mathematics, analysis 
of curriculum materials, subordination of teaching to learning in mathematics, and 
collaborative mathematical problem solving with technology. He created the NGO, 
Elevating Learning above Teaching (ELAT), to support professional development 
projects for teachers of elementary schools in Haiti. In 2003, he co-founded the 
Bronx Charter School for Better Learning (BCSBL) in New York City, and there he 
conducts professional development workshops for teachers. 

  David Lindsay Roberts  is Adjunct Professor at Prince George’s Community 
College, in Maryland (USA). He has an M.A. in mathematics from the University 
of Wisconsin-Madison and a PhD. in the history of science from Johns Hopkins 
University. His research focusses on the history of mathematics education in the 
nineteenth and twentieth centuries. He has received the Lester R. Ford Award for 
expository writing on mathematics from the Mathematical Association of America, 
and was co-author, with Peggy Aldrich Kidwell and Amy Ackerberg-Hastings, of 
 Tools of American Mathematics Teaching, 1800–2000 , published by the Johns 
Hopkins University Press in 2008. 

  Ornella Robutti  is Associate Professor in Mathematics Education in the Department 
of Mathematics of the University of Torino, in Italy. She obtained her Masters 
degree in Mathematics in 1984 and her Masters degree in Physics in 1989 at the 
University of Torino. She is involved in teacher education in national projects in 
Italy (m@t.abel, PON), and is in charge of the GeoGebra Institute of Torino and of 
the project DIFIMA. She is the author of many publications in the  fi eld of mathe-
matics education as well as high school books on physics and mathematics. Her 
main  fi eld of research is teaching and learning processes in mathematics with the 
support of technologies. 

  Leo Rogers  is a founder member of the British Society for the History of Mathematics 
and founder of the International Study Group on the History and Pedagogy of 
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Mathematics (HPM). He has taught in Primary and Secondary schools in England, 
and as a trainer of teachers, worked with pupils and teachers in a number of European 
Community curriculum and research projects. His principal interests are the histori-
cal, philosophical and cultural aspects of mathematics as they relate to the develop-
ment of curricula, mathematical pedagogies, and individual learning. When not 
involved with education, he dances the Argentine Tango. 

  Ana Isabel Sacristán  has been a full-time researcher in mathematics education at 
the Center for Research and Advanced Studies (Cinvestav) in Mexico City, Mexico, 
since 1989. She received her PhD from the Institute of Education, University of 
London in 1997. Her main area of research is the use of digital technologies in the 
teaching and learning of mathematics and, more recently, professional development 
of teachers aimed at assisting them to incorporate digital technologies into their 
practice. She has participated in several national and international projects and com-
mittees in these areas, including as a member of the program committee of the ICMI 
17 study group. 

  Bernard Sarrazy  is Professor of Educational Sciences at the University of Bordeaux 
Segalen, France. He was director of the  Département des Sciences de l’Education  
for 2 years and at present is director of the  Laboratoire Cultures, Education, Sociétés  
(LACES). In his research he focusses on the study of phenomena of mathematics 
education at the intersections of post-structuralist anthropology and the theory of 
didactical situations. He pays special attention to anthropological and social deter-
minations of the relationships of pupils towards the didactical contract. 

  J. Michael Shaughnessy,  who is Professor, Department of Mathematics and 
Statistics at Portland State University, has recently served a 4-year term as President 
of the National Council of Teachers of Mathematics .  He has taught mathematics 
courses and directed professional development programs for teachers from K–12 
through university level. He has authored over 70 scholarly articles, books, and 
book chapters on issues in mathematics education. His principal research interests 
have been the teaching and learning of statistics, probability, and geometry. He was 
a member of the Mathematics Department at Oregon State University from 1976 to 
1993, and subsequently joined the Department of Mathematics and Statistics at 
Portland State University. 

  Yoshinori Shimizu  is Professor of Mathematics Education within the Graduate 
School of Comprehensive Human Sciences, University of Tsukuba. He taught at 
Tokyo Gakugei University, one of the largest national institutions for teacher educa-
tion in Japan, for 15 years before joining University of Tsukuba in 2005. His primary 
research interests include international comparative studies of mathematics class-
room instruction and student assessment. He was a member of the Mathematics 
Expert Group for OECD/PISA 2003, 2006, and 2009, and was one of the founders 
of Learner’s Perspective Study (LPS), an international comparative study on 
mathematics classrooms. He is the Japanese team leader for LPS. 
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  Nathalie Sinclair  is Associate Professor in the Faculty of Education at Simon 
Fraser University in Canada. Before that, she worked in the Department of 
Mathematics at Michigan State University. Her primary research interests focus on 
the consequences of embodied cognition in mathematics thinking and learning. She 
studies the role of the aesthetic in the development of mathematics as a discipline 
and in the understandings of both research mathematicians and school learners, and 
investigates the ways in which digital technologies, and dynamic geometry software 
in particular, change the way people think, move and feel mathematically. 

  Parmjit Singh  is Associate Professor within the Faculty of Education, University 
Technology Mara, Malaysia. He obtained his PhD in Mathematics Education from 
Florida State University in 1998, and his research interests focus on children’s learn-
ing and development in mathematics with a speci fi c interest in cognitive processes. 
He has been a principal investigator on several funded research projects such as 
Gaps in Children’s Mathematical Learning, Multiplicative Thinking Structures, 
Problem Solving among College Students, Children’s Numeracy, and Key 
Performance Indicators (KPI) for Public Universities in Malaysia. He has given 
numerous paper presentations and gained research publications in local, national, 
and international arenas and has authored several books aimed at the primary, sec-
ondary and tertiary levels of mathematics education. 

  Bharath Sriraman  is an Indian-born academic editor, mathematician, and educator 
best known for his contributions to theory development in mathematics education 
and in gifted education. He is Professor of Mathematics at The University of 
Montana—with a secondary appointment in the Department of Central Asian 
Studies where he offers courses in Indo-Iranian studies. He travels and collaborates 
extensively with colleagues at institutions in Norway, Sweden, Denmark, and 
Iceland, in addition to Cyprus, Germany, Turkey, Iran, Australia, and Canada, and 
supervises doctoral students from these nations. He is the founder and editor-in-
chief of  The Mathematics Enthusiast . E-mail: sriramanb@mso.umt.edu 

  Kaye Stacey  is Foundation Professor of Mathematics Education at the University 
of Melbourne. She works as a researcher and teacher educator, training teachers for 
both primary and secondary schools and supervising graduate research. Her research 
interests centre on mathematical thinking and learning, problem solving and the 
mathematics curriculum, particularly the challenges and opportunities that arise in 
adapting to the new technological environment. Her research work is renowned for 
its high engagement with schools. Her doctoral thesis from the University of Oxford, 
was in number theory. She has a Centenary Medal from the Australian government 
for outstanding services to mathematics education. 

  Mike Thomas  is Professor in the Mathematics Department at The University of 
Auckland, New Zealand. His research interests are in using technology to improve 
learning, developing theories of advanced mathematical thinking, the learning and 
teaching of calculus and undergraduate mathematics, school and university teaching, 
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and connections between mathematics education and cognitive neuroscience. He 
has given invited research seminars in a number of countries and is on the editorial 
boards of  Mathematics Education Research Journal  and the  International Journal 
of Mathematical Education in Science and Technology . He has recently leading a 
survey team for the 2012 International Congress on Mathematical Education 
(ICME), on the mathematical dif fi culties inherent in the transition from school to 
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  Luc Trouche  Professor at the French Institute for Education (Ecole Normale 
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teacher development as an interplay between practice, individual and collective, and 
resources. 
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research, which has focussed on identifying positioning structures in mathematics 
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Education Library series. 

  Margaret Walshaw  is Professor in the School of Curriculum and Pedagogy at 
Massey University, New Zealand. She is Co-Director of the Centre of Excellence 
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research interest is in making connections between new theories of the social and 
mathematics education. In this interest she has written and edited several books and 
published in a wide range of journals. 

  Tine Wedege  is Professor in the Faculty of Education and Society, Malmö 
University, Sweden, where she teachers mathematics teacher education. During 
2005–2010 she was also Professor in the Department of Mathematical Sciences, 
Norwegian University of Science and Technology, Norway. Until 2005, she was 
Associate Professor at Roskilde University, Denmark, where she defended her 
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doctoral thesis in 2000. She has written and/or edited more than 100 scienti fi c pub-
lications, and is a member of the editorial committee of  Nordic Studies in Mathematics 
Education . Internationally, she has been active in the Adults Learning Mathematics 
(ALM) research forum since 1994, and has been on the editorial board of ALM’s 
international journal. 
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School of Education at the University of Western Sydney (UWS). Before UWS he 
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students, and has a long history of working throughout South East Asia in the areas 
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Japan, Malaysia, New Zealand, The Philippines, Singapore, Thailand, and Taiwan. 
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learning—sometimes called formative assessment or assessment for learning. 
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Council Post-doctoral Fellow hosted by the International Centre for Classroom 
Research at the University of Melbourne. She is also a member of the Learner’s 
Perspective Study (LPS). Her research foci are in fl uenced by her many years as a 
secondary mathematics teacher, provider of professional learning in primary and 
secondary schools, and by her participation in curriculum development and assess-
ment projects at local, state and national levels. She has visited classrooms in 
Australia, Japan, Germany, the USA, the Philippines, South Africa, and Sweden, 
and analysed lesson videos from these countries and from China. Collaborations 
with local researchers have enriched her understanding of intercultural contexts. 

  Julian Williams  is Professor of Mathematics Education within the University of 
Manchester’s School of Education. He began his professional career teaching math-
ematics in comprehensive schools. His work increasingly focussed on research and 
research supervision in mathematics education. His interests have always been not 
only in modelling and problem solving but also in learning, assessment and teach-
ing mathematics, situated and embodied intuition, workplace and school–college/
university transitions, and widening participation in mathematics. His recent theo-
retical work deals with cultural-historical psychology/activity theory, semiotics, 
identity and Bourdieusian sociology. He is currently attempting to synthesize 
cultural psychology in the educational  fi eld as a localization of capitalism. 
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  Margaret Wu  has a background in statistics and educational measurement. She has 
worked as a researcher in educational institutes, as well as a mathematics teacher in 
schools. Margaret has been involved in a number of international studies including 
PISA and TIMSS, taking on the roles of data analyst and test developer. She grew 
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materials which capitalize on mathematics technology.  
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